WorldWideScience

Sample records for ancient shrub tundra

  1. Evidence and Implications of Frequent Fires in Ancient Shrub Tundra

    Energy Technology Data Exchange (ETDEWEB)

    Higuera, P E; Brubaker, L B; Anderson, P M; Brown, T A; Kennedy, A T; Hu, F S

    2008-03-06

    Understanding feedbacks between terrestrial and atmospheric systems is vital for predicting the consequences of global change, particularly in the rapidly changing Arctic. Fire is a key process in this context, but the consequences of altered fire regimes in tundra ecosystems are rarely considered, largely because tundra fires occur infrequently on the modern landscape. We present paleoecological data that indicate frequent tundra fires in northcentral Alaska between 14,000 and 10,000 years ago. Charcoal and pollen from lake sediments reveal that ancient birchdominated shrub tundra burned as often as modern boreal forests in the region, every 144 years on average (+/- 90 s.d.; n = 44). Although paleoclimate interpretations and data from modern tundra fires suggest that increased burning was aided by low effective moisture, vegetation cover clearly played a critical role in facilitating the paleo-fires by creating an abundance of fine fuels. These records suggest that greater fire activity will likely accompany temperature-related increases in shrub-dominated tundra predicted for the 21st century and beyond. Increased tundra burning will have broad impacts on physical and biological systems as well as land-atmosphere interactions in the Arctic, including the potential to release stored organic carbon to the atmosphere.

  2. Stem secondary growth of tundra shrubs

    DEFF Research Database (Denmark)

    Campioli, Matteo; Leblans, Niki; Michelsen, Anders

    2012-01-01

    Our knowledge of stem secondary growth of arctic shrubs (a key component of tundra net primary production, NPP) is very limited. Here, we investigated the impact of the physical elements of the environment on shrub secondary growth by comparing annual growth rates of model species from similar...... habitats at contrasting altitude, microtopography, latitude, geographical location, and soil type, in both the sub- and High Arctic. We found that secondary growth has a modest sensitivity to the environment but with large differences among species. For example, the evergreen Cassiope tetragona is affected...... by altitude, microtopography, and latitude, whereas the evergreen Empetrum hermaphroditum has rather constant secondary growth in all environments. Deciduous species seem to be most affected by microtopography. Furthermore, the impact of the environment on secondary growth differed from the impact on primary...

  3. Climate sensitivity of shrub growth across the tundra biome

    DEFF Research Database (Denmark)

    Myers-Smith, Isla H.; Elmendorf, Sarah C.; Beck, Pieter S.A.

    2015-01-01

    Rapid climate warming in the tundra biome has been linked to increasing shrub dominance1–4. Shrub expansion can modify climate by altering surface albedo, energy and water balance, and permafrost2,5–8, yet the drivers of shrub growth remain poorly understood. Dendroecological data consisting...... be incorporated into Earth system models to improve future projections of climate change impacts across the tundra biome....

  4. Shrubs in the cold : interactions between vegetation, permafrost and climate in Siberian tundra

    NARCIS (Netherlands)

    Blok, D.

    2011-01-01

    The Arctic is experiencing strong increases in air temperature during the last decades. High-latitude tundra regions are very responsive to changes in temperature and may cause a shift in tundra vegetation composition towards greater dominance of deciduous shrubs. With increasing deciduous shrub cov

  5. Shrub Abundance Mapping in Arctic Tundra with Misr

    Science.gov (United States)

    Duchesne, R.; Chopping, M. J.; Wang, Z.; Schaaf, C.; Tape, K. D.

    2013-12-01

    Over the last 60 years an increase in shrub abundance has been observed in the Arctic tundra in connection with a rapid surface warming trend. Rapid shrub expansion may have consequences in terms of ecosystem structure and function, albedo, and feedbacks to climate; however, its rate is not yet known. The goal of this research effort is thus to map large scale changes in Arctic tundra vegetation by exploiting the structural signal in moderate resolution satellite remote sensing images from NASA's Multiangle Imaging SpectroRadiometer (MISR), mapped onto a 250m Albers Conic Equal Area grid. We present here large area shrub mapping supported by reference data collated using extensive field inventory data and high resolution panchromatic imagery. MISR Level 1B2 Terrain radiance scenes from the Terra satellite from 15 June-31 July, 2000 - 2010 were converted to surface bidirectional reflectance factors (BRF) using MISR Toolkit routines and the MISR 1 km LAND product BRFs. The red band data in all available cameras were used to invert the RossThick-LiSparse-Reciprocal BRDF model to retrieve kernel weights, model-fitting RMSE, and Weights of Determination. The reference database was constructed using aerial survey, three field campaigns (field inventory for shrub count, cover, mean radius and height), and high resolution imagery. Tall shrub number, mean crown radius, cover, and mean height estimates were obtained from QuickBird and GeoEye panchromatic image chips using the CANAPI algorithm, and calibrated using field-based estimates, thus extending the database to over eight hundred locations. Tall shrub fractional cover maps for the North Slope of Alaska were constructed using the bootstrap forest machine learning algorithm that exploits the surface information provided by MISR. The reference database was divided into two datasets for training and validation. The model derived used a set of 19 independent variables(the three kernel weights, ratios and interaction terms

  6. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source

    DEFF Research Database (Denmark)

    Nauta, Ake L.; Heijmans, Monique P.D.; Blok, Daan;

    2015-01-01

    Arctic tundra ecosystems are warming almost twice as fast as the global average1. Permafrost thaw and the resulting release of greenhouse gases from decomposing soil organic carbon have the potential to accelerate climate warming2,3. In recent decades, Arctic tundra ecosystems have changed rapidly4......, including expansion of woody vegetation5,6, in response to changing climate conditions. How such vegetation changes contribute to stabilization or destabilization of the permafrost is unknown. Here we present six years of field observations in a shrub removal experiment at a Siberian tundra site. Removing...... the shrub part of the vegetation initiated thawing of ice-rich permafrost, resulting in collapse of the originally elevated shrub patches into waterlogged depressions within five years. This thaw pond development shifted the plots from a methane sink into a methane source. The results of our field...

  7. Shrub expansion may reduce summer permafrost thaw in Siberian tundra

    NARCIS (Netherlands)

    Blok, D.; Heijmans, M.M.P.D.; Schaepman-Strub, G.; Kononov, A.V.; Maximov, T.C.; Berendse, F.

    2010-01-01

    Climate change is expected to cause extensive vegetation changes in the Arctic: deciduous shrubs are already expanding, in response to climate warming. The results from transect studies suggest that increasing shrub cover will impact significantly on the surface energy balance. However, little is kn

  8. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s.

    Science.gov (United States)

    Frost, Gerald V; Epstein, Howard E

    2014-04-01

    Circumpolar expansion of tall shrubs and trees into Arctic tundra is widely thought to be occurring as a result of recent climate warming, but little quantitative evidence exists for northern Siberia, which encompasses the world's largest forest-tundra ecotonal belt. We quantified changes in tall shrub and tree canopy cover in 11, widely distributed Siberian ecotonal landscapes by comparing very high-resolution photography from the Cold War-era 'Gambit' and 'Corona' satellite surveillance systems (1965-1969) with modern imagery. We also analyzed within-landscape patterns of vegetation change to evaluate the susceptibility of different landscape components to tall shrub and tree increase. The total cover of tall shrubs and trees increased in nine of 11 ecotones. In northwest Siberia, alder (Alnus) shrubland cover increased 5.3-25.9% in five ecotones. In Taymyr and Yakutia, larch (Larix) cover increased 3.0-6.7% within three ecotones, but declined 16.8% at a fourth ecotone due to thaw of ice-rich permafrost. In Chukotka, the total cover of alder and dwarf pine (Pinus) increased 6.1% within one ecotone and was little changed at a second ecotone. Within most landscapes, shrub and tree increase was linked to specific geomorphic settings, especially those with active disturbance regimes such as permafrost patterned-ground, floodplains, and colluvial hillslopes. Mean summer temperatures increased at most ecotones since the mid-1960s, but rates of shrub and tree canopy cover expansion were not strongly correlated with temperature trends and were better correlated with mean annual precipitation. We conclude that shrub and tree cover is increasing in tundra ecotones across most of northern Siberia, but rates of increase vary widely regionally and at the landscape scale. Our results indicate that extensive changes can occur within decades in moist, shrub-dominated ecotones, as in northwest Siberia, while changes are likely to occur much more slowly in the highly continental

  9. What are the main climate drivers for shrub growth in Northeastern Siberian tundra?

    Directory of Open Access Journals (Sweden)

    D. Blok

    2011-01-01

    Full Text Available Deciduous shrubs are expected to rapidly expand in the Arctic during the coming decades due to climate warming. A transition towards more shrub-dominated tundra may have large implications for the regional surface energy balance, permafrost stability and carbon storage capacity, with consequences for the global climate system. However, little information is available on the natural long-term shrub growth response to climatic variability. Our aim was to determine the climate factor and time period that are most important to annual shrub growth in our research site in NE-Siberia. Therefore, we determined annual radial growth rates in Salix pulchra and Betula nana shrubs by measuring ring widths. We constructed shrub ring width chronologies and compared growth rates to regional climate and remotely sensed greenness data. Early summer temperature was the most important factor influencing ring width of S. pulchra (Pearson's r=0.73, p<0.001 and B. nana (Pearson's r=0.46, p<0.001. No effect of winter precipitation on shrub growth was observed. In contrast, summer precipitation of the previous year correlated positively with B. nana ring width (r=0.42, p<0.01, suggesting that wet summers facilitate shrub growth in the following growing season. S. pulchra ring width correlated positively with peak summer NDVI, despite the small coverage of S. pulchra shrubs (<5% surface cover in our research area. We provide the first climate-growth study on shrubs for Northeast Siberia, the largest tundra region in the world. We show that two deciduous shrub species with markedly different growth forms have a similar growth response to changes in climate. The obtained shrub growth response to climate variability in the past increases our understanding of the mechanisms underlying current shrub expansion, which is required to predict future climate-driven tundra vegetation shifts.

  10. What are the main climate drivers for shrub growth in Northeastern Siberian tundra?

    Directory of Open Access Journals (Sweden)

    D. Blok

    2011-05-01

    Full Text Available Deciduous shrubs are expected to rapidly expand in the Arctic during the coming decades due to climate warming. A transition towards more shrub-dominated tundra may have large implications for the regional surface energy balance, permafrost stability and carbon storage capacity, with consequences for the global climate system. However, little information is available on the natural long-term shrub growth response to climatic variability. Our aim was to determine the climate factor and time period that are most important to annual shrub growth in our research site in NE-Siberia. Therefore, we determined annual radial growth rates in Salix pulchra and Betula nana shrubs by measuring ring widths. We constructed shrub ring width chronologies and compared growth rates to regional climate and remotely sensed greenness data. Early summer temperature was the most important factor influencing ring width of S. pulchra (Pearson's r = 0.73, p < 0.001 and B. nana (Pearson's r = 0.46, p < 0.001. No effect of winter precipitation on shrub growth was observed. In contrast, summer precipitation of the previous year correlated positively with B. nana ring width (Pearson's r = 0.42, p < 0.01, suggesting that wet summers facilitate shrub growth in the following growing season. S. pulchra ring width correlated positively with peak summer NDVI, despite the small coverage of S. pulchra shrubs (< 5 % surface cover in our research area. We provide the first climate-growth study on shrubs for Northeast Siberia, the largest tundra region in the world. We show that two deciduous shrub species with markedly different growth forms have a similar growth response to changes in climate. The obtained shrub growth response to climate variability in the past increases our understanding of the mechanisms underlying current shrub expansion, which is required to predict future climate

  11. The growth of shrubs on high Arctic tundra at Bylot Island: impact on snow physical properties and permafrost thermal regime

    Science.gov (United States)

    Domine, Florent; Barrere, Mathieu; Morin, Samuel

    2016-12-01

    With climate warming, shrubs have been observed to grow on Arctic tundra. Their presence is known to increase snow height and is expected to increase the thermal insulating effect of the snowpack. An important consequence would be the warming of the ground, which will accelerate permafrost thaw, providing an important positive feedback to warming. At Bylot Island (73° N, 80° W) in the Canadian high Arctic where bushes of willows (Salix richardsonii Hook) are growing, we have observed the snow stratigraphy and measured the vertical profiles of snow density, thermal conductivity and specific surface area (SSA) in over 20 sites of high Arctic tundra and in willow bushes 20 to 40 cm high. We find that shrubs increase snow height, but only up to their own height. In shrubs, snow density, thermal conductivity and SSA are all significantly lower than on herb tundra. In shrubs, depth hoar which has a low thermal conductivity was observed to grow up to shrub height, while on herb tundra, depth hoar only developed to 5 to 10 cm high. The thermal resistance of the snowpack was in general higher in shrubs than on herb tundra. More signs of melting were observed in shrubs, presumably because stems absorb radiation and provide hotspots that initiate melting. When melting was extensive, thermal conductivity was increased and thermal resistance was reduced, counteracting the observed effect of shrubs in the absence of melting. Simulations of the effect of shrubs on snow properties and on the ground thermal regime were made with the Crocus snow physics model and the ISBA (Interactions between Soil-Biosphere-Atmosphere) land surface scheme, driven by in situ and reanalysis meteorological data. These simulations did not take into account the summer impact of shrubs. They predict that the ground at 5 cm depth at Bylot Island during the 2014-2015 winter would be up to 13 °C warmer in the presence of shrubs. Such warming may however be mitigated by summer effects.

  12. Bird communities of the arctic shrub tundra of Yamal: habitat specialists and generalists.

    Directory of Open Access Journals (Sweden)

    Vasiliy Sokolov

    Full Text Available BACKGROUND: The ratio of habitat generalists to specialists in birds has been suggested as a good indicator of ecosystem changes due to e.g. climate change and other anthropogenic perturbations. Most studies focusing on this functional component of biodiversity originate, however, from temperate regions. The Eurasian Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by domestic reindeer and growing human activity. METHODOLOGY/PRINCIPAL FINDINGS: Here we monitored bird communities in a tundra landscape harbouring shrub and open habitats in order to analyse bird habitat relationships and quantify habitat specialization. We used ordination methods to analyse habitat associations and estimated the proportions of specialists in each of the main habitats. Correspondence Analysis identified three main bird communities, inhabiting upland, lowland and dense willow shrubs. We documented a stable structure of communities despite large multiannual variations of bird density (from 90 to 175 pairs/km(2. Willow shrub thickets were a hotspot for bird density, but not for species richness. The thickets hosted many specialized species whose main distribution area was south of the tundra. CONCLUSION/SIGNIFICANCE: If current arctic changes result in a shrubification of the landscape as many studies suggested, we would expect an increase in the overall bird abundance together with an increase of local specialists, since they are associated with willow thickets. The majority of these species have a southern origin and their increase in abundance would represent a strengthening of the boreal component in the southern tundra, perhaps at the expense of species typical of the subarctic zone, which appear to be generalists within this zone.

  13. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows

    Science.gov (United States)

    Forbes, B. C.; Macias Fauria, M.; Zetterberg, P.

    2009-12-01

    Growth in arctic vegetation is generally expected to increase under a warming climate, particularly among deciduous shrubs. We analyzed annual ring growth for an abundant and nearly circumpolar erect willow (Salix lanata L.) from the coastal zone of the northwest Russian Arctic (Nenets Autonomous Okrug). The resulting chronology is strongly related to summer temperature for the period 1942-2005. Remarkably high correlations occur at long distances (>1600 km) across the tundra and taiga zones of West Siberia and Eastern Europe. We also found a clear relationship with photosynthetic activity for upland vegetation at a regional scale for the period 1981-2005, confirming a parallel ‘greening’ trend reported for similarly warming North American portions of the tundra biome. The standardized growth curve suggests a significant increase in shrub willow growth over the last six decades. These findings are in line with field and remote sensing studies that have assigned a strong shrub component to the reported greening signal since the early 1980s. Furthermore, the growth trend agrees with qualitative observations by nomadic Nenets reindeer herders of recent increases in willow size in the region. The quality of the chronology as a climate proxy is exceptional. Given its wide geographic distribution and the ready preservation of wood in permafrost, S. lanata L. has great potential for extended temperature reconstructions in remote areas across the Arctic.

  14. Shrub encroachment in Arctic tundra: Betula nana effects on above- and below-ground litter decomposition.

    Science.gov (United States)

    McLaren, Jennie R; Buckeridge, Kate M; van de Weg, Martine J; Shaver, Gaius R; Schimel, Joshua P; Gough, Laura

    2017-03-06

    Rapid arctic vegetation change as a result of global warming includes an increase in the cover and biomass of deciduous shrubs. Increases in shrub abundance will result in a proportional increase of shrub litter in the litter community, potentially affecting carbon turnover rates in arctic ecosystems. We investigated the effects of leaf and root litter of a deciduous shrub, Betula nana, on decomposition, by examining species-specific decomposition patterns, as well as effects of Betula litter on the decomposition of other species. We conducted a two-year decomposition experiment in moist acidic tundra in northern Alaska, where we decomposed three tundra species (Vaccinium vitis-idaea, Rhododendron palustre, and Eriophorum vaginatum) alone and in combination with Betula litter. Decomposition patterns for leaf and root litter were determined using three different measures of decomposition (mass loss, respiration, extracellular enzyme activity). We report faster decomposition of Betula leaf litter compared to other species, with support for species differences coming from all three measures of decomposition. Mixing effects were less consistent among the measures, with negative mixing effects shown only for mass loss. In contrast, there were few species differences or mixing effects for root decomposition. Overall, we attribute longer-term litter mass loss patterns in to patterns created by early decomposition processes in the first winter. We note numerous differences for species patterns between leaf and root decomposition, indicating that conclusions from leaf litter experiments should not be extrapolated to below-ground decomposition. The high decomposition rates of Betula leaf litter aboveground, and relatively similar decomposition rates of multiple species below, suggest a potential for increases in turnover in the fast-decomposing carbon pool of leaves and fine roots as the dominance of deciduous shrubs in the Arctic increases, but this outcome may be tempered

  15. Contrasting radiation and soil heat fluxes in Arctic shrub and wet sedge tundra

    Science.gov (United States)

    Juszak, Inge; Eugster, Werner; Heijmans, Monique M. P. D.; Schaepman-Strub, Gabriela

    2016-07-01

    Vegetation changes, such as shrub encroachment and wetland expansion, have been observed in many Arctic tundra regions. These changes feed back to permafrost and climate. Permafrost can be protected by soil shading through vegetation as it reduces the amount of solar energy available for thawing. Regional climate can be affected by a reduction in surface albedo as more energy is available for atmospheric and soil heating. Here, we compared the shortwave radiation budget of two common Arctic tundra vegetation types dominated by dwarf shrubs (Betula nana) and wet sedges (Eriophorum angustifolium) in North-East Siberia. We measured time series of the shortwave and longwave radiation budget above the canopy and transmitted radiation below the canopy. Additionally, we quantified soil temperature and heat flux as well as active layer thickness. The mean growing season albedo of dwarf shrubs was 0.15 ± 0.01, for sedges it was higher (0.17 ± 0.02). Dwarf shrub transmittance was 0.36 ± 0.07 on average, and sedge transmittance was 0.28 ± 0.08. The standing dead leaves contributed strongly to the soil shading of wet sedges. Despite a lower albedo and less soil shading, the soil below dwarf shrubs conducted less heat resulting in a 17 cm shallower active layer as compared to sedges. This result was supported by additional, spatially distributed measurements of both vegetation types. Clouds were a major influencing factor for albedo and transmittance, particularly in sedge vegetation. Cloud cover reduced the albedo by 0.01 in dwarf shrubs and by 0.03 in sedges, while transmittance was increased by 0.08 and 0.10 in dwarf shrubs and sedges, respectively. Our results suggest that the observed deeper active layer below wet sedges is not primarily a result of the summer canopy radiation budget. Soil properties, such as soil albedo, moisture, and thermal conductivity, may be more influential, at least in our comparison between dwarf shrub vegetation on relatively dry patches and

  16. Tundra in the rain: differential vegetation responses to three years of experimentally doubled summer precipitation in Siberian shrub and Swedish bog tundra.

    Science.gov (United States)

    Keuper, Frida; Parmentier, Frans-Jan W; Blok, Daan; van Bodegom, Peter M; Dorrepaal, Ellen; van Hal, Jurgen R; van Logtestijn, Richard S P; Aerts, Rien

    2012-01-01

    Precipitation amounts and patterns at high latitude sites have been predicted to change as a result of global climatic changes. We addressed vegetation responses to three years of experimentally increased summer precipitation in two previously unaddressed tundra types: Betula nana-dominated shrub tundra (northeast Siberia) and a dry Sphagnum fuscum-dominated bog (northern Sweden). Positive responses to approximately doubled ambient precipitation (an increase of 200 mm year(-1)) were observed at the Siberian site, for B. nana (30 % larger length increments), Salix pulchra (leaf size and length increments) and Arctagrostis latifolia (leaf size and specific leaf area), but none were observed at the Swedish site. Total biomass production did not increase at either of the study sites. This study corroborates studies in other tundra vegetation types and shows that despite regional differences at the plant level, total tundra plant productivity is, at least at the short or medium term, largely irresponsive to experimentally increased summer precipitation.

  17. Automatic monitoring of the effective thermal conductivity of snow in a low Arctic shrub tundra

    Science.gov (United States)

    Domine, F.; Barrere, M.; Sarrazin, D.; Morin, S.

    2015-03-01

    The effective thermal conductivity of snow, keff, is a critical variable which determines the temperature gradient in the snowpack and heat exchanges between the ground and the atmosphere through the snow. Its accurate knowledge is therefore required to simulate snow metamorphism, the ground thermal regime, permafrost stability, nutrient recycling and vegetation growth. Yet, few data are available on the seasonal evolution of snow thermal conductivity in the Arctic. We have deployed heated needle probes on low Arctic shrub tundra near Umiujaq, Quebec, (56°34´ N; 76°29´ W) and monitored automatically the evolution of keff for two consecutive winters, 2012-2013 and 2013-2014, at 4 heights in the snowpack. Shrubs are 20 cm high dwarf birch. Here, we develop an algorithm for the automatic determination of keff from the heating curves and obtain 404 keff values. We evaluate possible errors and biases associated with the use of the heated needles. The time-evolution of keff is very different for both winters. This is explained by comparing the meteorological conditions in both winters, which induced different conditions for snow metamorphism. In particular, important melting events the second year increased snow hardness, impeding subsequent densification and increase in thermal conductivity. Shrubs are observed to have very important impacts on snow physical evolution: (1) shrubs absorb light and facilitate snow melt under intense radiation; (2) the dense twig network of dwarf birch prevents snow compaction and therefore keff increase; (3) the low density depth hoar that forms within shrubs collapsed in late winter, leaving a void that was not filled by snow.

  18. Automatic monitoring of the effective thermal conductivity of snow in a low-Arctic shrub tundra

    Science.gov (United States)

    Domine, F.; Barrere, M.; Sarrazin, D.; Morin, S.; Arnaud, L.

    2015-06-01

    The effective thermal conductivity of snow, keff, is a critical variable which determines the temperature gradient in the snowpack and heat exchanges between the ground and the atmosphere through the snow. Its accurate knowledge is therefore required to simulate snow metamorphism, the ground thermal regime, permafrost stability, nutrient recycling and vegetation growth. Yet, few data are available on the seasonal evolution of snow thermal conductivity in the Arctic. We have deployed heated needle probes on low-Arctic shrub tundra near Umiujaq, Quebec, (N56°34'; W76°29') and monitored automatically the evolution of keff for two consecutive winters, 2012-2013 and 2013-2014, at four heights in the snowpack. Shrubs are 20 cm high dwarf birch. Here, we develop an algorithm for the automatic determination of keff from the heating curves and obtain 404 keff values. We evaluate possible errors and biases associated with the use of the heated needles. The time evolution of keff is very different for both winters. This is explained by comparing the meteorological conditions in both winters, which induced different conditions for snow metamorphism. In particular, important melting events in the second year increased snow hardness, impeding subsequent densification and increase in thermal conductivity. We conclude that shrubs have very important impacts on snow physical evolution: (1) shrubs absorb light and facilitate snow melt under intense radiation; (2) the dense twig network of dwarf birch prevent snow compaction, and therefore keff increase; (3) the low density depth hoar that forms within shrubs collapsed in late winter, leaving a void that was not filled by snow.

  19. The importance of willow thickets for ptarmigan and hares in shrub tundra: the more the better?

    Science.gov (United States)

    Ehrich, Dorothée; Henden, John-André; Ims, Rolf Anker; Doronina, Lilyia O; Killengren, Siw Turid; Lecomte, Nicolas; Pokrovsky, Ivan G; Skogstad, Gunnhild; Sokolov, Alexander A; Sokolov, Vasily A; Yoccoz, Nigel Gilles

    2012-01-01

    In patchy habitats, the relationship between animal abundance and cover of a preferred habitat may change with the availability of that habitat, resulting in a functional response in habitat use. Here, we investigate the relationship of two specialized herbivores, willow ptarmigan (Lagopus lagopus) and mountain hare (Lepus timidus), to willows (Salix spp.) in three regions of the shrub tundra zone-northern Norway, northern European Russia and western Siberia. Shrub tundra is a naturally patchy habitat where willow thickets represent a major structural element and are important for herbivores both as food and shelter. Habitat use was quantified using feces counts in a hierarchical spatial design and related to several measures of willow thicket configuration. We document a functional response in the use of willow thickets by ptarmigan, but not by hares. For hares, whose range extends into forested regions, occurrence increased overall with willow cover. The occurrence of willow ptarmigan showed a strong positive relationship to willow cover and a negative relationship to thicket fragmentation in the region with lowest willow cover at landscape scale, where willow growth may be limited by reindeer browsing. In regions with higher cover, in contrast, such relationships were not observed. Differences in predator communities among the regions may contribute to the observed pattern, enhancing the need for cover where willow thickets are scarce. Such region-specific relationships reflecting regional characteristics of the ecosystem highlight the importance of large-scale investigations to understand the relationships of habitat availability and use, which is a critical issue considering that habitat availability changes quickly with climate change and human impact.

  20. Increasing shrub abundance and N addition in Arctic tundra affect leaf and root litter decomposition differently

    Science.gov (United States)

    McLaren, J.; van de Weg, M. J.; Shaver, G. R.; Gough, L.

    2013-12-01

    Changes in global climate have resulted in a ';greening' of the Arctic as the abundance of deciduous shrub species increases. Consequently, not only the living plant community, but also the litter composition changes, which in turn can affect carbon turnover patterns in the Arctic. We examined effects of changing litter composition (both root and leaf litter) on decomposition rates with a litter bag study, and specifically focused on the impact of deciduous shrub Betula nana litter on litter decomposition from two evergreen shrubs (Ledum palustre, and Vaccinium vitis-idaea) and one graminoid (Eriophorum vaginatum) species. Additionally, we investigated how decomposition was affected by nutrient availability by placing the litterbags in an ambient and a fertilized moist acidic tundra environment. Measurements were carried out seasonally over 2 years (after snow melt, mid-growing season, end growing season). We measured litter mass loss over time, as well as the respiration rates (standardized for temperature and moisture) and temperature sensitivity of litter respiration at the time of harvesting the litter bags. For leaves, Betula litter decomposed faster than the other three species, with Eriophorum leaves decomposing the slowest. This pattern was observed for both mass loss and litter respiration rates, although the differences in respiration became smaller over time. Surprisingly, combining Betula with any other species resulted in slower overall weight loss rates than would be predicted based on monoculture weight loss rates. This contrasted with litter respiration at the time of sampling, which showed a positive mixing effect of adding Betula leaf liter to the other species. Apparently, during the first winter months (September - May) Betula litter decomposition is negatively affected by mixing the species and this legacy can still be observed in the total mass loss results later in the year. For root litter there were fewer effects of species identity on root

  1. The role of summer precipitation and summer temperature in establishment and growth of dwarf shrub Betula nana in northeast Siberian tundra

    DEFF Research Database (Denmark)

    Li, Bingxi; Heijmans, Monique M P D; Berendse, Frank;

    2016-01-01

    It is widely believed that deciduous tundra-shrub dominance is increasing in the pan-Arctic region, mainly due to rising temperature. We sampled dwarf birch (Betula nana L.) at a northeastern Siberian tundra site and used dendrochronological methods to explore the relationship between climatic...

  2. The role of summer precipitation and summer temperature in establishment and growth of dwarf shrub Betula nana in northeast Siberian tundra

    DEFF Research Database (Denmark)

    Li, Bingxi; Heijmans, Monique M P D; Berendse, Frank;

    2016-01-01

    It is widely believed that deciduous tundra-shrub dominance is increasing in the pan-Arctic region, mainly due to rising temperature. We sampled dwarf birch (Betula nana L.) at a northeastern Siberian tundra site and used dendrochronological methods to explore the relationship between climatic...... variables and local shrub dominance. We found that establishment of shrub ramets was positively related to summer precipitation, which implies that the current high dominance of B. nana at our study site could be related to high summer precipitation in the period from 1960 to 1990. The results confirmed...... that early summer temperature is most influential to annual growth rates of B. nana. In addition, summer precipitation stimulated shrub growth in years with warm summers, suggesting that B. nana growth may be co-limited by summer moisture supply. The dual controlling role of temperature and summer...

  3. Remotely sensed vicennial changes of green phytomass, Salix cover, and leaf turnover in a sedge-shrub tundra, Arctic National Wildlife Refuge, Alaska

    Science.gov (United States)

    Kushida, K.; Kim, Y.; Tsuyuzaki, S.; Watanabe, M.; Kadosaki, G.; Sawada, Y.; Ishikawa, M.; Fukuda, M.

    2007-12-01

    We obtained the relationship between spectral indices, green phytomass, Salix - non-Salix ratio, and leaf turnover in a sedge-shrub tundra, Arctic National Wildlife Refuge (ANWR), Alaska based on the field observations of spectral reflectance and phytomass, and we used Landsat TM images acquired in July of 1986, 1994, and 2006 and the time series of NOAA AVHRR (Advanced Very High Resolution Radiometer) for evaluating the vicennial changes. 51% of Beaufort coastal plain, Alaska was occupied by lowland moist sedge-shrub tundra, lowland wet sedge tundra, riverine moist sedge-shrub tundra, and riverine wet sedge tundra, where willow shrubs and sedges dominate. We set a 50-m × 50-m plot located on the floodplain of Jago River in ANWR. Shrub (Salix lanata L.) and sedge (Carex bigelowii Torr.) dominated in the plot. Ten 0.5-m × 0.5-m quadrates (Salix} quadrates) were set on the Salix cover and ten 0.5-m × 0.5-m quadrates (non-Salix quadrates) were set on the ground that was not covered with Salix lanata. Salix lanata in each of the Salix quadrates was harvested, and the leaf area index (LAI) and the oven-dried weights of the photosynthetic (leaf) and non-photosynthetic parts were measured. After harvesting Salix, other green plants were harvested and the oven-dried weights of the plants were measured. The Salix quadrates were spectrally measured with a spectroradiometer at a wavelength of 350 - 2500 nm before and after harvesting Salix and after harvesting other green plants. Non-Salix quadrates were also spectrally measured with the spectroradiometer. The coefficients of determination (R2) of the green phytomass, Salix - non-Salix ratio, and leaf turnover estimations from the spectral indices were 0.63, 0.57, and 0.79, respectively. These estimations were used for evaluating the vicennial changes using the satellite data.

  4. Establishing a missing link: warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia.

    Science.gov (United States)

    Hallinger, Martin; Manthey, Michael; Wilmking, Martin

    2010-06-01

    *Shrub expansion in alpine and arctic areas is a process with possibly profound implications for ecosystem functioning. The recent shrub expansion has been mainly documented by remote sensing techniques, but the drivers for this process largely remain hypotheses. *Here, we outline a dendrochronological method, adapted to shrubs, to address these hypotheses and then present a mechanism for the current shrub expansion by linking recent climate change to shrub growth performance in northern Sweden. *A pronounced increase in radial and vertical growth during recent decades along an elevational gradient from treeline to shrubline indicates an ongoing shrub expansion. Age distribution of the shrub population indicates the new colonization of shrubs at high elevations. *Shrub growth is correlated with warm summers and winter snow cover and suggests the potential for large-scale ecosystem changes if climate change continues as projected.

  5. Deepened winter snow increases stem growth and alters stem δ13C and δ15N in evergreen dwarf shrub Cassiope tetragona in high-arctic Svalbard tundra

    DEFF Research Database (Denmark)

    Blok, Daan; Weijers, Stef; Welker, Jeffrey M

    2015-01-01

    of winter snow depth on shrub growth and ecophysiology by measuring stem length and stem hydrogen ( δ2H), carbon ( δ13C), nitrogen ( δ15N) and oxygen ( δ18O) isotopic composition of the circumarctic evergreen dwarf shrub Cassiope tetragona growing in high-arctic Svalbard, Norway. Measurements were carried...... out on C. tetragona individuals sampled from three tundra sites, each representing a distinct moisture regime (dry heath, meadow, moist meadow). Individuals were sampled along gradients of experimentally manipulated winter snow depths in a six-year old snow fence experiment: in ambient ( c . 20 cm......-snow individuals compared to individuals growing in ambient-snow plots during the course of the experiment, suggesting that soil N-availability was increased in deep-snow plots as a result of increased soil winter N mineralization. Although inter-annual growing season-precipitation δ 2 H and stem δ 2 H records...

  6. The role of summer precipitation and summer temperature in establishment and growth of dwarf shrub Betula nana in northeast Siberian tundra

    NARCIS (Netherlands)

    Bingxi Li,; Heijmans, M.M.P.D.; Berendse, F.; Blok, D.; Maximov, T.; Sass-Klaassen, U.G.W.

    2016-01-01

    It is widely believed that deciduous tundrashrub
    dominance is increasing in the pan-Arctic region,
    mainly due to rising temperature. We sampled dwarf birch
    (Betula nana L.) at a northeastern Siberian tundra site and
    used dendrochronological methods to explore the relationship
    bet

  7. The role of rodents in the seed fate of a thorny shrub in an ancient wood pasture

    NARCIS (Netherlands)

    Scheper, J.A.; Smit, C.

    2011-01-01

    Thorny shrubs play a crucial role for the diversity and dynamics in wood pastures: they protect non-defended plants from large herbivores and thus facilitate tree establishment in the landscape through associational resistance. How thorny shrubs themselves establish in wood pastures - the main bottl

  8. Deepened winter snow increases stem growth and alters stem δ13C and δ15N in evergreen dwarf shrub Cassiope tetragona in high-arctic Svalbard tundra

    DEFF Research Database (Denmark)

    Blok, Daan; Weijers, Stef; Welker, Jeffrey M;

    2015-01-01

    out on C. tetragona individuals sampled from three tundra sites, each representing a distinct moisture regime (dry heath, meadow, moist meadow). Individuals were sampled along gradients of experimentally manipulated winter snow depths in a six-year old snow fence experiment: in ambient ( c . 20 cm...

  9. The Cooling Capacity of Mosses: Controls on Water and Energy Fluxes in a Siberian Tundra Site

    NARCIS (Netherlands)

    Blok, D.; Heijmans, M.M.P.D.; Schaepman-Strub, G.; Ruijven, van J.; Parmentier, F.J.W.; Maximov, T.C.; Berendse, F.

    2011-01-01

    Arctic tundra vegetation composition is expected to undergo rapid changes during the coming decades because of changes in climate. Higher air temperatures generally favor growth of deciduous shrubs, often at the cost of moss growth. Mosses are considered to be very important to critical tundra ecosy

  10. Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw

    Science.gov (United States)

    van der Kolk, Henk-Jan; Heijmans, Monique M. P. D.; van Huissteden, Jacobus; Pullens, Jeroen W. M.; Berendse, Frank

    2016-11-01

    Over the past decades, vegetation and climate have changed significantly in the Arctic. Deciduous shrub cover is often assumed to expand in tundra landscapes, but more frequent abrupt permafrost thaw resulting in formation of thaw ponds could lead to vegetation shifts towards graminoid-dominated wetland. Which factors drive vegetation changes in the tundra ecosystem are still not sufficiently clear. In this study, the dynamic tundra vegetation model, NUCOM-tundra (NUtrient and COMpetition), was used to evaluate the consequences of climate change scenarios of warming and increasing precipitation for future tundra vegetation change. The model includes three plant functional types (moss, graminoids and shrubs), carbon and nitrogen cycling, water and permafrost dynamics and a simple thaw pond module. Climate scenario simulations were performed for 16 combinations of temperature and precipitation increases in five vegetation types representing a gradient from dry shrub-dominated to moist mixed and wet graminoid-dominated sites. Vegetation composition dynamics in currently mixed vegetation sites were dependent on both temperature and precipitation changes, with warming favouring shrub dominance and increased precipitation favouring graminoid abundance. Climate change simulations based on greenhouse gas emission scenarios in which temperature and precipitation increases were combined showed increases in biomass of both graminoids and shrubs, with graminoids increasing in abundance. The simulations suggest that shrub growth can be limited by very wet soil conditions and low nutrient supply, whereas graminoids have the advantage of being able to grow in a wide range of soil moisture conditions and have access to nutrients in deeper soil layers. Abrupt permafrost thaw initiating thaw pond formation led to complete domination of graminoids. However, due to increased drainage, shrubs could profit from such changes in adjacent areas. Both climate and thaw pond formation

  11. Range Expansion of Moose in Arctic Alaska Linked to Warming and Increased Shrub Habitat.

    Directory of Open Access Journals (Sweden)

    Ken D Tape

    Full Text Available Twentieth century warming has increased vegetation productivity and shrub cover across northern tundra and treeline regions, but effects on terrestrial wildlife have not been demonstrated on a comparable scale. During this period, Alaskan moose (Alces alces gigas extended their range from the boreal forest into tundra riparian shrub habitat; similar extensions have been observed in Canada (A. a. andersoni and Eurasia (A. a. alces. Northern moose distribution is thought to be limited by forage availability above the snow in late winter, so the observed increase in shrub habitat could be causing the northward moose establishment, but a previous hypothesis suggested that hunting cessation triggered moose establishment. Here, we use recent changes in shrub cover and empirical relationships between shrub height and growing season temperature to estimate available moose habitat in Arctic Alaska c. 1860. We estimate that riparian shrubs were approximately 1.1 m tall c. 1860, greatly reducing the available forage above the snowpack, compared to 2 m tall in 2009. We believe that increases in riparian shrub habitat after 1860 allowed moose to colonize tundra regions of Alaska hundreds of kilometers north and west of previous distribution limits. The northern shift in the distribution of moose, like that of snowshoe hares, has been in response to the spread of their shrub habitat in the Arctic, but at the same time, herbivores have likely had pronounced impacts on the structure and function of these shrub communities. These northward range shifts are a bellwether for other boreal species and their associated predators.

  12. Range Expansion of Moose in Arctic Alaska Linked to Warming and Increased Shrub Habitat.

    Science.gov (United States)

    Tape, Ken D; Gustine, David D; Ruess, Roger W; Adams, Layne G; Clark, Jason A

    2016-01-01

    Twentieth century warming has increased vegetation productivity and shrub cover across northern tundra and treeline regions, but effects on terrestrial wildlife have not been demonstrated on a comparable scale. During this period, Alaskan moose (Alces alces gigas) extended their range from the boreal forest into tundra riparian shrub habitat; similar extensions have been observed in Canada (A. a. andersoni) and Eurasia (A. a. alces). Northern moose distribution is thought to be limited by forage availability above the snow in late winter, so the observed increase in shrub habitat could be causing the northward moose establishment, but a previous hypothesis suggested that hunting cessation triggered moose establishment. Here, we use recent changes in shrub cover and empirical relationships between shrub height and growing season temperature to estimate available moose habitat in Arctic Alaska c. 1860. We estimate that riparian shrubs were approximately 1.1 m tall c. 1860, greatly reducing the available forage above the snowpack, compared to 2 m tall in 2009. We believe that increases in riparian shrub habitat after 1860 allowed moose to colonize tundra regions of Alaska hundreds of kilometers north and west of previous distribution limits. The northern shift in the distribution of moose, like that of snowshoe hares, has been in response to the spread of their shrub habitat in the Arctic, but at the same time, herbivores have likely had pronounced impacts on the structure and function of these shrub communities. These northward range shifts are a bellwether for other boreal species and their associated predators.

  13. Tundra in the rain

    DEFF Research Database (Denmark)

    Keuper, Frida; Parmentier, Frans-Jan; Blok, Daan

    2012-01-01

    increments) and Arctagrostis latifolia (leaf size and specific leaf area), but none were observed at the Swedish site. Total biomass production did not increase at either of the study sites. This study corroborates studies in other tundra vegetation types and shows that despite regional differences...... tundra (northeast Siberia) and a dry Sphagnum fuscum-dominated bog (northern Sweden). Positive responses to approximately doubled ambient precipitation (an increase of 200 mm year-1) were observed at the Siberian site, for B. nana (30 % larger length increments), Salix pulchra (leaf size and length...... at the plant level, total tundra plant productivity is, at least at the short or medium term, largely irresponsive to experimentally increased summer precipitation....

  14. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline.

    Science.gov (United States)

    Parker, Thomas C; Subke, Jens-Arne; Wookey, Philip A

    2015-05-01

    Climate warming at high northern latitudes has caused substantial increases in plant productivity of tundra vegetation and an expansion of the range of deciduous shrub species. However significant the increase in carbon (C) contained within above-ground shrub biomass, it is modest in comparison with the amount of C stored in the soil in tundra ecosystems. Here, we use a 'space-for-time' approach to test the hypothesis that a shift from lower-productivity tundra heath to higher-productivity deciduous shrub vegetation in the sub-Arctic may lead to a loss of soil C that out-weighs the increase in above-ground shrub biomass. We further hypothesize that a shift from ericoid to ectomycorrhizal systems coincident with this vegetation change provides a mechanism for the loss of soil C. We sampled soil C stocks, soil surface CO2 flux rates and fungal growth rates along replicated natural transitions from birch forest (Betula pubescens), through deciduous shrub tundra (Betula nana) to tundra heaths (Empetrum nigrum) near Abisko, Swedish Lapland. We demonstrate that organic horizon soil organic C (SOCorg ) is significantly lower at shrub (2.98 ± 0.48 kg m(-2) ) and forest (2.04 ± 0.25 kg m(-2) ) plots than at heath plots (7.03 ± 0.79 kg m(-2) ). Shrub vegetation had the highest respiration rates, suggesting that despite higher rates of C assimilation, C turnover was also very high and less C is sequestered in the ecosystem. Growth rates of fungal hyphae increased across the transition from heath to shrub, suggesting that the action of ectomycorrhizal symbionts in the scavenging of organically bound nutrients is an important pathway by which soil C is made available to microbial degradation. The expansion of deciduous shrubs onto potentially vulnerable arctic soils with large stores of C could therefore represent a significant positive feedback to the climate system.

  15. Range expansion of moose in arctic Alaska linked to warming and increased shrub habitat

    Science.gov (United States)

    Tape, Ken D.; Gustine, David D.; Reuss, Roger W.; Adams, Layne G.; Clark, Jason A.

    2016-01-01

    Twentieth century warming has increased vegetation productivity and shrub cover across northern tundra and treeline regions, but effects on terrestrial wildlife have not been demonstrated on a comparable scale. During this period, Alaskan moose (Alces alces gigas) extended their range from the boreal forest into tundra riparian shrub habitat; similar extensions have been observed in Canada (A. a. andersoni) and Eurasia (A. a. alces). Northern moose distribution is thought to be limited by forage availability above the snow in late winter, so the observed increase in shrub habitat could be causing the northward moose establishment, but a previous hypothesis suggested that hunting cessation triggered moose establishment. Here, we use recent changes in shrub cover and empirical relationships between shrub height and growing season temperature to estimate available moose habitat in Arctic Alaska c. 1860. We estimate that riparian shrubs were approximately 1.1 m tall c. 1860, greatly reducing the available forage above the snowpack, compared to 2 m tall in 2009. We believe that increases in riparian shrub habitat after 1860 allowed moose to colonize tundra regions of Alaska hundreds of kilometers north and west of previous distribution limits. The northern shift in the distribution of moose, like that of snowshoe hares, has been in response to the spread of their shrub habitat in the Arctic, but at the same time, herbivores have likely had pronounced impacts on the structure and function of these shrub communities. These northward range shifts are a bellwether for other boreal species and their associated predators.

  16. Differential physiological responses to environmental change promote woody shrub expansion.

    Science.gov (United States)

    Heskel, Mary; Greaves, Heather; Kornfeld, Ari; Gough, Laura; Atkin, Owen K; Turnbull, Matthew H; Shaver, Gaius; Griffin, Kevin L

    2013-05-01

    Direct and indirect effects of warming are increasingly modifying the carbon-rich vegetation and soils of the Arctic tundra, with important implications for the terrestrial carbon cycle. Understanding the biological and environmental influences on the processes that regulate foliar carbon cycling in tundra species is essential for predicting the future terrestrial carbon balance in this region. To determine the effect of climate change impacts on gas exchange in tundra, we quantified foliar photosynthesis (A net), respiration in the dark and light (R D and R L, determined using the Kok method), photorespiration (PR), carbon gain efficiency (CGE, the ratio of photosynthetic CO2 uptake to total CO2 exchange of photosynthesis, PR, and respiration), and leaf traits of three dominant species - Betula nana, a woody shrub; Eriophorum vaginatum, a graminoid; and Rubus chamaemorus, a forb - grown under long-term warming and fertilization treatments since 1989 at Toolik Lake, Alaska. Under warming, B. nana exhibited the highest rates of A net and strongest light inhibition of respiration, increasing CGE nearly 50% compared with leaves grown in ambient conditions, which corresponded to a 52% increase in relative abundance. Gas exchange did not shift under fertilization in B. nana despite increases in leaf N and P and near-complete dominance at the community scale, suggesting a morphological rather than physiological response. Rubus chamaemorus, exhibited minimal shifts in foliar gas exchange, and responded similarly to B. nana under treatment conditions. By contrast, E. vaginatum, did not significantly alter its gas exchange physiology under treatments and exhibited dramatic decreases in relative cover (warming: -19.7%; fertilization: -79.7%; warming with fertilization: -91.1%). Our findings suggest a foliar physiological advantage in the woody shrub B. nana that is further mediated by warming and increased soil nutrient availability, which may facilitate shrub expansion and

  17. Succession Stages of Tundra Plant Communities Following Wildfire Disturbance in Arctic Alaska

    Science.gov (United States)

    Breen, A. L.; Hollingsworth, T. N.; Mack, M. C.; Jones, B. M.

    2015-12-01

    Rapid climate change is affecting climate-sensitive disturbance regimes throughout the world. In particular, the impacts of climate change on Arctic disturbance regimes are poorly understood because landscape-scale disturbances are infrequent or occur in remote localities. Wildfire in Arctic Alaska is presently limited by ignition source and favorable burn weather. With rapid climate change, a lengthening growing season, and subsequent increase in plant biomass and productivity, wildfire frequency and annual area burned in tundra ecosystems is expected to increase over the next century. Yet, post-fire tundra vegetation succession is inadequately characterized except at a few point locations. We identify succession stages of tussock tundra communities following wildfire using a chronosequence of 65 relevés in 10 tundra fire scars (1971-2011) and nearby unburned tundra from sites on the Seward Peninsula and northern foothills of the Brooks Range. We used the Braun-Blanquét approach to classify plant communities, and applied nonmetric multidimentional scaling (NMDS) to identify ecological gradients underlying community differentiation. The ordination revealed a clear differentiation between unburned and burned tundra communities. Ecological gradients, reflected by ordination axes, correspond to fire history (e.g., time since last fire, number of times burned, burn severity) and a complex productivity gradient. Post-fire species richness is less than unburned tundra; primarily reflected as a decrease in lichen species and turnover of bryophyte species immediately post-fire. Species richness of grasses increases post-fire and is greatest in communities that burned more than once in the past 30 years. Shrub cover and total aboveground biomass are greatest in repeat burn sites. We review and discuss our results focusing on the implications of a changing tundra fire regime, its effect on vegetation succession trajectories, and subsequent rates of carbon sequestration and

  18. Drivers of tall shrub proliferation adjacent to the Dempster Highway, Northwest Territories, Canada

    Science.gov (United States)

    Cameron, Emily A.; Lantz, Trevor C.

    2016-04-01

    Arctic ecosystems are undergoing rapid changes as a result of climate warming and more frequent disturbances. Disturbances can have particularly large effects on high-latitude ecosystems when ecosystem structure and function is controlled by strong feedbacks between soil conditions, vegetation, and ground thermal regime. In this study we investigated the impact of road construction and maintenance on vegetation structure and biomass along the Dempster Highway where it crosses the Peel Plateau in the Northwest Territories. To explore drivers of tall shrub proliferation and to quantify shrub proliferation in this region of continuous permafrost, greyscale air photos (1975) and Quickbird satellite imagery (2008) were used to map landcover change within two 0.6 km2 belts next to the road and two 0.6 km2 belts 500 m away from the road. Maps showing areas where: 1) tall shrubs expanded, and 2) dwarf shrub tundra resisted invasion were then used to select field sites where a suite of biophysical variables were measured. Rapid tall shrub proliferation and greater biomass adjacent to the road indicate that disturbance can facilitate vegetation change in tundra environments. Our field data also suggests that increased shrub proliferation adjacent to the road was caused by greater soil moisture. Tall shrub proliferation adjacent to the road occurred at lower elevation sites characterized by wetter soils with thicker organic layers. Areas that resisted tall shrub encroachment were located at higher elevations and had drier soils with thin organic layers. Our observations also support previous work illustrating that tall shrub expansion next to the highway promotes strong positive feedbacks to ongoing shrub growth and proliferation.

  19. Potential of C and X Band SAR for Shrub Growth Monitoring in Sub-Arctic Environments

    Directory of Open Access Journals (Sweden)

    Yannick Duguay

    2015-07-01

    Full Text Available The Arctic and sub-Arctic environments have seen a rapid growth of shrub vegetation at the expense of the Arctic tundra in recent decades. In order to develop better tools to assess and understand this phenomenon, the sensitivity of multi-polarized SAR backscattering at C and X band to shrub density and height is studied under various conditions. RADARSAT-2 and TerraSAR-X images were acquired from November 2011 to March 2012 over the Umiujaq community in northern Quebec (56.55°N, 76.55°W and compared to in situ measurements of shrub vegetation density and height collected during the summer of 2009. The results show that σ0 is sensitive to changes in shrub coverage up to 20% and is sensitive to changes in shrub height up to around 1 m. The cross-polarized backscattering (σ0 HV displays the best sensitivity to both shrub height and density, and RADARSAT-2 is more sensitive to shrub height, as TerraSAR-X tends to saturate more rapidly with increasing volume scattering from the shrub branches. These results demonstrate that SAR data could provide essential information, not only on Remote Sens. 2015, 7 9411 the spatial expansion of shrub vegetation, but also on its vertical growth, especially at early stages of colonization.

  20. Surface energy exchanges along a tundra-forest transition and feedbacks to climate

    Science.gov (United States)

    Beringer, J.; Chapin, F. S.; Thompson, Catharine Copass; McGuire, A.D.

    2005-01-01

    Surface energy exchanges were measured in a sequence of five sites representing the major vegetation types in the transition from arctic tundra to forest. This is the major transition in vegetation structure in northern high latitudes. We examined the influence of vegetation structure on the rates of sensible heating and evapotranspiration to assess the potential feedbacks to climate if high-latitude warming were to change the distribution of these vegetation types. Measurements were made at Council on the Seward Peninsula, Alaska, at representative tundra, low shrub, tall shrub, woodland (treeline), and boreal forest sites. Structural differences across the transition from tundra to forest included an increase in the leaf area index (LAI) from 0.52 to 2.76, an increase in canopy height from 0.1 to 6.1 m, and a general increase in canopy complexity. These changes in vegetation structure resulted in a decrease in albedo from 0.19 to 0.10 as well as changes to the partitioning of energy at the surface. Bulk surface resistance to water vapor flux remained virtually constant across sites, apparently because the combined soil and moss evaporation decreased while transpiration increased along the transect from tundra to forest. In general, sites became relatively warmer and drier along the transect with the convective fluxes being increasingly dominated by sensible heating, as evident by an increasing Bowen ratio from 0.94 to 1.22. The difference in growing season average daily sensible heating between tundra and forest was 21 W m-2. Fluxes changed non-linearly along the transition, with both shrubs and trees substantially enhancing heat transfer to the atmosphere. These changes in vegetation structure that increase sensible heating could feed back to enhance warming at local to regional scales. The magnitude of these vegetation effects on potential high-latitude warming is two to three times greater than suggested by previous modeling studies. ?? 2005 Elsevier B.V. All

  1. Above and below ground carbon stocks in northeast Siberia tundra ecosystems: a comparison between disturbed and undisturbed areas

    Science.gov (United States)

    Weber, L. R.; Pena, H., III; Curasi, S. R.; Ramos, E.; Loranty, M. M.; Alexander, H. D.; Natali, S.

    2014-12-01

    Changes in arctic tundra vegetation have the potential to alter the regional carbon (C) budget, with feedback implications for global climate. A number of studies have documented both widespread increases in productivity as well as shifts in the dominant vegetation. In particular, shrubs have been replacing other vegetation, such as graminoids, in response to changes in their environment. Shrub expansion is thought to be facilitated by exposure of mineral soil and increased nutrient availability, which are often associated with disturbance. Such disturbances can be naturally occurring, typically associated with permafrost degradation or with direct anthropogenic causes such as infrastructure development. Mechanical disturbance associated with human development is not uncommon in tundra and will likely become more frequent as warming makes the Arctic more hospitable for resource extraction and other human activities. As such, this type of disturbance will become an increasingly important component of tundra C balance. Both increased productivity and shrub expansion have clear impacts on ecosystem C cycling through increased C uptake and aboveground (AG) storage. What is less clear, however, are the concurrent changes in belowground (BG) C storage. Here we inventoried AG and BG C stocks in disturbed and undisturbed tundra ecosystems to determine the effects of disturbance on tundra C balance. We measured differences in plant functional type, AG and BG biomass, soil C, and specific leaf area (SLA) for the dominant shrub (Salix) in 2 tundra ecosystems in northern Siberia—an undisturbed moist acidic tundra and an adjacent ecosystem that was used as a road ~50 years ago. Deciduous shrubs and grasses dominated both ecosystems, but biomass for both functional types was higher in the disturbed area. SLA was also higher inside the disturbance. Conversely, nonvascular plants and evergreen shrubs were less abundant in the disturbed area. BG plant biomass was substantially

  2. Sea Ice, Hydrocarbon Extraction, Rain-on-Snow and Tundra Reindeer Nomadism in Arctic Russia

    Science.gov (United States)

    Forbes, B. C.; Kumpula, T.; Meschtyb, N.; Laptander, R.; Macias-Fauria, M.; Zetterberg, P.; Verdonen, M.

    2015-12-01

    It is assumed that retreating sea ice in the Eurasian Arctic will accelerate hydrocarbon development and associated tanker traffic along Russia's Northern Sea Route. However, oil and gas extraction along the Kara and Barents Sea coasts will likely keep developing rapidly regardless of whether the Northwest Eurasian climate continues to warm. Less certain are the real and potential linkages to regional biota and social-ecological systems. Reindeer nomadism continues to be a vitally important livelihood for indigenous tundra Nenets and their large herds of semi-domestic reindeer. Warming summer air temperatures over the NW Russian Arctic have been linked to increases in tundra productivity, longer growing seasons, and accelerated growth of tall deciduous shrubs. These temperature increases have, in turn, been linked to more frequent and sustained summer high-pressure systems over West Siberia, but not to sea ice retreat. At the same time, winters have been warming and rain-on-snow (ROS) events have become more frequent and intense, leading to record-breaking winter and spring mortality of reindeer. What is driving this increase in ROS frequency and intensity is not clear. Recent modelling and simulation have found statistically significant near-surface atmospheric warming and precipitation increases during autumn and winter over Arctic coastal lands in proximity to regions of sea-ice loss. During the winter of 2013-14 an extensive and lasting ROS event led to the starvation of 61,000 reindeer out of a population of ca. 300,000 animals on Yamal Peninsula, West Siberia. Historically, this is the region's largest recorded mortality episode. More than a year later, participatory fieldwork with nomadic herders during spring-summer 2015 revealed that the ecological and socio-economic impacts from this extreme event will unfold for years to come. There is an urgent need to understand whether and how ongoing Barents and Kara Sea ice retreat may affect the region's ancient

  3. Arctic shrubification mediates the impacts of warming climate on changes to tundra vegetation

    Science.gov (United States)

    Mod, Heidi K.; Luoto, Miska

    2016-12-01

    Climate change has been observed to expand distributions of woody plants in many areas of arctic and alpine environments—a phenomenon called shrubification. New spatial arrangements of shrubs cause further changes in vegetation via changing dynamics of biotic interactions. However, the mediating influence of shrubification is rarely acknowledged in predictions of tundra vegetation change. Here, we examine possible warming-induced landscape-level vegetation changes in a high-latitude environment using species distribution modelling (SDM), specifically concentrating on the impacts of shrubification on ambient vegetation. First, we produced estimates of current shrub and tree cover and forecasts of their expansion under climate change scenarios to be incorporated to SDMs of 116 vascular plants. Second, the predictions of vegetation change based on the models including only abiotic predictors and the models including abiotic, shrub and tree predictors were compared in a representative test area. Based on our model predictions, abundance of woody plants will expand, thus decreasing predicted species richness, amplifying species turnover and increasing the local extinction risk for ambient vegetation. However, the spatial variation demonstrated in our predictions highlights that tundra vegetation can be expected to show a wide variety of different responses to the combined effects of warming and shrubification, depending on the original plant species pool and environmental conditions. We conclude that realistic forecasts of the future require acknowledging the role of shrubification in warming-induced tundra vegetation change.

  4. Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia)

    Science.gov (United States)

    Hildegard Zimmermann, Heike; Raschke, Elena; Saskia Epp, Laura; Rosmarie Stoof-Leichsenring, Kathleen; Schwamborn, Georg; Schirrmeister, Lutz; Overduin, Pier Paul; Herzschuh, Ulrike

    2017-02-01

    Organic matter deposited in ancient, ice-rich permafrost sediments is vulnerable to climate change and may contribute to the future release of greenhouse gases; it is thus important to get a better characterization of the plant organic matter within such sediments. From a Late Quaternary permafrost sediment core from the Buor Khaya Peninsula, we analysed plant-derived sedimentary ancient DNA (sedaDNA) to identify the taxonomic composition of plant organic matter, and undertook palynological analysis to assess the environmental conditions during deposition. Using sedaDNA, we identified 154 taxa and from pollen and non-pollen palynomorphs we identified 83 taxa. In the deposits dated between 54 and 51 kyr BP, sedaDNA records a diverse low-centred polygon plant community including recurring aquatic pond vegetation while from the pollen record we infer terrestrial open-land vegetation with relatively dry environmental conditions at a regional scale. A fluctuating dominance of either terrestrial or swamp and aquatic taxa in both proxies allowed the local hydrological development of the polygon to be traced. In deposits dated between 11.4 and 9.7 kyr BP (13.4-11.1 cal kyr BP), sedaDNA shows a taxonomic turnover to moist shrub tundra and a lower taxonomic richness compared to the older samples. Pollen also records a shrub tundra community, mostly seen as changes in relative proportions of the most dominant taxa, while a decrease in taxonomic richness was less pronounced compared to sedaDNA. Our results show the advantages of using sedaDNA in combination with palynological analyses when macrofossils are rarely preserved. The high resolution of the sedaDNA record provides a detailed picture of the taxonomic composition of plant-derived organic matter throughout the core, and palynological analyses prove valuable by allowing for inferences of regional environmental conditions.

  5. Arctic Shrub Growth Response to Climate Variation and Infrastructure Development on the North Slope of Alaska

    Science.gov (United States)

    Ackerman, D.; Finlay, J. C.; Griffin, D.

    2015-12-01

    Woody shrub growth in the arctic tundra is increasing on a circumpolar scale. Shrub expansion alters land-atmosphere carbon fluxes, nutrient cycling, and habitat structure. Despite these ecosystem effects, the drivers of shrub expansion have not been precisely established at the landscape scale. This project examined two proposed anthropogenic drivers: global climate change and local infrastructure development, a press disturbance that generates high levels of dust deposition. Effects of global change were studied using dendrochronology to establish a relationship between climate and annual growth in Betula and Salix shrubs growing in the Alaskan low Arctic. To understand the spatial heterogeneity of shrub expansion, this analysis was replicated in shrub populations across levels of landscape properties including soil moisture and substrate age. Effects of dust deposition on normalized difference vegetation index (NDVI) and photosynthetic rate were measured on transects up to 625 meters from the Dalton Highway. Dust deposition rates decreased exponentially with distance from road, matching previous models of road dust deposition. NDVI tracked deposition rates closely, but photosynthetic rates were not strongly affected by deposition. These results suggest that dust deposition may locally bias remote sensing measurements such as NDVI, without altering internal physiological processes such as photosynthesis in arctic shrubs. Distinguishing between the effects of landscape properties, climate, and disturbance will improve our predictions of the biogeochemical feedbacks of arctic shrub expansion, with potential application in climate change modeling.

  6. Below-ground carbon transfer among Betula nana may increase with warming in Arctic tundra.

    Science.gov (United States)

    Deslippe, Julie R; Simard, Suzanne W

    2011-11-01

    Shrubs are expanding in Arctic tundra, but the role of mycorrhizal fungi in this process is unknown. We tested the hypothesis that mycorrhizal networks are involved in interplant carbon (C) transfer within a tundra plant community. • Here, we installed below-ground treatments to control for C transfer pathways and conducted a (13)CO(2)-pulse-chase labelling experiment to examine C transfer among and within plant species. • We showed that mycorrhizal networks exist in tundra, and facilitate below-ground transfer of C among Betula nana individuals, but not between or within the other tundra species examined. Total C transfer among conspecific B. nana pairs was 10.7 ± 2.4% of photosynthesis, with the majority of C transferred through rhizomes or root grafts (5.2 ± 5.3%) and mycorrhizal network pathways (4.1 ± 3.3%) and very little through soil pathways (1.4 ± 0.35%). • Below-ground C transfer was of sufficient magnitude to potentially alter plant interactions in Arctic tundra, increasing the competitive ability and mono-dominance of B. nana. C transfer was significantly positively related to ambient temperatures, suggesting that it may act as a positive feedback to ecosystem change as climate warms.

  7. Response of rhizosphere soil microbial to Deyeuxia angustifolia encroaching in two different vegetation communities in alpine tundra

    Science.gov (United States)

    Li, Lin; Xing, Ming; Lv, Jiangwei; Wang, Xiaolong; Chen, Xia

    2017-02-01

    Deyeuxia angustifolia (Komarov) Y. L Chang is an herb species originating from the birch forests in the Changbai Mountain. Recently, this species has been found encroaching into large areas in the western slopes of the alpine tundra in the Changbai Mountain, threatening the tundra ecosystem. In this study, we systematically assessed the response of the rhizosphere soil microbial to D. angustifolia encroaching in alpine tundra by conducting experiments for two vegetation types (shrubs and herbs) by real-time PCR and Illumina Miseq sequencing methods. The treatments consisted of D. angustifolia sites (DA), native sites (NS, NH) and encroaching sites (ES, EH). Our results show that (1) Rhizosphere soil properties of the alpine tundra were significantly impacted by D. angustifolia encroaching; microbial nutrient cycling and soil bacterial communities were shaped to be suitable for D. angustifolia growth; (2) The two vegetation community rhizosphere soils responded differently to D. angustifolia encroaching; (3) By encroaching into both vegetation communities, D. angustifolia could effectively replace the native species by establishing positive plant-soil feedback. The strong adaptation and assimilative capacity contributed to D. angustifolia encroaching in the alpine tundra. Our research indicates that D. angustifolia significantly impacts the rhizosphere soil microbial of the alpine tundra.

  8. Environmental Limits of Tall Shrubs in Alaska's Arctic National Parks.

    Science.gov (United States)

    Swanson, David K

    2015-01-01

    We sampled shrub canopy volume (height times area) and environmental factors (soil wetness, soil depth of thaw, soil pH, mean July air temperature, and typical date of spring snow loss) on 471 plots across five National Park Service units in northern Alaska. Our goal was to determine the environments where tall shrubs thrive and use this information to predict the location of future shrub expansion. The study area covers over 80,000 km2 and has mostly tundra vegetation. Large canopy volumes were uncommon, with volumes over 0.5 m3/m2 present on just 8% of plots. Shrub canopy volumes were highest where mean July temperatures were above 10.5°C and on weakly acid to neutral soils (pH of 6 to 7) with deep summer thaw (>80 cm) and good drainage. On many sites, flooding helped maintain favorable soil conditions for shrub growth. Canopy volumes were highest where the typical snow loss date was near 20 May; these represent sites that are neither strongly wind-scoured in the winter nor late to melt from deep snowdrifts. Individual species varied widely in the canopy volumes they attained and their response to the environmental factors. Betula sp. shrubs were the most common and quite tolerant of soil acidity, cold July temperatures, and shallow thaw depths, but they did not form high-volume canopies under these conditions. Alnus viridis formed the largest canopies and was tolerant of soil acidity down to about pH 5, but required more summer warmth (over 12°C) than the other species. The Salix species varied widely from S. pulchra, tolerant of wet and moderately acid soils, to S. alaxensis, requiring well-drained soils with near neutral pH. Nearly half of the land area in ARCN has mean July temperatures of 10.5 to 12.5°C, where 2°C of warming would bring temperatures into the range needed for all of the potential tall shrub species to form large canopies. However, limitations in the other environmental factors would probably prevent the formation of large shrub canopies

  9. Environmental Limits of Tall Shrubs in Alaska's Arctic National Parks.

    Directory of Open Access Journals (Sweden)

    David K Swanson

    Full Text Available We sampled shrub canopy volume (height times area and environmental factors (soil wetness, soil depth of thaw, soil pH, mean July air temperature, and typical date of spring snow loss on 471 plots across five National Park Service units in northern Alaska. Our goal was to determine the environments where tall shrubs thrive and use this information to predict the location of future shrub expansion. The study area covers over 80,000 km2 and has mostly tundra vegetation. Large canopy volumes were uncommon, with volumes over 0.5 m3/m2 present on just 8% of plots. Shrub canopy volumes were highest where mean July temperatures were above 10.5°C and on weakly acid to neutral soils (pH of 6 to 7 with deep summer thaw (>80 cm and good drainage. On many sites, flooding helped maintain favorable soil conditions for shrub growth. Canopy volumes were highest where the typical snow loss date was near 20 May; these represent sites that are neither strongly wind-scoured in the winter nor late to melt from deep snowdrifts. Individual species varied widely in the canopy volumes they attained and their response to the environmental factors. Betula sp. shrubs were the most common and quite tolerant of soil acidity, cold July temperatures, and shallow thaw depths, but they did not form high-volume canopies under these conditions. Alnus viridis formed the largest canopies and was tolerant of soil acidity down to about pH 5, but required more summer warmth (over 12°C than the other species. The Salix species varied widely from S. pulchra, tolerant of wet and moderately acid soils, to S. alaxensis, requiring well-drained soils with near neutral pH. Nearly half of the land area in ARCN has mean July temperatures of 10.5 to 12.5°C, where 2°C of warming would bring temperatures into the range needed for all of the potential tall shrub species to form large canopies. However, limitations in the other environmental factors would probably prevent the formation of large

  10. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems

    Science.gov (United States)

    Stow, D.A.; Hope, A.; McGuire, D.; Verbyla, D.; Gamon, J.; Huemmrich, F.; Houston, S.; Racine, C.; Sturm, M.; Tape, K.; Hinzman, L.; Yoshikawa, K.; Tweedie, C.; Noyle, B.; Silapaswan, C.; Douglas, D.; Griffith, B.; Jia, G.; Epstein, H.; Walker, D.; Daeschner, S.; Petersen, A.; Zhou, L.; Myneni, R.

    2004-01-01

    The objective of this paper is to review research conducted over the past decade on the application of multi-temporal remote sensing for monitoring changes of Arctic tundra lands. Emphasis is placed on results from the National Science Foundation Land-Air-Ice Interactions (LAII) program and on optical remote sensing techniques. Case studies demonstrate that ground-level sensors on stationary or moving track platforms and wide-swath imaging sensors on polar orbiting satellites are particularly useful for capturing optical remote sensing data at sufficient frequency to study tundra vegetation dynamics and changes for the cloud prone Arctic. Less frequent imaging with high spatial resolution instruments on aircraft and lower orbiting satellites enable more detailed analyses of land cover change and calibration/validation of coarser resolution observations. The strongest signals of ecosystem change detected thus far appear to correspond to expansion of tundra shrubs and changes in the amount and extent of thaw lakes and ponds. Changes in shrub cover and extent have been documented by modern repeat imaging that matches archived historical aerial photography. NOAA Advanced Very High Resolution Radiometer (AVHRR) time series provide a 20-year record for determining changes in greenness that relates to photosynthetic activity, net primary production, and growing season length. The strong contrast between land materials and surface waters enables changes in lake and pond extent to be readily measured and monitored. ?? 2003 Elsevier Inc. All rights reserved.

  11. How spatial variation in areal extent and configuration of labile vegetation states affect the riparian bird community in Arctic tundra.

    Science.gov (United States)

    Henden, John-André; Yoccoz, Nigel G; Ims, Rolf A; Langeland, Knut

    2013-01-01

    The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation of willow thickets

  12. How spatial variation in areal extent and configuration of labile vegetation states affect the riparian bird community in Arctic tundra.

    Directory of Open Access Journals (Sweden)

    John-André Henden

    Full Text Available The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation

  13. Ancient DNA

    DEFF Research Database (Denmark)

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair......ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair...

  14. Structural complexity and land-surface energy exchange along a gradient from arctic tundra to boreal forest

    Science.gov (United States)

    Thompson, C.; Beringer, J.; Chapin, F. S.; McGuire, A.D.

    2004-01-01

    Question: Current climate changes in the Alaskan Arctic, which are characterized by increases in temperature and length of growing season, could alter vegetation structure, especially through increases in shrub cover or the movement of treeline. These changes in vegetation structure have consequences for the climate system. What is the relationship between structural complexity and partitioning of surface energy along a gradient from tundra through shrub tundra to closed canopy forest? Location: Arctic tundra-boreal forest transition in the Alaskan Arctic. Methods: Along this gradient of increasing canopy complexity, we measured key vegetation characteristics, including community composition, biomass, cover, height, leaf area index and stem area index. We relate these vegetation characteristics to albedo and the partitioning of net radiation into ground, latent, and sensible heating fluxes. Results: Canopy complexity increased along the sequence from tundra to forest due to the addition of new plant functional types. This led to non-linear changes in biomass, cover, and height in the understory. The increased canopy complexity resulted in reduced ground heat fluxes, relatively conserved latent heat fluxes and increased sensible heat fluxes. The localized warming associated with increased sensible heating over more complex canopies may amplify regional warming, causing further vegetation change in the Alaskan Arctic.

  15. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time.

    Science.gov (United States)

    Elmendorf, Sarah C; Henry, Gregory H R; Hollister, Robert D; Björk, Robert G; Bjorkman, Anne D; Callaghan, Terry V; Collier, Laura Siegwart; Cooper, Elisabeth J; Cornelissen, Johannes H C; Day, Thomas A; Fosaa, Anna Maria; Gould, William A; Grétarsdóttir, Járngerður; Harte, John; Hermanutz, Luise; Hik, David S; Hofgaard, Annika; Jarrad, Frith; Jónsdóttir, Ingibjörg Svala; Keuper, Frida; Klanderud, Kari; Klein, Julia A; Koh, Saewan; Kudo, Gaku; Lang, Simone I; Loewen, Val; May, Jeremy L; Mercado, Joel; Michelsen, Anders; Molau, Ulf; Myers-Smith, Isla H; Oberbauer, Steven F; Pieper, Sara; Post, Eric; Rixen, Christian; Robinson, Clare H; Schmidt, Niels Martin; Shaver, Gaius R; Stenström, Anna; Tolvanen, Anne; Totland, Orjan; Troxler, Tiffany; Wahren, Carl-Henrik; Webber, Patrick J; Welker, Jeffery M; Wookey, Philip A

    2012-02-01

    Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date.

  16. Alaska North Slope Tundra Travel Model and Validation Study

    Energy Technology Data Exchange (ETDEWEB)

    Harry R. Bader; Jacynthe Guimond

    2006-03-01

    The Alaska Department of Natural Resources (DNR), Division of Mining, Land, and Water manages cross-country travel, typically associated with hydrocarbon exploration and development, on Alaska's arctic North Slope. This project is intended to provide natural resource managers with objective, quantitative data to assist decision making regarding opening of the tundra to cross-country travel. DNR designed standardized, controlled field trials, with baseline data, to investigate the relationships present between winter exploration vehicle treatments and the independent variables of ground hardness, snow depth, and snow slab thickness, as they relate to the dependent variables of active layer depth, soil moisture, and photosynthetically active radiation (a proxy for plant disturbance). Changes in the dependent variables were used as indicators of tundra disturbance. Two main tundra community types were studied: Coastal Plain (wet graminoid/moist sedge shrub) and Foothills (tussock). DNR constructed four models to address physical soil properties: two models for each main community type, one predicting change in depth of active layer and a second predicting change in soil moisture. DNR also investigated the limited potential management utility in using soil temperature, the amount of photosynthetically active radiation (PAR) absorbed by plants, and changes in microphotography as tools for the identification of disturbance in the field. DNR operated under the assumption that changes in the abiotic factors of active layer depth and soil moisture drive alteration in tundra vegetation structure and composition. Statistically significant differences in depth of active layer, soil moisture at a 15 cm depth, soil temperature at a 15 cm depth, and the absorption of photosynthetically active radiation were found among treatment cells and among treatment types. The models were unable to thoroughly investigate the interacting role between snow depth and disturbance due to a

  17. Decadal changes of phenological patterns over Arctic tundra biome

    Science.gov (United States)

    Jia, G. J.; Epstein, H. E.; Walker, D. A.; Wang, H.

    2008-12-01

    The northern high latitudes have experienced a continuous and accelerated trend of warming during the past 30 years, with most recent decade ranks the warmest years since 1850. Warmer springs are especially evident throughout the Arctic. Meanwhile, Arctic sea ice declined rapidly to unprecedented low extents in all months, with late summer experiences the most significant declining. Warming in the north is also evident from observations of early melting of snow and reducing snow cover. Now a key question is: in the warmth limited northern biome, what will happen to the phenological patterns of tundra vegetation as the global climate warms and seasonality of air temperature, sea ice, and snow cover shift? To answer the question we examined the onset of vegetation greenness, senescence of greenness, length of growing season, and dates of peak greenness along Arctic bioclimate gradients (subzones) to see how they change over years. Here, we combine multi-scale sub-pixel analysis and remote sensing time-series analysis to investigate recent decadal changes in vegetation phenology along spatial gradients of summer temperature and vegetation in the Arctic. The datasets used here are AVHRR 15-day 8 km time series, AVHRR 8-day 1 km dataset, and MODIS 8-day 500m Collection 5 dataset. There were detectable changes in phenological pattern over tundra biome in past two decades. Increases of vegetation greenness were observed in most of the summer periods in low arctic and mid-summer in high arctic. Peak greenness appeared earlier in high arctic and declined slower after peak in low arctic. Generally, tundra plants were having longer and stronger photosynthesis activities, and therefore increased annual vegetation productivities. Field studies have observed early growth and enhanced peak growth of many deciduous shrub species in tundra plant communities. These changes in seasonality are very likely to alter surface albedo and heat budget, modify plant photosynthesis

  18. Seasonal variability of leaf area index and foliar nitrogen in contrasting dry-mesic tundras

    DEFF Research Database (Denmark)

    Campioli, Matteo; Michelsen, Anders; Lemeur, Raoul;

    2009-01-01

    Assimilation and exchange of carbon for arctic ecosystems depend strongly on leaf area index (LAI) and total foliar nitrogen (TFN). For dry-mesic tundras, the seasonality of these characteristics is unexplored. We addressed this knowledge gap by measuring variations of LAI and TFN at five...... contrasting subarctic heaths during the growing season 2007, from about 2 weeks after bud burst until about 2 weeks before senescence. The communities generally showed an early season LAI and TFN increase, owing to leaf development of deciduous shrubs, and limited variations later on, owing to concurrent leaf...

  19. Shrub-Scrub Habitat Evaluation

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Conversion of the current shrub-scrub habitats west of Sandpiper Road and north of the Back BayNational Wildlife Refuge, into recreational facilities for a new hotel...

  20. Soil development as limiting factor for shrub expansion in southwestern Greenland

    Science.gov (United States)

    Caviezel, Chatrina; Hunziker, Matthias; Zoller, Oliver; Wüthrich, Christoph; Kuhn, Nikolaus J.

    2014-05-01

    Southern Greenland currently experiences an increase in summer temperatures and a prolonged growing season (Masson-Delmotte et al. 2012), resulting in an increased shrub cover at the boreal - tundra border ecotone (Normand et al. 2013). These findings suggest the beginning of a greener Greenland in which tundra vegetation is transformed to a boreal woody flora. However, vegetation at borderline ecotones is influenced by further ecologic factors than just temperature. In this study, the ecologic conditions at a selection of sites along an elevation gradient near Igaliku in southern Greenland were examined to identify potential factors limiting the expansion of woody vegetation apart from temperature. The sites differ in elevation, topography, shrub density and soil parent material. The three study sites comprise i) well established birch shrubs growing between 50 and 180 m a.s.l., where the parent material origins from the Julianehab granite (Brooks 2012); ii) extended shrub patches at about 250 m a.s.l., where the parent material consists of Gardar Sandstones and Lavas (Brooks 2012) and iii) restricted shrub patches at an elevation of 250 m a.s.l., where the soil parent material originates from the Gardar intrusions (Brooks 2012). The extent of the shrub areas, topography and soil moisture were mapped, additionally soil samples were analyzed for C-and N-content, texture including coarse fraction and pH and used as soil development indicators. Our results show that the topographic setting regulates the existence or absence of soil while the soil parent material is an important limiting factor for soil moisture. According to these findings, we suggest that a high proportion of areas where temperature increase would allow the increase of shrub cover is not suitable for a woody flora. Brooks, Kent. 2012. "A Tale of Two Intrusions—where Familiar Rock Names No Longer Suffice." Geology Today 28 (1): 13-19. doi:10.1111/j.1365-2451.2012.00815.x. Masson-Delmotte, V., D

  1. Acidobacteria dominate the active bacterial communities of Arctic tundra with widely divergent winter-time snow accumulation and soil temperatures.

    Science.gov (United States)

    Männistö, Minna K; Kurhela, Emilia; Tiirola, Marja; Häggblom, Max M

    2013-04-01

    The timing and extent of snow cover is a major controller of soil temperature and hence winter-time microbial activity and plant diversity in Arctic tundra ecosystems. To understand how snow dynamics shape the bacterial communities, we analyzed the bacterial community composition of windswept and snow-accumulating shrub-dominated tundra heaths of northern Finland using DNA- and RNA-based 16S rRNA gene community fingerprinting (terminal restriction fragment polymorphism) and clone library analysis. Members of the Acidobacteria and Proteobacteria dominated the bacterial communities of both windswept and snow-accumulating habitats with the most abundant phylotypes corresponding to subdivision (SD) 1 and 2 Acidobacteria in both the DNA- and RNA-derived community profiles. However, different phylotypes within Acidobacteria were found to dominate at different sampling dates and in the DNA- vs. RNA-based community profiles. The results suggest that different species within SD1 and SD2 Acidobacteria respond to environmental conditions differently and highlight the wide functional diversity of these organisms even within the SD level. The acidic tundra soils dominated by ericoid shrubs appear to select for diverse stress-tolerant Acidobacteria that are able to compete in the nutrient poor, phenolic-rich soils. Overall, these communities seem stable and relatively insensitive to the predicted changes in the winter-time snow cover.

  2. Koyukuk NWR tundra/trumpeter swan survey

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A tundra/trumpeter swan survey was conducted on the Koyukuk National Wildlife Refuge from 14 August to 23 August 1984. Twenty-four six mile square plots were...

  3. International Tundra Experiment ITEX Manual Second Edition

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Nonforest plots of Long Term Ecological Monitoring sites follow protocols developed for the International Tundra Experiment Walker et al. 1993, Walker 1996.

  4. Nitrogen deposition but not climate warming promotes Deyeuxia angustifolia encroachment in alpine tundra of the Changbai Mountains, Northeast China.

    Science.gov (United States)

    Zong, Shengwei; Jin, Yinghua; Xu, Jiawei; Wu, Zhengfang; He, Hongshi; Du, Haibo; Wang, Lei

    2016-02-15

    Vegetation in the alpine tundra area of the Changbai Mountains, one of two alpine tundra areas in China, has undergone great changes in recent decades. The aggressive herb species Deyeuxia angustifolia (Komarov) Y. L. Chang, a narrow-leaf small reed, was currently encroaching upon the alpine landscape and threatening tundra biota. The alpine tundra of the Changbai Mountains has been experiencing a warmer climate and receiving a high load of atmospheric nitrogen deposition. In this study, we aimed to assess the respective roles of climate warming and atmospheric nitrogen deposition in promoting the upward encroachment of D. angustifolia. We conducted experiments for three years to examine the response of D. angustifolia and a native alpine shrub, Rhododendron chrysanthum, to the conditions in which temperature and nitrogen were increased. Treatments consisting of temperature increase, nitrogen addition, temperature increase combined with nitrogen addition, and controls were conducted on the D. angustifolia communities with three encroachment levels (low, medium, and high levels). Results showed that 1) D. angustifolia grew in response to added nutrients but did not grow well when temperature increased. R. chrysanthum showed negligible responses to the simulated environmental changes. 2) Compared to R. chrysanthum, D. angustifolia could effectively occupy the above-ground space by increasing tillers and growing rapidly by efficiently using nitrogen. The difference in nitrogen uptake abilities between the two species contributed to expansion of D. angustifolia. 3) D. angustifolia encroachment could deeply change the biodiversity of tundra vegetation and may eventually result in the replacement of native biota, especially with nitrogen addition. Our research indicated that nutrient perturbation may be more important than temperature perturbation in promoting D. angustifolia encroachment upon the nutrient- and species-poor alpine tundra ecosystem in the Changbai

  5. Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils

    Directory of Open Access Journals (Sweden)

    Akihiro eKoyama

    2014-10-01

    Full Text Available The pool of soil organic carbon (SOC in the Arctic is disproportionally large compared to those in other biomes. This large quantity of SOC accumulated over millennia due to slow rates of decomposition relative to net primary productivity. Decomposition is constrained by low temperatures and nutrient concentrations, which limit soil microbial activity. We investigated how nutrients limit bacterial and fungal biomass and community composition in organic and mineral soils within moist acidic tussock tundra ecosystems. We sampled two experimental arrays of moist acidic tussock tundra that included fertilized and non-fertilized control plots. One array included plots that had been fertilized annually since 1989 and the other since 2006. Fertilization significantly altered overall bacterial community composition and reduced evenness, to a greater degree in organic than mineral soils, and in the 1989 compared to the 2006 site. The relative abundance of copiotrophic α-proteobacteria and β-proteobacteria was higher in fertilized than control soils, and oligotrophic Acidobacteria were less abundant in fertilized than control soils at the 1989 site. Fungal community composition was less sensitive to increased nutrient availability, and fungal responses to fertilization were not consistent between soil horizons and sites. We detected two ectomycorrhizal genera, Russula and Cortinarius spp., associated with shrubs. Their relative abundance was not affected by fertilization despite increased dominance of their host plants in the fertilized plots. Our results indicate that fertilization, which has been commonly used to simulate warming in Arctic tundra, has limited applicability for investigating fungal dynamics under warming.

  6. Short-term herbivory has long-term consequences in warmed and ambient high Arctic tundra

    Science.gov (United States)

    Little, Chelsea J.; Cutting, Helen; Alatalo, Juha; Cooper, Elisabeth

    2017-02-01

    Climate change is occurring across the world, with effects varying by ecosystem and region but already occurring quickly in high-latitude and high-altitude regions. Biotic interactions are important in determining ecosystem response to such changes, but few studies have been long-term in nature, especially in the High Arctic. Mesic tundra plots on Svalbard, Norway, were subjected to grazing at two different intensities by captive Barnacle geese from 2003–2005, in a factorial design with warming by Open Top Chambers. Warming manipulations were continued through 2014, when we measured vegetation structure and composition as well as growth and reproduction of three dominant species in the mesic meadow. Significantly more dead vascular plant material was found in warmed compared to ambient plots, regardless of grazing history, but in contrast to many short-term experiments no difference in the amount of living material was found. This has strong implications for nutrient and carbon cycling and could feed back into community productivity. Dominant species showed increased flowering in warmed plots, especially in those plots where grazing had been applied. However, this added sexual reproduction did not translate to substantial shifts in vegetative cover. Forbs and rushes increased slightly in warmed plots regardless of grazing, while the dominant shrub, Salix polaris, generally declined with effects dependent on grazing, and the evergreen shrub Dryas octopetala declined with previous intensive grazing. There were no treatment effects on community diversity or evenness. Thus despite no changes in total live abundance, a typical short-term response to environmental conditions, we found pronounced changes in dead biomass indicating that tundra ecosystem processes respond to medium- to long-term changes in conditions caused by 12 seasons of summer warming. We suggest that while high arctic tundra plant communities are fairly resistant to current levels of climate warming

  7. Radiation budget and soil heat fluxes in different Arctic tundra vegetation types

    Science.gov (United States)

    Juszak, Inge; Iturrate Garcia, Maitane; Gastellu-Etchegorry, Jean-Philippe; Schaepman, Michael E.; Schaepman-Strub, Gabriela

    2016-04-01

    While solar radiation is one of the primary energy sources for warming and thawing permafrost soil, the amount of shortwave radiation reaching the soil is reduced by vegetation shading. Climate change has led to greening, shrub expansion and encroachment in many Arctic tundra regions and further changes are anticipated. These vegetation changes feed back to the atmosphere and permafrost as they modify the surface energy budget. However, canopy transmittance of solar radiation has rarely been measured or modelled for a variety of tundra vegetation types. We assessed the radiation budget of the most common vegetation types at the Kytalyk field site in North-East Siberia (70.8°N, 147.5°E) with field measurements and 3D radiative transfer modelling and linked it to soil heat fluxes. Our results show that Arctic tundra vegetation types differ in canopy albedo and transmittance as well as in soil heat flux and active layer thickness. Tussock sedges transmitted on average 56% of the incoming light and dwarf shrubs 27%. For wet sedges we found that the litter layer was very important as it reduced the average transmittance to only 6%. Model output indicated that both, albedo and transmittance, also depend on the spatial aggregation of vegetation types. We found that permafrost thaw was more strongly related to soil properties than to canopy shading. The presented radiative transfer model allows quantifying effects of the vegetation layer on the surface radiation budget in permafrost areas. The parametrised model can account for diverse vegetation types and variation of properties within types. Our results highlight small scale radiation budget and permafrost thaw variability which are indicated and partly caused by vegetation. As changes in species composition and biomass increase can influence thaw rates, small scale patterns should be considered in assessments of climate-vegetation-permafrost feedbacks.

  8. The modeled effects of fire on carbon balance and vegetation abundance in Alaskan tundra

    Science.gov (United States)

    Dietze, M. C.; Davidson, C. D.; Kelly, R.; Higuera, P. E.; Hu, F.

    2012-12-01

    Arctic climate is warming at a rate disproportionately faster than the rest of the world. Changes have been observed within the tundra that are attributed to this trend, including active layer thickening, shrub land expansion, and increases in fire frequency. Whether tundra remains a global net sink of carbon could depend upon the effects of fire on vegetation, specifically concerning the speed at which vegetation reestablishes, the stimulation of growth after fire, and the changes that occur in species composition during succession. While rapid regeneration of graminoid vegetation favors the spread of this functional type in early succession, late succession appears to favor shrub vegetation at abundances greater than those observed before fire. Possible reasons for this latter observation include changes in albedo, soil insulation, and soil moisture regimes. Here we investigate the course of succession after fire disturbance within tundra ecosystems, and the mechanisms involved. A series of simulated burn experiments were conducted on the burn site left by the 2007 Anaktuvuk River fire to access the behavior of the Ecosystem Demography model v2.2 (ED2) in the simulation of fire on the tundra. The land surface sub-model within ED is modified to improve simulate permafrost through the effects of an increased soil-column depth, a peat texture class, and the effects of wind compaction and depth hoar on snow density. Parameterization is conducted through Bayesian techniques used to constrain parameter distributions based upon data from a literature survey, field measurements at Toolik Lake, Alaska, and a data assimilation over three datasets. At each step, priority was assigned to measurements that could constrain parameters that account for the greatest explained variance in model output as determined through sensitivity analysis. Following parameterization, a series of simulations were performed to gauge the suitability of the model in predicting carbon balance and

  9. Climatically induced interannual variability in aboveground production in forest-tundra and northern taiga of central Siberia.

    Science.gov (United States)

    Knorre, Anastasia A; Kirdyanov, Alexander V; Vaganov, Eugene A

    2006-02-01

    To investigate the variability of primary production of boreal forest ecosystems under the current climatic changes, we compared the dynamics of annual increments and productivity of the main components of plant community (trees, shrubs, mosses) at three sites in the north of Siberia (Russia). Annual radial growth of trees and shrubs was mostly defined by summer temperature regime (positive correlation), but climatic response of woody plants was species specific and depends on local conditions. Dynamics of annual increments of mosses were opposite to tree growth. The difference in climatic response of the different vegetation components of the forest ecosystems indicates that these components seem to be adapted to use climatic conditions during the short and severe northern summer, and decreasing in annual production of one component is usually combined with the increase of other component productivity. Average productivity in the northern forest ecosystems varies from 0.05 to 0.14 t ha(-1) year(-1) for trees, from 0.05 to 0.18 t ha(-1) year(-1) for shrubs and from 0.54 to 0.66 t ha(-1) year(-1) for mosses. Higher values of tree productivity combined with lower annual moss productivity were found in sites in northern taiga in comparison with forest-tundra. Different tendencies in the productivity of the dominant species from each vegetation level (trees, shrubs, mosses) were indicated for the last 10 years studied (1990-1999): while productivity of mosses is increasing, productivity of trees is decreasing, but there is no obvious trend in the productivity of shrubs. Our results show that in the long term, the main contribution to changes in annual biomass productivity in forest-tundra and northern taiga ecosystems under the predicted climatic changes will be determined by living ground cover.

  10. Ancient Egypt.

    Science.gov (United States)

    Evers, Virginia

    This four-week fourth grade social studies unit dealing with religious dimensions in ancient Egyptian culture was developed by the Public Education Religion Studies Center at Wright State University. It seeks to help students understand ancient Egypt by looking at the people, the culture, and the people's world view. The unit begins with outlines…

  11. Long-term recovery patterns of arctic tundra after winter seismic exploration.

    Science.gov (United States)

    Jorgenson, Janet C; Ver Hoef, Jay M; Jorgenson, M T

    2010-01-01

    In response to the increasing global demand for energy, oil exploration and development are expanding into frontier areas of the Arctic, where slow-growing tundra vegetation and the underlying permafrost soils are very sensitive to disturbance. The creation of vehicle trails on the tundra from seismic exploration for oil has accelerated in the past decade, and the cumulative impact represents a geographic footprint that covers a greater extent of Alaska's North Slope tundra than all other direct human impacts combined. Seismic exploration for oil and gas was conducted on the coastal plain of the Arctic National Wildlife Refuge, Alaska, USA, in the winters of 1984 and 1985. This study documents recovery of vegetation and permafrost soils over a two-decade period after vehicle traffic on snow-covered tundra. Paired permanent vegetation plots (disturbed vs. reference) were monitored six times from 1984 to 2002. Data were collected on percent vegetative cover by plant species and on soil and ground ice characteristics. We developed Bayesian hierarchical models, with temporally and spatially autocorrelated errors, to analyze the effects of vegetation type and initial disturbance levels on recovery patterns of the different plant growth forms as well as soil thaw depth. Plant community composition was altered on the trails by species-specific responses to initial disturbance and subsequent changes in substrate. Long-term changes included increased cover of graminoids and decreased cover of evergreen shrubs and mosses. Trails with low levels of initial disturbance usually improved well over time, whereas those with medium to high levels of initial disturbance recovered slowly. Trails on ice-poor, gravel substrates of riparian areas recovered better than those on ice-rich loamy soils of the uplands, even after severe initial damage. Recovery to pre-disturbance communities was not possible where trail subsidence occurred due to thawing of ground ice. Previous studies of

  12. Deciduous shrub growth and the greening of the Arctic in West Siberia

    Science.gov (United States)

    Forbes, B. C.; Macias Fauria, M.; Zetterberg, P.; Kumpula, T.

    2010-12-01

    Salix lanata and Alnus fruticosa are common and widespread shrub species in the low arctic tundra zone of West Siberia. They often occur in similar local habitats with the live portions of genets up to 100 years old. We have recently established that growth rings of S. lanata provide an excellent proxy for summer temperature. In that study our data were derived from shrubs growing on organic soils near the arctic coast of the Nenets Autonomous Okrug (NAO), west of the Ural Mountains. East of the Urals, in the Yamal-Nenets Autonomous Okrug (YNAO), climate is more continental and sandy soils provide a relatively nutrient-poor substrate for plant growth. By sampling two different species side by side on the Yamal Peninsula, we shed light on the relationship between deciduous shrubs and growing season temperatures in the last half century or so, a period of pronounced regional warming. We discern differences in the climate signal within a single species (S. lanata) as well as between it and a neighboring species with a strongly overlapping ecological amplitude (A. fruticosa). July is the main month for temperature correlation in Alnus, whereas Salix responds to June-July-August temperatures in both regions. The high correlations of shrub growth with summer temperature (r > 0.7 over the period 1956-2004) strongly suggest a link between increased shrub growth and recent decadal warming in both regions (~2°C). Both species showed significant correlation with the regional Normalized Difference Vegetation Index (NDVI), although it was somewhat lower in YNAO compared to NAO, probably due to the relative land cover (10% vs. 20%, respectively) of erect shrubs in both areas, which affects their overall contribution to the NDVI. In both regions Salix lanata biomass peaks in the second half of July. Hand-held leaf area index data from Yamal indicate a significant difference between loamy/clayey and sandy sites. We hypothesized that this same variation would be evident at the

  13. Net carbon exchange across the Arctic tundra-boreal forest transition in Alaska 1981-2000

    Science.gov (United States)

    Thompson, Catharine Copass; McGuire, A.D.; Clein, J.S.; Chapin, F. S.; Beringer, J.

    2006-01-01

    Shifts in the carbon balance of high-latitude ecosystems could result from differential responses of vegetation and soil processes to changing moisture and temperature regimes and to a lengthening of the growing season. Although shrub expansion and northward movement of treeline should increase carbon inputs, the effects of these vegetation changes on net carbon exchange have not been evaluated. We selected low shrub, tall shrub, and forest tundra sites near treeline in northwestern Alaska, representing the major structural transitions expected in response to warming. In these sites, we measured aboveground net primary production (ANPP) and vegetation and soil carbon and nitrogen pools, and used these data to parameterize the Terrestrial Ecosystem Model. We simulated the response of carbon balance components to air temperature and precipitation trends during 1981-2000. In areas experiencing warmer and dryer conditions, Net Primary Production (NPP) decreased and heterotrophic respiration (R H ) increased, leading to a decrease in Net Ecosystem Production (NEP). In warmer and wetter conditions NPP increased, but the response was exceeded by an increase in R H ; therefore, NEP also decreased. Lastly, in colder and wetter regions, the increase in NPP exceeded a small decline in R H , leading to an increase in NEP. The net effect for the region was a slight gain in ecosystem carbon storage over the 20 year period. This research highlights the potential importance of spatial variability in ecosystem responses to climate change in assessing the response of carbon storage in northern Alaska over the last two decades. ?? Springer 2005.

  14. Phenological dynamics of arctic tundra vegetation and its implications on satellite imagery interpretation

    Science.gov (United States)

    Juutinen, Sari; Aurela, Mika; Mikola, Juha; Räsänen, Aleksi; Virtanen, Tarmo

    2016-04-01

    Remote sensing is a key methodology when monitoring the responses of arctic ecosystems to climatic warming. The short growing season and rapid vegetation development, however, set demands to the timing of image acquisition in the arctic. We used multispectral very high spatial resolution satellite images to study the effect of vegetation phenology on the spectral reflectance and image interpretation in the low arctic tundra in coastal Siberia (Tiksi, 71°35'39"N, 128°53'17"E). The study site mainly consists of peatlands, tussock, dwarf shrub, and grass tundra, and stony areas with some lichen and shrub patches. We tested the hypotheses that (1) plant phenology is responsive to the interannual weather variation and (2) the phenological state of vegetation has an impact on satellite image interpretation and the ability to distinguish between the plant communities. We used an empirical transfer function with temperature sums as drivers to reconstruct daily leaf area index (LAI) for the different plant communities for years 2005, and 2010-2014 based on measured LAI development in summer 2014. Satellite images, taken during growing seasons, were acquired for two years having late and early spring, and short and long growing season, respectively. LAI dynamics showed considerable interannual variation due to weather variation, and particularly the relative contribution of graminoid dominated communities was sensitive to these phenology shifts. We have also analyzed the differences in the reflectance values between the two satellite images taking account the LAI dynamics. These results will increase our understanding of the pitfalls that may arise from the timing of image acquisition when interpreting the vegetation structure in a heterogeneous tundra landscape. Very high spatial resolution multispectral images are available at reasonable cost, but not in high temporal resolution, which may lead to compromises when matching ground truth and the imagery. On the other hand

  15. Shrub expansion in SW Greenland

    DEFF Research Database (Denmark)

    Jørgensen, Rasmus Halfdan

    from more southerly habitats are better adapted to climatic conditions in a warmer Greenland compared with local provenances. To answer the first question historical photographs of vegetation in SW Greenland (1898–1974) were compiled. The photos were repeated in 2010 and 2011 and 64 photo pairs were...... cropped into 133 smaller units and classified by aspect, substrate stability, muskoxen grazing and human disturbance. The photo material was evaluated by 22 experts with respect to changes in shrub cover. The results revealed a general shrub cover increase in the whole dataset, but also in a subset...... of firewood collection. A delayed reaction to the ending of the little ice age cannot be excluded, but seems rather unlikely considering other studies from Greenland. Effects of global warming in SW Greenland must be studied over even longer time periods than the 120 years of the current study. To answer...

  16. Can lemmings control the expansion of woody plants on tundra?

    Science.gov (United States)

    Oksanen, Lauri; Oksanen, Tarja; Olofsson, Johan; Virtanen, Risto; Hoset, Katrine; Tuomi, Maria; Kyrö, Kukka

    2013-04-01

    The ongoing expansion of woody vegetation in the arctic, due to global warming, creates a positive feed back loop. Increasing abundance of woody plants reduces surface albedo both directly and via speeding up snow melt. Thus a successively greater fraction of incoming solar radiation is absorbed and converted to heat. Browsing mammals - both big and small - can prevent this by consuming woody plants. However, the grazer/browser community of many tundra areas is dominated by brown/Norwegian lemmings (Lemmus spp.) which eat graminoids and mosses and cannot use woody plants as forage. It would seem a priori likely that in such areas, mammalian herbivores speed up the expansion of woody plants by improving the chances of their seedlings to get established. We studied the impact of lemmings on woody plants by constructing lemming proof exclosures within piece high-altitude tundra at Joatkanjávri, northernmost Norway. The exclosures were constructed in 1998, during a period of low lemming densities, in snow-beds, where Norwegian lemmings (L. lemmus) were the only ecologically significant herbivorous mammals. (Reindeer migrate through the area in May, when snow-beds are inaccessible for them; during the fall migration, the area represents a dead end and is therefore avoided.) We chose pairs of maximally similar vegetation patches of 0.5 by 0.5 m and randomly assigned one of each pair to become an exclosure while the other plot was left open. The initial state of the vegetation was documented by the point frequency method. In 2008, after the 2007 lemming outbreak, the same documentation was repeated; thereafter the plots were harvested, the vegetation was sorted to species, oven dried and weighed. Exclusion of lemmings resulted to pronounced increase in community level plant biomass. Evergreen woody plants were especially favored by the exclusion of lemming: their above-ground biomass in exclosures was 14 times as great as their biomass on open reference plots. The

  17. Aspects of the grammar of Tundra Yukaghir

    NARCIS (Netherlands)

    M. Schmalz

    2013-01-01

    The present thesis is an attempt at a grammatical description of Tundra Yukaghir (TY), based on a variety of primary data including those collected by the author during three field trips from 2009 till 2012. TY is a highly endangered minority language spoken in north-eastern Russia. It has slightly

  18. Stochastic daily modeling of arctic tundra ecosystems

    Science.gov (United States)

    Erler, A.; Epstein, H. E.; Frazier, J.

    2011-12-01

    ArcVeg is a dynamic vegetation model that has simulated interannual variability of production and abundance of arctic tundra plant types in previous studies. In order to address the effects of changing seasonality on tundra plant community composition and productivity, we have uniquely adapted the model to operate on the daily timescale. Each section of the model-weather generation, nitrogen mineralization, and plant growth dynamics-are driven by daily fluctuations in simulated temperature conditions. These simulation dynamics are achieved by calibrating stochastic iterative loops and mathematical functions with raw field data. Air temperature is the fundamental driver in the model, parameterized by climate data collected in the field across numerous arctic tundra sites, and key daily statistics are extracted (mean and standard deviation of temperature for each day of the year). Nitrogen mineralization is calculated as an exponential function from the simulated temperature. The seasonality of plant growth is driven by the availability of nitrogen and constrained by historical patterns and dynamics of the remotely sensed normalized difference vegetation index (NDVI), as they pertain to the seasonal onset of growth. Here we describe the methods used for daily weather generation, nitrogen mineralization, and the daily competition among twelve plant functional types for nitrogen and subsequent growth. This still rather simple approach to vegetation dynamics has the capacity to generate complex relationships between seasonal patterns of temperature and arctic tundra vegetation community structure and function.

  19. Ancient genomics

    DEFF Research Database (Denmark)

    Der Sarkissian, Clio; Allentoft, Morten Erik; Avila Arcos, Maria del Carmen

    2015-01-01

    by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans......, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when...

  20. Soil Warming and Fertilization Effects on Growth Ring Widths of Arctic Shrubs - Application of a Novel Dendroecological Approach.

    Science.gov (United States)

    Iturrate Garcia, M.; Heijmans, M.; Schweingruber, F. H.; Niklaus, P. A.; Schaepman-Strub, G.

    2015-12-01

    Climate warming is suggested as the main driver of shrub expansion in arctic tundra regions. Shrub expansion may have consequences on biodiversity and climate, especially through its feedbacks with the energy budget. A better understanding of shrub expansion mechanisms, including growth rate patterns and stem anatomy changes, and their sensitivity to climate is needed in order to quantify related feedbacks. We present a novel dendroecological approach to determine the response of three arctic shrub species to increased soil temperature and nutrients. A full factorial block-design experiment was run for four years with a total of thirty plots. Six individuals of each species were sampled from each plot to test for treatment effects on growth rate and stem anatomy. We compared the ring width of the four years of experiment with the one of the four previous years. The preliminary results for Betula nana and Salix pulchra suggest a significant effect of the treatments on the growth ring width. The response is stronger in Salix pulchra than in Betula nana individuals. And, while Salix pulchra is more sensitive to the combined soil warming and fertilization treatment, Betula nana is to the fertilization treatment. We could not observe an effect of treatment on the stem anatomy, likely because bark thickness co-varies with age. We found significant positive correlations of cork, cortex and phloem thickness with xylem thickness (used as a proxy of age), and a significant difference in stem anatomy between species. The results suggest species-specific growth sensitivity to soil warming and nutrient enhancement. The use of experimental dendroecology by manipulating environmental conditions according to future climate scenarios and testing effects on shrub anatomy and annual growth will increase our understanding on shrub expansion mechanisms. Ongoing plant trait analysis and consecutive application in a 3D radiative transfer model will allow to quantify the feedback of

  1. Increased ectomycorrhizal fungal abundance after long-term fertilization and warming of two arctic tundra ecosystems

    DEFF Research Database (Denmark)

    Clemmensen, Karina Engelbrecht; Michelsen, Anders; Jonasson, Sven Evert;

    2006-01-01

    the response in EM fungal abundance to long-term warming and fertilization in two arctic ecosystems with contrasting responses of the EM shrub Betula nana. •  Ergosterol was used as a biomarker for living fungal biomass in roots and organic soil and ingrowth bags were used to estimate EM mycelial production....... We measured 15N and 13C natural abundance to identify the EM-saprotrophic divide in fungal sporocarps and to validate the EM origin of mycelia in the ingrowth bags. •  Fungal biomass in soil and EM mycelial production increased with fertilization at both tundra sites, and with warming at one site....... This was caused partly by increased dominance of EM plants and partly by stimulation of EM mycelial growth. •  We conclude that cycling of carbon and nitrogen through EM fungi will increase when strongly nutrient-limited arctic ecosystems are exposed to a warmer and more nutrient-rich environment. This has...

  2. Constraining predictions of tundra permafrost and vegetation through model-data feedbacks and data-assimilation

    Science.gov (United States)

    Davidson, C. D.; Dietze, M.

    2011-12-01

    Arctic climate is warming at a rate disproportionate to the rest of the world, and recent interest has emerged in using terrestrial biosphere models to understand and predict the response of tundra ecosystems to such warming. Of particular interest are the potential feedbacks between permafrost melting, plant community dynamics, and biogeochemical cycles. Here, we report on efforts to calibrate and validate version 2 of the Ecosystem Demography model (ED2) for the Alaskan tundra and on the use of model analyses to motivate targeted field measurements. ED2 is a terrestrial biosphere model unique in its ability to scale physiological and plant community dynamics to regional levels. We began by assessing the ability of ED2's land surface model to capture permafrost thermodynamics and hydrology. Simulations at Barrow and Toolik Lake, Alaska bore several incongruities with observed data, with soil temperatures significantly higher and soil moisture lower than observed. Modifications were made to increase the soil column depth and to simulate the effect of wind compaction on snow density, and in turn, the insulation of winter soils. In addition to these changes, a new soil class was created to represent unique characteristics within the organic horizon of tundra soils. Together these changes significantly improved permafrost dynamics without substantially altering dynamics in the temperate region. To capture tundra vegetation dynamics, tundra species were classified into three plant functional types (graminoid, deciduous shrub, evergreen shrub). ED2 was then iteratively calibrated for the tundra using the Predictive Ecosystem Analyzer (PEcAn), a scientific workflow and ecoinformatics toolbox developed to aid model parameterization and analysis. Initial parameter estimates were derived from a formal Bayesian meta-analysis of compiled plant trait data. Sensitivity analyses and variance decomposition demonstrated that model uncertainties were driven by the minimum

  3. Drivers of post-fire successional trajectories in arctic tundra: the importance of physical and biophysical interactions

    Science.gov (United States)

    Rocha, A. V.; Jiang, Y.; Rastetter, E. B.; Drysdale, J.; Kremers, K.; Shaver, G. R.

    2013-12-01

    Fires in arctic tundra are rare with return intervals in the hundreds to thousands of years, but these events have large implications for carbon and energy fluxes in an environmentally changing and sensitive ecosystem. Permafrost degradation, species composition shifts, and ecosystem function alterations are just a few of the potential consequences of fire that could feedback on future climate change. Here we describe remote sensing, eddy covariance, thaw depth, and biomass measurements along an arctic tundra chronosequence to understand long-term post-fire carbon and energy budgets. Historical remote sensing and fire perimeter data were used to choose sites that were representative of a 0-6, 18, and 36 year old fire scar, which were paired with a representative nearby unburned control. Fires caused successional changes to carbon and energy budgets through changes to the soil thermal regime, caused by decreased organic layer from combustion, and shifts from tussock to grass and shrub dominated systems. Measurements and modeling with the Multiple Element Limitation (MEL) model indicate that nutrients played a key role in these shifts and that these dynamics change are controlled by biophysical conditions immediately after fire (i.e. residual organic layer depth) and climate during early succession. Results highlight the importance of initial conditions in determining the successional trajectory of arctic tundra and yield important insights on how these systems will respond to future climate change.

  4. Ancient genomics

    DEFF Research Database (Denmark)

    Der Sarkissian, Clio; Allentoft, Morten Erik; Avila Arcos, Maria del Carmen;

    2015-01-01

    , archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when...

  5. Timing, Magnitude and Sources of Ecosystem Respiration in High Arctic Tundra of NW Greenland

    Science.gov (United States)

    Lupascu, M.; Xu, X.; Lett, C.; Maseyk, K. S.; Lindsey, D. S.; Thomas, J. S.; Welker, J. M.; Czimczik, C. I.

    2011-12-01

    High arctic ecosystems with low vegetation density contain significant stocks of organic carbon (C) in the form of soil organic matter that range in age from modern to ancient. How rapidly these C pools can be mineralized and lost to the atmosphere as CO2 (ecosystem respiration, ER) as a consequence of warming and, or changes in precipitation is a major uncertainty in our understanding of current and future arctic biogeochemistry and for predicting future levels of atmospheric CO2. In a 2-year study (2010-2011), we monitored seasonal changes in the magnitude, timing and sources of ER and soil pore space CO2 in the High Arctic of NW Greenland under current and simulated, future climate conditions. Measurements were taken from May to August at a multi-factorial, long-term climate change experiment in prostrate dwarf-shrub tundra on patterned ground with 5 treatments: (T1) +2oC warming, (T2) +4oC warming, (W) +50% summer precipitation, (T2W) +4oC + 50% summer precipitation, and (C) control. ER (using opaque chambers) and soil CO2 concentrations (wells) were monitored daily via infrared spectroscopy (LI-COR 800 & 840). The source of CO2 was inferred from its radiocarbon (14C) content analyzed at the AMS facility in UCI. CO2 was sampled monthly using molecular sieve traps (chambers) or evacuated canisters (wells). Highest rates of ER are observed on vegetated ground with a maximum in mid summer - reflecting a peak in plant productivity and soil temperature. Respiration rates from bare ground remain similar throughout the summer. Additional soil moisture, administered or due to precipitation events, strongly enhances ER from both vegetated and bare ground. Daily ER budget for the sampling period was of 53.1 mmol C m-2 day-1 for the (C) vegetated areas compared to the 60.0 for the (T2), 68.1 for the (T2W) or the 79.9 for the (W) treatment. ER was highly correlated to temperature (eg. C = 0.8; T2W = 0.8) until middle of July, when heavy precipitation started to occur. In

  6. Carbon cycling of alpine tundra ecosystems on Changbai Mountain and its comparison with arctic tundra

    Institute of Scientific and Technical Information of China (English)

    DAI; Limin(代力民); WU; Gang(吴钢); ZHAO; Jingzhu(赵景柱); KONG; Hongmei(孔红梅); SHAO; Guofan(邵国凡); DENG; Hongbing(邓红兵)

    2002-01-01

    The alpine tundra on Changbai Mountain was formed as a left-over ‘island' in higher elevations after the glacier retrieved from the mid-latitude of Northern Hemisphere to the Arctic during the fourth ice age. The alpine tundra on Changbai Mountain also represents the best-reserved tundra ecosystems and the highest biodiversity in northeast Eurasia. This paper examines the quantity of carbon assimilation, litters, respiration rate of soil, and storage of organic carbon within the alpine tundra ecosystems on Changbai Mountain. The annual net storage of organic carbon was 2092 t/a, the total storage of organic carbon was 33457 t, the annual net storage of organic carbon in soil was 1054 t/a, the total organic carbon storage was 316203 t, and the annual respiration rate of soil was 92.9% and was 0.52 times more than that of the Arctic. The tundra-soil ecosystems in alpine Changbai Mountain had 456081 t of carbon storage, of which, organic carbon accounted for 76.7% whereas the mineral carbon accounted for 23.3%.

  7. The unseen iceberg: plant roots in arctic tundra.

    Science.gov (United States)

    Iversen, Colleen M; Sloan, Victoria L; Sullivan, Patrick F; Euskirchen, Eugenie S; McGuire, A David; Norby, Richard J; Walker, Anthony P; Warren, Jeffrey M; Wullschleger, Stan D

    2015-01-01

    Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits - including distribution, chemistry, anatomy and resource partitioning - play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions.

  8. The unseen iceberg: Plant roots in arctic tundra

    Science.gov (United States)

    Iverson, Colleen M.; Sloan, Victoria L.; Sullivan, Patrick F.; Euskirchen, E.S.; McGuire, Anthony; Norby, Richard J.; Walker, Anthony P.; Warren, Jeffrey M.; Wullschleger, Stan D.

    2015-01-01

    Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits – including distribution, chemistry, anatomy and resource partitioning – play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions.

  9. Soil Organic Matter in Forest Ecosystems of the Forest-tundra zone of Central Siberia

    Science.gov (United States)

    Mukhortova, Liudmila

    2010-05-01

    Our study was conducted on 17 forest sample plots in the forest-tundra zone of Central Siberia, Krasnoyarsk region, Russia. They were covered by larch/feather moss/shrub and larch/grass forest types growing on cryozems and podburs (Cryosols). The investigation was aimed at estimating soil organic matter storage and structure in forest ecosystems growing along the northern tree line. Such ecosystems have low rates of exchange processes and biological productivity. Estimating soil carbon in these forest types is important for a deeper understanding of their role in biogeochemical cycles and forecasting consequences of climate changes. Soil organic matter was divided into pools by biodegradation resistance level and, hence, different roles of these pools in biological cycles. The soil organic matter was divided into an easily mineralizable (LMOM) fraction, which includes labile (insoluble) (LOM) and mobile (soluble) (MOM) organic compounds, and a stable organic matter fraction that is humus substances bound with soil matrix. The forest-tundra soil carbon was found to total 30.9 to 125.9 tons/ha. Plant residues were the main part of the soil easily mineralizable organic matter and contained from 13.3 to 62.4% of this carbon. Plant residue carbon was mainly allocated on the soil surface, in the forest litter. Plant residues in the soil (dead roots + other "mortmass") were calculated to contribute 10-30% of the plant residues carbon, or 2.5-15.1% of the total soil carbon. Soil surface and in-soil dead plant material included 60-95% of heavily decomposed residues that made up a forest litter fermentation subhorizon and an "other mortmass" fraction of the root detritus. Mobile organic matter (substances dissolved in water and 0.1N NaOH) of plant residues was found to allocate 15-25% of carbon. In soil humus, MOM contribution ranged 14 to 64%. Easily mineralizable organic matter carbon appeared to generally dominate forest-tundra soil carbon pool. It was measured to

  10. Forest and Shrub Canopy Structure from Multiangle and High Resolution Passive Remote Sensing

    Science.gov (United States)

    Chopping, M. J.; Wang, Z.; Bull, M. A.; Duchesne, R.; North, M.

    2015-12-01

    The 3-D structure of forest and shrub canopies can be mapped using diverse technologies, with the most advanced being lidar and interferometric radar. Other approaches include various modes of interpretation of multi-angle imagery, high-resolution stereo photogrammetry, plant identification, delineation, and measurement from high-resolution panchromatic imagery, and image texture metrics. While active remote sensing will revolutionize mapping of canopy structure, there are currently limitations. High precision lidar will remain limited geographically until the launch of NASA's innovative Global Ecosystem Dynamics Investigation to the International Space Station in 2019 but even this mission will not see high latitude boreal forest, taiga, or shrubs in tundra because of the orbit. Radar-based methods must be calibrated using high quality data. Imagery from passive imagers acquired at a range of scales therefore has much value if it can be used to provide structure data at broader geographic and temporal scales. Here we report on canopy mapping at scales from 0.5 m to 250 m using high-resolution panchromatic imagery from satellite imagers and NASA's Multiangle Imaging Spectro-Radiometer (MISR), respectively. MISR-based 250 m aboveground biomass maps for the southwestern U.S. were assessed against the radar-derived North American Carbon Program National Biomass and Carbon Dataset 2000, showing good agreement (R2=0.80, RMSE=31 Mg ha-1 for the validation data set; and 0.76 and 18 Mg ha-1, respectively, for 1013 random points). For Oregon forests the best and worst cases were R2=0.90, RMSE=42 Mg ha-1 and R2=0.78, RMSE=62 Mg ha-1, respectively. For improved validation, the CANAPI algorithm was used to interpret high-resolution panchromatic imagery. In Sierra National forest, California, canopy cover estimates agreed well with those from field inventory (R2=0.92, RMSE=0.03). Height estimates gave R2=0.94 and relative RMSE=0.25 m for the range 3 m - 60 m, vs. lidar

  11. Above- and belowground responses of Arctic tundra ecosystems to altered soil nutrients and mammalian herbivory.

    Science.gov (United States)

    Gough, Laura; Moore, John C; Shaver, Gauis R; Simpson, Rodney T; Johnson, David R

    2012-07-01

    Theory and observation indicate that changes in the rate of primary production can alter the balance between the bottom-up influences of plants and resources and the top-down regulation of herbivores and predators on ecosystem structure and function. The exploitation ecosystem hypothesis (EEH) posited that as aboveground net primary productivity (ANPP) increases, the additional biomass should support higher trophic levels. We developed an extension of EEH to include the impacts of increases in ANPP on belowground consumers in a similar manner as aboveground, but indirectly through changes in the allocation of photosynthate to roots. We tested our predictions for plants aboveground and for phytophagous nematodes and their predators belowground in two common arctic tundra plant communities subjected to 11 years of increased soil nutrient availability and/or exclusion of mammalian herbivores. The less productive dry heath (DH) community met the predictions of EEH aboveground, with the greatest ANPP and plant biomass in the fertilized plots protected from herbivory. A palatable grass increased in fertilized plots while dwarf evergreen shrubs and lichens declined. Belowground, phytophagous nematodes also responded as predicted, achieving greater biomass in the higher ANPP plots, whereas predator biomass tended to be lower in those same plots (although not significantly). In the higher productivity moist acidic tussock (MAT) community, aboveground responses were quite different. Herbivores stimulated ANPP and biomass in both ambient and enriched soil nutrient plots; maximum ANPP occurred in fertilized plots exposed to herbivory. Fertilized plots became dominated by dwarf birch (a deciduous shrub) and cloudberry (a perennial forb); under ambient conditions these two species coexist with sedges, evergreen dwarf shrubs, and Sphagnum mosses. Phytophagous nematodes did not respond significantly to changes in ANPP, although predator biomass was greatest in control plots. The

  12. Distribution of global fallouts cesium-137 in taiga and tundra catenae at the Ob River basin

    Science.gov (United States)

    Semenkov, I. N.; Usacheva, A. A.; Miroshnikov, A. Yu.

    2015-03-01

    The classification of soil catenae at the Ob River basin is developed and applied. This classification reflects the diverse geochemical conditions that led to the formation of certain soil bodies, their combinations and the migration fields of chemical elements. The soil and geochemical diversity of the Ob River basin catenae was analyzed. The vertical and lateral distribution of global fallouts cesium-137 was studied using the example of the four most common catenae types in Western Siberia tundra and taiga. In landscapes of dwarf birches and dark coniferous forests on gleysols, cryosols, podzols, and cryic-stagnosols, the highest 137Cs activity density and specific activity are characteristic of the upper soil layer of over 30% ash, while the moss-grass-shrub cover is characterized by low 137Cs activity density and specific activity. In landscapes of dwarf birches and pine woods on podzols, the maximum specific activity of cesium-137 is typical for moss-grass-shrub cover, while the maximum reserves are concentrated in the upper soil layer of over 30% ash. Bog landscapes and moss-grass-shrub cover are characterized by a minimum activity of 137Cs, and its reserves in soil generally decrease exponentially with depth. The cesium-137 penetration depth increases in oligotrophic histosols from northern to middle taiga landscapes from 10-15 to 40 cm. 137Cs is accumulated in oligotrophic histosols for increases in pH from 3.3 to 4.0 and in concretionary interlayers of pisoplinthic-cryic-histic-stagnosols. Cryogenic movement, on the one hand, leads to burying organic layers enriched in 137Cs and, on the other hand, to deducing specific activity when mixed with low-active material from lower soil layers.

  13. Ancient Egypt

    Science.gov (United States)

    Swamy, Ashwin Balegar

    This thesis involves development of an interactive GIS (Geographic Information System) based application, which gives information about the ancient history of Egypt. The astonishing architecture, the strange burial rituals and their civilization were some of the intriguing questions that motivated me towards developing this application. The application is a historical timeline starting from 3100 BC, leading up to 664 BC, focusing on the evolution of the Egyptian dynasties. The tool holds information regarding some of the famous monuments which were constructed during that era and also about the civilizations that co-existed. It also provides details about the religions followed by their kings. It also includes the languages spoken during those periods. The tool is developed using JAVA, a programing language and MOJO (Map Objects Java Objects) a product of ESRI (Environmental Science Research Institute) to create map objects, to provide geographic information. JAVA Swing is used for designing the user interface. HTML (Hyper Text Markup Language) pages are created to provide the user with more information related to the historic period. CSS (Cascade Style Sheets) and JAVA Scripts are used with HTML5 to achieve creative display of content. The tool is kept simple and easy for the user to interact with. The tool also includes pictures and videos for the user to get a feel of the historic period. The application is built to motivate people to know more about one of the prominent and ancient civilization of the Mediterranean world.

  14. Invasion of terrestrial enchytraeids into two postglacial tundras: North-eastern Greenland and the Arctic Archipelago of Canada (Enchytraeidae, Oligochaeta)

    DEFF Research Database (Denmark)

    Christensen, Bent; Dózsa-Farkas, Klára

    2006-01-01

    that of potential source regions indicating either strong selection or varied dispersal ability. It appears that the Archipelago is influenced mainly from North America and North-eastern Greenland from Europe while the specialized fauna of the ancient Beringian tundra is of minor importance. The two alternative...... scenarios: (a) survival of a prepleistocene fauna in protected refugia within the area or (b) a postglacial re-invasion from outside are discussed, but the available data do not discriminate between these two possibilities. A total of 24 terrestrial enchytraeid taxa are recorded of which 22 are identified...

  15. Twenty-two years of warming, fertilisation and shading of subarctic heath shrubs promote secondary growth and plasticity but not primary growth.

    Directory of Open Access Journals (Sweden)

    Matteo Campioli

    Full Text Available Most manipulation experiments simulating global change in tundra were short-term or did not measure plant growth directly. Here, we assessed the growth of three shrubs (Cassiope tetragona, Empetrum hermaphroditum and Betula nana at a subarctic heath in Abisko (Northern Sweden after 22 years of warming (passive greenhouses, fertilisation (nutrients addition and shading (hessian fabric, and compare this to observations from the first decade of treatment. We assessed the growth rate of current-year leaves and apical stem (primary growth and cambial growth (secondary growth, and integrated growth rates with morphological measurements and species coverage. Primary- and total growth of Cassiope and Empetrum were unaffected by manipulations, whereas growth was substantially reduced under fertilisation and shading (but not warming for Betula. Overall, shrub height and length tended to increase under fertilisation and warming, whereas branching increased mostly in shaded Cassiope. Morphological changes were coupled to increased secondary growth under fertilisation. The species coverage showed a remarkable increase in graminoids in fertilised plots. Shrub response to fertilisation was positive in the short-term but changed over time, likely because of an increased competition with graminoids. More erected postures and large, canopies (requiring enhanced secondary growth for stem reinforcement likely compensated for the increased light competition in Empetrum and Cassiope but did not avoid growth reduction in the shade intolerant Betula. The impact of warming and shading on shrub growth was more conservative. The lack of growth enhancement under warming suggests the absence of long-term acclimation for processes limiting biomass production. The lack of negative effects of shading on Cassiope was linked to morphological changes increasing the photosynthetic surface. Overall, tundra shrubs showed developmental plasticity over the longer term. However, such

  16. Bailey Thinning Study - Herb and Shrub Data

    Data.gov (United States)

    Oak Ridge National Laboratory — These data sets are in the form of Quattro Pro spreadsheets describing herb an shrub cover collected at study plots. Data was collected from 1993-1995 primarily on...

  17. Sea ice, rain-on-snow and tundra reindeer nomadism in Arctic Russia.

    Science.gov (United States)

    Forbes, Bruce C; Kumpula, Timo; Meschtyb, Nina; Laptander, Roza; Macias-Fauria, Marc; Zetterberg, Pentti; Verdonen, Mariana; Skarin, Anna; Kim, Kwang-Yul; Boisvert, Linette N; Stroeve, Julienne C; Bartsch, Annett

    2016-11-01

    Sea ice loss is accelerating in the Barents and Kara Seas (BKS). Assessing potential linkages between sea ice retreat/thinning and the region's ancient and unique social-ecological systems is a pressing task. Tundra nomadism remains a vitally important livelihood for indigenous Nenets and their large reindeer herds. Warming summer air temperatures have been linked to more frequent and sustained summer high-pressure systems over West Siberia, Russia, but not to sea ice retreat. At the same time, autumn/winter rain-on-snow (ROS) events have become more frequent and intense. Here, we review evidence for autumn atmospheric warming and precipitation increases over Arctic coastal lands in proximity to BKS ice loss. Two major ROS events during November 2006 and 2013 led to massive winter reindeer mortality episodes on the Yamal Peninsula. Fieldwork with migratory herders has revealed that the ecological and socio-economic impacts from the catastrophic 2013 event will unfold for years to come. The suggested link between sea ice loss, more frequent and intense ROS events and high reindeer mortality has serious implications for the future of tundra Nenets nomadism.

  18. Plant nutrient acquisition strategies in tundra species: at which soil depth do species take up their nitrogen?

    Science.gov (United States)

    Limpens, Juul; Heijmans, Monique; Nauta, Ake; van Huissteden, Corine; van Rijssel, Sophie

    2016-04-01

    The Arctic is warming at unprecedented rates. Increased thawing of permafrost releases nutrients locked up in the previously frozen soils layers, which may initiate shifts in vegetation composition. The direction in which the vegetation shifts will co-determine whether Arctic warming is mitigated or accelerated, making understanding successional trajectories urgent. One of the key factors influencing the competitive relationships between plant species is their access to nutrients, in particularly nitrogen (N). We assessed the depth at which plant species took up N by performing a 15N tracer study, injecting 15(NH4)2SO4 at three depths (5, 15, 20 cm) into the soil in arctic tundra in north-eastern Siberia in July. In addition we explored plant nutrient acquisition strategy by analyzing natural abundances of 15N in leaves. We found that vascular plants took up 15N at all injection depths, irrespective of species, but also that species showed a clear preference for specific soil layers that coincided with their functional group (graminoids, dwarf shrubs, cryptogams). Graminoids took up most 15N at 20 cm depth nearest to the thaw front, with grasses showing a more pronounced preference than sedges. Dwarf shrubs took up most 15N at 5 cm depth, with deciduous shrubs displaying more preference than evergreens. Cryptogams did not take up any of the supplied 15N . The natural 15N abundances confirmed the pattern of nutrient acquisition from deeper soil layers in graminoids and from shallow soil layers in both deciduous and evergreen dwarf shrubs. Our results prove that graminoids and shrubs differ in their N uptake strategies, with graminoids profiting from nutrients released at the thaw front, whereas shrubs forage in the upper soil layers. The above implies that graminoids, grasses in particular, will have a competitive advantage over shrubs as the thaw front proceeds and/or superficial soil layers dry out. Our results suggest that the vertical distribution of nutrients

  19. Recent Arctic tundra fire initiates widespread thermokarst development

    Science.gov (United States)

    Jones, Benjamin M.; Grosse, Guido; Arp, Christopher D.; Miller, Eric K.; Liu, Lingli; Hayes, Daniel J.; Larsen, Christopher F.

    2015-01-01

    Fire-induced permafrost degradation is well documented in boreal forests, but the role of fires in initiating thermokarst development in Arctic tundra is less well understood. Here we show that Arctic tundra fires may induce widespread thaw subsidence of permafrost terrain in the first seven years following the disturbance. Quantitative analysis of airborne LiDAR data acquired two and seven years post-fire, detected permafrost thaw subsidence across 34% of the burned tundra area studied, compared to less than 1% in similar undisturbed, ice-rich tundra terrain units. The variability in thermokarst development appears to be influenced by the interaction of tundra fire burn severity and near-surface, ground-ice content. Subsidence was greatest in severely burned, ice-rich upland terrain (yedoma), accounting for ~50% of the detected subsidence, despite representing only 30% of the fire disturbed study area. Microtopography increased by 340% in this terrain unit as a result of ice wedge degradation. Increases in the frequency, magnitude, and severity of tundra fires will contribute to future thermokarst development and associated landscape change in Arctic tundra regions.

  20. U.S. Tundra Biome-International Biological Program. U.S. Tundra Biome Publication List.

    Science.gov (United States)

    1983-09-01

    4040) /Bib 33-4561/ Rastorfer, J.R., H.J. Webster and D.K. Smith (1973) Floristic and ecologic studies of bryophytes of selected habitats at...al., Eds). Stockholm: IBP Tundra Biome Steering Committee, pp. 375-378. (1799) /Bib 29-3367/ Flock, J.W. (1978) Lichen- bryophyte distribution along a...1973) Natural oil seeps at Cape Simpson, Alaska: Localized influences on terrestrial habitat . Proceedings of the Symposium on the Impact of Soil

  1. Relationships between hyperspectral data and components of vegetation biomass in Low Arctic tundra communities at Ivotuk, Alaska

    Science.gov (United States)

    Bratsch, Sara; Epstein, Howard; Buchhorn, Marcel; Walker, Donald; Landes, Heather

    2017-02-01

    Warming in the Arctic has resulted in a lengthening of the growing season and changes to the distribution and composition of tundra vegetation including increased biomass quantities in the Low Arctic. Biomass has commonly been estimated using broad-band greenness indices such as NDVI; however, vegetation changes in the Arctic are occurring at spatial scales within a few meters. The aim of this paper is to assess the ability of hyperspectral remote sensing data to estimate biomass quantities among different plant tissue type categories at the North Slope site of Ivotuk, Alaska. Hand-held hyperspectral data and harvested biomass measurements were collected during the 1999 growing season. A subset of the data was used as a training set, and was regressed against the hyperspectral bands using LASSO. LASSO is a modification of SPLS and is a variable selection technique that is useful in studies with high collinearity among predictor variables such as hyperspectral remote sensing. The resulting equations were then used to predict biomass quantities for the remaining Ivotuk data. The majority of significant biomass-spectra relationships (65%) were for shrubs categories during all times of the growing season and bands in the blue, green, and red edge wavelength regions of the spectrum. The ability to identify unique biomass-spectra relationships per community is decreased at the height of the growing season when shrubs obscure lower-lying vegetation such as mosses. The results of this study support previous research arguing that shrubs are dominant controls over spectral reflectance in Low Arctic communities and that this dominance results in an increased ability to estimate shrub component biomass over other plant functional types.

  2. Review of SOP's for Prodcutivity Surveys for EP tundra swans

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report reviews the SOPs for productivity surveys of tundra swans to identify areas of improvement. An average of 18,700 swans has been surveyed in the Atlantic...

  3. How is climate warming altering the carbon cycle of a tundra ecosystem in the Siberian Arctic?

    Science.gov (United States)

    Belelli Marchesini, Luca; (Ko) van Huissteden, Jacobus; van der Molen, Michiel; Parmentier, Frans-Jan W.; Maximov, Trofim; Budishchev, Artem; Gallagher, Angela; (Han) Dolman, Albertus J.

    2015-04-01

    Climate has been warming over the the Arctic region with the strongest anomalies taking place in autumn and winter for the period 2000-2010, particularly in northern Eurasia. The quantification of the impact on climate warming on the degradation of permafrost and the associated potential release to the atmosphere of carbon stocked in the soil under the form of greenhouse gases, thus further increasing the radiative forcing of the atmosphere, is currently a matter of scientific debate. The positive trend in primary productivity in the last decades inferred by vegetation indexes (NDVI) and confirmed by observations on the enhanced growth of shrub vegetation represents indeed a contrasting process that, if prevalent could offset GHG emissions or even strengthen the carbon sink over the Arctic tundra. At the site of Kytalyk, in north-eastern Siberia, net fluxes of CO2 at ecosystem scale (NEE) have been monitored by eddy covariance technique since 2003. While presenting the results of the seasonal (snow free period) and inter-annual variability of NEE, conceived as the interplay between meteorological drivers and ecosystem responses, we test the role of climate as the main source of NEE variability in the last decade using a data oriented statistical approach. The impact of the timing and duration of the snow free period on the seasonal carbon budget is also considered. Finally, by including the results of continuous micrometeorological observations of methane fluxes taken during summer 2012, corroborated with seasonal CH4 budgets from two previous shorter campaigns (2008, 2009), as well as an experimentally determined estimate of dissolved organic carbon (DOC) flux, we provide an assessment of the carbon budget and its stability over time. The examined tundra ecosystem was found to sequester CO2 during the snow free season with relatively small inter-annual variability (-97.9±12.1gC m-2) during the last decade and without any evident trend despite the carbon uptake

  4. ANATOMIC INVESTIGATION OF HUNGARY'S COMMON SHRUB SPECIES

    Directory of Open Access Journals (Sweden)

    Eszter ANTALFI

    2015-09-01

    Full Text Available In Hungary a huge part of wooden plants are shrubs. Flora of hungarian forests is among the richest in Europe. Many plants can be classified as shrubs or trees as well, circumstances during their development define what they will become. The diverse world of shrubs and weeds delights the eye under 20-30 meter high trees. From these there are some well known which basically everybody recognises is lilac (Syringa vulgaris, elderberry (Sambucus nigra, dog-rose (Rosa canina, single-seeded hawthorn (Crataegus monogyna and common buckthorn (Rhamnus cathartica. To get these species better known – and occasionally foreshadowing their wood industry usage in some way – it is expendient to familiarize ourselves with their microscopic structure and characteristics. Nowadays there are several imaging methods known, however for examining floral tissue the optical microscope is still the most common one to be used.

  5. Changes in the alpine forest-tundra ecotone commensurate with recent warming in southcentral Alaska: Evidence from orthophotos and field plots

    Science.gov (United States)

    Dial, Roman J.; Berg, Edward E.; Timm, Katriina; McMahon, Alissa; Geck, Jason

    2007-12-01

    The complex response of the forest-tundra ecotone (FT) to climate change may not generalize well geographically. We document FT changes in a nonpermafrost region of southcentral Alaska during a known warming period. Using 1951 and 1996 orthophotos overlain on digital elevation models across 800 km2 of the west Kenai Mountains, we identified cover classes and topography for 978 random points and the highest closed-canopy conifer patches along 205 random altitudinal gradients. Results show 29% of FT area increased in woodiness, with closed-canopy forest expanding 14%/decade and shrubs 4%/decade; unvegetated areas decreased 17.4%/decade and tundra 5%/decade. Area of open woodland remained constant but changed location. Timberline, estimated using both the 205 altitudinal gradients and the upper quartile elevations of closed-canopy forest among the 978 points, rose very little. Tree line, identified using upper quartiles of open woodland, rose ˜50 m on cool, northerly aspects, but not on other aspects. Dendrochronology on high-elevation seedlings showed a congruence between decadal recruitment and regional changes in climate from 1945 to 2005. Patterns observed in the climatic FT of the Kenai Mountains corroborate other studies that show regional and landscape specificity of the structural response of FT to climate change. FT shifted upwards on cooler, presumably more mesic aspects near seed sources; however, on warm aspects the density of shrubs and trees increased, but FT did not rise. If current conditions continue for the next 50-100 years, the Kenai FT will markedly change to a far woodier landscape with less tundra and more closed-canopy forest.

  6. Why trees and shrubs but rarely trubs?

    Science.gov (United States)

    Scheffer, Marten; Vergnon, Remi; Cornelissen, J Hans C; Hantson, Stijn; Holmgren, Milena; van Nes, Egbert H; Xu, Chi

    2014-08-01

    An analysis of the maximum height of woody plant species across the globe reveals that an intermediate size is remarkably rare. We speculate that this may be due to intrinsic suboptimality or to ecosystem bistability with open landscapes favouring shrubs, and closed canopies propelling trees to excessive tallness.

  7. The Role of Explicitly Modeling Bryophytes in Simulating Carbon Exchange and Permafrost Dynamics of an Arctic Coastal Tundra at Barrow, Alaska

    Science.gov (United States)

    Yuan, F.; Thornton, P. E.; McGuire, A. D.; Oechel, W. C.; Yang, B.; Tweedie, C. E.; Rogers, A.; Norby, R. J.

    2013-12-01

    Bryophyte cover is greater than 50% in many Arctic tundra ecosystems. In regions of the Arctic where shrubs are expanding it is expected that bryophyte cover will be substantially reduced. Such a loss in cover could influence the hydrological, biogeochemical, and permafrost dynamics of Arctic tundra ecosystems. The explicit representation of bryophyte physiological and biophysical processes in large-scale ecological and land surface models is rare, and we hypothesize that the representation of bryophytes has consequences for estimates of the exchange of water, energy, and carbon by these models. This study explicitly represents the effects of bryophyte function and structure on the exchange of carbon (e.g., summer photosynthesis effects) and energy (e.g., summer insulation effects) with the atmosphere in the Community Land Model (CLM-CN). The modified model was evaluated for its ability to simulate C exchange, soil temperature, and soil moisture since the 1970s at Barrow, Alaska through comparison with data from AmeriFlux sites, USDA Soil Climate Networks observation sites at Barrow, and other sources. We also compare the outputs of the CLM-CN simulations with those of the recently developed Dynamical Organic Soil coupled Terrestrial Ecosystem Model (DOS-TEM). Overall, our evaluation indicates that bryophytes are important contributors to land-atmospheric C exchanges in Arctic tundra and that they play an important role to permafrost thermal and hydrological processes which are critical to permafrost stability. Our next step in this study is to examine the climate system effects of explicitly representing bryophyte dynamics in the land surface model. Key Words: Bryophytes, Arctic coastal tundra, Vegetation composition, Net Ecosystem Exchange, Permafrost, Land Surface Model, Terrestrial Ecosystem Model

  8. Shrub control by browsing: Targeting adult plants

    Science.gov (United States)

    da Silveira Pontes, Laíse; Magda, Danièle; Gleizes, Benoît; Agreil, Cyril

    2016-01-01

    Reconciling the well known benefits of shrubs for forage with environmental goals, whilst preventing their dominance, is a major challenge in rangeland management. Browsing may be an economical solution for shrubby rangelands as herbivore browsing has been shown to control juvenile shrub growth. Less convincing results have been obtained for adult plants, and long-term experiments are required to investigate the cumulative effects on adult plants. We therefore assessed the impact of different levels of browsing intensity on key demographic parameters for a major dominant shrub species (broom, Cytisus scoparius), focusing on adult plants. We assigned individual broom plants to one of three age classes: 3-5 years (young adults); 5-7 years (adults); and 7-9 years (mature adults). These plants were then left untouched or had 50% or 90% of their total edible stem biomass removed in simulated low-intensity and high-intensity browsing treatments, respectively. Morphological, survival and fecundity data were collected over a period of four years. Browsing affected the morphology of individual plants, promoting changes in subsequent regrowth, and decreasing seed production. The heavily browsed plants were 17% shorter, 32% narrower, and their twigs were 28% shorter. Light browsing seemed to control the growth of young adult plants more effectively than that of older plants. Reproductive output was considerably lower than for control plants after light browsing, and almost 100% lower after heavy browsing. High-intensity browsing had a major effect on survival causing high levels of plant mortality. We conclude that suitable browsing practices could be used to modify adult shrub demography in the management of shrub dominance and forage value.

  9. Isoprene emissions from a tundra ecosystem

    Directory of Open Access Journals (Sweden)

    M. J. Potosnak

    2012-10-01

    Full Text Available Whole-system fluxes of isoprene from a~moist acidic tundra ecosystem and leaf-level emission rates of isoprene from a common species (Salix pulchra in that same ecosystem were measured during three separate field campaigns. The field campaigns were conducted during the summers of 2005, 2010 and 2011 and took place at the Toolik Field Station (68.6° N, 149.6° W on the north slope of the Brooks Range in Alaska, USA. The maximum rate of whole-system isoprene flux measured was over 1.2 mg C m−2 h−1 with an air temperature of 22 ° C and a PAR level over 1500 μmol m−2 s−1. Leaf-level isoprene emission rates for S. pulchra averaged 12.4 nmol m−2 s−1 (27.4 μg C gdw−1 h−1 extrapolated to standard conditions (PAR = 1000 μmol m−2 s−1 and leaf temperature = 30° C. Leaf-level isoprene emission rates were well characterized by the Guenther algorithm for temperature, but less so for light. Chamber measurements from a nearby moist acidic tundra ecosystem with less S. pulchra emitted significant amounts of isoprene, but at lower rates (0.45 mg C m−2 h−1. Comparison of our results to predictions from a global model found broad agreement, but a detailed analysis revealed some significant discrepancies. An atmospheric chemistry box model predicts that the observed isoprene emissions have a significant impact on Arctic atmospheric chemistry, including the hydroxyl radical (OH. Our results support the prediction that isoprene emissions from Arctic ecosystems will increase with global climate change.

  10. Plant response to climate change along the forest-tundra ecotone in northeastern Siberia.

    Science.gov (United States)

    Berner, Logan T; Beck, Pieter S A; Bunn, Andrew G; Goetz, Scott J

    2013-11-01

    Russia's boreal (taiga) biome will likely contract sharply and shift northward in response to 21st century climatic change, yet few studies have examined plant response to climatic variability along the northern margin. We quantified climate dynamics, trends in plant growth, and growth-climate relationships across the tundra shrublands and Cajander larch (Larix cajanderi Mayr.) woodlands of the Kolyma river basin (657 000 km(2) ) in northeastern Siberia using satellite-derived normalized difference vegetation indices (NDVI), tree ring-width measurements, and climate data. Mean summer temperatures (Ts ) increased 1.0 °C from 1938 to 2009, though there was no trend (P > 0.05) in growing year precipitation or climate moisture index (CMIgy ). Mean summer NDVI (NDVIs ) increased significantly from 1982 to 2010 across 20% of the watershed, primarily in cold, shrub-dominated areas. NDVIs positively correlated (P  0.05), which significantly correlated with NDVIs (r = 0.44, P moisture availability and, furthermore, that warming enhanced growth. Impacts of future climatic change on forests near treeline in Arctic Russia will likely be influenced by shifts in both temperature and moisture, which implies that projections of future forest distribution and productivity in this area should take into account the interactions of energy and moisture limitations.

  11. Impacts of introduced Rangifer on ecosystem processes of maritime tundra on subarctic islands

    Science.gov (United States)

    Ricca, Mark; Miles, A. Keith; Van Vuren, Dirk H.; Eviner, Valerie T.

    2016-01-01

    Introductions of mammalian herbivores to remote islands without predators provide a natural experiment to ask how temporal and spatial variation in herbivory intensity alter feedbacks between plant and soil processes. We investigated ecosystem effects resulting from introductions of Rangifer tarandus (hereafter “Rangifer”) to native mammalian predator- and herbivore-free islands in the Aleutian archipelago of Alaska. We hypothesized that the maritime tundra of these islands would experience either: (1) accelerated ecosystem processes mediated by positive feedbacks between increased graminoid production and rapid nitrogen cycling; or (2) decelerated processes mediated by herbivory that stimulated shrub domination and lowered soil fertility. We measured summer plant and soil properties across three islands representing a chronosequence of elapsed time post-Rangifer introduction (Atka: ~100 yr; Adak: ~50; Kagalaska: ~0), with distinct stages of irruptive population dynamics of Rangifer nested within each island (Atka: irruption, K-overshoot, decline, K-re-equilibration; Adak: irruption, K-overshoot; Kagalaska: initial introduction). We also measured Rangifer spatial use within islands (indexed by pellet group counts) to determine how ecosystem processes responded to spatial variation in herbivory. Vegetation community response to herbivory varied with temporal and spatial scale. When comparing temporal effects using the island chronosequence, increased time since herbivore introduction led to more graminoids and fewer dwarf-shrubs, lichens, and mosses. Slow-growingCladonia lichens that are highly preferred winter forage were decimated on both long-termRangifer-occupied islands. In addition, linear relations between more concentrated Rangifer spatial use and reductions in graminoid and forb biomass within islands added spatial heterogeneity to long-term patterns identified by the chronosequence. These results support, in part, the hypothesis that

  12. Vegetation shifts observed in arctic tundra 17 years after fire

    Science.gov (United States)

    Barrett, Kirsten; Rocha, Adrian V.; van de Weg, Martine Janet; Shaver, Gaius

    2012-01-01

    With anticipated climate change, tundra fires are expected to occur more frequently in the future, but data on the long-term effects of fire on tundra vegetation composition are scarce. This study addresses changes in vegetation structure that have persisted for 17 years after a tundra fire on the North Slope of Alaska. Fire-related shifts in vegetation composition were assessed from remote-sensing imagery and ground observations of the burn scar and an adjacent control site. Early-season remotely sensed imagery from the burn scar exhibits a low vegetation index compared with the control site, whereas the late-season signal is slightly higher. The range and maximum vegetation index are greater in the burn scar, although the mean annual values do not differ among the sites. Ground observations revealed a greater abundance of moss in the unburned site, which may account for the high early growing season normalized difference vegetation index (NDVI) anomaly relative to the burn. The abundance of graminoid species and an absence of Betula nana in the post-fire tundra sites may also be responsible for the spectral differences observed in the remotely sensed imagery. The partial replacement of tundra by graminoid-dominated ecosystems has been predicted by the ALFRESCO model of disturbance, climate and vegetation succession.

  13. Disturbance and Recovery of Arctic Alaskan Tundra Terrain. A Review of Recent Investigations.

    Science.gov (United States)

    1987-07-01

    always considerably along the coastal plain according to available, possibly in the seed bank. Bryophyte - local substrate and temperature regime, and...Anthropogenic disturbances ......................................... 14 Toward an ecological understanding of disturbance and recovery in arctic tundra...major topic the basic research on tundra ecology . Studies of of scientific research in northern Alaska for the the response of arctic tundra to human

  14. Vascular plants promote ancient peatland carbon loss with climate warming.

    Science.gov (United States)

    Walker, Tom N; Garnett, Mark H; Ward, Susan E; Oakley, Simon; Bardgett, Richard D; Ostle, Nicholas J

    2016-05-01

    Northern peatlands have accumulated one third of the Earth's soil carbon stock since the last Ice Age. Rapid warming across northern biomes threatens to accelerate rates of peatland ecosystem respiration. Despite compensatory increases in net primary production, greater ecosystem respiration could signal the release of ancient, century- to millennia-old carbon from the peatland organic matter stock. Warming has already been shown to promote ancient peatland carbon release, but, despite the key role of vegetation in carbon dynamics, little is known about how plants influence the source of peatland ecosystem respiration. Here, we address this issue using in situ (14)C measurements of ecosystem respiration on an established peatland warming and vegetation manipulation experiment. Results show that warming of approximately 1 °C promotes respiration of ancient peatland carbon (up to 2100 years old) when dwarf-shrubs or graminoids are present, an effect not observed when only bryophytes are present. We demonstrate that warming likely promotes ancient peatland carbon release via its control over organic inputs from vascular plants. Our findings suggest that dwarf-shrubs and graminoids prime microbial decomposition of previously 'locked-up' organic matter from potentially deep in the peat profile, facilitating liberation of ancient carbon as CO2. Furthermore, such plant-induced peat respiration could contribute up to 40% of ecosystem CO2 emissions. If consistent across other subarctic and arctic ecosystems, this represents a considerable fraction of ecosystem respiration that is currently not acknowledged by global carbon cycle models. Ultimately, greater contribution of ancient carbon to ecosystem respiration may signal the loss of a previously stable peatland carbon pool, creating potential feedbacks to future climate change.

  15. A greener Greenland? Climatic potential and long-term constraints on future expansions of trees and shrubs.

    Science.gov (United States)

    Normand, Signe; Randin, Christophe; Ohlemüller, Ralf; Bay, Christian; Høye, Toke T; Kjær, Erik D; Körner, Christian; Lischke, Heike; Maiorano, Luigi; Paulsen, Jens; Pearman, Peter B; Psomas, Achilleas; Treier, Urs A; Zimmermann, Niklaus E; Svenning, Jens-Christian

    2013-08-19

    Warming-induced expansion of trees and shrubs into tundra vegetation will strongly impact Arctic ecosystems. Today, a small subset of the boreal woody flora found during certain Plio-Pleistocene warm periods inhabits Greenland. Whether the twenty-first century warming will induce a re-colonization of a rich woody flora depends on the roles of climate and migration limitations in shaping species ranges. Using potential treeline and climatic niche modelling, we project shifts in areas climatically suitable for tree growth and 56 Greenlandic, North American and European tree and shrub species from the Last Glacial Maximum through the present and into the future. In combination with observed tree plantings, our modelling highlights that a majority of the non-native species find climatically suitable conditions in certain parts of Greenland today, even in areas harbouring no native trees. Analyses of analogous climates indicate that these conditions are widespread outside Greenland, thus increasing the likelihood of woody invasions. Nonetheless, we find a substantial migration lag for Greenland's current and future woody flora. In conclusion, the projected climatic scope for future expansions is strongly limited by dispersal, soil development and other disequilibrium dynamics, with plantings and unintentional seed dispersal by humans having potentially large impacts on spread rates.

  16. Carbon dioxide and methane dynamics in Russian tundra

    DEFF Research Database (Denmark)

    Johansson, Paul Torbjörn; Kiepe, Isabell; Herbst, Mathias

    Russia. The area is situated at 67°N in the European part of northeast Russia within the Pechora basin. The Russian tundra region is an area which has recently been subject to many speculations in relation to climatic change effects and greenhouse gas (GHG) exchange but still little scientific ev...

  17. [The gene pool of native inhabitants of the Samburg tundra].

    Science.gov (United States)

    Osipova, L P; Posukh, O L; Ivakin, E A; Kriukov, Iu A; Karafet, T M

    1996-06-01

    This study continues a series of investigations of the gene pool of native Siberian ethnic groups. In a population of Tundra Nentsi (Northern Samoyeds) and a group of Komi-Zyryans (Finno-Ugrian) (Samburg settlement, Tyumenskaya oblast, Yamalo-Nenetskii Autonomous okrug), gene markers of the following genetic systems were studied: blood groups (ABO, MNSs, Rhesus, Kell, Duffy, and P), erythrocyte acid phosphatase (AcP), phosphoglucomutase 1 (PGM 1), haptoglobin (Hp), and transferrin (Tf). The population of Samburg Tundra Nentsi was shown to have a close genetic relationship with the "core" of the Forest Nentsi population. In Northern Samoyeds, three carriers of the rare allele K (blood group Kell) were found for the first time. It is suggested that this allele was transferred into the population of Tundra Nentsi from Komi. Samburg Tundra Nentsi are found to have the maximum frequency of the allele PGM 1 (Posphoglucomutase 1) among aboriginal populations of northern Asia. Analysis of original data and the literature revealed a significant genetic distance between the Komi and Northern Samoyed populations. It was shown that Samburg Komi occupy an intermediate position between the clusters of Nenets populations and Finno-Ugrians (Komi) living in Komi Republic.

  18. Global assessment of experimental climate warming on tundra vegetation

    DEFF Research Database (Denmark)

    Elmendorf, S.C.; Henry, G.H.R.; Bjorkman, A.D.

    2012-01-01

    Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this ap...

  19. Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra.

    Science.gov (United States)

    Christiansen, Casper T; Haugwitz, Merian S; Priemé, Anders; Nielsen, Cecilie S; Elberling, Bo; Michelsen, Anders; Grogan, Paul; Blok, Daan

    2017-01-01

    Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface-incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open-top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by

  20. Paenibacillus tundrae sp. nov. and Paenibacillus xylanexedens sp. nov., Psychrotolerant, Xylan-Degrading, Bacteria from Alaskan Tundra

    Science.gov (United States)

    Psychrotolerant, xylan-degrading, strains of bacteria were isolated from soil beneath moist non-acidic and acidic tundra in northern Alaska. Phylogenetic analysis based on 16S rRNA gene sequences revealed that each strain belonged to the genus Paenibacillus. The highest levels of 16S rRNA gene sim...

  1. Ancient Astronomy in Armenia

    Science.gov (United States)

    Parsamian, Elma S.

    2007-08-01

    The most important discovery, which enriched our knowledge of ancient astronomy in Armenia, was the complex of platforms for astronomical observations on the Small Hill of Metzamor, which may be called an ancient “observatory”. Investigations on that Hill show that the ancient inhabitants of the Armenian Highlands have left us not only pictures of celestial bodies, but a very ancient complex of platforms for observing the sky. Among the ancient monuments in Armenia there is a megalithic monument, probably, being connected with astronomy. 250km South-East of Yerevan there is a structure Zorats Kar (Karahunge) dating back to II millennium B.C. Vertical megaliths many of which are more than two meters high form stone rings resembling ancient stone monuments - henges in Great Britain and Brittany. Medieval observations of comets and novas by data in ancient Armenian manuscripts are found. In the collection of ancient Armenian manuscripts (Matenadaran) in Yerevan there are many manuscripts with information about observations of astronomical events as: solar and lunar eclipses, comets and novas, bolides and meteorites etc. in medieval Armenia.

  2. Photosynthesis, plant growth and nitrogen nutrition in Alaskan tussock tundra: Response to experimental warming

    Science.gov (United States)

    Dynes, E.; Welker, J. M.; Moore, D. J.; Sullivan, P.; Ebbs, L.; Pattison, R.

    2009-12-01

    Temperature is predicted to rise significantly in northern latitudes over the next century. The Arctic tundra is a fragile ecosystem with low rates of photosynthesis and low nutrient mineralisation. Rising temperatures may increase photosynthetic capacity in the short term through direct stimulation of photosynthetic rates and also in the longer term due to enhanced nutrient availability. Different species and plant functional types may have different responses to warming which may have an impact on plant community structure. As part of the International Tundra Experiment (ITEX) to investigate the effects of warming on arctic vegetation, a series of open top chambers (OTCs) have been established at the Toolik Field Station (68°38’N, 149°36’W, elevation 720 m). This study employs 12 plots; 6 control plots and 6 warming plots covered with OTCs which maintain a temperature on average +1.54 °C degrees higher than ambient temperatures. The response of photosynthesis to temperature was measured using an infra-red gas analyzer (IRGA) with a cooling adaptor to manipulate leaf temperature and determine AMAX in two contrasting species, Eriophorum vaginatum (sedge) and Betula nana (shrub). Temperature within the chamber head of the IRGA was manipulated from 10 through 25 °C. We also measured the leaf area index of plots using a Decagon Accupar Ceptometer to provide insights into potential differences in canopy cover. In both OTC and control plots the photosynthetic rate of B. nana was greater than that of E. vaginatum, with the AMAX of B. nana peaking at 20.08°C and E. vaginatum peaking slightly lower at 19.7°C in the control plots. There was no apparent difference in the temperature optimum of photosynthesis of either species when exposed to the warming treatment. Although there was no difference in temperature optimum there were differences in the peak values of AMAX between treatment and control plots. In the case of B. nana, AMAX was higher in the OTCs than in

  3. Long-term mountain tundra composition's responses to grazing pressure in the context of environmental changes

    Science.gov (United States)

    Saccone, Patrick; Pyykkonen, Tuija; Eskelinen, Anu; Virtanen, Risto

    2013-04-01

    Strong changes in northern tundra in response to climate changes are expected and in particular an increasing shrubiness. However, global changes contain not only warming or shifts in snow-cover but also changes in land-use, e.g. for arctic low productive ecosystems changes in grazing pressure. Grazing could also represent an important driver of future Arctic tundra communities. However, the relative importance of biotic and abiotic drivers of plant communities' composition remains largely unknown, in particular because short-term experiments provided to conflicting evidences. Here, we present the results from a long-term (23 years) experiment set up in 1989 at Kilpisjärvi in the north-western Finnish Lapland. The experiment consisted in the transplantation of twenty 40x50 cm blocks of Vaccinium myrtillus heath including 5-10 cm thick soil layer from a 660 m.a.s.l. dry slope to a snowbed 150m higher in elevation containing dry and wet sites. We considered the transplantation at higher altitude in snowbed conditions an increase in harsher conditions (shorter growing season, lower productivity). Half of the transplanted blocks were protected from herbivores and the percentage cover of each plant species was estimated in mid-august 2012 from a central 12.5 x12.5 cm area in each block. Our results showed that the dominance of the shrub V. myrtillus was strongly reduced as response to transplantation to snowbed. Consequently the competitive pressure also decreased and allowed an increase of the species richness. Soil moisture differences between installation locations induced divergence in plant communities' composition allowing the increase in abundance of subordinate species as bryophytes and graminoids in wet and dry sites respectively. Excluding herbivory, some species assumed high dominance reducing the community diversity. In the wet exclosures, quarter of the surface was covered by a moss and V. myrtillus co-dominated. The strongest changes occurred in dry

  4. Diversification of Nitrogen Sources in Various Tundra Vegetation Types in the High Arctic.

    Science.gov (United States)

    Skrzypek, Grzegorz; Wojtuń, Bronisław; Richter, Dorota; Jakubas, Dariusz; Wojczulanis-Jakubas, Katarzyna; Samecka-Cymerman, Aleksandra

    2015-01-01

    Low nitrogen availability in the high Arctic represents a major constraint for plant growth, which limits the tundra capacity for carbon retention and determines tundra vegetation types. The limited terrestrial nitrogen (N) pool in the tundra is augmented significantly by nesting seabirds, such as the planktivorous Little Auk (Alle alle). Therefore, N delivered by these birds may significantly influence the N cycling in the tundra locally and the carbon budget more globally. Moreover, should these birds experience substantial negative environmental pressure associated with climate change, this will adversely influence the tundra N-budget. Hence, assessment of bird-originated N-input to the tundra is important for understanding biological cycles in polar regions. This study analyzed the stable nitrogen composition of the three main N-sources in the High Arctic and in numerous plants that access different N-pools in ten tundra vegetation types in an experimental catchment in Hornsund (Svalbard). The percentage of the total tundra N-pool provided by birds, ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment was built in 36% by birds, 38% by atmospheric deposition, and 26% by atmospheric N2-fixation. The stable nitrogen isotope mixing mass balance, in contrast to direct methods that measure actual deposition, indicates the ratio between the actual N-loads acquired by plants from different N-sources. Our results enhance our understanding of the importance of different N-sources in the Arctic tundra and the used methodological approach can be applied elsewhere.

  5. Quercus ilex L. carbon sequestration capability related to shrub size.

    Science.gov (United States)

    Gratani, Loretta; Catoni, Rosangela; Varone, Laura

    2011-07-01

    CO(2) sequestration capacity of Quercus ilex L., an evergreen species developing in shrub and forest communities widely distributed in the Mediterranean Basin, was analysed. Experiments were carried out in the period of January to December 2009 on 20 shrubs of different size, growing at the Botanical Garden of Rome. At shrub level, the largest differences concern total photosynthetic leaf surface area per shrub and shrub volume. Shrubs structure significantly contribute to reduce total irradiance and air temperature below the canopy. Leaf mass per area is higher in sun leaves than in shade ones (20 ± 1 and 12 ± 2 mg cm( -2), respectively). Sun leaves are also characterised by the highest leaf thickness (78% higher in sun than in shade leaves), the spongy parenchyma thickness (71% higher in sun than in shade leaves) and the highest adaxial cuticle thickness (7.2 ± 1.2 and 4.7 ± 0.5 μm, respectively). Net photosynthetic rates (P (N)) of sun and shade leaves are the highest in spring, and shade leaves contribute 6% to the whole shrub P (N). Q. ilex CO(2) sequestration depends on shrub size. In particular, the CO(2) sequestration per shrub was 0.20 ± 0.02 Kg CO(2) year( -1) in small shrubs, and it was 75% and 98% lower than in medium and large ones. The highest CO(2) sequestration is measured in spring, decreasing 77% during drought. Q. ilex may play a significant role in mitigating carbon dioxide concentration and lowering air and soil temperature in areas around the Mediterranean Basin.

  6. Ancient Marital Rites

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    Clearly defined rites governing speech and actions dominated both the social and domestic activities of ancient Chinese people. Rites not only dominated the lives of men, but were also prominent in the lives of women.

  7. Ancient Chinese Architecture

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    CHINESE people have accu-mulated a great deal ofexperience in architecture,constantly improving building ma-terials and thus creating uniquebuilding styles.The history of ancient Chinesearchitechtural development can be

  8. Anurans in a Subarctic Tundra Landscape Near Cape Churchill, Manitoba

    Science.gov (United States)

    Reiter, M.E.; Boal, C.W.; Andersen, D.E.

    2008-01-01

    Distribution, abundance, and habitat relationships of anurans inhabiting subarctic regions are poorly understood, and anuran monitoring protocols developed for temperate regions may not be applicable across large roadless areas of northern landscapes. In addition, arctic and subarctic regions of North America are predicted to experience changes in climate and, in some areas, are experiencing habitat alteration due to high rates of herbivory by breeding and migrating waterfowl. To better understand subarctic anuran abundance, distribution, and habitat associations, we conducted anuran calling surveys in the Cape Churchill region of Wapusk National Park, Manitoba, Canada, in 2004 and 2005. We conducted surveys along ~l-km transects distributed across three landscape types (coastal tundra, interior sedge meadow-tundra, and boreal forest-tundra interface) to estimate densities and probabilities of detection of Boreal Chorus Frogs (Pseudacris maculata) and Wood Frogs (Lithobates sylvaticus). We detected a Wood Frog or Boreal Chorus Frog on 22 (87%) of 26 transects surveyed, but probability of detection varied between years and species and among landscape types. Estimated densities of both species increased from the coastal zone inland toward the boreal forest edge. Our results suggest anurans occur across all three landscape types in our study area, but that species-specific spatial patterns exist in their abundances. Considerations for both spatial and temporal variation in abundance and detection probability need to be incorporated into surveys and monitoring programs for subarctic anurans.

  9. How to preserve the tundra in a warming climate?

    Science.gov (United States)

    Käyhkö, Jukka

    2014-05-01

    The warming climate of the polar regions may change much of the current arctic-alpine tundra to forest or dense scrubland. This modification requires adaptation by traditional livelihoods such as reindeer herding, which relies on diverse, seasonal pasturelands. Vegetation change may also trigger positive warming feedbacks, where more abundant forest-scrub vegetation will decrease the global albedo. NCoE Tundra team investigates the complex climate-animal-plant interaction of the tundra ecosystem and aim to unravel the capability of herbivorous mammals to control the expansion of woody vegetation. Our interdisciplinary approach involves several work packages, whose results will be summarised in the presentation. In the ecological WPs, we study the dynamics of the natural food chains involving small herbivorous and the impacts of reindeer on the vegetation and the population dynamics of those arctic-alpine plants, which are most likely to become threatened in a warmer climate. Our study demonstrates the potential of a relatively sparse reindeer stocks (2-5 heads per km2) together with natural populations of arvicoline rodents to prevent the expansion of erect woody plants at the arctic-alpine timberline. In the climatic WPs we study the impact of grazing-dependent vegetation differences on the fraction of solar energy converted to heat. In the socio-economic WPs, we study the conditions for maintaining the economic and cultural viability of reindeer herding while managing the land use so that the arctic-alpine biota would be preserved.

  10. Seasonal variation in soil nitrogen availability across a fertilization chronosequence in moist acidic tundra

    Science.gov (United States)

    McLaren, J. R.; Gough, L.; Weintraub, M. N.

    2012-12-01

    Changes in global climate may result in altered timing of seasonal events including the timing of the spring-thaw and fall freeze-up. In addition to this changing seasonality, arctic environments are experiencing overall increases in nutrient availability caused by climate warming resulting in alterations of plant species composition, such as the observed increases in the abundance of deciduous shrubs. Changing species composition may have large effects on nutrient dynamics in the surrounding ecosystem because of documented differences in how particular plant species influence soil nutrient availability. Although we have some idea of how plant identity influences soil nutrients, soil biogeochemical processes are strongly seasonal, and we have a poor understanding of how plant identity, or nutrient levels, may influence these seasonal patterns. We examined the responses of moist acidic tundra to experimentally increased soil nutrient availability and the accompanying increase in shrub abundance at the Arctic Long Term Ecological Research (LTER) site at Toolik Lake, Alaska. We examined a chrono-sequence of long-term fertilization experiments, composed of experiments fertilized for 5, 15 and 22 years, which has resulted in increasing shrub density with time since fertilization. The fertilized plots receive both nitrogen (N, 10 g/m2/yr) and phosphorus (5 g/m2/yr) annually following snowmelt. In the 2011 growing season we measured variation in soil available N weekly, including measures of ammonium (NH4), nitrate (NO3) and total free amino acids (TFAA). We found that differences between fertilized and control plots depended strongly on both the seasonal timing of measurements, as well as the duration of the fertilization treatment. Early in the growing season fertilization resulted in large increases in available soil N (both NH4 and NO3) across the entire chronosequence. As the season progressed, however, older fertilized plots show evidence of N saturation, where

  11. Two Component Decomposition of Dual Polarimetric HH/VV SAR Data: Case Study for the Tundra Environment of the Mackenzie Delta Region, Canada

    Directory of Open Access Journals (Sweden)

    Tobias Ullmann

    2016-12-01

    /VH-polarized data were found to be best suited for the characterization of mixed and shrub dominated tundra.

  12. FENOLOGICAL VARIABILITY OF TREES AND SHRUBS IN TOMSK

    OpenAIRE

    Nikolaeva S. A.

    2015-01-01

    The analysis of phenological phenomena of 9 tree and shrub species and longevity of their vegetation activity was made in Tomsk (southeastern West Siberian Plain). Since 1969 until 2013 the start of the phenological phenomena in the trees and shrubs became to be earlier and the end did to be later. Trends of the start of birch juice moving and flowering is higher (–2.5–3.4 days/decade) than trends of leave appearance, yellowing and falling (+2.5–1.3 days/decade) in the trees and shrubs. Dates...

  13. Dynamics of Aboveground Phytomass of the Circumpolar Arctic Tundra During the Past Three Decades

    Science.gov (United States)

    Epstein, Howard E.; Raynolds, Martha K.; Walker, Donald A.; Bhatt, Uma S.; Tucker, Compton J.; Pinzon, Jorge E.

    2012-01-01

    Numerous studies have evaluated the dynamics of Arctic tundra vegetation throughout the past few decades, using remotely sensed proxies of vegetation, such as the normalized difference vegetation index (NDVI). While extremely useful, these coarse-scale satellite-derived measurements give us minimal information with regard to how these changes are being expressed on the ground, in terms of tundra structure and function. In this analysis, we used a strong regression model between NDVI and aboveground tundra phytomass, developed from extensive field-harvested measurements of vegetation biomass, to estimate the biomass dynamics of the circumpolar Arctic tundra over the period of continuous satellite records (1982-2010). We found that the southernmost tundra subzones (C-E) dominate the increases in biomass, ranging from 20 to 26%, although there was a high degree of heterogeneity across regions, floristic provinces, and vegetation types. The estimated increase in carbon of the aboveground live vegetation of 0.40 Pg C over the past three decades is substantial, although quite small relative to anthropogenic C emissions. However, a 19.8% average increase in aboveground biomass has major implications for nearly all aspects of tundra ecosystems including hydrology, active layer depths, permafrost regimes, wildlife and human use of Arctic landscapes. While spatially extensive on-the-ground measurements of tundra biomass were conducted in the development of this analysis, validation is still impossible without more repeated, long-term monitoring of Arctic tundra biomass in the field.

  14. Methods for measuring arctic and alpine shrub growth

    DEFF Research Database (Denmark)

    Myers-Smith, Isla; Hallinger, Martin; Blok, Daan

    2015-01-01

    dynamics in relation to environmental variables. Recent advances in sampling methods, analysis and applications have improved our ability to investigate growth and recruitment dynamics of shrubs. However, to extrapolate findings to the biome scale, future dendroecologicalwork will require improved...

  15. Dentistry in ancient mesopotamia.

    Science.gov (United States)

    Neiburger, E J

    2000-01-01

    Sumer, an empire in ancient Mesopotamia (southern Iraq), is well known as the cradle of our modern civilization and the home of biblical Abraham. An analysis of skeletal remains from cemeteries at the ancient cities of Ur and Kish (circa 2000 B.C.), show a genetically homogeneous, diseased, and short-lived population. These ancient Mesopotamians suffered severe dental attrition (95 percent), periodontal disease (42 percent), and caries (2 percent). Many oral congenital and neoplastic lesions were noted. During this period, the "local dentists" knew only a few modern dental techniques. Skeletal (dental) evidence indicates that the population suffered from chronic malnutrition. Malnutrition was probably caused by famine, which is substantiated in historic cuneiform and biblical writings, geologic strata samples, and analysis of skeletal and forensic dental pathology. These people had modern dentition but relatively poor dental health. The population's lack of malocclusions, caries, and TMJ problems appear to be due to flat plane occlusion.

  16. Dwarfs in ancient Egypt.

    Science.gov (United States)

    Kozma, Chahira

    2006-02-15

    Ancient Egypt was one of the most advanced and productive civilizations in antiquity, spanning 3000 years before the "Christian" era. Ancient Egyptians built colossal temples and magnificent tombs to honor their gods and religious leaders. Their hieroglyphic language, system of organization, and recording of events give contemporary researchers insights into their daily activities. Based on the record left by their art, the ancient Egyptians documented the presence of dwarfs in almost every facet of life. Due to the hot dry climate and natural and artificial mummification, Egypt is a major source of information on achondroplasia in the old world. The remains of dwarfs are abundant and include complete and partial skeletons. Dwarfs were employed as personal attendants, animal tenders, jewelers, and entertainers. Several high-ranking dwarfs especially from the Old Kingdom (2700-2190 BCE) achieved important status and had lavish burial places close to the pyramids. Their costly tombs in the royal cemeteries and the inscriptions on their statutes indicate their high-ranking position in Egyptian society and their close relation to the king. Some of them were Seneb, Pereniankh, Khnumhotpe, and Djeder. There were at least two dwarf gods, Ptah and Bes. The god Ptah was associated with regeneration and rejuvenation. The god Bes was a protector of sexuality, childbirth, women, and children. He was a favored deity particularly during the Greco-Roman period. His temple was recently excavated in the Baharia oasis in the middle of Egypt. The burial sites and artistic sources provide glimpses of the positions of dwarfs in daily life in ancient Egypt. Dwarfs were accepted in ancient Egypt; their recorded daily activities suggest assimilation into daily life, and their disorder was not shown as a physical handicap. Wisdom writings and moral teachings in ancient Egypt commanded respect for dwarfs and other individuals with disabilities.

  17. Creative Ventures: Ancient Civilizations.

    Science.gov (United States)

    Stark, Rebecca

    The open-ended activities in this book are designed to extend the imagination and creativity of students and encourage students to examine their feelings and values about historic eras. Civilizations addressed include ancient Egypt, Greece, Rome, Mayan, Stonehenge, and Mesopotamia. The activities focus upon the cognitive and affective pupil…

  18. Ancient Egypt: Personal Perspectives.

    Science.gov (United States)

    Wolinski, Arelene

    This teacher resource book provides information on ancient Egypt via short essays, photographs, maps, charts, and drawings. Egyptian social and religious life, including writing, art, architecture, and even the practice of mummification, is conveniently summarized for the teacher or other practitioner in a series of one to three page articles with…

  19. Cloning Ancient Trees

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    west of Tiananmen Square in Beijing, in Zhongshan Park, there stand several ancient cypress trees, each more than 1,000 years old. Their leafy crowns are all more than 20 meters high, while four have trunks that are 6 meters in circumference. The most unique of these

  20. Ancient ports of Kalinga

    Digital Repository Service at National Institute of Oceanography (India)

    Tripati, S.

    The ancient Kingdom of Kalinga mentioned in the Hathigumpha inscription of Kharavela (1st century B.C.) extended from the mouths of the Ganges to the estuary of Godavari river on the East Coast. Ptolemy (100 A.D.) mentions that Paluru (District...

  1. Ancient deforestation revisited.

    Science.gov (United States)

    Hughes, J Donald

    2011-01-01

    The image of the classical Mediterranean environment of the Greeks and Romans had a formative influence on the art, literature, and historical perception of modern Europe and America. How closely does is this image congruent with the ancient environment as it in reality existed? In particular, how forested was the ancient Mediterranean world, was there deforestation, and if so, what were its effects? The consensus of historians, geographers, and other scholars from the mid-nineteenth century through the first three quarters of the twentieth century was that human activities had depleted the forests to a major extent and caused severe erosion. My research confirmed this general picture. Since then, revisionist historians have questioned these conclusions, maintaining instead that little environmental damage was done to forests and soils in ancient Greco-Roman times. In a reconsideration of the question, this paper looks at recent scientific work providing proxy evidence for the condition of forests at various times in ancient history. I look at three scientific methodologies, namely anthracology, palynology, and computer modeling. Each of these avenues of research offers support for the concept of forest change, both in abundance and species composition, and episodes of deforestation and erosion, and confirms my earlier work.

  2. Printing Ancient Terracotta Warriors

    Science.gov (United States)

    Gadecki, Victoria L.

    2010-01-01

    Standing in awe in Xian, China, at the Terra Cotta warrior archaeological site, the author thought of sharing this experience and excitement with her sixth-grade students. She decided to let her students carve patterns of the ancient soldiers to understand their place in Chinese history. They would make block prints and print multiple soldiers on…

  3. Effects of mid-season frost and elevated growing season temperature on stomatal conductance and specific xylem conductivity of the arctic shrub, Salix pulchra

    Energy Technology Data Exchange (ETDEWEB)

    Gorsuch, D. M.; Oberbauer, S. F. [Florida International Univ., Dept. of Biological Sciences, Miami, FL (United States)

    2002-10-01

    It is hypothesized that because deciduous plants have a growth season limited in length and also have generally larger conduit volumes, they are more likely to be injured by freeze-thaw induced cavitation during the growing season. To test this hypothesis, the deciduous arctic shrub, Salix pulchra, was grown in simulated Alaskan summer temperatures and at five degrees C above the ambient simulation in controlled environments. Specific hydraulic conductivity and leaf stomatal conductance were measured in plants grown at both temperatures before and after freeze treatment simulating a mid-season frost. Before freeze treatment specific hydraulic conductivity was 2.5 times higher and stomatal conductance was 1.3 times higher in plants grown at elevated temperature. After freeze treatment reduction in hydraulic conductivity and stomatal conductance was 3.5 and 1.8 times higher in the plants grown at the higher temperature than plants grown at ambient temperature. Plants grown at the higher temperature also had larger vessel diameters and higher vessel densities than ambient-grown plants. These results suggest that higher growing season temperatures will make arctic deciduous shrubs more susceptible to frost damage. The implication of these results for plant growth in the arctic tundra is that while climate warming favours plants with larger vessels and higher specific xylem conductivity over plants with lower values, this competitive advantage may be lost if there is an increase in the risk of frost during the growing season. 43 refs., 5 figs.

  4. Enlightening the past: analytical proof for the use of Pistacia exudates in ancient Egyptian embalming resins.

    Science.gov (United States)

    Nicholson, Tim M; Gradl, Manuela; Welte, Beatrix; Metzger, Michael; Pusch, Carsten M; Albert, Klaus

    2011-12-01

    Mastic, the resinous exudate of the evergreen shrub Pistacia lentiscus, is frequently discussed as one of the ingredients used for embalming in ancient Egypt. We show the identification of mastic in ancient Egyptian embalming resins by an unambiguous assignment of the mastic triterpenoid fingerprint consisting of moronic acid, oleanonic acid, isomasticadienonic and masticadienonic acid through the consolidation of NMR and GC/MS analysis. Differences in the observed triterpenoid fingerprints between mummy specimens suggest that more than one plant species served as the triterpenoid resin source. Analysis of the triterpenoid acids of ancient embalming resin samples in the form of their methyl- and trimethylsilyl esters is compared. In addition we show a simple way to differentiate between residues of mastic from its use as incense during embalming or from direct mastic application in the embalming resin.

  5. Improvement of boreal vegetation modelling and climate interactions through the introduction of new bryophyte and artic-shrub plant functional types in a land surface model.

    Science.gov (United States)

    Druel, Arsène; Krinner, Gerhard; Peylin, Philippe; Ciais, Philippe; Viovy, Nicolas; Peregon, Anna

    2016-04-01

    Boreal and tundra vegetation, which represents 22% of the global land area, has had a significant impact on climate through changes of albedo, snow cover, soil thermal dynamics, etc. However, it is frequently poorly represented in earth system models used for climate predictions. We improved the description of high-latitude vegetation and its interactions with the environment in the ORCHIDEE land surface model by creating new plant functional types with specific biogeochemical and biophysical properties: boreal shrubs, bryophytes (mosses and lichens) and boreal C3 grasses. The introduction of shrub specificities allows for an intermediate stratum between trees and grasses, with a new carbon allometry within the plant, inducing new interactions between wooden species and their environment, especially the complex snow-shrubs interaction. Similarly, the introduction of non-vascular plants (i.e. bryophytes) involves numerous changes both in physical and biological processes, such as the response of photosynthesis to surface humidity, the decomposition of carbon and the soil thermal conductivity. These changes in turn lead to new processes and interactions between vegetation and moisture (soil and air), carbon cycle, energy balance, etc. For the boreal C3 grasses we did not include new processes compared to the generic C3 grass PFT, but improved the realism of the carbon and water budgets with new boreal adjusted parameters. We assess the performance of the modified ORCHIDEE land surface model and in particular its ability to represent the new plant types (their phenology etc.), and evaluate the effects of these new PFTs on the simulated energy, water and carbon balances of boreal ecosystems. The potential impact of these refinements on future climate simulations will be discussed.

  6. High-Resolution Remote Sensing and Stable Isotope Patterns Across Heath-Shrub-Forest Ecotone at Abisko and Vassijaure, Northern Sweden

    Science.gov (United States)

    Schwan, M. R.; Herrick, C.; Hobbie, E. A.; Chen, J.; Varner, R. K.; Palace, M. W.; Marek, E.; Kashi, N. N.; Smith, S. L.

    2015-12-01

    Rapid warming in arctic and sub-arctic environments shifts plant community structure which in turn can alter carbon cycling by releasing large stocks of carbon sequestered in arctic soils. Much work has been done in sub-arctic peatlands to understand how shifts in dominant vegetation cover can ultimately affect global carbon balances, but less focus has been given to upland environments where similar changes are occurring. Recent circumpolar expansion of deciduous shrubs and trees in sub-arctic upland environments may alter carbon cycling due to shrubs and trees sequestering less C in soils than the heath plants they typically replace. In this study we explored the relationship between nutrient and carbon cycling and above-ground vegetation on six transects which traverse an ecotone gradient from heath tundra (dominated by ericoid mycorrhizal plants) through deciduous shrubs to deciduous trees (dominated by ectomycorrhizal plants) in upland environments of sub-arctic Sweden near Vassijaure (~850 mm precipitation) and Abisko (~300 mm precipitation). We collected soil and foliage for analysis of natural abundances of stable carbon and nitrogen isotopes (δ13C and δ15N), which can be a sensitive indicator of C and N dynamics. We also took high-resolution remote aerial imagery over the transects to calculate percent cover of vegetation types using GIS software. We concurrently estimated percent cover in smaller plots on the ground of three dominant species, Empetrum nigrum, Betula nana, and Betula pubescens, to serve as ground-truthing for the aerial imagery. Analysis of vegetation cover data shows significant differences in vegetation types along the transects. Preliminary multiple regression analysis of isotopes shows that δ13C in organic soil at the Vassijaure site is mostly controlled by distance along the transect, an interaction term between transect distance and soil depth, and δ15N (adjusted r2 = 0.85, p < 0.0001). Values of δ13C were lower in soils in the

  7. Ancient human microbiomes.

    Science.gov (United States)

    Warinner, Christina; Speller, Camilla; Collins, Matthew J; Lewis, Cecil M

    2015-02-01

    Very recently, we discovered a vast new microbial self: the human microbiome. Our native microbiota interface with our biology and culture to influence our health, behavior, and quality of life, and yet we know very little about their origin, evolution, or ecology. With the advent of industrialization, globalization, and modern sanitation, it is intuitive that we have changed our relationship with microbes, but we have little information about the ancestral state of our microbiome, and we therefore lack a foundation for characterizing this change. High-throughput sequencing has opened up new opportunities in the field of paleomicrobiology, allowing us to investigate the evolution of the complex microbial ecologies that inhabit our bodies. By focusing on recent coprolite and dental calculus research, we explore how emerging research on ancient human microbiomes is changing the way we think about ancient disease and how archaeological studies can contribute to a medical understanding of health and nutrition today.

  8. Comets in ancient India

    CERN Document Server

    Gupta, Patrick Das

    2014-01-01

    The Indo-aryans of ancient India observed stars and constellations for ascertaining auspicious times for sacrificial rites ordained by vedas. It is but natural that they would have recounted in the vedic texts about comets. In Rigveda ($\\sim $ 1700 - 1500 BC) and Atharvaveda ($\\sim $ 1150 BC), there are references to dhumaketus and ketus, which stand for comets in Sanskrit. Varahamihira in 550 AD and Ballala Sena ($\\sim $ 1100 - 1200 AD) have described a large number of comets recorded by ancient seers such as Parashara, Vriddha Garga, Narada, Garga, etc. In this article, I conjecture that an episode narrated in Mahabharata of a radiant king, Nahusha, ruling the heavens, and later turning into a serpent after he had kicked the seer Agastya (also the star Canopus), is a mythological retelling of a cometary event.

  9. Ambrosia of Ancients

    Institute of Scientific and Technical Information of China (English)

    HUOJIANYING

    2004-01-01

    IN 196 B.C. a Chinese philosopher observedto his ruler: "A lord's to ppriority is the welfare of his subjects; to the peopie, eating is foremost." Chinese ancients perceived clearly the essentiality of grain cultivation to the survival of the population and country as a whole. This is apparent in the premillennial term for "country" -sheji literally translated as god of land and grain.

  10. Effects of Mediterranean shrub species on rainfall interception

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Estringana, P.; Alonso-Blazquez, N.; Marques, M. J.; Bienes, R.; Alegre, J.

    2009-07-01

    Rainfall is intercepted by vegetation. Water intercepted could be evaporated, or it could drip from the leaves and stems to the soil or it could run down the stems to the base of the plant. In the Mediterranean, where water is a scant resource, interception loss could have an influence on hydrology. Water storage capacity depends on vegetation type. In the Mediterranean, there are many types of shrubs, and many of them are able to intercept large volumes of water depending on the shrub type. many lands of the Mediterranean basin of European Union have been abandoned in the last decades and consequently vegetation type changes too. This modifies hydrologic processes, changing the volume and the way in which the rainfall reaches the soil. The aim of this study was to characterize water storage capacity in 9 Mediterranean shrub species, working with the whole plant and comparing results obtained by two methods, rainfall simulation and submersion method in laboratory conditions. (Author) 12 refs.

  11. FENOLOGICAL VARIABILITY OF TREES AND SHRUBS IN TOMSK

    Directory of Open Access Journals (Sweden)

    Nikolaeva S. A.

    2015-10-01

    Full Text Available The analysis of phenological phenomena of 9 tree and shrub species and longevity of their vegetation activity was made in Tomsk (southeastern West Siberian Plain. Since 1969 until 2013 the start of the phenological phenomena in the trees and shrubs became to be earlier and the end did to be later. Trends of the start of birch juice moving and flowering is higher (–2.5–3.4 days/decade than trends of leave appearance, yellowing and falling (+2.5–1.3 days/decade in the trees and shrubs. Dates of the start of the phonological stages and the sums of accumulated positive temperatures high correlate between each other. The period of their general vegetation activity increased by 20 days and active vegetation activity did by 7 days

  12. Climate Variations and Alaska Tundra Vegetation Productivity Declines in Spring

    Science.gov (United States)

    Bhatt, U. S.; Walker, D. A.; Bieniek, P.; Raynolds, M. K.; Epstein, H. E.; Comiso, J. C.; Pinzon, J. E.; Tucker, C. J.

    2015-12-01

    While sea ice has continued to decline, vegetation productivity increases have declined particularly during spring in Alaska as well as many parts of the Arctic tundra. To understand the processes behind these features we investigate spring climate variations that includes temperature, circulation patterns, and snow cover to determine how these may be contributing to spring browning. This study employs remotely sensed weekly 25-km sea ice concentration, weekly surface temperature, and bi-weekly NDVI from 1982 to 2014. Maximum NDVI (MaxNDVI, Maximum Normalized Difference Vegetation Index), Time Integrated NDVI (TI-NDVI), Summer Warmth Index (SWI, sum of degree months above freezing during May-August), atmospheric reanalysis data, dynamically downscaled climate data, meteorological station data, and snow water equivalent (GlobSnow, assimilated snow data set). We analyzed the data for the full period (1982-2014) and for two sub-periods (1982-1998 and 1999-2014), which were chosen based on the declining Alaska SWI since 1998. MaxNDVI has increased from 1982-2014 over most of the Arctic but has declined from 1999 to 2014 southwest Alaska. TI-NDVI has trends that are similar to those for MaxNDVI for the full period but display widespread declines over the 1999-2014 period. Therefore, as the MaxNDVI has continued to increase overall for the Arctic, TI-NDVI has been declining since 1999 and these declines are particularly noteworthy during spring in Alaska. Spring declines in Alaska have been linked to increased spring snow cover that can delay greenup (Bieniek et al. 2015) but recent ground observations suggest that after an initial warming and greening, late season freezing temperature are damaging the plants. The late season freezing temperature hypothesis will be explored with meteorological climate/weather data sets for Alaska tundra regions. References P.A. Bieniek, US Bhatt, DA Walker, MK Raynolds, JC Comiso, HE Epstein, JE Pinzon, CJ Tucker, RL Thoman, H Tran, N M

  13. Shrub Encroachment and Regional Climate Change in Central New Mexico

    Science.gov (United States)

    He, Y.; De Wekker, S.; D'Odorico, P.

    2011-12-01

    Shrub encroachment is a global ecological phenomenon that involves a decrease in grass cover and an increase in density and coverage of woody species in semi-desert area and is associated with a number of environmental change drivers. In Southwestern U.S., such a dramatic vegetation transition has been occurring since mid 19th century and has resulted in loss of ecosystem services. The change in vegetation cover affects the mass and energy exchange between the land surface and the atmosphere and can therefore impact local climate and contribute to regional climate change. In particular, nighttime warming has been observed in the shrub dominated landscapes near the encroaching front in winter months. This nighttime warming favors the successful establishment and survival of a certain shrub species, Larrea tridentata, because of its sensitivity to freezing induced mortality. As a result, further shrub encroachment may be facilitated by the nighttime warming, resulting in a positive vegetation-microclimate feedback. To assess the relative importance of the observed nighttime warming due to changes in vegetation cover compared to the background climate warming, we use historical climate records and output from regional climate models. Results show that the nighttime warming induced by shrub encroachment is equivalent to a change in regional climate warming over the last 40-70 years in central New Mexico. Moreover, we show results from atmospheric mesoscale model simulations with the goal to assess if the nighttime warming caused by differences in vegetation cover can be simulated. We need to ensure that the nighttime warming is simulated well, so that realistic regional climate simulations can be performed to predict the rate of shrub encroachment if facilitated only by the vegetation-microclimate feedback.

  14. Suicide in ancient Greece.

    Science.gov (United States)

    Laios, K; Tsoukalas, G; Kontaxaki, M-I; Karamanou, M; Androutsos, G

    2014-01-01

    The theme of suicide appears several times in ancient Greek literature. However, each such reference acquires special significance depending on the field from which it originates. Most of the information found in mythology, but the suicide in a mythological tale, although in terms of motivation and mental situation of heroes may be in imitation of similar incidents of real life, in fact is linked with the principles of the ancient Greek religion. In ancient drama and mainly in tragedies suicide conduces to the tragic hypostasis of the heroes and to the evolution of the plot and also is a tool in order to be presented the ideas of poets for the relations of the gods, the relation among gods and men and the relation among the men. In ancient Greek philosophy there were the deniers of suicide, who were more concerned about the impact of suicide on society and also these who accepted it, recognizing the right of the individual to put an end to his life, in order to avoid personal misfortunes. Real suicides will be found mostly from historical sources, but most of them concern leading figures of the ancient world. Closer to the problem of suicide in the everyday life of antiquity are ancient Greek medicines, who studied the phenomenon more general without references to specific incidents. Doctors did not approve in principal the suicide and dealt with it as insane behavior in the development of the mental diseases, of melancholia and mania. They considered that the discrepancy of humors in the organ of logic in the human body will cause malfunction, which will lead to the absurdity and consequently to suicide, either due to excessive concentration of black bile in melancholia or due to yellow bile in mania. They believed that greater risk to commit suicide had women, young people and the elderly. As therapy they used the drugs of their time with the intention to induce calm and repression in the ill person, therefore they mainly used mandragora. In general, we would say

  15. BRDF characteristics of tundra vegetation communities in Yamal, Western Siberia

    Science.gov (United States)

    Buchhorn, Marcel; Heim, Birgit; Walker, Donald A. Skip; Epstein, Howard; Leibman, Marina

    2013-04-01

    Satellite data from platforms with pointing capabilities (CHRIS/Proba, RapidEye) or from sensors with wide swath (AVHRR, MODIS, MERIS) is influenced by the bidirectional reflectance distribution function (BRDF). This effect can cause significant changes in the measured spectral surface reflectance depending on the solar illumination geometry and sensor viewing conditions. The Environmental Mapping and Analysis Program (EnMAP), a German hyperspectral mission with expected launch in 2016, will provide high spectral resolution observations with a ground sampling distance of 30 meters. Since the EnMAP sensor has pointing capabilities, both spectral and directional reflection characteristics need to be taken into account for the algorithms development for vegetation parameters. The 'hyperspectral method development for Arctic VEGetation biomes' (hy-Arc-VEG) project is part of the national preparation program for the EnMAP mission. Within the EnMAP projcect hy-Arc-VEG we developed a portable field spectro-goniometer, named ManTIS (Manual Transportable Instrument for Spherical BRDF observations), for the in-situ measurements of anisotropic effects of tundra surfaces (national and international patent pending - DE 102011117713.6). The goniometer was designed for field use in difficult as well as challenging terrain and climate. It is therefore of low weight, without electrical devices and weatherproof. It can be disassembled and packed into small boxes for transport. The current off-nadir viewing capacity is matched to the EnMAP sensor configuration (up to 30°). We carried out spectral field and goniometer measurements on the joint YAMAL 2011 expedition (RU-US-DE) organized by the Earth-Cryosphere Institute (ECI) in August 2011 on the Yamal Peninsula, northwestern Siberia, Russia. The field goniometer measurements (conducted under varying sun zenith angles) as well as field spectro-radiometrical measurements were carried out at the NASA Yamal Land Cover/Land Use Change

  16. Tundra Disturbance and Recovery Nine Years After Winter Seismic Exploration in Northern Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Seismic exploration was conducted during the winters of 1984 and 1985 on the coastal plain tundra of the Arctic National Wildlife Refuge, Alaska. In 1986, 1989, and...

  17. Terrestrial bird populations and habitat use on coastal plain tundra of the Arctic National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report covers terrestrial bird populations and habitat use on the coastal plain tundra of the Arctic National Wildlife Refuge. Bird census plots were monitored....

  18. Pacific Flyway management plan for the Western Population of tundra swans

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this plan is to establish guidelines for the cooperative management of the Western Population (WP) of tundra swans (Cygnus c. columbianus). This...

  19. Tundra swan populations, productivity, and local movements on Selawik National Wildlife Refuge, northwest Alaska, 1985

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes the monitoring of populations and production of tundra swans on Selawik National Wildlife Refuge in 1985 as part of a long-term study. Radio...

  20. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland

    DEFF Research Database (Denmark)

    Lund, Magnus; Stiegler, Christian; Abermann, Jakob

    2017-01-01

    The surface energy balance (SEB) is essential for understanding the coupled cryosphere–atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt....... For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during...... summer clouds have a cooling effect over tundra and a warming effect over ice, reflecting the spatial variation in albedo. The complex interactions between factors affecting SEB across surface types remain a challenge for understanding current and future conditions. Extended monitoring activities coupled...

  1. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland.

    Science.gov (United States)

    Lund, Magnus; Stiegler, Christian; Abermann, Jakob; Citterio, Michele; Hansen, Birger U; van As, Dirk

    2017-02-01

    The surface energy balance (SEB) is essential for understanding the coupled cryosphere-atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt. For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during summer clouds have a cooling effect over tundra and a warming effect over ice, reflecting the spatial variation in albedo. The complex interactions between factors affecting SEB across surface types remain a challenge for understanding current and future conditions. Extended monitoring activities coupled with modelling efforts are essential for assessing the impact of warming in the Arctic.

  2. Dynamics of the recovery of damaged tundra vegetation. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Amundsen, C.C.

    1976-01-01

    A study, begun in 1971, continues to document the environmental factors which affect the recovery of damaged tundra landscapes. A measurement technique was developed on Amchitka Island to allow the rapid acquisition of data on species presence and frequency across areas disturbed at various times and in various ways. Samples across all examples of aspect, slope steepness and exposure are taken. Studies now include Adak Island and the Point Barrow area. We have concluded that there was no directional secondary succession on the Aleutian tundra, although there was vigorous recovery on organic soils. Our study led to recommendations which resulted in less intensive reclamation management at a considerable financial saving and without further biological perturbation. Because of the increasing activity on tundra landscapes, for energy extraction, transportation or production, military or other reasons, we have expanded our sampling to other tundra areas where landscape disruption is occurring or is predicted.

  3. Transformation of nitrogen compounds in the tundra soils of Northern Fennoscandia

    Science.gov (United States)

    Maslov, M. N.; Makarov, M. I.

    2016-07-01

    The transformation of organic nitrogen compounds in the soils of tundra ecosystems of Northern Fennoscandia has been studied under laboratory and natural conditions. Tundra soils contain significant reserves of total nitrogen, but they are poor in its extractable mineral and organic forms. The potential rates of the net mineralization and net immobilization of nitrogen by microorganisms vary among the soils and depend on the C: N ratio in the extractable organic matter and microbial biomass of soil. Under natural conditions, the rate of nitrogen net mineralization is lower than the potential rate determined under laboratory conditions by 6-25 times. The incubation of tundra soils in the presence of plants does not result in the accumulation of mineral nitrogen compounds either in the soil or in microbial biomass. This confirms the high competitive capacity of plants under conditions of limited nitrogen availability in tundra ecosystems.

  4. Ecosystem nitrogen fixation throughout the snow-free period in subarctic tundra: effects of willow and birch litter addition and warming.

    Science.gov (United States)

    Rousk, Kathrin; Michelsen, Anders

    2017-04-01

    Nitrogen (N) fixation in moss-associated cyanobacteria is one of the main sources of available N for N-limited ecosystems such as subarctic tundra. Yet, N2 fixation in mosses is strongly influenced by soil moisture and temperature. Thus, temporal scaling up of low-frequency in situ measurements to several weeks, months or even the entire growing season without taking into account changes in abiotic conditions cannot capture the variation in moss-associated N2 fixation. We therefore aimed to estimate moss-associated N2 fixation throughout the snow-free period in subarctic tundra in field experiments simulating climate change: willow (Salix myrsinifolia) and birch (Betula pubescens spp. tortuosa) litter addition, and warming. To achieve this, we established relationships between measured in situ N2 fixation rates and soil moisture and soil temperature and used high-resolution measurements of soil moisture and soil temperature (hourly from May to October) to model N2 fixation. The modelled N2 fixation rates were highest in the warmed (2.8 ± 0.3 kg N ha(-1) ) and birch litter addition plots (2.8 ± 0.2 kg N ha(-1) ), and lowest in the plots receiving willow litter (1.6 ± 0.2 kg N ha(-1) ). The control plots had intermediate rates (2.2 ± 0.2 kg N ha(-1) ). Further, N2 fixation was highest during the summer in the warmed plots, but was lowest in the litter addition plots during the same period. The temperature and moisture dependence of N2 fixation was different between the climate change treatments, indicating a shift in the N2 fixer community. Our findings, using a combined empirical and modelling approach, suggest that a longer snow-free period and increased temperatures in a future climate will likely lead to higher N2 fixation rates in mosses. Yet, the consequences of increased litter fall on moss-associated N2 fixation due to shrub expansion in the Arctic will depend on the shrub species' litter traits.

  5. Fourfold higher tundra volatile emissions due to arctic summer warming

    Science.gov (United States)

    Lindwall, Frida; Schollert, Michelle; Michelsen, Anders; Blok, Daan; Rinnan, Riikka

    2016-03-01

    Biogenic volatile organic compounds (BVOCs), which are mainly emitted by vegetation, may create either positive or negative climate forcing feedbacks. In the Subarctic, BVOC emissions are highly responsive to temperature, but the effects of climatic warming on BVOC emissions have not been assessed in more extreme arctic ecosystems. The Arctic undergoes rapid climate change, with air temperatures increasing at twice the rate of the global mean. Also, the amount of winter precipitation is projected to increase in large areas of the Arctic, and it is unknown how winter snow depth affects BVOC emissions during summer. Here we examine the responses of BVOC emissions to experimental summer warming and winter snow addition—each treatment alone and in combination—in an arctic heath during two growing seasons. We observed a 280% increase relative to ambient in BVOC emissions in response to a 4°C summer warming. Snow addition had minor effects on growing season BVOC emissions after one winter but decreased BVOC emissions after the second winter. We also examined differences between canopy and air temperatures and found that the tundra canopy surface was on average 7.7°C and maximum 21.6°C warmer than air. This large difference suggests that the tundra surface temperature is an important driver for emissions of BVOCs, which are temperature dependent. Our results demonstrate a strong response of BVOC emissions to increasing temperatures in the Arctic, suggesting that emission rates will increase with climate warming and thereby feed back to regional climate change.

  6. Dance in Ancient Greek Culture

    OpenAIRE

    Spalva, Rita

    2015-01-01

    The greatness and harmony of ancient Greece has had an impact upon the development of the Western European culture to this day. The ancient Greek culture has influenced contemporary literature genres and systems of philosophy, principles of architecture, sculpture and drama and has formed basis for such sciences as astronomy and mathematics. The art of ancient Greece with its penchant for beauty and clarity has been the example of the humanity’s search for an aesthetic ideal. Despite only bei...

  7. Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature

    Science.gov (United States)

    Wang, Peng; Heijmans, Monique M. P. D.; Mommer, Liesje; van Ruijven, Jasper; Maximov, Trofim C.; Berendse, Frank

    2016-05-01

    Climate warming is known to increase the aboveground productivity of tundra ecosystems. Recently, belowground biomass is receiving more attention, but the effects of climate warming on belowground productivity remain unclear. Enhanced understanding of the belowground component of the tundra is important in the context of climate warming, since most carbon is sequestered belowground in these ecosystems. In this study we synthesized published tundra belowground biomass data from 36 field studies spanning a mean annual temperature (MAT) gradient from -20 °C to 0 °C across the tundra biome, and determined the relationships between different plant biomass pools and MAT. Our results show that the plant community biomass-temperature relationships are significantly different between above and belowground. Aboveground biomass clearly increased with MAT, whereas total belowground biomass and fine root biomass did not show a significant increase over the broad MAT gradient. Our results suggest that biomass allocation of tundra vegetation shifts towards aboveground in warmer conditions, which could impact on the carbon cycling in tundra ecosystems through altered litter input and distribution in the soil, as well as possible changes in root turnover.

  8. Mathematics in ancient Greece

    CERN Document Server

    Dantzig, Tobias

    2006-01-01

    More than a history of mathematics, this lively book traces mathematical ideas and processes to their sources, stressing the methods used by the masters of the ancient world. Author Tobias Dantzig portrays the human story behind mathematics, showing how flashes of insight in the minds of certain gifted individuals helped mathematics take enormous forward strides. Dantzig demonstrates how the Greeks organized their precursors' melange of geometric maxims into an elegantly abstract deductive system. He also explains the ways in which some of the famous mathematical brainteasers of antiquity led

  9. Ancient concrete works

    CERN Document Server

    Sparavigna, Amelia Carolina

    2011-01-01

    It is commonly believed that the ancient Romans were the first to create and use concrete. This is not true, as we can easily learn from the Latin literature itself. For sure, Romans were able to prepare high-quality hydraulic cements, comparable with the modern Portland cements. In this paper, we will see that the use of concrete is quite older, ranging back to the Homeric times. For instance, it was used for the floors of some courts and galleries of the Mycenaean palace at Tiryns

  10. Climate and Ancient Societies

    DEFF Research Database (Denmark)

    Climate, and human responses to it, have a strongly interconnected relationship. This when climate change occurs, the result of either natural or human causes, societies should react and adapt to these. But do they? If so, what is the nature of that change, and are the responses positive...... or negative for the long-term survival of social groups? In this volume, scholars from diverse disciplines including archaeology, geology and climate sciences explore scientific and material evidence for climate changes in the past, their causes, their effects on ancient societies and how those societies...

  11. Shrub expansion in SW Greenland under modest regional warming

    DEFF Research Database (Denmark)

    Jørgensen, Rasmus Halfdan; Meilby, Henrik; Kollmann, Johannes

    2013-01-01

    –1974) and repeated the photos in 2010 and 2011. Sixty-four photo pairs were cropped into 133 smaller units and classified by aspect, substrate stability, muskoxen grazing, and human disturbance. The photo material was evaluated by 22 experts with respect to changes in shrub cover, revealing a general increase across...

  12. Plant Identification Characteristics for Deciduous Trees & Shrubs. Lesson Plans.

    Science.gov (United States)

    Burkholder, Kathy

    This manual contains a group of lesson plans designed for use with a slide series (not included here). Its purpose is to introduce students to the basic concepts and terminology used in the identification of deciduous trees and shrubs. The manual is composed of 12 lesson plans. The first lesson is an introduction to plant identification. The…

  13. GROWTH-RATES OF SHRUBS ON DIFFERENT SOILS IN TANZANIA

    NARCIS (Netherlands)

    PRINS, HHT; VANDERJEUGD, HP

    1992-01-01

    Because little is known of growth rates of shrubs in East Africa, the growth rates of Acalypha fructicosa, Gardenia jovis-tonantis, Justicia cordata, Maerua triphylla, and Ocimum suave were measured in Lake Manyara National Park, northern Tanzania. Branch diameter increments and branch length increm

  14. The Invasive Shrub, Buddleja davidii (Butterfl y Bush)

    Science.gov (United States)

    Buddleja davidii Franchet (Synonym. Buddleia davidii; common name Butterfly bush) is a perennial, semi-deciduous shrub or small multi-stemmed tree that is resident in gardens and disturbed areas in temperate locations worldwide. Since its introduction to the United Kingdom from c...

  15. Exploring Ancient Skies A Survey of Ancient and Cultural Astronomy

    CERN Document Server

    Kelley, David H

    2011-01-01

    Exploring Ancient Skies brings together the methods of archaeology and the insights of modern astronomy to explore the science of astronomy as it was practiced in various cultures prior to the invention of the telescope. The book reviews an enormous and growing body of literature on the cultures of the ancient Mediterranean, the Far East, and the New World (particularly Mesoamerica), putting the ancient astronomical materials into their archaeological and cultural contexts. The authors begin with an overview of the field and proceed to essential aspects of naked-eye astronomy, followed by an examination of specific cultures. The book concludes by taking into account the purposes of ancient astronomy: astrology, navigation, calendar regulation, and (not least) the understanding of our place and role in the universe. Skies are recreated to display critical events as they would have appeared to ancient observers—events such as the supernova of 1054 A.D., the "lion horoscope," and the Star of Bethlehem. Explori...

  16. Relationship of cyanobacterial and algal assemblages with vegetation in the high Arctic tundra (West Spitsbergen, Svalbard Archipelago

    Directory of Open Access Journals (Sweden)

    Richter Dorota

    2015-09-01

    Full Text Available The paper presents the results of a study of cyanobacteria and green algae assemblages occurring in various tundra types determined on the basis of mosses and vascular plants and habitat conditions. The research was carried out during summer in the years 2009-2013 on the north sea-coast of Hornsund fjord (West Spitsbergen, Svalbard Archipelago. 58 sites were studied in various tundra types differing in composition of vascular plants, mosses and in trophy and humidity. 141 cyanobacteria and green algae were noted in the research area in total. Cyanobacteria and green algae flora is a significant element of many tundra types and sometimes even dominate there. Despite its importance, it has not been hitherto taken into account in the description and classification of tundra. The aim of the present study was to demonstrate the legitimacy of using phycoflora in supplementing the descriptions of hitherto described tundra and distinguishing new tundra types. Numeric hierarchical-accumulative classification (MVSP 3.1 software methods were used to analyze the cyanobacterial and algal assemblages and their co-relations with particular tundra types. The analysis determined dominant and distinctive species in the communities in concordance with ecologically diverse types of tundra. The results show the importance of these organisms in the composition of the vegetation of tundra types and their role in the ecosystems of this part of the Arctic.

  17. Authenticity in ancient DNA studies

    DEFF Research Database (Denmark)

    Gilbert, M Thomas P; Willerslev, Eske

    2006-01-01

    Ancient DNA studies represent a powerful tool that can be used to obtain genetic insights into the past. However, despite the publication of large numbers of apparently successful ancient DNA studies, a number of problems exist with the field that are often ignored. Therefore, questions exist as ...

  18. Tamil merchant in ancient Mesopotamia.

    Directory of Open Access Journals (Sweden)

    Malliya Gounder Palanichamy

    Full Text Available Recent analyses of ancient Mesopotamian mitochondrial genomes have suggested a genetic link between the Indian subcontinent and Mesopotamian civilization. There is no consensus on the origin of the ancient Mesopotamians. They may be descendants of migrants, who founded regional Mesopotamian groups like that of Terqa or they may be merchants who were involved in trans Mesopotamia trade. To identify the Indian source population showing linkage to the ancient Mesopotamians, we screened a total of 15,751 mitochondrial DNAs (11,432 from the literature and 4,319 from this study representing all major populations of India. Our results although suggest that south India (Tamil Nadu and northeast India served as the source of the ancient Mesopotamian mtDNA gene pool, mtDNA of these ancient Mesopotamians probably contributed by Tamil merchants who were involved in the Indo-Roman trade.

  19. Tamil merchant in ancient Mesopotamia.

    Science.gov (United States)

    Palanichamy, Malliya Gounder; Mitra, Bikash; Debnath, Monojit; Agrawal, Suraksha; Chaudhuri, Tapas Kumar; Zhang, Ya-Ping

    2014-01-01

    Recent analyses of ancient Mesopotamian mitochondrial genomes have suggested a genetic link between the Indian subcontinent and Mesopotamian civilization. There is no consensus on the origin of the ancient Mesopotamians. They may be descendants of migrants, who founded regional Mesopotamian groups like that of Terqa or they may be merchants who were involved in trans Mesopotamia trade. To identify the Indian source population showing linkage to the ancient Mesopotamians, we screened a total of 15,751 mitochondrial DNAs (11,432 from the literature and 4,319 from this study) representing all major populations of India. Our results although suggest that south India (Tamil Nadu) and northeast India served as the source of the ancient Mesopotamian mtDNA gene pool, mtDNA of these ancient Mesopotamians probably contributed by Tamil merchants who were involved in the Indo-Roman trade.

  20. Shrub morpho-types as indicator for the water flow energy - Tivoli travertine case (Central Italy)

    Science.gov (United States)

    Erthal, Marcelle Marques; Capezzuoli, Enrico; Mancini, Alessandro; Claes, Hannes; Soete, Jeroen; Swennen, Rudy

    2017-01-01

    Travertines from Tivoli area (Central Italy) possess abundant shrub-like fabrics that are laterally continuous over hundreds of square meters. They occur dominantly in horizontal layers with aggradational and progradational stacking patterns. Their fabrics and morphologies are remarkably similar to the shrubs lithotypes reported in literature for the Pre-Salt reservoirs, offshore Brazil and Angola, with huge oil accumulations. Petrographic and micro-computer tomography analyses allowed the identification of six shrub morpho-types (i.e., narrow dendriform, wide dendriform, fili dendriform, arborescent, arbustiform and pustular). Dendriform shrubs are the most common lithotype in Tivoli area, and three different subtypes could be distinguished according to the arrangement of their branches. The shrubs consist largely of peloidal micritic aggregates engulfed in spar calcite, ranging in average from 1 to 3 cm in height. The shrubs are interpreted to have developed in very shallow extensive waterlogged slightly inclined flat areas, changing laterally into a slope system with crusts as the main lithotype. Changes in the hydrodynamic conditions with episodes of stagnancy influenced the shrub morpho-types making them very variegated. Shrub morphologies likely reflect specific (micro-) environments that are controlled by water flow rates, evaporation and microbial activity. The latter processes influenced shrub fabric and morphology. Under high flow conditions, CO2 degassing is the main process leading to carbonate precipitation. Consequently, denser and tightly packed morphologies will precipitate, composing mainly the crust lithotype. In this scenario microbes are less dominant. Dendriform shrubs, with narrow, wide and fili morphologies are interpreted to occur in moderate to low energy water flows. Narrow dendriform shrubs reflect faster flowing conditions, with decreasing impact of flow on the morphological aspects from wide dendriform shrubs to fili dendriform shrubs

  1. Characterization of Ancient Tripitaka

    Science.gov (United States)

    Gong, Y. X.; Geng, L.; Gong, D. C.

    2015-08-01

    Tripitaka is the world's most comprehensive version of Buddhist sutra. There are limited numbers of Tripitaka currently preserved, most of them present various patterns of degradation. As little is known about the materials and crafts used in Tripitaka, it appeared necessary to identify them, and to further define adapted conservation treatment. In this work, a study concerning the paper source and dyestuff of the Tripitaka from approximate 16th century was carried out using fiber analysis and thin-layer chromatography (TLC). The results proved that the papers were mainly made from hemp or bark of mulberry tree, and indigo was used for colorizing the paper. At the end, we provide with suggestions for protecting and restoring the ancient Tripitaka.

  2. What Does Matter?: Idols and Icons in the Nenets Tundra

    Directory of Open Access Journals (Sweden)

    Laur Vallikivi

    2011-08-01

    Full Text Available This paper examines a mission encounter in the Nenets reindeer herders’ tundra. In post-Soviet Arctic Russia, Pentecostal and Baptist missionaries of Russian and Ukrainian origin have been fighting against idolatry and trying to persuade the Nenets to burn their sacred images or khekhe’’. They claim that among the indigenous Siberians idolatry exists in its quintessential or prototypical form, as it is described in the Bible. I shall suggest that this encounter takes place in a gap, in which the Nenets and Protestant have different understandings of language and materiality. Missionaries rely simultaneously on the ‘modern’ ideology of signification and the ‘non-modern’ magic of the material. They argue that idols, which are ‘nothing’ according to the scriptures, dangerously bind the ‘pagans’’ minds. For reindeer herders, for whom sacred items occupy an important place in the family wellbeing, the main issue is how to sever the link with the spirits without doing any damage.

  3. Spatial analysis of root hemiparasitic shrubs and their hosts

    DEFF Research Database (Denmark)

    Dueholm, Bjørn; Bruce, David; Weinstein, Philip;

    2017-01-01

    Root hemiparasitic plants take up resources from the roots of neighbouring plants, which they use for fuelling their own growth. While taking up resources from the hosts below-ground, they may simultaneously compete with the hosts for sunlight. Suppression caused by the parasitism could result...... in openings in the vegetation structure and increased mortality levels. On the other hand, the root hemiparasites may also be constrained by the hosts, restricting the parasites to a limited number of locations within a community. These vegetation alterations and location restrictions can be referred...... to as spatial signatures of the root hemiparasites. In order to search for such spatial signatures, we investigated a population of a predominant Acacia species in Australia co-occurring with established root hemiparasitic shrubs, using intensity estimates of the Acacia and dead shrubs to be indicators...

  4. Rainfall partitioning by desert shrubs in arid regions

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We measured the rainfall partitioning among throughfall, stemflow, and interception by desert shrubs in an arid region of China, and analyzed the influence of rainfall and canopy characteristics on this partitioning and its ecohydrological effects. The percent-ages of total rainfall accounted for by throughfall, stemflow, and interception ranged from 78.85±2.78 percent to 86.29±5.07 per-cent, from 5.50±3.73 percent to 8.47±4.19 percent, and from 7.54±2.36 percent to 15.95±4.70 percent, respectively, for the four shrubs in our study (Haloxylon ammodendron, Elaeagnus angustifolia, Tamarix ramosissima, and Nitraria sphaerocarpa). Rain-fall was significantly linearly correlated with throughfall, stemflow, and interception (P < 0.0001). The throughfall, stemflow, and interception percentages were logarithmically related to total rainfall (P < 0.01), but were quadratically related to the maximum 1-hour rainfall intensity (P < 0.01). The throughfall and stemflow percentages increased significantly with increasing values of the rainfall characteristics, whereas the interception percentage generally decreased (except for average wind speed, air temperature, and canopy evaporation). Regression analysis suggested that the stemflow percentage increased significantly with increasing crown length, number of branches, and branch angle (R2 = 0.92, P < 0.001). The interception percentage increased significantly with increasing LAI (leaf area index) and crown length, but decreased with increasing branch angle (R2 = 0.96, P < 0.001). The mean funnelling percentages for the four shrubs ranged from 30.27±4.86 percent to 164.37±6.41 percent of the bulk precipitation. Much of the precipitation was funnelled toward the basal area of the stem, confirming that shrub stemflow conserved in deep soil layers may be an available moisture source to support plant survival and growth under arid conditions.

  5. Carbon and nutrient responses to fire and climate warming in Alaskan arctic tundra

    Science.gov (United States)

    Jiang, Y.; Rastetter, E. B.; Shaver, G. R.; Rocha, A. V.; Kwiatkowski, B.; Pearce, A.; Zhuang, Q.; Mishra, U.

    2015-12-01

    Fire frequency has dramatically increased in the tundra of northern Alaska, which has major implications for the carbon budget of the region and the functioning of these ecosystems that support important wildlife species. We applied the Multiple Element Limitation (MEL) model to investigate both the short- and long-term post-fire succession of plant and soil carbon, nitrogen, and phosphorus fluxes and stocks along a burn severity gradient in the 2007 Anaktuvuk River Fire scar in northern Alaska. We compared the patterns of biomass and soil carbon, nitrogen and phosphorus recoveries with different burn severities and warming intensities. Modeling results indicated that the early regrowth of post-fire tundra vegetation was limited primarily by its canopy photosynthetic potential, rather than nutrient availability. The long-term recovery of C balance from fire disturbance is mainly determined by the internal redistribution of nutrients among ecosystem components, rather than the supply of nutrients from external sources (e.g., nitrogen deposition and fixation, phosphorus weathering). Soil organic matter is the principal source of plant-available nutrients and determines the spatial variation of vegetation biomass across the North Slope of Alaska. Across the North Slope of Alaska, we examined the effects of changes in N and P cycles on tundra C budgets under climate warming. Our results indicate that the ongoing climate warming in Arctic enhances mineralization and leads to a net transfer of nutrient from soil organic matter to vegetation, thereby stimulating tundra plant growth and increased C sequestration in the tundra ecosystems.

  6. How Will the Tundra-Taiga Interface Respond to Climate Change?

    Energy Technology Data Exchange (ETDEWEB)

    Skre, Oddvar [Norwegian Forest Research Inst., Fana (Norway); Baxter, Bob [Univ. of Durham (United Kingdom). School of Biological and Biomedical Sciences; Crawford, Robert M.M. [Univ. of St. Andrews (United Kingdom); Callaghan, Terry V. [Univ. of Sheffield (United Kingdom). Sheffield Centre for Arctic Ecology; Fedorkov, Aleksey [Russian Academy of Sciences, Syktyvkar (Russian Federation). Inst. of Biology

    2002-08-01

    The intuitive and logical answer to the question of how the tundra-taiga interface will react to global warming is that it should move north and this is mirrored by many models of potential treeline migration. Northward movement may be the eventual outcome if climatic warming persists over centuries or millennia. However, closer examination of the tundra-taiga interface across its circumpolar extent reveals a more complex situation. The regional climatic history of the tundra-taiga interface is highly varied, and consequently it is to be expected that the forest tundra boundary zone will respond differently to climate change depending on local variations in climate, evolutionary history, soil development, and hydrology. Investigations reveal considerable stability at present in the position of the treeline and while there may be a long-term advance northwards there are oceanic regions where climatic warming may result in a retreat southwards due to increased bog development. Reinforcing this trend is an increasing human impact, particularly in the forest tundra of Russia, which forces the limit of the forested areas southwards. Local variations will therefore require continued observation and research, as they will be of considerable importance economically as well as for ecology and conservation.

  7. How will the tundra-taiga interface respond to climate change?

    Science.gov (United States)

    Skre, Oddvar; Baxter, Robert; Crawford, Robert M M; Callaghan, Terry V; Fedorkov, Alexey

    2002-08-01

    The intuitive and logical answer to the question of how the tundra-taiga interface will react to global warming is that it should move north and this is mirrored by many models of potential treeline migration. Northward movement may be the eventual outcome if climatic warming persists over centuries or millennia. However, closer examination of the tundra-taiga interface across its circumpolar extent reveals a more complex situation. The regional climatic history of the tundra-taiga interface is highly varied, and consequently it is to be expected that the forest tundra boundary zone will respond differently to climate change depending on local variations in climate, evolutionary history, soil development, and hydrology. Investigations reveal considerable stability at present in the position of the treeline and while there may be a long-term advance northwards there are oceanic regions where climatic warming may result in a retreat southwards due to increased bog development. Reinforcing this trend is an increasing human impact, particularly in the forest tundra of Russia, which forces the limit of the forested areas southwards. Local variations will therefore require continued observation and research, as they will be of considerable importance economically as well as for ecology and conservation.

  8. Multi-scale investigation of shrub encroachment in southern Africa

    Science.gov (United States)

    Aplin, Paul; Marston, Christopher; Wilkinson, David; Field, Richard; O'Regan, Hannah

    2016-04-01

    There is growing speculation that savannah environments throughout Africa have been subject to shrub encroachment in recent years, whereby grassland is lost to woody vegetation cover. Changes in the relative proportions of grassland and woodland are important in the context of conservation of savannah systems, with implications for faunal distributions, environmental management and tourism. Here, we focus on southern Kruger National Park, South Africa, and investigate whether or not shrub encroachment has occurred over the last decade and a half. We use a multi-scale approach, examining the complementarity of medium (e.g. Landsat TM and OLI) and fine (e.g. QuickBird and WorldView-2) spatial resolution satellite sensor imagery, supported by intensive field survey in 2002 and 2014. We employ semi-automated land cover classification, involving a hybrid unsupervised clustering approach with manual class grouping and checking, followed by change detection post-classification comparison analysis. The results show that shrub encroachment is indeed occurring, a finding evidenced through three fine resolution replicate images plus medium resolution imagery. The results also demonstrate the complementarity of medium and fine resolution imagery, though some thematic information must be sacrificed to maintain high medium resolution classification accuracy. Finally, the findings have broader implications for issues such as vegetation seasonality, spatial transferability and management practices.

  9. Variation in bird's originating nitrogen availability limits High Arctic tundra development over last 2000 year (Hornsund, Svalbard)

    Science.gov (United States)

    Skrzypek, Grzegorz; Wojtuń, Bronisław; Hua, Quan; Richter, Dorota; Jakubas, Dariusz; Wojczulanis-Jakubas, Katarzyna; Samecka-Cymerman, Aleksandra

    2016-04-01

    Arctic and subarctic regions play important roles in the global carbon balance. However, nitrogen (N) deficiency is a major constraint for organic carbon sequestration in the High Arctic. Hence, the identification of the relative contributions from different N-sources is critical for understanding the constraints that limit tundra growth. The stable nitrogen composition of the three main N-sources and numerous plants were analyzed in ten tundra types (including those influenced by seabirds) in the Fuglebekken catchment (Hornsund, Svalbard, 77°N 15°E). The percentage of the total tundra N-pool provided by seabirds' feces (from planktivorous colonially breeding little auks Alle alle), ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment originated from birds (36%), atmospheric deposition (38%), and N2-fixation (26%). The results clearly show that N-pool in the tundra is significantly supplemented by nesting seabirds. Thus, if they experienced climate change induced substantial negative environmental pressure, it would adversely influence the tundra N-budget (Skrzypek et al. 2015). The growth rates and the sediment thickness (PLoS ONE 10(9): e0136536.

  10. The Influence of an Invasive Shrub, Buddleja Davidii on a Native Shrub, Griselinia Littoralis Transplanted into a New Zealand Floodplain Chronosequence

    Science.gov (United States)

    Griselinia littoralis, a native New Zealand shrub, was planted into a chronosequence (0 to 8 yrs since flooding) dominated by the non-indigenous shrub, Buddleja davidii in three New Zealand floodplains to determine to what extent facilitation and competitive inhibition may influe...

  11. Layout of Ancient Maya Cities

    Science.gov (United States)

    Aylesworth, Grant R.

    Although there is little doubt that the ancient Maya of Mesoamerica laid their cities out based, in part, on astronomical considerations, the proliferation of "cosmograms" in contemporary scholarly discourse has complicated matters for the acceptance of rigorous archaeoastronomical research.

  12. Astronomical Significance of Ancient Monuments

    Science.gov (United States)

    Simonia, I.

    2011-06-01

    Astronomical significance of Gokhnari megalithic monument (eastern Georgia) is considered. Possible connection of Amirani ancient legend with Gokhnari monument is discussed. Concepts of starry practicality and solar stations are proposed.

  13. Hunting for Ancient Rocky Shores.

    Science.gov (United States)

    Johnson, Markes E.

    1988-01-01

    Promotes the study of ancient rocky shores by showing how they can be recognized and what directions future research may follow. A bibliography of previous research articles, arranged by geologic period, is provided in the appendix to this paper. (CW)

  14. Modeling the spatiotemporal variability in subsurface thermal regimes across a low-relief polygonal tundra landscape

    Science.gov (United States)

    Kumar, Jitendra; Collier, Nathan; Bisht, Gautam; Mills, Richard T.; Thornton, Peter E.; Iversen, Colleen M.; Romanovsky, Vladimir

    2016-09-01

    Vast carbon stocks stored in permafrost soils of Arctic tundra are under risk of release to the atmosphere under warming climate scenarios. Ice-wedge polygons in the low-gradient polygonal tundra create a complex mosaic of microtopographic features. This microtopography plays a critical role in regulating the fine-scale variability in thermal and hydrological regimes in the polygonal tundra landscape underlain by continuous permafrost. Modeling of thermal regimes of this sensitive ecosystem is essential for understanding the landscape behavior under the current as well as changing climate. We present here an end-to-end effort for high-resolution numerical modeling of thermal hydrology at real-world field sites, utilizing the best available data to characterize and parameterize the models. We develop approaches to model the thermal hydrology of polygonal tundra and apply them at four study sites near Barrow, Alaska, spanning across low to transitional to high-centered polygons, representing a broad polygonal tundra landscape. A multiphase subsurface thermal hydrology model (PFLOTRAN) was developed and applied to study the thermal regimes at four sites. Using a high-resolution lidar digital elevation model (DEM), microtopographic features of the landscape were characterized and represented in the high-resolution model mesh. The best available soil data from field observations and literature were utilized to represent the complex heterogeneous subsurface in the numerical model. Simulation results demonstrate the ability of the developed modeling approach to capture - without recourse to model calibration - several aspects of the complex thermal regimes across the sites, and provide insights into the critical role of polygonal tundra microtopography in regulating the thermal dynamics of the carbon-rich permafrost soils. Areas of significant disagreement between model results and observations highlight the importance of field-based observations of soil thermal and

  15. Effects of temperature seasonality on tundra vegetation productivity using a daily vegetation dynamics model

    Science.gov (United States)

    Epstein, H. E.; Erler, A.; Frazier, J.; Bhatt, U. S.

    2011-12-01

    Changes in the seasonality of air temperature will elicit interacting effects on the dynamics of snow cover, nutrient availability, vegetation growth, and other ecosystem properties and processes in arctic tundra. Simulation models often do not have the fine temporal resolution necessary to develop theory and propose hypotheses for the effects of daily and weekly timescale changes on ecosystem dynamics. We therefore developed a daily version of an arctic tundra vegetation dynamics model (ArcVeg) to simulate how changes in the seasonality of air temperatures influences the dynamics of vegetation growth and carbon sequestration across regions of arctic tundra. High temporal-resolution air and soil temperature data collected from field sites across the five arctic tundra bioclimate subzones were used to develop a daily weather generator operable for sites throughout the arctic tundra. Empirical relationships between temperature and soil nitrogen were used to generate daily dynamics of soil nitrogen availability, which drive the daily uptake of nitrogen and growth among twelve tundra plant functional types. Seasonal dynamics of the remotely sensed normalized difference vegetation index (NDVI) and remotely sensed land surface temperature from the Advanced Very High Resolution Radiometer (AVHRR) GIMMS 3g dataset were used to investigate constraints on the start of the growing season, although there was no indication of any spatially consistent temperature or day-length controls on greening onset. Because of the exponential nature of the relationship between soil temperature and nitrogen mineralization, temperature changes during the peak of the growing season had greater effects on vegetation productivity than changes earlier in the growing season. However, early season changes in temperature had a greater effect on the relative productivities of different plant functional types, with potential influences on species composition.

  16. Digital necrobacillosis in Norwegian wild tundra reindeer (Rangifer tarandus tarandus).

    Science.gov (United States)

    Handeland, K; Boye, M; Bergsjø, B; Bondal, H; Isaksen, K; Agerholm, J S

    2010-07-01

    Outbreaks of digital necrobacillosis in Norwegian wild tundra reindeer (Rangifer tarandus tarandus) are described. The outbreaks occurred in late summer and autumn 2007 and 2008, subsequent to periods with an unusually high number of days with precipitation and high air temperature. Lesions were generally restricted to one foot and the disease incidence was highest in calves. Single limbs from 20 animals and six whole carcasses were submitted for laboratory examination. Gross lesions were characterized by swelling of the fetlock to coronary band area and cutaneous sinus tracts with sparse discharge of pus. Subcutaneous tissue was inflamed and oedematous with focal necrosis. Tendons, tendon sheaths, joints and periosteum of the digital bones were often affected. Animals shot during winter showed severe chronic periostitis and osteomyelitis and necrotizing deforming arthritis. Microscopically, skin lesions were characterized by deep ulcers with centrally located necrotic tissue, bordered by a zone of oedema and intense inflammation with granulation tissue and fibrosis. Necrosis, suppurative inflammation and oedema were found in the synovial membranes, tendons and tendon sheaths. Digital bone lesions were characterized by necrosis, fibrosis and extensive bone proliferation. Vasculitis and thrombosis were common in all lesions. Elongate filamentous gram-negative bacteria in necrotic lesions from all animals were identified as Fusobacterium necrophorum by fluorescence in-situ hybridization. F. necrophorum was cultured from the foot lesions of six animals. Five of these isolates were examined by 16S rRNA sequencing. The sequences were identical and differed from all other strains listed in GenBank. These results are consistent with circulation of a reindeer-adapted pathogenic strain of F. necrophorum in the wild reindeer population, causing outbreaks of digital necrobacillosis following warm and humid summers.

  17. Metagenomics reveals pervasive bacterial populations and reduced community diversity across the Alaska tundra ecosystem

    Directory of Open Access Journals (Sweden)

    Eric Robert Johnston

    2016-04-01

    Full Text Available How soil microbial communities contrast with respect to taxonomic and functional composition within and between ecosystems remains an unresolved question that is central to predicting how global anthropogenic change will affect soil functioning and services. In particular, it remains unclear how small-scale observations of soil communities based on the typical volume sampled (1-2 grams are generalizable to ecosystem-scale responses and processes. This is especially relevant for remote, northern latitude soils, which are challenging to sample and are also thought to be more vulnerable to climate change compared to temperate soils. Here, we employed well-replicated shotgun metagenome and 16S rRNA gene amplicon sequencing to characterize community composition and metabolic potential in Alaskan tundra soils, combining our own datasets with those publically available from distant tundra and temperate grassland and agriculture habitats. We found that the abundance of many taxa and metabolic functions differed substantially between tundra soil metagenomes relative to those from temperate soils, and that a high degree of OTU-sharing exists between tundra locations. Tundra soils were an order of magnitude less complex than their temperate counterparts, allowing for near-complete coverage of microbial community richness (~92% breadth by sequencing, and the recovery of twenty-seven high-quality, almost complete (>80% completeness population bins. These population bins, collectively, made up to ~10% of the metagenomic datasets, and represented diverse taxonomic groups and metabolic lifestyles tuned toward sulfur cycling, hydrogen metabolism, methanotrophy, and organic matter oxidation. Several population bins, including members of Acidobacteria, Actinobacteria, and Proteobacteria, were also present in geographically distant (~100-530 km apart tundra habitats (full genome representation and up to 99.6% genome-derived average nucleotide identity. Collectively

  18. The Blazing Arctic? Linkages of Tundra Fire Regimes to Climatic Change and Implications for Carbon Cycling (Invited)

    Science.gov (United States)

    Hu, F.; Higuera, P. E.; Walsh, J. E.; Chapman, W.; Duffy, P.; Brubaker, L.; Chipman, M. L.

    2010-12-01

    Among the major challenges in anticipating Arctic changes are “surprises” stemming from changes in system components that have remained relatively stable in the historic record. Tundra burning is potentially one such component. We conducted charcoal analysis of lake sediments from several tundra regions to evaluate the uniqueness of recent tundra fires, and examined potential climatic controls of Alaskan tundra fires from CE 1950-2009. A striking example of tundra burning is the 2007 Anaktuvuk River (AR) Fire, an unusually large fire in the tundra of the Alaskan Arctic. This fire doubled the area burned north of 68 oN in that region since record keeping began in 1950. Analysis of lake-sediment cores reveals peak values of charcoal accumulation corresponding to the AR Fire in 2007, with no evidence of other fire events in that area throughout the past five millennia. However, a number of tundra fires, including one as large as the AR Fire, have occurred over the past 60 years in western Alaska, where average summer temperatures are substantially higher than the AR area. In addition, charcoal analysis of lake sediments from interior and northwestern Alaska suggests that during certain periods of the Late Glacial and Holocene, tundra fire frequencies were as high as those of the modern boreal forests. These records along with the AR and historic fires demonstrate that tundra ecosystems support diverse fire regimes and can burn frequently. Reconciling these dramatic differences in tundra fire regimes requires knowledge of climate-fire relationships. Atmospheric reanalysis suggests that the AR Fire was favored by exceptionally warm/dry weather conditions in summer and early autumn. Boosted regression tree modeling shows that warm, dry summer conditions can explain up to 95% of the inter-annual variability in tundra area burned throughout Alaska over the past 60 years and that the response of tundra burning to climatic warming is non-linear. Additionally, tundra area

  19. Did the ancient Egyptians migrate to ancient Nigeria?

    Directory of Open Access Journals (Sweden)

    Jock M. Agai

    2014-01-01

    Full Text Available Literatures concerning the history of West African peoples published from 1900 to 1970 debate�the possible migrations of the Egyptians into West Africa. Writers like Samuel Johnson and�Lucas Olumide believe that the ancient Egyptians penetrated through ancient Nigeria but Leo�Frobenius and Geoffrey Parrinder frowned at this opinion. Using the works of these early�20th century writers of West African history together with a Yoruba legend which teaches�about the origin of their earliest ancestor(s, this researcher investigates the theories that the�ancient Egyptians had contact with the ancient Nigerians and particularly with the Yorubas.Intradisciplinary and/or interdisciplinary implications: There is an existing ideology�amongst the Yorubas and other writers of Yoruba history that the original ancestors of�the Yorubas originated in ancient Egypt hence there was migration between Egypt and�Yorubaland. This researcher contends that even if there was migration between Egypt and�Nigeria, such migration did not take place during the predynastic and dynastic period as�speculated by some scholars. The subject is open for further research.

  20. Disentangling the effects of shrubs and herbivores on tree regeneration in a dry Chaco forest (Argentina).

    Science.gov (United States)

    Tálamo, Andrés; Barchuk, Alicia H; Garibaldi, Lucas A; Trucco, Carlos E; Cardozo, Silvana; Mohr, Federico

    2015-07-01

    Successful persistence of dry forests depends on tree regeneration, which depends on a balance of complex biotic interactions. In particular, the relative importance and interactive effects of shrubs and herbivores on tree regeneration are unclear. In a manipulative study, we investigated if thornless shrubs have a direct net effect, an indirect positive effect mediated by livestock, and/or an indirect negative effect mediated by small vertebrates on tree regeneration of two key species of Chaco forest (Argentina). In a spatial association study, we also explored the existence of net positive interactions from thorny and thornless shrubs. The number of Schinopsis lorentzii seedlings was highest under artificial shade with native herbivores and livestock excluded. Even excluding livestock, no seedlings were found with natural conditions (native herbivores present with natural shade or direct sunlight) at the end of the experiment. Surprisingly, seedling recruitment was not enhanced under thornless shrubs, because there was a complementary positive effect of shade and interference. Moreover, thornless shrubs had neither positive nor negative effects on regeneration of S. lorentzii. Regeneration of Aspidosperma quebracho-blanco was minimal in all treatments. In agreement with the experiment, spatial distributions of saplings of both tree species were independent of thornless shrubs, but positively associated with thorny shrubs. Our results suggest that in general thornless shrubs may have a negligible effect and thorny shrubs a net positive effect on tree regeneration in dry forests. These findings provide a conceptual framework for testing the impact of biotic interactions on seedling recruitment in other dry forests.

  1. Influence of BRDF on NDVI and biomass estimations of Alaska Arctic tundra

    Science.gov (United States)

    Buchhorn, Marcel; Raynolds, Martha K.; Walker, Donald A.

    2016-12-01

    Satellites provide the only practical source of data for estimating biomass of large and remote areas such as the Alaskan Arctic. Researchers have found that the normalized difference vegetation index (NDVI) correlates well with biomass sampled on the ground. However, errors in NDVI and biomass estimates due to bidirectional reflectance distribution function (BRDF) effects are not well reported in the literature. Sun-sensor-object geometries and sensor band-width affect the BRDF, and formulas relating NDVI to ground-sampled biomass vary between projects. We examined the effects of these different variables on five studies that estimated above-ground tundra biomass of two common arctic vegetation types that dominate the Alaska tundra, moist acidic tussock tundra (MAT) and moist non-acidic tundra (MNT). We found that biomass estimates were up to 33% (excluding extremes) more sensitive than NDVI to BRDF effects. Variation between the sensors resulted in differences in NDVI of under 3% over all viewing geometries, and wider bands were more stable in their biomass estimates than narrow bands. MAT was more sensitive than MNT to BRDF effects due to irregularities in surface reflectance created by the tussocks. Finally, we found that studies that sampled only a narrow range of biomass and NDVI produced equations that were more difficult to correct for BRDF effects.

  2. Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature

    NARCIS (Netherlands)

    Peng, Wang; Heijmans, M.M.P.D.; Mommer, L.; Ruijven, van J.; Maximov, Trofim C.; Berendse, F.

    2016-01-01

    Climatewarming is known to increase the aboveground productivity of tundra ecosystems.
    Recently, belowground biomass is receiving more attention, but the effects of climate warming on
    belowground productivity remain unclear. Enhanced understanding of the belowground component
    of the tund

  3. Blood lead concentrations in Alaskan tundra swans: linking breeding and wintering areas with satellite telemetry

    Science.gov (United States)

    Ely, Craig R.; Franson, Christian

    2014-01-01

    Tundra swans (Cygnus columbianus) like many waterfowl species are susceptible to lead (Pb) poisoning, and Pb-induced mortality has been reported from many areas of their wintering range. Little is known however about Pb levels throughout the annual cycle of tundra swans, especially during summer when birds are on remote northern breeding areas where they are less likely to be exposed to anthropogenic sources of Pb. Our objective was to document summer Pb levels in tundra swans throughout their breeding range in Alaska to determine if there were population-specific differences in blood Pb concentrations that might pose a threat to swans and to humans that may consume them. We measured blood Pb concentrations in tundra swans at five locations in Alaska, representing birds that winter in both the Pacific Flyway and Atlantic Flyway. We also marked swans at each location with satellite transmitters and coded neck bands, to identify staging and wintering sites and determine if winter site use correlated with summer Pb concentrations. Blood Pb levels were generally low ( Blood Pb levels varied significantly across the five breeding areas, with highest concentrations in birds on the North Slope of Alaska (wintering in the Atlantic Flyway), and lowest in birds from the lower Alaska Peninsula that rarely migrate south for winter.

  4. Importance of Marine-Derived Nutrients Supplied by Planktivorous Seabirds to High Arctic Tundra Plant Communities

    Science.gov (United States)

    Zwolicki, Adrian; Zmudczyńska-Skarbek, Katarzyna; Richard, Pierre; Stempniewicz, Lech

    2016-01-01

    We studied the relative importance of several environmental factors for tundra plant communities in five locations across Svalbard (High Arctic) that differed in geographical location, oceanographic and climatic influence, and soil characteristics. The amount of marine-derived nitrogen in the soil supplied by seabirds was locally the most important of the studied environmental factors influencing the tundra plant community. We found a strong positive correlation between δ15N isotopic values and total N content in the soil, confirming the fundamental role of marine-derived matter to the generally nutrient-poor Arctic tundra ecosystem. We also recorded a strong correlation between the δ15N values of soil and of the tissues of vascular plants and mosses, but not of lichens. The relationship between soil δ15N values and vascular plant cover was linear. In the case of mosses, the percentage ground cover reached maximum around a soil δ 15N value of 8‰, as did plant community diversity. This soil δ15N value clearly separated the occurrence of plants with low nitrogen tolerance (e.g. Salix polaris) from those predominating on high N content soils (e.g. Cerastium arcticum, Poa alpina). Large colonies of planktivorous little auks have a great influence on Arctic tundra vegetation, either through enhancing plant abundance or in shaping plant community composition at a local scale. PMID:27149113

  5. Alpine forest-tundra ecotone response to temperature change, Sayan Mountains, Siberia

    Science.gov (United States)

    Kharuk, V.; Jon, R.; Im, S.

    2007-12-01

    Models of climate change predict shifts of vegetation zones. Tree response to climate trends is most likely observable in the forest-tundra ecotone, where temperature mainly limits tree growth. There is evidence of vegetation change on the northern treeline However, observations on alpine tree line response are controversial. In this NEESPI related study we show that during the past three decades in the forest-tundra ecotone of the Sayan Mountains, Siberia, there was an increase in forest stand crown closure, regeneration propagation into the alpine tundra, and transformation of prostrate Siberian pine and fir into arboreal forms. We found that these changes occurred since the mid 1980s, and strongly correlates with positive temperature (and to a lesser extent, precipitation) trends. Improving climate for forest growth( i.e., warmer temperatures and increased precipitation) provides competitive advantages to Siberian pine in the alpine forest-tundra ecotone, as well as in areas typically dominated by larch, where it has been found to be forming a secondary canopy layer. Substitution of deciduous conifer, larch, for evergreen conifers, decreases albedo and provides positive feedback for temperature increase.

  6. First Record of Setaria Tundra in Danish Roe Deer (Capreolus Capreolus)

    DEFF Research Database (Denmark)

    Enemark, Heidi L.; Harslund, Jakob le Fèvre; Oksanen, A.;

    2011-01-01

    considered harmless inhabitants of the abdominal cavity of ungulates causing only focal areas of mild chronic peritonitis. However, in recent years S. tundra has been associated with an emerging epidemic disease resulting in severe morbidity and mortality for both reindeer and moose in Finland. The Danish...

  7. Fungi benefit from two decades of increased nutrient availability in tundra heath soil

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Michelsen, Anders; Bååth, Erland

    2013-01-01

    of complex organic compounds such as vanillin, while warming has had no such effects. Furthermore, the NLFA-to-PLFA ratio for (13)C-incorporation from acetate increased in warmed plots but not in fertilized ones. Thus, fertilization cannot be used as a proxy for effects on warming in arctic tundra soils...

  8. Estimation and extrapolation of soil properties in the Siberian tundra, using field spectroscopy

    NARCIS (Netherlands)

    Bartholomeus, H.; Schaepman-Strub, G.; Blok, D.; Udaltsov, S.; Sofronov, R.

    2010-01-01

    The Siberian tundra is a complex and sensitive ecosystem. Predicted global warming will be highest in the Arctic and will severely affect permafrost environments. Due to its large spatial extent and large stocks of soil organic carbon, changes to the carbon fluxes in the Arctic will have significant

  9. Alpine forest-tundra ecotone response to temperature change,Sayan Mountains, Siberia

    Science.gov (United States)

    Ranson, K Jon; Kharuk, Vyetcheslav I.

    2007-01-01

    Models of climate change predict shifts of vegetation zones. Tree response to climate trends is most likely observable in the forest-tundra ecotone, where temperature mainly limits tree growth. There is evidence of vegetation change on the northern treeline However, observations on alpine tree line response are controversial. In this NEESPI related study we show that during the past three decades in the forest-tundra ecotone of the Sayan Mountains, Siberia, there was an increase in forest stand crown closure, regeneration propagation into the alpine tundra, and transformation of prostrate Siberian pine and fir into arboreal forms. We found that these changes occurred since the mid 1980s, and strongly correlates with positive temperature (and to a lesser extent, precipitation) trends. Improving climate for forest growth( i.e., warmer temperatures and increased precipitation) provides competitive advantages to Siberian pine in the alpine forest-tundra ecotone, as well as in areas typically dominated by larch, where it has been found to be forming a secondary canopy layer. Substitution of deciduous conifer, larch, for evergreen conifers, decreases albedo and provides positive feedback for temperature increase.

  10. Deciduous shrubs for ozone bioindication: Hibiscus syriacus as an example

    Energy Technology Data Exchange (ETDEWEB)

    Paoletti, Elena [Institut Plant Protection (IPP), National Council Research (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence (Italy)], E-mail: e.paoletti@ipp.cnr.it; Ferrara, Anna Maria [Istituto per le Piante da Legno e l' Ambiente (IPLA), Corso Casale 476, 10132 Turin (Italy); Calatayud, Vicent; Cervero, Julia [Fundacion C.E.A.M., Charles R. Darwin 14, Parc Tecnologic, 46980 Paterna, Valencia (Spain); Giannetti, Fabio [Istituto per le Piante da Legno e l' Ambiente (IPLA), Corso Casale 476, 10132 Turin (Italy); Sanz, Maria Jose [Fundacion C.E.A.M., Charles R. Darwin 14, Parc Tecnologic, 46980 Paterna, Valencia (Spain); Manning, William J. [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA 01003-9320 (United States)

    2009-03-15

    Ozone-like visible injury was detected on Hibiscus syriacus plants used as ornamental hedges. Weekly spray of the antiozonant ethylenediurea (EDU, 300 ppm) confirmed that the injury was induced by ambient ozone. EDU induced a 75% reduction in visible injury. Injury was more severe on the western than on the eastern exposure of the hedge. This factor of variability should be considered in ozone biomonitoring programmes. Seeds were collected and seedlings were artificially exposed to ozone in filtered vs. not-filtered (+30 ppb) Open-Top Chambers. The level of exposure inducing visible injury in the OTC seedlings was lower than that in the ambient-grown hedge. The occurrence of visible injury in the OTC confirmed that the ozone sensitivity was heritable and suggested that symptomatic plants of this deciduous shrub population can be successfully used as ozone bioindicators. EDU is recommended as a simple tool for diagnosing ambient ozone visible injury on field vegetation. - An Italian population of the deciduous shrub Hibiscus syriacus, a common ornamental species in temperate zones, is recommended as ozone bioindicator.

  11. Desert shrub stemflow and its significance in soil moisture replenishment

    Directory of Open Access Journals (Sweden)

    X.-P. Wang

    2011-02-01

    Full Text Available Stemflow of xerophytic shrubs represents a significant component of water replenishment to the soil-root system influencing water utilization of plant roots at the stand scale, especially in water scarce desert ecosystems. In this study, stemflow of Caragana korshinskii was quantified by an aluminum foil collar collection method on re-vegetated sand dunes of the Shapotou restored desert ecosystem in northwestern China. Time domain reflectometry probes were inserted horizontally at 20 different soil profile depths under the C. korshinskii shrub to monitor soil moisture variation at hourly intervals. Results indicated that 2.2 mm precipitation was necessary for the generation of stemflow for C. korshinskii. Stemflow averaged 8% of the gross precipitation and the average funnelling ratio was as high as 90. The soil moisture in the uppermost soil profile was strongly correlated with individual rainfall and the stemflow strengthened this relationship. Therefore, it is favourable for the infiltrated water redistribution in the deeper soil profile of the root zone. Consequently, stemflow contributes significantly to a positive soil moisture balance in the root zone and the replenishment of soil moisture at deeper soil layers. This plays an important role in plant survival and the general ecology of arid desert environments.

  12. Neonatal medicine in ancient art.

    Science.gov (United States)

    Yurdakök, Murat

    2010-01-01

    There are a limited number of artistic objects from ancient times with particular importance in neonatal medicine. The best examples are figurines from ancient Egypt of Isis nursing Horus, showing the importance of breastfeeding. The earliest images of the human fetus were made by the Olmecs in Mexico around 1200- 400 BCE. One of the earliest representations of congenital anomalies is a figurine of diencephalic twins thought to be the goddess of Anatolia, dated to around 6500 BCE. In addition to these figurines, three sets of twins in the ancient world have medical importance, and Renaissance artists often used them as a subject for their paintings: "direct suckling animals" (Romulus and Remus), "heteropaternal superfecundation" (mother: Leda, fathers: Zeus, the king of the Olympian gods, and Leda's husband, Tyndareus), and "twin-to-twin transfusion" in monozygotic twins (Jacob and Esau).

  13. Ancient "Observatories" - A Relevant Concept?

    Science.gov (United States)

    Belmonte, Juan Antonio

    It is quite common, when reading popular books on astronomy, to see a place referred to as "the oldest observatory in the world". In addition, numerous books on archaeoastronomy, of various levels of quality, frequently refer to the existence of "prehistoric" or "ancient" observatories when describing or citing monuments that were certainly not built with the primary purpose of observing the skies. Internet sources are also guilty of this practice. In this chapter, the different meanings of the word observatory will be analyzed, looking at how their significances can be easily confused or even interchanged. The proclaimed "ancient observatories" are a typical result of this situation. Finally, the relevance of the concept of the ancient observatory will be evaluated.

  14. Skeletal dysplasia in ancient Egypt.

    Science.gov (United States)

    Kozma, Chahira

    2008-12-01

    The ancient Egyptian civilization lasted for over 3000 years and ended in 30 BCE. Many aspects of ancient Egyptian culture, including the existence of skeletal dysplasias, and in particular achondroplasia, are well known through the monuments and records that survived until modern times. The hot and dry climate in Egypt allowed for the preservation of bodies and skeletal anomalies. The oldest dwarf skeleton, the Badarian skeleton (4500 BCE), possibly represents an epiphyseal disorder. Among the remains of dwarfs with achondroplasia from ancient Egypt (2686-2190 BCE), exists a skeleton of a pregnant female, believed to have died during delivery with a baby's remains in situ. British museums have partial skeletons of dwarfs with achondroplasia, humeri probably affected with mucopolysaccharidoses, and a skeleton of a child with osteogenesis imperfecta. Skeletal dysplasia is also found among royal remains. The mummy of the pharaoh Siptah (1342-1197 BCE) shows a deformity of the left leg and foot. A mummified fetus, believed to be the daughter of king Tutankhamun, has scoliosis, spina bifida, and Sprengel deformity. In 2006 I reviewed the previously existing knowledge of dwarfism in ancient Egypt. The purpose of this second historical review is to add to that knowledge with an expanded contribution. The artistic documentation of people with skeletal dysplasia from ancient Egypt is plentiful including hundreds of amulets, statues, and drawing on tomb and temple walls. Examination of artistic reliefs provides a glance of the role of people with skeletal dysplasia and the societal attitudes toward them. Both artistic evidence and moral teachings in ancient Egypt reveal wide integration of individuals with disabilities into the society.

  15. Snowmelt runoff from northern alpine tundra hillslopes: major processes and methods of simulation

    Directory of Open Access Journals (Sweden)

    W. L. Quinton

    2004-01-01

    Full Text Available In northern alpine tundra, large slope gradients, late-lying snow drifts and shallow soils overlying impermeable substrates all contribute to large hillslope runoff volumes during the spring freshet. Understanding the processes and pathways of hillslope runoff in this environment is, therefore, critical to understanding the water cycle within northern alpine tundra ecosystems. This study: (a presents the results of a field study on runoff from a sub-alpine tundra hillslope with a large snow drift during the spring melt period; (b identifies the major runoff processes that must be represented in simulations of snowmelt runoff from sub-alpine tundra hillslopes; (c describes how these processes can be represented in a numerical simulation model; and d compares field measurements with modelled output to validate or refute the conceptual understanding of runoff generation embodied in the process simulations. The study was conducted at Granger Creek catchment, 15 km south of Whitehorse, Yukon Territory, Canada, on a north-facing slope below a late-lying snow drift. For the freshet period, the major processes to be represented in a runoff model include the rate of meltwater release from the late-lying snowdrift, the elevation and thickness of the saturated layer, the magnitude of the soil permeability and its variation with depth. The daily cycle of net all-wave radiation was observed to drive the diurnal pulses of melt water from the drift; this, in turn, was found to control the daily pulses of flow through the hillslope subsurface and in the stream channel. The computed rate of frost table lowering fell within the observed values; however, there was wide variation among the measured frost table depths. Spatial variability in frost table depth would result in spatial variabilities in saturated layer depth and thickness, which would, in turn, produce variations in subsurface flow rates over the slope, including preferential flowpaths. Keywords

  16. Night blindness and ancient remedy

    Directory of Open Access Journals (Sweden)

    H.A. Hajar Al Binali

    2014-01-01

    Full Text Available The aim of this article is to briefly review the history of night blindness and its treatment from ancient times until the present. The old Egyptians, the Babylonians, the Greeks and the Arabs used animal liver for treatment and successfully cured the disease. The author had the opportunity to observe the application of the old remedy to a patient. Now we know what the ancients did not know, that night blindness is caused by Vitamin A deficiency and the animal liver is the store house for Vitamin A.

  17. Tuberculosis in ancient times

    Directory of Open Access Journals (Sweden)

    Louise Cilliers

    2008-09-01

    Full Text Available In spite of an array of effective antibiotics, tuberculosis is still very common in developing countries where overcrowding, malnutrition and poor hygienic conditions prevail. Over the past 30 years associated HIV infection has worsened the situation by increasing the infection rate and mortality of tuberculosis. Of those diseases caused by a single organism only HIV causes more deaths internationally than tuberculosis. The tubercle bacillus probably first infected man in Neolithic times, and then via infected cattle, but the causative Mycobacteriacea have been in existence for 300 million years. Droplet infection is the most common way of acquiring tuberculosis, although ingestion (e.g. of infected cows’ milk may occur. Tuberculosis probably originated in Africa. The earliest path gnomonic evidence of human tuberculosis in man was found in osteo-archaeological findings of bone tuberculosis (Pott’s disease of the spine in the skeleton of anEgyptian priest from the 21st Dynasty (approximately 1 000 BC. Suggestive but not conclusiveevidence of tuberculotic lesions had been found in even earlier skeletons from Egypt and Europe. Medical hieroglyphics from ancient Egypt are silent on the disease, which could be tuberculosis,as do early Indian and Chinese writings. The Old Testament refers to the disease schachapeth, translated as phthisis in the Greek Septuagint. Although the Bible is not specific about this condition, tuberculosis is still called schachapeth in modern Hebrew. In pre-Hippocratic Greece Homer did not mention phthisis, a word meaning non-specific wasting of the body. However. Alexander of Tralles (6th century BC seemed to narrow the concept down to a specific disease, and in the Hippocratic Corpus (5th-4th centuries BC phthisis can be recognised as tuberculosis. It was predominantly a respiratory disease commonly seen and considered to be caused by an imbalance of bodily humours. It was commonest in autumn, winter and spring

  18. Gulf-Wide Information System, Environmental Sensitivity Index Scrub-Shrub and Wetlands, Geographic NAD83, LDWF (2001) [esi_scrub-shrub_wetland_LDWF_2001

    Data.gov (United States)

    Louisiana Geographic Information Center — This data set contains Environmental Sensitivity Index (ESI) scrub-shrub and wetlands data of coastal Louisiana. The ESI is a classification and ranking system,...

  19. Phylogenetic estimation of timescales using ancient DNA

    DEFF Research Database (Denmark)

    Molak, Martyna; Lorenzen, Eline; Shapiro, Beth;

    2013-01-01

    In recent years, ancient DNA has increasingly been used for estimating molecular timescales, particularly in studies of substitution rates and demographic histories. Molecular clocks can be calibrated using temporal information from ancient DNA sequences. This information comes from the ages...

  20. The eye and its diseases in Ancient Egypt

    DEFF Research Database (Denmark)

    Andersen, S. Ry

    1997-01-01

    Ophthalmology, History of ophthalmology, eyes in the Ancient Egypt, eye disease in Ancient Egypt, porotic hyperostosis, mummification......Ophthalmology, History of ophthalmology, eyes in the Ancient Egypt, eye disease in Ancient Egypt, porotic hyperostosis, mummification...

  1. Atlas of United States Trees, Volume 2: Alaska Trees and Common Shrubs.

    Science.gov (United States)

    Viereck, Leslie A.; Little, Elbert L., Jr.

    This volume is the second in a series of atlases describing the natural distribution or range of native tree species in the United States. The 82 species maps include 32 of trees in Alaska, 6 of shrubs rarely reaching tree size, and 44 more of common shrubs. More than 20 additional maps summarize environmental factors and furnish general…

  2. The Relationship between an Invasive Shrub and Soil Moisture: Seasonal Interactions and Spatially Covarying Relations

    Directory of Open Access Journals (Sweden)

    Yuhong He

    2014-09-01

    Full Text Available Recent studies indicate that positive relationships between invasive plants and soil can contribute to further plant invasions. However, it remains unclear whether these relations remain unchanged throughout the growing season. In this study, spatial sequences of field observations along a transect were used to reveal seasonal interactions and spatially covarying relations between one common invasive shrub (Tartarian Honeysuckle, Lonicera tatarica and soil moisture in a tall grassland habitat. Statistical analysis over the transect shows that the contrast between soil moisture in shrub and herbaceous patches vary with season and precipitation. Overall, a negatively covarying relationship between shrub and soil moisture (i.e., drier surface soils at shrub microsites exists during the very early growing period (e.g., May, while in summer a positively covarying phenomenon (i.e., wetter soils under shrubs is usually evident, but could be weakened or vanish during long precipitation-free periods. If there is sufficient rainfall, surface soil moisture and leaf area index (LAI often spatially covary with significant spatial oscillations at an invariant scale (which is governed by the shrub spatial pattern and is about 8 m, but their phase relation in space varies with season, consistent with the seasonal variability of the co-varying phenomena between shrub invasion and soil water content. The findings are important for establishing a more complete picture of how shrub invasion affects soil moisture.

  3. Errors in LiDAR-derived shrub height and crown area on sloped terrain

    Science.gov (United States)

    This study developed and tested four methodologies for determining shrub height measurements with LiDAR data in a semiarid shrub-steppe in southwestern Idaho, USA. Unique to this study was the focus of sagebrush height measurements on sloped terrain. The study also developed one of the first metho...

  4. Methods of limiting willow shrub re-growth after initial removal on fen meadows

    NARCIS (Netherlands)

    Klimkowska, Agata; Dzierza, Paulina; Kotowski, Wiktor; Brzezinska, Kamila

    2010-01-01

    Shrub removal is commonly used for management and restoration of species-rich fen meadows. A common problem after initial shrub cutting of willow is a vigorous re-sprouting and quick re-growth. In this paper we test experimentally what is an effective management option, limiting the re-growth of wil

  5. Distribution, Use Pattern and Prospects for Conservation of Medicinal Shrubs in Uttaranchal State, India

    Institute of Scientific and Technical Information of China (English)

    Bhupendra S. Adhikari; Mani M. Babu; Prem L. Saklani; Gopal S. Rawat

    2007-01-01

    The present paper gives an insight into the distribution and use pattern of medicinal shrubs in Uttaranchal State. A total of 222 medicinal and aromatic shrub species have been appended based on secondary information. Euphorbiaceae, Rosaceae,Verbenaceae, and Fabaceae have the highest representatives of medicinal shrubs. Twenty one families had one species each in medicinal use. Verbenaceae and Euphorbiaceae in the sub-tropical region,Rosaceae in the temperate region, and Ericaceae and Rosaceae in the sub-alpine and alpine regions,respectively, had the highest representatives of medicinal shrubs. The distribution of medicinal shrubs was 42 % in sub-tropical, 29 % in warm temperate, 13 % in cool temperate, 9 % in sub-alpine and 7 % in the alpine region. Of the total species, 70 medicinal shrubs were native to the Himalayas and 22 native to Himalayan region including other Himalayan countries. The most frequently used plant parts for various ailments were leaves (31%) and roots (23%). Most shrubs are being used for the diseases, viz.skin diseases, dysentery, cough, fever, wounds, and rheumatism. The present paper will help in the execution of strategies for promotion and cultivation of medicinal shrubs in Uttaranchal State.

  6. From protege to nurse plant : Establishment of thorny shrubs in grazed temperate woodlands

    NARCIS (Netherlands)

    Smit, Christian; Ruifrok, Jasper Laurens

    2011-01-01

    Question Thorny shrubs play keystone roles in grazed ecosystems by defending non-protected plants against herbivores, but their establishment in grazed ecosystems is poorly understood. Which factors control establishment of recruits of thorny nurse shrubs in grazed temperate woodlands? Location Anci

  7. The invasive shrub Piper aduncum in Papua New Guinea: a review

    NARCIS (Netherlands)

    Hartemink, A.E.

    2010-01-01

    HARTEMINK AE. 2010. The invasive shrub Piper aduneum in Papua New Guinea: a review. Piper aduncum is a shrub native to Central America. It is found in most Central and South American countries and also in the Caribbean and southern Florida (USA). In Asia and the Pacific, P aduncum occurs in Indonesi

  8. The ancient art of memory.

    Science.gov (United States)

    Hobson, Allan

    2013-12-01

    Revision of Freud's theory requires a new way of seeking dream meaning. With the idea of elaborative encoding, Sue Llewellyn has provided a method of dream interpretation that takes into account both modern sleep science and the ancient art of memory. Her synthesis is elegant and compelling. But is her hypothesis testable?

  9. Ancient medicine--a review.

    Science.gov (United States)

    Zuskin, Eugenija; Lipozencić, Jasna; Pucarin-Cvetković, Jasna; Mustajbegović, Jadranka; Schachter, Neil; Mucić-Pucić, Branka; Neralić-Meniga, Inja

    2008-01-01

    Different aspects of medicine and/or healing in several societies are presented. In the ancient times as well as today medicine has been closely related to magic, science and religion. Various ancient societies and cultures had developed different views of medicine. It was believed that a human being has two bodies: a visible body that belongs to the earth and an invisible body of heaven. In the earliest prehistoric days, a different kind of medicine was practiced in countries such as Egypt, Greece, Rome, Mesopotamia, India, Tibet, China, and others. In those countries, "medicine people" practiced medicine from the magic to modern physical practices. Medicine was magical and mythological, and diseases were attributed mostly to the supernatural forces. The foundation of modern medicine can be traced back to ancient Greeks. Tibetan culture, for instance, even today, combines spiritual and practical medicine. Chinese medicine developed as a concept of yin and yang, acupuncture and acupressure, and it has even been used in the modern medicine. During medieval Europe, major universities and medical schools were established. In the ancient time, before hospitals had developed, patients were treated mostly in temples.

  10. Ancient and modern environmental DNA

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Winther; Overballe-Petersen, Søren; Ermini, Luca

    2015-01-01

    DNA obtained from environmental samples such as sediments, ice or water (environmental DNA, eDNA), represents an important source of information on past and present biodiversity. It has revealed an ancient forest in Greenland, extended by several thousand years the survival dates for mainland woo...

  11. A Huge Ancient Schwannoma of the Epiglottis.

    Science.gov (United States)

    Lee, Dong Hoon; Kim, Jo Heon; Yoon, Tae Mi; Lee, Joon Kyoo; Lim, Sang Chul

    2016-03-01

    Ancient schwannoma of the epiglottis is extremely rare. The authors report the first case of a patient with a huge ancient schwannoma of the epiglottis. Clinicians should consider the possibility that ancient schwannoma may originate in the epiglottis mimicking the other more frequently observed lesions.

  12. Assessing the Relationship Between Spectral Vegetation Indices and Shrub Cover in the Jornada Basin, New Mexico

    Science.gov (United States)

    Duncan, Jeff; Stow, D.; Franklin, J.; Hope, A.

    1993-01-01

    We assessed the statistical relations between Spectral Vegetation Indices (SVI's) derived from SPOT multi-spectral data and semi-arid shrub cover at the Jornada LTER site in New Mexico. Despite a limited range of shrub cover in the sample the analyses resulted in r(sup 2) values as high as 0 central dot 77. Greenness SVI's (e.g., Simple Ratio, NDVI, SAVI, PVI and an orthogonal Greenness index) were shown to be more sensitive to shrub type and phenology than brightness SVis (e.g., green, red and near-infrared reflectances and a Brightness index). The results varied substantially with small-scale changes in plot size (60m by 60m to 100m by 100m) as a consequence of landscape heterogeneity. The results also indicated the potential for the spectral differentiation of shrub types, and shrubs from grass, using multi-temporal, multi-spectral analysis.

  13. Deciduous shrubs for ozone bioindication: Hibiscus syriacus as an example.

    Science.gov (United States)

    Paoletti, Elena; Ferrara, Anna Maria; Calatayud, Vicent; Cerveró, Júlia; Giannetti, Fabio; Sanz, María José; Manning, William J

    2009-03-01

    Ozone-like visible injury was detected on Hibiscus syriacus plants used as ornamental hedges. Weekly spray of the antiozonant ethylenediurea (EDU, 300ppm) confirmed that the injury was induced by ambient ozone. EDU induced a 75% reduction in visible injury. Injury was more severe on the western than on the eastern exposure of the hedge. This factor of variability should be considered in ozone biomonitoring programmes. Seeds were collected and seedlings were artificially exposed to ozone in filtered vs. not-filtered (+30ppb) Open-Top Chambers. The level of exposure inducing visible injury in the OTC seedlings was lower than that in the ambient-grown hedge. The occurrence of visible injury in the OTC confirmed that the ozone sensitivity was heritable and suggested that symptomatic plants of this deciduous shrub population can be successfully used as ozone bioindicators. EDU is recommended as a simple tool for diagnosing ambient ozone visible injury on field vegetation.

  14. Ozone susceptibility of selected woody shrubs and vines

    Energy Technology Data Exchange (ETDEWEB)

    Davis, D.D.; Coppolino, J.B.

    1976-10-01

    Thirteen species of woody shrubs and vines were exposed to 0.25 ppm ozone for 8 hours at biweekly intervals throughout the 1975 growing season. A different set of plants was utilized in each biweekly exposure. The most susceptible species was staghorn sumac (Rhus typhina), followed in descending order of susceptibility by Virginia creeper (Parthenocissus quinquefolia), Indian currant (coral berry) (Symphoricarpus orbiculatus), American elder (Sambucus canadensis), dwarf ninebark (Physocarpus opulifolius), multiflora rose (Rosa multiflora), smooth sumac (Rhus glabra), redosier dogwood (Cornus stolonifera), silky dogwood (Cornus amomum), autumn olive (Elaeagnus angustifolia), white snowberry (Symphoricarpus albus), bittersweet (Celastrus scandens), and Morrow honeysuckle (Lonicera morrowi). The latter three species were very resistant. The most common symptom induced by ozone was a dark pigmented stipple on the upper leaf surface. The foliage of all species became increasingly resistant toward the end of the growing season.

  15. Central planning, market and subsistence from a tundra perspective: Field experience with reindeer herders in the Kola Peninsula

    Directory of Open Access Journals (Sweden)

    Dessislav Sabev

    2002-04-01

    Full Text Available This paper is based on field experience in the tundra camp of a reindeer-herding brigade with mixed ethnic background (Komi, Sami, Nenets, Russians belonging to the ex-Sovkhoz of Krasnoschelie. Its purpose is to situate the new critical issues facing the reindeer-herding collectives after the economic collapse in Russia in 1998. My main argument is that the increasing economic isolation of the tundra periphery forces the herders to redefine their relationship with both the centre(s and the other tundra actors. Reindeer herding on the Kola Peninsula is analysed in relation to its heterogeneous economic system defined by the old Sovkhoz-like management and the new Western buyer of reindeer meat. Furthermore, the social environment in the herding territories has changed since the deterioration of the central planning economy, implying new renewable resources' users. After massive loss of jobs, militaries, miners and geologists came into the tundra for substantial hunting and fishing and so became actors in the local informal economy. Finally, tundra-located herders and hunters seem to be somewhere unified by a discourse against the town-based administrative power and economic actors such as mining industry. Therefore herders have to deal with both an old administrative system in the agrocentre and new realities in the tundra. Based on a case study of herding/hunting activities in a tundra camp, the paper analyses the social relationships between the different actors in the post-Soviet Kola tundra and express their quest for solutions.

  16. Local biotic adaptation of trees and shrubs to plant neighbors

    Science.gov (United States)

    Grady, Kevin C.; Wood, Troy E.; Kolb, Thomas E.; Hersch-Green, Erika; Shuster, Stephen M.; Gehring, Catherine A.; Hart, Stephen C.; Allan, Gerard J.; Whitham, Thomas G.

    2017-01-01

    Natural selection as a result of plant–plant interactions can lead to local biotic adaptation. This may occur where species frequently interact and compete intensely for resources limiting growth, survival, and reproduction. Selection is demonstrated by comparing a genotype interacting with con- or hetero-specific sympatric neighbor genotypes with a shared site-level history (derived from the same source location), to the same genotype interacting with foreign neighbor genotypes (from different sources). Better genotype performance in sympatric than allopatric neighborhoods provides evidence of local biotic adaptation. This pattern might be explained by selection to avoid competition by shifting resource niches (differentiation) or by interactions benefitting one or more members (facilitation). We tested for local biotic adaptation among two riparian trees, Populus fremontii and Salix gooddingii, and the shrub Salix exigua by transplanting replicated genotypes from multiple source locations to a 17 000 tree common garden with sympatric and allopatric treatments along the Colorado River in California. Three major patterns were observed: 1) across species, 62 of 88 genotypes grew faster with sympatric neighbors than allopatric neighbors; 2) these growth rates, on an individual tree basis, were 44, 15 and 33% higher in sympatric than allopatric treatments for P. fremontii, S. exigua and S. gooddingii, respectively, and; 3) survivorship was higher in sympatric treatments for P. fremontiiand S. exigua. These results support the view that fitness of foundation species supporting diverse communities and dominating ecosystem processes is determined by adaptive interactions among multiple plant species with the outcome that performance depends on the genetic identity of plant neighbors. The occurrence of evolution in a plant-community context for trees and shrubs builds on ecological evolutionary research that has demonstrated co-evolution among herbaceous taxa, and

  17. Does fire severity influence shrub resprouting after spring prescribed burning?

    Science.gov (United States)

    Fernández, Cristina; Vega, José A.; Fonturbel, Teresa

    2013-04-01

    Prescribed burning is commonly used to reduce the risk of severe wildfire. However, further information about the associated environmental effects is required to help forest managers select the most appropriate treatment. To address this question, we evaluated if fire severity during spring prescribed burning significantly affects the resprouting ability of two common shrub species in shrubland under a Mediterranean climate in NW Spain. Fire behaviour and temperatures were recorded in tagged individuals of Erica australis and Pterospartum tridentatum during prescribed burning. The number and length of resprouted shoots were measured three times (6, 12 and 18 months) after the prescribed burning. The influence of a series of fire severity indicators on some plant resprouting vigour parameters was tested by canonical correlation analysis. Six months and one year after prescribed burning, soil burn severity (measured by the absolute reduction in depth of the organic soil layer, maximum temperatures in the organic soil layer and the mineral soil surface during burning and the post-fire depth of the organic soil layer) reduced the resprouting vigour of E. australis and P. tridentatum. In contrast, direct measurements of fire effects on plants (minimum branch diameter, duration of temperatures above 300 °C in the shrub crown and fireline intensity) did not affect the post-fire plant vigour. Soil burn severity during spring prescribed burning significantly affected the short-term resprouting vigour in a mixed heathland in Galicia. The lack of effects eighteen months after prescribed burning indicates the high resilience of these species and illustrates the need to conciliate fire prevention and conservation goals.

  18. Efficacy of different treatment regimes against setariosis (Setaria tundra, Nematoda: Filarioidea and associated peritonitis in reindeer

    Directory of Open Access Journals (Sweden)

    Nieminen Mauri

    2008-12-01

    Full Text Available Abstract Background When a severe peritonitis outbreak in semi-domesticated reindeer was noticed in 2003 in Finland, the concerned industry urged immediate preventive actions in order to avoid detrimental effects of S. tundra and further economical losses. A research programme was swiftly initiated to study S. tundra and its impact on the health and wellbeing of reindeer. Methods The ultimate aim of this study was to test the efficacy of different treatment regimes against S. tundra and associated peritonitis in reindeer. The timing of the trials was planned to be compatible with the annual rhythm of the reindeer management; (1 the treatment of calves in midsummer, during routine calf ear marking, with ivermectin injection prophylaxis and deltamethrin pour-on solution as a repellent against insect vectors, (2 the treatment of infected calves in early autumn with ivermectin injection, and (3 ivermectin treatment of breeding reindeer in winter. The results were assessed using the post mortem inspection data and S. tundra detection. Finally, to evaluate on the population level the influence of the annual (late autumn-winter ivermectin treatment of breeding reindeer on the transmission dynamics of S. tundra, a questionnaire survey was conducted. Results In autumn, ivermectin treatment was efficient against peritonitis and in midsummer had a slight negative impact on the degree of peritonitis and positive on the fat layer, but deltamethrin had none. Ivermectin was efficient against adult S. tundra and its smf. All the reindeer herding cooperatives answered the questionnaire and it appeared that antiparasitic treatment of reindeer population was intense during the study period, when 64–90% of the animals were treated. In the southern part of the Finnish reindeer husbandry area, oral administration of ivermectin was commonly used. Conclusion Autumn, and to a lesser degree summer, treatment of reindeer calves with injectable ivermectin resulted in

  19. An ancient bison from the mouth of the Rauchua River (Chukotka, Russia)

    Science.gov (United States)

    Kirillova, Irina V.; Zanina, Oksana G.; Chernova, Olga F.; Lapteva, Elena G.; Trofimova, Svetlana S.; Lebedev, Vladimir S.; Tiunov, Alexei V.; Soares, Andre E. R.; Shidlovskiy, Fedor K.; Shapiro, Beth

    2015-09-01

    An incomplete carcass of an extinct bison, Bison ex gr. priscus, was discovered in 2012 in the mouth of the Rauchua River (69°30‧N, 166°49‧E), Chukotka. The carcass included the rump with two hind limbs, ribs, and large flap of hide from the abdomen and sides, several vertebrae, bones of the forelimbs and anterior autopodia, stomach with its contents, and wool. The limb bones are relatively gracile, which is unusual in bison, and a SEM study of the hair microstructure suggests higher insulating capacity than in extant members of the genus. Additionally, mitochondrial DNA analyses indicate that the Rauchua bison belonged to a distinct and previously unidentified lineage of steppe bison. Two radiocarbon dates suggest a Holocene age for the bison: a traditional 14C date provided an estimate of 8030 ± 70 14C yr ВР (SPb-743) and an AMS radiocarbon date provided an age of 9497 ± 92 14C yr BP (AA101271). These dates make this the youngest known bison from Chukotka. Analysis of stomach contents revealed a diet of herbaceous plants (meadow grasses and sedges) and shrubs, suggesting that the early Holocene vegetation near the mouth of the Rauchua River was similar to that of the present day: tundra-associated vegetation with undersized plants.

  20. Migration of vascular plant species to a recent wood adjoining ancient woodland

    Directory of Open Access Journals (Sweden)

    Zbigniew Dzwonko

    2014-01-01

    Full Text Available Woodland communities can be restored by natural succession in sites adjoining ancient woodlands which can act as seed sources for trees, shrubs and woodland herbs. The influence of dominant tree species and the distance from an adjacent ancient oak-hornbeam woodland upon the floristic composition of species in a recent pine wood planted on dry rendzina soil were studied. It was found that, in spite of a 52-year long succession, the border between woods was sharp and the composition of species in the recent wood were significantly different than in the adjacent ancient woodland. Canonical correspondence analysis (CCA showed that the distance to the ancient woodland had a significant influence on species distributions in the recent wood. The numbers of species from the Querco-Fagetea class, vegetatively reproducing species and myrmecochores decreased with this distance, whereas the numbers of anemochores increased. The migration rate of many woodland species, calculated on occurrence of the farthest individuals was very slow, varying from 0.0 m year-1 to 0.38 m year-1. The restoration of the field layer vegetation in the studied pine wood was much slower than in recent deciduous woods on rich and moist soils where the migration rate of some species exceeded 1.50 m year-1. Recent woods adjacent to ancient woodlands can be more effectively colonised by woodland species only when they are dominated by broad-leaved trees with quickly decomposing litter, and the spatial continuity of these woods persists for a long period.

  1. Shrubs as landscape modulators in semiarid shrubland - long-term studies in Park Shaked LTER, Israel

    Science.gov (United States)

    Boeken, Bertrand; Shachak, Moshe; Zaady, Eli; Brand, Sol

    2010-05-01

    Small shrubs (Atractylis serratuloides and Noaea mucronata) in semiarid shrublands of the northern Negev of Israel (at 150 to 200 mm of rainfall per year) form shrub patches in the soil crust matrix by multiple changes in their immediate environment. The changes include structural modification by creation of a soil mound and water flow redistribution, which produce enriched soil moisture patches. These changes have far-reaching effects on water regime, soil erosion and biological productivity and diversity in watersheds. Landscape modulation by the shrub patches results from: 1) interactions of the growing shrubs with flows of water, sediment and organic matter by wind and runoff, 2) accumulation of material deposited under the shrub canopy, 3) changes in the topography and structure of the surface and substrate near and under the shrubs, 4) successional replacement of shrub species, and 5) colonization by a herbaceous understory. The patch formation processes are linked, resulting in positive feedback relationships between the growing shrub, the properties of the mound underneath, the interception of resource flows, and the density of the herbaceous understory vegetation. Since the shrub patches intercept resource flows, and form patterns of patches on the slopes, they have larger-scale effects on the functioning of the ecosystem by controlling the retention and leakage of resources in the watershed. At the slope scale this gives rise to positive and negative feedbacks. Accumulation of material causes mound expansion, increasing deposition (positive feedback 1), while increased resource retention enhances shrub and herbaceous growth, also causing more accumulation and retention (positive feedback 2). On the other hand, when mounds increase, soil crust cover that generates runoff decreases, halting the process of shrub patch expansion (negative feedback). We present a conceptual model of a growing shrub patch with its direct and large-scale effects on the

  2. Protection from livestock fails to deter shrub proliferation in a desert landscape with a history of heavy grazing

    Science.gov (United States)

    Desertification is often characterized by the replacement of mesophytic grasses with xerophytic shrubs. Livestock grazing is considered a key driver of shrub encroachment, although most evidence is anecdotal or confounded by other factors. Mapping of velvet mesquite (Prosopis velutina) shrubs in and...

  3. Mediterranean shrub vegetation: soil protection vs. water availability

    Science.gov (United States)

    García Estringana, Pablo; Nieves Alonso-Blázquez, M.; Alegre, Alegre; Cerdà, Artemi

    2014-05-01

    Soil Erosion and Land Degradation are closely related to the changes in the vegetation cover (Zhao et al., 2013). Although other factors such as rainfall intensiy or slope (Ziadat and Taimeh, 2013) the plant covers is the main factor that controls the soil erosion (Haregeweyn, 2013). Plant cover is the main factor of soil erosion processes as the vegetation control the infiltration and runoff generation (Cerdà, 1998a; Kargar Chigani et al., 2012). Vegetation cover acts in a complex way in influencing on the one hand on runoff and soil loss and on the other hand on the amount and the way that rainfall reaches the soil surface. In arid and semiarid regions, where erosion is one of the main degradation processes and water is a scant resource, a minimum percentage of vegetation coverage is necessary to protect the soil from erosion, but without compromising the availability of water (Belmonte Serrato and Romero Diaz, 1998). This is mainly controlled by the vegetation distribution (Cerdà, 1997a; Cammeraat et al., 2010; Kakembo et al., 2012). Land abandonment is common in Mediterranean region under extensive land use (Cerdà, 1997b; García-Ruiz, 2010). Abandoned lands typically have a rolling landscape with steep slopes, and are dominated by herbaceous communities that grow on pasture land interspersed by shrubs. Land abandonment use to trigger an increase in soil erosion, but the vegetation recovery reduces the impact of the vegetation. The goal of this work is to assess the effects of different Mediterranean shrub species (Dorycnium pentaphyllum Scop., Medicago strasseri, Colutea arborescens L., Retama sphaerocarpa, L., Pistacia Lentiscus L. and Quercus coccifera L.) on soil protection (runoff and soil losses) and on rainfall reaching soil surface (rainfall partitioning fluxes). To characterize the effects of shrub vegetation and to evaluate their effects on soil protection, two field experiments were carried out. The presence of shrub vegetation reduced runoff by

  4. Alaska tundra vegetation trends and their links to the large-scale climate

    Science.gov (United States)

    Bieniek, P. A.; Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Comiso, J. C.

    2011-12-01

    The arctic Normalized Vegetation Index (NDVI) data set (a measure of vegetation photosynthetic capacity) has been used to document coherent temporal relationships between near-coastal sea ice, summer tundra land surface temperatures, and vegetation productivity throughout the Arctic (Bhatt et al. 2010). Land warming over North America has displayed larger trends (+30%) when compared to Eurasia (+16%) since 1982. In the tundra of northern Alaska the greatest change was found in absolute maximum NDVI along the Beaufort Sea coast (+14%). In contrast, tundra areas in southwest Alaska along the Bering Sea have seen a decline (-4%). Greenup date in these regions has been occurring as much as 1-4 days earlier per decade, but trends are mixed. Winter snow water equivalent (SWE) has only increased slightly (+0.1 mm/yr) in the Arctic region of Alaska since 1987 (R. Muskett, personal communication). These findings suggest that there have been changes in the seasonal climate in Alaska during the NDVI record. The tundra trends are further investigated by evaluating remotely sensed sea ice, surface air temperature, SWE, daily snow cover, and NDVI3g. While the snow data has a relatively short record (1999-2010), notable trends can be observed in snow melt, occurring as much 15 days earlier per decade in northern Alaska. Unfortunately, other snow data sets have been found to be problematic and could not be used to extend our analysis. This highlights the need for a long-term pan-arctic snow data set that is suitable for climate analysis. Possible climate drivers are also investigated. Results show that the summer tundra, in terms of NDVI and summer warmth index (SWI), has few direct links with the large-scale climate. However, the sea ice concentration along the coast of the tundra regions has strong preseason links to the large-scale climate. This suggests that the large-scale climate influences the sea ice concentration which then affects the NDVI and SWI. Three tundra regions

  5. Mapping Arctic Tundra Vegetation Communities Using Field Spectroscopy and Multispectral Satellite Data in North Alaska, USA

    Directory of Open Access Journals (Sweden)

    Scott J. Davidson

    2016-11-01

    Full Text Available The Arctic is currently undergoing intense changes in climate; vegetation composition and productivity are expected to respond to such changes. To understand the impacts of climate change on the function of Arctic tundra ecosystems within the global carbon cycle, it is crucial to improve the understanding of vegetation distribution and heterogeneity at multiple scales. Information detailing the fine-scale spatial distribution of tundra communities provided by high resolution vegetation mapping, is needed to understand the relative contributions of and relationships between single vegetation community measurements of greenhouse gas fluxes (e.g., ~1 m chamber flux and those encompassing multiple vegetation communities (e.g., ~300 m eddy covariance measurements. The objectives of this study were: (1 to determine whether dominant Arctic tundra vegetation communities found in different locations are spectrally distinct and distinguishable using field spectroscopy methods; and (2 to test which combination of raw reflectance and vegetation indices retrieved from field and satellite data resulted in accurate vegetation maps and whether these were transferable across locations to develop a systematic method to map dominant vegetation communities within larger eddy covariance tower footprints distributed along a 300 km transect in northern Alaska. We showed vegetation community separability primarily in the 450–510 nm, 630–690 nm and 705–745 nm regions of the spectrum with the field spectroscopy data. This is line with the different traits of these arctic tundra communities, with the drier, often non-vascular plant dominated communities having much higher reflectance in the 450–510 nm and 630–690 nm regions due to the lack of photosynthetic material, whereas the low reflectance values of the vascular plant dominated communities highlight the strong light absorption found here. High classification accuracies of 92% to 96% were achieved using

  6. Carbon dioxide exchange in three tundra sites show a dissimilar response to environmental variables

    DEFF Research Database (Denmark)

    Mbufong, Herbert Njuabe; Lund, Magnus; Christensen, Torben Røjle

    2015-01-01

    variability. An improved understanding of the control of ancillary variables on net ecosystem exchange (NEE), gross primary production (GPP) and ecosystem respiration (Re) will improve the accuracy with which CO2 exchange seasonality in Arctic tundra ecosystems is modelled. Fluxes were measured with the eddy...... Lake. Growing season NEE correlated mainly to cumulative radiation and temperature-related variables at Zackenberg, while at Daring Lake the same variables showed significant correlations with the partitioned fluxes (GPP and Re). Stordalen was temperature dependent during the growing season. This study...... emphasizes the inherent need for a standardized year round measurement and analytical routine of CO2 fluxes and ancillary variables, and investigations into the interconnectedness of ancillary variables in the Arctic tundra....

  7. Experimentally substantiated equations of the interrelations between the agrochemical characteristics of tundra soils

    Science.gov (United States)

    Vasil'Evskaya, V. D.; Grigor'ev, V. Ya.; Pogozhev, E. Yu.; Pogozheva, E. A.

    2011-01-01

    The detailed analysis of the results obtained in the course of experimental studying of the tundra soils in Western and Central Siberia and in the European part of Russia has revealed the general regularities of the variability and the relationships between the agrochemical and other properties of the soils. On the basis of these data, the calculated methods for the assessment of a complex of agrochemical properties of natural and disturbed tundra soils under different moisture and thermal conditions were elaborated. Among the properties analyzed, the following are important for plant growth: the acidity and the content of humus, organic carbon, total nitrogen, mobile phosphorus, nitrogen, and potassium. The relationships between the soil agro-chemical properties and the plant productivity allowed applying them for the quantitative evaluation of the environmental threat of the soil-plant cover's degradation because of different predominantly mechanical disturbances.

  8. Tundra photosynthesis captured by satellite-observed solar-induced chlorophyll fluorescence

    Science.gov (United States)

    Luus, K. A.; Commane, R.; Parazoo, N. C.; Benmergui, J.; Euskirchen, E. S.; Frankenberg, C.; Joiner, J.; Lindaas, J.; Miller, C. E.; Oechel, W. C.; Zona, D.; Wofsy, S.; Lin, J. C.

    2017-02-01

    Accurately quantifying the timing and magnitude of respiration and photosynthesis by high-latitude ecosystems is important for understanding how a warming climate influences global carbon cycling. Data-driven estimates of photosynthesis across Arctic regions often rely on satellite-derived enhanced vegetation index (EVI); we find that satellite observations of solar-induced chlorophyll fluorescence (SIF) provide a more direct proxy for photosynthesis. We model Alaskan tundra CO2 cycling (2012-2014) according to temperature and shortwave radiation and alternately input EVI or SIF to prescribe the annual seasonal cycle of photosynthesis. We find that EVI-based seasonality indicates spring "green-up" to occur 9 days prior to SIF-based estimates, and that SIF-based estimates agree with aircraft and tower measurements of CO2. Adopting SIF, instead of EVI, for modeling the seasonal cycle of tundra photosynthesis can result in more accurate estimates of growing season duration and net carbon uptake by arctic vegetation.

  9. Ancient DNA from marine mammals

    DEFF Research Database (Denmark)

    Foote, Andrew David; Hofreiter, Michael; Morin, Philip A

    2012-01-01

    such as bone, tooth, baleen, skin, fur, whiskers and scrimshaw using ancient DNA (aDNA) approaches provide an oppor- tunity for investigating such changes over evolutionary and ecological timescales. Here, we review the application of aDNA techniques to the study of marine mammals. Most of the studies have...... focused on detecting changes in genetic diversity following periods of exploitation and environmental change. To date, these studies have shown that even small sample sizes can provide useful information on historical genetic diversity. Ancient DNA has also been used in investigations of changes...... in distribution and range of marine mammal species; we review these studies and discuss the limitations of such ‘presence only’ studies. Combining aDNA data with stable isotopes can provide further insights into changes in ecology and we review past studies and suggest future potential applications. We also...

  10. Mitogenomic analyses from ancient DNA

    DEFF Research Database (Denmark)

    Paijmans, Johanna L.A.; Gilbert, M Thomas P; Hofreiter, Michael

    2013-01-01

    analyses (whether using modern or ancient DNA) were largely restricted to the analysis of short fragments of the mitochondrial genome. However, due to many technological advances during the past decade, a growing number of studies have explored the power of complete mitochondrial genome sequences...... (mitogenomes). Such studies were initially limited to analyses of extant organisms, but developments in both DNA sequencing technologies and general methodological aspects related to working with degraded DNA have resulted in complete mitogenomes becoming increasingly popular for ancient DNA studies as well....... To date, at least 124 partially or fully assembled mitogenomes from more than 20 species have been obtained, and, given the rapid progress in sequencing technology, this number is likely to dramatically increase in the future. The increased information content offered by analysing full mitogenomes has...

  11. Molecular analysis of ancient caries.

    Science.gov (United States)

    Simón, Marc; Montiel, Rafael; Smerling, Andrea; Solórzano, Eduvigis; Díaz, Nancy; Álvarez-Sandoval, Brenda A; Jiménez-Marín, Andrea R; Malgosa, Assumpció

    2014-09-01

    An 84 base pair sequence of the Streptococcus mutans virulence factor, known as dextranase, has been obtained from 10 individuals from the Bronze Age to the Modern Era in Europe and from before and after the colonization in America. Modern samples show four polymorphic sites that have not been found in the ancient samples studied so far. The nucleotide and haplotype diversity of this region have increased over time, which could be reflecting the footprint of a population expansion. While this segment has apparently evolved according to neutral evolution, we have been able to detect one site that is under positive selection pressure both in present and past populations. This study is a first step to study the evolution of this microorganism, analysed using direct evidence obtained from ancient remains.

  12. Models of ancient sound vases

    Science.gov (United States)

    Bruel, Per V.

    2002-11-01

    Models were made of vases described by Vitruvius in Rome in about the year 70 A.D. and of sound vases (lydpotter) placed in Danish churches from 1100-1300 A.D. Measurements of vase's resonant frequencies and damping (reradiation) verified that the model vases obeyed expected physical rules. It was concluded that the excellent acoustical quality of many ancient Greek and Roman theaters cannot be ascribed to the vases placed under their seats. This study also found that sound vases placed in Nordic churches could not have shortened the reverberation time because there are far too few of them. Moreover, they could not have covered a broad frequency range. It remains a mystery why vases were installed under the seats of ancient Greek theaters and why, 1000 years later, Danes placed vases in their churches.

  13. Distribution patterns of typical enzyme activities in tundra soils on the Fildes Peninsula of maritime Antarctica

    Institute of Scientific and Technical Information of China (English)

    DING Wei; WANG Qing; ZHU Renbin; MA Dawei

    2015-01-01

    Soil enzyme activities can be used as indicators of microbial activity and soil fertility. In this paper, the activities of invertase (IA), phosphatase (PA) and urease (UA) were investigated in tundra soils collected from marine animal colonies, areas of human activity and background areas on Fildes Peninsula, maritime Antarctica. Soil enzyme activities were in the range of 1.0–82.7 mg·kg-1·h-1 for IA, 0.2–8.2 mg·kg-1·h-1 for PA and 0.2–39.8 mg·kg-1·h-1 for UA. The spatial distribution patterns for soil enzyme activities corresponded strongly with marine animal activity and human activity. Significantly higher soil IA and PA activities occurred in penguin colony soils, whereas seal colony soils showed higher UA activity. Statistical analysis indicated that soil IA activity was controlled by the levels of soil nutrients (TOC, TN and TP), PA activity was closely related with TP, and UA activity was affected by the soil pH. Overall, the deposition amount of penguin guano or seal excreta could impact the distribution of enzyme activity in Antarctic tundra soils. Multiple stepwise regression models were established between the enzyme activities, soil physicochemical properties and heavy metals Cu and Zn ([IA]=0.7[TP]–0.2[Cu]+22.3[TN]+15.1, [PA]=0.3[TP]+0.03[Mc]+0.2, [UA]=16.7[pH]–0.5[Cu]+ 0.4[Zn]–72.6). These models could be used to predict enzyme activities in the tundra soils, which could be helpful to study the effects of marine animal activity and environmental change on tundra ecosystems in maritime Antarctica.

  14. Splendid Arts Fram Ancient Capitals

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    IT was in the golden autumn in Beijing, when the sky was high and the air clear, that I hurried to Zhongshan Park to witness the display of the songs and dances of the seven Chinese ancient capitals. The flower beds arranged for the celebration of National Day were still there and the colorful blooms looked especially bright in the sunshine. The seven cities which have served as capitals in Chinese history are Beijing,

  15. Psychiatric Thoughts in Ancient India

    Directory of Open Access Journals (Sweden)

    Ravi Abhyankar

    2015-01-01

    Full Text Available A review of the literature regarding psychiatric thoughts in ancient India is attempted. Besides interesting reading, many of the concepts are still relevant and can be used in day-to-day practice especially towards healthy and happy living. Certain concepts are surprisingly contemporary and valid today. They can be used in psychotherapy and counselling and for promoting mental health. However, the description and classification of mental illness is not in tune with modern psychiatry.

  16. Nanoscience of an ancient pigment.

    Science.gov (United States)

    Johnson-McDaniel, Darrah; Barrett, Christopher A; Sharafi, Asma; Salguero, Tina T

    2013-02-06

    We describe monolayer nanosheets of calcium copper tetrasilicate, CaCuSi(4)O(10), which have strong near-IR luminescence and are amenable to solution processing methods. The facile exfoliation of bulk CaCuSi(4)O(10) into nanosheets is especially surprising in view of the long history of this material as the colored component of Egyptian blue, a well-known pigment from ancient times.

  17. [Spatial distribution of aboveground biomass of shrubs in Tianlaochi catchment of the Qilian Mountains].

    Science.gov (United States)

    Liang, Bei; Di, Li; Zhao, Chuan-Yan; Peng, Shou-Zhang; Peng, Huan-Hua; Wang, Chao

    2014-02-01

    This study estimated the spatial distribution of the aboveground biomass of shrubs in the Tianlaochi catchment of Qilian Mountains based on the field survey and remote sensing data. A relationship model of the aboveground biomass and its feasibly measured factors (i. e. , canopy perimeter and plant height) was built. The land use was classified by object-oriented technique with the high resolution image (GeoEye-1) of the study area, and the distribution of shrub coverage was extracted. Then the total aboveground biomass of shrubs in the study area was estimated by the relationship model with the distribution of shrub coverage. The results showed that the aboveground biomass of shrubs in the study area was 1.8 x 10(3) t and the aboveground biomass per unit area was 1598.45 kg x m(-2). The distribution of shrubs mainly was at altitudes of 3000-3700 m, and the aboveground biomass of shrubs on the sunny slope (1.15 x 10(3) t) was higher than that on the shady slope (0.65 x 10(3) t).

  18. Season and light affect constitutive defenses of understory shrub species against folivorous insects

    Science.gov (United States)

    Karolewski, Piotr; Giertych, Marian J.; Żmuda, Michał; Jagodziński, Andrzej M.; Oleksyn, Jacek

    2013-11-01

    Understory shrubs contribute to overall species diversity, providing habitat and forage for animals, influence soil chemistry and forest microclimate. However, very little is known about the chemical defense of various shrub species against folivorous insects. Using six shrub species, we tested how seasonal changes and light conditions affect their constitutive defense to insect damage. We monitored leaf perforation, concentrations of total phenols, condensed tannins, nitrogen (N), and total nonstructural carbohydrates (TNC). Leaf damage caused by insects was low in Sambucus nigra, Cornus sanguinea, and Frangula alnus, intermediate in Corylus avellana and Prunus serotina, and high in Prunus padus. Leaves of all the species, when growing in high light conditions, had high concentrations of defense metabolites. Except for C. avellana, leaves of the other shrub species growing in full sun were less injured than those in shade. This may be due to higher concentrations of defense metabolites and lower concentrations of nitrogen. Similar patterns of the effects of light on metabolites studied and N were observed for leaves with varying location within the crown of individual shrubs (from the top of the south direction to the bottom of the north), as for leaves from shrubs growing in full sun and shrubs in the shade of canopy trees. A probable cause of the greater damage of more sunlit leaves of C. avellana was the fact that they were herbivorized mostly by Altica brevicollis, a specialist insect that prefers plant tissues with a high TNC level and is not very sensitive to a high level of phenolic compounds.

  19. A Leguminous Shrub (Caragana microphylla) in Semiarid Sandy Soils of North China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tong-Hui; SU Yong-Zhong; CUI Jian-Yuan; ZHANG Zhi-Hui; CHANG Xue-Xiang

    2006-01-01

    Caragana microphylla Lam., a pioneer leguminous shrub species for vegetation re-establishment, is widely distributed in the semi-fixed and fixed sandy lands of the Horqin region. Some soil chemical and physical properties were measured under the canopy of C. microphylla and in the adjacent open areas to determine the effects of individual shrubs on soil properties. The influence of isolated C. microphylla on chemical and physical properties of the topsoil was significantly different between plots under the shrub canopy and in the shrub interspaces. Beneath the shrub canopy greater amounts of fine particle fractions, a higher water-holding capacity, and a lower bulk density, as well as higher aboveground and belowground litter biomass were found. Soil organic C and total N concentrations were 23%-31.6% and 14%-27.2% higher under the shrub canopies than in the shrub interspaces, respectively, giving rise to "islands of fertility". In a desertified sandy grassland ecosystem, C. microphylla was believed to play a major role in organic C sequestration, N accumulation, and the hydrologic cycle. Additionally, it has been found to be of ecological importance for vegetative restoration and reversal of desertification.

  20. Trends in soil erosion and woody shrub encroachment in Ngqushwa district, Eastern Cape Province, South Africa.

    Science.gov (United States)

    Manjoro, Munyaradzi; Kakembo, Vincent; Rowntree, Kate M

    2012-03-01

    Woody shrub encroachment severely impacts on the hydrological and erosion response of rangelands and abandoned cultivated lands. These processes have been widely investigated at various spatial scales, using mostly field experimentation. The present study used remote sensing to investigate spatial and temporal patterns of soil erosion and encroachment by a woody shrub species, Pteronia incana, in a catchment in Ngqushwa district, Eastern Cape Province, South Africa between 1998 and 2008. The extreme categories of soil erosion and shrub encroachment were mapped with higher accuracy than the intermediate ones, particularly where lower spatial resolution data were used. The results showed that soil erosion in the worst category increased simultaneously with dense woody shrub encroachment on the hill slopes. This trend is related to the spatial patterning of woody shrub vegetation that increases bare soil patches--leading to runoff connectivity and concentration of overland flow. The major changes in soil erosion and shrub encroachment analysed during the 10-year period took place in the 5-9° slope category and on the concave slope form. Multi-temporal analyses, based on remote sensing, can extend our understanding of the dynamics of soil erosion and woody shrub encroachment. They may help benchmark the processes and assist in upscaling field studies.

  1. Microbial diversity in alpine tundra soils correlates with snow cover dynamics.

    Science.gov (United States)

    Zinger, Lucie; Shahnavaz, Bahar; Baptist, Florence; Geremia, Roberto A; Choler, Philippe

    2009-07-01

    The temporal and spatial snow cover dynamics is the primary factor controlling the plant communities' composition and biogeochemical cycles in arctic and alpine tundra. However, the relationships between the distribution of snow and the diversity of soil microbial communities remain largely unexplored. Over a period of 2 years, we monitored soil microbial communities at three sites, including contiguous alpine meadows of late and early snowmelt locations (LSM and ESM, respectively). Bacterial and fungal communities were characterized by using molecular fingerprinting and cloning/sequencing of microbial ribosomal DNA extracted from the soil. Herein, we show that the spatial and temporal distribution of snow strongly correlates with microbial community composition. High seasonal contrast in ESM is associated with marked seasonal shifts for bacterial communities; whereas less contrasted seasons because of long-lasting snowpack in LSM is associated with increased fungal diversity. Finally, our results indicate that, similar to plant communities, microbial communities exhibit important shifts in composition at two extremes of the snow cover gradient. However, winter conditions lead to the convergence of microbial communities independently of snow cover presence. This study provides new insights into the distribution of microbial communities in alpine tundra in relation to snow cover dynamics, and may be helpful in predicting the future of microbial communities and biogeochemical cycles in arctic and alpine tundra in the context of a warmer climate.

  2. Summertime surface O3 behavior and deposition to tundra in the Alaskan Arctic

    Science.gov (United States)

    Van Dam, Brie; Helmig, Detlev; Doskey, Paul V.; Oltmans, Samuel J.

    2016-07-01

    Atmospheric turbulence quantities, boundary layer ozone (O3) levels, and O3 deposition to the tundra surface were investigated at Toolik Lake, AK, during the 2011 summer season. Beginning immediately after snowmelt, a diurnal cycle of O3 in the atmospheric surface layer developed with daytime O3 maxima, and minima during low-light hours, resulting in a mean amplitude of 13 ppbv. This diurnal O3 cycle is far larger than observed at other high Arctic locations during the snow-free season. During the snow-free months of June, July, and August, O3 deposition velocities were ˜3 to 5 times faster than during May, when snow covered the ground most of the month. The overall mean O3 deposition velocity between June and August was 0.10 cm s-1. The month of June had the highest diurnal variation, with a median O3 deposition velocity of 0.2 cm s-1 during the daytime and 0.08 cm s-1 during low-light conditions. These values are slightly lower than previously reported summertime deposition velocities in northern latitudes over tundra or fen. O3 loss during low-light periods was attributed to a combination of surface deposition to the tundra and stable boundary layer conditions. We also hypothesize that emissions of reactive biogenic volatile organic compounds into the shallow boundary layer may contribute to nighttime O3 loss.

  3. Multisensor NDVI-Based Monitoring of the Tundra-Taiga Interface (Mealy Mountains, Labrador, Canada

    Directory of Open Access Journals (Sweden)

    Heather Ward

    2013-03-01

    Full Text Available The analysis of a series of five normalized difference vegetation index (NDVI images produced information about a Labrador (Canada portion of the tundra-taiga interface. The twenty-five year observation period ranges from 1983 to 2008. The series composed of Landsat, SPOT and ASTER images, provided insight into regional scale characteristics of the tundra-taiga interface that is usually monitored from coarse resolution images. The image set was analyzed by considering an ordinal classification of the NDVI to account for the cumulative effect of differences of near-infrared spectral resolutions, the temperature anomalies, and atmospheric conditions. An increasing trend of the median values in the low, intermediate and high NDVI classes is clearly marked while accounting for variations attributed to cross-sensor radiometry, phenology and atmospheric disturbances. An encroachment of the forest on the tundra for the whole study area was estimated at 0 to 60 m, depending on the period of observation, as calculated by the difference between the median retreat and advance of an estimated location of the tree line. In small sections, advances and retreats of up to 320 m are reported for the most recent four- and seven-year periods of observations.

  4. Analysis of nitrogen saturation potential in Rocky Mountain tundra and forest: implications for aquatic systems

    Science.gov (United States)

    Baron, Jill S.; Ojima, Dennis S.; Holland, Elisabeth A.; Parton, William J.

    1994-01-01

    We employed grass and forest versions of the CENTURY model under a range of N deposition values (0.02–1.60 g N m−2 y−1) to explore the possibility that high observed lake and stream N was due to terrestrial N saturation of alpine tundra and subalpine forest in Loch Vale Watershed, Rocky Mountain National Park, Colorado. Model results suggest that N is limiting to subalpine forest productivity, but that excess leachate from alpine tundra is sufficient to account for the current observed stream N. Tundra leachate, combined with N leached from exposed rock surfaces, produce high N loads in aquatic ecosystems above treeline in the Colorado Front Range. A combination of terrestrial leaching, large N inputs from snowmelt, high watershed gradients, rapid hydrologic flushing and lake turnover times, and possibly other nutrient limitations of aquatic organisms constrain high elevation lakes and streams from assimilating even small increases in atmospheric N. CENTURY model simulations further suggest that, while increased N deposition will worsen the situation, nitrogen saturation is an ongoing phenomenon.

  5. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming

    Science.gov (United States)

    Xue, Kai; M. Yuan, Mengting; J. Shi, Zhou; Qin, Yujia; Deng, Ye; Cheng, Lei; Wu, Liyou; He, Zhili; van Nostrand, Joy D.; Bracho, Rosvel; Natali, Susan; Schuur, Edward. A. G.; Luo, Chengwei; Konstantinidis, Konstantinos T.; Wang, Qiong; Cole, James R.; Tiedje, James M.; Luo, Yiqi; Zhou, Jizhong

    2016-06-01

    Microbial decomposition of soil carbon in high-latitude tundra underlain with permafrost is one of the most important, but poorly understood, potential positive feedbacks of greenhouse gas emissions from terrestrial ecosystems into the atmosphere in a warmer world. Using integrated metagenomic technologies, we showed that the microbial functional community structure in the active layer of tundra soil was significantly altered after only 1.5 years of warming, a rapid response demonstrating the high sensitivity of this ecosystem to warming. The abundances of microbial functional genes involved in both aerobic and anaerobic carbon decomposition were also markedly increased by this short-term warming. Consistent with this, ecosystem respiration (Reco) increased up to 38%. In addition, warming enhanced genes involved in nutrient cycling, which very likely contributed to an observed increase (30%) in gross primary productivity (GPP). However, the GPP increase did not offset the extra Reco, resulting in significantly more net carbon loss in warmed plots compared with control plots. Altogether, our results demonstrate the vulnerability of active-layer soil carbon in this permafrost-based tundra ecosystem to climate warming and the importance of microbial communities in mediating such vulnerability.

  6. Wet meadow ecosystems contribute the majority of overwinter soil respiration from snow-scoured alpine tundra

    Science.gov (United States)

    Knowles, John F.; Blanken, Peter D.; Williams, Mark W.

    2016-04-01

    We measured soil respiration across a soil moisture gradient ranging from dry to wet snow-scoured alpine tundra soils throughout three winters and two summers. In the absence of snow accumulation, soil moisture variability was principally determined by the combination of mesotopographical hydrological focusing and shallow subsurface permeability, which resulted in a patchwork of comingled ecosystem types along a single alpine ridge. To constrain the subsequent carbon cycling variability, we compared three measures of effective diffusivity and three methods to calculate gradient method soil respiration from four typical vegetation communities. Overwinter soil respiration was primarily restricted to wet meadow locations, and a conservative estimate of the rate of overwinter soil respiration from snow-scoured wet meadow tundra was 69-90% of the maximum carbon dioxide (CO2) respired by seasonally snow-covered soils within this same catchment. This was attributed to higher overwinter soil temperatures at wet meadow locations relative to fellfield, dry meadow, and moist meadow communities, which supported liquid water and heterotrophic respiration throughout the winter. These results were corroborated by eddy covariance-based measurements that demonstrated an average of 272 g C m-2 overwinter carbon loss during the study period. As a result, we updated a conceptual model of soil respiration versus snow cover to express the potential for soil respiration variability from snow-scoured alpine tundra.

  7. Variation in soil water content to rainfall under Caragana microphylla shrub in Horqin Sandy Land

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In order to investigate the spatio-temporal variability of soil water content to rainfall under Caragana microphylla shrub in Horqin Sandy Land,a plot of 25 m × 25 m,where there were 6 shrub canopies of C. microphylla,was sited for measuring soil water content at two soil layers of 0-20 cm (top layer) and 20-40 cm (lower layer). Soil water content was measured on the 1st,5th,10th and 15th day after a 42 mm rainfall in Naiman of Inner Mongolia. The results showed that soil water contents at both layers under C. microphylla shrub were gradually decreased after the rain. Soil water content at the top layer outside the shrub canopy was higher than that inside the shrub canopy within 5 days,and became similar inside and outside the shrub canopy on the 10th day after the 42 mm rainfall,and it was lower outside than that inside the shrub canopy on the 15th day. The soil water content at lower layer in the area without shrubs was higher than that under shrub canopy all along. All the measured values of soil water content can be fitted to a variogram model. There was significant autocorrelation of the values of soil water content between top layer and lower layer,except for the fourth measured values of soil water content at top layer. The range and spatial dependence of soil water content at top layer were lower than that at lower layer.

  8. Effects of Tamarisk shrub on physicochemical properties of soil in coastal wetland of the Bohai Sea

    Institute of Scientific and Technical Information of China (English)

    HE Xiuping; WANG Baodong; XIE Linping; XIN Ming; WANG Wei; WANG Zicheng; ZHANG Wenquan; WEI Qinsheng

    2016-01-01

    There are many different and even controversial results concerning the effects of Tamarisk on the physicochemical properties of soil. A year-round monitoring of soil salinity, pH and moisture is conducted beneath the Tamarisk shrub in a coastal wetland in the Bohai Sea in China, to ascertain the effects of Tamarisk on the physicochemical properties of soil in coastal wetland. Compared with the control area, the soil moisture content is lower around the area of the taproot when there is less precipitation in the growing season because of water consumption by Tamarisk shrub. However, the soil moisture content is higher around the taproot when there is more precipitation in the growing season or in the non-growing period because of water conservation by the rhizosphere. The absorption of salt by the Tamarisk shrub reduces the soil salinity temporarily, but eventually salt returns to the soil by the leaching of salt on leaves by rainfall or by fallen leaves. The annual average soil moisture content beneath the Tamarisk shrub is lower than the control area by only 6.4%, indicating that the Tamarisk shrub has little effect on drought or water conservation in soils in the temperate coastal wetland with moderate annual precipitation. The annual average salinity beneath the Tamarisk shrub is 18% greater than that of the control area, indicating that Tamarisk does have an effect of rising soil salinity around Tamarisk shrubs. The soil pH value is as low as 7.3 in summer and as high as 10.2 in winter. The pH of soil near the taproot of the Tamarisk shrubs is one pH unit lower than that in the control area during the growing season. The difference in pH is less different from the control area in the non-growing season, indicating that the Tamarisk shrub does have the effect of reducing the alkalinity of soil in coastal wetland.

  9. Purpose of Introduction as a Predictor of Invasiveness among Introduced Shrubs in Rwanda

    Directory of Open Access Journals (Sweden)

    Jean Leonard Seburanga

    2015-01-01

    Full Text Available The introduced shrub flora in Rwanda was analyzed and the risk of invasion was assessed based on the species’ purposes of introduction. The results showed that more than half of invasive alien shrubs in Rwanda were introduced as ornamentals. They include Agave americana L., Bryophyllum proliferum Bowie ex Hook., Caesalpinia decapetala (Roth Alston, Lantana camara L., and Tithonia diversifolia (Hemsley A. Gray. However, these represented only 3.16% of the total number of introduced ornamental shrubs. At the time when the study was conducted, no introduced food crop had become invasive. Species introduced for purposes other than food or culinary use showed higher likelihood of becoming invasive.

  10. AIRSAR studies of woody shrub density in semiarid rangeland: Jornada del Muerto, New Mexico

    Science.gov (United States)

    Musick, H.B.; Schaber, G.S.; Breed, C.S.

    1998-01-01

    This study evaluates the use of polarimetric Airborne Synthetic Aperture Radar (AIRSAR) data to assess woody shrub density in a semiarid site where the vegetation consists primarily of varied mixtures of herbaceous vegetation and shrubs. AIRSAR data and field observations of vegetation cover and growth form-composition were obtained for 59 sites in the Jornada del Muerto plain in southern New Mexico. Radar signature measures examined were C-, L- and P-band backscattering coefficients (??0) for HH, HV and W polarizations, ratios of ??0HH and ??0HV to ??0VV, and the HH-VV polarization phase difference and correlation coefficient. The most effective measure for estimation of shrub density was L-band ??0HV, which distinguished among shrub density classes with no misclassification. Sensitivity of this measure to small amounts of shrub cover was indicated by successful separation of sites with Jornada del Muerto plain in southern New Mexico. Radar signature measures examined were C-, L- and P-band backscattering coefficients (??0) for HH, HV and VV polarizations, ratios of ??0HH and ??0HV to ??0VV, and the HH-VV polarization phase difference and correlation coefficient. The most effective measure for estimation of shrub density was L-band ??0HV, which distinguished among shrub density classes with no misclassification. Sensitivity of this measure to small amounts of shrub cover was indicated by successful separation of sites with <1% shrub cover from sites with 1-5% cover. Separability of shrub density classes was generally least for C-band signature measures. A distinctive radar signature was exhibited by dense stands of Yucca elata, a semitreelike plant with uniformly thick (???10 cm diameter) fibrous stems. Yucca sites were distinguished from others by their high P-band ??0HV relative to L-band ??0HV. The results are largely explained by the greater sensitivity of longer wavelengths to larger canopy structural elements. L-band ??0HV and other measures responsive to

  11. Browse evaluation of tall shrubs based on direct measurement of a management objective

    Science.gov (United States)

    Keigley, R.B.; Frisina, M.R.; Kitchen, Stanley G.; Pendleton, Rosemary L.; Monaco, Thomas A.; Vernon, Jason

    2008-01-01

    The monitoring of Geyer willow was based on the following management objective: Browsing will prevent fewer than 50 percent of Geyer willow shrubs from growing taller than 3 m . Three questions were addressed: (1) Is browsing a potential factor? (2) If so, can young plants grow taller than 3 meters? (3) If not, is browsing the dominant factor? All shrubs were intensely browsed. With a post-browsing growth rate of 5.0 cm per yr, no shrub could grow 3 m tall. Analyses of stem growth rate excluded dominant roles for climate and plant vigor. Browsing and stem age were the dominant factors that limited growth to 3 m tall.

  12. Changing Climate Sensitivity in Response to Forest-Tundra Snow Albedo Feedback during the mid to late Pliocene Cooling

    Science.gov (United States)

    Paiewonsky, P.

    2015-12-01

    The forest-tundra snow albedo feedback is an important feedback in Earth's climate system, especially due to its potential role in modulating glacial cycles. Until now, little research has been done on how the strength of this feedback might vary with the background climate state. Over the last 4 million years, I hypothesize that the feedback has been generally weaker under warm Northern Hemispheric conditions when tundra has been primarily confined to the high Arctic and forest has extended to most of the Arctic coastline than under cooler Northern Hemispheric conditions in which the forest-tundra boundary has generally lain to the south, extending across the interiors of the large continental land masses. To test the hypothesis of the weakened/strengthened feedback, I used an Earth System Model of Intermediate Complexity that consists of a dynamic terrestrial vegetation model coupled to a climate model. A set of time-slice experiments with different orbital and greenhouse gas concentrations were analyzed. In one set of experiments, the feedback gain with respect to annual average top-of-atmosphere net short wave radiation due to vegetation was 1.42 for modern conditions but only 1.14 for the mid-Pliocene. Additionally, we compared experiments with different shortwave-radiation parameterizations, which differed in the amount of shortwave energy flux reaching the surface (and subsequently affecting vegetative biomass). These techniques allowed us to isolate the mechanisms responsible for the varying strength of the forest-tundra snow albedo feedback. The results also show that many factors affect the strength of feedback. In this presentation I will concentrate on the availability of land for conversion of forest to tundra (and vice versa), cloud cover near the forest-tundra boundary, and the integrated surface insolation contrast between tundra and forest during the snow-covered season.

  13. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Sonal, E-mail: S.Choudhary@sheffield.ac.uk [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Management School, University of Sheffield, Conduit Road, Sheffield S10 1FL (United Kingdom); Blaud, Aimeric [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Osborn, A. Mark [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); School of Applied Sciences, RMIT University, PO Box 71, Bundoora, VIC 3083 (Australia); Press, Malcolm C. [School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Manchester Metropolitan University, Manchester, M15 6BH (United Kingdom); Phoenix, Gareth K. [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom)

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem {sup 15}N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g N m{sup −2} yr{sup −1}, applied as {sup 15}NH{sub 4}{sup 15}NO{sub 3} in Svalbard (79{sup °}N), during the summer. Separate applications of {sup 15}NO{sub 3}{sup −} and {sup 15}NH{sub 4}{sup +} were also made to determine the importance of N form in their retention. More than 95% of the total {sup 15}N applied was recovered after one growing season (~ 90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants > vascular plants > organic soil > litter > mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of {sup 15}N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater {sup 15}NO{sub 3}{sup −} than {sup 15}NH{sub 4}{sup +}, suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events

  14. Phytoextraction of cadmium by four Mediterranean shrub species.

    Science.gov (United States)

    Tapia, Y; Cala, V; Eymar, E; Frutos, I; Gárate, A; Masaguer, A

    2011-07-01

    The possibility of remediating contaminated soils though the use of high biomass-generating, native plant species capable of removing heavy metals is receiving increased attention. The cadmium (Cd) accumulation capacities of the native Mediterranean, perennial shrubs Atriplex halimus, Phyllirea angustifolia, Rhamnus alaternus and Rosmarinus officinalis were tested by growing transplanted specimens in a pine bark compost substrate (pH 5.6) contaminated with 100 mg Cd kg(-1). After 70 days, only R. alaternus showed reduced growth. The increase in biomass seen in all the test species enhanced the phytoextraction of Cd. However, the species behaved as metal excluders, except for the halophyte A. halimus, which behaved as an indicator plant. In this species the leaf Cd concentration reached 35 mg Cd kg(-1), with the shoot responsible for some 86% of total Cd accumulation. Atriplex halimus showed the highest bioconcentration factor (BCF) (0.36) and leaf Cd transport index (1.68); consequently, this species showed the highest Cd phytoextraction capacity.

  15. Vegetative propagation of the Azorean endemic shrub Viburnum treleasei Gand

    Directory of Open Access Journals (Sweden)

    MÓNICA MOURA

    2009-01-01

    Full Text Available Viburnum treleasei Gand. is a threatened hermaphroditic shrub or small tree endemic to the Azores islands. In this study we aimed at defining a fast, simple and cost-efficient propagation methodology that could be used by non-skilled workers in conservation actionplans. Our objective was also to produce cleaner material for initiation of in vitro cultures and to determine the effects of season, placement of cuttings in the branch, placement of vegetative buds in cuttings and forcing solutions in shoot development. It was possible to produce clean shoots from cuttings using a forcing solution with 8-hydroxyquinoline sulphate (8-HQS, 2% sucrose and no growth regulators addition. Shoot development results obtained with apical and sub-apical cuttings indicate that V. treleasei possessesapical dominance and deep endodormancy. Apical semihardwood cuttings in autumn or airlayered branches in autumn and winter with 2 or 5% (w/w of IBA produced excellent rooting results which will allow reinforcing depleted populations of V. treleasei efficientlyand at reduced costs.

  16. Contrasting ozone sensitivity in related evergreen and deciduous shrubs

    Energy Technology Data Exchange (ETDEWEB)

    Calatayud, Vicent, E-mail: vicent@ceam.e [Fundacion CEAM, c/ Charles R. Darwin 14, Parque Tecnologico, 46980 Paterna, Valencia (Spain); Marco, Francisco; Cervero, Julia [Fundacion CEAM, c/ Charles R. Darwin 14, Parque Tecnologico, 46980 Paterna, Valencia (Spain); Sanchez-Pena, Gerardo [SPCAN, Dir. Gral. de Medio Natural y Politica Forestal, Ministerio de Medio Ambiente, y Medio Rural y Marino, Rios Rosas 24, 28003 Madrid (Spain); Sanz, Maria Jose [Fundacion CEAM, c/ Charles R. Darwin 14, Parque Tecnologico, 46980 Paterna, Valencia (Spain)

    2010-12-15

    Plant responses to enhanced ozone levels have been studied in two pairs of evergreen-deciduous species (Pistacia terebinthus vs. P. lentiscus; Viburnum lantana vs. V. tinus) in Open Top Chambers. Ozone induced widespread visible injury, significantly reduced CO{sub 2} assimilation and stomatal conductance (g{sub s}), impaired Rubisco efficiency and regeneration capacity (V{sub c,max,}J{sub max}) and altered fluorescence parameters only in the deciduous species. Differences in stomatal conductance could not explain the observed differences in sensitivity. In control plants, deciduous species showed higher superoxide dismutase (SOD) activity than their evergreen counterparts, suggesting metabolic differences that could make them more prone to redox imbalances. Ozone induced increases in SOD and/or peroxidase activities in all the species, but only evergreens were able to cope with the oxidative stress. The relevancy of these results for the effective ozone flux approach and for the current ozone Critical Levels is also discussed. - Mediterranean evergreen shrubs have a constitutively higher capacity to tolerate ozone stress than their deciduous relatives.

  17. Patterns of shrub species richness and abundance in relation to environmental factors on the Alxa Plateau: Prerequisites for conserving shrub diversity in extreme arid desert regions

    Institute of Scientific and Technical Information of China (English)

    LI XinRong; TAN HuiJuan; HE MingZhu; WANG XinPing; LI XiaoJun

    2009-01-01

    Shrub species are considered the dominant plants in arid desert ecosystems, unlike in semiarid steppe zones or in grassland ecosystems. On the Alxa Plateau, northern China, sparse vegetation with cover ranging from 15% to 30% is characterized mainly by multifarious shrubs because herbaceous species are strongly restricted by the extreme drought climate, wind erosion, overgrazing and sand burial. Patterns in shrub species richness and species abundance in relation to environmental conditions were examined by DCA (detrended correspondence analysis) and interpreted by a biplot. The rela-tionships between species diversity and environmental factors were examined using regression analyses. Our results show that the distributions of the shrub species in response to environmental conditions can be grouped into four ecological types, corresponding with the biological traits of the shrubs and their responses to the gradients of soil texture and soil water content. Patterns in species richness and species abundance were mainly determined by the deeper soil water content, instead of the soil texture as hypothesized by numerous studies in semiarid grasslands. With exception of the deeper soil water content, soil organic matter and total N content were positively correlated with spe-cies abundance, while pH was negatively correlated with it. These findings imply that it is vital for cur-rent shrub diversity conservation to reduce agricultural water use in the middle reaches of the Heihe River, which supplies water for the lower reaches in the western parts of the plateau, and to reduce the amount of groundwater exploitation and urban and oasis water use, to increase the water supply from Helan Mountain to the eastern desert of the Alxa Plateau.

  18. Patterns of shrub species richness and abundance in relation to environmental factors on the Alxa Plateau:Prerequisites for conserving shrub diversity in extreme arid desert regions

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Shrub species are considered the dominant plants in arid desert ecosystems,unlike in semiarid steppe zones or in grassland ecosystems.On the Alxa Plateau,northern China,sparse vegetation with cover ranging from 15% to 30% is characterized mainly by multifarious shrubs because herbaceous species are strongly restricted by the extreme drought climate,wind erosion,overgrazing and sand burial.Patterns in shrub species richness and species abundance in relation to environmental conditions were examined by DCA(detrended correspondence analysis) and interpreted by a biplot.The rela-tionships between species diversity and environmental factors were examined using regression analyses.Our results show that the distributions of the shrub species in response to environmental conditions can be grouped into four ecological types,corresponding with the biological traits of the shrubs and their responses to the gradients of soil texture and soil water content.Patterns in species richness and species abundance were mainly determined by the deeper soil water content,instead of the soil texture as hypothesized by numerous studies in semiarid grasslands.With exception of the deeper soil water content,soil organic matter and total N content were positively correlated with species abundance,while pH was negatively correlated with it.These findings imply that it is vital for cur-rent shrub diversity conservation to reduce agricultural water use in the middle reaches of the Heihe River,which supplies water for the lower reaches in the western parts of the plateau,and to reduce the amount of groundwater exploitation and urban and oasis water use,to increase the water supply from Helan Mountain to the eastern desert of the Alxa Plateau.

  19. Watch Out for Your Neighbor: Climbing onto Shrubs Is Related to Risk of Cannibalism in the Scorpion Buthus cf. occitanus

    Science.gov (United States)

    Urbano-Tenorio, Fernando

    2016-01-01

    The distribution and behavior of foraging animals usually imply a balance between resource availability and predation risk. In some predators such as scorpions, cannibalism constitutes an important mortality factor determining their ecology and behavior. Climbing on vegetation by scorpions has been related both to prey availability and to predation (cannibalism) risk. We tested different hypotheses proposed to explain climbing on vegetation by scorpions. We analyzed shrub climbing in Buthus cf. occitanus with regard to the following: a) better suitability of prey size for scorpions foraging on shrubs than on the ground, b) selection of shrub species with higher prey load, c) seasonal variations in prey availability on shrubs, and d) whether or not cannibalism risk on the ground increases the frequency of shrub climbing. Prey availability on shrubs was compared by estimating prey abundance in sticky traps placed in shrubs. A prey sample from shrubs was measured to compare prey size. Scorpions were sampled in six plots (50 m x 10 m) to estimate the proportion of individuals climbing on shrubs. Size difference and distance between individuals and their closest scorpion neighbor were measured to assess cannibalism risk. The results showed that mean prey size was two-fold larger on the ground. Selection of particular shrub species was not related to prey availability. Seasonal variations in the number of scorpions on shrubs were related to the number of active scorpions, but not with fluctuations in prey availability. Size differences between a scorpion and its nearest neighbor were positively related with a higher probability for a scorpion to climb onto a shrub when at a disadvantage, but distance was not significantly related. These results do not support hypotheses explaining shrub climbing based on resource availability. By contrast, our results provide evidence that shrub climbing is related to cannibalism risk. PMID:27655347

  20. Shrub-inhabiting insects of the 200 Area Plateau, southcentral Washington.

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, L.E.

    1979-10-01

    This study characterizes the insects (including spiders) associated with major shrubs of the 200 Area Plateau on the Hanford Site in southcentral Washington. Big sagebrush (Artemisia tridentata), rabbitbrush (Chrysothamnus sp.) and hopsage (Grayia spinosa) were the three shrubs included in the study. Hemiptera (true bugs) and homoptera (bugs) were the two groups most abundant on sagebrush. Homoptera and Araneida (spiders) were the common inhabitants of rabbitbrush, and Orthoptera (grasshoppers), Coleoptera (beetles), and Araneida the taxa most frequently collected from hopsage. A discussion of the effects of insects on western native shrubs is included. None of the insect populations appeared to threaten the stability of shrub stands, which is important because of the erodability of 200 Area soils.

  1. Heterogeneity of soil surface temperature induced by xerophytic shrub in a revegetated desert ecosystem, northwestern China

    Indian Academy of Sciences (India)

    Ya-Feng Zhang; Xin-Ping Wang; Yan-Xia PAN; Rui Hu; Hao Zhang

    2013-06-01

    Variation characteristics of the soil surface temperature induced by shrub canopy greatly affects the nearsurface biological and biochemical processes in desert ecosystems. However, information regarding the effects of shrub upon the heterogeneity of soil surface temperature is scarce. Here we aimed to characterize the effects of shrub (Caragana korshinskii) canopy on the soil surface temperature heterogeneity at areas under shrub canopy and the neighbouring bare ground. Diurnal variations of soil surface temperature were measured at areas adjacent to the shrub base (ASB), beneath the midcanopy (BMC), and in the bare intershrub spaces (BIS) at the eastern, southern, western and northern aspects of shrub, respectively. Results indicated that diurnal mean soil surface temperature under the C. korshinskii canopy (ASB and BMC) was significantly lower than in the BIS, with the highest in the BIS, followed by the BMC and ASB. The diurnal maximum and diurnal variations of soil surface temperatures under canopy vary strongly with different aspects of shrub with the diurnal variation in solar altitude, which could be used as cues to detect safe sites for under-canopy biota. A significant empirical linear relationship was found between soil surface temperature and solar altitude, suggesting an empirical predicator that solar altitude can serve for soil surface temperature. Lower soil surface temperatures under the canopy than in the bare intershrub spaces imply that shrubs canopy play a role of ‘cool islands’ in the daytime in terms of soil surface temperature during hot summer months in the desert ecosystems characterized by a mosaic of sparse vegetation and bare ground.

  2. Impacts of leguminous shrub encroachment on neighboring grasses include transfer of fixed nitrogen.

    Science.gov (United States)

    Zhang, Hai-Yang; Yu, Qiang; Lü, Xiao-Tao; Trumbore, Susan E; Yang, Jun-Jie; Han, Xing-Guo

    2016-04-01

    Shrub encroachment induced by global change and human disturbance strongly affects ecosystem structure and function. In this study, we explore the degree to which invading leguminous shrubs affected neighboring grasses, including via the transfer of fixed nitrogen (N). We measured N concentrations and natural abundance (15)N of shoot tissues from three dominant grasses from different plant functional groups across seven distances along a local transect (up to 500 cm) to the leguminous shrub, Caragana microphylla. C. microphylla did transfer fixed N to neighboring grasses, but the amount and distance of N transferred were strongly species-specific. Shoot N concentrations decreased significantly with distance from C. microphylla, for a rhizomatous grass, Leymus chinensis, and a bunchgrass, Achnatherum sibiricum. However, N concentrations of another bunchgrass, Stipa grandis, were higher only directly underneath the shrub canopy. Shoot δ(15)N values of L. chinensis were enriched up to 500 cm from the shrub, but for S. grandis were enriched only below the shrub canopy. In contrast, δ(15)N of A. sibiricum did not change along the 500-cm transect. Our results indicated the rhizomatous grass transferred fixed N over long distances while bunchgrasses did not. The presence of C. microphylla increased the shoot biomass of L. chinensis but decreased that of S. grandis and A. sibiricum. These findings highlight the potential role of nutrient-acquisition strategies of neighboring grasses in moderating the interspecific variation of fixed N transfer from the leguminous shrub. Overall, leguminous shrubs have either positive or negative effects on the neighboring grasses and dramatically affect plant community composition and structure.

  3. From Here I Walked into Ancient China

    Institute of Scientific and Technical Information of China (English)

    Yan Manman

    2011-01-01

    @@ When I was a little girl, I had heard about the eighth world wonder - terra cotta warriors in Qin Emperor Mausoleum.I have been wishing to visit there to see those magnificent scene which were created thousands of years ago.While with my age added, I gradually learned the terra cotta warriors were lust only one of many ancient marks of Xi'an, which once was capital of 13 dynasties in ancient China.Xi'an actually is a carrier of ancient China culture, where I walked from the modern world to the ancient China.

  4. Ancient Indian Leaps into Mathematics

    CERN Document Server

    Yadav, B S

    2011-01-01

    This book presents contributions of mathematicians covering topics from ancient India, placing them in the broader context of the history of mathematics. Although the translations of some Sanskrit mathematical texts are available in the literature, Indian contributions are rarely presented in major Western historical works. Yet some of the well-known and universally-accepted discoveries from India, including the concept of zero and the decimal representation of numbers, have made lasting contributions to the foundation of modern mathematics. Through a systematic approach, this book examines th

  5. Chinese Ancient Football with Romanticism

    Institute of Scientific and Technical Information of China (English)

    江凌; 李晓勤

    2004-01-01

    Like other traditional Chinese sports, the ancient Chinese football, which used to be called “cuju”, has some differences from several sports in western countries concerning cultural and hamanist purport as well as metal aspiration, although it was similar with modern football to some extent, such as a leather-made ball with a bladder, rectangle sports ground, referee, goal and certain competitiveness. The author tries to talk about such difference in cultural and humanist purport as well as mental aspiration by making a comparison between “cuju” and modern football.

  6. Above- and Belowground Biomass Allocation in Shrub Biomes across the Northeast Tibetan Plateau.

    Science.gov (United States)

    Nie, Xiuqing; Yang, Yuanhe; Yang, Lucun; Zhou, Guoying

    2016-01-01

    Biomass partitioning has been explored across various biomes. However, the strategies of allocation in plants still remain contentious. This study investigated allocation patterns of above- and belowground biomass at the community level, using biomass survey from the Tibetan Plateau. We explored above- and belowground biomass by conducting three consecutive sampling campaigns across shrub biomes on the northeast Tibetan Plateau during 2011-2013. We then documented the above-ground biomass (AGB), below-ground biomass (BGB) and root: shoot ratio (R/S) and the relationships between R/S and environment factors using data from 201 plots surveyed from 67 sites. We further examined relationships between above-ground and below-ground biomass across various shrub types. Our results indicated that the median values of AGB, BGB, and R/S in Tibetan shrub were 1102.55, 874.91 g m-2, and 0.85, respectively. R/S showed significant trend with mean annual precipitation (MAP), while decreased with mean annual temperature (MAT). Reduced major axis analysis indicated that the slope of the log-log relationship between above- and belowground biomass revealed a significant difference from 1.0 over space, supporting the optimal hypothesis. Interestingly, the slopes of the allometric relationship between log AGB and log BGB differed significantly between alpine and desert shrub. Our findings supported the optimal theory of above- and belowground biomass partitioning in Tibetan shrub, while the isometric hypothesis for alpine shrub at the community level.

  7. Mediterranean shrub diversity and its effect on food intake in goats

    Directory of Open Access Journals (Sweden)

    Tomislav Šarić

    2014-07-01

    Full Text Available Mediterranean ecosystem offers a variety of shrubs that were over long periods of time involved in the evolution of complex plant-animal interactions. Biochemical components of these plants enter different metabolic pathways after digestion and absorption, resulting in development of dietary preferences in browsing animals. Herbivores in general were found to perform better when grazing in a mixed plant community composed of diverse species, and show preferential feeding behaviours for mixed vs single species diet. Our findings demonstrate an asymptotic relationship among Mediterranean shrubs species diversity and their voluntary intake by goats. Shrub biomass intake showed linear increase when number of different shrubs in diet increased from one to three. However, goats did not further increase intake when the number of shrub species increased from four to eight. As the number of shrub species offered increased, goats exhibited more preferential feeding behaviour for Quercus pubescens, Fraxinus ornus, Rubus heteromorphus and Arbutus unedo and decreased the intake of Hedera helix, Juniperus oxycedrus and Helichrysum italicum. This asymptotic relationship indicates that the maintenance of plant species richness in Mediterranean shrublands can overall benefit domestic goat farming, goat’s productive performance, and the conservation of plant biodiversity.

  8. Establishment of Pinus halepensis Mill. saplings following fire: effects of competition with shrub species

    Science.gov (United States)

    De las Heras, J.; Martínez-Sánchez, J. J.; González-Ochoa, A. I.; Ferrandis, P.; Herranz, J. M.

    2002-05-01

    An early study analysing the effects of competition from Cistus monspeliensis-dominated shrub canopy on Pinus halepensis saplings, both colonising a recently burnt area, has been extended in order to test initial predictions. Inter-specific competition effects on P. halepensis were experimentally analysed by a shrub thinning-out treatment carried out 1 year after fire. The extension of the recorded period confirmed (i) a significant increase in height, and (ii) the lack of variation in density of P. halepensis saplings when the shrub layer was removed. In contrast, the increase in relative growth rate in height (RGRh) and the decrease in mortality recorded during early post-fire stages for treated units did not persist in subsequent years. These two treatment-induced effects disappeared 1 year after the shrub clearing (29 months after fire). It is hypothesised that this time should represent a culminating point in the inter-specific competition established between Cistus and Pinus saplings simultaneously colonising recently disturbed areas and be a critical period for pine sapling survival. After this time, a reduction in relatively short-lived Cistus populations and an increase in P. halepensis abundance should be expected in the community. It is concluded that a shrub-clearing treatment could be recommendable if the initial post-fire pine sapling density is not high enough to successfully face the early critical competitive period. Consequences of early shrub competition on forest productivity during mature phases are also discussed.

  9. Foreign Guests in Ancient Greece

    Directory of Open Access Journals (Sweden)

    Zora Žbontar

    2013-12-01

    Full Text Available Xenía was a special relationship between a foreign guest and his host in Ancient Greece. The ritual of hosting a foreigner included an exchange of objects, feasting, and the establishment of friendship between people from different social backgrounds. This relationship implied trust, loyalty, friendship, and mutual aid between the people involved. Goods and services were also exchanged without any form of payment. There were no formal laws governing xenía – it was based entirely on a moral appeal. Mutual appreciation between the host and the guest was established during the ritual, but the host did retain a certain level of superiority over the guest. Xenía was one of the most important institutions in Ancient Greece. It had a lot of features and obligations similar to kinship and marriage. In literary sources the word xénos varies in meaning from “enemy stranger”, “friendly stranger”, “foreigner”, “guest”, “host” to “ritual friend”, and it is often hard to tell which usage is appropriate in a given passage. The paper describes the emphasis on hospitality towards foreigners. It presents an example of a depiction indicating xenía is presented, as well as several objects which were traded during the ritual. The paper also addresses the importance of hospitality in Greek drama in general, especially with examples of violations of the hospitality code.

  10. [Ancient history of Indian pharmacy].

    Science.gov (United States)

    Okuda, Jun; Natsume, Yohko

    2010-01-01

    The study of the ancient history of Indian medicine has recently been revived due to the publication of polyglot translations. However, little is known of ancient Indian pharmacy. Archaeological evidence suggests the Indus people lived a settled life approximately in 2500 B.C. Their cities were enjoying the cleanest and most hygienic daily life with elaborate civic sanitation systems. The whole conception shows a remarkable concern for health. Then, the early Aryans invaded India about 1500 B.C. and the Vedic age started. The Rgveda texts contain the hymns for Soma and those for herbs. The term Ayurveda (i.e., science of life) is found in some old versions of both Ramāyana and Mahābhārata and in the Atharvaveda. Suśruta had the credit of making a breakthrough in the field of surgery. The Ayurveda, a work on internal medicine, gives the following transmission of sages: Brahmā-->Daksa-->Prajāpati-->Aśivinau-->Indra-->Caraka. On the other hand, the Suśruta-samhitā, which deals mainly with surgical medicine, explains it as follows; Indra-->Dhanvantari-->Suśruta Both Caraka and Suśruta were medical doctors as well as pharmacists, so they studied more than 1000 herbs thoroughly. The Ayurveda had been used by his devotees for medical purposes. It eventually spread over Asia with the advanced evolution of Buddhism.

  11. Partitioning of organic carbon in European Russian tundra and taiga ecosystems

    Science.gov (United States)

    Oosterwoud, M. R.; Temminghoff, E. J. M.; van der Zee, S. E. A. T. M.

    2009-04-01

    Sorption of dissolved organic carbon (DOC) on mineral phases is an important process for carbon preservation and element cycling in soils. Sorption of DOC to active minerals results in its fractionation because hydrophobic compounds (humic and fulvic acids) will be preferentially sorbed. Binding of cations (Ca2+, Mg2+, Al3+, Fe3+) by the DOC reduces the negative charge and thus its water solubility. At low pH and high cation concentrations, cations may cause coagulation of DOC. The sorption and/or coagulation are important factors in relation to DOC transport. Little is known about DOC partitioning between the soil solid and solution phases of arctic ecosystems. As a consequence of future warming arctic ecosystem will shift from surface water dominated to groundwater dominated systems. In general, permafrost affected soils with shallow active layers, having lateral flow towards the stream with only short contact time to mineral layers, lead to higher hydrophobic (humic and fulvic acid) DOC concentrations in streams compared to permafrost free soils where a larger share of hydrophilic DOC is expected to be discharged into streams. Changes in the delivery of DOC, nutrients and major ions to arctic rivers may have important consequences for primary production and carbon cycling. The partitioning of DOC is a fundamental process needed for modelling current and future stream water quality and solute transport. Therefore, the objective of this study is to determine the sorption and consequent fractionation of DOC in arctic ecosystems. During fieldwork carried out in the summer of 2007 and 2008 in the Russian Komi Republic, we collected soil, soil solution and surface water samples in both a forested taiga and a permafrost affected tundra catchment. The liquid samples were analysed for total organic carbon and inorganic cations. A rapid batch procedure was used for determining the humic-, fulvic- and hydrophilic acid fractions. Using the chemical speciation model

  12. Attitudes Toward Deviant Sex in Ancient Mesopotamia

    Science.gov (United States)

    Bullough, Vern L.

    1971-01-01

    The article concludes that the whole question of sexual life in ancient Mesopotamia is difficult to reconstruct and fraught with many uncertainties. Nevertheless, it seems certain that the ancient Mesopotamians had fewer prohibitions against sex than our own civilization, and regarded as acceptable many practices which later societies condemned.…

  13. Women--Sex Objects in Ancient Egypt.

    Science.gov (United States)

    Mutimer, Brian T. P.

    Although it has been said that the women in Ancient Egypt enjoyed a reasonable state of social and professional equality with men, this paper presents an alternate theory--that women were second-class citizens whose physical prowess was secondary to their role as sex objects. It appears that men and women in Ancient Egypt often participated in the…

  14. The Idea of Ancient Greek Philosophy

    Institute of Scientific and Technical Information of China (English)

    苏雪

    2016-01-01

    As the source of western philosophy, ancient Greek philosophy had a profound influence on western philosophy. Ancient philosophers were hard to reach a consensus on the existence of all the things in the world. They tried to grasp the profound understanding of the world, which is the clue of the history of philosophy.

  15. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events.

    Science.gov (United States)

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A Mark; Press, Malcolm C; Phoenix, Gareth K

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem (15)N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g Nm(-2)yr(-1), applied as (15)NH4(15)NO3 in Svalbard (79(°)N), during the summer. Separate applications of (15)NO3(-) and (15)NH4(+) were also made to determine the importance of N form in their retention. More than 95% of the total (15)N applied was recovered after one growing season (~90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants>vascular plants>organic soil>litter>mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of (15)N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater (15)NO3(-) than (15)NH4(+), suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication.

  16. Root traits explain observed tundra vegetation nitrogen uptake patterns: Implications for trait-based land models

    Science.gov (United States)

    Zhu, Qing; Iversen, Colleen M.; Riley, William J.; Slette, Ingrid J.; Vander Stel, Holly M.

    2016-12-01

    Ongoing climate warming will likely perturb vertical distributions of nitrogen availability in tundra soils through enhancing nitrogen mineralization and releasing previously inaccessible nitrogen from frozen permafrost soil. However, arctic tundra responses to such changes are uncertain, because of a lack of vertically explicit nitrogen tracer experiments and untested hypotheses of root nitrogen uptake under the stress of microbial competition implemented in land models. We conducted a vertically explicit 15N tracer experiment for three dominant tundra species to quantify plant N uptake profiles. Then we applied a nutrient competition model (N-COM), which is being integrated into the ACME Land Model, to explain the observations. Observations using an 15N tracer showed that plant N uptake profiles were not consistently related to root biomass density profiles, which challenges the prevailing hypothesis that root density always exerts first-order control on N uptake. By considering essential root traits (e.g., biomass distribution and nutrient uptake kinetics) with an appropriate plant-microbe nutrient competition framework, our model reasonably reproduced the observed patterns of plant N uptake. In addition, we show that previously applied nutrient competition hypotheses in Earth System Land Models fail to explain the diverse plant N uptake profiles we observed. Our results cast doubt on current climate-scale model predictions of arctic plant responses to elevated nitrogen supply under a changing climate and highlight the importance of considering essential root traits in large-scale land models. Finally, we provided suggestions and a short synthesis of data availability for future trait-based land model development.

  17. Lead toxicosis in tundra swans near a mining and smelting complex in northern Idaho

    Science.gov (United States)

    Blus, L.J.; Henny, C.J.; Hoffman, D.J.; Grove, R.A.

    1991-01-01

    Die-offs of waterfowl have occurred in the Coeur d`Alene River system in northern Idaho since at least the early 1900`s. We investigated causes of mortality and lead and cadmium contamination of 46 tundra swans (Cygnus columbianus) from 1987 to 1989; an additional 22 swans found dead in 1990 were not examined. We necropsied 43 of the 46 birds found from 1987 to 1989; 38 of these were from the Coeur d`Alene River system, which has been contaminated with mining and smelting wastes for a century, and the other 5 were from a nearby, relatively uncontaminated area. Of the 36 livers of swans from the contaminated area that were analyzed, 32 contained lethal levels of lead (6 to 40 micrograms/g, wet weight) and all birds exhibited several symptoms of lead poisoning, notably enlarged gall bladders containing viscous, darkgreen bile. Only 13% of the lead-poisoned birds (10% when data were included from other studies of swans in the area) contained shot, compared to 95% of lead-poisoning swans in studies outside northern Idaho. Lead concentrations in blood samples from 16 apparently healthy swans (0.5 to 2.3 micrograms/g, and 4 leadpoisoned birds found moribund (1.3 to 9.6 micrograms/g) indicating that tundra swans accumulated high levels of lead from ingestion of sediment that contained up to 8,700 micrograms/g of lead and plants that contained up to 400 micrograms/g. The swans spend only a few weeks in the area staging during the spring migration. The five tundra swans from the uncontaminated area had low levels of lead and essentially no symptoms of lead poisoning.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Net ecosystem exchange over heterogeneous Arctic tundra: Scaling between chamber and eddy covariance measurements

    Science.gov (United States)

    Fox, Andrew M.; Huntley, Brian; Lloyd, Colin R.; Williams, Mathew; Baxter, Robert

    2008-06-01

    Net ecosystem exchange (NEE) was estimated for an area of tundra near Abisko using both eddy covariance (EC) data and chamber measurements. This area of tundra is heterogeneous with six principal elements forming a landscape mosaic. Chamber measurements in patches of the individual mosaic elements were used to model NEE as a function of irradiance and temperature. The area around the EC mast was mapped, and a footprint model was used to simulate the varying source fraction attributable to each mosaic element. Various upscaling approaches were used to estimate NEE for comparison with NEE calculated from the EC observations. The results showed that EC measurements made for such a heterogeneous site are robust to the variations in NEE between mosaic elements that also vary substantially in their source fractions. However, they also revealed a large (˜60%) bias in the absolute magnitude of the cumulative negative NEE for a 40-day study period simulated by various upscaling approaches when compared to the value calculated from the EC observations. The magnitude of this bias, if applied to estimates for the entire tundra region, is substantial in relation to other components of the global carbon budget. Various hypotheses to account for this bias are discussed and, where possible, evaluated. A need is identified for more systematic sampling strategies when performing chamber measurements in order to assess the extent to which subjectivity of chamber location may account for much of the observed bias. If this is the origin of the bias, then upscaling approaches using chamber measurements may generally overestimate CO2 uptake.

  19. Asticcacaulis benevestitus sp. nov., a psychrotolerant, dimorphic, prosthecate bacterium from tundra wetland soil.

    OpenAIRE

    Vasilyeva, Lina V; Omelchenko, Marina V.; Berestovskaya, Yulia Y; Lysenko, Anatolii M; Abraham, Wolf-Rainer; Dedysh, Svetlana N.; Zavarzin, George A

    2006-01-01

    A Gram-negative, aerobic, heterotrophic, non-pigmented, dimorphic prosthecate bacterium was isolated from tundra wetland soil and designated strain Z-0023(T). Cells of this strain had a dimorphic life cycle and developed a non-adhesive stalk at a site not coincident with the centre of the cell pole, a characteristic typical of representatives of the genus Asticcacaulis. A highly distinctive feature of cells of strain Z-0023(T) was the presence of a conical, bell-shaped sheath when grown at lo...

  20. Doubled volatile organic compound emissions from subarctic tundra under simulated climate warming

    DEFF Research Database (Denmark)

    Faubert, Patrick; Tiiva, Paivi; Rinnan, Åsmund;

    2010-01-01

    the globe. We assess the effects of climatic warming on non-methane BVOC emissions from a subarctic heath. • We performed ecosystem-based chamber measurements and gas chromatography-mass spectrometry (GC-MS) analyses of the BVOCs collected on adsorbent over two growing seasons at a wet subarctic tundra......• Biogenic volatile organic compound (BVOC) emissions from arctic ecosystems are important in view of their role in global atmospheric chemistry and unknown feedbacks to global warming. These cold ecosystems are hotspots of climate warming, which will be more severe here than averaged over...

  1. Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties

    Science.gov (United States)

    Huemmrich, Karl Fred; Gamon, John A.; Tweedie, Craig E.; Campbell, Petya K. Entcheva; Landis, David R.; Middleton, Elizabeth M.

    2013-01-01

    Non-vascular plants (lichens and mosses) are significant components of tundra landscapes and may respond to climate change differently from vascular plants affecting ecosystem carbon balance. Remote sensing provides critical tools for monitoring plant cover types, as optical signals provide a way to scale from plot measurements to regional estimates of biophysical properties, for which spatial-temporal patterns may be analyzed. Gas exchange measurements were collected for pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow, AK. These functional types were found to have three significantly different values of light use efficiency (LUE) with values of 0.013 plus or minus 0.0002, 0.0018 plus or minus 0.0002, and 0.0012 plus or minus 0.0001 mol C mol (exp -1) absorbed quanta for vascular plants, mosses and lichens, respectively. Discriminant analysis of the spectra reflectance of these patches identified five spectral bands that separated each of these vegetation functional types as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals. Along the transect, area-averaged canopy LUE estimated from coverage fractions of the three functional types varied widely, even over short distances. The patch-level statistical discriminant functions applied to in situ hyperspectral reflectance data collected along the transect successfully unmixed cover fractions of the vegetation functional types. The unmixing functions, developed from the transect data, were applied to 30 m spatial resolution Earth Observing-1 Hyperion imaging spectrometer data to examine variability in distribution of the vegetation functional types for an area near Barrow, AK. Spatial variability of LUE was derived from the observed functional type distributions. Across this landscape, a

  2. Mechanisms of shrub encroachment into Northern Chihuahuan Desert grasslands and impacts of climate change investigated using a cellular automata model

    Science.gov (United States)

    Caracciolo, Domenico; Istanbulluoglu, Erkan; Noto, Leonardo Valerio; Collins, Scott L.

    2016-05-01

    Arid and semiarid grasslands of southwestern North America have changed dramatically over the last 150 years as a result of woody plant encroachment. Overgrazing, reduced fire frequency, and climate change are known drivers of woody plant encroachment into grasslands. In this study, relatively simple algorithms for encroachment factors (i.e., grazing, grassland fires, and seed dispersal by grazers) are proposed and implemented in the ecohydrological Cellular-Automata Tree Grass Shrub Simulator (CATGraSS). CATGraSS is used in a 7.3 km2 rectangular domain located in central New Mexico along a zone of grassland to shrubland transition, where shrub encroachment is currently active. CATGraSS is calibrated and used to investigate the relative contributions of grazing, fire frequency, seed dispersal by herbivores and climate change on shrub abundance over a 150-year period of historical shrub encroachment. The impact of future climate change is examined using a model output that realistically represents current vegetation cover as initial condition, in a series of stochastic CATGraSS future climate simulations. Model simulations are found to be highly sensitive to the initial distribution of shrub cover. Encroachment factors more actively lead to shrub propagation within the domain when the model starts with randomly distributed individual shrubs. However, when shrubs are naturally evolved into clusters, the model response to encroachment factors is muted unless the effect of seed dispersal by herbivores is amplified. The relative contribution of different drivers on modeled shrub encroachment varied based on the initial shrub cover condition used in the model. When historical weather data is used, CATGraSS predicted loss of shrub and grass cover during the 1950 s drought. While future climate change is found to amplify shrub encroachment (∼13% more shrub cover by 2100), grazing remains the dominant factor promoting shrub encroachment. When we modeled future climate

  3. Mechanisms in ancient Chinese books with illustrations

    CERN Document Server

    Hsiao, Kuo-Hung

    2014-01-01

    This book presents a unique approach for studying mechanisms and machines with drawings that were depicted unclearly in ancient Chinese books. The historical, cultural and technical backgrounds of the mechanisms are explained, and various mechanisms described and illustrated in ancient books are introduced. By utilizing the idea for the conceptual design of modern mechanisms, all feasible designs of ancient mechanisms with uncertain members and joints that meet the technical standards of the subjects’ time periods are synthesized systematically. Ancient Chinese crossbows (the original crossbow and repeating crossbows), textile mechanisms (silk-reeling mechanism, spinning mechanisms, and looms), and many other artisan's tool mechanisms are used as illustrated examples.  Such an approach provides a logical method for the reconstruction designs of ancient mechanisms with uncertain structures. It also provides an innovative direction for researchers to further identify the original structures of mechanisms...

  4. Structural recognition of ancient Chinese ideographic characters

    Institute of Scientific and Technical Information of China (English)

    Li Ning; Chen Dan

    2014-01-01

    Ancient Chinese characters, typically the ideographic characters on bones and bronze before Shang Dynasty (16th—11th century B.C.), are valuable culture legacy of history. However the recognition of Ancient Chinese characters has been the task of paleography experts for long. With the help of modern computer technique, everyone can expect to be able to recognize the characters and understand the ancient inscriptions. This research is aimed to help people recognize and understand those ancient Chinese characters by combining Chinese paleography theory and computer information processing technology. Based on the analysis of ancient character features, a method for structural character recognition is proposed. The important characteristics of strokes and basic components or radicals used in recognition are introduced in detail. A system was implemented based on above method to show the effectiveness of the method.

  5. [Anomalous pregnancies in ancient medicine].

    Science.gov (United States)

    Gazzaniga, Valentina

    2010-01-01

    In ancient Greek medicine female physiology is determined by a particular state of non-steady equilibrium, largely based on pregnancy and lactation, presented as the only balanced and healthy periods in women's life. Nonetheless, pregnancy can be also a pathological moment, in particular referring to specific alterations of its 'normal time' ('seven-months', 'eight-months' and 'ten-months' children). The article analyzes the well-known case of myle, an abnormal pregnancy developing in three and sometimes four years, non resolving in a normal delivery, but often in a dramatic haemorrhagic flux. The author compares Hippocratic and Aristotelic testimonies about myle and abnormal pregnancies with the evidence fournished by the historical-religious recent studies about Hera and her parthenogenetic, monstrous children.

  6. Detecting hybridization using ancient DNA.

    Science.gov (United States)

    Schaefer, Nathan K; Shapiro, Beth; Green, Richard E

    2016-06-01

    It is well established that related species hybridize and that this can have varied but significant effects on speciation and environmental adaptation. It should therefore come as no surprise that hybridization is not limited to species that are alive today. In the last several decades, advances in technologies for recovering and sequencing DNA from fossil remains have enabled the assembly of high-coverage genome sequences for a growing diversity of organisms, including many that are extinct. Thanks to the development of new statistical approaches for detecting and quantifying admixture from genomic data, genomes from extinct populations have proven useful both in revealing previously unknown hybridization events and informing the study of hybridization between living organisms. Here, we review some of the key recent statistical innovations for detecting ancient hybridization using genomewide sequence data and discuss how these innovations have revised our understanding of human evolutionary history.

  7. [Being old in ancient Hellas].

    Science.gov (United States)

    van Hooff, A J

    1983-08-01

    There is room for a more balanced view of old age among the ancient Greeks than is furnished by De Beauvoir's la Vieillesse and other more or less one-sided publications. The old body was despised by the Greeks of classical times; especially walking with three legs (tripous) was stressed as a mark of old age. The Hippocratic writings show some interest in the infirmities of elderly people. Specific psychic and intellectual qualities were not attributed to senescence: old age brought out good and bad qualities of a person more sharply than before. The share of old people in the population cannot be established with any certainty, but there was always a group of men in their sixties who had specific tasks in society. Old age was not an autonomous theme in art, it was solely accidental. The position of the elderly was challenged occasionally in democratic Athens, but it was never undermined. Old people were never marginated in classical Greece.

  8. Ancient Acupuncture Literature on Apoplexy

    Institute of Scientific and Technical Information of China (English)

    XU Yi-zeng; BI Zhen; Xiao Yuan-chun

    2003-01-01

    This paper reviews twenty-eight Chinese medicine books with complete prescriptions prior to the Qing Dynasty, and analyzes the characteristics of acupoint selection and needling manipulations from the perspective of apoplectic symptoms. It is concluded that,in ancient times, apoplexy is often treated on the basis of its symptoms and a great number of acupoints are employed; hemiplegia is mainly treated by the acupoints of the Large Intestine Meridian and Gallbladder Meridian,with two key acupoints; coma is mainly treated by first-aid acupoints and qi-supplementing acupoints, with seven key acupoints; wry mouth and convulsion are mainly treated by the local acupoints; as for needling manipulations, moxibustion with moxa cones is principally used, while needling is less used.

  9. Valuation of ecosystem services of commercial shrub willow (Salix spp.) woody biomass crops.

    Science.gov (United States)

    Bressler, Alison; Vidon, Philippe; Hirsch, Paul; Volk, Timothy

    2017-04-01

    The development of shrub willow as a bioenergy feedstock contributes to renewable energy portfolios in many countries with temperate climates and marginal croplands due to excessive moisture. However, to fully understand the potential of shrub willow as an alternative crop on marginal cropland, more research is needed to understand the potential of shrub willow for providing a variety of ecosystem services. At the same time, there is much need for research developing strategies to value ecosystem services beyond conventional valuation systems (e.g., monetary, intrinsic). In this context, this project investigates the ecosystem services of shrub willow woody biomass from an environmental science perspective, and proposes a new avenue to assess ecosystem services for management purposes based on the relative value of key ecosystem services under various land management strategies (i.e., willow vs. corn vs. hay). On marginal cropland in the US Northeast, shrub willow may be used to replace crops like corn or hay. Transitioning from conventional corn or hay to willow tends to reduce nutrient loss and erosion, improve biodiversity and adaptability to climate change, and increase access to recreational activities. However, it is unlikely to change soil carbon pools or greenhouse gas emissions at the soil-atmosphere interface. By encouraging decision makers to weigh the pros and cons of each management decision (i.e., willow vs. corn vs. hay) based on the situation, the ecosystems services valuation method used here provides a clear framework for decision making in a watershed management context.

  10. Throughfall and its spatial variability beneath xerophytic shrub canopies within water-limited arid desert ecosystems

    Science.gov (United States)

    Zhang, Ya-feng; Wang, Xin-ping; Hu, Rui; Pan, Yan-xia

    2016-08-01

    Throughfall is known to be a critical component of the hydrological and biogeochemical cycles of forested ecosystems with inherently temporal and spatial variability. Yet little is understood concerning the throughfall variability of shrubs and the associated controlling factors in arid desert ecosystems. Here we systematically investigated the variability of throughfall of two morphological distinct xerophytic shrubs (Caragana korshinskii and Artemisia ordosica) within a re-vegetated arid desert ecosystem, and evaluated the effects of shrub structure and rainfall characteristics on throughfall based on heavily gauged throughfall measurements at the event scale. We found that morphological differences were not sufficient to generate significant difference (P decline with the increase in rainfall amount, intensity and duration, and stabilized passing a certain threshold. Our findings highlight the great variability of throughfall beneath the canopies of xerophytic shrubs and the time stability of throughfall pattern among rainfall events. The spatially heterogeneous and temporally stable throughfall is expected to generate a dynamic patchy distribution of soil moisture beneath shrub canopies within arid desert ecosystems.

  11. Endozoochorus seed dispersal by goats: recovery, germinability and emergence of five Mediterranean shrub species

    Directory of Open Access Journals (Sweden)

    D. Grande

    2013-05-01

    Full Text Available Herbivores can play an important role as seed dispersal vectors, ungulates constituting potential seed dispersal agents of Mediterranean grasses and shrubs. We evaluated the role of domestic goats as seed dispersers of five representative Mediterranean forage shrub species (Cistus albidus L., Phillyrea angustifolia L., Calicotome villosa (Poir. Link., Rhamnus lycioides L. and Atriplex halimus L.. Following seed ingestion by goats, total faeces were collected at 24-h intervals for five days. The total number of seeds recovered varied among species, with R. lycioides showing the minimum recovery percentage (1.3% and C. albidus (35.8%, the maximum. Seed recovery was significantly related to seed hardness and length. In most species, the maximum amount of seeds recovered occurred 48-72 h after ingestion. The passage through the goat gut significantly depressed seed germination in C. albidus, C. villosa and A. halimus; inhibited it in R. lycioides and increased it in P. angustifolia. Seedling emergence was significantly lower in intact dung pellets than in broken-down ones, and both significantly lower than in uneaten seeds (control. The results of this study show that goats can potentially favor or inhibit seed dispersal of browsed Mediterranean shrub species. Therefore, goat grazing could be a potential management tool for expanding target shrub species populations or preventing shrub encroachment in undesired areas.

  12. Effect of supplementation with barley and calcium hydroxide on intake of Mediterranean shrubs

    Directory of Open Access Journals (Sweden)

    Dragan Skobic

    2011-04-01

    Full Text Available Maquis plant communities are one of the most varied vegetation types in the Mediterranean region and an important habitat for wild and domestic herbivores. Although the majority of these shrubs are nutritious, the secondary compounds are main impediments that reduce their forage value. In five experiments we determined the effect of supplementing goats with calcium hydroxide plus barley, and barley alone on intake of five dominant shrubs (Quercus ilex, Erica multiflora, Arbutus unedo, Viburnum tinus and Pistacia lentiscus of the Mediterranean maquis community. The combination of calcium hydroxide plus barley and barley alone increased utilization of all five investigated Mediterranean shrubs; therewith that intake of Arbutus unedo and Viburnum tinus was not statistically significant. Supplemented goats with calcium hydroxide plus barley or barley alone could be effective in controlling secondary compounds-rich Mediterranean shrubs where their abundance threatens biodiversity. This control can be facilitated by browsing dominant Mediterranean shrubs, which has been shown to be effective in managing Mediterranean maquis density. Calcium hydroxide and barley (energy enhance use of secondary compounds-containing plants, which may increase production of alternate forages and create a more diverse mix of plant species in the Mediterranean maquis plant community.

  13. Rainsplash-induced mound development beneath desert shrubs: Modulation of sediment transport and storage, with implications for hillslope evolution

    Science.gov (United States)

    Roberts, A. S.; Furbish, D. J.

    2009-12-01

    Studies of mound development beneath desert shrubs by rainsplash transport have focused on the physics of rainsplash transport, as well as on mound characteristics. However, there has been no attempt to examine the relationship between the life cycles of desert shrub populations, sediment storage, sediment transport rates, and ultimately hillslope evolution. Our work examines the timescales over which the presence of a shrub community on a desert hillslope reduces rates of sediment transport and modulates the local divergence of the sediment flux, thereby influencing the rate of hillslope evolution. Mounds develop beneath shrubs as a result of preferential movement of sediment from areas not covered by canopy to areas beneath shrub canopies, where grains are protected from raindrop impacts. The sediment flux immediately downslope of a shrub is reduced as a mound develops. Conversely, removal of canopy cover (i.e. shrub mortality) results in a local increase in sediment flux immediately downslope of a shrub as mound material becomes exposed to rainsplash transport. A hillslope supporting a desert shrub community and mound development experiences an overall lowering of downslope transport rates compared to an unvegetated desert hillslope. Here we develop a numerically-based model for desert hillslopes, supported by field observations of rainsplash mounds in the Cibola National Forest, New Mexico, to investigate how sediment that is stored and released in conjunction with a dynamic shrub population affects desert hillslope evolution. Modeling suggest that it can take on the order of a century for sediment in a mound to be released downslope by rainsplash processes following the death of a shrub. Even as local sediment transport rates increase and decrease in proximity to shrub mounds throughout the life cycle of an individual shrub, sediment transport rates at the hillslope scale are likely to be reduced for as long as the shrub community remains viable. Our work

  14. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology

    Science.gov (United States)

    Liljedahl, Anna K.; Boike, Julia; Daanen, Ronald P.; Fedorov, Alexander N.; Frost, Gerald V.; Grosse, Guido; Hinzman, Larry D.; Iijma, Yoshihiro; Jorgenson, Janet C.; Matveyeva, Nadya; Necsoiu, Marius; Raynolds, Martha K.; Romanovsky, Vladimir E.; Schulla, Jörg; Tape, Ken D.; Walker, Donald A.; Wilson, Cathy J.; Yabuki, Hironori; Zona, Donatella

    2016-04-01

    Ice wedges are common features of the subsurface in permafrost regions. They develop by repeated frost cracking and ice vein growth over hundreds to thousands of years. Ice-wedge formation causes the archetypal polygonal patterns seen in tundra across the Arctic landscape. Here we use field and remote sensing observations to document polygon succession due to ice-wedge degradation and trough development in ten Arctic localities over sub-decadal timescales. Initial thaw drains polygon centres and forms disconnected troughs that hold isolated ponds. Continued ice-wedge melting leads to increased trough connectivity and an overall draining of the landscape. We find that melting at the tops of ice wedges over recent decades and subsequent decimetre-scale ground subsidence is a widespread Arctic phenomenon. Although permafrost temperatures have been increasing gradually, we find that ice-wedge degradation is occurring on sub-decadal timescales. Our hydrological model simulations show that advanced ice-wedge degradation can significantly alter the water balance of lowland tundra by reducing inundation and increasing runoff, in particular due to changes in snow distribution as troughs form. We predict that ice-wedge degradation and the hydrological changes associated with the resulting differential ground subsidence will expand and amplify in rapidly warming permafrost regions.

  15. Asticcacaulis benevestitus sp. nov., a psychrotolerant, dimorphic, prosthecate bacterium from tundra wetland soil.

    Science.gov (United States)

    Vasilyeva, Lina V; Omelchenko, Marina V; Berestovskaya, Yulia Y; Lysenko, Anatolii M; Abraham, Wolf-Rainer; Dedysh, Svetlana N; Zavarzin, George A

    2006-09-01

    A Gram-negative, aerobic, heterotrophic, non-pigmented, dimorphic prosthecate bacterium was isolated from tundra wetland soil and designated strain Z-0023(T). Cells of this strain had a dimorphic life cycle and developed a non-adhesive stalk at a site not coincident with the centre of the cell pole, a characteristic typical of representatives of the genus Asticcacaulis. A highly distinctive feature of cells of strain Z-0023(T) was the presence of a conical, bell-shaped sheath when grown at low temperature. This prosthecate bacterium was a psychrotolerant, moderately acidophilic organism capable of growth between 4 and 28 degrees Celsius (optimum 15-20 degrees Celsius) and between pH 4.5 and 8.0 (optimum 5.6-6.0). The major phospholipid fatty acid was 18 : 1omega7c and the major phospholipids were phosphatidylglycerols. The G+C content of the DNA was 60.4 mol%. On the basis of 16S rRNA gene sequence similarity, strain Z-0023(T) was most closely related to Asticcacaulis biprosthecium (98 % similarity), Asticcacaulis taihuensis (98 %) and Asticcacaulis excentricus (95 %). However, low levels of DNA-DNA relatedness to these organisms and a number of distinctive features of the tundra wetland isolate indicated that it represented a novel species of the genus Asticcacaulis, for which the name Asticcacaulis benevestitus sp. nov. is proposed. The type strain is Z-0023(T) (=DSM 16100(T)=ATCC BAA-896(T)).

  16. Modelling the spatial pattern of ground thaw in a small basin in the arctic tundra

    Directory of Open Access Journals (Sweden)

    S. Endrizzi

    2011-01-01

    Full Text Available In the arctic tundra the ground is normally composed by a relatively thin organic soil layer, overlying mineral sediment. Subsurface water drainage generally occurs in the organic layer for its high hydraulic conductivity. However, the organic layer shows significant decrease of hydraulic conductivity with depth. The position and the topography of the frost table, which here acts as a relatively impermeable surface, are therefore crucial in determining the hillslope drainage rate. This work aims at understanding how the topography of the ground surface affects the spatial variability of the depth of thaw in a 1 km2 low-elevation arctic tundra basin with a fine resolution model that fully couples energy and water flow processes. The simulations indicate that the spatial patterns of ground thaw are not dominated by slope and aspect, but are instead entirely controlled by the spatial distribution of soil moisture, which is determined by subsurface flow patterns. Measured thaw depths have a similar range of variability to the simulated values for each stage of active layer development, although the model slightly overestimated the depth of thaw.

  17. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra

    Directory of Open Access Journals (Sweden)

    Congcong eShen

    2015-06-01

    Full Text Available The elevational diversity pattern for microorganisms has received great attention recently but is still understudied, and phylogenetic relatedness is rarely studied for microbial elevational distributions. Using a bar-coded pyrosequencing technique, we examined the biodiversity patterns for soil bacterial communities of tundra ecosystem along 2000–2500 m elevations on Changbai Mountain in China. Bacterial taxonomic richness displayed a linear decreasing trend with increasing elevation. Phylogenetic diversity and mean nearest taxon distance (MNTD exhibited a unimodal pattern with elevation. Bacterial communities were more phylogenetically clustered than expected by chance at all elevations based on the standardized effect size of MNTD metric. The bacterial communities differed dramatically among elevations, and the community composition was significantly correlated with soil total carbon, total nitrogen, C:N ratio, and dissolved organic carbon. Multiple ordinary least squares regression analysis showed that the observed biodiversity patterns strongly correlated with soil total carbon and C:N ratio. Taken together, this is the first time that a significant bacterial diversity pattern has been observed across a small-scale elevational gradient. Our results indicated that soil carbon and nitrogen contents were the critical environmental factors affecting bacterial elevational distribution in Changbai Mountain tundra. This suggested that ecological niche-based environmental filtering processes related to soil carbon and nitrogen contents could play a dominant role in structuring bacterial communities along the elevational gradient.

  18. Prevalence, transmission, and genetic diversity of blood parasites infecting tundra-nesting geese in Alaska

    Science.gov (United States)

    Ramey, Andy M.; Reed, John A.; Schmutz, Joel A.; Fondell, Tom F.; Meixell, Brandt W.; Hupp, Jerry W.; Ward, David H.; Terenzi, John; Ely, Craig R.

    2014-01-01

    A total of 842 blood samples collected from five species of tundra-nesting geese in Alaska was screened for haemosporidian parasites using molecular techniques. Parasites of the generaLeucocytozoon Danilewsky, 1890, Haemoproteus Kruse, 1890, and Plasmodium Marchiafava and Celli, 1885 were detected in 169 (20%), 3 (parasites and assess variation relative to species, age, sex, geographic area, year, and decade. Species, age, and decade were identified as important in explaining differences in prevalence of Leucocytozoonparasites. Leucocytozoon parasites were detected in goslings sampled along the Arctic Coastal Plain using both historic and contemporary samples, which provided support for transmission in the North American Arctic. In contrast, lack of detection of Haemoproteus and Plasmodiumparasites in goslings (n = 238) provided evidence to suggest that the transmission of parasites of these genera may not occur among waterfowl using tundra habitats in Alaska, or alternatively, may only occur at low levels. Five haemosporidian genetic lineages shared among different species of geese sampled from two geographic areas were indicative of interspecies parasite transmission and supported broad parasite or vector distributions. However, identicalLeucocytozoon and Haemoproteus lineages on public databases were limited to waterfowl hosts suggesting constraints in the range of parasite hosts.

  19. Mobile Phone Revolution in the Tundra? Technological Change among Russian Reindeer Nomads

    Directory of Open Access Journals (Sweden)

    Florian M. Stammler

    2009-04-01

    Full Text Available This contribution looks at the influence of technological change thatnomads in the Russian North have undergone, using as examples two crucial innovations: the snowmobile and the mobile phone. I argue that the snowmobile did not have the same revolutionary impact on the Russian tundra as it did in Fennoscandia, for reasons connected to long distances, infrastructure, spare parts, availability of fuel, priorities of Soviet transport policy as well as the convenience of previously used practices of herd control using ‘sitting transport’. Different from that, I argue that mobile phones have the potential for a greater penetration into nomadic societies. Because they encourage equality rather than stratification, they are low maintenance; they are small enough to be embedded into existing social contexts. Connecting not only neighbours but the whole world, in principle, mobile phones may entail a significant socio-cultural change. The article presents first fieldwork evidence of such change among tundra nomads and relates this to existing theoretical studies on how mobile communication changes societies. Attention is paid to the particularities of a mobile type of communication introduced in mobile communities, that is, among nomads. In doing so, I explore similarities and differences in how technological change influences sedentary and nomadic societies.

  20. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska.

    Science.gov (United States)

    Kim, Hye Min; Jung, Ji Young; Yergeau, Etienne; Hwang, Chung Yeon; Hinzman, Larry; Nam, Sungjin; Hong, Soon Gyu; Kim, Ok-Sun; Chun, Jongsik; Lee, Yoo Kyung

    2014-08-01

    The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0-10 cm to 10-20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen (NH4+ and NO3-). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska.

  1. 100% Retention of Snowpack Derived Nitrogen Over 10 Years in High Arctic Tundra

    Science.gov (United States)

    Choudhary, S.; Tye, A. M.; Young, S. D.; West, H. M.; Phoenix, G. K.

    2013-12-01

    Tundra ecosystems are susceptible to atmospheric nitrogen (N) deposition, increasing as a result of anthropogenic activities as well as climate change. Depositions that get accumulated within the snowpack during winter months are released in spring during snowmelt, providing a periodic input of reactive N in the melt water to such nutrient limited ecosystems. Identifying ecosystem N retention and allocation and how this change over time is important to understanding the long-term consequences of such N depositions to these ecosystems. We reanalysed 10 years later an atmospheric N deposition study established in Svalbard that in 2001 used 15N isotope tracers to determine the fate of N released from melting snowpack. Applications of 15N (99 atom%) at 0.1 and 0.5 g N m-2 were made immediately after snowmelt in 2001 as either Na15NO3 or 15NH4Cl. These applications were approximately 1 × and 5 × the yearly atmospheric deposition rates. In both the previous short-term (one week to two years after 15N tracer application) and our long-term re-sampling (10 years after 15N tracer application), ~67% of the total applied 15N was retained in the ecosystem, irrespective of the N forms or N dose. This meant the tundra had 100% long-term N retention after initial partitioning, suggesting a highly conservative N cycling. Bryophytes, followed by the organic soil horizon and then the microbial biomass formed the greatest short-term 15N sink. Maximum changes in 15N retention from the short- to long-term were observed in the microbial 15N pools, with ~75% of the 15N in soil located in its biomass during the initial partitioning (July 2001) decreasing to ~17% 10 years later. This indicates significant microbial N turnover mostly into stable humus N. In contrast, vascular plants, particularly Salix polaris, showed significant increases (~60%) in their 15N retention after 10 years, indicating a high capacity for acting as a long-term N sink in this tundra ecosystem. Because the largest

  2. gargammel: a sequence simulator for ancient DNA.

    Science.gov (United States)

    Renaud, Gabriel; Hanghøj, Kristian; Willerslev, Eske; Orlando, Ludovic

    2016-10-29

    Ancient DNA has emerged as a remarkable tool to infer the history of extinct species and past populations. However, many of its characteristics, such as extensive fragmentation, damage and contamination, can influence downstream analyses. To help investigators measure how these could impact their analyses in silico, we have developed gargammel, a package that simulates ancient DNA fragments given a set of known reference genomes. Our package simulates the entire molecular process from post-mortem DNA fragmentation and DNA damage to experimental sequencing errors, and reproduces most common bias observed in ancient DNA datasets.

  3. THE HYDRAULIC CHARACTERISTICS AND GEOCHEMISTRY OF HYPORHEIC AND PARAFLUVIAL ZONES IN ARCTIC TUNDRA STREAMS, NORTH SLOPE, ALASKA

    Science.gov (United States)

    Sodium bromide and Rhodamine WT were used as conservative tracers to examine the hydrologic characteristics of seven tundra streams in Arctic Alaska, during the summers of 1994-1996. Continuous tracer additions were conducted in seven rivers ranging from 1st to 5th order with sam...

  4. Modeling the shrub encroachment in the Northern Chihuahuan desert Grasslands using a Cellular Automata model

    Science.gov (United States)

    Caracciolo, Domenico; Istanbulluoglu, Erkan; Noto, Leonardo V.

    2014-05-01

    Arid grasslands of southwestern North America have changed dramatically over the last 150 years as a result of the shrub encroachment, i.e. the increase in density and biomass of indigenous shrubby plants in grasslands. Numerous studies have documented the expansion of shrublands in the southwestern America Grasslands; in particular the encroachment of shrubs in american deserts has strongly occurred in the Chihuahuan deserts from 1860. The Sevilleta National Wildlife Refuge (SNWR), located in the northern Chihuahuan desert shows a dramatic encroachment front of creosote bush (i.e., shrub) into native desert grassland. This encroachment has been here simulated using an Ecohydrological Cellular Automata Model, CATGraSS. CATGraSS is a spatially distributed model driven by spatially explicit irradiance and runs on a fine-resolution gridded domain. In the model, each cell can hold a single plant type or can represent bare soil. Plant competition is modeled by keeping track of mortality and establishment of plants, both calculated probabilistically based on soil moisture stress. For this study, the model is improved with a stochastic fire and a grazing function, and its plant establishment algorithm is modified. CATGraSS is implemented in a small area (7.3 km2) in SNWR, characterized by two vegetation types: grass savanna and creosote bush. The causes that have been considered for the encroachment in this case study are: the fire return period increase, the grazing increase, the seed dispersal caused by animals, the role of wind direction and the shrub-grass inhibition effect. The model is able to reproduce the encroachment occurred in the SNWR basin, simulating an increasing of the shrub from 2% in 1860 to 42% (i.e., current shrub percentage) in 2010 highlighting as more influent factors the reduced fire frequency and the increased grazing intensity. For the future management and encroachment control, the reduction of the fire return period and the grazing removal

  5. A simple technique for measuring rainfall interception by small shrub: interception flow collection box

    Science.gov (United States)

    Belmonte Serrato, F.; Romero Diaz, A.

    1998-03-01

    In this paper a simple technique for field measurement of rain water loss arising from interception and water flows associated with species of small Mediterranean shrub is described: the interception flow collection box. This technique solves the problem of installing devices to control stemflow in species with a multiple trunk and demonstrates its efficiency through the results obtained from the data observed for three species of semi-arid Mediterranean shrub: Juniperus oxycedrus, Rosmarinus officinalis and Thymus vulgaris. Finally, the empirical equations for the prediction of throughfall, stemflow and rain water loss through interception are presented for the three selected species and the validity of the technique employed is established.

  6. Interdisciplinary investigation on ancient Ephedra twigs from Gumugou Cemetery (3800 B.P.) in Xinjiang region, northwest China.

    Science.gov (United States)

    Xie, Mingsi; Yang, Yimin; Wang, Binghua; Wang, Changsui

    2013-07-01

    In the dry northern temperate regions of the northern hemisphere, the genus Ephedra comprises a series of native shrub species with a cumulative application history reaching back well over 2,000 years for the treatment of asthma, cold, fever, as well as many respiratory system diseases, especially in China. There are ethnological and philological evidences of Ephedra worship and utilization in many Eurasia Steppe cultures. However, no scientifically verifiable, ancient physical proof has yet been provided for any species in this genus. This study reports the palaeobotanical finding of Ephedra twigs discovered from burials of the Gumugou archaeological site, and ancient community graveyard, dated around 3800 BP, in Lop Nor region of northwestern China. The macro-remains were first examined by scanning electron microscope (SEM) and then by gas chromatography-mass spectrometry (GC-MS) for traits of residual biomarkers under the reference of modern Ephedra samples. The GC-MS result of chemical analysis presents the existence of Ephedra-featured compounds, several of which, including benzaldehyde, tetramethyl-pyrazine, and phenmetrazine, are found in the chromatograph of both the ancient and modern sample. These results confirm that the discovered plant remains are Ephedra twigs. Although there is no direct archaeological evidence for the indication of medicinal use of this Ephedra, the unified burial deposit in which the Ephedra was discovered is a strong indication of the religious and medicinal awareness of the human inhabitants of Gumugou towards this plant.

  7. Aiding the Interpretation of Ancient Documents

    DEFF Research Database (Denmark)

    Roued-Cunliffe, Henriette

    How can Decision Support System (DSS) software aid the interpretation process involved in the reading of ancient documents? This paper discusses the development of a DSS prototype for the reading of ancient texts. In this context the term ‘ancient documents’ is used to describe mainly Greek...... and Latin texts and the term ‘scholars’ is used to describe readers of these documents (e.g. papyrologists, epigraphers, palaeographers). However, the results from this research can be applicable to many other texts ranging from Nordic runes to 18th Century love letters. In order to develop an appropriate...... tool it is important first to comprehend the interpretation process involved in reading ancient documents. This is not a linear process but rather a recursive process where the scholar moves between different levels of reading, such as ‘understanding the meaning of a character’ or ‘understanding...

  8. AN INTERESTING CASE OF ANCIENT SCHWANNOMA

    Directory of Open Access Journals (Sweden)

    Binu

    2015-01-01

    Full Text Available INTRODUCTION : Schwannoma is a common benign tumour of nerve sheath. Degenerating type of schwannoma is called ancient schwannoma. Ancient schwannomas of scalp are rare and are often misdiagnosed as sebaceous cyst or dermoid cyst. CASE REPORT : We present a thirty two year old male presented with scalp swel ling of eight years duration. X - ray showed no intracranial extension. He underwent excision of the tumour and histopathology was reported as ancient schwannoma. DISCUSSION : Histopathologically , ancient schwannomas charecterised by cellular Antoni type A ar eas and less cellular Antoni type - B areas. 9 th , 7 th , 11 th , 5 th and 4 th cranial nerves are often affected and may be associated with multiple neuro fibramatosis (Von - Recklinghausen’s disease. Impact : Case is presented for its rarity and possible pre - operative misdiagnosis

  9. Ancient Magnetic Reversals: Clues to the Geodynamo.

    Science.gov (United States)

    Hoffman, Kenneth A.

    1988-01-01

    Discusses the question posed by some that the earth's magnetic field may reverse. States that rocks magnetized by ancient fields may offer clues to the underlying reversal mechanism in the earth's core. (TW)

  10. Migration of Tundra Swans (Cygnus columbianus) Wintering in Japan Using Satellite Tracking: Identification of the Eastern Palearctic Flyway.

    Science.gov (United States)

    Chen, Wenbo; Doko, Tomoko; Fujita, Go; Hijikata, Naoya; Tokita, Ken-Ichi; Uchida, Kiyoshi; Konishi, Kan; Hiraoka, Emiko; Higuchi, Hiroyoshi

    2016-02-01

    Migration through the Eastern Palearctic (EP) flyway by tundra swans (Cygnus columbianus) has not been thoroughly documented. We satellite-tracked the migration of 16 tundra swans that winter in Japan. The objectives of this study were 1) to show the migration pattern of the EP flyway of tundra swans; 2) to compare this pattern with the migration pattern of whooper swans; and 3) to identify stopover sites that are important for these swans' conservation. Tundra swans were captured at Kutcharo Lake, Hokkaido, in 2009-2012 and satellite-tracked. A new method called the "MATCHED (Migratory Analytical Time Change Easy Detection) method" was developed. Based on median, the spring migration began on 18 April and ended on 27 May. Autumn migration began on 9 September and ended on 2 November. The median duration of the spring and autumn migrations were 48 and 50 days, respectively. The mean duration at one stopover site was 5.5 days and 6.8 days for the spring and autumn migrations, respectively. The number of stopover sites was 3.0 and 2.5 for the spring and autumn migrations, respectively. The mean travel distances for the spring and autumn migrations were 6471 and 6331 km, respectively. Seven migration routes passing Sakhalin, the Amur River, and/or Kamchatka were identified. There were 15, 32, and eight wintering, stopover, and breeding sites, respectively. The migration routes and staging areas of tundra swans partially overlap with those of whooper swans, whose migration patterns have been previously documented. The migration patterns of these two swan species that winter in Japan confirm the importance of the Amur River, Udyl' Lake, Shchastya Bay, Aniva Bay, zaliv Chayvo Lake, zal Piltun Lake, zaliv Baykal Lake, Kolyma River, Buyunda River, Sen-kyuyel' Lake, and northern coastal areas of the Sea of Okhotsk.

  11. Surgical history of ancient China: Part 2.

    Science.gov (United States)

    Fu, Louis

    2010-03-01

    In this second part of ancient Chinese surgical history, the practice of bone setting in China began around 3000 years ago. Throughout this period, significant progress was made, some highlights of which are cited. These methods, comparable with Western orthopaedic technique, are still being practised today. In conclusion, the possible reasons for the lack of advancement in operative surgery are discussed, within context of the cultural, social and religious background of ancient China.

  12. Radiocarbon dating of ancient Japanese documents

    Energy Technology Data Exchange (ETDEWEB)

    Oda, H. [Nagoya Univ., Center for Chronological Research, Nagoya, Aichi (Japan)

    2001-06-01

    History is a reconstruction of past human activity, evidence of which is remained in the form of documents or relics. For the reconstruction of historic period, the radiocarbon dating of ancient documents provides important information. Although radiocarbon age is converted into calendar age with the calibration curve, the calibrated radiocarbon age is still different from the historical age when the document was written. The difference is known as 'old wood effect' for wooden cultural property. The discrepancy becomes more serious problem for recent sample which requires more accurate age determination. Using Tandetron accelerator mass spectrometer at Nagoya University, we have measured radiocarbon ages of Japanese ancient documents, sutras and printed books written dates of which are clarified from the paleographic standpoint. The purpose is to clarify the relation between calibrated radiocarbon age and historical age of ancient Japanese document by AMS radiocarbon dating. This paper reports 23 radiocarbon ages of ancient Japanese documents, sutras and printed books. The calibrated radiocarbon ages are in good agreement with the corresponding historical ages. It was shown by radiocarbon dating of the ancient documents that Japanese paper has little gap by 'old wood effect'; accordingly, ancient Japanese paper is a suitable sample for radiocarbon dating of recent historic period. (author)

  13. Potential methane production rates and its carbon isotopic composition from ornithogenic tundra soils in coastal Antarctic

    Institute of Scientific and Technical Information of China (English)

    BAO Tao; ZHU Renbin; BAI Bo; XU Hua

    2016-01-01

    Methane (CH4) is one of important greenhouse gases with chemical activity. The determination of isotopic compositions for CH4 emitted from the soils helps us to understand its production mechanisms. CH4 isotope measurements have been conducted for different types of global terrestrial ecosystems. However, no isotopic data of CH4 have been reported from Antarctic tundra soils. In this paper, ornithogenic soil profiles were collected from four penguin colonies, and potential CH4 production rates and its13C ratio (δ13C) were investigated based upon laboratory incubation experiments. The mean CH4 production rates are highly variable in these soil proifles, ranging from 0.7 to 20.3 μg CH4−C kg−1∙h−1. These ornithogenic soils had high potential production rates of CH4 under ambient air incubation or under N2 incubation, indicating the importance of potential CH4 emissions from penguin colonies. Most of the soil samples had higher δ13C-CH4 under N2 incubation (−39.28%~−43.53%) than under the ambient air incubation (−42.81%~−57.19%). Highly anaerobic conditions were conducive to the production of CH4 enriched in13C, and acetic acid reduction under N2 incubation might be a predominant source for soil CH4production. Overall theδ13C-CH4 showed a signiifcant negative correlation with CH4 production rates in ornithogenic tundra soils under N2 incubation (R2=0.41,p<0.01) or under the ambient air incubation (R2=0.50,p<0.01). Potential CH4 production from ornithogenic soils showed a signiifcant positive correlation with total phosphorus (TP) and NH4+−N contents, pH and soil moisture (Mc), but the δ13C-CH4 showed a signiifcant negative correlation with TP and NH4+−N contents, pH and Mc, indicating that the deposition amount of penguin guano increased potential CH4 production rates from tundra soils, but decreased the δ13C-CH4. The CH4 emissions from the ornithogenic soils affect carbon isotopic compositions of atmospheric CH4in coastal Antarctica.

  14. Energy fluxes in a high Arctic tundra heath subjected to strong climate warming

    Science.gov (United States)

    Lund, M.; Hansen, B. U.; Pedersen, S. H.; Stiegler, C.; Tamstorf, M. P.

    2012-12-01

    During recent decades the observed warming in the Arctic has been almost twice as large as the global average. The implications of such strong warming on surface energy balance, regulating permafrost thaw, hydrology, soil stability and carbon mineralization, need to be assessed. In Zackenberg, northeast Greenland, measurements of energy balance components in various environments have been performed since late 90's, coordinated by Zackenberg Ecological Research Operations. During 1996-2009, mean annual temperature in the area has increased by ca. 0.15 °C yr-1; while maximum thaw depth has increased by 1.4-1.8 cm yr-1. Eddy covariance measurements of energy fluxes have been performed in a Cassiope heath plant community, a commonly occurring tundra ecosystem type in circumpolar middle and high Arctic areas, in Zackenberg allowing for detailed investigations of relationships between energy fluxes and meteorological and soil physical characteristics. As the available data set spans more than a decade, possible trends in energy flux components resulting from warming related changes such as earlier snow melt, increased active layer depth and higher temperatures can be investigated. This presentation will focus on the mid-summer period from which eddy covariance measurements are available. The summer-time energy partitioning at the Zackenberg tundra heath site will be characterized using ratios of sensible, latent and ground heat flux to net radiation and Bowen ratio, whereas the surface characteristics will be described using surface resistance, McNaughton and Jarvis Ω value and Priestley-Taylor α coefficient. Furthermore, we aim to estimate the full year, all energy balance components for the tundra heath site using Snow Model (Liston and Elder 2006) for the dark winter period during which no eddy covariance measurements are available. The snow cover duration in the area is a major regulator of the energy partitioning. Early results point towards high summer

  15. Tree and shrub expansion over the past 34 years at the tree-line near Abisko, Sweden.

    Science.gov (United States)

    Rundqvist, Sara; Hedenås, Henrik; Sandström, Anneli; Emanuelsson, Urban; Eriksson, Håkan; Jonasson, Christer; Callaghan, Terry V

    2011-09-01

    Shrubs and trees are expected to expand in the sub-Arctic due to global warming. Our study was conducted in Abisko, sub-arctic Sweden. We recorded the change in coverage of shrub and tree species over a 32- to 34-year period, in three 50 x 50 m plots; in the alpine-tree-line ecotone. The cover of shrubs and trees (tree stems (> or =3.5 cm) were noted and positions determined. There has been a substantial increase of cover of shrubs and trees, particularly dwarf birch (Betula nana), and mountain birch (Betula pubescens ssp. czerepanovii), and an establishment of aspen (Populus tremula). The other species willows (Salix spp.), juniper (Juniperus communis), and rowan (Sorbus aucuparia) revealed inconsistent changes among the plots. Although this study was unable to identify the causes for the change in shrubs and small trees, they are consistent with anticipated changes due to climate change and reduced herbivory.

  16. [Wood transformation in dead-standing trees in the forest-tundra of Central Siberia].

    Science.gov (United States)

    Mukhortova, L V; Kirdianov, A V; Myglan, V S; Guggenberger, G

    2009-01-01

    Changes in the composition of wood organic matter in dead-standing spruce and larch trees depending on the period after their death have been studied in the north of Central Siberia. The period after tree death has been estimated by means of cross-dating. The results show that changes in the composition of wood organic matter in 63% of cases are contingent on tree species. Wood decomposition in dead-standing trees is accompanied by an increase in the contents of alkali-soluble organic compounds. Lignin oxidation in larch begins approximately 80 years after tree death, whereas its transformation in spruce begins not earlier than after 100 years. In the forest-tundra of Central Siberia, the rate of wood organic matter transformation in dead-standing trees is one to two orders of magnitude lower than in fallen wood, which accounts for their role as a long-term store of carbon and mineral elements in these ecosystems.

  17. Development of Antarctic herb tundra vegetation near Arctowski station, King George Island

    Science.gov (United States)

    Kozeretska, I. A.; Parnikoza, I. Yu.; Mustafa, O.; Tyschenko, O. V.; Korsun, S. G.; Convey, P.

    2010-01-01

    We studied the development of the Antarctic herb tundra vegetation formation in relation to the history of deglaciation across a range of habitats near H. Arctowski Research Station (King George Island, South Shetland Islands). Across the three identified environmental zones (coastal, intermediate, periglacial), we quantified the total vegetation cover, cover of the two indigenous flowering plants and bryophytes, age structure and reproductive features of the two flowering plants, and species diversity of mosses and liverworts. Analysis of these data supported the recognition of the three environmental zones; however, there were few indications of systematic differences in biological features of the two higher plants across the three zones, generally supporting the view that these, and the grass Deschampsia antarctica in particular, are effective primary colonists of recently deglaciated ground in this region.

  18. Fungi benefit from two decades of increased nutrient availability in tundra heath soil

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Michelsen, Anders; Bååth, Erland

    2013-01-01

    is a predicted long-term consequence of climatic warming and mimicked by fertilization, both increase soil microbial biomass. However, while fertilization increased the relative abundance of fungi, warming caused only a minimal shift in the microbial community composition based on the phospholipid fatty acid......If microbial degradation of carbon substrates in arctic soil is stimulated by climatic warming, this would be a significant positive feedback on global change. With data from a climate change experiment in Northern Sweden we show that warming and enhanced soil nutrient availability, which...... of complex organic compounds such as vanillin, while warming has had no such effects. Furthermore, the NLFA-to-PLFA ratio for (13)C-incorporation from acetate increased in warmed plots but not in fertilized ones. Thus, fertilization cannot be used as a proxy for effects on warming in arctic tundra soils...

  19. Demographic effects on fruit set in the dioecious shrub Canada buffaloberry (Shepherdia canadensis

    Directory of Open Access Journals (Sweden)

    Kate M. Johnson

    2014-08-01

    Full Text Available The effects of pollen limitation on reproductive success in plants have been well-documented using pollen supplementation experiments. However, the role of local demographics in determining pollen limitation, particularly in terms of the additive and interactive effects of pollen availability and competition are not well known. We measured fruit set in the dioecious shrub Canada buffaloberry (Shepherdia canadensis in Central Alberta, Canada to evaluate whether local demographics measured at three spatial scales (25, 50, and 100 m2 affect fruit set in buffaloberry. We test whether density-dependence (population density, pollen donor (measured as male density, distance to nearest male plant and size of nearest male plant, female competitor (measured as female density and distance to nearest female plant, or the combined pollen donor and competitor hypotheses best explain natural variations in fruit set for a population of Canada buffaloberry. Support was highest for the combined pollen donor and competitor hypothesis at an intermediate spatial scale of 50 m2. Proportion fruit set increased with male shrub density (pollen donors and decreased with female shrub density (pollen competitors, but was more affected by the presence of males than females. This illustrates that access to male shrubs within a 3.99 m radius affects pollen availability, while nearby females compete intra-specifically for pollen.

  20. Tree or shrub: a functional branch analysis of Jatropha curcas L.

    NARCIS (Netherlands)

    Tjeuw, J.; Mulia, R.; Slingerland, M.A.; Noordwijk, van M.

    2015-01-01

    Jatropha curcas is an oil-bearing semi-evergreen shrub or small tree with potential as a source of sustainable biofuel, yet information regarding vegetative and fruit biomass in relation to plant architecture is lacking. Research conducted in Indonesia used the tree based functional branch analysis

  1. Insects and Related Pests of Trees, Shrubs, and Lawns. MP-25R.

    Science.gov (United States)

    Spackman, Everett W.; Lawson, Fred A.

    This document discusses identification and control of the pests of trees and shrubs. The insects are grouped according to feeding habits and the type of damage caused to plants. Categories include the sucking insects and mites, leaf eating insects, pests attacking trunks and branches, and gall causing insects. (CS)

  2. Diseases of Ornamental and Shade Trees, Shrubs, Vines, and Ground Covers.

    Science.gov (United States)

    Nichols, Lester P.

    This agriculture extension service publication from Pennsylvania State University covers the identification and control of common ornamental trees, shrubs, and ground cover diseases. The publication is divided into sections. The first section discusses the diseases of ornamental and shade trees, including general diseases and diseases of specific…

  3. Delineating native and invasive plant functional groups in shrub-steppe vegetation using bidirectional reflectance

    Science.gov (United States)

    Naupari, Javier A.; Vierling, Lee A.; Eitel, Jan U. H.

    2013-01-01

    Delineating invasive and native plant types using remote sensing is important for managing rangelands. Remote characterization of rangeland vegetation often utilizes only the nadir view, which can be complicated by background soil reflectance. We therefore collected bidirectional radiometric measurements on a shrub-steppe vegetated landscape throughout the mid- to late-growing season to: (1) quantify the BRFs of four rangeland vegetation functional groups (native shrub, native grasses, invasive annual grasses, and forbs), and (2) examine ways in which bidirectional reflectance values may help delineate native and invasive vegetation types. We found that the invasive grass medusahead rye (Taeniatherum caput-medusae [L.] Nevski) could be discriminated from other vegetation types at nadir and across four forward-viewing zenith angles because this species exhibited structural changes when leaf orientation changed from erectophile to planophile during and after the filling of seedheads. We also confirmed that native shrubs exhibited the highest anisotropy in all wavebands, as the relatively complex structure of the shrub canopy and concomitant shadowing greatly affected values of normalized difference vegetation index across all view angles. In order to delineate rangeland vegetation types at coarser scales, further study is needed to quantify the spectral angular signatures of these plant groups using satellite-based images.

  4. Which shrubs and trees can conserve natural enemies of aphids in spring?

    NARCIS (Netherlands)

    P.C.J. van Rijn

    2014-01-01

    Habitats with shrubs and trees within the agricultural landscape may contribute to the maintenance of natural enemies of pests. Aphids and flowers are important resources for beneficial natural enemies such as ladybeetles, hoverflies and lacewings. Woody plants are the most likely candidates to prov

  5. Hydroponic screening of shrub willow (Salix spp.) for arsenic tolerance and uptake.

    Science.gov (United States)

    Purdy, Jason J; Smart, Lawrence B

    2008-01-01

    Shrub willows have demonstrated potential in many types of phytoremediation applications. Hydroponic culture was used to assess arsenic (As) tolerance and uptake by four shrub willow clones and to determine the effects of phosphate on As accumulation. After 4 weeks of growth in the absence of As, plants received one of four treatments: 0.25X Hoagland's minus P (-P), 0.25X Hoagland's minus P plus 100 microM arsenate (As100(-P)), 0.25X Hoagland's minus P plus 250 microM arsenate (As250(-P)), and 0.25X Hoagland's plus 250 IM arsenate (As250(+P)). Except for treatment As250(+P), phosphate was excluded due to its tendency to interfere with As uptake. After 3 weeks of treatment, plants were separated into root, leaf, and stem tissues. Biomass production and transpiration were used to quantify As tolerance. There was wide variation among clones in As tolerance and uptake. The presence of phosphate in solution alleviated the negative impacts of As on biomass and transpiration and also increased above ground As accumulation, suggesting that phosphate may play a role in reducing toxicity and enhancing As uptake by willow shrubs. These findings offer insight into As tolerance and uptake in Salix spp. and add to the growing body of evidence supporting the use of shrub willow for phytoremediation.

  6. Effects of shrub encroachment on soil organic carbon in global grasslands

    Science.gov (United States)

    Li, He; Shen, Haihua; Chen, Leiyi; Liu, Taoyu; Hu, Huifeng; Zhao, Xia; Zhou, Luhong; Zhang, Pujin; Fang, Jingyun

    2016-07-01

    This study aimed to evaluate the effect of shrub encroachment on soil organic carbon (SOC) content at broad scales and its controls. We conducted a meta-analysis using paired control data of shrub-encroached grassland (SEG) vs. non-SEG collected from 142 studies worldwide. SOC contents (0–50 cm) were altered by shrub encroachment, with changes ranging from ‑50% to + 300%, with an effect size of 0.15 (p legumes. The SOC content decreased in silty and clay soils but increased in sand, sandy loam and sandy clay loam. The SOC content increment was significantly positively correlated with precipitation and temperature as well as with soil bulk density but significantly negatively correlated with soil total nitrogen. We conclude the main effects of shrub encroachment would be to increase topsoil organic carbon content. As structural equation model revealed, soils properties seem to be the primary factors responsible for the extent of the changes, coarse textured soils having a greater capacity than fine textured soils to increase the SOC content. This increased effect appears to be secondarily enhanced by climate and plant elements.

  7. Facilitation of Quercus ilex recruitment by shrubs in Mediterranean open woodlands

    NARCIS (Netherlands)

    Smit, Christian; den Ouden, Jan; Diaz, Mario

    2008-01-01

    Question: Insufficient tree regeneration threatens the long-term persistence of biodiverse Mediterranean open oak woodlands. Could shrubs, scarce due to decades of management ( clearing and ploughing), facilitate holm oak recruitment at both acorn and seedling stages? Location: Open oak woodlands in

  8. THREE SHRUBS WOOD PULPS PREPARED BY HYDROGEN PEROXIDE -ALKALINE (PA) COOKING

    Institute of Scientific and Technical Information of China (English)

    Feng Xu; RunCang Sun; huaiyu Zhan

    2004-01-01

    The physical, chemical and fiber characteristics of Caragana Korshinskii, Salix psammophila and Hedysarum scoparium fischer Mey were assessed for their suitability for papermaking. Nonsulfur cooking of hydrogen peroxide-alkaline (PA) was carried out.It is shown from the results that all these three shrubs are good raw materials for pulping and papermaking.The unbleached pulps have high mechanical strengthes.

  9. Characteristics of stemflow for sand-fixed shrubs in Mu Us sandy land, Northwest China

    Institute of Scientific and Technical Information of China (English)

    YANG ZhiPeng; LI XiaoYan; LIU LianYou; WU JianJun; HASI Eerdun; SUN YongLiang

    2008-01-01

    Little work has been done on stemflow for desert shrubs in China. This study measured stemflow in two shrubs of Salix psammophila C. Wang et Chang Y. Yang and Artemisia sphaerocephala Krasch in Mu Us sandy land and established a relationship between stemflow and canopy characteristics, rainfall amount and intensity. During the experimental period, the amount of stemflow for S. psammophila and A. sphaerocephala accounted for 7.6% and 2.7% of the gross rainfall respectively. Statistical analysis showed that there was a significant positive linear correlation between rainfall and stemflow for the two shrubs; while the relationship between stemflow percentage and rainfall suggested that there existed a rainfall depth threshold of 3-5 mm for S. psammophila and 5-7 mm for A. sphaerocephala. Stemflow percentage positively increased with rainfall depth increasing before the rainfall depth threshold values had been reached but showed stability after the threshold. A stepwise regression analysis suggested that the shrubs with more branches, larger crown volume and smaller branch angle inclination tended to collect more volumes of stemflow. Moreover, stemflow amount and percentage increased with the maximum rain intensity increasing in 10 minutes (/10) and the stemflow percentage tended to increase quickly with /10 when it was less than 3.0 mm h-1 for S. psammophila and 2.0 mm h-1 for A. sphaero-cephala, and then showed stable trend with increasing of/10.

  10. Targeted grazing for the restoration of sub-alpine shrub-encroached grasslands

    Directory of Open Access Journals (Sweden)

    Massimiliano Probo

    2016-12-01

    Full Text Available The decline of agro-pastoral activities has led to a widespread tree and shrub-encroachment of former semi-natural meso-eutrophic grasslands in many European mountain regions. Temporary night camp areas (TNCA and mineral mix supplements for targeted cattle were arranged over shrub-encroached areas to restore grassland vegetation within the Val Troncea Natural Park (Italy. From 2011 to 2015, their effects on vegetation structure and pastoral value of forage were assessed along permanent transects. Four years after treatments, both practices were effective in reducing the shrub cover and increasing the cover and average height of the herbaceous layer, but changes were more remarkable within TNCA. Moreover, the arrangement of TNCA decreased the cover of nanophanerophytes and increased the cover of graminoids and high quality species, as well as the overall forage pastoral value. In conclusion, TNCA were the most effective pastoral practice to contrast shrub-encroachment and increase herbage mass and forage quality of sub-alpine grasslands.

  11. Possibilities of cultivating ornamental trees and shrubs under conditions of air pollution with oxides of sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Bialobok, S.; Bartkowiak, S.; Rachwal, L.

    1974-01-01

    The field work conducted has shown that high concentrations of SO/sub 2/ in the air can be withstood by the following trees and shrubs. Trees: Acer campestris, A. platanoides, Ailanthus altissima, Aesculus hippocastanum, Morus alba, Platanus acerifolia, Pinus strobur, P. nigra, Populus Berolinensis, P. candicans, P. Hybr. 27, P. Marilandica, P. simonii, P. Serotina, Quercus robus, Robinia pseudoacacia. Shrubs: Caragana arborescens, Crataegus oxyacantha, C. monogyna, Cerasus mehaleb, Forsythia/most of the species and varieties/, Ligustrum vulgare, Philadelphus coronaria, Ptelea trifoliata, Sambucus nigra, Salix caprea, Sorbaria sorbifolia, Sorbus aucuparia, Taxus baccata. For the selection of trees and shrubs in the laboratory, high concentrations of SO/sub 2/ were used (60-150 ppm for a period of 10 minutes). Experiments were conducted on cut shrubs kept in the gas chambers. In order to estimate the degree of their injury, they were transferred to a shaded greenhouse. A concentration of 65 ppm of SO/sub 2/ could be withstood by the following Forsythias: Forsythia intermedia Primulina, F. Densiflora, F. Spectabilis, F. giraldina, F. suspensa, F. koreana, F. ovata, F. japonica and Hippophae rhamnoides. A concentration of 130 ppm could be withstood only by F. intermedia Vitelina. A similarly high concentration of SO/sub 2/ could be withstood by shoots and leaves of Ailanthus girladii Duclouxii and by Platanus acerifolia. From among the lilacs Syringa pekinensis and S. amurensis proved resistant to high concentrations of SO/sub 2/.

  12. EFFECTS OF PLANT SIZE ON PHOTOSYNTHESIS AND WATER RELATIONS IN THE DESERT SHRUB PROSOPIS GLANDULOSA (FABACEAE)

    Science.gov (United States)

    The Jornada del Muerto basin of the Chihuahuan Desert of southern New Mexico, USA, has undergone a marked transition of plant communities. Shrubs such as mesquite (Prosopis glandulosa) have greatly increased or now dominate in areas that were previously dominated by perennial gra...

  13. Diversity, composition and density of trees and shrubs in agroforestry homegardens in Southern Ethiopia

    NARCIS (Netherlands)

    Abebe, T.; Sterck, F.J.; Wiersum, K.F.; Bongers, F.

    2013-01-01

    Diversity of trees and shrubs in agricultural systems contributes to provision of wood and non-wood products, and protects the environment, thereby, enhancing socioeconomic and ecological sustainability of the systems. This study characterizes the diversity, density and composition of trees in the a

  14. Shrub invasion decreases diversity and alters community stability in northern Chihuahuan Desert plant communities.

    Directory of Open Access Journals (Sweden)

    Selene Báez

    Full Text Available BACKGROUND: Global climate change is rapidly altering species range distributions and interactions within communities. As ranges expand, invading species change interactions in communities which may reduce stability, a mechanism known to affect biodiversity. In aridland ecosystems worldwide, the range of native shrubs is expanding as they invade and replace native grassland vegetation with significant consequences for biodiversity and ecosystem functioning. METHODOLOGY: We used two long-term data sets to determine the effects of shrub encroachment by Larrea tridentata on subdominant community composition and stability in formerly native perennial grassland dominated by Bouteloua eriopoda in New Mexico, USA. PRINCIPAL FINDINGS: Our results indicated that Larrea invasion decreased species richness during the last 100 years. We also found that over shorter temporal scales species-poor subdominant communities in areas invaded by Larrea were less stable (more variable in time compared to species rich communities in grass-dominated vegetation. Compositional stability increased as cover of Bouteloua increased and decreased as cover of Larrea increased. SIGNIFICANCE: Changes in community stability due to altered interspecific interactions may be one mechanism by which biodiversity declines in grasslands following shrub invasion. As global warming increases, shrub encroachment into native grasslands worldwide will continue to alter species interactions and community stability both of which may lead to a decline in biodiversity.

  15. Seasonal distribution and diversity of ground arthropods in microhabitats following a shrub plantation age sequence in desertified steppe.

    Directory of Open Access Journals (Sweden)

    Rentao Liu

    Full Text Available In desertified regions, shrub-dominated patches are important microhabitats for ground arthropod assemblages. As shrub age increases, soil, vegetation and microbiological properties can change remarkably and spontaneously across seasons. However, relatively few studies have analyzed how ground arthropods respond to the microhabitats created by shrubs of different plantation ages across seasons. Using 6, 15, 24 and 36 year-old plantations of re-vegetated shrubs (Caragana koushinskii in the desert steppe of northwestern China as a model system, we sampled ground arthropod communities using a pitfall trapping method in the microhabitats under shrubs and in the open areas between shrubs, during the spring, summer and autumn. The total ground arthropod assemblage was dominated by Carabidae, Melolonthidae, Curculionidae, Tenebrionidae and Formicidae that were affected by plantation age, seasonal changes, or the interaction between these factors, with the later two groups also influenced by microhabitat. Overall, a facilitative effect was observed, with more arthropods and a greater diversity found under shrubs as compared to open areas, but this was markedly affected by seasonal changes. There was a high degree of similarity in arthropod assemblages and diversity between microhabitats in summer and autumn. Shrub plantation age significantly influenced the distribution of the most abundant groups, and also the diversity indices of the ground arthropods. However, there was not an overall positive relationship between shrub age and arthropod abundance, richness or diversity index. The influence of plantation age on arthropod communities was also affected by seasonal changes. From spring through summer to autumn, community indices of ground arthropods tended to decline, and a high degree of similarity in these indices (with fluctuation was observed among different ages of shrub plantation in autumn. Altogether the recovery of arthropod communities was

  16. Seasonal distribution and diversity of ground arthropods in microhabitats following a shrub plantation age sequence in desertified steppe.

    Science.gov (United States)

    Liu, Rentao; Zhu, Fan; Song, Naiping; Yang, Xinguo; Chai, Yongqing

    2013-01-01

    In desertified regions, shrub-dominated patches are important microhabitats for ground arthropod assemblages. As shrub age increases, soil, vegetation and microbiological properties can change remarkably and spontaneously across seasons. However, relatively few studies have analyzed how ground arthropods respond to the microhabitats created by shrubs of different plantation ages across seasons. Using 6, 15, 24 and 36 year-old plantations of re-vegetated shrubs (Caragana koushinskii) in the desert steppe of northwestern China as a model system, we sampled ground arthropod communities using a pitfall trapping method in the microhabitats under shrubs and in the open areas between shrubs, during the spring, summer and autumn. The total ground arthropod assemblage was dominated by Carabidae, Melolonthidae, Curculionidae, Tenebrionidae and Formicidae that were affected by plantation age, seasonal changes, or the interaction between these factors, with the later two groups also influenced by microhabitat. Overall, a facilitative effect was observed, with more arthropods and a greater diversity found under shrubs as compared to open areas, but this was markedly affected by seasonal changes. There was a high degree of similarity in arthropod assemblages and diversity between microhabitats in summer and autumn. Shrub plantation age significantly influenced the distribution of the most abundant groups, and also the diversity indices of the ground arthropods. However, there was not an overall positive relationship between shrub age and arthropod abundance, richness or diversity index. The influence of plantation age on arthropod communities was also affected by seasonal changes. From spring through summer to autumn, community indices of ground arthropods tended to decline, and a high degree of similarity in these indices (with fluctuation) was observed among different ages of shrub plantation in autumn. Altogether the recovery of arthropod communities was markedly affected by

  17. Highly Pathogenic Avian Influenza H5N1 Virus Surveillance for Tundra Swans and Wood Ducks on Pocosin Lakes National Wildlife Refuge: Raw data

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Example of raw data submitted from the National Wildlife Health Center of test results from oral-pharyngeal and cloacal swabs collected on Tundra Swans and Wood...

  18. Highly Pathogenic Avian Influenza H5N1 Virus Surveillance for Tundra Swans and Wood Ducks on Pocosin Lakes National Wildlife Refuge: Raw data

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Example of raw data submitted to the National Wildlife Health Center of test results from oral-pharyngeal and cloacal swabs collected on Tundra Swans and Wood Ducks...

  19. Highly Pathogenic Avian Influenza H5N1 Virus Surveillance for Tundra Swans and Wood Ducks on Pocosin Lakes National Wildlife Refuge: Batch 324NC Summary

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Batch summaries from the National Wildlife Health Center of test results from oral-pharyngeal and cloacal swabs collected on Tundra Swans and Wood Ducks on Pocosin...

  20. Object-Based Mapping of the Circumpolar Taiga-Tundra Ecotone with MODIS Tree Cover

    Science.gov (United States)

    Ranson, K. J.; Montesano, P. M.; Nelson, R.

    2011-01-01

    The circumpolar taiga tundra ecotone was delineated using an image-segmentation-based mapping approach with multi-annual MODIS Vegetation Continuous Fields (VCF) tree cover data. Circumpolar tree canopy cover (TCC) throughout the ecotone was derived by averaging MODIS VCF data from 2000 to 2005 and adjusting the averaged values using linear equations relating MODIS TCC to Quickbird-derived tree cover estimates. The adjustment helped mitigate VCF's overestimation of tree cover in lightly forested regions. An image segmentation procedure was used to group pixels representing similar tree cover into polygonal features (segmentation objects) that form the map of the transition zone. Each polygon represents an area much larger than the 500 m MODIS pixel and characterizes the patterns of sparse forest patches on a regional scale. Those polygons near the boreal/tundra interface with either (1) mean adjusted TCC values from5 to 20%, or (2) mean adjusted TCC values greater than 5% but with a standard deviation less than 5% were used to identify the ecotone. Comparisons of the adjusted average tree cover data were made with (1) two existing tree line definitions aggregated for each 1 degree longitudinal interval in North America and Eurasia, (2) Landsat-derived Canadian proportion of forest cover for Canada, and (3) with canopy cover estimates extracted from airborne profiling lidar data that transected 1238 of the TCC polygons. The adjusted TCC from MODIS VCF shows, on average, less than 12% TCC for all but one regional zone at the intersection with independently delineated tree lines. Adjusted values track closely with Canadian proportion of forest cover data in areas of low tree cover. A comparison of the 1238 TCC polygons with profiling lidar measurements yielded an overall accuracy of 67.7%.

  1. Arctic biodiversity: Increasing richness accompanies shrinking refugia for a cold-associated tundra fauna

    Science.gov (United States)

    Hope, Andrew; Waltari, Eric; Malaney, Jason L.; Payer, David C.; Cook, J.A.; Talbot, Sandra

    2015-01-01

    As ancestral biodiversity responded dynamically to late-Quaternary climate changes, so are extant organisms responding to the warming trajectory of the Anthropocene. Ecological predictive modeling, statistical hypothesis tests, and genetic signatures of demographic change can provide a powerful integrated toolset for investigating these biodiversity responses to climate change, and relative resiliency across different communities. Within the biotic province of Beringia, we analyzed specimen localities and DNA sequences from 28 mammal species associated with boreal forest and Arctic tundra biomes to assess both historical distributional and evolutionary responses and then forecasted future changes based on statistical assessments of past and present trajectories, and quantified distributional and demographic changes in relation to major management regions within the study area. We addressed three sets of hypotheses associated with aspects of methodological, biological, and socio-political importance by asking (1) what is the consistency among implications of predicted changes based on the results of both ecological and evolutionary analyses; (2) what are the ecological and evolutionary implications of climate change considering either total regional diversity or distinct communities associated with major biomes; and (3) are there differences in management implications across regions? Our results indicate increasing Arctic richness through time that highlights a potential state shift across the Arctic landscape. However, within distinct ecological communities, we found a predicted decline in the range and effective population size of tundra species into several discrete refugial areas. Consistency in results based on a combination of both ecological and evolutionary approaches demonstrates increased statistical confidence by applying cross-discipline comparative analyses to conservation of biodiversity, particularly considering variable management regimes that seek

  2. Age-specific survival of tundra swans on the lower Alaska Peninsula

    Science.gov (United States)

    Meixell, Brandt W.; Lindberg, Mark S.; Conn, Paul B.; Dau, Christian P.; Sarvis, John E.; Sowl, Kristine M.

    2013-01-01

    The population of Tundra Swans (Cygnus columbianus columbianus) breeding on the lower Alaska Peninsula represents the southern extremity of the species' range and is uniquely nonmigratory. We used data on recaptures, resightings, and recoveries of neck-collared Tundra Swans on the lower Alaska Peninsula to estimate collar loss, annual apparent survival, and other demographic parameters for the years 1978–1989. Annual collar loss was greater for adult males fitted with either the thinner collar type (0.34) or the thicker collar type (0.15) than for other age/sex classes (thinner: 0.10, thicker: 0.04). The apparent mean probability of survival of adults (0.61) was higher than that of immatures (0.41) and for both age classes varied considerably by year (adult range: 0.44–0.95, immature range: 0.25–0.90). To assess effects of permanent emigration by age and breeding class, we analyzed post hoc the encounter histories of swans known to breed in our study area. The apparent mean survival of known breeders (0.65) was generally higher than that of the entire marked sample but still varied considerably by year (range 0.26–1.00) and indicated that permanent emigration of breeding swans was likely. We suggest that reductions in apparent survival probability were influenced primarily by high and variable rates of permanent emigration and that immigration by swans from elsewhere may be important in sustaining a breeding population at and near Izembek National Wildlife Refuge.

  3. Mercury dynamics of an arctic tundra ecosystem in northern Alaska: a mass balance

    Science.gov (United States)

    Obrist, D.; Helmig, D.; Agnan, Y.; Hedge, C.; Moore, C. W.; Paxton, D.; Hueber, J.

    2015-12-01

    To constrain the mercury (Hg) mass balance of a tundra ecosystem, we measured atmospheric mercury (Hg) concentrations and surface-atmosphere exchange at Toolik Field Station (68° 38' N) beginning September 2014. We also conducted automated measurements of gaseous Hg in soil pores and snow interstitial air to quantify gas exchange between soils, snow, and the atmosphere; and characterized wet and dry deposition and plant-derived Hg inputs. Results show that atmospheric Hg concentrations peak in winter, decrease in spring, and show summertime minima. Oxidized atmospheric Hg was below detection limits (0.05 ng m-3) indicating no significant dry deposition. Summertime minima of atmospheric Hg concentrations were associated with depositional fluxes of gaseous Hg (up to 2.8 ng m-2 hr-1; measured by a gradient method) that emerged after complete snowmelt. In contrast, gaseous Hg fluxes were below detection limits when snowpack was present; this was supported by in situ snowpack measurements and in contrast to commonly observed gaseous emissions from temperate snowpacks. The cumulative annual gaseous deposition flux of mercury was 12 µg m-2, in similar range as plant-derived inputs (17 µg m-2 yr-1) which we consider the major reason for observed gaseous Hg sink. Wet deposition was extremely low (<1 µg m-2 yr-1) compared to other sites. Hg concentrations in plants and soils are similar to levels found at temperate sites, but terrestrial pool sizes are large in comparison ranging around 400 g ha-1. The results suggest that: atmospheric Hg exposure is low at this site; that deposition is dominated by plant-derived deposition; and that significant Hg pools accumulate in tundra soils, likely driven by strong retention and low re-emissions after deposition. The high Hg soil pool sizes and key role of plant-productivity for Hg deposition may indicate a high sensitivity to climate change, in particular to permafrost soil thawing and increased growing season length.

  4. Isotopic insights into methane production, oxidation, and emissions in Arctic polygon tundra.

    Science.gov (United States)

    Vaughn, Lydia J S; Conrad, Mark E; Bill, Markus; Torn, Margaret S

    2016-10-01

    Arctic wetlands are currently net sources of atmospheric CH4 . Due to their complex biogeochemical controls and high spatial and temporal variability, current net CH4 emissions and gross CH4 processes have been difficult to quantify, and their predicted responses to climate change remain uncertain. We investigated CH4 production, oxidation, and surface emissions in Arctic polygon tundra, across a wet-to-dry permafrost degradation gradient from low-centered (intact) to flat- and high-centered (degraded) polygons. From 3 microtopographic positions (polygon centers, rims, and troughs) along the permafrost degradation gradient, we measured surface CH4 and CO2 fluxes, concentrations and stable isotope compositions of CH4 and DIC at three depths in the soil, and soil moisture and temperature. More degraded sites had lower CH4 emissions, a different primary methanogenic pathway, and greater CH4 oxidation than did intact permafrost sites, to a greater degree than soil moisture or temperature could explain. Surface CH4 flux decreased from 64 nmol m(-2)  s(-1) in intact polygons to 7 nmol m(-2)  s(-1) in degraded polygons, and stable isotope signatures of CH4 and DIC showed that acetate cleavage dominated CH4 production in low-centered polygons, while CO2 reduction was the primary pathway in degraded polygons. We see evidence that differences in water flow and vegetation between intact and degraded polygons contributed to these observations. In contrast to many previous studies, these findings document a mechanism whereby permafrost degradation can lead to local decreases in tundra CH4 emissions.

  5. Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw.

    Science.gov (United States)

    Salmon, Verity G; Soucy, Patrick; Mauritz, Marguerite; Celis, Gerardo; Natali, Susan M; Mack, Michelle C; Schuur, Edward A G

    2016-05-01

    Perennially frozen soil in high latitude ecosystems (permafrost) currently stores 1330-1580 Pg of carbon (C). As these ecosystems warm, the thaw and decomposition of permafrost is expected to release large amounts of C to the atmosphere. Fortunately, losses from the permafrost C pool will be partially offset by increased plant productivity. The degree to which plants are able to sequester C, however, will be determined by changing nitrogen (N) availability in these thawing soil profiles. N availability currently limits plant productivity in tundra ecosystems but plant access to N is expected improve as decomposition increases in speed and extends to deeper soil horizons. To evaluate the relationship between permafrost thaw and N availability, we monitored N cycling during 5 years of experimentally induced permafrost thaw at the Carbon in Permafrost Experimental Heating Research (CiPEHR) project. Inorganic N availability increased significantly in response to deeper thaw and greater soil moisture induced by Soil warming. This treatment also prompted a 23% increase in aboveground biomass and a 49% increase in foliar N pools. The sedge Eriophorum vaginatum responded most strongly to warming: this species explained 91% of the change in aboveground biomass during the 5 year period. Air warming had little impact when applied alone, but when applied in combination with Soil warming, growing season soil inorganic N availability was significantly reduced. These results demonstrate that there is a strong positive relationship between the depth of permafrost thaw and N availability in tundra ecosystems but that this relationship can be diminished by interactions between increased thaw, warmer air temperatures, and higher levels of soil moisture. Within 5 years of permafrost thaw, plants actively incorporate newly available N into biomass but C storage in live vascular plant biomass is unlikely to be greater than losses from deep soil C pools.

  6. Longer thaw seasons increase nitrogen availability for leaching during fall in tundra soils

    Science.gov (United States)

    Treat, Claire C.; Wollheim, Wilfred M.; Varner, Ruth K.; Bowden, William B.

    2016-06-01

    Climate change has resulted in warmer soil temperatures, earlier spring thaw and later fall freeze-up, resulting in warmer soil temperatures and thawing of permafrost in tundra regions. While these changes in temperature metrics tend to lengthen the growing season for plants, light levels, especially in the fall, will continue to limit plant growth and nutrient uptake. We conducted a laboratory experiment using intact soil cores with and without vegetation from a tundra peatland to measure the effects of late freeze and early spring thaw on carbon dioxide (CO2) exchange, methane (CH4) emissions, dissolved organic carbon (DOC) and nitrogen (N) leaching from soils. We compared soil C exchange and N production with a 30 day longer seasonal thaw during a simulated annual cycle from spring thaw through freeze-up and thaw. Across all cores, fall N leaching accounted for ˜33% of total annual N loss despite significant increases in microbial biomass during this period. Nitrate ({{{{NO}}}3}-) leaching was highest during the fall (5.33 ± 1.45 mg N m-2 d-1) following plant senescence and lowest during the summer (0.43 ± 0.22 mg N m-2 d-1). In the late freeze and early thaw treatment, we found 25% higher total annual ecosystem respiration but no significant change in CH4 emissions or DOC loss due to high variability among samples. The late freeze period magnified N leaching and likely was derived from root turnover and microbial mineralization of soil organic matter coupled with little demand from plants or microbes. Large N leaching during the fall will affect N cycling in low-lying areas and streams and may alter terrestrial and aquatic ecosystem nitrogen budgets in the arctic.

  7. Could 4 degrees warming change Arctic tundra from carbon sink to carbon source?

    Science.gov (United States)

    Torn, M. S.; Abramoff, R. Z.; Chafe, O.; Curtis, J. B.; Smith, L. J.; Wullschleger, S. D.

    2015-12-01

    We have set up a controlled, active warming experiment in permafrost tundra on the North Slope of Alaska. The aim of this micro-warming experiment is to investigate the direct effect of soil warming on microbial decomposition of soil organic matter. We are testing the feasibility of small, short-term, in situ warming that can be run off batteries for distributed deployment and that preserves plant-soil relations and natural variability in wind, temperature, and precipitation. Based on preliminary results, the approach looks promising. One resistance heater cable per plot (25 cm diameter plots) was inserted vertically to 50 cm, spanning the full active layer (maximum thaw depth was 40 cm in 2014). Heaters were turned on August 1, 2015, and heated plots reached the 4ºC warming target within 1-3 days. We are measuring soil microclimate, thaw depth, CO2 and CH4 fluxes, and 14CO2, and microbial composition, as part of the DOE Next Generation Ecosystem Experiments (NGEE-Arctic). Ecosystem respiration increased immediately in the heated plots, and net ecosystem exchange under clear chambers changed from net uptake to net CO2 source in two of the four plots. CH4 flux shifted toward reduced net emissions or greater net uptake in all plots. These rapid responses demonstrate direct changes in decomposition without complications from microbial acclimation, altered community structure or changes in substrate availability. However, future Arctic tundra carbon balance will depend on both short term and long term microbial responses, as well as the links between warming, decomposition, nitrogen mineralization, and plant growth. Thus, we envision that distributed micro-warming plots could be combined with new approaches to aboveground passive warming being developed in NGEE, gradient studies, and modeling.

  8. Potential effects of tree-to-shrub type conversion on streamflow in California's Sierra Nevada

    Science.gov (United States)

    Baguskas, S. A.; Bart, R.; Molinari, N.; Tague, C.; Moritz, M.

    2014-12-01

    There is widespread concern that changes in climate and fire regime may lead to vegetation change across California, which in turn may influence watershed hydrology. Although plant cover is known to affect numerous hydrological processes, sensitivities to vegetation type and spatial arrangement of species within watersheds are not well understood. The primary objective of our research was to generate mechanistically-based projections of how potential type conversion from forested to shrub dominated systems may affect streamflow. During the 2014 growing season, we measured ecophysiological responses (plant water status and leaf gas exchange rates) of two dominant tree and shrub species to changes in seasonal water availability at two sites within the southern Sierra Nevada Critical Zone Observatory. Plant physiological observations were used to parameterize a process-based eco-hydrological model, RHESSys. This model was used to evaluate the impact of changes in seasonal water availability and vegetation type-conversion on streamflow. Based on our field observations, shrubs and trees had similar access to water through the early part of the growing season (April-early June); however, by late July, available water to shrubs was twice that of trees (shrubs, -0.55 ± 0.08 MPa; trees, -1.07 ± 0.08 MPa, pchanges in streamflow following simulated vegetation conversion were found to affect both the timing and amount of discharge. Controls on pre vs. post-conversion streamflow included changes in interception, rooting depth, energy balance, and plant response to changes in seasonal water availability. Our research demonstrates how linking strategic field data collection and mechanistic ecohydrologic models can be used as a robust tool for assessing the potential impact of vegetation change on the water balance of an ecosystem. This is an increasingly valuable approach to inform management decisions focused on adapting strategies based on projected changes in climate.

  9. Soil Modification by Native Shrubs Boosts Crop Productivity in Sudano-Sahelian Agroforestry System

    Science.gov (United States)

    Bogie, N. A.; Bayala, R.; Diedhiou, I.; Ghezzehei, T. A.; Dick, R.

    2014-12-01

    A changing climate along with human and animal population pressure can have a devastating effect on crop yields and food security in the Sudano-Sahel. Agricultural solutions to address soil degradation and crop water stress are needed to combat this increasingly difficult situation. Significant differences in crop success have been observed in peanut and millet grown in association with two native evergreen shrubs Piliostigma reticulatum, and Guiera senegalensis at the sites of Nioro du Rip and Keur Matar, respectively.We investigate how farmers can increase crop productivity by capitalizing on the evolutionary adaptation of native shrubs to the harsh Sudano-Sahelian environment as well as the physical mechanisms at work in the system that can lead to more robust yields. Soil moisture and water potential data were collected during a dry season millet irrigation experiment where stress was imposed in the intercropped system. Despite lower soil moisture content, crops grown in association with shrubs have increased biomass production and a faster development cycle. Hydraulic redistribution is thought to exist in this system and we found diurnal fluctuations in water potential within the intercropped system that increased in magnitude of to 0.4 Mpa per day as the soil dried below 1.0 Mpa during the stress treatment. An isotopic tracer study investigating hydraulic redistribution was carried out by injecting labeled water into shrub roots and sampling shrubs and nearby crops for isotopic analysis of plant water. These findings build on work that was completed in 2004 at the site, but point to lower overall magnitude of diurnal soil water potential fluctuations in dry soils. Using even the limited resources that farmers possess, this agroforestry technique can be expanded over wide swaths of the Sahel.

  10. Living with aliens: effects of invasive shrub honeysuckles on avian nesting.

    Directory of Open Access Journals (Sweden)

    Jason M Gleditsch

    Full Text Available Invasive species have come to the forefront of conservation biology as a major threat to native biodiversity. Habitats dominated by shrub honeysuckles (Lonicera spp. in the United States have been characterized as "ecological traps" by ecologists. Here we tested this hypothesis by investigating the effects of shrub honeysuckles on the nesting ecology of native birds in seven study sites in central Pennsylvania, USA. We examined how the abundance of shrub honeysuckles influenced the selection of nesting substrates and habitat for a community of common songbirds, and the parental-care behavior and nestling development of gray catbirds (Dumetella carolinensis. We found that birds had a strong bias towards nesting in honeysuckle shrubs, but not necessarily for nesting in honeysuckle-dominated habitats. Nest predation rates were affected by the density of nests in a habitat, but not by the overall abundance of honeysuckles in such habitats. Honeysuckle abundance in the habitat did show significant effects on some parental-care behavioral parameters: catbirds had higher nest visitation rates and shorter visit lengths in areas of high honeysuckle density. On average, Gray catbirds fed fruit 12%±0.31 s.e. of their nestling-feeding bouts, mostly fruits of shrub honeysuckles. Nestlings in sites with high honeysuckle density also showed higher mass:tarsus ratios, suggesting a good (possibly better physiological condition of catbird nestlings at the time of fledging. Our study shows that honeysuckle-dominated habitats could have equivocal effects on nesting parameters of common species of native birds. We advise more caution in the widespread denomination of novel plant communities with high densities of honeysuckle as "ecological traps" as effects can be null or positive on native birds in certain localities.

  11. Connecting ecohydrology and hydropedology in desert shrubs: stemflow as a source of preferential flow in soils

    Directory of Open Access Journals (Sweden)

    X.-Y. Li

    2009-03-01

    Full Text Available Ecohydrology and hydropedology are two emerging fields that are interconnected. In this study, we demonstrate stemflow hydrology and preferential water flow along roots in two desert shrubs (H. scoparium and S. psammophila in the south fringe of Mu Us sandy land in North China. Stemflow generation and subsequent movement within soil-root system were investigated during the growing seasons from 2006 to 2008. The results indicated that the amount of stemflow in H. scoparium averaged 3.4% of incident gross rainfall with a range of 2.3–7.0%, and in S. psammophila stemflow averaged 6.3% with a range of 0.2–14.2%. Stemflow was produced from rainfall events more than 1 mm for both shrubs. The average funneling ratio (the ratio of rainfall amount delivered to the base of the tree to the rainfall that would have reached the ground should the tree were not present was 77.8 and 48.7 for H. scoparium and S. psammophila, respectively, indicating that branches and stems were fully contributing to stemflow generation and thereby provided considerable amount of water to deep soil layer. Analysis of rhodamine-B dye distribution under the shrubs showed that stemflow entered the soil preferentially along root channels contributing to deep storage and that the depth of stemflow infiltrated increased with increasing incident rainfall amount. Distribution of soil water content under the shrubs with and without stemflow ascertained that stemflow was conducive to concentrate and store water in deep layers in the soil profiles, creating favorable soil water conditions for plant growth under arid conditions. Accordingly there is a clear linkage between aboveground ecohydrology and belowground hydropedology in the desert shrubs, whereby an increase in stemflow would result in an increase in soil hydrological heterogeneity.

  12. Evidence for Ancient Mesoamerican Earthquakes

    Science.gov (United States)

    Kovach, R. L.; Garcia, B.

    2001-12-01

    Evidence for past earthquake damage at Mesoamerican ruins is often overlooked because of the invasive effects of tropical vegetation and is usually not considered as a casual factor when restoration and reconstruction of many archaeological sites are undertaken. Yet the proximity of many ruins to zones of seismic activity would argue otherwise. Clues as to the types of damage which should be soughtwere offered in September 1999 when the M = 7.5 Oaxaca earthquake struck the ruins of Monte Alban, Mexico, where archaeological renovations were underway. More than 20 structures were damaged, 5 of them seriously. Damage features noted were walls out of plumb, fractures in walls, floors, basal platforms and tableros, toppling of columns, and deformation, settling and tumbling of walls. A Modified Mercalli Intensity of VII (ground accelerations 18-34 %b) occurred at the site. Within the diffuse landward extension of the Caribbean plate boundary zone M = 7+ earthquakes occur with repeat times of hundreds of years arguing that many Maya sites were subjected to earthquakes. Damage to re-erected and reinforced stelae, walls, and buildings were witnessed at Quirigua, Guatemala, during an expedition underway when then 1976 M = 7.5 Guatemala earthquake on the Motagua fault struck. Excavations also revealed evidence (domestic pttery vessels and skeleton of a child crushed under fallen walls) of an ancient earthquake occurring about the teim of the demise and abandonment of Quirigua in the late 9th century. Striking evidence for sudden earthquake building collapse at the end of the Mayan Classic Period ~A.D. 889 was found at Benque Viejo (Xunantunich), Belize, located 210 north of Quirigua. It is argued that a M = 7.5 to 7.9 earthquake at the end of the Maya Classic period centered in the vicinity of the Chixoy-Polochic and Motagua fault zones cound have produced the contemporaneous earthquake damage to the above sites. As a consequences this earthquake may have accelerated the

  13. Genetic diversity among ancient Nordic populations.

    Science.gov (United States)

    Melchior, Linea; Lynnerup, Niels; Siegismund, Hans R; Kivisild, Toomas; Dissing, Jørgen

    2010-01-01

    Using established criteria for work with fossil DNA we have analysed mitochondrial DNA from 92 individuals from 18 locations in Denmark ranging in time from the Mesolithic to the Medieval Age. Unequivocal assignment of mtDNA haplotypes was possible for 56 of the ancient individuals; however, the success rate varied substantially between sites; the highest rates were obtained with untouched, freshly excavated material, whereas heavy handling, archeological preservation and storage for many years influenced the ability to obtain authentic endogenic DNA. While the nucleotide diversity at two locations was similar to that among extant Danes, the diversity at four sites was considerably higher. This supports previous observations for ancient Britons. The overall occurrence of haplogroups did not deviate from extant Scandinavians, however, haplogroup I was significantly more frequent among the ancient Danes (average 13%) than among extant Danes and Scandinavians (approximately 2.5%) as well as among other ancient population samples reported. Haplogroup I could therefore have been an ancient Southern Scandinavian type "diluted" by later immigration events. Interestingly, the two Neolithic samples (4,200 YBP, Bell Beaker culture) that were typed were haplogroup U4 and U5a, respectively, and the single Bronze Age sample (3,300-3,500 YBP) was haplogroup U4. These two haplogroups have been associated with the Mesolithic populations of Central and Northern Europe. Therefore, at least for Southern Scandinavia, our findings do not support a possible replacement of a haplogroup U dominated hunter-gatherer population by a more haplogroup diverse Neolithic Culture.

  14. Twins in Ancient Greece: a synopsis.

    Science.gov (United States)

    Malamitsi-Puchner, Ariadne

    2016-01-01

    This brief outline associates twins with several aspects of life in Ancient Greece. In Greek mythology twins caused ambivalent reactions and were believed to have ambivalent feelings for each other. Very often, they were viewed as the representatives of the dualistic nature of the universe. Heteropaternal superfecundation, which dominates in ancient myths, explains on one hand, the god-like qualities and, on the other hand, the mortal nature of many twins. An assumption is presented that legends referring to twins might reflect the territorial expansions of Ancient Greeks in Northern Mediterranean, around the Black Sea, in Asia Minor, as well as North East Africa. In conclusion, in Greek antiquity, twins have been used as transitional figures between myth and reality.

  15. Genetic diversity among ancient Nordic populations

    DEFF Research Database (Denmark)

    Melchior, Linea Cecilie; Lynnerup, Niels; Siegismund, Hans Redlef

    2010-01-01

    the ancient Danes (average 13%) than among extant Danes and Scandinavians ( approximately 2.5%) as well as among other ancient population samples reported. Haplogroup I could therefore have been an ancient Southern Scandinavian type "diluted" by later immigration events. Interestingly, the two Neolithic...... samples (4,200 YBP, Bell Beaker culture) that were typed were haplogroup U4 and U5a, respectively, and the single Bronze Age sample (3,300-3,500 YBP) was haplogroup U4. These two haplogroups have been associated with the Mesolithic populations of Central and Northern Europe. Therefore, at least...... for Southern Scandinavia, our findings do not support a possible replacement of a haplogroup U dominated hunter-gatherer population by a more haplogroup diverse Neolithic Culture....

  16. The Vindolanda Tablets and the Ancient Economy

    DEFF Research Database (Denmark)

    Evers, Kasper Grønlund

    , a model is outlined which takes into account the different economic behaviours revealed by the tablets and attempts to fit them together into one coherent, economic system, whilst also relating the activities to questions of scale in the ancient economy; moreover, the conclusions drawn in the study......, the aim is to investigate how best to comprehend the economic system attested at Vindolanda and to consider the wider implications for studies of the ancient economy in general. This is accomplished by a three-step approach: first, the nature of the Vindolandan evidence is assessed, and the state...... of research on both studies of the ancient economy and the economy of early Roman Britain is accounted for, so as to highlight the value of the Vindolanda Tablets and lay the ground for the interpretations which follow. Secondly, the economic activities attested by the tablets are analysed in terms of market...

  17. Palaeoparasitology - Human Parasites in Ancient Material.

    Science.gov (United States)

    Araújo, Adauto; Reinhard, Karl; Ferreira, Luiz Fernando

    2015-01-01

    Parasite finds in ancient material launched a new field of science: palaeoparasitology. Ever since the pioneering studies, parasites were identified in archaeological and palaeontological remains, some preserved for millions of years by fossilization. However, the palaeoparasitological record consists mainly of parasites found specifically in human archaeological material, preserved in ancient occupation sites, from prehistory until closer to 2015. The results include some helminth intestinal parasites still commonly found in 2015, such as Ascaris lumbricoides, Trichuris trichiura and hookworms, besides others such as Amoebidae and Giardia intestinalis, as well as viruses, bacteria, fungi and arthropods. These parasites as a whole provide important data on health, diet, climate and living conditions among ancient populations. This chapter describes the principal findings and their importance for knowledge on the origin and dispersal of infectious diseases.

  18. The biochemistry of ancient DNA in bone.

    Science.gov (United States)

    Tuross, N

    1994-06-15

    The amount of DNA in ancient bone was determined by ethidium bromide staining after the removal of the potent Taq inhibitor, fulvic acid. A complete decalcification and a perfusion protocol were used to recover DNA from bone. A variety of purification techniques including molecular sieve, hydroxyapatite binding and 'Magic' preparations yielded DNA that spanned from 3.4 micrograms/g of bone to below detectable limits. Fulvic acid was shown to interfere with the quantification of DNA derived from ancient human skeletal material one hundred to over seven thousand years old. Scanning UV in the 300 to 230 nm range is a simple and sensitive technique for documenting fulvic acid contamination in ancient bone extracts.

  19. Experimental modeling of the influence of the rise in average summer temperatures on carbon circulation in tundra ecosystems

    Science.gov (United States)

    Barkhatov, Yu. V.; Tikhomirov, A. A.; Ushakova, S. A.; Shikhov, V. N.; Bartsev, S. I.; Degermendzhi, A. G.

    2016-11-01

    A sealed vegetation chamber was designed and constructed for physical simulation of climate conditions in the Subarctic zone during the spring-summer time. The small laboratory tundra-simulating ecosystem (TSE) was created for comparative evaluation of the rates of soil respiration and of the total balance of carbon fluxes in tundra ecosystems. The test experiment was performed to study the TSE response to a temperature rise in air and soil by 2°C in terms of the intensity of the CO2 flux. It was shown that this increase in temperature would cause a pronounced shift in the balance of CO2 production and utilization in the ecosystem from near-zero values to a stable generation of 24 μmol/h of CO2 per 1 kg of dry biomass.

  20. Pectus excavatum in mummies from ancient Egypt.

    Science.gov (United States)

    Kwiecinski, Jakub

    2016-12-01

    Pectus excavatum is one of the common congenital anomalies, yet there seems to be a suspicious absence of any cases or descriptions of this deformity from antiquity. This could represent a real change in disease prevalence but is more likely just due to an inadequate reporting in medico-historical literature. The current study reviews reports of computed tomography (CT) scans of 217 ancient Egyptian mummies, revealing 3 presumed cases of this deformity. Therefore, pectus excavatum was in fact present already in ancient times, with prevalence roughly similar to the modern one.

  1. Symmetries in Images on Ancient Seals

    CERN Document Server

    Sparavigna, Amelia

    2008-01-01

    In this paper, we discuss the presence of symmetries in images engraved on ancient seals, in particular on stamp seals. Mainly used to secure the containers from tampering and for owner's identification, these objects appeared during the 5th millennium BC in Mesopotamia. Usually the seals were engraved with simple images, suitable to communicate an immediate information. Rotational symmetries are already displayed by the most ancient stamp seals, whose images reach a quasi-perfect symmetry in their small circular or ovoid spaces. Bilateral symmetries are quite common in Egyptian scarab seals.

  2. Automatic indexing and reformulation of ancient dictionaries

    OpenAIRE

    Belaïd, Abdel; Turcan, Isabelle; Pierrel, Jean-Marie; Belaïd, Yolande; Rangoni, Yves; Hadjamar, Hassen

    2004-01-01

    International audience; This paper is related to automatic indexing and reformu-lation of ancient dictionaries. The objective is to make easy the access to ancient printed documents from XVI to XIX century for a diversified public (historians, scien-tists, librarians, etc.). Since the facsimile mode is insuffi-cient, the aim is to look further for the use of the index-ing based on the formal structure representative of some contents in order to optimize their exploration. Starting from a firs...

  3. Mythological Emblem Glyphs of Ancient Maya Kings

    DEFF Research Database (Denmark)

    Helmke, Christophe

    2012-01-01

    Heinrich Berlin’s identification of Emblem Glyphs in 1958 has rightly been hailed as one of the major breakthroughs in the decipherment of ancient Maya writing. Although their exact function and meaning was unclear at the time, these are now recognized to serve as exalted regal titles that incorp......Heinrich Berlin’s identification of Emblem Glyphs in 1958 has rightly been hailed as one of the major breakthroughs in the decipherment of ancient Maya writing. Although their exact function and meaning was unclear at the time, these are now recognized to serve as exalted regal titles...

  4. A Modern Take on an Ancient Master

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A new English translation of The Analects gives a fresh perspective on Confucius and his philosophy by Zan Jifang Confucius(551-491 B.C.) is generally viewed as ancient China’s foremost thinker.His philosophy is probably best catalogued in The Analects,a record of the sage’s wisdom compiled after his death.This Confucian classic provides a shortcut to understanding Chinese culture. A new English edition of the ancient classic(published by the Foreign Languages Press)

  5. Evolution of medical education in ancient Greece

    Institute of Scientific and Technical Information of China (English)

    Emmanouil Pikoulis; Pavlos Msaouel; Efthimios D Avgerinos; Sofia Anagnostopoulou; Christos Tsigris

    2008-01-01

    @@ The study of ancient Greece is essential for the proper understanding of the evolution of modem Western medicine.An important innovation of classical Greek medicine was the development of a body of medical theory associated with natural philosophy,i.e.a strong secular tradition of free enquiry,or what would now be called "science" (Επιστημη).Medical education rests upon the ancient Greek foundations and its history remains a fascinating topic for modem physicians and medical teachers.

  6. Quantification of DOC concentrations in relation with soil properties of soils in tundra and taiga of Northern European Russia

    Directory of Open Access Journals (Sweden)

    M. R. Oosterwoud

    2010-05-01

    Full Text Available Potential mobilization and transport of Dissolved Organic Carbon (DOC in subarctic river basins towards the oceans is enormous, because 23–48% of the worlds Soil Organic Carbon (SOC is stored in northern regions. As climate changes, the amount and composition of DOC exported from these basins are expected to change. The transfer of organic carbon between soils and rivers results in fractionation of organic carbon compounds. The aim of this research is to determine the DOC concentrations, its fractions, i.e. humic (HA, fulvic (FA, and hydrophilic (HY acids, and soil characteristics that influence the DOC sorptive properties of different soil types within a tundra and taiga catchment of Northern European Russia. DOC in taiga and tundra soil profiles (soil solution consisted only of HY and FA, where HY became more abundant with increasing depth. Adsorption of DOC on mineral phases is the key geochemical process for release and removal of DOC from potentially soluble carbon pool. We found that adsorbed organic carbon may desorb easily and can release DOC quickly, without being dependent on mineralization and degradation. Although Extractable Organic Carbon (EOC comprise only a small part of SOC, it is a significant buffering pool for DOC. We found that about 80–90% of released EOC was previously adsorbed. Fractionation of EOC is also influenced by the fact that predominantly HA and FA adsorbed to soil and therefore also are the main compounds released when desorbed. Flowpaths vary between taiga and tundra and through seasons, which likely affects DOC concentration found in streams. As climate changes, also flowpaths of water through soils may change, especially in tundra caused by thawing soils. Therefore, adsorptive properties of thawing soils exert a major control on DOC leaching to rivers. To better understand the process of DOC ad- and de-sorption in soils, process based soil chemical modelling, which could bring more insight in solution

  7. Net Primary Production and Carbon Stocks for Subarctic Mesic-Dry Tundras with Contrasting Microtopography, Altitude, and Dominant Species

    DEFF Research Database (Denmark)

    Campioli, Matteo; Michelsen, Anders; Demey, A;

    2009-01-01

    production was obtained from average species growth rates, previously assessed at the sites. Results showed that aboveground vascular NPP (15-270 g m-2), annual NPP (214-282 g m-2 or 102-137 g C m-2) and vegetation biomass (330-2450 g m-2) varied greatly among communities. Vegetation dominated by Empetrum......Mesic-dry tundras are widespread in the Arctic but detailed assessments of net primary production (NPP) and ecosystem carbon (C) stocks are lacking. We addressed this lack of knowledge by determining the seasonal dynamics of aboveground vascular NPP, annual NPP, and whole-ecosystem C stocks in five...... of the vegetation production occurred aboveground (85%). Ecosystem C and N stocks were 2100-8200 g C m-2 and 80-330 g N m-2, respectively, stored mainly in the soil turf and in the fine organic soil. Such stocks are comparable to the C and N stocks of moister tundra types, such as tussock tundra....

  8. Divergent hydrological responses to 20th century climate change in shallow tundra ponds, western Hudson Bay Lowlands

    Science.gov (United States)

    Wolfe, Brent B.; Light, Erin M.; Macrae, Merrin L.; Hall, Roland I.; Eichel, Kaleigh; Jasechko, Scott; White, Jerry; Fishback, LeeAnn; Edwards, Thomas W. D.

    2011-12-01

    The hydrological fate of shallow tundra lakes and ponds under conditions of continued warming remains uncertain, but has important implications for wildlife habitat and biogeochemical cycling. Observations of unprecedented pond desiccation, in particular, signify catastrophic loss of aquatic habitat in some Arctic locations. Shallow tundra ponds are a ubiquitous feature in the western Hudson Bay Lowlands (HBL), a region that has undergone intense warming over the past ˜50 years. But it remains unknown how hydrological processes in these ponds have responded. Here, we use cellulose-inferred pond water oxygen isotope records from sediment cores, informed by monitoring of modern pond water isotope compositions during the 2009 and 2010 ice-free seasons, to reconstruct hydrological conditions of four shallow tundra ponds in the western HBL over the past three centuries. Following an interval of relative hydrological stability during the early part of the records, results reveal widely differing hydrological responses to 20th century climate change among the study sites, which is largely dependent on hydrological connectivity of the basins within their respective surrounding peatlands. These findings suggest the 20th century has been characterized by an increasingly dynamic landscape that has variably influenced surface water balance - a factor that is likely to play a key role in determining the future water balance of ponds in this region.

  9. Landsat-based Analysis of Mountain Forest-tundra Ecotone Response to Climate Trends in Sayan Mountains

    Science.gov (United States)

    Kharuk, Viatcheslav I.; Im, Sergey T.; Ranson, K. Jon

    2007-01-01

    observations of temperatures Siberia has shown a several degree warming over the past 30 years. It is expected that forest will respond to warming at high latitudes through increased tree growth and northward or upward slope migration. migration. Tree response to climate trends is most likely observable in the forest-tundra ecotone, where temperature mainly limits tree growth. Making repeated satellite observations over several decades provides an opportunity to track vegetation response to climate change. Based on Landsat data of the Sayan Mountains, Siberia, there was an increase in forest stand crown closure and an upward tree-line shift in the of the forest-tundra ecotone during the last quarter of the 2oth century,. On-ground observations, supporting these results, also showed regeneration of Siberian pine in the alpine tundra, and the transformation of prostrate Siberian pine and fir into arboreal (upright) forms. During this time period sparse stands transformed into closed stands, with existing closed stands increasing in area at a rate of approx. 1 %/yr, and advancing their upper border at a vertical rate of approx. 1.0 m/yr. In addition, the vertical rate of regeneration propagation is approx. 5 m/yr. It was also found that these changes correlated positively with temperature trends

  10. The Changing Seasonality of Tundra Nutrient Cycling: Implications for Arctic Ecosystem Function

    Science.gov (United States)

    Weintraub, M. N.; Steltzer, H.; Sullivan, P.; Schimel, J.; Wallenstein, M. D.; Darrouzet-Nardi, A.; Segal, A. D.

    2011-12-01

    Arctic soils contain large stores of carbon (C) and may act as a significant CO2 source with warming. However, the key to understanding tundra soil processes is nitrogen (N), as both plant growth and decomposition are N limited. However, current models of tundra ecosystems assume that while N limits plant growth, C limits decomposition. In addition, N availability is strongly seasonal with relatively high concentrations early in the growing season followed by a pronounced crash. We need to understand the controls on this seasonality to predict responses to climate change, but there are multiple questions that need answers: 1) What causes the seasonality in N? 2) Does microbial activity switch seasonally between C and N limitation? 3) How will a lengthening of the growing season alter overall ecosystem C and N dynamics, as a result of differential extension of the periods before and after the nutrient crash? We hypothesized that microbial activity is C limited early in the growing season, when N availability is higher and root exudate C is unavailable, and that microbial activity becomes N limited in response to plant N uptake and immobilization stimulated by root C. To address these questions we are conducting an accelerated snow-melt X warming field experiment in an Alaskan moist acidic arctic tundra community, and following plant and soil dynamics. Changes in the timing of C and N interactions in the different treatments will enable us to develop an enhanced mechanistic understanding of why the nutrient crash occurs and what the implications are for a lengthening of the arctic growing season. In 2010 we successfully accelerated snowmelt by 4 days. Both earlier snowmelt and warming accelerated early season plant life history events, with a few exceptions. However, responses to the combined treatment could not always be predicted from single factor effects. End of season life history events occurred later in response to the treatments, again with a few exceptions

  11. Records of solar eclipse observations in ancient China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Like ancient people at other places of the world, the ancient Chinese lived in awe of the Sun. As they felt solar eclipses extremely significant events, they closely observed the occurrence of solar eclipse. Ancient astronomers further realized very early that solar eclipses were one of the important astronomical phenomena to revise and improve the ancient calendar. Interestingly, ancient emperors regarded solar eclipses as warnings from heaven that might affect the stability of their throne. Consequently, observing and recording solar eclipses became official, which dated far back to ancient China when numerous relevant descriptions were recorded in historical books. These records contribute substantially to China as an ancient civilization, as well as to the research of the long-term variation of the rotation rate of the Earth during >2000 years before the 17th century. This paper briefly reviews the perception, observations and recording of solar eclipses by ancient Chinese astronomers.

  12. Records of solar eclipse observations in ancient China

    Institute of Scientific and Technical Information of China (English)

    HAN YanBen; QIAO OiYuan

    2009-01-01

    Like ancient people at other places of the world, the ancient Chinese lived in awe of the Sun. As they felt solar eclipses extremely significant events, they closely observed the occurrence of solar eclipse. Ancient astronomers further realized very early that solar eclipses were one of the important astro-nomical phenomena to revise and improve the ancient calendar. Interestingly, ancient emperors re-garded solar eclipses as warnings from heaven that might affect the stability of their throne. Conse-quently, observing and recording solar eclipses became official, which dated far back to ancient China when numerous relevant descriptions were recorded in historical books. These records contribute substantially to China as an ancient civilization, as well as to the research of the long-term variation of the rotation rate of the Earth during >2000 years before the 17th century. This paper briefly reviews the perception, observations and recording of solar eclipses by ancient Chinese astronomers.

  13. Growth and defense in deciduous trees and shrubs under UV-B.

    Science.gov (United States)

    Julkunen-Tiitto, Riitta; Häggman, Hely; Aphalo, Pedro J; Lavola, Anu; Tegelberg, Riitta; Veteli, Timo

    2005-10-01

    Reflection by waxy or resinous surface structures and hairs, repair reactions of biomolecules and induction of different sheltering components provide the means of plant protection from harmful solar UV-B radiation. Secondary products, especially flavonoids and phenolic acids as defense components are also important in plant tolerance to UV-B, fulfilling the dual role as screens that reduce UV-B penetration in plant tissues, and as antioxidants protecting from damage by reactive oxidant species. Plants are sensitive to UV-B radiation, and this sensitivity can be even more clone-specific than species-specific. The results available in the literature for deciduous trees and shrubs indicate that UV-B radiation may affect several directions in the interaction of woody species with biotic (herbivores) and abiotic (CO2 and nutrition) factors depending on the specific interaction in question. These multilevel interactions should have moderate ecological significance via the overall changed performance of woody species and shrubs.

  14. Impact of Ice Ages on the genetic structure of trees and shrubs.

    Science.gov (United States)

    Lascoux, Martin; Palmé, Anna E; Cheddadi, Rachid; Latta, Robert G

    2004-02-29

    Data on the genetic structure of tree and shrub populations on the continental scale have accumulated dramatically over the past decade. However, our ability to make inferences on the impact of the last ice age still depends crucially on the availability of informative palaeoecological data. This is well illustrated by the results from a recent project, during which new pollen fossil maps were established and the variation in chloroplast DNA was studied in 22 European species of trees and shrubs. Species exhibit very different levels of genetic variation between and within populations, and obviously went through very different histories after Ice Ages. However, when palaeoecological data are non-informative, inferences on past history are difficult to draw from entirely genetic data. On the other hand, as illustrated by a study in ponderosa pine, when we can infer the species' history with some certainty, coalescent simulations can be used and new hypotheses can be tested.

  15. SOZOLOGICAL CHARACTERISTIC OF VEGETATION OF FORESTS AND SHRUBS OF THE NORTHERN BLACK SEA REGION

    Directory of Open Access Journals (Sweden)

    I. V. Solomakha

    2015-12-01

    Full Text Available As a result of sociological analysis found that in the vegetation cover of forests and shrubs in the Northern Black Sea found 88 view of rare and endangered plants. For 37 species, there are phytocoenotic table, the data on the other - are induced for that literary materials herbarium. They have a different distribution in the classes of the vegetation on the study territory: Pulsatillo-Pinetea sylvestris (13 species, Dactilydo glomeratae-Populetea tremulae (13, Festuco-Brometea (9, Rhamno-Prunetea (8, Nerio-Tamaricetea (7, Salicetea purpureae (5, Robinietea (3, Alnetea glutinosae (3, Franguletea (3. Some rare and endangered communities of the territory need to be included in the «Green Book of Ukraine». Key words: vegetation, syntaxonomy, forests, shrubs, sozological characteristic, Northen Black Sea region.

  16. Dialogue Genre Texts in Ancient Greek Prose: Linguostylistic Aspect

    OpenAIRE

    Gita Bērziņa

    2011-01-01

    Dialogue Genre Texts in Ancient Greek Prose: Linguostylistic Aspect Doctoral thesis deals with the study of essential linguistic features of the Ancient Greek dialogue as an important ancient prose genre. The goal of the thesis is to disclose the specific linguistic characteristics of the genre of Ancient Greek dialogue on the basis of comparative analysis of the linguistic structure (on all levels as well as in style) of the texts of three most prominent authors (Plato, Xenoph...

  17. MODIS Tree Cover Validation for the Circumpolar Taiga-Tundra Transition Zone

    Science.gov (United States)

    Montesano, P. M.; Nelson, R.; Sun, G.; Margolis, H.; Kerber, A.; Ranson, K. J.

    2009-01-01

    A validation of the 2005 500m MODIS vegetation continuous fields (VCF) tree cover product in the circumpolar taiga-tundra ecotone was performed using high resolution Quickbird imagery. Assessing the VCF's performance near the northern limits of the boreal forest can help quantify the accuracy of the product within this vegetation transition area. The circumpolar region was divided into longitudinal zones and validation sites were selected in areas of varying tree cover where Quickbird imagery is available in Google Earth. Each site was linked to the corresponding VCF pixel and overlaid with a regular dot grid within the VCF pixel's boundary to estimate percent tree crown cover in the area. Percent tree crown cover was estimated using Quickbird imagery for 396 sites throughout the circumpolar region and related to the VCF's estimates of canopy cover for 2000-2005. Regression results of VCF inter-annual comparisons (2000-2005) and VCF-Quickbird image-interpreted estimates indicate that: (1) Pixel-level, inter-annual comparisons of VCF estimates of percent canopy cover were linearly related (mean R(sup 2) = 0.77) and exhibited an average root mean square error (RMSE) of 10.1 % and an average root mean square difference (RMSD) of 7.3%. (2) A comparison of image-interpreted percent tree crown cover estimates based on dot counts on Quickbird color images by two different interpreters were more variable (R(sup 2) = 0.73, RMSE = 14.8%, RMSD = 18.7%) than VCF inter-annual comparisons. (3) Across the circumpolar boreal region, 2005 VCF-Quickbird comparisons were linearly related, with an R(sup 2) = 0.57, a RMSE = 13.4% and a RMSD = 21.3%, with a tendency to over-estimate areas of low percent tree cover and anomalous VCF results in Scandinavia. The relationship of the VCF estimates and ground reference indicate to potential users that the VCF's tree cover values for individual pixels, particularly those below 20% tree cover, may not be precise enough to monitor 500m pixel

  18. Long-term Nutrient Fertilization Increases CO2 Loss in Arctic Tundra

    Science.gov (United States)

    Graham, L. M.; Natali, S.; Rastetter, E. B.; Shaver, G. R.; Risk, D. A.; Loranty, M. M.; Jastrow, J. D.

    2015-12-01

    As anthropogenic climate change warms the Arctic, organic carbon (C) trapped in permafrost is at an increased risk of being released to the atmosphere as carbon dioxide (CO2). At the same time, higher rates of decomposition may increase nutrient availability and enhance plant growth, leading to an uptake of C that may offset respiratory losses. Arctic tundra ecosystems are highly nitrogen (N) limited, and the indirect effects of warming on nutrient availability will be the most likely outcome of increased temperature on plant productivity. This study aims to understand the effects of nutrient addition on arctic CO2 and H2O exchange in a tundra ecosystem at Toolik Lake Field Station, Alaska. The nutrient addition experiment, which began in 2006, is comprised of 7 fertilization treatments: 0.5, 1, 2, 5, and 10 g m-2 of N as NO3- and NH4+ (1:1) with 0.25, 0.5, 1, 2.5, and 5 g m-2 of phosphorus as PO43-; 5 g m-2 of N as NO3-; 5 g m-2 of N as NH4+, and one control plot. Plot-level CO2 and H2O exchange was measured at 5 light levels 7 times over a four-week period in June and July 2015. We measured ecosystem CO2 and H2O exchange using a rectangular plexiglass chamber (0.49 m2) that was connected to an infrared gas analyzer (LI-840). Other ecosystem variables measured include thaw depth, soil moisture and temperature, and normalized difference vegetation index. After 10 years of nutrient addition, fertilization significantly altered ecosystem C cycling. Soil respiration was greatest in the highest fertilization treatment (2.97 μmol m-2 s-1), increasing linearly with nutrient level at a rate of 0.133 μmol m-2 s-1 per g m-2 of N added (R2=0.914). Net CO2 uptake was greatest under highest fertilization (-2.06 μmol m-2 s-1), decreasing linearly with nutrient addition at a rate of -0.068 μmol m-2 s-1 per g m-2 of N added (R2=0.687). These results suggest that as nutrients become more available under a warmer climate, plant productivity increases may not offset respiratory

  19. Consequences of artic ground squirrels on soil carbon loss from Siberian tundra

    Science.gov (United States)

    Golden, N. A.; Natali, S.; Zimov, N.

    2014-12-01

    A large pool of organic carbon (C) has been accumulating in the Arctic for thousands of years. Much of this C has been frozen in permafrost and unavailable for microbial decomposition. As the climate warms and permafrost thaws, the fate of this large C pool will be driven not only by climatic conditions, but also by ecosystem changes brought about by arctic animal populations. In this project we studied arctic ground squirrels (Spermophilus parryii), which are widely-distributed throughout the Arctic. These social mammals create subterranean burrows that mix soil layers, increase aeration, alter soil moisture and temperature, and redistribute soil nutrients, all of which may impact microbial decomposition. We examined the effects of arctic ground squirrel activity on soil C mineralization in dry heath tundra underlain by continuous permafrost in the Kolyma River watershed in northeast Siberia, Russia. Vegetation cover was greatly reduced on the ground squirrel burrows (80% of ground un-vegetated), compared to undisturbed sites (35% of ground un-vegetated). Soils from ground squirrel burrows were also significantly dryer and warmer. To examine effects of ground squirrel activity on microbial respiration, we conducted an 8-day incubation of soil fromburrows and from adjacent undisturbed tundra. In addition, we assessed the impact of nutrient addition by including treatments with low and high levels of nitrogen addition. Microbial respiration (per gram soil) was three-fold higher in incubated soils from the undisturbed sites compared to soils collected from the burrows. The lower rates of respiration from the disturbed soils may have been a result of lower carbon quality or low soil moisture. High nitrogen addition significantly increased respiration in the undisturbed soils, but not in the disturbed burrow soils, which suggests that microbial respiration in the burrow soils was not primarily limited by nitrogen. These results demonstrate the importance of wildlife

  20. Fire usage and ancient hominin detoxification genes

    NARCIS (Netherlands)

    Aarts, Jac M.M.J.G.; Alink, Gerrit M.; Scherjon, Fulco; MacDonald, Katharine; Smith, Alison C.; Nijveen, Harm; Roebroeks, Wil

    2016-01-01

    Studies of the defence capacity of ancient hominins against toxic substances may contribute importantly to the reconstruction of their niche, including their diets and use of fire. Fire usage implies frequent exposure to hazardous compounds from smoke and heated food, known to affect general heal

  1. Discovering the Ancient Maya from Space

    Science.gov (United States)

    Sever, T. L.

    2008-01-01

    The Pet6n region of northern Guatemala contains some of the most significant Mayan archeological sites in Latin America. It was in this region that the Maya civilization began, flourished, and abruptly disappeared. Remote sensing technology is helping to locate and map ancient Maya sites that are threatened today by accelerating deforestation and looting. Thematic Mapper, IKONOS, and QuickBird satellite, and airborne STAR-3i and AIRSAR radar data, combined with Global Positioning System (GPS) technology, are successfully detecting ancient Maya features such as sites, roadways, canals, and water reservoirs. Satellite imagery is also being used to map the bajos, which are seasonally flooded swamps that cover over 40% of the land surface. Through the use of various airborne and satellite sensor systems we have been able to detect and map ancient causeways, temples, reservoirs, and land forms, and locate these features on the ground through GPS technology. Recently, we have discovered that there is a strong relationship between a tropical forest vegetation signature in satellite imagery and the location of archeological sites. We believe that the use of limestone and lime plasters in ancient Maya construction affects the moisture, nutrition, and plant species of the surface vegetation. We have mapped these vegetation signatures in the imagery and verified through field survey that they are indicative of archeological sites. Through the use of remote sensing and GIS technology it is possible to identify unrecorded archeological features in a dense tropical forest environment and monitor these cultural features for their protection.

  2. Ancient Human Parasites in Ethnic Chinese Populations

    Science.gov (United States)

    Yeh, Hui-Yuan; Mitchell, Piers D.

    2016-01-01

    Whilst archaeological evidence for many aspects of life in ancient China is well studied, there has been much less interest in ancient infectious diseases, such as intestinal parasites in past Chinese populations. Here, we bring together evidence from mummies, ancient latrines, and pelvic soil from burials, dating from the Neolithic Period to the Qing Dynasty, in order to better understand the health of the past inhabitants of China and the diseases endemic in the region. Seven species of intestinal parasite have been identified, namely roundworm, whipworm, Chinese liver fluke, oriental schistosome, pinworm, Taenia sp. tapeworm, and the intestinal fluke Fasciolopsis buski. It was found that in the past, roundworm, whipworm, and Chinese liver fluke appear to have been much more common than the other species. While roundworm and whipworm remained common into the late 20th century, Chinese liver fluke seems to have undergone a marked decline in its prevalence over time. The iconic transport route known as the Silk Road has been shown to have acted as a vector for the transmission of ancient diseases, highlighted by the discovery of Chinese liver fluke in a 2,000 year-old relay station in northwest China, 1,500 km outside its endemic range. PMID:27853113

  3. Ancient bronze disks, decorations and calendars

    CERN Document Server

    Sparavigna, Amelia Carolina

    2012-01-01

    Recently, it was published that some ancient bronze disks could had been calendars, that is, that their decorations had this function. Here I am discussing an example, the disk of the Trundholm Sun Chariot, proposing a new interpretation of it, giving a calendar of 360 days. Some geometric diagrams concerning the decoration layout are also proposed.

  4. Ancient DNA analysis of dental calculus.

    Science.gov (United States)

    Weyrich, Laura S; Dobney, Keith; Cooper, Alan

    2015-02-01

    Dental calculus (calcified tartar or plaque) is today widespread on modern human teeth around the world. A combination of soft starchy foods, changing acidity of the oral environment, genetic pre-disposition, and the absence of dental hygiene all lead to the build-up of microorganisms and food debris on the tooth crown, which eventually calcifies through a complex process of mineralisation. Millions of oral microbes are trapped and preserved within this mineralised matrix, including pathogens associated with the oral cavity and airways, masticated food debris, and other types of extraneous particles that enter the mouth. As a result, archaeologists and anthropologists are increasingly using ancient human dental calculus to explore broad aspects of past human diet and health. Most recently, high-throughput DNA sequencing of ancient dental calculus has provided valuable insights into the evolution of the oral microbiome and shed new light on the impacts of some of the major biocultural transitions on human health throughout history and prehistory. Here, we provide a brief historical overview of archaeological dental calculus research, and discuss the current approaches to ancient DNA sampling and sequencing. Novel applications of ancient DNA from dental calculus are discussed, highlighting the considerable scope of this new research field for evolutionary biology and modern medicine.

  5. Tapping Ancient Roots: Plaited Paper Baskets

    Science.gov (United States)

    Patrick, Jane

    2011-01-01

    With ancient roots, basket making has been practiced since the earliest civilizations, and according to textile experts, probably pre-dates pottery. This is partly conjecture since few baskets remain. It is through evidence found in clay impressions that the earliest baskets reveal themselves. Basically, basketry construction is like flat weaving.…

  6. Ancient Pyramids Help Students Learn Math Concepts

    Science.gov (United States)

    Smith, Courtney D.; Stump, Amanda M.; Lazaros, Edward J.

    2010-01-01

    This article presents an activity that allows students to use mathematics and critical-thinking skills to emulate processes used by the ancient Egyptians to prepare the site for the Pyramids of Giza. To accomplish this, they use three different methods. First, they create a square using only simple technological tools that were available to the…

  7. Defining Astrology in Ancient and Classical History

    Science.gov (United States)

    Campion, Nicholas

    2015-05-01

    Astrology in the ancient and classical worlds can be partly defined by its role, and partly by the way in which scholars spoke about it. The problem is complicated by the fact that the word is Greek - it has no Babylonian or Egyptian cognates - and even in Greece it was interchangeable with its cousin, 'astronomy'. Yet if we are to understand the role of the sky, stars and planets in culture, debates about the nature of ancient astrology, by both classical and modern scholars, must be taken into account. This talk will consider modern scholars' typologies of ancient astrology, together with ancient debates from Cicero in the 1st century BC, to Plotinus (204/5-270 AD) and Isidore of Seville (c. 560 - 4 April 636). It will consider the implications for our understanding of astronomy's role in culture, and conclude that in the classical period astrology may be best understood through its diversity and allegiance to competing philosophies, and that its functions were therefore similarly varied.

  8. Ancient whole grain gluten-free flatbreads

    Science.gov (United States)

    The USDA food guide recommends that at least ½ of all the grains eaten should be whole grains. The FDA allows food Health Claim labels for food containing 51% whole gains and 11 g of dietary fiber. This is the only report demonstrating innovative ancient whole grain gluten-free (no yeast or chemical...

  9. An ancient musical instrument returns home

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    After 300 years abroad, an ancient Chinese musical instrument returned home with its face lifted and a Japanese name. Originally a one-stringed plucker, the Daisho Modo now features a whole family of electric high-, medium-pitched and bass instruments. With crisp tone and wide range, the Daisho Modo is

  10. Fossil avian eggshell preserves ancient DNA

    DEFF Research Database (Denmark)

    Oskam, Charlotte L; Haile, James Seymour; McLay, Emma

    2010-01-01

    Owing to exceptional biomolecule preservation, fossil avian eggshell has been used extensively in geochronology and palaeodietary studies. Here, we show, to our knowledge, for the first time that fossil eggshell is a previously unrecognized source of ancient DNA (aDNA). We describe the successful...

  11. The Study of Women in Ancient Society.

    Science.gov (United States)

    Moscovich, M. James

    1982-01-01

    Presents ideas for teaching about the roles of women in ancient Greek and Roman societies for undergraduate history and sociology classes. The discussion covers the roots of misogyny in Western culture, parallels between mythologies and sociocultural patterns, and the legal status of women in antiquity. (AM)

  12. [Ancient tattooing from today's point of view].

    Science.gov (United States)

    Zimmermann, R; Zimmermann, K

    1981-06-01

    Both literary and arachaeological evidence indicates that, up to now, ancient tattoos can be traced with certainty in painting only among Thracians. A comparison with modern tattoos reveals differences of motivation and motifs, whereas localization, technique, and removal show similarities. The illustrations demonstrate some tattoos typical for Thracians on Greek vases.

  13. Case report 872. "Ancient" schwannoma (degenerated neurilemoma).

    Science.gov (United States)

    Schultz, E; Sapan, M R; McHeffey-Atkinson, B; Naidich, J B; Arlen, M

    1994-10-01

    A case of an ancient schwannoma was presented. The rare occurrence of this tumor has resulted in only a few reported cases with descriptions of its features on imaging. Our patient's tumor, like one previously reported case, demonstrated calcification on the plain film - a finding not associated with other histologic types of schwannomas. Angiography revealed the tumor to be hypervascular. Evaluation by MRI demonstrated a lobulated, encapsulated soft tissue mass containing several cystic areas that corresponded histologically to areas of necrosis. Hypertrophied blood vessels were seen in the periphery of the tumoral mass. Too few ancient schwannomas have been reported to conclude whether or not radiographic evidence of soft tissue calcification is characteristic of this histologically distinctive subtype of schwannoma. However, since calcification is seen histologically as part of the degenerating process, its presence on plain films could be a feature of this tumor. Furthermore, the presence of cystic areas on MRI is not surprising given the pathological changes that occur in this tumor. We suggest that a diagnosis of ancient schwannoma be considered when a patient presents with a hypervascular soft tissue mass containing amorphous calcification on plain films and cystic areas on MRI. Despite the nonspecificity of these imaging findings, this point is relevant because each of these features suggests the presence of a malignant mass. Awareness of the possibility of a benign ancient schwannoma could obviate unnecessary radical surgery.

  14. Communication Arts in the Ancient World.

    Science.gov (United States)

    Havelock, Eric A., Ed.; Hershbell, Jackson P., Ed.

    Intended for both classicists and nonclassicists, this volume explores the beginnings of literacy in ancient Greece and Rome and examines the effects of written communication on these cultures. The nine articles, written by classical scholars and educators in the field of communication, discuss the following: the superiority of the alphabet over…

  15. Paragons of Education in Ancient Times

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    MOTHERS contributed greatly to children’s education in ancient China long before schools took shape. Behind many prominent figures lay greatmothers whose personal example and verbal instruction benefited their children throughout life. There is an old sayingabout the "stern father and compassionate mother."However, you will always

  16. The Roots of Science in Ancient China.

    Science.gov (United States)

    Fisher, Arthur

    1982-01-01

    A 45-year-old research project (culminating in the multivolume "Science and Civilization in China") is examining major scientific innovations in ancient China and attempting to explain why, although the Chinese gained a technological edge in the past, they did not make the forward leap into modern science. (JN)

  17. The Challenges of Qualitatively Coding Ancient Texts

    Science.gov (United States)

    Slingerland, Edward; Chudek, Maciej

    2012-01-01

    We respond to several important and valid concerns about our study ("The Prevalence of Folk Dualism in Early China," "Cognitive Science" 35: 997-1007) by Klein and Klein, defending our interpretation of our data. We also argue that, despite the undeniable challenges involved in qualitatively coding texts from ancient cultures, the standard tools…

  18. Mitochondrial phylogenomics of modern and ancient equids

    DEFF Research Database (Denmark)

    Vilstrup, Julia T; Seguin-Orlando, Andaine; Stiller, Mathias;

    2013-01-01

    to calibrate reliable molecular clocks. Additional mitochondrial genome sequence data, including radiocarbon dated ancient equids, will be required before revisiting the exact timing of the lineage radiation leading up to modern equids, which for now were found to have possibly shared a common ancestor as far...

  19. Genomic correlates of atherosclerosis in ancient humans.

    Science.gov (United States)

    Zink, Albert; Wann, L Samuel; Thompson, Randall C; Keller, Andreas; Maixner, Frank; Allam, Adel H; Finch, Caleb E; Frohlich, Bruno; Kaplan, Hillard; Lombardi, Guido P; Sutherland, M Linda; Sutherland, James D; Watson, Lucia; Cox, Samantha L; Miyamoto, Michael I; Narula, Jagat; Stewart, Alexandre F R; Thomas, Gregory S; Krause, Johannes

    2014-06-01

    Paleogenetics offers a unique opportunity to study human evolution, population dynamics, and disease evolution in situ. Although histologic and computed x-ray tomographic investigations of ancient mummies have clearly shown that atherosclerosis has been present in humans for more than 5,000 years, limited data are available on the presence of genetic predisposition for cardiovascular disease in ancient human populations. In a previous whole-genome study of the Tyrolean Iceman, a 5,300-year-old glacier mummy from the Alps, an increased risk for coronary heart disease was detected. The Iceman's genome revealed several single nucleotide polymorphisms that are linked with cardiovascular disease in genome-wide association studies. Future genetic studies of ancient humans from various geographic origins and time periods have the potential to provide more insights into the presence and possible changes of genetic risk factors in our ancestors. The study of ancient humans and a better understanding of the interaction between environmental and genetic influences on the development of heart diseases may lead to a more effective prevention and treatment of the most common cause of death in the modern world.

  20. The Ancient stellar population of Leo A.

    NARCIS (Netherlands)

    Saha, Abhijit; Fiorentino, Giuliana; Tolstoy, Eline; Cole, Andrew

    2010-01-01

    The primary goal of our proposal is the characterisation of the oldest stellar populations in Leo A using the properties of ancient RR Lyrae variable stars as tracers. Well known and long established correlations exist between the periods and luminosities of RR Lyrae variable stars and their ages an

  1. Dendroecological potential of Fabiana imbricata shrub for reconstructing fire history at landscape scale in grasslands

    Science.gov (United States)

    Oddi, Facundo; Ghermandi, Luciana; Lasaponara, Rosa

    2014-05-01

    Fire recurrently affects many of the terrestrial ecosystems causing major implications on the structure and dynamics of vegetation. In fire prone, it is particularly important to know the fire regime for which precise fire records are needed. Dendroecology offers the possibility of obtaining fire occurrence data from woody species and has been widely used in forest ecosystems for fire research. Grasslands are regions with no trees but shrubs could be used to acquire dendroecological information in order to reconstructing fire history at landscape scale. We studied the dendroecological potential of shrub F. imbricata to reconstruct fire history at landscape scale in a fire prone grassland of northwestern Patagonia. To do this, we combined spatio-temporal information of recorded fires within the study area with the age structure of F. imbricata shrublands derived by dendroecology. Sampling sites were located over 2500 ha in San Ramón ranch, 30 km east from Bariloche, Río Negro province, Argentina (latitude -41° 04'; longitude -70° 51'). Shrubland age structure correctly described how fires occurred in the past. Pulses of individuals' recruitment were associated with fire in time and space. A bi-variate analysis showed that F. imbricata recruits individuals during the two years after fire and spatial distribution of pulses coincided with the fire map. In sites without fire data, the age structure allowed the identification of two additional fires. Our results show that shrub F. imbricata can be employed with other data sources such as remote sensing and operational databases to improve knowledge on fire regime in northwestern Patagonia grasslands. In conclusion, we raise the possibility of utilizing shrubs as a dendroecological data source to study fire history in grasslands where tree cover is absent.

  2. Nye Lecture: Snow Crystals, Shrubs, and the Changing Climate of the Arctic

    Science.gov (United States)

    Sturm, M.

    2005-12-01

    At the peak of winter, snow covers more than 45 million km2 of the northern hemisphere. More than 90 percent of this snow will melt before the end of the following summer. In the southern part of this snow-covered area, the seasonal pack is ephemeral, lasting but a few short weeks, but with increasing latitude (or altitude), it lasts much longer. In arctic and alpine locations it can persist for 9 months of the year. In these more extreme locations, the snow is an essential element of the ecosystem, both acting upon, and being acted on, by the biota. For historical reasons, our understanding of snow cover and its interactions has come from two disparate scientific sources: geophysicists working on glaciers and avalanches who were trying to understand snow properties and to develop a physical basis for snow science, and ecologists who were trying to understand the impact of snow on plants, animals, and humans. With the recognition now that snow is both a passive and active agent, we are seeing an increasing number of studies wherein both of these traditional approaches are combined. Geophysicists are learning the Latin names of shrubs while botanist can now identify wind slab. A personal example that illustrates the necessity of this melding process has been our effort to understand the climatic implications of Arctic snow-shrub interactions. We have had to combine traditional snow geophysical studies (i.e., crystal growth, thermal processes, light reflection) with traditional ecological studies (i.e., competition, carbon and nitrogen cycling). Through this process we have discovered that snow-shrub interactions, or more broadly, snow-vegetation interactions, are helping to push the Arctic down a warming trajectory that has global implications. Soil microbes and snow crystals, wind-blown snow and shrubs, are all leading actors in a climate change drama whose outcome is of concern to us all.

  3. Effects of flowering phenology and synchrony on the reproductive success of a long-flowering shrub

    OpenAIRE

    Rodríguez-Pérez, Javier; Traveset, Anna

    2016-01-01

    Flowering phenology and synchrony with biotic and abiotic resources are crucial traits determining the reproductive success in insect-pollinated plants. In seasonal climates, plants flowering for long periods should assure reproductive success when resources are more predictable. In this work, we evaluated the relationship between flowering phenology and synchrony and reproductive success in Hypericum balearicum, a shrub flowering all year round but mainly during spring and summer. We studied...

  4. Analysis of invertebrate populations inhabiting the shrub-steppe region of southcentral Washington (Hanford Reservation)

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, L. E.

    1977-01-01

    Field sampling and analytical techniques are described for quantitative shrub-steppe invertebrate ecology studies on the Hanford Reservation. A quick trap, D-vac sampling method followed by Berlese extraction is employed. Computer summarization of results permits presentation of data in terms of density (no./m/sup 2/) and biomass (g/m/sup 2/) for trophic, taxonomic, lifestage and total invertebrate groupings.

  5. Ancient Egyptian Medicine: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Samuel Adu-Gyamfi

    2015-12-01

    Full Text Available Our present day knowledge in the area of medicine in Ancient Egypt has been severally sourced from medical papyri several of which have been deduced and analyzed by different scholars. For educational purposes it is always imperative to consult different literature or sources in the teaching of ancient Egypt and medicine in particular. To avoid subjectivity the author has found the need to re-engage the efforts made by several scholars in adducing evidences from medical papyri. In the quest to re-engage the efforts of earlier writers and commentaries on the medical papyri, we are afforded the opportunity to be informed about the need to ask further questions to enable us to construct or reconstruct both past and modern views on ancient Egyptian medical knowledge. It is this vocation the author sought to pursue in the interim, through a preliminary review, to highlight, comment and reinvigorate in the reader or researcher the need for a continuous engagement of some pertinent documentary sources on Ancient Egyptian medical knowledge for educational and research purposes. The study is based on qualitative review of published literature. The selection of those articles as sources was based on the focus of the review, in order to purposively select and comment on articles that were published based either on information from a medical papyrus or focused on medical specialization among the ancient Egyptians as well as ancient Egyptian knowledge on diseases and medicine. It was found that the Egyptians developed relatively sophisticated medical practices covering significant medical fields such as herbal medicine, gynecology and obstetrics, anatomy and physiology, mummification and even the preliminary form of surgery. These practices, perhaps, were developed as remedies for the prevailing diseases and the accidents that might have occurred during the construction of their giant pyramids. It must be stated that they were not without flaws. Also, the

  6. How does altered precipitation and annual grass invasion affect plant N uptake in a native semi-arid shrub community?

    Science.gov (United States)

    Mauritz, M.; Lipson, D.; Cleland, E. E.

    2012-12-01

    Climate change is expected to alter precipitation patterns, which will change the timing and amount of plant resources. Precipitation patterns determine water and nitrogen (N) availability, because water stimulates microbial N turnover and N transport. In order for plants to utilize water and N, they must coincide with the phenology and meet physiological requirements of the plant. As resource supply shifts, differences in species' ability to acquire resources will affect plant community composition. Semiarid ecosystems, such as shrublands in Southern California, are particularly sensitive to shifts in precipitation because they are severely water limited. This study takes advantage of the altered phenology and resource demands presented by invasive annual grasses in a native semiarid shrubland. The goal is to understand how altered precipitation patterns affect plant N uptake. Rainfall levels were manipulated to 50% and 150% of ambient levels. It is expected that higher rainfall levels promote annual grass invasion because grasses have higher water and N requirements and begin to grow earlier in the season than shrubs. A 15N tracer was added with the first rain event and plant samples were collected regularly to track the movement of N into the plants. Net soil N accumulation was determined using resin bags. Invasive grasses altered the timing and amount of N uptake but amount of rainfall had less effect on N distribution. 15N was detected sooner and at higher level in grasses than shrubs. 24hours after the first rain event 15N was detectable in grasses, 15N accumulated rapidly and peaked 2 months earlier than shrubs. Shrub 15N levels remained at pre-rain event levels for the first 2 months and began to increase at the beginning of spring, peak mid-spring and decline as the shrubs entered summer dormancy. One year later 15N levels in annual grass litter remained high, while 15N levels in shrubs returned to initial background levels as a result of resorption. 15N

  7. Convergent production and tolerance among 107 woody species and divergent production between shrubs and trees.

    Science.gov (United States)

    He, Wei-Ming; Sun, Zhen-Kai

    2016-02-08

    Green leaves face two fundamental challenges (i.e., carbon fixation and stress tolerance) during their lifespan. However, the relationships between leaf production potential and leaf tolerance potential have not been explicitly tested with a broad range of plant species in the same environment. To do so, we conducted a field investigation based on 107 woody plants grown in a common garden and complementary laboratory measurements. The values, as measured by a chlorophyll meter, were significantly related to the direct measurements of chlorophyll content on a leaf area basis. Area-based chlorophyll content was positively correlated with root surface area, whole-plant biomass, leaf mass per area (LMA), and force to punch. Additionally, LMA had a positive correlation with force to punch. Shrubs had a higher leaf chlorophyll content than trees; however, shrubs and trees exhibited a similar leaf lifespan, force to punch, and LMA. These findings suggest that the production potential of leaves and their tolerance to stresses may be convergent in woody species and that the leaf production potential may differ between shrubs and trees. This study highlights the possibility that functional convergence and divergence might be linked to long-term selection pressures and genetic constraints.

  8. Evaluation of N2—Fixing Capacites of Herbaceous and Shrub Legumes Under Field Condition

    Institute of Scientific and Technical Information of China (English)

    XJINGGUANGXI; SHISHULIAN; 等

    1998-01-01

    Natural 15N abundance method was used in this study to investigate the N2-fiing capacities of several herbaceous and shrub legumes by a field experiment,For herbaceous legumes,the results were in consistent with those obtained by a pot experiment .Crotalaria mucronata Desv.had a higher,N2-fixing capacity than Vigna sinensis(L.)Savi.For shurub legumes,N2-fixing Capacity under field condition was slightly different from that in pot experiment.These results demonstrated that the natural 15N abundance method was applicable to evaluating N2-fixing capacities of herbaceous and shrub legumes,and that pot experiment was suitable for evaluating the N2-fixing capacities of not only herbaceous legumes but also shrub legumes. Leguminous N2-fixing plants differed in response to phosphorus fertilization,Phosphorus fertilizer appication greatly increased the percentage of nitrogen derived from air (% N dfa)and total amount of N2 fixed by Lespedez formosa(Vog.)Koehne (Jiangxi),Phosphorus fertilizer showed no signifcant effect on the N2-fixing percentage of Cajanus cajan(L.)Millsp.but increased its total biomass,thus increasing the total amount of N2 fixed.

  9. Shrub resprouting response after fuel reduction treatments: comparison of prescribed burning, clearing and mastication.

    Science.gov (United States)

    Fernández, Cristina; Vega, José A; Fonturbel, Teresa

    2013-03-15

    Fuel reduction treatments are commonly used to reduce the risk of severe wildfire. However, more information about the effects on plant resprouting is needed to help land managers select the most appropriate treatment. To address this question, we evaluated the resprouting ability of five shrub species after the application of different types of fuel reduction methods (prescribed burning, clearing and mastication) in two contrasting shrubland areas in northern Spain. The shrub species were Erica australis, Pterospartum tridentatum and Halimium lasianthum spp. alyssoides, Ulex gallii and Erica cinerea. For most of the species under study (E. australis, P. tridentatum, H. lasianthum spp. alyssoides and U. gallii), neither plant mortality nor the number nor length of sprouted shoots per plant differed between treatments, although in E. cinerea the number of shoots was more negatively affected by prescribed burning than by clearing or mastication. The pre-treatment plant size did not affect plant mortality or plant resprouting response, suggesting that this parameter alone is not a good indicator of plant resprouting after fuel reduction treatments. Stem minimum diameter after treatments, a proxy of treatment severity, was not related to plant mortality, number or length of resprouted shoots. The duration of temperatures higher than 300 °C during burning in plant crown had a negative effect on the length of resprouted shoots, only in E. cinerea. The results show that fuel reduction treatments did not prevent shrub response in any case. Some reflections on the applicability of treatments are discussed.

  10. Spatial and Temporal Variability of Soil Redistribution in a Heterogeneous Shrub Dominated Landscape

    Science.gov (United States)

    Van Pelt, R. S.; Zobeck, T. M.

    2015-12-01

    Redistribution of soil by wind results when the erosive force of the wind impacts bare, susceptible soil surfaces. In semi-arid and arid environments, many grasslands with protected surfaces are being replaced by heterogeneous shrub communities with bare, susceptible soil surfaces between the individual shrubs. The development of nutrient islands and the increases of fugitive dust in these areas is indicative of increases of soil redistribution, but few quantitative measurements have been made to date. We fenced three 1 ha areas in an approximately 100 ha coppice dune area of southeast New Mexico dominated by shinnery oak, sand sage, and mesquite and installed a 4 X 4 grid of MWAC sampler masts spaced at 20 m from each other. Weather data were collected at an automated weather station in each of the fenced areas. We found the patterns of soil redistribution to be highly variable in space and time. Differences in vegetation patterns and wind fields were noted among the plots for the same discrete time period that could explain some of the spatial variability. We also noted seasonality of wind fields that accounted for the temporally variable spatial patterns of soil redistribution. We conclude that accurate measurement of soil redistribution patterns in a heterogeneous shrub community requires a very large number of samplers and a long period of study and we believe that net soil loss from an area is limited to fine dust emissions.

  11. Environmental consequences of an industry based on harvesting the wild desert shrub jojoba

    Energy Technology Data Exchange (ETDEWEB)

    Foster, K.E.

    1980-04-01

    The impacts of harvesting jojoba seeds from populations in the wild may be unnoticed for some time because jojoba is a long-lived shrub, which sometimes survives for more than 100 years. And the impacts could be serious one year and of no consequence another year because of the variability of climatic conditions that favor germination and seedling survival. Predicting whether seed harvests will reduce the germination capability or seedling survival of wild jojoba populations, then, is impossible. Because the jojoba life cycle can allow several years to pass before successful reproduction occurs, harvesting jojoba seeds during a 20-y period could reduce the natural reproduction of the shrub. But such a reduction might not be prceived for a number of years because jojoba is so long-lived and because there are no size-and-age correlations available on the shrub. A study should be undertaken to monitor the impacts of harvesting jojoba seed from natural populations to prevent serious effects on the plant's reproduction and disruption of its natural habitat. Although such a study would consume a considerable amount of time, analysis of the accumulated data from a 10-y study begun in 1981 could facilitate decisions in 1991 with respect to continuing the harvest that began in 1972 into a third decade.

  12. Turnover of Species and Guilds in Shrub Spider Communities in a 100-Year Postlogging Forest Chronosequence.

    Science.gov (United States)

    Haraguchi, Takashi F; Tayasu, Ichiro

    2016-02-01

    Disturbance of forests by logging and subsequent forest succession causes marked changes in arthropod communities. Although vegetation cover provides important habitat for arthropods, studies of the changes in their community structure associated with forest succession have been conducted mostly at ground level. To evaluate how forests of different ages contribute to arthropod biodiversity in shrub habitat, spiders were collected from shrubs in 12 forests ranging in age from 1 to 107 yr after logging. We found marked changes in spider community structure about 10 yr after logging: the number of species and individuals declined rapidly after this time. These changes were likely caused by a decrease in shrub cover in association with forest succession. Changes in spider species composition associated with stand age were small in forests at least 11 yr old and were not clustered by forest age. After the exclusion of species of which we sampled only one or two individuals incidentally, just 0.9 ± 0.5 (mean ± SD) species were unique to these older forests. The other 41.2 ± 4.3 species found in these forests were common to both older and young forests, although some of these species in common were found mainly in forests at least 11 yr old. These results suggest that preservation of old-growth forests contributes to the abundance of these common species, although old-growth forests contribute little to species diversity.

  13. Wood anatomy and wood density in shrubs: Responses to varying aridity along transcontinental transects.

    Science.gov (United States)

    Martínez-Cabrera, Hugo I; Jones, Cynthia S; Espino, Susana; Schenk, H Jochen

    2009-08-01

    Wood density plays a key role in ecological strategies and life history variation in woody plants, but little is known about its anatomical basis in shrubs. We quantified the relationships between wood density, anatomy, and climate in 61 shrub species from eight field sites along latitudinal belts between 31° and 35° in North and South America. Measurements included cell dimensions, transverse areas of each xylem cell type and percentage contact between different cell types and vessels. Wood density was more significantly correlated with precipitation and aridity than with temperature. High wood density was achieved through reductions in cell size and increases in the proportion of wall relative to lumen. Wood density was independent of vessel traits, suggesting that this trait does not impose conduction limitations in shrubs. The proportion of fibers in direct contact with vessels decreased with and was independent of wood density, indicating that the number of fiber-vessel contacts does not explain the previously observed correlation between wood density and implosion resistance. Axial and radial parenchyma each had a significant but opposite association with wood density. Fiber size and wall thickness link wood density, life history, and ecological strategies by controlling the proportion of carbon invested per unit stem volume.

  14. On the impact of shrub encroachment on microclimate conditions in the northern Chihuahuan desert

    Science.gov (United States)

    He, Yufei; D'Odorico, Paolo; de Wekker, Stephan F. J.; Fuentes, Jose D.; Litvak, Marcy

    2010-11-01

    Changes in vegetation cover are known for their ability to modify the surface energy balance and near-surface microclimate conditions. A major change in vegetation composition that has been occurring in many dryland regions around the world is associated with the replacement of arid grasslands by desert shrublands. The impact of shrub encroachment on regional climate conditions remains poorly investigated, and, to date, it is unclear how this shift in plant community composition may affect the microclimate. Here we used concurrent meteorological observations at two adjacent sites dominated by Larrea tridentata shrubs and native grass species, respectively, in the northern Chihuahuan desert to investigate differences in nighttime air temperatures between the shrubland and grassland vegetation covers. The nighttime air temperature was found to be substantially higher (>2°C) in the shrubland than in the grassland, especially during calm winter nights. These differences in surface air temperature were accompanied by differences in longwave radiation and sensible and ground heat fluxes. We developed a one-dimensional model to show how longwave radiation emitted by the ground at night can explain the higher nighttime air temperature over the shrubland. Because of the larger fraction of bare soil typically existing in the shrub cover, the ground surface remains less insulated and more energy flows into the ground at the shrubland site than in the grassland during daytime. This energy is then released at night mainly as longwave radiation, which causes the differences in the nighttime air temperatures between the two land covers.

  15. The Ancient Kemetic Roots of Library and Information Science.

    Science.gov (United States)

    Zulu, Itibari M.

    This paper argues that the ancient people of Kemet (Egypt), "the black land," built and operated the first major libraries and institutions of higher education in the world. Topics of discussion include the Ancient Egyptians as an African people; a chronology of Ancient Kemet; literature in Kemet; a history of Egyptian Librarianship; the…

  16. Deep sequencing of RNA from ancient maize kernels

    DEFF Research Database (Denmark)

    Fordyce, Sarah Louise; Avila Arcos, Maria del Carmen; Rasmussen, Morten;

    2013-01-01

    The characterization of biomolecules from ancient samples can shed otherwise unobtainable insights into the past. Despite the fundamental role of transcriptomal change in evolution, the potential of ancient RNA remains unexploited - perhaps due to dogma associated with the fragility of RNA. We...... maize kernels. The results suggest that ancient seed transcriptomics may offer a powerful new tool with which to study plant domestication....

  17. Genetic diversity among ancient Nordic populations.

    Directory of Open Access Journals (Sweden)

    Linea Melchior

    Full Text Available Using established criteria for work with fossil DNA we have analysed mitochondrial DNA from 92 individuals from 18 locations in Denmark ranging in time from the Mesolithic to the Medieval Age. Unequivocal assignment of mtDNA haplotypes was possible for 56 of the ancient individuals; however, the success rate varied substantially between sites; the highest rates were obtained with untouched, freshly excavated material, whereas heavy handling, archeological preservation and storage for many years influenced the ability to obtain authentic endogenic DNA. While the nucleotide diversity at two locations was similar to that among extant Danes, the diversity at four sites was considerably higher. This supports previous observations for ancient Britons. The overall occurrence of haplogroups did not deviate from extant Scandinavians, however, haplogroup I was significantly more frequent among the ancient Danes (average 13% than among extant Danes and Scandinavians (approximately 2.5% as well as among other ancient population samples reported. Haplogroup I could therefore have been an ancient Southern Scandinavian type "diluted" by later immigration events. Interestingly, the two Neolithic samples (4,200 YBP, Bell Beaker culture that were typed were haplogroup U4 and U5a, respectively, and the single Bronze Age sample (3,300-3,500 YBP was haplogroup U4. These two haplogroups have been associated with the Mesolithic populations of Central and Northern Europe. Therefore, at least for Southern Scandinavia, our findings do not support a possible replacement of a haplogroup U dominated hunter-gatherer population by a more haplogroup diverse Neolithic Culture.

  18. Ancient Egypt in our Cultural Heritage?

    Directory of Open Access Journals (Sweden)

    Vera Vasiljević

    2016-02-01

    Full Text Available Inspiration derived from ancient Egypt is usually expressed through the Egyptian motifs in arts and popular culture of the 19th and 20th centuries, as well as through the non-scientific interpretations of the culture, very much based upon the Renaissance ones. The number and variety of material and non-material traces of this fascination are most expressed in the countries where, along with the early support for the institutional development of Egyptology, there existed economically potent educated middle classes (Western and Central Europe, USA, but may also be traced elsewhere. The public fascination by ancient Egypt has not ceased by the times of foundation of Egyptology, marked by the decipherment of the hieroglyphic script in 1822. Until the end of the 20th century Egyptologists have rarely dealt with the prelude to their discipline, limiting their interest to the critical approach to ancient sources and to noting the attempts to interpret the hieroglyphic script and the function of pyramids. However, the rising importance of the reception studies in other disciplines raised the interest of Egyptologists for the "fascination of Egypt", thus changing the status of various modes of expressing "Egyptomania" – they have thus become a part of the cultural heritage, registered, documented, preserved and studied. The research of this kind is only beginning in Serbia. The line of inquiry enhances the knowledge of the scope, manifestations and roles of the interest in Egypt, not limited by the national or political borders. On the other hand, the existence of the cultural heritage similar to the wider European view of ancient Egypt – short remarks by Jerotej Račanin, Kandor by Atanasije Stojković, the usage of architectural motifs derived from Egypt, the emergence of small private collections, to mention several early examples – all show that the research into the reception of ancient Egypt may contribute to the knowledge about the history

  19. Ancient and Medieval Cosmology in Armenian Highland

    Science.gov (United States)

    Farmanyan, Sona V.; Mickaelian, Areg M.

    2016-12-01

    Humankind has always sought to recognize the nature of various sky related phenomena and tried to give them explanations. It is especially vivid in ancient cultures, many of which are related to the Middle East. The purpose of this study is to identify ancient Armenian's pantheistic and cosmological perceptions, world view, notions and beliefs. By this study we answer the question "How did the Universe work in Ancient Armenian Highland?" The paper focuses on the structure of the Universe and many phenomena of nature that have always had major influence on ancient Armenians thinking. Here we weave together astronomy, anthropology and mythology of Armenia, and scientific thinking revealed in local astronomy traditions. The initial review of the study covers Moses of Khoren, Yeznik of Koghb, Anania Shirakatsi and other 5th-7th centuries historians' and scientists' records about the Universe related superstitious beliefs and cosmological understanding. By discussing and comparing Universe structure in various regional traditions, myths, folk songs and phraseological units we very often came across "seven worlds", "seven earths" and "seven layers" concepts. We draw parallels between scientific and mythological Earth and Heaven and thus find similar number of layers on both of the ancient and modern thinking. In the article we also give some details about the tripartite structure of the Universe and how these parts are connected with axis. This axis is either a column or a Cosmic Tree (Kenatz Tsar). In Armenian culture the preliminary meanings of the Kenatz Tsar are more vivid in folk songs (Jan gyulums), plays, epic, and so on, which was subsequently mixed with religious and spiritual views. We conclude that the perception of the Universe structure and celestial objects had a significant impact on culture and worldview of the people of the Armenian Highland; particularly it was one of the bases of the regional cultural diversity.

  20. Effects of biophysical constraints, climate and phylogeny on forest shrub allometries along an altitudinal gradient in Northeast China

    Science.gov (United States)

    Sun, Han; Wang, Xiangping; Fan, Yanwen; Liu, Chao; Wu, Peng; Li, Qiaoyan; Yin, Weilun

    2017-01-01

    Whether there is a general allometry law across plant species with different sizes and under different environment has long been controversial and shrubs are particularly useful to examine these questions. Here we sampled 939 individuals from 50 forest shrub species along a large altitudinal gradient. We tested several allometry models with four relationships simultaneously (between stem diameter, height, leaf, stem and aboveground biomass), including geometric, elastic and stress similarity, and metabolic scaling theory’s predictions on small plants (MSTs) and trees (MSTt). We also tested if allometric exponents change markedly with climate and phylogeny. The predicted exponents of MSTt, elastic similarity and stress similarity (models for trees) were not supported by our data, while MSTs and geometric similarity gained more support, suggesting the finite size effect is more important for shrub allometries than being a woody plant. The influence of climate and phylogeny on allometric exponents were not significant or very weak, again suggesting strong biophysical constraints on shrub allometries. Our results reveal clear differences of shrub allometries from previous findings on trees (e.g. much weaker climatic and phylogenic control). Comparisons of herbs, shrubs and trees along a same climatic gradient are needed for better understanding of plant allometries. PMID:28266604

  1. Determinants of distribution and abundance of two shrub species, Guiera senegalensis and Piliostigma reticulatum, in Peanut Basin, Senegal

    Science.gov (United States)

    Lufafa, A.; Diédhiou, I.; Ndiaye, N.; Kizito, F.; Dick, R.; Noller, J. S.

    2005-05-01

    The ability to predict and manage the course of landscape-level ecological change and its longer-term consequences on ecosystem functions (e.g. carbon stabilization and soil degradation mitigation) depends on the ability to understand how a particular ecosystem functions and the mechanisms that control the distribution, configuration and abundance of key species. Guiera senegalensis and Piliostigma reticulatum are two native shrub species that are widely found in Sub-Saharan Africa but unrecognized in their potential role in regulating hydrological and carbon cycles in both natural and agro-ecosystems. Our objective was to conduct a study on the determinants of landscape-level distribution and abundance of these shrub species as a basis for ecological modeling and management of this fragile semiarid environment. Formal Recursive Inference Modeling was used to adduce determinants of species presence while logistic regression and geostatistical approaches were used to estimate shrub abundance within their communities. The results showed that distribution of the shrubs is controlled by four factors: geological substrate, mean annual temperature, mean annual rainfall and landform (profile convexity). Relative abundance within the shrub communities is under the influence of mean annual rainfall, maximum annual temperature and elevation (for G. senegalensis) and mean annual rainfall, mean annual temperature, elevation and landform (profile convexity) (for P. reticulatum). Predictive models for shrub distribution and abundance were generally poor, probably highlighting the weakness of statistical models in analysis and quantification of the spatial structure of ecosystems.

  2. Backscatter from ice growing on shallow tundra lakes near Barrow, Alaska, winter 1991-1992

    Science.gov (United States)

    Jeffries, M. O.; Wakabayashi, H.; Weeks, W. F.; Morris, K.

    1993-01-01

    The timing of freeze-up and break-up of Arctic lake ice is a potentially useful environmental indicator that could be monitored using SAR. In order to do this, it is important to understand how the properties and structure of the ice during its growth and decay affect radar backscatter and thus lake ice SAR signatures. The availability of radiometrically and geometrically calibrated digital SAR data time series from the Alaska SAR Facility has made it possible for the first time to quantify lake ice backscatter intensity (sigma(sup o)) variations. This has been done for ice growing on shallow tundra lakes near Barrow, NW Alaska, from initial growth in September 1991 until thawing and decay in June 1992. Field and laboratory observations and measurements of the lake ice were made in late April 1992. The field investigations of the coastal lakes near Barrow confirmed previous findings that, (1) ice frozen to the lake bottom had a dark signature in SAR images, indicating weak backscatter, while, (2) ice that was floating had a bright signature, indicating strong backscatter. At all sites, regardless of whether the ice was grounded or floating, there was a layer of clear, inclusion-free ice overlaying a layer of ice with dense concentrations of vertically oriented tubular bubbles. At some sites, there was a third layer of porous, snow-ice overlaying the clear ice.

  3. Pentecostals and Charismatic Protestants in the Republic of Komi and Nenets Tundra

    Directory of Open Access Journals (Sweden)

    Art Leete

    2015-09-01

    Full Text Available Between 2010 and 2012, an extended team of scholars studied contemporary Protestant groups in Russia. The project was labelled Center for the Study of Pentecostal and Charismatic Movements in Russia1 (CSPCMR and was led by Aleksandr Panchenko from the European University in Saint Petersburg and Patrick Plattet from the University of Alaska Fairbanks. Besides Russia and the USA, scholars from Ireland, the United Kingdom, France, and Estonia were involved in this collaborative research effort. The host institution of the project was the European University in St. Petersburg. The aim of the project was to analyse the Protestant-charismatic (P/c Christianity in various regions of post-Soviet Russia. The project proceeded from the notions concerned with global effects of the rapid extension of P/c Christianity in the contemporary world. In the anthropology of Pentecostalism, problems of continuity and change, globalisation and indigenisation, preservation of pre-Pentecostal ontologies, creating the new morality and approaches to economy and politics have been discussed (Coleman 2000; Robbins 2004a, 2004b. The Estonian team’s specific task was to analyse contemporary Protestant missions and churches in the north-eastern corner of European Russia, in the Republic of Komi and the European Nenets tundra.

  4. Short-term Climate Characteristics at Ny-(A)lesund over the Arctic Tundra Area

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Based on the Germany Koldwey Station's 1994-2003 conventional observation hourly data, this paper conducts a statistical analysis on the short-term climate characteristics for an arctic tundra region (Ny-(A)lesund island) where our first arctic expedition station (Huanghe Station) was located. Affected by the North Atlantic warming current, this area has a humid temperate climate, and the air temperature at Ny-(A)lesund rose above 0 ℃ even during deep winter season during our research period. The wind speed in this area was low and appeared most at southeast direction. We find that the temperature at Ny-(A)lesund rose in the faster rate (0.68 ℃/10 a) than those at the whole Arctic area. Compared with the floating ices where our expedition conducted in the Arctic, Ny-(A)lesund was warmer and more humid and had lower wind speed. Comparison of the near surface air temperature derived by NCEP/NCAR reanalysis to the conventional measurements conducted at the Koldwey site in Ny-(A)lesund area shows a good agreement for winter season and a significant difference for summer season.

  5. Calibration and Validation of Landsat Tree Cover in the Taiga−Tundra Ecotone

    Directory of Open Access Journals (Sweden)

    Paul Mannix Montesano

    2016-06-01

    Full Text Available Monitoring current forest characteristics in the taiga−tundra ecotone (TTE at multiple scales is critical for understanding its vulnerability to structural changes. A 30 m spatial resolution Landsat-based tree canopy cover map has been calibrated and validated in the TTE with reference tree cover data from airborne LiDAR and high resolution spaceborne images across the full range of boreal forest tree cover. This domain-specific calibration model used estimates of forest height to determine reference forest cover that best matched Landsat estimates. The model removed the systematic under-estimation of tree canopy cover >80% and indicated that Landsat estimates of tree canopy cover more closely matched canopies at least 2 m in height rather than 5 m. The validation improved estimates of uncertainty in tree canopy cover in discontinuous TTE forests for three temporal epochs (2000, 2005, and 2010 by reducing systematic errors, leading to increases in tree canopy cover uncertainty. Average pixel-level uncertainties in tree canopy cover were 29.0%, 27.1% and 31.1% for the 2000, 2005 and 2010 epochs, respectively. Maps from these calibrated data improve the uncertainty associated with Landsat tree canopy cover estimates in the discontinuous forests of the circumpolar TTE.

  6. Forest patch height uncertainty from spaceborne data in the taiga-tundra ecotone

    Science.gov (United States)

    Montesano, P. M.; Sun, G.; Ranson, J.; Dubayah, R.

    2014-12-01

    In the taiga-tundra ecotone (TTE), vegetation structure change can be subtle and site-dependent, yet occur across broad scales. Recent remote sensing studies have highlighted the degree to which vegetation structure in the TTE can be characterized with spaceborne remote sensing at the plot-scale. These studies demonstrate the fundamental uncertainty of space-based local-scale vertical structure measurements that are available across broad scales and provide the opportunity to understand regional variation in detailed vegetation characteristics. Patch-scale analyses of vegetation structure provide a means to examine vertical structure and horizontal patch form, their association with landscape characteristics, and a basis for examining the variation of change in patch characteristics across sites. In this study we delineate forest patches in study sites along the TTE in northern Siberia with high resolution (0.5 - 3m) spaceborne imagery (HRSI) and attribute patches with tree cover and spectral data from Landsat 7, backscatter power from ALOS PALSAR and canopy height data based on a HRSI-derived digital surface model and ICESat-GLAS ground elevation. We examine the uncertainty of forest patch height from this suite of spaceborne medium and high resolution optical, radar, and LiDAR data. Results demonstrate the potential and limits of spaceborne estimates of patch-scale forest height whose differences are often small, biophysically relevant, and subject to variable rates of change across the broad-scale of the circumpolar TTE.

  7. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils

    Energy Technology Data Exchange (ETDEWEB)

    Lipson, David A.; Raab, Theodore K.; Parker , Melanie; Kelley , Scott T.; Brislawn, Colin J.; Jansson, Janet K.

    2015-08-01

    Summary This study investigated how microbial community structure and diversity varied with depth and topography in ice wedge polygons of wet tundra of the Arctic Coastal Plain in northern Alaska and what soil variables explain these patterns. We observed strong changes in community structure and diversity with depth, and more subtle changes between areas of high and low topography, with the largest differences apparent near the soil surface. These patterns are most strongly correlated with redox gradients (measured using the ratio of reduced Fe to total Fe in acid extracts as a proxy): conditions grew more reducing with depth and were most oxidized in shallow regions of polygon rims. Organic matter and pH also changed with depth and topography but were less effective predictors of the microbial community structure and relative abundance of specific taxa. Of all other measured variables, lactic acid concentration was the best, in combination with redox, for describing the microbial community. We conclude that redox conditions are the dominant force in shaping microbial communities in this landscape. Oxygen and other electron acceptors allowed for the greatest diversity of microbes: at depth the community was reduced to a simpler core of anaerobes,

  8. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils

    Energy Technology Data Exchange (ETDEWEB)

    Lipson, David A.; Raab, Theodore K.; Parker , Melanie; Kelley , Scott T.; Brislawn, Colin J.; Jansson, Janet K.

    2015-07-21

    This study investigated how microbial community structure and diversity varied with depth and topography in ice wedge polygons of wet tundra of the Arctic Coastal Plain in northern Alaska, and what soil variables explain these patterns. We observed strong changes in community structure and diversity with depth, and more subtle changes between areas of high and low topography, with the largest differences apparent near the soil surface. These patterns are most strongly correlated with redox gradients (measured using the ratio of reduced Fe to total Fe in acid extracts as a proxy): conditions grew more reducing with depth and were most oxidized in shallow regions of polygon rims. Organic matter and pH also changed with depth and topography, but were less effective predictors of the microbial community structure and relative abundance of specific taxa. Of all other measured variables, lactic acid concentration was the best, in combination with redox, for describing the microbial community. We conclude that redox conditions are the dominant force in shaping microbial communities in this landscape. Oxygen and other electron acceptors allowed for the greatest diversity of microbes: at depth the community was reduced to a simpler core of anaerobes, dominated by fermenters (Bacteroidetes and Firmicutes).

  9. Organic matter composition and stabilization in a polygonal tundra soil of the Lena Delta

    Directory of Open Access Journals (Sweden)

    S. Höfle

    2013-05-01

    Full Text Available This study investigated soil organic matter (OM composition of differently stabilized soil OM fractions in the active layer of a polygonal tundra soil in the Lena Delta, Russia, by applying density and particle size fractionation combined with qualitative OM analysis using solid state 13C nuclear magnetic resonance spectroscopy, and lipid analysis combined with 14C analysis. Bulk soil OM was mainly composed of plant-derived, little-decomposed material with surprisingly high and strongly increasing apparent 14C ages with active layer depth suggesting slow microbial OM transformation in cold climate. Most soil organic carbon was stored in clay and fine-silt fractions (n-alkane and n-fatty acid compounds and low alkyl/O-alkyl C ratios. Organo-mineral associations, which are suggested to be a key mechanism of OM stabilization in temperate soils, seem to be less important in the active layer as the mainly plant-derived clay- and fine-silt-sized OM was surprisingly "young", with 14C contents similar to the bulk soil values. Furthermore, these fractions contained less organic carbon compared to density fractionated OM occluded in soil aggregates – a further important OM stabilization mechanism in temperate soils restricting accessibility of microorganisms. This process seems to be important at greater active layer depth where particulate OM, occluded in soil aggregates, was "older" than free particulate OM.

  10. Site Scale Wetness Classification of Tundra Regions with C-Band SAR Satellite Data

    Science.gov (United States)

    Widhalm, Barbara; Bartsch, Annett; Siewert, Matthias Benjamin; Gugelius, Gustaf; Elberling, Bo; Leibman, Marina; Dvornikov, Yury; Khomutov, Artem

    2016-08-01

    A representative and consistent wetland map for the circumpolar region is required for a range of applications including modelling of permafrost properties as well as upscaling of carbon pools and fluxes. Synthetic Aperture Radar (SAR) data has been shown to be suitable for wetland mapping, especially C- band ASAR GM data (1-km resolution). A circumpolar wetness classification map has been introduced previously [1].With heterogeneity being a major challenge in the Arctic, higher spatial resolution products than GM are essential. In this study we therefore investigate the potential of this approach at site scale using ENVISAT ASAR WS data ( 120 m resolution). These higher resolution ASAR WS maps have been produced for study sites representing different settings throughout the Arctic and compared to high resolution land cover maps and field survey data.It can be shown that a medium resolution C-band SAR based wetness level map can be derived for tundra regions where no scattering due to tree trunks hampers the applied methodology.

  11. AMS radiocarbon dating of ancient Japanese sutras

    CERN Document Server

    Oda, H; Nakamura, T; Fujita, K

    2000-01-01

    Radiocarbon ages of ancient Japanese sutras whose historical ages were known paleographically were measured by means of accelerator mass spectrometry (AMS). Calibrated radiocarbon ages of five samples were consistent with the corresponding historical ages; the 'old wood effect' is negligible for ancient Japanese sutras. Japanese paper has been made from fresh branches grown within a few years and the interval from trimming off the branches to writing sutra on the paper is within one year. The good agreement between the calibrated radiocarbon ages and the historical ages is supported by such characteristics of Japanese paper. It is indicated in this study that Japanese sutra is a suitable sample for radiocarbon dating in the historic period because of little gap by 'old wood effect'.

  12. Paleo-Environmental Reconstruction Using Ancient DNA

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Winther

    The aim of this thesis has been to investigate and expand the methodology and applicability for using ancient DNA deposited in lake sediments to detect and determine its genetic sources for paleo-environmental reconstruction. The aim was furthermore to put this tool into an applicable context...... solving other scientifically interesting questions. Still in its childhood, ancient environmental DNA research has a large potential for still developing, improving and discovering its possibilities and limitations in different environments and for identifying various organisms, both in terms...... of the sampling methods and strategies (taphonomic processes), the more fundamental molecular methodologies (e.g. extraction and sequencing) and eventually the bioinformatic processing. In the enclosed studies we have tried to take some principal steps towards improving this, firstly by reviewing previous...

  13. Human evolution: a tale from ancient genomes.

    Science.gov (United States)

    Llamas, Bastien; Willerslev, Eske; Orlando, Ludovic

    2017-02-05

    The field of human ancient DNA (aDNA) has moved from mitochondrial sequencing that suffered from contamination and provided limited biological insights, to become a fully genomic discipline that is changing our conception of human history. Recent successes include the sequencing of extinct hominins, and true population genomic studies of Bronze Age populations. Among the emerging areas of aDNA research, the analysis of past epigenomes is set to provide more new insights into human adaptation and disease susceptibility through time. Starting as a mere curiosity, ancient human genetics has become a major player in the understanding of our evolutionary history.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.

  14. Lipids of aquatic sediments, recent and ancient

    Science.gov (United States)

    Eglinton, G.; Hajibrahim, S. K.; Maxwell, J. R.; Quirke, J. M. E.; Shaw, G. J.; Volkman, J. K.; Wardroper, A. M. K.

    1979-01-01

    Computerized gas chromatography-mass spectrometry (GC-MS) is now an essential tool in the analysis of the complex mixtures of lipids (geolipids) encountered in aquatic sediments, both 'recent' (less than 1 million years old) and ancient. The application of MS, and particularly GC-MS, has been instrumental in the rapid development of organic geochemistry and environmental organic chemistry in recent years. The techniques used have resulted in the identification of numerous compounds of a variety of types in sediments. Most attention has been concentrated on molecules of limited size, mainly below 500 molecular mass, and of limited functionality, for examples, hydrocarbons, fatty acids and alcohols. Examples from recent studies (at Bristol) of contemporary, 'recent' and ancient sediments are presented and discussed.

  15. Putative ancient microorganisms from amber nuggets.

    Science.gov (United States)

    Veiga-Crespo, Patricia; Blasco, Lucía; Poza, Margarita; Villa, Tomás G

    2007-06-01

    Evolutionary microbiology studies based on the isolation of ancient DNA and/or microbial samples are scarce due to the difficulty of finding well preserved biological specimens. However, amber is a fossil resin with natural preserving properties for microbial cells and DNA. The visualization by transmission electron microscopy of different microorganism-like specimens found in amber nuggets from both the Miocene and the Cretaceous periods was accompanied by studies of ancient DNA obtained from the nuggets. After the design of specific primers based on the present sequences of both genes in Saccharomyces cerevisiae, the ancestral AGP2 sequence from the Miocene, as well as the 18S rRNA from the Cretaceous, were amplified.

  16. Rangifer and man: An ancient relationship

    Directory of Open Access Journals (Sweden)

    Bryan Gordon

    2003-04-01

    Full Text Available A long-term relationship between Rangifer and humans is documented in three case studies: the Canadian Barrenlands (8000 years ago to Historic period, Ice-Age France (11 000-19 000 years ago and Mesolithic Russia (7000¬10 000 years ago. Ancient human and herd migration occurred in all areas, based upon Rangifer remains and seasonal variations in tools along reconstructed migration routes, with few if any hunting camps outside the routes. An April peak of ancient human births is inferred from the historic record where we see births occurring nine months after peak nutritional states in herds and people. The origin of reindeer domestication and breeding in Eurasia is discussed.

  17. Segmentation of Ancient Telugu Text Documents

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao A.V

    2012-07-01

    Full Text Available OCR of ancient document images remains a challenging task till date. Scanning process itself introduces deformation of document images. Cleaning process of these document images will result in information loss. Segmentation contributes an invariance process in OCR. Complex scripts, like derivatives of Brahmi, encounter many problems in the segmentation process. Segmentation of meaningful units, (instead of isolated patterns, revealed interesting trends. A segmentation technique for the ancient Telugu document image into meaningful units is proposed. The topological features of the meaningful units within the script line are adopted as a basis, while segmenting the text line. Horizontal profile pattern is convolved with Gaussian kernel. The statistical properties of meaningful units are explored by extensively analyzing the geometrical patterns of the meaningful unit. The efficiency of the proposed algorithm involving segmentation process is found to be 73.5% for the case of uncleaned document images.

  18. Ancient Jing De Zhen Dong He River Basin Kiln and Farmland Land-use Change Based on Cellular Automata and Cultural Algorithm Model

    Directory of Open Access Journals (Sweden)

    Liu Tao

    2013-09-01

    Full Text Available The aim of this study is to understand how farmland has transformed kiln in ancient Jing De Zhen Dong He River Basin; we created ancient virtual maps of study area and conducted a series of spatial analyses of the land-use pattern from the Yuan Dynasty to the Ming Dynasty. The results of the spatial analysis show that kiln can evolve from farmland, shrub, idle land etc. To simulate land-use change we developed a novel cellular automata model. Model parameters and neighborhood rules were obtained with the cellular automata model melt modified cultural algorithm. Virtual land-use maps from the Yuan Dynasty to the Ming Dynasty were used to implement the model with a time step of one year. Model performance was evaluated using Moran’s I index estimation for selected landscape pattern indices. The optimized parameter set using Particle Swarm Optimization poorly simulated land-use change as compared to the optimized parameter set using Cultural Algorithm. In summary, our results proved that the model is also effective and feasible in simulating farmland and kiln land-use evolution in ancient times when Geographic Information and System information were lacking.

  19. The ancient Greeks present: Rational Trigonometry

    CERN Document Server

    Wildberger, N J

    2008-01-01

    Pythagoras' theorem, the area of a triangle as one half the base times the height, and Heron's formula are amongst the most important and useful results of ancient Greek geometry. Here we look at all three in a new and improved light, using quadrance not distance. This leads to a simpler and more elegant trigonometry, in which angle is replaced by spread, and which extends to arbitrary fields and more general quadratic forms.

  20. Computed tomography of ancient Egyptian mummies.

    Science.gov (United States)

    Harwood-Nash, D C

    1979-12-01

    This first report of the application of computed tomography (CT) to the study of ancient mummies, the desiccated brain of a boy and the body of a young woman within her cartonnage, shows that CT is uniquely suitable for the study of such antiquities, a study that does not necessitate destruction of the mummy or its cartonnage. Exquisite images result that are of great paleoanatomical, paleopathological, and archeological significance.

  1. Volatile and Isotopic Imprints of Ancient Mars

    Science.gov (United States)

    Mahaffy, Paul R.; Conrad, Pamela G.

    2015-01-01

    The science investigations enabled by Curiosity rover's instruments focus on identifying and exploring the habitability of the Martian environment. Measurements of noble gases, organic and inorganic compounds, and the isotopes of light elements permit the study of the physical and chemical processes that have transformed Mars throughout its history. Samples of the atmosphere, volatiles released from soils, and rocks from the floor of Gale Crater have provided a wealth of new data and a window into conditions on ancient Mars.

  2. Chemistry Progress and Civilization in Ancient China

    Institute of Scientific and Technical Information of China (English)

    JIANG Yu-Qian; RUAN Shu-Xiang; TANG Shan; SHUAI Zhi-Gang

    2011-01-01

    @@ During the 6,000 years of Chinese civilization, chemistry has played an essential role.The bronzed chime bells of the Warring States Period (475-221 BC) unearthed in Hubei Province shows not only the excellence in musical instruments in ancient China, but also the technological advances in metallurgy.Chinese alchemy was not originated from the quest to turn common metals to gold, instead, it was for searching medicines for longevity of human beings, mostly practised by Taoists.

  3. Ancient News: HMGBs are Universal Sentinels

    Institute of Scientific and Technical Information of China (English)

    Marco E. Bianchi; Barbara Celona

    2010-01-01

    @@ Yanai et al. (2009, Nature 462, 99-103) have shown that high mobility group boxs (HMGBs) are universal sensors of viral nucleic acids, and thus of cell infection. This appears to be an evolutionary ancient mechanism of virus detection, and possibly might be a facet of a more general propensity of HMGBs to act as integrators of signals that pertain to peace and stress, life and death.

  4. Experimental Evidence that Fungi are Dominant Microbes in Carbon Content and Growth Response to Added Soluble Organic Carbon in Moss-rich Tundra Soil.

    Science.gov (United States)

    Anderson, O Roger; Lee, Jee Min; McGuire, Krista

    2016-05-01

    Global warming significantly affects Arctic tundra, including permafrost thaw and soluble C release that may differentially affect tundra microbial growth. Using laboratory experiments, we report some of the first evidence for the effects of soluble glucose-C enrichment on tundra soil prokaryotes (bacteria and archaea) and fungi, with comparisons to microbial eukaryotes. Fungal increase in C-biomass was equivalent to 10% (w/w) of the added glucose-C, and for prokaryote biomass 2% (w/w), the latter comparable to prior published results. The C-gain after 14 d was 1.3 mg/g soil for fungi, and ~200 μg/g for prokaryotes.

  5. Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). I. The genome homology of tundra vole, field vole, mouse and golden hamster revealed by comparative chromosome painting.

    Science.gov (United States)

    Sitnikova, Natalia A; Romanenko, Svetlana A; O'Brien, Patricia C M; Perelman, Polina L; Fu, Beiyuan; Rubtsova, Nadezhda V; Serdukova, Natalya A; Golenishchev, Feodor N; Trifonov, Vladimir A; Ferguson-Smith, Malcolm A; Yang, Fengtang; Graphodatsky, Alexander S

    2007-01-01

    Cross-species chromosome painting has become the mainstay of comparative cytogenetic and chromosome evolution studies. Here we have made a set of chromosomal painting probes for the field vole (Microtus agrestis) by DOP-PCR amplification of flow-sorted chromosomes. Together with painting probes of golden hamster (Mesocricetus auratus) and mouse (Mus musculus), the field vole probes have been hybridized onto the metaphases of the tundra vole (Microtus oeconomus). A comparative chromosome map between these two voles, golden hamster and mouse has been established based on the results of cross-species chromosome painting and G-banding comparisons. The sets of paints from the field vole, golden hamster and mouse identified a total of 27, 40 and 47 homologous autosomal regions, respectively, in the genome of tundra vole; 16, 41 and 51 fusion/fission rearrangements differentiate the karyotype of the tundra vole from the karyotypes of the field vole, golden hamster and mouse, respectively.

  6. Assessing the spatial variability in peak season CO2 exchange characteristics across the Arctic tundra using a light response curve parameterization

    Directory of Open Access Journals (Sweden)

    H. N. Mbufong

    2014-05-01

    Full Text Available This paper aims to assess the functional and spatial variability in the response of CO2 exchange to irradiance across the Arctic tundra during peak season using light response curve (LRC parameters. This investigation allows us to better understand the future response of Arctic tundra under climatic change. Data was collected using the micrometeorological eddy covariance technique from 12 circumpolar Arctic tundra sites, in the range of 64–74° N. The LRCs were generated for 14 days with peak net ecosystem exchange (NEE using an NEE -irradiance model. Parameters from LRCs represent site specific traits and characteristics describing: (a NEE at light saturation (Fcsat, (b dark respiration (Rd, (c light use efficiency (α, (d NEE when light is at 1000 μmol m−2 s−1 (Fc1000, (e potential photosynthesis at light saturation (Psat and (f the light compensation point (LCP. Parameterization of LRCs was successful in predicting CO2 flux dynamics across the Arctic tundra. Yet we did not find any trends in LRC parameters across the whole Arctic tundra but there were indications for temperature and latitudinal differences within sub-regions like Russia and Greenland. Together, LAI and July temperature had a high explanatory power of the variance in assimilation parameters (Fcsat, Fc1000 and Psat, thus illustrating the potential for upscaling CO2 exchange for the whole Arctic tundra. Dark respiration was more variable and less correlated to environmental drivers than was assimilation parameters. Thus, indicating the inherent need to include other parameters such as nutrient availability, substrate quantity and quality in flux monitoring activities.

  7. The origin of spheroidal patterns of weathering in the Pados-Tundra mafic-ultramafic complex, Kola Peninsula, Russia

    Directory of Open Access Journals (Sweden)

    A.Y. Barkov

    2016-12-01

    Full Text Available We document a new and unusual occurrence of patterns of protruding spheroidal weathering developed in a dunitic rock of the Pados-Tundra mafic-ultramafic complex of Early Proterozoic age, Kola Peninsula, Russia. It provides an example similar to that reported recently from a mineralized harzburgite in the Monchepluton layered complex in the same region. These patterns are genetically different from common results of “normal spheroidal weathering” sensu stricto. The spheroidally weathered dunite at Pados-Tundra consists of a high-Fo olivine, Ol (Fo 87. 5, which is, in fact, not altered. Accessory grains of aluminous chromite are present. Relief spheroids (1.5 to 4 cm in diameter; up to ~5 vol. % are distributed sparsely and heterogeneously. They are hosted by the olivine matrix and composed of talc, Tlc, and tremolite, Tr, (Mg# = 95-96 formed presumably at the expense of orthopyroxene, Opx, (i.e., pre-existing oikocrysts during a deuteric (autometasomatic alteration. In contrast, oikocrystic Opx (En 86.0 is quite fresh in related spheroids at Monchepluton, in which only minor deuteric alteration (Tlc + Tr are observed. We infer that (1 the ball-shaped morphology of the weathered surface is a reflection of the presence of oikocrysts of Opx, which crystallized after Ol at the magmatic stage; they were entirely replaced by the deuterically induced Tlc + Tr at Pados-Tundra. (2 Differential rates of weathering are implied for rock-forming minerals in these ultramafic rocks, with a higher resistance of Opx vs. Fo-rich Ol, and Tlc + Tr vs. Fo-rich Ol. (3 The ball-like shape of the large spheroids, produced by magmatic processes, may likely represent an additional factor of their higher stability to weathering in the superficial environment. Similar patterns can be expected in other mafic-ultramafic complexes, especially in layered intrusions.

  8. Response of Tundra Ecosystems to Elevated Atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, Walter C.

    1990-09-05

    OAK B188 Response of Tundra Ecosystems to Elevated Atmospheric CO{sub 2}. Atmospheric CO{sub 2} is expected to double by the end of the next century. Global mean increases in surface air temperature of 1.5-4.5 C are anticipated with larger increases towards the poles predicted. Changes in CO{sub 2} levels and temperature could have major impacts on ecosystem functioning, including primary productivity, species composition, plant-animal interactions, and carbon storage. Until recently, there has been little direct information on the impact of changes in CO{sub 2} and temperature on native ecosystems. The study described here was undertaken to evaluate the effects of a 50 and 100% increase in atmospheric CO{sub 2}, and a 100% increase in atmospheric CO{sub 2} coupled with a 4 C summer air temperature rise on the structure and function of an arctic tussock tundra ecosystem. The arctic contains large stores of carbon as soil organic matter, much frozen in permafrost and currently not reactive or available for oxidation and release into the atmosphere. About 10-27% of the world's terrestrial carbon occurs in arctic and boreal regions, and carbon is accumulating in these regions at the rate of 0.19 GT y{sup -1}. Mean temperature increases of 11 C and summer temperature increases of 4 C have been suggested. Mean July temperatures on the arctic coastal plain and arctic foothills regions are 4-12 C, and mean annual temperatures are -7 to -13 C (Haugen, 1982). The projected temperature increases represent a substantial elevation above current temperatures which will have major impacts on physical processes such as permafrost development and development of the active layer, and on biological and ecosystem processes such as primary productivity, carbon storage, and species composition. Extreme nutrient and temperature limitation of this ecosystem raised questions of the responsiveness of arctic systems to elevated CO{sub 2}. Complex ecosystem interactions with the effects

  9. Potential changes in arctic seasonality and plant communities may impact tundra soil chemistry and carbon dynamics

    Science.gov (United States)

    Crow, S.; Cooper, E.; Beilman, D.; Filley, T.; Reimer, P.

    2009-04-01

    On the Svalbard archipelago, as in other high Arctic regions, tundra soil organic matter (SOM) is primarily plant detritus that is largely stabilized by cold, moist conditions and low nitrogen availability. However, the resistance of SOM to decomposition is also influenced by the quality of organic matter inputs to soil. Different plant communities are likely to give different qualities to SOM, especially where lignin-rich woody species encroach into otherwise graminoid and bryophyte-dominated regions. Arctic woody plant species are particularly sensitive to changes in temperature, snow cover, and growing season length. In a changing environment, litter chemistry may emerge as an important control on tundra SOM stabilization. In summer 2007, we collected plant material and soil from the highly-organic upper horizon (appx. 0-5 cm) and the mineral-dominated lower horizon (appx. 5-10cm) from four locations in the southwest facing valleys of Svalbard, Norway. The central goal of the ongoing experiment is to determine whether a greater abundance of woody plants could provide a negative feedback to warming impacts on the carbon (C) balance of Arctic soils. Towards this, we used a combination of plant biopolymer analyses (cupric oxide oxidation and quantification of lignin-derived phenols and cutin/suberin-derived aliphatics) and radiocarbon-based estimates of C longevity and mean residence time (MRT) to characterize potential links between plant type and soil C pools. We found that graminoid species regenerate above- and belowground tissue each year, whereas woody species (Cassiope tetragona and Dryas octopetala) regenerated only leaves yearly. In contrast, C within live branches and roots persisted for 15-18 yr on average. Leaves from woody species remained nearly intact in surface litter for up to 20 yr without being incorporated into the upper soil horizon. Leaves from both graminoid and woody species were concentrated in lignin-derived phenols relative to roots, but

  10. Seedling responses to water pulses in shrubs with contrasting histories of grassland encroachment.

    Science.gov (United States)

    Woods, Steven R; Archer, Steven R; Schwinning, Susan

    2014-01-01

    Woody plant encroachment into grasslands has occurred worldwide, but it is unclear why some tree and shrub species have been markedly more successful than others. For example, Prosopis velutina has proliferated in many grasslands of the Sonoran Desert in North America over the past century, while other shrub species with similar growth form and life history, such as Acacia greggii, have not. We conducted a glasshouse experiment to assess whether differences in early seedling development could help explain why one species and not the other came to dominate many Sonoran Desert grasslands. We established eight watering treatments mimicking a range of natural precipitation patterns and harvested seedlings 16 or 17 days after germination. A. greggii had nearly 7 times more seed mass than P. velutina, but P. velutina emerged earlier (by 3.0±0.3 d) and grew faster (by 8.7±0.5 mg d⁻¹). Shoot mass at harvest was higher in A. greggii (99±6 mg seedling⁻¹) than in P. velutina (74±2 mg seedling⁻¹), but there was no significant difference in root mass (54±3 and 49±2 mg seedling⁻¹, respectively). Taproot elongation was differentially sensitive to water supply: under the highest initial watering pulse, taproots were 52±19 mm longer in P. velutina than in A. greggii. Enhanced taproot elongation under favorable rainfall conditions could give nascent P. velutina seedlings growth and survivorship advantages by helping reduce competition with grasses and maintain contact with soil water during drought. Conversely, A. greggii's greater investment in mass per seed appeared to provide little return in early seedling growth. We suggest that such differences in recruitment traits and their sensitivities to environmental conditions may help explain ecological differences between species that are highly similar as adults and help identify pivotal drivers of shrub encroachment into grasslands.

  11. The hydraulic architecture of Juniperus communis L. ssp. communis: shrubs and trees compared.

    Science.gov (United States)

    Beikircher, Barbara; Mayr, Stefan

    2008-11-01

    Juniperus communis ssp. communis can grow like a shrub or it can develop a tree-like habit. In this study, the hydraulic architecture of these contrasting growth forms was compared. We analysed the hydraulic efficiency (leaf-specific conductivity, k(l); specific conductivity, k(s); Huber value, HV) and the vulnerability to cavitation (the water potential corresponding to a 50% loss of conductivity, Psi(50)), as well as anatomical parameters [mean tracheid diameter, d; mean hydraulic diameter, d(h); cell wall reinforcement (t/b)(h)(2)] of shrub shoots, tree stems and tree branches. Shrub shoots were similar to tree branches (especially to lower branches) in growth form and conductivity (k(l) = 1.93 +/- 0.11 m(2) s(-1) MPa(-1) 10(-7), k(s) = 5.71 +/- 0.19 m(2) s(-1) MPa(-1) 10(-4)), but were similar to tree stems in their vulnerability to cavitation (Psi(50) = -5.81 +/- 0.08 MPa). Tree stems showed extraordinarily high k(l) and k(s) values, and HV increased from the base up. Stem xylem was more vulnerable to cavitation than branch xylem, where Psi(50) increased from lower (Psi(50) = -6.44 +/- 0.19 MPa) to upper branches (Psi(50) = -5.98 +/- 0.13 MPa). Conduit diameters were correlated with k(l) and k(s). Data indicate that differences in hydraulic architecture correspond to changes in growth form. In some aspects, the xylem hydraulics of tree-like Juniperus communis differs from that of other coniferous tree species.

  12. Analysis of Postfire Vegetation Dynamics of Mediterranean Shrub Species Based on Terrestrial and NDVI Data

    Science.gov (United States)

    Hernández-Clemente, Rocío; Navarro Cerrillo, R. M.; Hernández-Bermejo, J. E.; Escuin Royo, S.; Kasimis, N. A.

    2009-05-01

    The present study offers an analysis of regeneration patterns and diversity dynamics after a wildfire, which occurred in 1993 and affected about 7000 ha in southern Spain. The aim of the work was to analyze the rule in the succession of shrub species after fire, relating it to the changes registered in the Normalized Difference Vegetation Index (NDVI). Fractional vegetation cover was recorded from permanent plots in 2000 and 2005. NDVI data related to each time were obtained from Landsat images. Both data sets, from fieldwork and remote sensing, were analyzed through statistical and quantitative analyses and then correlated. Results have permitted the description of the change in plant cover and species composition on a global and plot scale. It can be affirmed that, from the seventh to the twelfth year after the fire, the floristic composition within the burned area remained unchanged at a global level. However, on a smaller scale (plot level), the major shrub species, Ulex parviflorus, Rosmarinus officinalis, and Cistus clusii, underwent significant changes. The regeneration dynamics established by these species conditioned plant species composition and, consequently, diversity indexes such as Shannon (H) and Simpson (D). The changes recorded in the NDVI values corresponding to the surveyed plots were highly correlated with those found in the regrowth of the main species. Areas dominated by U. parviflorus in a senile phase were related to a decrease in NDVI values and an increase in the number of species. This result describes the successional dynamics; the dryness of the main colonizer shrub species is allowing the regrowth and re-establishment of other species. Within the study area, NDVI shows sensitivity to postfire plant cover changes and indirectly expresses the diversity dynamics.

  13. Seedling establishment in a masting desert shrub parallels the pattern for forest trees

    Science.gov (United States)

    Meyer, Susan E.; Pendleton, Burton K.

    2015-05-01

    The masting phenomenon along with its accompanying suite of seedling adaptive traits has been well studied in forest trees but has rarely been examined in desert shrubs. Blackbrush (Coleogyne ramosissima) is a regionally dominant North American desert shrub whose seeds are produced in mast events and scatter-hoarded by rodents. We followed the fate of seedlings in intact stands vs. small-scale disturbances at four contrasting sites for nine growing seasons following emergence after a mast year. The primary cause of first-year mortality was post-emergence cache excavation and seedling predation, with contrasting impacts at sites with different heteromyid rodent seed predators. Long-term establishment patterns were strongly affected by rodent activity in the weeks following emergence. Survivorship curves generally showed decreased mortality risk with age but differed among sites even after the first year. There were no detectable effects of inter-annual precipitation variability or site climatic differences on survival. Intraspecific competition from conspecific adults had strong impacts on survival and growth, both of which were higher on small-scale disturbances, but similar in openings and under shrub crowns in intact stands. This suggests that adult plants preempted soil resources in the interspaces. Aside from effects on seedling predation, there was little evidence for facilitation or interference beneath adult plant crowns. Plants in intact stands were still small and clearly juvenile after nine years, showing that blackbrush forms cohorts of suppressed plants similar to the seedling banks of closed forests. Seedling banks function in the absence of a persistent seed bank in replacement after adult plant death (gap formation), which is temporally uncoupled from masting and associated recruitment events. This study demonstrates that the seedling establishment syndrome associated with masting has evolved in desert shrublands as well as in forests.

  14. Seedling responses to water pulses in shrubs with contrasting histories of grassland encroachment.

    Directory of Open Access Journals (Sweden)

    Steven R Woods

    Full Text Available Woody plant encroachment into grasslands has occurred worldwide, but it is unclear why some tree and shrub species have been markedly more successful than others. For example, Prosopis velutina has proliferated in many grasslands of the Sonoran Desert in North America over the past century, while other shrub species with similar growth form and life history, such as Acacia greggii, have not. We conducted a glasshouse experiment to assess whether differences in early seedling development could help explain why one species and not the other came to dominate many Sonoran Desert grasslands. We established eight watering treatments mimicking a range of natural precipitation patterns and harvested seedlings 16 or 17 days after germination. A. greggii had nearly 7 times more seed mass than P. velutina, but P. velutina emerged earlier (by 3.0±0.3 d and grew faster (by 8.7±0.5 mg d⁻¹. Shoot mass at harvest was higher in A. greggii (99±6 mg seedling⁻¹ than in P. velutina (74±2 mg seedling⁻¹, but there was no significant difference in root mass (54±3 and 49±2 mg seedling⁻¹, respectively. Taproot elongation was differentially sensitive to water supply: under the highest initial watering pulse, taproots were 52±19 mm longer in P. velutina than in A. greggii. Enhanced taproot elongation under favorable rainfall conditions could give nascent P. velutina seedlings growth and survivorship advantages by helping reduce competition with grasses and maintain contact with soil water during drought. Conversely, A. greggii's greater investment in mass per seed appeared to provide little return in early seedling growth. We suggest that such differences in recruitment traits and their sensitivities to environmental conditions may help explain ecological differences between species that are highly similar as adults and help identify pivotal drivers of shrub encroachment into grasslands.

  15. Positive Feedback between Shrub Encroachment and Nocturnal Air Temperature over the Northern Chihuahuan Desert

    Science.gov (United States)

    He, Y.; D'Odorico, P.; de Wekker, S.; Fuentes, J. D.; Litvak, M. E.

    2009-12-01

    Many arid grasslands around the world are affected by the encroachment of woody plants. A number of drivers have been invoked to explain these changes in plant community composition, including climate change, increase in atmospheric CO2 concentrations, nitrogen deposition, or internal feedbacks involving soil erosion or fire dynamics. An overlooked aspect of this shift in vegetation cover is its possible feedback on microclimate conditions. In this study we investigate how in the northern Chihuahuan Desert these changes in vegetation composition and structure influence near surface climate conditions and what feedbacks these conditions have on vegetation dynamics. To this end, the impact of shrub encroachment on the thermal structure of the near surface boundary layer and on the surface energy budget was analyzed using concurrent micrometeorological observations at two adjacent sites dominated respectively by Larrea tridentata shrubs and native grass species at the Sevilleta Wildlife Refuge (northern Chihuahuan Desert, NM). The nighttime air temperature was found to be substantially higher (> 2 degrees Celsius) in the shrubland than in the grassland, especially during calm winter nights. Low temperatures are considered to be the limiting factor of the northward migration of Larrea tridentata. Thus, a positive feedback mechanism seems to exist, where shrub encroachment leads to warmer near-ground nighttime conditions, particularly during winter, which in turn favor woody species encroachment. Our analysis shows that these differences in surface air temperature are accompanied by differences in longwave radiation, and surface sensible and ground heat fluxes. These differences in surface fluxes are interpreted as an effect of the larger fraction of bare soil that typically exists in the shrubland sites. Therefore, the ground surface remains less insulated and more energy flows into the ground at the shrubland site than in the grassland during daytime. This energy is

  16. Rough-legged buzzards, Arctic foxes and red foxes in a tundra ecosystem without rodents.

    Directory of Open Access Journals (Sweden)

    Ivan Pokrovsky

    Full Text Available Small rodents with multi-annual population cycles strongly influence the dynamics of food webs, and in particular predator-prey interactions, across most of the tundra biome. Rodents are however absent from some arctic islands, and studies on performance of arctic predators under such circumstances may be very instructive since rodent cycles have been predicted to collapse in a warming Arctic. Here we document for the first time how three normally rodent-dependent predator species-rough-legged buzzard, arctic fox and red fox - perform in a low-arctic ecosystem with no rodents. During six years (in 2006-2008 and 2011-2013 we studied diet and breeding performance of these predators in the rodent-free Kolguev Island in Arctic Russia. The rough-legged buzzards, previously known to be a small rodent specialist, have only during the last two decades become established on Kolguev Island. The buzzards successfully breed on the island at stable low density, but with high productivity based on goslings and willow ptarmigan as their main prey - altogether representing a novel ecological situation for this species. Breeding density of arctic fox varied from year to year, but with stable productivity based on mainly geese as prey. The density dynamic of the arctic fox appeared to be correlated with the date of spring arrival of the geese. Red foxes breed regularly on the island but in very low numbers that appear to have been unchanged over a long period - a situation that resemble what has been recently documented from Arctic America. Our study suggests that the three predators found breeding on Kolguev Island possess capacities for shifting to changing circumstances in low-arctic ecosystem as long as other small - medium sized terrestrial herbivores are present in good numbers.

  17. Inter-annual Variability in Tundra Phenology Captured with Digital Photography

    Science.gov (United States)

    Melendez, M.; Vargas, S. A.; Tweedie, C. E.

    2012-12-01

    The need to improve multi-scale phenological monitoring of arctic terrestrial ecosystems has been a persistent research challenge. Although there has been a range of advances in remote sensing capacities over the past decade, these present costly, and sometimes logistically challenging and technically demanding solutions for arctic terrestrial ecosystems. In this poster and undergraduate research project, we demonstrate how seasonal and inter-annual variability in landscape phenology can be derived for multiple tundra ecosystems using a low-cost and low-tech kite aerial photography (KAP) system that has been developed as a contribution to the US Arctic Observing Network. Seasonal landscape phenology was observed over the Networked Info-Mechanical Systems (NIMS) grids (2 x 50 meters) located in Barrow and Atqasuk, Alaska using imagery acquired with KAP and analyzed for a range of greenness indices. Preliminary results showed that the 2G-RB greenness index correlated the best with NDVI values calculated from ground based hyperspectral reflectance measurements. 2012 had the highest 2G-RB greenness index values for both Barrow and Atqasuk sites, which correlated well with NDVI values acquired from ground-based hyperspectral reflectance measurements. Wet vegetation types showed the most interannual variability at the Atqasuk site based on the 2G-RB greenness index while in Barrow the moist vegetation types showed the most interannual variability. These results show that vegetation indices similar to those acquired from hyperspectral remote sensing platforms can be derived using low-cost and low-tech techniques. Further analysis using these same techniques is required in order to link relatively small scale vegetation dynamics measured with KAP with those documented at large scales using satellite imagery.

  18. Recent Declines in Warming and Vegetation Greening Trends over Pan-Arctic Tundra

    Directory of Open Access Journals (Sweden)

    Igor V. Polyakov

    2013-08-01

    Full Text Available Vegetation productivity trends for the Arctic tundra are updated for the 1982–2011 period and examined in the context of land surface temperatures and coastal sea ice. Understanding mechanistic links between vegetation and climate parameters contributes to model advancements that are necessary for improving climate projections. This study employs remote sensing data: Global Inventory Modeling and Mapping Studies (GIMMS Maximum Normalized Difference Vegetation Index (MaxNDVI, Special Sensor Microwave Imager (SSM/I sea-ice concentrations, and Advanced Very High Resolution Radiometer (AVHRR radiometric surface temperatures. Spring sea ice is declining everywhere except in the Bering Sea, while summer open water area is increasing throughout the Arctic. Summer Warmth Index (SWI—sum of degree months above freezing trends from 1982 to 2011 are positive around Beringia but are negative over Eurasia from the Barents to the Laptev Seas and in parts of northern Canada. Eastern North America continues to show increased summer warmth and a corresponding steady increase in MaxNDVI. Positive MaxNDVI trends from 1982 to 2011 are generally weaker compared to trends from 1982–2008. So to better understand the changing trends, break points in the time series were quantified using the Breakfit algorithm. The most notable break points identify declines in SWI since 2003 in Eurasia and 1998 in Western North America. The Time Integrated NDVI (TI-NDVI, sum of the biweekly growing season values of MaxNDVI has declined since 2005 in Eurasia, consistent with SWI declines. Summer (June–August sea level pressure (slp averages from 1999–2011 were compared to those from 1982–1998 to reveal higher slp over Greenland and the western Arctic and generally lower pressure over the continental Arctic in the recent period. This suggests that the large-scale circulation is likely a key contributor to the cooler temperatures over Eurasia through increased summer cloud

  19. Interference in the tundra predator guild studied using local ecological knowledge.

    Science.gov (United States)

    Ehrich, Dorothee; Strømeng, Marita A; Killengreen, Siw T

    2016-04-01

    The decline or recolonization of apex predators such as wolves and lynx, often driven by management decisions, and the expansion of smaller generalist predators such as red foxes, can have important ecosystem impacts. The mesopredator release hypothesis proposes that apex predators control medium-sized predator populations through competition and/or intraguild predation. The decline of apex predators thus leads to an increase in mesopredators, possibly with a negative impact on prey populations. Information about the abundance of mammalian tundra predators, wolf (Canis lupus), wolverine (Gulo gulo), lynx (Lynx lynx), red fox (Vulpes vulpes) and arctic fox (Vulpes lagopus) was collected from local active outdoors people during semi-structured interviews in 14 low arctic or sub-arctic settlements in western Eurasia. The perceived abundance of red fox decreased with higher wolf abundance and in more arctic areas, but the negative effect of wolves decreased in more arctic and therefore less productive ecosystems. The perceived abundance of arctic fox increased towards the arctic and in areas with colder winters. Although there was a negative correlation between the two fox species, red fox was not included in the model for perceived arctic fox abundance, which received most support. Our results support the mesopredator release hypothesis regarding the expansion of red foxes in subarctic areas and indicate that top-down control by apex predators is weaker in less productive and more arctic ecosystems. We showed that local ecological knowledge is a valuable source of information about large-scale processes, which are difficult to study through direct biological investigations.

  20. Permafrost collapse alters soil carbon stocks, respiration, CH4 , and N2O in upland tundra.

    Science.gov (United States)

    Abbott, Benjamin W; Jones, Jeremy B

    2015-12-01

    Release of greenhouse gases from thawing permafrost is potentially the largest terrestrial feedback to climate change and one of the most likely to occur; however, estimates of its strength vary by a factor of thirty. Some of this uncertainty stems from abrupt thaw processes known as thermokarst (permafrost collapse due to ground ice melt), which alter controls on carbon and nitrogen cycling and expose organic matter from meters below the surface. Thermokarst may affect 20-50% of tundra uplands by the end of the century; however, little is known about the effect of different thermokarst morphologies on carbon and nitrogen release. We measured soil organic matter displacement, ecosystem respiration, and soil gas concentrations at 26 upland thermokarst features on the North Slope of Alaska. Features included the three most common upland thermokarst morphologies: active-layer detachment slides, thermo-erosion gullies, and retrogressive thaw slumps. We found that thermokarst morphology interacted with landscape parameters to determine both the initial displacement of organic matter and subsequent carbon and nitrogen cycling. The large proportion of ecosystem carbon exported off-site by slumps and slides resulted in decreased ecosystem respiration postfailure, while gullies removed a smaller portion of ecosystem carbon but strongly increased respiration and N2 O concentration. Elevated N2 O in gully soils persisted through most of the growing season, indicating sustained nitrification and denitrification in disturbed soils, representing a potential noncarbon permafrost climate feedback. While upland thermokarst formation did not substantially alter redox conditions within features, it redistributed organic matter into both oxic and anoxic environments. Across morphologies, residual organic matter cover, and predisturbance respiration explained 83% of the variation in respiration response. Consistent differences between upland thermokarst types may contribute to the

  1. Response of tundra ecosystems to elevated atmospheric carbon dioxide. [Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, W.C.; Grulke, N.E.

    1988-12-31

    Our past research shows that arctic tussock tundra responds to elevated atmospheric CO{sub 2} with marked increases in net ecosystem carbon flux and photosynthetic rates. However, at ambient temperatures and nutrient availabilities, homeostatic adjustments result in net ecosystem flux rates dropping to those found a contemporary CO{sub 2} levels within three years. Evidence for ecosystem-level acclimation in the first season of elevated CO{sub 2} exposure was found in 1987. Photosynthetic rates of Eriophorum vaginatum, the dominant species, adjusts to elevated CO{sub 2} within three weeks. Past research also indicates other changes potentially important to ecosystem structure and function. Elevated CO{sub 2} treatment apparently delays senescence and increases the period of positive photosynthetic activity. Recent results from the 1987 field season verify the results obtained in the 1983--1986 field seasons: Elevated CO{sub 2} resulted in increased ecosystem-level flux rates. Regressions fitted to the seasonal flux rates indicate an apparent 10 d extension of positive CO{sub 2} uptake reflecting a delay of the onset of plant dormancy. This delay in senescence could increase the frost sensitivity of the system. Major end points proposed for this research include the effects of elevated CO{sub 2} and the interaction of elevated atmospheric CO{sub 2} with elevated soil temperature and increased nutrient availability on: (1) Net ecosystem CO{sub 2} flux; (2) Net photosynthetic rates; (3) Patterns and resource controls on homeostatic adjustment in the above processes to elevated CO{sub 2}; (4) Plant-nutrient status, litter quality, and forage quality; (5) Soil-nutrient status; (6) Plant-growth pattern and shoot demography.

  2. Organic matter composition and stabilization in a polygonal tundra soil of the Lena-Delta

    Directory of Open Access Journals (Sweden)

    S. Höfle

    2012-09-01

    Full Text Available This study investigated soil organic matter (OM composition of differently stabilized soil OM fractions in the active layer of a polygonal tundra soil in the Lena-Delta, Russia by applying density and particle-size fractionation combined with qualitative OM analysis using solid state 13C nuclear magnetic resonance spectroscopy, and lipid analysis combined with 14C analysis. Bulk soil OM was mainly composed of plant-derived, little decomposed material with surprisingly low and strongly increasing apparent 14C ages with active layer depth suggesting slow microbial OM transformation in cold climate. Most soil organic carbon was stored in clay and fine silt fractions (< 6.3 μm, which were composed of little decomposed plant material indicated by the dominance of long n-alkane and n-fatty acid compounds and low alkyl/O-alkyl C ratios. Organo-mineral associations, which are suggested to be a key mechanism of OM stabilization in temperate soils, seem to be less important in the active layer as the mainly plant-derived clay and fine silt sized OM was surprisingly "young" with 14C contents similar to the bulk soil values. Furthermore these fractions contained less organic carbon compared to density fractionated OM occluded in soil aggregates – a further important OM stabilization mechanism in temperate soils restricting accessibility of microorganisms. This process seems to be important at greater active layer depth where particulate OM, occluded in soil aggregates, was "older" than free particulate OM.

  3. Assessing Seasonal Backscatter Variations with Respect to Uncertainties in Soil Moisture Retrieval in Siberian Tundra Regions

    Directory of Open Access Journals (Sweden)

    Elin Högström

    2014-09-01

    Full Text Available Knowledge of surface hydrology is essential for many applications, including studies that aim to understand permafrost response to changing climate and the associated feedback mechanisms. Advanced remote sensing techniques make it possible to retrieve a range of land-surface variables, including radar retrieved soil moisture (SSM. It has been pointed out before that soil moisture retrieval from satellite data can be challenging at high latitudes, which correspond to remote areas where ground data are scarce and the applicability of satellite data of this type is essential. This study investigates backscatter variability other than associated with changing soil moisture in order to examine the possible impact on soil moisture retrieval. It focuses on issues specific to SSM retrieval in the Arctic, notably variations related to tundra lakes. ENVISAT Advanced Synthetic Aperture Radar (ASAR Wide Swath (WS, 120 m data are used to understand and quantify impacts on Metop (AAdvanced Scatterometer (ASCAT, 25 km soil moisture retrieval during the snow free period. Sites of interest are chosen according to ASAR WS availability, high or low agreement between output from the land surface model ORCHIDEE and ASCAT derived SSM. Backscatter variations are analyzed with respect to the ASCAT footprint area. It can be shown that the low model agreement is related to water fraction in most cases. No difference could be detected between periods with floating ice (in snow off situation and ice free periods at the chosen sites. The mean footprint backscatter is however impacted by partial short term surface roughness change. The water fraction correlates with backscatter deviations (relative to a smooth water surface reference image within the ASCAT footprint areas (R = 0.91

  4. Geomorphological and geochemistry changes in permafrost after the 2002 tundra wildfire in Kougarok, Seward Peninsula, Alaska

    Science.gov (United States)

    Iwahana, Go; Harada, Koichiro; Uchida, Masao; Tsuyuzaki, Shiro; Saito, Kazuyuki; Narita, Kenji; Kushida, Keiji; Hinzman, Larry D.

    2016-09-01

    Geomorphological and thermohydrological changes to tundra, caused by a wildfire in 2002 on the central Seward Peninsula of Alaska, were investigated as a case study for understanding the response from ice-rich permafrost terrain to surface disturbance. Frozen and unfrozen soil samples were collected at burned and unburned areas, and then water isotope geochemistry and cryostratigraphy of the active layer and near-surface permafrost were analyzed to investigate past hydrological and freeze/thaw conditions and how this information could be recorded within the permafrost. The development of thermokarst subsidence due to ice wedge melting after the fire was clear from analyses of historical submeter-resolution remote sensing imagery, long-term monitoring of thermohydrological conditions within the active layer, in situ surveys of microrelief, and geochemical signals recorded in the near-surface permafrost. The resulting polygonal relief coincided with depression lines along an underground ice wedge network, and cumulative subsidence to 2013 was estimated as at least 10.1 to 12.1 cm (0.9-1.1 cm/year 11 year average). Profiles of water geochemistry in the ground indicated mixing or replenishment of older permafrost water with newer meteoric water, as a consequence of the increase in active layer thickness due to wildfire or past thaw event. Our geocryological analysis of cores suggests that permafrost could be used to reconstruct the permafrost degradation history for the study site. Distinct hydrogen and oxygen isotopic compositions above the Global Meteoric Water Line were found for water from these sites where permafrost degradation with geomorphological change and prolonged surface inundation were suggested.

  5. The seasonal cycle of the greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia

    Directory of Open Access Journals (Sweden)

    M. K. van der Molen

    2007-07-01

    Full Text Available Carbon dioxide and methane fluxes were measured at a tundra site near Chokurdakh, in the lowlands of the Indigirka river in north-east Siberia. This site is one of the few stations on Russian tundra and it is different from most other tundra flux stations in its continentality. A suite of methods was applied to determine the fluxes of NEE, GPP, Reco and methane, including eddy covariance, chambers and leaf cuvettes. Net carbon dioxide fluxes were unusually high, compared with other tundra sites, with NEE=–92 g C m−2 yr−1, which is composed of an Reco=+141 g C m−2 yr−1 and GPP=–232 g C m−2 yr−1. This large carbon dioxide sink may be explained by the continental climate, that is reflected in low winter soil temperatures (–14°C, reducing the respiration rates, and short, relatively warm summers, stimulating high photosynthesis rates. Interannual variability in GPP was dominated by the frequency of light limitation (Rg <200 W m−2, whereas Reco depends most directly on soil temperature and time in the growing season, which serves as a proxy of the combined effects of active layer depth, leaf area index, soil moisture and substrate availability. The methane flux, in units of global warming potential, was +28 g C-CO2e m−2 yr−1, so that the greenhouse gas balance was –64 g C-CO2e m−2 yr−1. Methane fluxes depended only slightly on soil temperature and were highly sensitive to hydrological conditions and vegetation composition.

  6. The growing season greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia

    Directory of Open Access Journals (Sweden)

    M. K. van der Molen

    2007-11-01

    Full Text Available Carbon dioxide and methane fluxes were measured at a tundra site near Chokurdakh, in the lowlands of the Indigirka river in north-east Siberia. This site is one of the few stations on Russian tundra and it is different from most other tundra flux stations in its continentality. A suite of methods was applied to determine the fluxes of NEE, GPP, Reco and methane, including eddy covariance, chambers and leaf cuvettes. Net carbon dioxide fluxes were high compared with other tundra sites, with NEE=−92 g C m−2 yr−1, which is composed of an Reco=+141 g C m−2 yr−1 and GPP=−232 g C m−2 yr−1. This large carbon dioxide sink may be explained by the continental climate, that is reflected in low winter soil temperatures (−14°C, reducing the respiration rates, and short, relatively warm summers, stimulating high photosynthesis rates. Interannual variability in GPP was dominated by the frequency of light limitation (Rg<200 W m−2, whereas Reco depends most directly on soil temperature and time in the growing season, which serves as a proxy of the combined effects of active layer depth, leaf area index, soil moisture and substrate availability. The methane flux, in units of global warming potential, was +28 g C-CO2e m−2 yr−1, so that the greenhouse gas balance was −64 g C-CO2e m−2 yr−1. Methane fluxes depended only slightly on soil temperature and were highly sensitive to hydrological conditions and vegetation composition.

  7. 2000 Year-old ancient equids: an ancient-DNA lesson from pompeii remains.

    Science.gov (United States)

    Di Bernardo, Giovanni; Del Gaudio, Stefania; Galderisi, Umberto; Cipollaro, Marilena

    2004-11-15

    Ancient DNA extracted from 2000 year-old equine bones was examined in order to amplify mitochondrial and nuclear DNA fragments. A specific equine satellite-type sequence representing 3.7%-11% of the entire equine genome, proved to be a suitable target to address the question of the presence of aDNA in ancient bones. The PCR strategy designed to investigate this specific target also allowed us to calculate the molecular weight of amplifiable DNA fragments. Sequencing of a 370 bp DNA fragment of mitochondrial control region allowed the comparison of ancient DNA sequences with those of modern horses to assess their genetic relationship. The 16S rRNA mitochondrial gene was also examined to unravel the post-mortem base modification feature and to test the status of Pompeian equids taxon on the basis of a Mae III restriction site polymorphism.

  8. Reconstructing Ancient History-- Historiographical Review of the Ancient History of Korea, 1950s-2000s

    Directory of Open Access Journals (Sweden)

    Stella Xu

    2012-05-01

    Full Text Available The ancient history of Korea has been one of the most controversial and difficult phases to incorporate into an East Asian history survey class, not only because there are indeed quite a number of contested issues, but also because very few updated materials are available in English. This essay aims to provide a comprehensive and critical overview of research on the topic of Korean ancient history in the past six decades (mainly in South Korea, so that the ancient history of Korea can be understood first within the broader frame of East Asian history, and then in relation to the intellectual and ideological evolution which has significantly impacted historical interpretations in South Korea.

  9. Process-Based Modeling of Floods Through Shrub Carrs of Varying Densities

    Science.gov (United States)

    Smith, J.

    2001-12-01

    Floodplain surfaces typically are protected from erosion during deep overbank flows by vegetation of varying types and densities. Drag on stems, branches, leaves, and exposed roots of the floodplain plants reduces both the near-bed flow and the fluid forces on the sediment grains. The drag on vegetation and on topographic elements of the floodplain surface can be calculated by carefully applying fundamental fluid-mechanical principals. Doing so requires identification and appropriate approximation of the reference velocity in the drag equation, and accurate estimates of the floodplain plant geometries and spacings. For shrubs, calculations indicate that skin friction on leaves is negligible compared to form drag on stems and branches, whereas, for uncut grasses, skin friction on the fronds is of primary importance. Scaling relationships are developed for each shrub species for specific applications, so that the fluid mechanically important properties can be estimated from mean stem diameters, mean stem group diameters, and mean stem group spacings. Stem group spacings and diameters can be related to shrub-canopy spacings and diameters respectively, which are determined from aerial photographs in the applications. A process-based model incorporating the necessary principles was developed and applied to a headwater tributary of East Plum Creek, Colorado. Calculations using the estimated decrease in density of the sandbar willows along this tributary accurately postdict the site of initiation of floodplain unraveling (transformation from a narrow, sinuous stream to a wide, straight one) that occurred during an extreme flood in 1965. Details of this application are presented in an accompanying poster. The model then is applied to Clark Fork of the Columbia River in the Deer Lodge Valley, Montana. This meandering fluvial system is an EPA Superfund site, because the flood-of-record in 1908 deposited several decimeters of contaminated tailings in the meander belt. The

  10. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs

    DEFF Research Database (Denmark)

    Edmondson, Jill L; Stott, Iain; Davies, Zoe G

    2016-01-01

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface...... in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce...... the adverse impacts of urbanization on microclimate, soil processes and human health....

  11. Shrub and tree establishment on coal spoils in northern High Plains, USA

    Energy Technology Data Exchange (ETDEWEB)

    Bjugstad, A.J.

    1984-10-01

    Trickle irrigation, during establishment, increased survival two-fold for seven species of shrubs and trees planted on coal-mine spoil in the semiarid area of northeastern Wyoming. Increased survival of irrigated plants persisted for five years after initiation of this study, which included two growing and winter seasons after cessation of which included two growing and winter seasons after cessation of irrigation. Species included green ash (Fraxinus pennsylvanica), Russian olive (Elaeagnus angustifolia), Siberian peashrub (Caragana arborescens), American plum (Prunus americana), ponderosa pine (Pinus ponderosa), and Rocky Mountain juniper (Juniperus scopulorum). 9 references, 3 tables.

  12. Shrub and tree establishment on coal spoils in northern High Plains - USA

    Energy Technology Data Exchange (ETDEWEB)

    Bjugstad, A.J.

    1984-10-01

    Trickle irrigation, during establishment, increased survival two fold for seven species of shrubs and trees planted on coal mine spoil in the semiarid area of northeastern Wyoming, USA. Increased survival of irrigated plants persisted for five years after initiation of this study, which included two growing and winter seasons after cessation of irrigation. Species included green ash (Fraxinus pennsylvanica), Russian olive (Elaeagnus angustifolia), silver buffaloberry (Shepherdia argentea), Siberian peashrub (Caragana arborescens), American plum (Prunus americana), ponderosa pine (Pinus ponderosa), and Rocky Mountain juniper (Juniperus scopulorum). 28 references.

  13. Extreme drought event and shrub invasion combine to reduce ecosystem functioning and resilience in water-limited climates

    Science.gov (United States)

    Caldeira, Maria; Lecomte, Xavier; David, Teresa; Pinto, Joaquim; Bugalho, Miguel; Werner, Christiane

    2016-04-01

    Extreme droughts and plant invasions are major drivers of global change that can critically affect ecosystem functioning. Shrub encroachment is increasing in many regions worldwide and extreme events are projected to increase in frequency and intensity, namely in the Mediterranean region. Nevertheless, little is known about how these drivers may interact and affect ecosystem functioning and resilience to extreme droughts. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that the native shrub invasion and extreme drought combined to reduce ecosystem transpiration and the resilience of the key-stone oak tree species. We established six 25 x 25 m paired plots in a shrub (Cistus ladanifer L.) encroached Mediterranean cork-oak (Quercus suber L.) woodland. We measured sapflow and pre-dawn leaf water potential of trees and shrubs and soil water content in all plots during three years. We determined the resilience of tree transpiration to evaluate to what extent trees recovered from the extreme drought event. From February to November 2011 we conducted baseline measurements for plot comparison. In November 2011 all the shrubs from one of all the paired plots were cut and removed. Ecosystem transpiration was dominated by the water use of the invasive shrub, which further increased after the extreme drought. Simultaneously, tree transpiration in invaded plots declined much stronger (67 ± 13 %) than in plots cleared from shrubs (31 ± 11%) relative to the pre-drought year. Trees in invaded plots were not able to recover in the following wetter year showing lower resilience to the extreme drought event. Our results imply that in Mediterranean-type of climates invasion by water spending species can combine with projected recurrent extreme droughts causing critical drought tolerance thresholds of trees to be overcome increasing the probability of tree mortality (Caldeira et.al. 2015

  14. Modeling the Spatial Distribution of Eshnan (seidlitzia Rosmarinus) Shrubs to Exploring Their Ecological Interactions in Drylands of Central Iran

    Science.gov (United States)

    Erfanifard, Y.; Khosravi, E.

    2015-12-01

    Evaluating the interactions of woody plants has been a major research topic of ecological investigations in arid ecosystems. Plant-plant interactions can shift from positive (facilitation) to negative (competition) depending on levels of environmental stress and determine the spatial pattern of plants. The spatial distribution analysis of plants via different summary statistics can reveal the interactions of plants and how they influence one another. An aggregated distribution indicates facilitative interactions among plants, while dispersion of species reflects their competition for scarce resources. This study was aimed to explore the intraspecific interactions of eshnan (Seidlitzia rosmarinus) shrubs in arid lands, central Iran, using different summary statistics (i.e., pair correlation function g(r), O-ring function O(r), nearest neighbour distribution function D(r), spherical contact distribution function Hs(r)). The observed pattern of shrubs showed significant spatial heterogeneity as compared to inhomogeneous Poisson process (α=0.05). The results of g(r) and O(r) revealed the significant aggregation of eshnan shrubs up to scale of 3 m (α=0.05). The results of D(r) and Hs(r) also showed that maximum distance to nearest shrub was 6 m and the distribution of the sizes of gaps was significantly different from random distribution up to this spatial scale. In general, it was concluded that there were positive interactions between eshnan shrubs at small scales and they were aggregated due to their intraspecific facilitation effects in the study area.

  15. Remote sensing based shrub above-ground biomass and carbon storage mapping in Mu Us desert,China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The estimation of above-ground biomass(AGB) and carbon storage is very important for arid and semi-arid ecosystems.HJ-1A/B satellite data combined with field measurement data was used for the estimation of shrub AGB and carbon storage in the Mu Us desert,China.The correlations of shrub AGB and spectral reflectance of four bands as well as their combined vegetation indexes were respectively analyzed and stepwise regression analysis was employed to establish AGB prediction equation.The prediction equation based on ratio vegetation index(RVI)was proved to be more suitable for shrub AGB estimation in the Mu Us desert than others.Shrub AGB and carbon storage were mapped using the RVI based prediction model in final.The statistics showed the western Mu Us desert has relatively high AGB and carbon storage,and that the gross shrub carton storage in Mu Us desert reaches 16 799 200 t,which has greatly contributed to the carbon fixation in northern China.

  16. The Ancient City of Pinqyao:Where the Time Stops

    Institute of Scientific and Technical Information of China (English)

    Lily Wang

    2011-01-01

    @@ It is a common night in May, I found myself wandering in the Ancient City of Pingyao.If not those neon light, I would even doubt that I had gone back to the ancient times.Located on the eastern banks of the Fen River, and in the southwestern edge of the Taiyuan basin, Pingyao Ancient City is the outstanding example of Chinese Han nationality cities during Ming and Qing Dynasties.

  17. Advances in structural mechanics of Chinese ancient architectures

    Institute of Scientific and Technical Information of China (English)

    Maohong YU; Yoshiya ODA; Dongping FANG; Junhai ZHAO

    2008-01-01

    Chinese ancient architectures are valuable heritage of ancient culture of China. Many historical building have been preserved up to now. The researches on the structural mechanics of ancient architectures show the different aspects of structure and mechanics. Systematical studies on the structural mechanics of ancient architectures have been carried out at Xi'an Jiaotong University since 1982. It is related with the need of repair of some national preservation relics in Xi'an. These studies include: 1) Ancient wooden structures including three national preservation relics Arrow Tower at North City Gate, City Tower at East City Gate, and Baogao Temple in Ningbao, Zhejiang province. 2) Ancient tall masonry building, the Big Goose Pagoda and Small Goose Pagoda in Xi'an. 3) Mechanical characteristics of ancient soil under foundation and city wall; the influence of caves in and under the ancient City Wall on the stability of the wall. 4) The typical Chinese ancient building at the center of city: the Bell Tower and Drum tower. 5) The behavior of Dou-Gong and Joggle joint of Chinese ancient wooden structure. 6) The mechanical behavior of ancient soils under complex stress state. A new systematical strength theory, the unified strength theory, is used to analyze the stability of ancient city wall in Xi'an and foundation of tall pagoda built in Tang dynasty. These researches also concern differential settlements of Arrow Tower and resistance to earthquake of these historical architecture heritages. Some other studies are also introduced. This paper gives a summary of these researches. Preservation and research are nowadays an essential requirement for the famous monuments, buildings, towers and others. Our society is more and more conscious of this necessity, which involves increasing activities of restoration, and then sometimes also of repair, mechanical strengthening and seismic retrofitting. Many historical buildings have in fact problems of structural strength and

  18. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs.

    Science.gov (United States)

    Edmondson, J L; Stott, I; Davies, Z G; Gaston, K J; Leake, J R

    2016-09-19

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.

  19. Stress resistance strategy in an arid land shrub: interactions between developmental instability and fractal dimention

    Science.gov (United States)

    Escos, J.; Alados, C.L.; Pugnaire, F. I.; Puigdefábregas, J.; Emlen, J.

    2000-01-01

    This paper investigates allocation of energy to mechanisms that generate and preserve architectural forms (i.e. developmental stability, complexity of branching patterns) and productivity (growth and reproduction) in response to environmental disturbances (i.e. grazing and resource availability). The statistical error in translational symmetry was used to detect random intra-individual variability during development. This can be thought of as a measure of developmental instability caused by stress. Additionally, we use changes in fractal complexity and shoot distribution of branch structures as an alternate indicator of stress. These methods were applied to Anthyllis cytisoides L., a semi-arid environment shrub, to ascertain the effect of grazing and slope exposure on developmental traits in a 2×2 factorial design. The results show that A. cytisoidesmaintains developmental stability at the expense of productivity. Anthyllis cytisoides was developmentally more stable when grazed and when on south-facing, as opposed to north-facing slopes. On the contrary, shoot length, leaf area, fractal dimension and reproductive-to-vegetative allocation ratio were larger in north- than in south-facing slopes. As a consequence, under extreme xeric conditions, shrub mortality increased in north-facing slopes, especially when not grazed. The removal of transpiring area and the reduction of plant competition favoured developmental stability and survival in grazed plants. Differences between grazed and ungrazed plants were most evident in more mesic (north-facing) areas.

  20. Diversity of rhizobia nodulating wild shrubs of Sicily and some neighbouring islands.

    Science.gov (United States)

    Cardinale, Massimiliano; Lanza, Angela; Bonnì, Maria Laura; Marsala, Salvatore; Puglia, Anna Maria; Quatrini, Paola

    2008-10-01

    Legume shrubs have great potential for rehabilitation of semi-arid degraded soils in Mediterranean ecosystems as they establish mutualistic symbiosis with N-fixing rhizobia. Eighty-eight symbiotic rhizobia were isolated from seven wild legume shrubs native of Sicily (Southern Italy) and grouped in operational taxonomic units (OTU) by analysis of the ribosomal internal transcribed spacer (ITS) polymorphism. Partial sequencing of 16S rRNA gene of representative isolates of each OTU revealed that most Genisteae symbionts are related to Bradyrhizobium canariense, B. japonicum and B. elkanii. Teline monspessulana was the only Genistea nodulated by Mesorhizobium strains, and Anagyris foetida (Thermopsideae) was promiscuosly nodulated by Rhizobium, Mesorhizobium, Agrobacterium and Bradyrhizobium strains. Analysis of the nodulation gene nodA assigned most Mediterranean Genisteae bradyrhizobia to clade II but also to clades IV, I and III, which included, so far, sequences of (sub)tropical and Australian isolates. The high diversity and low host specificity observed in most wild legumes isolates suggest that preferential associations may establish in the field depending on differences in the benefits conferred to the host and on competition ability. Once identified, these beneficial symbiosis can be exploited for rehabilitation of arid, low productive and human-impacted soils of the Mediterranean countries.