WorldWideScience

Sample records for ancient immunity gene

  1. Immune- and wound-dependent differential gene expression in an ancient insect.

    Science.gov (United States)

    Johnston, Paul R; Rolff, Jens

    2013-01-01

    Two of the main functions of the immune system are to control infections and to contribute to wound closure. Here we present the results of an RNAseq study of immune- and wound-response gene expression in the damselfly Coenagrion puella, a representative of the odonates, the oldest taxon of winged insects. De novo assembly of RNAseq data revealed a rich repertoire of canonical immune pathways, as known from model insects, including recognition, transduction and effector gene expression. A shared set of immune and wound repair genes were differentially expressed in both wounded and immune-challenged larvae. Moreover 3-fold more immune genes were induced only in the immune-challenged treatment. This is consistent with the notion that the immune-system reads a balance of signals related to wounding and infection and that the response is tailored accordingly.

  2. Pathogens and host immunity in the ancient human oral cavity

    DEFF Research Database (Denmark)

    Warinner, Christina; Rodrigues, João F Matias; Vyas, Rounak

    2014-01-01

    cavity has long served as a reservoir for bacteria implicated in both local and systemic disease. We characterize (i) the ancient oral microbiome in a diseased state, (ii) 40 opportunistic pathogens, (iii) ancient human-associated putative antibiotic resistance genes, (iv) a genome reconstruction......Calcified dental plaque (dental calculus) preserves for millennia and entraps biomolecules from all domains of life and viruses. We report the first, to our knowledge, high-resolution taxonomic and protein functional characterization of the ancient oral microbiome and demonstrate that the oral...... of the periodontal pathogen Tannerella forsythia, (v) 239 bacterial and 43 human proteins, allowing confirmation of a long-term association between host immune factors, 'red complex' pathogens and periodontal disease, and (vi) DNA sequences matching dietary sources. Directly datable and nearly ubiquitous, dental...

  3. Fire usage and ancient hominin detoxification genes

    NARCIS (Netherlands)

    Aarts, Jac M.M.J.G.; Alink, Gerrit M.; Scherjon, Fulco; MacDonald, Katharine; Smith, Alison C.; Nijveen, Harm; Roebroeks, Wil

    2016-01-01

    Studies of the defence capacity of ancient hominins against toxic substances may contribute importantly to the reconstruction of their niche, including their diets and use of fire. Fire usage implies frequent exposure to hazardous compounds from smoke and heated food, known to affect general heal

  4. Examining Ancient Inter-domain Horizontal Gene Transfer

    Directory of Open Access Journals (Sweden)

    Francisca C. Almeida

    2008-01-01

    Full Text Available Details of the genomic changes that occurred in the ancestors of Eukarya, Archaea and Bacteria are elusive. Ancient interdomain horizontal gene transfer (IDHGT amongst the ancestors of these three domains has been difficult to detect and analyze because of the extreme degree of divergence of genes in these three domains and because most evidence for such events are poorly supported. In addition, many researchers have suggested that the prevalence of IDHGT events early in the evolution of life would most likely obscure the patterns of divergence of major groups of organisms let alone allow the tracking of horizontal transfer at this level. In order to approach this problem, we mined the E. coli genome for genes with distinct paralogs. Using the 1,268 E. coli K-12 genes with 40% or higher similarity level to a paralog elsewhere in the E. coli genome we detected 95 genes found exclusively in Bacteria and Archaea and 86 genes found in Bacteria and Eukarya. These genes form the basis for our analysis of IDHGT. We also applied a newly developed statistical test (the node height test, to examine the robustness of these inferences and to corroborate the phylogenetically identifi ed cases of ancient IDHGT. Our results suggest that ancient inter domain HGT is restricted to special cases, mostly involving symbiosis in eukaryotes and specific adaptations in prokaryotes. Only three genes in the Bacteria + Eukarya class (Deoxyxylulose-5-phosphate synthase (DXPS, fructose 1,6-phosphate aldolase class II protein and glucosamine-6-phosphate deaminase and three genes–in the Bacteria + Archaea class (ABC-type FE3+ -siderophore transport system, ferrous iron transport protein B, and dipeptide transport protein showed evidence of ancient IDHGT. However, we conclude that robust estimates of IDHGT will be very difficult to obtain due to the methodological limitations and the extreme sequence saturation of the genes suspected of being involved in IDHGT.

  5. Characterization of an ancient lepidopteran lateral gene transfer.

    Directory of Open Access Journals (Sweden)

    David Wheeler

    Full Text Available Bacteria to eukaryote lateral gene transfers (LGT are an important potential source of material for the evolution of novel genetic traits. The explosion in the number of newly sequenced genomes provides opportunities to identify and characterize examples of these lateral gene transfer events, and to assess their role in the evolution of new genes. In this paper, we describe an ancient lepidopteran LGT of a glycosyl hydrolase family 31 gene (GH31 from an Enterococcus bacteria. PCR amplification between the LGT and a flanking insect gene confirmed that the GH31 was integrated into the Bombyx mori genome and was not a result of an assembly error. Database searches in combination with degenerate PCR on a panel of 7 lepidopteran families confirmed that the GH31 LGT event occurred deep within the Order approximately 65-145 million years ago. The most basal species in which the LGT was found is Plutella xylostella (superfamily: Yponomeutoidea. Array data from Bombyx mori shows that GH31 is expressed, and low dN/dS ratios indicates the LGT coding sequence is under strong stabilizing selection. These findings provide further support for the proposition that bacterial LGTs are relatively common in insects and likely to be an underappreciated source of adaptive genetic material.

  6. Addiction, adolescence, and innate immune gene induction

    Directory of Open Access Journals (Sweden)

    Fulton T Crews

    2011-04-01

    Full Text Available Repeated drug use/abuse amplifies psychopathology, progressively reducing frontal lobe behavioral control and cognitive flexibility while simultaneously increasing limbic temporal lobe negative emotionality. The period of adolescence is a neurodevelopmental stage characterized by poor behavioral control as well as strong limbic reward and thrill seeking. Repeated drug abuse and/or stress during this stage increase the risk of addiction and elevate activator innate immune signaling in the brain. Nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-κB is a key glial transcription factor that regulates proinflammatory chemokines, cytokines, oxidases, proteases, and other innate immune genes. Induction of innate brain immune gene expression (e.g., NF-κB facilitates negative affect, depression-like behaviors, and inhibits hippocampal neurogenesis. In addition, innate immune gene induction alters cortical neurotransmission consistent with loss of behavioral control. Studies with anti-oxidant, anti-inflammatory, and anti-depressant drugs as well as opiate antagonists link persistent innate immune gene expression to key behavioral components of addiction, e.g. negative affect-anxiety and loss of frontal cortical behavioral control. This review suggests that persistent and progressive changes in innate immune gene expression contribute to the development of addiction. Innate immune genes may represent a novel new target for addiction therapy.

  7. HLA Immune Function Genes in Autism

    Directory of Open Access Journals (Sweden)

    Anthony R. Torres

    2012-01-01

    Full Text Available The human leukocyte antigen (HLA genes on chromosome 6 are instrumental in many innate and adaptive immune responses. The HLA genes/haplotypes can also be involved in immune dysfunction and autoimmune diseases. It is now becoming apparent that many of the non-antigen-presenting HLA genes make significant contributions to autoimmune diseases. Interestingly, it has been reported that autism subjects often have associations with HLA genes/haplotypes, suggesting an underlying dysregulation of the immune system mediated by HLA genes. Genetic studies have only succeeded in identifying autism-causing genes in a small number of subjects suggesting that the genome has not been adequately interrogated. Close examination of the HLA region in autism has been relatively ignored, largely due to extraordinary genetic complexity. It is our proposition that genetic polymorphisms in the HLA region, especially in the non-antigen-presenting regions, may be important in the etiology of autism in certain subjects.

  8. A new trick for an ancient drug: quinine dissociates antiphospholipid immune complexes.

    Science.gov (United States)

    Bezati, E; Wu, X-X; Quinn, A S; Taatjes, D J; Rand, J H

    2015-01-01

    Quinine, a quinoline derivative, is an ancient antipyretic drug with antimalarial properties that has been phased out by more effective synthetic candidates. In previous studies we discovered that hydroxychloroquine (HCQ), a synthetic antimalarial with structural similarities to quinine, reduced the binding of antiphospholipid (aPL) immune complexes to phospholipid bilayers. We performed ellipsometry and atomic force microscopy (AFM) studies to measure the effect of quinine on dissociation of anti-β2-glycoprotein I (anti-β2GPI) immune complexes. We found that quinine desorbed pre-formed β2GPI-aPL immunoglobulin (Ig)G complexes from phospholipid bilayers at significantly lower molar concentrations than HCQ. Quinine also inhibited the formation of immune complexes with a higher efficacy than HCQ at equivalent drug concentrations of 0.2 mg/ml (0.192 ± 0.025 µg/cm(2) for quinine vs. 0.352 ± 0.014 µg/cm(2) for HCQ, p quinine disintegrated immune complexes bound to planar phospholipid layers. The desorptive and inhibitory effects of the old drug, quinine, toward β2GPI-aPL IgG complexes and β2GPI were significantly more pronounced compared to the synthetic antimalarial, HCQ. The results suggest that the quinoline core of the molecule is a critical domain for this activity and that side chains may further modulate this effect. The results also indicate that there may yet be room for considering new activities of very old drugs in devising clinical trials on potential non-anticoagulant treatments for antiphospholipid syndrome (APS).

  9. [Immune response genes products in human physiology].

    Science.gov (United States)

    Khaitov, R M; Alekseev, L P

    2012-09-01

    Current data on physiological role of human immune response genes' proteomic products (antigens) are discussed. The antigens are specified by a very high level of diversity that mediates a wide specter ofphysiological functions. They actually provide integrity and biological stability of human as species. These data reveal new ideas on many pathological processes as well as drafts new approaches for prophylaxis and treatment.

  10. The X chromosome and immune associated genes.

    Science.gov (United States)

    Bianchi, Ilaria; Lleo, Ana; Gershwin, M Eric; Invernizzi, Pietro

    2012-05-01

    The X chromosome is known to contain the largest number of immune-related genes of the whole human genome. For this reason, X chromosome has recently become subject of great interest and attention and numerous studies have been aimed at understanding the role of genes on the X chromosome in triggering and maintaining the autoimmune aggression. Autoimmune diseases are indeed a growing heath burden affecting cumulatively up to 10% of the general population. It is intriguing that most X-linked primary immune deficiencies carry significant autoimmune manifestations, thus illustrating the critical role played by products of single gene located on the X chromosome in the onset, function and homeostasis of the immune system. Again, the plethora of autoimmune stigmata observed in patients with Turner syndrome, a disease due to the lack of one X chromosome or the presence of major X chromosome deletions, indicate that X-linked genes play a unique and major role in autoimmunity. There have been several reports on a role of X chromosome gene dosage through inactivation or duplication in women with autoimmune diseases, for example through a higher rate of circulating cells with a single X chromosome (i.e. with X monosomy). Finally, a challenge for researchers in the coming years will be to dissect the role for the large number of X-linked microRNAs from the perspective of autoimmune disease development. Taken together, X chromosome might well constitute the common trait of the susceptibility to autoimmune diseases, other than to explain the female preponderance of these conditions. This review will focus on the available evidence on X chromosome changes and discuss their potential implications and limitations.

  11. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification.

    Science.gov (United States)

    Ziesemer, Kirsten A; Mann, Allison E; Sankaranarayanan, Krithivasan; Schroeder, Hannes; Ozga, Andrew T; Brandt, Bernd W; Zaura, Egija; Waters-Rist, Andrea; Hoogland, Menno; Salazar-García, Domingo C; Aldenderfer, Mark; Speller, Camilla; Hendy, Jessica; Weston, Darlene A; MacDonald, Sandy J; Thomas, Gavin H; Collins, Matthew J; Lewis, Cecil M; Hofman, Corinne; Warinner, Christina

    2015-11-13

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341-534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions.

  12. Expression of immune genes in skin of channel catfish immunized with live theronts of Ichthyophthirius multifiliis

    Science.gov (United States)

    There is limited information on innate and adaptive immune gene expression in the skin of channel catfish, Ictalurus punctatus immunized with Ichthyophthirius multifiliis (Ich). The objective of this study was to evaluate differential expression of innate and adaptive immune genes, including immunog...

  13. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification

    NARCIS (Netherlands)

    Ziesemer, K.A.; Mann, A.E.; Sankaranarayanan, K.; Schroeder, H.; Ozga, A.T.; Brandt, B.W.; Zaura, E.; Waters-Rist, A.; Hoogland, M.; Salazar-García, D.C.; Aldenderfer, M.; Speller, C.; Hendy, J.; Weston, D.A.; MacDonald, S.J.; Thomas, G.H.; Collins, M.J.; Lewis, C.M.; Hofman, C.; Warinner, C.

    2015-01-01

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341-534) of this gen

  14. Gene Therapy for HIV Infections: Intracellular Immunization

    Directory of Open Access Journals (Sweden)

    Alain Piché

    1999-01-01

    Full Text Available Despite significant advances in the treatment of human immunodeficiency virus (HIV infection in the past 10 years, it remains an incurable disease. The inability of traditional drug-based therapies to inhibit HIV replication effectively for extended periods of time has stimulated intense research to develop novel approaches for this disease. Current understanding of HIV molecular biology and pathogenesis has opened the way for the development of gene therapy strategies for HIV infections. In this context, a number of intracellular immunization-based strategies have been evaluated, and some of them have reached the stage of phase I/II human clinical trials. These strategies include the use of single-chain antibodies, capsid-targeted viral inactivation, transdominant negative mutants, ribozymes, antisense oligonucleotides and RNA decoys. While a number of issues remain to be studied before intracellular immunization can be applied to the treatment of HIV infections, the significant progress already made in this field is likely to lead to clinical applications.

  15. The endocrine system controlling sexual reproduction in animals: Part of the evolutionary ancient but well conserved immune system?

    Science.gov (United States)

    De Loof, Arnold; Schoofs, Liliane; Huybrechts, Roger

    2016-01-15

    Drastic changes in hormone titers, in particular of steroid hormones, are intuitively interpreted as necessary and beneficial for optimal functioning of animals. Peaks in progesterone- and estradiol titers that accompany the estrus cycle in female vertebrates as well as in ecdysteroids at each molt and during metamorphosis of holometabolous insects are prominent examples. A recent analysis of insect metamorphosis yielded the view that, in general, a sharp rise in sex steroid hormone titer signals that somewhere in the body some tissue(s) is undergoing programmed cell death/apoptosis. Increased steroid production is part of this process. Typical examples are ovarian follicle cells in female vertebrates and invertebrates and the prothoracic gland cells, the main production site of ecdysteroids in larval insects. A duality emerges: programmed cell death-apoptosis is deleterious at the cellular level, but it may yield beneficial effects at the organismal level. Reconciling both opposites requires reevaluating the probable evolutionary origin and role of peptidic brain hormones that direct steroid hormone synthesis. Do e.g. Luteinizing Hormone in vertebrates and Prothoracicotropic Hormone (PTTH: acting through the Torso receptor) in insects still retain an ancient role as toxins in the early immune system? Does the functional link of some neuropeptides with Ca(2+)-induced apoptosis make sense in endocrine archeology? The endocrine system as a remnant of the ancient immune system is undoubtedly counterintuitive. Yet, we will argue that such paradigm enables the logical framing of many aspects, the endocrine one inclusive of both male and female reproductive physiology.

  16. Establishing the validity of domestication genes using DNA from ancient chickens.

    Science.gov (United States)

    Girdland Flink, Linus; Allen, Richard; Barnett, Ross; Malmström, Helena; Peters, Joris; Eriksson, Jonas; Andersson, Leif; Dobney, Keith; Larson, Greger

    2014-04-29

    Modern domestic plants and animals are subject to human-driven selection for desired phenotypic traits and behavior. Large-scale genetic studies of modern domestic populations and their wild relatives have revealed not only the genetic mechanisms underlying specific phenotypic traits, but also allowed for the identification of candidate domestication genes. Our understanding of the importance of these genes during the initial stages of the domestication process traditionally rests on the assumption that robust inferences about the past can be made on the basis of modern genetic datasets. A growing body of evidence from ancient DNA studies, however, has revealed that ancient and even historic populations often bear little resemblance to their modern counterparts. Here, we test the temporal context of selection on specific genetic loci known to differentiate modern domestic chickens from their extant wild ancestors. We extracted DNA from 80 ancient chickens excavated from 12 European archaeological sites, dated from ∼ 280 B.C. to the 18th century A.D. We targeted three unlinked genetic loci: the mitochondrial control region, a gene associated with yellow skin color (β-carotene dioxygenase 2), and a putative domestication gene thought to be linked to photoperiod and reproduction (thyroid-stimulating hormone receptor, TSHR). Our results reveal significant variability in both nuclear genes, suggesting that the commonality of yellow skin in Western breeds and the near fixation of TSHR in all modern chickens took place only in the past 500 y. In addition, mitochondrial variation has increased as a result of recent admixture with exotic breeds. We conclude by emphasizing the perils of inferring the past from modern genetic data alone.

  17. Spider Transcriptomes Identify Ancient Large-Scale Gene Duplication Event Potentially Important in Silk Gland Evolution.

    Science.gov (United States)

    Clarke, Thomas H; Garb, Jessica E; Hayashi, Cheryl Y; Arensburger, Peter; Ayoub, Nadia A

    2015-06-08

    The evolution of specialized tissues with novel functions, such as the silk synthesizing glands in spiders, is likely an influential driver of adaptive success. Large-scale gene duplication events and subsequent paralog divergence are thought to be required for generating evolutionary novelty. Such an event has been proposed for spiders, but not tested. We de novo assembled transcriptomes from three cobweb weaving spider species. Based on phylogenetic analyses of gene families with representatives from each of the three species, we found numerous duplication events indicative of a whole genome or segmental duplication. We estimated the age of the gene duplications relative to several speciation events within spiders and arachnids and found that the duplications likely occurred after the divergence of scorpions (order Scorpionida) and spiders (order Araneae), but before the divergence of the spider suborders Mygalomorphae and Araneomorphae, near the evolutionary origin of spider silk glands. Transcripts that are expressed exclusively or primarily within black widow silk glands are more likely to have a paralog descended from the ancient duplication event and have elevated amino acid replacement rates compared with other transcripts. Thus, an ancient large-scale gene duplication event within the spider lineage was likely an important source of molecular novelty during the evolution of silk gland-specific expression. This duplication event may have provided genetic material for subsequent silk gland diversification in the true spiders (Araneomorphae).

  18. Cervical Carcinogenesis and Immune Response Gene Polymorphisms: A Review

    Science.gov (United States)

    Mooij, Merel

    2017-01-01

    The local immune response is considered a key determinant in cervical carcinogenesis after persistent infection with oncogenic, high-risk human papillomavirus (HPV) infections. Genetic variation in various immune response genes has been shown to influence risk of developing cervical cancer, as well as progression and survival among cervical cancer patients. We reviewed the literature on associations of immunogenetic single nucleotide polymorphism, allele, genotype, and haplotype distributions with risk and progression of cervical cancer. Studies on HLA and KIR gene polymorphisms were excluded due to the abundance on literature on that subject. We show that multiple genes and loci are associated with variation in risk of cervical cancer. Rather than one single gene being responsible for cervical carcinogenesis, we postulate that variations in the different immune response genes lead to subtle differences in the effectiveness of the antiviral and antitumour immune responses, ultimately leading to differences in risk of developing cervical cancer and progressive disease after HPV infection. PMID:28280748

  19. Cervical Carcinogenesis and Immune Response Gene Polymorphisms: A Review

    Directory of Open Access Journals (Sweden)

    Akash M. Mehta

    2017-01-01

    Full Text Available The local immune response is considered a key determinant in cervical carcinogenesis after persistent infection with oncogenic, high-risk human papillomavirus (HPV infections. Genetic variation in various immune response genes has been shown to influence risk of developing cervical cancer, as well as progression and survival among cervical cancer patients. We reviewed the literature on associations of immunogenetic single nucleotide polymorphism, allele, genotype, and haplotype distributions with risk and progression of cervical cancer. Studies on HLA and KIR gene polymorphisms were excluded due to the abundance on literature on that subject. We show that multiple genes and loci are associated with variation in risk of cervical cancer. Rather than one single gene being responsible for cervical carcinogenesis, we postulate that variations in the different immune response genes lead to subtle differences in the effectiveness of the antiviral and antitumour immune responses, ultimately leading to differences in risk of developing cervical cancer and progressive disease after HPV infection.

  20. Advances in Overcoming Immune Responses following Hemophilia Gene Therapy.

    Science.gov (United States)

    Miao, Carol H

    2011-12-23

    Both Clinical trials and pre-clinical experiments for hemophilia gene therapy showed that it is important to overcome potential immune responses against gene transfer vectors and/or transgene products to ensure the success of gene therapy. Recently various approaches have been investigated to prevent or modulate such responses. Gene transfer vectors have been specifically engineered and immunosuppressive regimens have been administered to avoid or manipulate the immune responses against the vectors. In order to prevent cytotoxic lymphocyte or antibody formation induced by transgene expression, novel approaches have been developed, including methods to manipulate antigen presentation, development of variant genes encoding less immunogenic proteins or gene transfer protocols to evade immune responses, as well as immunosuppressive strategies to target either T and/or B cell responses. Most of these successful protocols involve the induction of activated regulatory T cells to create a regulatory immune environment during tolerance induction. Recent development of these strategies to evade vector-specific immune responses and induce long-term immune tolerance specific to the transgene product will be discussed.

  1. The Innate Immune-Related Genes in Catfish

    Directory of Open Access Journals (Sweden)

    Weidong Liu

    2012-11-01

    Full Text Available Catfish is one of the most important aquaculture species in America (as well as in Asia and Africa. In recent years, the production of catfish has suffered massive financial losses due to pathogen spread and breakouts. Innate immunity plays a crucial role in increasing resistance to pathogenic organisms and has generated increasing interest in the past few years. This review summarizes the current understanding of innate immune-related genes in catfish, including pattern recognition receptors, antimicrobial peptides, complements, lectins, cytokines, transferrin and gene expression profiling using microarrays and next generation sequencing technologies. This review will benefit the understanding of innate immune system in catfish and further efforts in studying the innate immune-related genes in fish.

  2. Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi.

    Directory of Open Access Journals (Sweden)

    Imke Schmitt

    Full Text Available BACKGROUND: Polyketides are natural products with a wide range of biological functions and pharmaceutical applications. Discovery and utilization of polyketides can be facilitated by understanding the evolutionary processes that gave rise to the biosynthetic machinery and the natural product potential of extant organisms. Gene duplication and subfunctionalization, as well as horizontal gene transfer are proposed mechanisms in the evolution of biosynthetic gene clusters. To explain the amount of homology in some polyketide synthases in unrelated organisms such as bacteria and fungi, interkingdom horizontal gene transfer has been evoked as the most likely evolutionary scenario. However, the origin of the genes and the direction of the transfer remained elusive. METHODOLOGY/PRINCIPAL FINDINGS: We used comparative phylogenetics to infer the ancestor of a group of polyketide synthase genes involved in antibiotic and mycotoxin production. We aligned keto synthase domain sequences of all available fungal 6-methylsalicylic acid (6-MSA-type PKSs and their closest bacterial relatives. To assess the role of symbiotic fungi in the evolution of this gene we generated 24 6-MSA synthase sequence tags from lichen-forming fungi. Our results support an ancient horizontal gene transfer event from an actinobacterial source into ascomycete fungi, followed by gene duplication. CONCLUSIONS/SIGNIFICANCE: Given that actinobacteria are unrivaled producers of biologically active compounds, such as antibiotics, it appears particularly promising to study biosynthetic genes of actinobacterial origin in fungi. The large number of 6-MSA-type PKS sequences found in lichen-forming fungi leads us hypothesize that the evolution of typical lichen compounds, such as orsellinic acid derivatives, was facilitated by the gain of this bacterial polyketide synthase.

  3. Traces of an ancient immune system - how an injured arthropod survived 465 million years ago

    Science.gov (United States)

    Schoenemann, Brigitte; Clarkson, Euan N. K.; Høyberget, Magne

    2017-01-01

    This report of a severely injured trilobite from the Middle Ordovician (~465 Ma) accords with a number of similar observations of healed lesions observed in trilobites. The uniqueness of the specimen described here is that the character of the repair-mechanisms is reflected by the secondarily built structures, which form the new surface of the ruptured compound eye. Smooth, repaired areas inside the visual surface advert to a clotting principle, rather similar to those of today, and the way in which broken parts of the exoskeleton fused during restoration seem to simulate modern samples. The irregularity and variance of newly inserted visual units indicate the severity of the injury, which, most probably, was caused by a predatory attack, presumably by a cephalopod; these were most likely, the top predators of the Ordovician. Furthermore, the state of the moulted cephalon tells the dramatic struggle of an organism that lived in the Palaeozoic, to survive. In sum the specimen analysed here is evidence of an ancient clotting mechanism not dissimilar to those of today, rapidly preventing any exsanguination and the breakdown of osmoregulation of this marine arthropod.

  4. Immune responses and immune-related gene expression profile in orange-spotted grouper after immunization with Cryptocaryon irritans vaccine.

    Science.gov (United States)

    Dan, Xue-Ming; Zhang, Tuan-Wei; Li, Yan-Wei; Li, An-Xing

    2013-03-01

    In order to elucidate the immune-protective mechanisms of inactivated Cryptocaryon irritans vaccine, different doses of C. irritans theronts were used to immunize orange-spotted grouper (Epinephelus coioides). We measured serum immobilization titer, blood leukocyte respiratory burst activity, serum alternative complement activity, and serum lysozyme activity weekly. In addition, the expression levels of immune-related genes such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), major histocompatibility complexes I and II (MHC I and II), and transforming growth factor-β1 (TGF-β1) were determined in spleen and gills. The results showed that the immobilization titer, respiratory burst activity, and alternative complement activity of immunized fish were significantly increased, and the levels of the last two immune parameters in the high-dose vaccine group were significantly higher than in the low-dose vaccine group. Serum lysozyme activity in the high-dose vaccine group was significantly higher than in the PBS control group. Vaccination also regulated host immune-related gene expression. For example, at 2- and 3- weeks post immunization, IL-1β expression in the high-dose vaccine group spleen was significantly increased. At 4-weeks post immunization, the fish were challenged with a lethal dose of parasite, and the survival rates of high-dose vaccine group, low-dose vaccine group, PBS control group, and adjuvant control group were 80%, 40%, 0%, and 10% respectively. These results demonstrate that inactivated C. irritans vaccination improves specific and nonspecific immune responses in fish, enhancing their anti-parasite ability. These effects are vaccine antigen dose-dependent.

  5. Transcriptome analysis of immune response genes induced by pathogen agonists in the Antarctic bullhead notothen Notothenia coriiceps.

    Science.gov (United States)

    Ahn, Do-Hwan; Kang, Seunghyun; Park, Hyun

    2016-08-01

    Fish are a representative population of lower vertebrates that serve as an essential link to early vertebrate evolution, and this has fueled academic interest in studying ancient vertebrate immune defense mechanisms in teleosts. Notothenia coriiceps, a typical Antarctic notothenioid teleost, has evolved to adapt to the cold and thermally stable Antarctic sea. In this study, we examined adaptive signaling pathways and immune responses to bacterial and viral pathogenic exposure in N. coriiceps. Using RNA sequencing, we investigated transcriptional differences in the liver tissues of N. coriiceps challenged with two pathogen-mimicking agonists, a bacterial ligand (heat-killed Escherichia coli, HKEB) and a viral ligand (polyinosinic:polycytidylic acid, Poly I:C). We found that 567 unique genes were up-regulated two-fold in the HKEB-exposed group, whereas 392 unique genes, including 124 immune-relevant genes, were up-regulated two-fold in the Poly I:C-exposed group. A KEGG pathway analysis of the 124 immune-relevant genes revealed that they exhibited major features of antigen processing and presentation bacterial ligand exposure, but they were down-regulated after viral ligand exposure. A quantitative real time RT-PCR analysis revealed that TNFα and TNF2, major inducers of apoptosis, were highly up-regulated after exposure to the viral ligand but not the bacterial ligand. The results suggest that the bacterial and viral ligands up-regulate inducers of different immune mechanisms in N. coriiceps liver tissue. N. coriiceps has an immune response defense strategy that uses antigen presentation against bacterial infection, but it may use a different defense, such as TNF-mediated apoptosis, against viral infection. The specific immune responses of N. coriiceps may be adaptations to the Antarctic environment and pathogens. These results will help define the characteristics of Antarctic fish and increase our understanding of their immune response mechanisms.

  6. big bang gene modulates gut immune tolerance in Drosophila

    Science.gov (United States)

    Bonnay, François; Cohen-Berros, Eva; Hoffmann, Martine; Kim, Sabrina Y.; Boulianne, Gabrielle L.; Hoffmann, Jules A.; Matt, Nicolas; Reichhart, Jean-Marc

    2013-01-01

    Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases. PMID:23378635

  7. big bang gene modulates gut immune tolerance in Drosophila.

    Science.gov (United States)

    Bonnay, François; Cohen-Berros, Eva; Hoffmann, Martine; Kim, Sabrina Y; Boulianne, Gabrielle L; Hoffmann, Jules A; Matt, Nicolas; Reichhart, Jean-Marc

    2013-02-19

    Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases.

  8. The Drosophila melanogaster methuselah gene: a novel gene with ancient functions.

    Directory of Open Access Journals (Sweden)

    Ana Rita Araújo

    Full Text Available The Drosophila melanogaster G protein-coupled receptor gene, methuselah (mth, has been described as a novel gene that is less than 10 million years old. Nevertheless, it shows a highly specific expression pattern in embryos, larvae, and adults, and has been implicated in larval development, stress resistance, and in the setting of adult lifespan, among others. Although mth belongs to a gene subfamily with 16 members in D. melanogaster, there is no evidence for functional redundancy in this subfamily. Therefore, it is surprising that a novel gene influences so many traits. Here, we explore the alternative hypothesis that mth is an old gene. Under this hypothesis, in species distantly related to D. melanogaster, there should be a gene with features similar to those of mth. By performing detailed phylogenetic, synteny, protein structure, and gene expression analyses we show that the D. virilis GJ12490 gene is the orthologous of mth in species distantly related to D. melanogaster. We also show that, in D. americana (a species of the virilis group of Drosophila, a common amino acid polymorphism at the GJ12490 orthologous gene is significantly associated with developmental time, size, and lifespan differences. Our results imply that GJ12490 orthologous genes are candidates for developmental time and lifespan differences in Drosophila in general.

  9. The evolution of TEP1, an exceptionally polymorphic immunity gene in Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Yan Guiyun

    2008-10-01

    Full Text Available Abstract Background Host-parasite coevolution can result in balancing selection, which maintains genetic variation in the susceptibility of hosts to parasites. It has been suggested that variation in a thioester-containing protein called TEP1 (AGAP010815 may alter the ability of Anopheles mosquitoes to transmit Plasmodium parasites, and high divergence between alleles of this gene suggests the possible action of long-term balancing selection. We studied whether TEP1 is a case of an ancient balanced polymorphism in an animal immune system. Results We found evidence that the high divergence between TEP1 alleles is the product of genetic exchange between TEP1 and other TEP loci, i.e. gene conversion. Additionally, some TEP1 alleles showed unexpectedly low variability. Conclusion The TEP1 gene appears to be a chimera produced from at least two other TEP loci, and the divergence between TEP1 alleles is probably not caused by long-term balancing selection, but is instead due to two independent gene conversion events from one of these other genes. Nevertheless, TEP1 still shows evidence of natural selection, in particular there appears to have been recent changes in the frequency of alleles that has diminished polymorphism within each allelic class. Although the selective force driving this dynamic was not identified, given that susceptibility to Plasmodium parasites is known to be associated with allelic variation in TEP1, these changes in allele frequencies could alter the vectoring capacity of populations.

  10. Gene Therapy of Cancer: Induction of Anti-Tumor Immunity

    Institute of Scientific and Technical Information of China (English)

    ChengQian; JesusPrieto

    2004-01-01

    Many malignancies lack satisfactory treatment and new therapeutic options are urgently needed. Gene therapy is a new modality to treat both inherited and acquired diseases based on the transfer of genetic material to the tissues. Different gene therapy strategies against cancers have been developed. A considerable number of preclinical studies indicate that a great variety of cancers are amenable to gene therapy. Among these strategies, induction of anti-tumor immunity is the most promising approach. Gene therapy with cytokines has reached unprecedented success in preclinical models of cancer. Synergistic rather than additive effects have been demonstrated by combination of gene transfer of cytokines/chemokines, costimulatory molecules or adoptive cell therapy. Recent progress in vector technology and in imaging techniques allowing in vivo assessment of gene expression will facilitate the development of clinical applications of gene therapy, a procedure which may have a notorious impact in the management of cancers lacking effective treatment. Cellular & Molecular Immunology. 2004;1(2):105-111.

  11. Co-expression and Immunity of Legionella pneumophila mip Gene and Immunoadjuvant ctxB Gene

    Institute of Scientific and Technical Information of China (English)

    Tao WANG; Jian-Ping CHEN; Hong LI; Ke-Qian ZHI; Lei ZHANG; Chun-Lei YANG; Da-Chang TAO

    2005-01-01

    The nip gene of Legionella pneumophila and the ctxB gene of Vibrio cholerae were amplified by PCR respectively. The amplified cDNA was ligated to the pcDNA3.1 (+) vector. The recombinant plasmids pcDNA3.1-mip and pcDNA3.1-ctxB were identified by restriction analysis and PCR, and further confirmed by sequencing analysis. NIH3T3 cells were transfected with pcDNA3.1-mip and pcDNA3.1-ctxB according to the Lipofection method. Transient and stable products of the co-expression of the nip gene and ctxB gene were detected by immunofluorescence and Western blotting. The results showed that NIH3T3 cells were successfully transfected, and that the transiently and stably co-expressed products can be detected in the transfected cells. To detect the humoral and cellular immune response in immunized mice induced by the coimmunization of the mip and ctxB genes, female BALB/c mice were immunized intramuscularly with pcDNA3.1-mip and pcDNA3.1-ctxB. The results showed that the specific antibody titer and the cytotoxic T-lymphocyte response for pcDNA3.1-mip immunization and co-immunization were increased compared with that of pcDNA3.1 (+) immunization. Furthermore, the specific antibody titer and cytotoxic T-lymphocyte response for co-immunization were increased compared with that of pcDNA3.1-mip immunization. Statistical analysis using one-way analysis of variance (ANOVA) showed that there was a significant difference between the groups (P<0.01). The results indicated that the ctxB gene enhanced the humoral and cellular immune response to the mip gene immunization. These findings provide experimental evidence to support the development of the L. pneumophila DNA vaccine.

  12. Gene therapy for primary adaptive immune deficiencies.

    Science.gov (United States)

    Fischer, Alain; Hacein-Bey-Abina, Salima; Cavazzana-Calvo, Marina

    2011-06-01

    Gene therapy has become an option for the treatment of 2 forms of severe combined immunodeficiency (SCID): X-linked SCID and adenosine deaminase deficiency. The results of clinical trials initiated more than 10 years ago testify to sustained and reproducible correction of the underlying T-cell immunodeficiency. Successful treatment is based on the selective advantage conferred on T-cell precursors through their expression of the therapeutic transgene. However, "first-generation" retroviral vectors also caused leukemia in some patients with X-linked SCID because of the constructs' tendency to insert into active genes (eg, proto-oncogenes) in progenitor cells and transactivate an oncogene through a viral element in the long terminal repeat. These elements have been deleted from the vectors now in use. Together with the use of lentiviral vectors (which are more potent for transducing stem cells), these advances should provide a basis for the safe and effective extension of gene therapy's indications in the field of primary immunodeficiencies. Nevertheless, this extension will have to be proved by examining the results of the ongoing clinical trials.

  13. An ancient repeat sequence in the ATP synthase beta-subunit gene of forcipulate sea stars.

    Science.gov (United States)

    Foltz, David W

    2007-11-01

    A novel repeat sequence with a conserved secondary structure is described from two nonadjacent introns of the ATP synthase beta-subunit gene in sea stars of the order Forcipulatida (Echinodermata: Asteroidea). The repeat is present in both introns of all forcipulate sea stars examined, which suggests that it is an ancient feature of this gene (with an approximate age of 200 Mya). Both stem and loop regions show high levels of sequence constraint when compared to flanking nonrepetitive intronic regions. The repeat was also detected in (1) the family Pterasteridae, order Velatida and (2) the family Korethrasteridae, order Velatida. The repeat was not detected in (1) the family Echinasteridae, order Spinulosida, (2) the family Astropectinidae, order Paxillosida, (3) the family Solasteridae, order Velatida, or (4) the family Goniasteridae, order Valvatida. The repeat lacks similarity to published sequences in unrestricted GenBank searches, and there are no significant open reading frames in the repeat or in the flanking intron sequences. Comparison via parametric bootstrapping to a published phylogeny based on 4.2 kb of nuclear and mitochondrial sequence for a subset of these species allowed the null hypothesis of a congruent phylogeny to be rejected for each repeat, when compared separately to the published phylogeny. In contrast, the flanking nonrepetitive sequences in each intron yielded separate phylogenies that were each congruent with the published phylogeny. In four species, the repeat in one or both introns has apparently experienced gene conversion. The two introns also show a correlated pattern of nucleotide substitutions, even after excluding the putative cases of gene conversion.

  14. Evolution of AGL6-like MADS box genes in grasses (Poaceae): ovule expression is ancient and palea expression is new.

    Science.gov (United States)

    Reinheimer, Renata; Kellogg, Elizabeth A

    2009-09-01

    AGAMOUS-like6 (AGL6) genes encode MIKC-type MADS box transcription factors and are closely related to SEPALLATA and AP1/FUL-like genes. Here, we focus on the molecular evolution and expression of the AGL6-like genes in grasses. We have found that AGL6-like genes are expressed in ovules, lodicules (second whorl floral organs), paleas (putative first whorl floral organs), and floral meristems. Each of these expression domains was acquired at a different time in evolution, indicating that each represents a distinct function of the gene product and that the AGL6-like genes are pleiotropic. Expression in the inner integument of the ovule appears to be an ancient expression pattern corresponding to the expression of the gene in the megasporangium and integument in gymnosperms. Expression in floral meristems appears to have been acquired in the angiosperms and expression in second whorl organs in monocots. Early in grass evolution, AGL6-like orthologs acquired a new expression domain in the palea. Stamen expression is variable. Most grasses have a single AGL6-like gene (orthologous to the rice [Oryza sativa] gene MADS6). However, rice and other species of Oryza have a second copy (orthologous to rice MADS17) that appears to be the result of an ancient duplication.

  15. The evolution of secondary organization in immune system gene libraries

    Energy Technology Data Exchange (ETDEWEB)

    Hightower, R.; Forrest, S. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Computer Science; Perelson, A.S. [Los Alamos National Lab., NM (United States)

    1993-02-01

    A binary model of the immune system is used to study the effects of evolution on the genetic encoding for antibody molecules. We report experiments which show that the evolution of immune system genes, simulated by the genetic algorithm, can induce a high degree of genetic organization even though that organization is not explicitly required by the fitness function. This secondary organization is related to the true fitness of an individual, in contrast to the sampled fitness which is the explicit fitness measure used to drive the process of evolution.

  16. Assessing the fidelity of ancient DNA sequences amplified from nuclear genes

    DEFF Research Database (Denmark)

    Binladen, Jonas; Wiuf, Carsten Henrik; Gilbert, M. Thomas P.

    2006-01-01

    To date, the field of ancient DNA has relied almost exclusively on mitochondrial DNA (mtDNA) sequences. However, a number of recent studies have reported the successful recovery of ancient nuclear DNA (nuDNA) sequences, thereby allowing the characterization of genetic loci directly involved in ph...

  17. Importance of immune response genes in hemophilia A

    Directory of Open Access Journals (Sweden)

    Josiane Bazzo de Alencar

    2013-01-01

    Full Text Available Hemophilia A is a disease caused by a deficiency of coagulation factor VIII resulting from genetic inheritance linked to chromosome X. One treatment option is the administration of plasma or recombinant FVIII. However, some patients develop inhibitors or antibodies against this factor. Inhibitors are alloantibodies that bind to the epitope of factor VIII causing it to be recognized by the immune system as a foreign peptide. This is the most serious complication in hemophilia patients in respect to replacement therapy. Some studies have suggested that genetic factors influence the development of factor VIII inhibitors such as ethnicity, family history, mutations in the factor VIII gene and in genes of the immune system. The aim of this study was to conduct a literature review to assess the influence of genetic factors of immune response genes, especially genes of the major histocompatibility complex and cytokines, which may be related to the development of factor VIII inhibitors in hemophilia A patients. Understanding these risk factors will help to determine future differential treatment in the control and prevention of the development of inhibitors.

  18. Improving Adenovirus Based Gene Transfer: Strategies to Accomplish Immune Evasion

    Directory of Open Access Journals (Sweden)

    Andrea Amalfitano

    2010-09-01

    Full Text Available Adenovirus (Ad based gene transfer vectors continue to be the platform of choice for an increasing number of clinical trials worldwide. In fact, within the last five years, the number of clinical trials that utilize Ad based vectors has doubled, indicating growing enthusiasm for the numerous positive characteristics of this gene transfer platform. For example, Ad vectors can be easily and relatively inexpensively produced to high titers in a cGMP compliant manner, can be stably stored and transported, and have a broad applicability for a wide range of clinical conditions, including both gene therapy and vaccine applications. Ad vector based gene transfer will become more useful as strategies to counteract innate and/or pre-existing adaptive immune responses to Ads are developed and confirmed to be efficacious. The approaches attempting to overcome these limitations can be divided into two broad categories: pre-emptive immune modulation of the host, and selective modification of the Ad vector itself. The first category of methods includes the use of immunosuppressive drugs or specific compounds to block important immune pathways, which are known to be induced by Ads. The second category comprises several innovative strategies inclusive of: (1 Ad-capsid-display of specific inhibitors or ligands; (2 covalent modifications of the entire Ad vector capsid moiety; (3 the use of tissue specific promoters and local administration routes; (4 the use of genome modified Ads; and (5 the development of chimeric or alternative serotype Ads. This review article will focus on both the promise and the limitations of each of these immune evasion strategies, and in the process delineate future directions in developing safer and more efficacious Ad-based gene transfer strategies.

  19. Genes, Genomes, and Assemblages of Modern Anoxygenic Photosynthetic Cyanobacteria as Proxies for Ancient Cyanobacteria

    Science.gov (United States)

    Grim, S. L.; Dick, G.

    2015-12-01

    Oxygenic photosynthetic (OP) cyanobacteria were responsible for the production of O2 during the Proterozoic. However, the extent and degree of oxygenation of the atmosphere and oceans varied for over 2 Ga after OP cyanobacteria first appeared in the geologic record. Cyanobacteria capable of anoxygenic photosynthesis (AP) may have altered the trajectory of oxygenation, yet the scope of their role in the Proterozoic is not well known. Modern cyanobacterial populations from Middle Island Sinkhole (MIS), Michigan and a handful of cultured cyanobacterial strains, are capable of OP and AP. With their metabolic versatility, these microbes may approximate ancient cyanobacterial assemblages that mediated Earth's oxygenation. To better characterize the taxonomic and genetic signatures of these modern AP/OP cyanobacteria, we sequenced 16S rRNA genes and conducted 'omics analyses on cultured strains, lab mesocosms, and MIS cyanobacterial mat samples collected over multiple years from May to September. Diversity in the MIS cyanobacterial mat is low, with one member of Oscillatoriales dominating at all times. However, Planktothrix members are more abundant in the cyanobacterial community in late summer and fall. The shift in cyanobacterial community composition may be linked to seasonally changing light intensity. In lab mesocosms of MIS microbial mat, we observed a shift in dominant cyanobacterial groups as well as the emergence of Chlorobium, bacteria that specialize in AP. These shifts in microbial community composition and metabolism are likely in response to changing environmental parameters such as the availability of light and sulfide. Further research is needed to understand the impacts of the changing photosynthetic community on oxygen production and the entire microbial consortium. Our study connects genes and genomes of AP cyanobacteria to their environment, and improves understanding of cyanobacterial metabolic strategies that may have shaped Earth's redox evolution.

  20. Identifying genes that mediate anthracyline toxicity in immune cells

    Directory of Open Access Journals (Sweden)

    Amber eFrick

    2015-04-01

    Full Text Available The role of the immune system in response to chemotherapeutic agents remains elusive. The interpatient variability observed in immune and chemotherapeutic cytotoxic responses is likely, at least in part, due to complex genetic differences. Through the use of a panel of genetically diverse mouse inbred strains, we developed a drug screening platform aimed at identifying genes underlying these chemotherapeutic cytotoxic effects on immune cells. Using genome-wide association studies (GWAS, we identified four genome-wide significant quantitative trait loci (QTL that contributed to the sensitivity of doxorubicin and idarubicin in immune cells. Of particular interest, a locus on chromosome 16 was significantly associated with cell viability following idarubicin administration (p = 5.01x10-8. Within this QTL lies App, which encodes amyloid beta precursor protein. Comparison of dose-response curves verified that T-cells in App knockout mice were more sensitive to idarubicin than those of C57BL/6J control mice (p < 0.05.In conclusion, the cellular screening approach coupled with GWAS led to the identification and subsequent validation of a gene involved in T-cell viability after idarubicin treatment. Previous studies have suggested a role for App in in vitro and in vivo cytotoxicity to anticancer agents; the overexpression of App enhances resistance, while the knockdown of this gene is deleterious to cell viability. Thus, further investigations should include performing mechanistic studies, validating additional genes from the GWAS, including Ppfia1 and Ppfibp1, and ultimately translating the findings to in vivo and human studies.

  1. Immune response gene expression increases in the aging murine hippocampus.

    Science.gov (United States)

    Terao, Akira; Apte-Deshpande, Anjali; Dousman, Linda; Morairty, Stephen; Eynon, Barrett P; Kilduff, Thomas S; Freund, Yvonne R

    2002-11-01

    Using GeneChips, basal and lipopolysaccharide (LPS)-induced gene expression was examined in the hippocampus of 3-, 12-, 18- and 24-month-old male C57BL/6 mice to identify genes whose altered expression could influence hippocampal function in advanced age. Gene elements that changed with age were selected with a t-statistic and specific expression patterns were confirmed with real-time quantitative PCR. Basal expression of 128 gene elements clearly changed with age in the hippocampus. Fourteen gene elements showed increased expression with age and these increases were validated after LPS stimulation. Major histocompatibility complex (MHC) TL region and thymic shared antigen (TSA-1) gene expression increased, suggesting T cell activation in the hippocampus with age. Cytokine (interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha) and chemokine (macrophage chemotactic protein-1) expression increased sharply in 24-month-old mice. These findings are in contrast to a decrease in the peripheral immune response, documented by decreased T cell proliferation and decreased ratios of naive to memory T cells. Age-related increases in inflammatory potential in the brain may contribute to neurodegenerative diseases of the aged.

  2. Characteristic and functional analysis of toll-like receptors (TLRs in the lophotrocozoan, Crassostrea gigas, reveals ancient origin of TLR-mediated innate immunity.

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    Full Text Available The evolution of TLR-mediated innate immunity is a fundamental question in immunology. Here, we report the characterization and functional analysis of four TLR members in the lophotrochozoans Crassostreagigas (CgTLRs. All CgTLRs bear a conserved domain organization and have a close relationship with TLRs in ancient non-vertebrate chordates. In HEK293 cells, every CgTLR could constitutively activate NF-κB responsive reporter, but none of the PAMPs tested could stimulate CgTLR-activated NF-κB induction. Subcellular localization showed that CgTLR members have similar and dual distribution on late endosomes and plasma membranes. Moreover, CgTLRs and CgMyD88 mRNA show a consistent response to multiple PAMP challenges in oyster hemocytes. As CgTLR-mediated NF-κB activation is dependent on CgMyD88, we designed a blocking peptide for CgTLR signaling that would inhibit CgTLR-CgMyD88 dependent NF-κB activation. This was used to demonstrate that a Vibrio parahaemolyticus infection-induced enhancement of degranulation and increase of cytokines TNF mRNA in hemocytes, could be inhibited by blocking CgTLR signaling. In summary, our study characterized the primitive TLRs in the lophotrocozoan C. gigas and demonstrated a fundamental role of TLR signaling in infection-induced hemocyte activation. This provides further evidence for an ancient origin of TLR-mediated innate immunity.

  3. Ancient expansion of the hox cluster in lepidoptera generated four homeobox genes implicated in extra-embryonic tissue formation.

    Science.gov (United States)

    Ferguson, Laura; Marlétaz, Ferdinand; Carter, Jean-Michel; Taylor, William R; Gibbs, Melanie; Breuker, Casper J; Holland, Peter W H

    2014-10-01

    Gene duplications within the conserved Hox cluster are rare in animal evolution, but in Lepidoptera an array of divergent Hox-related genes (Shx genes) has been reported between pb and zen. Here, we use genome sequencing of five lepidopteran species (Polygonia c-album, Pararge aegeria, Callimorpha dominula, Cameraria ohridella, Hepialus sylvina) plus a caddisfly outgroup (Glyphotaelius pellucidus) to trace the evolution of the lepidopteran Shx genes. We demonstrate that Shx genes originated by tandem duplication of zen early in the evolution of large clade Ditrysia; Shx are not found in a caddisfly and a member of the basally diverging Hepialidae (swift moths). Four distinct Shx genes were generated early in ditrysian evolution, and were stably retained in all descendent Lepidoptera except the silkmoth which has additional duplications. Despite extensive sequence divergence, molecular modelling indicates that all four Shx genes have the potential to encode stable homeodomains. The four Shx genes have distinct spatiotemporal expression patterns in early development of the Speckled Wood butterfly (Pararge aegeria), with ShxC demarcating the future sites of extraembryonic tissue formation via strikingly localised maternal RNA in the oocyte. All four genes are also expressed in presumptive serosal cells, prior to the onset of zen expression. Lepidopteran Shx genes represent an unusual example of Hox cluster expansion and integration of novel genes into ancient developmental regulatory networks.

  4. Gene Expression by PBMC in Primary Sclerosing Cholangitis: Evidence for Dysregulation of Immune Mediated Genes

    Directory of Open Access Journals (Sweden)

    Christopher A. Aoki

    2006-01-01

    Full Text Available Primary sclerosing cholangitis (PSC is a chronic disease of the bile ducts characterized by an inflammatory infiltrate and obliterative fibrosis. The precise role of the immune system in the pathogenesis of PSC remains unknown. We used RNA microarray analysis to identify immune-related genes and pathways that are differentially expressed in PSC. Messenger RNA (mRNA from peripheral blood mononuclear cells (PBMC was isolated from both patients with PSC and age and sex matched healthy controls. Samples from 5 PSC patients and 5 controls were analyzed by microarray and based upon rigorous statistical analysis of the data, relevant genes were chosen for confirmation by RT-PCR in 10 PSC patients and 10 controls. Using unsupervised hierarchical clustering, gene expression in PSC was statistically different from our control population. Interestingly, genes within the IL-2 receptor beta, IL-6 and MAP Kinase pathways were found to be differently expressed in patients with PSC compared to controls. Further, individual genes, TNF-α induced protein 6 (TNFaip6 and membrane-spanning 4-domains, subfamily A (ms4a were found to be upregulated in PSC while similar to Mothers against decapentaplegic homolog 5 (SMAD 5 was downregulated. In conclusion, several immune-related pathways and genes were differentially expressed in PSC compared to control patients, giving further evidence that this disease is systemic and immune-mediated.

  5. Y-linked variation for autosomal immune gene regulation has the potential to shape sexually dimorphic immunity.

    Science.gov (United States)

    Kutch, Ian C; Fedorka, Kenneth M

    2015-12-01

    Sexually dimorphic phenotypes arise from the differential expression of male and female shared genes throughout the genome. Unfortunately, the underlying molecular mechanisms by which dimorphic regulation manifests and evolves are unclear. Recent work suggests that Y-chromosomes may play an important role, given that Drosophila melanogaster Ys were shown to influence the regulation of hundreds of X and autosomal genes. For Y-linked regulatory variation (YRV) to facilitate sexually dimorphic evolution, however, it must exist within populations (where selection operates) and influence male fitness. These criteria have seldom been investigated, leaving the potential for dimorphic evolution via YRV unclear. Interestingly, male and female D. melanogaster differ in immune gene regulation. Furthermore, immune gene regulation appears to be influenced by the Y-chromosome, suggesting it may contribute to dimorphic immune evolution. We address this possibility by introgressing Y-chromosomes from a single wild population into an isogenic background (to create Y-lines) and assessing immune gene regulation and bacterial defence. We found that Y-line males differed in their immune gene regulation and their ability to defend against Serratia marcescens. Moreover, gene expression and bacterial defence were positively genetically correlated. These data indicate that the Y-chromosome has the potential to shape the evolution of sexually dimorphic immunity in this system.

  6. Ancient DNA

    DEFF Research Database (Denmark)

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair......ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair...

  7. Royal Decree: Gene Expression in Trans-Generationally Immune Primed Bumblebee Workers Mimics a Primary Immune Response.

    Directory of Open Access Journals (Sweden)

    Seth M Barribeau

    Full Text Available Invertebrates lack the cellular and physiological machinery of the adaptive immune system, but show specificity in their immune response and immune priming. Functionally, immune priming is comparable to immune memory in vertebrates. Individuals that have survived exposure to a given parasite are better protected against subsequent exposures. Protection may be cross-reactive, but demonstrations of persistent and specific protection in invertebrates are increasing. This immune priming can cross generations ("trans-generational" immune priming, preparing offspring for the prevailing parasite environment. While these phenomena gain increasing support, the mechanistic foundations underlying such immune priming, both within and across generations, remain largely unknown. Using a transcriptomic approach, we show that exposing bumblebee queens with an injection of heat-killed bacteria, known to induce trans-generational immune priming, alters daughter (worker gene expression. Daughters, even when unexposed themselves, constitutively express a core set of the genes induced upon direct bacterial exposure, including high expression of antimicrobial peptides, a beta-glucan receptor protein implicated in bacterial recognition and the induction of the toll signaling pathway, and slit-3 which is important in honeybee immunity. Maternal exposure results in a distinct upregulation of their daughters' immune system, with a signature overlapping with the induced individual response to a direct exposure. This will mediate mother-offspring protection, but also associated costs related to reconfiguration of constitutive immune expression. Moreover, identification of conserved immune pathways in memory-like responses has important implications for our understanding of the innate immune system, including the innate components in vertebrates, which share many of these pathways.

  8. Passive Immunization against HIV/AIDS by Antibody Gene Transfer

    Directory of Open Access Journals (Sweden)

    Lili Yang

    2014-01-01

    Full Text Available Despite tremendous efforts over the course of many years, the quest for an effective HIV vaccine by the classical method of active immunization remains largely elusive. However, two recent studies in mice and macaques have now demonstrated a new strategy designated as Vectored ImmunoProphylaxis (VIP, which involves passive immunization by viral vector-mediated delivery of genes encoding broadly neutralizing antibodies (bnAbs for in vivo expression. Robust protection against virus infection was observed in preclinical settings when animals were given VIP to express monoclonal neutralizing antibodies. This unorthodox approach raises new promise for combating the ongoing global HIV pandemic. In this article, we survey the status of antibody gene transfer, review the revolutionary progress on isolation of extremely bnAbs, detail VIP experiments against HIV and its related virus conduced in humanized mice and macaque monkeys, and discuss the pros and cons of VIP and its opportunities and challenges towards clinical applications to control HIV/AIDS endemics.

  9. The identification of immune genes in the milk transcriptome of the Tasmanian devil (Sarcophilus harrisii

    Directory of Open Access Journals (Sweden)

    Rehana V. Hewavisenti

    2016-01-01

    Full Text Available Tasmanian devil (Sarcophilus harrisii pouch young, like other marsupials, are born underdeveloped and immunologically naïve, and are unable to mount an adaptive immune response. The mother’s milk provides nutrients for growth and development as well as providing passive immunity. To better understand immune response in this endangered species, we set out to characterise the genes involved in passive immunity by sequencing and annotating the transcriptome of a devil milk sample collected during mid-lactation. At mid-lactation we expect the young to have heightened immune responses, as they have emerged from the pouch, encountering new pathogens. A total of 233,660 transcripts were identified, including approximately 17,827 unique protein-coding genes and 846 immune genes. The most highly expressed transcripts were dominated by milk protein genes such as those encoding early lactation protein, late lactation proteins, α-lactalbumin, α-casein and β-casein. There were numerous highly expressed immune genes including lysozyme, whey acidic protein, ferritin and major histocompatibility complex I and II. Genes encoding immunoglobulins, antimicrobial peptides, chemokines and immune cell receptors were also identified. The array of immune genes identified in this study reflects the importance of the milk in providing immune protection to Tasmanian devil young and provides the first insight into Tasmanian devil milk.

  10. Sequential displacement of Type VI Secretion System effector genes leads to evolution of diverse immunity gene arrays in Vibrio cholerae

    Science.gov (United States)

    Kirchberger, Paul C.; Unterweger, Daniel; Provenzano, Daniele; Pukatzki, Stefan; Boucher, Yan

    2017-01-01

    Type VI secretion systems (T6SS) enable bacteria to engage neighboring cells in contact-dependent competition. In Vibrio cholerae, three chromosomal clusters each encode a pair of effector and immunity genes downstream of those encoding the T6SS structural machinery for effector delivery. Different combinations of effector-immunity proteins lead to competition between strains of V. cholerae, which are thought to be protected only from the toxicity of their own effectors. Screening of all publically available V. cholerae genomes showed that numerous strains possess long arrays of orphan immunity genes encoded in the 3′ region of their T6SS clusters. Phylogenetic analysis reveals that these genes are highly similar to those found in the effector-immunity pairs of other strains, indicating acquisition by horizontal gene transfer. Extensive genomic comparisons also suggest that successive addition of effector-immunity gene pairs replaces ancestral effectors, yet retains the cognate immunity genes. The retention of old immunity genes perhaps provides protection against nearby kin bacteria in which the old effector was not replaced. This mechanism, combined with frequent homologous recombination, is likely responsible for the high diversity of T6SS effector-immunity gene profiles observed for V. cholerae and closely related species. PMID:28327641

  11. Biological Consequences of Ancient Gene Acquisition and Duplication in the Large Genome of Candidatus Solibacter usitatus Ellin6076

    Energy Technology Data Exchange (ETDEWEB)

    Challacombe, Jean F [ORNL; Eichorst, Stephanie A [Los Alamos National Laboratory (LANL); Hauser, Loren John [ORNL; Land, Miriam L [ORNL; Xie, Gary [Los Alamos National Laboratory (LANL); Kuske, Cheryl R [Los Alamos National Laboratory (LANL)

    2011-01-01

    Members of the bacterial phylum Acidobacteria are widespread in soils and sediments worldwide, and are abundant in many soils. Acidobacteria are challenging to culture in vitro, and many basic features of their biology and functional roles in the soil have not been determined. Candidatus Solibacter usitatus strain Ellin6076 has a 9.9 Mb genome that is approximately 2 5 times as large as the other sequenced Acidobacteria genomes. Bacterial genome sizes typically range from 0.5 to 10 Mb and are influenced by gene duplication, horizontal gene transfer, gene loss and other evolutionary processes. Our comparative genome analyses indicate that the Ellin6076 large genome has arisen by horizontal gene transfer via ancient bacteriophage and/or plasmid-mediated transduction, and widespread small-scale gene duplications, resulting in an increased number of paralogs. Low amino acid sequence identities among functional group members, and lack of conserved gene order and orientation in regions containing similar groups of paralogs, suggest that most of the paralogs are not the result of recent duplication events. The genome sizes of additional cultured Acidobacteria strains were estimated using pulsed-field gel electrophoresis to determine the prevalence of the large genome trait within the phylum. Members of subdivision 3 had larger genomes than those of subdivision 1, but none were as large as the Ellin6076 genome. The large genome of Ellin6076 may not be typical of the phylum, and encodes traits that could provide a selective metabolic, defensive and regulatory advantage in the soil environment.

  12. Biological consequences of ancient gene acquisition and duplication in the large genome soil bacterium, ""solibacter usitatus"" strain Ellin6076

    Energy Technology Data Exchange (ETDEWEB)

    Challacombe, Jean F [Los Alamos National Laboratory; Eichorst, Stephanie A [Los Alamos National Laboratory; Xie, Gary [Los Alamos National Laboratory; Kuske, Cheryl R [Los Alamos National Laboratory; Hauser, Loren [ORNL; Land, Miriam [ORNL

    2009-01-01

    Bacterial genome sizes range from ca. 0.5 to 10Mb and are influenced by gene duplication, horizontal gene transfer, gene loss and other evolutionary processes. Sequenced genomes of strains in the phylum Acidobacteria revealed that 'Solibacter usistatus' strain Ellin6076 harbors a 9.9 Mb genome. This large genome appears to have arisen by horizontal gene transfer via ancient bacteriophage and plasmid-mediated transduction, as well as widespread small-scale gene duplications. This has resulted in an increased number of paralogs that are potentially ecologically important (ecoparalogs). Low amino acid sequence identities among functional group members and lack of conserved gene order and orientation in the regions containing similar groups of paralogs suggest that most of the paralogs were not the result of recent duplication events. The genome sizes of cultured subdivision 1 and 3 strains in the phylum Acidobacteria were estimated using pulsed-field gel electrophoresis to determine the prevalence of the large genome trait within the phylum. Members of subdivision 1 were estimated to have smaller genome sizes ranging from ca. 2.0 to 4.8 Mb, whereas members of subdivision 3 had slightly larger genomes, from ca. 5.8 to 9.9 Mb. It is hypothesized that the large genome of strain Ellin6076 encodes traits that provide a selective metabolic, defensive and regulatory advantage in the variable soil environment.

  13. Parental vitamin deficiency affects the embryonic gene expression of immune-, lipid transport- and apolipoprotein genes

    Science.gov (United States)

    Skjærven, Kaja H.; Jakt, Lars Martin; Dahl, John Arne; Espe, Marit; Aanes, Håvard; Hamre, Kristin; Fernandes, Jorge M. O.

    2016-10-01

    World Health Organization is concerned for parental vitamin deficiency and its effect on offspring health. This study examines the effect of a marginally dietary-induced parental one carbon (1-C) micronutrient deficiency on embryonic gene expression using zebrafish. Metabolic profiling revealed a reduced 1-C cycle efficiency in F0 generation. Parental deficiency reduced the fecundity and a total of 364 genes were differentially expressed in the F1 embryos. The upregulated genes (53%) in the deficient group were enriched in biological processes such as immune response and blood coagulation. Several genes encoding enzymes essential for the 1-C cycle and for lipid transport (especially apolipoproteins) were aberrantly expressed. We show that a parental diet deficient in micronutrients disturbs the expression in descendant embryos of genes associated with overall health, and result in inherited aberrations in the 1-C cycle and lipid metabolism. This emphasises the importance of parental micronutrient status for the health of the offspring.

  14. Ancient DNA reveals prehistoric gene-flow from siberia in the complex human population history of North East Europe.

    Science.gov (United States)

    Der Sarkissian, Clio; Balanovsky, Oleg; Brandt, Guido; Khartanovich, Valery; Buzhilova, Alexandra; Koshel, Sergey; Zaporozhchenko, Valery; Gronenborn, Detlef; Moiseyev, Vyacheslav; Kolpakov, Eugen; Shumkin, Vladimir; Alt, Kurt W; Balanovska, Elena; Cooper, Alan; Haak, Wolfgang

    2013-01-01

    North East Europe harbors a high diversity of cultures and languages, suggesting a complex genetic history. Archaeological, anthropological, and genetic research has revealed a series of influences from Western and Eastern Eurasia in the past. While genetic data from modern-day populations is commonly used to make inferences about their origins and past migrations, ancient DNA provides a powerful test of such hypotheses by giving a snapshot of the past genetic diversity. In order to better understand the dynamics that have shaped the gene pool of North East Europeans, we generated and analyzed 34 mitochondrial genotypes from the skeletal remains of three archaeological sites in northwest Russia. These sites were dated to the Mesolithic and the Early Metal Age (7,500 and 3,500 uncalibrated years Before Present). We applied a suite of population genetic analyses (principal component analysis, genetic distance mapping, haplotype sharing analyses) and compared past demographic models through coalescent simulations using Bayesian Serial SimCoal and Approximate Bayesian Computation. Comparisons of genetic data from ancient and modern-day populations revealed significant changes in the mitochondrial makeup of North East Europeans through time. Mesolithic foragers showed high frequencies and diversity of haplogroups U (U2e, U4, U5a), a pattern observed previously in European hunter-gatherers from Iberia to Scandinavia. In contrast, the presence of mitochondrial DNA haplogroups C, D, and Z in Early Metal Age individuals suggested discontinuity with Mesolithic hunter-gatherers and genetic influx from central/eastern Siberia. We identified remarkable genetic dissimilarities between prehistoric and modern-day North East Europeans/Saami, which suggests an important role of post-Mesolithic migrations from Western Europe and subsequent population replacement/extinctions. This work demonstrates how ancient DNA can improve our understanding of human population movements across

  15. Ancient DNA reveals prehistoric gene-flow from siberia in the complex human population history of North East Europe.

    Directory of Open Access Journals (Sweden)

    Clio Der Sarkissian

    Full Text Available North East Europe harbors a high diversity of cultures and languages, suggesting a complex genetic history. Archaeological, anthropological, and genetic research has revealed a series of influences from Western and Eastern Eurasia in the past. While genetic data from modern-day populations is commonly used to make inferences about their origins and past migrations, ancient DNA provides a powerful test of such hypotheses by giving a snapshot of the past genetic diversity. In order to better understand the dynamics that have shaped the gene pool of North East Europeans, we generated and analyzed 34 mitochondrial genotypes from the skeletal remains of three archaeological sites in northwest Russia. These sites were dated to the Mesolithic and the Early Metal Age (7,500 and 3,500 uncalibrated years Before Present. We applied a suite of population genetic analyses (principal component analysis, genetic distance mapping, haplotype sharing analyses and compared past demographic models through coalescent simulations using Bayesian Serial SimCoal and Approximate Bayesian Computation. Comparisons of genetic data from ancient and modern-day populations revealed significant changes in the mitochondrial makeup of North East Europeans through time. Mesolithic foragers showed high frequencies and diversity of haplogroups U (U2e, U4, U5a, a pattern observed previously in European hunter-gatherers from Iberia to Scandinavia. In contrast, the presence of mitochondrial DNA haplogroups C, D, and Z in Early Metal Age individuals suggested discontinuity with Mesolithic hunter-gatherers and genetic influx from central/eastern Siberia. We identified remarkable genetic dissimilarities between prehistoric and modern-day North East Europeans/Saami, which suggests an important role of post-Mesolithic migrations from Western Europe and subsequent population replacement/extinctions. This work demonstrates how ancient DNA can improve our understanding of human population

  16. Population Structure of UK Biobank and Ancient Eurasians Reveals Adaptation at Genes Influencing Blood Pressure.

    Science.gov (United States)

    Galinsky, Kevin J; Loh, Po-Ru; Mallick, Swapan; Patterson, Nick J; Price, Alkes L

    2016-11-03

    Analyzing genetic differences between closely related populations can be a powerful way to detect recent adaptation. The very large sample size of the UK Biobank is ideal for using population differentiation to detect selection and enables an analysis of the UK population structure at fine resolution. In this study, analyses of 113,851 UK Biobank samples showed that population structure in the UK is dominated by five principal components (PCs) spanning six clusters: Northern Ireland, Scotland, northern England, southern England, and two Welsh clusters. Analyses of ancient Eurasians revealed that populations in the northern UK have higher levels of Steppe ancestry and that UK population structure cannot be explained as a simple mixture of Celts and Saxons. A scan for unusual population differentiation along the top PCs identified a genome-wide-significant signal of selection at the coding variant rs601338 in FUT2 (p = 9.16 × 10(-9)). In addition, by combining evidence of unusual differentiation within the UK with evidence from ancient Eurasians, we identified genome-wide-significant (p = 5 × 10(-8)) signals of recent selection at two additional loci: CYP1A2-CSK and F12. We detected strong associations between diastolic blood pressure in the UK Biobank and both the variants with selection signals at CYP1A2-CSK (p = 1.10 × 10(-19)) and the variants with ancient Eurasian selection signals at the ATXN2-SH2B3 locus (p = 8.00 × 10(-33)), implicating recent adaptation related to blood pressure.

  17. Differential expression of immune and stress genes in the skin of Atlantic cod (Gadus morhua)

    NARCIS (Netherlands)

    Caipang, C.M.A.; Lazado, C.C.; Brinchmann, M.; Rombout, J.H.W.M.; Kiron, V.

    2011-01-01

    The present study describes the transcriptional profiles of selected immune and stress genes with putative important roles in the cutaneous immune defense of Atlantic cod (Gadus morhua). In addition it shows differential expression of many genes at the dorsal and ventral sides of fish, in general ha

  18. Toward a new history and geography of human genes informed by ancient DNA.

    Science.gov (United States)

    Pickrell, Joseph K; Reich, David

    2014-09-01

    Genetic information contains a record of the history of our species, and technological advances have transformed our ability to access this record. Many studies have used genome-wide data from populations today to learn about the peopling of the globe and subsequent adaptation to local conditions. Implicit in this research is the assumption that the geographic locations of people today are informative about the geographic locations of their ancestors in the distant past. However, it is now clear that long-range migration, admixture, and population replacement subsequent to the initial out-of-Africa expansion have altered the genetic structure of most of the world's human populations. In light of this we argue that it is time to critically reevaluate current models of the peopling of the globe, as well as the importance of natural selection in determining the geographic distribution of phenotypes. We specifically highlight the transformative potential of ancient DNA. By accessing the genetic make-up of populations living at archaeologically known times and places, ancient DNA makes it possible to directly track migrations and responses to natural selection.

  19. The Neural/Immune Gene Ontology: clipping the Gene Ontology for neurological and immunological systems

    Directory of Open Access Journals (Sweden)

    Rubin Eitan

    2010-09-01

    Full Text Available Abstract Background The Gene Ontology (GO is used to describe genes and gene products from many organisms. When used for functional annotation of microarray data, GO is often slimmed by editing so that only higher level terms remain. This practice is designed to improve the summarizing of experimental results by grouping high level terms and the statistical power of GO term enrichment analysis. Here, we propose a new approach to editing the gene ontology, clipping, which is the editing of GO according to biological relevance. Creation of a GO subset by clipping is achieved by removing terms (from all hierarchal levels if they are not functionally relevant to a given domain of interest. Terms that are located in levels higher to relevant terms are kept, thus, biologically irrelevant terms are only removed if they are not parental to terms that are relevant. Results Using this approach, we have created the Neural-Immune Gene Ontology (NIGO subset of GO directed for neurological and immunological systems. We tested the performance of NIGO in extracting knowledge from microarray experiments by conducting functional analysis and comparing the results to those obtained using the full GO and a generic GO slim. NIGO not only improved the statistical scores given to relevant terms, but was also able to retrieve functionally relevant terms that did not pass statistical cutoffs when using the full GO or the slim subset. Conclusions Our results validate the pipeline used to generate NIGO, suggesting it is indeed enriched with terms that are specific to the neural/immune domains. The results suggest that NIGO can enhance the analysis of microarray experiments involving neural and/or immune related systems. They also directly demonstrate the potential such a domain-specific GO has in generating meaningful hypotheses.

  20. Fight or flight? - Flight increases immune gene expression but does not help to fight an infection.

    Science.gov (United States)

    Woestmann, L; Kvist, J; Saastamoinen, M

    2017-03-01

    Flight represents a key trait in most insects, being energetically extremely demanding, yet often necessary for foraging and reproduction. Additionally, dispersal via flight is especially important for species living in fragmented landscapes. Even though, based on life-history theory, a negative relationship may be expected between flight and immunity, a number of previous studies have indicated flight to induce an increased immune response. In this study, we assessed whether induced immunity (i.e. immune gene expression) in response to 15-min forced flight treatment impacts individual survival of bacterial infection in the Glanville fritillary butterfly (Melitaea cinxia). We were able to confirm previous findings of flight-induced immune gene expression, but still observed substantially stronger effects on both gene expression levels and life span due to bacterial infection compared to flight treatment. Even though gene expression levels of some immunity-related genes were elevated due to flight, these individuals did not show increased survival of bacterial infection, indicating that flight-induced immune activation does not completely protect them from the negative effects of bacterial infection. Finally, an interaction between flight and immune treatment indicated a potential trade-off: flight treatment increased immune gene expression in naïve individuals only, whereas in infected individuals no increase in immune gene expression was induced by flight. Our results suggest that the up-regulation of immune genes upon flight is based on a general stress response rather than reflecting an adaptive response to cope with potential infections during flight or in new habitats.

  1. Identification of immune response-related genes in the Chinese oak silkworm, Antheraea pernyi by suppression subtractive hybridization.

    Science.gov (United States)

    Liu, Qiu-Ning; Zhu, Bao-Jian; Wang, Lei; Wei, Guo-Qing; Dai, Li-Shang; Lin, Kun-Zhang; Sun, Yu; Qiu, Jian-Feng; Fu, Wei-Wei; Liu, Chao-Liang

    2013-11-01

    Insects possess an innate immune system that responds to invading microorganisms. In this study, a subtractive cDNA library was constructed to screen for immune response-related genes in the fat bodies of Antheraea pernyi (Lepidoptera: Saturniidae) pupa challenged with Escherichia coli. Four hundred putative EST clones were identified by suppression subtractive hybridization (SSH), including 50 immune response-related genes, three cytoskeleton genes, eight cell cycle and apoptosis genes, five respiration and energy metabolism genes, five transport genes, 40 metabolism genes, ten stress response genes, four transcription and translation regulation genes and 77 unknown genes. To verify the reliability of the SSH data, the transcription of a set of randomly selected immune response-related genes were confirmed by semi-quantitative reverse transcription-PCR (RT-PCR) and real-time quantitative reverse transcription-PCR (qRT-PCR). These identified immune response-related genes provide insight into understanding the innate immunity in A. pernyi.

  2. Phylogenomic analyses resolve an ancient trichotomy at the base of Ischyropsalidoidea (Arachnida, Opiliones) despite high levels of gene tree conflict and unequal minority resolution frequencies.

    Science.gov (United States)

    Richart, Casey H; Hayashi, Cheryl Y; Hedin, Marshal

    2016-02-01

    Phylogenetic resolution of ancient rapid radiations has remained problematic despite major advances in statistical approaches and DNA sequencing technologies. Here we report on a combined phylogenetic approach utilizing transcriptome data in conjunction with Sanger sequence data to investigate a tandem of ancient divergences in the harvestmen superfamily Ischyropsalidoidea (Arachnida, Opiliones, Dyspnoi). We rely on Sanger sequences to resolve nodes within and between closely related genera, and use RNA-seq data from a subset of taxa to resolve a short and ancient internal branch. We use several analytical approaches to explore this succession of ancient diversification events, including concatenated and coalescent-based analyses and maximum likelihood gene trees for each locus. We evaluate the robustness of phylogenetic inferences using a randomized locus sub-sampling approach, and find congruence across these methods despite considerable incongruence across gene trees. Incongruent gene trees are not recovered in frequencies expected from a simple multispecies coalescent model, and we reject incomplete lineage sorting as the sole contributor to gene tree conflict. Using these approaches we attain robust support for higher-level phylogenetic relationships within Ischyropsalidoidea.

  3. Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers.

    Directory of Open Access Journals (Sweden)

    Jan Janouškovec

    Full Text Available Red algae have the most gene-rich plastid genomes known, but despite their evolutionary importance these genomes remain poorly sampled. Here we characterize three complete and one partial plastid genome from a diverse range of florideophytes. By unifying annotations across all available red algal plastid genomes we show they all share a highly compact and slowly-evolving architecture and uniquely rich gene complements. Both chromosome structure and gene content have changed very little during red algal diversification, and suggest that plastid-to nucleus gene transfers have been rare. Despite their ancient character, however, the red algal plastids also contain several unprecedented features, including a group II intron in a tRNA-Met gene that encodes the first example of red algal plastid intron maturase - a feature uniquely shared among florideophytes. We also identify a rare case of a horizontally-acquired proteobacterial operon, and propose this operon may have been recruited for plastid function and potentially replaced a nucleus-encoded plastid-targeted paralogue. Plastid genome phylogenies yield a fully resolved tree and suggest that plastid DNA is a useful tool for resolving red algal relationships. Lastly, we estimate the evolutionary rates among more than 200 plastid genes, and assess their usefulness for species and subspecies taxonomy by comparison to well-established barcoding markers such as cox1 and rbcL. Overall, these data demonstrates that red algal plastid genomes are easily obtainable using high-throughput sequencing of total genomic DNA, interesting from evolutionary perspectives, and promising in resolving red algal relationships at evolutionarily-deep and species/subspecies levels.

  4. Microarray expression analysis of genes involved in innate immune memory in peritoneal macrophages

    Directory of Open Access Journals (Sweden)

    Keisuke Yoshida

    2016-03-01

    Full Text Available Immunological memory has been believed to be a feature of the adaptive immune system for long period, but recent reports suggest that the innate immune system also exhibits memory-like reaction. Although evidence of innate immune memory is accumulating, no in vivo experimental data has clearly implicated a molecular mechanism, or even a cell-type, for this phenomenon. In this study of data deposited into Gene Expression Omnibus (GEO under GSE71111, we analyzed the expression profile of peritoneal macrophages isolated from mice pre-administrated with toll-like receptor (TLR ligands, mimicking pathogen infection. In these macrophages, increased expression of a group of innate immunity-related genes was sustained over a long period of time, and these genes overlapped with ATF7-regulated genes. We conclude that ATF7 plays an important role in innate immune memory in macrophages.

  5. Ancient signals: comparative genomics of plant MAPK and MAPKK gene families

    DEFF Research Database (Denmark)

    Hamel, Louis-Philippe; Nicole, Marie-Claude; Sritubtim, Somrudee;

    2006-01-01

    MAPK signal transduction modules play crucial roles in regulating many biological processes in plants, and their components are encoded by highly conserved genes. The recent availability of genome sequences for rice and poplar now makes it possible to examine how well the previously described...... Arabidopsis MAPK and MAPKK gene family structures represent the broader evolutionary situation in plants, and analysis of gene expression data for MPK and MKK genes in all three species allows further refinement of those families, based on functionality. The Arabidopsis MAPK nomenclature appears sufficiently...... robust to allow it to be usefully extended to other well-characterized plant systems....

  6. Identification of the Weevil immune genes and their expression in the bacteriome tissue

    Directory of Open Access Journals (Sweden)

    Moya Andrés

    2008-10-01

    Full Text Available Abstract Background Persistent infections with mutualistic intracellular bacteria (endosymbionts are well represented in insects and are considered to be a driving force in evolution. However, while pathogenic relationships have been well studied over the last decades very little is known about the recognition of the endosymbionts by the host immune system and the mechanism that limits their infection to the bacteria-bearing host tissue (the bacteriome. Results To study bacteriome immune specificity, we first identified immune-relevant genes of the weevil Sitophilus zeamais by using suppressive subtractive hybridization (SSH and then analyzed their full-length coding sequences obtained by RACE-PCR experiments. We then measured immune gene expression in the bacteriome, and in the aposymbiotic larvae following S. zeamais primary endosymbiont (SZPE injection into the hemolymph, in order to consider the questions of bacteriome immune specificity and the insect humoral response to symbionts. We show that larval challenge with the endosymbiont results in a significant induction of antibacterial peptide genes, providing evidence that, outside the bacteriome, SZPE are recognized as microbial intruders by the host. In the bacteriome, gene expression analysis shows the overexpression of one antibacterial peptide from the coleoptericin family and, intriguingly, homologs to genes described as immune modulators (that is, PGRP-LB, Tollip were also shown to be highly expressed in the bacteriome. Conclusion The current data provide the first description of immune gene expression in the insect bacteriome. Compared with the insect humoral response to SZPE, the bacteriome expresses few genes among those investigated in this work. This local immune gene expression may help to maintain the endosymbiont in the bacteriome and prevent its invasion into insect tissues. Further investigations of the coleoptericin, the PGRP and the Tollip genes should elucidate the role

  7. A new era of targeting the ancient gatekeepers of the immune system: toll-like agonists in the treatment of allergic rhinitis and asthma.

    Science.gov (United States)

    Aryan, Zahra; Holgate, Stephen T; Radzioch, Danuta; Rezaei, Nima

    2014-01-01

    Toll-like receptors (TLR) belong to a large family of pattern recognition receptors known as the ancient 'gatekeepers' of the immune system. TLRs are located at the first line of defense against invading pathogens as well as aeroallergens, making them interesting targets to modulate the natural history of respiratory allergy. Agonists of TLRs have been widely employed in therapeutic or prophylactic preparations useful for asthma/allergic rhinitis (AR) patients. MPL® (a TLR4 agonist) and the CpG oligodeoxynucleotide of 1018 ISS, a TLR9 agonist, show strong immunogenicity effects that make them appropriate adjuvants for allergy vaccines. Targeting the TLRs can enhance the efficacy of specific allergen immunotherapy, currently the only available 'curative' treatment for respiratory allergies. In addition, intranasal administration of AZD8848 (a TLR7 agonist) and VTX-1463 (a TLR8 agonist) as stand-alone therapeutics have revealed efficacy in the relief of the symptoms of AR patients. No anaphylaxis has been so far reported with such compounds targeting TLRs, with the most common adverse effects being transient and local irritation (e.g. redness, swelling and pruritus). Many other compounds that target TLRs have been found to suppress airway inflammation, eosinophilia and airway hyper-responsiveness in various animal models of allergic inflammation. Indeed, in the future a wide variability of TLR agonists and even antagonists that exhibit anti-asthma/AR effects are likely to emerge.

  8. A molecular phylogeny of bivalve mollusks: ancient radiations and divergences as revealed by mitochondrial genes.

    Directory of Open Access Journals (Sweden)

    Federico Plazzi

    Full Text Available BACKGROUND: Bivalves are very ancient and successful conchiferan mollusks (both in terms of species number and geographical distribution. Despite their importance in marine biota, their deep phylogenetic relationships were scarcely investigated from a molecular perspective, whereas much valuable work has been done on taxonomy, as well as phylogeny, of lower taxa. METHODOLOGY/PRINCIPAL FINDINGS: Here we present a class-level bivalve phylogeny with a broad sample of 122 ingroup taxa, using four mitochondrial markers (MT-RNR1, MT-RNR2, MT-CO1, MT-CYB. Rigorous techniques have been exploited to set up the dataset, analyze phylogenetic signal, and infer a single final tree. In this study, we show the basal position of Opponobranchia to all Autobranchia, as well as of Palaeoheterodonta to the remaining Autobranchia, which we here propose to call Amarsipobranchia. Anomalodesmata were retrieved as monophyletic and basal to (Heterodonta + Pteriomorphia. CONCLUSIONS/SIGNIFICANCE: Bivalve morphological characters were traced onto the phylogenetic trees obtained from the molecular analysis; our analysis suggests that eulamellibranch gills and heterodont hinge are ancestral characters for all Autobranchia. This conclusion would entail a re-evaluation of bivalve symplesiomorphies.

  9. Immune genes are associated with human glioblastoma pathology and patient survival

    Directory of Open Access Journals (Sweden)

    Vauléon Elodie

    2012-09-01

    Full Text Available Abstract Background Glioblastoma (GBM is the most common and lethal primary brain tumor in adults. Several recent transcriptomic studies in GBM have identified different signatures involving immune genes associated with GBM pathology, overall survival (OS or response to treatment. Methods In order to clarify the immune signatures found in GBM, we performed a co-expression network analysis that grouped 791 immune-associated genes (IA genes in large clusters using a combined dataset of 161 GBM specimens from published databases. We next studied IA genes associated with patient survival using 3 different statistical methods. We then developed a 6-IA gene risk predictor which stratified patients into two groups with statistically significantly different survivals. We validated this risk predictor on two other Affymetrix data series, on a local Agilent data series, and using RT-Q-PCR on a local series of GBM patients treated by standard chemo-radiation therapy. Results The co-expression network analysis of the immune genes disclosed 6 powerful modules identifying innate immune system and natural killer cells, myeloid cells and cytokine signatures. Two of these modules were significantly enriched in genes associated with OS. We also found 108 IA genes linked to the immune system significantly associated with OS in GBM patients. The 6-IA gene risk predictor successfully distinguished two groups of GBM patients with significantly different survival (OS low risk: 22.3 months versus high risk: 7.3 months; p  Conclusions This study demonstrates the immune signatures found in previous GBM genomic analyses and suggests the involvement of immune cells in GBM biology. The robust 6-IA gene risk predictor should be helpful in establishing prognosis in GBM patients, in particular in those with a proneural GBM subtype, and even in the well-known good prognosis group of patients with methylated MGMT promoter-bearing tumors.

  10. Mosaic genome of endobacteria in arbuscular mycorrhizal fungi: Transkingdom gene transfer in an ancient mycoplasma-fungus association.

    Science.gov (United States)

    Torres-Cortés, Gloria; Ghignone, Stefano; Bonfante, Paola; Schüßler, Arthur

    2015-06-23

    For more than 450 million years, arbuscular mycorrhizal fungi (AMF) have formed intimate, mutualistic symbioses with the vast majority of land plants and are major drivers in almost all terrestrial ecosystems. The obligate plant-symbiotic AMF host additional symbionts, so-called Mollicutes-related endobacteria (MRE). To uncover putative functional roles of these widespread but yet enigmatic MRE, we sequenced the genome of DhMRE living in the AMF Dentiscutata heterogama. Multilocus phylogenetic analyses showed that MRE form a previously unidentified lineage sister to the hominis group of Mycoplasma species. DhMRE possesses a strongly reduced metabolic capacity with 55% of the proteins having unknown function, which reflects unique adaptations to an intracellular lifestyle. We found evidence for transkingdom gene transfer between MRE and their AMF host. At least 27 annotated DhMRE proteins show similarities to nuclear-encoded proteins of the AMF Rhizophagus irregularis, which itself lacks MRE. Nuclear-encoded homologs could moreover be identified for another AMF, Gigaspora margarita, and surprisingly, also the non-AMF Mortierella verticillata. Our data indicate a possible origin of the MRE-fungus association in ancestors of the Glomeromycota and Mucoromycotina. The DhMRE genome encodes an arsenal of putative regulatory proteins with eukaryotic-like domains, some of them encoded in putative genomic islands. MRE are highly interesting candidates to study the evolution and interactions between an ancient, obligate endosymbiotic prokaryote with its obligate plant-symbiotic fungal host. Our data moreover may be used for further targeted searches for ancient effector-like proteins that may be key components in the regulation of the arbuscular mycorrhiza symbiosis.

  11. The immune response to Trypanoplasma borreli: kinetics of immune gene expression and polyclonal lymphocyte activation

    NARCIS (Netherlands)

    Saeij, J.P.J.; Vries, de B.J.; Wiegertjes, G.F.

    2003-01-01

    Although Trypanoplasma borreli induces the production of non-specific antibodies, survival of infection is associated with the production of T. borreli specific antibodies, able to lyse this parasite in the presence of complement. During the lag phase of this acquired immune response, innate immune

  12. Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi.

    Science.gov (United States)

    Richards, Thomas A; Soanes, Darren M; Foster, Peter G; Leonard, Guy; Thornton, Christopher R; Talbot, Nicholas J

    2009-07-01

    Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries and is an important evolutionary phenomenon in the ancestry of many microbes. The role of HGT in plant evolutionary history is, however, largely unexplored. Here, we compare the genomes of six plant species with those of 159 prokaryotic and eukaryotic species and identify 1689 genes that show the highest similarity to corresponding genes from fungi. We constructed a phylogeny for all 1689 genes identified and all homolog groups available from the rice (Oryza sativa) genome (3177 gene families) and used these to define 14 candidate plant-fungi HGT events. Comprehensive phylogenetic analyses of these 14 data sets, using methods that account for site rate heterogeneity, demonstrated support for nine HGT events, demonstrating an infrequent pattern of HGT between plants and fungi. Five HGTs were fungi-to-plant transfers and four were plant-to-fungi HGTs. None of the fungal-to-plant HGTs involved angiosperm recipients. These results alter the current view of organismal barriers to HGT, suggesting that phagotrophy, the consumption of a whole cell by another, is not necessarily a prerequisite for HGT between eukaryotes. Putative functional annotation of the HGT candidate genes suggests that two fungi-to-plant transfers have added phenotypes important for life in a soil environment. Our study suggests that genetic exchange between plants and fungi is exceedingly rare, particularly among the angiosperms, but has occurred during their evolutionary history and added important metabolic traits to plant lineages.

  13. The immune gene repertoire of an important viral reservoir, the Australian black flying fox

    Directory of Open Access Journals (Sweden)

    Papenfuss Anthony T

    2012-06-01

    Full Text Available Abstract Background Bats are the natural reservoir host for a range of emerging and re-emerging viruses, including SARS-like coronaviruses, Ebola viruses, henipaviruses and Rabies viruses. However, the mechanisms responsible for the control of viral replication in bats are not understood and there is little information available on any aspect of antiviral immunity in bats. Massively parallel sequencing of the bat transcriptome provides the opportunity for rapid gene discovery. Although the genomes of one megabat and one microbat have now been sequenced to low coverage, no transcriptomic datasets have been reported from any bat species. In this study, we describe the immune transcriptome of the Australian flying fox, Pteropus alecto, providing an important resource for identification of genes involved in a range of activities including antiviral immunity. Results Towards understanding the adaptations that have allowed bats to coexist with viruses, we have de novo assembled transcriptome sequence from immune tissues and stimulated cells from P. alecto. We identified about 18,600 genes involved in a broad range of activities with the most highly expressed genes involved in cell growth and maintenance, enzyme activity, cellular components and metabolism and energy pathways. 3.5% of the bat transcribed genes corresponded to immune genes and a total of about 500 immune genes were identified, providing an overview of both innate and adaptive immunity. A small proportion of transcripts found no match with annotated sequences in any of the public databases and may represent bat-specific transcripts. Conclusions This study represents the first reported bat transcriptome dataset and provides a survey of expressed bat genes that complement existing bat genomic data. In addition, these data provide insight into genes relevant to the antiviral responses of bats, and form a basis for examining the roles of these molecules in immune response to viral infection.

  14. Characterization of innate immunity genes in the parasitic nematode Brugia malayi.

    Science.gov (United States)

    Libro, Silvia; Slatko, Barton E; Foster, Jeremy M

    The filarial nematode Brugia malayi is one of the causative agents of lymphatic filariasis, a neglected tropical disease that affects 120 million people worldwide. The limited effectiveness of available anthelmintics and the absence of a vaccine have prompted extensive research on the interaction between Brugia and its obligate bacterial endosymbiont, Wolbachia. Recent studies suggest that Wolbachia is able to manipulate its nematode host immunity but relatively little is known about the immune system of filarial nematodes. Therefore, elucidation of the mechanisms underlying the immune system of B. malayi may be useful for understanding how the symbiotic relationship is maintained and help in the identification of new drug targets. In order to characterize the main genetic pathways involved in B. malayi immunity, we exposed adult female worms to two bacterial lysates (Escherichia coli and Bacillus amyloliquefaciens), dsRNA and dsDNA. We performed transcriptome sequencing of worms exposed to each immune elicitor at two different timepoints. Gene expression analysis of untreated and immune-challenged worms was performed to characterize gene expression patterns associated with each type of immune stimulation. Our results indicate that different immune elicitors produced distinct expression patterns in B. malayi, with changes in the expression of orthologs of well-characterized C. elegans immune pathways such as insulin, TGF-β, and p38 MAPK pathways, as well as C-type lectins and several stress-response genes.

  15. Molecular Evolution of Immune Genes in the Malaria Mosquito Anopheles gambiae

    OpenAIRE

    Tovi Lehmann; Jen C C Hume; Monica Licht; Burns, Christopher S.; Kurt Wollenberg; Fred Simard; Ribeiro, Jose M. C.

    2009-01-01

    BACKGROUND: As pathogens that circumvent the host immune response are favoured by selection, so are host alleles that reduce parasite load. Such evolutionary processes leave their signature on the genes involved. Deciphering modes of selection operating on immune genes might reveal the nature of host-pathogen interactions and factors that govern susceptibility in host populations. Such understanding would have important public health implications. METHODOLOGY/FINDINGS: We analyzed polymorphis...

  16. Identification of immunity related genes to study the Physalis peruviana--Fusarium oxysporum pathosystem.

    Science.gov (United States)

    Enciso-Rodríguez, Felix E; González, Carolina; Rodríguez, Edwin A; López, Camilo E; Landsman, David; Barrero, Luz Stella; Mariño-Ramírez, Leonardo

    2013-01-01

    The Cape gooseberry (Physalisperuviana L) is an Andean exotic fruit with high nutritional value and appealing medicinal properties. However, its cultivation faces important phytosanitary problems mainly due to pathogens like Fusarium oxysporum, Cercosporaphysalidis and Alternaria spp. Here we used the Cape gooseberry foliar transcriptome to search for proteins that encode conserved domains related to plant immunity including: NBS (Nucleotide Binding Site), CC (Coiled-Coil), TIR (Toll/Interleukin-1 Receptor). We identified 74 immunity related gene candidates in P. peruviana which have the typical resistance gene (R-gene) architecture, 17 Receptor like kinase (RLKs) candidates related to PAMP-Triggered Immunity (PTI), eight (TIR-NBS-LRR, or TNL) and nine (CC-NBS-LRR, or CNL) candidates related to Effector-Triggered Immunity (ETI) genes among others. These candidate genes were categorized by molecular function (98%), biological process (85%) and cellular component (79%) using gene ontology. Some of the most interesting predicted roles were those associated with binding and transferase activity. We designed 94 primers pairs from the 74 immunity-related genes (IRGs) to amplify the corresponding genomic regions on six genotypes that included resistant and susceptible materials. From these, we selected 17 single band amplicons and sequenced them in 14 F. oxysporum resistant and susceptible genotypes. Sequence polymorphisms were analyzed through preliminary candidate gene association, which allowed the detection of one SNP at the PpIRG-63 marker revealing a nonsynonymous mutation in the predicted LRR domain suggesting functional roles for resistance.

  17. Identification of immunity related genes to study the Physalis peruviana--Fusarium oxysporum pathosystem.

    Directory of Open Access Journals (Sweden)

    Felix E Enciso-Rodríguez

    Full Text Available The Cape gooseberry (Physalisperuviana L is an Andean exotic fruit with high nutritional value and appealing medicinal properties. However, its cultivation faces important phytosanitary problems mainly due to pathogens like Fusarium oxysporum, Cercosporaphysalidis and Alternaria spp. Here we used the Cape gooseberry foliar transcriptome to search for proteins that encode conserved domains related to plant immunity including: NBS (Nucleotide Binding Site, CC (Coiled-Coil, TIR (Toll/Interleukin-1 Receptor. We identified 74 immunity related gene candidates in P. peruviana which have the typical resistance gene (R-gene architecture, 17 Receptor like kinase (RLKs candidates related to PAMP-Triggered Immunity (PTI, eight (TIR-NBS-LRR, or TNL and nine (CC-NBS-LRR, or CNL candidates related to Effector-Triggered Immunity (ETI genes among others. These candidate genes were categorized by molecular function (98%, biological process (85% and cellular component (79% using gene ontology. Some of the most interesting predicted roles were those associated with binding and transferase activity. We designed 94 primers pairs from the 74 immunity-related genes (IRGs to amplify the corresponding genomic regions on six genotypes that included resistant and susceptible materials. From these, we selected 17 single band amplicons and sequenced them in 14 F. oxysporum resistant and susceptible genotypes. Sequence polymorphisms were analyzed through preliminary candidate gene association, which allowed the detection of one SNP at the PpIRG-63 marker revealing a nonsynonymous mutation in the predicted LRR domain suggesting functional roles for resistance.

  18. Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    M Cristina Gutierrez

    2005-09-01

    Full Text Available The highly successful human pathogen Mycobacterium tuberculosis has an extremely low level of genetic variation, which suggests that the entire population resulted from clonal expansion following an evolutionary bottleneck around 35,000 y ago. Here, we show that this population constitutes just the visible tip of a much broader progenitor species, whose extant representatives are human isolates of tubercle bacilli from East Africa. In these isolates, we detected incongruence among gene phylogenies as well as mosaic gene sequences, whose individual elements are retrieved in classical M. tuberculosis. Therefore, despite its apparent homogeneity, the M. tuberculosis genome appears to be a composite assembly resulting from horizontal gene transfer events predating clonal expansion. The amount of synonymous nucleotide variation in housekeeping genes suggests that tubercle bacilli were contemporaneous with early hominids in East Africa, and have thus been coevolving with their human host much longer than previously thought. These results open novel perspectives for unraveling the molecular bases of M. tuberculosis evolutionary success.

  19. γ-Crystallins of the chicken lens: remnants of an ancient vertebrate gene family in birds.

    Science.gov (United States)

    Chen, Yingwei; Sagar, Vatsala; Len, Hoay-Shuen; Peterson, Katherine; Fan, Jianguo; Mishra, Sanghamitra; McMurtry, John; Wilmarth, Phillip A; David, Larry L; Wistow, Graeme

    2016-04-01

    γ-Crystallins, abundant proteins of vertebrate lenses, were thought to be absent from birds. However, bird genomes contain well-conserved genes for γS- and γN-crystallins. Although expressed sequence tag analysis of chicken eye found no transcripts for these genes, RT-PCR detected spliced transcripts for both genes in chicken lens, with lower levels in cornea and retina/retinal pigment epithelium. The level of mRNA for γS in chicken lens was relatively very low even though the chicken crygs gene promoter had lens-preferred activity similar to that of mouse. Chicken γS was detected by a peptide antibody in lens, but not in other ocular tissues. Low levels of γS and γN proteins were detected in chicken lens by shotgun mass spectroscopy. Water-soluble and water-insoluble lens fractions were analyzed and 1934 proteins (chicken lens proteome 30-fold. Although chicken γS is well conserved in protein sequence, it has one notable difference in leucine 16, replacing a surface glutamine conserved in other γ-crystallins, possibly affecting solubility. However, L16 and engineered Q16 versions were both highly soluble and had indistinguishable circular dichroism, tryptophan fluorescence and heat stability (melting temperature Tm ~ 65 °C) profiles. L16 has been present in birds for over 100 million years and may have been adopted for a specific protein interaction in the bird lens. However, evolution has clearly reduced or eliminated expression of ancestral γ-crystallins in bird lenses. The conservation of genes for γS- and γN-crystallins suggests they may have been preserved for reasons unrelated to the bulk properties of the lens.

  20. Oxytocin Pathway Genes: Evolutionary Ancient System Impacting on Human Affiliation, Sociality, and Psychopathology.

    Science.gov (United States)

    Feldman, Ruth; Monakhov, Mikhail; Pratt, Maayan; Ebstein, Richard P

    2016-02-01

    Oxytocin (OT), a nonapeptide signaling molecule originating from an ancestral peptide, appears in different variants across all vertebrate and several invertebrate species. Throughout animal evolution, neuropeptidergic signaling has been adapted by organisms for regulating response to rapidly changing environments. The family of OT-like molecules affects both peripheral tissues implicated in reproduction, homeostasis, and energy balance, as well as neuromodulation of social behavior, stress regulation, and associative learning in species ranging from nematodes to humans. After describing the OT-signaling pathway, we review research on the three genes most extensively studied in humans: the OT receptor (OXTR), the structural gene for OT (OXT/neurophysin-I), and CD38. Consistent with the notion that sociality should be studied from the perspective of social life at the species level, we address human social functions in relation to OT-pathway genes, including parenting, empathy, and using social relationships to manage stress. We then describe associations between OT-pathway genes with psychopathologies involving social dysfunctions such as autism, depression, or schizophrenia. Human research particularly underscored the involvement of two OXTR single nucleotide polymorphisms (rs53576, rs2254298) with fewer studies focusing on other OXTR (rs7632287, rs1042778, rs2268494, rs2268490), OXT (rs2740210, rs4813627, rs4813625), and CD38 (rs3796863, rs6449197) single nucleotide polymorphisms. Overall, studies provide evidence for the involvement of OT-pathway genes in human social functions but also suggest that factors such as gender, culture, and early environment often confound attempts to replicate first findings. We conclude by discussing epigenetics, conceptual implications within an evolutionary perspective, and future directions, especially the need to refine phenotypes, carefully characterize early environments, and integrate observations of social behavior across

  1. Ancient Egypt.

    Science.gov (United States)

    Evers, Virginia

    This four-week fourth grade social studies unit dealing with religious dimensions in ancient Egyptian culture was developed by the Public Education Religion Studies Center at Wright State University. It seeks to help students understand ancient Egypt by looking at the people, the culture, and the people's world view. The unit begins with outlines…

  2. Genes of the adaptive immune system are expressed early in zebrafish larval development following lipopolysaccharide stimulation

    Institute of Scientific and Technical Information of China (English)

    LI Fengling; ZHANG Shicui; WANG Zhiping; LI Hongyan

    2011-01-01

    Information regarding immunocompetence of the adaptive immune system (AIS) in zebrafish Danio rerio remains limited. Here, we stimulated an immune response in fish embryos,larvae and adults using lipopolysaccharide (LPS) and measured the upregulation of a number of AIS-related genes (Rag2, AID, TCRAC, IgLC-1, mIg, sIg, IgZ and DAB) 3 and 18 h later. We found that all of the genes evaluated were strongly induced following LPS stimulation, with most of them responding at 8 d post fertilization. This confirms that a functional adaptive immune response is present in D. rerio larvae, and provides a window for further functional analyses.

  3. An ancient dental gene set governs development and continuous regeneration of teeth in sharks.

    Science.gov (United States)

    Rasch, Liam J; Martin, Kyle J; Cooper, Rory L; Metscher, Brian D; Underwood, Charlie J; Fraser, Gareth J

    2016-07-15

    The evolution of oral teeth is considered a major contributor to the overall success of jawed vertebrates. This is especially apparent in cartilaginous fishes including sharks and rays, which develop elaborate arrays of highly specialized teeth, organized in rows and retain the capacity for life-long regeneration. Perpetual regeneration of oral teeth has been either lost or highly reduced in many other lineages including important developmental model species, so cartilaginous fishes are uniquely suited for deep comparative analyses of tooth development and regeneration. Additionally, sharks and rays can offer crucial insights into the characters of the dentition in the ancestor of all jawed vertebrates. Despite this, tooth development and regeneration in chondrichthyans is poorly understood and remains virtually uncharacterized from a developmental genetic standpoint. Using the emerging chondrichthyan model, the catshark (Scyliorhinus spp.), we characterized the expression of genes homologous to those known to be expressed during stages of early dental competence, tooth initiation, morphogenesis, and regeneration in bony vertebrates. We have found that expression patterns of several genes from Hh, Wnt/β-catenin, Bmp and Fgf signalling pathways indicate deep conservation over ~450 million years of tooth development and regeneration. We describe how these genes participate in the initial emergence of the shark dentition and how they are redeployed during regeneration of successive tooth generations. We suggest that at the dawn of the vertebrate lineage, teeth (i) were most likely continuously regenerative structures, and (ii) utilised a core set of genes from members of key developmental signalling pathways that were instrumental in creating a dental legacy redeployed throughout vertebrate evolution. These data lay the foundation for further experimental investigations utilizing the unique regenerative capacity of chondrichthyan models to answer evolutionary

  4. An ancient spliceosomal intron in the ribosomal protein L7a gene (Rpl7a of Giardia lamblia

    Directory of Open Access Journals (Sweden)

    Gray Michael W

    2005-08-01

    Full Text Available Abstract Background Only one spliceosomal-type intron has previously been identified in the unicellular eukaryotic parasite, Giardia lamblia (a diplomonad. This intron is only 35 nucleotides in length and is unusual in possessing a non-canonical 5' intron boundary sequence, CT, instead of GT. Results We have identified a second spliceosomal-type intron in G. lamblia, in the ribosomal protein L7a gene (Rpl7a, that possesses a canonical GT 5' intron boundary sequence. A comparison of the two known Giardia intron sequences revealed extensive nucleotide identity at both the 5' and 3' intron boundaries, similar to the conserved sequence motifs recently identified at the boundaries of spliceosomal-type introns in Trichomonas vaginalis (a parabasalid. Based on these observations, we searched the partial G. lamblia genome sequence for these conserved features and identified a third spliceosomal intron, in an unassigned open reading frame. Our comprehensive analysis of the Rpl7a intron in other eukaryotic taxa demonstrates that it is evolutionarily conserved and is an ancient eukaryotic intron. Conclusion An analysis of the phylogenetic distribution and properties of the Rpl7a intron suggests its utility as a phylogenetic marker to evaluate particular eukaryotic groupings. Additionally, analysis of the G. lamblia introns has provided further insight into some of the conserved and unique features possessed by the recently identified spliceosomal introns in related organisms such as T. vaginalis and Carpediemonas membranifera.

  5. Novel primate miRNAs coevolved with ancient target genes in germinal zone-specific expression patterns.

    Science.gov (United States)

    Arcila, Mary L; Betizeau, Marion; Cambronne, Xiaolu A; Guzman, Elmer; Doerflinger, Nathalie; Bouhallier, Frantz; Zhou, Hongjun; Wu, Bian; Rani, Neha; Bassett, Danielle S; Borello, Ugo; Huissoud, Cyril; Goodman, Richard H; Dehay, Colette; Kosik, Kenneth S

    2014-03-19

    Major nonprimate-primate differences in cortico-genesis include the dimensions, precursor lineages, and developmental timing of the germinal zones (GZs). microRNAs (miRNAs) of laser-dissected GZ compartments and cortical plate (CP) from embryonic E80 macaque visual cortex were deep sequenced. The CP and the GZ including ventricular zone (VZ) and outer and inner subcompartments of the outer subventricular zone (OSVZ) in area 17 displayed unique miRNA profiles. miRNAs present in primate, but absent in rodent, contributed disproportionately to the differential expression between GZ subregions. Prominent among the validated targets of these miRNAs were cell-cycle and neurogenesis regulators. Coevolution between the emergent miRNAs and their targets suggested that novel miRNAs became integrated into ancient gene circuitry to exert additional control over proliferation. We conclude that multiple cell-cycle regulatory events contribute to the emergence of primate-specific cortical features, including the OSVZ, generated enlarged supragranular layers, largely responsible for the increased primate cortex computational abilities.

  6. Cloning and expression of swine myostatin gene and its application in animal immunization trial

    Institute of Scientific and Technical Information of China (English)

    MA; Xianyong; CAO; Yongchang; SHU; Dingming; BI; Yingzuo

    2005-01-01

    We have amplified swine myostatin (MSTN) gene by reverse transcription polymerase chain reaction (RT-PCR) and cloned it into pGEM-T Easy vector. The cloned swine MSTN gene consists of 1128 nucleotides, which has been submitted to GenBank (acquired registered code- AY448008). The cloned swine MSTN gene was successfully expressed in E. coli without the first 25 amino acids. Crude extraction of the expressed recombinant MSTN protein was used to immunize mice to investigate the effects on their bodyweights. We show here that the body weights of the immunized mice were higher than that of the controls, even though the difference was not significant. Surprisingly, the progenies of the immunized mice also were heavier than the controls. Especially at day 3, the average body weight of the immunized mice was 10.5% higher than that of the controls , which is significant (p < 0.05).

  7. Inducible defenses stay up late: temporal patterns of immune gene expression in Tenebrio molitor.

    Science.gov (United States)

    Johnston, Paul R; Makarova, Olga; Rolff, Jens

    2013-12-06

    The course of microbial infection in insects is shaped by a two-stage process of immune defense. Constitutive defenses, such as engulfment and melanization, act immediately and are followed by inducible defenses, archetypically the production of antimicrobial peptides, which eliminate or suppress the remaining microbes. By applying RNAseq across a 7-day time course, we sought to characterize the long-lasting immune response to bacterial challenge in the mealworm beetle Tenebrio molitor, a model for the biochemistry of insect immunity and persistent bacterial infection. By annotating a hybrid de novo assembly of RNAseq data, we were able to identify putative orthologs for the majority of components of the conserved insect immune system. Compared with Tribolium castaneum, the most closely related species with a reference genome sequence and a manually curated immune system annotation, the T. molitor immune gene count was lower, with lineage-specific expansions of genes encoding serine proteases and their countervailing inhibitors accounting for the majority of the deficit. Quantitative mapping of RNAseq reads to the reference assembly showed that expression of genes with predicted functions in cellular immunity, wound healing, melanization, and the production of reactive oxygen species was transiently induced immediately after immune challenge. In contrast, expression of genes encoding antimicrobial peptides or components of the Toll signaling pathway and iron sequestration response remained elevated for at least 7 days. Numerous genes involved in metabolism and nutrient storage were repressed, indicating a possible cost of immune induction. Strikingly, the expression of almost all antibacterial peptides followed the same pattern of long-lasting induction, regardless of their spectra of activity, signaling possible interactive roles in vivo.

  8. Ancient exaptation of a CORE-SINE retroposon into a highly conserved mammalian neuronal enhancer of the proopiomelanocortin gene.

    Directory of Open Access Journals (Sweden)

    Andrea M Santangelo

    2007-10-01

    Full Text Available The proopiomelanocortin gene (POMC is expressed in the pituitary gland and the ventral hypothalamus of all jawed vertebrates, producing several bioactive peptides that function as peripheral hormones or central neuropeptides, respectively. We have recently determined that mouse and human POMC expression in the hypothalamus is conferred by the action of two 5' distal and unrelated enhancers, nPE1 and nPE2. To investigate the evolutionary origin of the neuronal enhancer nPE2, we searched available vertebrate genome databases and determined that nPE2 is a highly conserved element in placentals, marsupials, and monotremes, whereas it is absent in nonmammalian vertebrates. Following an in silico paleogenomic strategy based on genome-wide searches for paralog sequences, we discovered that opossum and wallaby nPE2 sequences are highly similar to members of the superfamily of CORE-short interspersed nucleotide element (SINE retroposons, in particular to MAR1 retroposons that are widely present in marsupial genomes. Thus, the neuronal enhancer nPE2 originated from the exaptation of a CORE-SINE retroposon in the lineage leading to mammals and remained under purifying selection in all mammalian orders for the last 170 million years. Expression studies performed in transgenic mice showed that two nonadjacent nPE2 subregions are essential to drive reporter gene expression into POMC hypothalamic neurons, providing the first functional example of an exapted enhancer derived from an ancient CORE-SINE retroposon. In addition, we found that this CORE-SINE family of retroposons is likely to still be active in American and Australian marsupial genomes and that several highly conserved exonic, intronic and intergenic sequences in the human genome originated from the exaptation of CORE-SINE retroposons. Together, our results provide clear evidence of the functional novelties that transposed elements contributed to their host genomes throughout evolution.

  9. Evolutionary responses to a constructed niche: ancient Mesoamericans as a model of gene-culture coevolution.

    Directory of Open Access Journals (Sweden)

    Tábita Hünemeier

    Full Text Available Culture and genetics rely on two distinct but not isolated transmission systems. Cultural processes may change the human selective environment and thereby affect which individuals survive and reproduce. Here, we evaluated whether the modes of subsistence in Native American populations and the frequencies of the ABCA1*Arg230Cys polymorphism were correlated. Further, we examined whether the evolutionary consequences of the agriculturally constructed niche in Mesoamerica could be considered as a gene-culture coevolution model. For this purpose, we genotyped 229 individuals affiliated with 19 Native American populations and added data for 41 other Native American groups (n = 1905 to the analysis. In combination with the SNP cluster of a neutral region, this dataset was then used to unravel the scenario involved in 230Cys evolutionary history. The estimated age of 230Cys is compatible with its origin occurring in the American continent. The correlation of its frequencies with the archeological data on Zea pollen in Mesoamerica/Central America, the neutral coalescent simulations, and the F(ST-based natural selection analysis suggest that maize domestication was the driving force in the increase in the frequencies of 230Cys in this region. These results may represent the first example of a gene-culture coevolution involving an autochthonous American allele.

  10. Evolutionary Responses to a Constructed Niche: Ancient Mesoamericans as a Model of Gene-Culture Coevolution

    Science.gov (United States)

    Hünemeier, Tábita; Amorim, Carlos Eduardo Guerra; Azevedo, Soledad; Contini, Veronica; Acuña-Alonzo, Víctor; Rothhammer, Francisco; Dugoujon, Jean-Michel; Mazières, Stephane; Barrantes, Ramiro; Villarreal-Molina, María Teresa; Paixão-Côrtes, Vanessa Rodrigues; Salzano, Francisco M.; Canizales-Quinteros, Samuel; Ruiz-Linares, Andres; Bortolini, Maria Cátira

    2012-01-01

    Culture and genetics rely on two distinct but not isolated transmission systems. Cultural processes may change the human selective environment and thereby affect which individuals survive and reproduce. Here, we evaluated whether the modes of subsistence in Native American populations and the frequencies of the ABCA1*Arg230Cys polymorphism were correlated. Further, we examined whether the evolutionary consequences of the agriculturally constructed niche in Mesoamerica could be considered as a gene-culture coevolution model. For this purpose, we genotyped 229 individuals affiliated with 19 Native American populations and added data for 41 other Native American groups (n = 1905) to the analysis. In combination with the SNP cluster of a neutral region, this dataset was then used to unravel the scenario involved in 230Cys evolutionary history. The estimated age of 230Cys is compatible with its origin occurring in the American continent. The correlation of its frequencies with the archeological data on Zea pollen in Mesoamerica/Central America, the neutral coalescent simulations, and the FST-based natural selection analysis suggest that maize domestication was the driving force in the increase in the frequencies of 230Cys in this region. These results may represent the first example of a gene-culture coevolution involving an autochthonous American allele. PMID:22768049

  11. Sequencing of Sylvilagus VDJ genes reveals a new VHa allelic lineage and shows that ancient VH lineages were retained differently in leporids.

    Science.gov (United States)

    Pinheiro, Ana; Melo-Ferreira, José; Abrantes, Joana; Martinelli, Nicola; Lavazza, Antonio; Alves, Paulo C; Gortázar, Christian; Esteves, Pedro J

    2014-12-01

    Antigen recognition by immunoglobulins depends upon initial rearrangements of heavy chain V, D, and J genes. In leporids, a unique system exists for the VH genes usage that exhibit highly divergent lineages: the VHa allotypes, the Lepus sL lineage and the VHn genes. For the European rabbit (Oryctolagus cuniculus), four VHa lineages have been described, the a1, a2, a3 and a4. For hares (Lepus sp.), one VHa lineage was described, the a2L, as well as a more ancient sL lineage. Both genera use the VHn genes in a low frequency of their VDJ rearrangements. To address the hypothesis that the VH specificities could be associated with different environments, we sequenced VDJ genes from a third leporid genus, Sylvilagus. We found a fifth and equally divergent VHa lineage, the a5, and an ancient lineage, the sS, related to the hares' sL, but failed to obtain VHn genes. These results show that the studied leporids employ different VH lineages in the generation of the antibody repertoire, suggesting that the leporid VH genes are subject to strong selective pressure likely imposed by specific pathogens.

  12. Gene Therapy of Cancer: Induction of Anti-Tumor Immunity

    Institute of Scientific and Technical Information of China (English)

    Cheng Qian; Jesus Prieto

    2004-01-01

    Many malignancies lack satisfactory treatment and new therapeutic options are urgently needed. Gene therapy is a new modality to treat both inherited and acquired diseases based on the transfer of genetic material to the tissues. Different gene therapy strategies against cancers have been developed. A considerable number of preclinical studies indicate that a great variety of cancers are amenable to gene therapy. Among these strategies,induction of anti-tumorimmunity is the most promising approach. Gene therapy with cytokines has reached unprecedented success in preclinical models of cancer. Synergistic rather than additive effects have beendemonstrated by combination of gene transfer of cytokines/chemokines, costimulatory molecules or adoptive cell therapy. Recent progress in vector technology and in imaging techniques allowing in vivo assessment of gene expression will facilitate the development of clinical applications of gene therapy, a procedure which may have a notorious impact in the management of cancers lacking effective treatment.

  13. Tissue-Specific Immune Gene Expression in the Migratory Locust, Locusta Migratoria

    Directory of Open Access Journals (Sweden)

    Tamara Pulpitel

    2015-04-01

    Full Text Available The ability of hosts to respond to infection involves several complex immune recognition pathways. Broadly conserved pathogen-associated molecular patterns (PAMPs allow individuals to target a range of invading microbes. Recently, studies on insect innate immunity have found evidence that a single pathogen can activate different immune pathways across species. In this study, expression changes in immune genes encoding peptidoglycan-recognition protein SA (PGRP-SA, gram-negative binding protein 1 (GNBP1 and prophenoloxidase (ProPO were investigated in Locusta migratoria, following an immune challenge using injected lipopolysaccharide (LPS solution from Escherichia coli. Since immune activation might also be tissue-specific, gene expression levels were followed across a range of tissue types. For PGRP-SA, expression increased in response to LPS within all seven of the tissue-types assayed and differed significantly between tissues. Expression of GNBP1 similarly varied across tissue types, yet showed no clear expression difference between LPS-injected and uninfected locusts. Increases in ProPO expression in response to LPS, however, could only be detected in the gut sections. This study has revealed tissue-specific immune response to add a new level of complexity to insect immune studies. In addition to variation in recognition pathways identified in previous works, tissue-specificity should be carefully considered in similar works.

  14. Cancer-targeted BikDD gene therapy elicits protective antitumor immunity against lung cancer.

    Science.gov (United States)

    Sher, Yuh-Pyng; Liu, Shih-Jen; Chang, Chun-Mien; Lien, Shu-Pei; Chen, Chien-Hua; Han, Zhenbo; Li, Long-Yuan; Chen, Jin-Shing; Wu, Cheng-Wen; Hung, Mien-Chie

    2011-04-01

    Targeted cancer-specific gene therapy is a promising strategy for treating metastatic lung cancer, which is a leading cause of lung cancer-related deaths. Previously, we developed a cancer-targeted gene therapy expression system with high tumor specificity and strong activity that selectively induced lung cancer cell killing without affecting normal cells in immunocompromised mice. Here, we found this cancer-targeted gene therapy, SV-BikDD, composed of the survivin promoter in the VP16-GAL4-WPRE integrated systemic amplifier system to drive the apoptotic gene BikDD, not only caused cytotoxic effects in cancer cells but also elicited a cancer-specific cytotoxic T lymphocyte response to synergistically increase the therapeutic effect and further develop an effective systemic antitumoral immunity against rechallenges of tumorigenic dose of parental tumor cells inoculated at distant sites in immunocompetent mice. In addition, this cancer-targeted gene therapy does not elicit an immune response against normal tissues, but CMV-BikDD treatment does. The therapeutic vector could also induce proinflammatory cytokines to activate innate immunity and provide some benefits in antitumor gene therapy. Thus, this study provides a promising strategy with benefit of antitumoral immune response worthy of further development in clinical trials for treating lung cancer via cancer-targeted gene therapy.

  15. In vivo monitoring of transfected DNA, gene expression kinetics, and cellular immune responses in mice immunized with a human NIS gene-expressing plasmid.

    Science.gov (United States)

    Son, Hye-Youn; Jeon, Yong-Hyun; Chung, June-Key; Kim, Chul-Woo

    2016-12-01

    In assessing the effectiveness of DNA vaccines, it is important to monitor: (1) the kinetics of target gene expression in vivo; and (2) the movement of cells that become transfected with the plasmid DNA used in the immunization of a subject. In this study, we used, as a visual imaging marker, expression of the transfected human sodium/iodide symporter (hNIS) gene, which enhances intracellular radio-pertechnetate (TcO4-) accumulation. After intradermal (i.d.) and systemic injection of mice with pcDNA-hNIS and radioactive Technetium-99m (Tc-99m), respectively, whole-body images were obtained by nuclear scintigraphy. The migration of mice cells transfected with the hNIS gene was monitored over a 2-week period by gamma-radioactivity counting of isolated cell populations and was demonstrated in peripheral lymphoid tissues, especially in the draining lymph nodes (dLNs). Beginning at 24 h after DNA inoculation and continuing for the 2-week monitoring period, hNIS-expressing cells were observed specifically in the T-cell-rich zones of the paracortical area of the dLNs. Over the same time period, high levels of INF-γ-secreting CD8 T-cells were found in the dLNs of the pcDNA-hNIS immunized mice. Tumor growth was also significantly retarded in the mice that received hNIS DNA immunization followed by inoculation with CT26 colorectal adenocarcinoma cells that had been transfected with the rat NIS gene (rNIS), which is 93% homologous to the hNIS gene. In conclusion, mouse cells transfected with hNIS DNA after i.d. immunization were found to traffic to the dLNs, and hNIS gene expression in these cells continued for at least 2 weeks post immunization. Furthermore, sequential presentation of NIS DNA to T-cells by migratory antigen presenting cells could induce NIS DNA-specific Th1 immune responses and thus retard the growth of NIS-expressing tumors.

  16. Characterization of the rainbow trout spleen transcriptome and identification of immune-related genes

    Directory of Open Access Journals (Sweden)

    Ali eAli

    2014-10-01

    Full Text Available Resistance against diseases affects profitability of rainbow trout. Limited information is available about functions and mechanisms of teleost immune pathways. Immunogenomics provides powerful tools to determine disease resistance genes/gene pathways and develop genetic markers for genomic selection.RNA-Seq sequencing of the rainbow trout spleen yielded 93,532,200 reads (100bp. High quality reads were assembled into 43,047 contigs. 26,333 (61.17% of the contigs had hits to the NR protein database and 7,024 (16.32% had hits to the KEGG database. Gene ontology showed significant percentages of transcripts assigned to binding (51%, signaling (7%, response to stimuli (9% and receptor activity (4% suggesting existence of many immune-related genes. KEGG annotation revealed 2,825 sequences belonging to organismal systems with the highest number of sequences, 842 (29.81%, assigned to immune system. A number of sequences were identified for the first time in rainbow trout belonging to Toll-like receptor signaling (25, B cell receptor signaling pathway (28, T cell receptor signaling pathway (33, chemokine signaling pathway (44, Fc gamma R-mediated phagocytosis (23, leukocyte transendothelial migration (34 and NK cell mediated cytotoxicity (21. In addition, 51 transcripts were identified as spleen-specific genes. The list includes 277 full-length cDNAs.The presence of a large number of immune-related genes and pathways similar to other vertebrates suggests that innate and adaptive immunity in fish are conserved. This study provides deep-sequence data of rainbow trout spleen transcriptome and identifies many new immune-related genes and full-length cDNAs. This data will help identify allelic variations suitable for genomic selection and genetic manipulation in aquaculture.

  17. Evidence for Population-Specific Positive Selection on Immune Genes of Anopheles gambiae

    OpenAIRE

    Crawford, Jacob E; Bischoff, Emmanuel; Garnier, Thierry; Gneme, Awa; Eiglmeier, Karin; Holm, Inge; Michelle M Riehle; Guelbeogo, Wamdaogo M.; Sagnon, N’Fale; Brian P Lazzaro; Vernick, Kenneth D

    2012-01-01

    Host-pathogen interactions can be powerful drivers of adaptive evolution, shaping the patterns of molecular variation at the genes involved. In this study, we sequenced alleles from 28 immune-related loci in wild samples of multiple genetic subpopulations of the African malaria mosquito Anopheles gambiae, obtaining unprecedented sample sizes and providing the first opportunity to contrast patterns of molecular evolution at immune-related loci in the recently discovered GOUNDRY population to t...

  18. Expression of putative immune response genes during early ontogeny in the coral Acropora millepora.

    Directory of Open Access Journals (Sweden)

    Eneour Puill-Stephan

    Full Text Available BACKGROUND: Corals, like many other marine invertebrates, lack a mature allorecognition system in early life history stages. Indeed, in early ontogeny, when corals acquire and establish associations with various surface microbiota and dinoflagellate endosymbionts, they do not efficiently distinguish between closely and distantly related individuals from the same population. However, very little is known about the molecular components that underpin allorecognition and immunity responses or how they change through early ontogeny in corals. METHODOLOGY/PRINCIPAL FINDINGS: Patterns in the expression of four putative immune response genes (apextrin, complement C3, and two CELIII type lectin genes were examined in juvenile colonies of Acropora millepora throughout a six-month post-settlement period using quantitative real-time PCR (qPCR. Expression of a CELIII type lectin gene peaked in the fourth month for most of the coral juveniles sampled and was significantly higher at this time than at any other sampling time during the six months following settlement. The timing of this increase in expression levels of putative immune response genes may be linked to allorecognition maturation which occurs around this time in A. millepora. Alternatively, the increase may represent a response to immune challenges, such as would be involved in the recognition of symbionts (such as Symbiodinium spp. or bacteria during winnowing processes as symbioses are fine-tuned. CONCLUSIONS/SIGNIFICANCE: Our data, although preliminary, are consistent with the hypothesis that lectins may play an important role in the maturation of allorecognition responses in corals. The co-expression of lectins with apextrin during development of coral juveniles also raises the possibility that these proteins, which are components of innate immunity in other invertebrates, may influence the innate immune systems of corals through a common pathway or system. However, further studies

  19. Exploiting Gene-Expression Deconvolution to Probe the Genetics of the Immune System.

    Science.gov (United States)

    Steuerman, Yael; Gat-Viks, Irit

    2016-04-01

    Sequence variation can affect the physiological state of the immune system. Major experimental efforts targeted at understanding the genetic control of the abundance of immune cell subpopulations. However, these studies are typically focused on a limited number of immune cell types, mainly due to the use of relatively low throughput cell-sorting technologies. Here we present an algorithm that can reveal the genetic basis of inter-individual variation in the abundance of immune cell types using only gene expression and genotyping measurements as input. Our algorithm predicts the abundance of immune cell subpopulations based on the RNA levels of informative marker genes within a complex tissue, and then provides the genetic control on these predicted immune traits as output. A key feature of the approach is the integration of predictions from various sets of marker genes and refinement of these sets to avoid spurious signals. Our evaluation of both synthetic and real biological data shows the significant benefits of the new approach. Our method, VoCAL, is implemented in the freely available R package ComICS.

  20. Innate immune gene expression differentiates the early avian intestinal response between Salmonella and Campylobacter.

    Science.gov (United States)

    Shaughnessy, Ronan G; Meade, Kieran G; Cahalane, Sarah; Allan, Brenda; Reiman, Carla; Callanan, John J; O'Farrelly, Cliona

    2009-12-15

    Salmonella enterica serovar Typhimurium and Campylobacter jejuni are major human pathogens, yet colonise chickens without causing pathology. The aim of this study was to compare intestinal innate immune responses to both bacterial species, in a 4-week-old broiler chicken model. Challenged and control birds were sacrificed and tissue samples taken for histopathology and RNA extraction. No significant clinical or pathological changes were observed in response to infection with either bacterial species. Expression of selected genes involved in pathogen detection and the innate immune response were profiled in caecal tissues by quantitative real-time PCR. TLR4 and TLR21 gene expression was transiently increased in response to both bacterial species (Pimmune genes in both infection models shed light on the tailored responses of the host immune system to specific microbes. It is further evidence that innate regulation of these responses is an important prerequisite to preventing development of disease.

  1. Expression profile of immune response genes in patients with Severe Acute Respiratory Syndrome

    Directory of Open Access Journals (Sweden)

    Tai Dessmon

    2005-01-01

    Full Text Available Abstract Background Severe acute respiratory syndrome (SARS emerged in later February 2003, as a new epidemic form of life-threatening infection caused by a novel coronavirus. However, the immune-pathogenesis of SARS is poorly understood. To understand the host response to this pathogen, we investigated the gene expression profiles of peripheral blood mononuclear cells (PBMCs derived from SARS patients, and compared with healthy controls. Results The number of differentially expressed genes was found to be 186 under stringent filtering criteria of microarray data analysis. Several genes were highly up-regulated in patients with SARS, such as, the genes coding for Lactoferrin, S100A9 and Lipocalin 2. The real-time PCR method verified the results of the gene array analysis and showed that those genes that were up-regulated as determined by microarray analysis were also found to be comparatively up-regulated by real-time PCR analysis. Conclusions This differential gene expression profiling of PBMCs from patients with SARS strongly suggests that the response of SARS affected patients seems to be mainly an innate inflammatory response, rather than a specific immune response against a viral infection, as we observed a complete lack of cytokine genes usually triggered during a viral infection. Our study shows for the first time how the immune system responds to the SARS infection, and opens new possibilities for designing new diagnostics and treatments for this new life-threatening disease.

  2. Methylation and Expression of Immune and Inflammatory Genes in the Offspring of Bariatric Bypass Surgery Patients

    Directory of Open Access Journals (Sweden)

    Frédéric Guénard

    2013-01-01

    Full Text Available Background. Maternal obesity, excess weight gain and overnutrition during pregnancy increase risks of obesity, type 2 diabetes mellitus, and cardiovascular disease in the offspring. Maternal biliopancreatic diversion is an effective treatment for severe obesity and is beneficial for offspring born after maternal surgery (AMS. These offspring exhibit lower severe obesity prevalence and improved cardiometabolic risk factors including inflammatory marker compared to siblings born before maternal surgery (BMS. Objective. To assess relationships between maternal bariatric surgery and the methylation/expression of genes involved in the immune and inflammatory pathways. Methods. A differential gene methylation analysis was conducted in a sibling cohort of 25 BMS and 25 AMS offspring from 20 mothers. Following differential gene expression analysis (23 BMS and 23 AMS, pathway analysis was conducted. Correlations between gene methylation/expression and circulating inflammatory markers were computed. Results. Five immune and inflammatory pathways with significant overrepresentation of both differential gene methylation and expression were identified. In the IL-8 pathway, gene methylation correlated with both gene expression and plasma C-reactive protein levels. Conclusion. These results suggest that improvements in cardiometabolic risk markers in AMS compared to BMS offspring may be mediated through differential methylation of genes involved in immune and inflammatory pathways.

  3. Identification of immunity-related genes in the burying beetle Nicrophorus vespilloides by suppression subtractive hybridization.

    Science.gov (United States)

    Vogel, H; Badapanda, C; Vilcinskas, A

    2011-12-01

    Burying beetles reproduce on small vertebrate cadavers which they bury in the soil after localization through volatiles emitted from the carcass. They then chemically preserve the carcass and prepare it as a diet for the adults and their offspring. It is predicted that exposure to high loads of soil and/or carrion-associated microbes necessitates an effective immune system. In the present paper, we report experimental screening for immunity-related genes in the burying beetle Nicrophorus vespilloides using the suppression subtractive hybridization approach. A total of 1179 putative gene objects were identified in the Nicrophorus cDNA library, which was enriched for transcripts differentially expressed upon challenge with heat-inactivated bacteria. In addition to genes known to be involved in immunity-related recognition and signalling, we found transcripts encoding for antimicrobial peptides and for an array of enzymes that can be linked to immunity or to stress-induced pathways. We also determined proteins that may contribute to detoxification of toxins produced by microbial competitors. In addition, factors involved in mRNA stability determination and central components of the RNA interference machinery were identified, implying transcriptional reprogramming and potential stress-induced retrotransposon elimination. The identified candidate immune effector and stress-related genes may provide important information about the unusual ecology and evolution of the burying beetles.

  4. Altered expression of immune-related genes in children with Down syndrome.

    Directory of Open Access Journals (Sweden)

    Bruna Lancia Zampieri

    Full Text Available Individuals with Down syndrome (DS have a high incidence of immunological alterations with increased susceptibility to bacterial and viral infections and high frequency of different types of hematologic malignancies and autoimmune disorders. In the current study, we profiled the expression pattern of 92 immune-related genes in peripheral blood mononuclear cells (PBMCs of two different groups, children with DS and control children, to identify differentially expressed genes that might be of pathogenetic importance for the development and phenotype of the immunological alterations observed in individuals with DS. PBMCs samples were obtained from six DS individuals with karyotypically confirmed full trisomy 21 and six healthy control individuals (ages 2-6 years. Gene expression was profiled in duplicate according to the manufacturer's instructions provided by commercially available TaqMan Human Immune Array representing 92 immune function genes and four reference genes on a 96-plex gene card. A set of 17 differentially expressed genes, not located on chromosome 21 (HSA21, involved in immune and inflammatory pathways was identified including 13 genes (BCL2, CCL3, CCR7, CD19, CD28, CD40, CD40LG, CD80, EDN1, IKBKB, IL6, NOS2 and SKI significantly down-regulated and four genes (BCL2L1, CCR2, CCR5 and IL10 significantly up-regulated in children with DS. These findings highlight a list of candidate genes for further investigation into the molecular mechanism underlying DS pathology and reinforce the secondary effects of the presence of a third copy of HSA21.

  5. Screening a novel Na+/H+ antiporter gene from a metagenomic library of halophiles colonizing in the Dagong Ancient Brine Well in China.

    Science.gov (United States)

    Xiang, Wenliang; Zhang, Jie; Li, Lin; Liang, Huazhong; Luo, Hai; Zhao, Jian; Yang, Zhirong; Sun, Qun

    2010-05-01

    Metagenomic DNA libraries constructed from the Dagong Ancient Brine Well were screened for genes with Na(+)/H(+) antiporter activity on the antiporter-deficient Escherichia coli KNabc strain. One clone with a stable Na(+)-resistant phenotype was obtained and its Na(+)/H(+) antiporter gene was sequenced and designated as m-nha. The deduced amino acid sequence of M-Nha protein consists of 523 residues with a calculated molecular weight of 58 147 Da and a pI of 5.50, which is homologous with NhaH from Halobacillus dabanensis D-8(T) (92%) and Halobacillus aidingensis AD-6(T) (86%), and with Nhe2 from Bacillus sp. NRRL B-14911 (64%). It had a hydropathy profile with 10 putative transmembrane domains and a long carboxyl terminal hydrophilic tail of 140 amino acid residues, similar to Nhap from Synechocystis sp. and Aphanothece halophytica, as well as NhaG from Bacillus subtilis. The m-nha gene in the antiporter-negative mutant E. coli KNabc conferred resistance to Na(+) and the ability to grow under alkaline conditions. The difference in amino acid sequence and the putative secondary structure suggested that the m-nha isolated from the Dagong Ancient Brine Well in this study was a novel Na(+)/H(+) antiporter gene.

  6. Genome-wide screen for Mycobacterium tuberculosis genes that regulate host immunity.

    Directory of Open Access Journals (Sweden)

    Aimee M Beaulieu

    Full Text Available In spite of its highly immunogenic properties, Mycobacterium tuberculosis (Mtb establishes persistent infection in otherwise healthy individuals, making it one of the most widespread and deadly human pathogens. Mtb's prolonged survival may reflect production of microbial factors that prevent even more vigorous immunity (quantitative effect or that divert the immune response to a non-sterilizing mode (qualitative effect. Disruption of Mtb genes has produced a list of several dozen candidate immunomodulatory factors. Here we used robotic fluorescence microscopy to screen 10,100 loss-of-function transposon mutants of Mtb for their impact on the expression of promoter-reporter constructs for 12 host immune response genes in a mouse macrophage cell line. The screen identified 364 candidate immunoregulatory genes. To illustrate the utility of the candidate list, we confirmed the impact of 35 Mtb mutant strains on expression of endogenous immune response genes in primary macrophages. Detailed analysis focused on a strain of Mtb in which a transposon disrupts Rv0431, a gene encoding a conserved protein of unknown function. This mutant elicited much more macrophage TNFα, IL-12p40 and IL-6 in vitro than wild type Mtb, and was attenuated in the mouse. The mutant list provides a platform for exploring the immunobiology of tuberculosis, for example, by combining immunoregulatory mutations in a candidate vaccine strain.

  7. Ancient genomics

    DEFF Research Database (Denmark)

    Der Sarkissian, Clio; Allentoft, Morten Erik; Avila Arcos, Maria del Carmen

    2015-01-01

    by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans......, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when...

  8. Engineering T cell immunity by TCR gene transfer

    NARCIS (Netherlands)

    Linnemann, Carsten

    2013-01-01

    T cell responses against tumor-antigens are frequently observed for some human malignancies, in particular melanoma. However, the spontaneous development of T cell responses of a sufficient strength to eradicate human malignancies is rare. The transfer of T cell receptor (TCR) αβ genes into autologo

  9. Immunity

    Institute of Scientific and Technical Information of China (English)

    1992-01-01

    920630 Effects of the spleen on immunestate of patients with gastric cancer.QIUDengbo (仇登波), et al. Dept General Surg,Union Hosp, Tongji Med Univ, Wuhan, 430022.Natl Med J China 1992; 72(6): 334-337. For analysing the effects of the spleen on im-mune state of gastric cancer patients.T-lym-

  10. Dual expression profile of type VI secretion system immunity genes protects pandemic Vibrio cholerae.

    Directory of Open Access Journals (Sweden)

    Sarah T Miyata

    Full Text Available The Vibrio cholerae type VI secretion system (T6SS assembles as a molecular syringe that injects toxic protein effectors into both eukaryotic and prokaryotic cells. We previously reported that the V. cholerae O37 serogroup strain V52 maintains a constitutively active T6SS to kill other Gram-negative bacteria while being immune to attack by kin bacteria. The pandemic O1 El Tor V. cholerae strain C6706 is T6SS-silent under laboratory conditions as it does not produce T6SS structural components and effectors, and fails to kill Escherichia coli prey. Yet, C6706 exhibits full resistance when approached by T6SS-active V52. These findings suggested that an active T6SS is not required for immunity against T6SS-mediated virulence. Here, we describe a dual expression profile of the T6SS immunity protein-encoding genes tsiV1, tsiV2, and tsiV3 that provides pandemic V. cholerae strains with T6SS immunity and allows T6SS-silent strains to maintain immunity against attacks by T6SS-active bacterial neighbors. The dual expression profile allows transcription of the three genes encoding immunity proteins independently of other T6SS proteins encoded within the same operon. One of these immunity proteins, TsiV2, protects against the T6SS effector VasX which is encoded immediately upstream of tsiV2. VasX is a secreted, lipid-binding protein that we previously characterized with respect to T6SS-mediated virulence towards the social amoeba Dictyostelium discoideum. Our data suggest the presence of an internal promoter in the open reading frame of vasX that drives expression of the downstream gene tsiV2. Furthermore, VasX is shown to act in conjunction with VasW, an accessory protein to VasX, to compromise the inner membrane of prokaryotic target cells. The dual regulatory profile of the T6SS immunity protein-encoding genes tsiV1, tsiV2, and tsiV3 permits V. cholerae to tightly control T6SS gene expression while maintaining immunity to T6SS activity.

  11. DNA immunization with fusion genes containing HCV core region and HBV core region

    Institute of Scientific and Technical Information of China (English)

    杨莉; 刘晶; 孔玉英; 汪垣; 李光地

    1999-01-01

    The eucaryotic expression plasmids were constructed to express the complete (HCc191) or the truncated (HCc69 and HCc40) HCV core genes, solely or fused with the HBV core gene (HBc144). These constructions were transiently expressed in COS cells under the control of the CMV promoter. The antigenicity of HBc and HCc could be detected in the expression products by ELISA and Western blot. The mice immunized with these expression plasmids efficiently produced the anti-HCc antibodies, and also anti-HBc antibodies when the plasmids contained the fusion genes. In addition, the antibodies induced by the fusion genes were more persistent than those induced by the non-fusion HCV core genes. These indicate that the fusion of HCc genes to HBc gene is in favor of the immunogenicity of HCc, while the immunogenicity of HBc is not affected.

  12. Introduction of optical reporter gene into cancer and immune cells using lentiviral vector

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jung Joon; Le, Uyenchi N.; Moon, Sung Min; Heo, Young Jun; Song, Ho Chun; Bom, Hee Seung [School of Medicine, Chonnam National University, Gwangju (Korea, Republic of); Kim, Yeon Soo [Schoole of Medicine, Inje University, Seoul (Korea, Republic of)

    2004-07-01

    For some applications such as gene therapy or reporter gene imaging, a gene has to be introduced into the organism of interest. Adenoviral vectors are capable of transducing both replicating and non-dividing cells. The adenoviral vectors do not integrate their DNA into host DNA, but do lead to an immune response. Lentiviruses belong to the retrovirus family and are capable of infecting both dividing and non-dividing cells. The human immunodeficiency virus (HIV) is an example of a lentavirus. A disabled HIV virus has been developed and could be used for in vivo gene delivery. A portion of the viral genome which encodes for accessory proteins canbe deleted without affecting production of the vector and efficiency of infection. Lentiviral delivery into various rodent tissues shows sustained expression of the transgene of up to six months. Furthermore, there seems to be little or no immune response with these vectors. These lentiviral vectors hold significant promise for in vivo gene delivery. We constructed lentiviral vector encoding firefly luciferase (Fluc) and eGFP. Fluc-eGFP fusion gene was inserted into multiple cloning sites of pLentiM1.3 vector. Reporter gene (Fluc-eGFP) was designed to be driven by murine CMV promoter with enhanced efficacy of transgene expression as compared to human CMV promoter. We transfected pLenti1.3-Fluc into human cervix cancer cell line (HeLa) and murine T lymphocytes. We also constructed adenovirus encoding Fluc and transfected to HeLa and T cells. This LentiM1.3-Fluc was transfected into HeLa cells and murine T lymphocytes in vitro, showing consistent expression of eGFP under the fluorescence microscopy from the 2nd day of transfection. Firefly luciferase reporter gene was not expressed in immune cells when it is mediated by adenovirus. Lentivirus was validated as a useful vector for both immune and cancer cells.

  13. The molecular evolution of four anti-malarial immune genes in the Anopheles gambiae species complex

    OpenAIRE

    Simard Frederic; Antonio-Nkondjio Christophe; Awono-Ambene Parfait H; Marshall Jonathon C; Slotman Michel A; Parmakelis Aristeidis; Caccone Adalgisa; Powell Jeffrey R

    2008-01-01

    Abstract Background If the insect innate immune system is to be used as a potential blocking step in transmission of malaria, then it will require targeting one or a few genes with highest relevance and ease of manipulation. The problem is to identify and manipulate those of most importance to malaria infection without the risk of decreasing the mosquito's ability to stave off infections by microbes in general. Molecular evolution methodologies and concepts can help identify such genes. Withi...

  14. Tamil merchant in ancient Mesopotamia.

    Directory of Open Access Journals (Sweden)

    Malliya Gounder Palanichamy

    Full Text Available Recent analyses of ancient Mesopotamian mitochondrial genomes have suggested a genetic link between the Indian subcontinent and Mesopotamian civilization. There is no consensus on the origin of the ancient Mesopotamians. They may be descendants of migrants, who founded regional Mesopotamian groups like that of Terqa or they may be merchants who were involved in trans Mesopotamia trade. To identify the Indian source population showing linkage to the ancient Mesopotamians, we screened a total of 15,751 mitochondrial DNAs (11,432 from the literature and 4,319 from this study representing all major populations of India. Our results although suggest that south India (Tamil Nadu and northeast India served as the source of the ancient Mesopotamian mtDNA gene pool, mtDNA of these ancient Mesopotamians probably contributed by Tamil merchants who were involved in the Indo-Roman trade.

  15. Tamil merchant in ancient Mesopotamia.

    Science.gov (United States)

    Palanichamy, Malliya Gounder; Mitra, Bikash; Debnath, Monojit; Agrawal, Suraksha; Chaudhuri, Tapas Kumar; Zhang, Ya-Ping

    2014-01-01

    Recent analyses of ancient Mesopotamian mitochondrial genomes have suggested a genetic link between the Indian subcontinent and Mesopotamian civilization. There is no consensus on the origin of the ancient Mesopotamians. They may be descendants of migrants, who founded regional Mesopotamian groups like that of Terqa or they may be merchants who were involved in trans Mesopotamia trade. To identify the Indian source population showing linkage to the ancient Mesopotamians, we screened a total of 15,751 mitochondrial DNAs (11,432 from the literature and 4,319 from this study) representing all major populations of India. Our results although suggest that south India (Tamil Nadu) and northeast India served as the source of the ancient Mesopotamian mtDNA gene pool, mtDNA of these ancient Mesopotamians probably contributed by Tamil merchants who were involved in the Indo-Roman trade.

  16. Candidate Gene Approach for Parasite Resistance in Sheep – Variation in Immune Pathway Genes and Association with Fecal Egg Count

    Science.gov (United States)

    Periasamy, Kathiravan; Pichler, Rudolf; Poli, Mario; Cristel, Silvina; Cetrá, Bibiana; Medus, Daniel; Basar, Muladno; A. K., Thiruvenkadan; Ramasamy, Saravanan; Ellahi, Masroor Babbar; Mohammed, Faruque; Teneva, Atanaska; Shamsuddin, Mohammed; Podesta, Mario Garcia; Diallo, Adama

    2014-01-01

    Sheep chromosome 3 (Oar3) has the largest number of QTLs reported to be significantly associated with resistance to gastro-intestinal nematodes. This study aimed to identify single nucleotide polymorphisms (SNPs) within candidate genes located in sheep chromosome 3 as well as genes involved in major immune pathways. A total of 41 SNPs were identified across 38 candidate genes in a panel of unrelated sheep and genotyped in 713 animals belonging to 22 breeds across Asia, Europe and South America. The variations and evolution of immune pathway genes were assessed in sheep populations across these macro-environmental regions that significantly differ in the diversity and load of pathogens. The mean minor allele frequency (MAF) did not vary between Asian and European sheep reflecting the absence of ascertainment bias. Phylogenetic analysis revealed two major clusters with most of South Asian, South East Asian and South West Asian breeds clustering together while European and South American sheep breeds clustered together distinctly. Analysis of molecular variance revealed strong phylogeographic structure at loci located in immune pathway genes, unlike microsatellite and genome wide SNP markers. To understand the influence of natural selection processes, SNP loci located in chromosome 3 were utilized to reconstruct haplotypes, the diversity of which showed significant deviations from selective neutrality. Reduced Median network of reconstructed haplotypes showed balancing selection in force at these loci. Preliminary association of SNP genotypes with phenotypes recorded 42 days post challenge revealed significant differences (P<0.05) in fecal egg count, body weight change and packed cell volume at two, four and six SNP loci respectively. In conclusion, the present study reports strong phylogeographic structure and balancing selection operating at SNP loci located within immune pathway genes. Further, SNP loci identified in the study were found to have potential for

  17. Candidate gene approach for parasite resistance in sheep--variation in immune pathway genes and association with fecal egg count.

    Directory of Open Access Journals (Sweden)

    Kathiravan Periasamy

    Full Text Available Sheep chromosome 3 (Oar3 has the largest number of QTLs reported to be significantly associated with resistance to gastro-intestinal nematodes. This study aimed to identify single nucleotide polymorphisms (SNPs within candidate genes located in sheep chromosome 3 as well as genes involved in major immune pathways. A total of 41 SNPs were identified across 38 candidate genes in a panel of unrelated sheep and genotyped in 713 animals belonging to 22 breeds across Asia, Europe and South America. The variations and evolution of immune pathway genes were assessed in sheep populations across these macro-environmental regions that significantly differ in the diversity and load of pathogens. The mean minor allele frequency (MAF did not vary between Asian and European sheep reflecting the absence of ascertainment bias. Phylogenetic analysis revealed two major clusters with most of South Asian, South East Asian and South West Asian breeds clustering together while European and South American sheep breeds clustered together distinctly. Analysis of molecular variance revealed strong phylogeographic structure at loci located in immune pathway genes, unlike microsatellite and genome wide SNP markers. To understand the influence of natural selection processes, SNP loci located in chromosome 3 were utilized to reconstruct haplotypes, the diversity of which showed significant deviations from selective neutrality. Reduced Median network of reconstructed haplotypes showed balancing selection in force at these loci. Preliminary association of SNP genotypes with phenotypes recorded 42 days post challenge revealed significant differences (P<0.05 in fecal egg count, body weight change and packed cell volume at two, four and six SNP loci respectively. In conclusion, the present study reports strong phylogeographic structure and balancing selection operating at SNP loci located within immune pathway genes. Further, SNP loci identified in the study were found to have

  18. Combining cytotoxic and immune-mediated gene therapy to treat brain tumors.

    Science.gov (United States)

    Curtin, James F; King, Gwendalyn D; Candolfi, Marianela; Greeno, Remy B; Kroeger, Kurt M; Lowenstein, Pedro R; Castro, Maria G

    2005-01-01

    Glioblastoma (GBM) is a type of intracranial brain tumor, for which there is no cure. In spite of advances in surgery, chemotherapy and radiotherapy, patients die within a year of diagnosis. Therefore, there is a critical need to develop novel therapeutic approaches for this disease. Gene therapy, which is the use of genes or other nucleic acids as drugs, is a powerful new treatment strategy which can be developed to treat GBM. Several treatment modalities are amenable for gene therapy implementation, e.g. conditional cytotoxic approaches, targeted delivery of toxins into the tumor mass, immune stimulatory strategies, and these will all be the focus of this review. Both conditional cytotoxicity and targeted toxin mediated tumor death, are aimed at eliminating an established tumor mass and preventing further growth. Tumors employ several defensive strategies that suppress and inhibit anti-tumor immune responses. A better understanding of the mechanisms involved in eliciting anti-tumor immune responses has identified promising targets for immunotherapy. Immunotherapy is designed to aid the immune system to recognize and destroy tumor cells in order to eliminate the tumor burden. Also, immune-therapeutic strategies have the added advantage that an activated immune system has the capability of recognizing tumor cells at distant sites from the primary tumor, therefore targeting metastasis distant from the primary tumor locale. Pre-clinical models and clinical trials have demonstrated that in spite of their location within the central nervous system (CNS), a tissue described as 'immune privileged', brain tumors can be effectively targeted by the activated immune system following various immunotherapeutic strategies. This review will highlight recent advances in brain tumor immunotherapy, with particular emphasis on advances made using gene therapy strategies, as well as reviewing other novel therapies that can be used in combination with immunotherapy. Another important

  19. Ancient genomics

    DEFF Research Database (Denmark)

    Der Sarkissian, Clio; Allentoft, Morten Erik; Avila Arcos, Maria del Carmen;

    2015-01-01

    , archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when...

  20. Disruption of Rpp1-mediated soybean rust immunity by virus-induced gene silencing.

    Science.gov (United States)

    Cooper, Bret; Campbell, Kimberly B; McMahon, Michael B; Luster, Douglas G

    2013-01-01

    Phakopsora pachyrhizi, a fungus that causes rust disease on soybean, has potential to impart significant yield loss and disrupt food security and animal feed production. Rpp1 is a soybean gene that confers immunity to soybean rust, and it is important to understand how it regulates the soybean defense system and to use this knowledge to protect commercial crops. It was previously discovered that some soybean proteins resembling transcription factors accumulate in the nucleus of Rpp1 soybeans. To determine if they contribute to immunity, Bean pod mottle virus was used to attenuate or silence the expression of their genes. Rpp1 plants subjected to virus-induced gene silencing exhibited reduced amounts of RNA for 5 of the tested genes, and the plants developed rust-like symptoms after subsequent inoculation with fungal spores. Symptoms were associated with the accumulation of rust fungal RNA and protein. Silenced plants also had reduced amounts of RNA for the soybean Myb84 transcription factor and soybean isoflavone O-methyltransferase, both of which are important to phenylpropanoid biosynthesis and lignin formation, crucial components of rust resistance. These results help resolve some of the genes that contribute to Rpp1-mediated immunity and improve upon the knowledge of the soybean defense system. It is possible that these genes could be manipulated to enhance rust resistance in otherwise susceptible soybean cultivars.

  1. Suppression of plant resistance gene-based immunity by a fungal effector

    NARCIS (Netherlands)

    Houterman, P.M.; Cornelissen, B.J.C.; Rep, M.

    2008-01-01

    The innate immune system of plants consists of two layers. The first layer, called basal resistance, governs recognition of conserved microbial molecules and fends off most attempted invasions. The second layer is based on Resistance (R) genes that mediate recognition of effectors, proteins secreted

  2. Generation of antigen-specific T cell immunity through T cell receptor gene transfer

    NARCIS (Netherlands)

    Coccoris, Miriam

    2009-01-01

    Cancer cells often escape the attack of immune cells because they originate from self-tissue. Through T cell receptor gene transfer it is possible to equip peripheral T cells with a desired specificity, and this strategy may be useful to generate tumor-specific T cells for the treatment of cancer in

  3. Gene-gene interaction and functional impact of polymorphisms on innate immune genes in controlling Plasmodium falciparum blood infection level.

    Directory of Open Access Journals (Sweden)

    Madhumita Basu

    Full Text Available Genetic variations in toll-like receptors and cytokine genes of the innate immune pathways have been implicated in controlling parasite growth and the pathogenesis of Plasmodium falciparum mediated malaria. We previously published genetic association of TLR4 non-synonymous and TNF-α promoter polymorphisms with P.falciparum blood infection level and here we extend the study considerably by (i investigating genetic dependence of parasite-load on interleukin-12B polymorphisms, (ii reconstructing gene-gene interactions among candidate TLRs and cytokine loci, (iii exploring genetic and functional impact of epistatic models and (iv providing mechanistic insights into functionality of disease-associated regulatory polymorphisms. Our data revealed that carriage of AA (P = 0.0001 and AC (P = 0.01 genotypes of IL12B 3'UTR polymorphism was associated with a significant increase of mean log-parasitemia relative to rare homozygous genotype CC. Presence of IL12B+1188 polymorphism in five of six multifactor models reinforced its strong genetic impact on malaria phenotype. Elevation of genetic risk in two-component models compared to the corresponding single locus and reduction of IL12B (2.2 fold and lymphotoxin-α (1.7 fold expressions in patients'peripheral-blood-mononuclear-cells under TLR4Thr399Ile risk genotype background substantiated the role of Multifactor Dimensionality Reduction derived models. Marked reduction of promoter activity of TNF-α risk haplotype (C-C-G-G compared to wild-type haplotype (T-C-G-G with (84% and without (78% LPS stimulation and the loss of binding of transcription factors detected in-silico supported a causal role of TNF-1031. Significantly lower expression of IL12B+1188 AA (5 fold and AC (9 fold genotypes compared to CC and under-representation (P = 0.0048 of allele A in transcripts of patients' PBMCs suggested an Allele-Expression-Imbalance. Allele (A+1188C dependent differential stability (2 fold of IL12B-transcripts upon

  4. High amino acid diversity and positive selection at a putative coral immunity gene (tachylectin-2

    Directory of Open Access Journals (Sweden)

    Hellberg Michael E

    2010-05-01

    Full Text Available Abstract Background Genes involved in immune functions, including pathogen recognition and the activation of innate defense pathways, are among the most genetically variable known, and the proteins that they encode are often characterized by high rates of amino acid substitutions, a hallmark of positive selection. The high levels of variation characteristic of immunity genes make them useful tools for conservation genetics. To date, highly variable immunity genes have yet to be found in corals, keystone organisms of the world's most diverse marine ecosystem, the coral reef. Here, we examine variation in and selection on a putative innate immunity gene from Oculina, a coral genus previously used as a model for studies of coral disease and bleaching. Results In a survey of 244 Oculina alleles, we find high nonsynonymous variation and a signature of positive selection, consistent with a putative role in immunity. Using computational protein structure prediction, we generate a structural model of the Oculina protein that closely matches the known structure of tachylectin-2 from the Japanese horseshoe crab (Tachypleus tridentatus, a protein with demonstrated function in microbial recognition and agglutination. We also demonstrate that at least three other genera of anthozoan cnidarians (Acropora, Montastrea and Nematostella possess proteins structurally similar to tachylectin-2. Conclusions Taken together, the evidence of high amino acid diversity, positive selection and structural correspondence to the horseshoe crab tachylectin-2 suggests that this protein is 1 part of Oculina's innate immunity repertoire, and 2 evolving adaptively, possibly under selective pressure from coral-associated microorganisms. Tachylectin-2 may serve as a candidate locus to screen coral populations for their capacity to respond adaptively to future environmental change.

  5. Baltic salmon activates immune relevant genes in fin tissue when responding to Gyrodactylus salaris infection

    DEFF Research Database (Denmark)

    Kania, Per Walther; Larsen, Thomas Bjerre; Ingerslev, Hans C.;

    2007-01-01

    A series of immune relevant genes are expressed when the Baltic salmon responds on infections with the ectoparasite Gyrodactylus salaris which leads to a decrease of the parasite infection......A series of immune relevant genes are expressed when the Baltic salmon responds on infections with the ectoparasite Gyrodactylus salaris which leads to a decrease of the parasite infection...

  6. Innate immune-stimulating and immune genes up-regulating activities of three types of alginate from Sargassum siliquosum in Pacific white shrimp, Litopenaeus vannamei.

    Science.gov (United States)

    Yudiati, Ervia; Isnansetyo, Alim; Murwantoko; Ayuningtyas; Triyanto; Handayani, Christina Retna

    2016-07-01

    The Total Haemocyte Count (THC), phenoloxidase (PO), Superoxide Dismutase (SOD) activity, Phagocytic Activity/Index and Total Protein Plasma (TPP) were examined after feeding the white shrimp Litopenaeus vannamei with diets supplemented with three different types of alginates (acid, calcium and sodium alginates). Immune-related genes expression was evaluated by quantitative Real Time PCR (qRT-PCR). Results indicated that the immune parameters directly increased according to the doses of alginates and time. The 2.0 g kg(-1) of acid and sodium alginate treatments were gave better results. Four immune-related genes expression i.e. LGBP, Toll, Lectin, proPO were up regulated. It is therefore concluded that the supplementation of alginate of Sargassum siliquosum on the diet of L. vannamei enhanced the innate immunity as well as the expression of immune-related genes. It is the first report on the simultaneous evaluation of three alginate types to enhance innate immune parameters and immune-related genes expression in L. vannamei.

  7. Investigation of gene therapy of adenovirus in immune suppression

    Institute of Scientific and Technical Information of China (English)

    Xi XIA; Beibei WANG; Li CAO; Gang CHEN; Peng WU; Yunping LU; Jianfeng ZHOU; Ding MA

    2008-01-01

    The aim of this paper is to investigate the safety of reconstructed adenovirus in immunosuppressive ther-apeutics and to explore the role of ciclosporin A in ant-agonizing the elimination of the vector. Several rats were given retroperitoneal injection of purified ADV-TK in order to obtain models. After 14 days' treatment of ciclos-porin A, samples of different periods were obtained, then stained with hematoxylin-eosin (HE) to detect inflam-mation reactions. Immunohistochemistry was used to examine the expression of adenovirus in organs. The results are as follows: (1) In HE stained sections of the organs, some transitory and reversible inflammation was detected. (2) In immunohistochemistry assay, recon-structed adenovirus decreased gradually as time went by in the control group, while it did not happen in the experi-mental group in which the adenovirus showed a relative increase compared with their counterparts (P<0.05). (3) The distributions of adenovirus in the liver, spleen and lung were higher than those in the other organs detected. Reconstructed adenovirus as a vector is definitely safe in immunosuppressive therapeutics, and ciclosporin A, to some extent, is able to consequently inhibit the immune response of the rats and prolong the existing period of adenovirus.

  8. A spruce gene map infers ancient plant genome reshuffling and subsequent slow evolution in the gymnosperm lineage leading to extant conifers

    Directory of Open Access Journals (Sweden)

    Pavy Nathalie

    2012-10-01

    Full Text Available Abstract Background Seed plants are composed of angiosperms and gymnosperms, which diverged from each other around 300 million years ago. While much light has been shed on the mechanisms and rate of genome evolution in flowering plants, such knowledge remains conspicuously meagre for the gymnosperms. Conifers are key representatives of gymnosperms and the sheer size of their genomes represents a significant challenge for characterization, sequencing and assembling. Results To gain insight into the macro-organisation and long-term evolution of the conifer genome, we developed a genetic map involving 1,801 spruce genes. We designed a statistical approach based on kernel density estimation to analyse gene density and identified seven gene-rich isochors. Groups of co-localizing genes were also found that were transcriptionally co-regulated, indicative of functional clusters. Phylogenetic analyses of 157 gene families for which at least two duplicates were mapped on the spruce genome indicated that ancient gene duplicates shared by angiosperms and gymnosperms outnumbered conifer-specific duplicates by a ratio of eight to one. Ancient duplicates were much more translocated within and among spruce chromosomes than conifer-specific duplicates, which were mostly organised in tandem arrays. Both high synteny and collinearity were also observed between the genomes of spruce and pine, two conifers that diverged more than 100 million years ago. Conclusions Taken together, these results indicate that much genomic evolution has occurred in the seed plant lineage before the split between gymnosperms and angiosperms, and that the pace of evolution of the genome macro-structure has been much slower in the gymnosperm lineage leading to extent conifers than that seen for the same period of time in flowering plants. This trend is largely congruent with the contrasted rates of diversification and morphological evolution observed between these two groups of seed

  9. Immunity and AAV-Mediated Gene Therapy for Muscular Dystrophies in Large Animal Models and Human Trials.

    Science.gov (United States)

    Wang, Zejing; Tapscott, Stephen J; Chamberlain, Jeffrey S; Storb, Rainer

    2011-01-01

    Adeno-associated viral (AAV) vector-mediated gene replacement for the treatment of muscular dystrophy represents a promising therapeutic strategy in modern medicine. One major obstacle in using AAV vectors for in vivo gene delivery is the development of host immune responses to the viral capsid protein and transgene products as evidenced in animal models and human trials for a range of genetic diseases. Here, we review immunity against AAV vector and transgene in the context of gene delivery specific to muscles for treating muscular dystrophies and non-muscle diseases in large animal models and human trials, factors that influence the intensity of the immune responses, and immune modulatory strategies to prevent unwanted immune responses and induce tolerance to the vector and therapeutic gene for a successful gene therapy.

  10. A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella

    Directory of Open Access Journals (Sweden)

    Glöckner Gernot

    2011-06-01

    Full Text Available Abstract Background The larvae of the greater wax moth Galleria mellonella are increasingly used (i as mini-hosts to study pathogenesis and virulence factors of prominent bacterial and fungal human pathogens, (ii as a whole-animal high throughput infection system for testing pathogen mutant libraries, and (iii as a reliable host model to evaluate the efficacy of antibiotics against human pathogens. In order to compensate for the lack of genomic information in Galleria, we subjected the transcriptome of different developmental stages and immune-challenged larvae to next generation sequencing. Results We performed a Galleria transcriptome characterization on the Roche 454-FLX platform combined with traditional Sanger sequencing to obtain a comprehensive transcriptome. To maximize sequence diversity, we pooled RNA extracted from different developmental stages, larval tissues including hemocytes, and from immune-challenged larvae and normalized the cDNA pool. We generated a total of 789,105 pyrosequencing and 12,032 high-quality Sanger EST sequences which clustered into 18,690 contigs with an average length of 1,132 bases. Approximately 40% of the ESTs were significantly similar (E ≤ e-03 to proteins of other insects, of which 45% have a reported function. We identified a large number of genes encoding proteins with established functions in immunity related sensing of microbial signatures and signaling, as well as effector molecules such as antimicrobial peptides and inhibitors of microbial proteinases. In addition, we found genes known as mediators of melanization or contributing to stress responses. Using the transcriptomic data, we identified hemolymph peptides and proteins induced upon immune challenge by 2D-gelelectrophoresis combined with mass spectrometric analysis. Conclusion Here, we have developed extensive transcriptomic resources for Galleria. The data obtained is rich in gene transcripts related to immunity, expanding remarkably our

  11. Immune disease-associated variants in gene enhancers point to BET epigenetic mechanisms for therapeutic intervention.

    Science.gov (United States)

    Tough, David F; Prinjha, Rab K

    2016-12-07

    Genome-wide association studies have identified thousands of single nucleotide polymorphisms in the human genome that are statistically associated with particular disease traits. In this Perspective, we review emerging data suggesting that most single nucleotide polymorphisms associated with immune-mediated diseases are found in regulatory regions of the DNA - parts of the genome that control expression of the protein encoding genes - rather than causing mutations in proteins. We discuss how the emerging understanding of particular gene regulatory regions, gene enhancers and the epigenetic mechanisms by which they are regulated is opening up new opportunities for the treatment of immune-mediated diseases, focusing particularly on the BET family of epigenetic reader proteins as potential therapeutic targets.

  12. Sequencing of Pax6 loci from the elephant shark reveals a family of Pax6 genes in vertebrate genomes, forged by ancient duplications and divergences.

    Directory of Open Access Journals (Sweden)

    Vydianathan Ravi

    Full Text Available Pax6 is a developmental control gene essential for eye development throughout the animal kingdom. In addition, Pax6 plays key roles in other parts of the CNS, olfactory system, and pancreas. In mammals a single Pax6 gene encoding multiple isoforms delivers these pleiotropic functions. Here we provide evidence that the genomes of many other vertebrate species contain multiple Pax6 loci. We sequenced Pax6-containing BACs from the cartilaginous elephant shark (Callorhinchus milii and found two distinct Pax6 loci. Pax6.1 is highly similar to mammalian Pax6, while Pax6.2 encodes a paired-less Pax6. Using synteny relationships, we identify homologs of this novel paired-less Pax6.2 gene in lizard and in frog, as well as in zebrafish and in other teleosts. In zebrafish two full-length Pax6 duplicates were known previously, originating from the fish-specific genome duplication (FSGD and expressed in divergent patterns due to paralog-specific loss of cis-elements. We show that teleosts other than zebrafish also maintain duplicate full-length Pax6 loci, but differences in gene and regulatory domain structure suggest that these Pax6 paralogs originate from a more ancient duplication event and are hence renamed as Pax6.3. Sequence comparisons between mammalian and elephant shark Pax6.1 loci highlight the presence of short- and long-range conserved noncoding elements (CNEs. Functional analysis demonstrates the ancient role of long-range enhancers for Pax6 transcription. We show that the paired-less Pax6.2 ortholog in zebrafish is expressed specifically in the developing retina. Transgenic analysis of elephant shark and zebrafish Pax6.2 CNEs with homology to the mouse NRE/Pα internal promoter revealed highly specific retinal expression. Finally, morpholino depletion of zebrafish Pax6.2 resulted in a "small eye" phenotype, supporting a role in retinal development. In summary, our study reveals that the pleiotropic functions of Pax6 in vertebrates are served by

  13. Cloning of human RTEF-1, a transcriptional enhancer factor-1-related gene preferentially expressed in skeletal muscle: evidence for an ancient multigene family.

    Science.gov (United States)

    Stewart, A F; Richard, C W; Suzow, J; Stephan, D; Weremowicz, S; Morton, C C; Adra, C N

    1996-10-01

    Transcriptional Enhancer Factor-1 (TEF-1) is a transcription factor required for cardiac muscle gene activation. Since ablation of TEF-1 does not abolish cardiac gene expression, we sought to identify a human gene related to TEF-1 (RTEF-1) that might also participate in cardiac gene regulation. A human heart cDNA library was screened to obtain a full-length RTEF-1 cDNA. Fluorescence in situ hybridization assigned the RTEF-1 gene to chromosome 12p13.2-p13.3. In contrast, PCR screening of human/rodent cell hybrid panels identified TEF-1 on chromosome 11p15.2, between D11S1315 and D11S1334, extending a region of known synteny between human chromosomes 11 and 12 and arguing for an ancient divergence between these two closely related genes. Northern blot analysis revealed a striking similarity in the tissue distribution of RTEF-1 and TEF-1 mRNAs; skeletal muscle showed the highest abundance of both mRNAs, with lower levels detected in pancreas, placenta, and heart. Phylogenetic analysis of all known TEF-1-related proteins identified human RTEF-1 as one of four vertebrate members of this multigene family and further suggests that these genes diverged in the earliest metazoan ancestors.

  14. Immune-Related Gene Expression Patterns in GPV- or H9N2-Infected Goose Spleens

    Directory of Open Access Journals (Sweden)

    Shun Chen

    2016-12-01

    Full Text Available Goose parvovirus (GPV and avian influenza virus subtype H9N2 are single-stranded DNA (ssDNA and single-stranded RNA (ssRNA viruses, respectively, both of which can spread in goslings and cause a significant economic loss. To explore the comprehensive transcriptome of GPV- or H9N2-infected goose spleens and to understand the immune responses induced by a DNA virus (GPV or a RNA virus (H9N2, RNA-seq was performed on the spleens of goslings at the fifth day post infection. In the present study, 2604 and 2409 differentially expressed unigenes were identified in the GPV- and H9N2-infected groups, respectively. Through KEGG pathway enrichment analyses, the up-regulated transcripts in the two virus-infected groups were mainly involved in immune-related pathways. In addition, the two virus-infected groups displayed similar expression patterns in the immune response pathways, including pattern-recognition receptor signaling pathways, the antigen processing and presentation pathway, the NF-κB signaling pathway and the JAK-STAT signaling pathway, as well as cytokines. Furthermore, most of the immune-related genes, particularly TLR7, TRAF3, Mx, TRIM25, CD4, and CD8α, increased in response to GPV and H9N2 infection. However, the depression of NF-κB signaling may be a mechanism by which the viruses evade the host immune system or a strategy to achieve immune homeostasis.

  15. Molecular evolution of immune genes in the malaria mosquito Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Tovi Lehmann

    Full Text Available BACKGROUND: As pathogens that circumvent the host immune response are favoured by selection, so are host alleles that reduce parasite load. Such evolutionary processes leave their signature on the genes involved. Deciphering modes of selection operating on immune genes might reveal the nature of host-pathogen interactions and factors that govern susceptibility in host populations. Such understanding would have important public health implications. METHODOLOGY/FINDINGS: We analyzed polymorphisms in four mosquito immune genes (SP14D1, GNBP, defensin, and gambicin to decipher selection effects, presumably mediated by pathogens. Using samples of Anopheles arabiensis, An. quadriannulatus and four An. gambiae populations, as well as published sequences from other Culicidae, we contrasted patterns of polymorphisms between different functional units of the same gene within and between populations. Our results revealed selection signatures operating on different time scales. At the most recent time scale, within-population diversity revealed purifying selection. Between populations and between species variation revealed reduced differentiation (GNBP and gambicin at coding vs. noncoding- regions, consistent with balancing selection. McDonald-Kreitman tests between An. quadriannulatus and both sibling species revealed higher fixation rate of synonymous than nonsynonymous substitutions (GNBP in accordance with frequency dependent balancing selection. At the longest time scale (>100 my, PAML analysis using distant Culicid taxa revealed positive selection at one codon in gambicin. Patterns of genetic variation were independent of exposure to human pathogens. SIGNIFICANCE AND CONCLUSIONS: Purifying selection is the most common form of selection operating on immune genes as it was detected on a contemporary time scale on all genes. Selection for "hypervariability" was not detected, but negative balancing selection, detected at a recent evolutionary time scale

  16. Molecular Evolution of Immune Genes in the Malaria Mosquito Anopheles gambiae

    Science.gov (United States)

    Lehmann, Tovi; Hume, Jen C. C.; Licht, Monica; Burns, Christopher S.; Wollenberg, Kurt; Simard, Fred; Ribeiro, Jose' M. C.

    2009-01-01

    Background As pathogens that circumvent the host immune response are favoured by selection, so are host alleles that reduce parasite load. Such evolutionary processes leave their signature on the genes involved. Deciphering modes of selection operating on immune genes might reveal the nature of host-pathogen interactions and factors that govern susceptibility in host populations. Such understanding would have important public health implications. Methodology/Findings We analyzed polymorphisms in four mosquito immune genes (SP14D1, GNBP, defensin, and gambicin) to decipher selection effects, presumably mediated by pathogens. Using samples of Anopheles arabiensis, An. quadriannulatus and four An. gambiae populations, as well as published sequences from other Culicidae, we contrasted patterns of polymorphisms between different functional units of the same gene within and between populations. Our results revealed selection signatures operating on different time scales. At the most recent time scale, within-population diversity revealed purifying selection. Between populations and between species variation revealed reduced differentiation (GNBP and gambicin) at coding vs. noncoding- regions, consistent with balancing selection. McDonald-Kreitman tests between An. quadriannulatus and both sibling species revealed higher fixation rate of synonymous than nonsynonymous substitutions (GNBP) in accordance with frequency dependent balancing selection. At the longest time scale (>100 my), PAML analysis using distant Culicid taxa revealed positive selection at one codon in gambicin. Patterns of genetic variation were independent of exposure to human pathogens. Significance and Conclusions Purifying selection is the most common form of selection operating on immune genes as it was detected on a contemporary time scale on all genes. Selection for “hypervariability” was not detected, but negative balancing selection, detected at a recent evolutionary time scale between sibling

  17. Protein poly(ADP-ribosyl)ation regulates arabidopsis immune gene expression and defense responses.

    Science.gov (United States)

    Feng, Baomin; Liu, Chenglong; de Oliveira, Marcos V V; Intorne, Aline C; Li, Bo; Babilonia, Kevin; de Souza Filho, Gonçalo A; Shan, Libo; He, Ping

    2015-01-01

    Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose) glycohydrolase (PARG) is predicted to remove poly(ADP-ribose) polymers on acceptor proteins modified by poly(ADP-ribose) polymerases (PARPs) with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose) polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R) in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosyl)ation plays critical roles in plant immune gene expression and defense to pathogen attacks.

  18. Protein poly(ADP-ribosylation regulates arabidopsis immune gene expression and defense responses.

    Directory of Open Access Journals (Sweden)

    Baomin Feng

    2015-01-01

    Full Text Available Perception of microbe-associated molecular patterns (MAMPs elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose glycohydrolase 1 (atparg1 mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose glycohydrolase (PARG is predicted to remove poly(ADP-ribose polymers on acceptor proteins modified by poly(ADP-ribose polymerases (PARPs with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosylation plays critical roles in plant immune gene expression and defense to pathogen attacks.

  19. Gene Transfer to Dendritic Cells Induced a Protective Immunity against Melanoma

    Institute of Scientific and Technical Information of China (English)

    Pat Metharom; Kay A.O. Ellem; Ming Q. Wei

    2005-01-01

    Lentiviral vectors have shown promises for efficient gene transfer to dividing as well as nondividing cells. In this study, we explored lentiviral vector-mediated, the entire mTRP-2 gene transfer and expression in dendritic cells (DCs). Adoptive transfer of DCs-expressing mTRP-2 (DC-HR'CmT2) into C57BL/6 mouse was also assessed.Dendritic cells were harvested from bone marrow and functional DCs were proved by allogeneic mixed lymphocyte reaction. Lentiviral vectors were produced by transient transfection of 293T cells. Transduction of DCs was proved by marker gene expression and PCR and RT-PCR amplification. Implantation of the transduced DCs, depletion of immune cells as well as the survival of the mice after tumour challenge were investigated. High efficiency of gene transfer into mature DCs was achieved. The high level expression of the functional antigen (TRP-2) and induction of protective immunity by adoptive transfer of TRP-2 gene modified DCs were demonstrated. In vivo study showed a complete protection of mice from further melanoma cell challenge. In comparison, only 83% of mice survived when mTRP-2 peptide-pulsed DCs were administered, suggesting the generation of specific protection. Together, these results demonstrated the usefulness of this gene transfer to DC approach for immunotherapy of cancer and indicated that using tumour associated antigens (TAAs) for gene transfer may be potentially beneficial for the therapy of melanoma.

  20. Altered endometrial immune gene expression in beef heifers with retarded embryos.

    Science.gov (United States)

    Beltman, M E; Forde, N; Lonergan, P; Crowe, M A

    2013-01-01

    The aim of the present study was to compare endometrial gene expression profiles in a group of beef heifers yielding viable or retarded embryos on Day 7 after oestrus as a means of potentially explaining differences in embryo survival rates. Heifers were classified as either: (1) viable, when the embryo collected on Day 7 after oestrus was at the correct developmental stage (i.e. morula/early blastocyst); or (2) retarded, when the embryo was arrested at the 2-16-cell stage. The focus of the present study was on genes that were associated with either the pro- or anti-inflammatory immune response. Endometrial gene expression was determined using quantitative real-time polymerase chain reaction analysis. Expression of the β-defensin (DEFB1), interferon (IFN)-α (IFNA), IFN-γ (IFNG), interleukin (IL)-6 (IL6), IL-10 (IL10), forkhead box P3 (FOXP3) and natural cytotoxicity triggering receptor 1 (NCR1) genes was lower in endometria from viable than retarded heifers. Expression of the nuclear factor of kappa light polypeptide gene enhancer in B cells 1 (NKFB1), transforming growth factor (TGF)-β (TGFB), IFN-γ-inducible protein 16 (IFI16) and IL-21 (IL21) genes was higher in viable than retarded heifers. We propose that small disturbances in the expression of immune genes in the endometrium on Day 7 after oestrus can have detrimental effects on embryo survival.

  1. Blood gene expression profiles suggest altered immune function associated with symptoms of generalized anxiety disorder.

    Science.gov (United States)

    Wingo, Aliza P; Gibson, Greg

    2015-01-01

    Prospective epidemiological studies found that generalized anxiety disorder (GAD) can impair immune function and increase risk for cardiovascular disease or events. Mechanisms underlying the physiological reverberations of anxiety, however, are still elusive. Hence, we aimed to investigate molecular processes mediating effects of anxiety on physical health using blood gene expression profiles of 336 community participants (157 anxious and 179 control). We examined genome-wide differential gene expression in anxiety, as well as associations between nine major modules of co-regulated transcripts in blood gene expression and anxiety. No significant differential expression was observed in women, but 631 genes were differentially expressed between anxious and control men at the false discovery rate of 0.1 after controlling for age, body mass index, race, and batch effect. Gene set enrichment analysis (GSEA) revealed that genes with altered expression levels in anxious men were involved in response of various immune cells to vaccination and to acute viral and bacterial infection, and in a metabolic network affecting traits of metabolic syndrome. Further, we found one set of 260 co-regulated genes to be significantly associated with anxiety in men after controlling for the relevant covariates, and demonstrate its equivalence to a component of the stress-related conserved transcriptional response to adversity profile. Taken together, our results suggest potential molecular pathways that can explain negative effects of GAD observed in epidemiological studies. Remarkably, even mild anxiety, which most of our participants had, was associated with observable changes in immune-related gene expression levels. Our findings generate hypotheses and provide incremental insights into molecular mechanisms mediating negative physiological effects of GAD.

  2. Immunity and AAV-mediated gene therapy for muscular dystrophies in large animal models and human trials

    OpenAIRE

    2011-01-01

    Adeno-associated viral (AAV) vector-mediated gene replacement for the treatment of muscular dystrophy represents a promising therapeutic strategy in modern medicine. One major obstacle in using AAV vectors for in vivo gene delivery is the development of host immune responses to the viral capsid protein and transgene products as evidenced in animal models and human trials for a range of genetic diseases. Here, we review immunity against AAV vector and transgene in the context of gene delivery ...

  3. Stable Expression of Hantavirus H8205 Strain G1/IL-2 Gene and Immune Protection of the Fusion Gene

    Institute of Scientific and Technical Information of China (English)

    XIONG Ying; YUAN Yuan; JIA Min; YU Bing; HUANG Hanju

    2007-01-01

    To explore the feasibility of stable expression of Hantavirus H8205 strain G1 segment and human IL-2 fusion gene in Vero cells, and to examine the immune protection effects on mice vaccinated with this recombinant eukaryotic expression vector containing Hantavirus G1 gene and IL-2 gene. With the help of lipofectamine, the Vero cells were transfected with pcDNA3.1/HisB-IL-2-G1 and the positive cells were selected by G418. IFAT and SDS-PAGE electrophoresis were used to determine the stable transfection and expression of recombinant protein.Each mouse was inoculated with plasmids intramuscularly (i.m.) three times, 2 boosts were given at 2-week intervals, serum anti-hantavirus antibodies were detected by ELISA and neutralizing antibodies (NAb) were detected by Plaque Reduction Neutralization Test. The fusion protein expressed in Vero cells was 78 kD, corresponding to the estimated molecular size. The neutralizing antibody titers of mice with pcDNA3.1/HisB-IL-2-G1 were 1:20-1:80. IL-2/G1 fusion gene could be transferred in Vero cells and stably express the fusion protein. Specific humeral immune responses in mice can be induced with the recombinant eukaryotic expression vector containing the fusion gene, which lays the foundation for further development of therapeutic HTNV vaccine.

  4. Suppression of plant resistance gene-based immunity by a fungal effector.

    Directory of Open Access Journals (Sweden)

    Petra M Houterman

    2008-05-01

    Full Text Available The innate immune system of plants consists of two layers. The first layer, called basal resistance, governs recognition of conserved microbial molecules and fends off most attempted invasions. The second layer is based on Resistance (R genes that mediate recognition of effectors, proteins secreted by pathogens to suppress or evade basal resistance. Here, we show that a plant-pathogenic fungus secretes an effector that can both trigger and suppress R gene-based immunity. This effector, Avr1, is secreted by the xylem-invading fungus Fusarium oxysporum f.sp. lycopersici (Fol and triggers disease resistance when the host plant, tomato, carries a matching R gene (I or I-1. At the same time, Avr1 suppresses the protective effect of two other R genes, I-2 and I-3. Based on these observations, we tentatively reconstruct the evolutionary arms race that has taken place between tomato R genes and effectors of Fol. This molecular analysis has revealed a hitherto unpredicted strategy for durable disease control based on resistance gene combinations.

  5. AAV2-mediated in vivo immune gene therapy of solid tumours

    LENUS (Irish Health Repository)

    Collins, Sara A

    2010-12-20

    Abstract Background Many strategies have been adopted to unleash the potential of gene therapy for cancer, involving a wide range of therapeutic genes delivered by various methods. Immune therapy has become one of the major strategies adopted for cancer gene therapy and seeks to stimulate the immune system to target tumour antigens. In this study, the feasibility of AAV2 mediated immunotherapy of growing tumours was examined, in isolation and combined with anti-angiogenic therapy. Methods Immune-competent Balb\\/C or C57 mice bearing subcutaneous JBS fibrosarcoma or Lewis Lung Carcinoma (LLC) tumour xenografts respectively were treated by intra-tumoural administration of AAV2 vector encoding the immune up-regulating cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) and the co-stimulatory molecule B7-1 to subcutaneous tumours, either alone or in combination with intra-muscular (IM) delivery of AAV2 vector encoding Nk4 14 days prior to tumour induction. Tumour growth and survival was monitored for all animals. Cured animals were re-challenged with tumourigenic doses of the original tumour type. In vivo cytotoxicity assays were used to investigate establishment of cell-mediated responses in treated animals. Results AAV2-mediated GM-CSF, B7-1 treatment resulted in a significant reduction in tumour growth and an increase in survival in both tumour models. Cured animals were resistant to re-challenge, and induction of T cell mediated anti-tumour responses were demonstrated. Adoptive transfer of splenocytes to naïve animals prevented tumour establishment. Systemic production of Nk4 induced by intra-muscular (IM) delivery of Nk4 significantly reduced subcutaneous tumour growth. However, combination of Nk4 treatment with GM-CSF, B7-1 therapy reduced the efficacy of the immune therapy. Conclusions Overall, this study demonstrates the potential for in vivo AAV2 mediated immune gene therapy, and provides data on the inter-relationship between tumour

  6. Immune response to dna vaccine expressing transferrin binding protein a gene of Pasteurella multocida

    Directory of Open Access Journals (Sweden)

    Satparkash Singh

    2011-06-01

    Full Text Available Haemorrhagic Septicaemia (HS, an acute and fatal disease of cattle and buffalo is primarily caused by serotype B:2 or E:2 of Pasteurella multocida. The transferrin binding protein A (TbpA has been found to act as immunogen and potent vaccine candidate in various Gram negative bacteria including P. multocida. The present study was carried out to evaluate the potential of this antigen as a DNA vaccine against HS in mice model. The tbpA gene of P. multocida serotype B:2 was cloned in a mammalian expression vector alone and along with murine IL2 gene as immunological adjuvant to produce monocistronic and bicistronic DNA vaccine constructs, respectively. The immune response to DNA vaccines was evaluated based on serum antibody titres and lymphocyte proliferation assay. A significant increase in humoral and cell mediated immune responses was observed in mice vaccinated with DNA vaccines as compared to non immunized group. Additionally, the bicistronic DNA vaccine provided superior immune response and protection level following challenge as compared to monocistronic construct. The study revealed that DNA vaccine presents a promising approach for the prevention of HS.

  7. Immune response to dna vaccine expressing transferrin binding protein a gene of Pasteurella multocida.

    Science.gov (United States)

    Singh, Satparkash; Singh, Vijendra Pal; Cheema, Pawanjit Singh; Sandey, Maninder; Ranjan, Rajeev; Gupta, Santosh Kumar; Sharma, Bhaskar

    2011-04-01

    Haemorrhagic Septicaemia (HS), an acute and fatal disease of cattle and buffalo is primarily caused by serotype B:2 or E:2 of Pasteurella multocida. The transferrin binding protein A (TbpA) has been found to act as immunogen and potent vaccine candidate in various Gram negative bacteria including P. multocida. The present study was carried out to evaluate the potential of this antigen as a DNA vaccine against HS in mice model. The tbpA gene of P. multocida serotype B:2 was cloned in a mammalian expression vector alone and along with murine IL2 gene as immunological adjuvant to produce monocistronic and bicistronic DNA vaccine constructs, respectively. The immune response to DNA vaccines was evaluated based on serum antibody titres and lymphocyte proliferation assay. A significant increase in humoral and cell mediated immune responses was observed in mice vaccinated with DNA vaccines as compared to non immunized group. Additionally, the bicistronic DNA vaccine provided superior immune response and protection level following challenge as compared to monocistronic construct. The study revealed that DNA vaccine presents a promising approach for the prevention of HS.

  8. Immune Responses to Trichloroethylene and Skin Gene Expression Profiles in Sprague Dawley Rats

    Institute of Scientific and Technical Information of China (English)

    XIAO-YAN CHEN; ZHI-XIONG ZHUANG; XIAO-HUI WANG; JIN-ZHOU ZHANG

    2006-01-01

    Objective To characterize the immune reaction in SD rats exposed to trichloroethylene (TCE) and to identify the gene expression profiles involved in skin after TCE exposure. Methods Fifteen percent of TCE was injected intradermally into the rat back (100 μL/120 g) at intervals of 7 days. Whole blood was collected 24 h after the fifth or seventh intradermic administration of TCE. The percentages of CD4+ and CD8+ of T lymphocytes were measured by a flow cytometer. The concentrations of IFN-gamma and IL-4 in the serum were semi-quantified by ELISA. Total RNAs of skin samples at 3 h or 24 h after the seventh dose of TCE in SD rats were extracted, and gene expression profiles of these tissues were analyszed by rat toxicology U34 array of Affymetrix. Results Obvious decline of CD4+ in T lymphocytes was observed in theTCE-administer group. No significant concentration differences in IFN-gamma and IL-4 were found between TCE-treated and control rats. Gadd45a and Mel were significantly up regulated in skin tissue 24 h after TCE exposure. The expression regulation of immune response factors was as active as proteins associated with lipid metabolism and synthesis process in these skin samples of SD rats exposed to TCE. Conclusion T-helper type 1 cells mediate immune response can not be elicited in TCE-treated SD rats, but certain immune disorder can be induced.

  9. Characterization of immune-related genes in the yellow catfish Pelteobagrus fulvidraco in response to LPS challenge.

    Science.gov (United States)

    Liu, Qiu-Ning; Xin, Zhao-Zhe; Chai, Xin-Yue; Jiang, Sen-Hao; Li, Chao-Feng; Zhang, Hua-Bin; Ge, Bao-Ming; Zhang, Dai-Zhen; Zhou, Chun-Lin; Tang, Bo-Ping

    2016-09-01

    Fish are considered an excellent model for studies in comparative immunology as they are a representative population of lower vertebrates linked to invertebrate evolution. To gain a better understanding of the immune response in fish, we constructed a subtractive cDNA library from the head kidney of lipopolysaccharide-stimulated yellow catfish (Pelteobagrus fulvidraco) using suppression subtractive hybridization (SSH). A total of 300 putative EST clones were identified which contained 95 genes, including 27 immune-related genes, 7 cytoskeleton-related genes, 3 genes involved in the cell cycle and apoptosis, 9 respiration and energy metabolism-related genes, 7 genes related to transport, 24 metabolism-related genes, 10 genes involved in stress responses, seven genes involved in regulation of transcription and translation and 59 unknown genes. Using real-time quantitative reverse transcription PCR, a subset of randomly selected genes involved in the immune response to lipopolysaccharide challenge were investigated to verify the reliability of the SSH data which identified 16 up-regulated genes. The genes identified in this study provide novel insight into the immune response in fish.

  10. Adult Drosophila melanogaster evolved for antibacterial defense invest in infection-induced expression of both humoral and cellular immunity genes

    Directory of Open Access Journals (Sweden)

    McGraw Elizabeth A

    2011-08-01

    Full Text Available Abstract Background While the transcription of innate immunity genes in response to bacterial infection has been well-characterised in the Drosophila model, we recently demonstrated the capacity for such transcription to evolve in flies selected for improved antibacterial defense. Here we use this experimental system to examine how insects invest in constitutive versus infection-induced transcription of immunity genes. These two strategies carry with them different consequences with respect to energetic and pleiotropic costs and may be more or less effective in improving defense depending on whether the genes contribute to humoral or cellular aspects of immunity. Findings Contrary to expectation we show that selection preferentially increased the infection-induced expression of both cellular and humoral immunity genes. Given their functional roles, infection induced increases in expression were expected for the humoral genes, while increases in constitutive expression were expected for the cellular genes. We also report a restricted ability to improve transcription of immunity genes that is on the order of 2-3 fold regardless of total transcription level of the gene. Conclusions The evolved increases in infection-induced expression of the cellular genes may result from specific cross talk with humoral pathways or from generalised strategies for enhancing immunity gene transcription. A failure to see improvements in constitutive expression of the cellular genes suggests either that increases might come at too great a cost or that patterns of expression in adults are decoupled from the larval phase where increases would be most effective. The similarity in fold change increase across all immunity genes may suggest a shared mechanism for the evolution of increased transcription in small, discrete units such as duplication of cis-regulatory elements.

  11. Activation of innate immune genes in caprine blood leukocytes after systemic endotoxin challenge

    DEFF Research Database (Denmark)

    Salvesen, Øyvind; Reiten, Malin R; Heegaard, Peter M. H.

    2016-01-01

    observed peaking at 2 h, corroborating the increasing evidence that ISGs respond immediately to bacterial endotoxins. A slower response was manifested by four extrahepatic acute phase proteins (APP) (SAA3, HP, LF and LCN2) reaching maximum levels at 5 h. We report an immediate induction of ISGs...... insights into the dynamic regulation of innate immune genes, as well as raising new questions regarding the importance of ISGs and extrahepatic APPs in leukocytes after systemic endotoxin challenge....

  12. Expression of immune-related genes in goldfish gills induced by Dactylogyrus intermedius infections.

    Science.gov (United States)

    Lu, Cheng; Ling, Fei; Ji, Jie; Kang, Yu-Jun; Wang, Gao-Xue

    2013-01-01

    Dactylogyrus intermedius, an oviparous monogenean parasite, is regarded as a devastating pathogen in freshwater aquaculture and ornamental fish trade, and accounts for significant economic losses worldwide. The study was undertaken to determine the differential expression of immune-related genes TNFα1, TNFα2, IL-1β2, TGFβ, iNOSa and iNOSb in goldfish gills during D. intermedius infection by real-time quantitative PCR. The results show that the expression of the pro-inflammatory cytokines (IL-1β2, TNFα1 and TNFα2) and the anti-inflammatory cytokine (TGFβ) were up-regulated at day 7 p.i. (post infection). The mRNA levels of these cytokines returned to normal levels or were down-regulated at day 21 p.i. In the cases of iNOSa and iNOSb, a significant up-regulation in iNOSa transcription levels were seen at day 14 p.i. while the expression of iNOSb gene showed a distinct up-regulation at day 7 p.i. Additionally, this study was conducted to investigate the expression of immune-related genes in different degrees of goldfish experimentally infected with the monogenean D. intermedius. The results indicated that D. intermedius infection might regulate the fish immunity by showing differential expression levels of immune-related gene. The study confirms goldfish gill acts as an important source of inflammatory molecules, as well as an active modulator of local inflammation after initially infected with D. intermedius. Moreover, the results obtained in this study could be useful towards understanding the susceptibility of goldfish to D. intermedius and mechanisms involved in protection of goldfish to ectoparasitic infections.

  13. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study

    Directory of Open Access Journals (Sweden)

    Cribbs David H

    2012-07-01

    Full Text Available Abstract Background This study undertakes a systematic and comprehensive analysis of brain gene expression profiles of immune/inflammation-related genes in aging and Alzheimer’s disease (AD. Methods In a well-powered microarray study of young (20 to 59 years, aged (60 to 99 years, and AD (74 to 95 years cases, gene responses were assessed in the hippocampus, entorhinal cortex, superior frontal gyrus, and post-central gyrus. Results Several novel concepts emerge. First, immune/inflammation-related genes showed major changes in gene expression over the course of cognitively normal aging, with the extent of gene response far greater in aging than in AD. Of the 759 immune-related probesets interrogated on the microarray, approximately 40% were significantly altered in the SFG, PCG and HC with increasing age, with the majority upregulated (64 to 86%. In contrast, far fewer immune/inflammation genes were significantly changed in the transition to AD (approximately 6% of immune-related probesets, with gene responses primarily restricted to the SFG and HC. Second, relatively few significant changes in immune/inflammation genes were detected in the EC either in aging or AD, although many genes in the EC showed similar trends in responses as in the other brain regions. Third, immune/inflammation genes undergo gender-specific patterns of response in aging and AD, with the most pronounced differences emerging in aging. Finally, there was widespread upregulation of genes reflecting activation of microglia and perivascular macrophages in the aging brain, coupled with a downregulation of select factors (TOLLIP, fractalkine that when present curtail microglial/macrophage activation. Notably, essentially all pathways of the innate immune system were upregulated in aging, including numerous complement components, genes involved in toll-like receptor signaling and inflammasome signaling, as well as genes coding for immunoglobulin (Fc receptors and human

  14. MIrExpress: A Database for Gene Coexpression Correlation in Immune Cells Based on Mutual Information and Pearson Correlation

    OpenAIRE

    Luman Wang; Qiaochu Mo; Jianxin Wang

    2015-01-01

    Most current gene coexpression databases support the analysis for linear correlation of gene pairs, but not nonlinear correlation of them, which hinders precisely evaluating the gene-gene coexpression strengths. Here, we report a new database, MIrExpress, which takes advantage of the information theory, as well as the Pearson linear correlation method, to measure the linear correlation, nonlinear correlation, and their hybrid of cell-specific gene coexpressions in immune cells. For a given ge...

  15. Association of polymorphisms of Nrampl gene with immune function and production performance of large white pig

    Institute of Scientific and Technical Information of China (English)

    Hongmei Wu; Duxue Cheng; Lixian Wang

    2008-01-01

    The present research was designed to study the association of polymorphism of natural resistance-associated macrophage protein 1 (Nrampl) with some immune function and the production performance in Large White pig. The PCR-RFLP technique was applied to analyze the correlation between the polymorphisms of Nrampl gene and immune function [value of Polymorphonuclear Leukocytes (PMN) obtained by Nitroblue Tetrazolium (NBT) Reduction and effect of Cytotoxin in Monocyte] and production performance in 165 Large White pigs. The results showed that there was one Nde I restriction locus in Large White pig, and both values of PMN by NBT Reduction and effect of Cytotoxin in Monocyte in genotype BB were higher than those in genotype AB (P<0.05). Simultaneously, the weight of 180-day-old pigs with genotype BB was higher than that with genotype AB (.P<0.05). The results indicated that there was a significant correlation between different genotypes of Nrampl gene and Immune function and production performance, and it can be re garded as a candidate gene of disease resistance. All these results provide valuable reference to further studies of pig disease resistance.

  16. Long-term programming of antigen-specific immunity from gene expression signatures in the PBMC of rhesus macaques immunized with an SIV DNA vaccine.

    Directory of Open Access Journals (Sweden)

    Sarah E Belisle

    Full Text Available While HIV-1-specific cellular immunity is thought to be critical for the suppression of viral replication, the correlates of protection have not yet been determined. Rhesus macaques (RM are an important animal model for the study and development of vaccines against HIV/AIDS. Our laboratory has helped to develop and study DNA-based vaccines in which recent technological advances, including genetic optimization and in vivo electroporation (EP, have helped to dramatically boost their immunogenicity. In this study, RMs were immunized with a DNA vaccine including individual plasmids encoding SIV gag, env, and pol alone, or in combination with a molecular adjuvant, plasmid DNA expressing the chemokine ligand 5 (RANTES, followed by EP. Along with standard immunological assays, flow-based activation analysis without ex vivo restimulation and high-throughput gene expression analysis was performed. Strong cellular immunity was induced by vaccination which was supported by all assays including PBMC microarray analysis that identified the up-regulation of 563 gene sequences including those involved in interferon signaling. Furthermore, 699 gene sequences were differentially regulated in these groups at peak viremia following SIVmac251 challenge. We observed that the RANTES-adjuvanted animals were significantly better at suppressing viral replication during chronic infection and exhibited a distinct pattern of gene expression which included immune cell-trafficking and cell cycle genes. Furthermore, a greater percentage of vaccine-induced central memory CD8+ T-cells capable of an activated phenotype were detected in these animals as measured by activation analysis. Thus, co-immunization with the RANTES molecular adjuvant followed by EP led to the generation of cellular immunity that was transcriptionally distinct and had a greater protective efficacy than its DNA alone counterpart. Furthermore, activation analysis and high-throughput gene expression data may

  17. Circulating blood leukocyte gene expression profiles: Effects of the Ames dwarf mutation on pathways related to immunity and inflammation

    OpenAIRE

    Dhahbi, Joseph; Li, Xichen; Tran, Tim; Masternak, Michal M.; Bartke, Andrzej

    2007-01-01

    Aging is associated with a decline of immune competence and an increase in markers of inflammation. There is considerable evidence that inflammatory processes play a role in aging and the determination of lifespan. Hypopituitary Ames dwarf mice have extended longevity and exhibit many symptoms of delayed aging, although various aspects of immune function are suppressed in the mutants. In the present study, the expression of genes related to immunity and inflammation was compared in peripheral...

  18. Ancient Egypt

    Science.gov (United States)

    Swamy, Ashwin Balegar

    This thesis involves development of an interactive GIS (Geographic Information System) based application, which gives information about the ancient history of Egypt. The astonishing architecture, the strange burial rituals and their civilization were some of the intriguing questions that motivated me towards developing this application. The application is a historical timeline starting from 3100 BC, leading up to 664 BC, focusing on the evolution of the Egyptian dynasties. The tool holds information regarding some of the famous monuments which were constructed during that era and also about the civilizations that co-existed. It also provides details about the religions followed by their kings. It also includes the languages spoken during those periods. The tool is developed using JAVA, a programing language and MOJO (Map Objects Java Objects) a product of ESRI (Environmental Science Research Institute) to create map objects, to provide geographic information. JAVA Swing is used for designing the user interface. HTML (Hyper Text Markup Language) pages are created to provide the user with more information related to the historic period. CSS (Cascade Style Sheets) and JAVA Scripts are used with HTML5 to achieve creative display of content. The tool is kept simple and easy for the user to interact with. The tool also includes pictures and videos for the user to get a feel of the historic period. The application is built to motivate people to know more about one of the prominent and ancient civilization of the Mediterranean world.

  19. Novel Constructs of Tuberculosis Gene Vaccine and Its Immune Effect on Mice

    Institute of Scientific and Technical Information of China (English)

    Jun Dou; Junsong Chen; Jing Wang; Guobin Chen; Fengshu Zhao; Quan Tang; Xuesong Fang; Lili Chu; Meng Pan

    2005-01-01

    A novel tuberculosis (TB) gene vaccine containing mouse granulocyte macrophage-colony stimulating factor (mGM-CSF) and a TB antigen (Ag85A) was developed in this study. The genes encoding Ag85A and mGM-CSF were amplified by PCR respectively from the Ag85A-containing pBSby5 and pC-mGM-CSF. The genes were then cloned into two different polylinker sites of plasmid pIRES, forming a novel TB gene vaccine construct pI85AGM.Following transfection of pI85AGM plasmid into 7721 cell line by LipofectamineTM, the expression of Ag85A and GM-CSF proteins was identified by Western blotting or RT-PCR. Then Balb/c mice were inoculated with the recombinant pI85AGM, pI85A, pIGM or plasmid alone, respectively. The activities of CTL, NK cells and the Ag85A-stimulated proliferation of spleen cells were measured by MTT method. The serum antibody against Ag85A was detected by ELISA. The results showed that the Ag85A and GM-CSF proteins could be expressed in 7721 cell line and the activity of CTLs and the proliferation of spleen cells were significantly increased in the pI85AGM-immunized mice, indicating that the pI85AGM-immunized mice could generate specific immune responses to Ag85A. This study might provide possibility for developing novel anti-TB gene vaccine.

  20. Heterologous expression of the filarial nematode alt gene products reveals their potential to inhibit immune function

    Directory of Open Access Journals (Sweden)

    Aebischer Toni

    2005-03-01

    Full Text Available Abstract Background Parasites exploit sophisticated strategies to evade host immunity that require both adaptation of existing genes and evolution of new gene families. We have addressed this question by testing the immunological function of novel genes from helminth parasites, in which conventional transgenesis is not yet possible. We investigated two such novel genes from Brugia malayi termed abundant larval transcript (alt, expression of which reaches ~5% of total transcript at the time parasites enter the human host. Results To test the hypothesis that ALT proteins modulate host immunity, we adopted an alternative transfection strategy to express these products in the protozoan parasite Leishmania mexicana. We then followed the course of infection in vitro in macrophages and in vivo in mice. Expression of ALT proteins, but not a truncated mutant, conferred greater infectivity of macrophages in vitro, reaching 3-fold higher parasite densities. alt-transfected parasites also caused accelerated disease in vivo, and fewer mice were able to clear infection of organisms expressing ALT. alt-transfected parasites were more resistant to IFN-γ-induced killing by macrophages. Expression profiling of macrophages infected with transgenic L. mexicana revealed consistently higher levels of GATA-3 and SOCS-1 transcripts, both associated with the Th2-type response observed in in vivo filarial infection. Conclusion Leishmania transfection is a tractable and informative approach to determining immunological functions of single genes from heterologous organisms. In the case of the filarial ALT proteins, our data suggest that they may participate in the Th2 bias observed in the response to parasite infection by modulating cytokine-induced signalling within immune system cells.

  1. The immune response induced by DNA vaccine expressing nfa1 gene against Naegleria fowleri.

    Science.gov (United States)

    Kim, Jong-Hyun; Lee, Sang-Hee; Sohn, Hae-Jin; Lee, Jinyoung; Chwae, Yong-Joon; Park, Sun; Kim, Kyongmin; Shin, Ho-Joon

    2012-12-01

    The pathogenic free-living amoeba, Naegleria fowleri, causes fatal primary amoebic meningoencephalitis in experimental animals and in humans. The nfa1 gene that was cloned from N. fowleri is located on pseudopodia, especially amoebic food cups and plays an important role in the pathogenesis of N. fowleri. In this study, we constructed and characterized retroviral vector and lentiviral vector systems for nfa1 DNA vaccination in mice. We constructed the retroviral vector (pQCXIN) and the lentiviral vector (pCDH) cloned with the egfp-nfa1 gene. The expression of nfa1 gene in Chinese hamster ovary cell and human primary nasal epithelial cell transfected with the pQCXIN/egfp-nfa1 vector or pCDH/egfp-nfa1 vector was observed by fluorescent microscopy and Western blotting analysis. Our viral vector systems effectively delivered the nfa1 gene to the target cells and expressed the Nfa1 protein within the target cells. To evaluate immune responses of nfa1-vaccinated mice, BALB/c mice were intranasally vaccinated with viral particles of each retro- or lentiviral vector expressing nfa1 gene. DNA vaccination using viral vectors expressing nfa1 significantly stimulated the production of Nfa1-specific IgG subclass, as well as IgG levels. In particular, both levels of IgG2a (Th1) and IgG1 (Th2) were significantly increased in mice vaccinated with viral vectors. These results show the nfa1-vaccination induce efficiently Th1 type, as well as Th2 type immune responses. This is the first report to construct viral vector systems and to evaluate immune responses as DNA vaccination in N. fowleri infection. Furthermore, these results suggest that nfal vaccination may be an effective method for treatment of N. fowleri infection.

  2. Genetic polymorphisms in host antiviral genes: associations with humoral and cellular immunity to measles vaccine.

    Science.gov (United States)

    Haralambieva, Iana H; Ovsyannikova, Inna G; Umlauf, Benjamin J; Vierkant, Robert A; Shane Pankratz, V; Jacobson, Robert M; Poland, Gregory A

    2011-11-08

    Host antiviral genes are important regulators of antiviral immunity and plausible genetic determinants of immune response heterogeneity after vaccination. We genotyped and analyzed 307 common candidate tagSNPs from 12 antiviral genes in a cohort of 745 schoolchildren immunized with two doses of measles-mumps-rubella (MMR) vaccine. Associations between SNPs/haplotypes and measles virus-specific immune outcomes were assessed using linear regression methodologies in Caucasians and African-Americans. Genetic variants within the DDX58/RIG-I gene, including a coding polymorphism (rs3205166/Val800Val), were associated as single-SNPs (p≤0.017; although these SNPs did not remain significant after correction for false discovery rate/FDR) and in haplotype-level analysis, with measles-specific antibody variations in Caucasians (haplotype allele p-value=0.021; haplotype global p-value=0.076). Four DDX58 polymorphisms, in high LD, demonstrated also associations (after correction for FDR) with variations in both measles-specific IFN-γ and IL-2 secretion in Caucasians (p≤0.001, q=0.193). Two intronic OAS1 polymorphisms, including the functional OAS1 SNP rs10774671 (p=0.003), demonstrated evidence of association with a significant allele-dose-related increase in neutralizing antibody levels in African-Americans. Genotype and haplotype-level associations demonstrated the role of ADAR genetic variants, including a non-synonymous SNP (rs2229857/Arg384Lys; p=0.01), in regulating measles virus-specific IFN-γ Elispot responses in Caucasians (haplotype global p-value=0.017). After correction for FDR, 15 single-SNP associations (11 SNPs in Caucasians and 4 SNPs in African-Americans) still remained significant at the q-valuemeasles vaccine in Caucasians and African-Americans.

  3. Gene trees, species trees, and morphology converge on a similar phylogeny of living gars (Actinopterygii: Holostei: Lepisosteidae), an ancient clade of ray-finned fishes.

    Science.gov (United States)

    Wright, Jeremy J; David, Solomon R; Near, Thomas J

    2012-06-01

    Extant gars represent the remaining members of a formerly diverse assemblage of ancient ray-finned fishes and have been the subject of multiple phylogenetic analyses using morphological data. Here, we present the first hypothesis of phylogenetic relationships among living gar species based on molecular data, through the examination of gene tree heterogeneity and coalescent species tree analyses of a portion of one mitochondrial (COI) and seven nuclear (ENC1, myh6, plagl2, S7 ribosomal protein intron 1, sreb2, tbr1, and zic1) genes. Individual gene trees displayed varying degrees of resolution with regards to species-level relationships, and the gene trees inferred from COI and the S7 intron were the only two that were completely resolved. Coalescent species tree analyses of nuclear genes resulted in a well-resolved and strongly supported phylogenetic tree of living gar species, for which Bayesian posterior node support was further improved by the inclusion of the mitochondrial gene. Species-level relationships among gars inferred from our molecular data set were highly congruent with previously published morphological phylogenies, with the exception of the placement of two species, Lepisosteus osseus and L. platostomus. Re-examination of the character coding used by previous authors provided partial resolution of this topological discordance, resulting in broad concordance in the phylogenies inferred from individual genes, the coalescent species tree analysis, and morphology. The completely resolved phylogeny inferred from the molecular data set with strong Bayesian posterior support at all nodes provided insights into the potential for introgressive hybridization and patterns of allopatric speciation in the evolutionary history of living gars, as well as a solid foundation for future examinations of functional diversification and evolutionary stasis in a "living fossil" lineage.

  4. Effects of date palm fruit extracts on skin mucosal immunity, immune related genes expression and growth performance of common carp (Cyprinus carpio) fry.

    Science.gov (United States)

    Hoseinifar, Seyed Hossein; Khalili, Mohsen; Rufchaei, Rudabeh; Raeisi, Mojtaba; Attar, Marzieh; Cordero, Héctor; Esteban, M Ángeles

    2015-12-01

    The aim of this study was to investigate the effects of date palm fruit extracts (DPFE) on skin mucosal immunity, immune related genes expression and growth performance of fry common carp (Cyprinus carpio). One hundred and twenty specimens (4.06 ± 0.13 g) were supplied and allocated into six aquaria; specimens in three aquaria were fed non-supplemented diet (control) while the fish in the other 3 aquaria were fed with DPFE at 200 ml kg(-1). At the end of feeding trial (8 weeks) skin mucus immune parameters (total immunoglobulins, lysozyme, protease and alkaline phosphatase activity) and immune related gene expression (tumor necrosis factor α [tnfa], lysozyme [ly] and interleukin-1-beta, [il1b]) in the head-kidney were studied. The results revealed that feeding carp fry with 200 ml kg(-1) DPFE remarkably elevated the three skin mucus immune parameters tested (P 0.05) compared to control fish (fed control diet). Furthermore, growth performance parameters were significantly improved in fry fed DPFE (P < 0.05). More studies are needed to understand different aspects of DPFE administration in fry mucosal immunity.

  5. Expansion of signaling genes for adaptive immune system evolution in early vertebrates

    Directory of Open Access Journals (Sweden)

    Okada Kinya

    2008-05-01

    Full Text Available Abstract Background The adaptive immune system (AIS of jawed vertebrates is a sophisticated system mediated by numerous genes in specialized cells. Phylogenetic analysis indicates that emergence of the AIS followed the occurrence of two rounds of whole-genome duplication (2R-WGD in early vertebrates, but little direct evidence linking these two events is available. Results We examined the relationship between 2R-WGD and the gain of AIS-related functions by numerous genes. To analyze the evolution of the many genes related to signal transduction in the AIS (defined as AIS genes, we identified groups of genes (defined as AIS subfamilies that included at least one human AIS gene, its paralogs (if any, and its Drosophila ortholog(s. Genomic mapping revealed that numerous pairs of AIS genes and their paralogs were part of paralogons – series of paralogous regions that derive from a common ancestor – throughout the human genome, indicating that the genes were retained as duplicates after 2R-WGD. Outgroup comparison analysis revealed that subfamilies in which human and fly genes shared a nervous system-related function were significantly enriched among AIS subfamilies, as compared with the overall incidence of shared nervous system-related functions among all subfamilies in bilaterians. This finding statistically supports the hypothesis that AIS-related signaling genes were ancestrally involved in the nervous system of urbilaterians. Conclusion The current results suggest that 2R-WGD played a major role in the duplication of many signaling genes, ancestrally used in nervous system development and function, that were later co-opted for new functions during evolution of the AIS.

  6. Dynamics of immune system gene expression upon bacterial challenge and wounding in a social insect (Bombus terrestris).

    Science.gov (United States)

    Erler, Silvio; Popp, Mario; Lattorff, H Michael G

    2011-03-29

    The innate immune system which helps individuals to combat pathogens comprises a set of genes representing four immune system pathways (Toll, Imd, JNK and JAK/STAT). There is a lack of immune genes in social insects (e.g. honeybees) when compared to Diptera. Potentially, this might be compensated by an advanced system of social immunity (synergistic action of several individuals). The bumble bee, Bombus terrestris, is a primitively eusocial species with an annual life cycle and colonies headed by a single queen. We used this key pollinator to study the temporal dynamics of immune system gene expression in response to wounding and bacterial challenge.Antimicrobial peptides (AMP) (abaecin, defensin 1, hymenoptaecin) were strongly up-regulated by wounding and bacterial challenge, the latter showing a higher impact on the gene expression level. Sterile wounding down-regulated TEP A, an effector gene of the JAK/STAT pathway, and bacterial infection influenced genes of the Imd (relish) and JNK pathway (basket). Relish was up-regulated within the first hour after bacterial challenge, but decreased strongly afterwards. AMP expression following wounding and bacterial challenge correlates with the expression pattern of relish whereas correlated expression with dorsal was absent. Although expression of AMPs was high, continuous bacterial growth was observed throughout the experiment.Here we demonstrate for the first time the temporal dynamics of immune system gene expression in a social insect. Wounding and bacterial challenge affected the innate immune system significantly. Induction of AMP expression due to wounding might comprise a pre-adaptation to accompanying bacterial infections. Compared with solitary species this social insect exhibits reduced immune system efficiency, as bacterial growth could not be inhibited. A negative feedback loop regulating the Imd-pathway is suggested. AMPs, the end product of the Imd-pathway, inhibited the up-regulation of the transcription

  7. Dynamics of immune system gene expression upon bacterial challenge and wounding in a social insect (Bombus terrestris.

    Directory of Open Access Journals (Sweden)

    Silvio Erler

    Full Text Available The innate immune system which helps individuals to combat pathogens comprises a set of genes representing four immune system pathways (Toll, Imd, JNK and JAK/STAT. There is a lack of immune genes in social insects (e.g. honeybees when compared to Diptera. Potentially, this might be compensated by an advanced system of social immunity (synergistic action of several individuals. The bumble bee, Bombus terrestris, is a primitively eusocial species with an annual life cycle and colonies headed by a single queen. We used this key pollinator to study the temporal dynamics of immune system gene expression in response to wounding and bacterial challenge.Antimicrobial peptides (AMP (abaecin, defensin 1, hymenoptaecin were strongly up-regulated by wounding and bacterial challenge, the latter showing a higher impact on the gene expression level. Sterile wounding down-regulated TEP A, an effector gene of the JAK/STAT pathway, and bacterial infection influenced genes of the Imd (relish and JNK pathway (basket. Relish was up-regulated within the first hour after bacterial challenge, but decreased strongly afterwards. AMP expression following wounding and bacterial challenge correlates with the expression pattern of relish whereas correlated expression with dorsal was absent. Although expression of AMPs was high, continuous bacterial growth was observed throughout the experiment.Here we demonstrate for the first time the temporal dynamics of immune system gene expression in a social insect. Wounding and bacterial challenge affected the innate immune system significantly. Induction of AMP expression due to wounding might comprise a pre-adaptation to accompanying bacterial infections. Compared with solitary species this social insect exhibits reduced immune system efficiency, as bacterial growth could not be inhibited. A negative feedback loop regulating the Imd-pathway is suggested. AMPs, the end product of the Imd-pathway, inhibited the up-regulation of the

  8. Anti-tumor Immune Response Mediated by Newcastle Disease Virus HN Gene

    Institute of Scientific and Technical Information of China (English)

    PENG Li-ping; JIN Ning-yi; LI Xiao; SUN Li-li; WEN Zhong-mei; LIU Yan; GAO Peng; HUANG Hai-yan; PIAO Bing-guo; JIN Jing

    2011-01-01

    Hemagglutinin-neuramidinase(HN) is one of the most important surface structure proteins of the Newcastle disease virus(NDV). HN not only mediates receptor recognition but also possesses neuraminidase(NA) activity,which gives it the ability to cleave a component of those receptors, NAcneu. Previous studies have demonstrated that HN has interesting anti-neoplastic and immune-stimulating properties in mammalian species, including humans. To explore the application of the HN gene in cancer gene therapy, we constructed a Lewis lung carcinoma(LLC) solid tumor model using C57BL/6 mice. Mice were injected intratumorally with the recombinant adenovirus expressing HN gene(Ad-HN), and the effect of HN was explored by natural killer cell activity assay, cytotoxic lymphocyte activity assay, T cell subtype evaluation, and Thl/Th2 cytokines analysis. The results demonstrate that HN not only can elicit clonal expansion of both CD4+ and CD8+ T cell populations and cytotoxic T lymphocyte(CTL) and killer cell response, but also skews the immune response toward Thl. Thus, vaccination with Ad-HN may be a potential strategy for cancer gene therapy.

  9. Polymorphisms in innate immunity genes and lung cancer risk in Xuanwei, China

    Energy Technology Data Exchange (ETDEWEB)

    Shen, M.; Vermeulen, R.; Rajaraman, P.; Menashe, I.; He, X.Z.; Chapman, R.S.; Yeager, M.; Thomas, G.; Burdett, L.; Hutchinson, A.; Yuenger, J.; Chanock, S.; Lan, Q. [NCI, Bethesda, MD (United States)

    2009-05-15

    The high incidence of lung cancer in Xuanwei County, China has been attributed to exposure to indoor smoky coal emissions that contain polycyclic aromatic hydrocarbons (PAHs). The inflammatory response induced by coal smoke components may promote lung tumor development. We studied the association between single nucleotide polymorphisms (SNPs) in genes involved in innate immunity and lung cancer risk in a population-based case-control study (122 cases and 122 controls) in Xuanwei. A total of 1,360 tag SNPs in 149 gene regions were included in the analysis. FCER2 rs7249320 was the most significant SNP (OR: 0.30; 95% Cl: 0.16-0.55; P: 0.0001; false discovery rate value, 0.13) for variant carriers. The gene regions ALOX12B/ALOX15B and KLK2 were associated with increased lung cancer risk globally (false discovery rate value < 0.15). In addition, there were positive interactions between KLK15 rs3745523 and smoky coal use (OR: 9.40; P-interaction = 0.07) and between FCER2 rs7249320 and KLK2 rs2739476 (OR: 10.77; P-interaction = 0.003). Our results suggest that genetic polymorphisms in innate immunity genes may play a role in the genesis of lung cancer caused by PAH-containing coal smoke. Integrin/receptor and complement pathways as well as IgE regulation are particularly noteworthy.

  10. Common Genetic Variants Found in HLA and KIR Immune Genes in Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Anthony R Torres

    2016-10-01

    Full Text Available The common variant - common disease hypothesis was proposed to explain diseases with strong inheritance. This model suggests that a genetic disease is the result of the combination of several common genetic variants. Common genetic variants are described as a 5% frequency differential between diseased versus matched control populations. This theory was recently supported by an epidemiology paper stating that about 50% of genetic risk for autism resides in common variants. However, rare variants, rather than common variants, have been found in numerous genome wide genetic studies and many have concluded that the common variant—common disease hypothesis is incorrect. One interpretation is that rare variants are major contributors to genetic diseases and autism involves the interaction of many rare variants, especially in the brain. It is obvious there is much yet to be learned about autism genetics.Evidence has been mounting over the years indicating immune involvement in autism, particularly the HLA genes on chromosome 6 and KIR genes on chromosome 19. These two large multigene complexes have important immune functions and have been shown to interact to eliminate unwanted virally infected and malignant cells. HLA proteins have important functions in antigen presentation in adaptive immunity and specific epitopes on HLA class I proteins act as cognate ligands for KIR receptors in innate immunity. Data suggests that HLA alleles and KIR activating genes/haplotypes are common variants in different autism populations. For example, class I allele (HLA-A2 and HLA-G 14bp-indel frequencies are significantly increased by more than 5% over control populations (Table2. The HLA-DR4 Class II and shared epitope frequencies are significantly above the control populations (Table 2. Three activating KIR genes: 3DS1, 2DS1 and 2DS2 have increased frequencies of 15%, 22% and 14% in autism populations, respectively. There is a 6% increase in total activating KIR

  11. Gene therapy for hemophilia "A" and "B": efficacy, safety and immune consequences.

    Science.gov (United States)

    Chuah, M; Vandendriessche, T

    2007-01-01

    The first successful gene therapy trials for the treatment of hereditary disorders underscore the potential of gene therapy to combat disease and alleviate human suffering. The development of gene therapy for hemophilia is not only a research priority in its own right but also serves as an ideal trailblazer for many different diseases. Significant progress has recently been made in the development of gene therapy for the treatment of hemophilia A and B. Long-term therapeutic levels of factor VIII and IX could be expressed following gene therapy in hemophilic mice, stably correcting the bleeding diathesis. These advances parallel the development of improved gene delivery systems. The induction of neutralizing antibodies (inhibitors) to the clotting factors could potentially preclude stable phenotypic correction. The risk of inhibitor formation varied, depending at least in part on the type of vector used and its in vivo tropism. We also demonstrated that the risk of immune responses to the vector particles, the clotting factors and/or transduced cells can be reduced by using vectors that only minimally interact with antigen presenting cells. In hemophilic mice, robust and stable clotting factor expression levels were achieved using adeno-associated viral vectors based on the newly disovered serotypes AAV8 and AAV9 which can efficient deliver the clotting factor genes into hepatocytes without triggering any inflammatory responses or adverse events. Pre-clinical studies in large animal models will be initiated to further validate these improved AAV vectors to ultimately justify a clinical trial in patients with severe hemophilia.

  12. Expression of Immune-Related Genes of Ducks Infected with Avian Pathogenic Escherichia coli (APEC

    Directory of Open Access Journals (Sweden)

    Rong eLi

    2016-05-01

    Full Text Available Avian pathogenic Escherichia coli (APEC can cause severe disease in ducks, characterized by perihepatitis, pericarditis and airsacculitis. Although the studies of bacteria isolation and methods of detection have been reported, host immune responses to APEC infection remain unclear. In response, we systemically examined the expression of immune-related genes and bacteria distribution in APEC-infected ducks. Results demonstrated that APEC can quickly replicate in the liver, spleen and brain, with the highest bacteria content at 2 day post infection. The expression of Toll-like receptors (TLRs, avian β-defensins (AvBDs and major histocompatibility complex (MHC were tested in the liver, spleen and brain of infected ducks. TLR2, TLR4, TLR5 and TLR15 showed different expression patterns, which indicated that they all responded to APEC infection. The expression of AvBD2 was upregulated in all tested tissues during the 3 days of testing, whereas the expression of AvBD4, AvBD5, AvBD7 and AvBD9 were downregulated, and though MHC-I was upregulated on all test days, MHC-II was dramatically downregulated. Overall, our results suggest that APEC can replicate in various tissues in a short time, and the activation of host immune responses begins at onset of infection. These findings thus clarify duck immune responses to APEC infection and offer insights into its pathogenesis.

  13. The human malaria parasite Pfs47 gene mediates evasion of the mosquito immune system.

    Science.gov (United States)

    Molina-Cruz, Alvaro; Garver, Lindsey S; Alabaster, Amy; Bangiolo, Lois; Haile, Ashley; Winikor, Jared; Ortega, Corrie; van Schaijk, Ben C L; Sauerwein, Robert W; Taylor-Salmon, Emma; Barillas-Mury, Carolina

    2013-05-24

    Plasmodium falciparum transmission by Anopheles gambiae mosquitoes is remarkably efficient, resulting in a very high prevalence of human malaria infection in sub-Saharan Africa. A combination of genetic mapping, linkage group selection, and functional genomics was used to identify Pfs47 as a P. falciparum gene that allows the parasite to infect A. gambiae without activating the mosquito immune system. Disruption of Pfs47 greatly reduced parasite survival in the mosquito, and this phenotype could be reverted by genetic complementation of the parasite or by disruption of the mosquito complement-like system. Pfs47 suppresses midgut nitration responses that are critical to activate the complement-like system. We provide direct experimental evidence that immune evasion mediated by Pfs47 is critical for efficient human malaria transmission by A. gambiae.

  14. Genome-Wide Association Studies Suggest Limited Immune Gene Enrichment in Schizophrenia Compared to 5 Autoimmune Diseases

    DEFF Research Database (Denmark)

    Pouget, Jennie G; Gonçalves, Vanessa F; Spain, Sarah L;

    2016-01-01

    in immune genes contributes to schizophrenia. We show that there is no enrichment of immune loci outside of the MHC region in the largest genetic study of schizophrenia conducted to date, in contrast to 5 diseases of known immune origin. Among 108 regions of the genome previously associated...... function may not play a major role in schizophrenia susceptibility. Instead, there may be a role for pleiotropic effects of a small number of immune genes that also regulate brain development and plasticity. Whether immune alterations drive schizophrenia progression is an important question to be addressed......There has been intense debate over the immunological basis of schizophrenia, and the potential utility of adjunct immunotherapies. The major histocompatibility complex is consistently the most powerful region of association in genome-wide association studies (GWASs) of schizophrenia and has been...

  15. Effects of excretory/secretory products from Anisakis simplex (Nematoda) on immune gene expression in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Bahlool, Qusay Z M; Skovgaard, Alf; Kania, Per W; Buchmann, Kurt

    2013-09-01

    Excretory/secretory (ES) products are molecules produced by parasitic nematodes, including larval Anisakis simplex, a parasite occurring in numerous marine fish hosts. The effects of these substances on host physiology have not been fully described. The present work elucidates the influence of ES substances on the fish immune system by measuring immune gene expression in spleen and liver of rainbow trout (Oncorhynchus mykiss) injected intraperitoneally with ES products isolated from A. simplex third stage larvae. The overall gene expression profile of exposed fish showed a generalized down-regulation of the immune genes tested, suggesting a role of ES proteins in immunomodulation. We also tested the enzymatic activity of the ES proteins and found that lipase, esterase/lipase, valine and cysteine arylamidases, naphthol-AS-BI-phosphohydrolase and α-galactosidase activities were present in the ES solution. This type of hydrolytic enzyme activity may play a role in nematode penetration of host tissue. In addition, based on the notion that A. simplex ES products may have an immune-depressive effect (by minimizing immune gene expression) it could also be suggested that worm enzymes directly target host immune molecules which would add to a decreased host immune response and increased worm survival.

  16. The associations between immunity-related genes and breast cancer prognosis in Korean women.

    Directory of Open Access Journals (Sweden)

    Jaesung Choi

    Full Text Available We investigated the role of common genetic variation in immune-related genes on breast cancer disease-free survival (DFS in Korean women. 107 breast cancer patients of the Seoul Breast Cancer Study (SEBCS were selected for this study. A total of 2,432 tag single nucleotide polymorphisms (SNPs in 283 immune-related genes were genotyped with the GoldenGate Oligonucleotide pool assay (OPA. A multivariate Cox-proportional hazard model and polygenic risk score model were used to estimate the effects of SNPs on breast cancer prognosis. Harrell's C index was calculated to estimate the predictive accuracy of polygenic risk score model. Subsequently, an extended gene set enrichment analysis (GSEA-SNP was conducted to approximate the biological pathway. In addition, to confirm our results with current evidence, previous studies were systematically reviewed. Sixty-two SNPs were statistically significant at p-value less than 0.05. The most significant SNPs were rs1952438 in SOCS4 gene (hazard ratio (HR = 11.99, 95% CI = 3.62-39.72, P = 4.84E-05, rs2289278 in TSLP gene (HR = 4.25, 95% CI = 2.10-8.62, P = 5.99E-05 and rs2074724 in HGF gene (HR = 4.63, 95% CI = 2.18-9.87, P = 7.04E-05. In the polygenic risk score model, the HR of women in the 3rd tertile was 6.78 (95% CI = 1.48-31.06 compared to patients in the 1st tertile of polygenic risk score. Harrell's C index was 0.813 with total patients and 0.924 in 4-fold cross validation. In the pathway analysis, 18 pathways were significantly associated with breast cancer prognosis (P<0.1. The IL-6R, IL-8, IL-10RB, IL-12A, and IL-12B was associated with the prognosis of cancer in data of both our study and a previous study. Therefore, our results suggest that genetic polymorphisms in immune-related genes have relevance to breast cancer prognosis among Korean women.

  17. Flagellin Encoded in Gene-Based Vector Vaccines Is a Route-Dependent Immune Adjuvant.

    Science.gov (United States)

    Rady, Hamada F; Dai, Guixiang; Huang, Weitao; Shellito, Judd E; Ramsay, Alistair J

    2016-01-01

    Flagellin has been tested as a protein-based vaccine adjuvant, with the majority of studies focused on antibody responses. Here, we evaluated the adjuvant activity of flagellin for both cellular and humoral immune responses in BALB/c mice in the setting of gene-based immunization, and have made several novel observations. DNA vaccines and adenovirus (Ad) vectors were engineered to encode mycobacterial protein Ag85B, with or without flagellin of Salmonella typhimurium (FliC). DNA-encoded flagellin given IM enhanced splenic CD4+ and CD8+ T cell responses to co-expressed vaccine antigen, including memory responses. Boosting either IM or intranasally with Ad vectors expressing Ag85B without flagellin led to durable enhancement of Ag85B-specific antibody and CD4+ and CD8+ T cell responses in both spleen and pulmonary tissues, correlating with significantly improved protection against challenge with pathogenic aerosolized M. tuberculosis. However, inclusion of flagellin in both DNA prime and Ad booster vaccines induced localized pulmonary inflammation and transient weight loss, with route-dependent effects on vaccine-induced T cell immunity. The latter included marked reductions in levels of mucosal CD4+ and CD8+ T cell responses following IM DNA/IN Ad mucosal prime-boosting, although antibody responses were not diminished. These findings indicate that flagellin has differential and route-dependent adjuvant activity when included as a component of systemic or mucosally-delivered gene-based prime-boost immunization. Clear adjuvant activity for both T and B cell responses was observed when flagellin was included in the DNA priming vaccine, but side effects occurred when given in an Ad boosting vector, particularly via the pulmonary route.

  18. Salmonella enterica serovar Typhimurium lacking hfq gene confers protective immunity against murine typhoid.

    Directory of Open Access Journals (Sweden)

    Uday Shankar Allam

    Full Text Available Salmonella enterica is an important enteric pathogen and its various serovars are involved in causing both systemic and intestinal diseases in humans and domestic animals. The emergence of multidrug-resistant strains of Salmonella leading to increased morbidity and mortality has further complicated its management. Live attenuated vaccines have been proven superior over killed or subunit vaccines due to their ability to induce protective immunity. Of the various strategies used for the generation of live attenuated vaccine strains, focus has gradually shifted towards manipulation of virulence regulator genes. Hfq is a RNA chaperon which mediates the binding of small RNAs to the mRNA and assists in post-transcriptional gene regulation in bacteria. In this study, we evaluated the efficacy of the Salmonella Typhimurium Δhfq strain as a candidate for live oral vaccine in murine model of typhoid fever. Salmonella hfq deletion mutant is highly attenuated in cell culture and animal model implying a significant role of Hfq in bacterial virulence. Oral immunization with the Salmonella hfq deletion mutant efficiently protects mice against subsequent oral challenge with virulent strain of Salmonella Typhimurium. Moreover, protection was induced upon both multiple as well as single dose of immunizations. The vaccine strain appears to be safe for use in pregnant mice and the protection is mediated by the increase in the number of CD4(+ T lymphocytes upon vaccination. The levels of serum IgG and secretory-IgA in intestinal washes specific to lipopolysaccharide and outer membrane protein were significantly increased upon vaccination. Furthermore, hfq deletion mutant showed enhanced antigen presentation by dendritic cells compared to the wild type strain. Taken together, the studies in murine immunization model suggest that the Salmonella hfq deletion mutant can be a novel live oral vaccine candidate.

  19. Flagellin Encoded in Gene-Based Vector Vaccines Is a Route-Dependent Immune Adjuvant.

    Directory of Open Access Journals (Sweden)

    Hamada F Rady

    Full Text Available Flagellin has been tested as a protein-based vaccine adjuvant, with the majority of studies focused on antibody responses. Here, we evaluated the adjuvant activity of flagellin for both cellular and humoral immune responses in BALB/c mice in the setting of gene-based immunization, and have made several novel observations. DNA vaccines and adenovirus (Ad vectors were engineered to encode mycobacterial protein Ag85B, with or without flagellin of Salmonella typhimurium (FliC. DNA-encoded flagellin given IM enhanced splenic CD4+ and CD8+ T cell responses to co-expressed vaccine antigen, including memory responses. Boosting either IM or intranasally with Ad vectors expressing Ag85B without flagellin led to durable enhancement of Ag85B-specific antibody and CD4+ and CD8+ T cell responses in both spleen and pulmonary tissues, correlating with significantly improved protection against challenge with pathogenic aerosolized M. tuberculosis. However, inclusion of flagellin in both DNA prime and Ad booster vaccines induced localized pulmonary inflammation and transient weight loss, with route-dependent effects on vaccine-induced T cell immunity. The latter included marked reductions in levels of mucosal CD4+ and CD8+ T cell responses following IM DNA/IN Ad mucosal prime-boosting, although antibody responses were not diminished. These findings indicate that flagellin has differential and route-dependent adjuvant activity when included as a component of systemic or mucosally-delivered gene-based prime-boost immunization. Clear adjuvant activity for both T and B cell responses was observed when flagellin was included in the DNA priming vaccine, but side effects occurred when given in an Ad boosting vector, particularly via the pulmonary route.

  20. Association study of functional genetic variants of innate immunity related genes in celiac disease

    Directory of Open Access Journals (Sweden)

    Martín J

    2005-08-01

    Full Text Available Abstract Background Recent evidence suggest that the innate immune system is implicated in the early events of celiac disease (CD pathogenesis. In this work for the first time we have assessed the relevance of different proinflammatory mediators typically related to innate immunity in CD predisposition. Methods We performed a familial study in which 105 celiac families characterized by the presence of an affected child with CD were genotyped for functional polymorphisms located at regulatory regions of IL-1α, IL-1β, IL-1RN, IL-18, RANTES and MCP-1 genes. Familial data was analysed with a transmission disequilibrium test (TDT that revealed no statistically significant differences in the transmission pattern of the different genetic markers considered. Results The TDT analysis for IL-1α, IL-1β, IL-1RN, IL-18, and MCP-1 genes genetic variants did not reveal biased transmission to the affected offspring. Only a borderline association of RANTES promoter genetic variants with CD predisposition was observed. Conclusion Our results suggest that the analysed polymorphisms of IL-1α, IL-1β, IL-1RN, IL-18, RANTES and MCP-1 genes do not seem to play a major role in CD genetic predisposition in our population.

  1. A recombinant varicella vaccine harboring a respiratory syncytial virus gene induces humoral immunity.

    Science.gov (United States)

    Murakami, Kouki; Matsuura, Masaaki; Ota, Megumi; Gomi, Yasuyuki; Yamanishi, Koichi; Mori, Yasuko

    2015-11-09

    The varicella-zoster virus (VZV) Oka vaccine strain (vOka) is highly efficient and causes few adverse events; therefore, it is used worldwide. We previously constructed recombinant vOka (rvOka) harboring the mumps virus gene. Immunizing guinea pigs with rvOka induced the production of neutralizing antibodies against the mumps virus and VZV. Here, we constructed recombinant vOka viruses containing either the respiratory syncytial virus (RSV) subgroup A fusion glycoprotein (RSV A-F) gene or RSV subgroup B fusion glycoprotein (RSV B-F) gene (rvOka-RSV A-F or rvOka-RSV B-F). Indirect immunofluorescence and Western blot analyses confirmed the expression of each recombinant RSV protein in virus-infected cells. Immunizing guinea pigs with rvOka-RSV A-F or rvOka-RSV B-F led to the induction of antibodies against RSV proteins. These results suggest that the current varicella vaccine genome can be used to generate custom-made vaccine vectors to develop the next generation of live vaccines.

  2. Expression patterns and action analysis of genes associated with physiological responses during rat liver regeneration: Innate immune response

    Institute of Scientific and Technical Information of China (English)

    Guang-Wen Chen; Ming-Zhen Zhang; Li-Feng Zhao; Cun-Shuan Xu

    2006-01-01

    AIM: To study the relationship between innate immune response and liver regeneration (LR) at transcriptional level.METHODS: Genes associated with innate immunity response were obtained by collecting the data from databases and retrieving articles. Gene expression changes in rat regenerating liver were detected by rat genome 230 2.0 array.RESULTS: A total of 85 genes were found to be associated with LR. The initially and totally expressed number of genes at the phases of initiation [0.5-4 h after partial hepatectomy (PH)], transition from Go to G1 (4-6 h after PH), cell proliferation (6-66 h after PH),cell differentiation and structure-function reconstruction (66-168 h after PH) was 36, 9, 47, 4 and 36, 26, 78,50, respectively, illustrating that the associated genes were mainly triggered at the initial phase of LR and worked at different phases. According to their expression similarity, these genes were classified into 5 types: 41 up-regulated, 4 predominantly up-regulated, 26 downregulated, 6 predominantly down-regulated, and 8 approximately up/down-regulated genes, respectively.The expression of these genes was up-regulated 350 times and down-regulated 129 times respectively,demonstrating that the expression of most genes was enhanced while the expression of a small number of genes was decreased during LR. Their time relevance was classified into 14 groups, showing that the cellular physiological and biochemical activities during LR were staggered. According to the gene expression patterns,they were classified into 28 types, indicating that the cellular physiological and biochemical activities were diverse and complicated during LR.CONCLUSION: Congenital cellular immunity is enhanced mainly in the forepart, prophase and anaphase of LR while congenital molecular immunity is increased dominantly in the forepart and anaphase of LR. A total of 85 genes associated with LR play an important role in innate immunity.

  3. Identification of the VERNALIZATION 4 gene reveals the origin of spring growth habit in ancient wheats from South Asia

    Science.gov (United States)

    Wheat varieties with a winter growth habit require long exposures to low temperatures (vernalization) to accelerate flowering. Natural variation in the vernalization genes regulating this requirement has favored wheat adaptation to different environments. The main wheat vernalization genes VRN1, V...

  4. Zebra Fish Lacking Adaptive Immunity Acquire an Antiviral Alert State Characterized by Upregulated Gene Expression of Apoptosis, Multigene Families, and Interferon-Related Genes.

    Science.gov (United States)

    García-Valtanen, Pablo; Martínez-López, Alicia; López-Muñoz, Azucena; Bello-Perez, Melissa; Medina-Gali, Regla M; Ortega-Villaizán, María Del Mar; Varela, Monica; Figueras, Antonio; Mulero, Víctoriano; Novoa, Beatriz; Estepa, Amparo; Coll, Julio

    2017-01-01

    To investigate fish innate immunity, we have conducted organ and cell immune-related transcriptomic as well as immunohistologic analysis in mutant zebra fish (Danio rerio) lacking adaptive immunity (rag1(-/-)) at different developmental stages (egg, larvae, and adult), before and after infection with spring viremia carp virus (SVCV). The results revealed that, compared to immunocompetent zebra fish (rag1(+/+) ), rag1(-/-) acquired increased resistance to SVCV with age, correlating with elevated transcript levels of immune genes in skin/fins and lymphoid organs (head kidney and spleen). Gene sets corresponding to apoptotic functions, immune-related multigene families, and interferon-related genes were constitutively upregulated in uninfected adult rag1(-/-) zebra fish. Overexpression of activated CASPASE-3 in different tissues before and after infection with SVCV further confirmed increased apoptotic function in rag1(-/-) zebra fish. Concurrently, staining of different tissue samples with a pan-leukocyte antibody marker showed abundant leukocyte infiltrations in SVCV-infected rag1(-/-) fish, coinciding with increased transcript expression of genes related to NK-cells and macrophages, suggesting that these genes played a key role in the enhanced immune response of rag1(-/-) zebra fish to SVCV lethal infection. Overall, we present evidence that indicates that rag1(-/-) zebra fish acquire an antiviral alert state while they reach adulthood in the absence of adaptive immunity. This antiviral state was characterized by (i) a more rapid response to viral infection, which resulted in increased survival, (ii) the involvement of NK-cell- and macrophage-mediated transcript responses rather than B- and/or T-cell dependent cells, and (iii) enhanced apoptosis, described here for the first time, as well as the similar modulation of multigene family/interferon-related genes previously associated to fish that survived lethal viral infections. From this and other studies, it might

  5. Expression profile and differential regulation of the Human I-mfa domain-Containing protein (HIC) gene in immune cells.

    Science.gov (United States)

    Gu, Lili; Dean, Jonathan; Oliveira, André L A; Sheehy, Noreen; Hall, William W; Gautier, Virginie W

    2009-04-27

    The Human I-mfa domain-Containing protein, HIC, is a 246 amino acid protein that functions as a transcriptional regulator. Although the precise function of HIC remains to be clarified, the association of the HIC gene locus with myeloid neoplasms, its interactions with lymphotropic viruses such as EBV, HIV-1 and HTLV-1 and its expression in immune tissues suggest that HIC might have a modulatory role in immune cells. To further characterise the HIC functional relationship with the immune system, we sought to analyse the HIC gene expression profile in immune cells and to determine if immunomodulatory cytokines, such as interleukin (IL)-2, could regulate the expression of HIC mRNA. Relative quantitative real-time RT-PCR revealed that HIC mRNA is highly expressed in PBMCs and in various hematopoietic cell lines. The immunomodulatory cytokine IL-2 up-regulated HIC gene expression in PBMCs, CEM, MT-2 and U937 but markedly reduced HIC gene expression in Raji. Addition of cycloheximide indicated that the IL-2 effects were independent of de novo protein synthesis and that the HIC gene is a direct target of IL-2. Two cell lines (Jurkat and BJAB) displayed a distinct loss in HIC gene expression. However, when these cell lines were subjected to a combination of DNA methyltransferase and histone-deacetylase inhibitors, (5-aza-2-deoxycytidine and trichostatin A, respectively), HIC expression was de-repressed, indicating possible epigenetic control of HIC expression. Overall, our study describes that the immune expression of HIC is cell-specific, dynamic, and identifies the HIC gene as an IL-2 responsive gene. Furthermore, our de-repression studies support the hypothesis that HIC might represent a candidate tumor suppressor gene. Overall, this report provides new insights for a putative role of HIC in the modulation of immune and inflammatory responses and/or hematological malignancies.

  6. Effects of FVIII immunity on hepatocyte and hematopoietic stem cell-directed gene therapy of murine hemophilia A.

    Science.gov (United States)

    Lytle, Allison M; Brown, Harrison C; Paik, Na Yoon; Knight, Kristopher A; Wright, J Fraser; Spencer, H Trent; Doering, Christopher B

    2016-01-01

    Immune responses to coagulation factors VIII (FVIII) and IX (FIX) represent primary obstacles to hemophilia treatment. Previously, we showed that hematopoietic stem cell (HSC) retroviral gene therapy induces immune nonresponsiveness to FVIII in both naive and preimmunized murine hemophilia A settings. Liver-directed adeno-associated viral (AAV)-FIX vector gene transfer achieved similar results in preclinical hemophilia B models. However, as clinical immune responses to FVIII and FIX differ, we investigated the ability of liver-directed AAV-FVIII gene therapy to affect FVIII immunity in hemophilia A mice. Both FVIII naive and preimmunized mice were administered recombinant AAV8 encoding a liver-directed bioengineered FVIII expression cassette. Naive animals receiving high or mid-doses subsequently achieved near normal FVIII activity levels. However, challenge with adjuvant-free recombinant FVIII induced loss of FVIII activity and anti-FVIII antibodies in mid-dose, but not high-dose AAV or HSC lentiviral (LV) vector gene therapy cohorts. Furthermore, unlike what was shown previously for FIX gene transfer, AAV-FVIII administration to hemophilia A inhibitor mice conferred no effect on anti-FVIII antibody or inhibitory titers. These data suggest that functional differences exist in the immune modulation achieved to FVIII or FIX in hemophilia mice by gene therapy approaches incorporating liver-directed AAV vectors or HSC-directed LV.

  7. Evaluation of immune and apoptosis related gene responses using an RNAi approach in vaccinated Penaeus monodon during oral WSSV infection

    NARCIS (Netherlands)

    Kulkarni, A.D.; Caipang, C.M.A.; Kiron, V.; Rombout, J.H.W.M.; Fernandes, J.M.O.; Brinchmann, M.

    2014-01-01

    In the present study RNA interference was used to elucidate the connection between two endogenous genes [Penaeus monodon Rab7 (PmRab7) or P. monodon inhibitor of apoptosis (PmIAP)], and selected immune/apoptosis-related genes in orally ‘vaccinated’ shrimp after white spot syndrome virus (WSSV) infec

  8. Effect of hepatitis B virus X gene on apoptosis and immune molecules of renal tubular epithelial cells

    Institute of Scientific and Technical Information of China (English)

    王轩

    2013-01-01

    Objective To investigate the effect of hepatitis B virus X(HBX)gene on apoptosis and immune moleculesof human proximal renal tubular epithelial cell line(HK-2).Methods The eukaryotic vector pcDNA3.1-myc-HBX containing HBX gene was transiently transfected into

  9. Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests an ancient, common origin for arsenate reductase

    Directory of Open Access Journals (Sweden)

    Dugas Sandra L

    2003-07-01

    Full Text Available Abstract Background The ars gene system provides arsenic resistance for a variety of microorganisms and can be chromosomal or plasmid-borne. The arsC gene, which codes for an arsenate reductase is essential for arsenate resistance and transforms arsenate into arsenite, which is extruded from the cell. A survey of GenBank shows that arsC appears to be phylogenetically widespread both in organisms with known arsenic resistance and those organisms that have been sequenced as part of whole genome projects. Results Phylogenetic analysis of aligned arsC sequences shows broad similarities to the established 16S rRNA phylogeny, with separation of bacterial, archaeal, and subsequently eukaryotic arsC genes. However, inconsistencies between arsC and 16S rRNA are apparent for some taxa. Cyanobacteria and some of the γ-Proteobacteria appear to possess arsC genes that are similar to those of Low GC Gram-positive Bacteria, and other isolated taxa possess arsC genes that would not be expected based on known evolutionary relationships. There is no clear separation of plasmid-borne and chromosomal arsC genes, although a number of the Enterobacteriales (γ-Proteobacteria possess similar plasmid-encoded arsC sequences. Conclusion The overall phylogeny of the arsenate reductases suggests a single, early origin of the arsC gene and subsequent sequence divergence to give the distinct arsC classes that exist today. Discrepancies between 16S rRNA and arsC phylogenies support the role of horizontal gene transfer (HGT in the evolution of arsenate reductases, with a number of instances of HGT early in bacterial arsC evolution. Plasmid-borne arsC genes are not monophyletic suggesting multiple cases of chromosomal-plasmid exchange and subsequent HGT. Overall, arsC phylogeny is complex and is likely the result of a number of evolutionary mechanisms.

  10. Ancient Duplications and Expression Divergence in the Globin Gene Superfamily of Vertebrates: Insights from the Elephant Shark Genome and Transcriptome.

    Science.gov (United States)

    Opazo, Juan C; Lee, Alison P; Hoffmann, Federico G; Toloza-Villalobos, Jessica; Burmester, Thorsten; Venkatesh, Byrappa; Storz, Jay F

    2015-07-01

    Comparative analyses of vertebrate genomes continue to uncover a surprising diversity of genes in the globin gene superfamily, some of which have very restricted phyletic distributions despite their antiquity. Genomic analysis of the globin gene repertoire of cartilaginous fish (Chondrichthyes) should be especially informative about the duplicative origins and ancestral functions of vertebrate globins, as divergence between Chondrichthyes and bony vertebrates represents the most basal split within the jawed vertebrates. Here, we report a comparative genomic analysis of the vertebrate globin gene family that includes the complete globin gene repertoire of the elephant shark (Callorhinchus milii). Using genomic sequence data from representatives of all major vertebrate classes, integrated analyses of conserved synteny and phylogenetic relationships revealed that the last common ancestor of vertebrates possessed a repertoire of at least seven globin genes: single copies of androglobin and neuroglobin, four paralogous copies of globin X, and the single-copy progenitor of the entire set of vertebrate-specific globins. Combined with expression data, the genomic inventory of elephant shark globins yielded four especially surprising findings: 1) there is no trace of the neuroglobin gene (a highly conserved gene that is present in all other jawed vertebrates that have been examined to date), 2) myoglobin is highly expressed in heart, but not in skeletal muscle (reflecting a possible ancestral condition in vertebrates with single-circuit circulatory systems), 3) elephant shark possesses two highly divergent globin X paralogs, one of which is preferentially expressed in gonads, and 4) elephant shark possesses two structurally distinct α-globin paralogs, one of which is preferentially expressed in the brain. Expression profiles of elephant shark globin genes reveal distinct specializations of function relative to orthologs in bony vertebrates and suggest hypotheses about

  11. Immune signatures and disorder-specific patterns in a cross-disorder gene expression analysis

    Science.gov (United States)

    de Jong, Simone; Newhouse, Stephen J.; Patel, Hamel; Lee, Sanghyuck; Dempster, David; Curtis, Charles; Paya-Cano, Jose; Murphy, Declan; Wilson, C. Ellie; Horder, Jamie; Mendez, M. Andreina; Asherson, Philip; Rivera, Margarita; Costello, Helen; Maltezos, Stefanos; Whitwell, Susannah; Pitts, Mark; Tye, Charlotte; Ashwood, Karen L.; Bolton, Patrick; Curran, Sarah; McGuffin, Peter; Dobson, Richard; Breen, Gerome

    2016-01-01

    Background Recent studies point to overlap between neuropsychiatric disorders in symptomatology and genetic aetiology. Aims To systematically investigate genomics overlap between childhood and adult attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and major depressive disorder (MDD). Method Analysis of whole-genome blood gene expression and genetic risk scores of 318 individuals. Participants included individuals affected with adult ADHD (n = 93), childhood ADHD (n = 17), MDD (n = 63), ASD (n = 51), childhood dual diagnosis of ADHD–ASD (n = 16) and healthy controls (n = 78). Results Weighted gene co-expression analysis results reveal disorder-specific signatures for childhood ADHD and MDD, and also highlight two immune-related gene co-expression modules correlating inversely with MDD and adult ADHD disease status. We find no significant relationship between polygenic risk scores and gene expression signatures. Conclusions Our results reveal disorder overlap and specificity at the genetic and gene expression level. They suggest new pathways contributing to distinct pathophysiology in psychiatric disorders and shed light on potential shared genomic risk factors. PMID:27151072

  12. RNA sequencing analysis of human podocytes reveals glucocorticoid regulated gene networks targeting non-immune pathways

    Science.gov (United States)

    Jiang, Lulu; Hindmarch, Charles C. T.; Rogers, Mark; Campbell, Colin; Waterfall, Christy; Coghill, Jane; Mathieson, Peter W.; Welsh, Gavin I.

    2016-01-01

    Glucocorticoids are steroids that reduce inflammation and are used as immunosuppressive drugs for many diseases. They are also the mainstay for the treatment of minimal change nephropathy (MCN), which is characterised by an absence of inflammation. Their mechanisms of action remain elusive. Evidence suggests that immunomodulatory drugs can directly act on glomerular epithelial cells or ‘podocytes’, the cell type which is the main target of injury in MCN. To understand the nature of glucocorticoid effects on non-immune cell functions, we generated RNA sequencing data from human podocyte cell lines and identified the genes that are significantly regulated in dexamethasone-treated podocytes compared to vehicle-treated cells. The upregulated genes are of functional relevance to cytoskeleton-related processes, whereas the downregulated genes mostly encode pro-inflammatory cytokines and growth factors. We observed a tendency for dexamethasone-upregulated genes to be downregulated in MCN patients. Integrative analysis revealed gene networks composed of critical signaling pathways that are likely targeted by dexamethasone in podocytes. PMID:27774996

  13. Preterm Birth Reduces Nutrient Absorption With Limited Effect on Immune Gene Expression and Gut Colonization in Pigs

    DEFF Research Database (Denmark)

    Østergaard, Mette V; Cilieborg, Malene S.; Skovgaard, Kerstin;

    2015-01-01

    The primary risk factors for necrotizing enterocolitis (NEC) are preterm birth, enteral feeding, and gut colonization. It is unclear whether feeding and colonization induce excessive expression of immune genes that lead to NEC. Using a pig model, we hypothesized that reduced gestational age would...... upregulate immune-related genes and cause bacterial imbalance after birth. Preterm (85%-92% gestation, n = 53) and near-term (95%-99% gestation, n = 69) pigs were delivered by cesarean section and euthanized at birth or after 2 days of infant formula or bovine colostrum feeding. At birth, preterm delivery...... reduced 5 of 30 intestinal genes related to nutrient absorption and innate immunity, relative to near-term pigs, whereas 2 genes were upregulated. Preterm birth also reduced ex vivo intestinal glucose and leucine uptake (40%-50%), but failed to increase cytokine secretions from intestinal explants...

  14. Transcriptome analysis of the white body of the squid Euprymna tasmanica with emphasis on immune and hematopoietic gene discovery.

    Directory of Open Access Journals (Sweden)

    Karla A Salazar

    Full Text Available In the mutualistic relationship between the squid Euprymna tasmanica and the bioluminescent bacterium Vibrio fischeri, several host factors, including immune-related proteins, are known to interact and respond specifically and exclusively to the presence of the symbiont. In squid and octopus, the white body is considered to be an immune organ mainly due to the fact that blood cells, or hemocytes, are known to be present in high numbers and in different developmental stages. Hence, the white body has been described as the site of hematopoiesis in cephalopods. However, to our knowledge, there are no studies showing any molecular evidence of such functions. In this study, we performed a transcriptomic analysis of white body tissue of the Southern dumpling squid, E. tasmanica. Our primary goal was to gain insights into the functions of this tissue and to test for the presence of gene transcripts associated with hematopoietic and immune processes. Several hematopoiesis genes including CPSF1, GATA 2, TFIID, and FGFR2 were found to be expressed in the white body. In addition, transcripts associated with immune-related signal transduction pathways, such as the toll-like receptor/NF-κβ, and MAPK pathways were also found, as well as other immune genes previously identified in E. tasmanica's sister species, E. scolopes. This study is the first to analyze an immune organ within cephalopods, and to provide gene expression data supporting the white body as a hematopoietic tissue.

  15. An ancient history of gene duplications, fusions and losses in the evolution of APOBEC3 mutators in mammals

    Directory of Open Access Journals (Sweden)

    Münk Carsten

    2012-05-01

    Full Text Available Abstract Background The APOBEC3 (A3 genes play a key role in innate antiviral defense in mammals by introducing directed mutations in the DNA. The human genome encodes for seven A3 genes, with multiple splice alternatives. Different A3 proteins display different substrate specificity, but the very basic question on how discerning self from non-self still remains unresolved. Further, the expression of A3 activity/ies shapes the way both viral and host genomes evolve. Results We present here a detailed temporal analysis of the origin and expansion of the A3 repertoire in mammals. Our data support an evolutionary scenario where the genome of the mammalian ancestor encoded for at least one ancestral A3 gene, and where the genome of the ancestor of placental mammals (and possibly of the ancestor of all mammals already encoded for an A3Z1-A3Z2-A3Z3 arrangement. Duplication events of the A3 genes have occurred independently in different lineages: humans, cats and horses. In all of them, gene duplication has resulted in changes in enzyme activity and/or substrate specificity, in a paradigmatic example of convergent adaptive evolution at the genomic level. Finally, our results show that evolutionary rates for the three A3Z1, A3Z2 and A3Z3 motifs have significantly decreased in the last 100 Mya. The analysis constitutes a textbook example of the evolution of a gene locus by duplication and sub/neofunctionalization in the context of virus-host arms race. Conclusions Our results provide a time framework for identifying ancestral and derived genomic arrangements in the APOBEC loci, and to date the expansion of this gene family for different lineages through time, as a response to changes in viral/retroviral/retrotransposon pressure.

  16. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European

    NARCIS (Netherlands)

    Olalde, I.; Allentoft, M.E.; Sanchez-Quinto, F.; Santpere, G.; Chiang, C.W.; DeGiorgio, M.; Prado-Martinez, J.; Rodriguez, J.A.; Rasmussen, S.; Quilez, J.; Ramirez, O.; Marigorta, U.M.; Fernandez-Callejo, M.; Prada, M.E.; Encinas, J.M.; Nielsen, R.; Netea, M.G.; Novembre, J.; Sturm, R.A.; Sabeti, P.; Marques-Bonet, T.; Navarro, A.; Willerslev, E.; Lalueza-Fox, C.

    2014-01-01

    Ancient genomic sequences have started to reveal the origin and the demographic impact of farmers from the Neolithic period spreading into Europe. The adoption of farming, stock breeding and sedentary societies during the Neolithic may have resulted in adaptive changes in genes associated with immun

  17. Transportin-SR is required for proper splicing of resistance genes and plant immunity.

    Directory of Open Access Journals (Sweden)

    Shaohua Xu

    2011-06-01

    Full Text Available Transportin-SR (TRN-SR is a member of the importin-β super-family that functions as the nuclear import receptor for serine-arginine rich (SR proteins, which play diverse roles in RNA metabolism. Here we report the identification and cloning of mos14 (modifier of snc1-1, 14, a mutation that suppresses the immune responses conditioned by the auto-activated Resistance (R protein snc1 (suppressor of npr1-1, constitutive 1. MOS14 encodes a nuclear protein with high similarity to previously characterized TRN-SR proteins in animals. Yeast two-hybrid assays showed that MOS14 interacts with AtRAN1 via its N-terminus and SR proteins via its C-terminus. In mos14-1, localization of several SR proteins to the nucleus was impaired, confirming that MOS14 functions as a TRN-SR. The mos14-1 mutation results in altered splicing patterns of SNC1 and another R gene RPS4 and compromised resistance mediated by snc1 and RPS4, suggesting that nuclear import of SR proteins by MOS14 is required for proper splicing of these two R genes and is important for their functions in plant immunity.

  18. Ancient Origin of the U2 Small Nuclear RNA Gene-Targeting Non-LTR Retrotransposons Utopia.

    Science.gov (United States)

    Kojima, Kenji K; Jurka, Jerzy

    2015-01-01

    Most non-long terminal repeat (non-LTR) retrotransposons encoding a restriction-like endonuclease show target-specific integration into repetitive sequences such as ribosomal RNA genes and microsatellites. However, only a few target-specific lineages of non-LTR retrotransposons are distributed widely and no lineage is found across the eukaryotic kingdoms. Here we report the most widely distributed lineage of target sequence-specific non-LTR retrotransposons, designated Utopia. Utopia is found in three supergroups of eukaryotes: Amoebozoa, SAR, and Opisthokonta. Utopia is inserted into a specific site of U2 small nuclear RNA genes with different strength of specificity for each family. Utopia families from oomycetes and wasps show strong target specificity while only a small number of Utopia copies from reptiles are flanked with U2 snRNA genes. Oomycete Utopia families contain an "archaeal" RNase H domain upstream of reverse transcriptase (RT), which likely originated from a plant RNase H gene. Analysis of Utopia from oomycetes indicates that multiple lineages of Utopia have been maintained inside of U2 genes with few copy numbers. Phylogenetic analysis of RT suggests the monophyly of Utopia, and it likely dates back to the early evolution of eukaryotes.

  19. Evaluation of ToxA and Vibrio parahaemolyticus lysate on humoral immune response and immune-related genes in Pacific red snapper.

    Science.gov (United States)

    Reyes-Becerril, Martha; Maldonado-García, Minerva; Guluarte, Crystal; León-Gallo, Amalia; Rosales-Mendoza, Sergio; Ascencio, Felipe; Hirono, Ikuo; Angulo, Carlos

    2016-09-01

    Immunogenicity of ToxA and Vibrio parahaemolyticus lysate was evaluated in a double immunostimulation scheme in Pacific red snapper after V. parahaemolyticus infection. Three groups of Pacific red snapper were intraperitonealy (i.p.) injected with phosphate-buffered saline (PBS group), ToxA of V. parahaemolyticus (ToxA-Vp group) or V. parahaemolyticus lysate (lysate-Vp group) (first injection, day 1; second injection, day 7). Fish were subsequently infected with live V. parahaemolyticus. Humoral immune parameters in skin mucus and serum were evaluated on days 1, 7, 8 and 14 days post-immunostimulation and 7 days post-infection. Moreover expression of immune-related genes was quantified by real time PCR in head-kidney leukocytes, spleen, liver, and intestine. The ToxA-Vp-treated group showed a higher anti-protease and catalase activity in skin mucus when compared with the PBS group. Measurements of SOD and CAT activities showed an increment in both activities a day after the second boost with ToxA-Vp or lysate-Vp. Interestingly, IgM levels in mucus and transcripts were enhanced followed the ToxA-Vp treatment even after challenge. Furthermore, IL-1β was strongly expressed in all analyzed cell or tissues followed ToxA-Vp or Vp-lysate treatments. Finally, SOD and CAT gene expression was up-regulated in fish immunostimulated with either treatment ToxA-Vp or lysate-Vp, mainly after infection in head-kidney leukocytes and intestine. This is the first study where the effects of ToxA from V. parahaemolyticus in the immune system of Pacific red snapper was evaluated. These results suggest that ToxA-Vp would positively affect humoral immune response and up-regulate expression of genes involved in the immune system function; and could help in the control of V. parahaemolyticus infection in Pacific red snapper Lutjanus peru, an economic important fish in Mexico.

  20. Functional Similarities between Pigeon ‘Milk’ and Mammalian Milk: Induction of Immune Gene Expression and Modification of the Microbiota

    OpenAIRE

    Gillespie, Meagan J; Dragana Stanley; Honglei Chen; Donald, John A.; Nicholas, Kevin R.; Robert J Moore; Crowley, Tamsyn M

    2012-01-01

    Pigeon 'milk' and mammalian milk have functional similarities in terms of nutritional benefit and delivery of immunoglobulins to the young. Mammalian milk has been clearly shown to aid in the development of the immune system and microbiota of the young, but similar effects have not yet been attributed to pigeon 'milk'. Therefore, using a chicken model, we investigated the effect of pigeon 'milk' on immune gene expression in the Gut Associated Lymphoid Tissue (GALT) and on the composition of t...

  1. The Molecule Immune Mechanism of Gene Vaccine%基因疫苗的免疫学分子机制

    Institute of Scientific and Technical Information of China (English)

    齐麟; 向志明; 张彤

    2012-01-01

    文中对病原体诱导宿主的免疫学过程以及基因疫苗作用的免疫学分子机制进行了综述,并对其未来发展进行了展望.%The immune responding of host induced by pathogen and the molecule immune mechanism of gene vaccine were summarized, and their future development was forecasted.

  2. Expression of immune genes on chromosome 6p21.3-22.1 in schizophrenia.

    Science.gov (United States)

    Sinkus, Melissa L; Adams, Catherine E; Logel, Judith; Freedman, Robert; Leonard, Sherry

    2013-08-01

    Schizophrenia is a common mental illness with a large genetic component. Three genome-wide association studies have implicated the major histocompatibility complex gene region on chromosome 6p21.3-22.1 in schizophrenia. In addition, nicotine, which is commonly abused in schizophrenia, affects the expression of central nervous system immune genes. Messenger RNA levels for genes in the 6p21.3-22.1 region were measured in human postmortem hippocampus of 89 subjects. The effects of schizophrenia diagnosis, smoking and systemic inflammatory illness were compared. Cell-specific expression patterns for the class I major histocompatibility complex gene HLA-A were explored utilizing in situ hybridization. Expression of five genes was altered in schizophrenic subjects. Messenger RNA levels for the class I major histocompatibility complex antigen HLA-B were increased in schizophrenic nonsmokers, while levels for smokers were indistinguishable from those of controls. β2 microglobulin, HLA-A and Notch4 were all expressed in a pattern where inflammatory illness was associated with increased expression in controls but not in subjects with schizophrenia. Schizophrenia was also associated with increased expression of Butyrophilin 2A2. HLA-A was expressed in glutamatergic and GABAergic neurons in the dentate gyrus, hilus, and the stratum pyramidale of the CA1-CA4 regions of the hippocampus, but not in astrocytes. In conclusion, the expression of genes from the major histocompatibility complex region of chromosome 6 with likely roles in synaptic development is altered in schizophrenia. There were also significant interactions between schizophrenia diagnosis and both inflammatory illness and smoking.

  3. Biphasic Hoxd gene expression in shark paired fins reveals an ancient origin of the distal limb domain.

    Directory of Open Access Journals (Sweden)

    Renata Freitas

    Full Text Available The evolutionary transition of fins to limbs involved development of a new suite of distal skeletal structures, the digits. During tetrapod limb development, genes at the 5' end of the HoxD cluster are expressed in two spatiotemporally distinct phases. In the first phase, Hoxd9-13 are activated sequentially and form nested domains along the anteroposterior axis of the limb. This initial phase patterns the limb from its proximal limit to the middle of the forearm. Later in development, a second wave of transcription results in 5' HoxD gene expression along the distal end of the limb bud, which regulates formation of digits. Studies of zebrafish fins showed that the second phase of Hox expression does not occur, leading to the idea that the origin of digits was driven by addition of the distal Hox expression domain in the earliest tetrapods. Here we test this hypothesis by investigating Hoxd gene expression during paired fin development in the shark Scyliorhinus canicula, a member of the most basal lineage of jawed vertebrates. We report that at early stages, 5'Hoxd genes are expressed in anteroposteriorly nested patterns, consistent with the initial wave of Hoxd transcription in teleost and tetrapod paired appendages. Unexpectedly, a second phase of expression occurs at later stages of shark fin development, in which Hoxd12 and Hoxd13 are re-expressed along the distal margin of the fin buds. This second phase is similar to that observed in tetrapod limbs. The results indicate that a second, distal phase of Hoxd gene expression is not uniquely associated with tetrapod digit development, but is more likely a plesiomorphic condition present the common ancestor of chondrichthyans and osteichthyans. We propose that a temporal extension, rather than de novo activation, of Hoxd expression in the distal part of the fin may have led to the evolution of digits.

  4. De Novo assembly of the Japanese flounder (Paralichthys olivaceus spleen transcriptome to identify putative genes involved in immunity.

    Directory of Open Access Journals (Sweden)

    Lin Huang

    Full Text Available Japanese flounder (Paralichthys olivaceus is an economically important marine fish in Asia and has suffered from disease outbreaks caused by various pathogens, which requires more information for immune relevant genes on genome background. However, genomic and transcriptomic data for Japanese flounder remain scarce, which limits studies on the immune system of this species. In this study, we characterized the Japanese flounder spleen transcriptome using an Illumina paired-end sequencing platform to identify putative genes involved in immunity.A cDNA library from the spleen of P. olivaceus was constructed and randomly sequenced using an Illumina technique. The removal of low quality reads generated 12,196,968 trimmed reads, which assembled into 96,627 unigenes. A total of 21,391 unigenes (22.14% were annotated in the NCBI Nr database, and only 1.1% of the BLASTx top-hits matched P. olivaceus protein sequences. Approximately 12,503 (58.45% unigenes were categorized into three Gene Ontology groups, 19,547 (91.38% were classified into 26 Cluster of Orthologous Groups, and 10,649 (49.78% were assigned to six Kyoto Encyclopedia of Genes and Genomes pathways. Furthermore, 40,928 putative simple sequence repeats and 47, 362 putative single nucleotide polymorphisms were identified. Importantly, we identified 1,563 putative immune-associated unigenes that mapped to 15 immune signaling pathways.The P. olivaceus transciptome data provides a rich source to discover and identify new genes, and the immune-relevant sequences identified here will facilitate our understanding of the mechanisms involved in the immune response. Furthermore, the plentiful potential SSRs and SNPs found in this study are important resources with respect to future development of a linkage map or marker assisted breeding programs for the flounder.

  5. Evolution of Vertebrate Adam Genes; Duplication of Testicular Adams from Ancient Adam9/9-like Loci.

    Science.gov (United States)

    Bahudhanapati, Harinath; Bhattacharya, Shashwati; Wei, Shuo

    2015-01-01

    Members of the disintegrin metalloproteinase (ADAM) family have important functions in regulating cell-cell and cell-matrix interactions as well as cell signaling. There are two major types of ADAMs: the somatic ADAMs (sADAMs) that have a significant presence in somatic tissues, and the testicular ADAMs (tADAMs) that are expressed predominantly in the testis. Genes encoding tADAMs can be further divided into two groups: group I (intronless) and group II (intron-containing). To date, tAdams have only been reported in placental mammals, and their evolutionary origin and relationship to sAdams remain largely unknown. Using phylogenetic and syntenic tools, we analyzed the Adam genes in various vertebrates ranging from fishes to placental mammals. Our analyses reveal duplication and loss of some sAdams in certain vertebrate species. In particular, there exists an Adam9-like gene in non-mammalian vertebrates but not mammals. We also identified putative group I and group II tAdams in all amniote species that have been examined. These tAdam homologues are more closely related to Adams 9 and 9-like than to other sAdams. In all amniote species examined, group II tAdams lie in close vicinity to Adam9 and hence likely arose from tandem duplication, whereas group I tAdams likely originated through retroposition because of their lack of introns. Clusters of multiple group I tAdams are also common, suggesting tandem duplication after retroposition. Therefore, Adam9/9-like and some of the derived tAdam loci are likely preferred targets for tandem duplication and/or retroposition. Consistent with this hypothesis, we identified a young retroposed gene that duplicated recently from Adam9 in the opossum. As a result of gene duplication, some tAdams were pseudogenized in certain species, whereas others acquired new expression patterns and functions. The rapid duplication of Adam genes has a major contribution to the diversity of ADAMs in various vertebrate species.

  6. Systems biology analysis of gene expression during in vivo Mycobacterium avium paratuberculosis enteric colonization reveals role for immune tolerance.

    Directory of Open Access Journals (Sweden)

    Sangeeta Khare

    Full Text Available Survival and persistence of Mycobacterium avium subsp. paratuberculosis (MAP in the intestinal mucosa is associated with host immune tolerance. However, the initial events during MAP interaction with its host that lead to pathogen survival, granulomatous inflammation, and clinical disease progression are poorly defined. We hypothesize that immune tolerance is initiated upon initial contact of MAP with the intestinal Peyer's patch. To test our hypothesis, ligated ileal loops in neonatal calves were infected with MAP. Intestinal tissue RNAs were collected (0.5, 1, 2, 4, 8 and 12 hrs post-infection, processed, and hybridized to bovine gene expression microarrays. By comparing the gene transcription responses of calves infected with the MAP, informative complex patterns of expression were clearly visible. To interpret these complex data, changes in the gene expression were further analyzed by dynamic Bayesian analysis, and genes were grouped into the specific pathways and gene ontology categories to create a holistic model. This model revealed three different phases of responses: i early (30 min and 1 hr post-infection, ii intermediate (2, 4 and 8 hrs post-infection, and iii late (12 hrs post-infection. We describe here the data that include expression profiles for perturbed pathways, as well as, mechanistic genes (genes predicted to have regulatory influence that are associated with immune tolerance. In the Early Phase of MAP infection, multiple pathways were initiated in response to MAP invasion via receptor mediated endocytosis and changes in intestinal permeability. During the Intermediate Phase, perturbed pathways involved the inflammatory responses, cytokine-cytokine receptor interaction, and cell-cell signaling. During the Late Phase of infection, gene responses associated with immune tolerance were initiated at the level of T-cell signaling. Our study provides evidence that MAP infection resulted in differentially regulated genes, perturbed

  7. The dorsal-related immunity factor, Dif, is a sequence-specific trans-activator of Drosophila Cecropin gene expression.

    OpenAIRE

    Petersen, U M; Björklund, G; Ip, Y T; Engström, Y

    1995-01-01

    A new member of the Rel family of transcription factors, the dorsal-related immunity factor, Dif, was recently cloned and suggested to be involved in regulating the immune response in Drosophila. Despite its classification as a Rel family member, the Dif cDNA-encoded product has not been proven previously to be a transcription factor. We now present evidence that the Dif gene product trans-activates the Drosophila Cecropin A1 gene in co-transfection assays. The transactivation requires a 40 b...

  8. Association between age at diagnosis of Graves' disease and variants in genes involved in immune response.

    Directory of Open Access Journals (Sweden)

    Beata Jurecka-Lubieniecka

    Full Text Available BACKGROUND: Graves' disease (GD is a complex disease in which genetic predisposition is modified by environmental factors. The aim of the study was to examine the association between genetic variants in genes encoding proteins involved in immune response and the age at diagnosis of GD. METHODS: 735 GD patients and 1216 healthy controls from Poland were included into the study. Eight genetic variants in the HLA-DRB1, TNF, CTLA4, CD40, NFKb, PTPN22, IL4 and IL10 genes were genotyped. Patients were stratified by the age at diagnosis of GD and the association with genotype was analysed. RESULTS: Polymorphism in the HLA-DRB1, TNF and CTLA4 genes were associated with GD. The carriers of the HLA DRB1*03 allele were more frequent in patients with age at GD diagnosis ≤30 years than in patients with older age at GD diagnosis. CONCLUSIONS: HLADRB1*03 allele is associated with young age at diagnosis of Graves' disease in Polish population.

  9. Identification and isolation of stimulator of interferon genes (STING): an innate immune sensory and adaptor gene from camelids.

    Science.gov (United States)

    Premraj, A; Aleyas, A G; Nautiyal, B; Rasool, T J

    2013-10-01

    The mechanism by which type I interferon-mediated antiviral response is mounted by hosts against invading pathogen is an intriguing one. Of late, an endoplasmic reticulum transmembrane protein encoded by a gene called stimulator of interferon genes (STING) is implicated in the innate signalling pathways and has been identified and cloned in few mammalian species including human, mouse and pig. In this article, we report the identification of STING from three different species of a highly conserved family of mammals - the camelids. cDNAs encoding the STING of Old World camels - dromedary camel (Camelus dromedarius) and bactrian camel (Camelus bactrianus) and a New World camel - llama (Llama glama) were amplified using conserved primers and RACE. The complete STING cDNA of dromedary camel is 2171 bp long with a 706-bp 5' untranslated regions (UTR), an 1137-bp open reading frame (ORF) and a 328-bp 3' UTR. Sequence and phylogenetic analysis of the ORF of STING from these three camelids indicate high level of similarity among camelids and conservation of critical amino acid residues across different species. Quantitative real-time PCR analysis revealed high levels of STING mRNA expression in blood, spleen, lymph node and lung. The identification of camelid STING will help in better understanding of the role of this molecule in the innate immunity of the camelids and other mammals.

  10. Expression of immune-related genes in larval stages of the giant tiger shrimp, Penaeus monodon.

    Science.gov (United States)

    Jiravanichpaisal, Pikul; Puanglarp, Narongsak; Petkon, Sasithon; Donnuea, Seri; Söderhäll, Irene; Söderhäll, Kenneth

    2007-10-01

    Shrimp undergo several morphologically different stages during development and therefore the expression of some immune-related genes such as prophenoloxidase (proPO), peroxinectin (Prx), crustin (Crus), penaeidin (Pen), transglutaminase (TGase), haemocyanin (Hc) and astakine (Ak) were determined during larval development of the shrimp (Penaeus monodon), i.e. nauplius 4 (N4), protozoea 1 and 3 (Z1 and 3), mysis 3 (My 3), post-larvae 3 (PL3) and also in haemocytes of juveniles. Semi-quantitative RT-PCR analysis showed that all transcripts were already present in the early larval stage of N4 but at different levels. The transcript of proPO was found to be extremely low or even absent at N4, whereas Prx, Crus, Pen, TGase, Hc and Ak were significantly expressed at all larval stages. Up to now expression of proPO and Prx has only been reported from haemocytes in crustaceans and in this study Prx also appeared to be expressed in stages which appear to lack haemocytes. Thus, this may suggest that Prx is expressed in other cells than haemocytes. It is well known among invertebrates that the proPO system plays a crucial role as an immune effector molecule against microbes. However, in this study, the transcript of proPO was low during the larval stages and hardly present at all at N4. This might indicate that the development of immune-competent haemocytes during the larval stages is not completed and as a consequence they are likely to be more susceptible to infectious diseases during these stages.

  11. Transgenic overexpression of BAFF regulates the expression of immune-related genes in zebrafish, Danio rerio

    Indian Academy of Sciences (India)

    LI ZHANG; CHAO LIU; XIN ZHOU; YING XIE; LIBO SU; QI GENG; BINGHUI LIU; SHUFENG LIU

    2016-12-01

    The B-cell activating factor (BAFF) is a member of tumour necrosis factor (TNF) superfamily that specifically regulates B lymphocyte proliferation and survival. Excess BAFF leads to overproduction of antibodies for secretion, anti-dsDNA antibodies and a lupus-like syndrome in mice. To investigate whether transgenic overexpression of the zebrafish BAFF leads to immunoglobulin changes and/or early maturing of the immune system, a Tol2-GFP-2A-BAFF/His recombinant plasmid was constructed by inserting a 2A peptide between the green fluorescent protein (GFP) and BAFF sequences. Functional GFP and BAFF proteins were expressed separately and confirmed in HeLa cells. The relative expression of immune-related genes (IgLC-1, IgLC-2, IgLC-3, IgD, IgM and IL-4), early lymphoid markers (Ikaros, Rag-1 and TCRAC), and the protooncogene Bcl-2 were evaluated by quantitative polymerase chain reaction (PCR) in F0 founder of transgenic zebrafish juveniles and adults. Ectopic expression of BAFF in adults was confirmed using Western blots and was shown to upregulate IgLC-1, IgLC- 2, IgD, IgM, IgZ/T, Ikaros, Rag-1, TCRAC, IL-4 and Bcl-2 expression in juveniles on day 21 and IgLC-1, IgLC-2, IgD, IgM, IgZ/T, Rag-1, TCRAC and Bcl-2 expression in zebrafish three months postfertilization. The relative titers of specific IgM against Edwardsiella tarda WED were assessed using modified enzyme-linked immunosorbent assay (ELISA) with the whole body homogenate of zebrafish and demonstrated a significant increase in BAFF-transgenic group. Therefore, our findings provided novel insight into further exploration of modulating adaptive immunity and studying autoimmune diseases caused by regulating BAFF.

  12. Immunization with the cysteine proteinase Ldccys1 gene from Leishmania (Leishmania) chagasi and the recombinant Ldccys1 protein elicits protective immune responses in a murine model of visceral leishmaniasis.

    Science.gov (United States)

    Ferreira, Josie Haydée L; Gentil, Luciana Girotto; Dias, Suzana Souza; Fedeli, Carlos Eduardo C; Katz, Simone; Barbiéri, Clara Lúcia

    2008-01-30

    The gene Ldccys1 encoding a cysteine proteinase of 30 kDa from Leishmania (Leishmania) chagasi, as well as the recombinant cysteine proteinase rLdccys1, obtained by cloning and expression of the Ldccys1 gene in the pHIS vector, were used to evaluate their ability to induce immune protective responses in BALB/c mice against L. (L.) chagasi infection. Mice were immunized subcutaneously with rLdccys1 plus Bacille Calmette Guerin (BCG) or Propionibacterium acnes as adjuvants or intramuscularly with a plasmid carrying the Ldccys1 gene (Ldccys1/pcDNA3) and CpG ODN as the adjuvant, followed by a booster with rLdccys1 plus CpG ODN. Two weeks after immunization the animals were challenged with 1 x 10(7) amastigotes of L. (L.) chagasi. Both immunization protocols induced significant protection against L. (L.) chagasi infection as shown by a very low parasite load in the spleen of immunized mice compared to the non-immunized controls. However, DNA immunization was 10-fold more protective than immunization with the recombinant protein. Whereas rLdccys1 induced a significant secretion of IFN-gamma and nitric oxide (NO), animals immunized with the Ldccys1 gene increased the production of IgG2a antibodies, IFN-gamma and NO. These results indicated that protection triggered by the two immunization protocols was correlated to a predominant Th1 response.

  13. PAMP induced expression of immune relevant genes in head kidney leukocytes of rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Chettri, Jiwan Kumar; Raida, Martin Kristian; Holten-Andersen, Lars

    2011-01-01

    Host immune responses elicited by invading pathogens depend on recognition of the pathogen by specific receptors present on phagocytic cells. However, the reactions to viral, bacterial, parasitic and fungal pathogens vary according to the pathogen-associated molecular patterns (PAMPs) on the surf......Host immune responses elicited by invading pathogens depend on recognition of the pathogen by specific receptors present on phagocytic cells. However, the reactions to viral, bacterial, parasitic and fungal pathogens vary according to the pathogen-associated molecular patterns (PAMPs......) on the surface of the invader. Phagocytic cells are known to initiate a respiratory burst following an exposure to the pathogen, but the underlying and associated specific elements are poorly elucidated in fish. The present study describes the differential response of head kidney leukocytes from rainbow trout...... merely moderate reactions. In contrast, IFN-¿ expression was significantly higher in the poly I:C stimulated group compared to the LPS group. When head kidney cells were exposed to zymosan or ß-glucan, genes encoding IL-1ß, TNF-a, IL-6 and IL-10 became up-regulated. Their level of up...

  14. Rotavirus nonstructural protein 1 antagonizes innate immune response by interacting with retinoic acid inducible gene I

    Directory of Open Access Journals (Sweden)

    Qin Lan

    2011-12-01

    Full Text Available Abstract Background The nonstructural protein 1 (NSP1 of rotavirus has been reported to block interferon (IFN signaling by mediating proteasome-dependent degradation of IFN-regulatory factors (IRFs and (or the β-transducin repeat containing protein (β-TrCP. However, in addition to these targets, NSP1 may subvert innate immune responses via other mechanisms. Results The NSP1 of rotavirus OSU strain as well as the IRF3 binding domain truncated NSP1 of rotavirus SA11 strain are unable to degrade IRFs, but can still inhibit host IFN response, indicating that NSP1 may target alternative host factor(s other than IRFs. Overexpression of NSP1 can block IFN-β promoter activation induced by the retinoic acid inducible gene I (RIG-I, but does not inhibit IFN-β activation induced by the mitochondrial antiviral-signaling protein (MAVS, indicating that NSP1 may target RIG-I. Immunoprecipitation experiments show that NSP1 interacts with RIG-I independent of IRF3 binding domain. In addition, NSP1 induces down-regulation of RIG-I in a proteasome-independent way. Conclusions Our findings demonstrate that inhibition of RIG-I mediated type I IFN responses by NSP1 may contribute to the immune evasion of rotavirus.

  15. Digital quantification of gene expression in sequential breast cancer biopsies reveals activation of an immune response.

    Directory of Open Access Journals (Sweden)

    Rinath M Jeselsohn

    Full Text Available Advancements in molecular biology have unveiled multiple breast cancer promoting pathways and potential therapeutic targets. Large randomized clinical trials remain the ultimate means of validating therapeutic efficacy, but they require large cohorts of patients and are lengthy and costly. A useful approach is to conduct a window of opportunity study in which patients are exposed to a drug pre-surgically during the interval between the core needle biopsy and the definitive surgery. These are non-therapeutic studies and the end point is not clinical or pathological response but rather evaluation of molecular changes in the tumor specimens that can predict response. However, since the end points of the non-therapeutic studies are biologic, it is critical to first define the biologic changes that occur in the absence of treatment. In this study, we compared the molecular profiles of breast cancer tumors at the time of the diagnostic biopsy versus the definitive surgery in the absence of any intervention using the Nanostring nCounter platform. We found that while the majority of the transcripts did not vary between the two biopsies, there was evidence of activation of immune related genes in response to the first biopsy and further investigations of the immune changes after a biopsy in early breast cancer seem warranted.

  16. Evidence of inflammatory immune signaling in chronic fatigue syndrome: A pilot study of gene expression in peripheral blood

    Directory of Open Access Journals (Sweden)

    Vernon Suzanne D

    2008-09-01

    Full Text Available Abstract Background Genomic profiling of peripheral blood reveals altered immunity in chronic fatigue syndrome (CFS however interpretation remains challenging without immune demographic context. The object of this work is to identify modulation of specific immune functional components and restructuring of co-expression networks characteristic of CFS using the quantitative genomics of peripheral blood. Methods Gene sets were constructed a priori for CD4+ T cells, CD8+ T cells, CD19+ B cells, CD14+ monocytes and CD16+ neutrophils from published data. A group of 111 women were classified using empiric case definition (U.S. Centers for Disease Control and Prevention and unsupervised latent cluster analysis (LCA. Microarray profiles of peripheral blood were analyzed for expression of leukocyte-specific gene sets and characteristic changes in co-expression identified from topological evaluation of linear correlation networks. Results Median expression for a set of 6 genes preferentially up-regulated in CD19+ B cells was significantly lower in CFS (p = 0.01 due mainly to PTPRK and TSPAN3 expression. Although no other gene set was differentially expressed at p Conclusion Dissection of blood microarray profiles points to B cell dysfunction with coordinated immune activation supporting persistent inflammation and antibody-mediated NK cell modulation of T cell activity. This has clinical implications as the CD19+ genes identified could provide robust and biologically meaningful basis for the early detection and unambiguous phenotyping of CFS.

  17. PAMP INDUCED EXPRESSION OF IMMUNE RELEVANT GENES IN HEAD KIDNEY LEUKOCYTES OF RAINBOW TROUT (ONCORHYNCHUS MYKISS)

    DEFF Research Database (Denmark)

    Chettri, Jiwan Kumar; Holten-Andersen, Lars; Kania, Per Walter

    Host immune responses elicited by invading pathogens depend on recognition of the pathogen by specific receptors present on phagocytic cells. However, the response to viral, bacterial, parasitic and fungal pathogens vary according to the pathogen-associated molecular patterns (PAMPs) on the surface...... of the invader. Phagocytic cells are known to initiate a respiratory burst following an exposure to the pathogen, but the underlying and associated specific elements are poorly elucidated in fish. The present study describes the differential response of head kidney leukocytes from rainbow trout (Oncorhynchus...... moderate reactions. In contrast, IFN-¿ expression was significantly higher in the poly I:C stimulated group compared to LPS group. When head kidney cells were exposed to zymosan or ß-glucan, genes encoding IL-1ß, TNF-a, IL-6 and IL-10 became up-regulated. Their level of up-regulation was comparable to LPS...

  18. Control of immune ligands by members of a cytomegalovirus gene expansion suppresses natural killer cell activation

    Science.gov (United States)

    Fielding, Ceri A; Weekes, Michael P; Nobre, Luis V; Ruckova, Eva; Wilkie, Gavin S; Paulo, Joao A; Chang, Chiwen; Suárez, Nicolás M; Davies, James A; Antrobus, Robin; Stanton, Richard J; Aicheler, Rebecca J; Nichols, Hester; Vojtesek, Borek; Trowsdale, John; Davison, Andrew J; Gygi, Steven P

    2017-01-01

    The human cytomegalovirus (HCMV) US12 family consists of ten sequentially arranged genes (US12-21) with poorly characterized function. We now identify novel natural killer (NK) cell evasion functions for four members: US12, US14, US18 and US20. Using a systematic multiplexed proteomics approach to quantify ~1300 cell surface and ~7200 whole cell proteins, we demonstrate that the US12 family selectively targets plasma membrane proteins and plays key roles in regulating NK ligands, adhesion molecules and cytokine receptors. US18 and US20 work in concert to suppress cell surface expression of the critical NKp30 ligand B7-H6 thus inhibiting NK cell activation. The US12 family is therefore identified as a major new hub of immune regulation. DOI: http://dx.doi.org/10.7554/eLife.22206.001 PMID:28186488

  19. Finding immune gene expression differences induced by marine bacterial pathogens in the Deep-sea hydrothermal vent mussel Bathymodiolus azoricus

    Science.gov (United States)

    Martins, E.; Queiroz, A.; Serrão Santos, R.; Bettencourt, R.

    2013-11-01

    The deep-sea hydrothermal vent mussel Bathymodiolus azoricus lives in a natural environment characterised by extreme conditions of hydrostatic pressure, temperature, pH, high concentrations of heavy metals, methane and hydrogen sulphide. The deep-sea vent biological systems represent thus the opportunity to study and provide new insights into the basic physiological principles that govern the defense mechanisms in vent animals and to understand how they cope with microbial infections. Hence, the importance of understanding this animal's innate defense mechanisms, by examining its differential immune gene expressions toward different pathogenic agents. In the present study, B. azoricus mussels were infected with single suspensions of marine bacterial pathogens, consisting of Vibrio splendidus, Vibrio alginolyticus, or Vibrio anguillarum, and a pool of these Vibrio bacteria. Flavobacterium suspensions were also used as a non-pathogenic bacterium. Gene expression analyses were carried out using gill samples from infected animals by means of quantitative-Polymerase Chain Reaction aimed at targeting several immune genes. We also performed SDS-PAGE protein analyses from the same gill tissues. We concluded that there are different levels of immune gene expression between the 12 h to 24 h exposure times to various bacterial suspensions. Our results from qPCR demonstrated a general pattern of gene expression, decreasing from 12 h over 24 h post-infection. Among the bacteria tested, Flavobacterium is the bacterium inducing the highest gene expression level in 12 h post-infections animals. The 24 h infected animals revealed, however, greater gene expression levels, using V. splendidus as the infectious agent. The SDS-PAGE analysis also pointed at protein profile differences between 12 h and 24 h, particularly evident for proteins of 18-20 KDa molecular mass, where most dissimilarity was found. Multivariate analyses demonstrated that immune genes, as well as experimental

  20. Expression Analysis of Immune Related Genes Identified from the Coelomocytes of Sea Cucumber (Apostichopus japonicus in Response to LPS Challenge

    Directory of Open Access Journals (Sweden)

    Ying Dong

    2014-10-01

    Full Text Available The sea cucumber (Apostichopus japonicus occupies a basal position during the evolution of deuterostomes and is also an important aquaculture species. In order to identify more immune effectors, transcriptome sequencing of A. japonicus coelomocytes in response to lipopolysaccharide (LPS challenge was performed using the Illumina HiSeq™ 2000 platform. One hundred and seven differentially expressed genes were selected and divided into four functional categories including pathogen recognition (25 genes, reorganization of cytoskeleton (27 genes, inflammation (41 genes and apoptosis (14 genes. They were analyzed to elucidate the mechanisms of host-pathogen interactions and downstream signaling transduction. Quantitative real-time polymerase chain reactions (qRT-PCRs of 10 representative genes validated the accuracy and reliability of RNA sequencing results with the correlation coefficients from 0.88 to 0.98 and p-value <0.05. Expression analysis of immune-related genes after LPS challenge will be useful in understanding the immune response mechanisms of A. japonicus against pathogen invasion and developing strategies for resistant markers selection.

  1. Transciptomic study of mucosal immune, antioxidant and growth related genes and non-specific immune response of common carp (Cyprinus carpio) fed dietary Ferula (Ferula assafoetida).

    Science.gov (United States)

    Safari, Roghieh; Hoseinifar, Seyed Hossein; Nejadmoghadam, Shabnam; Jafar, Ali

    2016-08-01

    A 8-weeks feeding trial was conducted to examine the effects of different levels (0, 0.5, 1 and 2%) of dietary Ferula (Ferula assafoetida) on expression of antioxidant enzymes (GSR, GPX and GSTA), immune (TNF-alpha, IL1B, IL- 8 and LYZ) and growth (GH, IGF1 and Ghrl) genes as well as cutaneous mucus and serum non-specific immune response in common carp. The results revealed Ferula significantly increased antioxidant gene expression (GSR and GSTA) in a dose dependent manner (P Ferula fed fish compared control group (P Ferula on expression of genes was more pronounced in higher doses. Feeding on Ferula supplemented diet remarkably increased skin mucus lysozyme activity (P  0.05). Regarding non-specific humoral response, serum total Ig, lysozyme and ACH50 showed no remarkable variation between Ferula fed carps and control group (P > 0.05). These results indicated up-regulation of growth and health related genes in Ferula fed common carp. Further studies using pathogen or stress challenge is required to conclude that transcriptional modulation is beneficial in common carp.

  2. Gene cloning of the 18S rRNA of an ancient viable moss from the permafrost of northeastern Siberia

    Science.gov (United States)

    Marsic, Damien; Hoover, Richard B.; Gilichinsky, David A.; Ng, Joseph D.

    1999-12-01

    A moss plant dating as much as 40,000 years old was collected from the permafrost of the Kolyma Lowlands of Northeastern Siberia. The plant tissue was revived and cultured for the extraction of its genomic DNA. Using the polymerase chain reaction technique, the 18S ribosomal RNA gene was cloned and its sequence studied. Comparative sequence analysis of the cloned ribosomal DNA to other known 18S RNA showed very high sequence identity and was revealed to be closest to the moss specie, Aulacomnium turgidum. The results of this study also show the ability of biological organisms to rest dormant in deep frozen environments where they can be revived and cultured under favorable conditions. This is significant in the notion that celestial icy bodies can be media to preserve biological function and genetic material during long term storage or transport.

  3. Expression patterns and action analysis of genes associated with physiological responses during rat liver regeneration: Cellular immune response

    Institute of Scientific and Technical Information of China (English)

    Lian-Xing Zhang; Li-Feng Zhao; An-Shi Zhang; Xiao-Guang Chen; Cun-Shuan Xu

    2006-01-01

    AIM: To study the cellular immune response during rat liver regeneration (LR) at a transcriptional level.METHODS: Genes associated with the cellular immune response were obtained by collecting the data from databases and retrieving articles. Gene expression changes during LR were detected by rat genome 230 2.0 array.RESULTS: A total of 127 genes were found to be associated with LR. The number of initially and totally expressing genes in the initial phase of LR [0.5-4 h after partial hepatectomy (PH)], transition from G0-G1(4-6 h after PH), cell proliferation (6-66 h after PH),cell differentiation and structure-function reconstruction (66-168 h after PH) was 54, 11, 34, 3 and 54, 49, 70, 49 respectively, illustrating that the associated genes were mainly triggered at the initiation of LR, and worked at different phases. According to their expression similarity,these genes were classified into 41 up-regulated, 21 predominantly up-regulated, 41 down-regulated, 14 predominantly down-regulated, 10 similarly up-regulated and down-regulated genes, respectively. The total upand down-regulated expression times were 419 and 274,respectively, demonstrating that the expression of most genes was increased while the expression of a small number of genes was decreased. Their time relevance was classified into 14 groups, showing that the cellular physiological and biochemical activities were staggered during LR. According to the gene expression patterns,they were classified into 21 types, showing the activities were diverse and complicated during LR.CONCLUSION: Antigen processing and presentation are enhanced mainly in the forepart, prophase and anaphase of LR. T-cell activation and antigen elimination are enhanced mainly in the forepart and prophase of LR. A total of 127 genes associated with LR play an important role in cellular immunity.

  4. Expression of immune-response genes in lepidopteran host is suppressed by venom from an endoparasitoid, Pteromalus puparum

    Directory of Open Access Journals (Sweden)

    Fang Qi

    2010-09-01

    Full Text Available Abstract Background The relationships between parasitoids and their insect hosts have attracted attention at two levels. First, the basic biology of host-parasitoid interactions is of fundamental interest. Second, parasitoids are widely used as biological control agents in sustainable agricultural programs. Females of the gregarious endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae inject venom along with eggs into their hosts. P. puparum does not inject polydnaviruses during oviposition. For this reason, P. puparum and its pupal host, the small white butterfly Pieris rapae (Lepidoptera: Pieridae, comprise an excellent model system for studying the influence of an endoparasitoid venom on the biology of the pupal host. P. puparum venom suppresses the immunity of its host, although the suppressive mechanisms are not fully understood. In this study, we tested our hypothesis that P. puparum venom influences host gene expression in the two main immunity-conferring tissues, hemocytes and fat body. Results At 1 h post-venom injection, we recorded significant decreases in transcript levels of 217 EST clones (revealing 113 genes identified in silico, including 62 unknown contigs derived from forward subtractive libraries of host hemocytes and in transcript levels of 288 EST clones (221 genes identified in silico, including 123 unknown contigs from libraries of host fat body. These genes are related to insect immune response, cytoskeleton, cell cycle and apoptosis, metabolism, transport, stress response and transcriptional and translational regulation. We verified the reliability of the suppression subtractive hybridization (SSH data with semi-quantitative RT-PCR analysis of a set of randomly selected genes. This analysis showed that most of the selected genes were down-regulated after venom injection. Conclusions Our findings support our hypothesis that P. puparum venom influences gene expression in host hemocytes and fat body. Specifically

  5. Impact of date palm fruits extracts and probiotic enriched diet on antioxidant status, innate immune response and immune-related gene expression of European seabass (Dicentrarchus labrax).

    Science.gov (United States)

    Guardiola, F A; Porcino, C; Cerezuela, R; Cuesta, A; Faggio, C; Esteban, M A

    2016-05-01

    The application of additives in the diet as plants or extracts of plants as natural and innocuous compounds has potential in aquaculture as an alternative to antibiotics and immunoprophylactics. The aim of the current study was to evaluate the potential effects of dietary supplementation of date palm fruit extracts alone or in combination with Pdp11 probiotic on serum antioxidant status, on the humoral and cellular innate immune status, as well as, on the expression levels of some immune-related genes in head-kidney and gut of European sea bass (Dicentrarchus labrax) after 2 and 4 weeks of administration. This study showed for the first time in European sea bass an immunostimulation in several of the parameters evaluated in fish fed with date palm fruits extracts enriched diet or fed with this substance in combination with Pdp 11 probiotic, mainly after 4 weeks of treatment. In the same way, dietary supplementation of mixture diet has positive effects on the expression levels of immune-related genes, chiefly in head-kidney of Dicentrarchus labrax. Therefore, the combination of both could be considered of great interest as potential additives for farmed fish.

  6. Antagonistic roles for KNOX1 and KNOX2 genes in patterning the land plant body plan following an ancient gene duplication.

    Science.gov (United States)

    Furumizu, Chihiro; Alvarez, John Paul; Sakakibara, Keiko; Bowman, John L

    2015-02-01

    Neofunctionalization following gene duplication is thought to be one of the key drivers in generating evolutionary novelty. A gene duplication in a common ancestor of land plants produced two classes of KNOTTED-like TALE homeobox genes, class I (KNOX1) and class II (KNOX2). KNOX1 genes are linked to tissue proliferation and maintenance of meristematic potentials of flowering plant and moss sporophytes, and modulation of KNOX1 activity is implicated in contributing to leaf shape diversity of flowering plants. While KNOX2 function has been shown to repress the gametophytic (haploid) developmental program during moss sporophyte (diploid) development, little is known about KNOX2 function in flowering plants, hindering syntheses regarding the relationship between two classes of KNOX genes in the context of land plant evolution. Arabidopsis plants harboring loss-of-function KNOX2 alleles exhibit impaired differentiation of all aerial organs and have highly complex leaves, phenocopying gain-of-function KNOX1 alleles. Conversely, gain-of-function KNOX2 alleles in conjunction with a presumptive heterodimeric BELL TALE homeobox partner suppressed SAM activity in Arabidopsis and reduced leaf complexity in the Arabidopsis relative Cardamine hirsuta, reminiscent of loss-of-function KNOX1 alleles. Little evidence was found indicative of epistasis or mutual repression between KNOX1 and KNOX2 genes. KNOX proteins heterodimerize with BELL TALE homeobox proteins to form functional complexes, and contrary to earlier reports based on in vitro and heterologous expression, we find high selectivity between KNOX and BELL partners in vivo. Thus, KNOX2 genes confer opposing activities rather than redundant roles with KNOX1 genes, and together they act to direct the development of all above-ground organs of the Arabidopsis sporophyte. We infer that following the KNOX1/KNOX2 gene duplication in an ancestor of land plants, neofunctionalization led to evolution of antagonistic biochemical

  7. The molecular evolution of four anti-malarial immune genes in the Anopheles gambiae species complex - art. no. 79

    OpenAIRE

    Parmakelis, A.; Slotman, M. A.; Marshall, J. C.; Awono Ambene, P. H.; Antonio Nkondjio, C.; Simard, Frédéric; Caccone, A; Powell, J. R.

    2008-01-01

    Background: If the insect innate immune system is to be used as a potential blocking step in transmission of malaria, then it will require targeting one or a few genes with highest relevance and ease of manipulation. The problem is to identify and manipulate those of most importance to malaria infection without the risk of decreasing the mosquito's ability to stave off infections by microbes in general. Molecular evolution methodologies and concepts can help identify such genes. Within the se...

  8. Morphology, morphogenesis and gene sequence of a freshwater ciliate, Pseudourostyla cristata (Ciliophora, Urostyloidea) from the ancient Lake Biwa, Japan.

    Science.gov (United States)

    Chen, Xumiao; Li, Zicong; Hu, Xiaozhong; Kusuoka, Yasushi

    2010-01-01

    The urostyloid freshwater ciliate Pseudourostyla cristata was recorded for the first time from Lake Biwa, a 4-million-year-old lake located in Shiga Prefecture, Japan. Its morphology and morphogenesis were investigated using live observation and protargol impregnation, and the SSU ribosomal RNA gene was sequenced. Based on the current observations and previous descriptions, this species is readily recognized mainly by the following characters: body slender or broadly oval to elliptical, and dark grey in color; size in vivo about 170-400 x 40-150 microm; pellicle flexible and contractile, with extrusomes forming a hyaline seam underneath; ciliature comprising about 60-130 adoral membranelles, usually 1 buccal cirrus, 20-24 frontal, 2 frontoterminal, 17-26 pairs of midventral, and 5-16 transverse cirri, 4-6 left and 4-5 right marginal rows, and 8-10 dorsal kineties; 15-83 macronuclear nodules and 2-9 micronuclei; freshwater habitat. The main morphogenetic developments are: (1) the oral primordium for the proter originates de novo on the dorsal wall of the buccal cavity, and the dedifferentiated undulating membranes and some parental proximal membranelles join in the primordial development; the old adoral zone will be partly replaced by new structures; (2) the oral primordium for the opisthe occurs epiapokinetally left of the midventral complex between the adoral zone and the transverse cirri; (3) the fronto-midventral transverse cirral (FVT) anlagen develop separately in both dividers by dedifferentiation of most of the midventral cirri; (4) the single buccal cirrus is generated from the posterior end of FVT anlage II; (5) the leftmost frontal cirrus is derived from the anterior end of the undulating membranes anlage (FVT anlage I); (6) the marginal rows of each side are formed from a single anlage which arises within the rightmost row; (7) the dorsal kineties develop by intrakinetal basal body proliferation; and (8) the most posterior FVT anlage contributes the two

  9. Dynamic expression of leukocyte innate immune genes in whole blood from horses with lipopolysaccharide-induced acute systemic inflammation

    DEFF Research Database (Denmark)

    Vinther, Anne Mette L.; Skovgaard, Kerstin; Heegaard, Peter M. H.;

    2015-01-01

    Background: In horses, insights into the innate immune processes in acute systemic inflammation are limited even though these processes may be highly important for future diagnostic and therapeutic advances in high-mortality disease conditions as the systemic inflammatory response syndrome (SIRS......) and sepsis. Therefore, the aim of this study was to investigate the expression of 31 selected blood leukocyte immune genes in an equine model of acute systemic inflammation to identify significantly regulated genes and to describe their expression dynamics during a 24-h experimental period. Systemic...... expressions in blood leukocytes during equine acute LPS-induced systemic inflammation thoroughly characterized a highly regulated and dynamic innate immune response. These results provide new insights into the molecular mechanisms of equine systemic inflammation....

  10. Characterization of gene expression regulated by human OTK18 using Drosophila melanogaster as a model system for innate immunity

    Indian Academy of Sciences (India)

    Cole R. Spresser; Sarah E. Marshall; Kimberly A. Carlson

    2008-08-01

    OTK18 is a human transcriptional suppressor implicated in the regulation of human immunodeficiency virus type-one infection of mononuclear phagocytes. It is ubiquitously expressed in all normal tissues, but its normal homeostatic function is yet to be characterized. One hypothesis is that OTK18 aids in the regulation of the innate immune system. To test this hypothesis, cDNA microarray analysis was performed on the total RNA extracted from Drosophila melanogaster embryonic Schneider 2 (S2) cells transfected with either pEGFP-OTK18 (enhanced green fluorescent protein) or empty vector controls (pEGFP-N3) for 6, 12 and 24 h. cDNA microarray analysis revealed differential expression of genes known to be important in regulation of Drosophila innate immunity. The expression levels of two genes, Metchnikowin and CG16708 were verified by quantitative real-time reverse transcription PCR. These results suggest a role for OTK18 in innate immunity.

  11. Nuclear gene sequences confirm an ancient link between New Zealand's short-tailed bat and South American noctilionoid bats.

    Science.gov (United States)

    Teeling, Emma C; Madsen, Ole; Murphy, William J; Springer, Mark S; O'Brien, Stephen J

    2003-08-01

    Molecular and morphological hypotheses disagree on the phylogenetic position of New Zealand's short-tailed bat Mystacina tuberculata. Most morphological analyses place Mystacina in the superfamily Vespertilionoidea, whereas molecular studies unite Mystacina with the Neotropical noctilionoids and imply a shared Gondwanan history. To date, competing hypotheses for the placement of Mystacina have not been addressed with a large concatenation of nuclear protein sequences. We investigated this problem using 7.1kb of nuclear sequence data that included segments from five nuclear protein-coding genes for representatives of 14 bat families and six laurasiatherian outgroups. We employed the Thorne/Kishino method of molecular dating, allowing for simultaneous constraints from the fossil record and varying rates of molecular evolution on different branches on the phylogenetic tree, to estimate basal divergence times within key chiropteran clades. Maximum likelihood, minimum evolution, maximum parsimony, and Bayesian posterior probabilities all provide robust support for the association of Mystacina with the South American noctilionoids. The basal divergence within Chiroptera was estimated at 67mya and the mystacinid/noctilionoid split was calculated at 47mya. Although the mystacinid lineage is too young to have originated in New Zealand before it split from the other Gondwanan landmasses (80mya), the exact geographic origin of these lineages is still uncertain and will not be answered until more fossils are found. It is most probable that Mystacina dispersed from Australia to New Zealand while other noctilionoid bats either remained in or dispersed to South America.

  12. Profiling of a few immune responsive genes expressed in postlarvae of Fenneropenaeus indicus challenged with Vibrio harveyi D3

    Digital Repository Service at National Institute of Oceanography (India)

    Nayak, S.; Ajay, K.M.; Ramaiah, N.; Meena, R.M.; Sreepada, R.A.

    . Remarkably, qPCR results imply 4.15, 3.45 and 1.86-fold rises in expression of ferritin, TCTP and hemocyanin transcripts respectively. Additionally, minor upregulation of other immune relevant genes lectin, penaeidin, crustin, MnSOD was observed...

  13. The human TLR innate immune gene family is differentially influenced by DNA stress and p53 status in cancer cells.

    Science.gov (United States)

    Shatz, Maria; Menendez, Daniel; Resnick, Michael A

    2012-08-15

    The transcription factor p53 regulates genes associated with a wide range of functions, including the Toll-like receptor (TLR) set of innate immunity genes, suggesting that p53 also modulates the human immune response. The TLR family comprises membrane glycoproteins that recognize pathogen-associated molecular patterns (PAMP) and mediate innate immune responses, and TLR agonists are being used as adjuvants in cancer treatments. Here, we show that doxorubicin, 5-fluorouracil, and UV and ionizing radiation elicit changes in TLR expression that are cell line- and damage-specific. Specifically, treatment-induced expression changes led to increased downstream cytokine expression in response to ligand stimulation. The effect of DNA stressors on TLR expression was mainly mediated by p53, and several p53 cancer-associated mutants dramatically altered the pattern of TLR gene expression. In all cell lines tested, TLR3 induction was p53-dependent, whereas induction of TLR9, the most stress-responsive family member, was less dependent on status of p53. In addition, each of the 10 members of the innate immune TLR gene family tested was differentially inducible. Our findings therefore show that the matrix of p53 status, chromosome stress, and responsiveness of individual TLRs should be considered in TLR-based cancer therapies.

  14. Preterm Birth Reduces Nutrient Absorption With Limited Effect on Immune Gene Expression and Gut Colonization in Pigs

    DEFF Research Database (Denmark)

    Østergaard, Mette V; Cilieborg, Malene S.; Skovgaard, Kerstin;

    2015-01-01

    The primary risk factors for necrotizing enterocolitis (NEC) are preterm birth, enteral feeding, and gut colonization. It is unclear whether feeding and colonization induce excessive expression of immune genes that lead to NEC. Using a pig model, we hypothesized that reduced gestational age would...... upregulation of immune-related genes or cause bacterial dyscolonization in the neonatal period. Excessive inflammation and bacterial overgrowth may occur relatively late in NEC progression in preterm neonates.......The primary risk factors for necrotizing enterocolitis (NEC) are preterm birth, enteral feeding, and gut colonization. It is unclear whether feeding and colonization induce excessive expression of immune genes that lead to NEC. Using a pig model, we hypothesized that reduced gestational age would...... upregulate immune-related genes and cause bacterial imbalance after birth. Preterm (85%-92% gestation, n = 53) and near-term (95%-99% gestation, n = 69) pigs were delivered by cesarean section and euthanized at birth or after 2 days of infant formula or bovine colostrum feeding. At birth, preterm delivery...

  15. Zebra Fish Lacking Adaptive Immunity Acquire an Antiviral Alert State Characterized by Upregulated Gene Expression of Apoptosis, Multigene Families, and Interferon-Related Genes

    Science.gov (United States)

    García-Valtanen, Pablo; Martínez-López, Alicia; López-Muñoz, Azucena; Bello-Perez, Melissa; Medina-Gali, Regla M.; Ortega-Villaizán, María del Mar; Varela, Monica; Figueras, Antonio; Mulero, Víctoriano; Novoa, Beatriz; Estepa, Amparo; Coll, Julio

    2017-01-01

    To investigate fish innate immunity, we have conducted organ and cell immune-related transcriptomic as well as immunohistologic analysis in mutant zebra fish (Danio rerio) lacking adaptive immunity (rag1−/−) at different developmental stages (egg, larvae, and adult), before and after infection with spring viremia carp virus (SVCV). The results revealed that, compared to immunocompetent zebra fish (rag1+/+), rag1−/− acquired increased resistance to SVCV with age, correlating with elevated transcript levels of immune genes in skin/fins and lymphoid organs (head kidney and spleen). Gene sets corresponding to apoptotic functions, immune-related multigene families, and interferon-related genes were constitutively upregulated in uninfected adult rag1−/− zebra fish. Overexpression of activated CASPASE-3 in different tissues before and after infection with SVCV further confirmed increased apoptotic function in rag1−/− zebra fish. Concurrently, staining of different tissue samples with a pan-leukocyte antibody marker showed abundant leukocyte infiltrations in SVCV-infected rag1−/− fish, coinciding with increased transcript expression of genes related to NK-cells and macrophages, suggesting that these genes played a key role in the enhanced immune response of rag1−/− zebra fish to SVCV lethal infection. Overall, we present evidence that indicates that rag1−/− zebra fish acquire an antiviral alert state while they reach adulthood in the absence of adaptive immunity. This antiviral state was characterized by (i) a more rapid response to viral infection, which resulted in increased survival, (ii) the involvement of NK-cell- and macrophage-mediated transcript responses rather than B- and/or T-cell dependent cells, and (iii) enhanced apoptosis, described here for the first time, as well as the similar modulation of multigene family/interferon-related genes previously associated to fish that survived lethal viral infections. From this and other studies

  16. Overwintering Is Associated with Reduced Expression of Immune Genes and Higher Susceptibility to Virus Infection in Honey Bees

    Science.gov (United States)

    Steinmann, Nadja; Corona, Miguel; Neumann, Peter; Dainat, Benjamin

    2015-01-01

    The eusocial honey bee, Apis mellifera, has evolved remarkable abilities to survive extreme seasonal differences in temperature and availability of resources by dividing the worker caste into two groups that differ in physiology and lifespan: summer and winter bees. Most of the recent major losses of managed honey bee colonies occur during the winter, suggesting that winter bees may have compromised immune function and higher susceptibility to diseases. We tested this hypothesis by comparing the expression of eight immune genes and naturally occurring infection levels of deformed wing virus (DWV), one of the most widespread viruses in A. mellifera populations, between summer and winter bees. Possible interactions between immune response and physiological activity were tested by measuring the expression of vitellogenin and methyl farnesoate epoxidase, a gene coding for the last enzyme involved in juvenile hormone biosynthesis. Our data show that high DWV loads in winter bees correlate with reduced expression of genes involved in the cellular immune response and physiological activity and high expression of humoral immune genes involved in antibacterial defense compared with summer bees. This expression pattern could reflect evolutionary adaptations to resist bacterial pathogens and economize energy during the winter under a pathogen landscape with reduced risk of pathogenic viral infections. The outbreak of Varroa destructor infestation could have overcome these adaptations by promoting the transmission of viruses. Our results suggest that reduced cellular immune function during the winter may have increased honey bee’s susceptibility to DWV. These results contribute to our understanding of honey bee colony losses in temperate regions. PMID:26121358

  17. Overwintering Is Associated with Reduced Expression of Immune Genes and Higher Susceptibility to Virus Infection in Honey Bees.

    Directory of Open Access Journals (Sweden)

    Nadja Steinmann

    Full Text Available The eusocial honey bee, Apis mellifera, has evolved remarkable abilities to survive extreme seasonal differences in temperature and availability of resources by dividing the worker caste into two groups that differ in physiology and lifespan: summer and winter bees. Most of the recent major losses of managed honey bee colonies occur during the winter, suggesting that winter bees may have compromised immune function and higher susceptibility to diseases. We tested this hypothesis by comparing the expression of eight immune genes and naturally occurring infection levels of deformed wing virus (DWV, one of the most widespread viruses in A. mellifera populations, between summer and winter bees. Possible interactions between immune response and physiological activity were tested by measuring the expression of vitellogenin and methyl farnesoate epoxidase, a gene coding for the last enzyme involved in juvenile hormone biosynthesis. Our data show that high DWV loads in winter bees correlate with reduced expression of genes involved in the cellular immune response and physiological activity and high expression of humoral immune genes involved in antibacterial defense compared with summer bees. This expression pattern could reflect evolutionary adaptations to resist bacterial pathogens and economize energy during the winter under a pathogen landscape with reduced risk of pathogenic viral infections. The outbreak of Varroa destructor infestation could have overcome these adaptations by promoting the transmission of viruses. Our results suggest that reduced cellular immune function during the winter may have increased honey bee's susceptibility to DWV. These results contribute to our understanding of honey bee colony losses in temperate regions.

  18. Diversity and evolutionary patterns of immune genes in free-ranging Namibian leopards (Panthera pardus pardus).

    Science.gov (United States)

    Castro-Prieto, Aines; Wachter, Bettina; Melzheimer, Joerg; Thalwitzer, Susanne; Sommer, Simone

    2011-01-01

    The genes of the major histocompatibility complex (MHC) are a key component of the mammalian immune system and have become important molecular markers for fitness-related genetic variation in wildlife populations. Currently, no information about the MHC sequence variation and constitution in African leopards exists. In this study, we isolated and characterized genetic variation at the adaptively most important region of MHC class I and MHC class II-DRB genes in 25 free-ranging African leopards from Namibia and investigated the mechanisms that generate and maintain MHC polymorphism in the species. Using single-stranded conformation polymorphism analysis and direct sequencing, we detected 6 MHC class I and 6 MHC class II-DRB sequences, which likely correspond to at least 3 MHC class I and 3 MHC class II-DRB loci. Amino acid sequence variation in both MHC classes was higher or similar in comparison to other reported felids. We found signatures of positive selection shaping the diversity of MHC class I and MHC class II-DRB loci during the evolutionary history of the species. A comparison of MHC class I and MHC class II-DRB sequences of the leopard to those of other felids revealed a trans-species mode of evolution. In addition, the evolutionary relationships of MHC class II-DRB sequences between African and Asian leopard subspecies are discussed.

  19. Differential response of immune-related genes to peptidoglycan and lipoteichoic acid challenge in vitro

    Science.gov (United States)

    Sulabh, Sourabh; Bhushan, Bharat; Panigrahi, Manjit; Verma, Ankita; Baba, Naseer Ahmad; Kumar, Pushpendra

    2016-01-01

    Aim: To study the effect of Staphylococcus aureus cell wall antigens, peptidoglycan (PGN) and lipoteichoic acid (LTA) challenge on immune cells present in bovine peripheral blood mononuclear cells (PBMCs). Materials and Methods: In this study, efforts have been made to investigate the effects of three combinations (10+10, 20+20 and 30+30 μg/ml) of PGN and LTA obtained from S. aureus. These antigens were used to challenge the bovine PBMCs. After 6 h of incubation quantitative, real time-polymerase chain reaction was used to study toll-like receptor 2 (TLR-2) and major cytokine mRNA expression in bovine PBMC challenged with three different antigen blends. Results: The results indicated that mRNA level of interferon gamma is influenced by the expression of TLR-2 gene. Tumor necrosis factor-alpha (TNF-α), interleukin 10 (IL-10), and IL-8 genes showed a maximum response at a dose of 10 μg of PGN and 10 μg of LTA challenge per ml of culture medium. The outcome also suggests that both IL-10 and IL-8 followed the expression pattern of TNF-α. Conclusion: A dose of 10 μg of PGN and 10 μg of LTA per ml of culture medium was found to be most suitable for challenging PBMC. PMID:27733800

  20. Hepatic gene expression changes in pigs experimentally infected with the lung pathogen Actinobacillus pleuropneumoniae as analysed with an innate immunity focused microarray

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Mortensen, Shila; Boye, Mette

    2010-01-01

    response of genes associated with innate immune responses was studied in pigs 14–18 h after intranasal inoculation with Actinobacillus pleuropneumoniae, using innate immune focused microarrays and quantitative real-time PCR (qPCR). The microarray analysis of liver tissue established that 51 genes were...

  1. Gene expression profiling by mRNA sequencing reveals increased expression of immune/inflammation-related genes in the hippocampus of individuals with schizophrenia.

    Science.gov (United States)

    Hwang, Y; Kim, J; Shin, J Y; Kim, J Ii; Seo, J S; Webster, M J; Lee, D; Kim, S

    2013-10-29

    Whole-genome expression profiling in postmortem brain tissue has recently provided insight into the pathophysiology of schizophrenia. Previous microarray and RNA-Seq studies identified several biological processes including synaptic function, mitochondrial function and immune/inflammation response as altered in the cortex of subjects with schizophrenia. Now using RNA-Seq data from the hippocampus, we have identified 144 differentially expressed genes in schizophrenia cases as compared with unaffected controls. Immune/inflammation response was the main biological process over-represented in these genes. The upregulation of several of these genes, IFITM1, IFITM2, IFITM3, APOL1 (Apolipoprotein L1), ADORA2A (adenosine receptor 2A), IGFBP4 and CD163 were validated in the schizophrenia subjects using data from the SNCID database and with quantitative RT-PCR. We identified a co-expression module associated with schizophrenia that includes the majority of differentially expressed genes related to immune/inflammation response as well as with the density of parvalbumin-containing neurons in the hippocampus. The results indicate that abnormal immune/inflammation response in the hippocampus may underlie the pathophysiology of schizophrenia and may be associated with abnormalities in the parvalbumin-containing neurons that lead to the cognitive deficits of the disease.

  2. Effect of hUC-MSCs treatment on immune function, tryptophan metabolic pathways and related gene expression of children with immune thrombocytopenia

    Institute of Scientific and Technical Information of China (English)

    Zu-Bin Wang; Yi-Lin Zhu

    2016-01-01

    Objective:To study the effect of hUC-MSCs treatment on immune function, tryptophan metabolic pathways and related gene expression of children with immune thrombocytopenia. Methods: A total of 58 cases of children with immune thrombocytopenia were enrolled for study and randomly divided into hUC-MSCs group and conventional group, hUC-MSCs group received glucocorticoid + gamma globulin + hUC-MSCs treatment and conventional group received glucocorticoid + gamma globulin treatment. Then platelet content, immune function, tryptophan metabolism as well as expression of T-bet and GATA-3 of two groups were compared.Results: Platelet content of hUC-MSCs group was higher than that of conventional group; serum IFN-γ and IL-2 contents of hUC-MSCs group were lower than those of conventional group, and serum IL-4 and IL-10 contents as well as peripheral blood Treg cell ratio was higher than those of conventional group; serum Trp concentration and Trp/Kyn ratio of hUC-MSCs group were lower than those of conventional group, Kyn concentration was higher than that of conventional group, IDO expression in peripheral blood mononuclear cells was higher than that of conventional group, and TTS expression was lower than that of conventional group; mRNA content of T-bet in peripheral blood mononuclear cells of hUC-MSCs group was lower than that of conventional group, and mRNA content of GATA-3 was higher than that of conventional group.Conclusion: hUC-MSCs therapy can increase platelet content and regulate Th1/Th2 balance and tryptophan metabolism; it's an ideal method for the treatment of immune thrombocytopenia.

  3. DNA immunization with fusion genes encoding different regions of hepatitis C virus E2 fused to the gene for hepatitis B surface antigen elicits immune responses to both HCV and HBV

    Institute of Scientific and Technical Information of China (English)

    Jing Jin; Jian-Ying Yang; Jing Liu; Yu-Ying Kong; Yuan Wang; Guang-Di Li

    2002-01-01

    AIM: Both Hepatitis B virus (HBV) and Hepatitis C virus(HCV) are major causative agents of transfusion-associatedand community-acquired hepatitis worldwide. Developmentof a HCV vaccine as well as more effective HBV vaccines isan urgent task. DNA immunization provides a promisingapproach to elicit protective humoral and cellular immuneresponses against viral infection. The aim of this study is toachieve immune responses against both HCV and HBV by DNAimmunization with fusion constructs comprising various HCVE2 gene fragments fused to HBsAg gane of HBV.METHODS: C57BL/6 mice were immunized with plasmid DNAexpressing five fragments of HCV E2 fused to the gene forHBsAg respectively. After one primary and one boostingimmunizations, antibodies against HCV E2 and HBsAg weretested and subtyped in ELISA. Splenic cytokine expressionof IFN-γ and IL-10 was analyzed using an RT-PCR assay.Post-immune mouse antisera also were tested for theirability to capture HCV viruses in the serum of a hepatitis Cpatient in vitro.RESUTLTS: After immunization, antibodies against bothHBsAg and HCV E2 were detected in mouse sera, withIgG2a being the dominant immunoglobulin sub-class. High-level expression of INF-γ was deuetected in cultured splenic cells.Mouse antisera against three of the five fusion constructs wereable to capture HCV viruses in an in vitro assay.CONCLUSION: The results indicate that these fusionconstructs could efficiently elicit humoral and Th1 dominantcellular immune responses against both HBV S and HCV E2antigens in DNA-immunized mice. They thus could serve ascandidates for a bivalent vaccine against HBV and HCVinfection. In addition, the capacity of mouse antisera againstthree of the five fusion constnucts to capture HCV virusses invitro suggested that neutralizing epitopes may be present inother regions of E2 besides the hypervariable region 1.

  4. Transcription profiling of immune genes during parasite infection in susceptible and resistant strains of the flour beetles (Tribolium castaneum).

    Science.gov (United States)

    Zhong, Daibin; Wang, Mei-Hui; Pai, Aditi; Yan, Guiyun

    2013-05-01

    The flour beetle, Tribolium castaneum, is an intermediate host for the tapeworm Hymenolepis diminuta and has become an important genetic model to explore immune responses to parasite infection in insect hosts. The present study examined the immune responses to tapeworm infection in resistant (TIW1) and susceptible (cSM) strains of the red flour beetle, T. castaneum, using real-time quantitative reverse transcription PCR on 29 immunity-related genes that exhibit antimicrobial properties. Thirteen of the 29 genes showed constitutive differences in expression between the two strains. Fourteen to fifteen of the 29 genes exhibited significant differences in transcription levels when beetles were challenged with tapeworm parasite in the resistant and susceptible strains. Nine genes (GNBP3, cSPH2, lysozyme4, defensin1, PGRP-SA, defensin2, coleoptericin1, attacin2 and serpin29) in cSM and 13 genes (lysozyme2, proPO1, GNBP3, cSPH2, lysozyme4, defensin1, PGRP-SA, defensin2, coleoptericin1, attacin2, proPO2/3, PGRP-LE and PGRP-SB) in TIW1 were up-regulated by infections or showed parasite infection-induced expression. Seven genes (attacin2, coleoptericin1, defensin1, defensin2, lysozyme2, PGRP-SA and PGRP-SB) were more than 10 folds higher in the resistant TIW1 strain than in the susceptible cSM strain after exposure to tapeworm parasites. This study demonstrated the effects of genetic background, the transcription profile to parasite infection, and identified the immunity-related genes that were significantly regulated by the infection of tapeworms in Tribolium beetles.

  5. Expression of Vibrio salmonicida virulence genes and immune response parameters in experimentally challenged Atlantic salmon (Salmo salar L.

    Directory of Open Access Journals (Sweden)

    Ane Mohn Bjelland

    2013-12-01

    Full Text Available The Gram-negative bacterium Vibrio salmonicida is the causative agent of cold-water vibriosis (CV, a hemorrhagic septicemia that primarily affects farmed Atlantic salmon (Salmo salar L.. The mechanisms of disease development, host specificity and adaptation, as well as the immunogenic properties of V. salmonicida are largely unknown. Therefore, to gain more knowledge on the pathogenesis of CV, 90 Atlantic salmon parr were injected intraperitonellay with 6 x 106 CFU of V. salmonicida LFI1238. Samples from blood and spleen tissue were taken at different time points throughout the challenge for gene expression analysis by two-step reverse transcription quantitative real-time polymerase chain reaction. Out of a panel of six housekeeping genes, accD, gapA and 16S rDNA were found to be the most suitable references for expression analysis in Vibrio salmonicida. The bacterial proliferation during challenge was monitored based on the expression of the 16S rRNA encoding gene. Before day 4, the concentrations of V. salmonicida in blood and spleen tissue demonstrated a lag phase. From day 4, the bacterial proliferation was exponential. The expression profiles of eight genes encoding potential virulence factors of V. salmonicida were studied. Surprisingly, all tested virulence genes were generally highest expressed in broth cultures compared to the in vivo samples. We hypothesize that this general muting of gene expression in vivo may be a strategy for V. salmonicida to hide from the host immune system. To further investigate this hypothesis, the expression profiles of eight genes encoding innate immune factors were analyzed. The results demonstrated a strong and rapid, but short-lasting innate immune response against V. salmonicida. These results suggest that the bacterium possesses mechanisms that inhibit and/or resist the salmon innate immune system until the host becomes exhausted of fighting the on-going and eventually overwhelming infection.

  6. Antagonistic roles for KNOX1 and KNOX2 genes in patterning the land plant body plan following an ancient gene duplication.

    Directory of Open Access Journals (Sweden)

    Chihiro Furumizu

    2015-02-01

    Full Text Available Neofunctionalization following gene duplication is thought to be one of the key drivers in generating evolutionary novelty. A gene duplication in a common ancestor of land plants produced two classes of KNOTTED-like TALE homeobox genes, class I (KNOX1 and class II (KNOX2. KNOX1 genes are linked to tissue proliferation and maintenance of meristematic potentials of flowering plant and moss sporophytes, and modulation of KNOX1 activity is implicated in contributing to leaf shape diversity of flowering plants. While KNOX2 function has been shown to repress the gametophytic (haploid developmental program during moss sporophyte (diploid development, little is known about KNOX2 function in flowering plants, hindering syntheses regarding the relationship between two classes of KNOX genes in the context of land plant evolution. Arabidopsis plants harboring loss-of-function KNOX2 alleles exhibit impaired differentiation of all aerial organs and have highly complex leaves, phenocopying gain-of-function KNOX1 alleles. Conversely, gain-of-function KNOX2 alleles in conjunction with a presumptive heterodimeric BELL TALE homeobox partner suppressed SAM activity in Arabidopsis and reduced leaf complexity in the Arabidopsis relative Cardamine hirsuta, reminiscent of loss-of-function KNOX1 alleles. Little evidence was found indicative of epistasis or mutual repression between KNOX1 and KNOX2 genes. KNOX proteins heterodimerize with BELL TALE homeobox proteins to form functional complexes, and contrary to earlier reports based on in vitro and heterologous expression, we find high selectivity between KNOX and BELL partners in vivo. Thus, KNOX2 genes confer opposing activities rather than redundant roles with KNOX1 genes, and together they act to direct the development of all above-ground organs of the Arabidopsis sporophyte. We infer that following the KNOX1/KNOX2 gene duplication in an ancestor of land plants, neofunctionalization led to evolution of antagonistic

  7. Detecting the effects of selection at the population level in six bovine immune genes

    Directory of Open Access Journals (Sweden)

    Murray Caitriona

    2008-10-01

    Full Text Available Abstract Background The capacity of a species or population to respond to and survive novel infectious disease challenge is one of the most significant selective forces shaping genetic diversity and the period following animal domestication was likely one of the most important in terms of newly emerging diseases. Inter-specific genome-wide comparison has suggested that genes, including cluster of differentiation 2 (CD2, ADP-ribosyltransferase 4 (ART4, tyrosine kinase binding protein (TYROBP and interleukins IL2, IL5, IL13, may have undergone positive selection during the evolution of the bovine lineage. Past adaptive change implies that more recent variation may have also been subject to selective forces. Results In this paper, we re-sequence each of these genes in cattle cohorts from Europe, Africa and Asia to investigate patterns of polymorphism at the population level. Patterns of diversity are higher within Bos indicus suggesting different demographic history to that of Bos taurus. Significant coding polymorphism was observed within each of the cell-surface receptors. In particular, CD2 shows two divergent haplotypes defined by a series of six derived nonsynonymous substitutions that are significantly clustered on the extracellular surface of the protein and give significant values for Fay and Wu's H, strongly suggesting a recent adaptive history. In contrast, the signaling molecules (especially IL13 display outlying allele frequency spectra which are consistent with the effects of selection, but display negligible coding polymorphism. Conclusion We present evidence suggestive of recent adaptive history in bovine immune genes; implying some correspondence between intra- and inter-specific signals of selection. Interestingly, three signaling molecules have negligible nonsynonymous variation but show outlying test statistics in contrast to three receptors, where it is protein sequence diversity that suggests selective history.

  8. Metabolic gene expression changes in astrocytes in Multiple Sclerosis cerebral cortex are indicative of immune-mediated signaling

    KAUST Repository

    Zeis, T.

    2015-04-01

    Emerging as an important correlate of neurological dysfunction in Multiple Sclerosis (MS), extended focal and diffuse gray matter abnormalities have been found and linked to clinical manifestations such as seizures, fatigue and cognitive dysfunction. To investigate possible underlying mechanisms we analyzed the molecular alterations in histopathological normal appearing cortical gray matter (NAGM) in MS. By performing a differential gene expression analysis of NAGM of control and MS cases we identified reduced transcription of astrocyte specific genes involved in the astrocyte–neuron lactate shuttle (ANLS) and the glutamate–glutamine cycle (GGC). Additional quantitative immunohistochemical analysis demonstrating a CX43 loss in MS NAGM confirmed a crucial involvement of astrocytes and emphasizes their importance in MS pathogenesis. Concurrently, a Toll-like/IL-1β signaling expression signature was detected in MS NAGM, indicating that immune-related signaling might be responsible for the downregulation of ANLS and GGC gene expression in MS NAGM. Indeed, challenging astrocytes with immune stimuli such as IL-1β and LPS reduced their ANLS and GGC gene expression in vitro. The detected upregulation of IL1B in MS NAGM suggests inflammasome priming. For this reason, astrocyte cultures were treated with ATP and ATP/LPS as for inflammasome activation. This treatment led to a reduction of ANLS and GGC gene expression in a comparable manner. To investigate potential sources for ANLS and GGC downregulation in MS NAGM, we first performed an adjuvant-driven stimulation of the peripheral immune system in C57Bl/6 mice in vivo. This led to similar gene expression changes in spinal cord demonstrating that peripheral immune signals might be one source for astrocytic gene expression changes in the brain. IL1B upregulation in MS NAGM itself points to a possible endogenous signaling process leading to ANLS and GGC downregulation. This is supported by our findings that, among others

  9. Elimination of contaminating cap genes in AAV vector virions reduces immune responses and improves transgene expression in a canine gene therapy model.

    Science.gov (United States)

    Wang, Z; Halbert, C L; Lee, D; Butts, T; Tapscott, S J; Storb, R; Miller, A D

    2014-04-01

    Animal and human gene therapy studies utilizing AAV vectors have shown that immune responses to AAV capsid proteins can severely limit transgene expression. The main source of capsid antigen is that associated with the AAV vectors, which can be reduced by stringent vector purification. A second source of AAV capsid proteins is that expressed from cap genes aberrantly packaged into AAV virions during vector production. This antigen source can be eliminated by the use of a cap gene that is too large to be incorporated into an AAV capsid, such as a cap gene containing a large intron (captron gene). Here, we investigated the effects of elimination of cap gene transfer and of vector purification by CsCl gradient centrifugation on AAV vector immunogenicity and expression following intramuscular injection in dogs. We found that both approaches reduced vector immunogenicity and that combining the two produced the lowest immune responses and highest transgene expression. This combined approach enabled the use of a relatively mild immunosuppressive regimen to promote robust micro-dystrophin gene expression in Duchenne muscular dystrophy-affected dogs. Our study shows the importance of minimizing AAV cap gene impurities and indicates that this improvement in AAV vector production may benefit human applications.

  10. The effects of feeding β-glucan to Pangasianodon hypophthalmus on immune gene expression and resistance to Edwardsiella ictaluri.

    Science.gov (United States)

    Sirimanapong, Wanna; Thompson, Kim D; Ooi, Ei Lin; Bekaert, Michaël; Collet, Bertrand; Taggart, John B; Bron, James E; Green, Darren M; Shinn, Andrew P; Adams, Alexandra; Leaver, Michael J

    2015-11-01

    Pangasianodon hypophthalmus (striped catfish) is an important aquaculture species and intensification of farming has increased disease problems, particularly Edwardsiella ictaluri. The effects of feeding β-glucans on immune gene expression and resistance to E. ictaluri in P. hypophthalmus were explored. Fish were fed 0.1% fungal-derived β-glucan or 0.1% commercial yeast-derived β-glucan or a basal control diet without glucan. After 14 days of feeding, the mRNA expression of immune genes (transferrin, C-reactive protein, precerebellin-like protein, Complement C3 and factor B, 2a MHC class II and interleukin-1 beta) in liver, kidney and spleen were determined. Following this fish from each of the three diet treatment groups were infected with E. ictaluri and further gene expression measured 24 h post-infection (h.p.i.), while the remaining fish were monitored over 2 weeks for mortalities. Cumulative percentage mortality at 14 days post-infection (d.p.i.) was less in β-glucan fed fish compared to controls. There was no difference in gene expression between dietary groups after feeding for 14 days, but there was a clear difference between infected and uninfected fish at 24 h.p.i., and based on principal component analysis β-glucans stimulated the overall expression of immune genes in the liver, kidney and spleen at 24 h.p.i.

  11. Dynamic expression of leukocyte innate immune genes in whole blood from horses with lipopolysaccharide-induced acute systemic inflammation

    DEFF Research Database (Denmark)

    Vinther, Anne Mette L.; Skovgaard, Kerstin; Heegaard, Peter M. H.;

    2015-01-01

    inflammation was induced in 6 adult horses by the intravenous injection of 1 mu g lipopolysaccharide (LPS) per kg btw. Sixteen blood samples were collected for each horse at predetermined intervals and analyzed by reverse transcription quantitative real-time PCR. Post-induction expression levels for each gene......) and sepsis. Therefore, the aim of this study was to investigate the expression of 31 selected blood leukocyte immune genes in an equine model of acute systemic inflammation to identify significantly regulated genes and to describe their expression dynamics during a 24-h experimental period. Systemic...... expressions in blood leukocytes during equine acute LPS-induced systemic inflammation thoroughly characterized a highly regulated and dynamic innate immune response. These results provide new insights into the molecular mechanisms of equine systemic inflammation....

  12. Immune-gene therapy for renal cancer: chimeric receptor-mediated lysis of tumor cells

    NARCIS (Netherlands)

    M.E.M. Weijtens (Mo)

    2001-01-01

    textabstractThe immune system serves as a protective system against infectious agents such as bacteria, viruses and parasites. Foreign molecules (antigens) can be recognized by the immune system and induce an immune response resulting in destruction and elimination of the pathogens. In addition to i

  13. Sulfated galactans from Gracilaria fisheri bind to shrimp haemocyte membrane proteins and stimulate the expression of immune genes.

    Science.gov (United States)

    Rudtanatip, Tawut; Withyachumnarnkul, Boonsirm; Wongprasert, Kanokpan

    2015-11-01

    Previous studies demonstrated that sulfated galactans (SG) from Gracilaria fisheri (G. fisheri) exhibit immunostimulant activity in shrimp. The present study was conducted to test the hypothesis that SG stimulates signaling molecules of the immune response of shrimp by binding to receptors on the host cell membrane. Accordingly, we evaluated the ability of SG to bind to shrimp haemocytes and showed that SG bound to the shrimp haemocyte membrane (SHM), potentially to specific receptors. Furthermore, this binding was associated with an activation of immune response genes of shrimp. Data from confocal laser scanning micrographs revealed that FITC-labeled SG bound to haemocytes. Far western blot analysis demonstrated that SHM peptides, with molecular sizes of 13, 14, 15, 17, and 25 kDa, were associated with SG. Peptide sequence analysis of the isolated bands using LC-MS/MS and NCBI blast search revealed the identity of the 13, 14, and 17 kDa peptides as lipopolysaccharide and β-1,3-glucan binding protein (LGBP). SG induced the expression of immune related genes and downstream signaling mediators of LGBP including IMD, IKKs, NF-κB, antimicrobial peptides (crustin and PEN-4), the antiviral immunity (dicer), and proPO system (proPO-I and proPO-II). A LGBP neutralizing assay with anti-LGBP antibody indicated a decrease in SG-induced expression of LGBP downstream signaling mediators and the immune related genes. In conclusion, this study demonstrated that the SG-stimulated immune activity in haemocytes is mediated, in part, through the LGBP, and IMD-NF-κB pathway.

  14. Intratumoral Immunization by p19Arf and Interferon-β Gene Transfer in a Heterotopic Mouse Model of Lung Carcinoma

    Directory of Open Access Journals (Sweden)

    João Paulo Portela Catani

    2016-12-01

    Full Text Available Therapeutic strategies that act by eliciting and enhancing antitumor immunity have been clinically validated as an effective treatment modality but may benefit from the induction of both cell death and immune activation as primary stimuli. Using our AdRGD-PG adenovector platform, we show here for the first time that in situ gene transfer of p19Arf and interferon-β (IFNβ in the LLC1 mouse model of lung carcinoma acts as an immunotherapy. Although p19Arf is sufficient to induce cell death, only its pairing with IFNβ significantly induced markers of immunogenic cell death. In situ gene therapy with IFNβ, either alone or in combination with p19Arf, could retard tumor progression, but only the combined treatment was associated with a protective immune response. Specifically in the case of combined intratumoral gene transfer, we identified 167 differentially expressed genes when using microarray to evaluate tumors that were treated in vivo and confirmed the activation of CCL3, CXCL3, IL1α, IL1β, CD274, and OSM, involved in immune response and chemotaxis. Histologic evaluation revealed significant tumor infiltration by neutrophils, whereas functional depletion of granulocytes ablated the antitumor effect of our approach. The association of in situ gene therapy with cisplatin resulted in synergistic elimination of tumor progression. In all, in situ gene transfer with p19Arf and IFNβ acts as an immunotherapy involving recruitment of neutrophils, a desirable but previously untested outcome, and this approach may be allied with chemotherapy, thus providing significant antitumor activity and warranting further development for the treatment of lung carcinoma.

  15. Hepatic expression patterns of inflammatory and immune response genes associated with obesity and NASH in morbidly obese patients.

    Directory of Open Access Journals (Sweden)

    Adeline Bertola

    Full Text Available BACKGROUND: Obesity modulates inflammation and activation of immune pathways which can lead to liver complications. We aimed at identifying expression patterns of inflammatory and immune response genes specifically associated with obesity and NASH in the liver of morbidly obese patients. METHODOLOGY/PRINCIPAL FINDINGS: Expression of 222 genes was evaluated by quantitative RT-PCR in the liver of morbidly obese patients with histologically normal liver (n = 6, or with severe steatosis without (n = 6 or with NASH (n = 6, and in lean controls (n = 5. Hepatic expression of 58 out of 222 inflammatory and immune response genes was upregulated in NASH patients. The most notable changes occurred in genes encoding chemokines and chemokine receptors involved in leukocyte recruitment, CD and cytokines involved in the T cell activation towards a Th1 phenotype, and immune semaphorins. This regulation seems to be specific for the liver since visceral adipose tissue expression and serum levels of MCP1, IP10, TNFα and IL6 were not modified. Importantly, 47 other genes were already upregulated in histologically normal liver (e.g. CRP, Toll-like receptor (TLR pathway. Interestingly, serum palmitate, known to activate the TLR pathway, was increased with steatosis. CONCLUSION/SIGNIFICANCE: The liver of obese patients without histological abnormalities already displayed a low-grade inflammation and could be more responsive to activators of the TLR pathway. NASH was then characterized by a specific gene signature. These findings help to identify new potential actors of the pathogenesis of NAFLD.

  16. Hepatic Expression Patterns of Inflammatory and Immune Response Genes Associated with Obesity and NASH in Morbidly Obese Patients

    Science.gov (United States)

    Bertola, Adeline; Bonnafous, Stéphanie; Anty, Rodolphe; Patouraux, Stéphanie; Saint-Paul, Marie-Christine; Iannelli, Antonio; Gugenheim, Jean; Barr, Jonathan; Mato, José M.; Le Marchand-Brustel, Yannick; Tran, Albert; Gual, Philippe

    2010-01-01

    Background Obesity modulates inflammation and activation of immune pathways which can lead to liver complications. We aimed at identifying expression patterns of inflammatory and immune response genes specifically associated with obesity and NASH in the liver of morbidly obese patients. Methodology/Principal Findings Expression of 222 genes was evaluated by quantitative RT-PCR in the liver of morbidly obese patients with histologically normal liver (n = 6), or with severe steatosis without (n = 6) or with NASH (n = 6), and in lean controls (n = 5). Hepatic expression of 58 out of 222 inflammatory and immune response genes was upregulated in NASH patients. The most notable changes occurred in genes encoding chemokines and chemokine receptors involved in leukocyte recruitment, CD and cytokines involved in the T cell activation towards a Th1 phenotype, and immune semaphorins. This regulation seems to be specific for the liver since visceral adipose tissue expression and serum levels of MCP1, IP10, TNFα and IL6 were not modified. Importantly, 47 other genes were already upregulated in histologically normal liver (e.g. CRP, Toll-like receptor (TLR) pathway). Interestingly, serum palmitate, known to activate the TLR pathway, was increased with steatosis. Conclusion/Significance The liver of obese patients without histological abnormalities already displayed a low-grade inflammation and could be more responsive to activators of the TLR pathway. NASH was then characterized by a specific gene signature. These findings help to identify new potential actors of the pathogenesis of NAFLD. PMID:21042596

  17. Functional similarities between pigeon 'milk' and mammalian milk: induction of immune gene expression and modification of the microbiota.

    Directory of Open Access Journals (Sweden)

    Meagan J Gillespie

    Full Text Available Pigeon 'milk' and mammalian milk have functional similarities in terms of nutritional benefit and delivery of immunoglobulins to the young. Mammalian milk has been clearly shown to aid in the development of the immune system and microbiota of the young, but similar effects have not yet been attributed to pigeon 'milk'. Therefore, using a chicken model, we investigated the effect of pigeon 'milk' on immune gene expression in the Gut Associated Lymphoid Tissue (GALT and on the composition of the caecal microbiota. Chickens fed pigeon 'milk' had a faster rate of growth and a better feed conversion ratio than control chickens. There was significantly enhanced expression of immune-related gene pathways and interferon-stimulated genes in the GALT of pigeon 'milk'-fed chickens. These pathways include the innate immune response, regulation of cytokine production and regulation of B cell activation and proliferation. The caecal microbiota of pigeon 'milk'-fed chickens was significantly more diverse than control chickens, and appears to be affected by prebiotics in pigeon 'milk', as well as being directly seeded by bacteria present in pigeon 'milk'. Our results demonstrate that pigeon 'milk' has further modes of action which make it functionally similar to mammalian milk. We hypothesise that pigeon 'lactation' and mammalian lactation evolved independently but resulted in similarly functional products.

  18. Novel DNA vaccine based on hepatitis B virus core gene induces specific immune responses in Balb/c mice

    Institute of Scientific and Technical Information of China (English)

    Yi-Ping Xing; Zu-Hu Huang; Shi-Xia Wang; Jie Cai; Jun Li; Te-Hui W Chou; Shan Lu

    2005-01-01

    AIM: To investigate the immunogenicity of a novel DNA vaccine,pSW3891/HBc, based on HBV core gene in Balb/c mice.METHODS: A novel DNA vaccine, pSW3891/HBc, encoding HBV core gene was constructed using a vector plasmid pSW3891. Balb/c mice were immunized with either pSW3891/HBc or empty vector DNA via gene gun. IgG anti-HBc responses in mouse sera were demonstrated by ELISA. Specific cytotoxicity of cytotoxic T lymphocytes (CTLs) of mice was quantitatively measured by lactate dehydrogenase release assay.RESULTS: HBcAg was expressed effectively in 293T cell line transiently transfected with pSW3891/HBc. Strong IgG anti-HBc responses were elicited in mice immunized with pSW3891/HBc. The end-point titers of anti-HBc reached the highest 1:97 200, 4 wk after the third immunization. The specific CTL killing with the highest specific lysis reached 73.25% at effector:target ratio of 20:1 in mice that received pSW3891/HBc DNA vaccine.CONCLUSION: pSW3891/HBc vaccination elicits specific anti-HBc response and induces HBc-specific CTL response in immunized Balb/c mice.

  19. Immune responses and gene expression in hepatopancreas from Macrobrachium rosenbergii challenged by a novel pathogen spiroplasma MR-1008.

    Science.gov (United States)

    Du, Jie; Zhu, Huanxi; Liu, Peng; Chen, Jing; Xiu, Yunji; Yao, Wei; Wu, Ting; Ren, Qian; Meng, Qingguo; Gu, Wei; Wang, Wen

    2013-01-01

    Freshwater prawn Macrobrachium rosenbergii inoculated with 100 μl novel pathogen spiroplasma strain MR-1008 in logarithmic phase (10(8) spiroplasmas ml(-1)) were examined for alkaline phosphatase (AKP) activity, acid phosphatase (ACP) activity, superoxide dismutase (SOD) activity, catalase (CAT) activity, as well as expressions of 7 immune related genes in hepatopancreas after 1-28 d. Hematoxylin-eosin (HE) staining showed obvious pathological features in hepatopancreas connective and epithelial tissue. Enzyme activity analyze showed that hepatopancreas AKP and ACP activity increased markedly (P < 0.05) when inoculated with spiroplasma MR-1008 after 5 d and 10 d, respectively. SOD enzyme activity changed less obviously and slightly increased at 1 day post-inoculation, but CAT activity decreased significantly after 5 d inoculation. The expression levels of lipopolysaccharide and β-1,3-glucan-binding protein (LGBP), peroxinectin (PE), α2-macroglobulin (α2M), AKP, ACP, CAT, and copper/zinc SOD (Cu, Zn-SOD) genes in the hepatopancreas were examined by Real-Time PCR (qRT-PCR) and the results demonstrated that these immune related genes were induced by challenge with spiroplasma MR-1008. The results suggested that the prawn immune responses could be activated or inhibited by spiroplasma MR-1008, and that the hepatopancreas also plays key roles in innate immunity for defense against the pathogen.

  20. Immune gene expression in Bombus terrestris: signatures of infection despite strong variation among populations, colonies, and sister workers.

    Directory of Open Access Journals (Sweden)

    Franziska S Brunner

    Full Text Available Ecological immunology relies on variation in resistance to parasites. Colonies of the bumblebee Bombus terrestris vary in their susceptibility to the trypanosome gut parasite Crithidia bombi, which reduces colony fitness. To understand the possible origin of this variation in resistance we assayed the expression of 28 immunologically important genes in foraging workers. We deliberately included natural variation of the host "environment" by using bees from colonies collected in two locations and sampling active foraging workers that were not age controlled. Immune gene expression patterns in response to C. bombi showed remarkable variability even among genetically similar sisters. Nevertheless, expression varied with parasite exposure, among colonies and, perhaps surprisingly, strongly among populations (collection sites. While only the antimicrobial peptide abaecin is universally up regulated upon exposure, linear discriminant analysis suggests that the overall exposure effect is driven by a combination of several immune pathways and further immune functions such as ROS regulation. Also, the differences among colonies in their immune gene expression profiles provide clues to the mechanistic basis of well-known inter-colony variation in susceptibility to this parasite. Our results show that transcriptional responses to parasite exposure can be detected in ecologically heterogeneous groups despite strong background noise.

  1. Transcriptome Analysis and Identification of Differentially Expressed Transcripts of Immune-Related Genes in Spleen of Gosling and Adult Goose.

    Science.gov (United States)

    Wang, Anqi; Liu, Fei; Chen, Shun; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Sun, Kunfeng; Wu, Ying; Chen, Xiaoyue; Cheng, Anchun

    2015-09-22

    The goose (Anser cygnoides), having high nutritional value, high-quality feathers and high economic benefit, is an economically important poultry species. However, the molecular mechanisms underlying the higher susceptibility to pathogens in goslings than in adult geese remains poorly understood. In this study, the histological sections of spleen tissue from a two-week-old gosling and an adult goose, respectively, were subjected to comparative analysis. The spleen of gosling was mainly composed of mesenchyma, accompanied by scattered lymphocytes, whereas the spleen parenchyma was well developed in the adult goose. To investigate goose immune-related genes, we performed deep transcriptome and gene expression analyses of the spleen samples using paired-end sequencing technology (Illumina). In total, 50,390 unigenes were assembled using Trinity software and TGICL software. Moreover, these assembled unigenes were annotated with gene descriptions and gene ontology (GO) analysis was performed. Through Kyoto encyclopedia of genes and genomes (KEGG) analysis, we investigated 558 important immune-relevant unigenes and 23 predicted cytokines. In addition, 22 immune-related genes with differential expression between gosling and adult goose were identified, among which the three genes showing largest differences in expression were immunoglobulin alpha heavy chain (IgH), mannan-binding lectin serine protease 1 isoform X1 (MASP1) and C-X-C chemokine receptor type 4 (CXCR4). Finally, of these 22 differentially expressed immune-related genes, seven genes, including tumor necrosis factor receptor superfamily member 13B (TNFRSF13B), C-C motif chemokine 4-like (CCL4), CXCR4, interleukin 2 receptor alpha (IL2RA), MHC class I heavy chain (MHCIα), transporter of antigen processing 2 (TAP2) IgH, were confirmed by quantitative real-time PCR (qRT-PCR). The expression levels of all the candidate unigenes were up-regulated in adult geese other than that of TNFRSF13B. The comparative

  2. Expression QTL mapping in regulatory and helper T cells from the BXD family of strains reveals novel cell-specific genes, gene-gene interactions and candidate genes for auto-immune disease

    Directory of Open Access Journals (Sweden)

    Alberts Rudi

    2011-12-01

    Full Text Available Abstract Background Regulatory T cells (Tregs play an essential role in the control of the immune response. Treg cells represent important targets for therapeutic interventions of the immune system. Therefore, it will be very important to understand in more detail which genes are specifically activated in Treg cells versus T helper (Th cells, and which gene regulatory circuits may be involved in specifying and maintaining Treg cell homeostasis. Results We isolated Treg and Th cells from a genetically diverse family of 31 BXD type recombinant inbred strains and the fully inbred parental strains of this family--C57BL/6J and DBA/2J. Subsequently genome-wide gene expression studies were performed from the isolated Treg and Th cells. A comparative analysis of the transcriptomes of these cell populations allowed us to identify many novel differentially expressed genes. Analysis of cis- and trans-expression Quantitative Trait Loci (eQTLs highlighted common and unique regulatory mechanisms that are active in the two cell types. Trans-eQTL regions were found for the Treg functional genes Nrp1, Stat3 and Ikzf4. Analyses of the respective QTL intervals suggested several candidate genes that may be involved in regulating these genes in Treg cells. Similarly, possible candidate genes were found which may regulate the expression of F2rl1, Ctla4, Klrb1f. In addition, we identified a focused group of candidate genes that may be important for the maintenance of self-tolerance and the prevention of allergy. Conclusions Variation of expression across the strains allowed us to find many novel gene-interaction networks in both T cell subsets. In addition, these two data sets enabled us to identify many differentially expressed genes and to nominate candidate genes that may have important functions for the maintenance of self-tolerance and the prevention of allergy.

  3. Wild-type Escherichia coli producing microcins B17, D93, J25, and L; cloning of genes for microcin L production and immunity.

    Science.gov (United States)

    Sablé, S; Duarte, M; Bravo, D; Lanneluc, I; Pons, A M; Cottenceau, G; Moreno, F

    2003-05-01

    For the first time, an Escherichia coli strain producing four microcins (Mcc), B17, D93, J25, and L, and showing immunity to Mcc V was isolated and characterized. Each of the gene clusters encoding the production of Mcc B17, D93, and L was cloned separately. The gene cluster for Mcc L was cloned within a 13.5-kb HindIII-SalI fragment, which includes the Mcc V immunity gene, cvi.

  4. DNA Methyltransferase 3B Gene Promoter and Interleukin-1 Receptor Antagonist Polymorphisms in Childhood Immune Thrombocytopenia

    Directory of Open Access Journals (Sweden)

    Margarita Pesmatzoglou

    2012-01-01

    Full Text Available Primary immune thrombocytopenia (ITP is one of the most common blood diseases as well as the commonest acquired bleeding disorder in childhood. Although the etiology of ITP is unclear, in the pathogenesis of the disease, both environmental and genetic factors including polymorphisms of TNF-a, IL-10, and IL-4 genes have been suggested to be involved. In this study, we investigated the rs2424913 single-nucleotide polymorphism (SNP (C46359T in DNA methyltransferase 3B (DNMT3B gene promoter and the VNTR polymorphism of IL-1 receptor antagonist (IL-1 Ra intron-2 in 32 children (17 boys with the diagnosis of ITP and 64 healthy individuals. No significant differences were found in the genotype distribution of DNMT3B polymorphism between the children with ITP and the control group, whereas the frequency of allele T appeared significantly increased in children with ITP (P = 0.03, OR = 2, 95% CI: 1.06–3.94. In case of IL-1 Ra polymorphism, children with ITP had a significantly higher frequency of genotype I/II, compared to control group (P = 0.043, OR = 2.60, 95% CI: 1.02–6.50. Moreover, genotype I/I as well as allele I was overrepresented in the control group, suggesting that allele I may have a decreased risk for development of ITP. Our findings suggest that rs2424913 DNMT3B SNP as well as IL-1 Ra VNTR polymorphism may contribute to the susceptibility to ITP.

  5. VACCINATION OF HYBRID STRIPED BASS: GROWTH, IMMUNE REACTION AND GENE EXPRESSION

    Directory of Open Access Journals (Sweden)

    Mark Westerman

    2012-10-01

    -points revealed differences (P < 0.05 between 11 and 25 days post-vaccination. Examination of the hepatic microarray datasets revealed only four immune-discrete genes that were impacted 53-days following vaccination when compared against control fish. These included the up-regulated TCIRG1, or T-cell immune regulator 1 (P < 0.0467 and IL20RA, or interleukin 20 receptor alpha (P < 0.0433, and down-regulated cytokine inducible kinase, plk3 (P < 0.01 and mouse immune responsive protein, IRG1 (P < 0.01.

  6. Abnormal immunity and gene mutation in patients with severe hepatitis-B

    Institute of Scientific and Technical Information of China (English)

    Jing-Yan Wang; Pei Liu

    2003-01-01

    AIM: To evaluate the abnormal immunity and gene mutation at precore 1896 site in patients with severe hepatitis-B.METHODS: This study included 23 patients with severe hepatitis-B, 22 patients with acute hepatitis-B and 20 controls.Mutation at precore 1896 site of HBV gene was confirmed with restriction fragment length polymorphism (RFLP) analysis.Cytokines including TNF-α, IFN-y, IL-6, and IL-8 were measured with ELISA, and T subgroups were detected with alkaline phosphatase anti alkaline phosphatase (APAAP) technique.RESULTS: In patients with severe hepatitis-B, the infective rate of HBV mutant strain was 52.5% (12/23), and only one patient with acute hepatitis-B was infected with the mutant strain. The percentage of CD8+ T lymphocyte was obviously lower (0.16±0.02%) and the ratio of CD4+/CD8+ was obviously higher (2.35±0.89) in mutant group than in wildtype group (0.28±0.05% and 1.31±0.18%, respectively,P<0.01 or P<0.05). The levels of cytokines in patients with severe hepatitis-B were higher (TNF-α 359.0±17.2 ng/L, IFNγ 234.7±16.5 ng/L, IL-6 347.5±31.3 ng/L, IL-8 181.1±19.6ng/L) than those in acute hepatitis-B (TNF-α 220.6±8.9ng/L, IFN-γ 174.9±12.0 ng/L, IL-6 285.8±16.5 ng/L, IL-8118.4±5.1 ng/L, P<0.01 or 0.05). In patients with severe hepatitis-B, the levels of IFN-γ and IL-6 were higher in mutant group (273.4±26.6 ng/L, 387.7±32.5 ng/L) than in wild-type group (207.8±12.8 ng/L, 300.9±16.3 ng/L). The mortality of patients infected with HBV mutant strain was higher (100%)than that with wild-type (0.9%).CONCLUSION: In severe hepatitis-B, the infective rate of HBV mutant strain was high. The mutant strain induces more severe immune disorders in host, resulting in the activation of lymphocyte and release of cytokines. HBV DNA mutates easily in response to the altered immunity. Ultimately liver damage is more prominent.

  7. Polymorphisms of immunity genes and susceptibility to otitis media in children.

    Directory of Open Access Journals (Sweden)

    Johanna Nokso-Koivisto

    Full Text Available BACKGROUND: Acute otitis media (OM is a common disease which often develops through complex interactions between the host, the pathogen and environmental factors. We studied single nucleotide polymorphisms (SNPs of genes involved in innate and adaptive immunity, and other host and environmental factors for their role in OM. METHODS: Using Sequenom Massarray platform, 21 SNPs were studied in 653 children from prospective (n = 202 and retrospective (n = 451 cohorts. Data were analyzed for the relationship between SNPs and upper respiratory infection (URI frequency, risk of acute OM during URI episodes, and proneness to recurrent OM. RESULTS: Increased risk for OM proneness was associated with CX3CR1 (Thr280Met SNP and with a jointly interactive group of IL-10 (-1082 SNP, IL-1β (-511 wild type genotype and white race. Family history of OM proneness independently increased the risk for frequent URIs, OM occurrence during URI, and OM proneness. Additionally, IL-1β (-31 SNP was associated with increased risk for frequent URIs, but IL-10 (-592, IL-1β (-511, IL-5 (-746 and IL-8 (-251 SNPs were associated with decreased risk of URI. CONCLUSION: IL-1β (-31, CX3CR1 (Thr280Met, IL-10 (-1082 and IL-1β (-511 SNPs were associated with increased risk for frequent URIs or OM proneness.

  8. De novo characterization of Larimichthys crocea transcriptome for growth-/immune-related gene identification and massive microsatellite (SSR) marker development

    Science.gov (United States)

    Han, Zhaofang; Xiao, Shijun; Liu, Xiande; Liu, Yang; Li, Jiakai; Xie, Yangjie; Wang, Zhi Yong

    2016-04-01

    The large yellow croaker, Larimichthys crocea is an important marine fish in China with a high economic value. In the last decade, the stock conservation and aquaculture industry of this species have been facing severe challenges because of wild population collapse and degeneration of important economic traits. However, genes contributing to growth and immunity in L. crocea have not been thoroughly analyzed, and available molecular markers are still not sufficient for genetic resource management and molecular selection. In this work, we sequenced the transcriptome in L. crocea liver tissue with a Roche 454 sequencing platform and assembled the transcriptome into 93 801 transcripts. Of them, 38 856 transcripts were successfully annotated in nt, nr, Swiss-Prot, InterPro, COG, GO and KEGG databases. Based on the annotation information, 3 165 unigenes related to growth and immunity were identified. Additionally, a total of 6 391 simple sequence repeats (SSRs) were identified from the transcriptome, among which 4 498 SSRs had enough flanking regions to design primers for polymerase chain reactions (PCR). To access the polymorphism of these markers, 30 primer pairs were randomly selected for PCR amplification and validation in 30 individuals, and 12 primer pairs (40.0%) exhibited obvious length polymorphisms. This work applied RNA-Seq to assemble and analyze a live transcriptome in L. crocea. With gene annotation and sequence information, genes related to growth and immunity were identified and massive SSR markers were developed, providing valuable genetic resources for future gene functional analysis and selective breeding of L. crocea.

  9. Identification and Isolation of Brucella suis Virulence Genes Involved in Resistance to the Human Innate Immune System▿

    Science.gov (United States)

    Liautard, Janny; Ouahrani-Bettache, Safia; Jubier-Maurin, Véronique; Lafont, Virginie; Köhler, Stephan; Liautard, Jean-Pierre

    2007-01-01

    Brucella strains are facultative intracellular pathogens that induce chronic diseases in humans and animals. This observation implies that Brucella subverts innate and specific immune responses of the host to develop its full virulence. Deciphering the genes involved in the subversion of the immune system is of primary importance for understanding the virulence of the bacteria, for understanding the pathogenic consequences of infection, and for designing an efficient vaccine. We have developed an in vitro system involving human macrophages infected by Brucella suis and activated syngeneic γ9δ2 T lymphocytes. Under these conditions, multiplication of B. suis inside macrophages is only slightly reduced. To identify the genes responsible for this reduced sensitivity, we screened a library of 2,000 clones of transposon-mutated B. suis. For rapid and quantitative analysis of the multiplication of the bacteria, we describe a simple method based on Alamar blue reduction, which is compatible with screening a large library. By comparing multiplication inside macrophages alone and multiplication inside macrophages with activated γ9δ2 T cells, we identified four genes of B. suis that were necessary to resist to the action of the γ9δ2 T cells. The putative functions of these genes are discussed in order to propose possible explanations for understanding their exact role in the subversion of innate immunity. PMID:17709411

  10. The effects of a partitioned var gene repertoire of Plasmodium falciparum on antigenic diversity and the acquisition of clinical immunity

    Directory of Open Access Journals (Sweden)

    Arinaminpathy Nimalan

    2008-01-01

    Full Text Available Abstract Background The human malaria parasite Plasmodium falciparum exploits antigenic diversity and within-host antigenic variation to evade the host's immune system. Of particular importance are the highly polymorphic var genes that encode the family of cell surface antigens PfEMP1 (Plasmodium falciparum Erythrocyte Membrane Protein 1. It has recently been shown that in spite of their extreme diversity, however, these genes fall into distinct groups according to chromosomal location or sequence similarity, and that recombination may be confined within these groups. Methods This study presents a mathematical analysis of how recombination hierarchies affect diversity, and, by using simple stochastic simulations, investigates how intra- and inter-genic diversity influence the rate at which individuals acquire clinical immunity. Results The analysis demonstrates that the partitioning of the var gene repertoire has a limiting effect on the total diversity attainable through recombination and that the limiting effect is strongly influenced by the respective sizes of each of the partitions. Furthermore, by associating expression of one of the groups with severe malaria it is demonstrated how a small number of infections can be sufficient to protect against disease despite a seemingly limitless number of possible non-identical repertoires. Conclusion Recombination hierarchies within the var gene repertoire of P. falciparum have a severe effect on strain diversity and the process of acquiring immunity against clinical malaria. Future studies will show how the existence of these recombining groups can offer an evolutionary advantage in spite of their restriction on diversity.

  11. Effects of excretory/secretory products from Anisakis simplex (Nematoda) on immune gene expression in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Bahlool, Qusay Zuhair Mohammad; Skovgaard, Alf; Kania, Per Walter;

    2013-01-01

    -regulation of the immune genes tested, suggesting a role of ES proteins in immunomodulation. We also tested the enzymatic activity of the ES proteins and found that lipase, esterase/lipase, valine and cysteine arylamidases, naphthol-AS-BI-phosphohydrolase and a-galactosidase activities were present in the ES solution....... This type of hydrolytic enzyme activity may play a role in nematode penetration of host tissue. In addition, based on the notion that A. simplex ES products may have an immune-depressive effect (by minimizing immune gene expression) it could also be suggested that worm enzymes directly target host immune...

  12. Transcriptome analysis and discovery of genes involved in immune pathways from hepatopancreas of microbial challenged mitten crab Eriocheir sinensis.

    Directory of Open Access Journals (Sweden)

    Xihong Li

    Full Text Available BACKGROUND: The Chinese mitten crab Eriocheir sinensis is an important economic crustacean and has been seriously attacked by various diseases, which requires more and more information for immune relevant genes on genome background. Recently, high-throughput RNA sequencing (RNA-seq technology provides a powerful and efficient method for transcript analysis and immune gene discovery. METHODS/PRINCIPAL FINDINGS: A cDNA library from hepatopancreas of E. sinensis challenged by a mixture of three pathogen strains (Gram-positive bacteria Micrococcus luteus, Gram-negative bacteria Vibrio alginolyticus and fungi Pichia pastoris; 10(8 cfu·mL(-1 was constructed and randomly sequenced using Illumina technique. Totally 39.76 million clean reads were assembled to 70,300 unigenes. After ruling out short-length and low-quality sequences, 52,074 non-redundant unigenes were compared to public databases for homology searching and 17,617 of them showed high similarity to sequences in NCBI non-redundant protein (Nr database. For function classification and pathway assignment, 18,734 (36.00% unigenes were categorized to three Gene Ontology (GO categories, 12,243 (23.51% were classified to 25 Clusters of Orthologous Groups (COG, and 8,983 (17.25% were assigned to six Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. Potentially, 24, 14, 47 and 132 unigenes were characterized to be involved in Toll, IMD, JAK-STAT and MAPK pathways, respectively. CONCLUSIONS/SIGNIFICANCE: This is the first systematical transcriptome analysis of components relating to innate immune pathways in E. sinensis. Functional genes and putative pathways identified here will contribute to better understand immune system and prevent various diseases in crab.

  13. Vaccination with lentiviral vector expressing the nfa1 gene confers a protective immune response to mice infected with Naegleria fowleri.

    Science.gov (United States)

    Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Jinyoung; Yang, Hee-Jong; Chwae, Yong-Joon; Kim, Kyongmin; Park, Sun; Shin, Ho-Joon

    2013-07-01

    Naegleria fowleri, a pathogenic free-living amoeba, causes fatal primary amoebic meningoencephalitis (PAM) in humans and animals. The nfa1 gene (360 bp), cloned from a cDNA library of N. fowleri, produces a 13.1-kDa recombinant protein which is located on pseudopodia, particularly the food cup structure. The nfa1 gene plays an important role in the pathogenesis of N. fowleri infection. To examine the effect of nfa1 DNA vaccination against N. fowleri infection, we constructed a lentiviral vector (pCDH) expressing the nfa1 gene. For the in vivo mouse study, BALB/c mice were intranasally vaccinated with viral particles of a viral vector expressing the nfa1 gene. To evaluate the effect of vaccination and immune responses of mice, we analyzed the IgG levels (IgG, IgG1, and IgG2a), cytokine induction (interleukin-4 [IL-4] and gamma interferon [IFN-γ]), and survival rates of mice that developed PAM. The levels of both IgG and IgG subclasses (IgG1 and IgG2a) in vaccinated mice were significantly increased. The cytokine analysis showed that vaccinated mice exhibited greater IL-4 and IFN-γ production than the other control groups, suggesting a Th1/Th2 mixed-type immune response. In vaccinated mice, high levels of Nfa1-specific IgG antibodies continued until 12 weeks postvaccination. The mice vaccinated with viral vector expressing the nfa1 gene also exhibited significantly higher survival rates (90%) after challenge with N. fowleri trophozoites. Finally, the nfa1 vaccination effectively induced protective immunity by humoral and cellular immune responses in N. fowleri-infected mice. These results suggest that DNA vaccination using a viral vector may be a potential tool against N. fowleri infection.

  14. Immune Reactions against Gene Gun Vaccines Are Differentially Modulated by Distinct Dendritic Cell Subsets in the Skin.

    Directory of Open Access Journals (Sweden)

    Corinna Stefanie Weber

    Full Text Available The skin accommodates multiple dendritic cell (DC subsets with remarkable functional diversity. Immune reactions are initiated and modulated by the triggering of DC by pathogen-associated or endogenous danger signals. In contrast to these processes, the influence of intrinsic features of protein antigens on the strength and type of immune responses is much less understood. Therefore, we investigated the involvement of distinct DC subsets in immune reactions against two structurally different model antigens, E. coli beta-galactosidase (betaGal and chicken ovalbumin (OVA under otherwise identical conditions. After epicutaneous administration of the respective DNA vaccines with a gene gun, wild type mice induced robust immune responses against both antigens. However, ablation of langerin+ DC almost abolished IgG1 and cytotoxic T lymphocytes against betaGal but enhanced T cell and antibody responses against OVA. We identified epidermal Langerhans cells (LC as the subset responsible for the suppression of anti-OVA reactions and found regulatory T cells critically involved in this process. In contrast, reactions against betaGal were not affected by the selective elimination of LC, indicating that this antigen required a different langerin+ DC subset. The opposing findings obtained with OVA and betaGal vaccines were not due to immune-modulating activities of either the plasmid DNA or the antigen gene products, nor did the differential cellular localization, size or dose of the two proteins account for the opposite effects. Thus, skin-borne protein antigens may be differentially handled by distinct DC subsets, and, in this way, intrinsic features of the antigen can participate in immune modulation.

  15. Dactylogyrus intermedius parasitism enhances Flavobacterium columnare invasion and alters immune-related gene expression in Carassius auratus.

    Science.gov (United States)

    Zhang, Chao; Li, Dong-liang; Chi, Cheng; Ling, Fei; Wang, Gao-xue

    2015-09-17

    The monogenean Dactylogyrus intermedius and the bacterium Flavobacterium columnare are 2 common pathogens in aquaculture. The objective of the present study was to examine the effect of prior parasitism by D. intermedius on the susceptibility of goldfish to F. columnare and to explore the potential immune mechanisms related to the parasite infection. A F. columnare challenge trial was conducted between D. intermedius-parasitized and non-parasitized goldfish. The F. columnare load in gill, kidney, spleen and liver were compared. The expression of immune-related genes (IL-1β2, TNF-α1, TGF-β, iNOS-a, C3 and Lyz) in gill and kidney of D. intermedius-only infected and uninfected control fish were evaluated. D. intermedius-parasitized goldfish exhibited higher mortality and significantly higher loads (3051 to 537,379 genome equivalents [GEs] mg(-1)) of F. columnare, which were 1.13 to 50.82-fold higher than non-parasitized fish (389 to 17,829 GEs mg(-1)). Furthermore, the immune genes IL-1β2, TNF-α1, iNOS-a and Lyz were up-regulated while the TGF-β and C3 were down-regulated in the gill and kidney of parasite-infected fish compared to the non-parasitized controls. The down-regulation TGF-β and C3 was especially noteworthy, as this might indicate the suppression of the host immune functions due to the parasitism by D. intermedius. Taken together, these data demonstrate that parasite infection can enhance bacterial invasion and presents a hypothesis, based on gene expression data, that modulation of host immune response could play a role.

  16. Finding immune gene expression differences induced by marine bacterial pathogens in the deep-sea hydrothermal vent mussel Bathymodiolus azoricus

    Directory of Open Access Journals (Sweden)

    R. Bettencourt

    2013-02-01

    Full Text Available The deep-sea hydrothermal vent mussel Bathymodiolus azoricus lives in a natural environment characterized by extreme conditions of hydrostatic pressure, temperature, pH, high concentrations of heavy metals, methane and hydrogen sulphide. The deep-sea vent biological systems represent thus the opportunity to study and provide new insights into the basic physiological principles that govern the defense mechanisms in vent animals and to understand how they cope with microbial infections. Hence, the importance of understanding this animal's innate defense mechanisms, by examining its differential immune gene expressions toward different pathogenic agents. In the present study, B. azoricus mussels were infected with single suspensions of marine bacterial pathogens, consisting of Vibrio splendidus, Vibrio alginolyticus, or Vibrio anguillarum, and a pool of these Vibrio strains. Flavobacterium suspensions were also used as an irrelevant bacterium. Gene expression analyses were carried out using gill samples from animals dissected at 12 h and 24 h post-infection times by means of quantitative-Polymerase Chain Reaction aimed at targeting several immune genes. We also performed SDS-PAGE protein analyses from the same gill tissues. We concluded that there are different levels of immune gene expression between the 12 h and 24 h exposure times to various bacterial suspensions. Our results from qPCR demonstrated a general pattern of gene expression, decreasing from 12 h over 24 h post-infection. Among the bacteria tested, Flavobacterium is the microorganism species inducing the highest gene expression level in 12 h post-infections animals. The 24 h infected animals revealed, however, greater gene expression levels, using V. splendidus as the infectious agent. The SDS-PAGE analysis also pointed at protein profile differences between 12 h and 24 h, particularly around a protein area, of 18 KDa molecular mass, where most dissimilarities were found. Multivariate

  17. Multigenic control of measles vaccine immunity mediated by polymorphisms in measles receptor, innate pathway, and cytokine genes.

    Science.gov (United States)

    Kennedy, Richard B; Ovsyannikova, Inna G; Haralambieva, Iana H; O'Byrne, Megan M; Jacobson, Robert M; Pankratz, V Shane; Poland, Gregory A

    2012-03-09

    Measles infection and vaccine response are complex biological processes that involve both viral and host genetic factors. We have previously investigated the influence of genetic polymorphisms on vaccine immune response, including measles vaccines, and have shown that polymorphisms in HLA, cytokine, cytokine receptor, and innate immune response genes are associated with variation in vaccine response but do not account for all of the inter-individual variance seen in vaccinated populations. In the current study we report the findings of a multigenic analysis of measles vaccine immunity, indicating a role for the measles virus receptor CD46, innate pattern-recognition receptors (DDX58, TLR2, 4, 5, 7 and 8) and intracellular signaling intermediates (MAP3K7, NFKBIA), and key antiviral molecules (VISA, OAS2, MX1, PKR) as well as cytokines (IFNA1, IL4, IL6, IL8, IL12B) and cytokine receptor genes (IL2RB, IL6R, IL8RA) in the genetic control of both humoral and cellular immune responses. This multivariate approach provided additional insights into the genetic control of measles vaccine responses over and above the information gained by our previous univariate SNP association analyses.

  18. Regulation of the human cathelicidin antimicrobial peptide gene by 1α,25-dihydroxyvitamin D3 in primary immune cells.

    Science.gov (United States)

    Lowry, Malcolm B; Guo, Chunxiao; Borregaard, Niels; Gombart, Adrian F

    2014-09-01

    Production of the human cathelicidin antimicrobial peptide gene (hCAP18/LL-37), is regulated by 1α,25-dihydroxyvitamin D3 (1,25D3) and is critical in the killing of pathogens by innate immune cells. In addition, secreted LL-37 binds extracellular receptors and modulates the recruitment and activity of both innate and adaptive immune cells. Evidence suggests that during infections activated immune cells locally produce increased levels of 1,25D3 thus increasing production of hCAP18/LL-37. The relative expression levels of hCAP18/LL-37 among different immune cell types are not well characterized. The aim of this study was to determine the relative levels of hCAP18/LL-37 in human peripheral blood immune cells and determine to what extent 1,25D3 increased its expression in peripheral blood-derived cells. We show for the first time, a hierarchy of expression of hCAP18 in freshly isolated cells with low levels in lymphocytes, intermediate levels in monocytes and the highest levels found in neutrophils. In peripheral blood-derived cells, the highest levels of hCAP18 following treatment with 1,25D3 were in macrophages, while comparatively lower levels were found in GM-CSF-derived dendritic cells and osteoclasts. We also tested whether treatment with parathyroid hormone in combination with 1,25D3 would enhance hCAP18 induction as has been reported in skin cells, but we did not find enhancement in any immune cells tested. Our results indicate that hCAP18 is expressed at different levels according to cell type and lineage. Furthermore, potent induction of hCAP18 by 1,25D3 in macrophages and dendritic cells may modulate functions of both innate and adaptive immune cells at sites of infection.

  19. Effects of chronic produced water exposure on the expression of some immune-related genes of juvenile Atlantic cod

    Energy Technology Data Exchange (ETDEWEB)

    Perez Casanova, J.; Hamoutene, D.; Samuelson, S.; Burt, K.; King, T. [Fisheries and Oceans Canada, St. John' s, NL (Canada); Lee, K. [Fisheries and Oceans Canada, Dartmouth, NS (Canada)

    2010-07-01

    This study assessed the impacts of exposure to processed water produced by offshore oil operators on immune-related genes of juvenile Atlantic cod exposed to processed water for a period of 22 weeks. The study investigated the influence of processed water concentrations on growth parameters; food consumption; plasma cortisol; respiratory burst activity (RB); and mRNA expression. The study showed that the RB of circulating leukocytes was significantly elevated. Significant up-regulation of the mRNA expression of microglobulin, immunoglobulin light chain, and interleukins was observed in some fish. The down-regulation of the interferon stimulated gene was also observed. The study indicated that chronic exposure to significant amounts of processed water causes modulations of the immune system of juvenile Atlantic cod.

  20. Regulation of the human cathelicidin antimicrobial peptide gene by 1α,25-dihydroxyvitamin D3 in primary immune cells

    DEFF Research Database (Denmark)

    Lowry, Malcolm B; Guo, Chunxiao; Borregaard, Niels;

    2014-01-01

    Production of the human cathelicidin antimicrobial peptide gene (hCAP18/LL-37), is regulated by 1α,25-dihydroxyvitamin D3 (1,25D3) and is critical in the killing of pathogens by innate immune cells. In addition, secreted LL-37 binds extracellular receptors and modulates the recruitment and activity...... of both innate and adaptive immune cells. Evidence suggests that during infections activated immune cells locally produce increased levels of 1,25D3 thus increasing production of hCAP18/LL-37. The relative expression levels of hCAP18/LL-37 among different immune cell types are not well characterized....... The aim of this study was to determine the relative levels of hCAP18/LL-37 in human peripheral blood immune cells and determine to what extent 1,25D3 increased its expression in peripheral blood-derived cells. We show for the first time, a hierarchy of expression of hCAP18 in freshly isolated cells...

  1. MIrExpress: A Database for Gene Coexpression Correlation in Immune Cells Based on Mutual Information and Pearson Correlation.

    Science.gov (United States)

    Wang, Luman; Mo, Qiaochu; Wang, Jianxin

    2015-01-01

    Most current gene coexpression databases support the analysis for linear correlation of gene pairs, but not nonlinear correlation of them, which hinders precisely evaluating the gene-gene coexpression strengths. Here, we report a new database, MIrExpress, which takes advantage of the information theory, as well as the Pearson linear correlation method, to measure the linear correlation, nonlinear correlation, and their hybrid of cell-specific gene coexpressions in immune cells. For a given gene pair or probe set pair input by web users, both mutual information (MI) and Pearson correlation coefficient (r) are calculated, and several corresponding values are reported to reflect their coexpression correlation nature, including MI and r values, their respective rank orderings, their rank comparison, and their hybrid correlation value. Furthermore, for a given gene, the top 10 most relevant genes to it are displayed with the MI, r, or their hybrid perspective, respectively. Currently, the database totally includes 16 human cell groups, involving 20,283 human genes. The expression data and the calculated correlation results from the database are interactively accessible on the web page and can be implemented for other related applications and researches.

  2. Partial sleep restriction activates immune response-related gene expression pathways: experimental and epidemiological studies in humans.

    Directory of Open Access Journals (Sweden)

    Vilma Aho

    Full Text Available Epidemiological studies have shown that short or insufficient sleep is associated with increased risk for metabolic diseases and mortality. To elucidate mechanisms behind this connection, we aimed to identify genes and pathways affected by experimentally induced, partial sleep restriction and to verify their connection to insufficient sleep at population level. The experimental design simulated sleep restriction during a working week: sleep of healthy men (N = 9 was restricted to 4 h/night for five nights. The control subjects (N = 4 spent 8 h/night in bed. Leukocyte RNA expression was analyzed at baseline, after sleep restriction, and after recovery using whole genome microarrays complemented with pathway and transcription factor analysis. Expression levels of the ten most up-regulated and ten most down-regulated transcripts were correlated with subjective assessment of insufficient sleep in a population cohort (N = 472. Experimental sleep restriction altered the expression of 117 genes. Eight of the 25 most up-regulated transcripts were related to immune function. Accordingly, fifteen of the 25 most up-regulated Gene Ontology pathways were also related to immune function, including those for B cell activation, interleukin 8 production, and NF-κB signaling (P<0.005. Of the ten most up-regulated genes, expression of STX16 correlated negatively with self-reported insufficient sleep in a population sample, while three other genes showed tendency for positive correlation. Of the ten most down-regulated genes, TBX21 and LGR6 correlated negatively and TGFBR3 positively with insufficient sleep. Partial sleep restriction affects the regulation of signaling pathways related to the immune system. Some of these changes appear to be long-lasting and may at least partly explain how prolonged sleep restriction can contribute to inflammation-associated pathological states, such as cardiometabolic diseases.

  3. The effect of the CCR5-delta32 deletion on global gene expression considering immune response and inflammation

    Directory of Open Access Journals (Sweden)

    Hütter Gero

    2011-10-01

    Full Text Available Abstract Background The natural function of the C-C chemokine receptor type 5 (CCR5 is poorly understood. A 32 base pair deletion in the CCR5 gene (CCR5-delta32 located on chromosome 3 results in a non-functional protein. It is supposed that this deletion causes an alteration in T-cell response to inflammation. For example, the presence of the CCR5-delta32 allele in recipients of allografts constitutes as an independent and protective factor associated with a decreased risk of graft-versus-host disease (GVHD and graft rejection. However, the mechanism of this beneficial effect of the deletion regarding GVHD is unknown. In this survey we searched for a CCR5-delta32 associated regulation of critical genes involved in the immune response and the development of GVHD. Methods We examined CD34+ hematopoietic progenitor cells derived from bone marrow samples from 19 healthy volunteers for the CCR5-delta32 deletion with a genomic PCR using primers flanking the site of the deletion. Results 12 individuals were found to be homozygous for CCR5 WT and 7 carried the CCR5-delta32 deletion heterozygously. Global gene expression analysis led to the identification of 11 differentially regulated genes. Six of them are connected with mechanisms of immune response and control: LRG1, CXCR2, CCRL2, CD6, CD7, WD repeat domain, and CD30L. Conclusions Our data indicate that the CCR5-delta32 mutation may be associated with differential gene expression. Some of these genes are critical for immune response, in the case of CD30L probably protective in terms of GVHD.

  4. Transcriptome profiling analysis on whole bodies of microbial challenged Eriocheir sinensis larvae for immune gene identification and SNP development.

    Directory of Open Access Journals (Sweden)

    Zhaoxia Cui

    Full Text Available To study crab immunogenetics of individuals, newly hatched Eriocheir sinensis larvae were stimulated with a mixture of three pathogen strains (Gram-positive bacteria Micrococcus luteus, Gram-negative bacteria Vibrio alginolyticus and fungi Pichia pastoris; 10(8 cfu·mL(-1. A total of 44,767,566 Illumina clean reads corresponding to 4.52 Gb nucleotides were generated and assembled into 100,252 unigenes (average length: 1,042 bp; range: 201-19,357 bp. 17,097 (26.09% of 65,535 non-redundant unigenes were annotated in NCBI non-redundant protein (Nr database. Moreover, 23,188 (35.38% unigenes were assigned to three Gene Ontology (GO categories, 15,071 (23.00% to twenty-six Clusters of orthologous Groups (COG and 8,574 (13.08% to six Kyoto Encyclopedia of Genes and Genomes (KEGG pathways, respectively. Numerous genes were further identified to be associated with multiple immune pathways, including Toll, immune deficiency (IMD, janus kinase (JAK-signal transducers and activators of transcription (STAT and mitogen-activated protein kinase (MAPK pathways. Some of them, such as tumor necrosis factor receptor associated factor 6 (TRAF6, fibroblast growth factor (FGF, protein-tyrosine phosphatase (PTP, JNK-interacting protein 1 (JIP1, were first identified in E. sinensis. TRAF6 was even first discovered in crabs. Additionally, 49,555 single nucleotide polymorphisms (SNPs were developed from over 13,309 unigenes. This is the first transcriptome report of whole bodies of E. sinensis larvae after immune challenge. Data generated here not only provide detail information to identify novel genes in genome reference-free E. sinensis, but also facilitate our understanding on host immunity and defense mechanism of the crab at whole transcriptome level.

  5. Identification of immunity-related genes in prostate cancer and potential role of the ETS family of transcription factors in their regulation.

    Science.gov (United States)

    Shaikhibrahim, Zaki; Lindstrot, Andreas; Ellinger, Jörg; Rogenhofer, Sebastian; Buettner, Reinhard; Wernert, Nicolas

    2011-11-01

    The role of the immune response in tumor progression, and disease outcome is still debated, and a lack of knowledge of the immune defenses in prostate cancer still exists. In addition, the ETS family of transcription factors which is involved in translocations frequently found in prostate cancer is reported to be essential for the regulation of immunity-related genes. In order to identify immunity-related genes in prostate cancer, we performed two microarrays using RNA extracted from laser microdissected glands of the normal prostate proper (or the peripheral zone) and moderately and poorly differentiated prostate carcinomas from patients who had undergone radical prostatectomy. Many differentially expressed genes were found, however, only immunity-related genes (B cell, innate, and T cell immunity) with an expression of more than 10-fold increase or decrease and a Pimmunity-related genes in prostate cancer, and provided insights into their potential regulation, which may lead to a better early detection, immunotherapy, and therapeutic drug treatment of this disease. Unraveling the dynamics of the ETS-immunity-related genes will provide an invaluable insight into understanding prostate cancer immunology.

  6. Ancient Astronomy in Armenia

    Science.gov (United States)

    Parsamian, Elma S.

    2007-08-01

    The most important discovery, which enriched our knowledge of ancient astronomy in Armenia, was the complex of platforms for astronomical observations on the Small Hill of Metzamor, which may be called an ancient “observatory”. Investigations on that Hill show that the ancient inhabitants of the Armenian Highlands have left us not only pictures of celestial bodies, but a very ancient complex of platforms for observing the sky. Among the ancient monuments in Armenia there is a megalithic monument, probably, being connected with astronomy. 250km South-East of Yerevan there is a structure Zorats Kar (Karahunge) dating back to II millennium B.C. Vertical megaliths many of which are more than two meters high form stone rings resembling ancient stone monuments - henges in Great Britain and Brittany. Medieval observations of comets and novas by data in ancient Armenian manuscripts are found. In the collection of ancient Armenian manuscripts (Matenadaran) in Yerevan there are many manuscripts with information about observations of astronomical events as: solar and lunar eclipses, comets and novas, bolides and meteorites etc. in medieval Armenia.

  7. Germline variation in NCF4, an innate immunity gene, is associated with an increased risk of colorectal cancer.

    Science.gov (United States)

    Ryan, Bríd M; Zanetti, Krista A; Robles, Ana I; Schetter, Aaron J; Goodman, Julie; Hayes, Richard B; Huang, Wen-Yi; Gunter, Mark J; Yeager, Meredith; Burdette, Laurie; Berndt, Sonja I; Harris, Curtis C

    2014-03-15

    Chronic inflammation has been implicated in the etiology of colorectal adenoma and cancer; however, few key inflammatory genes mediating this relationship have been identified. In this study, we investigated the association of germline variation in innate immunity genes in relation to the risk of colorectal neoplasia. Our study was based on the analysis of samples collected from the prostate, lung, colorectal and ovarian (PLCO) Cancer Screening Trial. We investigated the association between 196 tag single nucleotide polymorphisms (SNPs) in 20 key innate immunity genes with risk of advanced colorectal adenoma and cancer in 719 adenoma cases, 481 cancer cases and 719 controls. Logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CIs). After Bonferroni correction, the AG/GG genotype of rs5995355, which is upstream of NCF4, was associated with an increased risk of colorectal cancer (OR = 2.43, 95% CI = 1.73-3.39; p immune response. While not definitive, our analyses suggest that the variant allele does not affect expression of NCF4, but rather modulates activity of the NADPH complex. Additional studies on the functional consequences of rs5995355 in NCF4 may help to clarify the mechanistic link between inflammation and colorectal cancer.

  8. Temperature influences the expression profiling of immune response genes in rainbow trout following DNA vaccination and VHS virus infection

    DEFF Research Database (Denmark)

    Einer-Jensen, Katja; Gautier, Laurent; Rasmussen, Jesper Skou;

    A DNA vaccine encoding the glycoprotein (G) genes of the salmonid rhabdovirus viral haemorrhagic septicaemia virus (VHSV) has proven highly efficient against the disease caused by this virus in rainbow trout (Oncorhynchus mykiss). Several studies have demonstrated that this vaccine induces both......-PCR. The expression profiles appeared similar for the two genes in terms of temperature dependency with a faster induction and shorter duration at the higher temperature. In order to analyze the temperature effect on the relative expression profiles across a larger set of immune genes time points displaying similar...... in the controls. Further analysis of the obtained data with respect to gene regulation pathways as a result of DNA vaccination and/or viral infection will be presented....

  9. Addressing immune tolerance issues in inflammatory bowel disease and adeno-associated virus based gene transfer

    NARCIS (Netherlands)

    Majowicz, Anna

    2014-01-01

    This thesis is focusing on cell-mediated induction of immune tolerance and consists of two parts. The studies described in Part I report the development of strategies for possible treatment of Inflammatory Bowel Diseases (IBD). Induction of immune tolerance, in IBD mouse model, with the use of regul

  10. Contribution of C3d-P28 repeats to enhancement of immune responses against HBV-preS2/S induced by gene immunization

    Institute of Scientific and Technical Information of China (English)

    Li-Xin Wang; Wei Xu; Qing-Dong Guan; Yi-Wei Chu; Ying Wang; Si-Dong Xiong

    2004-01-01

    AIM: To investigate whether P28 derived from C3d can enhance the immune response to HBV-preS2/S induced by directly injection of naked plasmids containing variable repeats of P28 and HBV-preS2/S in fusion form.METHODS: One to four copies of C3d-P28 coding gene,amplified by PCR and modified by restriction endonucleases digestion, were subcloned into a eukaryotic expression vector pVAON33 to construct pVAON33-P28, pVAON33-P28.2, pVAON33-P28.3 and pVAON33-P28.4 (pVAON33-P28.[1-4]). HBV-preS2/S coding sequence was then introduced into the pVAON33-P28.[1-4] and identified by both PCR and DNA sequencing. BALB/c mice were primed by intramuscular gene immunization with 100 μg different recombinant plasmids on day 0 and were boosted by subcutaneous inoculation with HBsAg protein (1 μg) 12wk post-priming. The levels and avidity of specific IgG in sera collected at the indicated times from each group were determined by ELISA and NaSCN-displacement ELISA,respectively.RESULTS: HBsAg specific antibody response was elicited in groups primed with plasmids pVAON33-S2/S-P28.[1-4]and pVAON33-S2/S. However, the response against HBsAg in the groups primed with pVAON33-S2/S-P28.[1-4] was significantly higher than that in pVAON33-S2/S group, the highest level of the specific antibody response was observed in the groups primed with pVAON33-S2/S-P28.4 (P<0.01).After secondary immunization with specific antigen, the acceleration of antibody levels was significantly higher and faster in the mice primed with DNA expressing preS2/S-P28 fusions than that with DNA expressing preS2/S only (P<0.05).Interestingly, mice primed with DNA expressing preS2/SP28.4 fusions maintained the highest levels of anti-HBs antibodies in all animals. The avidity assay showed that the avidity index (AI) collected at 18 wk from mice primed with pVAON33-S2/S-P28.3 and pVAON33-S2/S-P28.4 were significantly higher than that from preS2/S-DNA vaccinated mice (P<0.01).CONCLUSION: Different repeats of C3d-P28 can

  11. Expression profile of immune-associated genes in the kidney of cultured large yellow croaker Larimichthys crocea in the East China Sea area

    Science.gov (United States)

    Zhao, Shujiang; Zhao, Qian; Chen, Yinghua; Lv, Baoqiang; Wu, Xiongfei; Liu, Huihui; Zhu, Aiyi; Wu, Changwen

    2016-08-01

    To explore the effect of environment conditions on immune activity of fish, eight immune-associated genes responsible for innate immunity were selected from the GenBank, i.e. Pgrn-a, Ifit2, P-hepcidin, Lect2, β2m, Irf1, Il25 and Hsp96, and the mRNA expressions of them in the kidney of cultured large yellow croaker Larimichthys crocea in different sea areas in the East China Sea were examined with qPCR techniques. In the contrasts of immune-associated gene expression between areas and populations, significant differences were found, expression levels of these immune-associated genes were lower in the clear water area than in the poor water quantity area, and lower in May than in October. MY was more sensitive to environmental factors than DQ, which was coincident with the water quality in the culturing areas. Differential analyses of the expression levels of these immune-associated genes showed that significant up-regulation could be triggered by poor environmental factors. The expression patterns indicated that the expression levels of these genes were sensitive to ecological changes, thereby the immune-associated genes, especially Pgrn-a, Ifit2, β2m, Il25 and Hsp96, might serve as immediate and sensitive indicators of population immunologic vigor and ecosystem health. But the expression of immunity-associated genes at the level of gene transcription is highly influenced by multiple factors, and the exact causes or influencing factors of the up-regulation or down-regulation of these genes still need further thorough investigation.

  12. Yeast expression and DNA immunization of hepatitis B virus S gene with second-loop deletion of α determinant region

    Institute of Scientific and Technical Information of China (English)

    Hui Hu; Xiao-Mou Peng; Yang-Su Huang; Lin Gu; Qi-Feng Xie; Zhi-Liang Gao

    2004-01-01

    AIM: Immune escape mutations of HBV often occur in the dominant epitope, the second-loop of the a determinant of hepatitis B surface antigen (HBsAg). To let the hosts respond to the subdominant epitopes in HBsAg may be an effective way to decrease the prevalence of immune escape mutants. For this reason, a man-made clone of HBV S gene with the second-loop deletion was constructed. Its antigenicity was evaluated by yeast expression analysis and DNA immunization in mice.METHODS: HBV S gene with deleted second-loop, amino acids from 139 to 145, was generated using splicing by overlap extension. HBV deleted S gene was then cloned into the yeast expression vector pPIC9 and the mammalian expression vector pcDNA3 to generate pHB-SDY and pHB-SD,respectively. The complete S gene was cloned into the same vectors as controls. The deleted recombinant HBsAg expressed in yeasts was detected using Abbott IMx HBsAg test kits, enzyme-linked immunoadsorbent assay (ELISA)and immune dot blotting to evaluate its antigenicity in vitro.The anti-HBs responses to DNA immunization in BALB/c mice were detected using Abbott IMx AUSAB test kits to evaluate the antigenicity of that recombinant protein in vivo.RESULTS: Both deleted and complete HBsAg were successfully expressed in yeasts. They were intracellular expressions. The deleted HBsAg could not be detected by ELISA, in which the monoclonal anti-HBs against the α determinant was used, but could be detected by Abbott IMx and immune dot blotting, in which multiple monoclonal antiHBs and polyclonal anti-HBs were used, respectively. The activity of the deleted HBsAg detected by Abbott IMx was much lower than that of complete HBsAg (the ratio of sample value/cut off value, 106±26.7 vs1 814.4±776.3, P<0.01,t = 5.02). The anti-HBs response of pHB-SD to DNA immunization was lower than that of complete HBV S gene vector pHB (the positive rate 2/10 vs6/10, 4.56±3.52 mIU/mL vs27.60±17.3 mIU/mL, P= 0.02, t= 2.7).CONCLUSIONS: HBsAg with deleted

  13. RNA-seq profiles of immune related genes in the staghorn coral Acropora cervicornis infected with white band disease.

    Science.gov (United States)

    Libro, Silvia; Kaluziak, Stefan T; Vollmer, Steven V

    2013-01-01

    Coral diseases are among the most serious threats to coral reefs worldwide, yet most coral diseases remain poorly understood. How the coral host responds to pathogen infection is an area where very little is known. Here we used next-generation RNA-sequencing (RNA-seq) to produce a transcriptome-wide profile of the immune response of the Staghorn coral Acropora cervicornis to White Band Disease (WBD) by comparing infected versus healthy (asymptomatic) coral tissues. The transcriptome of A. cervicornis was assembled de novo from A-tail selected Illumina mRNA-seq data from whole coral tissues, and parsed bioinformatically into coral and non-coral transcripts using existing Acropora genomes in order to identify putative coral transcripts. Differentially expressed transcripts were identified in the coral and non-coral datasets to identify genes that were up- and down-regulated due to disease infection. RNA-seq analyses indicate that infected corals exhibited significant changes in gene expression across 4% (1,805 out of 47,748 transcripts) of the coral transcriptome. The primary response to infection included transcripts involved in macrophage-mediated pathogen recognition and ROS production, two hallmarks of phagocytosis, as well as key mediators of apoptosis and calcium homeostasis. The strong up-regulation of the enzyme allene oxide synthase-lipoxygenase suggests a key role of the allene oxide pathway in coral immunity. Interestingly, none of the three primary innate immune pathways--Toll-like receptors (TLR), Complement, and prophenoloxydase pathways, were strongly associated with the response of A. cervicornis to infection. Five-hundred and fifty differentially expressed non-coral transcripts were classified as metazoan (n = 84), algal or plant (n = 52), fungi (n = 24) and protozoans (n = 13). None of the 52 putative Symbiodinium or algal transcript had any clear immune functions indicating that the immune response is driven by the coral host, and not its algal

  14. RNA-seq profiles of immune related genes in the staghorn coral Acropora cervicornis infected with white band disease.

    Directory of Open Access Journals (Sweden)

    Silvia Libro

    Full Text Available Coral diseases are among the most serious threats to coral reefs worldwide, yet most coral diseases remain poorly understood. How the coral host responds to pathogen infection is an area where very little is known. Here we used next-generation RNA-sequencing (RNA-seq to produce a transcriptome-wide profile of the immune response of the Staghorn coral Acropora cervicornis to White Band Disease (WBD by comparing infected versus healthy (asymptomatic coral tissues. The transcriptome of A. cervicornis was assembled de novo from A-tail selected Illumina mRNA-seq data from whole coral tissues, and parsed bioinformatically into coral and non-coral transcripts using existing Acropora genomes in order to identify putative coral transcripts. Differentially expressed transcripts were identified in the coral and non-coral datasets to identify genes that were up- and down-regulated due to disease infection. RNA-seq analyses indicate that infected corals exhibited significant changes in gene expression across 4% (1,805 out of 47,748 transcripts of the coral transcriptome. The primary response to infection included transcripts involved in macrophage-mediated pathogen recognition and ROS production, two hallmarks of phagocytosis, as well as key mediators of apoptosis and calcium homeostasis. The strong up-regulation of the enzyme allene oxide synthase-lipoxygenase suggests a key role of the allene oxide pathway in coral immunity. Interestingly, none of the three primary innate immune pathways--Toll-like receptors (TLR, Complement, and prophenoloxydase pathways, were strongly associated with the response of A. cervicornis to infection. Five-hundred and fifty differentially expressed non-coral transcripts were classified as metazoan (n = 84, algal or plant (n = 52, fungi (n = 24 and protozoans (n = 13. None of the 52 putative Symbiodinium or algal transcript had any clear immune functions indicating that the immune response is driven by the coral host, and not

  15. A novel naturally occurring tandem promoter in modified vaccinia virus ankara drives very early gene expression and potent immune responses.

    Directory of Open Access Journals (Sweden)

    Sonia T Wennier

    Full Text Available Modified vaccinia virus Ankara (MVA has been shown to be suitable for the generation of experimental vaccines against cancer and infectious diseases, eliciting strong humoral and cellular immune responses. In viral vectored vaccines, strong recombinant antigen expression and timing of expression influence the quantity and quality of the immune response. Screening of synthetic and native poxvirus promoters for strong protein expression in vitro and potent immune responses in vivo led to the identification of the MVA13.5L promoter, a unique and novel naturally occurring tandem promoter in MVA composed of two 44 nucleotide long repeated motifs, each containing an early promoter element. The MVA13.5L gene is highly conserved across orthopoxviruses, yet its function is unknown. The unique structure of its promoter is not found for any other gene in the MVA genome and is also conserved in other orthopoxviruses. Comparison of the MVA13.5L promoter activity with synthetic poxviral promoters revealed that the MVA13.5L promoter produced higher levels of protein early during infection in HeLa cells and particularly in MDBK cells, a cell line in which MVA replication stops at an early stage before the expression of late genes. Finally, a recombinant antigen expressed under the control of this novel promoter induced high antibody titers and increased CD8 T cell responses in homologous prime-boost immunization compared to commonly used promoters. In particular, the recombinant antigen specific CD8 T cell responses dominated over the immunodominant B8R vector-specific responses after three vaccinations and even more during the memory phase. These results have identified the native MVA13.5L promoter as a new potent promoter for use in MVA vectored preventive and therapeutic vaccines.

  16. Characterization of the miiuy croaker (Miichthys miiuy transcriptome and development of immune-relevant genes and molecular markers.

    Directory of Open Access Journals (Sweden)

    Rongbo Che

    Full Text Available BACKGROUND: The miiuy croaker (Miichthys miiuy is an important species of marine fish that supports capture fisheries and aquaculture. At present commercial scale aquaculture of this species is limited due to diseases caused by pathogens and parasites which restrict production and limit commercial value. The lack of transcriptomic and genomic information for the miiuy croaker limits the ability of researchers to study the pathogenesis and immune system of this species. In this study we constructed a cDNA library from liver, spleen and kidney which was sequenced using Illumina paired-end sequencing to enable gene discovery and molecular marker development. PRINCIPAL FINDINGS: In our study, a total of 69,071 unigenes with an average length of 572 bp were obtained. Of these, 45,676 (66.13% were successfully annotated in public databases. The unigenes were also annotated with Gene Ontology, Clusters of Orthologous Groups and KEGG pathways. Additionally, 498 immune-relevant genes were identified and classified. Furthermore, 14,885 putative simple sequence repeats (cSSRs and 8,510 putative single nucleotide polymorphisms (SNPs were identified from the 69,071 unigenes. CONCLUSION: The miiuy croaker (Miichthys miiuy transcriptome data provides a large resource to identify new genes involved in many processes including those involved in the response to pathogens and diseases. Furthermore, the thousands of potential cSSR and SNP markers found in this study are important resources with respect to future development of molecular marker assisted breeding programs for the miiuy croaker.

  17. Increased expression of immune-related genes in leukocytes of patients with diagnosed gestational diabetes mellitus (GDM).

    Science.gov (United States)

    Wojcik, Marzena; Zieleniak, Andrzej; Zurawska-Klis, Monika; Cypryk, Katarzyna; Wozniak, Lucyna Alicja

    2016-03-01

    Compelling evidence indicates that the immune system is linked to metabolism in gestational diabetes mellitus (GDM), but factors participating in these processes still are awaiting identification. Inducible nitric oxide synthase, encoded by the NOS2 gene, and surfactant protein D, encoded by the SFTPD gene, have been implicated in diabetes. We investigated NOS2 and SFTPD mRNA levels in leukocytes obtained from 125 pregnant women with (n = 87) or without (control group; n = 38) GDM, and, in turn, correlated their expression with clinical parameters of subjects. Leukocytes were isolated from the blood of pregnant women and NOS2 and SFTPD expression in these cells was determined by quantitative real time PCR (qRT-PCR). Univariate correlation analyses were performed to assess an association between leukocyte NOS2 and SFTPD expression and clinical characteristics of patients. qRT-PCR experiments disclosed significantly increased leukocyte NOS2 and SFTPD mRNA levels in hyperglycemic GDM patients (P diabetic patients. Furthermore, alterations in the expression of these genes are associated with glucose metabolism dysfunction and/or inflammation during pregnancy. In addition, these findings support the utilization of leukocytes as good experimental model to study a relationship between immune-related genes and metabolic changes in women with GDM, as well as to assess the potential mechanisms underlying these alterations.

  18. AAV-based neonatal gene therapy for hemophilia A: long-term correction and avoidance of immune responses in mice.

    Science.gov (United States)

    Hu, C; Lipshutz, G S

    2012-12-01

    Hemophilia A gene therapy has been hampered by immune responses to vector-associated antigens and by neutralizing antibodies or inhibitors against the factor VIII (FVIII) protein; these 'inhibitors' more commonly affect hemophilia A patients than those with hemophilia B. A gene replacement strategy beginning in the neonatal period may avoid the development of these immune responses and lead to prolonged expression with correction of phenotype, thereby avoiding long-term consequences. A serotype rh10 adeno-associated virus (AAV) was developed splitting the FVIII coding sequence into heavy and light chains with the chicken β-actin promoter/CMV enhancer for dual recombinant adeno-associated viral vector delivery. Virions of each FVIII chain were co-injected intravenously into mice on the second day of life. Mice express sustained levels of FVIII antigen ≥5% up to 22 months of life without development of antibodies against FVIII. Phenotypic correction was manifest in all AAV-FVIII-treated mice as demonstrated by functional assay and reduction in bleeding time. This study demonstrates the use of AAV in a gene replacement strategy in neonatal mice that establishes both long-term phenotypic correction of hemophilia A and lack of antibody development against FVIII in this disease model where AAV is administered shortly after birth. These studies support the consideration of gene replacement therapy for diseases that are diagnosed in utero or in the early neonatal period.

  19. Rapid screening of innate immune gene expression in zebrafish using reverse transcription - multiplex ligation-dependent probe amplification

    Directory of Open Access Journals (Sweden)

    Spaink Herman P

    2011-06-01

    Full Text Available Abstract Background With the zebrafish increasingly being used in immunology and infectious disease research, there is a need for efficient molecular tools to evaluate immune gene expression in this model species. RT-MLPA (reverse transcription - multiplex ligation-dependent probe amplification provides a sensitive and reproducible method, in which fluorescently labelled amplification products of unique lengths are produced for a defined set of target transcripts. The method employs oligonucleotide probes that anneal to adjacent sites on a target sequence and are then joined by a heat-stable ligase. Subsequently, multiplex PCR with universal primers gives rise to amplicons that can be analyzed with standard sequencing equipment and relative quantification software. Allowing the simultaneous quantification of around 40 selected markers in a one-tube assay, RT-MLPA is highly useful for high-throughput screening applications. Findings We employed a dual-colour RT-MLPA probe design for chemical synthesis of probe pairs for 34 genes involved in Toll-like receptor signalling, transcriptional activation of the immune response, cytokine and chemokine production, and antimicrobial defence. In addition, six probe pairs were included for reference genes unaffected by infections in zebrafish. First, we established assay conditions for adult zebrafish infected with different strains of Mycobacterium marinum causing acute and chronic disease. Addition of competitor oligonucleotides was required to achieve peak heights in a similar range for genes with different expression levels. For subsequent analysis of embryonic samples it was necessary to adjust the amounts of competitor oligonucleotides, as the expression levels of several genes differed to a large extent between adult and embryonic tissues. Assay conditions established for one-day-old Salmonella typhimurium-infected embryos could be transferred without further adjustment to five-day-old M. marinum

  20. ANTITUMOR IMMUNITY AND VACCINE EFFECT INDUCED BY IL-12 SYNERGIZES B7-1 GENE TRANSFECTED CELLS

    Institute of Scientific and Technical Information of China (English)

    王志华; 李弘; 张春艳

    2003-01-01

    Objective: To study the synergic effects of IL-12 and B7-1 transfectant on antitumor immunity in vivo. Methods: The retrovirus vector encoding mIL-12 and mB7-1 gene was tranfected into EL-4 thymic lymphoma cells respectively. The cells were used as tumor vaccine and the therapeutic effect was observed. Results: In contrast to the mice immunized with EL-4/Wt or EL-4/Neo groups, the tumorigenicity of EL-4/IL-12 transfectant was decreased (P<0.001). The EL-4/IL-12 and EL-4/B7-1 cells irradiated with 60Co showed significant systematic protective effects against the rechallenge of EL-4/Wt. 60Co irradiated EL-4/IL-12 cells delayed the occurrence of tumor and prolonged the survival period of tumor bearing mice. Combination of the vaccines of EL-4/IL-12 and EL-4/B7-1 resulted in the enhanced therapeutic effect compared with each single transfectant group (P<0.001). Conclusion: The results showed that IL-12 transduced cells could enhance the antitumor immunity of host as cancer vaccine. Combination of the EL-4/IL-12 and EL-4/B7-1 transfectant could improve immunity of host and is a prospect cancer vaccine.

  1. Emerging roles of interferon-stimulated genes in the innate immune response to hepatitis C virus infection.

    Science.gov (United States)

    Wong, Mun-Teng; Chen, Steve S-L

    2016-01-01

    Infection with hepatitis C virus (HCV), a major viral cause of chronic liver disease, frequently progresses to steatosis and cirrhosis, which can lead to hepatocellular carcinoma. HCV infection strongly induces host responses, such as the activation of the unfolded protein response, autophagy and the innate immune response. Upon HCV infection, the host induces the interferon (IFN)-mediated frontline defense to limit virus replication. Conversely, HCV employs diverse strategies to escape host innate immune surveillance. Type I IFN elicits its antiviral actions by inducing a wide array of IFN-stimulated genes (ISGs). Nevertheless, the mechanisms by which these ISGs participate in IFN-mediated anti-HCV actions remain largely unknown. In this review, we first outline the signaling pathways known to be involved in the production of type I IFN and ISGs and the tactics that HCV uses to subvert innate immunity. Then, we summarize the effector mechanisms of scaffold ISGs known to modulate IFN function in HCV replication. We also highlight the potential functions of emerging ISGs, which were identified from genome-wide siRNA screens, in HCV replication. Finally, we discuss the functions of several cellular determinants critical for regulating host immunity in HCV replication. This review will provide a basis for understanding the complexity and functionality of the pleiotropic IFN system in HCV infection. Elucidation of the specificity and the mode of action of these emerging ISGs will also help to identify novel cellular targets against which effective HCV therapeutics can be developed.

  2. Effect of in ovo administration of inulin and Lactococcus lactis on immune-related gene expression in broiler chickens.

    Science.gov (United States)

    Płowiec, Arkadiusz; Sławińska, Anna; Siwek, Maria Z; Bednarczyk, Marek F

    2015-11-01

    OBJECTIVE To evaluate the effect of in ovo administration of inulin and Lactococcus lactis on immune-related gene expression in broiler chickens. ANIMALS 45 Ross broilers. PROCEDURES On day 12 of embryonic development, 360 eggs were equally allocated among 3 treatment groups and injected with 0.2 mL of a solution that contained 1.76 mg of inulin (prebiotic group) or 1.76 mg of inulin enriched with 1,000 CFUs of L lactis subsp lactis 2955 (synbiotic group), or they were injected with 0.2 mL of saline (0.9% NaCl) solution (control). At 1, 14, and 35 days after hatching, 5 male birds from each group were euthanized, and the spleen and cecal tonsils were harvested for determination of interleukin (IL)-4, IL-6, IL-8, IL-12p40, IL-18, cluster of differentiation 80, interferon-β, and interferon-γ expression by means of a reverse transcription quantitative PCR assay. Gene expressions in the cecal tonsils and spleens of chickens in the prebiotic and synbiotic groups were compared with those of control chickens at each tissue collection time. RESULTS Compared with control birds, immune-related gene expression was downregulated in birds in the prebiotic and synbiotic groups, and the magnitude of that downregulation was more pronounced in the cecal tonsils than in the spleen and increased with age. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that in ovo administration of a prebiotic or synbiotic to broilers was associated with downregulation of immune-related gene expression in the cecal tonsils and spleen. The magnitude of that downregulation increased with age and was most likely caused by stabilization of the gastrointestinal microbiota.

  3. Mucosal immunization with recombinant adenoviral vectors expressing murine gammaherpesvirus-68 genes M2 and M3 can reduce latent viral load

    DEFF Research Database (Denmark)

    Hoegh-Petersen, Mette; Thomsen, Allan R; Christensen, Jan P

    2009-01-01

    of the gammaherpesvirinae speaks against using a similar approach in humans. DNA immunization with plasmids encoding the MHV-68 genes M2 or M3 caused a reduction in either acute or early latent viral load, respectively, but neither immunization had an effect at times later than 14 days post-infection. Adenovirus......-based vaccines are substantially more immunogenic than DNA vaccines and can be applied to induce mucosal immunity. Here we show that a significant reduction of the late viral load in the spleens, at 60 days post-infection, was achieved when immunizing mice both intranasally and subcutaneously with adenoviral...

  4. Extended LTA, TNF, LST1 and HLA gene haplotypes and their association with rubella vaccine-induced immunity.

    Directory of Open Access Journals (Sweden)

    Inna G Ovsyannikova

    Full Text Available BACKGROUND: Recent studies have suggested the importance of HLA genes in determining immune responses following rubella vaccine. The telomeric class III region of the HLA complex harbors several genes, including lymphotoxin alpha (LTA, tumor necrosis factor (TNF and leukocyte specific transcript -1 (LST1 genes, located between the class I B and class II DRB1 loci. Apart from HLA, little is known about the effect of this extended genetic region on HLA haplotypic backgrounds as applied to immune responses. METHODOLOGY/PRINCIPAL FINDINGS: We examined the association between immune responses and extended class I-class II-class III haplotypes among 714 healthy children after two doses of rubella vaccination. These extended haplotypes were then compared to the HLA-only haplotypes. The most significant association was observed between haplotypes extending across the HLA class I region, ten-SNP haplotypes, and the HLA class II region (i.e. A-C-B-LTA-TNF-LST1-DRB1-DQA1-DQB1-DPA1-DPB1 and rubella-specific antibodies (global p-value of 0.03. Associations were found between both extended A*02-C*03-B*15-AAAACGGGGC-DRB1*04-DQA1*03-DQB1*03-DPA1*01-DPB1*04 (p = 0.002 and HLA-only A*02-C*03-B*15-DRB1*04-DQA1*03-DQB1*03-DPA1*01-DPB1*04 haplotypes (p = 0.009 and higher levels of rubella antibodies. The class II HLA-only haplotype DRB1*13-DQA1*01-DQB1*06-DPA1*01-DPB1*04 (p = 0.04 lacking LTA-TNF-LST1 SNPs was associated with lower rubella antibody responses. Similarly, the class I-class II HLA-only A*01-C*07-B*08-DRB1*03-DQA1*05-DQB1*02-DPA1*01-DPB1*04 haplotype was associated with increased TNF-alpha secretion levels (p = 0.009. In contrast, the extended AAAACGGGGC-DRB1*01-DQA1*01-DQB1*05-DPA1*01-DPB1*04 (p = 0.01 haplotype was found to trend with decreased rubella-specific IL-6 secretion levels. CONCLUSIONS/SIGNIFICANCE: These data suggest the importance of examining both HLA genes and genes in the class III region as part of the extended haplotypes useful in

  5. Ancient Marital Rites

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    Clearly defined rites governing speech and actions dominated both the social and domestic activities of ancient Chinese people. Rites not only dominated the lives of men, but were also prominent in the lives of women.

  6. Ancient Chinese Architecture

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    CHINESE people have accu-mulated a great deal ofexperience in architecture,constantly improving building ma-terials and thus creating uniquebuilding styles.The history of ancient Chinesearchitechtural development can be

  7. Transcriptome analysis to identify genes for peptides and proteins involved in immunity and reproduction from male accessory glands and ejaculatory duct of Bactrocera dorsalis.

    Science.gov (United States)

    Wei, Dong; Tian, Chuan-Bei; Liu, Shi-Huo; Wang, Tao; Smagghe, Guy; Jia, Fu-Xian; Dou, Wei; Wang, Jin-Jun

    2016-06-01

    In the male reproductive system of insects, the male accessory glands and ejaculatory duct (MAG/ED) are important organs and their primary function is to enhance the fertility of spermatozoa. Proteins secreted by the MAG/ED are also known to induce post-mating changes and immunity responses in the female insect. To understand the gene expression profile in the MAG/ED of the oriental fruit fly Bactrocera dorsalis (Hendel), that is an important pest in fruits, we performed an Illumina-based deep sequencing of mRNA. This yielded 54,577,630 clean reads corresponding to 4.91Gb total nucleotides that were assembled and clustered to 30,669 unigenes (average 645bp). Among them, 20,419 unigenes were functionally annotated to known proteins/peptides in Gene Orthology, Clusters of Orthologous Groups, Kyoto Encyclopedia of Genes and Genomes pathway databases. Typically, many genes were involved in immunity and these included microbial recognition proteins and antimicrobial peptides. Subsequently, the inducible expression of these immunity-related genes was confirmed by qRT-PCR analysis when insects were challenged with immunity-inducible factors, suggesting their function in guaranteeing fertilization success. Besides, we identified some important reproductive genes such as juvenile hormone- and ecdysteroid-related genes in this de novo assembly. In conclusion, this transcriptomic sequencing of B. dorsalis MAG/ED provides insights to facilitate further functional research of reproduction, immunity and molecular evolution of reproductive proteins in this important agricultural pest.

  8. Massively parallel RNA sequencing identifies a complex immune gene repertoire in the lophotrochozoan Mytilus edulis.

    Directory of Open Access Journals (Sweden)

    Eva E R Philipp

    Full Text Available The marine mussel Mytilus edulis and its closely related sister species are distributed world-wide and play an important role in coastal ecology and economy. The diversification in different species and their hybrids, broad ecological distribution, as well as the filter feeding mode of life has made this genus an attractive model to investigate physiological and molecular adaptations and responses to various biotic and abiotic environmental factors. In the present study we investigated the immune system of Mytilus, which may contribute to the ecological plasticity of this species. We generated a large Mytilus transcriptome database from different tissues of immune challenged and stress treated individuals from the Baltic Sea using 454 pyrosequencing. Phylogenetic comparison of orthologous groups of 23 species demonstrated the basal position of lophotrochozoans within protostomes. The investigation of immune related transcripts revealed a complex repertoire of innate recognition receptors and downstream pathway members including transcripts for 27 toll-like receptors and 524 C1q domain containing transcripts. NOD-like receptors on the other hand were absent. We also found evidence for sophisticated TNF, autophagy and apoptosis systems as well as for cytokines. Gill tissue and hemocytes showed highest expression of putative immune related contigs and are promising tissues for further functional studies. Our results partly contrast with findings of a less complex immune repertoire in ecdysozoan and other lophotrochozoan protostomes. We show that bivalves are interesting candidates to investigate the evolution of the immune system from basal metazoans to deuterostomes and protostomes and provide a basis for future molecular work directed to immune system functioning in Mytilus.

  9. Bioinformatics analysis of the factors controlling type I IFN gene expression in autoimmune disease and virus-induced immunity

    Directory of Open Access Journals (Sweden)

    Di eFeng

    2013-09-01

    Full Text Available Patients with systemic lupus erythematosus (SLE and Sjögren's syndrome (SS display increased levels of type I IFN-induced genes. Plasmacytoid dendritic cells (PDCs are natural interferon producing cells and considered to be a primary source of IFN-α in these two diseases. Differential expression patterns of type I IFN inducible transcripts can be found in different immune cell subsets and in patients with both active and inactive autoimmune disease. A type I IFN gene signature generally consists of three groups of IFN-induced genes - those regulated in response to virus-induced type I IFN, those regulated by the IFN-induced mitogen-activated protein kinase/extracellular-regulated kinase (MAPK/ERK pathway, and those by the IFN-induced phosphoinositide-3 kinase (PI-3K pathway. These three groups of type I IFN-regulated genes control important cellular processes such as apoptosis, survival, adhesion, and chemotaxis, that when dysregulated, contribute to autoimmunity. With the recent generation of large datasets in the public domain from next-generation sequencing and DNA microarray experiments, one can perform detailed analyses of cell type-specific gene signatures as well as identify distinct transcription factors that differentially regulate these gene signatures. We have performed bioinformatics analysis of data in the public domain and experimental data from our lab to gain insight into the regulation of type I IFN gene expression. We have found that the genetic landscape of the IFNA and IFNB genes are occupied by transcription factors, such as insulators CTCF and cohesin, that negatively regulate transcription, as well as IRF5 and IRF7, that positively and distinctly regulate IFNA subtypes. A detailed understanding of the factors controlling type I IFN gene transcription will significantly aid in the identification and development of new therapeutic strategies targeting the IFN pathway in autoimmune disease.

  10. Pentraxins and immunity

    OpenAIRE

    Priya Nagar; Deepak Viswanath; Munivenkatappa Lakshmaiah Venkatesh Prabhuji

    2014-01-01

    Pentraxin-3 (PTX3) is a multifactorial protein involved in immunity and inflammation, which is rapidly produced and released by several cell types in response to inflammatory signals. It may be suggested that PTX3 is related to periodontal tissue inflammation. Its salivary concentrations may have a diagnostic potential. Pentraxin-3 (PTX3) is an ancient family of multifactorial proteins involved in immunity and inflammation. They are rapidly produced and released by various types of cells when...

  11. Immune response genes receptors expression and polymorphisms in relation to multiple sclerosis susceptibility and response to INF-β therapy.

    Science.gov (United States)

    Karam, Rehab A; Rezk, Noha A; Amer, Mona M; Fathy, Hala A

    2016-09-01

    Interferon (IFN)-β is one of the disease modifying drugs used in the treatment of multiple sclerosis. A predictive marker that indicates good or poor response to the treatment is highly desirable. We aimed to investigate the relation between the immune response genes receptors (IFNAR1, IFNAR2, and CCR5) expression and their polymorhic variants and multiple sclerosis (MS) susceptibility as well as the response to IFN-β therapy. The immune response genes receptors expression and genotyping were analyzed in 80 patients with MS, treated with IFN-β and in 110 healthy controls. There was a significant decrease of IFNAR1 and IFNAR2 mRNA expression and a significant increase of CCR5 mRNA expression in MS patients compared with the control group. Also, the level of IFNAR1, IFNAR2, and CCR5 mRNA expression was found to be significantly lower in the responders than nonresponders. Carriers of IFNAR1 18417 C/C genotype and C allele had an increased risk of developing MS. There was a significant relation between CCR5 Δ32 allele and IFN-β treatment response in MS patients. Our results highlighted the significance of IFNAR and CCR5 genes in multiple sclerosis risk and the response to IFN-β therapy. © 2016 IUBMB Life, 68(9):727-734, 2016.

  12. Polymorphisms in bovine immune genes and their associations with somatic cell count and milk production in dairy cattle

    Directory of Open Access Journals (Sweden)

    Magee David A

    2010-11-01

    Full Text Available Abstract Background Mastitis, an inflammation of the mammary gland, is a major source of economic loss on dairy farms. The aim of this study was to quantify the associations between two previously identified polymorphisms in the bovine toll-like receptor 2 (TLR2 and chemokine receptor 1 (CXCR1 genes and mammary health indictor traits in (a 246 lactating dairy cow contemporaries representing five breeds from one research farm and (b 848 Holstein-Friesian bulls that represent a large proportion of the Irish dairy germplasm. To expand the study, a further 14 polymorphisms in immune genes were included for association studies in the bull population. Results TLR4-2021 associated (P SERPINA1 haplotype with superior genetic merit for milk protein yield and milk fat percentage (P Conclusion Of the sixteen polymorphisms in seven immune genes genotyped, just CXCR1-777 tended to associate with SCS, albeit only in the on-farm study. The lack of an association between the polymorphisms with SCS in the Holstein-Friesian data set would question the potential importance of these variants in selection for improved mastitis resistance in the Holstein-Friesian cow.

  13. Unraveling the effects of selection and demography on immune gene variation in free-ranging plains zebra (Equus quagga populations.

    Directory of Open Access Journals (Sweden)

    Pauline L Kamath

    Full Text Available Demography, migration and natural selection are predominant processes affecting the distribution of genetic variation among natural populations. Many studies use neutral genetic markers to make inferences about population history. However, the investigation of functional coding loci, which directly reflect fitness, is critical to our understanding of species' ecology and evolution. Immune genes, such as those of the Major Histocompatibility Complex (MHC, play an important role in pathogen recognition and provide a potent model system for studying selection. We contrasted diversity patterns of neutral data with MHC loci, ELA-DRA and -DQA, in two southern African plains zebra (Equus quagga populations: Etosha National Park, Namibia, and Kruger National Park, South Africa. Results from neutrality tests, along with observations of elevated diversity and low differentiation across populations, supported previous genus-level evidence for balancing selection at these loci. Despite being low, MHC divergence across populations was significant and may be attributed to drift effects typical of geographically separated populations experiencing little to no gene flow, or alternatively to shifting allele frequency distributions driven by spatially variable and fluctuating pathogen communities. At the DRA, zebra exhibited geographic differentiation concordant with microsatellites and reduced levels of diversity in Etosha due to highly skewed allele frequencies that could not be explained by demography, suggestive of spatially heterogeneous selection and local adaptation. This study highlights the complexity in which selection affects immune gene diversity and warrants the need for further research on the ecological mechanisms shaping patterns of adaptive variation among natural populations.

  14. Polymorphisms in key innate immune genes and their effects on measles vaccine responses and vaccine failure in children from Mozambique.

    Science.gov (United States)

    Clifford, Holly D; Hayden, Catherine M; Khoo, Siew-Kim; Naniche, Denise; Mandomando, Inacio M; Zhang, Guicheng; Richmond, Peter; Le Souëf, Peter N

    2012-09-21

    Despite an effective vaccine, measles remains a major health problem globally, particularly in developing countries. More than 30% of children show primary vaccine failure and therefore remain vulnerable to measles. Genetic variation in key innate pathogen recognition receptors, such as the measles cell entry receptors CD46 and SLAM, measles attachment receptor DC-SIGN, the antiviral toll-like receptors (TLR)3, TLR7 and TLR8, and the cytosolic antiviral receptor RIG-I, may significantly affect measles IgG antibody responses. Measles is still highly prevalent in developing countries such as those in Africa however there is no previous data on the effect of these innate immune genes in a resident African population. Polymorphisms (n=29) in the candidate genes were genotyped in a cohort of vaccinated children (n=238) aged 6 months-14 years from Mozambique, Africa who either had vaccine failure and contracted measles (cases; n=66) or controls (n=172). Contrasting previous associations with measles responses in Caucasians and/or strong evidence for candidacy, we found little indication that these key innate immune genes affect measles IgG responses in our cohort of Mozambican children. We did however identify that CD46 and TLR8 variants may be involved in the occurrence of measles vaccine failure. This study highlights the importance of genetic studies in resident, non-Caucasian populations, from areas where determining the factors that may affect measles control is of a high priority.

  15. Arabidopsis BRCA2 and RAD51 proteins are specifically involved in defense gene transcription during plant immune responses

    Science.gov (United States)

    Wang, Shui; Durrant, Wendy E.; Song, Junqi; Spivey, Natalie W.; Dong, Xinnian

    2010-01-01

    Systemic acquired resistance (SAR) is a plant immune response associated with both transcriptional reprogramming and increased homologous DNA recombination (HR). SNI1 is a negative regulator of SAR and HR, as indicated by the increased basal expression of defense genes and HR in sni1. We found that the sni1 phenotypes are rescued by mutations in BREAST CANCER 2 (BRCA2). In humans, BRCA2 is a mediator of RAD51 in pairing of homologous DNA. Mutations in BRCA2 cause predisposition to breast/ovarian cancers; however, the role of the BRCA2–RAD51 complex in transcriptional regulation remains unclear. In Arabidopsis, both brca2 and rad51 were found to be hypersusceptible not only to genotoxic substances, but also to pathogen infections. A whole-genome microarray analysis showed that downstream of NPR1, BRCA2A is a major regulator of defense-related gene transcription. ChIP demonstrated that RAD51 is specifically recruited to the promoters of defense genes during SAR. This recruitment is dependent on the SAR signal salicylic acid (SA) and on the function of BRCA2. This study provides the molecular evidence showing that the BRCA2–RAD51 complex, known for its function in HR, also plays a direct and specific role in transcription regulation during plant immune responses. PMID:21149701

  16. Immune-related genes in gastropods and bivalves: a comparative overview

    Directory of Open Access Journals (Sweden)

    M Gerdol

    2017-04-01

    Full Text Available The biological diversity of molluscs and their adaptation to highly diverse environments offer a unique opportunity for studying the evolution of the innate immune system in invertebrates. This review provides an updated account about the progresses made over the past few years in the study of the molecular players involved in the recognition of pathogen associated molecular patters (PAMPs, in the transduction of immune signaling and in the elimination of potentially pathogenic microbes in gastropod and bivalve molluscs. A major focus will be put on the differences and peculiarities of the molecular immune system of the two major molluscan classes, which have developed specific adaptations to cope with diverse living environments, pathogenic and nonpathogenic microbes over the course of several hundred million years of independent evolution. Intriguing but still poorly understood aspects, such as antiviral response and immune priming, will be also explored, highlighting the present challenges and opportunities connected to the application of modern genomics techniques to the study of the immune system in these fascinating metazoans.

  17. Genome analysis of a simultaneously predatory and prey-independent, novel Bdellovibrio bacteriovorus from the River Tiber, supports in silico predictions of both ancient and recent lateral gene transfer from diverse bacteria

    Directory of Open Access Journals (Sweden)

    Hobley Laura

    2012-11-01

    Full Text Available Abstract Background Evolution equipped Bdellovibrio bacteriovorus predatory bacteria to invade other bacteria, digesting and replicating, sealed within them thus preventing nutrient-sharing with organisms in the surrounding environment. Bdellovibrio were previously described as “obligate predators” because only by mutations, often in gene bd0108, are 1 in ~1x107 of predatory lab strains of Bdellovibrio converted to prey-independent growth. A previous genomic analysis of B. bacteriovorus strain HD100 suggested that predatory consumption of prey DNA by lytic enzymes made Bdellovibrio less likely than other bacteria to acquire DNA by lateral gene transfer (LGT. However the Doolittle and Pan groups predicted, in silico, both ancient and recent lateral gene transfer into the B. bacteriovorus HD100 genome. Results To test these predictions, we isolated a predatory bacterium from the River Tiber- a good potential source of LGT as it is rich in diverse bacteria and organic pollutants- by enrichment culturing with E. coli prey cells. The isolate was identified as B. bacteriovorus and named as strain Tiberius. Unusually, this Tiberius strain showed simultaneous prey-independent growth on organic nutrients and predatory growth on live prey. Despite the prey-independent growth, the homolog of bd0108 did not have typical prey-independent-type mutations. The dual growth mode may reflect the high carbon content of the river, and gives B. bacteriovorus Tiberius extended non-predatory contact with the other bacteria present. The HD100 and Tiberius genomes were extensively syntenic despite their different cultured-terrestrial/freshly-isolated aquatic histories; but there were significant differences in gene content indicative of genomic flux and LGT. Gene content comparisons support previously published in silico predictions for LGT in strain HD100 with substantial conservation of genes predicted to have ancient LGT origins but little conservation of AT

  18. In Vitro Immune Toxicity of Depleted Uranium: Effects on Murine Macrophages, CD4+ T Cells, and Gene Expression Profiles

    Science.gov (United States)

    Wan, Bin; Fleming, James T.; Schultz, Terry W.; Sayler, Gary S.

    2006-01-01

    Depleted uranium (DU) is a by-product of the uranium enrichment process and shares chemical properties with natural and enriched uranium. To investigate the toxic effects of environmental DU exposure on the immune system, we examined the influences of DU (in the form of uranyl nitrate) on viability and immune function as well as cytokine gene expression in murine peritoneal macrophages and splenic CD4+ T cells. Macrophages and CD4+ T cells were exposed to various concentrations of DU, and cell death via apoptosis and necrosis was analyzed using annexin-V/propidium iodide assay. DU cytotoxicity in both cell types was concentration dependent, with macrophage apoptosis and necrosis occurring within 24 hr at 100 μM DU exposure, whereas CD4+ T cells underwent cell death at 500 μM DU exposure. Noncytotoxic concentrations for macrophages and CD4+ T cells were determined as 50 and 100 μM, respectively. Lymphoproliferation analysis indicated that macrophage accessory cell function was altered with 200 μM DU after exposure times as short as 2 hr. Microarray and real-time reverse-transcriptase polymerase chain reaction analyses revealed that DU alters gene expression patterns in both cell types. The most differentially expressed genes were related to signal transduction, such as c-jun, NF-κ Bp65, neurotrophic factors (e.g., Mdk), chemokine and chemokine receptors (e.g., TECK/CCL25), and interleukins such as IL-10 and IL-5, indicating a possible involvement of DU in cancer development, autoimmune diseases, and T helper 2 polarization of T cells. The results are a first step in identifying molecular targets for the toxicity of DU and the elucidation of the molecular mechanisms for the immune modulation ability of DU. PMID:16393663

  19. Mammary gene expression profiles during an intramammary challenge reveal potential mechanisms linking negative energy balance with impaired immune response.

    Science.gov (United States)

    Moyes, Kasey M; Drackley, James K; Morin, Dawn E; Rodriguez-Zas, Sandra L; Everts, Robin E; Lewin, Harris A; Loor, Juan J

    2010-04-01

    Our objective was to compare mammary tissue gene expression profiles during a Streptococcus uberis (S. uberis) mastitis challenge between lactating cows subjected to dietary-induced negative energy balance (NEB; n = 5) and cows fed ad libitum to maintain positive energy balance (PEB; n = 5) to better understand the mechanisms associated with NEB and risk of mastitis during the transition period. The NEB cows were feed-restricted to 60% of calculated net energy for lactation requirements for 7 days, and cows assigned to PEB were fed the same diet for ad libitum intake. Five days after feed restriction, one rear mammary quarter of each cow was inoculated with 5,000 cfu of S. uberis (O140J). At 20 h postinoculation, S. uberis-infected mammary quarters from all cows were biopsied for RNA extraction. Negative energy balance resulted in 287 differentially expressed genes (DEG; false discovery rate ≤ 0.05), with 86 DEG upregulated and 201 DEG downregulated in NEB vs. PEB. Canonical pathways most affected by NEB were IL-8 signaling (10 genes), glucocorticoid receptor signaling (13), and NRF2-mediated oxidative stress response (10). Among the genes differentially expressed by NEB, cell growth and proliferation (48) and cellular development (36) were the most enriched functions. Regarding immune response, HLA-A was upregulated due to NEB, whereas the majority of genes involved in immune response were downregulated (e.g., AKT1, IRAK1, MAPK9, and TRAF6). This study provided new avenues for investigation into the mechanisms relating NEB and susceptibility to mastitis in lactating dairy cows.

  20. Fibroblasts Express Immune Relevant Genes and Are Important Sentinel Cells during Tissue Damage in Rainbow Trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Ingerslev, Hans-Christian; Ossum, Carlo Gunnar; Lindenstrom, Thomas;

    2010-01-01

    , TLR-3 and TLR-9, whereas the debris stimuli only increased expression of IL-1 beta. Consequently, an in vivo experiment was further set up. By mechanically damaging the muscle tissue of rainbow trout, it was shown that fibroblasts in the muscle tissue of rainbow trout contribute to electing a highly...... local inflammatory response following tissue injury. The damaged muscle tissue showed a strong increase in the expression of the immune genes IL-1 beta, IL-8 and TGF-beta already 4 hours post injury at the site of injury while the expression in non-damaged muscle tissue was not influenced. A weaker...

  1. Gene expression profiling of the effects of organic dust in lung epithelial and THP-1 cells reveals inductive effects on inflammatory and immune response genes.

    Science.gov (United States)

    Boggaram, Vijay; Loose, David S; Gottipati, Koteswara R; Natarajan, Kartiga; Mitchell, Courtney T

    2016-04-01

    The intensification and concentration of animal production operations expose workers to high levels of organic dusts in the work environment. Exposure to organic dusts is a risk factor for the development of acute and chronic respiratory symptoms and diseases. Lung epithelium plays important roles in the control of immune and inflammatory responses to environmental agents to maintain lung health. To better understand the effects of organic dust on lung inflammatory responses, we characterized the gene expression profiles of A549 alveolar and Beas2B bronchial epithelial and THP-1 monocytic cells influenced by exposure to poultry dust extract by DNA microarray analysis using Illumina Human HT-12 v4 Expression BeadChip. We found that A549 alveolar and Beas2B bronchial epithelial and THP-1 cells responded with unique changes in the gene expression profiles with regulation of genes encoding inflammatory cytokines, chemokines, and other inflammatory proteins being common to all the three cells. Significantly induced genes included IL-8, IL-6, IL-1β, ICAM-1, CCL2, CCL5, TLR4, and PTGS2. Validation by real-time qRT-PCR, ELISA, Western immunoblotting, and immunohistochemical staining of lung sections from mice exposed to dust extract validated DNA microarray results. Pathway analysis indicated that dust extract induced changes in gene expression influenced functions related to cellular growth and proliferation, cell death and survival, and cellular development. These data show that a broad range of inflammatory mediators produced in response to poultry dust exposure can modulate lung immune and inflammatory responses. This is the first report on organic dust induced changes in expression profiles in lung epithelial and THP-1 monocytic cells.

  2. Thyroid active agents T3 and PTU differentially affect immune gene transcripts in the head kidney of rainbow trout (Oncorynchus mykiss).

    Science.gov (United States)

    Quesada-García, Alba; Encinas, Paloma; Valdehita, Ana; Baumann, Lisa; Segner, Helmut; Coll, Julio M; Navas, José M

    2016-05-01

    In mammals, numerous reports describe an immunomodulating effect of thyroid-active compounds. In contrast, only few reports have been published on this subject in fish. We previously demonstrated that immune cells of rainbow trout (Oncorhynchus mykiss) possess thyroid hormone receptors (THRs) and that exposure of trout to the thyroid hormone 3,3',5-triiodo-l-thyronine (T3) or the antithyroid drug propylthiouracil (PTU) alters immune cell transcript levels of THR and several immune genes. The present study aims to further characterize the immunomodulating action of thyroid-active compounds in trout immune cells. We report here the use of a custom-designed 60-mer oligo immune-targeted microarray for rainbow trout to analyze the gene expression profiles induced in the head kidney by T3 and PTU. Morphometric analyses of the thyroid showed that PTU exposure increased the size of the epithelial cells, whereas T3 induced no significant effects. Both T3 and PTU had diverse and partly contrasting effects on immune transcript profiles. The strongest differential effects of T3 and PTU on gene expressions were those targeting the Mitogen Associated Protein Kinase (MAPK), NFkB, Natural Killer (NK) and Toll-Like Receptor (TLR) pathways, a number of multipath genes (MPG) such as those encoding pleiotropic transcription factors (atf1, junb, myc), as well as important pro-inflammatory genes (tnfa, tnf6, il1b) and interferon-related genes (ifng, irf10). With these results we show for the first time in a fish species that the in vivo thyroidal status modulates a diversity of immune genes and pathways. This knowledge provides the basis to investigate both mechanisms and consequences of thyroid hormone- and thyroid disruptor-mediated immunomodulation for the immunocompetence of fish.

  3. CHARACTERIZATION OF GENES INVOLVED WITH GROWTH AND IMMUNITY IN THE YELLOW PERCH (PERCA FLAVESCENS)

    Science.gov (United States)

    In most vertebrates, growth hormone (GH) stimulates growth, metabolism and immunity. In yellow perch, GH does not appear to stimulate growth which suggests a condition of GH insensitivity. Furthermore, females grow faster and larger than males and estrogen preferentially stimulates this growth. T...

  4. Protection against Vibrio alginolyticus in crimson snapper Lutjanus erythropterus immunized with a DNA vaccine containing the ompW gene.

    Science.gov (United States)

    Cai, Shuang-Hu; Lu, Yi-Shan; Jian, Ji-Chang; Wang, Bei; Huang, Yu-Cong; Tang, Ju-Fen; Ding, Yu; Wu, Zao-He

    2013-09-24

    The outer membrane proteins of Vibrio alginolyticus play an important role in the virulence of the bacterium and are potential candidates for vaccine development. In the present study, the ompW gene was cloned, expressed and purified. A DNA vaccine was constructed by inserting the ompW gene into a pcDNA plasmid. Crimson snapper Lutjanus erythropterus (Bloch) were injected intramuscularly with the recombinant plasmid pcDNA-ompW. The expression of the DNA vaccine was detected in gill, head kidney, heart, liver, spleen and injection site muscle of crimson snapper by RT-PCR 7 and 28 d post-vaccination. The ELISA results demonstrated that the DNA vaccine produced an observable antibody response in all sera of the vaccinated fish. In addition, crimson snapper immunized with the DNA vaccine showed a relative percentage survival (RPS) of 92.53%, indicating effective protection against V. alginolyticus infection.

  5. Expression of immune system-related genes during ontogeny in experimentally wounded common carp (Cyprinus carpio) larvae and juveniles

    DEFF Research Database (Denmark)

    Schmidt, Jacob; Nielsen, Michael Engelbrecht

    2014-01-01

    they were microscopically indistinguishable from normal tissue by day 3 post-wounding in all but the juvenile carp wounded on day 49 post-fertilization. In these juveniles the wounded area was still visible even 7days post-wounding. On the transcriptional level a very limited response was observed......We investigated the effect of full-thickness incisional wounding on expression of genes related to the immune system in larvae and juveniles of common carp (Cyprinus carpio). The wounds were inflicted by needle puncture immediately below the anterior part of the dorsal fin on days 7, 14, 28 and 49...... after fertilization. We followed the local gene expression 1, 3 and 7days after wounding by removing head and viscera before extracting RNA from the remaining part of the fish, including the wound area. In addition, we visually followed wound healing. Overall the wounds had regenerated to a point where...

  6. Chronic activation of the epithelial immune system of the fruit fly's salivary glands has a negative effect on organismal growth and induces a peculiar set of target genes

    Directory of Open Access Journals (Sweden)

    Abdelsadik Ahmed

    2010-04-01

    Full Text Available Abstract Background Epithelial and especially mucosal immunity represents the first line of defence against the plethora of potential pathogens trying to invade via the gastrointestinal tract. The salivary glands of the fruit fly are an indispensable part of the gastrointestinal tract, but their contribution to the mucosal immunity has almost completely been neglected. Our major goal was to elucidate if the fly's salivary glands are able to mount an immune response and what the major characteristics of this immune response are. Results Ectopic activation of the IMD-pathway within the salivary gland cells is able to induce an immune response, indicating that the salivary glands are indeed immune competent. This reaction is characterized by the concurrent expression of numerous antimicrobial peptide genes. In addition, ectopic activation of the salivary gland's immune response induces morphological changes such as dwarfism throughout all developmental stages and a significantly decreased length of the salivary glands themselves. DNA-microarray analyses of the reaction revealed a complex pattern of up- and downregulated genes. Gene ontology analyses of regulated genes revealed a significant increase in genes associated with ribosomal and proteasomal function. On the other hand, genes coding for peptide receptors and some potassium channels are downregulated. In addition, the comparison of the transcriptional events induced following IMD-activation in the trachea and the salivary glands shows also only a small overlap, indicating that the general IMD-activated core transcriptome is rather small and that the tissue specific component of this response is dominating. Among the regulated genes, those that code for signaling associated protease activity are significantly modulated. Conclusions The salivary glands are immune-competent and they contribute to the overall intestinal immune system. Although they produce antimicrobial peptides, their overall

  7. E-cigarette use results in suppression of immune and inflammatory-response genes in nasal epithelial cells similar to cigarette smoke.

    Science.gov (United States)

    Martin, Elizabeth M; Clapp, Phillip W; Rebuli, Meghan E; Pawlak, Erica A; Glista-Baker, Ellen; Benowitz, Neal L; Fry, Rebecca C; Jaspers, Ilona

    2016-07-01

    Exposure to cigarette smoke is known to result in impaired host defense responses and immune suppressive effects. However, the effects of new and emerging tobacco products, such as e-cigarettes, on the immune status of the respiratory epithelium are largely unknown. We conducted a clinical study collecting superficial nasal scrape biopsies, nasal lavage, urine, and serum from nonsmokers, cigarette smokers, and e-cigarette users and assessed them for changes in immune gene expression profiles. Smoking status was determined based on a smoking history and a 3- to 4-wk smoking diary and confirmed using serum cotinine and urine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) levels. Total RNA from nasal scrape biopsies was analyzed using the nCounter Human Immunology v2 Expression panel. Smoking cigarettes or vaping e-cigarettes resulted in decreased expression of immune-related genes. All genes with decreased expression in cigarette smokers (n = 53) were also decreased in e-cigarette smokers. Additionally, vaping e-cigarettes was associated with suppression of a large number of unique genes (n = 305). Furthermore, the e-cigarette users showed a greater suppression of genes common with those changed in cigarette smokers. This was particularly apparent for suppressed expression of transcription factors, such as EGR1, which was functionally associated with decreased expression of 5 target genes in cigarette smokers and 18 target genes in e-cigarette users. Taken together, these data indicate that vaping e-cigarettes is associated with decreased expression of a large number of immune-related genes, which are consistent with immune suppression at the level of the nasal mucosa.

  8. The Association of the Immune Response Genes to Human Papillomavirus-Related Cervical Disease in a Brazilian Population

    Directory of Open Access Journals (Sweden)

    Amanda Vansan Marangon

    2013-01-01

    Full Text Available The genetic variability of the host contributes to the risk of human papillomavirus (HPV-related cervical disease. Immune response genes to HPV must be investigated to define patients with the highest risk of developing malignant disease. The aim of this study was to investigate the association of polymorphic immune response genes, namely KIR, HLA class I and II, and single-nucleotide polymorphisms (SNPs of cytokines with HPV-related cervical disease. We selected 79 non-related, admixed Brazilian women from the state of Paraná, southern region of Brazil, who were infected with high carcinogenic risk HPV and present cervical intraepithelial neoplasia grade 3 (CIN3, and 150 HPV-negative women from the same region matched for ethnicity. KIR genes were genotyped using an in-house PCR-SSP. HLA alleles were typed using a reverse sequence-specific oligonucleotide technique. SNPs of TNF −308G>A, IL6 −174G>C, IFNG +874T>A, TGFB1 +869T>C +915G>C, and IL10 −592C>A −819C>T −1082G>A were evaluated using PCR-SSP. The KIR genes were not associated with HPV, although some pairs of i(inhibitoryKIR-ligands occurred more frequently in patients, supporting a role for NK in detrimental chronic inflammatory and carcinogenesis. Some HLA haplotypes were associated with HPV. The associations of INFG and IL10 SNPs potentially reflect impaired or invalid responses in advanced lesions.

  9. Association of Variants in Genes Related to the Immune Response and Obesity with Benign Prostatic Hyperplasia in CLUE II

    Science.gov (United States)

    Lopez, David S.; Peskoe, Sarah B.; Tsilidis, Konstantinos K.; Hoffman-Bolton, Judy; Helzlsouer, Kathy J.; Isaacs, William B.; Smith, Michael W.; Platz, Elizabeth A.

    2014-01-01

    BACKGROUND Chronic inflammation and obesity may contribute to the genesis or progression of benign prostatic hyperplasia (BPH) and BPH-associated lower urinary tract symptoms (LUTS). The influence of variants in genes related to these states on BPH has not been studied extensively. Thus, we evaluated the association of 17 single nucleotide polymorphisms (SNPs) in immune response genes (IL1B, IL6, IL8, IL10, TNF, CRP, TLR4, RNASEL) and genes involved in obesity, including insulin regulation (LEP, ADIPOQ, PPARG, TCF7L2), with BPH. METHODS BPH cases (N=568) and age-frequency matched controls (N=568) were selected from among adult male CLUE II cohort participants who responded in 2000 to a mailed questionnaire. BPH was defined as BPH surgery, use of BPH medications, or symptomatic BPH (American Urological Association Symptom Index Score ≥15). Controls were men who had not had BPH surgery, did not use BPH medications, and whose symptom score was ≤7. Age-adjusted odds ratios (OR) and 95% confidence intervals (CI) were estimated using logistic regression. RESULTS None of the candidate SNPs was statistically significantly associated with BPH. However, we could not rule out possible weak associations for CRP rs1205 (1082C>T), ADIPOQ rs1501299 (276C>A), PPARG rs1801282 (-49C>G), and TCF7L2 rs7903146 (47833T>C). After summing risk alleles, men with ≥4 had an increased BPH risk compared with those with ≤1 (OR, 1.78; 95% CI, 1.10-2.89; Ptrend=0.006). CONCLUSION SNPs in genes related to immune response and obesity, especially in combination, may be associated with BPH. PMID:25224558

  10. Correlated fragile site expression allows the identification of candidate fragile genes involved in immunity and associated with carcinogenesis

    Directory of Open Access Journals (Sweden)

    Puliti Alda

    2006-09-01

    Full Text Available Abstract Background Common fragile sites (cfs are specific regions in the human genome that are particularly prone to genomic instability under conditions of replicative stress. Several investigations support the view that common fragile sites play a role in carcinogenesis. We discuss a genome-wide approach based on graph theory and Gene Ontology vocabulary for the functional characterization of common fragile sites and for the identification of genes that contribute to tumour cell biology. Results Common fragile sites were assembled in a network based on a simple measure of correlation among common fragile site patterns of expression. By applying robust measurements to capture in quantitative terms the non triviality of the network, we identified several topological features clearly indicating departure from the Erdos-Renyi random graph model. The most important outcome was the presence of an unexpected large connected component far below the percolation threshold. Most of the best characterized common fragile sites belonged to this connected component. By filtering this connected component with Gene Ontology, statistically significant shared functional features were detected. Common fragile sites were found to be enriched for genes associated to the immune response and to mechanisms involved in tumour progression such as extracellular space remodeling and angiogenesis. Moreover we showed how the internal organization of the graph in communities and even in very simple subgraphs can be a starting point for the identification of new factors of instability at common fragile sites. Conclusion We developed a computational method addressing the fundamental issue of studying the functional content of common fragile sites. Our analysis integrated two different approaches. First, data on common fragile site expression were analyzed in a complex networks framework. Second, outcomes of the network statistical description served as sources for the

  11. Differential viral levels and immune gene expression in three stocks of Apis mellifera induced by different numbers of Varroa destructor.

    Science.gov (United States)

    Khongphinitbunjong, Kitiphong; de Guzman, Lilia I; Tarver, Matthew R; Rinderer, Thomas E; Chen, Yanping; Chantawannakul, Panuwan

    2015-01-01

    The viral levels and immune responses of Italian honey bees (IHB), Russian honey bees (RHB) and an outcross of Varroa Sensitive Hygienic bees (POL) deliberately infested with one or two foundress Varroa were compared. We found that the Deformed wing virus (DWV) level in IHB inoculated with one or two foundress Varroa increased to about 10(3) or 10(5) fold the levels of their uninfested brood. In contrast, POL (10(2) or 10(4) fold) and RHB (10(2) or l0(4) fold) supported a lower increase in DWV levels. The feeding of different stages of Varroa nymphs did not increase DWV levels of their pupal hosts. Analyses of their corresponding Varroa mites showed the same trends: two foundress Varroa yielded higher DWV levels than one foundress, and the addition of nymphs did not increase viral levels. Using the same pupae examined for the presence of viruses, 16 out of 24 genes evaluated showed significant differential mRNA expression levels among the three honey bee stocks. However, only four genes (Defensin, Dscam, PPOact and spaetzle), which were expressed at similar levels in uninfested pupae, were altered by the number of feeding foundress Varroa and levels of DWV regardless of stocks. This research provides the first evidence that immune response profiles of different honey bee stocks are induced by Varroa parasitism.

  12. Comparison of immune response in Pacific white shrimp, Litopenaeus vannamei, after knock down of Toll and IMD gene in vivo.

    Science.gov (United States)

    Liu, Yongjie; Song, Lei; Sun, Yuhang; Liu, Tao; Hou, Fujun; Liu, Xiaolin

    2016-07-01

    The Toll and immune deficiency (IMD) pathways are essential for inducing immune related genes during invasion of pathogens. In the present study, transcripts of eight pathway-related genes in Litopenaeus vannamei, including Toll, IMD, Pelle, IAP1, TRAF6, ALF, Crustin and Penaeidin3 were analyzed to further understand the potential relationship between Toll and IMD pathway. The high transcription levels of TRAF6, Pelle, Toll, IMD and IAP1 in selected tissues indicates their functional roles in Toll and IMD pathways. The increased mRNA expression of Toll and IMD detected in the early stage might suggest the inducible role of Toll and IMD upon bacterial infection. Moreover, the continuous increase of IMD and the high level of Pelle and TRAF6 in Vibrio anguillarum challenged group indicated that Gram-negative bacterium can activate both the Toll and IMD signaling pathway. Silencing of Toll by a dsRNA-mediated RNAi strongly increased the transcripts of IMD, Pelle, TRAF6, IAP1 and Akirin, knocking down of IMD also markedly increased the transcripts of Toll, Pelle, IAP1 and Akirin. Furthermore, ALF expression was significantly increased in response to V. anguillarum and Micrococcus lysodeikticus challenge, while the transcripts of Crustin and Pen3 in hemocytes were significantly reduced in V. anguillarum group, but rose significantly following M. lysodeikticus infection. In summary, we speculate that Toll and IMD pathway are not independent in shrimp, but linked to defense against bacterial infection.

  13. Long-term effects of di-octyl phthalate on the expression of immune-related genes in Tegillarca granosa

    Science.gov (United States)

    Wang, Ji; Li, Ye; Dai, Juan; Su, Xiurong; Li, Chenghua; Shen, Lingling

    2016-05-01

    Di-octyl phthalate (DOP) is widely used as a plasticizer in the plastics industry. As a result, DOP is often found in marine water ecosystems where many species are exposed to it. Our objective was to evaluate the effect of long-term (14 d) DOP exposure (2.6, 7.8, or 31.2 mg/L) on the expression of immunerelated genes in Tegillarca granosa. The expression of small heat shock protein (sHSPs) and tissue inhibitor of metalloproteinase (TIMP) were highest in clams exposed to 31.2 mg/L DOP on days 7 and 14. The relative expression of Tg-ferritin, superoxide dismutase (SOD), and metallothionein (MT) increased initially then decreased as the concentration of DOP increased. The hemoglobin of T. granosa (Tg-HbI) exhibited two distinct expression patterns at two time points. Our results suggest that the immune response of T. granosa against DOP pollution varies depending on the dose. Additionally, we identified some immune-related genes that are promising candidates for biomarkers of DOP.

  14. Combining Cytotoxic and Immune-Mediated Gene Therapy to Treat Brain Tumors

    OpenAIRE

    Curtin, James; King, Gwendalyn; Candolfi, Marianela; Greeno, Remy; Kroeger, Kurt; Lowenstein, Pedro; Castro,Maria

    2005-01-01

    Glioblastoma (GBM) is a type of intracranial brain tumor, for which there is no cure. In spite of advances in surgery, chemotherapy and radiotherapy, patients die within a year of diagnosis. Therefore, there is a critical need to develop novel therapeutic approaches for this disease. Gene therapy, which is the use of genes or other nucleic acids as drugs, is a powerful new treatment strategy which can be developed to treat GBM. Several treatment modalities are amenable for gene therapy implem...

  15. Down-regulation of IKKβ expression in glioma-infiltrating microglia/macrophages is associated with defective inflammatory/immune gene responses in glioblastoma.

    Science.gov (United States)

    Mieczkowski, Jakub; Kocyk, Marta; Nauman, Pawel; Gabrusiewicz, Konrad; Sielska, Małgorzata; Przanowski, Piotr; Maleszewska, Marta; Rajan, Wenson D; Pszczolkowska, Dominika; Tykocki, Tomasz; Grajkowska, Wieslawa; Kotulska, Katarzyna; Roszkowski, Marcin; Kostkiewicz, Boguslaw; Kaminska, Bozena

    2015-10-20

    Glioblastoma (GBM) is an aggressive malignancy associated with profound host immunosuppression. Microglia and macrophages infiltrating GBM acquire the pro-tumorigenic, M2 phenotype and support tumor invasion, proliferation, survival, angiogenesis and block immune responses both locally and systematically. Mechanisms responsible for immunological deficits in GBM patients are poorly understood. We analyzed immune/inflammatory gene expression in five datasets of low and high grade gliomas, and performed Gene Ontology and signaling pathway analyses to identify defective transcriptional responses. The expression of many immune/inflammatory response and TLR signaling pathway genes was reduced in high grade gliomas compared to low grade gliomas. In particular, we found the reduced expression of the IKBKB, a gene coding for IKKβ, which phosphorylates IκB proteins and represents a convergence point for most signal transduction pathways leading to NFκB activation. The reduced IKBKB expression and IKKβ levels in GBM tissues were demonstrated by qPCR, Western blotting and immunohistochemistry. The IKKβ expression was down-regulated in microglia/macrophages infiltrating glioblastoma. NFκB activation, prominent in microglia/macrophages infiltrating low grade gliomas, was reduced in microglia/macrophages in glioblastoma tissues. Down-regulation of IKBKB expression and NFκB signaling in microglia/macrophages infiltrating glioblastoma correlates with defective expression of immune/inflammatory genes and M2 polarization that may result in the global impairment of anti-tumor immune responses in glioblastoma.

  16. Optimization of candidate-gene SNP-genotyping by flexible oligonucleotide microarrays; analyzing variations in immune regulator genes of hay-fever samples

    Directory of Open Access Journals (Sweden)

    Beier Markus

    2007-08-01

    Full Text Available Abstract Background Genetic variants in immune regulator genes have been associated with numerous diseases, including allergies and cancer. Increasing evidence suggests a substantially elevated disease risk in individuals who carry a combination of disease-relevant single nucleotide polymorphisms (SNPs. For the genotyping of immune regulator genes, such as cytokines, chemokines and transcription factors, an oligonucleotide microarray for the analysis of 99 relevant SNPs was established. Since the microarray design was based on a platform that permits flexible in situ oligonucleotide synthesis, a set of optimally performing probes could be defined by a selection approach that combined computational and experimental aspects. Results While the in silico process eliminated 9% of the initial probe set, which had been picked purely on the basis of potential association with disease, the subsequent experimental validation excluded more than twice as many. The performance of the optimized microarray was demonstrated in a pilot study. The genotypes of 19 hay-fever patients (aged 40–44 with high IgE levels against inhalant antigens were compared to the results obtained with 19 age- and sex-matched controls. For several variants, allele-frequency differences of more than 10% were identified. Conclusion Based on the ability to improve empirically a chip design, the application of candidate-SNP typing represents a viable approach in the context of molecular epidemiological studies.

  17. Dentistry in ancient mesopotamia.

    Science.gov (United States)

    Neiburger, E J

    2000-01-01

    Sumer, an empire in ancient Mesopotamia (southern Iraq), is well known as the cradle of our modern civilization and the home of biblical Abraham. An analysis of skeletal remains from cemeteries at the ancient cities of Ur and Kish (circa 2000 B.C.), show a genetically homogeneous, diseased, and short-lived population. These ancient Mesopotamians suffered severe dental attrition (95 percent), periodontal disease (42 percent), and caries (2 percent). Many oral congenital and neoplastic lesions were noted. During this period, the "local dentists" knew only a few modern dental techniques. Skeletal (dental) evidence indicates that the population suffered from chronic malnutrition. Malnutrition was probably caused by famine, which is substantiated in historic cuneiform and biblical writings, geologic strata samples, and analysis of skeletal and forensic dental pathology. These people had modern dentition but relatively poor dental health. The population's lack of malocclusions, caries, and TMJ problems appear to be due to flat plane occlusion.

  18. Dwarfs in ancient Egypt.

    Science.gov (United States)

    Kozma, Chahira

    2006-02-15

    Ancient Egypt was one of the most advanced and productive civilizations in antiquity, spanning 3000 years before the "Christian" era. Ancient Egyptians built colossal temples and magnificent tombs to honor their gods and religious leaders. Their hieroglyphic language, system of organization, and recording of events give contemporary researchers insights into their daily activities. Based on the record left by their art, the ancient Egyptians documented the presence of dwarfs in almost every facet of life. Due to the hot dry climate and natural and artificial mummification, Egypt is a major source of information on achondroplasia in the old world. The remains of dwarfs are abundant and include complete and partial skeletons. Dwarfs were employed as personal attendants, animal tenders, jewelers, and entertainers. Several high-ranking dwarfs especially from the Old Kingdom (2700-2190 BCE) achieved important status and had lavish burial places close to the pyramids. Their costly tombs in the royal cemeteries and the inscriptions on their statutes indicate their high-ranking position in Egyptian society and their close relation to the king. Some of them were Seneb, Pereniankh, Khnumhotpe, and Djeder. There were at least two dwarf gods, Ptah and Bes. The god Ptah was associated with regeneration and rejuvenation. The god Bes was a protector of sexuality, childbirth, women, and children. He was a favored deity particularly during the Greco-Roman period. His temple was recently excavated in the Baharia oasis in the middle of Egypt. The burial sites and artistic sources provide glimpses of the positions of dwarfs in daily life in ancient Egypt. Dwarfs were accepted in ancient Egypt; their recorded daily activities suggest assimilation into daily life, and their disorder was not shown as a physical handicap. Wisdom writings and moral teachings in ancient Egypt commanded respect for dwarfs and other individuals with disabilities.

  19. A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene nisI.

    Science.gov (United States)

    Takala, T M; Saris, P E J

    2002-08-01

    A new food-grade cloning vector for lactic acid bacteria was constructed using the nisin immunity gene nisI as a selection marker. The food-grade plasmid, pLEB 590, was constructed entirely of lactococcal DNA: the pSH 71 replicon, the nisI gene, and the constitutive promoter P45 for nisI expression. Electroporation into Lactococcus lactis MG 1614 with 60 international units (IU) nisin/ml selection yielded approximately 10(5) transformants/ micro g DNA. MG 1614 carrying pLEB 590 was shown to be able to grow in medium containing a maximum of 250 IU nisin/ml. Plasmid pLEB 590 was successfully transformed into an industrial L. lactis cheese starter carrying multiple cryptic plasmids. Suitability for molecular cloning was confirmed by cloning and expressing the proline iminopeptidase gene pepI from Lactobacillus helveticus in L. lactis and Lb. plantarum. These results show that the food-grade expression system reported in this paper has potential for expression of foreign genes in lactic acid bacteria in order to construct improved starter bacteria for food applications.

  20. Gene expression profiles of hair and wool sheep reveal importance of Th2 immune mechanisms for increased resistance to.

    Science.gov (United States)

    MacKinnon, K M; Bowdridge, S A; Kanevsky-Mullarky, I; Zajac, A M; Notter, D R

    2015-05-01

    Management of gastrointestinal parasites is a critical issue for sheep producers worldwide. Increases in the prevalence of drug-resistant worms have complicated parasite control and increased economic losses. Therefore, other methods of parasite control need to be assessed, including the use of genetically resistant animals in breeding programs. Hair sheep breeds such as the St. Croix have greater parasite resistance than conventional wool breeds. However, the immune mechanisms that control parasite resistance in hair or wool breeds have not yet been fully determined, and information on cytokine expression profiles for both wool sheep selected for increased resistance and hair sheep is limited. Our objective was to investigate gene expression differences in 24 parasite-resistant hair and 24 susceptible wool sheep to identify immune effectors associated with resistance to . One-half of the lambs were infected and sacrificed at 3 or 27 d after infection. Remaining lambs were not infected. Breed differences in expression of genes associated with Th1 and Th2 immune responses in lymph nodes and abomasal tissue were determined. Th2-associated genes included IL-4, IL-13, IL-5, IgE, the α chain of the IL-4 receptor, and the α chain of the high-affinity IgE receptor (FcεRI). Th1-associated genes included interferon gamma (IFN-γ), the p35 subunit of IL-12 (IL-12 p35), and the β1 and β2 chains of the IL-12 receptor (IL-12 Rβ1 and IL-12 Rβ2, respectively). In both hair and wool sheep, infection with resulted in greater expression of IgE, IL-13, IL-5, and IL-12 p35 and somewhat reduced expression of IFNγ in lymph nodes. In abomasal tissue, parasite infection resulted in greater IgE, IL-13, FcεRI, and IL-12 p35 expression in infected lambs compared with control lambs. Between breeds, hair sheep had a stronger Th2 response after infection than wool sheep, with increased expression of IgE and IL-13 and decreased expression of IFNγ in lymph nodes and increased expression

  1. Pathogenicty and immune prophylaxis of cag pathogenicity island gene knockout homogenic mutants

    Institute of Scientific and Technical Information of China (English)

    Huan-Jian Lin; Jing Xue; Yang Bai; Ji-De Wang; Ya-Li Zhang; Dian-Yuan Zhou

    2004-01-01

    AIM: To clarify the role of cag pathogenicity island (cagPAI)of Helicobacter pylori(H pylori) in the pathogenicity and immune prophylaxis of H pyloriinfection.METHODS: Three pairs of H pylori including 3 strains of cagPAI positive wildtype bacteria and their cagPAI knockout homogenic mutants were utilized. H pylori binding to the gastric epithelial cells was analyzed by flow cytometry assays.Apoptosis of gastric epithelial cells induced by H pylori was determined by ELISA assay. Prophylaxis effect of the wildtype and mutant strains was compared by immunization with the sonicate of the bacteria into mice model.RESULTS: No difference was found in the apoptasis between cagPAI positive and knockout H pylori strains in respective of the ability in the binding to gastric epithelial cells as well as the induction of apoptosis. Both types of the bacteria were able to protect the mice from the infection of H pylori after immunization, with no difference between them regarding to the protection rate as well as the stimulation of the proliferation of splenocytes of the mice.CONCLUSION: The role of cagPAI in the pathogenicity and prophylaxis of H pylori infection remains to be cleared.

  2. Role of Gene Methylation in Antitumor Immune Response: Implication for Tumor Progression

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Alfonso; Castro-Vega, Isabel [Department of Immunology, Hospital Clinico Universitario, Campus Universitario Teatinos S/N, 29010 Malaga (Spain); Redondo, Maximino, E-mail: mredondo@hcs.es [Department of Biochemistry, CIBER ESP, Hospital Costa del Sol, Marbella, Málaga, Carretera de Cadiz km 187, 29603 (Spain)

    2011-03-29

    Cancer immunosurveillance theory has emphasized the role of escape mechanisms in tumor growth. In this respect, a very important factor is the molecular characterization of the mechanisms by which tumor cells evade immune recognition and destruction. Among the many escape mechanisms identified, alterations in classical and non-classical HLA (Human Leucocyte Antigens) class I and class II expression by tumor cells are of particular interest. In addition to the importance of HLA molecules, tumor-associated antigens and accessory/co-stimulatory molecules are also involved in immune recognition. The loss of HLA class I antigen expression and of co-stimulatory molecules can occur at genetic, transcriptional and post-transcriptional levels. Epigenetic defects are involved in at least some mechanisms that preclude mounting a successful host-antitumor response involving the HLA system, tumor-associated antigens, and accessory/co-stimulatory molecules. This review summarizes our current understanding of the role of methylation in the regulation of molecules involved in the tumor immune response.

  3. The potential of effector-target genes in breeding for plant innate immunity

    NARCIS (Netherlands)

    Gawehns, F.; Cornelissen, B.J.C.; Takken, F.L.W.

    2013-01-01

    Increasing numbers of infectious crop diseases that are caused by fungi and oomycetes urge the need to develop alternative strategies for resistance breeding. As an alternative for the use of resistance (R) genes, the application of mutant susceptibility (S) genes has been proposed as a potentially

  4. Chromatin status of apoptosis genes correlates with sensitivity to chemo-, immune- and radiation therapy in colorectal cancer cell lines.

    Science.gov (United States)

    Benard, Anne; Janssen, Connie M; van den Elsen, Peter J; van Eggermond, Marja C J A; Hoon, Dave S B; van de Velde, Cornelis J H; Kuppen, Peter J K

    2014-12-01

    The apoptosis pathway of programmed cell death is frequently deregulated in cancer. An intact apoptosis pathway is required for proper response to anti-cancer treatment. We investigated the chromatin status of key apoptosis genes in the apoptosis pathway in colorectal cancer cell lines in relation to apoptosis induced by chemo-, immune- or radiation therapy. Using chromatin immunoprecipitation (ChIP), we measured the presence of transcription-activating histone modifications H3Ac and H3K4me3 and silencing modifications H3K9me3 and H3K27me3 at the gene promoter regions of key apoptosis genes Bax, Bcl2, Caspase-9, Fas (CD95) and p53. Cell lines DLD1, SW620, Colo320, Caco2, Lovo and HT29 were treated with cisplatin, anti-Fas or radiation. The apoptotic response was measured by flow cytometry using propidium iodide and annexin V-FITC. The chromatin status of the apoptosis genes reflected the activation status of the intrinsic (Bax, Bcl2, Caspase-9 and p53) and extrinsic (Fas) pathways. An active intrinsic apoptotic pathway corresponded to sensitivity to cisplatin and radiation treatment of cell lines DLD1, SW620 and Colo320. An active Fas promoter corresponded to an active extrinsic apoptotic pathway in cell line DLD1. mRNA expression data correlated with the chromatin status of the apoptosis genes as measured by ChIP. In conclusion, the results presented in this study indicate that the balance between activating and silencing histone modifications, reflecting the chromatin status of apoptosis genes, can be used to predict the response of tumor cells to different anti-cancer therapies and could provide a novel target to sensitize tumors to obtain adequate treatment responses.

  5. Anti-gastric cancer active immunity induced by FasL/B7-1 gene-modified tumor cells

    Institute of Scientific and Technical Information of China (English)

    Shi-Ying Zheng; De-Chun Li; Zhi-De Zhang; Jun Zhao; Jin-Feng Ge

    2005-01-01

    AIM: To study the activation of cytotoxic T lymphocytes (CTLs) against gastric cancer cells induced by FasL/B7-1 (FB-11) gene-modified tumor cells, and to explore whether co-expression of FasL and B7-1 in SGC-7901 tumor cells could initiate synergistic antitumor effect. METHODS: FasL and B7-1 genes were transfected into human SGC-7901 gastric cancer cells with adenovirus vectors. The positive clones were selected by G418. FasL and B7-1 genes were detected by flow cytometry and RT-PCR. Abdominal infiltrating lymphocytes and sensitized spleen cells were obtained from mice that were immunized with SGC-7901/FB-11 or wild type SGC-7901 cells intraperitoneally, and cytotoxicity of these CTLs against tumor cells was determined by MTT assay. RESULTS: Flow cytometry and RT-PCR showed that FasL and B7-1 genes were highly expressed. FasL and B7-1 transfected cancer cells had a high apoptosis index. DNA laddering suggested that FasL and B7-1 genes induced gastric cancer cell apoptosis. FasL+/B7-1+SGC-7901 cells (SGC-7901/FB-11) were inoculated subcutaneously in the dorsal skin of C57BL/6 mice and then decreased their tumorigenicity greatly (z = 2.15-46.10, P<0.01). SGC- 7901/FB-11 cell-sensitized mice obtained protective immune activity against the rechallenge of wild type SGC 7901 cells (z = 2.06-44.30, P<0.05). The cytotoxicity of CTLs induced by SGC-7901/FB-11 cells against SGC-7901 was significantly higher than that of CTLs activated by wild-type SGC-7901 cells (84.1±2.4% vs30.5±2.3%,P<0.05).CONCLUSION: FasL and B7-1 genes can effectively promote the activity of CTLs against gastric cancer cells. FasL/B7-1 molecules play an important role in CTL cytotoxicity.

  6. Temperature-dependent expression of immune-relevant genes in rainbow trout following Yersinia ruckeri i.p. vaccination

    DEFF Research Database (Denmark)

    Raida, Martin Kristian; Buchmann, Kurt

    2007-01-01

    The immune response in rainbow trout against a bacterin of Yersinia ruckeri, a bacterial pathogen causing enteric red mouth disease (ERM), was investigated at 5, 15 and 25° C. Rainbow trout were immunized by i.p. injection of a Y. ruckeri (serotype O1) water based bacterin and compared to control...... and higher at high water temperature with major expression at 25° C. The pro-inflammatory cytokine IL-1ß and INF¿ was significantly up-regulated in all immunized groups whereas the cytokine IL-10 was merely up-regulated in fish kept at 15 and 25° C. The gene encoding the C5a (anaphylatoxin) receptor...

  7. An oral Sindbis virus replicon-based DNA vaccine containing VP2 gene of canine parvovirus delivered by Escherichia coli elicits immune responses in dogs.

    Science.gov (United States)

    Dahiya, S S; Saini, M; Kumar, P; Gupta, P K

    2011-01-01

    A Sindbis virus replicon-based DNA vaccine containing VP2 gene of canine parvovirus (CPV) was delivered by Escherichia coli to elicit immune responses. The orally immunized dogs developed CPV-specific serum IgG and virus neutralizing antibody responses. The cellular immune responses analyzed using lymphocyte proliferation test and flow cytometry indicated CPV-specific sensitization of both CD3+CD4+ and CD3+CD8+ lymphocytes. This study demonstrated that the oral CPV DNA vaccine delivered by E. coli can be considered as a promising approach for vaccination of dogs against CPV.

  8. Gene expression in brain and liver produced by three different regimens of alcohol consumption in mice: comparison with immune activation.

    Directory of Open Access Journals (Sweden)

    Elizabeth Osterndorff-Kahanek

    Full Text Available Chronically available alcohol escalates drinking in mice and a single injection of the immune activator lipopolysaccharide can mimic this effect and result in a persistent increase in alcohol consumption. We hypothesized that chronic alcohol drinking and lipopolysaccharide injections will produce some similar molecular changes that play a role in regulation of alcohol intake. We investigated the molecular mechanisms of chronic alcohol consumption or lipopolysaccharide insult by gene expression profiling in prefrontal cortex and liver of C57BL/6J mice. We identified similar patterns of transcriptional changes among four groups of animals, three consuming alcohol (vs water in different consumption tests and one injected with lipopolysaccharide (vs. vehicle. The three tests of alcohol consumption are the continuous chronic two bottle choice (Chronic, two bottle choice available every other day (Chronic Intermittent and limited access to one bottle of ethanol (Drinking in the Dark. Gene expression changes were more numerous and marked in liver than in prefrontal cortex for the alcohol treatments and similar in the two tissues for lipopolysaccharide. Many of the changes were unique to each treatment, but there was significant overlap in prefrontal cortex for Chronic-Chronic Intermittent and for Chronic Intermittent-lipopolysaccharide and in liver all pairs showed overlap. In silico cell-type analysis indicated that lipopolysaccharide had strongest effects on brain microglia and liver Kupffer cells. Pathway analysis detected a prefrontal cortex-based dopamine-related (PPP1R1B, DRD1, DRD2, FOSB, PDNY network that was highly over-represented in the Chronic Intermittent group, with several genes from the network being also regulated in the Chronic and lipopolysaccharide (but not Drinking in the Dark groups. Liver showed a CYP and GST centered metabolic network shared in part by all four treatments. We demonstrate common consequences of chronic alcohol

  9. Peripheral blood RNA gene expression profiling in illicit methcathinone users reveals effect on immune system

    Directory of Open Access Journals (Sweden)

    Katrin eSikk

    2011-08-01

    Full Text Available Methcathinone (ephedrone is relatively easily accessible for abuse. Its users develop an extrapyramidal syndrome and it is not known if this is caused by methcathinone itself, by side-ingredients (manganese, or both. In the present study we aimed to clarify molecular mechanisms underlying this condition. We analyzed whole genome gene expression patterns of peripheral blood from 20 methcathinone users and 20 matched controls. Gene expression profile data was analyzed by Bayesian modelling and functional annotation. In order to verify the genechip results we performed quantitative real-time (RT PCR in selected genes. 326 out of analyzed 28,869 genes showed statistically significant differential expression with FDR adjusted p-values below 0.05. Quantitative RT-PCR confirmed differential expression for the most of selected genes. Functional annotation and network analysis indicated that most of the genes were related to activation immunological disease, cellular movement and cardiovascular disease gene network (enrichment score 42. As HIV and HCV infections were confounding factors, we performed additional stratification of patients. A similar functional activation of the immunological disease pathway was evident when we compared patients according to the injection status (past versus current users, balanced for HIV and HCV infection. However, this difference was not large therefore the major effect was related to the HIV status of the patients. Mn-methcathinone abusers have blood transcriptional patterns mostly caused by their HIV and HCV infections.

  10. A replication study for genome-wide gene expression levels in two layer lines elucidates differentially expressed genes of pathways involved in bone remodeling and immune responsiveness.

    Directory of Open Access Journals (Sweden)

    Christin Habig

    Full Text Available The current replication study confirmed significant differences in gene expression profiles of the cerebrum among the two commercial layer lines Lohmann Selected Leghorn (LSL and Lohmann Brown (LB. Microarray analyses were performed for 30 LSL and another 30 LB laying hens kept in the small group housing system Eurovent German. A total of 14,103 microarray probe sets using customized Affymetrix ChiGene-1_0-st Arrays with 20,399 probe sets were differentially expressed among the two layer lines LSL and LB (FDR adjusted P-value <0.05. An at least 2-fold change in expression levels could be observed for 388 of these probe sets. In LSL, 214 of the 388 probe sets were down- and 174 were up-regulated and vice versa for the LB layer line. Among the 174 up-regulated probe sets in LSL, we identified 51 significantly enriched Gene ontology (GO terms of the biological process category. A total of 63 enriched GO-terms could be identified for the 214 down-regulated probe sets of the layer line LSL. We identified nine genes significantly differentially expressed between the two layer lines in both microarray experiments. These genes play a crucial role in protection of neuronal cells from oxidative stress, bone mineral density and immune response among the two layer lines LSL and LB. Thus, the different regulation of these genes may significantly contribute to phenotypic trait differences among these layer lines. In conclusion, these novel findings provide a basis for further research to improve animal welfare in laying hens and these layer lines may be of general interest as an animal model.

  11. Differential expression of American lobster (Homarus americanus) immune related genes during infection of Aerococcus viridans var. homari, the causative agent of Gaffkemia.

    Science.gov (United States)

    Clark, K Fraser; Acorn, Adam R; Greenwood, Spencer J

    2013-02-01

    This is the first transcriptomic study focusing on immunity in the commercially valuable American lobster (Homarus americanus). We have conducted an in vivo infection trial using the Gram-positive bacterium Aerococcus viridans var. homari to determine how H. americanus responds to this naturally occurring lethal-pathogen. A novel H. americanus microarray was used to measure the transcriptomic changes occurring in over 14,000 genes in the lobster hepatopancreas. Hundreds of new immune genes and isoforms were identified and measured for the first time in this species, and our findings highlight 148 genes of interest involved in H. americanus pathogen response. We verified our microarray results using RT-qPCR on three anti-lipopolysaccharide (ALFHa-1, ALFHa-2, ALFHa-4), a thioredoxin, acute phase serum amyloid protein A, hexokinase and two trypsin genes. RT-qPCR and microarray findings show close agreement and highlight the significant increase in gene expression in many lobster immune genes during A. viridans infection. Differential expression of the ALFHa isoforms may indicate that the H. americanus immune response can be tailored to the class of pathogen causing disease.

  12. A Comprehensive Gene Expression Meta-analysis Identifies Novel Immune Signatures in Rheumatoid Arthritis Patients

    Science.gov (United States)

    Afroz, Sumbul; Giddaluru, Jeevan; Vishwakarma, Sandeep; Naz, Saima; Khan, Aleem Ahmed; Khan, Nooruddin

    2017-01-01

    Rheumatoid arthritis (RA), a symmetric polyarticular arthritis, has long been feared as one of the most disabling forms of arthritis. Identification of gene signatures associated with RA onset and progression would lead toward development of novel diagnostics and therapeutic interventions. This study was undertaken to identify unique gene signatures of RA patients through large-scale meta-profiling of a diverse collection of gene expression data sets. We carried out a meta-analysis of 8 publicly available RA patients’ (107 RA patients and 76 healthy controls) gene expression data sets and further validated a few meta-signatures in RA patients through quantitative real-time PCR (RT-qPCR). We identified a robust meta-profile comprising 33 differentially expressed genes, which were consistently and significantly expressed across all the data sets. Our meta-analysis unearthed upregulation of a few novel gene signatures including PLCG2, HLA-DOB, HLA-F, EIF4E2, and CYFIP2, which were validated in peripheral blood mononuclear cell samples of RA patients. Further, functional and pathway enrichment analysis reveals perturbation of several meta-genes involved in signaling pathways pertaining to inflammation, antigen presentation, hypoxia, and apoptosis during RA. Additionally, PLCG2 (phospholipase Cγ2) popped out as a novel meta-gene involved in most of the pathways relevant to RA including inflammasome activation, platelet aggregation, and activation, thereby suggesting PLCG2 as a potential therapeutic target for controlling excessive inflammation during RA. In conclusion, these findings highlight the utility of meta-analysis approach in identifying novel gene signatures that might provide mechanistic insights into disease onset, progression and possibly lead toward the development of better diagnostic and therapeutic interventions against RA. PMID:28210261

  13. A Comprehensive Gene Expression Meta-analysis Identifies Novel Immune Signatures in Rheumatoid Arthritis Patients.

    Science.gov (United States)

    Afroz, Sumbul; Giddaluru, Jeevan; Vishwakarma, Sandeep; Naz, Saima; Khan, Aleem Ahmed; Khan, Nooruddin

    2017-01-01

    Rheumatoid arthritis (RA), a symmetric polyarticular arthritis, has long been feared as one of the most disabling forms of arthritis. Identification of gene signatures associated with RA onset and progression would lead toward development of novel diagnostics and therapeutic interventions. This study was undertaken to identify unique gene signatures of RA patients through large-scale meta-profiling of a diverse collection of gene expression data sets. We carried out a meta-analysis of 8 publicly available RA patients' (107 RA patients and 76 healthy controls) gene expression data sets and further validated a few meta-signatures in RA patients through quantitative real-time PCR (RT-qPCR). We identified a robust meta-profile comprising 33 differentially expressed genes, which were consistently and significantly expressed across all the data sets. Our meta-analysis unearthed upregulation of a few novel gene signatures including PLCG2, HLA-DOB, HLA-F, EIF4E2, and CYFIP2, which were validated in peripheral blood mononuclear cell samples of RA patients. Further, functional and pathway enrichment analysis reveals perturbation of several meta-genes involved in signaling pathways pertaining to inflammation, antigen presentation, hypoxia, and apoptosis during RA. Additionally, PLCG2 (phospholipase Cγ2) popped out as a novel meta-gene involved in most of the pathways relevant to RA including inflammasome activation, platelet aggregation, and activation, thereby suggesting PLCG2 as a potential therapeutic target for controlling excessive inflammation during RA. In conclusion, these findings highlight the utility of meta-analysis approach in identifying novel gene signatures that might provide mechanistic insights into disease onset, progression and possibly lead toward the development of better diagnostic and therapeutic interventions against RA.

  14. Epigenetic mechanisms contribute to the expression of immune related genes in the livers of dairy cows fed a high concentrate diet.

    Directory of Open Access Journals (Sweden)

    Guangjun Chang

    Full Text Available Epigenetic modifications critically regulate the expression of immune-related genes in response to inflammatory stimuli. It has been extensively reported that a high concentrate (HC diet can trigger systemic inflammation in dairy cows, yet it is unclear whether epigenetic regulation is involved in the expression of immune genes in the livers of dairy cows. This study aimed to investigate the impact of epigenetic modifications on the expression of immune-related genes.In eight mid-lactating cows, we installed a rumen cannula and catheters of the portal and hepatic veins. Cows were randomly assigned to either the treatment group fed a high concentrate (HC diet (60% concentrate + 40% forage, n = 4 or a control group fed a low concentrate (LC diet (40% concentrate + 60% forage, n = 4.After 10 weeks of feeding, the rumen pH was reduced, and levels of lipopolysaccharide (LPS in the rumen, and portal and hepatic veins were notably increased in the HC group compared with the LC group. The expression levels of detected immune response-related genes, including Toll-like receptor 4 (TLR4, cytokines, chemokines, and acute phase proteins, were significantly up-regulated in the livers of cows fed a HC diet. Chromatin loosening at the promoter region of four candidate immune-related genes (TLR4, LPS-binding protein, haptoglobin, and serum amyloid A3 was elicited, and was strongly correlated with enhanced expression of these genes in the HC group. Demethylation at the promoter region of all four candidate immune-related genes was accompanied by chromatin decompaction.After HC diet feeding, LPS derived from the digestive tract translocated to the liver via the portal vein, enhancing hepatic immune gene expression. The up-regulation of these immune genes was mediated by epigenetic mechanisms, which involve chromatin remodeling and DNA methylation. Our findings suggest that modulating epigenetic mechanisms could provide novel ways to treat systemic inflammatory

  15. Protein Malnutrition Modifies Innate Immunity and Gene Expression by Intestinal Epithelial Cells and Human Rotavirus Infection in Neonatal Gnotobiotic Pigs

    Science.gov (United States)

    Paim, Francine C.; Kandasamy, Sukumar; Alhamo, Moyasar A.; Fischer, David D.; Langel, Stephanie N.; Deblais, Loic; Kumar, Anand; Chepngeno, Juliet; Shao, Lulu; Huang, Huang-Chi; Candelero-Rueda, Rosario A.; Rajashekara, Gireesh

    2017-01-01

    ABSTRACT Malnutrition affects millions of children in developing countries, compromising immunity and contributing to increased rates of death from infectious diseases. Rotavirus is a major etiological agent of childhood diarrhea in developing countries, where malnutrition is prevalent. However, the interactions between the two and their combined effects on immune and intestinal functions are poorly understood. In this study, we used neonatal gnotobiotic (Gn) pigs transplanted with the fecal microbiota of a healthy 2-month-old infant (HIFM) and fed protein-deficient or -sufficient bovine milk diets. Protein deficiency induced hypoproteinemia, hypoalbuminemia, hypoglycemia, stunting, and generalized edema in Gn pigs, as observed in protein-malnourished children. Irrespective of the diet, human rotavirus (HRV) infection early, at HIFM posttransplantation day 3 (PTD3), resulted in adverse health effects and higher mortality rates (45 to 75%) than later HRV infection (PTD10). Protein malnutrition exacerbated HRV infection and affected the morphology and function of the small intestinal epithelial barrier. In pigs infected with HRV at PTD10, there was a uniform decrease in the function and/or frequencies of natural killer cells, plasmacytoid dendritic cells, and CD103+ and apoptotic mononuclear cells and altered gene expression profiles of intestinal epithelial cells (chromogranin A, mucin 2, proliferating cell nuclear antigen, SRY-Box 9, and villin). Thus, we have established the first HIFM-transplanted neonatal pig model that recapitulates major aspects of protein malnutrition in children and can be used to evaluate physiologically relevant interventions. Our findings provide an explanation of why nutrient-rich diets alone may lack efficacy in malnourished children. IMPORTANCE Malnutrition and rotavirus infection, prevalent in developing countries, individually and in combination, affect the health of millions of children, compromising their immunity and increasing

  16. De novo assembly and analysis of tissue-specific transcriptomes revealed the tissue-specific genes and profile of immunity from Strongylocentrotus intermedius.

    Science.gov (United States)

    Chen, Yadong; Chang, Yaqing; Wang, Xiuli; Qiu, Xuemei; Liu, Yang

    2015-10-01

    Strongylocentrotus intermedius is an important marine species in north China and Japan. Recent years, diseases are threating the sea urchin aquaculture industry seriously. To provide a genetic resource for S. intermedius as well as overview the immune-related genes of S. intermedius, we performed transcriptome sequencing of three cDNA libraries representing three tissues, coelomocytes, gut and peristomial membrane respectively. In total 138,421 contigs were assembled from all sequencing data. 96,764 contigs were annotated according to bioinformatics databases, including NT, nr, Swiss-Prot, KEGG, COG. 49,336 Contigs were annotated as CDS. In this study, we obtained 24,778 gene families from S. intermedius transcriptome. The gene expression analysis revealed that more genes were expressed in gut, more high expression level genes in coelomocytes when compared with other tissues. Specific expressed contigs in coelomocytes, gut, and peristomial membrane were 546, 1136, and 1012 respectively. Pathway analysis suggested 25, 17 and 36 potential specifically pathways may specific progressed in peristomial membrane, gut and coelomocytes respectively. Similarities and differences between S. intermedius and other echinoderms were analyzed. S. intermedius was more homology to Strongylocentrotus purpuratus than others sea urchin. Of 24,778 genes, 1074 genes are immune-related, immune genes were expressed with a higher level in coelomocytes than other tissues. Complement system may be the most important immune system in sea urchin. We also identified 2438 SSRs and 16,236 SNPs for S. intermedius. These results provide a transcriptome resource and foundation to study molecular mechanisms of sea urchin immune system.

  17. Vaccination of Plasmid DNA Encoding Somatostatin Gene Fused with GP5 Gene of Porcine Reproductive and Respiratory Syndrome Virus Induces Anti-GP5 Antibodies and Promotes Growth Performance in Immunized Pigs

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Somatostatin (SS) is a hormone that inhibits the secretion of growth hormone. Immunization against SS can promote the growth of animals. This paper described the effects of DNA immunization on the growth and antibody response in mice and pigs immunized with a plasmid DNA encoding SS fused with GP5 of porcine reproductive and respiratory syndrome virus (PRRSV). A fragment of 180 bp encoding partial SS gene was amplified by PCR from the genomic DNA of peripheral blood mononuclear cells of pigs, and cloned as a fusion gene with PRRSV GP5 in plasmid pISGRTK3. Three times of immunization with the resulting plasmid pISG-SS/GP5 induced anti-GP5 antibodies in BALB/c mice and pigs, as demonstrated by GP5-specific ELISA and immunoblotting. Compared with pigs immunized with empty vector pISGRTK3, the growth performance of pigs immunized with pISG-SS/GP5 was increased by 11.1% on the 13th week after the last vaccination. The results indicated the plasmid DNA encoding SS and PRRSV GP5 fusion gene elicited anti-GP5 antibodies and improved the growth performance of immunized pigs.

  18. Creative Ventures: Ancient Civilizations.

    Science.gov (United States)

    Stark, Rebecca

    The open-ended activities in this book are designed to extend the imagination and creativity of students and encourage students to examine their feelings and values about historic eras. Civilizations addressed include ancient Egypt, Greece, Rome, Mayan, Stonehenge, and Mesopotamia. The activities focus upon the cognitive and affective pupil…

  19. Ancient Egypt: Personal Perspectives.

    Science.gov (United States)

    Wolinski, Arelene

    This teacher resource book provides information on ancient Egypt via short essays, photographs, maps, charts, and drawings. Egyptian social and religious life, including writing, art, architecture, and even the practice of mummification, is conveniently summarized for the teacher or other practitioner in a series of one to three page articles with…

  20. Cloning Ancient Trees

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    west of Tiananmen Square in Beijing, in Zhongshan Park, there stand several ancient cypress trees, each more than 1,000 years old. Their leafy crowns are all more than 20 meters high, while four have trunks that are 6 meters in circumference. The most unique of these

  1. Ancient ports of Kalinga

    Digital Repository Service at National Institute of Oceanography (India)

    Tripati, S.

    The ancient Kingdom of Kalinga mentioned in the Hathigumpha inscription of Kharavela (1st century B.C.) extended from the mouths of the Ganges to the estuary of Godavari river on the East Coast. Ptolemy (100 A.D.) mentions that Paluru (District...

  2. Ancient deforestation revisited.

    Science.gov (United States)

    Hughes, J Donald

    2011-01-01

    The image of the classical Mediterranean environment of the Greeks and Romans had a formative influence on the art, literature, and historical perception of modern Europe and America. How closely does is this image congruent with the ancient environment as it in reality existed? In particular, how forested was the ancient Mediterranean world, was there deforestation, and if so, what were its effects? The consensus of historians, geographers, and other scholars from the mid-nineteenth century through the first three quarters of the twentieth century was that human activities had depleted the forests to a major extent and caused severe erosion. My research confirmed this general picture. Since then, revisionist historians have questioned these conclusions, maintaining instead that little environmental damage was done to forests and soils in ancient Greco-Roman times. In a reconsideration of the question, this paper looks at recent scientific work providing proxy evidence for the condition of forests at various times in ancient history. I look at three scientific methodologies, namely anthracology, palynology, and computer modeling. Each of these avenues of research offers support for the concept of forest change, both in abundance and species composition, and episodes of deforestation and erosion, and confirms my earlier work.

  3. Printing Ancient Terracotta Warriors

    Science.gov (United States)

    Gadecki, Victoria L.

    2010-01-01

    Standing in awe in Xian, China, at the Terra Cotta warrior archaeological site, the author thought of sharing this experience and excitement with her sixth-grade students. She decided to let her students carve patterns of the ancient soldiers to understand their place in Chinese history. They would make block prints and print multiple soldiers on…

  4. Enrichment of brain-related genes on the mammalian X chromosome is ancient and predates the divergence of synapsid and sauropsid lineages.

    Science.gov (United States)

    Kemkemer, Claus; Kohn, Matthias; Kehrer-Sawatzki, Hildegard; Fundele, Reinald H; Hameister, Horst

    2009-01-01

    Previous studies have revealed an enrichment of reproduction- and brain-related genes on the human X chromosome. In the present study, we investigated the evolutionary history that underlies this functional specialization. To do so, we analyzed the orthologous building blocks of the mammalian X chromosome in the chicken genome. We used Affymetrix chicken genome microarrays to determine tissue-selective gene expression in several tissues of the chicken, including testis and brain. Subsequently, chromosomal distribution of genes with tissue-selective expression was determined. These analyzes provided several new findings. Firstly, they showed that chicken chromosomes orthologous to the mammalian X chromosome exhibited an increased concentration of genes expressed selectively in brain. More specifically, the highest concentration of brain-selectively expressed genes was found on chicken chromosome GGA12, which shows orthology to the X chromosomal regions with the highest enrichment of non-syndromic X-linked mental retardation (MRX) genes. Secondly, and in contrast to the first finding, no enrichment of testis-selective genes could be detected on these chicken chromosomes. These findings indicate that the accumulation of brain-related genes on the prospective mammalian X chromosome antedates the divergence of sauropsid and synapsid lineages 315 million years ago, whereas the accumulation of testis-related genes on the mammalian X chromosome is more recent and due to adaptational changes.

  5. A murine model for human immune thrombocytopenic purpura and comparative analysis of multiple gene expression in bone marrow and spleen

    Institute of Scientific and Technical Information of China (English)

    Hong Wei; Xinchun Ding; Jiangong Ren; Ka Liu; Pingping Tan; Daquan Li; Runlin Z.Ma

    2008-01-01

    Homeostasis of platelet number in human and other mammals is well maintained for prevention of minor bleeding and for other im-munological functions, but the exact molecular mechanism responsible for immune thrombocytopenic purpura (ITP) has not been fullyunderstood. In an effort to identify genetic factors involved in initiation of platelet production in response to bleeding injury or plateletdestruction, we have successfully generated an animal model of human ITP via intraperitoneal injection of anti-platelet antibody into theBalb/c mouse. Platelet counts were dropped dramatically in animals that received antibody injection within 4 h, maintained at the mini-mum level for a period of 44 h, started to rebound after 48 h, and reached to the maximum at 144 h (6 days). Final homeostasis reached atapproximately 408 h (17 days), following a minor cycle of platelet number fluctuation. Using semi-quantitative RT-PCR, we assessed andcompared mRNA level of CD41, c-myb, c-mpl, caspase-3, caspase-9, GATA-1, and Bcl-xl in bone marrow and spleen. Alteration ofmRNA expression was correlated with the change of platelet level, and an inverse relationship was found for expression of the genes be-tween bone marrow and spleen. No transcription was detectable for any of the seven genes in bone marrow at the time when plateletnumber reached the maximum (144 h). In contrast, mRNA transcripts of the seven genes were found to be at the highest level in spleentissue. This is the first study of simultaneous detection of multiple platelet related genes in a highly reproducible ITP animal model. Ourresults provided the supportive evidence that expression of the above seven genes are more related to negative regulation of plateletnumber in spleen tissue, at least in the model animals.

  6. Comparison of innate immune agonists for induction of tracheal antimicrobial peptide gene expression in tracheal epithelial cells of cattle.

    Science.gov (United States)

    Berghuis, Lesley; Abdelaziz, Khaled Taha; Bierworth, Jodi; Wyer, Leanna; Jacob, Gabriella; Karrow, Niel A; Sharif, Shayan; Clark, Mary Ellen; Caswell, Jeff L

    2014-10-12

    Bovine respiratory disease is a complex of bacterial and viral infections of economic and welfare importance to the beef industry. Although tracheal antimicrobial peptide (TAP) has microbicidal activity against bacterial pathogens causing bovine respiratory disease, risk factors for bovine respiratory disease including BVDV and stress (glucocorticoids) have been shown to inhibit the induced expression of this gene. Lipopolysaccharide is known to stimulate TAP gene expression, but the maximum effect is only observed after 16 h of stimulation. The present study investigated other agonists of TAP gene expression in primary cultures of bovine tracheal epithelial cells. PCR analysis of unstimulated tracheal epithelial cells, tracheal tissue and lung tissue each showed mRNA expression for Toll-like receptors (TLRs) 1-10. Quantitative RT-PCR analysis showed that Pam3CSK4 (an agonist of TLR1/2) and interleukin (IL)-17A significantly induced TAP gene expression in tracheal epithelial cells after only 4-8 h of stimulation. Flagellin (a TLR5 agonist), lipopolysaccharide and interferon-α also had stimulatory effects, but little or no response was found with class B CpG ODN 2007 (TLR9 agonist) or lipoteichoic acid (TLR2 agonist). The use of combined agonists had little or no enhancing effect above that of single agonists. Thus, Pam3CSK4, IL-17A and lipopolysaccharide rapidly and significantly induce TAP gene expression, suggesting that these stimulatory pathways may be of value for enhancing innate immunity in feedlot cattle at times of susceptibility to disease.

  7. Dataset on differential gene expression analysis for splenic transcriptome profiling and the transcripts related to six immune pathways in grass carp

    Directory of Open Access Journals (Sweden)

    Guoxi Li

    2017-02-01

    Full Text Available The data presented in this paper are related to the research article entitled “Transcriptome profiling of developing spleen tissue and discovery of immune-related genes in grass carp (Ctenopharyngodon idella” (Li et al. 2016 [1]. Please refer to this article for interpretation of the data. Data provided in this submission are comprised of the expression levels of unigenes, significantly differentially expressed genes(DEGs, significant enrichment GO term and KEGG pathway of DEGs, and information of the transcripts assigned to six immune pathways.

  8. Regulation of genes related to immune signaling and detoxification in Apis mellifera by an inhibitor of histone deacetylation

    Science.gov (United States)

    Hu, Yee-Tung; Wu, Tsai-Chin; Yang, En-Cheng; Wu, Pei-Chi; Lin, Po-Tse; Wu, Yueh-Lung

    2017-01-01

    The western honeybee (Apis mellifera) is essential for the global economy due to its important role in ecosystems and agriculture as a pollinator of numerous flowering plants and crops. Pesticide abuse has greatly impacted honeybees and caused tremendous loss of honeybee colonies worldwide. The reasons for colony loss remain unclear, but involvement of pesticides and pathogen-pesticide interactions has been hypothesized. Histone deacetylase inhibitors (HDACis) inhibit the activity of histone acetylase, which causes the hyperacetylation of histone cores and influences gene expression. In this study, sodium butyrate, an HDACi, was used as a dietary supplement for honeybees; after treatment, gene expression profiles were analyzed using quantitative PCR. The results showed that sodium butyrate up-regulated genes involved in anti-pathogen and detoxification pathways. The bioassay results showed that honeybees treated with sodium butyrate were more tolerant to imidacloprid. Additionally, sodium butyrate strengthened the immune response of honeybees to invasions of Nosema ceranae and viral infections. We also performed a bioassay in which honeybees were exposed to pesticides and pathogens. Our results provide additional data regarding the mechanism by which honeybees react to stress and the potential application of HDACis in beekeeping. PMID:28112264

  9. Chronic Binge Alcohol Administration Dysregulates Hippocampal Genes Involved in Immunity and Neurogenesis in Simian Immunodeficiency Virus-Infected Macaques

    Directory of Open Access Journals (Sweden)

    John K. Maxi

    2016-11-01

    Full Text Available Alcohol use disorders (AUD exacerbate neurocognitive dysfunction in Human Immunodeficiency Virus (HIV+ patients. We have shown that chronic binge alcohol (CBA administration (13–14 g EtOH/kg/wk prior to and during simian immunodeficiency virus (SIV infection in rhesus macaques unmasks learning deficits in operant learning and memory tasks. The underlying mechanisms of neurocognitive alterations due to alcohol and SIV are not known. This exploratory study examined the CBA-induced differential expression of hippocampal genes in SIV-infected (CBA/SIV+; n = 2 macaques in contrast to those of sucrose administered, SIV-infected (SUC/SIV+; n = 2 macaques. Transcriptomes of hippocampal samples dissected from brains obtained at necropsy (16 months post-SIV inoculation were analyzed to determine differentially expressed genes. MetaCore from Thomson Reuters revealed enrichment of genes involved in inflammation, immune responses, and neurodevelopment. Functional relevance of these alterations was examined in vitro by exposing murine neural progenitor cells (NPCs to ethanol (EtOH and HIV trans-activator of transcription (Tat protein. EtOH impaired NPC differentiation as indicated by decreased βIII tubulin expression. These findings suggest a role for neuroinflammation and neurogenesis in CBA/SIV neuropathogenesis and warrant further investigation of their potential contribution to CBA-mediated neurobehavioral deficits.

  10. Negative energy balance alters global gene expression and immune responses in the uterus of postpartum dairy cows.

    Science.gov (United States)

    Wathes, D Claire; Cheng, Zhangrui; Chowdhury, Waliul; Fenwick, Mark A; Fitzpatrick, Richard; Morris, Dermot G; Patton, Joe; Murphy, John J

    2009-09-01

    Most dairy cows suffer uterine microbial contamination postpartum. Persistent endometritis often develops, associated with reduced fertility. We used a model of differential feeding and milking regimes to produce cows in differing negative energy balance status in early lactation (mild or severe, MNEB or SNEB). Blood hematology was assessed preslaughter at 2 wk postpartum. RNA expression in endometrial samples was compared using bovine Affymetrix arrays. Data were mapped using Ingenuity Pathway Analysis. Circulating concentrations of IGF-I remained lower in the SNEB group, whereas blood nonesterified fatty acid and beta-hydroxybutyrate concentrations were raised. White blood cell count and lymphocyte number were reduced in SNEB cows. Array analysis of endometrial samples identified 274 differentially expressed probes representing 197 recognized genes between the energy balance groups. The main canonical pathways affected related to immunological and inflammatory disease and connective tissue disorders. Inflammatory response genes with major upregulation in SNEB cows included matrix metalloproteinases, chemokines, cytokines, and calgranulins. Expression of several interferon-inducible genes including ISG20, IFIH1, MX1, and MX2 were also significantly increased in the SNEB cows. These results provide evidence that cows in SNEB were still undergoing an active uterine inflammatory response 2 wk postpartum, whereas MNEB cows had more fully recovered from their energy deficit, with their endometrium reaching a more advanced stage of repair. SNEB may therefore prevent cows from mounting an effective immune response to the microbial challenge experienced after calving, prolonging the time required for uterine recovery and compromising subsequent fertility.

  11. Ethanol impairs mucosal immunity against Streptococcus pneumoniae infection by disrupting interleukin 17 gene expression.

    Science.gov (United States)

    Trevejo-Nunez, Giraldina; Chen, Kong; Dufour, Jason P; Bagby, Gregory J; Horne, William T; Nelson, Steve; Kolls, Jay K

    2015-05-01

    Acute ethanol intoxication suppresses the host immune responses against Streptococcus pneumoniae. As interleukin 17 (IL-17) is a critical cytokine in host defense against extracellular pathogens, including S. pneumoniae, we hypothesized that ethanol impairs mucosal immunity against this pathogen by disrupting IL-17 production or IL-17 receptor (IL-17R) signaling. A chronic ethanol feeding model in simian immunodeficiency virus (SIV)-infected rhesus macaques and acute ethanol intoxication in a murine model were used. Transcriptome analysis of bronchial brushes in the nonhuman primate model showed downregulation of the expression of IL-17-regulated chemokines in ethanol-fed animals, a finding also replicated in the murine model. Surprisingly, recombinant CXCL1 and CXCL5 but not IL-17 or IL-23 plus IL-1β rescued bacterial burden in the ethanol group to control levels. Taken together, the results of this study suggest that ethanol impairs IL-17-mediated chemokine production in the lung. Thus, exogenous luminal restoration of IL-17-related chemokines, CXCL1 and CXCL5, improves host defenses against S. pneumoniae.

  12. Intestinal microbiota and immune related genes in sea cucumber (Apostichopus japonicus) response to dietary β-glucan supplementation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gang [The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China (China); Xu, Zhenjiang [Biofrontiers Institute, University of Colorado, Boulder, CO (United States); Tian, Xiangli, E-mail: xianglitian@ouc.edu.cn [The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China (China); Dong, Shuanglin [The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China (China); Peng, Mo [School of Animal Science and Technology, Jiangxi Agricultural University (China)

    2015-02-27

    β-glucan is a prebiotic well known for its beneficial outcomes on sea cucumber health through modifying the host intestinal microbiota. High-throughput sequencing techniques provide an opportunity for the identification and characterization of microbes. In this study, we investigated the intestinal microbial community composition, interaction among species, and intestinal immune genes in sea cucumber fed with diet supplemented with or without β-glucan supplementation. The results show that the intestinal dominant classes in the control group are Flavobacteriia, Gammaproteobacteria, and Alphaproteobacteria, whereas Alphaproteobacteria, Flavobacteriia, and Verrucomicrobiae are enriched in the β-glucan group. Dietary β-glucan supplementation promoted the proliferation of the family Rhodobacteraceae of the Alphaproteobacteria class and the family Verrucomicrobiaceae of the Verrucomicrobiae class and reduced the relative abundance of the family Flavobacteriaceae of Flavobacteria class. The ecological network analysis suggests that dietary β-glucan supplementation can alter the network interactions among different microbial functional groups by changing the microbial community composition and topological roles of the OTUs in the ecological network. Dietary β-glucan supplementation has a positive impact on immune responses of the intestine of sea cucumber by activating NF-κB signaling pathway, probably through modulating the balance of intestinal microbiota. - Highlights: • Dietary β-glucan supplementation increases the abundance of Rhodobacteraceae and Verrucomicrobiaceae in the intestine. • Dietary β-glucan supplementation changes the topological roles of OTUs in the ecological network. • Dietary β-glucan supplementation has a positive impact on the immune response of intestine of sea cucumber.

  13. Knockdown of PU.1 mRNA and AS lncRNA regulates expression of immune-related genes in zebrafish Danio rerio.

    Science.gov (United States)

    Wei, Ning; Pang, Weijun; Wang, Yu; Xiong, Yan; Xu, Ruxiang; Wu, Wenjing; Zhao, Cunzhen; Yang, Gongshe

    2014-06-01

    The transcription factor PU.1 plays a key role in the development of immune system. Recent evidence demonstrated bidirectional transcription and a sense/antisense transcriptional regulatory manner in PU.1 locus. However, the effect of PU.1 mRNA and its antisense long non-coding RNA (AS lncRNA) on adaptive immunity in vivo is still not clear. In this study, we first confirmed the expression of PU.1 AS lncRNA by strand-specific RT-PCR in zebrafish. Additionally, we found that GFP was detected in zebrafish kidney using tissue smears after zebrafish was intraperitoneally injected with pLentiHI-PU.1 shRNA or pLentiHI-PU.1 AS shRNA for 2 days. Moreover, on day 0, 2 and 4, the levels of PU.1 and immune-related genes including TCRAC, Rag2, AID, IgLC-1, mIg, and sIg mRNAs were detected using real-time qPCR. The results showed that the levels of PU.1 and above 6 immune-related gene mRNAs were significantly downregulated on day 2 (PPU.1 shRNA, whereas these genes were markedly upregulated by the treatment with the pLentiHI-PU.1 AS shRNA. Based on our results, we suggested that the effects of PU.1 transcripts including mRNA and AS lncRNA on immune-related gene expression in zebrafish were opposite. To our knowledge, this was the first report that a novel functional AS lncRNA in adaptive immunity was transcribed from the zebrafish PU.1 locus. Our findings provided novel insight into further exploration on modulating adaptive immunity by regulating PU.1 mRNA and AS lncRNA.

  14. Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity.

    Science.gov (United States)

    Feys, Bart J; Wiermer, Marcel; Bhat, Riyaz A; Moisan, Lisa J; Medina-Escobar, Nieves; Neu, Christina; Cabral, Adriana; Parker, Jane E

    2005-09-01

    Plant innate immunity against invasive biotrophic pathogens depends on the intracellular defense regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). We show here that Arabidopsis thaliana EDS1 interacts in vivo with another protein, SENESCENCE-ASSOCIATED GENE101 (SAG101), discovered through a proteomic approach to identify new EDS1 pathway components. Together with PHYTOALEXIN-DEFICIENT4 (PAD4), a known EDS1 interactor, SAG101 contributes intrinsic and indispensable signaling activity to EDS1-dependent resistance. The combined activities of SAG101 and PAD4 are necessary for programmed cell death triggered by the Toll-Interleukin-1 Receptor type of nucleotide binding/leucine-rich repeat immune receptor in response to avirulent pathogen isolates and in restricting the growth of normally virulent pathogens. We further demonstrate by a combination of cell fractionation, coimmunoprecipitation, and fluorescence resonance energy transfer experiments the existence of an EDS1-SAG101 complex inside the nucleus that is molecularly and spatially distinct from EDS1-PAD4 associations in the nucleus and cytoplasm. By contrast, EDS1 homomeric interactions were detected in the cytoplasm but not inside the nucleus. These data, combined with evidence for coregulation between individual EDS1 complexes, suggest that dynamic interactions of EDS1 and its signaling partners in multiple cell compartments are important for plant defense signal relay.

  15. Intestinal microbiota and immune related genes in sea cucumber (Apostichopus japonicus) response to dietary β-glucan supplementation.

    Science.gov (United States)

    Yang, Gang; Xu, Zhenjiang; Tian, Xiangli; Dong, Shuanglin; Peng, Mo

    2015-02-27

    β-glucan is a prebiotic well known for its beneficial outcomes on sea cucumber health through modifying the host intestinal microbiota. High-throughput sequencing techniques provide an opportunity for the identification and characterization of microbes. In this study, we investigated the intestinal microbial community composition, interaction among species, and intestinal immune genes in sea cucumber fed with diet supplemented with or without β-glucan supplementation. The results show that the intestinal dominant classes in the control group are Flavobacteriia, Gammaproteobacteria, and Alphaproteobacteria, whereas Alphaproteobacteria, Flavobacteriia, and Verrucomicrobiae are enriched in the β-glucan group. Dietary β-glucan supplementation promoted the proliferation of the family Rhodobacteraceae of the Alphaproteobacteria class and the family Verrucomicrobiaceae of the Verrucomicrobiae class and reduced the relative abundance of the family Flavobacteriaceae of Flavobacteria class. The ecological network analysis suggests that dietary β-glucan supplementation can alter the network interactions among different microbial functional groups by changing the microbial community composition and topological roles of the OTUs in the ecological network. Dietary β-glucan supplementation has a positive impact on immune responses of the intestine of sea cucumber by activating NF-κB signaling pathway, probably through modulating the balance of intestinal microbiota.

  16. Immunity related genes in dipterans share common enrichment of AT-rich motifs in their 5' regulatory regions that are potentially involved in nucleosome formation

    Directory of Open Access Journals (Sweden)

    Rodriguez Mario H

    2008-07-01

    Full Text Available Abstract Background Understanding the transcriptional regulation mechanisms in response to environmental challenges is of fundamental importance in biology. Transcription factors associated to response elements and the chromatin structure had proven to play important roles in gene expression regulation. We have analyzed promoter regions of dipteran genes induced in response to immune challenge, in search for particular sequence patterns involved in their transcriptional regulation. Results 5' upstream regions of D. melanogaster and A. gambiae immunity-induced genes and their corresponding orthologous genes in 11 non-melanogaster drosophilid species and Ae. aegypti share enrichment in AT-rich short motifs. AT-rich motifs are associated with nucleosome formation as predicted by two different algorithms. In A. gambiae and D. melanogaster, many immunity genes 5' upstream sequences also showed NFκB response elements, located within 500 bp from the transcription start site. In A. gambiae, the frequency of ATAA motif near the NFκB response elements was increased, suggesting a functional link between nucleosome formation/remodelling and NFκB regulation of transcription. Conclusion AT-rich motif enrichment in 5' upstream sequences in A. gambiae, Ae. aegypti and the Drosophila genus immunity genes suggests a particular pattern of nucleosome formation/chromatin organization. The co-occurrence of such motifs with the NFκB response elements suggests that these sequence signatures may be functionally involved in transcriptional activation during dipteran immune response. AT-rich motif enrichment in regulatory regions in this group of co-regulated genes could represent an evolutionary constrained signature in dipterans and perhaps other distantly species.

  17. Differential expression of brain immune genes and schizophrenia-related behavior in C57BL/6N and DBA/2J female mice.

    Science.gov (United States)

    Ma, Li; Kulesskaya, Natalia; Võikar, Vootele; Tian, Li

    2015-03-30

    Mounting evidence suggests the association of immune genes with complex neuropsychiatric diseases, such as schizophrenia. However, immune gene expression in the brain and their involvement in schizophrenia-related behavior in animal models have not been well studied so far. We analyzed the social (resident-intruder) and sensorimotor gating (pre-pulse inhibition (PPI) of acoustic startle) behaviors, and expression profiles of several brain immune genes in adult C57BL/6N and DBA/2J female mice. Compared to C57BL/6N mice, DBA/2J mice exhibited less social interaction in the resident-intruder test and reduced pre-pulse inhibition. The mRNA levels of Il1b and Il6 genes were significantly higher in the cortex and hypothalamus, while the mRNA level of C1qb was lower in the cortex, hippocampus and hypothalamus of DBA/2J mice compared to C57BL/6N mice. Furthermore, Tnfsf13b was up-regulated in the cortex and hippocampus, and so did Cd47 in the hippocampus, while Cx3cl1 was down-regulated in the cortex of DBA/2J mice. Our study demonstrates the differential expression of several immune genes in C57BL/6N and DBA/2J strains and more importantly provides clues on their potential importance in regulating schizophrenia-related endophenotypes in animal models.

  18. Suppression subtractive hybridization (SSH) combined with bioinformatics method: an integrated functional annotation approach for analysis of differentially expressed immune-genes in insects.

    Science.gov (United States)

    Badapanda, Chandan

    2013-01-01

    The suppression subtractive hybridization (SSH) approach, a PCR based approach which amplifies differentially expressed cDNAs (complementary DNAs), while simultaneously suppressing amplification of common cDNAs, was employed to identify immuneinducible genes in insects. This technique has been used as a suitable tool for experimental identification of novel genes in eukaryotes as well as prokaryotes; whose genomes have been sequenced, or the species whose genomes have yet to be sequenced. In this article, I have proposed a method for in silico functional characterization of immune-inducible genes from insects. Apart from immune-inducible genes from insects, this method can be applied for the analysis of genes from other species, starting from bacteria to plants and animals. This article is provided with a background of SSH-based method taking specific examples from innate immune-inducible genes in insects, and subsequently a bioinformatics pipeline is proposed for functional characterization of newly sequenced genes. The proposed workflow presented here, can also be applied for any newly sequenced species generated from Next Generation Sequencing (NGS) platforms.

  19. Developmental Changes in Pain and Spinal Immune Gene Expression after Radicular Trauma in the Rat.

    Science.gov (United States)

    Barr, Gordon A; Wang, Shaoning; Weisshaar, Christine L; Winkelstein, Beth A

    2016-01-01

    Neuropathic pain is chronic pain that develops after nerve injury and is less frequent in infants and children than in adults. Likewise, in animal models of neuropathic pain, allodynia and hyperalgesia are non-existent or attenuated in the infant, with a "switch" during development by which acute nerve injury transitions to chronic pain. Concomitant with the delay in neuropathic pain, there is a parallel delay in the ability of nerve injury to activate the immune system. Models of neuropathic pain in the infant have used various ligation methods and find that neuropathic pain does not occur under after postnatal days 21-28 (PN21-PN28), linked to activation of immune processes and developmental regulation of anti-inflammatory cytokines. We applied a model of neuropathic pain in the adult using a transient compression of the cervical nerve or nerve root in infant rats (injured at 10, 14, 21, or 28 days of age) to define transition periods during which injury results in no change in thermal and mechanical pain sensitivity or in short-term changes in pain. There was little to no hyperalgesia when the injury was imposed at PN10, but significant thermal hyperalgesia and mechanical allodynia 1 day after compression injury when performed at PN14, 21, or 28. Thermal withdrawal latencies returned to near baseline by 7 days postsurgery when the injuries were at PN14, and lasted up to 14 days when the injury was imposed at PN28. There was mechanical allodynia following injury at 1 day postinjury and at 14 days after injury at PN14. Measurements of mRNA from spinal cord at 1, 7, and 14 days postinjury at PN14, 21, and 28 showed that both the magnitude and duration of elevated immune markers and chemokines/cytokines were greater in the older animals, corresponding to the development of hyperalgesia. Thus, we confirm the late onset of neuropathic pain but found no evidence of emergent hyperalgesia if the injury was before PN21. This may be due to the use of a

  20. Developmental Changes In Pain And Spinal Immune Gene Expression After Radicular Trauma In The Rat

    Directory of Open Access Journals (Sweden)

    Gordon Alfred Barr

    2016-12-01

    Full Text Available Neuropathic pain is an example of chronic pain that develops after nerve injury and is less frequent in infants and children than in adults. Likewise, in animal models of neuropathic pain, allodynia and hyperalgesia are non-existent or attenuated in the infant, with a switch during development by which acute nerve injury transitions to chronic pain. Concomitant with the delay in neuropathic pain, there is a parallel delay in the ability of nerve injury to activate the immune system. Models of neuropathic pain in the infant have used various ligation methods and find that neuropathic pain does not occur under after postnatal day 21-28 (PN21-PN28, linked to activation of immune processes and developmental regulation of anti-inflammatory cytokines. We applied a model of neuropathic pain in the adult using a transient compression of the cervical nerve or nerve root in infant rats (injured at 10, 14, 21 or 28 days of age to define transition periods during which injury results in no change in thermal and mechanical pain sensitivity or in short term changes in pain. There was little to no hyperalgesia when the injury was imposed at PN10, but significant thermal hyperalgesia and mechanical allodynia one day after compression injury when performed at PN14, 21 or 28. Thermal withdrawal latencies return to near baseline by 7 days post-surgery (PS7 when the injuries were at PN14, and lasted up to 14 days when imposed at PN28. There was mechanical allodynia following nerve injury at 7 or 14 days after injury at PN14. Measurements of mRNA from spinal cord at 1, 7 and 14 days post-injury at PN14, 21, and 28 showed that both the magnitude and duration of elevated immune markers and chemokines/cytokines were greater in the older animals, corresponding to the development of hyperalgesia. Thus we confirm the late onset of neuropathic pain but found no evidence of emergent hyperalgesia if the injury was before PN21/28. This may be due to the use of a transient

  1. Developmental Changes in Pain and Spinal Immune Gene Expression after Radicular Trauma in the Rat

    Science.gov (United States)

    Barr, Gordon A.; Wang, Shaoning; Weisshaar, Christine L.; Winkelstein, Beth A.

    2016-01-01

    Neuropathic pain is chronic pain that develops after nerve injury and is less frequent in infants and children than in adults. Likewise, in animal models of neuropathic pain, allodynia and hyperalgesia are non-existent or attenuated in the infant, with a “switch” during development by which acute nerve injury transitions to chronic pain. Concomitant with the delay in neuropathic pain, there is a parallel delay in the ability of nerve injury to activate the immune system. Models of neuropathic pain in the infant have used various ligation methods and find that neuropathic pain does not occur under after postnatal days 21–28 (PN21–PN28), linked to activation of immune processes and developmental regulation of anti-inflammatory cytokines. We applied a model of neuropathic pain in the adult using a transient compression of the cervical nerve or nerve root in infant rats (injured at 10, 14, 21, or 28 days of age) to define transition periods during which injury results in no change in thermal and mechanical pain sensitivity or in short-term changes in pain. There was little to no hyperalgesia when the injury was imposed at PN10, but significant thermal hyperalgesia and mechanical allodynia 1 day after compression injury when performed at PN14, 21, or 28. Thermal withdrawal latencies returned to near baseline by 7 days postsurgery when the injuries were at PN14, and lasted up to 14 days when the injury was imposed at PN28. There was mechanical allodynia following injury at 1 day postinjury and at 14 days after injury at PN14. Measurements of mRNA from spinal cord at 1, 7, and 14 days postinjury at PN14, 21, and 28 showed that both the magnitude and duration of elevated immune markers and chemokines/cytokines were greater in the older animals, corresponding to the development of hyperalgesia. Thus, we confirm the late onset of neuropathic pain but found no evidence of emergent hyperalgesia if the injury was before PN21. This may be due to the use of

  2. Dominant-Negative Proteins in Herpesviruses – From Assigning Gene Function to Intracellular Immunization

    Directory of Open Access Journals (Sweden)

    Zsolt Ruzsics

    2009-10-01

    Full Text Available Investigating and assigning gene functions of herpesviruses is a process, which profits from consistent technical innovation. Cloning of bacterial artificial chromosomes encoding herpesvirus genomes permits nearly unlimited possibilities in the construction of genetically modified viruses. Targeted or randomized screening approaches allow rapid identification of essential viral proteins. Nevertheless, mapping of essential genes reveals only limited insight into function. The usage of dominant-negative (DN proteins has been the tool of choice to dissect functions of proteins during the viral life cycle. DN proteins also facilitate the analysis of host-virus interactions. Finally, DNs serve as starting-point for design of new antiviral strategies.

  3. High contaminant loads in Lake Apopka's riparian wetland disrupt gene networks involved in reproduction and immune function in largemouth bass.

    Science.gov (United States)

    Martyniuk, Christopher J; Doperalski, Nicholas J; Prucha, Melinda S; Zhang, Ji-Liang; Kroll, Kevin J; Conrow, Roxanne; Barber, David S; Denslow, Nancy D

    2016-09-01

    Lake Apopka (FL, USA) has elevated levels of some organochlorine pesticides in its sediments and a portion of its watershed has been designated a US Environmental Protection Agency Superfund site. This study assessed reproductive endpoints in Florida largemouth bass (LMB) (Micropterus salmoides floridanus) after placement into experimental ponds adjacent to Lake Apopka. LMB collected from a clean reference site (DeLeon Springs) were stocked at two periods of time into ponds constructed in former farm fields on the north shore of the lake. LMB were stocked during early and late oogenesis to determine if there were different effects of contamination on LMB that may be attributed to their reproductive stage. LMB inhabiting the ponds for ~4months had anywhere from 2 to 800 times higher contaminant load for a number of organochlorine pesticides (e.g. p, p'-DDE, methoxychlor) compared to control animals. Gonadosomatic index and plasma vitellogenin were not different between reproductively-stage matched LMB collected at reference sites compared to those inhabiting the ponds. However, plasma 17β-estradiol was lower in LMB inhabiting the Apopka ponds compared to ovary stage-matched LMB from the St. Johns River, a site used as a reference site. Sub-network enrichment analysis revealed that genes related to reproduction (granulosa function, oocyte development), endocrine function (steroid metabolism, hormone biosynthesis), and immune function (T cell suppression, leukocyte accumulation) were differentially expressed in the ovaries of LMB placed into the ponds. These data suggest that (1) LMB inhabiting the Apopka ponds showed disrupted reproduction and immune responses and that (2) gene expression profiles provided site-specific information by discriminating LMB from different macro-habitats.

  4. Identification of genes expressed by immune cells of the colon that are regulated by colorectal cancer-associated variants.

    Science.gov (United States)

    Peltekova, Vanya D; Lemire, Mathieu; Qazi, Aamer M; Zaidi, Syed H E; Trinh, Quang M; Bielecki, Ryszard; Rogers, Marianne; Hodgson, Lyndsey; Wang, Mike; D'Souza, David J A; Zandi, Sasan; Chong, Taryne; Kwan, Jennifer Y Y; Kozak, Krystian; De Borja, Richard; Timms, Lee; Rangrej, Jagadish; Volar, Milica; Chan-Seng-Yue, Michelle; Beck, Timothy; Ash, Colleen; Lee, Shawna; Wang, Jianxin; Boutros, Paul C; Stein, Lincoln D; Dick, John E; Gryfe, Robert; McPherson, John D; Zanke, Brent W; Pollett, Aaron; Gallinger, Steven; Hudson, Thomas J

    2014-05-15

    A locus on human chromosome 11q23 tagged by marker rs3802842 was associated with colorectal cancer (CRC) in a genome-wide association study; this finding has been replicated in case-control studies worldwide. In order to identify biologic factors at this locus that are related to the etiopathology of CRC, we used microarray-based target selection methods, coupled to next-generation sequencing, to study 103 kb at the 11q23 locus. We genotyped 369 putative variants from 1,030 patients with CRC (cases) and 1,061 individuals without CRC (controls) from the Ontario Familial Colorectal Cancer Registry. Two previously uncharacterized genes, COLCA1 and COLCA2, were found to be co-regulated genes that are transcribed from opposite strands. Expression levels of COLCA1 and COLCA2 transcripts correlate with rs3802842 genotypes. In colon tissues, COLCA1 co-localizes with crystalloid granules of eosinophils and granular organelles of mast cells, neutrophils, macrophages, dendritic cells and differentiated myeloid-derived cell lines. COLCA2 is present in the cytoplasm of normal epithelial, immune and other cell lineages, as well as tumor cells. Tissue microarray analysis demonstrates the association of rs3802842 with lymphocyte density in the lamina propria (p = 0.014) and levels of COLCA1 in the lamina propria (p = 0.00016) and COLCA2 (tumor cells, p = 0.0041 and lamina propria, p = 6 × 10(-5)). In conclusion, genetic, expression and immunohistochemical data implicate COLCA1 and COLCA2 in the pathogenesis of colon cancer. Histologic analyses indicate the involvement of immune pathways.

  5. Immune responses of whiteleg shrimp, Litopenaeus vannamei (Boone, 1931), to bacterially expressed dsRNA specific to VP28 gene of white spot syndrome virus.

    Science.gov (United States)

    Taju, G; Madan, N; Abdul Majeed, S; Kumar, T Raj; Thamizhvanan, S; Otta, S K; Sahul Hameed, A S

    2015-05-01

    In this study, dsRNA specific to VP28 gene of white spot syndrome virus (WSSV) of shrimp was synthesized in Escherichia coli in large scale and studied the immune response of shrimp to dsRNA-VP28. The haematological parameters such as clotting time and total haemocytes counts, and immunological parameters such as prophenoloxidase (proPO), superoxide dismutase (SOD), superoxide anion (SOA) and malondialdehyde content, as well as the mRNA expression of ten immune-related genes were examined to estimate the effect of dsRNA-VP28 on the innate immunity of Litopenaeus vannamei. The activities of proPO, SOA and SOD significantly increased in haemocyte after dsRNA-VP28 treatment, whereas MDA content did not change significantly. Among the ten immune-related genes examined, only the mRNA expression of proPO, cMnSOD, haemocyanin, crustin, BGBP, lipopolysaccharides (LPs), lectin and lysozyme in haemocytes, gill and hepatopancreas of L. vannamei, was significantly upregulated at 12 h after dsRNA-VP28 treatment, while no significant expression changes were observed in Toll receptor and tumour receptor genes. The increase of proPO and SOD activities, and SOA level and mRNA expression level of proPO, cMnSOD, haemocyanin, crustin, BGBP, LPs, lectin and lysozyme after dsRNA-VP28 stimulation indicate that these immune-related genes were involved in dsRNA-VP28-induced innate immunity in shrimp.

  6. Malaria infection of the mosquito Anopheles gambiae activates immune-responsive genes during critical transition stages of the parasite life cycle.

    OpenAIRE

    Dimopoulos, G; Seeley, D; Wolf, A.; Kafatos, F C

    1998-01-01

    Six gene markers have been used to map the progress of the innate immune response of the mosquito vector, Anopheles gambiae, upon infection by the malaria parasite, Plasmodium berghei. In addition to four previously reported genes, the set of markers included NOS (a nitric oxide synthase gene fragment) and ICHIT (a gene encoding two putative chitin-binding domains separated by a polythreonine-rich mucin region). In the midgut, a robust response occurs at 24 h post-infection, at a time when ma...

  7. Molecular Profiling of Peripheral Blood Cells from Patients with Polycythemia Vera and Related Neoplasms: Identification of Deregulated Genes of Significance for Inflammation and Immune Surveillance

    DEFF Research Database (Denmark)

    Skov, Vibe; Larsen, Thomas Stauffer; Thomassen, Mads;

    2012-01-01

    in inflammatory responses, mainly being performed on granulocytes or CD34+ cells. Using gene expression profiling of whole blood from patients with ET (n=16), PV (n=36), and PMF (n=9), several genes involved in inflammation and immune regulation were found to be significantly deregulated. Our findings may reflect......Essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF) are haematopoietic stem cell neoplasms that may be associated with autoimmune or chronic inflammatory disorders. Earlier gene expression profiling studies have demonstrated aberrant expression of genes involved...

  8. Long-term activation of the innate immune system in atherosclerosis.

    Science.gov (United States)

    Christ, Anette; Bekkering, Siroon; Latz, Eicke; Riksen, Niels P

    2016-08-01

    Efforts to reverse the pathologic consequences of vulnerable plaques are often stymied by the complex treatment resistant pro-inflammatory environment within the plaque. This suggests that pro-atherogenic stimuli, such as LDL cholesterol and high fat diets may impart longer lived signals on (innate) immune cells that persist even after reversing the pro-atherogenic stimuli. Recently, a series of studies challenged the traditional immunological paradigm that innate immune cells cannot display memory characteristics. Epigenetic reprogramming in these myeloid cell subsets, after exposure to certain stimuli, has been shown to alter the expression of genes upon re-exposure. This phenomenon has been termed trained innate immunity or innate immune memory. The changed responses of 'trained' innate immune cells can confer nonspecific protection against secondary infections, suggesting that innate immune memory has likely evolved as an ancient mechanism to protect against pathogens. However, dysregulated processes of immunological imprinting mediated by trained innate immunity may also be detrimental under certain conditions as the resulting exaggerated immune responses could contribute to autoimmune and inflammatory diseases, such as atherosclerosis. Pro-atherogenic stimuli most likely cause epigenetic modifications that persist for prolonged time periods even after the initial stimulus has been removed. In this review we discuss the concept of trained innate immunity in the context of a hyperlipidemic environment and atherosclerosis. According to this idea the epigenome of myeloid (progenitor) cells is presumably modified for prolonged periods of time, which, in turn, could evoke a condition of continuous immune cell over-activation.

  9. Acute exercise leads to regulation of telomere-associated genes and microRNA expression in immune cells.

    Directory of Open Access Journals (Sweden)

    Warrick L Chilton

    Full Text Available Telomeres are specialized nucleoprotein structures that protect chromosomal ends from degradation. These structures progressively shorten during cellular division and can signal replicative senescence below a critical length. Telomere length is predominantly maintained by the enzyme telomerase. Significant decreases in telomere length and telomerase activity are associated with a host of chronic diseases; conversely their maintenance underpins the optimal function of the adaptive immune system. Habitual physical activity is associated with longer leukocyte telomere length; however, the precise mechanisms are unclear. Potential hypotheses include regulation of telomeric gene transcription and/or microRNAs (miRNAs. We investigated the acute exercise-induced response of telomeric genes and miRNAs in twenty-two healthy males (mean age = 24.1±1.55 years. Participants undertook 30 minutes of treadmill running at 80% of peak oxygen uptake. Blood samples were taken before exercise, immediately post-exercise and 60 minutes post-exercise. Total RNA from white blood cells was submitted to miRNA arrays and telomere extension mRNA array. Results were individually validated in white blood cells and sorted T cell lymphocyte subsets using quantitative real-time PCR (qPCR. Telomerase reverse transcriptase (TERT mRNA (P = 0.001 and sirtuin-6 (SIRT6 (P<0.05 mRNA expression were upregulated in white blood cells after exercise. Fifty-six miRNAs were also differentially regulated post-exercise (FDR <0.05. In silico analysis identified four miRNAs (miR-186, miR-181, miR-15a and miR-96 that potentially targeted telomeric gene mRNA. The four miRNAs exhibited significant upregulation 60 minutes post-exercise (P<0.001. Telomeric repeat binding factor 2, interacting protein (TERF2IP was identified as a potential binding target for miR-186 and miR-96 and demonstrated concomitant downregulation (P<0.01 at the corresponding time point. Intense cardiorespiratory

  10. Expression of Innate Immunity Genes in Epithelial Cells of Hypertrophic Adenoids with and without Pediatric Chronic Rhinosinusitis: A Preliminary Report

    Institute of Scientific and Technical Information of China (English)

    Xiao-Peng Qu; Zhen-Xiao Huang; Yan Sun; Ting Ye; Shun-Jiu Cui; Qian Huang; Li-Jing Ma

    2015-01-01

    Background:Adenoid hypertrophy (AH) is associated with pediatric chronic rhinosinusitis (pCRS),but its role in the inflammatory process of pCRS is unclear.It is thought that innate immunity gene expression is disrupted in the epithelium of patients with chronic rhinosinusitis (CRS),including antimicrobial peptides and pattern recognition receptors (PRRs).The aim of this preliminary study was to detect the expression of innate immunity genes in epithelial cells of hypertrophic adenoids with and without pCRS to better understand their role in pCRS.Methods:Nine pCRS patients and nine simple AH patients undergoing adenoidectomy were recruited for the study.Adenoidal epithelium was isolated,and real-time quantitative polymerase chain reaction (RT-qPCR) was employed to measure relative expression levels of the following messenger RNAs in hypertrophic adenoid epithelial cells of pediatric patients with and without CRS:Human β-defensin (HBD) 2 and 3,surfactant protein (SP)-A and D,toll-like receptors 1-10,nucleotide-binding oligomerization domain (NOD)-like receptors NOD 1,NOD 2,and NACHT,LRR and PYD domains-containing protein 3,retinoic acid-induced gene 1,melanoma differentiation-associated gene 5,and nuclear factor-KB (NF-κB).RT-qPCR data from two groups were analyzed by independent sample t-tests and Mann-Whitney U-tests.Results:The relative expression of SP-D in adenoidal epithelium of pCRS group was significantly lower than that in AH group (pCRS 0.73 ± 0.10 vs.AH 1.21 ± 0.15;P =0.0173,t =2.654).The relative expression levels of all tested PRRs and NF-κB,as well as HBD-2,HBD-3,and SP-A,showed no statistically significant differences in isolated adenoidal epithelium between pCRS group and AH group.Conclusions:Down-regulated SP-D levels in adenoidal epithelium may contribute to the development of pCRS.PRRs,however,are unlikely to play a significant role in the inflammatory process of pCRS.

  11. Expression of Innate Immunity Genes in Epithelial Cells of Hypertrophic Adenoids with and without Pediatric Chronic Rhinosinusitis: A Preliminary Report

    Directory of Open Access Journals (Sweden)

    Xiao-Peng Qu

    2015-01-01

    Full Text Available Background: Adenoid hypertrophy (AH is associated with pediatric chronic rhinosinusitis (pCRS, but its role in the inflammatory process of pCRS is unclear. It is thought that innate immunity gene expression is disrupted in the epithelium of patients with chronic rhinosinusitis (CRS, including antimicrobial peptides and pattern recognition receptors (PRRs. The aim of this preliminary study was to detect the expression of innate immunity genes in epithelial cells of hypertrophic adenoids with and without pCRS to better understand their role in pCRS. Methods: Nine pCRS patients and nine simple AH patients undergoing adenoidectomy were recruited for the study. Adenoidal epithelium was isolated, and real-time quantitative polymerase chain reaction (RT-qPCR was employed to measure relative expression levels of the following messenger RNAs in hypertrophic adenoid epithelial cells of pediatric patients with and without CRS: Human β-defensin (HBD 2 and 3, surfactant protein (SP-A and D, toll-like receptors 1-10, nucleotide-binding oligomerization domain (NOD-like receptors NOD 1, NOD 2, and NACHT, LRR and PYD domains-containing protein 3, retinoic acid-induced gene 1, melanoma differentiation-associated gene 5, and nuclear factor-κB (NF-κB. RT-qPCR data from two groups were analyzed by independent sample t-tests and Mann-Whitney U-tests. Results: The relative expression of SP-D in adenoidal epithelium of pCRS group was significantly lower than that in AH group (pCRS 0.73 ± 0.10 vs. AH 1.21 ± 0.15; P = 0.0173, t = 2.654. The relative expression levels of all tested PRRs and NF-κB, as well as HBD-2, HBD-3, and SP-A, showed no statistically significant differences in isolated adenoidal epithelium between pCRS group and AH group. Conclusions: Down-regulated SP-D levels in adenoidal epithelium may contribute to the development of pCRS. PRRs, however, are unlikely to play a significant role in the inflammatory process of pCRS.

  12. Immunoglobulin genes influence the magnitude of humoral immunity to cytomegalovirus glycoprotein B.

    Science.gov (United States)

    Pandey, Janardan P; Kistner-Griffin, Emily; Radwan, Faisal F; Kaur, Navtej; Namboodiri, Aryan M; Black, Laurel; Butler, Mary Ann; Carreón, Tania; Ruder, Avima M

    2014-12-01

    Human cytomegalovirus (HCMV) is a risk factor for many human diseases, but among exposed individuals, not everyone is equally likely to develop HCMV-spurred diseases, implying the presence of host genetic factors that might modulate immunity to this virus. Here, we show that antibody responsiveness to HCMV glycoprotein B (gB) is significantly associated with particular immunoglobulin GM (γ marker) genotypes. Anti-HCMV gB antibody levels were highest in GM 17/17 homozygotes, intermediate in GM 3/17 heterozygotes, and lowest in GM 3/3 homozygotes (28.2, 19.0, and 8.1 µg/mL, respectively; P=.014). These findings provide mechanistic insights in the etiopathogenesis of HCMV-spurred diseases.

  13. Expression of immune-related genes during wound healing in fish

    DEFF Research Database (Denmark)

    Schmidt, Jacob; Nielsen, Michael Engelbrecht

    2013-01-01

    damage starts with a series of non-transcriptional responses that leads to vasoconstriction and hemostasis. This is usually followed by an inflammatory response also initiated in the absence of transcription, but later greatly enhanced by expression of genes coding for proinflammatory cytokines...

  14. Tracing evolutionary relicts of positive selection on eight malaria-related immune genes in mammals.

    Science.gov (United States)

    Huang, Bing-Hong; Liao, Pei-Chun

    2015-07-01

    Plasmodium-induced malaria widely infects primates and other mammals. Multiple past studies have revealed that positive selection could be the main evolutionary force triggering the genetic diversity of anti-malaria resistance-associated genes in human or primates. However, researchers focused most of their attention on the infra-generic and intra-specific genome evolution rather than analyzing the complete evolutionary history of mammals. Here we extend previous research by testing the evolutionary link of natural selection on eight candidate genes associated with malaria resistance in mammals. Three of the eight genes were detected to be affected by recombination, including TNF-α, iNOS and DARC. Positive selection was detected in the rest five immunogenes multiple times in different ancestral lineages of extant species throughout the mammalian evolution. Signals of positive selection were exposed in four malaria-related immunogenes in primates: CCL2, IL-10, HO1 and CD36. However, selection signals of G6PD have only been detected in non-primate eutherians. Significantly higher evolutionary rates and more radical amino acid replacement were also detected in primate CD36, suggesting its functional divergence from other eutherians. Prevalent positive selection throughout the evolutionary trajectory of mammalian malaria-related genes supports the arms race evolutionary hypothesis of host genetic response of mammalian immunogenes to infectious pathogens.

  15. Isolation of immune-relating 185/333-1 gene from Sea Urchin ( Strongylocentrotus intermedius) and Its expression analysis

    Science.gov (United States)

    Wang, Yinan; Ding, Jun; Liu, Yang; Liu, Xuewei; Chang, Yaqing

    2016-02-01

    The 185/333 gene family involved in the immune response of sea urchin. One 185/333 cDNA was isolated from Strongylocentrotus intermedius, and named as Si185/333-1. Its full-length cDNA was 1246 bp in length with a 906 bp open reading frame encoding a protein of 301 aa. The molecular weight of the deduced protein was approximately 33.1 kD with an estimated PI of pH 6.26. Si185/333-1 had high identities (70%-86%) to most of Sp185/333. An extraordinary identity of 92% was found between Si185/333-1 and Sp185/333 C5 alpha (ABR22474). Moderate identities (63%-64%) were displayed between Si185/333-1 and He185/333. Si185/333-1 had similar structure to Sp185/333. A signal-peptide, a gly-rich region and a his-rich region were found in its secondary structure. RGD motif was found in gly-rich region at position 116-118aa. There was no transmembrane region in Si185/333-1. The element pattern of Si185/333-1 is different from any available pattern that identified in Sp185/333. Si185/333-1 clustered together with pattern C Sp185/333 in phylogenetic tree. The Si185/333-1 mRNA could be detected in tißsues including peristomial membrane, coelomocytes, muscle of Aristotles lantern, gut and tube feet, with the highest expression level detected in peristomial membrane and a relatively low expression in ovary and testis. The temporal expression of Si185/333-1 in peristomial membrane and coelomocytes were up-regulated after bacterial, ß-D-glucan and dsRNA challenges, reaching the maximum at 12 h post-stimulation. The up-regulation was more obvious in coelomocytes, and bacterial challenge triggered the highest response. These results proved that 185/333-1 gene was involved in the immune defense of S. intermedius, while more studies were necessary for its function in S. intermedius immunity.

  16. Characteristic expression of major histocompatibility complex and immune privilege genes in human pluripotent stem cells and their derivatives.

    Science.gov (United States)

    Chen, Hsin-Fu; Yu, Chun-Ying; Chen, Mei-Jou; Chou, Shiu-Huey; Chiang, Ming-Shan; Chou, Wen-Hsi; Ko, Bor-Sheng; Huang, Hsiang-Po; Kuo, Hung-Chih; Ho, Hong-Nerng

    2015-01-01

    Pluripotent stem cells, including human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs), have been regarded as useful sources for cell-based transplantation therapy. However, immunogenicity of the cells remains the major determinant for successful clinical application. We report the examination of several hESC lines (NTU1 and H9), hiPSC lines, and their derivatives (including stem cell-derived hepatocytes) for the expression of major histocompatibility complex (MHC), natural killer (NK) cell receptor (NKp30, NKp44, NKp46) ligand, immune-related genes, human leukocyte antigen (HLA) haplotyping, and the effects in functional mixed lymphocyte reaction (MLR). Flow cytometry showed lower levels (percentages and fluorescence intensities) of MHC class I (MHC-I) molecules, β2-microglobulin, and HLA-E in undifferentiated stem cells. The levels were increased after cotreatment with interferon-γ and/or in vitro differentiation. Antigen-presenting cell markers (CD11c, CD80, and CD86) and MHC-II (HLA-DP, -DQ, and -DR) remained low throughout the treatments. Recognition of stem cells/derivatives by NK lysis receptors were lower or absent. Activation of responder lymphocytes was significantly lower by undifferentiated stem cells than by allogeneic lymphocytes in MLR, but differentiated NTU1 hESCs induced a cell number-dependent lymphocyte proliferation comparable with that by allogeneic lymphocytes. Interestingly, activation of lymphocytes by differentiated hiPSCs or H9 cells became blunted at higher cell numbers. Real-time reverse transcriptase PCR (RT-PCR) showed significant differential expression of immune privilege genes (TGF-β2, Arginase 2, Indole 1, GATA3, POMC, VIP, CALCA, CALCB, IL-1RN, CD95L, CR1L, Serpine 1, HMOX1, IL6, LGALS3, HEBP1, THBS1, CD59, and LGALS1) in pluripotent stem cells/derivatives when compared to somatic cells. It was concluded that pluripotent stem cells/derivatives are predicted to be immunogenic, though evidence suggests

  17. Transcriptional dynamics of immune, growth and stress related genes in skeletal muscle of the fine flounder (Paralichthys adpersus) during different nutritional statuses.

    Science.gov (United States)

    Valenzuela, Cristián A; Escobar, Daniela; Perez, Lorena; Zuloaga, Rodrigo; Estrada, Juan Manuel; Mercado, Luis; Valdés, Juan Antonio; Molina, Alfredo

    2015-11-01

    The effects of stress on immune activity and growth in early vertebrates have not been studied in detail. The present study used fine flounder (Paralichthys adspersus) skeletal muscle as a model to evaluate molecules involved in the stress response, including the glucocorticoid receptors, foxo1/3, and the target genes of these. Additionally, immune markers (il-1β and tnfα) and effector molecules of atrophy (bnip3, caspase-3, and lc3) were assessed. These molecules were analyzed during periods of long-term fasting and refeeding. During fasting, gene expression related to the stress response and atrophy increased; whereas immune markers were down-regulated. During refeeding, atrophy- and stress-related gene expression significantly decreased. In contrast, immune markers were up-regulated. These results provide novel insight on the control of growth in the skeletal muscle of a non-mammalian species under a stressful condition, suggesting that growth, stress, and immune activity in muscle are closely related and coordinated by orchestrated transcriptional dynamics.

  18. Beyond an AFLP genome scan towards the identification of immune genes involved in plague resistance in Rattus rattus from Madagascar.

    Science.gov (United States)

    Tollenaere, C; Jacquet, S; Ivanova, S; Loiseau, A; Duplantier, J-M; Streiff, R; Brouat, C

    2013-01-01

    Genome scans using amplified fragment length polymorphism (AFLP) markers became popular in nonmodel species within the last 10 years, but few studies have tried to characterize the anonymous outliers identified. This study follows on from an AFLP genome scan in the black rat (Rattus rattus), the reservoir of plague (Yersinia pestis infection) in Madagascar. We successfully sequenced 17 of the 22 markers previously shown to be potentially affected by plague-mediated selection and associated with a plague resistance phenotype. Searching these sequences in the genome of the closely related species Rattus norvegicus assigned them to 14 genomic regions, revealing a random distribution of outliers in the genome (no clustering). We compared these results with those of an in silico AFLP study of the R. norvegicus genome, which showed that outlier sequences could not have been inferred by this method in R. rattus (only four of the 15 sequences were predicted). However, in silico analysis allowed the prediction of AFLP markers distribution and the estimation of homoplasy rates, confirming its potential utility for designing AFLP studies in nonmodel species. The 14 genomic regions surrounding AFLP outliers (less than 300 kb from the marker) contained 75 genes encoding proteins of known function, including nine involved in immune function and pathogen defence. We identified the two interleukin 1 genes (Il1a and Il1b) that share homology with an antigen of Y. pestis, as the best candidates for genes subject to plague-mediated natural selection. At least six other genes known to be involved in proinflammatory pathways may also be affected by plague-mediated selection.

  19. THE ROLE OF ALLELIC POLYMORPHISM OF RECEPTOR GENES OF INNATE IMMUNITY IN THE PERSISTENCE OF HUMAN PAPILLOMAVIRUS

    Directory of Open Access Journals (Sweden)

    O. P. Gumilevskaya

    2016-01-01

    Full Text Available The  development of a stable  immunoresistance against human papillomavirus occurs  largely due  to the reactions of the innate immune system, mediated through Toll-like receptors.  It is known, that  allelic  polymorphism of the  Toll-like receptors genes, associated with  single  nucleotide polymorphisms can influence on the sensitivity of reception and lead to disruption of pathogen recognition and,  thus  lead  to reduced susceptibility of the body to infectious agents. The aim of the study was to find  the association of polymorphisms T-1237S, A2848G of TLR 9 gene, Phe-412 Leu of TLR 3 gene and С-819 Т, G-1082 A of IL-10 gene  with  persistence of human papillomavirus infection of high oncogenic types.  There were examined 194 women aged  18–42 years  with  the  presence of HPV types  16 and  18. The material for laboratory  studies were  scraped from  the  mucosa of the  urogenital tract  and peripheral blood  of patients. Depending on the  presence of virus women were divided into two groups:  98 patients with persistent human papillomavirus infection and  96  women without it. As the result  after investigation some  significant differences in the distribution of variants of polymorphic loci (A2848G  TLR 9, (Phe412  Leu  TLR 3 and  (G-1082A  IL-10 were identified.

  20. De novo characterization of the spleen transcriptome of the large yellow croaker (Pseudosciaena crocea) and analysis of the immune relevant genes and pathways involved in the antiviral response

    KAUST Repository

    Mu, Yinnan

    2014-05-12

    The large yellow croaker (Pseudosciaena crocea) is an economically important marine fish in China. To understand the molecular basis for antiviral defense in this species, we used Illumia paired-end sequencing to characterize the spleen transcriptome of polyriboinosinic:polyribocytidylic acid [poly(I:C)]-induced large yellow croakers. The library produced 56,355,728 reads and assembled into 108,237 contigs. As a result, 15,192 unigenes were found from this transcriptome. Gene ontology analysis showed that 4,759 genes were involved in three major functional categories: biological process, cellular component, and molecular function. We further ascertained that numerous consensus sequences were homologous to known immune-relevant genes. Kyoto Encyclopedia of Genes and Genomes orthology mapping annotated 5,389 unigenes and identified numerous immune-relevant pathways. These immune-relevant genes and pathways revealed major antiviral immunity effectors, including but not limited to: pattern recognition receptors, adaptors and signal transducers, the interferons and interferon-stimulated genes, inflammatory cytokines and receptors, complement components, and B-cell and T-cell antigen activation molecules. Moreover, the partial genes of Toll-like receptor signaling pathway, RIG-I-like receptors signaling pathway, Janus kinase-Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway, and T-cell receptor (TCR) signaling pathway were found to be changed after poly(I:C) induction by real-time polymerase chain reaction (PCR) analysis, suggesting that these signaling pathways may be regulated by poly(I:C), a viral mimic. Overall, the antivirus-related genes and signaling pathways that were identified in response to poly(I:C) challenge provide valuable leads for further investigation of the antiviral defense mechanism in the large yellow croaker. © 2014 Mu et al.

  1. Ancient human microbiomes.

    Science.gov (United States)

    Warinner, Christina; Speller, Camilla; Collins, Matthew J; Lewis, Cecil M

    2015-02-01

    Very recently, we discovered a vast new microbial self: the human microbiome. Our native microbiota interface with our biology and culture to influence our health, behavior, and quality of life, and yet we know very little about their origin, evolution, or ecology. With the advent of industrialization, globalization, and modern sanitation, it is intuitive that we have changed our relationship with microbes, but we have little information about the ancestral state of our microbiome, and we therefore lack a foundation for characterizing this change. High-throughput sequencing has opened up new opportunities in the field of paleomicrobiology, allowing us to investigate the evolution of the complex microbial ecologies that inhabit our bodies. By focusing on recent coprolite and dental calculus research, we explore how emerging research on ancient human microbiomes is changing the way we think about ancient disease and how archaeological studies can contribute to a medical understanding of health and nutrition today.

  2. Comets in ancient India

    CERN Document Server

    Gupta, Patrick Das

    2014-01-01

    The Indo-aryans of ancient India observed stars and constellations for ascertaining auspicious times for sacrificial rites ordained by vedas. It is but natural that they would have recounted in the vedic texts about comets. In Rigveda ($\\sim $ 1700 - 1500 BC) and Atharvaveda ($\\sim $ 1150 BC), there are references to dhumaketus and ketus, which stand for comets in Sanskrit. Varahamihira in 550 AD and Ballala Sena ($\\sim $ 1100 - 1200 AD) have described a large number of comets recorded by ancient seers such as Parashara, Vriddha Garga, Narada, Garga, etc. In this article, I conjecture that an episode narrated in Mahabharata of a radiant king, Nahusha, ruling the heavens, and later turning into a serpent after he had kicked the seer Agastya (also the star Canopus), is a mythological retelling of a cometary event.

  3. Candidate gene screen in the red flour beetle Tribolium reveals six3 as ancient regulator of anterior median head and central complex development.

    Directory of Open Access Journals (Sweden)

    Nico Posnien

    2011-12-01

    Full Text Available Several highly conserved genes play a role in anterior neural plate patterning of vertebrates and in head and brain patterning of insects. However, head involution in Drosophila has impeded a systematic identification of genes required for insect head formation. Therefore, we use the red flour beetle Tribolium castaneum in order to comprehensively test the function of orthologs of vertebrate neural plate patterning genes for a function in insect head development. RNAi analysis reveals that most of these genes are indeed required for insect head capsule patterning, and we also identified several genes that had not been implicated in this process before. Furthermore, we show that Tc-six3/optix acts upstream of Tc-wingless, Tc-orthodenticle1, and Tc-eyeless to control anterior median development. Finally, we demonstrate that Tc-six3/optix is the first gene known to be required for the embryonic formation of the central complex, a midline-spanning brain part connected to the neuroendocrine pars intercerebralis. These functions are very likely conserved among bilaterians since vertebrate six3 is required for neuroendocrine and median brain development with certain mutations leading to holoprosencephaly.

  4. 2000 Year-old ancient equids: an ancient-DNA lesson from pompeii remains.

    Science.gov (United States)

    Di Bernardo, Giovanni; Del Gaudio, Stefania; Galderisi, Umberto; Cipollaro, Marilena

    2004-11-15

    Ancient DNA extracted from 2000 year-old equine bones was examined in order to amplify mitochondrial and nuclear DNA fragments. A specific equine satellite-type sequence representing 3.7%-11% of the entire equine genome, proved to be a suitable target to address the question of the presence of aDNA in ancient bones. The PCR strategy designed to investigate this specific target also allowed us to calculate the molecular weight of amplifiable DNA fragments. Sequencing of a 370 bp DNA fragment of mitochondrial control region allowed the comparison of ancient DNA sequences with those of modern horses to assess their genetic relationship. The 16S rRNA mitochondrial gene was also examined to unravel the post-mortem base modification feature and to test the status of Pompeian equids taxon on the basis of a Mae III restriction site polymorphism.

  5. Ambrosia of Ancients

    Institute of Scientific and Technical Information of China (English)

    HUOJIANYING

    2004-01-01

    IN 196 B.C. a Chinese philosopher observedto his ruler: "A lord's to ppriority is the welfare of his subjects; to the peopie, eating is foremost." Chinese ancients perceived clearly the essentiality of grain cultivation to the survival of the population and country as a whole. This is apparent in the premillennial term for "country" -sheji literally translated as god of land and grain.

  6. Extensive changes in innate immune gene expression in obese Göttingen minipigs do not lead to changes in concentrations of circulating cytokines and acute phase proteins

    DEFF Research Database (Denmark)

    Højbøge, Tina Rødgaard; Skovgaard, Kerstin; Moesgaard, S. G.;

    2014-01-01

    The usefulness of Göttingen minipigs as models for obesity and obesity-related pathologies is well established. The low-grade inflammation associated with obesity involves a range of innate immune factors; however, to our knowledge, the impact of obesity on innate immune factor expression has...... between adipose tissues and a decreased tissue-specific expression of cytokines and chemokines. In contrast to obese humans, no changes in serum concentrations of haptoglobin, C-reactive protein, serum amyloid A, tumor necrosis factor-α and interleukin 6 were found in obese Göttingen minipigs....... not been studied in Göttingen minipigs. Therefore, we studied the expression of innate immune genes in liver and adipose tissues as well as serum concentrations of cytokines and acute phase proteins in obese vs. lean Göttingen minipigs. In the liver, of 35 investigated genes, the expression of nine...

  7. Genome evolution in an ancient bacteria-ant symbiosis: parallel gene loss among Blochmannia spanning the origin of the ant tribe Camponotini

    Directory of Open Access Journals (Sweden)

    Laura E. Williams

    2015-04-01

    Full Text Available Stable associations between bacterial endosymbionts and insect hosts provide opportunities to explore genome evolution in the context of established mutualisms and assess the roles of selection and genetic drift across host lineages and habitats. Blochmannia, obligate endosymbionts of ants of the tribe Camponotini, have coevolved with their ant hosts for ∼40 MY. To investigate early events in Blochmannia genome evolution across this ant host tribe, we sequenced Blochmannia from two divergent host lineages, Colobopsis obliquus and Polyrhachis turneri, and compared them with four published genomes from Blochmannia of Camponotus sensu stricto. Reconstructed gene content of the last common ancestor (LCA of these six Blochmannia genomes is reduced (690 protein coding genes, consistent with rapid gene loss soon after establishment of the symbiosis. Differential gene loss among Blochmannia lineages has affected cellular functions and metabolic pathways, including DNA replication and repair, vitamin biosynthesis and membrane proteins. Blochmannia of P. turneri (i.e., B. turneri encodes an intact DnaA chromosomal replication initiation protein, demonstrating that loss of dnaA was not essential for establishment of the symbiosis. Based on gene content, B. obliquus and B. turneri are unable to provision hosts with riboflavin. Of the six sequenced Blochmannia, B. obliquus is the earliest diverging lineage (i.e., the sister group of other Blochmannia sampled and encodes the fewest protein-coding genes and the most pseudogenes. We identified 55 genes involved in parallel gene loss, including glutamine synthetase, which may participate in nitrogen recycling. Pathways for biosynthesis of coenzyme A, terpenoids and riboflavin were lost in multiple lineages, suggesting relaxed selection on the pathway after inactivation of one component. Analysis of Illumina read datasets did not detect evidence of plasmids encoding missing functions, nor the presence of

  8. A holistic phylogeny of the coronin gene family reveals an ancient origin of the tandem-coronin, defines a new subfamily, and predicts protein function

    Directory of Open Access Journals (Sweden)

    Kollmar Martin

    2011-09-01

    Full Text Available Abstract Background Coronins belong to the superfamily of the eukaryotic-specific WD40-repeat proteins and play a role in several actin-dependent processes like cytokinesis, cell motility, phagocytosis, and vesicular trafficking. Two major types of coronins are known: First, the short coronins consisting of an N-terminal coronin domain, a unique region and a short coiled-coil region, and secondly the tandem coronins comprising two coronin domains. Results 723 coronin proteins from 358 species have been identified by analyzing the whole-genome assemblies of all available sequenced eukaryotes (March 2011. The organisms analyzed represent most eukaryotic kingdoms but also cover every taxon several times to provide a better statistical sampling. The phylogenetic tree of the coronin domains based on the Bayesian method is in accordance with the most recent grouping of the major kingdoms of the eukaryotes and also with the grouping of more recently separated branches. Based on this "holistic" approach the coronins group into four classes: class-1 (Type I and class-2 (Type II are metazoan/choanoflagellate specific classes, class-3 contains the tandem-coronins (Type III, and the new class-4 represents the coronins fused to villin (Type IV. Short coronins from non-metazoans are equally related to class-1 and class-2 coronins and thus remain unclassified. Conclusions The coronin class distribution suggests that the last common eukaryotic ancestor possessed a single and a tandem-coronin, and most probably a class-4 coronin of which homologs have been identified in Excavata and Opisthokonts although most of these species subsequently lost the class-4 homolog. The most ancient short coronin already contained the trimerization motif in the coiled-coil domain.

  9. Genomics 4.0 : syntenic gene and genome duplication drives diversification of plant secondary metabolism and innate immunity in flowering plants : advanced pattern analytics in duplicate genomes

    NARCIS (Netherlands)

    Hofberger, J.A.

    2015-01-01

    Genomics 4.0 - Syntenic Gene and Genome Duplication Drives Diversification of Plant Secondary Metabolism and Innate Immunity in Flowering Plants   Johannes A. Hofberger1, 2, 3 1 Biosystematics Group, Wageningen University & Research Center, Droevendaalsesteeg 1, 6708 PB Wageningen, The Neth

  10. Fusion of a viral antigen to invariant chain leads to augmented T-cell immunity and improved protection in gene-gun DNA-vaccinated mice

    DEFF Research Database (Denmark)

    Grujic, Mirjana; Holst, Peter J; Christensen, Jan P

    2009-01-01

    against lethal peripheral challenge. The current study questioned whether the same strategy, i.e. linkage of GP to an Ii chain, could be applied to a naked DNA vaccine. Following gene-gun immunization with the linked construct (DNA-IiGP), GP-specific CD4(+) T cells could not be detected by flow cytometry...

  11. An extended phylogenetic analysis reveals ancient origin of "non-green" phosphoribulokinase genes from two lineages of "green" secondary photosynthetic eukaryotes: Euglenophyta and Chlorarachniophyta

    Directory of Open Access Journals (Sweden)

    Sekimoto Hiroyuki

    2011-09-01

    Full Text Available Abstract Background Euglenophyta and Chlorarachniophyta are groups of photosynthetic eukaryotes harboring secondary plastids of distinct green algal origins. Although previous phylogenetic analyses of genes encoding Calvin cycle enzymes demonstrated the presence of genes apparently not derived from green algal endosymbionts in the nuclear genomes of Euglena gracilis (Euglenophyta and Bigelowiella natans (Chlorarachniophyta, the origins of these "non-green" genes in "green" secondary phototrophs were unclear due to the limited taxon sampling. Results Here, we sequenced five new phosphoribulokinase (PRK genes (from one euglenophyte, two chlorarachniophytes, and two glaucophytes and performed an extended phylogenetic analysis of the genes based on a phylum-wide taxon sampling from various photosynthetic eukaryotes. Our phylogenetic analyses demonstrated that the PRK sequences form two genera of Euglenophyta formed a robust monophyletic group within a large clade including stramenopiles, haptophytes and a cryptophyte, and three genera of Chlorarachniophyta were placed within the red algal clade. These "non-green" affiliations were supported by the taxon-specific insertion/deletion sequences in the PRK alignment, especially between euglenophytes and stramenopiles. In addition, phylogenetic analysis of another Calvin cycle enzyme, plastid-targeted sedoheptulose-bisphosphatase (SBP, showed that the SBP sequences from two genera of Chlorarachniophyta were positioned within a red algal clade. Conclusions Our results suggest that PRK genes may have been transferred from a "stramenopile" ancestor to Euglenophyta and from a "red algal" ancestor to Chlorarachniophyta before radiation of extant taxa of these two "green" secondary phototrophs. The presence of two of key Calvin cycle enzymes, PRK and SBP, of red algal origins in Chlorarachniophyta indicate that the contribution of "non-green" algae to the plastid proteome in the "green" secondary phototrophs is

  12. Decreased Expression of Innate Immunity-Related Genes in Peripheral Blood Mononuclear Cells from Patients with IgG4-Related Disease.

    Directory of Open Access Journals (Sweden)

    Akio Nakajima

    Full Text Available IgG4-related disease (IgG4-RD is a new clinical entity of unknown etiology characterized by elevated serum IgG4 and tissue infiltration by IgG4-positive plasma cells. Although aberrancies in acquired immune system functions, including increases in Th2 and Treg cytokines observed in patients with IgG4-RD, its true etiology remains unclear. To investigate the pathogenesis of IgG4-RD, this study compared the expression of genes related to innate immunity in patients with IgG4-RD and healthy controls.Peripheral blood mononuclear cells (PBMCs were obtained from patients with IgG4-RD before and after steroid therapy and from healthy controls. Total RNA was extracted and DNA microarray analysis was performed in two IgG4-RD patients to screen for genes showing changes in expression. Candidate genes were validated by real-time RT-PCR in 27 patients with IgG4-RD and 13 healthy controls.DNA microarray analysis identified 21 genes that showed a greater than 3-fold difference in expression between IgG4-RD patients and healthy controls and 30 genes that showed a greater than 3-fold change in IgG4-RD patients following steroid therapy. Candidate genes related to innate immunity, including those encoding Charcot-Leyden crystal protein (CLC, membrane-spanning 4-domain subfamily A member 3 (MS4A3, defensin alpha (DEFA 3 and 4, and interleukin-8 receptors (IL8R, were validated by real-time RT-PCR. Expression of all genes was significantly lower in IgG4-RD patients than in healthy controls. Steroid therapy significantly increased the expression of DEFA3, DEFA4 and MS4A3, but had no effect on the expression of CLC, IL8RA and IL8RB.The expression of genes related to allergy or innate immunity, including CLC, MS4A3, DEFA3, DEFA4, IL8RA and IL8RB, was lower in PBMCs from patients with IgG4-RD than from healthy controls. Although there is the limitation in the number of patients applied in DNA microarray, impaired expression of genes related to innate immunity may be

  13. Single nucleotide polymorphisms in immunity-related genes and their association with mastitis in Chilean dairy cattle.

    Science.gov (United States)

    Carvajal, A M; Huircan, P; Lepori, A

    2013-07-30

    Mastitis remains a major cattle disease with great global economic implications. Various approaches are currently employed in attempts to improve understanding of mastitis resistance and develop phenotypic markers for use in breeding programs (e.g., somatic cell score), including QTL discovery, wide-genome association studies, and identification of candidate genes related to immune function. This study evaluated three single nucleotide polymorphisms contained in Toll-like receptor 4 (TLR4) and lactoferrin (LF) genes associated with mastitis traits: TLR4 P-226, TLR4 2021, and LF P-28. Genotyping was performed by restriction fragment length polymorphism-polymerase chain reaction (PCR) and high-resolution melting quantitative PCR from genomic DNA of four dairy cattle breeds (Holstein, Jersey, Montbeliarde, and Overo Colorado) previously classified as healthy, with clinical or with subclinical mastitis. The high-resolution melting quantitative PCR allowed genotyping of each locus and resulted in allele frequencies indicating that all loci were in Hardy-Weinberg equilibrium. The TT genotype of TLR4 2021 was significantly associated with the healthy condition, but no associations with somatic cell score were evident. Further studies are therefore necessary in order to confirm the results of this investigation.

  14. Effects of seawater acclimation on mRNA levels of corticosteroid receptor genes in osmoregulatory and immune systems in trout

    Science.gov (United States)

    Yada, T.; Hyodo, S.; Schreck, C.B.

    2008-01-01

    Influence of environmental salinity on expression of distinct corticosteroid receptor (CR) genes, glucocorticoid receptor (GR)-1 and -2, and mineralcorticoid receptor (MR), was examined in osmoregulatory and hemopoietic organs and leucocytes of steelhead trout (Oncorhynchus mykiss). There was no significant difference in plasma cortisol levels between freshwater (FW)- or seawater (SW)-acclimated trout, whereas Na+, K+-ATPase was activated in gill of SW fish. Plasma lysozyme levels also showed a significant increase after acclimation to SW. In SW-acclimated fish, mRNA levels of GR-1, GR-2, and MR were significantly higher in gill and body kidney than those in FW. Head kidney and spleen showed no significant change in these CR mRNA levels after SW-acclimation. On the other hand, leucocytes isolated from head kidney and peripheral blood showed significant decreases in mRNA levels of CR in SW-acclimated fish. These results showed differential regulation of gene expression of CR between osmoregulatory and immune systems. ?? 2008 Elsevier Inc. All rights reserved.

  15. Genome-wide association analysis implicates dysregulation of immunity genes in chronic lymphocytic leukaemia

    Science.gov (United States)

    Law, Philip J.; Berndt, Sonja I.; Speedy, Helen E.; Camp, Nicola J.; Sava, Georgina P.; Skibola, Christine F.; Holroyd, Amy; Joseph, Vijai; Sunter, Nicola J.; Nieters, Alexandra; Bea, Silvia; Monnereau, Alain; Martin-Garcia, David; Goldin, Lynn R.; Clot, Guillem; Teras, Lauren R.; Quintela, Inés; Birmann, Brenda M.; Jayne, Sandrine; Cozen, Wendy; Majid, Aneela; Smedby, Karin E.; Lan, Qing; Dearden, Claire; Brooks-Wilson, Angela R.; Hall, Andrew G.; Purdue, Mark P.; Mainou-Fowler, Tryfonia; Vajdic, Claire M.; Jackson, Graham H.; Cocco, Pierluigi; Marr, Helen; Zhang, Yawei; Zheng, Tongzhang; Giles, Graham G.; Lawrence, Charles; Call, Timothy G.; Liebow, Mark; Melbye, Mads; Glimelius, Bengt; Mansouri, Larry; Glenn, Martha; Curtin, Karen; Diver, W Ryan; Link, Brian K.; Conde, Lucia; Bracci, Paige M.; Holly, Elizabeth A.; Jackson, Rebecca D.; Tinker, Lesley F.; Benavente, Yolanda; Boffetta, Paolo; Brennan, Paul; Maynadie, Marc; McKay, James; Albanes, Demetrius; Weinstein, Stephanie; Wang, Zhaoming; Caporaso, Neil E.; Morton, Lindsay M.; Severson, Richard K.; Riboli, Elio; Vineis, Paolo; Vermeulen, Roel C. H.; Southey, Melissa C.; Milne, Roger L.; Clavel, Jacqueline; Topka, Sabine; Spinelli, John J.; Kraft, Peter; Ennas, Maria Grazia; Summerfield, Geoffrey; Ferri, Giovanni M.; Harris, Robert J.; Miligi, Lucia; Pettitt, Andrew R.; North, Kari E.; Allsup, David J.; Fraumeni, Joseph F.; Bailey, James R.; Offit, Kenneth; Pratt, Guy; Hjalgrim, Henrik; Pepper, Chris; Chanock, Stephen J.; Fegan, Chris; Rosenquist, Richard; de Sanjose, Silvia; Carracedo, Angel; Dyer, Martin J. S.; Catovsky, Daniel; Campo, Elias; Cerhan, James R.; Allan, James M.; Rothman, Nathanial; Houlston, Richard; Slager, Susan

    2017-01-01

    Several chronic lymphocytic leukaemia (CLL) susceptibility loci have been reported; however, much of the heritable risk remains unidentified. Here we perform a meta-analysis of six genome-wide association studies, imputed using a merged reference panel of 1,000 Genomes and UK10K data, totalling 6,200 cases and 17,598 controls after replication. We identify nine risk loci at 1p36.11 (rs34676223, P=5.04 × 10−13), 1q42.13 (rs41271473, P=1.06 × 10−10), 4q24 (rs71597109, P=1.37 × 10−10), 4q35.1 (rs57214277, P=3.69 × 10−8), 6p21.31 (rs3800461, P=1.97 × 10−8), 11q23.2 (rs61904987, P=2.64 × 10−11), 18q21.1 (rs1036935, P=3.27 × 10−8), 19p13.3 (rs7254272, P=4.67 × 10−8) and 22q13.33 (rs140522, P=2.70 × 10−9). These new and established risk loci map to areas of active chromatin and show an over-representation of transcription factor binding for the key determinants of B-cell development and immune response. PMID:28165464

  16. Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses.

    Directory of Open Access Journals (Sweden)

    Read Pukkila-Worley

    2011-06-01

    Full Text Available Candida albicans yeast cells are found in the intestine of most humans, yet this opportunist can invade host tissues and cause life-threatening infections in susceptible individuals. To better understand the host factors that underlie susceptibility to candidiasis, we developed a new model to study antifungal innate immunity. We demonstrate that the yeast form of C. albicans establishes an intestinal infection in Caenorhabditis elegans, whereas heat-killed yeast are avirulent. Genome-wide, transcription-profiling analysis of C. elegans infected with C. albicans yeast showed that exposure to C. albicans stimulated a rapid host response involving 313 genes (124 upregulated and 189 downregulated, ~1.6% of the genome many of which encode antimicrobial, secreted or detoxification proteins. Interestingly, the host genes affected by C. albicans exposure overlapped only to a small extent with the distinct transcriptional responses to the pathogenic bacteria Pseudomonas aeruginosa or Staphylococcus aureus, indicating that there is a high degree of immune specificity toward different bacterial species and C. albicans. Furthermore, genes induced by P. aeruginosa and S. aureus were strongly over-represented among the genes downregulated during C. albicans infection, suggesting that in response to fungal pathogens, nematodes selectively repress the transcription of antibacterial immune effectors. A similar phenomenon is well known in the plant immune response, but has not been described previously in metazoans. Finally, 56% of the genes induced by live C. albicans were also upregulated by heat-killed yeast. These data suggest that a large part of the transcriptional response to C. albicans is mediated through "pattern recognition," an ancient immune surveillance mechanism able to detect conserved microbial molecules (so-called pathogen-associated molecular patterns or PAMPs. This study provides new information on the evolution and regulation of the innate

  17. Suicide in ancient Greece.

    Science.gov (United States)

    Laios, K; Tsoukalas, G; Kontaxaki, M-I; Karamanou, M; Androutsos, G

    2014-01-01

    The theme of suicide appears several times in ancient Greek literature. However, each such reference acquires special significance depending on the field from which it originates. Most of the information found in mythology, but the suicide in a mythological tale, although in terms of motivation and mental situation of heroes may be in imitation of similar incidents of real life, in fact is linked with the principles of the ancient Greek religion. In ancient drama and mainly in tragedies suicide conduces to the tragic hypostasis of the heroes and to the evolution of the plot and also is a tool in order to be presented the ideas of poets for the relations of the gods, the relation among gods and men and the relation among the men. In ancient Greek philosophy there were the deniers of suicide, who were more concerned about the impact of suicide on society and also these who accepted it, recognizing the right of the individual to put an end to his life, in order to avoid personal misfortunes. Real suicides will be found mostly from historical sources, but most of them concern leading figures of the ancient world. Closer to the problem of suicide in the everyday life of antiquity are ancient Greek medicines, who studied the phenomenon more general without references to specific incidents. Doctors did not approve in principal the suicide and dealt with it as insane behavior in the development of the mental diseases, of melancholia and mania. They considered that the discrepancy of humors in the organ of logic in the human body will cause malfunction, which will lead to the absurdity and consequently to suicide, either due to excessive concentration of black bile in melancholia or due to yellow bile in mania. They believed that greater risk to commit suicide had women, young people and the elderly. As therapy they used the drugs of their time with the intention to induce calm and repression in the ill person, therefore they mainly used mandragora. In general, we would say

  18. Exploring genetic polymorphism in innate immune genes in Indian cattle (Bos indicus) and buffalo (Bubalus bubalis) using next generation sequencing technology.

    Science.gov (United States)

    Patel, Shreya M; Koringa, Prakash G; Nathani, Neelam M; Patel, Namrata V; Shah, Tejash M; Joshi, Chaitanya G

    2015-02-01

    Activation of innate immunity initiates various cascades of reactions that largely contribute to defense against physical, microbial or chemical damage, prompt for damage repair and removal of causative organisms as well as restoration of tissue homeostasis. Genetic polymorphism in innate immune genes plays prominent role in disease resistance capabilities in various breeds of cattle and buffalo. Here we studied single nucleotide variations (SNP/SNV) and haplotype structure in innate immune genes viz CHGA, CHGB, CHGC, NRAMP1, NRAMP2, DEFB1, BNBD4, BNBD5, TAP and LAP in Gir cattle and Murrah buffalo. Targeted sequencing of exonic regions of these genes was performed by Ion Torrent PGM sequencing platform. The sequence reads obtained corresponding to coding regions of these genes were mapped to reference genome of cattle BosTau7 by BWA program using genome analysis tool kit (GATK). Further variant analysis by Unified Genotyper revealed 54 and 224 SNPs in Gir and Murrah respectively and also 32 SNVs was identified. Among these SNPs 43, 36, 11,32,81,21 and 22 variations were in CHGA, CHGB, CHGC, NRAMP1, NRAMP2, DEFB1 and TAP genes respectively. Among these identified 278 SNPs, 24 were found to be reported in the dbSNP database. Variant analysis was followed by structure formation of haplotypes based on multiple SNPs using SAS software revealed a large number of haplotypes. The SNP discovery in innate immune genes in cattle and buffalo breeds of India would advance our understanding of role of these genes in determining the disease resistance/susceptibility in Indian breeds. The identified SNPs and haplotype data would also provide a wealth of sequence information for conservation studies, selective breeding and designing future strategies for identifying disease associations involving samples from distinct populations.

  19. Exploring genetic polymorphism in innate immune genes in Indian cattle (Bos indicus and buffalo (Bubalus bubalis using next generation sequencing technology

    Directory of Open Access Journals (Sweden)

    Shreya M. Patel

    2015-02-01

    Full Text Available Activation of innate immunity initiates various cascades of reactions that largely contribute to defense against physical, microbial or chemical damage, prompt for damage repair and removal of causative organisms as well as restoration of tissue homeostasis. Genetic polymorphism in innate immune genes plays prominent role in disease resistance capabilities in various breeds of cattle and buffalo. Here we studied single nucleotide variations (SNP/SNV and haplotype structure in innate immune genes viz CHGA, CHGB, CHGC, NRAMP1, NRAMP2, DEFB1, BNBD4, BNBD5, TAP and LAP in Gir cattle and Murrah buffalo. Targeted sequencing of exonic regions of these genes was performed by Ion Torrent PGM sequencing platform. The sequence reads obtained corresponding to coding regions of these genes were mapped to reference genome of cattle BosTau7 by BWA program using genome analysis tool kit (GATK. Further variant analysis by Unified Genotyper revealed 54 and 224 SNPs in Gir and Murrah respectively and also 32 SNVs was identified. Among these SNPs 43, 36, 11,32,81,21 and 22 variations were in CHGA, CHGB, CHGC, NRAMP1, NRAMP2, DEFB1 and TAP genes respectively. Among these identified 278 SNPs, 24 were found to be reported in the dbSNP database. Variant analysis was followed by structure formation of haplotypes based on multiple SNPs using SAS software revealed a large number of haplotypes. The SNP discovery in innate immune genes in cattle and buffalo breeds of India would advance our understanding of role of these genes in determining the disease resistance/susceptibility in Indian breeds. The identified SNPs and haplotype data would also provide a wealth of sequence information for conservation studies, selective breeding and designing future strategies for identifying disease associations involving samples from distinct populations.

  20. HGF Gene Modification in Mesenchymal Stem Cells Reduces Radiation-Induced Intestinal Injury by Modulating Immunity.

    Directory of Open Access Journals (Sweden)

    Hua Wang

    Full Text Available Effective therapeutic strategies to address intestinal complications after radiation exposure are currently lacking. Mesenchymal stem cells (MSCs, which display the ability to repair the injured intestine, have been considered as delivery vehicles for repair genes. In this study, we evaluated the therapeutic effect of hepatocyte growth factor (HGF-gene-modified MSCs on radiation-induced intestinal injury (RIII.Female 6- to 8-week-old mice were radiated locally at the abdomen with a single 13-Gy dose of radiation and then treated with saline control, Ad-HGF or Ad-Null-modified MSCs therapy. The transient engraftment of human MSCs was detected via real-time PCR and immunostaining. The therapeutic effects of non- and HGF-modified MSCs were evaluated via FACS to determine the lymphocyte immunophenotypes; via ELISA to measure cytokine expression; via immunostaining to determine tight junction protein expression; via PCNA staining to examine intestinal epithelial cell proliferation; and via TUNEL staining to detect intestinal epithelial cell apoptosis.The histopathological recovery of the radiation-injured intestine was significantly enhanced following non- or HGF-modified MSCs treatment. Importantly, the radiation-induced immunophenotypic disorders of the mesenteric lymph nodes and Peyer's patches were attenuated in both MSCs-treated groups. Treatment with HGF-modified MSCs reduced the expression and secretion of inflammatory cytokines, including tumor necrosis factor alpha (TNF-α and interferon-gamma (IFN-γ, increased the expression of the anti-inflammatory cytokine IL-10 and the tight junction protein ZO-1, and promoted the proliferation and reduced the apoptosis of intestinal epithelial cells.Treatment of RIII with HGF-gene-modified MSCs reduces local inflammation and promotes the recovery of small intestinal histopathology in a mouse model. These findings might provide an effective therapeutic strategy for RIII.

  1. Ontogeny of the carp (Cyprinus carpio L.) innate immune system: Gene expression and experimental limitations

    DEFF Research Database (Denmark)

    Schmidt, Jacob; Przybylska, Dominika Alicja; Nielsen, Michael Engelbrecht

    2012-01-01

    , 3 and 7 post-wounding and samples were stored in RNA later for isolation of RNA. The physical tissue damage was performed using a sterile needle, which penetrated the skin and the underlying musculature in an area above the lateral line of the left side of fish. Carps at the age of 10, 16 and 24...... days post-hatch were stored and processed whole, whereas just the muscle (the left (wound area) and right filet (internal control)) was sampled for the two latter time-points. mRNA was extracted from the samples, cDNA was synthesised and gene expression was quantified using real-time RT...

  2. De novo cloning and annotation of genes associated with immunity, detoxification and energy metabolism from the fat body of the oriental fruit fly, Bactrocera dorsalis.

    Directory of Open Access Journals (Sweden)

    Wen-Jia Yang

    Full Text Available The oriental fruit fly, Bactrocera dorsalis, is a destructive pest in tropical and subtropical areas. In this study, we performed transcriptome-wide analysis of the fat body of B. dorsalis and obtained more than 59 million sequencing reads, which were assembled into 27,787 unigenes with an average length of 591 bp. Among them, 17,442 (62.8% unigenes matched known proteins in the NCBI database. The assembled sequences were further annotated with gene ontology, cluster of orthologous group terms, and Kyoto encyclopedia of genes and genomes. In depth analysis was performed to identify genes putatively involved in immunity, detoxification, and energy metabolism. Many new genes were identified including serpins, peptidoglycan recognition proteins and defensins, which were potentially linked to immune defense. Many detoxification genes were identified, including cytochrome P450s, glutathione S-transferases and ATP-binding cassette (ABC transporters. Many new transcripts possibly involved in energy metabolism, including fatty acid desaturases, lipases, alpha amylases, and trehalose-6-phosphate synthases, were identified. Moreover, we randomly selected some genes to examine their expression patterns in different tissues by quantitative real-time PCR, which indicated that some genes exhibited fat body-specific expression in B. dorsalis. The identification of a numerous transcripts in the fat body of B. dorsalis laid the foundation for future studies on the functions of these genes.

  3. Immune gene expression in the spleen of chickens experimentally infected with Ascaridia galli

    DEFF Research Database (Denmark)

    Dalgaard, Tina S.; Skovgaard, Kerstin; Norup, Liselotte R.;

    2015-01-01

    Ascaridia galli is a gastrointestinal nematode infecting chickens. Chickens kept in alternative rearing systems or at free-range experience increased risk for infection with resulting high prevalences. A. gall infection causes reduced weight gain, decreased egg production and in severe cases incr...... lumen. Increased expression of DEF beta 1 was observed in infected chickens at week 6 p.i. but also at week 9 p.i. which corresponds to a matured stage where adult worms are present in the intestinal lumen. (C) 2015 Elsevier B.V. All rights reserved....... and reagent consumption. Spleenic transcription of immunological genes was compared between infected chickens and non-infected controls at week 2, 6, and 9 p.i. corresponding to different stages of parasite development/maturation. At week 2 p.i. increased expression of IL-13 was observed in infected chickens...... we observed only few differentially expressed genes at week 2 p.i. which corresponds to the larvae histotrophic phase. In contrast, we observed increased expression of pro-inflammatory cytokines and acute phase proteins in infected chickens, by week 6 p.i. where the larvae re-enter the intestinal...

  4. An ancient R gene from Solanum bulbocastanum confers broad-spectrum resistance to late Phytophthora infestans in cultivated potato and tomato

    NARCIS (Netherlands)

    Vossen, van der E.A.G.; Sikkema, A.; Lintel Hekkert, te B.; Gross, J.; Stevens, P.; Muskens, M.; Wouters, T.C.A.E.; Pereira, A.B.; Stiekema, W.J.; Allefs, S.

    2003-01-01

    Late blight, caused by the oomycete pathogen Phytophthora infestans, is the most devastating disease for potato cultivation. Here, we describe the positional cloning of the Rpi-blb1 gene from the wild potato species Solanum bulbocastanum known for its high levels of resistance to late blight. The Rp

  5. The obesity gene, TMEM18, is of ancient origin, found in majority of neuronal cells in all major brain regions and associated with obesity in severely obese children

    Directory of Open Access Journals (Sweden)

    Levine Allen S

    2010-04-01

    Full Text Available Abstract Background TMEM18 is a hypothalamic gene that has recently been linked to obesity and BMI in genome wide association studies. However, the functional properties of TMEM18 are obscure. Methods The evolutionary history of TMEM18 was inferred using phylogenetic and bioinformatic methods. The gene's expression profile was investigated with real-time PCR in a panel of rat and mouse tissues and with immunohistochemistry in the mouse brain. Also, gene expression changes were analyzed in three feeding-related mouse models: food deprivation, reward and diet-induced increase in body weight. Finally, we genotyped 502 severely obese and 527 healthy Swedish children for two SNPs near TMEM18 (rs6548238 and rs756131. Results TMEM18 was found to be remarkably conserved and present in species that diverged from the human lineage over 1500 million years ago. The TMEM18 gene was widely expressed and detected in the majority of cells in all major brain regions, but was more abundant in neurons than other cell types. We found no significant changes in the hypothalamic and brainstem expression in the feeding-related mouse models. There was a strong association for two SNPs (rs6548238 and rs756131 of the TMEM18 locus with an increased risk for obesity (p = 0.001 and p = 0.002. Conclusion We conclude that TMEM18 is involved in both adult and childhood obesity. It is one of the most conserved human obesity genes and it is found in the majority of all brain sites, including the hypothalamus and the brain stem, but it is not regulated in these regions in classical energy homeostatic models.

  6. CTLA-4 gene polymorphism confers susceptibility to insulin-dependent diabetes mellitus (IDDM) independently from age and from other genetic or immune disease markers. The Belgian Diabetes Registry.

    Science.gov (United States)

    Van der Auwera, B J; Vandewalle, C L; Schuit, F C; Winnock, F; De Leeuw, I H; Van Imschoot, S; Lamberigts, G; Gorus, F K

    1997-10-01

    Apart from genes in the HLA complex (IDDM1) and the variable number of tandem repeats in the 5' region of the insulin gene (INS VNTR, IDDM2), several other loci have been proposed to contribute to IDDM susceptibility. Recently, linkage and association have been shown between the cytotoxic T lymphocyte-associated protein 4 (CTLA-4) gene on chromosome 2q and IDDM. In a registry-based group of 525 recent-onset IDDM patients immune disease markers (autoantibodies against islet cell cytoplasm (ICA); insulin (IAA); glutamate decarboxylase (GAD65-Ab); IA-2 protein tyrosine phosphatase (IA-2-Ab)) determined within the first week of insulin treatment. In new-onset IDDM patients. G-allele-containing CTLA-4 genotypes (relative risk (RR)= 1.5; 95% confidence interval (CI) = 1.2-2.0; P immune disease markers.

  7. The identification of lymphocyte-like cells and lymphoid-related genes in amphioxus indicates the twilight for the emergence of adaptive immune system.

    Directory of Open Access Journals (Sweden)

    Gonghua Huang

    Full Text Available To seek evidence of a primitive adaptive immune system (AIS before vertebrate, we examined whether lymphocytes or lymphocyte-like cells and the related molecules participating in the lymphocyte function existed in amphioxus. Anatomical analysis by electron microscopy revealed the presence of lymphocyte-like cells in gills, and these cells underwent morphological changes in response to microbial pathogens that are reminiscent of those of mammalian lymphocytes executing immune response to microbial challenge. In addition, a systematic comparative analysis of our cDNA database of amphioxus identified a large number of genes whose vertebrate counterparts are involved in lymphocyte function. Among these genes, several genes were found to be expressed in the vicinity of the lymphocyte-like cells by in situ hybridization and up-regulated after exposure to microbial pathogens. Our findings in the amphioxus indicate the twilight for the emergence of AIS before the invertebrate-vertebrate transition during evolution.

  8. RNAi knock-down of shrimp Litopenaeus vannamei Toll gene and immune deficiency gene reveals their difference in regulating antimicrobial peptides transcription.

    Science.gov (United States)

    Hou, Fujun; He, Shulin; Liu, Yongjie; Zhu, Xiaowen; Sun, Chengbo; Liu, Xiaolin

    2014-06-01

    NF-κB dependent antimicrobial peptides (AMPs) are of critical importance in protecting insects or mammals from microorganisms infection. However, we still do not make clear signaling pathways in regulating AMPs expression in shrimps. In this study, RNAi approach was used to study differences between Toll signaling pathway and immune deficiency signaling pathway in regulating the transcription of NF-κB dependent AMPs post bacteria challenge. Results showed that the transcription level of anti-lipopolysaccharide factor was highly suppressed in Litopenaeus vannamei immune deficiency (LvIMD) silenced shrimps by gene specific dsRNA compared to Litopenaeus vannamei Toll (LvToll) silenced shrimps with or without Vibrio anguillarum and Micrococcus lysodeikticus challenge. Conversely the transcription level of penaeidin3a was significantly suppressed in LvToll silenced shrimps compared to LvIMD silenced shrimps. However, no obvious difference was found in regulating the transcription of CrustinP. Meanwhile, we found that silencing LvToll both down regulated the transcription of Dorsal and Relish while silencing LvIMD only down regulated the transcription of Relish. At last, shrimp survival experiment showed that post V. anguillarum challenge high mortality was found both in LvToll and LvIMD silenced groups while post M. lysodeikticus challenge we saw high mortality only in LvToll silenced group. Hence, we conclude that shrimp L. vannamei Toll pathway and IMD pathway might be different in regulating the transcription of NF-κB dependent AMPs and responding to bacteria challenge but not independent of each other.

  9. Spatially and temporally fluctuating selection at non-MHC immune genes: evidence from TAP polymorphism in populations of brown trout ( Salmo trutta , L.)

    DEFF Research Database (Denmark)

    Jensen, L.F.; Hansen, Michael Møller; Mensberg, Karen-Lise Dons;

    2008-01-01

    Temporal samples of Danish brown trout (Salmo trutta) from populations representing varying geographical scales were analysed using eight putatively neutral microsatellite loci and two microsatellite loci embedded in TAP genes (Transporter associated with Antigen Processing). These genes encode....... Moreover, signals of divergent selection among temporal samples within localities suggest that selection also might fluctuate at a temporal scale. These results suggest that immune genes other than the classical MHC class I and II might be subject to selection and warrant further studies of functional...

  10. Exploitation of Exosomes as Nanocarriers for Gene-, Chemo-, and Immune-Therapy of Cancer.

    Science.gov (United States)

    Srivastava, Akhil; Babu, Anish; Filant, Justyna; Moxley, Katherine M; Ruskin, Rachel; Dhanasekaran, Danny; Sood, Anil K; McMeekin, Scott; Ramesh, Rajagopal

    2016-06-01

    The bottleneck in current vector-based cancer therapy is the targeted and controlled release of therapeutics in tumors. Exosomes are submicron-sized vesicles that are secreted by all cell types and are involved in communication and transportation of materials between cells. Analogous in size and function to synthetic nanoparticles, exosomes offer many advantages, rendering them the most promising candidates for targeted drug or gene delivery vehicles. Patient-specific customized therapeutic strategies can be engineered using exosomes derived from the patient's own healthy cells. Therefore, exosome-based cancer therapy has the potential to become an important part of personalized medicine. Interest in exosomes as carrier organelles is relatively recent. Knowledge about exosomal biology and its applications remains limited. The present review is an attempt to describe the current status of the application of exosomes to cancer therapy and the potential challenges associated with their use.

  11. Diversity of immune genes and associated gill microbes of European plaice Pleuronectes platessa

    Science.gov (United States)

    Wegner, K. Mathias; Shama, Lisa N. S.; Kellnreitner, Florian; Pockberger, Moritz

    2012-08-01

    Genetic variability of marine fish species is much higher than in most other vertebrates. Nevertheless, some species with large population sizes including flatfish such as European plaice Pleuronectes platessa show signs of population collapse and inbreeding. Taking plaice as a flagship example for fisheries-induced genetic changes also affecting the Wadden Sea, we determined the amount of genetic variability at antigen-presenting genes of the Major Histocompatibility Complex (MHC) and its potential interaction with the microbiota associated to gill tissue using a next-generation parallel tag sequencing approach. Genetic variation at MHC class IIB genes was extremely large, with 97 alleles found in 40 fish from different age cohorts. Although a strong signal of positive selection was present (dN/dS = 4.01) and we found significantly higher allelic diversity in 0+ fish than in older age classes, the amount of genetic variation maintained within the population may not have exceeded neutral expectations derived from mitochondrial markers. Associated microbes revealed significant spatiotemporal structure with 0+ fish displaying the highest microbial diversity as well as the highest diversity of potentially pathogenic genera. Overall the correlation between MHC genotypes and bacterial abundance was weak, and only few alleles significantly correlated with certain bacterial genera. These associations all conferred susceptibility (i.e. presence of an allele correlated to higher number of bacteria), either suggesting age-dependent selection on common alleles or weak selection on resistance against these bacterial genera. Taken together, our data suggest that selection coefficients of balancing selection maintaining immunogenetic diversity may be relatively small in large marine populations. However, if population sizes are further reduced by overharvesting, the response to increasing balancing selection coefficients will be largely unpredictable and may also negatively

  12. Dance in Ancient Greek Culture

    OpenAIRE

    Spalva, Rita

    2015-01-01

    The greatness and harmony of ancient Greece has had an impact upon the development of the Western European culture to this day. The ancient Greek culture has influenced contemporary literature genres and systems of philosophy, principles of architecture, sculpture and drama and has formed basis for such sciences as astronomy and mathematics. The art of ancient Greece with its penchant for beauty and clarity has been the example of the humanity’s search for an aesthetic ideal. Despite only bei...

  13. Insect neuropeptide bursicon homodimers induce innate immune and stress genes during molting by activating the NF-κB transcription factor Relish.

    Directory of Open Access Journals (Sweden)

    Shiheng An

    Full Text Available BACKGROUND: Bursicon is a heterodimer neuropeptide composed of two cystine knot proteins, bursicon α (burs α and bursicon β (burs β, that elicits cuticle tanning (melanization and sclerotization through the Drosophila leucine-rich repeats-containing G protein-coupled receptor 2 (DLGR2. Recent studies show that both bursicon subunits also form homodimers. However, biological functions of the homodimers have remained unknown until now. METHODOLOGY/PRINCIPAL FINDINGS: In this report, we show in Drosophila melanogaster that both bursicon homodimers induced expression of genes encoding antimicrobial peptides (AMPs in neck-ligated adults following recombinant homodimer injection and in larvae fat body after incubation with recombinant homodimers. These AMP genes were also up-regulated in 24 h old unligated flies (when the endogenous bursicon level is low after injection of recombinant homodimers. Up-regulation of AMP genes by the homodimers was accompanied by reduced bacterial populations in fly assay preparations. The induction of AMP expression is via activation of the NF-κB transcription factor Relish in the immune deficiency (Imd pathway. The influence of bursicon homodimers on immune function does not appear to act through the heterodimer receptor DLGR2, i.e. novel receptors exist for the homodimers. CONCLUSIONS/SIGNIFICANCE: Our results reveal a mechanism of CNS-regulated prophylactic innate immunity during molting via induced expression of genes encoding AMPs and genes of the Turandot family. Turandot genes are also up-regulated by a broader range of extreme insults. From these data we infer that CNS-generated bursicon homodimers mediate innate prophylactic immunity to both stress and infection during the vulnerable molting cycle.

  14. The effects of galactooligosaccharide on systemic and mucosal immune response, growth performance and appetite related gene transcript in goldfish (Carassius auratus gibelio).

    Science.gov (United States)

    Miandare, Hamed Kolangi; Farvardin, Shoeib; Shabani, Ali; Hoseinifar, Seyed Hossein; Ramezanpour, Seyyede Sanaz

    2016-08-01

    The present study investigates the effects of supplementation of goldfish (Carassius auratus gibelio) diet with galactooligosaccharide (GOS) on serum immune response, mucosal immune parameters as well as appetite-related (Ghrelin) and immune-related (TNF-1α and TNF-2α) genes expression. One hundred and eighty fish with an average weight of 4.88 ± 0.28 g were stocked in twelve 500-L fiberglass tank assigned to four treatments repeated in triplicates. Fish were fed on experimental diets contain 0.5, 1 and 2% GOS for 6 weeks. Supplementation of diet with GOS had no remarkable effect on goldfish growth performance (P > 0.05). Evaluation of serum innate immune parameters revealed that supplementation of diet with GOS significantly elevated total protein, Albumin, Globulins, Lysozyme and Alkaline phosphatase activity as well as agglutination compared to control group in a dose dependent manner (P appetite (ghrelin) and inflammatory cytokine (TNF-1α and TNF-2α) genes expression revealed remarkably decrease and increase, respectively in GOS fed fish (P decreased appetite gene expression and had no effect on growth performance.

  15. Construction of a full-length cDNA library of Solen grandis dunker and identification of defense- and immune-related genes

    Science.gov (United States)

    Sun, Guohua; Liu, Xiangquan; Ren, Lihua; Yang, Jianmin; Wei, Xiumei; Yang, Jialong

    2013-11-01

    The basic genetic characteristics, important functional genes, and entire transcriptome of Solen grandis Dunker were investigated by constructing a full-length cDNA library with the `switching mechanism at the 5'-end of the RNA transcript' (SMART) technique. Total RNA was isolated from the immune-relevant tissues, gills and hemocytes, using the Trizol reagent, and cDNA fragments were digested with Sfi I before being ligated to the pBluescript II SK* vector. The cDNA library had a titer of 1048 cfu μL-1 and a storage capacity of 1.05×106 cfu. Approximately 98% of the clones in the library were recombinants, and the fragment lengths of insert cDNA ranged from 0.8 kb to 3.0 kb. A total of 2038 expressed sequence tags were successfully sequenced and clustered into 965 unigenes. BLASTN analysis showed that 240 sequences were highly similar to the known genes (E-value 80%), accounting for 25% of the total unigenes. According to the Gene Ontology, these unigenes were related to several biological processes, including cell structure, signal transport, protein synthesis, transcription, energy metabolism, and immunity. Fifteen of the identified sequences were related to defense and immunity. The full-length cDNA sequence of HSC70 was obtained. The cDNA library of S. grandis provided a useful resource for future researches of functional genomics related to stress tolerance, immunity, and other physiological activities.

  16. Ileal MUC2 gene expression and microbial population, but not growth performance and immune response, are influenced by in ovo injection of probiotics in broiler chickens.

    Science.gov (United States)

    Majidi-Mosleh, A; Sadeghi, A A; Mousavi, S N; Chamani, M; Zarei, A

    2017-02-01

    1. The objective of present study was to evaluate the effects of intra-amniotic injection of different probiotic strains (Bacillus subtilis, Enterococcus faecium and Pediococcus acidilactici) on the intestinal MUC2 gene expression, microbial population, growth performance and immune response in broiler chicken. 2. In a completely randomised design, different probiotic strains were injected into the amniotic fluid of the 480 live embryos (d 18 of incubation), with 4 treatments and 5 replicates. Ileal MUC2 gene expression, microbial profile, growth performance and immune response were determined. 3. Injection of probiotic strains, especially B. subtilis, had significant effect on expression of the MUC2 on d 21 of incubation and d 3 post-hatch, but not on d 19 of incubation. 4. Injection of the probiotic strains decreased significantly the Escherichia coli population and increased the lactic acid bacteria population during the first week post-hatch. 5. Inoculation of probiotics had no significant effect on antibody titres against Newcastle disease virus, antibody titres against sheep red blood cell and cell-mediated immune response of chickens compared to control. 6. In ovo injection of the probiotic strains had no significant effect on growth performance of broiler chickens. 7. It was concluded that injection of probiotic bacteria especially B. subtilis into the amniotic fluid has a beneficial effect on ileal MUC2 gene expression and bacteria population during the first week post-hatch, but has no effect on growth performance and immune response in broiler chickens.

  17. Pentraxins and immunity

    Directory of Open Access Journals (Sweden)

    Priya Nagar

    2014-01-01

    Full Text Available Pentraxin-3 (PTX3 is a multifactorial protein involved in immunity and inflammation, which is rapidly produced and released by several cell types in response to inflammatory signals. It may be suggested that PTX3 is related to periodontal tissue inflammation. Its salivary concentrations may have a diagnostic potential. Pentraxin-3 (PTX3 is an ancient family of multifactorial proteins involved in immunity and inflammation. They are rapidly produced and released by various types of cells when there are indications of inflammation. PTX3 is related to inflammation in the periodontal tissue and it can be suggested that salivary concentrations may be used for diagnosing the same.

  18. Immunization of mice with the nef gene from Human Immunodeficiency Virus type 1: Study of immunological memory and long-term toxicology

    Directory of Open Access Journals (Sweden)

    Engström Gunnel

    2007-07-01

    Full Text Available Abstract Background The human immunodeficiency virus type 1 (HIV-1 regulatory protein, Nef, is an attractive vaccine target because it is involved in viral pathogenesis, is expressed early in the viral life cycle and harbors many T and B cell epitopes. Several clinical trials include gene-based vaccines encoding this protein. However, Nef has been shown to transform certain cell types in vitro. Based on these findings we performed a long-term toxicity and immunogenicity study of Nef, encoded either by Modified Vaccinia virus Ankara or by plasmid DNA. BALB/c mice were primed twice with either DNA or MVA encoding Nef and received a homologous or heterologous boost ten months later. In the meantime, the Nef-specific immune responses were monitored and at the time of sacrifice an extensive toxicological evaluation was performed, where presence of tumors and other pathological changes were assessed. Results The toxicological evaluation showed that immunization with MVAnef is safe and does not cause cellular transformation or other toxicity in somatic organs. Both DNAnef and MVAnef immunized animals developed potent Nef-specific cellular responses that declined to undetectable levels over time, and could readily be boosted after almost one year. This is of particular interest since it shows that plasmid DNA vaccine can also be used as a potent late booster of primed immune responses. We observed qualitative differences between the T cell responses induced by the two different vectors: DNA-encoded nef induced long-lasting CD8+ T cell memory responses, whereas MVA-encoded nef induced CD4+ T cell memory responses. In terms of the humoral immune responses, we show that two injections of MVAnef induce significant anti-Nef titers, while repeated injections of DNAnef do not. A single boost with MVAnef could enhance the antibody response following DNAnef prime to the same level as that observed in animals immunized repeatedly with MVAnef. We also demonstrate

  19. Mathematics in ancient Greece

    CERN Document Server

    Dantzig, Tobias

    2006-01-01

    More than a history of mathematics, this lively book traces mathematical ideas and processes to their sources, stressing the methods used by the masters of the ancient world. Author Tobias Dantzig portrays the human story behind mathematics, showing how flashes of insight in the minds of certain gifted individuals helped mathematics take enormous forward strides. Dantzig demonstrates how the Greeks organized their precursors' melange of geometric maxims into an elegantly abstract deductive system. He also explains the ways in which some of the famous mathematical brainteasers of antiquity led

  20. Ancient concrete works

    CERN Document Server

    Sparavigna, Amelia Carolina

    2011-01-01

    It is commonly believed that the ancient Romans were the first to create and use concrete. This is not true, as we can easily learn from the Latin literature itself. For sure, Romans were able to prepare high-quality hydraulic cements, comparable with the modern Portland cements. In this paper, we will see that the use of concrete is quite older, ranging back to the Homeric times. For instance, it was used for the floors of some courts and galleries of the Mycenaean palace at Tiryns

  1. Climate and Ancient Societies

    DEFF Research Database (Denmark)

    Climate, and human responses to it, have a strongly interconnected relationship. This when climate change occurs, the result of either natural or human causes, societies should react and adapt to these. But do they? If so, what is the nature of that change, and are the responses positive...... or negative for the long-term survival of social groups? In this volume, scholars from diverse disciplines including archaeology, geology and climate sciences explore scientific and material evidence for climate changes in the past, their causes, their effects on ancient societies and how those societies...

  2. Evaluation of immune responses in sheep induced by DNA immunization with genes encoding GRA1, GRA4, GRA6 and GRA7 antigens of Toxoplasma gondii.

    Science.gov (United States)

    Hiszczyńska-Sawicka, Elżbieta; Olędzka, Gabriela; Holec-Gąsior, Lucyna; Li, Hong; Xu, Janet Boyu; Sedcole, Richard; Kur, Józef; Bickerstaffe, Roy; Stankiewicz, Mirosław

    2011-05-11

    The dense granule proteins of Toxoplasma gondii are investigated as possible vaccine candidates against the parasite. The aim of this research was to evaluate the immune responses of sheep injected twice, intramuscularly, with DNA plasmids encoding T. gondii dense granule antigens GRA1, GRA4, GRA6 and GRA7 formulated into liposomes. Control sheep were injected with an empty vector or received no injections. The injection of sheep with DNA plasmids encoding for GRA1, GRA4, GRA6 or GRA7 elicited an immune response after the first and the second injections as indicated by the moderate to high antibody responses. The injection of pGRA7 induced a significant level of anti-GRA7 IgG2 antibody and IFN-γ responses indicating a Th1-like immune response whereas injection with pGRA1, pGRA4 and pGRA6 stimulated a IgG1 type antibody response with a limited, if any, IFN-γ response. The results demonstrate that the intramuscular injection of sheep with a DNA liposome formulated plasmid coding for GRA proteins is an effective system that induces a significant immune response against T. gondii.

  3. Putative ancient microorganisms from amber nuggets.

    Science.gov (United States)

    Veiga-Crespo, Patricia; Blasco, Lucía; Poza, Margarita; Villa, Tomás G

    2007-06-0