WorldWideScience

Sample records for ancestral mammalian regulatorysequences

  1. Detection of Weakly Conserved Ancestral Mammalian RegulatorySequences by Primate Comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qian-fei; Prabhakar, Shyam; Chanan, Sumita; Cheng,Jan-Fang; Rubin, Edward M.; Boffelli, Dario

    2006-06-01

    Genomic comparisons between human and distant, non-primatemammals are commonly used to identify cis-regulatory elements based onconstrained sequence evolution. However, these methods fail to detectcryptic functional elements, which are too weakly conserved among mammalsto distinguish from nonfunctional DNA. To address this problem, weexplored the potential of deep intra-primate sequence comparisons. Wesequenced the orthologs of 558 kb of human genomic sequence, coveringmultiple loci involved in cholesterol homeostasis, in 6 nonhumanprimates. Our analysis identified 6 noncoding DNA elements displayingsignificant conservation among primates, but undetectable in more distantcomparisons. In vitro and in vivo tests revealed that at least three ofthese 6 elements have regulatory function. Notably, the mouse orthologsof these three functional human sequences had regulatory activity despitetheir lack of significant sequence conservation, indicating that they arecryptic ancestral cis-regulatory elements. These regulatory elementscould still be detected in a smaller set of three primate speciesincluding human, rhesus and marmoset. Since the human and rhesus genomesequences are already available, and the marmoset genome is activelybeing sequenced, the primate-specific conservation analysis describedhere can be applied in the near future on a whole-genome scale, tocomplement the annotation provided by more distant speciescomparisons.

  2. Amplification of an ancestral mammalian L1 family of long interspersed repeated DNA occurred just before the murine radiation

    International Nuclear Information System (INIS)

    Pascale, E.; Valle, E.; Furano, A.V.

    1990-01-01

    Each mammalian genus examined so far contains 50,000-100,000 members of an L1 (LINE 1) family of long interspersed repeated DNA elements. Current knowledge on the evolution of L1 families presents a paradox because, although L1 families have been in mammalian genomes since before the mammalian radiation ∼80 million years ago, most members of the L1 families are only a few million years old. Accordingly it has been suggested either that the extensive amplification that characterizes present-day L1 families did not occur in the past or that old members were removed as new one were generated. However, the authors show here that an ancestral rodent L1 family was extensively amplified ∼10 million years ago and that the relics of this amplification have persisted in modern murine genomes. This amplification occurred just before the divergence of modern murine genera from their common ancestor and identifies the murine node in the lineage of modern muroid rodents The results suggest that repeated amplification of L1 elements is a feature of the evaluation of mammalian genomes and that ancestral amplification events could provide a useful tool for determining mammalian lineages

  3. Ancestral voices in the mammalian mind: philosophical implications of Jaak Panksepp's affective neuroscience.

    Science.gov (United States)

    Davies, Paul Sheldon

    2011-10-01

    The philosophical implications of Jaak Panksepp's affective neuroscience comprise a significant form of skepticism regarding our capacities as agents. This is clear in two ways. (1) Panksepp's methods of inquiry support a corollary to Dobzhansky's famous maxim concerning evolution: nothing in mammalian psychology makes sense except in light of ancient affective capacities shared by all mammals. The application of this maxim, I argue, raises informed doubts concerning our knowledge of our own capacities. (2) Against the backdrop of this maxim, Panksepp's substantive discoveries provide tentative confirmation of theories in psychology which raise doubts about our alleged capacity to give reasons for our actions. Taken together, Panksepp's methods and discoveries call into question the view we have of ourselves as free and responsible agents, while pointing us toward more-fruitful forms of inquiry concerning all our animal capacities, including our capacities for deliberation, choice, and action. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Comparative genomics indicates the mammalian CD33rSiglec locus evolved by an ancient large-scale inverse duplication and suggests all Siglecs share a common ancestral region.

    Science.gov (United States)

    Cao, Huan; de Bono, Bernard; Belov, Katherine; Wong, Emily S; Trowsdale, John; Barrow, Alexander David

    2009-05-01

    The CD33-related sialic acid binding Ig-like lectins (CD33rSiglecs) are predominantly inhibitory receptors expressed on leukocytes. They are distinguishable from conserved Siglecs, such as Sialoadhesin and MAG, by their rapid evolution. A comparison of the CD33rSiglec gene cluster in different mammalian species showed that it can be divided into subclusters, A and B. The two subclusters, inverted in relation to each other, each encode a set of CD33rSiglec genes arranged head-to-tail. Two regions of strong correspondence provided evidence for a large-scale inverse duplication, encompassing the framework CEACAM-18 (CE18) and ATPBD3 (ATB3) genes that seeded the mammalian CD33rSiglec cluster. Phylogenetic analysis was consistent with the predicted inversion. Rodents appear to have undergone wholesale loss of CD33rSiglec genes after the inverse duplication. In contrast, CD33rSiglecs expanded in primates and many are now pseudogenes with features consistent with activating receptors. In contrast to mammals, the fish CD33rSiglecs clusters show no evidence of an inverse duplication. They display greater variation in cluster size and structure than mammals. The close arrangement of other Siglecs and CD33rSiglecs in fish is consistent with a common ancestral region for Siglecs. Expansion of mammalian CD33rSiglecs appears to have followed a large inverse duplication of a smaller primordial cluster over 180 million years ago, prior to eutherian/marsupial divergence. Inverse duplications in general could potentially have a stabilizing effect in maintaining the size and structure of large gene clusters, facilitating the rapid evolution of immune gene families.

  5. Insights into the ancestral organisation of the mammalian MHC class II region from the genome of the pteropid bat, Pteropus alecto.

    Science.gov (United States)

    Ng, Justin H J; Tachedjian, Mary; Wang, Lin-Fa; Baker, Michelle L

    2017-05-18

    Bats are an extremely successful group of mammals and possess a variety of unique characteristics, including their ability to co-exist with a diverse range of pathogens. The major histocompatibility complex (MHC) is the most gene dense and polymorphic region of the genome and MHC class II (MHC-II) molecules play a vital role in the presentation of antigens derived from extracellular pathogens and activation of the adaptive immune response. Characterisation of the MHC-II region of bats is crucial for understanding the evolution of the MHC and of the role of pathogens in shaping the immune system. Here we describe the relatively contracted MHC-II region of the Australian black flying-fox (Pteropus alecto), providing the first detailed insight into the MHC-II region of any species of bat. Twelve MHC-II genes, including one locus (DRB2) located outside the class II region, were identified on a single scaffold in the bat genome. The presence of a class II locus outside the MHC-II region is atypical and provides evidence for an ancient class II duplication block. Two non-classical loci, DO and DM and two classical, DQ and DR loci, were identified in P. alecto. A putative classical, DPB pseudogene was also identified. The bat's antigen processing cluster, though contracted, remains highly conserved, thus supporting its importance in antigen presentation and disease resistance. This detailed characterisation of the bat MHC-II region helps to fill a phylogenetic gap in the evolution of the mammalian class II region and is a stepping stone towards better understanding of the immune responses in bats to viral, bacterial, fungal and parasitic infections.

  6. Ancestral Relationships Using Metafounders

    DEFF Research Database (Denmark)

    Legarra, Andres; Christensen, Ole Fredslund; Vitezica, Zulma G

    2015-01-01

    due to finite size of the ancestral population and connections between populations. This complicates the conciliation of both approaches and, in particular, combining pedigree with genomic relationships. We present a coherent theoretical framework to consider base population in pedigree relationships....... We suggest a conceptual framework that considers each ancestral population as a finite-sized pool of gametes. This generates across-individual relationships and contrasts with the classical view where each population is considered as an infinite, unrelated pool. Several ancestral populations may...... be connected and therefore related. Each ancestral population can be represented as a "metafounder", a pseudo-individual included as founder of the pedigree and similar to an "unknown parent group". Metafounders have self- and across- relationships according to a set of parameters, which measure ancestral...

  7. Reconstruction of the ancestral marsupial karyotype from comparative gene maps

    Science.gov (United States)

    2013-01-01

    Background The increasing number of assembled mammalian genomes makes it possible to compare genome organisation across mammalian lineages and reconstruct chromosomes of the ancestral marsupial and therian (marsupial and eutherian) mammals. However, the reconstruction of ancestral genomes requires genome assemblies to be anchored to chromosomes. The recently sequenced tammar wallaby (Macropus eugenii) genome was assembled into over 300,000 contigs. We previously devised an efficient strategy for mapping large evolutionarily conserved blocks in non-model mammals, and applied this to determine the arrangement of conserved blocks on all wallaby chromosomes, thereby permitting comparative maps to be constructed and resolve the long debated issue between a 2n = 14 and 2n = 22 ancestral marsupial karyotype. Results We identified large blocks of genes conserved between human and opossum, and mapped genes corresponding to the ends of these blocks by fluorescence in situ hybridization (FISH). A total of 242 genes was assigned to wallaby chromosomes in the present study, bringing the total number of genes mapped to 554 and making it the most densely cytogenetically mapped marsupial genome. We used these gene assignments to construct comparative maps between wallaby and opossum, which uncovered many intrachromosomal rearrangements, particularly for genes found on wallaby chromosomes X and 3. Expanding comparisons to include chicken and human permitted the putative ancestral marsupial (2n = 14) and therian mammal (2n = 19) karyotypes to be reconstructed. Conclusions Our physical mapping data for the tammar wallaby has uncovered the events shaping marsupial genomes and enabled us to predict the ancestral marsupial karyotype, supporting a 2n = 14 ancestor. Futhermore, our predicted therian ancestral karyotype has helped to understand the evolution of the ancestral eutherian genome. PMID:24261750

  8. Are palaeoscolecids ancestral ecdysozoans?

    Science.gov (United States)

    Harvey, Thomas H P; Dong, Xiping; Donoghue, Philip C J

    2010-01-01

    The reconstruction of ancestors is a central aim of comparative anatomy and evolutionary developmental biology, not least in attempts to understand the relationship between developmental and organismal evolution. Inferences based on living taxa can and should be tested against the fossil record, which provides an independent and direct view onto historical character combinations. Here, we consider the nature of the last common ancestor of living ecdysozoans through a detailed analysis of palaeoscolecids, an early and extinct group of introvert-bearing worms that have been proposed to be ancestral ecdysozoans. In a review of palaeoscolecid anatomy, including newly resolved details of the internal and external cuticle structure, we identify specific characters shared with various living nematoid and scalidophoran worms, but not with panarthropods. Considered within a formal cladistic context, these characters provide most overall support for a stem-priapulid affinity, meaning that palaeoscolecids are far-removed from the ecdysozoan ancestor. We conclude that previous interpretations in which palaeoscolecids occupy a deeper position in the ecdysozoan tree lack particular morphological support and rely instead on a paucity of preserved characters. This bears out a more general point that fossil taxa may appear plesiomorphic merely because they preserve only plesiomorphies, rather than the mélange of primitive and derived characters anticipated of organisms properly allocated to a position deep within animal phylogeny.

  9. Integrating Principles Underlying Ancestral Spirits Belief in ...

    African Journals Online (AJOL)

    , associated with ancestral spirits and its use as powerful therapeutic agent for influencing behavior or lifestyle changes. Explanatory models of attachment to ancestral spirits by living descendants are first discussed, followed by a discussion ...

  10. Enhancer evolution across 20 mammalian species

    DEFF Research Database (Denmark)

    Villar, Diego; Berthelot, Camille; Aldridge, Sarah

    2015-01-01

    by profiling genomic enrichment of H3K27 acetylation and H3K4 trimethylation. We report that rapid evolution of enhancers is a universal feature of mammalian genomes. Most of the recently evolved enhancers arise from ancestral DNA exaptation, rather than lineage-specific expansions of repeat elements...

  11. REGEN: Ancestral Genome Reconstruction for Bacteria

    OpenAIRE

    Yang, Kuan; Heath, Lenwood S.; Setubal, João C.

    2012-01-01

    Ancestral genome reconstruction can be understood as a phylogenetic study with more details than a traditional phylogenetic tree reconstruction. We present a new computational system called REGEN for ancestral bacterial genome reconstruction at both the gene and replicon levels. REGEN reconstructs gene content, contiguous gene runs, and replicon structure for each ancestral genome. Along each branch of the phylogenetic tree, REGEN infers evolutionary events, including gene creation and deleti...

  12. Ancestral sequence reconstruction with Maximum Parsimony

    OpenAIRE

    Herbst, Lina; Fischer, Mareike

    2017-01-01

    One of the main aims in phylogenetics is the estimation of ancestral sequences based on present-day data like, for instance, DNA alignments. One way to estimate the data of the last common ancestor of a given set of species is to first reconstruct a phylogenetic tree with some tree inference method and then to use some method of ancestral state inference based on that tree. One of the best-known methods both for tree inference as well as for ancestral sequence inference is Maximum Parsimony (...

  13. Ancestral sequence alignment under optimal conditions

    Directory of Open Access Journals (Sweden)

    Brown Daniel G

    2005-11-01

    Full Text Available Abstract Background Multiple genome alignment is an important problem in bioinformatics. An important subproblem used by many multiple alignment approaches is that of aligning two multiple alignments. Many popular alignment algorithms for DNA use the sum-of-pairs heuristic, where the score of a multiple alignment is the sum of its induced pairwise alignment scores. However, the biological meaning of the sum-of-pairs of pairs heuristic is not obvious. Additionally, many algorithms based on the sum-of-pairs heuristic are complicated and slow, compared to pairwise alignment algorithms. An alternative approach to aligning alignments is to first infer ancestral sequences for each alignment, and then align the two ancestral sequences. In addition to being fast, this method has a clear biological basis that takes into account the evolution implied by an underlying phylogenetic tree. In this study we explore the accuracy of aligning alignments by ancestral sequence alignment. We examine the use of both maximum likelihood and parsimony to infer ancestral sequences. Additionally, we investigate the effect on accuracy of allowing ambiguity in our ancestral sequences. Results We use synthetic sequence data that we generate by simulating evolution on a phylogenetic tree. We use two different types of phylogenetic trees: trees with a period of rapid growth followed by a period of slow growth, and trees with a period of slow growth followed by a period of rapid growth. We examine the alignment accuracy of four ancestral sequence reconstruction and alignment methods: parsimony, maximum likelihood, ambiguous parsimony, and ambiguous maximum likelihood. Additionally, we compare against the alignment accuracy of two sum-of-pairs algorithms: ClustalW and the heuristic of Ma, Zhang, and Wang. Conclusion We find that allowing ambiguity in ancestral sequences does not lead to better multiple alignments. Regardless of whether we use parsimony or maximum likelihood, the

  14. REGEN: Ancestral Genome Reconstruction for Bacteria

    Directory of Open Access Journals (Sweden)

    João C. Setubal

    2012-07-01

    Full Text Available Ancestral genome reconstruction can be understood as a phylogenetic study with more details than a traditional phylogenetic tree reconstruction. We present a new computational system called REGEN for ancestral bacterial genome reconstruction at both the gene and replicon levels. REGEN reconstructs gene content, contiguous gene runs, and replicon structure for each ancestral genome. Along each branch of the phylogenetic tree, REGEN infers evolutionary events, including gene creation and deletion and replicon fission and fusion. The reconstruction can be performed by either a maximum parsimony or a maximum likelihood method. Gene content reconstruction is based on the concept of neighboring gene pairs. REGEN was designed to be used with any set of genomes that are sufficiently related, which will usually be the case for bacteria within the same taxonomic order. We evaluated REGEN using simulated genomes and genomes in the Rhizobiales order.

  15. REGEN: Ancestral Genome Reconstruction for Bacteria.

    Science.gov (United States)

    Yang, Kuan; Heath, Lenwood S; Setubal, João C

    2012-07-18

    Ancestral genome reconstruction can be understood as a phylogenetic study with more details than a traditional phylogenetic tree reconstruction. We present a new computational system called REGEN for ancestral bacterial genome reconstruction at both the gene and replicon levels. REGEN reconstructs gene content, contiguous gene runs, and replicon structure for each ancestral genome. Along each branch of the phylogenetic tree, REGEN infers evolutionary events, including gene creation and deletion and replicon fission and fusion. The reconstruction can be performed by either a maximum parsimony or a maximum likelihood method. Gene content reconstruction is based on the concept of neighboring gene pairs. REGEN was designed to be used with any set of genomes that are sufficiently related, which will usually be the case for bacteria within the same taxonomic order. We evaluated REGEN using simulated genomes and genomes in the Rhizobiales order.

  16. Staging Sacrifice: Performing History, Memory, and Ancestral ...

    African Journals Online (AJOL)

    Returning and recurring cultural forms, ancestral incarnations, theatrical imaginations, and racial memories in African plays construct a specific kind of historicity - the conjuring of the dead and the revitalization of cosmic energy or spiritual power. These formations perpetuate the construction of Africa and African-ness ...

  17. Ancestral Sequence Reconstruction with Maximum Parsimony.

    Science.gov (United States)

    Herbst, Lina; Fischer, Mareike

    2017-12-01

    One of the main aims in phylogenetics is the estimation of ancestral sequences based on present-day data like, for instance, DNA alignments. One way to estimate the data of the last common ancestor of a given set of species is to first reconstruct a phylogenetic tree with some tree inference method and then to use some method of ancestral state inference based on that tree. One of the best-known methods both for tree inference and for ancestral sequence inference is Maximum Parsimony (MP). In this manuscript, we focus on this method and on ancestral state inference for fully bifurcating trees. In particular, we investigate a conjecture published by Charleston and Steel in 1995 concerning the number of species which need to have a particular state, say a, at a particular site in order for MP to unambiguously return a as an estimate for the state of the last common ancestor. We prove the conjecture for all even numbers of character states, which is the most relevant case in biology. We also show that the conjecture does not hold in general for odd numbers of character states, but also present some positive results for this case.

  18. Mammalian sleep

    Science.gov (United States)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  19. Assessing the Accuracy of Ancestral Protein Reconstruction Methods

    OpenAIRE

    Williams, Paul D; Pollock, David D; Blackburne, Benjamin P; Goldstein, Richard A

    2006-01-01

    The phylogenetic inference of ancestral protein sequences is a powerful technique for the study of molecular evolution, but any conclusions drawn from such studies are only as good as the accuracy of the reconstruction method. Every inference method leads to errors in the ancestral protein sequence, resulting in potentially misleading estimates of the ancestral protein's properties. To assess the accuracy of ancestral protein reconstruction methods, we performed computational population evolu...

  20. Hypothesis on the dual origin of the mammalian subplate

    Directory of Open Access Journals (Sweden)

    Juan F Montiel

    2011-04-01

    Full Text Available The development of the mammalian neocortex relies heavily on subplate. The proportion of this cell population varies considerably in different mammalian species. Subplate is almost undetectable in marsupials, forms a thin, but distinct layer in mouse and rat, a larger layer in carnivores and big-brained mammals as pig and a highly developed embryonic structure in human and non-human primates. The evolutionary origin of subplate neurons is the subject of current debate. Some hypothesize that subplate represents the ancestral cortex of sauropsids, while others consider it to be an increasingly complex phylogenetic novelty of the mammalian neocortex. Here we review recent work on expression of several genes that were originally identified in rodent as highly and differentially expressed in subplate. We relate these observations to cellular morphology, birthdating and hodology in the dorsal cortex/dorsal pallium of several amniote species. Based on this reviewed evidence we argue for a third hypothesis according to which subplate contains both ancestral and newly derived cell populations. We propose that the mammalian subplate originally derived from a phylogenetically ancient structure in the dorsal pallium of stem amniotes, but subsequently expanded with additional cell populations in the synapsid lineage to support an increasingly complex cortical plate development. Further understanding of the detailed molecular taxonomy, somatodendritic morphology and connectivity of subplate in a comparative context should contribute to the identification of the ancestral and newly evolved populations of subplate neurons.

  1. The ancestral complement system in sea urchins.

    Science.gov (United States)

    Smith, L C; Clow, L A; Terwilliger, D P

    2001-04-01

    The origin of adaptive immunity in the vertebrates can be traced to the appearance of the ancestral RAG genes in the ancestral jawed vertebrate; however, the innate immune system is more ancient. A central subsystem within innate immunity is the complement system, which has been identified throughout and seems to be restricted to the deuterostomes. The evolutionary history of complement can be traced from the sea urchins (members of the echinoderm phylum), which have a simplified system homologous to the alternative pathway, through the agnathans (hagfish and lamprey) and the elasmobranchs (sharks and rays) to the teleosts (bony fish) and tetrapods, with increases in the numbers of complement components and duplications in complement pathways. Increasing complexity in the complement system parallels increasing complexity in the deuterostome animals. This review focuses on the simplest of the complement systems that is present in the sea urchin. Two components have been identified that show significant homology to vertebrate C3 and factor B (Bf), called SpC3 and SpBf, respectively. Sequence analysis from both molecules reveals their ancestral characteristics. Immune challenge of sea urchins indicates that SpC3 is inducible and is present in coelomic fluid (the body fluids) in relatively high concentrations, while SpBf expression is constitutive and is present in much lower concentrations. Opsonization of foreign cells and particles followed by augmented uptake by phagocytic coelomocytes appears to be a central function for this simpler complement system and important for host defense in the sea urchin. These activities are similar to some of the functions of the homologous proteins in the vertebrate complement system. The selective advantage for the ancestral deuterostome may have been the amplification feedback loop that is still of central importance in the alternative pathway of complement in higher vertebrates. Feedback loop functions would quickly coat

  2. Approximate maximum parsimony and ancestral maximum likelihood.

    Science.gov (United States)

    Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat

    2010-01-01

    We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.

  3. Robustness of ancestral sequence reconstruction to phylogenetic uncertainty.

    Science.gov (United States)

    Hanson-Smith, Victor; Kolaczkowski, Bryan; Thornton, Joseph W

    2010-09-01

    Ancestral sequence reconstruction (ASR) is widely used to formulate and test hypotheses about the sequences, functions, and structures of ancient genes. Ancestral sequences are usually inferred from an alignment of extant sequences using a maximum likelihood (ML) phylogenetic algorithm, which calculates the most likely ancestral sequence assuming a probabilistic model of sequence evolution and a specific phylogeny--typically the tree with the ML. The true phylogeny is seldom known with certainty, however. ML methods ignore this uncertainty, whereas Bayesian methods incorporate it by integrating the likelihood of each ancestral state over a distribution of possible trees. It is not known whether Bayesian approaches to phylogenetic uncertainty improve the accuracy of inferred ancestral sequences. Here, we use simulation-based experiments under both simplified and empirically derived conditions to compare the accuracy of ASR carried out using ML and Bayesian approaches. We show that incorporating phylogenetic uncertainty by integrating over topologies very rarely changes the inferred ancestral state and does not improve the accuracy of the reconstructed ancestral sequence. Ancestral state reconstructions are robust to uncertainty about the underlying tree because the conditions that produce phylogenetic uncertainty also make the ancestral state identical across plausible trees; conversely, the conditions under which different phylogenies yield different inferred ancestral states produce little or no ambiguity about the true phylogeny. Our results suggest that ML can produce accurate ASRs, even in the face of phylogenetic uncertainty. Using Bayesian integration to incorporate this uncertainty is neither necessary nor beneficial.

  4. Ancestral genome organization: an alignment approach.

    Science.gov (United States)

    Holloway, Patrick; Swenson, Krister; Ardell, David; El-Mabrouk, Nadia

    2013-04-01

    We present a comparative genomics approach for inferring ancestral genome organization and evolutionary scenarios, based on present-day genomes represented as ordered gene sequences with duplicates. We develop our methodology for a model of evolution restricted to duplication and loss, and then show how to extend it to other content-modifying operations, and to inversions. From a combinatorial point of view, the main consequence of ignoring rearrangements is the possibility of formulating the problem as an alignment problem. On the other hand, duplications and losses are asymmetric operations that are applicable to one of the two aligned sequences. Consequently, an ancestral genome can directly be inferred from a duplication-loss scenario attached to a given alignment. Although alignments are a priori simpler to handle than rearrangements, we show that a direct approach based on dynamic programming leads, at best, to an efficient heuristic. We present an exact pseudo-boolean linear programming algorithm to search for the optimal alignment along with an optimal scenario of duplications and losses. Although exponential in the worst case, we show low running times on real datasets as well as synthetic data. We apply our algorithm (*) in a phylogenetic context to the evolution of stable RNA (tRNA and rRNA) gene content and organization in Bacillus genomes. Our results lead to various biological insights, such as rates of ribosomal RNA proliferation among lineages, their role in altering tRNA gene content, and evidence of tRNA class conversion.

  5. Genome-wide inference of ancestral recombination graphs.

    Directory of Open Access Journals (Sweden)

    Matthew D Rasmussen

    Full Text Available The complex correlation structure of a collection of orthologous DNA sequences is uniquely captured by the "ancestral recombination graph" (ARG, a complete record of coalescence and recombination events in the history of the sample. However, existing methods for ARG inference are computationally intensive, highly approximate, or limited to small numbers of sequences, and, as a consequence, explicit ARG inference is rarely used in applied population genomics. Here, we introduce a new algorithm for ARG inference that is efficient enough to apply to dozens of complete mammalian genomes. The key idea of our approach is to sample an ARG of [Formula: see text] chromosomes conditional on an ARG of [Formula: see text] chromosomes, an operation we call "threading." Using techniques based on hidden Markov models, we can perform this threading operation exactly, up to the assumptions of the sequentially Markov coalescent and a discretization of time. An extension allows for threading of subtrees instead of individual sequences. Repeated application of these threading operations results in highly efficient Markov chain Monte Carlo samplers for ARGs. We have implemented these methods in a computer program called ARGweaver. Experiments with simulated data indicate that ARGweaver converges rapidly to the posterior distribution over ARGs and is effective in recovering various features of the ARG for dozens of sequences generated under realistic parameters for human populations. In applications of ARGweaver to 54 human genome sequences from Complete Genomics, we find clear signatures of natural selection, including regions of unusually ancient ancestry associated with balancing selection and reductions in allele age in sites under directional selection. The patterns we observe near protein-coding genes are consistent with a primary influence from background selection rather than hitchhiking, although we cannot rule out a contribution from recurrent selective

  6. Assessing the accuracy of ancestral protein reconstruction methods.

    Directory of Open Access Journals (Sweden)

    Paul D Williams

    2006-06-01

    Full Text Available The phylogenetic inference of ancestral protein sequences is a powerful technique for the study of molecular evolution, but any conclusions drawn from such studies are only as good as the accuracy of the reconstruction method. Every inference method leads to errors in the ancestral protein sequence, resulting in potentially misleading estimates of the ancestral protein's properties. To assess the accuracy of ancestral protein reconstruction methods, we performed computational population evolution simulations featuring near-neutral evolution under purifying selection, speciation, and divergence using an off-lattice protein model where fitness depends on the ability to be stable in a specified target structure. We were thus able to compare the thermodynamic properties of the true ancestral sequences with the properties of "ancestral sequences" inferred by maximum parsimony, maximum likelihood, and Bayesian methods. Surprisingly, we found that methods such as maximum parsimony and maximum likelihood that reconstruct a "best guess" amino acid at each position overestimate thermostability, while a Bayesian method that sometimes chooses less-probable residues from the posterior probability distribution does not. Maximum likelihood and maximum parsimony apparently tend to eliminate variants at a position that are slightly detrimental to structural stability simply because such detrimental variants are less frequent. Other properties of ancestral proteins might be similarly overestimated. This suggests that ancestral reconstruction studies require greater care to come to credible conclusions regarding functional evolution. Inferred functional patterns that mimic reconstruction bias should be reevaluated.

  7. Assessing the accuracy of ancestral protein reconstruction methods.

    Science.gov (United States)

    Williams, Paul D; Pollock, David D; Blackburne, Benjamin P; Goldstein, Richard A

    2006-06-23

    The phylogenetic inference of ancestral protein sequences is a powerful technique for the study of molecular evolution, but any conclusions drawn from such studies are only as good as the accuracy of the reconstruction method. Every inference method leads to errors in the ancestral protein sequence, resulting in potentially misleading estimates of the ancestral protein's properties. To assess the accuracy of ancestral protein reconstruction methods, we performed computational population evolution simulations featuring near-neutral evolution under purifying selection, speciation, and divergence using an off-lattice protein model where fitness depends on the ability to be stable in a specified target structure. We were thus able to compare the thermodynamic properties of the true ancestral sequences with the properties of "ancestral sequences" inferred by maximum parsimony, maximum likelihood, and Bayesian methods. Surprisingly, we found that methods such as maximum parsimony and maximum likelihood that reconstruct a "best guess" amino acid at each position overestimate thermostability, while a Bayesian method that sometimes chooses less-probable residues from the posterior probability distribution does not. Maximum likelihood and maximum parsimony apparently tend to eliminate variants at a position that are slightly detrimental to structural stability simply because such detrimental variants are less frequent. Other properties of ancestral proteins might be similarly overestimated. This suggests that ancestral reconstruction studies require greater care to come to credible conclusions regarding functional evolution. Inferred functional patterns that mimic reconstruction bias should be reevaluated.

  8. Catalytic Promiscuity of Ancestral Esterases and Hydroxynitrile Lyases.

    Science.gov (United States)

    Devamani, Titu; Rauwerdink, Alissa M; Lunzer, Mark; Jones, Bryan J; Mooney, Joanna L; Tan, Maxilmilien Alaric O; Zhang, Zhi-Jun; Xu, Jian-He; Dean, Antony M; Kazlauskas, Romas J

    2016-01-27

    Catalytic promiscuity is a useful, but accidental, enzyme property, so finding catalytically promiscuous enzymes in nature is inefficient. Some ancestral enzymes were branch points in the evolution of new enzymes and are hypothesized to have been promiscuous. To test the hypothesis that ancestral enzymes were more promiscuous than their modern descendants, we reconstructed ancestral enzymes at four branch points in the divergence hydroxynitrile lyases (HNL's) from esterases ∼ 100 million years ago. Both enzyme types are α/β-hydrolase-fold enzymes and have the same catalytic triad, but differ in reaction type and mechanism. Esterases catalyze hydrolysis via an acyl enzyme intermediate, while lyases catalyze an elimination without an intermediate. Screening ancestral enzymes and their modern descendants with six esterase substrates and six lyase substrates found higher catalytic promiscuity among the ancestral enzymes (P promiscuous and catalyzed both hydrolysis and lyase reactions with many substrates. A broader screen tested mechanistically related reactions that were not selected for by evolution: decarboxylation, Michael addition, γ-lactam hydrolysis and 1,5-diketone hydrolysis. The ancestral enzymes were more promiscuous than their modern descendants (P = 0.04). Thus, these reconstructed ancestral enzymes are catalytically promiscuous, but HNL1 is especially so.

  9. Mammalian airborne allergens

    NARCIS (Netherlands)

    Aalberse, Rob C.

    2014-01-01

    Historically, horse dandruff was a favorite allergen source material. Today, however, allergic symptoms due to airborne mammalian allergens are mostly a result of indoor exposure, be it at home, at work or even at school. The relevance of mammalian allergens in relation to the allergenic activity of

  10. Why Meillassoux’s Speculative Materialism Struggles with Ancestrality

    Directory of Open Access Journals (Sweden)

    Ciprian Jeler

    2014-12-01

    Full Text Available This paper shows that Quentin Meillassoux’s speculative materialism doesn’t offer us the means to account for the ancestral statements that the modern sciences produce, i.e. for the scientific statements about events preceding all forms of life. An analysis of the reasons why Meillassoux thinks that the problem of ancestrality problematizes the contemporary self-evidence of correlationism is first offered. The results of this analysis are then applied to speculative materialism itself and the consequences are not very promising: very much like correlationism, speculative materialism explicitly denies what I call the “generalized version of the realistic assumption of science” and, in so doing, renders scientific ancestral statements de jure unverifiable. Therefore, if correlationism is rendered suspicious by the issue of ancestrality, the same can be said of speculative materialism.

  11. WARACS: Wrappers to Automate the Reconstruction of Ancestral Character States.

    Science.gov (United States)

    Gruenstaeudl, Michael

    2016-02-01

    Reconstructions of ancestral character states are among the most widely used analyses for evaluating the morphological, cytological, or ecological evolution of an organismic lineage. The software application Mesquite remains the most popular application for such reconstructions among plant scientists, even though its support for automating complex analyses is limited. A software tool is needed that automates the reconstruction and visualization of ancestral character states with Mesquite and similar applications. A set of command line-based Python scripts was developed that (a) communicates standardized input to and output from the software applications Mesquite, BayesTraits, and TreeGraph2; (b) automates the process of ancestral character state reconstruction; and (c) facilitates the visualization of reconstruction results. WARACS provides a simple tool that streamlines the reconstruction and visualization of ancestral character states over a wide array of parameters, including tree distribution, character state, and optimality criterion.

  12. Why Meillassoux’s Speculative Materialism Struggles with Ancestrality

    OpenAIRE

    Ciprian Jeler

    2014-01-01

    This paper shows that Quentin Meillassoux’s speculative materialism doesn’t offer us the means to account for the ancestral statements that the modern sciences produce, i.e. for the scientific statements about events preceding all forms of life. An analysis of the reasons why Meillassoux thinks that the problem of ancestrality problematizes the contemporary self-evidence of correlationism is first offered. The results of this analysis are then applied to speculative materialism itself and the...

  13. Reproductive function in mice exposed to ancestral and direct irradiation

    International Nuclear Information System (INIS)

    Nash, D.J.; Sprackling, L.S.

    1978-01-01

    Reproduction was studied in 13 inbred strains of mice that had been exposed continuously to 60 Co gamma radiation for varying numbers of generations. At weaning the mice were removed from the irradiation chamber and were tested for reproductive performance. Ancestral and direct levels of irradiation were determined for each animal. Each irradiated or control female was scored as fertile or sterile, and in utero litter counts were made in pregnant females that were dissected past the 10th day of pregnancy. The number of resorptions, dead embryos, and live embryos were counted, and the ratio of living embryos to the total number of embryos was determined for each litter. The overall fertility curves were sigmoid in the range of doses below those which caused complete sterility, which indicated some sort of cumulative damage. In 11 of the 13 strains studied, an increase in ancestral and/or direct irradiation led to significant decreases in fertility. The means of the number alive in the litters for the control and irradiated mice in each strain showed a definite trend toward fewer live mice in utero after irradiation. Least-squares analyses of variance were made to detect possible effects of any of six irradiation variables (ancestral linear, ancestral quadratic, ancestral cubic, direct linear, direct quadratic, or direct cubic) or of strain differences on total litter size and on ratio. Strain effects were significant in each instance. Litter size was more likely to be affected by radiation variables than ratios were

  14. Ancestrality and evolution of trait syndromes in finches (Fringillidae).

    Science.gov (United States)

    Ponge, Jean-François; Zuccon, Dario; Elias, Marianne; Pavoine, Sandrine; Henry, Pierre-Yves; Théry, Marc; Guilbert, Éric

    2017-12-01

    Species traits have been hypothesized by one of us (Ponge, 2013) to evolve in a correlated manner as species colonize stable, undisturbed habitats, shifting from "ancestral" to "derived" strategies. We predicted that generalism, r-selection, sexual monomorphism, and migration/gregariousness are the ancestral states (collectively called strategy A) and evolved correlatively toward specialism, K-selection, sexual dimorphism, and residence/territoriality as habitat stabilized (collectively called B strategy). We analyzed the correlated evolution of four syndromes, summarizing the covariation between 53 traits, respectively, involved in ecological specialization, r-K gradient, sexual selection, and dispersal/social behaviors in 81 species representative of Fringillidae, a bird family with available natural history information and that shows variability for all these traits. The ancestrality of strategy A was supported for three of the four syndromes, the ancestrality of generalism having a weaker support, except for the core group Carduelinae (69 species). It appeared that two different B-strategies evolved from the ancestral state A, both associated with highly predictable environments: one in poorly seasonal environments, called B1, with species living permanently in lowland tropics, with "slow pace of life" and weak sexual dimorphism, and one in highly seasonal environments, called B2, with species breeding out-of-the-tropics, migratory, with a "fast pace of life" and high sexual dimorphism.

  15. Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates

    Science.gov (United States)

    Huang, Ruiqi; Hippauf, Frank; Rohrbeck, Diana; Haustein, Maria; Wenke, Katrin; Feike, Janie; Sorrelle, Noah; Piechulla, Birgit; Barkman, Todd J.

    2012-01-01

    In this study, we investigated the role for ancestral functional variation that may be selected upon to generate protein functional shifts using ancestral protein resurrection, statistical tests for positive selection, forward and reverse evolutionary genetics, and enzyme functional assays. Data are presented for three instances of protein functional change in the salicylic acid/benzoic acid/theobromine (SABATH) lineage of plant secondary metabolite-producing enzymes. In each case, we demonstrate that ancestral nonpreferred activities were improved upon in a daughter enzyme after gene duplication, and that these functional shifts were likely coincident with positive selection. Both forward and reverse mutagenesis studies validate the impact of one or a few sites toward increasing activity with ancestrally nonpreferred substrates. In one case, we document the occurrence of an evolutionary reversal of an active site residue that reversed enzyme properties. Furthermore, these studies show that functionally important amino acid replacements result in substrate discrimination as reflected in evolutionary changes in the specificity constant (kcat/KM) for competing substrates, even though adaptive substitutions may affect KM and kcat separately. In total, these results indicate that nonpreferred, or even latent, ancestral protein activities may be coopted at later times to become the primary or preferred protein activities. PMID:22315396

  16. Mammalian cell biology

    International Nuclear Information System (INIS)

    Elkind, M.M.

    1975-01-01

    Progress is reported on the following research projects: the effects of N-ethyl-maleimide and hydroxyurea on hamster cells in culture; sensitization of synchronized human cells to x rays by N-ethylmaleimide; sensitization of hypoxic mammalian cells with a sulfhydryl inhibitor; damage interaction due to ionizing and nonionizing radiation in mammalian cells; DNA damage relative to radioinduced cell killing; spurious photolability of DNA labeled with methyl- 14 C-thymidine; radioinduced malignant transformation of cultured mouse cells; a comparison of properties of uv and near uv light relative to cell function and DNA damage; Monte Carlo simulation of DNA damage and repair mechanisms; and radiobiology of fast neutrons

  17. Building the mammalian testis

    DEFF Research Database (Denmark)

    Svingen, Terje; Koopman, Peter

    2013-01-01

    Development of testes in the mammalian embryo requires the formation and assembly of several cell types that allow these organs to achieve their roles in male reproduction and endocrine regulation. Testis development is unusual in that several cell types such as Sertoli, Leydig, and spermatogonial...

  18. Mammalian Antibiotic Peptides

    Czech Academy of Sciences Publication Activity Database

    Šíma, Petr; Trebichavský, Ilja; Sigler, Karel

    2003-01-01

    Roč. 48, č. 2 (2003), s. 123-137 ISSN 0015-5632 R&D Projects: GA ČR GA301/02/1232; GA ČR GA524/01/0917 Institutional research plan: CEZ:AV0Z5020903 Keywords : mammalian Subject RIV: EE - Microbiology, Virology Impact factor: 0.857, year: 2003

  19. Ancestral gene synteny reconstruction improves extant species scaffolding.

    Science.gov (United States)

    Anselmetti, Yoann; Berry, Vincent; Chauve, Cedric; Chateau, Annie; Tannier, Eric; Bérard, Sèverine

    2015-01-01

    We exploit the methodological similarity between ancestral genome reconstruction and extant genome scaffolding. We present a method, called ARt-DeCo that constructs neighborhood relationships between genes or contigs, in both ancestral and extant genomes, in a phylogenetic context. It is able to handle dozens of complete genomes, including genes with complex histories, by using gene phylogenies reconciled with a species tree, that is, annotated with speciation, duplication and loss events. Reconstructed ancestral or extant synteny comes with a support computed from an exhaustive exploration of the solution space. We compare our method with a previously published one that follows the same goal on a small number of genomes with universal unicopy genes. Then we test it on the whole Ensembl database, by proposing partial ancestral genome structures, as well as a more complete scaffolding for many partially assembled genomes on 69 eukaryote species. We carefully analyze a couple of extant adjacencies proposed by our method, and show that they are indeed real links in the extant genomes, that were missing in the current assembly. On a reduced data set of 39 eutherian mammals, we estimate the precision and sensitivity of ARt-DeCo by simulating a fragmentation in some well assembled genomes, and measure how many adjacencies are recovered. We find a very high precision, while the sensitivity depends on the quality of the data and on the proximity of closely related genomes.

  20. Deciphering the diploid ancestral genome of the Mesohexaploid Brassica rapa.

    Science.gov (United States)

    Cheng, Feng; Mandáková, Terezie; Wu, Jian; Xie, Qi; Lysak, Martin A; Wang, Xiaowu

    2013-05-01

    The genus Brassica includes several important agricultural and horticultural crops. Their current genome structures were shaped by whole-genome triplication followed by extensive diploidization. The availability of several crucifer genome sequences, especially that of Chinese cabbage (Brassica rapa), enables study of the evolution of the mesohexaploid Brassica genomes from their diploid progenitors. We reconstructed three ancestral subgenomes of B. rapa (n = 10) by comparing its whole-genome sequence to ancestral and extant Brassicaceae genomes. All three B. rapa paleogenomes apparently consisted of seven chromosomes, similar to the ancestral translocation Proto-Calepineae Karyotype (tPCK; n = 7), which is the evolutionarily younger variant of the Proto-Calepineae Karyotype (n = 7). Based on comparative analysis of genome sequences or linkage maps of Brassica oleracea, Brassica nigra, radish (Raphanus sativus), and other closely related species, we propose a two-step merging of three tPCK-like genomes to form the hexaploid ancestor of the tribe Brassiceae with 42 chromosomes. Subsequent diversification of the Brassiceae was marked by extensive genome reshuffling and chromosome number reduction mediated by translocation events and followed by loss and/or inactivation of centromeres. Furthermore, via interspecies genome comparison, we refined intervals for seven of the genomic blocks of the Ancestral Crucifer Karyotype (n = 8), thus revising the key reference genome for evolutionary genomics of crucifers.

  1. Musculature in sipunculan worms: ontogeny and ancestral states.

    Science.gov (United States)

    Schulze, Anja; Rice, Mary E

    2009-01-01

    Molecular phylogenetics suggests that the Sipuncula fall into the Annelida, although they are morphologically very distinct and lack segmentation. To understand the evolutionary transformations from the annelid to the sipunculan body plan, it is important to reconstruct the ancestral states within the respective clades at all life history stages. Here we reconstruct the ancestral states for the head/introvert retractor muscles and the body wall musculature in the Sipuncula using Bayesian statistics. In addition, we describe the ontogenetic transformations of the two muscle systems in four sipunculan species with different developmental modes, using F-actin staining with fluorescent-labeled phalloidin in conjunction with confocal laser scanning microscopy. All four species, which have smooth body wall musculature and less than the full set of four introvert retractor muscles as adults, go through developmental stages with four retractor muscles that are eventually reduced to a lower number in the adult. The circular and sometimes the longitudinal body wall musculature are split into bands that later transform into a smooth sheath. Our ancestral state reconstructions suggest with nearly 100% probability that the ancestral sipunculan had four introvert retractor muscles, longitudinal body wall musculature in bands and circular body wall musculature arranged as a smooth sheath. Species with crawling larvae have more strongly developed body wall musculature than those with swimming larvae. To interpret our findings in the context of annelid evolution, a more solid phylogenetic framework is needed for the entire group and more data on ontogenetic transformations of annelid musculature are desirable.

  2. A comparison of ancestral state reconstruction methods for quantitative characters.

    Science.gov (United States)

    Royer-Carenzi, Manuela; Didier, Gilles

    2016-09-07

    Choosing an ancestral state reconstruction method among the alternatives available for quantitative characters may be puzzling. We present here a comparison of seven of them, namely the maximum likelihood, restricted maximum likelihood, generalized least squares under Brownian, Brownian-with-trend and Ornstein-Uhlenbeck models, phylogenetic independent contrasts and squared parsimony methods. A review of the relations between these methods shows that the maximum likelihood, the restricted maximum likelihood and the generalized least squares under Brownian model infer the same ancestral states and can only be distinguished by the distributions accounting for the reconstruction uncertainty which they provide. The respective accuracy of the methods is assessed over character evolution simulated under a Brownian motion with (and without) directional or stabilizing selection. We give the general form of ancestral state distributions conditioned on leaf states under the simulation models. Ancestral distributions are used first, to give a theoretical lower bound of the expected reconstruction error, and second, to develop an original evaluation scheme which is more efficient than comparing the reconstructed and the simulated states. Our simulations show that: (i) the distributions of the reconstruction uncertainty provided by the methods generally make sense (some more than others); (ii) it is essential to detect the presence of an evolutionary trend and to choose a reconstruction method accordingly; (iii) all the methods show good performances on characters under stabilizing selection; (iv) without trend or stabilizing selection, the maximum likelihood method is generally the most accurate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Modeling X-linked ancestral origins in multiparental populations

    NARCIS (Netherlands)

    Zheng, Chaozhi

    2015-01-01

    The models for the mosaic structure of an individual's genome from multiparental populations have been developed primarily for autosomes, whereas X chromosomes receive very little attention. In this paper, we extend our previous approach to model ancestral origin processes along two X chromosomes

  4. An Epistemological Analysis of the African Ontology of `Ancestral ...

    African Journals Online (AJOL)

    The paper explores the contemporary debate surrounding the idea of ancestral reincarnation in African society and philosophy. It analyzes various problem areas having to do with the physical and spiritual status of ancestors, their relationship with their societies of orientation, the philosophical contexts of their existence, ...

  5. Are survival processing memory advantages based on ancestral priorities?

    Science.gov (United States)

    Soderstrom, Nicholas C; McCabe, David P

    2011-06-01

    Recent research has suggested that our memory systems are especially tuned to process information according to its survival relevance, and that inducing problems of "ancestral priorities" faced by our ancestors should lead to optimal recall performance (Nairne & Pandeirada, Cognitive Psychology, 2010). The present study investigated the specificity of this idea by comparing an ancestor-consistent scenario and a modern survival scenario that involved threats that were encountered by human ancestors (e.g., predators) or threats from fictitious creatures (i.e., zombies). Participants read one of four survival scenarios in which the environment and the explicit threat were either consistent or inconsistent with ancestrally based problems (i.e., grasslands-predators, grasslands-zombies, city-attackers, city-zombies), or they rated words for pleasantness. After rating words based on their survival relevance (or pleasantness), the participants performed a free recall task. All survival scenarios led to better recall than did pleasantness ratings, but recall was greater when zombies were the threat, as compared to predators or attackers. Recall did not differ for the modern (i.e., city) and ancestral (i.e., grasslands) scenarios. These recall differences persisted when valence and arousal ratings for the scenarios were statistically controlled as well. These data challenge the specificity of ancestral priorities in survival-processing advantages in memory.

  6. Mammalian Synthetic Biology

    OpenAIRE

    Martella, Andrea; Pollard, Steven M; Dai, Junbiao; Cai, Yizhi

    2016-01-01

    The enabling technologies of synthetic biology are opening up new opportunities for engineering and enhancement of mammalian cells. This will stimulate diverse applications in many life science sectors such as regenerative medicine, development of biosensing cell lines, therapeutic protein production, and generation of new synthetic genetic regulatory circuits. Harnessing the full potential of these new engineering-based approaches requires the design and assembly of large DNA constructs-pote...

  7. Rheotaxis guides mammalian sperm

    Science.gov (United States)

    Miki, Kiyoshi; Clapham, David E

    2013-01-01

    Background In sea urchins, spermatozoan motility is altered by chemotactic peptides, giving rise to the assumption that mammalian eggs also emit chemotactic agents that guide spermatozoa through the female reproductive tract to the mature oocyte. Mammalian spermatozoa indeed undergo complex adaptations within the female (the process of capacitation) that are initiated by agents ranging from pH to progesterone, but these factors are not necessarily taxic. Currently, chemotaxis, thermotaxis, and rheotaxis have not been definitively established in mammals. Results Here, we show that positive rheotaxis, the ability of organisms to orient and swim against the flow of surrounding fluid, is a major taxic factor for mouse and human sperm. This flow is generated within 4 hours of sexual stimulation and coitus in female mice; prolactin-triggered oviductal fluid secretion clears the oviduct of debris, lowers viscosity, and generates the stream that guides sperm migration in the oviduct. Rheotaxic movement is demonstrated in capacitated and uncapacitated spermatozoa in low and high viscosity medium. Finally, we show that a unique sperm motion we quantify using the sperm head's rolling rate reflects sperm rotation that generates essential force for positioning the sperm in the stream. Rotation requires CatSper channels, presumably by enabling Ca2+ influx. Conclusions We propose that rheotaxis is a major determinant of sperm guidance over long distances in the mammalian female reproductive tract. Coitus induces fluid flow to guide sperm in the oviduct. Sperm rheotaxis requires rotational motion during CatSper channel-dependent hyperactivated motility. PMID:23453951

  8. Using Resurrected Ancestral Proviral Proteins to Engineer Virus Resistance

    Directory of Open Access Journals (Sweden)

    Asunción Delgado

    2017-05-01

    Full Text Available Proviral factors are host proteins hijacked by viruses for processes essential for virus propagation such as cellular entry and replication. Pathogens and their hosts co-evolve. It follows that replacing a proviral factor with a functional ancestral form of the same protein could prevent viral propagation without fatally compromising organismal fitness. Here, we provide proof of concept of this notion. Thioredoxins serve as general oxidoreductases in all known cells. We report that several laboratory resurrections of Precambrian thioredoxins display substantial levels of functionality within Escherichia coli. Unlike E. coli thioredoxin, however, these ancestral thioredoxins are not efficiently recruited by the bacteriophage T7 for its replisome and therefore prevent phage propagation in E. coli. These results suggest an approach to the engineering of virus resistance. Diseases caused by viruses may have a devastating effect in agriculture. We discuss how the suggested approach could be applied to the engineering of plant virus resistance.

  9. Perianth evolution in Ranunculaceae: are petals ancestral in the family?

    Directory of Open Access Journals (Sweden)

    Sophie Nadot

    2016-04-01

    Full Text Available Progress has been made recently towards the elucidation of phylogenetic relationships among subfamilies and tribes of the Ranunculaceae – the most recent hypothesis was published in 2016 by our team. Although relationships among the 10 tribes of the subfamily Ranunculoideae remain incompletely supported, this hypothesis provides an interesting framework to address the key issue of the ancestral vs. derived nature of a differentiated perianth within the family, and at the level of Ranunculales as a whole. Here, we present ancestral state reconstructions for several perianth characters, such as differentiation into sepals and petals, shape of petals, presence/absence of nectaries, and petaloid or sepaloid aspect of sepals. Characters were scored using the PROTEUS database and optimized on the most recent phylogeny of Ranunculaceae using parsimony and maximum likelihood methods. The results are discussed with regard to recent evo-devo studies focused on identifying genes involved in floral organs identity (the so-called ABC model in Ranunculales.

  10. Prenatal effects of ancestral irradiation in inbred mice

    International Nuclear Information System (INIS)

    Sprackling, L.E.S.

    1975-01-01

    Mice from 13 inbred strains (S, Z, E, Bab, BaB, BrR, C, K, N, Q, G, CFW, CF1) received continuous cobalt 60 irradiation at low dose rates for varying numbers of consecutive generations. Some Bab and BaB mice had received continuous irradiation for from 24 to 31 generations and the other mice had up to six generations of continuous irradiation in their ancestry. At weaning, the mice were removed from the irradiation room and were mated within strains either to sibs or nonsibs. Ancestral and direct irradiation doses were calculated. The ancestral dose was the effective accumulated dose to the progeny of the mated mice. The direct dose was the amount of irradiation received by any mated female from her conception to her weaning. Each irradiated or control female was scored as fertile or sterile and in utero litter counts were made in pregnant females that were dissected past the tenth day of pregnancy; the sum of moles, dead embryos, and live embryos was the total in utero litter size. A ratio of the living embryos to the total number of embryos in utero was determined for each litter. An increase in ancestral or direct irradiation dose significantly decreased fertility in 11 of the 13 strains. The fertility curves for the pooled data were sigmoid in the area of the doses below those that caused complete sterility. Among the controls, there were significant strain differences in total litter size and in the ratio. Strain X--Y plots, with ancestral or direct doses plotted against total litter size or ratio, revealed the tendency for litter size to decrease as dose increased. The only trend shown for ratio was for the litters with ratios of 0.50 or less to appear more frequently among the irradiated mice. The few corpora lutea counts revealed nothing of significance. Generally, there was a definite trend toward fewer mice alive in utero among the irradiated mice

  11. Ancestrality and evolution of trait syndromes in finches (Fringillidae)

    OpenAIRE

    Ponge, Jean‐François; Zuccon, Dario; Elias, Marianne; Pavoine, Sandrine; Henry, Pierre‐Yves; Théry, Marc; Guilbert, Éric

    2017-01-01

    International audience; Species traits have been hypothesized by one of us (Ponge, 2013) to evolve in a correlated manner as species colonize stable, undisturbed habitats, shifting from “ancestral” to “derived” strategies. We predicted that generalism, r-selection, sexual monomorphism, and migration/gregariousness are the ancestral states (collectively called strategy A) and evolved correlatively toward specialism, K-selection, sexual dimorphism, and residence/territoriality as habitat stabil...

  12. Reconstruction of ancestral RNA sequences under multiple structural constraints

    OpenAIRE

    Tremblay-Savard, Olivier; Reinharz, Vladimir; Waldisp?hl, J?r?me

    2016-01-01

    Background Secondary structures form the scaffold of multiple sequence alignment of non-coding RNA (ncRNA) families. An accurate reconstruction of ancestral ncRNAs must use this structural signal. However, the inference of ancestors of a single ncRNA family with a single consensus structure may bias the results towards sequences with high affinity to this structure, which are far from the true ancestors. Methods In this paper, we introduce achARNement, a maximum parsimony approach that, given...

  13. Molecular paleontology: a biochemical model of the ancestral ribosome.

    Science.gov (United States)

    Hsiao, Chiaolong; Lenz, Timothy K; Peters, Jessica K; Fang, Po-Yu; Schneider, Dana M; Anderson, Eric J; Preeprem, Thanawadee; Bowman, Jessica C; O'Neill, Eric B; Lie, Lively; Athavale, Shreyas S; Gossett, J Jared; Trippe, Catherine; Murray, Jason; Petrov, Anton S; Wartell, Roger M; Harvey, Stephen C; Hud, Nicholas V; Williams, Loren Dean

    2013-03-01

    Ancient components of the ribosome, inferred from a consensus of previous work, were constructed in silico, in vitro and in vivo. The resulting model of the ancestral ribosome presented here incorporates ∼20% of the extant 23S rRNA and fragments of five ribosomal proteins. We test hypotheses that ancestral rRNA can: (i) assume canonical 23S rRNA-like secondary structure, (ii) assume canonical tertiary structure and (iii) form native complexes with ribosomal protein fragments. Footprinting experiments support formation of predicted secondary and tertiary structure. Gel shift, spectroscopic and yeast three-hybrid assays show specific interactions between ancestral rRNA and ribosomal protein fragments, independent of other, more recent, components of the ribosome. This robustness suggests that the catalytic core of the ribosome is an ancient construct that has survived billions of years of evolution without major changes in structure. Collectively, the data here support a model in which ancestors of the large and small subunits originated and evolved independently of each other, with autonomous functionalities.

  14. Cases in which ancestral maximum likelihood will be confusingly misleading.

    Science.gov (United States)

    Handelman, Tomer; Chor, Benny

    2017-05-07

    Ancestral maximum likelihood (AML) is a phylogenetic tree reconstruction criteria that "lies between" maximum parsimony (MP) and maximum likelihood (ML). ML has long been known to be statistically consistent. On the other hand, Felsenstein (1978) showed that MP is statistically inconsistent, and even positively misleading: There are cases where the parsimony criteria, applied to data generated according to one tree topology, will be optimized on a different tree topology. The question of weather AML is statistically consistent or not has been open for a long time. Mossel et al. (2009) have shown that AML can "shrink" short tree edges, resulting in a star tree with no internal resolution, which yields a better AML score than the original (resolved) model. This result implies that AML is statistically inconsistent, but not that it is positively misleading, because the star tree is compatible with any other topology. We show that AML is confusingly misleading: For some simple, four taxa (resolved) tree, the ancestral likelihood optimization criteria is maximized on an incorrect (resolved) tree topology, as well as on a star tree (both with specific edge lengths), while the tree with the original, correct topology, has strictly lower ancestral likelihood. Interestingly, the two short edges in the incorrect, resolved tree topology are of length zero, and are not adjacent, so this resolved tree is in fact a simple path. While for MP, the underlying phenomenon can be described as long edge attraction, it turns out that here we have long edge repulsion. Copyright © 2017. Published by Elsevier Ltd.

  15. Choosing the best ancestral character state reconstruction method.

    Science.gov (United States)

    Royer-Carenzi, Manuela; Pontarotti, Pierre; Didier, Gilles

    2013-03-01

    Despite its intrinsic difficulty, ancestral character state reconstruction is an essential tool for testing evolutionary hypothesis. Two major classes of approaches to this question can be distinguished: parsimony- or likelihood-based approaches. We focus here on the second class of methods, more specifically on approaches based on continuous-time Markov modeling of character evolution. Among them, we consider the most-likely-ancestor reconstruction, the posterior-probability reconstruction, the likelihood-ratio method, and the Bayesian approach. We discuss and compare the above-mentioned methods over several phylogenetic trees, adding the maximum-parsimony method performance in the comparison. Under the assumption that the character evolves according a continuous-time Markov process, we compute and compare the expectations of success of each method for a broad range of model parameter values. Moreover, we show how the knowledge of the evolution model parameters allows to compute upper bounds of reconstruction performances, which are provided as references. The results of all these reconstruction methods are quite close one to another, and the expectations of success are not so far from their theoretical upper bounds. But the performance ranking heavily depends on the topology of the studied tree, on the ancestral node that is to be inferred and on the parameter values. Consequently, we propose a protocol providing for each parameter value the best method in terms of expectation of success, with regard to the phylogenetic tree and the ancestral node to infer. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Cortisol mobilizes mineral stores from vertebral skeleton in the European eel: an ancestral origin for glucocorticoid-induced osteoporosis?

    Science.gov (United States)

    Sbaihi, Miskal; Rousseau, Karine; Baloche, Sylvie; Meunier, François; Fouchereau-Peron, Martine; Dufour, Sylvie

    2009-05-01

    Endogenous excess cortisol and glucocorticoid (GC) therapy are a major cause of secondary osteoporosis in humans. Intense bone resorption can also be observed in other vertebrates such as migratory teleost fish at the time of reproductive migration and during fasting when large amounts of calcium and phosphate are required. Using a primitive teleost, the European eel, as a model, we investigated whether cortisol could play an ancestral role in the induction of vertebral skeleton demineralization. Different histological and histomorphometric methods were performed on vertebral samples of control and cortisol-treated eels. We demonstrated that cortisol induced a significant bone demineralization of eel vertebrae, as shown by significant decreases of the mineral ratio measured by incineration, and the degree of mineralization measured by quantitative microradiography of vertebral sections. Histology and image analysis of ultrathin microradiographs showed the induction by cortisol of different mechanisms of bone resorption, including periosteocytic osteolysis and osteoclastic resorption. Specificity of cortisol action was investigated by comparison with the effects of sex steroids. Whereas, testosterone had no effect, estradiol induced vertebral skeleton demineralization, an effect related to the stimulated synthesis of vitellogenin (Vg), an oviparous specific phospho-calcio-lipoprotein. By contrast, the cortisol demineralization effect was not related to any stimulation of Vg. This study demonstrates GC-induced bone demineralization in an adult non-mammalian vertebrate, which undergoes natural bone resorption during its life cycle. Our data suggest that the stimulatory action of cortisol on bone loss may represent an ancestral and conserved endocrine regulation in vertebrates.

  17. Weak preservation of local neutral substitution rates across mammalian genomes

    Directory of Open Access Journals (Sweden)

    Karro John E

    2009-05-01

    Full Text Available Abstract Background The rate at which neutral (non-functional bases undergo substitution is highly dependent on their location within a genome. However, it is not clear how fast these location-dependent rates change, or to what extent the substitution rate patterns are conserved between lineages. To address this question, which is critical not only for understanding the substitution process but also for evaluating phylogenetic footprinting algorithms, we examine ancestral repeats: a predominantly neutral dataset with a significantly higher genomic density than other datasets commonly used to study substitution rate variation. Using this repeat data, we measure the extent to which orthologous ancestral repeat sequences exhibit similar substitution patterns in separate mammalian lineages, allowing us to ascertain how well local substitution rates have been preserved across species. Results We calculated substitution rates for each ancestral repeat in each of three independent mammalian lineages (primate – from human/macaque alignments, rodent – from mouse/rat alignments, and laurasiatheria – from dog/cow alignments. We then measured the correlation of local substitution rates among these lineages. Overall we found the correlations between lineages to be statistically significant, but too weak to have much predictive power (r2 5%. These correlations were found to be primarily driven by regional effects at the scale of several hundred kb or larger. A few repeat classes (e.g. 7SK, Charlie8, and MER121 also exhibited stronger conservation of rate patterns, likely due to the effect of repeat-specific purifying selection. These classes should be excluded when estimating local neutral substitution rates. Conclusion Although local neutral substitution rates have some correlations among mammalian species, these correlations have little predictive power on the scale of individual repeats. This indicates that local substitution rates have changed

  18. Genome sequence of the brown Norway rat yields insights into mammalian evolution

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Richard A.; Weinstock, George M.; Metzker, Michael L.; Muzny, Donna M.; Sodergren, Erica J.; Scherer, Steven; Scott, Graham; Steffen, David; Worley, Kim C.; Burch, Paula E.; Okwuonu, Geoffrey; Hines, Sandra; Lewis, Lora; DeRamo, Christine; Delgado, Oliver; Dugan-Rocha, Shannon; Miner, George; Morgan, Margaret; Hawes, Alicia; Gill, Rachel; Holt, Robert A.; Adams, Mark D.; Amanatides, Peter G.; Baden-Tillson, Holly; Barnstead, Mary; Chin, Soo; Evans, Cheryl A.; Ferriera, Steven; Fosler, Carl; Glodek, Anna; Gu, Zhiping; Jennings, Don; Kraft, Cheryl L.; Nguyen, Trixie; Pfannkoch, Cynthia M.; Sitter, Cynthia; Sutton, Granger G.; Venter, J. Craig; Woodage, Trevor; Smith, Douglas; Lee, Hong-Maei; Gustafson, Erik; Cahill, Patrick; Kana, Arnold; Doucette-Stamm, Lynn; Weinstock, Keith; Fechtel, Kim; Weiss, Robert B.; Dunn, Diane M.; Green, Eric D.; Blakesley, Robert W.; Bouffard, Gerard G.; de Jong, Pieter J.; Osoegawa, Kazutoyo; Zhu, Baoli; Marra, Marco; Schein, Jacqueline; Bosdet, Ian; Fjell, Chris; Jones, Steven; Krzywinski, Martin; Mathewson, Carrie; Siddiqui, Asim; Wye, Natasja; McPherson, John; Zhao, Shaying; Fraser, Claire M.; Shetty, Jyoti; Shatsman, Sofiya; Geer, Keita; Chen, Yixin; Abramzon, Sofyia; Nierman, William C.; Havlak, Paul H.; Chen, Rui; Durbin, K. James; Egan, Amy; Ren, Yanru; Song, Xing-Zhi; Li, Bingshan; Liu, Yue; Qin, Xiang; Cawley, Simon; Cooney, A.J.; D' Souza, Lisa M.; Martin, Kirt; Wu, Jia Qian; Gonzalez-Garay, Manuel L.; Jackson, Andrew R.; Kalafus, Kenneth J.; McLeod, Michael P.; Milosavljevic, Aleksandar; Virk, Davinder; Volkov, Andrei; Wheeler, David A.; Zhang, Zhengdong; Bailey, Jeffrey A.; Eichler, Evan E.; Tuzun, Eray; Birney, Ewan; Mongin, Emmanuel; Ureta-Vidal, Abel; Woodwark, Cara; Zdobnov, Evgeny; Bork, Peer; Suyama, Mikita; Torrents, David; Alexandersson, Marina; Trask, Barbara J.; Young, Janet M.; et al.

    2004-02-02

    The laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90 percent of the genome. The BN rat sequence is the third complete mammalian genome to be deciphered, and three-way comparisons with the human and mouse genomes resolve details of mammalian evolution. This first comprehensive analysis includes genes and proteins and their relation to human disease, repeated sequences, comparative genome-wide studies of mammalian orthologous chromosomal regions and rearrangement breakpoints, reconstruction of ancestral karyotypes and the events leading to existing species, rates of variation, and lineage-specific and lineage-independent evolutionary events such as expansion of gene families, orthology relations and protein evolution.

  19. Visual system evolution and the nature of the ancestral snake.

    Science.gov (United States)

    Simões, B F; Sampaio, F L; Jared, C; Antoniazzi, M M; Loew, E R; Bowmaker, J K; Rodriguez, A; Hart, N S; Hunt, D M; Partridge, J C; Gower, D J

    2015-07-01

    The dominant hypothesis for the evolutionary origin of snakes from 'lizards' (non-snake squamates) is that stem snakes acquired many snake features while passing through a profound burrowing (fossorial) phase. To investigate this, we examined the visual pigments and their encoding opsin genes in a range of squamate reptiles, focusing on fossorial lizards and snakes. We sequenced opsin transcripts isolated from retinal cDNA and used microspectrophotometry to measure directly the spectral absorbance of the photoreceptor visual pigments in a subset of samples. In snakes, but not lizards, dedicated fossoriality (as in Scolecophidia and the alethinophidian Anilius scytale) corresponds with loss of all visual opsins other than RH1 (λmax 490-497 nm); all other snakes (including less dedicated burrowers) also have functional sws1 and lws opsin genes. In contrast, the retinas of all lizards sampled, even highly fossorial amphisbaenians with reduced eyes, express functional lws, sws1, sws2 and rh1 genes, and most also express rh2 (i.e. they express all five of the visual opsin genes present in the ancestral vertebrate). Our evidence of visual pigment complements suggests that the visual system of stem snakes was partly reduced, with two (RH2 and SWS2) of the ancestral vertebrate visual pigments being eliminated, but that this did not extend to the extreme additional loss of SWS1 and LWS that subsequently occurred (probably independently) in highly fossorial extant scolecophidians and A. scytale. We therefore consider it unlikely that the ancestral snake was as fossorial as extant scolecophidians, whether or not the latter are para- or monophyletic. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  20. New Mammalian Expression Systems.

    Science.gov (United States)

    Zhu, Jie; Hatton, Diane

    2017-06-06

    There are an increasing number of recombinant antibodies and proteins in preclinical and clinical development for therapeutic applications. Mammalian expression systems are key to enabling the production of these molecules, and Chinese hamster ovary (CHO) cell platforms continue to be central to delivery of the stable cell lines required for large-scale production. Increasing pressure on timelines and efficiency, further innovation of molecular formats and the shift to new production systems are driving developments of these CHO cell line platforms. The availability of genome and transcriptome data coupled with advancing gene editing tools are increasing the ability to design and engineer CHO cell lines to meet these challenges. This chapter aims to give an overview of the developments in CHO expression systems and some of the associated technologies over the past few years.

  1. A Syntenic Region Conserved from Fish to Mammalian X Chromosome

    Directory of Open Access Journals (Sweden)

    Guijun Guan

    2014-01-01

    Full Text Available Sex chromosomes bearing the sex-determining gene initiate development along the male or female pathway, no matter which sex is determined by XY male or ZW female heterogamety. Sex chromosomes originate from ancient autosomes but evolved rapidly after the acquisition of sex-determining factors which are highly divergent between species. In the heterogametic male system (XY system, the X chromosome is relatively evolutionary silent and maintains most of its ancestral genes, in contrast to its Y counterpart that has evolved rapidly and degenerated. Sex in a teleost fish, the Nile tilapia (Oreochromis niloticus, is determined genetically via an XY system, in which an unpaired region is present in the largest chromosome pair. We defined the differences in DNA contents present in this chromosome with a two-color comparative genomic hybridization (CGH and the random amplified polymorphic DNA (RAPD approach in XY males. We further identified a syntenic segment within this region that is well conserved in several teleosts. Through comparative genome analysis, this syntenic segment was also shown to be present in mammalian X chromosomes, suggesting a common ancestral origin of vertebrate sex chromosomes.

  2. How Do Ancestral Traits Shape Family Trees Over Generations?

    Science.gov (United States)

    Fu, Siwei; Dong, Hao; Cui, Weiwei; Zhao, Jian; Qu, Huamin

    2018-01-01

    Whether and how does the structure of family trees differ by ancestral traits over generations? This is a fundamental question regarding the structural heterogeneity of family trees for the multi-generational transmission research. However, previous work mostly focuses on parent-child scenarios due to the lack of proper tools to handle the complexity of extending the research to multi-generational processes. Through an iterative design study with social scientists and historians, we develop TreeEvo that assists users to generate and test empirical hypotheses for multi-generational research. TreeEvo summarizes and organizes family trees by structural features in a dynamic manner based on a traditional Sankey diagram. A pixel-based technique is further proposed to compactly encode trees with complex structures in each Sankey Node. Detailed information of trees is accessible through a space-efficient visualization with semantic zooming. Moreover, TreeEvo embeds Multinomial Logit Model (MLM) to examine statistical associations between tree structure and ancestral traits. We demonstrate the effectiveness and usefulness of TreeEvo through an in-depth case-study with domain experts using a real-world dataset (containing 54,128 family trees of 126,196 individuals).

  3. Using Resurrected Ancestral Proviral Proteins to Engineer Virus Resistance.

    Science.gov (United States)

    Delgado, Asunción; Arco, Rocio; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M

    2017-05-09

    Proviral factors are host proteins hijacked by viruses for processes essential for virus propagation such as cellular entry and replication. Pathogens and their hosts co-evolve. It follows that replacing a proviral factor with a functional ancestral form of the same protein could prevent viral propagation without fatally compromising organismal fitness. Here, we provide proof of concept of this notion. Thioredoxins serve as general oxidoreductases in all known cells. We report that several laboratory resurrections of Precambrian thioredoxins display substantial levels of functionality within Escherichia coli. Unlike E. coli thioredoxin, however, these ancestral thioredoxins are not efficiently recruited by the bacteriophage T7 for its replisome and therefore prevent phage propagation in E. coli. These results suggest an approach to the engineering of virus resistance. Diseases caused by viruses may have a devastating effect in agriculture. We discuss how the suggested approach could be applied to the engineering of plant virus resistance. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Reconstruction of ancestral RNA sequences under multiple structural constraints

    Directory of Open Access Journals (Sweden)

    Olivier Tremblay-Savard

    2016-11-01

    Full Text Available Abstract Background Secondary structures form the scaffold of multiple sequence alignment of non-coding RNA (ncRNA families. An accurate reconstruction of ancestral ncRNAs must use this structural signal. However, the inference of ancestors of a single ncRNA family with a single consensus structure may bias the results towards sequences with high affinity to this structure, which are far from the true ancestors. Methods In this paper, we introduce achARNement, a maximum parsimony approach that, given two alignments of homologous ncRNA families with consensus secondary structures and a phylogenetic tree, simultaneously calculates ancestral RNA sequences for these two families. Results We test our methodology on simulated data sets, and show that achARNement outperforms classical maximum parsimony approaches in terms of accuracy, but also reduces by several orders of magnitude the number of candidate sequences. To conclude this study, we apply our algorithms on the Glm clan and the FinP-traJ clan from the Rfam database. Conclusions Our results show that our methods reconstruct small sets of high-quality candidate ancestors with better agreement to the two target structures than with classical approaches. Our program is freely available at: http://csb.cs.mcgill.ca/acharnement .

  5. Reconstruction of ancestral RNA sequences under multiple structural constraints.

    Science.gov (United States)

    Tremblay-Savard, Olivier; Reinharz, Vladimir; Waldispühl, Jérôme

    2016-11-11

    Secondary structures form the scaffold of multiple sequence alignment of non-coding RNA (ncRNA) families. An accurate reconstruction of ancestral ncRNAs must use this structural signal. However, the inference of ancestors of a single ncRNA family with a single consensus structure may bias the results towards sequences with high affinity to this structure, which are far from the true ancestors. In this paper, we introduce achARNement, a maximum parsimony approach that, given two alignments of homologous ncRNA families with consensus secondary structures and a phylogenetic tree, simultaneously calculates ancestral RNA sequences for these two families. We test our methodology on simulated data sets, and show that achARNement outperforms classical maximum parsimony approaches in terms of accuracy, but also reduces by several orders of magnitude the number of candidate sequences. To conclude this study, we apply our algorithms on the Glm clan and the FinP-traJ clan from the Rfam database. Our results show that our methods reconstruct small sets of high-quality candidate ancestors with better agreement to the two target structures than with classical approaches. Our program is freely available at: http://csb.cs.mcgill.ca/acharnement .

  6. Cryopreservation of mammalian semen.

    Science.gov (United States)

    Curry, Mark R

    2007-01-01

    Mammalian spermatozoa were among the very first cells to be successfully cryopreserved and over the last five decades the use of frozen-thawed semen for artificial insemination has come to play an important role in domestic livestock production. More recently, semen freezing has increasingly been utilized in the establishment of genetic resource banks for endangered species. Semen is collected, most commonly either by use of an artificial vagina or by electroejaculation of an anaesthetized animal, and basic sperm parameters assessed. Semen is extended using a TEST-egg yolk-glycerol diluent, packaged in 0.25-mL plastic straws and slowly cooled to 5 degrees C over a period of 1-2 h. Cooled straws are frozen by suspending within liquid nitrogen vapor above the liquid nitrogen surface before plunging into the liquid phase. Straws are thawed briefly in air before immersing in a 35 degrees C water bath for 15 s, and often are used directly for insemination without any further processing.

  7. Mammalian gut immunity

    Directory of Open Access Journals (Sweden)

    Benoit Chassaing

    2014-10-01

    Full Text Available The mammalian intestinal tract is the largest immune organ in the body and comprises cells from non-hemopoietic (epithelia, Paneth cells, goblet cells and hemopoietic (macrophages, dendritic cells, T-cells origin, and is also a dwelling for trillions of microbes collectively known as the microbiota. The homeostasis of this large microbial biomass is prerequisite to maintain host health by maximizing beneficial symbiotic relationships and minimizing the risks of living in such close proximity. Both microbiota and host immune system communicate with each other to mutually maintain homeostasis in what could be called a "love-hate relationship." Further, the host innate and adaptive immune arms of the immune system cooperate and compensate each other to maintain the equilibrium of a highly complex gut ecosystem in a stable and stringent fashion. Any imbalance due to innate or adaptive immune deficiency or aberrant immune response may lead to dysbiosis and low-grade to robust gut inflammation, finally resulting in metabolic diseases.

  8. Mammalian Gut Immunity

    Science.gov (United States)

    Chassaing, Benoit; Kumar, Manish; Baker, Mark T.; Singh, Vishal; Vijay-Kumar, Matam

    2016-01-01

    The mammalian intestinal tract is the largest immune organ in the body and comprises cells from non-hemopoietic (epithelia, Paneth cells, goblet cells) and hemopoietic (macrophages, dendritic cells, T-cells) origin, and is also a dwelling for trillions of microbes collectively known as the microbiota. The homeostasis of this large microbial biomass is prerequisite to maintain host health by maximizing beneficial symbiotic relationships and minimizing the risks of living in such close proximity. Both microbiota and host immune system communicate with each other to mutually maintain homeostasis in what could be called a “love–hate relationship.” Further, the host innate and adaptive immune arms of the immune system cooperate and compensate each other to maintain the equilibrium of a highly complex gut ecosystem in a stable and stringent fashion. Any imbalance due to innate or adaptive immune deficiency or aberrant immune response may lead to dysbiosis and low-grade to robust gut inflammation, finally resulting in metabolic diseases. PMID:25163502

  9. Mammalian cell biology

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Progress is reported on studies of the molecular biology and functional changes in cultured mammalian cells following exposure to x radiation, uv radiation, fission neutrons, or various chemical environmental pollutants alone or in combinations. Emphasis was placed on the separate and combined effects of polycyclic aromatic hydrocarbons released during combustion of fossil fuels and ionizing and nonionizing radiations. Sun lamps, which emit a continuous spectrum of near ultraviolet light of 290 nm to 315 nm were used for studies of predictive cell killing due to sunlight. Results showed that exposure to uv light (254 nm) may not be adequate to predict effects produced by sunlight. Data are included from studies on single-strand breaks and repair in DNA of cultured hamster cells exposed to uv or nearultraviolet light. The possible interactions of the polycyclic aromatic hydrocarbon 7,12-dimethylbenz(a)-anthracene (DmBA) alone or combined with exposure to x radiation, uv radiation (254 nm) or near ultraviolet simulating sunlight were compared for effects on cell survival

  10. mammalian brain system

    Directory of Open Access Journals (Sweden)

    Alan Kania

    2014-06-01

    Full Text Available Relaxin-3, a member of the relaxin peptide family, was discovered in 2001 as a homologue of relaxin – a well-known reproductive hormone. However, it is the brain which turned out to be a major expression site of this newly discovered peptide. Both its molecular structure and expression pattern were shown to be very conserved among vertebrates. Extensive research carried out since the discovery of relaxin-3 contributed to the significant progress in our knowledge regarding this neuropeptide. The endogenous relaxin-3 receptor (RXFP3 was identified and the anatomy of the yet uncharacterized mammalian brain system was described, with nucleus incertus as the main center of relaxin-3 expression. Not only its diffusive projections throughout the whole brain, which reach various brain structures such as the hippocampus, septum, intergeniculate leaflet or amygdala, but also functional studies of the relaxin-3/RXFP3 signaling system, allowed this brain network to be classified as one of the ascending nonspecific brain systems. Thus far, research depicts the connection of relaxin-3 with phenomena such as feeding behavior, spatial memory, sleep/wake cycle or modulation of pituitary gland hormone secretion. Responsiveness of relaxin-3 neurons to stress factors and the strong orexigenic effect exerted by this peptide suggest its participation in modulation of feeding by stress, in particular of the chronic type. The discovery of relaxin-3 opened a new research field which will contribute to our better understanding of the neurobiological basis of feeding disorders.

  11. Localization of two mammalian cyclin dependent kinases during mammalian meiosis

    NARCIS (Netherlands)

    Ashley, T.; Walpita, D.; de rooij, D. G.

    2001-01-01

    Mammalian meiotic progression, like mitotic cell cycle progression, is regulated by cyclins and cyclin dependent kinases (CDKs). However, the unique requirements of meiosis (homologous synapsis, reciprocal recombination and the dual divisions that segregate first homologues, then sister chromatids)

  12. Resurrecting ancestral genes in bacteria to interpret ancient biosignatures

    Science.gov (United States)

    Kacar, Betul; Guy, Lionel; Smith, Eric; Baross, John

    2017-11-01

    Two datasets, the geologic record and the genetic content of extant organisms, provide complementary insights into the history of how key molecular components have shaped or driven global environmental and macroevolutionary trends. Changes in global physico-chemical modes over time are thought to be a consistent feature of this relationship between Earth and life, as life is thought to have been optimizing protein functions for the entirety of its approximately 3.8 billion years of history on the Earth. Organismal survival depends on how well critical genetic and metabolic components can adapt to their environments, reflecting an ability to optimize efficiently to changing conditions. The geologic record provides an array of biologically independent indicators of macroscale atmospheric and oceanic composition, but provides little in the way of the exact behaviour of the molecular components that influenced the compositions of these reservoirs. By reconstructing sequences of proteins that might have been present in ancient organisms, we can downselect to a subset of possible sequences that may have been optimized to these ancient environmental conditions. How can one use modern life to reconstruct ancestral behaviours? Configurations of ancient sequences can be inferred from the diversity of extant sequences, and then resurrected in the laboratory to ascertain their biochemical attributes. One way to augment sequence-based, single-gene methods to obtain a richer and more reliable picture of the deep past, is to resurrect inferred ancestral protein sequences in living organisms, where their phenotypes can be exposed in a complex molecular-systems context, and then to link consequences of those phenotypes to biosignatures that were preserved in the independent historical repository of the geological record. As a first step beyond single-molecule reconstruction to the study of functional molecular systems, we present here the ancestral sequence reconstruction of the

  13. Basic features of the ancestral chordate brain: a protochordate perspective.

    Science.gov (United States)

    Lacalli, Thurston C

    2008-03-18

    Basic features of the anterior nerve cord in amphioxus larvae are summarized to highlight its essential similarity with the vertebrate brain. Except for a pineal homolog, the amphioxus brain consists of a much simplified version of the ventral brainstem, including a region probably homologous with the hypothalamus, and a locomotory control center roughly comparable to the vertebrate tegmentum and reticulospinal system. Amphioxus has direct pathways for activating its locomotory circuits in response to mechanical stimuli via epithelial sensory cells, but this response is evidently modulated by inputs from diverse sensory-type cells located in the putative hypothalamic homolog, and from the lamellar body, the pineal homolog. This implies that a basic function of the amphioxus brain is to switch between locomotory activities, of which there are several, and the principal non-locomotory one, namely feeding. A similar involvement in switching between behavioral modes may thus have been a core brain function in ancestral chordates. Currently, however, incomplete knowledge of the physiology and behavior of amphioxus limits how effectively it can be used as an evolutionary model. Eye evolution is briefly discussed to illustrate how a better understanding of living forms can inform the evolutionary debate. An account of recent data on dorsoventral inversion is also included, as this bears directly on the question of where the chordate brain originated in relation to other structures. It now appears likely that key components of the ancestral brain were originally located around the mouth. A secondary repositioning of the latter would therefore have been required before a unitary brain could be assembled and internalized. This association between the mouth and the evolving brain reinforces the idea of a fundamental early connection between core brain structures and the control of feeding activity.

  14. Mammalian sexual dimorphism.

    Science.gov (United States)

    McPherson, F J; Chenoweth, P J

    2012-04-01

    Sexual dimorphisms (SDs) have evolved in mammals to assure greater reproductive success for individuals, usually males. Secondary sexual characteristics (SSC) developed to further this objective, tending to be more pronounced in species which are polygynous, diurnal and open-habitat dwellers. Sexual selection has underpinned many of these changes, which are not necessarily advantageous for individual survival. Domestication has affected certain characteristics, more in terms of their quantitative rather than qualitative expression. However, restrictions imposed by domestication can also affect behaviors such as isolation and post-natal bonding while artificial selection can, by focusing on certain traits, cause unforeseen effects in genetically linked traits, which, when sex-specific or sex-linked, can be reflected in SD. On a global scale, environmental changes can have important phylogenetic implications for species which rely upon environmental cues for activities as migration, hibernation and breeding, especially when SD occurs in response to such cues. Understanding the evolutionary rationale behind the development of SDs, as well as the dynamics which occur at the interface between natural and artificial selection, allows positive insights into areas as diverse as wildlife preservation and livestock management. For both, greatest "success" should be achieved when artificial selection occurs in harmony with natural selection within a supportive environment. Thus the aim of this review is to discuss current knowledge relating to the evolution, benefits and costs of mammalian sexual dimorphisms and, where possible, draw conclusions that might be beneficial for the husbandry and propagation of mammals today. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Estimation of the ancestral effective population sizes of African great apes under different selection regimes.

    Science.gov (United States)

    Schrago, Carlos G

    2014-08-01

    Reliable estimates of ancestral effective population sizes are necessary to unveil the population-level phenomena that shaped the phylogeny and molecular evolution of the African great apes. Although several methods have previously been applied to infer ancestral effective population sizes, an analysis of the influence of the selective regime on the estimates of ancestral demography has not been thoroughly conducted. In this study, three independent data sets under different selective regimes were used were composed to tackle this issue. The results showed that selection had a significant impact on the estimates of ancestral effective population sizes of the African great apes. The inference of the ancestral demography of African great apes was affected by the selection regime. The effects, however, were not homogeneous along the ancestral populations of great apes. The effective population size of the ancestor of humans and chimpanzees was more impacted by the selection regime when compared to the same parameter in the ancestor of humans, chimpanzees and gorillas. Because the selection regime influenced the estimates of ancestral effective population size, it is reasonable to assume that a portion of the discrepancy found in previous studies that inferred the ancestral effective population size may be attributable to the differential action of selection on the genes sampled.

  16. Allatotropin: An Ancestral Myotropic Neuropeptide Involved in Feeding

    Science.gov (United States)

    Alzugaray, María Eugenia; Adami, Mariana Laura; Diambra, Luis Anibal; Hernandez-Martinez, Salvador; Damborenea, Cristina; Noriega, Fernando Gabriel; Ronderos, Jorge Rafael

    2013-01-01

    Background Cell-cell interactions are a basic principle for the organization of tissues and organs allowing them to perform integrated functions and to organize themselves spatially and temporally. Peptidic molecules secreted by neurons and epithelial cells play fundamental roles in cell-cell interactions, acting as local neuromodulators, neurohormones, as well as endocrine and paracrine messengers. Allatotropin (AT) is a neuropeptide originally described as a regulator of Juvenile Hormone synthesis, which plays multiple neural, endocrine and myoactive roles in insects and other organisms. Methods A combination of immunohistochemistry using AT-antibodies and AT-Qdot nanocrystal conjugates was used to identify immunoreactive nerve cells containing the peptide and epithelial-muscular cells targeted by AT in Hydra plagiodesmica. Physiological assays using AT and AT- antibodies revealed that while AT stimulated the extrusion of the hypostome in a dose-response fashion in starved hydroids, the activity of hypostome in hydroids challenged with food was blocked by treatments with different doses of AT-antibodies. Conclusions AT antibodies immunolabeled nerve cells in the stalk, pedal disc, tentacles and hypostome. AT-Qdot conjugates recognized epithelial-muscular cell in the same tissues, suggesting the existence of anatomical and functional relationships between these two cell populations. Physiological assays indicated that the AT-like peptide is facilitating food ingestion. Significance Immunochemical, physiological and bioinformatics evidence advocates that AT is an ancestral neuropeptide involved in myoregulatory activities associated with meal ingestion and digestion. PMID:24143240

  17. Modeling X-linked ancestral origins in multiparental populations.

    Science.gov (United States)

    Zheng, Chaozhi

    2015-03-04

    The models for the mosaic structure of an individual's genome from multiparental populations have been developed primarily for autosomes, whereas X chromosomes receive very little attention. In this paper, we extend our previous approach to model ancestral origin processes along two X chromosomes in a mapping population, which is necessary for developing hidden Markov models in the reconstruction of ancestry blocks for X-linked quantitative trait locus mapping. The model accounts for the joint recombination pattern, the asymmetry between maternally and paternally derived X chromosomes, and the finiteness of population size. The model can be applied to various mapping populations such as the advanced intercross lines (AIL), the Collaborative Cross (CC), the heterogeneous stock (HS), the Diversity Outcross (DO), and the Drosophila synthetic population resource (DSPR). We further derive the map expansion, density (per Morgan) of recombination breakpoints, in advanced intercross populations with L inbred founders under the limit of an infinitely large population size. The analytic results show that for X chromosomes the genetic map expands linearly at a rate (per generation) of two-thirds times 1 - 10/(9L) for the AIL, and at a rate of two-thirds times 1 - 1/L for the DO and the HS, whereas for autosomes the map expands at a rate of 1 - 1/L for the AIL, the DO, and the HS. Copyright © 2015 Zheng.

  18. Allatotropin: an ancestral myotropic neuropeptide involved in feeding.

    Directory of Open Access Journals (Sweden)

    María Eugenia Alzugaray

    Full Text Available Cell-cell interactions are a basic principle for the organization of tissues and organs allowing them to perform integrated functions and to organize themselves spatially and temporally. Peptidic molecules secreted by neurons and epithelial cells play fundamental roles in cell-cell interactions, acting as local neuromodulators, neurohormones, as well as endocrine and paracrine messengers. Allatotropin (AT is a neuropeptide originally described as a regulator of Juvenile Hormone synthesis, which plays multiple neural, endocrine and myoactive roles in insects and other organisms.A combination of immunohistochemistry using AT-antibodies and AT-Qdot nanocrystal conjugates was used to identify immunoreactive nerve cells containing the peptide and epithelial-muscular cells targeted by AT in Hydra plagiodesmica. Physiological assays using AT and AT- antibodies revealed that while AT stimulated the extrusion of the hypostome in a dose-response fashion in starved hydroids, the activity of hypostome in hydroids challenged with food was blocked by treatments with different doses of AT-antibodies.AT antibodies immunolabeled nerve cells in the stalk, pedal disc, tentacles and hypostome. AT-Qdot conjugates recognized epithelial-muscular cell in the same tissues, suggesting the existence of anatomical and functional relationships between these two cell populations. Physiological assays indicated that the AT-like peptide is facilitating food ingestion.Immunochemical, physiological and bioinformatics evidence advocates that AT is an ancestral neuropeptide involved in myoregulatory activities associated with meal ingestion and digestion.

  19. Possible rules for the ancestral origin of Hox gene collinearity.

    Science.gov (United States)

    Gaunt, Stephen J; Gaunt, Alexander L

    2016-12-07

    The Hox gene cluster is believed to have formed from a single ProtoHox gene by repeated cycles of the following events: tandem gene duplication, mutation to generate a new expression boundary along the embryonic axis, and acquisition of a new Hox patterning function. The Hox cluster in Bilateria evolved in compliance with the so-called collinearity rule. That is, the order of the genes along the chromosome corresponds with the order of their embryonic expression domains along the head-tail axis. Gaunt (2015) suggested that collinearity may have arisen as a mechanism to minimise the incidence of boundaries between active and inactive genes within the Hox cluster. We now attempt to clarify the model by presenting it in the form of three rules: 1) no two Hox genes may persist in the same cluster with the same anterior boundary of activity in the same tissue; 2) an inactive Hox gene must not be flanked by two active Hox genes; 3) an active Hox gene must not be flanked by two inactive genes. We provide evidence and illustrative computer simulations to show that these rules, which can apply only to partially overlapping patterns of Hox activity, may account for the ancestral origin of Hox gene collinearity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Time-Dependent-Asymmetric-Linear-Parsimonious Ancestral State Reconstruction.

    Science.gov (United States)

    Didier, Gilles

    2017-10-01

    The time-dependent-asymmetric-linear parsimony is an ancestral state reconstruction method which extends the standard linear parsimony (a.k.a. Wagner parsimony) approach by taking into account both branch lengths and asymmetric evolutionary costs for reconstructing quantitative characters (asymmetric costs amount to assuming an evolutionary trend toward the direction with the lowest cost). A formal study of the influence of the asymmetry parameter shows that the time-dependent-asymmetric-linear parsimony infers states which are all taken among the known states, except for some degenerate cases corresponding to special values of the asymmetry parameter. This remarkable property holds in particular for the Wagner parsimony. This study leads to a polynomial algorithm which determines, and provides a compact representation of, the parametric reconstruction of a phylogenetic tree, that is for all the unknown nodes, the set of all the possible reconstructed states associated with the asymmetry parameters leading to them. The time-dependent-asymmetric-linear parsimony is finally illustrated with the parametric reconstruction of the body size of cetaceans.

  1. Ancestral fertility in "Ponciá Vivêncio"

    Directory of Open Access Journals (Sweden)

    Ana Ximenes Gomes de Oliveira

    2015-12-01

    Full Text Available The literature of Conceição Evaristo presents in its characters a rescue and a sort of re­writing of Brazilian historical records, mainly experienced by the black skinned people. Therefore, a literature work as such goes beyond the intentions and canonical places to be destined, because it is a fictional production that acts interposing the discourse of literary authoritarianism. Conceição Evaristo is an author who symbolizes this multiplicity of inherited experiences of the slavery period and post-colonialism in Brazil. Whence, the purpose of this study is to explore the reflections on the historical memory in the novel Ponciá Vicêncio, as well as the issues of ancestrally and how it is con­figured in the maternity of two feminine characters in the novel: the protagonist Ponciá Vicêncio and the wise Nêngua Kainda. Therefore, the considerations of Verena Alberti (2004 on memory and orality; and Reginaldo Prandi (2001 on the representation of mythology of deities in this narrative, it will be used as theoretical framework.

  2. Chromatin remodeling in mammalian embryos.

    Science.gov (United States)

    Cabot, Birgit; Cabot, Ryan A

    2018-03-01

    The mammalian embryo undergoes a dramatic amount of epigenetic remodeling during the first week of development. In this review, we discuss several epigenetic changes that happen over the course of cleavage development, focusing on covalent marks (e.g., histone methylation and acetylation) and non-covalent remodeling (chromatin remodeling via remodeling complexes; e.g., SWI/SNF-mediated chromatin remodeling). Comparisons are also drawn between remodeling events that occur in embryos from a variety of mammalian species. © 2018 Society for Reproduction and Fertility.

  3. Characterization of Reconstructed Ancestral Proteins Suggests a Change in Temperature of the Ancient Biosphere.

    Science.gov (United States)

    Akanuma, Satoshi

    2017-08-06

    Understanding the evolution of ancestral life, and especially the ability of some organisms to flourish in the variable environments experienced in Earth's early biosphere, requires knowledge of the characteristics and the environment of these ancestral organisms. Information about early life and environmental conditions has been obtained from fossil records and geological surveys. Recent advances in phylogenetic analysis, and an increasing number of protein sequences available in public databases, have made it possible to infer ancestral protein sequences possessed by ancient organisms. However, the in silico studies that assess the ancestral base content of ribosomal RNAs, the frequency of each amino acid in ancestral proteins, and estimate the environmental temperatures of ancient organisms, show conflicting results. The characterization of ancestral proteins reconstructed in vitro suggests that ancient organisms had very thermally stable proteins, and therefore were thermophilic or hyperthermophilic. Experimental data supports the idea that only thermophilic ancestors survived the catastrophic increase in temperature of the biosphere that was likely associated with meteorite impacts during the early history of Earth. In addition, by expanding the timescale and including more ancestral proteins for reconstruction, it appears as though the Earth's surface temperature gradually decreased over time, from Archean to present.

  4. "I Ulu No Ka Lala I Ke Kumu", The Branches Grow Because of the Trunk: Ancestral Knowledge as Refusal

    Science.gov (United States)

    Chandler, Kapua L.

    2018-01-01

    This paper will discuss the ways that Native Hawaiian scholars are engaging in innovative strategies that incorporate ancestral knowledges into the academy. Ancestral knowledges are highly valued as Indigenous communities strive to pass on such wisdom and lessons from generation to generation. Ancestral knowledges are all around us no matter where…

  5. Geography disentangles introgression from ancestral polymorphism in Lake Malawi cichlids.

    Science.gov (United States)

    Mims, Meryl C; Darrin Hulsey, C; Fitzpatrick, Benjamin M; Streelman, J Todd

    2010-03-01

    Phenotypically diverse Lake Malawi cichlids exhibit similar genomes. The extensive sharing of genetic polymorphism among forms has both intrigued and frustrated biologists trying to understand the nature of diversity in this and other rapidly evolving systems. Shared polymorphism might result from hybridization and/or the retention of ancestrally polymorphic alleles. To examine these alternatives, we used new genomic tools to characterize genetic differentiation in widespread, geographically structured populations of Labeotropheus fuelleborni and Metriaclima zebra. These phenotypically distinct species share mitochondrial DNA (mtDNA) haplotypes and show greater mtDNA differentiation among localities than between species. However, Bayesian analysis of nuclear single nucleotide polymorphism (SNP) data revealed two distinct genetic clusters corresponding perfectly to morphologically diagnosed L. fuelleborni and M. zebra. This result is a function of the resolving power of the multi-locus dataset, not a conflict between nuclear and mitochondrial partitions. Locus-by-locus analysis showed that mtDNA differentiation between species (F(CT)) was nearly identical to the median single-locus SNP F(CT). Finally, we asked whether there is evidence for gene flow at sites of co-occurrence. We used simulations to generate a null distribution for the level of differentiation between co-occurring populations of L. fuelleborni and M. zebra expected if there was no hybridization. The null hypothesis was rejected for the SNP data; populations that co-occur at rock reef sites were slightly more similar than expected by chance, suggesting recent gene flow. The coupling of numerous independent markers with extensive geographic sampling and simulations utilized here provides a framework for assessing the prevalence of gene flow in recently diverged species.

  6. The Korarchaeota: Archaeal orphans representing an ancestral lineage of life

    Energy Technology Data Exchange (ETDEWEB)

    Elkins, James G.; Kunin, Victor; Anderson, Iain; Barry, Kerrie; Goltsman, Eugene; Lapidus, Alla; Hedlund, Brian; Hugenholtz, Phil; Kyrpides, Nikos; Graham, David; Keller, Martin; Wanner, Gerhard; Richardson, Paul; Stetter, Karl O.

    2007-05-01

    Based on conserved cellular properties, all life on Earth can be grouped into different phyla which belong to the primary domains Bacteria, Archaea, and Eukarya. However, tracing back their evolutionary relationships has been impeded by horizontal gene transfer and gene loss. Within the Archaea, the kingdoms Crenarchaeota and Euryarchaeota exhibit a profound divergence. In order to elucidate the evolution of these two major kingdoms, representatives of more deeply diverged lineages would be required. Based on their environmental small subunit ribosomal (ss RNA) sequences, the Korarchaeota had been originally suggested to have an ancestral relationship to all known Archaea although this assessment has been refuted. Here we describe the cultivation and initial characterization of the first member of the Korarchaeota, highly unusual, ultrathin filamentous cells about 0.16 {micro}m in diameter. A complete genome sequence obtained from enrichment cultures revealed an unprecedented combination of signature genes which were thought to be characteristic of either the Crenarchaeota, Euryarchaeota, or Eukarya. Cell division appears to be mediated through a FtsZ-dependent mechanism which is highly conserved throughout the Bacteria and Euryarchaeota. An rpb8 subunit of the DNA-dependent RNA polymerase was identified which is absent from other Archaea and has been described as a eukaryotic signature gene. In addition, the representative organism possesses a ribosome structure typical for members of the Crenarchaeota. Based on its gene complement, this lineage likely diverged near the separation of the two major kingdoms of Archaea. Further investigations of these unique organisms may shed additional light onto the evolution of extant life.

  7. The microcephalin ancestral allele in a Neanderthal individual.

    Directory of Open Access Journals (Sweden)

    Martina Lari

    Full Text Available BACKGROUND: The high frequency (around 0.70 worldwide and the relatively young age (between 14,000 and 62,000 years of a derived group of haplotypes, haplogroup D, at the microcephalin (MCPH1 locus led to the proposal that haplogroup D originated in a human lineage that separated from modern humans >1 million years ago, evolved under strong positive selection, and passed into the human gene pool by an episode of admixture circa 37,000 years ago. The geographic distribution of haplogroup D, with marked differences between Africa and Eurasia, suggested that the archaic human form admixing with anatomically modern humans might have been Neanderthal. METHODOLOGY/PRINCIPAL FINDINGS: Here we report the first PCR amplification and high-throughput sequencing of nuclear DNA at the microcephalin (MCPH1 locus from Neanderthal individual from Mezzena Rockshelter (Monti Lessini, Italy. We show that a well-preserved Neanderthal fossil dated at approximately 50,000 years B.P., was homozygous for the ancestral, non-D, allele. The high yield of Neanderthal mtDNA sequences of the studied specimen, the pattern of nucleotide misincorporation among sequences consistent with post-mortem DNA damage and an accurate control of the MCPH1 alleles in all personnel that manipulated the sample, make it extremely unlikely that this result might reflect modern DNA contamination. CONCLUSIONS/SIGNIFICANCE: The MCPH1 genotype of the Monti Lessini (MLS Neanderthal does not prove that there was no interbreeding between anatomically archaic and modern humans in Europe, but certainly shows that speculations on a possible Neanderthal origin of what is now the most common MCPH1 haplogroup are not supported by empirical evidence from ancient DNA.

  8. Genetic Diversity, Population Structure and Ancestral Origin of Australian Wheat

    Directory of Open Access Journals (Sweden)

    Reem Joukhadar

    2017-12-01

    Full Text Available Since the introduction of wheat into Australia by the First Fleet settlers, germplasm from different geographical origins has been used to adapt wheat to the Australian climate through selection and breeding. In this paper, we used 482 cultivars, representing the breeding history of bread wheat in Australia since 1840, to characterize their diversity and population structure and to define the geographical ancestral background of Australian wheat germplasm. This was achieved by comparing them to a global wheat collection using in-silico chromosome painting based on SNP genotyping. The global collection involved 2,335 wheat accessions which was divided into 23 different geographical subpopulations. However, the whole set was reduced to 1,544 accessions to increase the differentiation and decrease the admixture among different global subpopulations to increase the power of the painting analysis. Our analysis revealed that the structure of Australian wheat germplasm and its geographic ancestors have changed significantly through time, especially after the Green Revolution. Before 1920, breeders used cultivars from around the world, but mainly Europe and Africa, to select potential cultivars that could tolerate Australian growing conditions. Between 1921 and 1970, a dependence on African wheat germplasm became more prevalent. Since 1970, a heavy reliance on International Maize and Wheat Improvement Center (CIMMYT germplasm has persisted. Combining the results from linkage disequilibrium, population structure and in-silico painting revealed that the dependence on CIMMYT materials has varied among different Australian States, has shrunken the germplasm effective population size and produced larger linkage disequilibrium blocks. This study documents the evolutionary history of wheat breeding in Australia and provides an understanding for how the wheat genome has been adapted to local growing conditions. This information provides a guide for industry to

  9. Evolutionary dynamics of mammalian karyotypes

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2012-12-01

    Full Text Available This special volume of Cytogenetic and Genome Research (edited by Roscoe Stanyon, University of Florence and Alexander Graphodatsky, Siberian division of the Russian Academy of Sciences is dedicated to the fascinating long search of the forces behind the evolutionary dynamics of mammalian karyotypes, revealed after the hypotonic miracle of the 1950s....

  10. Technology of mammalian cell encapsulation

    NARCIS (Netherlands)

    Uludag, H; De Vos, P; Tresco, PA

    2000-01-01

    Entrapment of mammalian cells in physical membranes has been practiced since the early 1950s when it was originally introduced as a basic research tool. The method has since been developed based on the promise of its therapeutic usefulness in tissue transplantation. Encapsulation physically isolates

  11. Comparative mapping identifies the fusion point of an ancient mammalian X-autosomal rearrangement

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, S.A.; Watson, J.M.; Spencer, J.A. [La Trobe Univ., Victoria (Australia)] [and others

    1996-07-01

    Previous comparisons of gene location in the three major groups of mammals (eutherians, marsupials, and monotremes) have suggested that the long arm of the human X represents the ancestral mammalian X chromosome, whereas the short arm represents an autosomal region(s) recently added to the eutherian X chromosome. To identify the fusion point of this ancient X-autosome rearrangement, we have mapped four genes, three of which map near the centromere of the human Xp, in marsupials and in a monotreme. We found that ARAF1, and GATA1 are located on the X chromosome in marsupials, and ALA2 and GATA1 are also located on the X in the platypus. This implies that the proximal short arm of the human X chromosome, including the centromere, was part of the ancestral mammalian X chromosome. The fusion point between the conserved region and the recently added regions therefore maps to human Xp11.23, although gene order on the human X indicates that there has been some rearrangement of this region. 26 refs., 3 figs., 1 tab.

  12. An ancestral role for the mitochondrial pyruvate carrier in glucose-stimulated insulin secretion

    Directory of Open Access Journals (Sweden)

    Kyle S. McCommis

    2016-08-01

    Conclusions: Altogether, these studies suggest that the MPC plays an important and ancestral role in insulin-secreting cells in mediating glucose sensing, regulating insulin secretion, and controlling systemic glycemia.

  13. Are hybrid species more fit than ancestral parent species in the current hybrid species habitats?

    NARCIS (Netherlands)

    Donovan, L.A.; Rosenthal, D.R.; Sanchez-Velenosi, M.; Rieseberg, L.H.; Ludwig, F.

    2010-01-01

    Hybrid speciation is thought to be facilitated by escape of early generation hybrids into new habitats, subsequent environmental selection and adaptation. Here, we ask whether two homoploid hybrid plant species (Helianthus anomalus, H. deserticola) diverged sufficiently from their ancestral parent

  14. WARACS: Wrappers to Automate the Reconstruction of Ancestral Character States1

    Science.gov (United States)

    Gruenstaeudl, Michael

    2016-01-01

    Premise of the study: Reconstructions of ancestral character states are among the most widely used analyses for evaluating the morphological, cytological, or ecological evolution of an organismic lineage. The software application Mesquite remains the most popular application for such reconstructions among plant scientists, even though its support for automating complex analyses is limited. A software tool is needed that automates the reconstruction and visualization of ancestral character states with Mesquite and similar applications. Methods and Results: A set of command line–based Python scripts was developed that (a) communicates standardized input to and output from the software applications Mesquite, BayesTraits, and TreeGraph2; (b) automates the process of ancestral character state reconstruction; and (c) facilitates the visualization of reconstruction results. Conclusions: WARACS provides a simple tool that streamlines the reconstruction and visualization of ancestral character states over a wide array of parameters, including tree distribution, character state, and optimality criterion. PMID:26949580

  15. Rapid maximum likelihood ancestral state reconstruction of continuous characters: A rerooting-free algorithm.

    Science.gov (United States)

    Goolsby, Eric W

    2017-04-01

    Ancestral state reconstruction is a method used to study the evolutionary trajectories of quantitative characters on phylogenies. Although efficient methods for univariate ancestral state reconstruction under a Brownian motion model have been described for at least 25 years, to date no generalization has been described to allow more complex evolutionary models, such as multivariate trait evolution, non-Brownian models, missing data, and within-species variation. Furthermore, even for simple univariate Brownian motion models, most phylogenetic comparative R packages compute ancestral states via inefficient tree rerooting and full tree traversals at each tree node, making ancestral state reconstruction extremely time-consuming for large phylogenies. Here, a computationally efficient method for fast maximum likelihood ancestral state reconstruction of continuous characters is described. The algorithm has linear complexity relative to the number of species and outperforms the fastest existing R implementations by several orders of magnitude. The described algorithm is capable of performing ancestral state reconstruction on a 1,000,000-species phylogeny in fewer than 2 s using a standard laptop, whereas the next fastest R implementation would take several days to complete. The method is generalizable to more complex evolutionary models, such as phylogenetic regression, within-species variation, non-Brownian evolutionary models, and multivariate trait evolution. Because this method enables fast repeated computations on phylogenies of virtually any size, implementation of the described algorithm can drastically alleviate the computational burden of many otherwise prohibitively time-consuming tasks requiring reconstruction of ancestral states, such as phylogenetic imputation of missing data, bootstrapping procedures, Expectation-Maximization algorithms, and Bayesian estimation. The described ancestral state reconstruction algorithm is implemented in the Rphylopars

  16. An Allele of an Ancestral Transcription Factor Dependent on a Horizontally Acquired Gene Product

    OpenAIRE

    Chen, H. Deborah; Jewett, Mollie W.; Groisman, Eduardo A.

    2012-01-01

    Changes in gene regulatory circuits often give rise to phenotypic differences among closely related organisms. In bacteria, these changes can result from alterations in the ancestral genome and/or be brought about by genes acquired by horizontal transfer. Here, we identify an allele of the ancestral transcription factor PmrA that requires the horizontally acquired pmrD gene product to promote gene expression. We determined that a single amino acid difference between the PmrA proteins from the...

  17. The evolution of imprinting: chromosomal mapping of orthologues of mammalian imprinted domains in monotreme and marsupial mammals

    Directory of Open Access Journals (Sweden)

    Dunham Ian

    2007-09-01

    Full Text Available Abstract Background The evolution of genomic imprinting, the parental-origin specific expression of genes, is the subject of much debate. There are several theories to account for how the mechanism evolved including the hypothesis that it was driven by the evolution of X-inactivation, or that it arose from an ancestrally imprinted chromosome. Results Here we demonstrate that mammalian orthologues of imprinted genes are dispersed amongst autosomes in both monotreme and marsupial karyotypes. Conclusion These data, along with the similar distribution seen in birds, suggest that imprinted genes were not located on an ancestrally imprinted chromosome or associated with a sex chromosome. Our results suggest imprinting evolution was a stepwise, adaptive process, with each gene/cluster independently becoming imprinted as the need arose.

  18. Bioenergetics of mammalian sperm capacitation.

    Science.gov (United States)

    Ferramosca, Alessandra; Zara, Vincenzo

    2014-01-01

    After ejaculation, the mammalian male gamete must undergo the capacitation process, which is a prerequisite for egg fertilization. The bioenergetics of sperm capacitation is poorly understood despite its fundamental role in sustaining the biochemical and molecular events occurring during gamete activation. Glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) are the two major metabolic pathways producing ATP which is the primary source of energy for spermatozoa. Since recent data suggest that spermatozoa have the ability to use different metabolic substrates, the main aim of this work is to present a broad overview of the current knowledge on the energy-producing metabolic pathways operating inside sperm mitochondria during capacitation in different mammalian species. Metabolism of glucose and of other energetic substrates, such as pyruvate, lactate, and citrate, is critically analyzed. Such knowledge, besides its obvious importance for basic science, could eventually translate into the development of novel strategies for treatment of male infertility, artificial reproduction, and sperm selection methods.

  19. The shape of mammalian phylogeny

    DEFF Research Database (Denmark)

    Purvis, Andy; Fritz, Susanne A; Rodríguez, Jesús

    2011-01-01

    Mammalian phylogeny is far too asymmetric for all contemporaneous lineages to have had equal chances of diversifying. We consider this asymmetry or imbalance from four perspectives. First, we infer a minimal set of 'regime changes'-points at which net diversification rate has changed-identifying 15...... six simple macroevolutionary models, showing that those where speciation slows down as geographical or niche space is filled, produce more realistic phylogenies than do models involving key innovations. Lastly, an analysis of the spatial scaling of imbalance shows that the phylogeny of species within...... an assemblage, ecoregion or larger area always tends to be more unbalanced than expected from the phylogeny of species at the next more inclusive spatial scale. We conclude with a verbal model of mammalian macroevolution, which emphasizes the importance to diversification of accessing new regions...

  20. Mechanisms and evolutionary patterns of mammalian and avian dosage compensation.

    Directory of Open Access Journals (Sweden)

    Philippe Julien

    Full Text Available As a result of sex chromosome differentiation from ancestral autosomes, male mammalian cells only contain one X chromosome. It has long been hypothesized that X-linked gene expression levels have become doubled in males to restore the original transcriptional output, and that the resulting X overexpression in females then drove the evolution of X inactivation (XCI. However, this model has never been directly tested and patterns and mechanisms of dosage compensation across different mammals and birds generally remain little understood. Here we trace the evolution of dosage compensation using extensive transcriptome data from males and females representing all major mammalian lineages and birds. Our analyses suggest that the X has become globally upregulated in marsupials, whereas we do not detect a global upregulation of this chromosome in placental mammals. However, we find that a subset of autosomal genes interacting with X-linked genes have become downregulated in placentals upon the emergence of sex chromosomes. Thus, different driving forces may underlie the evolution of XCI and the highly efficient equilibration of X expression levels between the sexes observed for both of these lineages. In the egg-laying monotremes and birds, which have partially homologous sex chromosome systems, partial upregulation of the X (Z in birds evolved but is largely restricted to the heterogametic sex, which provides an explanation for the partially sex-biased X (Z expression and lack of global inactivation mechanisms in these lineages. Our findings suggest that dosage reductions imposed by sex chromosome differentiation events in amniotes were resolved in strikingly different ways.

  1. Ancestral sequence reconstruction in primate mitochondrial DNA: compositional bias and effect on functional inference.

    Science.gov (United States)

    Krishnan, Neeraja M; Seligmann, Hervé; Stewart, Caro-Beth; De Koning, A P Jason; Pollock, David D

    2004-10-01

    Reconstruction of ancestral DNA and amino acid sequences is an important means of inferring information about past evolutionary events. Such reconstructions suggest changes in molecular function and evolutionary processes over the course of evolution and are used to infer adaptation and convergence. Maximum likelihood (ML) is generally thought to provide relatively accurate reconstructed sequences compared to parsimony, but both methods lead to the inference of multiple directional changes in nucleotide frequencies in primate mitochondrial DNA (mtDNA). To better understand this surprising result, as well as to better understand how parsimony and ML differ, we constructed a series of computationally simple "conditional pathway" methods that differed in the number of substitutions allowed per site along each branch, and we also evaluated the entire Bayesian posterior frequency distribution of reconstructed ancestral states. We analyzed primate mitochondrial cytochrome b (Cyt-b) and cytochrome oxidase subunit I (COI) genes and found that ML reconstructs ancestral frequencies that are often more different from tip sequences than are parsimony reconstructions. In contrast, frequency reconstructions based on the posterior ensemble more closely resemble extant nucleotide frequencies. Simulations indicate that these differences in ancestral sequence inference are probably due to deterministic bias caused by high uncertainty in the optimization-based ancestral reconstruction methods (parsimony, ML, Bayesian maximum a posteriori). In contrast, ancestral nucleotide frequencies based on an average of the Bayesian set of credible ancestral sequences are much less biased. The methods involving simpler conditional pathway calculations have slightly reduced likelihood values compared to full likelihood calculations, but they can provide fairly unbiased nucleotide reconstructions and may be useful in more complex phylogenetic analyses than considered here due to their speed and

  2. Evolutionary paths to mammalian cochleae.

    Science.gov (United States)

    Manley, Geoffrey A

    2012-12-01

    Evolution of the cochlea and high-frequency hearing (>20 kHz; ultrasonic to humans) in mammals has been a subject of research for many years. Recent advances in paleontological techniques, especially the use of micro-CT scans, now provide important new insights that are here reviewed. True mammals arose more than 200 million years (Ma) ago. Of these, three lineages survived into recent geological times. These animals uniquely developed three middle ear ossicles, but these ossicles were not initially freely suspended as in modern mammals. The earliest mammalian cochleae were only about 2 mm long and contained a lagena macula. In the multituberculate and monotreme mammalian lineages, the cochlea remained relatively short and did not coil, even in modern representatives. In the lineage leading to modern therians (placental and marsupial mammals), cochlear coiling did develop, but only after a period of at least 60 Ma. Even Late Jurassic mammals show only a 270 ° cochlear coil and a cochlear canal length of merely 3 mm. Comparisons of modern organisms, mammalian ancestors, and the state of the middle ear strongly suggest that high-frequency hearing (>20 kHz) was not realized until the early Cretaceous (~125 Ma). At that time, therian mammals arose and possessed a fully coiled cochlea. The evolution of modern features of the middle ear and cochlea in the many later lineages of therians was, however, a mosaic and different features arose at different times. In parallel with cochlear structural evolution, prestins in therian mammals evolved into effective components of a new motor system. Ultrasonic hearing developed quite late-the earliest bat cochleae (~60 Ma) did not show features characteristic of those of modern bats that are sensitive to high ultrasonic frequencies.

  3. Ancestral effect on HOMA-IR levels quantitated in an American population of Mexican origin.

    Science.gov (United States)

    Qu, Hui-Qi; Li, Quan; Lu, Yang; Hanis, Craig L; Fisher-Hoch, Susan P; McCormick, Joseph B

    2012-12-01

    An elevated insulin resistance index (homeostasis model assessment of insulin resistance [HOMA-IR]) is more commonly seen in the Mexican American population than in European populations. We report quantitative ancestral effects within a Mexican American population, and we correlate ancestral components with HOMA-IR. We performed ancestral analysis in 1,551 participants of the Cameron County Hispanic Cohort by genotyping 103 ancestry-informative markers (AIMs). These AIMs allow determination of the percentage (0-100%) ancestry from three major continental populations, i.e., European, African, and Amerindian. We observed that predominantly Amerindian ancestral components were associated with increased HOMA-IR (β = 0.124, P = 1.64 × 10(-7)). The correlation was more significant in males (Amerindian β = 0.165, P = 5.08 × 10(-7)) than in females (Amerindian β = 0.079, P = 0.019). This unique study design demonstrates how genomic markers for quantitative ancestral information can be used in admixed populations to predict phenotypic traits such as insulin resistance.

  4. Mammalian cloning: advances and limitations.

    Science.gov (United States)

    Solter, D

    2000-12-01

    For many years, researchers cloning mammals experienced little success, but recent advances have led to the successful cloning of several mammalian species. However, cloning by the transfer of nuclei from adult cells is still a hit-and-miss procedure, and it is not clear what technical and biological factors underlie this. Our understanding of the molecular basis of reprogramming remains extremely limited and affects experimental approaches towards increasing the success rate of cloning. Given the future practical benefits that cloning can offer, the time has come to address what should be done to resolve this problem.

  5. Characterization of the opossum immune genome provides insights into the evolution of the mammalian immune system.

    Science.gov (United States)

    Belov, Katherine; Sanderson, Claire E; Deakin, Janine E; Wong, Emily S W; Assange, Daniel; McColl, Kaighin A; Gout, Alex; de Bono, Bernard; Barrow, Alexander D; Speed, Terence P; Trowsdale, John; Papenfuss, Anthony T

    2007-07-01

    The availability of the first marsupial genome sequence has allowed us to characterize the immunome of the gray short-tailed opossum (Monodelphis domestica). Here we report the identification of key immune genes, including the highly divergent chemokines, defensins, cathelicidins, and Natural Killer cell receptors. It appears that the increase in complexity of the mammalian immune system occurred prior to the divergence of the marsupial and eutherian lineages approximately 180 million years ago. Genomes of ancestral mammals most likely contained all of the key mammalian immune gene families, with evolution on different continents, in the presence of different pathogens leading to lineage specific expansions and contractions, resulting in some minor differences in gene number and composition between different mammalian lineages. Gene expansion and extensive heterogeneity in opossum antimicrobial peptide genes may have evolved as a consequence of the newborn young needing to survive without an adaptive immune system in a pathogen laden environment. Given the similarities in the genomic architecture of the marsupial and eutherian immune systems, we propose that marsupials are ideal model organisms for the study of developmental immunology.

  6. On the Accuracy of Ancestral Sequence Reconstruction for Ultrametric Trees with Parsimony.

    Science.gov (United States)

    Herbst, Lina; Fischer, Mareike

    2018-04-01

    We examine a mathematical question concerning the reconstruction accuracy of the Fitch algorithm for reconstructing the ancestral sequence of the most recent common ancestor given a phylogenetic tree and sequence data for all taxa under consideration. In particular, for the symmetric four-state substitution model which is also known as Jukes-Cantor model, we answer affirmatively a conjecture of Li, Steel and Zhang which states that for any ultrametric phylogenetic tree and a symmetric model, the Fitch parsimony method using all terminal taxa is more accurate, or at least as accurate, for ancestral state reconstruction than using any particular terminal taxon or any particular pair of taxa. This conjecture had so far only been answered for two-state data by Fischer and Thatte. Here, we focus on answering the biologically more relevant case with four states, which corresponds to ancestral sequence reconstruction from DNA or RNA data.

  7. DeCoSTAR: Reconstructing the Ancestral Organization of Genes or Genomes Using Reconciled Phylogenies

    Science.gov (United States)

    Anselmetti, Yoann; Patterson, Murray; Ponty, Yann; B�rard, S�verine; Chauve, Cedric; Scornavacca, Celine; Daubin, Vincent; Tannier, Eric

    2017-01-01

    DeCoSTAR is a software that aims at reconstructing the organization of ancestral genes or genomes in the form of sets of neighborhood relations (adjacencies) between pairs of ancestral genes or gene domains. It can also improve the assembly of fragmented genomes by proposing evolutionary-induced adjacencies between scaffolding fragments. Ancestral genes or domains are deduced from reconciled phylogenetic trees under an evolutionary model that considers gains, losses, speciations, duplications, and transfers as possible events for gene evolution. Reconciliations are either given as input or computed with the ecceTERA package, into which DeCoSTAR is integrated. DeCoSTAR computes adjacency evolutionary scenarios using a scoring scheme based on a weighted sum of adjacency gains and breakages. Solutions, both optimal and near-optimal, are sampled according to the Boltzmann–Gibbs distribution centered around parsimonious solutions, and statistical supports on ancestral and extant adjacencies are provided. DeCoSTAR supports the features of previously contributed tools that reconstruct ancestral adjacencies, namely DeCo, DeCoLT, ART-DeCo, and DeClone. In a few minutes, DeCoSTAR can reconstruct the evolutionary history of domains inside genes, of gene fusion and fission events, or of gene order along chromosomes, for large data sets including dozens of whole genomes from all kingdoms of life. We illustrate the potential of DeCoSTAR with several applications: ancestral reconstruction of gene orders for Anopheles mosquito genomes, multidomain proteins in Drosophila, and gene fusion and fission detection in Actinobacteria. Availability: http://pbil.univ-lyon1.fr/software/DeCoSTAR (Last accessed April 24, 2017). PMID:28402423

  8. Ancestral TCDD exposure promotes epigenetic transgenerational inheritance of imprinted gene Igf2: Methylation status and DNMTs

    International Nuclear Information System (INIS)

    Ma, Jing; Chen, Xi; Liu, Yanan; Xie, Qunhui; Sun, Yawen; Chen, Jingshan; Leng, Ling; Yan, Huan; Zhao, Bin; Tang, Naijun

    2015-01-01

    Ancestral TCDD exposure could induce epigenetic transgenerational phenotypes, which may be mediated in part by imprinted gene inheritance. The aim of our study was to evaluate the transgenerational effects of ancestral TCDD exposure on the imprinted gene insulin-like growth factor-2 (Igf2) in rat somatic tissue. TCDD was administered daily by oral gavage to groups of F0 pregnant SD rats at dose levels of 0 (control), 200 or 800 ng/kg bw during gestation day 8–14. Animal transgenerational model of ancestral exposure to TCDD was carefully built, avoiding sibling inbreeding. Hepatic Igf2 expression of the TCDD male progeny was decreased concomitantly with hepatic damage and increased activities of serum hepatic enzymes both in the F1 and F3 generation. Imprinted Control Region (ICR) of Igf2 manifested a hypermethylated pattern, whereas methylation status in the Differentially Methylated Region 2 (DMR2) showed a hypomethylated manner in the F1 generation. These epigenetic alterations in these two regions maintained similar trends in the F3 generation. Meanwhile, the expressions of DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) changed in a non-monotonic manner both in the F1 and F3 generation. This study provides evidence that ancestral TCDD exposure may promote epigenetic transgenerational alterations of imprinted gene Igf2 in adult somatic tissue. - Highlights: • Ancestral TCDD exposure induces epigenetic transgenerational inheritance. • Ancestral TCDD exposure affects methylation status in ICR and DMR2 region of Igf2. • DNMTs play a role in TCDD induced epigenetic transgenerational changes of Igf2.

  9. Asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size.

    Science.gov (United States)

    Chen, Hua; Chen, Kun

    2013-07-01

    The distributions of coalescence times and ancestral lineage numbers play an essential role in coalescent modeling and ancestral inference. Both exact distributions of coalescence times and ancestral lineage numbers are expressed as the sum of alternating series, and the terms in the series become numerically intractable for large samples. More computationally attractive are their asymptotic distributions, which were derived in Griffiths (1984) for populations with constant size. In this article, we derive the asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size. For a sample of size n, denote by Tm the mth coalescent time, when m + 1 lineages coalesce into m lineages, and An(t) the number of ancestral lineages at time t back from the current generation. Similar to the results in Griffiths (1984), the number of ancestral lineages, An(t), and the coalescence times, Tm, are asymptotically normal, with the mean and variance of these distributions depending on the population size function, N(t). At the very early stage of the coalescent, when t → 0, the number of coalesced lineages n - An(t) follows a Poisson distribution, and as m → n, $$n\\left(n-1\\right){T}_{m}/2N\\left(0\\right)$$ follows a gamma distribution. We demonstrate the accuracy of the asymptotic approximations by comparing to both exact distributions and coalescent simulations. Several applications of the theoretical results are also shown: deriving statistics related to the properties of gene genealogies, such as the time to the most recent common ancestor (TMRCA) and the total branch length (TBL) of the genealogy, and deriving the allele frequency spectrum for large genealogies. With the advent of genomic-level sequencing data for large samples, the asymptotic distributions are expected to have wide applications in theoretical and methodological development for population genetic inference.

  10. Reconstructed Ancestral Enzymes Impose a Fitness Cost upon Modern Bacteria Despite Exhibiting Favourable Biochemical Properties.

    Science.gov (United States)

    Hobbs, Joanne K; Prentice, Erica J; Groussin, Mathieu; Arcus, Vickery L

    2015-10-01

    Ancestral sequence reconstruction has been widely used to study historical enzyme evolution, both from biochemical and cellular perspectives. Two properties of reconstructed ancestral proteins/enzymes are commonly reported--high thermostability and high catalytic activity--compared with their contemporaries. Increased protein stability is associated with lower aggregation rates, higher soluble protein abundance and a greater capacity to evolve, and therefore, these proteins could be considered "superior" to their contemporary counterparts. In this study, we investigate the relationship between the favourable in vitro biochemical properties of reconstructed ancestral enzymes and the organismal fitness they confer in vivo. We have previously reconstructed several ancestors of the enzyme LeuB, which is essential for leucine biosynthesis. Our initial fitness experiments revealed that overexpression of ANC4, a reconstructed LeuB that exhibits high stability and activity, was only able to partially rescue the growth of a ΔleuB strain, and that a strain complemented with this enzyme was outcompeted by strains carrying one of its descendants. When we expanded our study to include five reconstructed LeuBs and one contemporary, we found that neither in vitro protein stability nor the catalytic rate was correlated with fitness. Instead, fitness showed a strong, negative correlation with estimated evolutionary age (based on phylogenetic relationships). Our findings suggest that, for reconstructed ancestral enzymes, superior in vitro properties do not translate into organismal fitness in vivo. The molecular basis of the relationship between fitness and the inferred age of ancestral LeuB enzymes is unknown, but may be related to the reconstruction process. We also hypothesise that the ancestral enzymes may be incompatible with the other, contemporary enzymes of the metabolic network.

  11. Phylogenetic analysis of glycerol 3-phosphate acyltransferases in opisthokonts reveals unexpected ancestral complexity and novel modern biosynthetic components.

    Directory of Open Access Journals (Sweden)

    Heather C Smart

    Full Text Available Glycerolipid synthesis represents a central metabolic process of all forms of life. In the last decade multiple genes coding for enzymes responsible for the first step of the pathway, catalyzed by glycerol 3-phosphate acyltransferase (GPAT, have been described, and characterized primarily in model organisms like Saccharomyces cerevisiae and mice. Notoriously, the fungal enzymes share low sequence identity with their known animal counterparts, and the nature of their homology is unclear. Furthermore, two mitochondrial GPAT isoforms have been described in animal cells, while no such enzymes have been identified in Fungi. In order to determine if the yeast and mammalian GPATs are representative of the set of enzymes present in their respective groups, and to test the hypothesis that metazoan orthologues are indeed absent from the fungal clade, a comparative genomic and phylogenetic analysis was performed including organisms spanning the breadth of the Opisthokonta supergroup. Surprisingly, our study unveiled the presence of 'fungal' orthologs in the basal taxa of the holozoa and 'animal' orthologues in the basal holomycetes. This includes a novel clade of fungal homologues, with putative peroxisomal targeting signals, of the mitochondrial/peroxisomal acyltransferases in Metazoa, thus potentially representing an undescribed metabolic capacity in the Fungi. The overall distribution of GPAT homologues is suggestive of high relative complexity in the ancestors of the opisthokont clade, followed by loss and sculpting of the complement in the descendent lineages. Divergence from a general versatile metabolic model, present in ancestrally deduced GPAT complements, points to distinctive contributions of each GPAT isoform to lipid metabolism and homeostasis in contemporary organisms like humans and their fungal pathogens.

  12. Which came first: The lizard or the egg? Robustness in phylogenetic reconstruction of ancestral states.

    Science.gov (United States)

    Wright, April M; Lyons, Kathleen M; Brandley, Matthew C; Hillis, David M

    2015-09-01

    Changes in parity mode between egg-laying (oviparity) and live-bearing (viviparity) have occurred repeatedly throughout vertebrate evolution. Oviparity is the ancestral amniote state, and viviparity has evolved many times independently within amniotes (especially in lizards and snakes), with possibly a few reversions to oviparity. In amniotes, the shelled egg is considered a complex structure that is unlikely to re-evolve if lost (i.e., it is an example of Dollo's Principle). However, a recent ancestral state reconstruction analysis concluded that viviparity was the ancestral state of squamate reptiles (lizards and snakes), and that oviparity re-evolved from viviparity many times throughout the evolutionary history of squamates. Here, we re-evaluate support for this provocative conclusion by testing the sensitivity of the analysis to model assumptions and estimates of squamate phylogeny. We found that the models and methods used for parity mode reconstruction are highly sensitive to the specific estimate of phylogeny used, and that the point estimate of phylogeny used to suggest that viviparity is the root state of the squamate tree is far from an optimal phylogenetic solution. The ancestral state reconstructions are also highly sensitive to model choice and specific values of model parameters. A method that is designed to account for biases in taxon sampling actually accentuates, rather than lessens, those biases with respect to ancestral state reconstructions. In contrast to recent conclusions from the same data set, we find that ancestral state reconstruction analyses provide highly equivocal support for the number and direction of transitions between oviparity and viviparity in squamates. Moreover, the reconstructions of ancestral parity state are highly dependent on the assumptions of each model. We conclude that the common ancestor of squamates was oviparous, and subsequent evolutionary transitions to viviparity were common, but reversals to oviparity were

  13. Mutation in cultured mammalian cells

    International Nuclear Information System (INIS)

    Nakamura, N.; Okada, S.

    1982-01-01

    Mammalian cell cultures were exposed to gamma-rays at various dose rates. Dose-rate effects were observed in cultured somatic cells of the mouse for cell killing and mutations resistant to 6-thioguanine (TGsup(r)) and to methotrexate (MTXsup(r)). Linear quadratic model may be applied to cell killing and TGsup(r) mutations in some cases but can not explain the whole data. Results at low doses with far low dose-rate were not predictable from data at high doses with acute or chronic irradiation. Radioprotective effects of dimethyl sulfoxide were seen only after acute exposure but not after chronic one, suggesting that damages by indirect action of radiations may be potentially reparable by cells. TGsup(r) mutations seem to contain gross structural changes whereas MTXsup(r) ones may have smaller alterations. (Namekawa, K.)

  14. Interaction theory of mammalian mitochondria.

    Science.gov (United States)

    Nakada, K; Inoue, K; Hayashi, J

    2001-11-09

    We generated mice with deletion mutant mtDNA by its introduction from somatic cells into mouse zygotes. Expressions of disease phenotypes are limited to tissues expressing mitochondrial dysfunction. Considering that all these mice share the same nuclear background, these observations suggest that accumulation of the mutant mtDNA and resultant expressions of mitochondrial dysfunction are responsible for expression of disease phenotypes. On the other hand, mitochondrial dysfunction and expression of clinical abnormalities were not observed until the mutant mtDNA accumulated predominantly. This protection is due to the presence of extensive and continuous interaction between exogenous mitochondria from cybrids and recipient mitochondria from embryos. Thus, we would like to propose a new hypothesis on mitochondrial biogenesis, interaction theory of mitochondria: mammalian mitochondria exchange genetic contents, and thus lost the individuality and function as a single dynamic cellular unit. Copyright 2001 Academic Press.

  15. Mammalian gastrointestinal parasites in rainforest remnants

    Indian Academy of Sciences (India)

    Here, we studied the gastrointestinal parasites of nonhuman mammalian hosts living in 10 rainforest patches of the Anamalai Tiger Reserve, India. We examined 349 faecal samples of 17 mammalian species and successfully identified 24 gastroin-testinal parasite taxa including 1 protozoan, 2 trematode, 3 cestode and 18 ...

  16. Research Note Do mammalian herbivores influence invertebrate ...

    African Journals Online (AJOL)

    We investigated the indirect influence of mammalian herbivores on invertebrates, by utilising long-term mammalian herbivore exclosures in Kruger National Park. The exclosures span three distinct habitat types (crest, footslope and riparian) on a catena. By performing invertebrate collections in the exclosures and in a ...

  17. Recent integrations of mammalian Hmg retropseudogenes

    Indian Academy of Sciences (India)

    We propose that select retropseudogenes of the high mobility group nonhistone chromosomal protein genes have recently integrated into mammalian genomes on the basis of the ... [Tecle E., Zielinski L. and Kass D. H. 2006 Recent integrations of mammalian Hmg retropseudogenes. J. Genet., 85, 179–185]. Introduction.

  18. The evolutionary process of mammalian sex determination genes focusing on marsupial SRYs.

    Science.gov (United States)

    Katsura, Yukako; Kondo, Hiroko X; Ryan, Janelle; Harley, Vincent; Satta, Yoko

    2018-01-16

    Maleness in mammals is genetically determined by the Y chromosome. On the Y chromosome SRY is known as the mammalian male-determining gene. Both placental mammals (Eutheria) and marsupial mammals (Metatheria) have SRY genes. However, only eutherian SRY genes have been empirically examined by functional analyses, and the involvement of marsupial SRY in male gonad development remains speculative. In order to demonstrate that the marsupial SRY gene is similar to the eutherian SRY gene in function, we first examined the sequence differences between marsupial and eutherian SRY genes. Then, using a parsimony method, we identify 7 marsupial-specific ancestral substitutions, 13 eutherian-specific ancestral substitutions, and 4 substitutions that occurred at the stem lineage of therian SRY genes. A literature search and molecular dynamics computational simulations support that the lineage-specific ancestral substitutions might be involved with the functional differentiation between marsupial and eutherian SRY genes. To address the function of the marsupial SRY gene in male determination, we performed luciferase assays on the testis enhancer of Sox9 core (TESCO) using the marsupial SRY. The functional assay shows that marsupial SRY gene can weakly up-regulate the luciferase expression via TESCO. Despite the sequence differences between the marsupial and eutherian SRY genes, our functional assay indicates that the marsupial SRY gene regulates SOX9 as a transcription factor in a similar way to the eutherian SRY gene. Our results suggest that SRY genes obtained the function of male determination in the common ancestor of Theria (placental mammals and marsupials). This suggests that the marsupial SRY gene has a function in male determination, but additional experiments are needed to be conclusive.

  19. Sequences related to the ox pancreatic ribonuclease coding region in the genomic DNA of mammalian species.

    Science.gov (United States)

    Breukelman, H J; Beintema, J J; Confalone, E; Costanzo, C; Sasso, M P; Carsana, A; Palmieri, M; Furia, A

    1993-07-01

    Mammalian pancreatic ribonucleases form a family of homologous proteins that has been extensively investigated. The primary structures of these enzymes were used to derive phylogenetic trees. These analyses indicate that the presence of three strictly homologous enzymes in the bovine species (the pancreatic, seminal, and cerebral ribonucleases) is due to gene duplication events which occurred during the evolution of ancestral ruminants. In this paper we present evidence that confirms this finding and that suggests an overall structural conservation of the putative ribonuclease genes in ruminant species. We could also demonstrate that the sequences related to ox ribonuclease coding regions present in genomic DNA of the giraffe species are the orthologues of the bovine genes encoding the three ribonucleases mentioned above.

  20. Inheritance of the 8.1 ancestral haplotype in recurrent pregnancy loss

    DEFF Research Database (Denmark)

    Kolte, Astrid M; Nielsen, Henriette S; Steffensen, Rudi

    2015-01-01

    BACKGROUND AND OBJECTIVES: The 8.1 ancestral haplotype (AH) (HLA-A1, C7, B8, C4AQ0, C4B1, DR3, DQ2) is a remarkably long and conserved haplotype in the human major histocompatibility complex. It has been associated with both beneficial and detrimental effects, consistent with antagonistic...

  1. Inferring ancestral distribution area and survival vegetation of Caragana (Fabaceae) in Tertiary

    Science.gov (United States)

    Mingli Zhang; Juanjuan Xue; Qiang Zhang; Stewart C. Sanderson

    2015-01-01

    Caragana, a leguminous genus mainly restricted to temperate Central and East Asia, occurs in arid, semiarid, and humid belts, and has forest, grassland, and desert ecotypes. Based on the previous molecular phylogenetic tree and dating, biogeographical analyses of extant species area and ecotype were conducted by means of four ancestral optimization approaches: S-DIVA,...

  2. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European

    DEFF Research Database (Denmark)

    Olalde, Inigo; Allentoft, Morten E.; Sanchez-Quinto, Federico

    2014-01-01

    to the Mesolithic. The La Brana individual carries ancestral alleles in several skin pigmentation genes, suggesting that the light skin of modern Europeans was not yet ubiquitous in Mesolithic times. Moreover, we provide evidence that a significant number of derived, putatively adaptive variants associated...

  3. Deciphering the Diploid Ancestral Genome of the Mesohexaploid Brassica rapa[C][W

    Science.gov (United States)

    Cheng, Feng; Mandáková, Terezie; Wu, Jian; Xie, Qi; Lysak, Martin A.; Wang, Xiaowu

    2013-01-01

    The genus Brassica includes several important agricultural and horticultural crops. Their current genome structures were shaped by whole-genome triplication followed by extensive diploidization. The availability of several crucifer genome sequences, especially that of Chinese cabbage (Brassica rapa), enables study of the evolution of the mesohexaploid Brassica genomes from their diploid progenitors. We reconstructed three ancestral subgenomes of B. rapa (n = 10) by comparing its whole-genome sequence to ancestral and extant Brassicaceae genomes. All three B. rapa paleogenomes apparently consisted of seven chromosomes, similar to the ancestral translocation Proto-Calepineae Karyotype (tPCK; n = 7), which is the evolutionarily younger variant of the Proto-Calepineae Karyotype (n = 7). Based on comparative analysis of genome sequences or linkage maps of Brassica oleracea, Brassica nigra, radish (Raphanus sativus), and other closely related species, we propose a two-step merging of three tPCK-like genomes to form the hexaploid ancestor of the tribe Brassiceae with 42 chromosomes. Subsequent diversification of the Brassiceae was marked by extensive genome reshuffling and chromosome number reduction mediated by translocation events and followed by loss and/or inactivation of centromeres. Furthermore, via interspecies genome comparison, we refined intervals for seven of the genomic blocks of the Ancestral Crucifer Karyotype (n = 8), thus revising the key reference genome for evolutionary genomics of crucifers. PMID:23653472

  4. A skull might lie: modelling ancestral ranges and diet from genes and shape of tree squirrels

    Czech Academy of Sciences Publication Activity Database

    Pečnerová, Patrícia; Moravec, Jiří C.; Martínková, Natália

    2015-01-01

    Roč. 64, č. 6 (2015), s. 1074-1088 ISSN 1063-5157 EU Projects: European Commission(XE) CZ.1.07/2.4.00/17.0138 Institutional support: RVO:68081766 Keywords : Sciurini * multilocus phylogeny * geometric morphometry * speciation * ancestral range reconstruction * diet modelling Subject RIV: EG - Zoology Impact factor: 8.225, year: 2015

  5. Language Shift and Maintenance in Multilingual Mauritius: The Case of Indian Ancestral Languages

    Science.gov (United States)

    Bissoonauth, Anu

    2011-01-01

    This paper reports on a research study conducted in Mauritius between June and July 2009. The aim of this research was to investigate the use of Indian ancestral languages in the domestic domain by the younger generations. The data were collected in the field by means of a questionnaire and interviews from a quota sample of secondary school…

  6. Photodynamic inactivation of mammalian viruses and bacteriophages.

    Science.gov (United States)

    Costa, Liliana; Faustino, Maria Amparo F; Neves, Maria Graça P M S; Cunha, Angela; Almeida, Adelaide

    2012-07-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  7. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    Science.gov (United States)

    Costa, Liliana; Faustino, Maria Amparo F.; Neves, Maria Graça P. M. S.; Cunha, Ângela; Almeida, Adelaide

    2012-01-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process. PMID:22852040

  8. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    Directory of Open Access Journals (Sweden)

    Liliana Costa

    2012-06-01

    Full Text Available Photodynamic inactivation (PDI has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  9. RidgeRace: ridge regression for continuous ancestral character estimation on phylogenetic trees.

    Science.gov (United States)

    Kratsch, Christina; McHardy, Alice C

    2014-09-01

    Ancestral character state reconstruction describes a set of techniques for estimating phenotypic or genetic features of species or related individuals that are the predecessors of those present today. Such reconstructions can reach into the distant past and can provide insights into the history of a population or a set of species when fossil data are not available, or they can be used to test evolutionary hypotheses, e.g. on the co-evolution of traits. Typical methods for ancestral character state reconstruction of continuous characters consider the phylogeny of the underlying data and estimate the ancestral process along the branches of the tree. They usually assume a Brownian motion model of character evolution or extensions thereof, requiring specific assumptions on the rate of phenotypic evolution. We suggest using ridge regression to infer rates for each branch of the tree and the ancestral values at each inner node. We performed extensive simulations to evaluate the performance of this method and have shown that the accuracy of its reconstructed ancestral values is competitive to reconstructions using other state-of-the-art software. Using a hierarchical clustering of gene mutation profiles from an ovarian cancer dataset, we demonstrate the use of the method as a feature selection tool. The algorithm described here is implemented in C++ as a stand-alone program, and the source code is freely available at http://algbio.cs.uni-duesseldorf.de/software/RidgeRace.tar.gz. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  10. Invaginating Structures in Mammalian Synapses

    Science.gov (United States)

    Petralia, Ronald S.; Wang, Ya-Xian; Mattson, Mark P.; Yao, Pamela J.

    2018-01-01

    Invaginating structures at chemical synapses in the mammalian nervous system exist in presynaptic axon terminals, postsynaptic spines or dendrites, and glial processes. These invaginating structures can be divided into three categories. The first category includes slender protrusions invaginating into axonal terminals, postsynaptic spines, or glial processes. Best known examples of this category are spinules extending from postsynaptic spines into presynaptic terminals in forebrain synapses. Another example of this category are protrusions from inhibitory presynaptic terminals invaginating into postsynaptic neuronal somas. Regardless of the direction and location, the invaginating structures of the first category do not have synaptic active zones within the invagination. The second category includes postsynaptic spines invaginating into presynaptic terminals, whereas the third category includes presynaptic terminals invaginating into postsynaptic spines or dendrites. Unlike the first category, the second and third categories have active zones within the invagination. An example of the second category are mossy terminal synapses of the hippocampal CA3 region, in which enlarged spine-like structures invaginate partly or entirely into mossy terminals. An example of the third category is the neuromuscular junction (NMJ) where substantial invaginations of the presynaptic terminals invaginate into the muscle fibers. In the retina, rod and cone synapses have invaginating processes from horizontal and bipolar cells. Because horizontal cells act both as post and presynaptic structures, their invaginating processes represent both the second and third category. These invaginating structures likely play broad yet specialized roles in modulating neuronal cell signaling.

  11. Mammalian synthetic biology: emerging medical applications

    Science.gov (United States)

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M.; Krams, Rob

    2015-01-01

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON–OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. PMID:25808341

  12. Inference of the ancestral vertebrate phenotype through vestiges of the whole-genome duplications.

    Science.gov (United States)

    Onimaru, Koh; Kuraku, Shigehiro

    2018-03-16

    Inferring the phenotype of the last common ancestor of living vertebrates is a challenging problem because of several unresolvable factors. They include the lack of reliable out-groups of living vertebrates, poor information about less fossilizable organs and specialized traits of phylogenetically important species, such as lampreys and hagfishes (e.g. secondary loss of vertebrae in adult hagfishes). These factors undermine the reliability of ancestral reconstruction by traditional character mapping approaches based on maximum parsimony. In this article, we formulate an approach to hypothesizing ancestral vertebrate phenotypes using information from the phylogenetic and functional properties of genes duplicated by genome expansions in early vertebrate evolution. We named the conjecture as 'chronological reconstruction of ohnolog functions (CHROF)'. This CHROF conjecture raises the possibility that the last common ancestor of living vertebrates may have had more complex traits than currently thought.

  13. Temperature-dependent respiration-growth relations in ancestral maize cultivars

    Science.gov (United States)

    Bruce N. Smith; Jillian L. Walker; Rebekka L. Stone; Angela R. Jones; Lee D. Hansen

    2001-01-01

    Shoots from 4- to 6-day old seedlings of seven ancestral or old cultivars of Zea mays L. were placed in a calorimeter. Dark metabolic heat rate (q) and CO2 production rate (RCO2) were measured at nine temperatures (5, 10, 15, 20, 25, 30, 35, 40, and 45 °C). Temperature dependencies of q and RCO2 were used to model response of both growth and substrate carbon conversion...

  14. Mechanisms for the Evolution of a Derived Function in the Ancestral Glucocorticoid Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Sean Michael; Ortlund, Eric A; Thornton, Joseph W. (Emory-MED); (Harvard); (Oregon)

    2012-03-16

    Understanding the genetic, structural, and biophysical mechanisms that caused protein functions to evolve is a central goal of molecular evolutionary studies. Ancestral sequence reconstruction (ASR) offers an experimental approach to these questions. Here we use ASR to shed light on the earliest functions and evolution of the glucocorticoid receptor (GR), a steroid-activated transcription factor that plays a key role in the regulation of vertebrate physiology. Prior work showed that GR and its paralog, the mineralocorticoid receptor (MR), duplicated from a common ancestor roughly 450 million years ago; the ancestral functions were largely conserved in the MR lineage, but the functions of GRs - reduced sensitivity to all hormones and increased selectivity for glucocorticoids - are derived. Although the mechanisms for the evolution of glucocorticoid specificity have been identified, how reduced sensitivity evolved has not yet been studied. Here we report on the reconstruction of the deepest ancestor in the GR lineage (AncGR1) and demonstrate that GR's reduced sensitivity evolved before the acquisition of restricted hormone specificity, shortly after the GR-MR split. Using site-directed mutagenesis, X-ray crystallography, and computational analyses of protein stability to recapitulate and determine the effects of historical mutations, we show that AncGR1's reduced ligand sensitivity evolved primarily due to three key substitutions. Two large-effect mutations weakened hydrogen bonds and van der Waals interactions within the ancestral protein, reducing its stability. The degenerative effect of these two mutations is extremely strong, but a third permissive substitution, which has no apparent effect on function in the ancestral background and is likely to have occurred first, buffered the effects of the destabilizing mutations. Taken together, our results highlight the potentially creative role of substitutions that partially degrade protein structure and

  15. Ancestral genes can control the ability of horizontally acquired loci to confer new traits.

    Directory of Open Access Journals (Sweden)

    H Deborah Chen

    2011-07-01

    Full Text Available Horizontally acquired genes typically function as autonomous units conferring new abilities when introduced into different species. However, we reasoned that proteins preexisting in an organism might constrain the functionality of a horizontally acquired gene product if it operates on an ancestral pathway. Here, we determine how the horizontally acquired pmrD gene product activates the ancestral PmrA/PmrB two-component system in Salmonella enterica but not in the closely related bacterium Escherichia coli. The Salmonella PmrD protein binds to the phosphorylated PmrA protein (PmrA-P, protecting it from dephosphorylation by the PmrB protein. This results in transcription of PmrA-dependent genes, including those conferring polymyxin B resistance. We now report that the E. coli PmrD protein can activate the PmrA/PmrB system in Salmonella even though it cannot do it in E. coli, suggesting that these two species differ in an additional component controlling PmrA-P levels. We establish that the E. coli PmrB displays higher phosphatase activity towards PmrA-P than the Salmonella PmrB, and we identified a PmrB subdomain responsible for this property. Replacement of the E. coli pmrB gene with the Salmonella homolog was sufficient to render E. coli resistant to polymyxin B under PmrD-inducing conditions. Our findings provide a singular example whereby quantitative differences in the biochemical activities of orthologous ancestral proteins dictate the ability of a horizontally acquired gene product to confer species-specific traits. And they suggest that horizontally acquired genes can potentiate selection at ancestral loci.

  16. Hermeneutic Inquiry: Paying Heed to History and Hermes An Ancestral, Substantive, and Methodological Tale

    Directory of Open Access Journals (Sweden)

    Nancy J. Moules

    2002-09-01

    Full Text Available Hermeneutic or interpretive inquiry is a living tradition of interpretation with a rich legacy of theory, philosophy, and practice. This paper is not intended to be a treatise on the right way to view and practice this tradition, but an exploration of the legacies that inform the philosophy of practice as the author has taken it up. In this explication, the author examines the ancestral, philosophical, and methodological histories that inform a current practice of hermeneutic inquiry.

  17. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses

    DEFF Research Database (Denmark)

    Caspeta, Luis; Nielsen, Jens

    2015-01-01

    adaptive laboratory evolution, we previously isolated seven Saccharomyces cerevisiae strains with improved growth at 40°C. Here, we show that genetic adaptations to high temperature caused a growth trade-off at ancestral temperatures, reduced cellular functions, and improved tolerance of other stresses...... in the ancestral strain. The latter is an advantageous attribute for acquiring thermotolerance and correlates with the reduction of yeast functions associated with loss of respiration capacity. This trait caused glycerol overproduction that was associated with the growth trade-off at ancestral temperatures...

  18. Application of Next Generation Sequencing in Mammalian Embryogenomics: Lessons Learned from Endogenous Betaretroviruses of Sheep

    Science.gov (United States)

    Spencer, Thomas E.; Palmarini, Massimo

    2012-01-01

    Endogenous retroviruses (ERVs) are present in the genome of all vertebrates and are remnants of ancient exogenous retroviral infections of the host germline transmitted vertically from generation to generation. The sheep genome contains 27 JSRV-related endogenous betaretroviruses (enJSRVs) related to the pathogenic Jaagsiekte sheep retrovirus (JSRV) that have been integrating in the host genome for the last 5 to 7 million years. The exogenous JSRV is a causative agent of a transmissible lung cancer in sheep, and enJSRVs are able to protect the host against JSRV infection. In sheep, the enJSRVs are most abundantly expressed in the uterine epithelia as well as in the conceptus (embryo and associated extraembryonic membranes) trophectoderm. Sixteen of the 27 enJSRV loci contain an envelope (env) gene with an intact open reading frame, and in utero loss-of-function experiments found the enJSRVs Env to be essential for trophoblast outgrowth and conceptus elongation. Collectively, available evidence supports the ideas that genes captured from ancestral retroviruses were pivotal in the acquisition of new, important functions in mammalian evolution and were positively selected for biological roles in genome plasticity, protection of the host against infection of related pathogenic and exogenous retroviruses, and a convergent physiological role in placental morphogenesis and thus mammalian reproduction. The discovery of ERVs in mammals was initially based on molecular cloning discovery techniques and will be boosted forward by next generation sequencing technologies and in silico discovery techniques. PMID:22951118

  19. Preliminary appraisal of ground water in and near the ancestral Missouri River Valley, northeastern Montana

    Science.gov (United States)

    Levings, G.W.

    1986-01-01

    A preliminary appraisal was conducted in and near the ancestral Missouri River valley in northeastern Montana to describe the groundwater resources and to establish a data base for the area. The data base then could be used for future evaluation of possible changes in water levels or water quality. In this area, consolidated aquifers are the Upper Cretaceous Fox Hills-lower Hell Creek aquifer and the overlying Paleocene Fort Union Formation. Unconsolidated aquifers are Pleistocene terrace gravel and glacial deposits and Holocene alluvial deposits. Aquifers are recharged by precipitation, infiltration of streamflow, and possibly leakage from lakes and potholes. Groundwater moves from topographically higher areas to the ancestral valley, then along the ancestral valley to the southwest. Water is discharged from aquifers by evapotranspiration, springs and seeps, movement directly into streams and lakes, and from pumping wells. Average well yields are greatest for irrigation wells completed in outwash gravel (886 gallons/min). Eighteen wells were completed in various aquifers to monitor potential long-term changes in water levels and water quality. Measured water levels declined about 2 ft. or less during the study (1982-85). Chemical analysis of groundwater samples indicated that concentrations of some dissolved constituents exceeded U.S. Environmental Protection Agency standards for drinking water. (USGS)

  20. Something for nothing? Reconstruction of ancestral character states in asterinid sea star development.

    Science.gov (United States)

    Keever, Carson C; Hart, Michael W

    2008-01-01

    Traits from early development mapped onto phylogenetic trees can potentially offer insight into the evolutionary history of development by inferring the states of those characters among ancestors at nodes in the phylogeny. A key and often-overlooked aspect of such mapping is the underlying model of character evolution. Without a well-supported and realistic model ("nothing"), character mapping of ancestral traits onto phylogenetic trees might often return results ("something") that lack a sound basis. Here we reconsider a challenging case study in this area of evolutionary developmental biology: the inference of ancestral states for ecological and morphological characters in the reproduction and larval development of asterinid sea stars. We apply improved analytical methods to an expanded set of asterinid phylogenetic data and developmental character states. This analysis shows that the new methods might generally offer some independent insight into choice of a model of character evolution, but that in the specific case of asterinid sea stars the quantitative features of the model (especially the relative probabilities of different directions of change) have an important effect on the results. We suggest caution in applying ancestral state reconstructions in the absence of an independently corroborated model of character evolution, and highlight the need for such modeling in evolutionary developmental biology.

  1. A Cooperative Co-Evolutionary Genetic Algorithm for Tree Scoring and Ancestral Genome Inference.

    Science.gov (United States)

    Gao, Nan; Zhang, Yan; Feng, Bing; Tang, Jijun

    2015-01-01

    Recent advances of technology have made it easy to obtain and compare whole genomes. Rearrangements of genomes through operations such as reversals and transpositions are rare events that enable researchers to reconstruct deep evolutionary history among species. Some of the popular methods need to search a large tree space for the best scored tree, thus it is desirable to have a fast and accurate method that can score a given tree efficiently. During the tree scoring procedure, the genomic structures of internal tree nodes are also provided, which provide important information for inferring ancestral genomes and for modeling the evolutionary processes. However, computing tree scores and ancestral genomes are very difficult and a lot of researchers have to rely on heuristic methods which have various disadvantages. In this paper, we describe the first genetic algorithm for tree scoring and ancestor inference, which uses a fitness function considering co-evolution, adopts different initial seeding methods to initialize the first population pool, and utilizes a sorting-based approach to realize evolution. Our extensive experiments show that compared with other existing algorithms, this new method is more accurate and can infer ancestral genomes that are much closer to the true ancestors.

  2. Distinct actions of ancestral vinclozolin and juvenile stress on neural gene expression in the male rat

    Directory of Open Access Journals (Sweden)

    Ross eGillette

    2015-03-01

    Full Text Available Exposure to the endocrine disrupting chemical vinclozolin during gestation of an F0 generation and/or chronic restraint stress during adolescence of the F3 descendants affects behavior, physiology, and gene expression in the brain. Genes related to the networks of growth factors, signaling peptides and receptors, steroid hormone receptors and enzymes, and epigenetic related factors were measured using quantitative polymerase chain reaction via Taqman low density arrays targeting 48 genes in the central amygdaloid nucleus, medial amygdaloid nucleus, medial preoptic area, lateral hypothalamus, and the ventromedial nucleus of the hypothalamus. We found that growth factors are particularly vulnerable to ancestral exposure in the central and medial amygdala; restraint stress during adolescence affected neural growth factors in the medial amygdala. Signaling peptides were affected by both ancestral exposure and stress during adolescence primarily in hypothalamic nuclei. Steroid hormone receptors and enzymes were strongly affected by restraint stress in the medial preoptic area. Epigenetic related genes were affected by stress in the ventromedial hypothalamus and by both ancestral exposure and stress during adolescence independently in the central amygdala. It is noteworthy that the lateral hypothalamus showed no effects of either manipulation. Gene expression is discussed in the context of behavioral and physiological measures previously published.

  3. Ancestral state reconstruction, rate heterogeneity, and the evolution of reptile viviparity.

    Science.gov (United States)

    King, Benedict; Lee, Michael S Y

    2015-05-01

    Virtually all models for reconstructing ancestral states for discrete characters make the crucial assumption that the trait of interest evolves at a uniform rate across the entire tree. However, this assumption is unlikely to hold in many situations, particularly as ancestral state reconstructions are being performed on increasingly large phylogenies. Here, we show how failure to account for such variable evolutionary rates can cause highly anomalous (and likely incorrect) results, while three methods that accommodate rate variability yield the opposite, more plausible, and more robust reconstructions. The random local clock method, implemented in BEAST, estimates the position and magnitude of rate changes on the tree; split BiSSE estimates separate rate parameters for pre-specified clades; and the hidden rates model partitions each character state into a number of rate categories. Simulations show the inadequacy of traditional models when characters evolve with both asymmetry (different rates of change between states within a character) and heterotachy (different rates of character evolution across different clades). The importance of accounting for rate heterogeneity in ancestral state reconstruction is highlighted empirically with a new analysis of the evolution of viviparity in squamate reptiles, which reveal a predominance of forward (oviparous-viviparous) transitions and very few reversals. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Ancestral informative marker selection and population structure visualization using sparse Laplacian eigenfunctions.

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    Full Text Available Identification of a small panel of population structure informative markers can reduce genotyping cost and is useful in various applications, such as ancestry inference in association mapping, forensics and evolutionary theory in population genetics. Traditional methods to ascertain ancestral informative markers usually require the prior knowledge of individual ancestry and have difficulty for admixed populations. Recently Principal Components Analysis (PCA has been employed with success to select SNPs which are highly correlated with top significant principal components (PCs without use of individual ancestral information. The approach is also applicable to admixed populations. Here we propose a novel approach based on our recent result on summarizing population structure by graph laplacian eigenfunctions, which differs from PCA in that it is geometric and robust to outliers. Our approach also takes advantage of the priori sparseness of informative markers in the genome. Through simulation of a ring population and the real global population sample HGDP of 650K SNPs genotyped in 940 unrelated individuals, we validate the proposed algorithm at selecting most informative markers, a small fraction of which can recover the similar underlying population structure efficiently. Employing a standard Support Vector Machine (SVM to predict individuals' continental memberships on HGDP dataset of seven continents, we demonstrate that the selected SNPs by our method are more informative but less redundant than those selected by PCA. Our algorithm is a promising tool in genome-wide association studies and population genetics, facilitating the selection of structure informative markers, efficient detection of population substructure and ancestral inference.

  5. Evolutionary history of versatile-lipases from Agaricales through reconstruction of ancestral structures.

    Science.gov (United States)

    Barriuso, Jorge; Martínez, María Jesús

    2017-01-03

    Fungal "Versatile carboxylic ester hydrolases" are enzymes with great biotechnological interest. Here we carried out a bioinformatic screening to find these proteins in genomes from Agaricales, by means of searching for conserved motifs, sequence and phylogenetic analysis, and three-dimensional modeling. Moreover, we reconstructed the molecular evolution of these enzymes along the time by inferring and analyzing the sequence of ancestral intermediate forms. The properties of the ancestral candidates are discussed on the basis of their three-dimensional structural models, the hydrophobicity of the lid, and the substrate binding intramolecular tunnel, revealing all of them featured properties of these enzymes. The evolutionary history of the putative lipases revealed an increase on the length and hydrophobicity of the lid region, as well as in the size of the substrate binding pocket, during evolution time. These facts suggest the enzymes' specialization towards certain substrates and their subsequent loss of promiscuity. These results bring to light the presence of different pools of lipases in fungi with different habitats and life styles. Despite the consistency of the data gathered from reconstruction of ancestral sequences, the heterologous expression of some of these candidates would be essential to corroborate enzymes' activities.

  6. Lack of Social Support Raises Stress Vulnerability in Rats with a History of Ancestral Stress.

    Science.gov (United States)

    Faraji, Jamshid; Soltanpour, Nabiollah; Lotfi, Hamid; Moeeini, Reza; Moharreri, Ali-Reza; Roudaki, Shabnam; Hosseini, S Abedin; Olson, David M; Abdollahi, Ali-Akbar; Soltanpour, Nasrin; Mohajerani, Majid H; Metz, Gerlinde A S

    2017-07-13

    Stress is a primary risk factor for psychiatric disorders. However, it is not fully understood why some stressed individuals are more vulnerable to psychiatric disorders than others. Here, we investigated whether multigenerational ancestral stress produces phenotypes that are sensitive to depression-like symptoms in rats. We also examined whether social isolation reveals potentially latent sensitivity to depression-like behaviours. F4 female rats born to a lineage of stressed mothers (F0-F3) received stress in adulthood while housed in pairs or alone. Social isolation during stress induced cognitive and psychomotor retardation only in rats exposed to ancestral stress. Social isolation also hampered the resilience of the hypothalamic-pituitary-adrenal axis to chronic stress and reduced hippocampal volume and brain-derived neurotrophic factor (BDNF) expression. Thus, synergy between social isolation and stress may unmask a latent history of ancestral stress, and raises vulnerability to mental health conditions. The findings support the notion that social support critically promotes stress coping and resilience.

  7. The diversity of class II transposable elements in mammalian genomes has arisen from ancestral phylogenetic splits during ancient waves of proliferation through the genome.

    Science.gov (United States)

    Hellen, Elizabeth H B; Brookfield, John F Y

    2013-01-01

    DNA transposons make up 3% of the human genome, approximately the same percentage as genes. However, because of their inactivity, they are often ignored in favor of the more abundant, active, retroelements. Despite this relative ignominy, there are a number of interesting questions to be asked of these transposon families. One particular question relates to the timing of proliferation and inactivation of elements in a family. Does an ongoing process of turnover occur, or is the process more akin to a life cycle for the family, with elements proliferating rapidly before deactivation at a later date? We answer this question by tracing back to the most recent common ancestor (MRCA) of each modern transposon family, using two different methods. The first method identifies the MRCA of the species in which a family of transposon fossils can still be found, which we assume will have existed soon after the true origin date of the transposon family. The second method uses molecular dating techniques to predict the age of the MRCA element from which all elements found in a modern genome are descended. Independent data from five pairs of species are used in the molecular dating analysis: human-chimpanzee, human-orangutan, dog-panda, dog-cat, and cow-pig. Orthologous pairs of elements from host species pairs are included, and the divergence dates of these species are used to constrain the analysis. We discover that, in general, the times to element common ancestry for a given family are the same for the different species pairs, suggesting that there has been no order-specific process of turnover. Furthermore, for most families, the ages of the common ancestor of the host species and of that of the elements are similar, suggesting a life cycle model for the proliferation of transposons. Where these two ages differ, in families found only in Primates and Rodentia, for example, we find that the host species date is later than that of the common ancestor of the elements, implying that there may be large deletions of elements from host species, examples of which were found in their ancestors.

  8. Ancestral genomic duplication of the insulin gene in tilapia: An analysis of possible implications for clinical islet xenotransplantation using donor islets from transgenic tilapia expressing a humanized insulin gene.

    Science.gov (United States)

    Hrytsenko, Olga; Pohajdak, Bill; Wright, James R

    2016-07-03

    Tilapia, a teleost fish, have multiple large anatomically discrete islets which are easy to harvest, and when transplanted into diabetic murine recipients, provide normoglycemia and mammalian-like glucose tolerance profiles. Tilapia insulin differs structurally from human insulin which could preclude their use as islet donors for xenotransplantation. Therefore, we produced transgenic tilapia with islets expressing a humanized insulin gene. It is now known that fish genomes may possess an ancestral duplication and so tilapia may have a second insulin gene. Therefore, we cloned, sequenced, and characterized the tilapia insulin 2 transcript and found that its expression is negligible in islets, is not islet-specific, and would not likely need to be silenced in our transgenic fish.

  9. A comparative study and a phylogenetic exploration of the compositional architectures of mammalian nuclear genomes.

    Directory of Open Access Journals (Sweden)

    Eran Elhaik

    2014-11-01

    Full Text Available For the past four decades the compositional organization of the mammalian genome posed a formidable challenge to molecular evolutionists attempting to explain it from an evolutionary perspective. Unfortunately, most of the explanations adhered to the "isochore theory," which has long been rebutted. Recently, an alternative compositional domain model was proposed depicting the human and cow genomes as composed mostly of short compositionally homogeneous and nonhomogeneous domains and a few long ones. We test the validity of this model through a rigorous sequence-based analysis of eleven completely sequenced mammalian and avian genomes. Seven attributes of compositional domains are used in the analyses: (1 the number of compositional domains, (2 compositional domain-length distribution, (3 density of compositional domains, (4 genome coverage by the different domain types, (5 degree of fit to a power-law distribution, (6 compositional domain GC content, and (7 the joint distribution of GC content and length of the different domain types. We discuss the evolution of these attributes in light of two competing phylogenetic hypotheses that differ from each other in the validity of clade Euarchontoglires. If valid, the murid genome compositional organization would be a derived state and exhibit a high similarity to that of other mammals. If invalid, the murid genome compositional organization would be closer to an ancestral state. We demonstrate that the compositional organization of the murid genome differs from those of primates and laurasiatherians, a phenomenon previously termed the "murid shift," and in many ways resembles the genome of opossum. We find no support to the "isochore theory." Instead, our findings depict the mammalian genome as a tapestry of mostly short homogeneous and nonhomogeneous domains and few long ones thus providing strong evidence in favor of the compositional domain model and seem to invalidate clade Euarchontoglires.

  10. The ancestral chromosomes of Dromiciops gliroides (Microbiotheridae), and its bearings on the karyotypic evolution of American marsupials

    OpenAIRE

    Su?rez-Villota, Elkin Y.; Haro, Ronie E.; Vargas, Rodrigo A.; Gallardo, Milton H.

    2016-01-01

    Background The low-numbered 14-chromosome karyotype of marsupials has falsified the fusion hypothesis claiming ancestrality from a 22-chromosome karyotype. Since the 14-chromosome condition of the relict Dromiciops gliroides is reminecent of ancestrality, its interstitial traces of past putative fusions and heterochromatin banding patterns were studied and added to available marsupials? cytogenetic data. Fluorescent in situ hybridization (FISH) and self-genomic in situ hybridization (self-GIS...

  11. Phylogenetic memory of developing mammalian dentition.

    Science.gov (United States)

    Peterkova, Renata; Lesot, Hervé; Peterka, Miroslav

    2006-05-15

    Structures suppressed during evolution can be retraced due to atavisms and vestiges. Atavism is an exceptional emergence of an ancestral form in a living individual. In contrast, ancestral vestige regularly occurs in all members of an actual species. We surveyed data about the vestigial and atavistic teeth in mammals, updated them by recent findings in mouse and human embryos, and discussed their ontogenetic and evolutionary implications. In the mouse incisor and diastema regions, dental placodes are transiently distinct being morphologically similar to the early tooth primordia in reptiles. Two large vestigial buds emerge in front of the prospective first molar and presumably correspond to the premolars eliminated during mouse evolution. The incorporation of the posterior premolar vestige into the lower first molar illustrates the putative mechanism of evolutionary disappearance of the last premolar in the mice. In mutant mice, devious development of the ancestral tooth primordia might lead to their revivification and origin of atavistic supernumerary teeth. Similarity in the developmental schedule between three molars in mice and the respective third and fourth deciduous premolar and the first molar in humans raises a question about putative homology of these teeth. The complex patterning of the vestibular and dental epithelium in human embryos is reminiscent of the pattern of "Zahnreihen" in lower vertebrates. A hypothesis was presented about the developmental relationship between the structures at the external aspect of the dentition in mammals (oral vestibule, pre-lacteal teeth, paramolar cusps/teeth), the tooth glands in reptiles, and the earliest teeth in lower vertebrates. (c) 2006 Wiley-Liss, Inc.

  12. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size

    Science.gov (United States)

    Herculano-Houzel, Suzana; Manger, Paul R.; Kaas, Jon H.

    2014-01-01

    Enough species have now been subject to systematic quantitative analysis of the relationship between the morphology and cellular composition of their brain that patterns begin to emerge and shed light on the evolutionary path that led to mammalian brain diversity. Based on an analysis of the shared and clade-specific characteristics of 41 modern mammalian species in 6 clades, and in light of the phylogenetic relationships among them, here we propose that ancestral mammal brains were composed and scaled in their cellular composition like modern afrotherian and glire brains: with an addition of neurons that is accompanied by a decrease in neuronal density and very little modification in glial cell density, implying a significant increase in average neuronal cell size in larger brains, and the allocation of approximately 2 neurons in the cerebral cortex and 8 neurons in the cerebellum for every neuron allocated to the rest of brain. We also propose that in some clades the scaling of different brain structures has diverged away from the common ancestral layout through clade-specific (or clade-defining) changes in how average neuronal cell mass relates to numbers of neurons in each structure, and how numbers of neurons are differentially allocated to each structure relative to the number of neurons in the rest of brain. Thus, the evolutionary expansion of mammalian brains has involved both concerted and mosaic patterns of scaling across structures. This is, to our knowledge, the first mechanistic model that explains the generation of brains large and small in mammalian evolution, and it opens up new horizons for seeking the cellular pathways and genes involved in brain evolution. PMID:25157220

  13. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size

    Directory of Open Access Journals (Sweden)

    Suzana eHerculano-Houzel

    2014-08-01

    Full Text Available Enough species have now been subject to systematic quantitative analysis of the relationship between the morphology and cellular composition of their brain that patterns begin to emerge and shed light on the evolutionary path that led to mammalian brain diversity. Based on an analysis of the shared and clade-specific characteristics of 41 modern mammalian species in 6 clades, and in light of the phylogenetic relationships among them, here we propose that ancestral mammal brains were composed and scaled in their cellular composition like modern afrotherian and glire brains: with an addition of neurons that is accompanied by a decrease in neuronal density and very little modification in glial cell density, implying a significant increase in average neuronal cell size in larger brains, and the allocation of approximately 2 neurons in the cerebral cortex and 8 neurons in the cerebellum for every neuron allocated to the rest of brain. We also propose that in some clades the scaling of different brain structures has diverged away from the common ancestral layout through clade-specific (or clade-defining changes in how average neuronal cell mass relates to numbers of neurons in each structure, and how numbers of neurons are differentially allocated to each structure relative to the number of neurons in the rest of brain. Thus, the evolutionary expansion of mammalian brains has involved both concerted and mosaic patterns of scaling across structures. This is, to our knowledge, the first mechanistic model that explains the generation of brains large and small in mammalian evolution, and it opens up new horizons for seeking the cellular pathways and genes involved in brain evolution.

  14. Involvement of opsins in mammalian sperm thermotaxis

    Science.gov (United States)

    Pérez-Cerezales, Serafín; Boryshpolets, Sergii; Afanzar, Oshri; Brandis, Alexander; Nevo, Reinat; Kiss, Vladimir; Eisenbach, Michael

    2015-01-01

    A unique characteristic of mammalian sperm thermotaxis is extreme temperature sensitivity, manifested by the capacity of spermatozoa to respond to temperature changes of functional approaches that opsins are present in human and mouse spermatozoa at specific sites, which depend on the species and the opsin type, and that they are involved in sperm thermotaxis via two signalling pathways—the phospholipase C and the cyclic-nucleotide pathways. Our results suggest that, depending on the context and the tissue, mammalian opsins act not only as photosensors but also as thermosensors. PMID:26537127

  15. DNA repair in non-mammalian animals

    International Nuclear Information System (INIS)

    Mitani, Hiroshi

    1984-01-01

    Studies on DNA repair have been performed using microorganisms such as Escherichia coli and cultured human and mammalian cells. However, it is well known that cultured organic cells differ from each other in many respects, although DNA repair is an extremely fundamental function of organisms to protect genetic information from environmental mutagens such as radiation and 0 radicals developing in the living body. To answer the question of how DNA repair is different between the animal species, current studies on DNA repair of cultured vertebrate cells using the methods similar to those in mammalian experiments are reviewed. (Namekawa, K.)

  16. Better smelling through genetics: mammalian odor perception.

    Science.gov (United States)

    Keller, Andreas; Vosshall, Leslie B

    2008-08-01

    The increasing availability of genomic and genetic tools to study olfaction-the sense of smell-has brought important new insights into how this chemosensory modality functions in different species. Newly sequenced mammalian genomes-from platypus to dog-have made it possible to infer how smell has evolved to suit the needs of a given species and how variation within a species may affect individual olfactory perception. This review will focus on recent advances in the genetics and genomics of mammalian smell, with a primary focus on rodents and humans.

  17. Do Père David's deer lose memories of their ancestral predators?

    Science.gov (United States)

    Li, Chunwang; Yang, Xiaobo; Ding, Yuhua; Zhang, Linyuan; Fang, Hongxia; Tang, Songhua; Jiang, Zhigang

    2011-01-01

    Whether prey retains antipredator behavior after a long period of predator relaxation is an important question in predator-prey evolution. Père David's deer have been raised in enclosures for more than 1200 years and this isolation provides an opportunity to study whether Père David's deer still respond to the cues of their ancestral predators or to novel predators. We played back the sounds of crows (familiar sound) and domestic dogs (familiar non-predators), of tigers and wolves (ancestral predators), and of lions (potential naïve predator) to Père David's deer in paddocks, and blank sounds to the control group, and videoed the behavior of the deer during the experiment. We also showed life-size photo models of dog, leopard, bear, tiger, wolf, and lion to the deer and video taped their responses after seeing these models. Père David's deer stared at and approached the hidden loudspeaker when they heard the roars of tiger or lion. The deer listened to tiger roars longer, approached to tiger roars more and spent more time staring at the tiger model. The stags were also found to forage less in the trials of tiger roars than that of other sound playbacks. Additionally, it took longer for the deer to restore their normal behavior after they heard tiger roars, which was longer than that after the trial of other sound playbacks. Moreover, the deer were only found to walk away after hearing the sounds of tiger and wolf. Therefore, the tiger was probably the main predator for Père David's deer in ancient time. Our study implies that Père David's deer still retain the memories of the acoustic and visual cues of their ancestral predators in spite of the long term isolation from natural habitat.

  18. Chromosome painting in three-toed sloths: a cytogenetic signature and ancestral karyotype for Xenarthra

    Directory of Open Access Journals (Sweden)

    Azevedo Nathália F

    2012-03-01

    Full Text Available Abstract Background Xenarthra (sloths, armadillos and anteaters represent one of four currently recognized Eutherian mammal supraorders. Some phylogenomic studies point to the possibility of Xenarthra being at the base of the Eutherian tree, together or not with the supraorder Afrotheria. We performed painting with human autosomes and X-chromosome specific probes on metaphases of two three-toed sloths: Bradypus torquatus and B. variegatus. These species represent the fourth of the five extant Xenarthra families to be studied with this approach. Results Eleven human chromosomes were conserved as one block in both B. torquatus and B. variegatus: (HSA 5, 6, 9, 11, 13, 14, 15, 17, 18, 20, 21 and the X chromosome. B. torquatus, three additional human chromosomes were conserved intact (HSA 1, 3 and 4. The remaining human chromosomes were represented by two or three segments on each sloth. Seven associations between human chromosomes were detected in the karyotypes of both B. torquatus and B. variegatus: HSA 3/21, 4/8, 7/10, 7/16, 12/22, 14/15 and 17/19. The ancestral Eutherian association 16/19 was not detected in the Bradypus species. Conclusions Our results together with previous reports enabled us to propose a hypothetical ancestral Xenarthran karyotype with 48 chromosomes that would differ from the proposed ancestral Eutherian karyotype by the presence of the association HSA 7/10 and by the split of HSA 8 into three blocks, instead of the two found in the Eutherian ancestor. These same chromosome features point to the monophyly of Xenarthra, making this the second supraorder of placental mammals to have a chromosome signature supporting its monophyly.

  19. Chromosome painting in three-toed sloths: a cytogenetic signature and ancestral karyotype for Xenarthra

    Science.gov (United States)

    2012-01-01

    Background Xenarthra (sloths, armadillos and anteaters) represent one of four currently recognized Eutherian mammal supraorders. Some phylogenomic studies point to the possibility of Xenarthra being at the base of the Eutherian tree, together or not with the supraorder Afrotheria. We performed painting with human autosomes and X-chromosome specific probes on metaphases of two three-toed sloths: Bradypus torquatus and B. variegatus. These species represent the fourth of the five extant Xenarthra families to be studied with this approach. Results Eleven human chromosomes were conserved as one block in both B. torquatus and B. variegatus: (HSA 5, 6, 9, 11, 13, 14, 15, 17, 18, 20, 21 and the X chromosome). B. torquatus, three additional human chromosomes were conserved intact (HSA 1, 3 and 4). The remaining human chromosomes were represented by two or three segments on each sloth. Seven associations between human chromosomes were detected in the karyotypes of both B. torquatus and B. variegatus: HSA 3/21, 4/8, 7/10, 7/16, 12/22, 14/15 and 17/19. The ancestral Eutherian association 16/19 was not detected in the Bradypus species. Conclusions Our results together with previous reports enabled us to propose a hypothetical ancestral Xenarthran karyotype with 48 chromosomes that would differ from the proposed ancestral Eutherian karyotype by the presence of the association HSA 7/10 and by the split of HSA 8 into three blocks, instead of the two found in the Eutherian ancestor. These same chromosome features point to the monophyly of Xenarthra, making this the second supraorder of placental mammals to have a chromosome signature supporting its monophyly. PMID:22429690

  20. Contrasting determinants of abundance in ancestral and colonized ranges of an invasive brood parasite

    Science.gov (United States)

    Hahn, D.C.; O'Connor, R.J.; Scott, J. Michael; Heglund, Patricia J.; Morrison, Michael L.; Haufler, Jonathan B.; Wall, William A.

    2002-01-01

    Avian species distributions are typically regarded as constrained by spatially extensive variables such as climate, habitat, spatial patchiness, and microhabitat attributes. We hypothesized that the distribution of a brood parasite depends as strongly on host distribution patterns as on biophysical factors and examined this hypothesis with respect to the national distribution of the Brown-headed Cowbird (Molothrus ater). We applied a classification and regression (CART) analysis to data from the Breeding Bird Survey (BBS) and the Christmas Bird Count (CBC) and derived hierarchically organized statistical models of the influence of climate and weather, cropping and land use, and host abundance and distribution on the distribution of the Brown-headed Cowbird within the conterminous United States. The model accounted for 47.2% of the variation in cowbird incidence, and host abundance was the top predictor with an R2 of 18.9%. The other predictors identified by the model (crops 15.7%, weather and climate 14.3%, and region 9.6%) fit the ecological profile of this cowbird. We showed that host abundance was independent of these environmental predictors of cowbird distribution. At the regional scale host abundance played a very strong role in determining cowbird abundance in the cowbird?s colonized range east and west of their ancestral range in the Great Plains (26.6%). Crops were not a major predictor for cowbirds in their ancestral range, although they are the most important predictive factor (33%) for the grassland passerines that are the cowbird?s ancestral hosts. Consequently our findings suggest that the distribution of hosts does indeed take precedence over habitat attributes in shaping the cowbird?s distribution at a national scale, within an envelope of constraint set by biophysical factors.

  1. Analysis of ancestral and functionally relevant CD5 variants in systemic lupus erythematosus patients.

    Directory of Open Access Journals (Sweden)

    Maria Carmen Cenit

    Full Text Available CD5 plays a crucial role in autoimmunity and is a well-established genetic risk factor of developing RA. Recently, evidence of positive selection has been provided for the CD5 Pro224-Val471 haplotype in East Asian populations. The aim of the present work was to further analyze the functional relevance of non-synonymous CD5 polymorphisms conforming the ancestral and the newly derived haplotypes (Pro224-Ala471 and Pro224-Val471, respectively as well as to investigate the potential role of CD5 on the development of SLE and/or SLE nephritis.The CD5 SNPs rs2241002 (C/T; Pro224Leu and rs2229177 (C/T; Ala471Val were genotyped using TaqMan allelic discrimination assays in a total of 1,324 controls and 681 SLE patients of Spanish origin. In vitro analysis of CD3-mediated T cell proliferative and cytokine response profiles of healthy volunteers homozygous for the above mentioned CD5 haplotypes were also analyzed.T-cell proliferation and cytokine release were significantly increased showing a bias towards to a Th2 profile after CD3 cross-linking of peripheral mononuclear cells from healthy individuals homozygous for the ancestral Pro224-Ala471 (CC haplotype, compared to the more recently derived Pro224-Val471 (CT. The same allelic combination was statistically associated with Lupus nephritis.The ancestral Ala471 CD5 allele confers lymphocyte hyper-responsiveness to TCR/CD3 cross-linking and is associated with nephritis in SLE patients.

  2. Rate heterogeneity across Squamata, misleading ancestral state reconstruction and the importance of proper null model specification.

    Science.gov (United States)

    Harrington, S; Reeder, T W

    2017-02-01

    The binary-state speciation and extinction (BiSSE) model has been used in many instances to identify state-dependent diversification and reconstruct ancestral states. However, recent studies have shown that the standard procedure of comparing the fit of the BiSSE model to constant-rate birth-death models often inappropriately favours the BiSSE model when diversification rates vary in a state-independent fashion. The newly developed HiSSE model enables researchers to identify state-dependent diversification rates while accounting for state-independent diversification at the same time. The HiSSE model also allows researchers to test state-dependent models against appropriate state-independent null models that have the same number of parameters as the state-dependent models being tested. We reanalyse two data sets that originally used BiSSE to reconstruct ancestral states within squamate reptiles and reached surprising conclusions regarding the evolution of toepads within Gekkota and viviparity across Squamata. We used this new method to demonstrate that there are many shifts in diversification rates across squamates. We then fit various HiSSE submodels and null models to the state and phylogenetic data and reconstructed states under these models. We found that there is no single, consistent signal for state-dependent diversification associated with toepads in gekkotans or viviparity across all squamates. Our reconstructions show limited support for the recently proposed hypotheses that toepads evolved multiple times independently in Gekkota and that transitions from viviparity to oviparity are common in Squamata. Our results highlight the importance of considering an adequate pool of models and null models when estimating diversification rate parameters and reconstructing ancestral states. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  3. Ancestral benzo[a]pyrene exposure affects bone integrity in F3 adult fish (Oryzias latipes).

    Science.gov (United States)

    Seemann, Frauke; Jeong, Chang-Bum; Zhang, Ge; Wan, Miles Teng; Guo, Baosheng; Peterson, Drew Ryan; Lee, Jae-Seong; Au, Doris Wai-Ting

    2017-02-01

    Benzo[a]pyrene (BaP) at an environmentally relevant concentration (1μg/L) has previously been shown to affect bone development in a transgenerational manner in F3 medaka (Oryzias latipes) larvae (17dph). Here, we provide novel histomorphometric data demonstrating that the impaired bone formation at an early life stage is not recoverable and can result in a persistent transgenerational impairment of bone metabolism in F3 adult fish. A decrease in bone thickness and the occurrence of microcracks in ancestrally BaP-treated adult male fish (F3) were revealed by MicroCt measurement and histopathological analysis. The expression of twenty conserved bone miRNAs were screened in medaka and their relative expression (in the F3 ancestral BaP treatment vs the F3 control fish) were determined by quantitative real-time PCR. Attempt was made to link bone miRNA expression with the potential target bone mRNA expression in medaka. Five functional pairs of mRNA/miRNA were identified (Osx/miR-214, Col2a1b/miR-29b, Runx2/miR-204, Sox9b/miR-199a-3p, APC/miR-27b). Unique knowledge of bone-related miRNA expression in medaka in response to ancestral BaP-exposure in the F3 generation is presented. From the ecological risk assessment perspective, BaP needs to be regarded as a transgenerational skeletal toxicant which exerts a far-reaching impact on fish survival and fitness. Given that the underlying mechanisms of cartilage/bone formation are conserved between medaka and mammals, the results may also shed light on the potential transgenerational effect of BaP on skeletal disorders in mammals/humans. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The mammary gland-specific marsupial ELP and eutherian CTI share a common ancestral gene

    Directory of Open Access Journals (Sweden)

    Pharo Elizabeth A

    2012-06-01

    Full Text Available Abstract Background The marsupial early lactation protein (ELP gene is expressed in the mammary gland and the protein is secreted into milk during early lactation (Phase 2A. Mature ELP shares approximately 55.4% similarity with the colostrum-specific bovine colostrum trypsin inhibitor (CTI protein. Although ELP and CTI both have a single bovine pancreatic trypsin inhibitor (BPTI-Kunitz domain and are secreted only during the early lactation phases, their evolutionary history is yet to be investigated. Results Tammar ELP was isolated from a genomic library and the fat-tailed dunnart and Southern koala ELP genes cloned from genomic DNA. The tammar ELP gene was expressed only in the mammary gland during late pregnancy (Phase 1 and early lactation (Phase 2A. The opossum and fat-tailed dunnart ELP and cow CTI transcripts were cloned from RNA isolated from the mammary gland and dog CTI from cells in colostrum. The putative mature ELP and CTI peptides shared 44.6%-62.2% similarity. In silico analyses identified the ELP and CTI genes in the other species examined and provided compelling evidence that they evolved from a common ancestral gene. In addition, whilst the eutherian CTI gene was conserved in the Laurasiatherian orders Carnivora and Cetartiodactyla, it had become a pseudogene in others. These data suggest that bovine CTI may be the ancestral gene of the Artiodactyla-specific, rapidly evolving chromosome 13 pancreatic trypsin inhibitor (PTI, spleen trypsin inhibitor (STI and the five placenta-specific trophoblast Kunitz domain protein (TKDP1-5 genes. Conclusions Marsupial ELP and eutherian CTI evolved from an ancestral therian mammal gene before the divergence of marsupials and eutherians between 130 and 160 million years ago. The retention of the ELP gene in marsupials suggests that this early lactation-specific milk protein may have an important role in the immunologically naïve young of these species.

  5. Do Père David's deer lose memories of their ancestral predators?

    Directory of Open Access Journals (Sweden)

    Chunwang Li

    Full Text Available Whether prey retains antipredator behavior after a long period of predator relaxation is an important question in predator-prey evolution. Père David's deer have been raised in enclosures for more than 1200 years and this isolation provides an opportunity to study whether Père David's deer still respond to the cues of their ancestral predators or to novel predators. We played back the sounds of crows (familiar sound and domestic dogs (familiar non-predators, of tigers and wolves (ancestral predators, and of lions (potential naïve predator to Père David's deer in paddocks, and blank sounds to the control group, and videoed the behavior of the deer during the experiment. We also showed life-size photo models of dog, leopard, bear, tiger, wolf, and lion to the deer and video taped their responses after seeing these models. Père David's deer stared at and approached the hidden loudspeaker when they heard the roars of tiger or lion. The deer listened to tiger roars longer, approached to tiger roars more and spent more time staring at the tiger model. The stags were also found to forage less in the trials of tiger roars than that of other sound playbacks. Additionally, it took longer for the deer to restore their normal behavior after they heard tiger roars, which was longer than that after the trial of other sound playbacks. Moreover, the deer were only found to walk away after hearing the sounds of tiger and wolf. Therefore, the tiger was probably the main predator for Père David's deer in ancient time. Our study implies that Père David's deer still retain the memories of the acoustic and visual cues of their ancestral predators in spite of the long term isolation from natural habitat.

  6. Allelic Lineages of the Ficolin Genes (FCNs) Are Passed from Ancestral to Descendant Primates

    DEFF Research Database (Denmark)

    Hummelshøj, Tina; Nissen, Janna; Fog, Lea Munthe

    2011-01-01

    The ficolins recognize carbohydrates and acetylated compounds on microorganisms and dying host cells and are able to activate the lectin pathway of the complement system. In humans, three ficolin genes have been identified: FCN1, FCN2 and FCN3, which encode ficolin-1, ficolin-2 and ficolin-3, res...... serum. Taken together all the FCN genes show the same characteristics in lower and higher primates. The existence of trans-species polymorphisms suggests that different FCN allelic lineages may be passed from ancestral to descendant species....

  7. Allelic lineages of the ficolin genes (FCNs) are passed from ancestral to descendant primates

    DEFF Research Database (Denmark)

    Hummelshøj, Tina; Nissen, Janna; Munthe-Fog, Lea

    2011-01-01

    The ficolins recognize carbohydrates and acetylated compounds on microorganisms and dying host cells and are able to activate the lectin pathway of the complement system. In humans, three ficolin genes have been identified: FCN1, FCN2 and FCN3, which encode ficolin-1, ficolin-2 and ficolin-3, res...... serum. Taken together all the FCN genes show the same characteristics in lower and higher primates. The existence of trans-species polymorphisms suggests that different FCN allelic lineages may be passed from ancestral to descendant species....

  8. Synteny conservation between the Prunus genome and both the present and ancestral Arabidopsis genomes

    Directory of Open Access Journals (Sweden)

    Zhebentyayeva Tatyana

    2006-04-01

    Full Text Available Abstract Background Due to the lack of availability of large genomic sequences for peach or other Prunus species, the degree of synteny conservation between the Prunus species and Arabidopsis has not been systematically assessed. Using the recently available peach EST sequences that are anchored to Prunus genetic maps and to peach physical map, we analyzed the extent of conserved synteny between the Prunus and the Arabidopsis genomes. The reconstructed pseudo-ancestral Arabidopsis genome, existed prior to the proposed recent polyploidy event, was also utilized in our analysis to further elucidate the evolutionary relationship. Results We analyzed the synteny conservation between the Prunus and the Arabidopsis genomes by comparing 475 peach ESTs that are anchored to Prunus genetic maps and their Arabidopsis homologs detected by sequence similarity. Microsyntenic regions were detected between all five Arabidopsis chromosomes and seven of the eight linkage groups of the Prunus reference map. An additional 1097 peach ESTs that are anchored to 431 BAC contigs of the peach physical map and their Arabidopsis homologs were also analyzed. Microsyntenic regions were detected in 77 BAC contigs. The syntenic regions from both data sets were short and contained only a couple of conserved gene pairs. The synteny between peach and Arabidopsis was fragmentary; all the Prunus linkage groups containing syntenic regions matched to more than two different Arabidopsis chromosomes, and most BAC contigs with multiple conserved syntenic regions corresponded to multiple Arabidopsis chromosomes. Using the same peach EST datasets and their Arabidopsis homologs, we also detected conserved syntenic regions in the pseudo-ancestral Arabidopsis genome. In many cases, the gene order and content of peach regions was more conserved in the ancestral genome than in the present Arabidopsis region. Statistical significance of each syntenic group was calculated using simulated

  9. Sustainability of ancestral methods of agricultural production in Perú: ¿keep or replace?

    Directory of Open Access Journals (Sweden)

    Dani Eduardo Vargas Huanca

    2016-09-01

    Full Text Available Based on the success of some Andean products such as quinoa, potatoes or maca in international food trade and the growing environmental degradation facing developing countries, resulting from intensive exploitation activities; Our research seeks to show the trend that is assumed from the academic / scientific community and public officials in the food sector in Peru, against the need to maintain sustainable various ancestral modes of agricultural production (case quinoa, for it analyze quantitative and qualitative obtained from public institutions and Peruvian universities.

  10. Consistency and inconsistency of consensus methods for inferring species trees from gene trees in the presence of ancestral population structure

    Science.gov (United States)

    DeGiorgio, Michael; Rosenberg, Noah A.

    2016-01-01

    In the last few years, several statistically consistent consensus methods for species tree inference have been devised that are robust to the gene tree discordance caused by incomplete lineage sorting in unstructured ancestral populations. One source of gene tree discordance that has only recently been identified as a potential obstacle for phylogenetic inference is ancestral population structure. In this article, we describe a general model of ancestral population structure, and by relying on a single carefully constructed example scenario, we show that the consensus methods Democratic Vote, STEAC, STAR, R* Consensus, Rooted Triple Consensus, Minimize Deep Coalescences, and Majority-Rule Consensus are statistically inconsistent under the model. We find that among the consensus methods evaluated, the only method that is statistically consistent in the presence of ancestral population structure is GLASS/Maximum Tree. We use simulations to evaluate the behavior of the various consensus methods in a model with ancestral population structure, showing that as the number of gene trees increases, estimates on the basis of GLASS/Maximum Tree approach the true species tree topology irrespective of the level of population structure, whereas estimates based on the remaining methods only approach the true species tree topology if the level of structure is low. However, through simulations using species trees both with and without ancestral population structure, we show that GLASS/Maximum Tree performs unusually poorly on gene trees inferred from alignments with little information. This practical limitation of GLASS/Maximum Tree together with the inconsistency of other methods prompts the need for both further testing of additional existing methods and development of novel methods under conditions that incorporate ancestral population structure. PMID:27086043

  11. A promoter-level mammalian expression atlas

    KAUST Repository

    Forest, Alistair R R

    2014-03-26

    Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly ‘housekeeping’, whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research.

  12. endogenous retrovirus sequences expressed in male mammalian

    African Journals Online (AJOL)

    2002-01-02

    Jan 2, 2002 ... the human genome. Because of such hypotheses, in this communication, we discuss the findings of various studies that have demonstrated expression of endogenous retrovirus-like particles in male mammalian reproductive tissues. In addition, we discuss the biological implications of the presence of these ...

  13. Architecture of mammalian respiratory complex I.

    Science.gov (United States)

    Vinothkumar, Kutti R; Zhu, Jiapeng; Hirst, Judy

    2014-11-06

    Complex I (NADH:ubiquinone oxidoreductase) is essential for oxidative phosphorylation in mammalian mitochondria. It couples electron transfer from NADH to ubiquinone with proton translocation across the energy-transducing inner membrane, providing electrons for respiration and driving ATP synthesis. Mammalian complex I contains 44 different nuclear- and mitochondrial-encoded subunits, with a combined mass of 1 MDa. The 14 conserved 'core' subunits have been structurally defined in the minimal, bacterial complex, but the structures and arrangement of the 30 'supernumerary' subunits are unknown. Here we describe a 5 Å resolution structure of complex I from Bos taurus heart mitochondria, a close relative of the human enzyme, determined by single-particle electron cryo-microscopy. We present the structures of the mammalian core subunits that contain eight iron-sulphur clusters and 60 transmembrane helices, identify 18 supernumerary transmembrane helices, and assign and model 14 supernumerary subunits. Thus, we considerably advance knowledge of the structure of mammalian complex I and the architecture of its supernumerary ensemble around the core domains. Our structure provides insights into the roles of the supernumerary subunits in regulation, assembly and homeostasis, and a basis for understanding the effects of mutations that cause a diverse range of human diseases.

  14. Locomotor circuits in the mammalian spinal cord

    DEFF Research Database (Denmark)

    Kiehn, Ole

    2006-01-01

    Intrinsic spinal networks, known as central pattern generators (CPGs), control the timing and pattern of the muscle activity underlying locomotion in mammals. This review discusses new advances in understanding the mammalian CPGs with a focus on experiments that address the overall network...... approaches that have the potential to elucidate the function of populations of CPG interneurons are also discussed....

  15. Endogenous retrovirus sequences expressed in male mammalian ...

    African Journals Online (AJOL)

    Objectives: To review the research findings on the expression of endogenous retroviruses and retroviral-related particles in male mammalian reproductive tissues, and to discuss their possible role in normal cellular events and association with disease conditions in male reproductive tissues. Data sources: Published ...

  16. Transcripts of Vp-1 homeologues are misspliced in modern wheat and ancestral species.

    Science.gov (United States)

    McKibbin, Rowan S; Wilkinson, Mark D; Bailey, Paul C; Flintham, John E; Andrew, Lucy M; Lazzeri, Paul A; Gale, Mike D; Lenton, John R; Holdsworth, Michael J

    2002-07-23

    The maize (Zea mays) Viviparous 1 (Vp1) transcription factor has been shown previously to be a major regulator of seed development, simultaneously activating embryo maturation and repressing germination. Hexaploid bread wheat (Triticum aestivum) caryopses are characterized by relatively weak embryo dormancy and are susceptible to preharvest sprouting (PHS), a phenomenon that is phenotypically similar to the maize vp1 mutation. Analysis of Vp-1 transcript structure in wheat embryos during grain development showed that each homeologue produces cytoplasmic mRNAs of different sizes. The majority of transcripts are spliced incorrectly, contain insertions of intron sequences or deletions of coding region, and do not have the capacity to encode full-length proteins. Several VP-1-related lower molecular weight protein species were present in wheat embryo nuclei. Embryos of a closely related tetraploid species (Triticum turgidum) and ancestral diploids also contained misspliced Vp-1 transcripts that were structurally similar or identical to those found in modern hexaploid wheat, which suggests that compromised structure and expression of Vp-1 transcripts in modern wheat are inherited from ancestral species. Developing embryos from transgenic wheat grains expressing the Avena fatua Vp1 gene showed enhanced responsiveness to applied abscisic acid compared with the control. In addition, ripening ears of transgenic plants were less susceptible to PHS. Our results suggest that missplicing of wheat Vp-1 genes contributes to susceptibility to PHS in modern hexaploid wheat varieties and identifies a possible route to increase resistance to this environmentally triggered disorder.

  17. Ancestral state reconstruction infers phytopathogenic origins of sooty blotch and flyspeck fungi on apple.

    Science.gov (United States)

    Ismail, Siti Izera; Batzer, Jean Carlson; Harrington, Thomas C; Crous, Pedro W; Lavrov, Dennis V; Li, Huanyu; Gleason, Mark L

    2016-01-01

    Members of the sooty blotch and flyspeck (SBFS) complex are epiphytic fungi in the Ascomycota that cause economically damaging blemishes of apples worldwide. SBFS fungi are polyphyletic, but approx. 96% of SBFS species are in the Capnodiales. Evolutionary origins of SBFS fungi remain unclear, so we attempted to infer their origins by means of ancestral state reconstruction on a phylogenetic tree built utilizing genes for the nuc 28S rDNA (approx. 830 bp from near the 59 end) and the second largest subunit of RNA polymerase II (RPB2). The analyzed taxa included the well-known genera of SBFS as well as non-SBFS fungi from seven families within the Capnodiales. The non-SBFS taxa were selected based on their distinct ecological niches, including plant-parasitic and saprophytic species. The phylogenetic analyses revealed that most SBFS species in the Capnodiales are closely related to plant-parasitic fungi. Ancestral state reconstruction provided strong evidence that plant-parasitic fungi were the ancestors of the major SBFS lineages. Knowledge gained from this study may help to better understand the ecology and evolution of epiphytic fungi. © 2016 by The Mycological Society of America.

  18. Inferring genome-wide patterns of admixture in Qataris using fifty-five ancestral populations.

    Science.gov (United States)

    Omberg, Larsson; Salit, Jacqueline; Hackett, Neil; Fuller, Jennifer; Matthew, Rebecca; Chouchane, Lotfi; Rodriguez-Flores, Juan L; Bustamante, Carlos; Crystal, Ronald G; Mezey, Jason G

    2012-06-26

    Populations of the Arabian Peninsula have a complex genetic structure that reflects waves of migrations including the earliest human migrations from Africa and eastern Asia, migrations along ancient civilization trading routes and colonization history of recent centuries. Here, we present a study of genome-wide admixture in this region, using 156 genotyped individuals from Qatar, a country located at the crossroads of these migration patterns. Since haplotypes of these individuals could have originated from many different populations across the world, we have developed a machine learning method "SupportMix" to infer loci-specific genomic ancestry when simultaneously analyzing many possible ancestral populations. Simulations show that SupportMix is not only more accurate than other popular admixture discovery tools but is the first admixture inference method that can efficiently scale for simultaneous analysis of 50-100 putative ancestral populations while being independent of prior demographic information. By simultaneously using the 55 world populations from the Human Genome Diversity Panel, SupportMix was able to extract the fine-scale ancestry of the Qatar population, providing many new observations concerning the ancestry of the region. For example, as well as recapitulating the three major sub-populations in Qatar, composed of mainly Arabic, Persian, and African ancestry, SupportMix additionally identifies the specific ancestry of the Persian group to populations sampled in Greater Persia rather than from China and the ancestry of the African group to sub-Saharan origin and not Southern African Bantu origin as previously thought.

  19. A phylogenetic Kalman filter for ancestral trait reconstruction using molecular data.

    Science.gov (United States)

    Lartillot, Nicolas

    2014-02-15

    Correlation between life history or ecological traits and genomic features such as nucleotide or amino acid composition can be used for reconstructing the evolutionary history of the traits of interest along phylogenies. Thus far, however, such ancestral reconstructions have been done using simple linear regression approaches that do not account for phylogenetic inertia. These reconstructions could instead be seen as a genuine comparative regression problem, such as formalized by classical generalized least-square comparative methods, in which the trait of interest and the molecular predictor are represented as correlated Brownian characters coevolving along the phylogeny. Here, a Bayesian sampler is introduced, representing an alternative and more efficient algorithmic solution to this comparative regression problem, compared with currently existing generalized least-square approaches. Technically, ancestral trait reconstruction based on a molecular predictor is shown to be formally equivalent to a phylogenetic Kalman filter problem, for which backward and forward recursions are developed and implemented in the context of a Markov chain Monte Carlo sampler. The comparative regression method results in more accurate reconstructions and a more faithful representation of uncertainty, compared with simple linear regression. Application to the reconstruction of the evolution of optimal growth temperature in Archaea, using GC composition in ribosomal RNA stems and amino acid composition of a sample of protein-coding genes, confirms previous findings, in particular, pointing to a hyperthermophilic ancestor for the kingdom. The program is freely available at www.phylobayes.org.

  20. Evolution of domain promiscuity in eukaryotic genomes—a perspective from the inferred ancestral domain architectures†

    Science.gov (United States)

    Cohen-Gihon, Inbar; Fong, Jessica H.; Sharan, Roded; Nussinov, Ruth

    2012-01-01

    Most eukaryotic proteins are composed of two or more domains. These assemble in a modular manner to create new proteins usually by the acquisition of one or more domains to an existing protein. Promiscuous domains which are found embedded in a variety of proteins and co-exist with many other domains are of particular interest and were shown to have roles in signaling pathways and mediating network communication. The evolution of domain promiscuity is still an open problem, mostly due to the lack of sequenced ancestral genomes. Here we use inferred domain architectures of ancestral genomes to trace the evolution of domain promiscuity in eukaryotic genomes. We find an increase in average promiscuity along many branches of the eukaryotic tree. Moreover, domain promiscuity can proceed at almost a steady rate over long evolutionary time or exhibit lineage-specific acceleration. We also observe that many signaling and regulatory domains gained domain promiscuity around the Bilateria divergence. In addition we show that those domains that played a role in the creation of two body axes and existed before the divergence of the bilaterians from fungi/metazoan achieve a boost in their promiscuities during the bilaterian evolution. PMID:21127809

  1. Evolution of domain promiscuity in eukaryotic genomes--a perspective from the inferred ancestral domain architectures.

    Science.gov (United States)

    Cohen-Gihon, Inbar; Fong, Jessica H; Sharan, Roded; Nussinov, Ruth; Przytycka, Teresa M; Panchenko, Anna R

    2011-03-01

    Most eukaryotic proteins are composed of two or more domains. These assemble in a modular manner to create new proteins usually by the acquisition of one or more domains to an existing protein. Promiscuous domains which are found embedded in a variety of proteins and co-exist with many other domains are of particular interest and were shown to have roles in signaling pathways and mediating network communication. The evolution of domain promiscuity is still an open problem, mostly due to the lack of sequenced ancestral genomes. Here we use inferred domain architectures of ancestral genomes to trace the evolution of domain promiscuity in eukaryotic genomes. We find an increase in average promiscuity along many branches of the eukaryotic tree. Moreover, domain promiscuity can proceed at almost a steady rate over long evolutionary time or exhibit lineage-specific acceleration. We also observe that many signaling and regulatory domains gained domain promiscuity around the Bilateria divergence. In addition we show that those domains that played a role in the creation of two body axes and existed before the divergence of the bilaterians from fungi/metazoan achieve a boost in their promiscuities during the bilaterian evolution.

  2. Evidence for Ancestral Programming of Resilience in a Two-Hit Stress Model

    Directory of Open Access Journals (Sweden)

    Jamshid Faraji

    2017-05-01

    Full Text Available In a continuously stressful environment, the effects of recurrent prenatal stress (PS may accumulate across generations and alter stress vulnerability and resilience. Here, we report in female rats that a family history of recurrent ancestral PS facilitates certain aspects of movement performance, and that these benefits are abolished by the experience of a second hit, induced by a silent ischemia during adulthood. Female F4-generation rats with and without a family history of cumulative multigenerational PS (MPS were tested for skilled motor function before and after the induction of a minor ischemic insult by endothelin-1 infusion into the primary motor cortex. MPS resulted in improved skilled motor abilities and blunted hypothalamic-pituitary-adrenal (HPA axis function compared to non-stressed rats. Deep sequencing revealed downregulation of miR-708 in MPS rats along with upregulation of its predicted target genes Mapk10 and Rasd2. Through miR-708 stress may regulate mitogen-activated protein kinase (MAPK pathway activity. Hair trace elemental analysis revealed an increased Na/K ratio, which suggests a chronic shift in adrenal gland function. The ischemic lesion activated the HPA axis in MPS rats only; the lesion, however, abolished the advantage of MPS in skilled reaching. The findings indicate that MPS generates adaptive flexibility in movement, which is challenged by a second stressor, such as a neuropathological condition. Thus, a second “hit” by a stressor may limit behavioral flexibility and neural plasticity associated with ancestral stress.

  3. Bearing the unbearable: ancestral transmission through dreams and moving metaphors in the analtyic field.

    Science.gov (United States)

    Pickering, Judith

    2012-11-01

    This paper explores how untold and unresolved intergenerational trauma may be transmitted through unconscious channels of communication, manifesting in the dreams of descendants. Unwitting carriers for that which was too horrific for their ancestors to bear, descendants may enter analysis through an unconscious need to uncover past secrets, piece together ancestral histories before the keys to comprehending their terrible inheritance die with their forebears. They seek the relational containment of the analytic relationship to provide psychological conditions to bear the unbearable, know the unknowable, speak the unspeakable and redeem the unredeemable. In the case of 'Rachael', initial dreams gave rise to what Hobson (1984) called 'moving metaphors of self' in the analytic field. Dream imagery, projective and introjective processes in the transference-countertransference dynamics gradually revealed an unknown ancestral history. I clarify the back and forth process from dream to waking dream thoughts to moving metaphors and differentiate the moving metaphor from a living symbol. I argue that the containment of the analytic relationship nested within the security of the analytic space is a necessary precondition for such healing processes to occur. © 2012, The Society of Analytical Psychology.

  4. Evolution of CRISPs associated with toxicoferan-reptilian venom and mammalian reproduction.

    Science.gov (United States)

    Sunagar, Kartik; Johnson, Warren E; O'Brien, Stephen J; Vasconcelos, Vítor; Antunes, Agostinho

    2012-07-01

    Cysteine-rich secretory proteins (CRISPs) are glycoproteins found exclusively in vertebrates and have broad diversified functions. They are hypothesized to play important roles in mammalian reproduction and in reptilian venom, where they disrupt homeostasis of the prey through several mechanisms, including among others, blockage of cyclic nucleotide-gated and voltage-gated ion channels and inhibition of smooth muscle contraction. We evaluated the molecular evolution of CRISPs in toxicoferan reptiles at both nucleotide and protein levels relative to their nonvenomous mammalian homologs. We show that the evolution of CRISP gene in these reptiles is significantly influenced by positive selection and in snakes (ω = 3.84) more than in lizards (ω = 2.33), whereas mammalian CRISPs were under strong negative selection (CRISP1 = 0.55, CRISP2 = 0.40, and CRISP3 = 0.68). The use of ancestral sequence reconstruction, mapping of mutations on the three-dimensional structure, and detailed evaluation of selection pressures suggests that the toxicoferan CRISPs underwent accelerated evolution aided by strong positive selection and directional mutagenesis, whereas their mammalian homologs are constrained by negative selection. Gene and protein-level selection analyses identified 41 positively selected sites in snakes and 14 sites in lizards. Most of these sites are located on the molecular surface (nearly 76% in snakes and 79% in lizards), whereas the backbone of the protein retains a highly conserved structural scaffold. Nearly 46% of the positively selected sites occur in the cysteine-rich domain of the protein. This directional mutagenesis, where the hotspots of mutations are found on the molecular surface and functional domains of the protein, acts as a diversifying mechanism for the exquisite biological targeting of CRISPs in toxicoferan reptiles. Finally, our analyses suggest that the evolution of toxicoferan-CRISP venoms might have been influenced by the specific predatory

  5. Estimating Divergence Time and Ancestral Effective Population Size of Bornean and Sumatran Orangutan Subspecies Using a Coalescent Hidden Markov Model

    DEFF Research Database (Denmark)

    Mailund, Thomas; Dutheil, Julien; Hobolth, Asger

    2011-01-01

    event has occurred to split them apart. The size of these segments of constant divergence depends on the recombination rate, but also on the speciation time, the effective population size of the ancestral population, as well as demographic effects and selection. Thus, inference of these parameters may......, and the ancestral effective population size. The model is efficient enough to allow inference on whole-genome data sets. We first investigate the power and consistency of the model with coalescent simulations and then apply it to the whole-genome sequences of the two orangutan sub-species, Bornean (P. p. pygmaeus......) and Sumatran (P. p. abelii) orangutans from the Orangutan Genome Project. We estimate the speciation time between the two sub-species to be thousand years ago and the effective population size of the ancestral orangutan species to be , consistent with recent results based on smaller data sets. We also report...

  6. Breadth of T cell responses after immunization with adenovirus vectors encoding ancestral antigens or polyvalent papillomavirus antigens

    DEFF Research Database (Denmark)

    Ragonnaud, Emeline; Pedersen, Anders Gorm; Holst, Peter Johannes

    2017-01-01

    - either by inducing cross-reactive T cells or by administering a polyvalent vaccine. To test these strategies, we designed 3 ancestral and 2 circulating sequences based on the two domains of the E1 and E2 proteins of papillomaviruses (PVs) that exhibit the highest degree of conservation in comparison...... circulating strains and a putative ancestor of oncogenic HPVs, we showed that the ancestral vaccine antigen has to be approximately 90% identical to the circulating PVs before a marked drop of ~90% mean CD8+ T cell responses ensues. Interestingly, the combination of two or three type-specific PV vaccines did...... not induce a significant decrease of the CD8+ T cell response to the individual targeted PV types. Polyvalent HPV vaccine based on the E1 and E2 proteins seem to be capable of triggering responses towards more than one type of PV while the cross-reactivity of ancestral vaccine seems insufficient...

  7. Petrologic, tectonic, and metallogenic evolution of the southern segment of the ancestral Cascades magmatic arc, California and Nevada

    Science.gov (United States)

    du Bray, Edward A.; John, David A.; Cousens, Brian L.

    2013-01-01

    Ongoing arc magmatism along western North America was preceded by ancestral arc magmatism that began ca. 45 Ma and evolved into modern arc volcanism. The southern ancestral arc segment, active from ca. 30 to 3 Ma, adjoins the northern segment in northern California across a proposed subducted slab tear. The east edge of the Walker Lane approximates the east edge of the southern arc whose products, mostly erupted from stratovolcanoes and lava dome complexes arrayed along the crest of the ancestral arc, extend down the west flank of the Sierra Nevada. Southern arc segment rocks include potassic, calc-alkaline intermediate- to silicic-composition lava flows, lava dome complexes, and associated volcaniclastic deposits.

  8. The primordial metabolism: an ancestral interconnection between leucine, arginine, and lysine biosynthesis

    Science.gov (United States)

    Fondi, Marco; Brilli, Matteo; Emiliani, Giovanni; Paffetti, Donatella; Fani, Renato

    2007-01-01

    Background It is generally assumed that primordial cells had small genomes with simple genes coding for enzymes able to react with a wide range of chemically related substrates, interconnecting different metabolic routes. New genes coding for enzymes with a narrowed substrate specificity arose by paralogous duplication(s) of ancestral ones and evolutionary divergence. In this way new metabolic pathways were built up by primordial cells. Useful hints to disclose the origin and evolution of ancestral metabolic routes and their interconnections can be obtained by comparing sequences of enzymes involved in the same or different metabolic routes. From this viewpoint, the lysine, arginine, and leucine biosynthetic routes represent very interesting study-models. Some of the lys, arg and leu genes are paralogs; this led to the suggestion that their ancestor genes might interconnect the three pathways. The aim of this work was to trace the evolutionary pathway leading to the appearance of the extant biosynthetic routes and to try to disclose the interrelationships existing between them and other pathways in the early stages of cellular evolution. Results The comparative analysis of the genes involved in the biosynthesis of lysine, leucine, and arginine, their phylogenetic distribution and analysis revealed that the extant metabolic "grids" and their interrelationships might be the outcome of a cascade of duplication of ancestral genes that, according to the patchwork hypothesis, coded for unspecific enzymes able to react with a wide range of substrates. These genes belonged to a single common pathway in which the three biosynthetic routes were highly interconnected between them and also to methionine, threonine, and cell wall biosynthesis. A possible evolutionary model leading to the extant metabolic scenarios was also depicted. Conclusion The whole body of data obtained in this work suggests that primordial cells synthesized leucine, lysine, and arginine through a single

  9. Mammalian Sperm Motility: Observation and Theory

    KAUST Repository

    Gaffney, E.A.

    2011-01-21

    Mammalian spermatozoa motility is a subject of growing importance because of rising human infertility and the possibility of improving animal breeding. We highlight opportunities for fluid and continuum dynamics to provide novel insights concerning the mechanics of these specialized cells, especially during their remarkable journey to the egg. The biological structure of the motile sperm appendage, the flagellum, is described and placed in the context of the mechanics underlying the migration of mammalian sperm through the numerous environments of the female reproductive tract. This process demands certain specific changes to flagellar movement and motility for which further mechanical insight would be valuable, although this requires improved modeling capabilities, particularly to increase our understanding of sperm progression in vivo. We summarize current theoretical studies, highlighting the synergistic combination of imaging and theory in exploring sperm motility, and discuss the challenges for future observational and theoretical studies in understanding the underlying mechanics. © 2011 by Annual Reviews. All rights reserved.

  10. Scaling up the curvature of mammalian metabolism

    Directory of Open Access Journals (Sweden)

    Juan eBueno

    2014-10-01

    Full Text Available A curvilinear relationship between mammalian metabolic rate and body size on a log-log scale has been adopted in lieu of thelongstanding concept of a 3/4 allometric relationship (Kolokotrones et al. 2010. The central tenet of Metabolic Ecology (ME states that metabolism at the individual level scales-up to drive the ecology of populations, communities and ecosystems. If this tenet is correct, the curvature of metabolism should be perceived in other ecological traits. By analyzing the size scaling allometry of eight different mammalian traits including basal and field metabolic rate, offspring biomass production, ingestion rate, costs of locomotion, life span, population growth rate and population density we show that the curvature affects most ecological rates and

  11. ReAS: Recovery of ancestral sequences for transposable elements from the unassembled reads of a whole genome shotgun

    DEFF Research Database (Denmark)

    Li, Ruiqiang; Ye, Jia; Li, Songgang

    2005-01-01

    We describe an algorithm, ReAS, to recover ancestral sequences for transposable elements (TEs) from the unassembled reads of a whole genome shotgun. The main assumptions are that these TEs must exist at high copy numbers across the genome and must not be so old that they are no longer recognizable...... in comparison to their ancestral sequences. Tested on the japonica rice genome, ReAS was able to reconstruct all of the high copy sequences in the Repbase repository of known TEs, and increase the effectiveness of RepeatMasker in identifying TEs from genome sequences. Udgivelsesdato: 2005-Sep...

  12. Structure and function of mammalian cilia

    DEFF Research Database (Denmark)

    Satir, Peter; Christensen, Søren T

    2008-01-01

    In the past half century, beginning with electron microscopic studies of 9 + 2 motile and 9 + 0 primary cilia, novel insights have been obtained regarding the structure and function of mammalian cilia. All cilia can now be viewed as sensory cellular antennae that coordinate a large number...... of cellular signaling pathways, sometimes coupling the signaling to ciliary motility or alternatively to cell division and differentiation. This view has had unanticipated consequences for our understanding of developmental processes and human disease....

  13. Mammalian evolution may not be strictly bifurcating.

    Science.gov (United States)

    Hallström, Björn M; Janke, Axel

    2010-12-01

    The massive amount of genomic sequence data that is now available for analyzing evolutionary relationships among 31 placental mammals reduces the stochastic error in phylogenetic analyses to virtually zero. One would expect that this would make it possible to finally resolve controversial branches in the placental mammalian tree. We analyzed a 2,863,797 nucleotide-long alignment (3,364 genes) from 31 placental mammals for reconstructing their evolution. Most placental mammalian relationships were resolved, and a consensus of their evolution is emerging. However, certain branches remain difficult or virtually impossible to resolve. These branches are characterized by short divergence times in the order of 1-4 million years. Computer simulations based on parameters from the real data show that as little as about 12,500 amino acid sites could be sufficient to confidently resolve short branches as old as about 90 million years ago (Ma). Thus, the amount of sequence data should no longer be a limiting factor in resolving the relationships among placental mammals. The timing of the early radiation of placental mammals coincides with a period of climate warming some 100-80 Ma and with continental fragmentation. These global processes may have triggered the rapid diversification of placental mammals. However, the rapid radiations of certain mammalian groups complicate phylogenetic analyses, possibly due to incomplete lineage sorting and introgression. These speciation-related processes led to a mosaic genome and conflicting phylogenetic signals. Split network methods are ideal for visualizing these problematic branches and can therefore depict data conflict and possibly the true evolutionary history better than strictly bifurcating trees. Given the timing of tectonics, of placental mammalian divergences, and the fossil record, a Laurasian rather than Gondwanan origin of placental mammals seems the most parsimonious explanation.

  14. Radiation effects in mammalian cells in vitro

    International Nuclear Information System (INIS)

    Hill, C.K.; Han, A.; Elkind, M.M.; Wells, R.L.; Buess, E.M.; Lin, C.M.

    1985-01-01

    The purpose of this research effort is to elucidate the mechanisms for the radiation-induced changes in mammalian cells that lead to cell death, mutation, neoplastic transformation, DNA damage, and chromosomal alterations. Of particular interest are the effects of low-dose-rate and fractionated irradiation on these end points with respect to the mechanisms whereby these effects are influenced by cellular repair processes, inhibitors, and promoters that act at the genetic or biochemical level. 17 refs

  15. Glia in mammalian development and disease

    OpenAIRE

    Zuchero, J. Bradley; Barres, Ben A.

    2015-01-01

    Glia account for more than half of the cells in the mammalian nervous system, and the past few decades have witnessed a flood of studies that detail novel functions for glia in nervous system development, plasticity and disease. Here, and in the accompanying poster, we review the origins of glia and discuss their diverse roles during development, in the adult nervous system and in the context of disease.

  16. Basic Techniques in Mammalian Cell Tissue Culture.

    Science.gov (United States)

    Phelan, Katy; May, Kristin M

    2016-11-01

    Cultured mammalian cells are used extensively in cell biology studies. It requires a number of special skills in order to be able to preserve the structure, function, behavior, and biology of the cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  17. Effects of ancestral x irradiation followed by random mating on body weight of rats

    International Nuclear Information System (INIS)

    Gianola, D.; Chapman, A.B.; Rutledge, J.J.

    1977-01-01

    Effects of nine generations of 450R per generation of ancestral spermatogonial x irradiation of inbred rats on body weight were examined. After six generations of random mating (avoiding inbreeding) following the termination of irradiation, descendants of irradiated males (R) were significantly lighter than their controls (C) at 3 and 6 weeks, but not at 10 weeks of age. However, differences in growth between R and C populations were small. Among-litter and within-litter variance estimates were generally larger in the R lines than in the C lines, suggesting that selection responses would be greater in R than in C lines. In conjunction with previous evidence--obtained during the irradiation phase of the experiment--this suggested that more rapid response to selection for 6-week body weight, in particular, might accrue in the R lines

  18. A phenol-enriched cuticle is ancestral to lignin evolution in land plants.

    Science.gov (United States)

    Renault, Hugues; Alber, Annette; Horst, Nelly A; Basilio Lopes, Alexandra; Fich, Eric A; Kriegshauser, Lucie; Wiedemann, Gertrud; Ullmann, Pascaline; Herrgott, Laurence; Erhardt, Mathieu; Pineau, Emmanuelle; Ehlting, Jürgen; Schmitt, Martine; Rose, Jocelyn K C; Reski, Ralf; Werck-Reichhart, Danièle

    2017-03-08

    Lignin, one of the most abundant biopolymers on Earth, derives from the plant phenolic metabolism. It appeared upon terrestrialization and is thought critical for plant colonization of land. Early diverging land plants do not form lignin, but already have elements of its biosynthetic machinery. Here we delete in a moss the P450 oxygenase that defines the entry point in angiosperm lignin metabolism, and find that its pre-lignin pathway is essential for development. This pathway does not involve biochemical regulation via shikimate coupling, but instead is coupled with ascorbate catabolism, and controls the synthesis of the moss cuticle, which prevents desiccation and organ fusion. These cuticles share common features with lignin, cutin and suberin, and may represent the extant representative of a common ancestor. Our results demonstrate a critical role for the ancestral phenolic metabolism in moss erect growth and cuticle permeability, consistent with importance in plant adaptation to terrestrial conditions.

  19. Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor

    Science.gov (United States)

    Baldwin, Maude W.; Toda, Yasuka; Nakagita, Tomoya; O'Connell, Mary J.; Klasing, Kirk C.; Misaka, Takumi; Edwards, Scott V.; Liberles, Stephen D.

    2015-01-01

    Sensory systems define an animal's capacity for perception and can evolve to promote survival in new environmental niches. We have uncovered a noncanonical mechanism for sweet taste perception that evolved in hummingbirds since their divergence from insectivorous swifts, their closest relatives. We observed the widespread absence in birds of an essential subunit (T1R2) of the only known vertebrate sweet receptor, raising questions about how specialized nectar feeders such as hummingbirds sense sugars. Receptor expression studies revealed that the ancestral umami receptor (the T1R1-T1R3 heterodimer) was repurposed in hummingbirds to function as a carbohydrate receptor. Furthermore, the molecular recognition properties of T1R1-T1R3 guided taste behavior in captive and wild hummingbirds. We propose that changing taste receptor function enabled hummingbirds to perceive and use nectar, facilitating the massive radiation of hummingbird species. PMID:25146290

  20. Sensory biology. Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor.

    Science.gov (United States)

    Baldwin, Maude W; Toda, Yasuka; Nakagita, Tomoya; O'Connell, Mary J; Klasing, Kirk C; Misaka, Takumi; Edwards, Scott V; Liberles, Stephen D

    2014-08-22

    Sensory systems define an animal's capacity for perception and can evolve to promote survival in new environmental niches. We have uncovered a noncanonical mechanism for sweet taste perception that evolved in hummingbirds since their divergence from insectivorous swifts, their closest relatives. We observed the widespread absence in birds of an essential subunit (T1R2) of the only known vertebrate sweet receptor, raising questions about how specialized nectar feeders such as hummingbirds sense sugars. Receptor expression studies revealed that the ancestral umami receptor (the T1R1-T1R3 heterodimer) was repurposed in hummingbirds to function as a carbohydrate receptor. Furthermore, the molecular recognition properties of T1R1-T1R3 guided taste behavior in captive and wild hummingbirds. We propose that changing taste receptor function enabled hummingbirds to perceive and use nectar, facilitating the massive radiation of hummingbird species. Copyright © 2014, American Association for the Advancement of Science.

  1. Hagfish (cyclostomata, vertebrata): searching for the ancestral developmental plan of vertebrates.

    Science.gov (United States)

    Kuratani, Shigeru; Ota, Kinya G

    2008-02-01

    The phylogenetic position of the hagfish remains enigmatic. In contrast to molecular data that suggest monophyly of the cyclostomes, several morphological features imply a more ancestral state of this animal compared with the lampreys. To resolve this question requires an understanding of the embryology of the hagfish, especially of the neural crest. The early development of the hagfish has long remained a mystery. We collected a shallow-water-dwelling hagfish, Eptatretus burgeri, set up an aquarium tank designed to resemble its habitat, and successfully obtained several embryos. By observing the histology and expression of genes known to play fundamental roles in the neural crest, we found that the hagfish crest develops as delaminating migratory cells, as in other vertebrates. We conclude that the delaminating neural crest is a vertebrate synapomorphy that seems to have appeared from the beginning of their evolutionary history, before the splitting away of the hagfish lineage. (c) 2008 Wiley Periodicals, Inc.

  2. Mammalian Synthetic Biology: Engineering Biological Systems.

    Science.gov (United States)

    Black, Joshua B; Perez-Pinera, Pablo; Gersbach, Charles A

    2017-06-21

    The programming of new functions into mammalian cells has tremendous application in research and medicine. Continued improvements in the capacity to sequence and synthesize DNA have rapidly increased our understanding of mechanisms of gene function and regulation on a genome-wide scale and have expanded the set of genetic components available for programming cell biology. The invention of new research tools, including targetable DNA-binding systems such as CRISPR/Cas9 and sensor-actuator devices that can recognize and respond to diverse chemical, mechanical, and optical inputs, has enabled precise control of complex cellular behaviors at unprecedented spatial and temporal resolution. These tools have been critical for the expansion of synthetic biology techniques from prokaryotic and lower eukaryotic hosts to mammalian systems. Recent progress in the development of genome and epigenome editing tools and in the engineering of designer cells with programmable genetic circuits is expanding approaches to prevent, diagnose, and treat disease and to establish personalized theranostic strategies for next-generation medicines. This review summarizes the development of these enabling technologies and their application to transforming mammalian synthetic biology into a distinct field in research and medicine.

  3. Comparison of amphibian and mammalian thyroperoxidase ...

    Science.gov (United States)

    Thyroperoxidase (TPO) catalyzes the production of thyroid hormones in the vertebrate thyroid gland by oxidizing iodide (I- ) to produce iodinated tyrosines on thyroglobulin, and further coupling of specific mono- or di-iodinated tyrosines to generate the triiodo- and tetra-iodothyronine, precursors to thyroid hormone. This enzyme is a target for thyroid disrupting chemicals. TPO-inhibition by xenobiotics is a molecular initiating event that is known to perturb the thyroid axis by preventing synthesis of thyroid hormone. Previous work on TPO-inhibition has been focused on mammalian TPO; specifically, the rat and pig. A primary objective of this experiment was to directly measure TPO activity in a non-mammalian system, in this case a thyroid gland homogenate from Xenopus laevis; as well as compare chemical inhibition from past mammalian studies to the amphibian data generated. Thyroid glands obtained from X. laevis tadpoles at NF stages 58-60, were pooled and homogenized by sonication in phosphate buffer. This homogenate was then used to test 24 chemicals for inhibition of TPO as measured by conversion of Amplex UltraRed (AUR) substrate to its fluorescent product. The test chemicals were selected based upon previous results from rat in vitro TPO assays, and X. laevis in vitro and in vivo studies for thyroid disrupting endpoints, and included both positive and negative chemicals in these assays. An initial screening of the chemicals was done at a single high con

  4. Evolution of the mammalian lysozyme gene family

    Science.gov (United States)

    2011-01-01

    Background Lysozyme c (chicken-type lysozyme) has an important role in host defense, and has been extensively studied as a model in molecular biology, enzymology, protein chemistry, and crystallography. Traditionally, lysozyme c has been considered to be part of a small family that includes genes for two other proteins, lactalbumin, which is found only in mammals, and calcium-binding lysozyme, which is found in only a few species of birds and mammals. More recently, additional testes-expressed members of this family have been identified in human and mouse, suggesting that the mammalian lysozyme gene family is larger than previously known. Results Here we characterize the extent and diversity of the lysozyme gene family in the genomes of phylogenetically diverse mammals, and show that this family contains at least eight different genes that likely duplicated prior to the diversification of extant mammals. These duplicated genes have largely been maintained, both in intron-exon structure and in genomic context, throughout mammalian evolution. Conclusions The mammalian lysozyme gene family is much larger than previously appreciated and consists of at least eight distinct genes scattered around the genome. Since the lysozyme c and lactalbumin proteins have acquired very different functions during evolution, it is likely that many of the other members of the lysozyme-like family will also have diverse and unexpected biological properties. PMID:21676251

  5. Evolution of the mammalian lysozyme gene family

    Directory of Open Access Journals (Sweden)

    Biegel Jason M

    2011-06-01

    Full Text Available Abstract Background Lysozyme c (chicken-type lysozyme has an important role in host defense, and has been extensively studied as a model in molecular biology, enzymology, protein chemistry, and crystallography. Traditionally, lysozyme c has been considered to be part of a small family that includes genes for two other proteins, lactalbumin, which is found only in mammals, and calcium-binding lysozyme, which is found in only a few species of birds and mammals. More recently, additional testes-expressed members of this family have been identified in human and mouse, suggesting that the mammalian lysozyme gene family is larger than previously known. Results Here we characterize the extent and diversity of the lysozyme gene family in the genomes of phylogenetically diverse mammals, and show that this family contains at least eight different genes that likely duplicated prior to the diversification of extant mammals. These duplicated genes have largely been maintained, both in intron-exon structure and in genomic context, throughout mammalian evolution. Conclusions The mammalian lysozyme gene family is much larger than previously appreciated and consists of at least eight distinct genes scattered around the genome. Since the lysozyme c and lactalbumin proteins have acquired very different functions during evolution, it is likely that many of the other members of the lysozyme-like family will also have diverse and unexpected biological properties.

  6. Wiring a periscope--ocelli, retinula axons, visual neuropils and the ancestrality of sea spiders.

    Science.gov (United States)

    Lehmann, Tobias; Hess, Martin; Melzer, Roland R

    2012-01-01

    The Pycnogonida or sea spiders are cryptic, eight-legged arthropods with four median ocelli in a 'periscope' or eye tubercle. In older attempts at reconstructing phylogeny they were Arthropoda incertae sedis, but recent molecular trees placed them as the sister group either to all other euchelicerates or even to all euarthropods. Thus, pycnogonids are among the oldest extant arthropods and hold a key position for the understanding of arthropod evolution. This has stimulated studies of new sets of characters conductive to cladistic analyses, e.g. of the chelifores and of the hox gene expression pattern. In contrast knowledge of the architecture of the visual system is cursory. A few studies have analysed the ocelli and the uncommon "pseudoinverted" retinula cells. Moreover, analyses of visual neuropils are still at the stage of Hanström's early comprehensive works. We have therefore used various techniques to analyse the visual fibre pathways and the structure of their interrelated neuropils in several species. We found that pycnogonid ocelli are innervated to first and second visual neuropils in close vicinity to an unpaired midline neuropil, i.e. possibly the arcuate body, in a way very similar to ancestral euarthropods like Euperipatoides rowelli (Onychophora) and Limulus polyphemus (Xiphosura). This supports the ancestrality of pycnogonids and sheds light on what eyes in the pycnogonid ground plan might have 'looked' like. Recently it was suggested that arthropod eyes originated from simple ocelli similar to larval eyes. Hence, pycnogonid eyes would be one of the early offshoots among the wealth of more sophisticated arthropod eyes.

  7. Wiring a periscope--ocelli, retinula axons, visual neuropils and the ancestrality of sea spiders.

    Directory of Open Access Journals (Sweden)

    Tobias Lehmann

    Full Text Available The Pycnogonida or sea spiders are cryptic, eight-legged arthropods with four median ocelli in a 'periscope' or eye tubercle. In older attempts at reconstructing phylogeny they were Arthropoda incertae sedis, but recent molecular trees placed them as the sister group either to all other euchelicerates or even to all euarthropods. Thus, pycnogonids are among the oldest extant arthropods and hold a key position for the understanding of arthropod evolution. This has stimulated studies of new sets of characters conductive to cladistic analyses, e.g. of the chelifores and of the hox gene expression pattern. In contrast knowledge of the architecture of the visual system is cursory. A few studies have analysed the ocelli and the uncommon "pseudoinverted" retinula cells. Moreover, analyses of visual neuropils are still at the stage of Hanström's early comprehensive works. We have therefore used various techniques to analyse the visual fibre pathways and the structure of their interrelated neuropils in several species. We found that pycnogonid ocelli are innervated to first and second visual neuropils in close vicinity to an unpaired midline neuropil, i.e. possibly the arcuate body, in a way very similar to ancestral euarthropods like Euperipatoides rowelli (Onychophora and Limulus polyphemus (Xiphosura. This supports the ancestrality of pycnogonids and sheds light on what eyes in the pycnogonid ground plan might have 'looked' like. Recently it was suggested that arthropod eyes originated from simple ocelli similar to larval eyes. Hence, pycnogonid eyes would be one of the early offshoots among the wealth of more sophisticated arthropod eyes.

  8. Wiring a Periscope – Ocelli, Retinula Axons, Visual Neuropils and the Ancestrality of Sea Spiders

    Science.gov (United States)

    Lehmann, Tobias; Heß, Martin; Melzer, Roland R.

    2012-01-01

    The Pycnogonida or sea spiders are cryptic, eight-legged arthropods with four median ocelli in a ‘periscope’ or eye tubercle. In older attempts at reconstructing phylogeny they were Arthropoda incertae sedis, but recent molecular trees placed them as the sister group either to all other euchelicerates or even to all euarthropods. Thus, pycnogonids are among the oldest extant arthropods and hold a key position for the understanding of arthropod evolution. This has stimulated studies of new sets of characters conductive to cladistic analyses, e.g. of the chelifores and of the hox gene expression pattern. In contrast knowledge of the architecture of the visual system is cursory. A few studies have analysed the ocelli and the uncommon “pseudoinverted” retinula cells. Moreover, analyses of visual neuropils are still at the stage of Hanström's early comprehensive works. We have therefore used various techniques to analyse the visual fibre pathways and the structure of their interrelated neuropils in several species. We found that pycnogonid ocelli are innervated to first and second visual neuropils in close vicinity to an unpaired midline neuropil, i.e. possibly the arcuate body, in a way very similar to ancestral euarthropods like Euperipatoides rowelli (Onychophora) and Limulus polyphemus (Xiphosura). This supports the ancestrality of pycnogonids and sheds light on what eyes in the pycnogonid ground plan might have ‘looked’ like. Recently it was suggested that arthropod eyes originated from simple ocelli similar to larval eyes. Hence, pycnogonid eyes would be one of the early offshoots among the wealth of more sophisticated arthropod eyes. PMID:22279594

  9. Ancestral Variations of the PCDHG Gene Cluster Predispose to Dyslexia in a Multiplex Family

    Directory of Open Access Journals (Sweden)

    Teesta Naskar

    2018-02-01

    Full Text Available Dyslexia is a heritable neurodevelopmental disorder characterized by difficulties in reading and writing. In this study, we describe the identification of a set of 17 polymorphisms located across 1.9 Mb region on chromosome 5q31.3, encompassing genes of the PCDHG cluster, TAF7, PCDH1 and ARHGAP26, dominantly inherited with dyslexia in a multi-incident family. Strikingly, the non-risk form of seven variations of the PCDHG cluster, are preponderant in the human lineage, while risk alleles are ancestral and conserved across Neanderthals to non-human primates. Four of these seven ancestral variations (c.460A > C [p.Ile154Leu], c.541G > A [p.Ala181Thr], c.2036G > C [p.Arg679Pro] and c.2059A > G [p.Lys687Glu] result in amino acid alterations. p.Ile154Leu and p.Ala181Thr are present at EC2: EC3 interacting interface of γA3-PCDH and γA4-PCDH respectively might affect trans-homophilic interaction and hence neuronal connectivity. p.Arg679Pro and p.Lys687Glu are present within the linker region connecting trans-membrane to extracellular domain. Sequence analysis indicated the importance of p.Ile154, p.Arg679 and p.Lys687 in maintaining class specificity. Thus the observed association of PCDHG genes encoding neural adhesion proteins reinforces the hypothesis of aberrant neuronal connectivity in the pathophysiology of dyslexia. Additionally, the striking conservation of the identified variants indicates a role of PCDHG in the evolution of highly specialized cognitive skills critical to reading.

  10. Inferring genome-wide patterns of admixture in Qataris using fifty-five ancestral populations

    Directory of Open Access Journals (Sweden)

    Omberg Larsson

    2012-06-01

    Full Text Available Abstract Background Populations of the Arabian Peninsula have a complex genetic structure that reflects waves of migrations including the earliest human migrations from Africa and eastern Asia, migrations along ancient civilization trading routes and colonization history of recent centuries. Results Here, we present a study of genome-wide admixture in this region, using 156 genotyped individuals from Qatar, a country located at the crossroads of these migration patterns. Since haplotypes of these individuals could have originated from many different populations across the world, we have developed a machine learning method "SupportMix" to infer loci-specific genomic ancestry when simultaneously analyzing many possible ancestral populations. Simulations show that SupportMix is not only more accurate than other popular admixture discovery tools but is the first admixture inference method that can efficiently scale for simultaneous analysis of 50-100 putative ancestral populations while being independent of prior demographic information. Conclusions By simultaneously using the 55 world populations from the Human Genome Diversity Panel, SupportMix was able to extract the fine-scale ancestry of the Qatar population, providing many new observations concerning the ancestry of the region. For example, as well as recapitulating the three major sub-populations in Qatar, composed of mainly Arabic, Persian, and African ancestry, SupportMix additionally identifies the specific ancestry of the Persian group to populations sampled in Greater Persia rather than from China and the ancestry of the African group to sub-Saharan origin and not Southern African Bantu origin as previously thought.

  11. Ancestral Variations of the PCDHG Gene Cluster Predispose to Dyslexia in a Multiplex Family.

    Science.gov (United States)

    Naskar, Teesta; Faruq, Mohammed; Banerjee, Priyajit; Khan, Massarat; Midha, Rashi; Kumari, Renu; Devasenapathy, Subhashree; Prajapati, Bharat; Sengupta, Sanghamitra; Jain, Deepti; Mukerji, Mitali; Singh, Nandini Chatterjee; Sinha, Subrata

    2018-02-01

    Dyslexia is a heritable neurodevelopmental disorder characterized by difficulties in reading and writing. In this study, we describe the identification of a set of 17 polymorphisms located across 1.9Mb region on chromosome 5q31.3, encompassing genes of the PCDHG cluster, TAF7, PCDH1 and ARHGAP26, dominantly inherited with dyslexia in a multi-incident family. Strikingly, the non-risk form of seven variations of the PCDHG cluster, are preponderant in the human lineage, while risk alleles are ancestral and conserved across Neanderthals to non-human primates. Four of these seven ancestral variations (c.460A>C [p.Ile154Leu], c.541G>A [p.Ala181Thr], c.2036G>C [p.Arg679Pro] and c.2059A>G [p.Lys687Glu]) result in amino acid alterations. p.Ile154Leu and p.Ala181Thr are present at EC2: EC3 interacting interface of γA3-PCDH and γA4-PCDH respectively might affect trans-homophilic interaction and hence neuronal connectivity. p.Arg679Pro and p.Lys687Glu are present within the linker region connecting trans-membrane to extracellular domain. Sequence analysis indicated the importance of p.Ile154, p.Arg679 and p.Lys687 in maintaining class specificity. Thus the observed association of PCDHG genes encoding neural adhesion proteins reinforces the hypothesis of aberrant neuronal connectivity in the pathophysiology of dyslexia. Additionally, the striking conservation of the identified variants indicates a role of PCDHG in the evolution of highly specialized cognitive skills critical to reading. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Evolutionary History of Assassin Bugs (Insecta: Hemiptera: Reduviidae): Insights from Divergence Dating and Ancestral State Reconstruction

    Science.gov (United States)

    Hwang, Wei Song; Weirauch, Christiane

    2012-01-01

    Assassin bugs are one of the most successful clades of predatory animals based on their species numbers (∼6,800 spp.) and wide distribution in terrestrial ecosystems. Various novel prey capture strategies and remarkable prey specializations contribute to their appeal as a model to study evolutionary pathways involved in predation. Here, we reconstruct the most comprehensive reduviid phylogeny (178 taxa, 18 subfamilies) to date based on molecular data (5 markers). This phylogeny tests current hypotheses on reduviid relationships emphasizing the polyphyletic Reduviinae and the blood-feeding, disease-vectoring Triatominae, and allows us, for the first time in assassin bugs, to reconstruct ancestral states of prey associations and microhabitats. Using a fossil-calibrated molecular tree, we estimated divergence times for key events in the evolutionary history of Reduviidae. Our results indicate that the polyphyletic Reduviinae fall into 11–14 separate clades. Triatominae are paraphyletic with respect to the reduviine genus Opisthacidius in the maximum likelihood analyses; this result is in contrast to prior hypotheses that found Triatominae to be monophyletic or polyphyletic and may be due to the more comprehensive taxon and character sampling in this study. The evolution of blood-feeding may thus have occurred once or twice independently among predatory assassin bugs. All prey specialists evolved from generalist ancestors, with multiple evolutionary origins of termite and ant specializations. A bark-associated life style on tree trunks is ancestral for most of the lineages of Higher Reduviidae; living on foliage has evolved at least six times independently. Reduviidae originated in the Middle Jurassic (178 Ma), but significant lineage diversification only began in the Late Cretaceous (97 Ma). The integration of molecular phylogenetics with fossil and life history data as presented in this paper provides insights into the evolutionary history of reduviids and clears

  13. Magmatism and Epithermal Gold-Silver Deposits of the Southern Ancestral Cascade Arc, Western Nevada and Eastern California

    Science.gov (United States)

    John, David A.; du Bray, Edward A.; Henry, Christopher D.; Vikre, Peter

    2015-01-01

    Many epithermal gold-silver deposits are temporally and spatially associated with late Oligocene to Pliocene magmatism of the southern ancestral Cascade arc in western Nevada and eastern California. These deposits, which include both quartz-adularia (low- and intermediate-sulfidation; Comstock Lode, Tonopah, Bodie) and quartz-alunite (high-sulfidation; Goldfield, Paradise Peak) types, were major producers of gold and silver. Ancestral Cascade arc magmatism preceded that of the modern High Cascades arc and reflects subduction of the Farallon plate beneath North America. Ancestral arc magmatism began about 45 Ma, continued until about 3 Ma, and extended from near the Canada-United States border in Washington southward to about 250 km southeast of Reno, Nevada. The ancestral arc was split into northern and southern segments across an inferred tear in the subducting slab between Mount Shasta and Lassen Peak in northern California. The southern segment extends between 42°N in northern California and 37°N in western Nevada and was active from about 30 to 3 Ma. It is bounded on the east by the northeast edge of the Walker Lane. Ancestral arc volcanism represents an abrupt change in composition and style of magmatism relative to that in central Nevada. Large volume, caldera-forming, silicic ignimbrites associated with the 37 to 19 Ma ignimbrite flareup are dominant in central Nevada, whereas volcanic centers of the ancestral arc in western Nevada consist of andesitic stratovolcanoes and dacitic to rhyolitic lava domes that mostly formed between 25 and 4 Ma. Both ancestral arc and ignimbrite flareup magmatism resulted from rollback of the shallowly dipping slab that began about 45 Ma in northeast Nevada and migrated south-southwest with time. Most southern segment ancestral arc rocks have oxidized, high potassium, calc-alkaline compositions with silica contents ranging continuously from about 55 to 77 wt%. Most lavas are porphyritic and contain coarse plagioclase

  14. Pharmacological and biochemical properties of the benzodiazepine-GABA receptor in codfish brain in comparison with mammalian brain

    International Nuclear Information System (INIS)

    Deng, L.

    1989-01-01

    The GABA receptor of codfish brain is encoded by an ancestral gene of the mammalian GABA receptor based on phylogenetic studies. The mammalian GABA receptor consists of at least two subunits (β and α) which could be photoaffinity labeled by the GABA agonist [ 3 H]muscimol (57 kDa) and the benzodiazepine (BZ) agonist [ 3 H]flunitrazepam (52 kDa), respectively. In contrast, electrophoresis of codfish GABA receptor photoaffinity labeled by the same ligands showed a single radioactive peak on sodium dodecyl surface polyarcylamide gel, giving rise to a relative molecular weight of 56-57 kDa equivalent to the β subunit of 57 kDa in mammals. The homogeneity of purified receptor using benzodiazepine (Ro 7-1986/1) affinity chromatography was further verified by two-dimensional gel electrophoresis based on isoelectric point and molecular weight, in addition to a single band on a silver stained gel and specific activity. The receptor density and affinity constant for [ 3 H]muscimol and [ 3 H]flunitrazepam are comparable to those in bovine, rate, and human brain

  15. Birds--same thing, but different? Convergent evolution in the avian and mammalian auditory systems provides informative comparative models.

    Science.gov (United States)

    Köppl, Christine

    2011-03-01

    Birds have been and continue to be enlightening, comparative models in auditory research. This review highlights their particular appeal as a vertebrate group that evolved independently a similar division of labour to that seen in the mammalian cochlea, between classic sensory hair cells and hair cells specialising in amplification. Through studying both the similarities and differences between the avian and mammalian inner ear, profound insights into the principles of operation of such a divided system may be gained. For example, the prevailing model of the relationship between basilar-membrane displacement and afferent rate-level functions in mammals is reinforced by characteristic differences observed in birds, which correlate with known differences in basilar-papilla mechanics. Furthermore, birds arguably represent the most extreme case of hair cells using bundle motility for mechanical amplification at high frequencies, up to about 10 kHz. They should thus be informative for elucidating the operation and possibly the limitations of this ancestral amplifying mechanism at high frequencies. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Evidence for intron length conservation in a set of mammalian genes associated with embryonic development

    LENUS (Irish Health Repository)

    2011-10-05

    Abstract Background We carried out an analysis of intron length conservation across a diverse group of nineteen mammalian species. Motivated by recent research suggesting a role for time delays associated with intron transcription in gene expression oscillations required for early embryonic patterning, we searched for examples of genes that showed the most extreme conservation of total intron content in mammals. Results Gene sets annotated as being involved in pattern specification in the early embryo or containing the homeobox DNA-binding domain, were significantly enriched among genes with highly conserved intron content. We used ancestral sequences reconstructed with probabilistic models that account for insertion and deletion mutations to distinguish insertion and deletion events on lineages leading to human and mouse from their last common ancestor. Using a randomization procedure, we show that genes containing the homeobox domain show less change in intron content than expected, given the number of insertion and deletion events within their introns. Conclusions Our results suggest selection for gene expression precision or the existence of additional development-associated genes for which transcriptional delay is functionally significant.

  17. The mechanistic basis of hemoglobin adaptation in the high-flying barheaded goose: insights from ancestral protein resurrection

    DEFF Research Database (Denmark)

    Natarajan, Chandrasekhar; Kumar, Amit; Moriyama, Hideaki

    2016-01-01

    the functional effects of causative mutations on the genetic background in which they actually occurred during evolution (i.e., in the BHG ancestor). An alternative ‘vertical’ approach is to reconstruct and resurrect ancestral proteins to test the effects of historical mutations on the genetic background...

  18. microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate

    OpenAIRE

    Heimberg, Alysha M.; Cowper-Sallari, Richard; Semon, Marie; Donoghue, Philip C. J.; Peterson, Kevin J.

    2010-01-01

    Hagfish and lampreys are the only living representatives of the jawless vertebrates (agnathans), and compared with jawed vertebrates (gnathostomes), they provide insight into the embryology, genomics, and body plan of the ancestral vertebrate. However, this insight has been obscured by controversy over their interrelationships. Morphological cladistic analyses have identified lampreys and gnathostomes as closest relatives, whereas molecular phylogenetic studies recover a monophyletic Cyclosto...

  19. Intersection of opposing pedagogical frameworks: Native Hawaiian ancestral stories and scientific inquiry in a high school science class

    Science.gov (United States)

    Kanahele-Mossman, Huihui

    Inquiry is defined as "an examination into facts and principles." In science education science inquiry is a process through which important discoveries are made by students through scientific methodology. The most important step in this process is forming the right question. The questions formed by students are usually the wrong questions which deem the remainder of the inquiry process impotent. This research will look at the pedagogy of ancestral stories for a solution. For the researcher, ancestral stories were a source of wonderment and learning not only from the lessons the stories revealed but mainly from the questions that still remained after the stories were told. Questions such as "why does the eel only swim near that part?", or "why does the story only talk about the uhu?" are examples of questions that remained after experiencing an ancestral narrative. The research questions were composed for the purpose of finding compatibility between the two pedagogies. The first research question which reads "how can Native Hawaiian ancestral stories encourage an increased level of student driven interactions at all levels of feedback from Native Hawaiian students in science classroom" focuses the research on the level of student feedback that initiate questions. Question two which reads "how can teachers of Native Hawaiian students facilitate the construction of science inquiry projects from ancestral stories" addresses the skill of the teacher and imbeds the concept of pedagogical knowledge into the literature. The last research question "how do analysis and discussion of the stories connect Native Hawaiian students to their ancestral intelligence" examines the role of identity and identity to ancestral intelligence. The method intended for this research was Grounded theory which allows the researcher to develop principles, concepts and theories based on the data presented. Another method utilized in this research is an undocumented but culturally imbedded method

  20. Mammalian niche conservation through deep time.

    Directory of Open Access Journals (Sweden)

    Larisa R G DeSantis

    Full Text Available Climate change alters species distributions, causing plants and animals to move north or to higher elevations with current warming. Bioclimatic models predict species distributions based on extant realized niches and assume niche conservation. Here, we evaluate if proxies for niches (i.e., range areas are conserved at the family level through deep time, from the Eocene to the Pleistocene. We analyze the occurrence of all mammalian families in the continental USA, calculating range area, percent range area occupied, range area rank, and range polygon centroids during each epoch. Percent range area occupied significantly increases from the Oligocene to the Miocene and again from the Pliocene to the Pleistocene; however, mammalian families maintain statistical concordance between rank orders across time. Families with greater taxonomic diversity occupy a greater percent of available range area during each epoch and net changes in taxonomic diversity are significantly positively related to changes in percent range area occupied from the Eocene to the Pleistocene. Furthermore, gains and losses in generic and species diversity are remarkably consistent with ~2.3 species gained per generic increase. Centroids demonstrate southeastern shifts from the Eocene through the Pleistocene that may correspond to major environmental events and/or climate changes during the Cenozoic. These results demonstrate range conservation at the family level and support the idea that niche conservation at higher taxonomic levels operates over deep time and may be controlled by life history traits. Furthermore, families containing megafauna and/or terminal Pleistocene extinction victims do not incur significantly greater declines in range area rank than families containing only smaller taxa and/or only survivors, from the Pliocene to Pleistocene. Collectively, these data evince the resilience of families to climate and/or environmental change in deep time, the absence of

  1. Some principles of regeneration in mammalian systems.

    Science.gov (United States)

    Carlson, Bruce M

    2005-11-01

    This article presents some general principles underlying regenerative phenomena in vertebrates, starting with the epimorphic regeneration of the amphibian limb and continuing with tissue and organ regeneration in mammals. Epimorphic regeneration following limb amputation involves wound healing, followed shortly by a phase of dedifferentiation that leads to the formation of a regeneration blastema. Up to the point of blastema formation, dedifferentiation is guided by unique regenerative pathways, but the overall developmental controls underlying limb formation from the blastema generally recapitulate those of embryonic limb development. Damaged mammalian tissues do not form a blastema. At the cellular level, differentiation follows a pattern close to that seen in the embryo, but at the level of the tissue and organ, regeneration is strongly influenced by conditions inherent in the local environment. In some mammalian systems, such as the liver, parenchymal cells contribute progeny to the regenerate. In others, e.g., skeletal muscle and bone, tissue-specific progenitor cells constitute the main source of regenerating cells. The substrate on which regeneration occurs plays a very important role in determining the course of regeneration. Epimorphic regeneration usually produces an exact replica of the structure that was lost, but in mammalian tissue regeneration the form of the regenerate is largely determined by the mechanical environment acting on the regenerating tissue, and it is normally an imperfect replica of the original. In organ hypertophy, such as that occurring after hepatic resection, the remaining liver mass enlarges, but there is no attempt to restore the original form. (c) 2005 Wiley-Liss, Inc.

  2. Mammalian Synthetic Biology: Time for Big MACs.

    Science.gov (United States)

    Martella, Andrea; Pollard, Steven M; Dai, Junbiao; Cai, Yizhi

    2016-10-21

    The enabling technologies of synthetic biology are opening up new opportunities for engineering and enhancement of mammalian cells. This will stimulate diverse applications in many life science sectors such as regenerative medicine, development of biosensing cell lines, therapeutic protein production, and generation of new synthetic genetic regulatory circuits. Harnessing the full potential of these new engineering-based approaches requires the design and assembly of large DNA constructs-potentially up to chromosome scale-and the effective delivery of these large DNA payloads to the host cell. Random integration of large transgenes, encoding therapeutic proteins or genetic circuits into host chromosomes, has several drawbacks such as risks of insertional mutagenesis, lack of control over transgene copy-number and position-specific effects; these can compromise the intended functioning of genetic circuits. The development of a system orthogonal to the endogenous genome is therefore beneficial. Mammalian artificial chromosomes (MACs) are functional, add-on chromosomal elements, which behave as normal chromosomes-being replicating and portioned to daughter cells at each cell division. They are deployed as useful gene expression vectors as they remain independent from the host genome. MACs are maintained as a single-copy and can accommodate multiple gene expression cassettes of, in theory, unlimited DNA size (MACs up to 10 megabases have been constructed). MACs therefore enabled control over ectopic gene expression and represent an excellent platform to rapidly prototype and characterize novel synthetic gene circuits without recourse to engineering the host genome. This review describes the obstacles synthetic biologists face when working with mammalian systems and how the development of improved MACs can overcome these-particularly given the spectacular advances in DNA synthesis and assembly that are fuelling this research area.

  3. Chromosome evolution in kangaroos (Marsupialia: Macropodidae): cross species chromosome painting between the tammar wallaby and rock wallaby spp. with the 2n = 22 ancestral macropodid karyotype.

    Science.gov (United States)

    O'Neill, R J; Eldridge, M D; Toder, R; Ferguson-Smith, M A; O'Brien, P C; Graves, J A

    1999-06-01

    Marsupial mammals show extraordinary karyotype stability, with 2n = 14 considered ancestral. However, macropodid marsupials (kangaroos and wallabies) exhibit a considerable variety of karyotypes, with a hypothesised ancestral karyotype of 2n = 22. Speciation and karyotypic diversity in rock wallabies (Petrogale) is exceptional. We used cross species chromosome painting to examine the chromosome evolution between the tammar wallaby (2n = 16) and three 2n = 22 rock wallaby species groups with the putative ancestral karyotype. Hybridization of chromosome paints prepared from flow sorted chromosomes of the tammar wallaby to Petrogale spp., showed that this ancestral karyotype is largely conserved among 2n = 22 rock wallaby species, and confirmed the identity of ancestral chromosomes which fused to produce the bi-armed chromosomes of the 2n = 16 tammar wallaby. These results illustrate the fission-fusion process of karyotype evolution characteristic of the kangaroo group.

  4. Creation of Functional Viruses from Non-Functional cDNA Clones Obtained from an RNA Virus Population by the Use of Ancestral Reconstruction

    DEFF Research Database (Denmark)

    Fahnøe, Ulrik; Pedersen, Anders Gorm; Dräger, Carolin

    2015-01-01

    necessarily be the descendant of a functional ancestor, we hypothesized that it should be possible to produce functional clones by reconstructing ancestral sequences. To test this we used phylogenetic methods to infer two ancestral sequences, which were then reconstructed as cDNA clones. Viruses rescued from...... the reconstructed cDNAs were tested in cell culture and pigs. Both reconstructed ancestral genomes proved functional, and displayed distinct phenotypes in vitro and in vivo. We suggest that reconstruction of ancestral viruses is a useful tool for experimental and computational investigations of virulence and viral...... evolution. Importantly, ancestral reconstruction can be done even on the basis of a set of sequences that all correspond to non-functional variants....

  5. Preservation of mammalian germ plasm by freezing

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, P.

    1978-01-01

    Embryos of several mammalian species can be frozen to -196/sup 0/C (or below) by procedures that result in the thawed embryos being indistinguishable from their unfrozen counterparts. The survival often exceeds 90%, and in liquid nitrogen it should remain at that high level for centuries. Sublethal biochemical changes are also precluded at -196/sup 0/C. No developmental abnormalities have been detected in mouse offspring derived from frozen-thawed embryos, and, since all the manipulations are carried out on the preimplantation stages, none would be expected.

  6. Modeling Exposure of Mammalian Predatorsto Anticoagulant Rodenticides

    DEFF Research Database (Denmark)

    Topping, Christopher John; Elmeros, Morten

    2016-01-01

    and creates an exposure map based on spatio-temporal modelling of movement of mice-vectored AR (based on Apodemus flavicollis). Simulated predator territories are super-imposed over this exposure map to create an exposure index. Predictions from the model concur with field studies of AR prevalence both before...... high. We postulate that this is caused by widespread exposure due to widespread use of AR in Denmark in and around buildings. To investigate this theory a spatio-temporal model of AR use and mammalian predator distribution was created. This model was supported by data from an experimental study of mice...

  7. Mammalian developmental genetics in the twentieth century.

    Science.gov (United States)

    Artzt, Karen

    2012-12-01

    This Perspectives is a review of the breathtaking history of mammalian genetics in the past century and, in particular, of the ways in which genetic thinking has illuminated aspects of mouse development. To illustrate the power of that thinking, selected hypothesis-driven experiments and technical advances are discussed. Also included in this account are the beginnings of mouse genetics at the Bussey Institute, Columbia University, and The Jackson Laboratory and a retrospective discussion of one of the classic problems in developmental genetics, the T/t complex and its genetic enigmas.

  8. Nutrient acquisition strategies of mammalian cells.

    Science.gov (United States)

    Palm, Wilhelm; Thompson, Craig B

    2017-06-07

    Mammalian cells are surrounded by diverse nutrients, such as glucose, amino acids, various macromolecules and micronutrients, which they can import through transmembrane transporters and endolysosomal pathways. By using different nutrient sources, cells gain metabolic flexibility to survive periods of starvation. Quiescent cells take up sufficient nutrients to sustain homeostasis. However, proliferating cells depend on growth-factor-induced increases in nutrient uptake to support biomass formation. Here, we review cellular nutrient acquisition strategies and their regulation by growth factors and cell-intrinsic nutrient sensors. We also discuss how oncogenes and tumour suppressors promote nutrient uptake and thereby support the survival and growth of cancer cells.

  9. Better Smelling Through Genetics: Mammalian Odor Perception

    OpenAIRE

    Keller, Andreas; Vosshall, Leslie B.

    2008-01-01

    The increasing availability of genomic and genetic tools to study olfaction—the sense of smell—has brought important new insights into how this chemosensory modality functions in different species. Newly sequenced mammalian genomes—from platypus to dog—have made it possible to infer how smell has evolved to suit the needs of a given species and how variation within a species may affect individual olfactory perception. This review will focus on recent advances in the genetics and genomics of m...

  10. Trans-ancestral studies fine map the SLE-susceptibility locus TNFSF4.

    Directory of Open Access Journals (Sweden)

    Harinder Manku

    Full Text Available We previously established an 80 kb haplotype upstream of TNFSF4 as a susceptibility locus in the autoimmune disease SLE. SLE-associated alleles at this locus are associated with inflammatory disorders, including atherosclerosis and ischaemic stroke. In Europeans, the TNFSF4 causal variants have remained elusive due to strong linkage disequilibrium exhibited by alleles spanning the region. Using a trans-ancestral approach to fine-map the locus, utilising 17,900 SLE and control subjects including Amerindian/Hispanics (1348 cases, 717 controls, African-Americans (AA (1529, 2048 and better powered cohorts of Europeans and East Asians, we find strong association of risk alleles in all ethnicities; the AA association replicates in African-American Gullah (152,122. The best evidence of association comes from two adjacent markers: rs2205960-T (P=1.71 × 10(-34 , OR=1.43[1.26-1.60] and rs1234317-T (P=1.16 × 10(-28 , OR=1.38[1.24-1.54]. Inference of fine-scale recombination rates for all populations tested finds the 80 kb risk and non-risk haplotypes in all except African-Americans. In this population the decay of recombination equates to an 11 kb risk haplotype, anchored in the 5' region proximal to TNFSF4 and tagged by rs2205960-T after 1000 Genomes phase 1 (v3 imputation. Conditional regression analyses delineate the 5' risk signal to rs2205960-T and the independent non-risk signal to rs1234314-C. Our case-only and SLE-control cohorts demonstrate robust association of rs2205960-T with autoantibody production. The rs2205960-T is predicted to form part of a decameric motif which binds NF-κBp65 with increased affinity compared to rs2205960-G. ChIP-seq data also indicate NF-κB interaction with the DNA sequence at this position in LCL cells. Our research suggests association of rs2205960-T with SLE across multiple groups and an independent non-risk signal at rs1234314-C. rs2205960-T is associated with autoantibody production and lymphopenia. Our data

  11. Elongation Factor-Tu (EF-Tu) proteins structural stability and bioinformatics in ancestral gene reconstruction

    Science.gov (United States)

    Dehipawala, Sunil; Nguyen, A.; Tremberger, G.; Cheung, E.; Schneider, P.; Lieberman, D.; Holden, T.; Cheung, T.

    2013-09-01

    A paleo-experimental evolution report on elongation factor EF-Tu structural stability results has provided an opportunity to rewind the tape of life using the ancestral protein sequence reconstruction modeling approach; consistent with the book of life dogma in current biology and being an important component in the astrobiology community. Fractal dimension via the Higuchi fractal method and Shannon entropy of the DNA sequence classification could be used in a diagram that serves as a simple summary. Results from biomedical gene research provide examples on the diagram methodology. Comparisons between biomedical genes such as EEF2 (elongation factor 2 human, mouse, etc), WDR85 in epigenetics, HAR1 in human specificity, DLG1 in cognitive skill, and HLA-C in mosquito bite immunology with EF Tu DNA sequences have accounted for the reported circular dichroism thermo-stability data systematically; the results also infer a relatively less volatility geologic time period from 2 to 3 Gyr from adaptation viewpoint. Comparison to Thermotoga maritima MSB8 and Psychrobacter shows that Thermus thermophilus HB8 EF-Tu calibration sequence could be an outlier, consistent with free energy calculation by NUPACK. Diagram methodology allows computer simulation studies and HAR1 shows about 0.5% probability from chimp to human in terms of diagram location, and SNP simulation results such as amoebic meningoencephalitis NAF1 suggest correlation. Extensions to the studies of the translation and transcription elongation factor sequences in Megavirus Chiliensis, Megavirus Lba and Pandoravirus show that the studied Pandoravirus sequence could be an outlier with the highest fractal dimension and lowest entropy, as compared to chicken as a deviant in the DNMT3A DNA methylation gene sequences from zebrafish to human and to the less than one percent probability in computer simulation using the HAR1 0.5% probability as reference. The diagram methodology would be useful in ancestral gene

  12. Analysis on the reconstruction accuracy of the Fitch method for inferring ancestral states

    Directory of Open Access Journals (Sweden)

    Grünewald Stefan

    2011-01-01

    Full Text Available Abstract Background As one of the most widely used parsimony methods for ancestral reconstruction, the Fitch method minimizes the total number of hypothetical substitutions along all branches of a tree to explain the evolution of a character. Due to the extensive usage of this method, it has become a scientific endeavor in recent years to study the reconstruction accuracies of the Fitch method. However, most studies are restricted to 2-state evolutionary models and a study for higher-state models is needed since DNA sequences take the format of 4-state series and protein sequences even have 20 states. Results In this paper, the ambiguous and unambiguous reconstruction accuracy of the Fitch method are studied for N-state evolutionary models. Given an arbitrary phylogenetic tree, a recurrence system is first presented to calculate iteratively the two accuracies. As complete binary tree and comb-shaped tree are the two extremal evolutionary tree topologies according to balance, we focus on the reconstruction accuracies on these two topologies and analyze their asymptotic properties. Then, 1000 Yule trees with 1024 leaves are generated and analyzed to simulate real evolutionary scenarios. It is known that more taxa not necessarily increase the reconstruction accuracies under 2-state models. The result under N-state models is also tested. Conclusions In a large tree with many leaves, the reconstruction accuracies of using all taxa are sometimes less than those of using a leaf subset under N-state models. For complete binary trees, there always exists an equilibrium interval [a, b] of conservation probability, in which the limiting ambiguous reconstruction accuracy equals to the probability of randomly picking a state. The value b decreases with the increase of the number of states, and it seems to converge. When the conservation probability is greater than b, the reconstruction accuracies of the Fitch method increase rapidly. The reconstruction

  13. Ecology and evolution of mammalian biodiversity.

    Science.gov (United States)

    Jones, Kate E; Safi, Kamran

    2011-09-12

    Mammals have incredible biological diversity, showing extreme flexibility in eco-morphology, physiology, life history and behaviour across their evolutionary history. Undoubtedly, mammals play an important role in ecosystems by providing essential services such as regulating insect populations, seed dispersal and pollination and act as indicators of general ecosystem health. However, the macroecological and macroevolutionary processes underpinning past and present biodiversity patterns are only beginning to be explored on a global scale. It is also particularly important, in the face of the global extinction crisis, to understand these processes in order to be able to use this knowledge to prevent future biodiversity loss and loss of ecosystem services. Unfortunately, efforts to understand mammalian biodiversity have been hampered by a lack of data. New data compilations on current species' distributions, ecologies and evolutionary histories now allow an integrated approach to understand this biodiversity. We review and synthesize these new studies, exploring the past and present ecology and evolution of mammalian biodiversity, and use these findings to speculate about the mammals of our future.

  14. Redox regulation of mammalian sperm capacitation

    Directory of Open Access Journals (Sweden)

    Cristian O′Flaherty

    2015-01-01

    Full Text Available Capacitation is a series of morphological and metabolic changes necessary for the spermatozoon to achieve fertilizing ability. One of the earlier happenings during mammalian sperm capacitation is the production of reactive oxygen species (ROS that will trigger and regulate a series of events including protein phosphorylation, in a time-dependent fashion. The identity of the sperm oxidase responsible for the production of ROS involved in capacitation is still elusive, and several candidates are discussed in this review. Interestingly, ROS-induced ROS formation has been described during human sperm capacitation. Redox signaling during capacitation is associated with changes in thiol groups of proteins located on the plasma membrane and subcellular compartments of the spermatozoon. Both, oxidation of thiols forming disulfide bridges and the increase on thiol content are necessary to regulate different sperm proteins associated with capacitation. Reducing equivalents such as NADH and NADPH are necessary to support capacitation in many species including humans. Lactate dehydrogenase, glucose-6-phospohate dehydrogenase, and isocitrate dehydrogenase are responsible in supplying NAD (P H for sperm capacitation. Peroxiredoxins (PRDXs are newly described enzymes with antioxidant properties that can protect mammalian spermatozoa; however, they are also candidates for assuring the regulation of redox signaling required for sperm capacitation. The dysregulation of PRDXs and of enzymes needed for their reactivation such as thioredoxin/thioredoxin reductase system and glutathione-S-transferases impairs sperm motility, capacitation, and promotes DNA damage in spermatozoa leading to male infertility.

  15. Redox regulation of mammalian sperm capacitation

    Science.gov (United States)

    O’Flaherty, Cristian

    2015-01-01

    Capacitation is a series of morphological and metabolic changes necessary for the spermatozoon to achieve fertilizing ability. One of the earlier happenings during mammalian sperm capacitation is the production of reactive oxygen species (ROS) that will trigger and regulate a series of events including protein phosphorylation, in a time-dependent fashion. The identity of the sperm oxidase responsible for the production of ROS involved in capacitation is still elusive, and several candidates are discussed in this review. Interestingly, ROS-induced ROS formation has been described during human sperm capacitation. Redox signaling during capacitation is associated with changes in thiol groups of proteins located on the plasma membrane and subcellular compartments of the spermatozoon. Both, oxidation of thiols forming disulfide bridges and the increase on thiol content are necessary to regulate different sperm proteins associated with capacitation. Reducing equivalents such as NADH and NADPH are necessary to support capacitation in many species including humans. Lactate dehydrogenase, glucose-6-phospohate dehydrogenase, and isocitrate dehydrogenase are responsible in supplying NAD (P) H for sperm capacitation. Peroxiredoxins (PRDXs) are newly described enzymes with antioxidant properties that can protect mammalian spermatozoa; however, they are also candidates for assuring the regulation of redox signaling required for sperm capacitation. The dysregulation of PRDXs and of enzymes needed for their reactivation such as thioredoxin/thioredoxin reductase system and glutathione-S-transferases impairs sperm motility, capacitation, and promotes DNA damage in spermatozoa leading to male infertility. PMID:25926608

  16. Structure and function in mammalian societies.

    Science.gov (United States)

    Clutton-Brock, Tim

    2009-11-12

    Traditional interpretations of the evolution of animal societies have suggested that their structure is a consequence of attempts by individuals to maximize their inclusive fitness within constraints imposed by their social and physical environments. In contrast, some recent re-interpretations have argued that many aspects of social organization should be interpreted as group-level adaptations maintained by selection operating between groups or populations. Here, I review our current understanding of the evolution of mammalian societies, focusing, in particular, on the evolution of reproductive strategies in societies where one dominant female monopolizes reproduction in each group and her offspring are reared by other group members. Recent studies of the life histories of females in these species show that dispersing females often have little chance of establishing new breeding groups and so are likely to maximize their inclusive fitness by helping related dominants to rear their offspring. As in eusocial insects, increasing group size can lead to a progressive divergence in the selection pressures operating on breeders and helpers and to increasing specialization in their behaviour and life histories. As yet, there is little need to invoke group-level adaptations in order to account for the behaviour of individuals or the structure of mammalian groups.

  17. Expansion of the mammalian 3 beta-hydroxysteroid dehydrogenase/plant dihydroflavonol reductase superfamily to include a bacterial cholesterol dehydrogenase, a bacterial UDP-galactose-4-epimerase, and open reading frames in vaccinia virus and fish lymphocystis disease virus.

    Science.gov (United States)

    Baker, M E; Blasco, R

    1992-04-13

    Mammalian 3 beta-hydroxysteroid dehydrogenase and plant dihydroflavonol reductases are descended from a common ancestor. Here we present evidence that Nocardia cholesterol dehydrogenase, E. coli UDP-galactose-4 epimerase, and open reading frames in vaccinia virus and fish lymphocystis disease virus are homologous to 3 beta-hydroxysteroid dehydrogenase and dihydroflavonol reductase. Analysis of a multiple alignment of these sequences indicates that viral ORFs are most closely related to the mammalian 3 beta-hydroxysteroid dehydrogenases. The ancestral protein of this superfamily is likely to be one that metabolized sugar nucleotides. The sequence similarity between 3 beta-hydroxysteroid dehydrogenase and the viral ORFs is sufficient to suggest that these ORFs have an activity that is similar to 3 beta-hydroxysteroid dehydrogenase or cholesterol dehydrogenase, although the putative substrates are not yet known.

  18. Synthetic RNA Controllers for Programming Mammalian Cell Fate and Function

    Science.gov (United States)

    2015-11-04

    Final report for “Synthetic RNA controllers for programming mammalian cell fate and function” Principal Investigator: Christina D. Smolke...SUBTITLE Synthetic RNA controllers for programming mammalian cell fate and function 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18   2 Synthetic RNA controllers for programming mammalian cell fate and function Task 1

  19. Phylogenetic evidence for an ancestral coevolution between a major clade of coccidian parasites and elasmobranch hosts.

    Science.gov (United States)

    Xavier, Raquel; Santos, Joana L; Veríssimo, Ana

    2018-03-16

    Cartilaginous fishes are the oldest jawed vertebrates and are also reported to be the hosts of some of the most basal lineages of Cestoda and Aporocotylidae (Digenea) parasites. Recently a phylogenetic analysis of the coccidia (Apicomplexa) infecting marine vertebrates revealed that the lesser spotted dogfish harbours parasite lineages basal to Eimeria Schneider, 1875 and the group formed by Schellackia Reichenow, 1919, Lankesterella Ames, 1923, Caryospora Leger, 1904 and Isospora Schneider, 1881. In the present study we have found additional lineages of coccidian parasites infecting the cownose ray Rhinoptera bonasus Mitchill and the blue shark Prionace glauca Linnaeus. These lineages were also found as basal to species from the genera Lankesterella, Schellackia, Caryospora and Isospora infecting higher vertebrates. These results confirm previous phylogenetic assessments and suggest that these parasitic lineages first evolved in basal vertebrate hosts (i.e. Chondrichthyes), and that the more derived lineages infect higher vertebrates (e.g. birds and mammals) conforming to the evolution of their hosts. We hypothesise that elasmobranchs might host further ancestral parasite lineages harbouring unknown links of parasite evolution.

  20. Ancestral state reconstruction of ontogeny supports a bilaterian affinity for Dickinsonia.

    Science.gov (United States)

    Gold, David A; Runnegar, Bruce; Gehling, James G; Jacobs, David K

    2015-01-01

    Despite numerous attempts, classification of the Precambrian fossil Dickinsonia has eluded scientific consensus. This is largely because Dickinsonia and its relatives are structurally simple, lacking morphological synapomorphies to clarify their relationship to modern taxa. However, there is increasing precedence for using ontogeny to constrain enigmatic fossils, and growth of the type species Dickinsonia costata is well understood. This study formalizes the connection between ontogeny in Dickinsonia-which grows by the addition of metameric units onto one end of its primary axis-with terminal addition, defined as growth and patterning from a posterior, subtermial growth zone. We employ ancestral state reconstruction and stochastic character mapping to conclude that terminal addition is a synapomorphy of bilaterian animals. Thus, terminal addition allies Dickinsonia with the bilaterians, providing evidence that large stem- or crown-group bilaterians made up a significant proportion of the Precambrian biota. This study also illustrates the potential for combining developmental and phylogenetic data in constraining the placement of ancient problematic fossil taxa on the evolutionary tree. © 2015 Wiley Periodicals, Inc.

  1. Determination of ancestral proportions in synthetic bovine breeds using commonly employed microsatellite markers.

    Science.gov (United States)

    Bicalho, H M S; Pimenta, C G; Mendes, I K P; Pena, H B; Queiroz, E M; Pena, S D J

    2006-07-31

    The International Society of Animal Genetics (ISAG) has chosen nine microsatellites (international marker set) as a standard that should be included in all cattle parentage studies. They are BM1824, BM2113, INRA023, SPS115, TGLA122, TGLA126, TGLA227, ETH10, and ETH225. We decided to ascertain whether this microsatellite set could be used to determine ancestral proportions in individual animals of synthetic breeds produced by crossing zebu and taurine cattle. Since the genotypes of these markers are routinely available, this would constitute a practical and cost-free method to estimate the ancestry of synthetic breed animals. Genotypes of 100 Gir and 100 Holstein animals were examined for this ISAG marker set. As expected, there were very significant allele frequency differences between the two breeds at most loci. We also typed 20 Girolando animals for which there was complete genealogical information. "Structure" software easily distinguished Holstein and Gir animals based on their microsatellite genotypes; it also attributed the genomic proportion of zebu and taurine of each of the 20 Girolando animals. The proportion of Holstein ancestry was then regressed on the genealogical data; there was a highly significant correlation (r = 0.84, P Girolando animals within narrow confidence limits. This microsatellite set might also be useful for estimating the proportions of taurine and zebu origins in commercial meat products.

  2. Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia.

    Science.gov (United States)

    Hoang, Phuong T N; Schubert, Ingo

    2017-12-01

    The monophyletic duckweeds comprising five genera within the monocot order Alismatales are neotenic, free-floating, aquatic organisms with fast vegetative propagation. Some species are considered for efficient biomass production, for life stock feeding, and for (simultaneous) wastewater phytoremediation. The ancestral genus Spirodela consists of only two species, Spirodela polyrhiza and Spirodela intermedia, both with a similar small genome (~160 Mbp/1C). Reference genome drafts and a physical map of 96 BACs on the 20 chromosome pairs of S. polyrhiza strain 7498 are available and provide useful tools for further evolutionary studies within and between duckweed genera. Here we applied sequential comparative multicolor fluorescence in situ hybridization (mcFISH) to address homeologous chromosomes in S. intermedia (2n = 36), to detect chromosome rearrangements between both species and to elucidate the mechanisms which may have led to the chromosome number alteration after their evolutionary separation. Ten chromosome pairs proved to be conserved between S. polyrhiza and S. intermedia, the remaining ones experienced, depending on the assumed direction of evolution, translocations, inversion, and fissions, respectively. These results represent a first step to unravel karyotype evolution among duckweeds and are anchor points for future genome assembly of S. intermedia.

  3. Origins and Spread of Machado-Joseph Disease Ancestral Mutations Events.

    Science.gov (United States)

    Martins, Sandra; Sequeiros, Jorge

    2018-01-01

    Machado-Joseph disease (MJD) is the most common autosomal dominant spinocerebellar ataxia reported worldwide, but it shows marked geographic differences in prevalence. The study of ancestral origins and spreading routes of MJD mutational events has contributed to explain such differences. During human evolution, at least two independent de novo MJD expansions occurred in distinct haplotype backgrounds: TTACAC and GTGGCA (named Joseph and Machado lineages). The most ancient Joseph lineage, probably of Asian origin, has been introduced recently in Europe, where founder effects are responsible for the high MJD prevalence, as occurs in the Portuguese/Azorean island of Flores and Northeastern mainland. The Machado lineage is geographically more restricted, with most known families in Portugal (island of São Miguel and along the Tagus valley). The hypothesis of other mutational origins has been raised, namely to explain the disease among Australian aborigines; however, a comprehensive haplotype study suggested the introduction of the Joseph lineage in that community via Asia. Also, additional SNP-based haplotypes (TTAGAC, TTGGAC and GTGCCA) were observed in other MJD families, but phylogenetic analysis with more polymorphic flanking markers did not point to independent mutational events, reinforcing the hypothesis of a very low mutation rate underlying this repeat expansion locus.

  4. Comparative Genomics of Facultative Bacterial Symbionts Isolated from European Orius Species Reveals an Ancestral Symbiotic Association

    Directory of Open Access Journals (Sweden)

    Xiaorui Chen

    2017-10-01

    Full Text Available Pest control in agriculture employs diverse strategies, among which the use of predatory insects has steadily increased. The use of several species within the genus Orius in pest control is widely spread, particularly in Mediterranean Europe. Commercial mass rearing of predatory insects is costly, and research efforts have concentrated on diet manipulation and selective breeding to reduce costs and improve efficacy. The characterisation and contribution of microbial symbionts to Orius sp. fitness, behaviour, and potential impact on human health has been neglected. This paper provides the first genome sequence level description of the predominant culturable facultative bacterial symbionts associated with five Orius species (O. laevigatus, O. niger, O. pallidicornis, O. majusculus, and O. albidipennis from several geographical locations. Two types of symbionts were broadly classified as members of the genera Serratia and Leucobacter, while a third constitutes a new genus within the Erwiniaceae. These symbionts were found to colonise all the insect specimens tested, which evidenced an ancestral symbiotic association between these bacteria and the genus Orius. Pangenome analyses of the Serratia sp. isolates offered clues linking Type VI secretion system effector–immunity proteins from the Tai4 sub-family to the symbiotic lifestyle.

  5. The evolution of brachiation in ateline primates, ancestral character states and history.

    Science.gov (United States)

    Jones, Andrea L

    2008-10-01

    This study examines how brachiation locomotion evolved in ateline primates using recently-developed molecular phylogenies and character reconstruction algorithms, and a newly-collected dataset including the fossils Protopithecus, Caipora, and Cebupithecia. Fossils are added to two platyrrhine molecular phylogenies to create several phylogenetic scenarios. A generalized least squares algorithm reconstructs ateline and atelin ancestral character states for 17 characters that differentiate between ateline brachiators and nonbrachiators. Histories of these characters are mapped out on these phylogenies, producing two scenarios of ateline brachiation evolution that have four commonalities: First, many characters change towards the Ateles condition on the ateline stem lineage before Alouatta splits off from the atelins, suggesting that an ateline energy-maximizing strategy began before the atelines diversified. Second, the ateline last common ancestor is always reconstructed as an agile quadruped, usually with suspensory abilities. It is never exactly like Alouatta and many characters reverse and change towards the Alouatta condition after Alouatta separates from the atelins. Third, most characters undergo homoplastic change in all ateline lineages, especially on the Ateles and Brachyteles terminal branches. Fourth, ateline character evolution probably went through a hindlimb suspension with tail-bracing phase. The atelines most likely diversified via a quick adaptive radiation, with bursts of punctuated change occurring in their postcranial skeletons, due to changing climatic conditions, which may have caused competition among the atelines and between atelines and pitheciines.

  6. Anomalously high variation in postnatal development is ancestral for dinosaurs but lost in birds

    Science.gov (United States)

    Griffin, Christopher T.; Nesbitt, Sterling J.

    2016-12-01

    Compared with all other living reptiles, birds grow extremely fast and possess unusually low levels of intraspecific variation during postnatal development. It is now clear that birds inherited their high rates of growth from their dinosaurian ancestors, but the origin of the avian condition of low variation during development is poorly constrained. The most well-understood growth trajectories of later Mesozoic theropods (e.g., Tyrannosaurus, Allosaurus) show similarly low variation to birds, contrasting with higher variation in extant crocodylians. Here, we show that deep within Dinosauria, among the earliest-diverging dinosaurs, anomalously high intraspecific variation is widespread but then is lost in more derived theropods. This style of development is ancestral for dinosaurs and their closest relatives, and, surprisingly, this level of variation is far higher than in living crocodylians. Among early dinosaurs, this variation is widespread across Pangaea in the Triassic and Early Jurassic, and among early-diverging theropods (ceratosaurs), this variation is maintained for 165 million years to the end of the Cretaceous. Because the Late Triassic environment across Pangaea was volatile and heterogeneous, this variation may have contributed to the rise of dinosaurian dominance through the end of the Triassic Period.

  7. Phylogenetic uncertainty can bias the number of evolutionary transitions estimated from ancestral state reconstruction methods.

    Science.gov (United States)

    Duchêne, Sebastian; Lanfear, Robert

    2015-09-01

    Ancestral state reconstruction (ASR) is a popular method for exploring the evolutionary history of traits that leave little or no trace in the fossil record. For example, it has been used to test hypotheses about the number of evolutionary origins of key life-history traits such as oviparity, or key morphological structures such as wings. Many studies that use ASR have suggested that the number of evolutionary origins of such traits is higher than was previously thought. The scope of such inferences is increasing rapidly, facilitated by the construction of very large phylogenies and life-history databases. In this paper, we use simulations to show that the number of evolutionary origins of a trait tends to be overestimated when the phylogeny is not perfect. In some cases, the estimated number of transitions can be several fold higher than the true value. Furthermore, we show that the bias is not always corrected by standard approaches to account for phylogenetic uncertainty, such as repeating the analysis on a large collection of possible trees. These findings have important implications for studies that seek to estimate the number of origins of a trait, particularly those that use large phylogenies that are associated with considerable uncertainty. We discuss the implications of this bias, and methods to ameliorate it. © 2015 Wiley Periodicals, Inc.

  8. Counting all possible ancestral configurations of sample sequences in population genetics.

    Science.gov (United States)

    Song, Yun S; Lyngsø, Rune; Hein, Jotun

    2006-01-01

    Given a set D of input sequences, a genealogy for D can be constructed backward in time using such evolutionary events as mutation, coalescent, and recombination. An ancestral configuration (AC) can be regarded as the multiset of all sequences present at a particular point in time in a possible genealogy for D. The complexity of computing the likelihood of observing D depends heavily on the total number of distinct ACs of D and, therefore, it is of interest to estimate that number. For D consisting of binary sequences of finite length, we consider the problem of enumerating exactly all distinct ACs. We assume that the root sequence type is known and that the mutation process is governed by the infinite-sites model. When there is no recombination, we construct a general method of obtaining closed-form formulas for the total number of ACs. The enumeration problem becomes much more complicated when recombination is involved. In that case, we devise a method of enumeration based on counting contingency tables and construct a dynamic programming algorithm for the approach. Last, we describe a method of counting the number of ACs that can appear in genealogies with less than or equal to a given number R of recombinations. Of particular interest is the case in which R is close to the minimum number of recombinations for D.

  9. Mouthparts of the Burgess Shale fossils Odontogriphus and Wiwaxia: implications for the ancestral molluscan radula.

    Science.gov (United States)

    Smith, Martin R

    2012-10-22

    The Middle Cambrian lophotrochozoans Odontogriphus omalus and Wiwaxia corrugata have been interpreted as stem-group members of either the Mollusca, the Annelida, or a group containing Mollusca + Annelida. The case for each classification rests on the organisms' unusual mouthparts, whose two to three tooth-rows resemble both the molluscan radula and the jaws of certain annelid worms. Despite their potential significance, these mouthparts have not previously been described in detail. This study examined the feeding apparatuses of over 300 specimens from the 505-million-year-old Burgess Shale, many of which were studied for the first time. Rather than denticulate plates, each tooth row comprises a single axial tooth that is flanked on each side by eight to 16 separate shoehorn-shaped teeth. Tooth rows sat on a grooved basal tongue, and two large lobes flanked the apparatus. New observations--the shape, distribution and articulation of the individual teeth, and the mouthparts' mode of growth--are incompatible with an annelid interpretation, instead supporting a classification in Mollusca. The ancestral molluscan radula is best reconstructed as unipartite with a symmetrical medial tooth, and Odontogriphus and Wiwaxia as grazing deposit-feeders.

  10. Mitogenomics and phylogenomics reveal priapulid worms as extant models of the ancestral Ecdysozoan.

    Science.gov (United States)

    Webster, Bonnie L; Copley, Richard R; Jenner, Ronald A; Mackenzie-Dodds, Jacqueline A; Bourlat, Sarah J; Rota-Stabelli, Omar; Littlewood, D T J; Telford, Maximilian J

    2006-01-01

    Research into arthropod evolution is hampered by the derived nature and rapid evolution of the best-studied out-group: the nematodes. We consider priapulids as an alternative out-group. Priapulids are a small phylum of bottom-dwelling marine worms; their tubular body with spiny proboscis or introvert has changed little over 520 million years and recognizable priapulids are common among exceptionally preserved Cambrian fossils. Using the complete mitochondrial genome and 42 nuclear genes from Priapulus caudatus, we show that priapulids are slowly evolving ecdysozoans; almost all these priapulid genes have evolved more slowly than nematode orthologs and the priapulid mitochondrial gene order may be unchanged since the Cambrian. Considering their primitive bodyplan and embryology and the great conservation of both nuclear and mitochondrial genomes, priapulids may deserve the popular epithet of "living fossil." Their study is likely to yield significant new insights into the early evolution of the Ecdysozoa and the origins of the arthropods and their kin as well as aiding inference of the morphology of ancestral Ecdysozoa and Bilateria and their genomes.

  11. Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures.

    Science.gov (United States)

    Manikkam, Mohan; Guerrero-Bosagna, Carlos; Tracey, Rebecca; Haque, Md M; Skinner, Michael K

    2012-01-01

    Environmental factors during fetal development can induce a permanent epigenetic change in the germ line (sperm) that then transmits epigenetic transgenerational inheritance of adult-onset disease in the absence of any subsequent exposure. The epigenetic transgenerational actions of various environmental compounds and relevant mixtures were investigated with the use of a pesticide mixture (permethrin and insect repellant DEET), a plastic mixture (bisphenol A and phthalates), dioxin (TCDD) and a hydrocarbon mixture (jet fuel, JP8). After transient exposure of F0 gestating female rats during the period of embryonic gonadal sex determination, the subsequent F1-F3 generations were obtained in the absence of any environmental exposure. The effects on the F1, F2 and F3 generations pubertal onset and gonadal function were assessed. The plastics, dioxin and jet fuel were found to promote early-onset female puberty transgenerationally (F3 generation). Spermatogenic cell apoptosis was affected transgenerationally. Ovarian primordial follicle pool size was significantly decreased with all treatments transgenerationally. Differential DNA methylation of the F3 generation sperm promoter epigenome was examined. Differential DNA methylation regions (DMR) were identified in the sperm of all exposure lineage males and found to be consistent within a specific exposure lineage, but different between the exposures. Several genomic features of the DMR, such as low density CpG content, were identified. Exposure-specific epigenetic biomarkers were identified that may allow for the assessment of ancestral environmental exposures associated with adult onset disease.

  12. Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures.

    Directory of Open Access Journals (Sweden)

    Mohan Manikkam

    Full Text Available Environmental factors during fetal development can induce a permanent epigenetic change in the germ line (sperm that then transmits epigenetic transgenerational inheritance of adult-onset disease in the absence of any subsequent exposure. The epigenetic transgenerational actions of various environmental compounds and relevant mixtures were investigated with the use of a pesticide mixture (permethrin and insect repellant DEET, a plastic mixture (bisphenol A and phthalates, dioxin (TCDD and a hydrocarbon mixture (jet fuel, JP8. After transient exposure of F0 gestating female rats during the period of embryonic gonadal sex determination, the subsequent F1-F3 generations were obtained in the absence of any environmental exposure. The effects on the F1, F2 and F3 generations pubertal onset and gonadal function were assessed. The plastics, dioxin and jet fuel were found to promote early-onset female puberty transgenerationally (F3 generation. Spermatogenic cell apoptosis was affected transgenerationally. Ovarian primordial follicle pool size was significantly decreased with all treatments transgenerationally. Differential DNA methylation of the F3 generation sperm promoter epigenome was examined. Differential DNA methylation regions (DMR were identified in the sperm of all exposure lineage males and found to be consistent within a specific exposure lineage, but different between the exposures. Several genomic features of the DMR, such as low density CpG content, were identified. Exposure-specific epigenetic biomarkers were identified that may allow for the assessment of ancestral environmental exposures associated with adult onset disease.

  13. Bacterial community composition and diversity in an ancestral ant fungus symbiosis.

    Science.gov (United States)

    Kellner, Katrin; Ishak, Heather D; Linksvayer, Timothy A; Mueller, Ulrich G

    2015-07-01

    Fungus-farming ants (Hymenoptera: Formicidae, Attini) exhibit some of the most complex microbial symbioses because both macroscopic partners (ants and fungus) are associated with a rich community of microorganisms. The ant and fungal microbiomes are thought to serve important beneficial nutritional and defensive roles in these symbioses. While most recent research has investigated the bacterial communities in the higher attines (e.g. the leaf-cutter ant genera Atta and Acromyrmex), which are often associated with antibiotic-producing Actinobacteria, very little is known about the microbial communities in basal lineages, labeled as 'lower attines', which retain the ancestral traits of smaller and more simple societies. In this study, we used 16S amplicon pyrosequencing to characterize bacterial communities of the lower attine ant Mycocepurus smithii among seven sampling sites in central Panama. We discovered that ant and fungus garden-associated microbiota were distinct from surrounding soil, but unlike the situation in the derived fungus-gardening ants, which show distinct ant and fungal microbiomes, microbial community structure of the ants and their fungi were similar. Another surprising finding was that the abundance of actinomycete bacteria was low and instead, these symbioses were characterized by an abundance of Lactobacillus and Pantoea bacteria. Furthermore, our data indicate that Lactobacillus strains are acquired from the environment rather than acquired vertically. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Cranial morphological variation among contemporary Mexicans: Regional trends, ancestral affinities, and genetic comparisons.

    Science.gov (United States)

    Hughes, Cris E; Tise, Meredith L; Trammell, Lindsay H; Anderson, Bruce E

    2013-08-01

    Genetic research has documented geographical variation within Mexico that corresponds to trends in ancestry admixture from postcolonial times on. The purpose of this study is to determine whether craniometric variation among contemporary Mexicans is comparable to that reported in genetic studies. Standard osteometric measurements were taken on 82 male crania derived from forensic cases, with geographic origins of the specimens spanning over two-thirds of Mexico's states. To study similarities in regional clustering patterns with genetic data, k-means clustering analyses were performed, followed by chi-square tests of association between cluster assignments and geographic region of origin. Normal mixtures analyses were performed, centered on three "ancestral" sample proxies to estimate classification probability to each ancestry. The results demonstrate that the cranial morphological sample data cluster similarly to the regional groupings inferred from the genetic data. Additionally, the results indicate a gradient trend in population structure for contemporary Mexicans, with the proportion of Amerindian ancestry increasing from North to South while, conversely, European ancestry proportion estimates increase from South to North. Furthermore, the probabilities for classification of African ancestry remained low across the regions, again reflecting the results for the genetic data. Cranial morphological variation is well aligned with the genetic data for describing broad trends among Mexican populations, as well as yielding comparable estimates of general ancestry affiliations that reflect Mexico's history of Spanish contact and colonialism. Copyright © 2013 Wiley Periodicals, Inc.

  15. A Skull Might Lie: Modeling Ancestral Ranges and Diet from Genes and Shape of Tree Squirrels.

    Science.gov (United States)

    Pečnerová, Patrícia; Moravec, Jiří C; Martínková, Natália

    2015-11-01

    Tropical forests of Central and South America represent hotspots of biological diversity. Tree squirrels of the tribe Sciurini are an excellent model system for the study of tropical biodiversity as these squirrels disperse exceptional distances, and after colonizing the tropics of the Central and South America, they have diversified rapidly. Here, we compare signals from DNA sequences with morphological signals using pictures of skulls and computational simulations. Phylogenetic analyses reveal step-wise geographic divergence across the Northern Hemisphere. In Central and South America, tree squirrels form two separate clades, which split from a common ancestor. Simulations of ancestral distributions show western Amazonia as the epicenter of speciation in South America. This finding suggests that wet tropical forests on the foothills of Andes possibly served as refugia of squirrel diversification during Pleistocene climatic oscillations. Comparison of phylogeny and morphology reveals one major discrepancy: Microsciurus species are a single clade morphologically but are polyphyletic genetically. Modeling of morphology-diet relationships shows that the only group of species with a direct link between skull shape and diet are the bark-gleaning insectivorous species of Microsciurus. This finding suggests that the current designation of Microsciurus as a genus is based on convergent ecologically driven changes in morphology. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Multiple chromosomal rearrangements structured the ancestral vertebrate Hox-bearing protochromosomes.

    Directory of Open Access Journals (Sweden)

    Vincent J Lynch

    2009-01-01

    Full Text Available While the proposal that large-scale genome expansions occurred early in vertebrate evolution is widely accepted, the exact mechanisms of the expansion--such as a single or multiple rounds of whole genome duplication, bloc chromosome duplications, large-scale individual gene duplications, or some combination of these--is unclear. Gene families with a single invertebrate member but four vertebrate members, such as the Hox clusters, provided early support for Ohno's hypothesis that two rounds of genome duplication (the 2R-model occurred in the stem lineage of extant vertebrates. However, despite extensive study, the duplication history of the Hox clusters has remained unclear, calling into question its usefulness in resolving the role of large-scale gene or genome duplications in early vertebrates. Here, we present a phylogenetic analysis of the vertebrate Hox clusters and several linked genes (the Hox "paralogon" and show that different phylogenies are obtained for Dlx and Col genes than for Hox and ErbB genes. We show that these results are robust to errors in phylogenetic inference and suggest that these competing phylogenies can be resolved if two chromosomal crossover events occurred in the ancestral vertebrate. These results resolve conflicting data on the order of Hox gene duplications and the role of genome duplication in vertebrate evolution and suggest that a period of genome reorganization occurred after genome duplications in early vertebrates.

  17. Reconstruction of ancestral metabolic enzymes reveals molecular mechanisms underlying evolutionary innovation through gene duplication.

    Directory of Open Access Journals (Sweden)

    Karin Voordeckers

    Full Text Available Gene duplications are believed to facilitate evolutionary innovation. However, the mechanisms shaping the fate of duplicated genes remain heavily debated because the molecular processes and evolutionary forces involved are difficult to reconstruct. Here, we study a large family of fungal glucosidase genes that underwent several duplication events. We reconstruct all key ancestral enzymes and show that the very first preduplication enzyme was primarily active on maltose-like substrates, with trace activity for isomaltose-like sugars. Structural analysis and activity measurements on resurrected and present-day enzymes suggest that both activities cannot be fully optimized in a single enzyme. However, gene duplications repeatedly spawned daughter genes in which mutations optimized either isomaltase or maltase activity. Interestingly, similar shifts in enzyme activity were reached multiple times via different evolutionary routes. Together, our results provide a detailed picture of the molecular mechanisms that drove divergence of these duplicated enzymes and show that whereas the classic models of dosage, sub-, and neofunctionalization are helpful to conceptualize the implications of gene duplication, the three mechanisms co-occur and intertwine.

  18. Ancestral gene duplication enabled the evolution of multifunctional cellulases in stick insects (Phasmatodea).

    Science.gov (United States)

    Shelomi, Matan; Heckel, David G; Pauchet, Yannick

    2016-04-01

    The Phasmatodea (stick insects) have multiple, endogenous, highly expressed copies of glycoside hydrolase family 9 (GH9) genes. The purpose for retaining so many was unknown. We cloned and expressed the enzymes in transfected insect cell lines, and tested the individual proteins against different plant cell wall component poly- and oligosaccharides. Nearly all isolated enzymes were active against carboxymethylcellulose, however most could also degrade glucomannan, and some also either xylan or xyloglucan. The latter two enzyme groups were each monophyletic, suggesting the evolution of these novel substrate specificities in an early ancestor of the order. Such enzymes are highly unusual for Metazoa, for which no xyloglucanases had been reported. Phasmatodea gut extracts could degrade multiple plant cell wall components fully into sugar monomers, suggesting that enzymatic breakdown of plant cell walls by the entire Phasmatodea digestome may contribute to the Phasmatodea nutritional budget. The duplication and neofunctionalization of GH9s in the ancestral Phasmatodea may have enabled them to specialize as folivores and diverge from their omnivorous ancestors. The structural changes enabling these unprecedented activities in the cellulases require further study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Patterns of kinesin evolution reveal a complex ancestral eukaryote with a multifunctional cytoskeleton

    Directory of Open Access Journals (Sweden)

    Richards Thomas A

    2010-04-01

    Full Text Available Abstract Background The genesis of the eukaryotes was a pivotal event in evolution and was accompanied by the acquisition of numerous new cellular features including compartmentalization by cytoplasmic organelles, mitosis and meiosis, and ciliary motility. Essential for the development of these features was the tubulin cytoskeleton and associated motors. It is therefore possible to map ancient cell evolution by reconstructing the evolutionary history of motor proteins. Here, we have used the kinesin motor repertoire of 45 extant eukaryotes to infer the ancestral state of this superfamily in the last common eukaryotic ancestor (LCEA. Results We bioinformatically identified 1624 putative kinesin proteins, determined their protein domain architectures and calculated a comprehensive Bayesian phylogeny for the kinesin superfamily with statistical support. These data enabled us to define 51 anciently-derived kinesin paralogs (including three new kinesin families and 105 domain architectures. We then mapped these characters across eukaryotes, accounting for secondary loss within established eukaryotic groupings, and alternative tree topologies. Conclusions We show that a minimum of 11 kinesin families and 3 protein domain architectures were present in the LCEA. This demonstrates that the microtubule-based cytoskeleton of the LCEA was surprisingly highly developed in terms of kinesin motor types, but that domain architectures have been extensively modified during the diversification of the eukaryotes. Our analysis provides molecular evidence for the existence of several key cellular functions in the LCEA, and shows that a large proportion of motor family diversity and cellular complexity had already arisen in this ancient cell.

  20. The Adaptive Response to Intestinal Oxidative Stress in Mammalian Hibernation

    National Research Council Canada - National Science Library

    Carey, Hannah V

    2006-01-01

    The goal of this project is demonstrate how mammalian hibernators utilize the physiologic consequences of metabolic depression, which include changes in mitochondrial function, low body temperatures (Tb...

  1. Accuracy of Genomic Prediction in Synthetic Populations Depending on the Number of Parents, Relatedness, and Ancestral Linkage Disequilibrium.

    Science.gov (United States)

    Schopp, Pascal; Müller, Dominik; Technow, Frank; Melchinger, Albrecht E

    2017-01-01

    Synthetics play an important role in quantitative genetic research and plant breeding, but few studies have investigated the application of genomic prediction (GP) to these populations. Synthetics are generated by intermating a small number of parents ([Formula: see text] and thereby possess unique genetic properties, which make them especially suited for systematic investigations of factors contributing to the accuracy of GP. We generated synthetics in silico from [Formula: see text]2 to 32 maize (Zea mays L.) lines taken from an ancestral population with either short- or long-range linkage disequilibrium (LD). In eight scenarios differing in relatedness of the training and prediction sets and in the types of data used to calculate the relationship matrix (QTL, SNPs, tag markers, and pedigree), we investigated the prediction accuracy (PA) of Genomic best linear unbiased prediction (GBLUP) and analyzed contributions from pedigree relationships captured by SNP markers, as well as from cosegregation and ancestral LD between QTL and SNPs. The effects of training set size [Formula: see text] and marker density were also studied. Sampling few parents ([Formula: see text]) generates substantial sample LD that carries over into synthetics through cosegregation of alleles at linked loci. For fixed [Formula: see text], [Formula: see text] influences PA most strongly. If the training and prediction set are related, using [Formula: see text] parents yields high PA regardless of ancestral LD because SNPs capture pedigree relationships and Mendelian sampling through cosegregation. As [Formula: see text] increases, ancestral LD contributes more information, while other factors contribute less due to lower frequencies of closely related individuals. For unrelated prediction sets, only ancestral LD contributes information and accuracies were poor and highly variable for [Formula: see text] due to large sample LD. For large [Formula: see text], achieving moderate accuracy requires

  2. Neuronal Circuitry Mechanisms Regulating Adult Mammalian Neurogenesis

    Science.gov (United States)

    Song, Juan; Olsen, Reid H.J.; Sun, Jiaqi; Ming, Guo-li; Song, Hongjun

    2017-01-01

    The adult mammalian brain is a dynamic structure, capable of remodeling in response to various physiological and pathological stimuli. One dramatic example of brain plasticity is the birth and subsequent integration of newborn neurons into the existing circuitry. This process, termed adult neurogenesis, recapitulates neural developmental events in two specialized adult brain regions: the lateral ventricles of the forebrain. Recent studies have begun to delineate how the existing neuronal circuits influence the dynamic process of adult neurogenesis, from activation of quiescent neural stem cells (NSCs) to the integration and survival of newborn neurons. Here, we review recent progress toward understanding the circuit-based regulation of adult neurogenesis in the hippocampus and olfactory bulb. PMID:27143698

  3. X-rays sensitive mammalian cell mutant

    International Nuclear Information System (INIS)

    Utsumi, Hiroshi

    1982-01-01

    A phenomenon that in x-ray-sensitive mammalian-cell mutants, cellular death due to x-ray radiation was not increased by caffeine, but on the contrary, the dead cells were resuscitated by it was discussed. The survival rate of mutant cells increased by caffein in a low concentration. This suggested that caffeine may have induced some mechanism to produce x-ray resistant mutant cells. Postirradiation treatment with caffeine increased considerably the survival rate of the mutant cells, and this suggested the existence of latent caffeine-sensitive potentially lethal damage repair system. This system, after a few hours, is thought to be substituted by caffeine-resistant repair system which is induced by caffeine, and this may be further substituted by x-ray-resistant repair system. The repair system was also induced by adenine. (Ueda, J.)

  4. Structures of mammalian cytosolic quinone reductases.

    Science.gov (United States)

    Foster, C E; Bianchet, M A; Talalay, P; Faig, M; Amzel, L M

    2000-08-01

    The metabolism of quinone compounds presents one source of oxidative stress in mammals, as many pathways proceed by mechanisms that generate reactive oxygen species as by-products. One defense against quinone toxicity is the enzyme NAD(P)H:quinone oxidoreductase type 1 (QR1), which metabolizes quinones by a two-electron reduction mechanism, thus averting production of radicals. QR1 is expressed in the cytoplasm of many tissues, and is highly inducible. A closely related homologue, quinone reductase type 2 (QR2), has been identified in several mammalian species. QR2 is also capable of reducing quinones to hydroquinones, but unlike QR1, cannot use NAD(P)H. X-ray crystallographic studies of QR1 and QR2 illustrate that despite their different biochemical properties, these enzymes have very similar three-dimensional structures. In particular, conserved features of the active sites point to the close relationship between these two enzymes.

  5. Mechanosensor Channels in Mammalian Somatosensory Neurons

    Directory of Open Access Journals (Sweden)

    Patrick Delmas

    2007-09-01

    Full Text Available Mechanoreceptive sensory neurons innervating the skin, skeletal muscles andviscera signal both innocuous and noxious information necessary for proprioception, touchand pain. These neurons are responsible for the transduction of mechanical stimuli intoaction potentials that propagate to the central nervous system. The ability of these cells todetect mechanical stimuli impinging on them relies on the presence of mechanosensitivechannels that transduce the external mechanical forces into electrical and chemical signals.Although a great deal of information regarding the molecular and biophysical properties ofmechanosensitive channels in prokaryotes has been accumulated over the past two decades,less is known about the mechanosensitive channels necessary for proprioception and thesenses of touch and pain. This review summarizes the most pertinent data onmechanosensitive channels of mammalian somatosensory neurons, focusing on theirproperties, pharmacology and putative identity.

  6. Mammalian synthetic biology for studying the cell.

    Science.gov (United States)

    Mathur, Melina; Xiang, Joy S; Smolke, Christina D

    2017-01-02

    Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. © 2017 Mathur et al.

  7. Peromyscus as a Mammalian Epigenetic Model

    Directory of Open Access Journals (Sweden)

    Kimberly R. Shorter

    2012-01-01

    Full Text Available Deer mice (Peromyscus offer an opportunity for studying the effects of natural genetic/epigenetic variation with several advantages over other mammalian models. These advantages include the ability to study natural genetic variation and behaviors not present in other models. Moreover, their life histories in diverse habitats are well studied. Peromyscus resources include genome sequencing in progress, a nascent genetic map, and >90,000 ESTs. Here we review epigenetic studies and relevant areas of research involving Peromyscus models. These include differences in epigenetic control between species and substance effects on behavior. We also present new data on the epigenetic effects of diet on coat-color using a Peromyscus model of agouti overexpression. We suggest that in terms of tying natural genetic variants with environmental effects in producing specific epigenetic effects, Peromyscus models have a great potential.

  8. Engineered Trehalose Permeable to Mammalian Cells.

    Directory of Open Access Journals (Sweden)

    Alireza Abazari

    Full Text Available Trehalose is a naturally occurring disaccharide which is associated with extraordinary stress-tolerance capacity in certain species of unicellular and multicellular organisms. In mammalian cells, presence of intra- and extracellular trehalose has been shown to confer improved tolerance against freezing and desiccation. Since mammalian cells do not synthesize nor import trehalose, the development of novel methods for efficient intracellular delivery of trehalose has been an ongoing investigation. Herein, we studied the membrane permeability of engineered lipophilic derivatives of trehalose. Trehalose conjugated with 6 acetyl groups (trehalose hexaacetate or 6-O-Ac-Tre demonstrated superior permeability in rat hepatocytes compared with regular trehalose, trehalose diacetate (2-O-Ac-Tre and trehalose tetraacetate (4-O-Ac-Tre. Once in the cell, intracellular esterases hydrolyzed the 6-O-Ac-Tre molecules, releasing free trehalose into the cytoplasm. The total concentration of intracellular trehalose (plus acetylated variants reached as high as 10 fold the extracellular concentration of 6-O-Ac-Tre, attaining concentrations suitable for applications in biopreservation. To describe this accumulation phenomenon, a diffusion-reaction model was proposed and the permeability and reaction kinetics of 6-O-Ac-Tre were determined by fitting to experimental data. Further studies suggested that the impact of the loading and the presence of intracellular trehalose on cellular viability and function were negligible. Engineering of trehalose chemical structure rather than manipulating the cell, is an innocuous, cell-friendly method for trehalose delivery, with demonstrated potential for trehalose loading in different types of cells and cell lines, and can facilitate the wide-spread application of trehalose as an intracellular protective agent in biopreservation studies.

  9. RNAa is conserved in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Vera Huang

    2010-01-01

    Full Text Available RNA activation (RNAa is a newly discovered mechanism of gene activation triggered by small double-stranded RNAs termed 'small activating RNAs' (saRNAs. Thus far, RNAa has only been demonstrated in human cells and is unclear whether it is conserved in other mammals.In the present study, we evaluated RNAa in cells derived from four mammalian species including nonhuman primates (African green monkey and chimpanzee, mouse, and rat. Previously, we identified saRNAs leading to the activation of E-cadherin, p21, and VEGF in human cells. As the targeted sequences are highly conserved in primates, transfection of each human saRNA into African green monkey (COS1 and chimpanzee (WES cells also resulted in induction of the intended gene. Additional saRNAs targeting clinically relevant genes including p53, PAR4, WT1, RB1, p27, NKX3-1, VDR, IL2, and pS2 were also designed and transfected into COS1 and WES cells. Of the nine genes, p53, PAR4, WT1, and NKX3-1 were induced by their corresponding saRNAs. We further extended our analysis of RNAa into rodent cell types. We identified two saRNAs that induced the expression of mouse Cyclin B1 in NIH/3T3 and TRAMP C1 cells, which led to increased phosphorylation of histone H3, a downstream marker for chromosome condensation and entry into mitosis. We also identified two saRNAs that activated the expression of CXCR4 in primary rat adipose-derived stem cells.This study demonstrates that RNAa exists in mammalian species other than human. Our findings also suggest that nonhuman primate disease models may have clinical applicability for validating RNAa-based drugs.

  10. The architecture of mammalian ribosomal protein promoters

    Directory of Open Access Journals (Sweden)

    Perry Robert P

    2005-02-01

    Full Text Available Abstract Background Mammalian ribosomes contain 79 different proteins encoded by widely scattered single copy genes. Coordinate expression of these genes at transcriptional and post-transcriptional levels is required to ensure a roughly equimolar accumulation of ribosomal proteins. To date, detailed studies of only a very few ribosomal protein (rp promoters have been made. To elucidate the general features of rp promoter architecture, I made a detailed sequence comparison of the promoter regions of the entire set of orthologous human and mouse rp genes. Results A striking evolutionarily conserved feature of most rp genes is the separation by an intron of the sequences involved in transcriptional and translational regulation from the sequences with protein encoding function. Another conserved feature is the polypyrimidine initiator, which conforms to the consensus (Y2C+1TY(T2(Y3. At least 60 % of the rp promoters contain a largely conserved TATA box or A/T-rich motif, which should theoretically have TBP-binding capability. A remarkably high proportion of the promoters contain conserved binding sites for transcription factors that were previously implicated in rp gene expression, namely upstream GABP and Sp1 sites and downstream YY1 sites. Over 80 % of human and mouse rp genes contain a transposable element residue within 900 bp of 5' flanking sequence; very little sequence identity between human and mouse orthologues was evident more than 200 bp upstream of the transcriptional start point. Conclusions This analysis has provided some valuable insights into the general architecture of mammalian rp promoters and has identified parameters that might coordinately regulate the transcriptional activity of certain subsets of rp genes.

  11. Effectiveness of ancestral irradiation on the direct and correlated responses to selection for body weight in rats

    International Nuclear Information System (INIS)

    Gianola, D.

    1975-01-01

    The effects of ancestral irradiation of rat spermatogonia (a cumulative total of 4050 r of x-rays) were studied in a highly inbred line of rats to explore the feasibility of using irradiation to enhance the effectiveness of selection. Six generations after irradiation was terminated, a selection experiment for body weight at six weeks of age was started in both ancestrally irradiated and non-irradiated populations. There were two non-contemporaneous replicates in each of the populations. Within each of the ancestral treatment-replicate combinations one line was selected for high, one for low body weight at six weeks of age, and a third line was maintained by random selection. In each line, avoidance of mating of animals with grandparents in common was attempted. Data on the first ten progeny generations of selection were included in this study. Five types of covariances among relatives were used to estimate causal components of variance for five different genetic models within the ''non-irradiated'' and ''irradiated'' randomly selected models. The parameters in the genetic models were estimated by generalized least-squares. This analysis suggested that a genetic model including direct genetic and maternal genetic effects was adequate to describe the body weights at 3, 6 and 10 weeks of age and the weight gains between these ages. Ancestral irradiation seemed to have enhanced the maternal genetic variance and the covariance between the direct genetic and the maternal genetic effects. On the basis of the above analysis, it was deduced that mass selection should have been more effective in the descendants of irradiated males than in those of the non-irradiated males as a consequence of greater phenotypic variability in their progeny and an enhancement in the regression of the genetic value on the selection criterion

  12. Genotype-based ancestral background consistently predicts efficacy and side effects across treatments in CATIE and STAR*D.

    Directory of Open Access Journals (Sweden)

    Daniel E Adkins

    Full Text Available Only a subset of patients will typically respond to any given prescribed drug. The time it takes clinicians to declare a treatment ineffective leaves the patient in an impaired state and at unnecessary risk for adverse drug effects. Thus, diagnostic tests robustly predicting the most effective and safe medication for each patient prior to starting pharmacotherapy would have tremendous clinical value. In this article, we evaluated the use of genetic markers to estimate ancestry as a predictive component of such diagnostic tests. We first estimated each patient's unique mosaic of ancestral backgrounds using genome-wide SNP data collected in the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE (n = 765 and the Sequenced Treatment Alternatives to Relieve Depression (STAR*D (n = 1892. Next, we performed multiple regression analyses to estimate the predictive power of these ancestral dimensions. For 136/89 treatment-outcome combinations tested in CATIE/STAR*D, results indicated 1.67/1.84 times higher median test statistics than expected under the null hypothesis assuming no predictive power (p<0.01, both samples. Thus, ancestry showed robust and pervasive correlations with drug efficacy and side effects in both CATIE and STAR*D. Comparison of the marginal predictive power of MDS ancestral dimensions and self-reported race indicated significant improvements to model fit with the inclusion of MDS dimensions, but mixed evidence for self-reported race. Knowledge of each patient's unique mosaic of ancestral backgrounds provides a potent immediate starting point for developing algorithms identifying the most effective and safe medication for a wide variety of drug-treatment response combinations. As relatively few new psychiatric drugs are currently under development, such personalized medicine offers a promising approach toward optimizing pharmacotherapy for psychiatric conditions.

  13. Effect of the assignment of ancestral CpG state on the estimation of nucleotide substitution rates in mammals

    Directory of Open Access Journals (Sweden)

    Keightley Peter D

    2008-09-01

    Full Text Available Abstract Background Molecular evolutionary studies in mammals often estimate nucleotide substitution rates within and outside CpG dinucleotides separately. Frequently, in alignments of two sequences, the division of sites into CpG and non-CpG classes is based simply on the presence or absence of a CpG dinucleotide in either sequence, a procedure that we refer to as CpG/non-CpG assignment. Although it likely that this procedure is biased, it is generally assumed that the bias is negligible if species are very closely related. Results Using simulations of DNA sequence evolution we show that assignment of the ancestral CpG state based on the simple presence/absence of the CpG dinucleotide can seriously bias estimates of the substitution rate, because many true non-CpG changes are misassigned as CpG. Paradoxically, this bias is most severe between closely related species, because a minimum of two substitutions are required to misassign a true ancestral CpG site as non-CpG whereas only a single substitution is required to misassign a true ancestral non-CpG site as CpG in a two branch tree. We also show that CpG misassignment bias differentially affects fourfold degenerate and noncoding sites due to differences in base composition such that fourfold degenerate sites can appear to be evolving more slowly than noncoding sites. We demonstrate that the effects predicted by our simulations occur in a real evolutionary setting by comparing substitution rates estimated from human-chimp coding and intronic sequence using CpG/non-CpG assignment with estimates derived from a method that is largely free from bias. Conclusion Our study demonstrates that a common method of assigning sites into CpG and non CpG classes in pairwise alignments is seriously biased and recommends against the adoption of ad hoc methods of ancestral state assignment.

  14. Identification of the ancestral haplotype for apolipoprotein B suggests an African origin of Homo sapiens sapiens and traces their subsequent migration to Europe and the Pacific

    International Nuclear Information System (INIS)

    Rapacz, J.; Hasler-Rapacz, J.O.; Chen, L.; Wu, Mingjiuan; Schumaker, V.N.; Butler-Brunner, E.; Butler, R.

    1991-01-01

    The probable ancestral haplotype for human apolipoprotein B (apoB) has been identified through immunological analysis of chimpanzee and gorilla serum and sequence analysis of their DNA. Moreover, the frequency of this ancestral apoB haplotype among different human populations provides strong support for the African origin of Homo sapiens sapiens and their subsequent migration from Africa to Europe and to the Pacific. The approach used here for the identification of the ancestral human apoB haplotype is likely to be applicable to many other genes

  15. Identification of the ancestral haplotype for apolipoprotein B suggests an African origin of Homo sapiens sapiens and traces their subsequent migration to Europe and the Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Rapacz, J.; Hasler-Rapacz, J.O. (Univ. of Wisconsin, Madison (United States)); Chen, L.; Wu, Mingjiuan; Schumaker, V.N. (Univ. of California, Los Angeles (United States)); Butler-Brunner, E.; Butler, R. (Swiss Red Cross Blood Transfusion Service, Bern (Switzerland))

    1991-02-15

    The probable ancestral haplotype for human apolipoprotein B (apoB) has been identified through immunological analysis of chimpanzee and gorilla serum and sequence analysis of their DNA. Moreover, the frequency of this ancestral apoB haplotype among different human populations provides strong support for the African origin of Homo sapiens sapiens and their subsequent migration from Africa to Europe and to the Pacific. The approach used here for the identification of the ancestral human apoB haplotype is likely to be applicable to many other genes.

  16. The ancestral chromosomes of Dromiciops gliroides (Microbiotheridae), and its bearings on the karyotypic evolution of American marsupials.

    Science.gov (United States)

    Suárez-Villota, Elkin Y; Haro, Ronie E; Vargas, Rodrigo A; Gallardo, Milton H

    2016-01-01

    The low-numbered 14-chromosome karyotype of marsupials has falsified the fusion hypothesis claiming ancestrality from a 22-chromosome karyotype. Since the 14-chromosome condition of the relict Dromiciops gliroides is reminecent of ancestrality, its interstitial traces of past putative fusions and heterochromatin banding patterns were studied and added to available marsupials' cytogenetic data. Fluorescent in situ hybridization (FISH) and self-genomic in situ hybridization (self-GISH) were used to detect telomeric and repetitive sequences, respectively. These were complemented with C-, fluorescent banding, and centromere immunodetection over mitotic spreads. The presence of interstitial telomeric sequences (ITS) and diploid numbers were reconstructed and mapped onto the marsupial phylogenetic tree. No interstitial, fluorescent signals, but clearly stained telomeric regions were detected by FISH and self-GISH. Heterochromatin distribution was sparse in the telomeric/subtelomeric regions of large submetacentric chromosomes. Large AT-rich blocks were detected in the long arm of four submetacentrics and CG-rich block in the telomeric regions of all chromosomes. The ancestral reconstructions both ITS presence and diploid numbers suggested that ITS are unrelated to fusion events. Although the lack of interstitial signals in D. gliroides' karyotype does not prove absence of past fusions, our data suggests its non-rearranged plesiomorphic condition.

  17. Unexpectedly High Proportion of Ancestral Manu Genotype Mycobacterium tuberculosis Strains Cultured from Tuberculosis Patients in Egypt ▿

    Science.gov (United States)

    Helal, Zeinab H.; El-Din Ashour, Mohamed Seif; Eissa, Somaia A.; Abd-Elatef, Ghanem; Zozio, Thierry; Babapoor, Sankhiros; Rastogi, Nalin; Khan, Mazhar I.

    2009-01-01

    Tuberculosis is one of the important public health problems in Egypt. However, limited information on the Mycobacterium tuberculosis genotypes circulating in Egypt is available. A total of 151 M. tuberculosis strains were characterized by spoligotyping. The results revealed that 74.8% of M. tuberculosis isolates grouped into 13 different clusters, while 25.2% had unique spoligotype patterns. Comparison with an international spoligotyping database (the SITVIT2 database) showed that types SIT53 (T1 variant) and SIT54 (Manu2 variant) were the most common types between cluster groups. In addition, new shared types SIT2977, SIT2978, and SIT2979 were observed. The results identified for the first time an unusually high proportion of ancestral Manu strains of M. tuberculosis from patients in Egypt. The percentage of the Manu clade in this study (27.15%) was significantly higher than its overall representation of 0.4% in the SITVIT2 database. We show that in Egypt tuberculosis is caused by a predominant M. tuberculosis genotype belonging to the ancestral Manu lineage which could be a missing link in the split between ancestral and modern tubercle bacilli during the evolution of M. tuberculosis. PMID:19553569

  18. When ancestral heritage is a source of discomfort: culture, pre-object relatedness, and self-alienation.

    Science.gov (United States)

    Kradin, Richard L

    2012-04-01

    The ancestral claims on an individual can evoke mental conflict when they involve separating from an ethnic group whose beliefs and customs are devalued by the dominant culture. However, these claims are engraved on the psyche early in development by caretakers to the level of pre-object relatedness, where contents and affect tones are implicit and may be unavailable for later psychoanalytical interventions. In addition, as the anthropologist Clifford Geertz notes, one's culture of origin precedes the development of psyche and creates its own set of claims that must be renegotiated when one encounters a different domain of cultural symbols, a confrontation that can produce psychological dissonance and self-alienation. In this paper, three cases are examined in which mental conflicts were evoked by attempts at divesting ancestral claims in response to conscious efforts to assimilate into the dominant culture. These patients suffered from separation guilt and unstable self-esteem and reported dream imagery suggesting psychological imbalance. The requirement to carefully delineate the ancestral claims on psyche as well as those contents and affects that may not be accessible to therapeutic intervention is emphasized, and the importance of compromise and acceptance with respect to the psychological demands of the unconscious are considered. 2012, The Society of Analytical Psychology.

  19. Emergence, Retention and Selection: A Trilogy of Origination for Functional De Novo Proteins from Ancestral LncRNAs in Primates.

    Directory of Open Access Journals (Sweden)

    Jia-Yu Chen

    2015-07-01

    Full Text Available While some human-specific protein-coding genes have been proposed to originate from ancestral lncRNAs, the transition process remains poorly understood. Here we identified 64 hominoid-specific de novo genes and report a mechanism for the origination of functional de novo proteins from ancestral lncRNAs with precise splicing structures and specific tissue expression profiles. Whole-genome sequencing of dozens of rhesus macaque animals revealed that these lncRNAs are generally not more selectively constrained than other lncRNA loci. The existence of these newly-originated de novo proteins is also not beyond anticipation under neutral expectation, as they generally have longer theoretical lifespan than their current age, due to their GC-rich sequence property enabling stable ORFs with lower chance of non-sense mutations. Interestingly, although the emergence and retention of these de novo genes are likely driven by neutral forces, population genetics study in 67 human individuals and 82 macaque animals revealed signatures of purifying selection on these genes specifically in human population, indicating a proportion of these newly-originated proteins are already functional in human. We thus propose a mechanism for creation of functional de novo proteins from ancestral lncRNAs during the primate evolution, which may contribute to human-specific genetic novelties by taking advantage of existed genomic contexts.

  20. Toxic and nontoxic components of botulinum neurotoxin complex are evolved from a common ancestral zinc protein

    International Nuclear Information System (INIS)

    Inui, Ken; Sagane, Yoshimasa; Miyata, Keita; Miyashita, Shin-Ichiro; Suzuki, Tomonori; Shikamori, Yasuyuki; Ohyama, Tohru; Niwa, Koichi; Watanabe, Toshihiro

    2012-01-01

    Highlights: ► BoNT and NTNHA proteins share a similar protein architecture. ► NTNHA and BoNT were both identified as zinc-binding proteins. ► NTNHA does not have a classical HEXXH zinc-coordinating motif similar to that found in all serotypes of BoNT. ► Homology modeling implied probable key residues involved in zinc coordination. -- Abstract: Zinc atoms play an essential role in a number of enzymes. Botulinum neurotoxin (BoNT), the most potent toxin known in nature, is a zinc-dependent endopeptidase. Here we identify the nontoxic nonhemagglutinin (NTNHA), one of the BoNT-complex constituents, as a zinc-binding protein, along with BoNT. A protein structure classification database search indicated that BoNT and NTNHA share a similar domain architecture, comprising a zinc-dependent metalloproteinase-like, BoNT coiled-coil motif and concanavalin A-like domains. Inductively coupled plasma-mass spectrometry analysis demonstrated that every single NTNHA molecule contains a single zinc atom. This is the first demonstration of a zinc atom in this protein, as far as we know. However, the NTNHA molecule does not possess any known zinc-coordinating motif, whereas all BoNT serotypes possess the classical HEXXH motif. Homology modeling of the NTNHA structure implied that a consensus K-C-L-I-K-X 35 -D sequence common among all NTNHA serotype molecules appears to coordinate a single zinc atom. These findings lead us to propose that NTNHA and BoNT may have evolved distinct functional specializations following their branching out from a common ancestral zinc protein.

  1. Allelic lineages of the ficolin genes (FCNs are passed from ancestral to descendant primates.

    Directory of Open Access Journals (Sweden)

    Tina Hummelshøj

    Full Text Available The ficolins recognize carbohydrates and acetylated compounds on microorganisms and dying host cells and are able to activate the lectin pathway of the complement system. In humans, three ficolin genes have been identified: FCN1, FCN2 and FCN3, which encode ficolin-1, ficolin-2 and ficolin-3, respectively. Rodents have only two ficolins designated ficolin-A and ficolin-B that are closely related to human ficolin-1, while the rodent FCN3 orthologue is a pseudogene. Ficolin-2 and ficolin-3 have so far only been observed in humans. Thus, we performed a systematic investigation of the FCN genes in non-human primates. The exons and intron-exon boundaries of the FCN1-3 genes were sequenced in the following primate species: chimpanzee, gorilla, orangutan, rhesus macaque, cynomolgus macaque, baboon and common marmoset. We found that the exon organisation of the FCN genes was very similar between all the non-human primates and the human FCN genes. Several variations in the FCN genes were found in more than one primate specie suggesting that they were carried from one species to another including humans. The amino acid diversity of the ficolins among human and non-human primate species was estimated by calculating the Shannon entropy revealing that all three proteins are generally highly conserved. Ficolin-1 and ficolin-2 showed the highest diversity, whereas ficolin-3 was more conserved. Ficolin-2 and ficolin-3 were present in non-human primate sera with the same characteristic oligomeric structures as seen in human serum. Taken together all the FCN genes show the same characteristics in lower and higher primates. The existence of trans-species polymorphisms suggests that different FCN allelic lineages may be passed from ancestral to descendant species.

  2. Does body posture influence hand preference in an ancestral primate model?

    Directory of Open Access Journals (Sweden)

    Leliveld Lisette

    2011-02-01

    Full Text Available Abstract Background The origin of human handedness and its evolution in primates is presently under debate. Current hypotheses suggest that body posture (postural origin hypothesis and bipedalism hypothesis have an important impact on the evolution of handedness in primates. To gain insight into the origin of manual lateralization in primates, we studied gray mouse lemurs, suggested to represent the most ancestral primate condition. First, we investigated hand preference in a simple food grasping task to explore the importance of hand usage in a natural foraging situation. Second, we explored the influence of body posture by applying a forced food grasping task with varying postural demands (sit, biped, cling, triped. Results The tested mouse lemur population did not prefer to use their hands alone to grasp for food items. Instead, they preferred to pick them up using a mouth-hand combination or the mouth alone. If mouth usage was inhibited, they showed an individual but no population level handedness for all four postural forced food grasping tasks. Additionally, we found no influence of body posture on hand preference in gray mouse lemurs. Conclusion Our results do not support the current theories of primate handedness. Rather, they propose that ecological adaptation indicated by postural habit and body size of a given species has an important impact on hand preference in primates. Our findings suggest that small-bodied, quadrupedal primates, adapted to the fine branch niche of dense forests, prefer mouth retrieval of food and are less manually lateralized than large-bodied species which consume food in a more upright, and less stable body posture.

  3. Evolutionary history of Lissotriton helveticus: multilocus assessment of ancestral vs. recent colonization of the Iberian Peninsula.

    Science.gov (United States)

    Recuero, Ernesto; García-París, Mario

    2011-07-01

    The Pleistocene was characterized by climatic changes that greatly altered the distribution of organisms. Population extinctions, bottlenecks, isolation, range expansions and contractions were often associated with glaciations, leaving signatures in the spatial patterns of genetic diversity across species. Lissotriton helveticus belongs to a Pan-European lineage of newts that were strongly affected by glaciations and represent an excellent model to analyse the effect of generalized climatic changes in phylogeographic patterns. We studied the genetic diversity of the species using data from two mitochondrial and three nuclear genes analyzed in a Bayesian phylogenetic framework to investigate the historical processes shaping spatial patterns of genetic diversity. Mitochondrial haplotypes cluster in four different groups present in the Iberian Peninsula and of Pleistocene origin, probably by allopatric fragmentation. Nuclear genes present no obvious geographic structure patterns, suggesting gene flow and generalized incomplete lineage sorting. Populations north of the Pyrenees are closely related to those from northeastern Iberia, suggesting recent range expansion from this region. Historical demographic analyses indicate a demographic expansion starting about 100,000years ago and more recent population declines. Compared to other Lissotriton species, L. helveticus includes only relatively young genetic lineages, suggesting a Central European pre-Pleistocene distribution followed by complete extirpation of the species during glaciations in that area. Historical demographic trends in the Iberian Peninsula are reversed with respect to the more Mediterranean species Lissotriton boscai, indicating different responses of both species to climate changes. Diversity patterns among Lissotriton species seem to be defined by four main factors: ancestral distributions, colonization capabilities, interactions with other species and effective population sizes. Differences in these

  4. Paraphyly of organelle DNAs in Cycas Sect. Asiorientales due to ancient ancestral polymorphisms.

    Science.gov (United States)

    Chiang, Yu-Chung; Hung, Kuo-Hsiang; Moore, Shann-Jye; Ge, Xue-Jun; Huang, Shong; Hsu, Tsai-Wen; Schaal, Barbara A; Chiang, Ty

    2009-07-10

    This study addresses the apportionment of genetic diversity between Cycas revoluta and C. taitungensis, species that constitute the section Asiorientales and represent a unique, basal lineage of the Laurasian genus Cycas. Fossil evidence indicates divergence of the section from the rest of Cycas at least 30 million years ago. Geographically, C. taitungensis is limited to Taiwan whereas C. revoluta is found in the Ryukyu Archipelago and on mainland China. The phylogenies of ribosomal ITS region of mtDNA and the intergenic spacer between atpB and rbcL genes of cpDNA were reconstructed. Phylogenetic analyses revealed paraphyly of both loci in the two species and also in the section Asiorientales. The lack of reciprocal monophyly between these long isolated sections is likely due to persistent shared ancestral polymorphisms. Molecular dating estimated that mt- and cp DNA lineages coalesced to the most recent common ancestors (TMRCA) about 327 (mt) and 204 MYA (cp), corresponding with the divergence of cycad sections in the Mesozoic. Fates of newly derived mutations of cycads follow Klopfstein et al.'s surfing model where the majority of new mutations do not spread geographically and remain at low frequencies or are eventually lost by genetic drift. Only successful 'surfing mutations' reach very high frequencies and occupy a large portion of a species range. These mutations exist as dominant cytotypes across populations and species. Geographical subdivision is lacking in both species, even though recurrent gene flow by both pollen and seed is severely limited. In total, the contrasting levels between historical and ongoing gene flow, large population sizes, a long lifespan, and slow mutation rates in both organelle DNAs have all likely contributed to the unusually long duration of paraphyly in cycads.

  5. Regionalization of the Shark Hindbrain: A Survey of an Ancestral Organization

    Science.gov (United States)

    Rodríguez-Moldes, Isabel; Carrera, Ivan; Pose-Méndez, Sol; Quintana-Urzainqui, Idoia; Candal, Eva; Anadón, Ramón; Mazan, Sylvie; Ferreiro-Galve, Susana

    2011-01-01

    Cartilaginous fishes (chondrichthyans) represent an ancient radiation of vertebrates currently considered the sister group of the group of gnathostomes with a bony skeleton that gave rise to land vertebrates. This out-group position makes chondrichthyans essential in assessing the ancestral organization of the brain of jawed vertebrates. To gain knowledge about hindbrain evolution we have studied its development in a shark, the lesser spotted dogfish Scyliorhinus canicula by analyzing the expression of some developmental genes and the origin and distribution of specific neuronal populations, which may help to identify hindbrain subdivisions and boundaries and the topology of specific cell groups. We have characterized three developmental periods that will serve as a framework to compare the development of different neuronal systems and may represent a suitable tool for comparing the absolute chronology of development among vertebrates. The expression patterns of Pax6, Wnt8, and HoxA2 genes in early embryos of S. canicula showed close correspondence to what has been described in other vertebrates and helped to identify the anterior rhombomeres. Also in these early embryos, the combination of Pax6 with protein markers of migrating neuroblasts (DCX) and early differentiating neurons (general: HuC/D; neuron type specific: GAD, the GABA synthesizing enzyme) revealed the organization of S. canicula hindbrain in both transverse segmental units corresponding to visible rhombomeres and longitudinal columns. Later in development, when the interrhombomeric boundaries fade away, accurate information about S. canicula hindbrain subdivisions was achieved by comparing the expression patterns of Pax6 and GAD, serotonin (serotoninergic neurons), tyrosine hydroxylase (catecholaminergic neurons), choline acetyltransferase (cholinergic neurons), and calretinin (a calcium-binding protein). The patterns observed revealed many topological correspondences with other vertebrates and led to

  6. Toxic and nontoxic components of botulinum neurotoxin complex are evolved from a common ancestral zinc protein

    Energy Technology Data Exchange (ETDEWEB)

    Inui, Ken [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472 (Japan); Sagane, Yoshimasa [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Miyata, Keita [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472 (Japan); Miyashita, Shin-Ichiro [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Suzuki, Tomonori [Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558 (Japan); Shikamori, Yasuyuki [Agilent Technologies International Japan, Ltd. Takaura-cho 9-1, Hachioji-shi, Tokyo 192-0033 (Japan); Ohyama, Tohru; Niwa, Koichi [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Watanabe, Toshihiro, E-mail: t-watana@bioindustry.nodai.ac.jp [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer BoNT and NTNHA proteins share a similar protein architecture. Black-Right-Pointing-Pointer NTNHA and BoNT were both identified as zinc-binding proteins. Black-Right-Pointing-Pointer NTNHA does not have a classical HEXXH zinc-coordinating motif similar to that found in all serotypes of BoNT. Black-Right-Pointing-Pointer Homology modeling implied probable key residues involved in zinc coordination. -- Abstract: Zinc atoms play an essential role in a number of enzymes. Botulinum neurotoxin (BoNT), the most potent toxin known in nature, is a zinc-dependent endopeptidase. Here we identify the nontoxic nonhemagglutinin (NTNHA), one of the BoNT-complex constituents, as a zinc-binding protein, along with BoNT. A protein structure classification database search indicated that BoNT and NTNHA share a similar domain architecture, comprising a zinc-dependent metalloproteinase-like, BoNT coiled-coil motif and concanavalin A-like domains. Inductively coupled plasma-mass spectrometry analysis demonstrated that every single NTNHA molecule contains a single zinc atom. This is the first demonstration of a zinc atom in this protein, as far as we know. However, the NTNHA molecule does not possess any known zinc-coordinating motif, whereas all BoNT serotypes possess the classical HEXXH motif. Homology modeling of the NTNHA structure implied that a consensus K-C-L-I-K-X{sub 35}-D sequence common among all NTNHA serotype molecules appears to coordinate a single zinc atom. These findings lead us to propose that NTNHA and BoNT may have evolved distinct functional specializations following their branching out from a common ancestral zinc protein.

  7. The vomeronasal complex of nocturnal strepsirhines and implications for the ancestral condition in primates.

    Science.gov (United States)

    Garrett, Eva C; Dennis, John C; Bhatnagar, Kunwar P; Durham, Emily L; Burrows, Anne M; Bonar, Christopher J; Steckler, Natalie K; Morrison, Edward E; Smith, Timothy D

    2013-12-01

    This study investigates the vomeronasal organ in extant nocturnal strepsirhines as a model for ancestral primates. Cadaveric samples from 10 strepsirhine species, ranging from fetal to adult ages, were studied histologically. Dimensions of structures in the vomeronasal complex, such as the vomeronasal neuroepithelium (VNNE) and vomeronasal cartilage (VNC) were measured in serial sections and selected specimens were studied immunohistochemically to determine physiological aspects of the vomeronasal sensory neurons (VSNs). Osteological features corresponding to vomeronasal structures were studied histologically and related to 3-D CT reconstructions. The VNC consistently rests in a depression on the palatal portion of the maxilla, which we refer to as the vomeronasal groove (VNG). Most age comparisons indicate that in adults VNNE is about twice the length compared with perinatal animals. In VNNE volume, adults are 2- to 3-fold larger compared with perinatal specimens. Across ages, a strong linear relationship exists between VNNE dimensions and body length, mass, and midfacial length. Results indicate that the VNNE of nocturnal strepsirhines is neurogenic postnatally based on GAP43 expression. In addition, based on Olfactory Marker Protein expression, terminally differentiated VSNs are present in the VNNE. Therefore, nocturnal strepsirhines have basic similarities to rodents in growth and maturational characteristics of VSNs. These results indicate that a functional vomeronasal system is likely present in all nocturnal strepsirhines. Finally, given that osteological features such as the VNG are visible on midfacial bones, primate fossils can be assessed to determine whether primate ancestors possessed a vomeronasal complex morphologically similar to that of modern nocturnal strepsirhines. Copyright © 2013 Wiley Periodicals, Inc.

  8. Ancestral morphology of crown-group molluscs revealed by a new Ordovician stem aculiferan.

    Science.gov (United States)

    Vinther, Jakob; Parry, Luke; Briggs, Derek E G; Van Roy, Peter

    2017-02-23

    Exceptionally preserved fossils provide crucial insights into extinct body plans and organismal evolution. Molluscs, one of the most disparate animal phyla, radiated rapidly during the early Cambrian period (approximately 535-520 million years ago (Ma)). The problematic fossil taxa Halkieria and Orthrozanclus (grouped in Sachitida) have been assigned variously to stem-group annelids, brachiopods, stem-group molluscs or stem-group aculiferans (Polyplacophora and Aplacophora), but their affinities have remained controversial owing to a lack of preserved diagnostic characters. Here we describe a new early sachitid, Calvapilosa kroegeri gen. et sp. nov. from the Fezouata biota of Morocco (Early Ordovician epoch, around 478 Ma). The new taxon is characterized by the presence of a single large anterior shell plate and polystichous radula bearing a median tooth and several lateral and uncinal teeth in more than 125 rows. Its flattened body is covered by hollow spinose sclerites, and a smooth, ventral girdle flanks an extensive mantle cavity. Phylogenetic analyses resolve C. kroegeri as a stem-group aculiferan together with other single-plated forms such as Maikhanella (Siphogonuchites) and Orthrozanclus; Halkieria is recovered closer to the aculiferan crown. These genera document the stepwise evolution of the aculiferan body plan from forms with a single, almost conchiferan-like shell through two-plated taxa such as Halkieria, to the eight-plated crown-group aculiferans. C. kroegeri therefore provides key evidence concerning the long debate about the crown molluscan affinities of sachitids. This new discovery strongly suggests that the possession of only a single calcareous shell plate and the presence of unmineralised sclerites are plesiomorphic (an ancestral trait) for the molluscan crown.

  9. Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants.

    Science.gov (United States)

    van Baren, Marijke J; Bachy, Charles; Reistetter, Emily Nahas; Purvine, Samuel O; Grimwood, Jane; Sudek, Sebastian; Yu, Hang; Poirier, Camille; Deerinck, Thomas J; Kuo, Alan; Grigoriev, Igor V; Wong, Chee-Hong; Smith, Richard D; Callister, Stephen J; Wei, Chia-Lin; Schmutz, Jeremy; Worden, Alexandra Z

    2016-03-31

    Prasinophytes are widespread marine green algae that are related to plants. Cellular abundance of the prasinophyte Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these unicellular eukaryotes are important for marine ecology and for understanding Viridiplantae evolution and diversification. We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb genome of Micromonas commoda (RCC299; named herein) shows they share ≤8,141 of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequenced eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26 %) GC splice donors. Micromonas has more genus-specific protein families (19 %) than other genome sequenced prasinophytes (11 %). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other classes retain the entire PG pathway, like moss and glaucophyte algae. Surprisingly, multiple vascular plants also have the PG pathway, except the Penicillin-Binding Protein, and share a unique bi-domain protein potentially associated with the pathway. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in PG-pathway retention and implicate a role in chloroplast structure or division in several extant Viridiplantae lineages. Extensive differences in gene loss and architecture between related prasinophytes underscore

  10. Are Hox genes ancestrally involved in axial patterning? Evidence from the hydrozoan Clytia hemisphaerica (Cnidaria.

    Directory of Open Access Journals (Sweden)

    Roxane Chiori

    Full Text Available BACKGROUND: The early evolution and diversification of Hox-related genes in eumetazoans has been the subject of conflicting hypotheses concerning the evolutionary conservation of their role in axial patterning and the pre-bilaterian origin of the Hox and ParaHox clusters. The diversification of Hox/ParaHox genes clearly predates the origin of bilaterians. However, the existence of a "Hox code" predating the cnidarian-bilaterian ancestor and supporting the deep homology of axes is more controversial. This assumption was mainly based on the interpretation of Hox expression data from the sea anemone, but growing evidence from other cnidarian taxa puts into question this hypothesis. METHODOLOGY/PRINCIPAL FINDINGS: Hox, ParaHox and Hox-related genes have been investigated here by phylogenetic analysis and in situ hybridisation in Clytia hemisphaerica, an hydrozoan species with medusa and polyp stages alternating in the life cycle. Our phylogenetic analyses do not support an origin of ParaHox and Hox genes by duplication of an ancestral ProtoHox cluster, and reveal a diversification of the cnidarian HOX9-14 genes into three groups called A, B, C. Among the 7 examined genes, only those belonging to the HOX9-14 and the CDX groups exhibit a restricted expression along the oral-aboral axis during development and in the planula larva, while the others are expressed in very specialised areas at the medusa stage. CONCLUSIONS/SIGNIFICANCE: Cross species comparison reveals a strong variability of gene expression along the oral-aboral axis and during the life cycle among cnidarian lineages. The most parsimonious interpretation is that the Hox code, collinearity and conservative role along the antero-posterior axis are bilaterian innovations.

  11. CHAAJ (JUEGO DE PELOTA MESOAMERICANO: UN jUEGO ANCESTRAL ENTRE EMERGENCIAS CULTURALES

    Directory of Open Access Journals (Sweden)

    Jairzinho Francisco Panqueba Cifuentes

    2012-06-01

    Full Text Available Los juegos de pelota mesoamericanos son manifestaciones corporales que han sido exploradasprincipalmente desde perspectivas arqueológicas e históricas, pero también han sido retomadosdesde distintas iniciativas para ponerlos en práctica. Desde la frontera entre Estados Unidos conMéxico, pasando por distintos Estados del país “azteca”, son practicadas diferentes modalidades deeste juego. Sin embargo, decir que el chaaj en Mesoamérica es hoy en día una alternativa recreativay deportiva, es quedarse corto respecto a su ya demostrado potencial. La sacralidad manifestada através de los movimientos corporales está ofreciendo opciones de innovación en varios espacios de lassociedades actuales. En su dimensión ceremonial, revela una comunicación ancestral muy actual. Allíse ponen en juego los códices, las interpretaciones arqueológicas y los conocimientos territoriales depersonas sabedoras de las comunidades. En su dimensión lúdica, el juego reúne elementos culturales,deportivos y pedagógicos. Ha sido una práctica corporal, técnica y motora ejecutada constantementeen algunas regiones mexicanas y guatemaltecas. No obstante su antigüedad, en los últimos años seviene registrando una promoción inusitada, en medio de los actuales tiempos de cambio que fueronanunciados desde tiempos inmemoriales por los sabedores y las sabedoras mayas.

  12. Common ancestral origin of pemphigus vulgaris in Jews and Spaniards: a study using microsatellite markers.

    Science.gov (United States)

    Loewenthal, R; Slomov, Y; Gonzalez-Escribano, M F; Goldberg, I; Korostishevsky, M; Brenner, S; Nunez-Roldan, A; Conejo-Mir, J S; Gazit, E

    2004-04-01

    Pemphigus is a group of autoimmune blistering diseases of the skin and mucous membranes. The association of pemphigus with human leukocyte antigen (HLA) is widely accepted. It was described in many ethnic groups and in most countries of the world. Studies showed that the associated HLA haplotype in Jewish pemphigus vulgaris (PV) patients is HLA-B38, DRB1*0402, and DQB1*0302; or HLA-B35, DRB1*0402, and DQB1*0302. Similar associations with class II genes were found in Spanish non-Jewish PV patients. As Jews lived in Spain for hundreds of years and many converted to Christianity, the presence of the same HLA haplotype in the Jewish and Spanish PV suggests that they may share the same founder. Microsatellite markers which span the entire major histocompatibility complex (MHC) locus were used as genetic probes. They were utilized to dissect the MHC region in the search for possible common haplotypes, besides HLA, which may provide an answer to this question. It was found that in both cohorts, in addition to HLA class II genes, there are probably genes in the class I region which are associated with PV. Alleles belonging to the associated markers were used to construct haplotypes and to estimate genetic distances. The distance between the two PV cohorts is relatively short, but the distance between the Jewish patients and the Jewish controls is greater compared to the distance between Spanish patients and Spanish controls. In both PV populations, the same microsatellite haplotypes in addition to a common class II haplotype were found, suggesting that both patient populations originated from the same genetic stock and, therefore, share the same ancestral disease gene.

  13. The 8.1 ancestral MHC haplotype is strongly associated with colorectal cancer risk.

    Science.gov (United States)

    Tóth, Eva Katalin; Kocsis, Judit; Madaras, Balázs; Bíró, Adrienn; Pocsai, Zsuzsa; Fust, George; Blaskó, Bernadett; Karádi, István; Adány, Róza; Laki, Judit

    2007-10-15

    Many recent data indicate that some alleles encoded in the central major histocompatibility complex (MHC) region (Class III) of short arm of chromosome 6 may modify the risk of cancer development. Therefore we determined 4 single nucleotide polymorphisms (SNPs) of this region (TNF-alpha -308 G > A, RAGE -429 T > C, HSP70-2 -1267 A > G, LTA 252 A > G) in genomic DNA samples from 183 Hungarian patients with colorectal cancer and 141 age matched control subjects representing the Hungarian population of the same age and gender. No significant differences were found in either SNP tested. When, however, three- or four-locus haplotypes consisting of known constituents of the so-called 8.1 ancestral haplotype (8.1AH) were considered, marked differences were observed. Frequency of TNF-alpha -308A, RAGE -429C, HSP70-2 -1267G, LTA 252G (8.1AH) haplotype was significantly (p = 0.006) more frequent (19.1%) among patients than in the controls (7.7%). Age- and gender-adjusted ratio of the 8.1AH carriers vs. non-carriers to have colorectal cancer was 2.514 (1.130-5.594). This risk was higher in cancer-indicate that carriers of the 8.1AH, encoding for an altered immune response and known to be associated with alterations of several immune functions and autoimmune diseases have an increased risk for some cancer types. These findings may contribute to better understanding how the defense mechanisms against tumors could be enhanced/strengthened. (c) 2007 Wiley-Liss, Inc.

  14. Adult Neurogenesis in the Mammalian Hippocampus: Why the Dentate Gyrus?

    Science.gov (United States)

    Drew, Liam J.; Fusi, Stefano; Hen, René

    2013-01-01

    In the adult mammalian brain, newly generated neurons are continuously incorporated into two networks: interneurons born in the subventricular zone migrate to the olfactory bulb, whereas the dentate gyrus (DG) of the hippocampus integrates locally born principal neurons. That the rest of the mammalian brain loses significant neurogenic capacity…

  15. Mammalian gastrointestinal parasites in rainforest remnants of the ...

    Indian Academy of Sciences (India)

    Parasite prevalence (%) of nonhuman mammalian species of the tenstudy sites in Anamalai Tiger. Reserve, Western Ghats, India. Supplementary table 2. Percent prevalence of parasite taxa in 17 mammalian hosts from fragmented rainforest landscape of. Anamalai tiger reserve, Western Ghats, India. Supplementary table ...

  16. Non - flying mammalian fauna of Ampijoroa, Ankarafantsika National ...

    African Journals Online (AJOL)

    Non - flying mammalian fauna of Ampijoroa, Ankarafantsika National Park. R Ito, F Rakotondraparany, H Sato. Abstract. There is no list of the mammalian fauna of Ampijoroa Forest Station, a dry deciduous forest within Ankarafantsika National Park. We set Sherman traps and pitfall traps and carried out transect surveys to ...

  17. Bioinformatic analyses of kappa casein gene in mammalian ...

    African Journals Online (AJOL)

    Kappa casein (CSN3) gene is a variant of the milk protein highly conserved in mammalian species. Genetic variations in CSN3 gene of six mammalian livestock species were investigated using bioinformatics approach. A total of twenty-seven CSN3 gene sequences with corresponding amino acids belonging to the six ...

  18. Mammalian gastrointestinal parasites in rainforest remnants of the ...

    Indian Academy of Sciences (India)

    Supplementary table 1. Parasite prevalence (%) of nonhuman mammalian species of the tenstudy sites in Anamalai Tiger. Reserve, Western Ghats, India. Supplementary table 2. Percent prevalence of parasite taxa in 17 mammalian hosts from fragmented rainforest landscape of. Anamalai tiger reserve, Western Ghats, ...

  19. Application of a sensitive collection heuristic for very large protein families: Evolutionary relationship between adipose triglyceride lipase (ATGL and classic mammalian lipases

    Directory of Open Access Journals (Sweden)

    Berezovsky Igor

    2006-03-01

    Full Text Available Abstract Background Manually finding subtle yet statistically significant links to distantly related homologues becomes practically impossible for very populated protein families due to the sheer number of similarity searches to be invoked and analyzed. The unclear evolutionary relationship between classical mammalian lipases and the recently discovered human adipose triglyceride lipase (ATGL; a patatin family member is an exemplary case for such a problem. Results We describe an unsupervised, sensitive sequence segment collection heuristic suitable for assembling very large protein families. It is based on fan-like expanding, iterative database searches. To prevent inclusion of unrelated hits, additional criteria are introduced: minimal alignment length and overlap with starting sequence segments, finding starting sequences in reciprocal searches, automated filtering for compositional bias and repetitive patterns. This heuristic was implemented as FAMILYSEARCHER in the ANNIE sequence analysis environment and applied to search for protein links between the classical lipase family and the patatin-like group. Conclusion The FAMILYSEARCHER is an efficient tool for tracing distant evolutionary relationships involving large protein families. Although classical lipases and ATGL have no obvious sequence similarity and differ with regard to fold and catalytic mechanism, homology links detected with FAMILYSEARCHER show that they are evolutionarily related. The conserved sequence parts can be narrowed down to an ancestral core module consisting of three β-strands, one α-helix and a turn containing the typical nucleophilic serine. Moreover, this ancestral module also appears in numerous enzymes with various substrate specificities, but that critically rely on nucleophilic attack mechanisms.

  20. Complete tribal sampling reveals basal split in Muscidae (Diptera), confirms saprophagy as ancestral feeding mode, and reveals an evolutionary correlation between instar numbers and carnivory

    DEFF Research Database (Denmark)

    Kutty, Sujatha Narayanan; Pont, Adrian C.; Meier, Rudolf

    2014-01-01

    split within this family. The ancestral larval feeding habit is reconstructed to be saprophagy with more specialised coprophagous saprophagy, phytophagy, and carnivory evolving multiple times from saprophagous ancestors. The origins of carnivory in larvae are significantly correlated with a reduction...

  1. Mammalian septins in health and disease

    Directory of Open Access Journals (Sweden)

    Montagna C

    2015-02-01

    Full Text Available Cristina Montagna,1,2 Michal Bejerano-Sagie,1 Jenna R Zechmeister3 1Department of Genetics, 2Department of Pathology, Albert Einstein College of Medicine, Yeshiva University, 3Department of Obstetrics and Gynecology and Women's Health, Montefiore Medical Center, New York, NY, USA Abstract: Septins embrace a large family of proteins highly conserved among eukaryotic species. They were originally identified in budding yeast in the early 1970s as proteins essential for completion of cytokinesis. In humans, septins comprise a group of 13 genes, most of which are present in several isoform variants, leading to a complex pattern of expression. The biological functions achieved by septins have been extensively investigated in yeast, and while several questions remain unanswered, details on the mechanisms of action and pathways relative to their major role in orchestrating the mitotic process, cell polarity, and diffusion barriers have been elucidated. In mammalian cells, the biological processes in which septins play important roles are emerging as increasingly complex. Septins are found with a broad range of expression in most tissues, and like in yeast, are essential for the successful completion of cytokinesis and for the establishment of cell polarity and diffusion barriers. However, they have also been shown to be important for phagocytosis and migration. Owing to their widespread expression in most mammalian cell subtypes and the plethora of functions to which they have been associated, it is not surprising that septins have been implicated in a large variety of human diseases. This review summarizes the current knowledge of septins' cellular functions and the mechanisms of regulation of their assembly. In addition, we present the broad range of human diseases where septins have been shown to be important for the etiology of the disease, including areas where septins have been recently implemented as biomarkers. Because of the growing evidence

  2. Ancestral role of Pax2/5/8 in molluscan brain and multimodal sensory system development.

    Science.gov (United States)

    Wollesen, Tim; Rodríguez Monje, Sonia Victoria; Todt, Christiane; Degnan, Bernard M; Wanninger, Andreas

    2015-10-28

    esthetes and the ampullary system of polyplacophorans as well as the eyes of cephalopods. Pax2/5/8-expressing cells are present in regions where the future sensory cells such as the polyplacophoran esthetes are situated and hence Pax2/5/8 expression probably predates sensory cell development during ontogeny. In mollusks, Pax2/5/8 is only expressed in derivatives of the ectoderm and hence an ancestral role in molluscan ectoderm differentiation is inferred.

  3. Reconstructed ancestral Myo-inositol-3-phosphate synthases indicate that ancestors of the Thermococcales and Thermotoga species were more thermophilic than their descendants.

    Directory of Open Access Journals (Sweden)

    Nicholas C Butzin

    Full Text Available The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS. These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants.

  4. Reconstructed ancestral Myo-inositol-3-phosphate synthases indicate that ancestors of the Thermococcales and Thermotoga species were more thermophilic than their descendants.

    Science.gov (United States)

    Butzin, Nicholas C; Lapierre, Pascal; Green, Anna G; Swithers, Kristen S; Gogarten, J Peter; Noll, Kenneth M

    2013-01-01

    The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS). These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT) of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants.

  5. Nitric oxide negatively regulates mammalian adult neurogenesis

    Science.gov (United States)

    Packer, Michael A.; Stasiv, Yuri; Benraiss, Abdellatif; Chmielnicki, Eva; Grinberg, Alexander; Westphal, Heiner; Goldman, Steven A.; Enikolopov, Grigori

    2003-08-01

    Neural progenitor cells are widespread throughout the adult central nervous system but only give rise to neurons in specific loci. Negative regulators of neurogenesis have therefore been postulated, but none have yet been identified as subserving a significant role in the adult brain. Here we report that nitric oxide (NO) acts as an important negative regulator of cell proliferation in the adult mammalian brain. We used two independent approaches to examine the function of NO in adult neurogenesis. In a pharmacological approach, we suppressed NO production in the rat brain by intraventricular infusion of an NO synthase inhibitor. In a genetic approach, we generated a null mutant neuronal NO synthase knockout mouse line by targeting the exon encoding active center of the enzyme. In both models, the number of new cells generated in neurogenic areas of the adult brain, the olfactory subependyma and the dentate gyrus, was strongly augmented, which indicates that division of neural stem cells in the adult brain is controlled by NO and suggests a strategy for enhancing neurogenesis in the adult central nervous system.

  6. Automated counting of mammalian cell colonies.

    Science.gov (United States)

    Barber, P R; Vojnovic, B; Kelly, J; Mayes, C R; Boulton, P; Woodcock, M; Joiner, M C

    2001-01-01

    Investigating the effect of low-dose radiation exposure on cells using assays of colony-forming ability requires large cell samples to maintain statistical accuracy. Manually counting the resulting colonies is a laborious task in which consistent objectivity is hard to achieve. This is true especially with some mammalian cell lines which form poorly defined or 'fuzzy' colonies, typified by glioma or fibroblast cell lines. A computer-vision-based automated colony counter is presented in this paper. It utilizes novel imaging and image-processing methods involving a modified form of the Hough transform. The automated counter is able to identify less-discrete cell colonies typical of these cell lines. The results of automated colony counting are compared with those from four manual (human) colony counts for the cell lines HT29, A172, U118 and IN1265. The results from the automated counts fall well within the distribution of the manual counts for all four cell lines with respect to surviving fraction (SF) versus dose curves, SF values at 2 Gy (SF2) and total area under the SF curve (Dbar). From the variation in the counts, it is shown that the automated counts are generally more consistent than the manual counts.

  7. Programmed cell senescence during mammalian embryonic development.

    Science.gov (United States)

    Muñoz-Espín, Daniel; Cañamero, Marta; Maraver, Antonio; Gómez-López, Gonzalo; Contreras, Julio; Murillo-Cuesta, Silvia; Rodríguez-Baeza, Alfonso; Varela-Nieto, Isabel; Ruberte, Jesús; Collado, Manuel; Serrano, Manuel

    2013-11-21

    Cellular senescence disables proliferation in damaged cells, and it is relevant for cancer and aging. Here, we show that senescence occurs during mammalian embryonic development at multiple locations, including the mesonephros and the endolymphatic sac of the inner ear, which we have analyzed in detail. Mechanistically, senescence in both structures is strictly dependent on p21, but independent of DNA damage, p53, or other cell-cycle inhibitors, and it is regulated by the TGF-β/SMAD and PI3K/FOXO pathways. Developmentally programmed senescence is followed by macrophage infiltration, clearance of senescent cells, and tissue remodeling. Loss of senescence due to the absence of p21 is partially compensated by apoptosis but still results in detectable developmental abnormalities. Importantly, the mesonephros and endolymphatic sac of human embryos also show evidence of senescence. We conclude that the role of developmentally programmed senescence is to promote tissue remodeling and propose that this is the evolutionary origin of damage-induced senescence. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Repair of radiation damage in mammalian cells

    International Nuclear Information System (INIS)

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis

  9. Cell fate regulation in early mammalian development

    International Nuclear Information System (INIS)

    Oron, Efrat; Ivanova, Natalia

    2012-01-01

    Preimplantation development in mammals encompasses a period from fertilization to implantation and results in formation of a blastocyst composed of three distinct cell lineages: epiblast, trophectoderm and primitive endoderm. The epiblast gives rise to the organism, while the trophectoderm and the primitive endoderm contribute to extraembryonic tissues that support embryo development after implantation. In many vertebrates, such as frog or fish, maternally supplied lineage determinants are partitioned within the egg. Cell cleavage that follows fertilization results in polarization of these factors between the individual blastomeres, which become restricted in their developmental fate. In contrast, the mouse oocyte and zygote lack clear polarity and, until the eight-cell stage, individual blastomeres retain the potential to form all lineages. How are cell lineages specified in the absence of a maternally supplied blueprint? This is a fundamental question in the field of developmental biology. The answer to this question lies in understanding the cell–cell interactions and gene networks involved in embryonic development prior to implantation and using this knowledge to create testable models of the developmental processes that govern cell fates. We provide an overview of classic and contemporary models of early lineage development in the mouse and discuss the emerging body of work that highlights similarities and differences between blastocyst development in the mouse and other mammalian species. (paper)

  10. Protection of cultured mammalian cells by rebamipide

    Energy Technology Data Exchange (ETDEWEB)

    Antoku, Shigetoshi; Aramaki, Ryoji [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine; Tanaka, Hisashi; Kusumoto, Naotoshi

    1997-06-01

    Rebamipide which is used as a drug for gastritis and stomach ulcer has large capability for OH radical scavenging. It is expected that rebamipide has protective effect against ionizing radiations. The present paper deals with protective effect of rebamipide for cultured mammalian cells exposed to ionizing radiations. As rebamipide is insoluble in water, three solvents were used to dissolve. Rebamipide dissolved in dimethyl sulfoxide (DMSO), dimethyl formamide (DMFA) and 0.02 N NaOH was added to the cells in Eagle`s minimum essential medium (MEM) supplemented with 10% fetal calf serum and the cells were irradiated with X-rays. After irradiation, the cells were trypsinized, plated in MEM with 10% fetal calf serum and incubated for 7 days in a CO{sub 2} incubator to form colonies. Rebamipide dissolved in 0.02 N NaOH exhibited the protective effect expected its OH radical scavenging capability. However, the protective effect of rebamipide dissolved in DMSO was about half of that expected by its radical scavenging capability and that of rebamipide dissolved in DMFA was not observed. Uptake of rebamipide labeled with {sup 14}C increased with increasing contact time with rebamipide. These rebamipide mainly distributed in nucleus rather than cytoplasm. (author)

  11. Mitochondrial toxicity of triclosan on mammalian cells

    Directory of Open Access Journals (Sweden)

    Charmaine Ajao

    2015-01-01

    Full Text Available Effects of triclosan (5-chloro-2′-(2,4-dichlorophenoxyphenol on mammalian cells were investigated using human peripheral blood mono nuclear cells (PBMC, keratinocytes (HaCaT, porcine spermatozoa and kidney tubular epithelial cells (PK-15, murine pancreatic islets (MIN-6 and neuroblastoma cells (MNA as targets. We show that triclosan (1–10 μg ml−1 depolarised the mitochondria, upshifted the rate of glucose consumption in PMBC, HaCaT, PK-15 and MNA, and subsequently induced metabolic acidosis. Triclosan induced a regression of insulin producing pancreatic islets into tiny pycnotic cells and necrotic death. Short exposure to low concentrations of triclosan (30 min, ≤1 μg/ml paralyzed the high amplitude tail beating and progressive motility of spermatozoa, within 30 min exposure, depolarized the spermatozoan mitochondria and hyperpolarised the acrosome region of the sperm head and the flagellar fibrous sheath (distal part of the flagellum. Experiments with isolated rat liver mitochondria showed that triclosan impaired oxidative phosphorylation, downshifted ATP synthesis, uncoupled respiration and provoked excessive oxygen uptake. These exposure concentrations are 100–1000 fold lower that those permitted in consumer goods. The mitochondriotoxic mechanism of triclosan differs from that of valinomycin, cereulide and the enniatins by not involving potassium ionophoric activity.

  12. Hibernation and daily torpor minimize mammalian extinctions

    Science.gov (United States)

    Geiser, Fritz; Turbill, Christopher

    2009-10-01

    Small mammals appear to be less vulnerable to extinction than large species, but the underlying reasons are poorly understood. Here, we provide evidence that almost all (93.5%) of 61 recently extinct mammal species were homeothermic, maintaining a constant high body temperature and thus energy expenditure, which demands a high intake of food, long foraging times, and thus exposure to predators. In contrast, only 6.5% of extinct mammals were likely heterothermic and employed multi-day torpor (hibernation) or daily torpor, even though torpor is widespread within more than half of all mammalian orders. Torpor is characterized by substantial reductions of body temperature and energy expenditure and enhances survival during adverse conditions by minimizing food and water requirements, and consequently reduces foraging requirements and exposure to predators. Moreover, because life span is generally longer in heterothermic mammals than in related homeotherms, heterotherms can employ a ‘sit-and-wait’ strategy to withstand adverse periods and then repopulate when circumstances improve. Thus, torpor is a crucial but hitherto unappreciated attribute of small mammals for avoiding extinction. Many opportunistic heterothermic species, because of their plastic energetic requirements, may also stand a better chance of future survival than homeothermic species in the face of greater climatic extremes and changes in environmental conditions caused by global warming.

  13. Mammalian CD1 and MR1 genes.

    Science.gov (United States)

    Reinink, Peter; Van Rhijn, Ildiko

    2016-08-01

    All higher vertebrates share the fundamental components of the adaptive immune system: the B cell receptor, the T cell receptor, and classical MHC proteins. At a more detailed level, their immune systems vary considerably, especially with respect to the non-polymorphic MHC class I-like proteins. In mammals, the CD1 family of lipid-presenting proteins is encoded by clusters of genes of widely divergent sizes and compositions. Another MHC class I-like protein, MR1, is typically encoded by a single gene that is highly conserved among species. Based on mammalian genomes and the available data on cellular expression profiles and protein structure, we review MR1 genes and families of CD1 genes in modern mammals from a genetic and functional perspective. Understanding the CD1 and MR1 systems across animal species provides insights into the specialized functions of the five types of CD1 proteins and facilitates careful consideration of animal models for human diseases in which immune responses to lipids and bacterial metabolites play a role.

  14. A hybrid mammalian cell cycle model

    Directory of Open Access Journals (Sweden)

    Vincent Noël

    2013-08-01

    Full Text Available Hybrid modeling provides an effective solution to cope with multiple time scales dynamics in systems biology. Among the applications of this method, one of the most important is the cell cycle regulation. The machinery of the cell cycle, leading to cell division and proliferation, combines slow growth, spatio-temporal re-organisation of the cell, and rapid changes of regulatory proteins concentrations induced by post-translational modifications. The advancement through the cell cycle comprises a well defined sequence of stages, separated by checkpoint transitions. The combination of continuous and discrete changes justifies hybrid modelling approaches to cell cycle dynamics. We present a piecewise-smooth version of a mammalian cell cycle model, obtained by hybridization from a smooth biochemical model. The approximate hybridization scheme, leading to simplified reaction rates and binary event location functions, is based on learning from a training set of trajectories of the smooth model. We discuss several learning strategies for the parameters of the hybrid model.

  15. DNA synthesis in irradiated mammalian cells

    International Nuclear Information System (INIS)

    Painter, R.B.; California Univ., San Francisco; Young, B.R.

    1987-01-01

    One of the first responses observed in S phase mammalian cells that have suffered DNA damage is the inhibition of initiation of DNA replicons. In cells exposed to ionizing radiation, a single-strand break appears to be the stimulus for this effect, whereby the initiation of many adjacent replicons (a replicon cluster) is blocked by a single-strand break in any one of them. In cells exposed to ultraviolet light (u.v.), replicon initiation is blocked at fluences that induce about one pyrimidine dimer per replicon. The inhibition of replicon initiation by u.v. in Chinese hamster cells that are incapable of excising pyrimidine dimers from their DNA is virtually the same as in cells that are proficient in dimer excision. Therefore, a single-strand break formed during excision repair of pyrimidine dimers is not the stimulus for inhibition of replicon initiation in u.v.-irradiated cells. Considering this fact, as well as the comparative insensitivity of human ataxia telangiectasia cells to u.v.-induced inhibition of replicon initiation, we propose that a relatively rare lesion is the stimulus for u.v. -induced inhibition of replicon initiation. (author

  16. Apoptosis in mammalian oocytes: a review.

    Science.gov (United States)

    Tiwari, Meenakshi; Prasad, Shilpa; Tripathi, Anima; Pandey, Ashutosh N; Ali, Irfan; Singh, Arvind K; Shrivastav, Tulsidas G; Chaube, Shail K

    2015-08-01

    Apoptosis causes elimination of more than 99% of germ cells from cohort of ovary through follicular atresia. Less than 1% of germ cells, which are culminated in oocytes further undergo apoptosis during last phases of oogenesis and depletes ovarian reserve in most of the mammalian species including human. There are several players that induce apoptosis directly or indirectly in oocytes at various stages of meiotic cell cycle. Premature removal of encircling granulosa cells from immature oocytes, reduced levels of adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate, increased levels of calcium (Ca(2+)) and oxidants, sustained reduced level of maturation promoting factor, depletion of survival factors, nutrients and cell cycle proteins, reduced meiotic competency, increased levels of proapoptotic as well as apoptotic factors lead to oocyte apoptosis. The BH3-only proteins also act as key regulators of apoptosis in oocyte within the ovary. Both intrinsic (mitochondria-mediated) as well as extrinsic (cell surface death receptor-mediated) pathways are involved in oocyte apoptosis. BID, a BH3-only protein act as a bridge between both apoptotic pathways and its cleavage activates cell death machinery of both the pathways inside the follicular microenvironment. Oocyte apoptosis leads to the depletion of ovarian reserve that directly affects reproductive outcome of various mammals including human. In this review article, we highlight some of the important players and describe the pathways involved during oocyte apoptosis in mammals.

  17. Functional Amyloid Formation within Mammalian Tissue.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available Amyloid is a generally insoluble, fibrous cross-beta sheet protein aggregate. The process of amyloidogenesis is associated with a variety of neurodegenerative diseases including Alzheimer, Parkinson, and Huntington disease. We report the discovery of an unprecedented functional mammalian amyloid structure generated by the protein Pmel17. This discovery demonstrates that amyloid is a fundamental nonpathological protein fold utilized by organisms from bacteria to humans. We have found that Pmel17 amyloid templates and accelerates the covalent polymerization of reactive small molecules into melanin-a critically important biopolymer that protects against a broad range of cytotoxic insults including UV and oxidative damage. Pmel17 amyloid also appears to play a role in mitigating the toxicity associated with melanin formation by sequestering and minimizing diffusion of highly reactive, toxic melanin precursors out of the melanosome. Intracellular Pmel17 amyloidogenesis is carefully orchestrated by the secretory pathway, utilizing membrane sequestration and proteolytic steps to protect the cell from amyloid and amyloidogenic intermediates that can be toxic. While functional and pathological amyloid share similar structural features, critical differences in packaging and kinetics of assembly enable the usage of Pmel17 amyloid for normal function. The discovery of native Pmel17 amyloid in mammals provides key insight into the molecular basis of both melanin formation and amyloid pathology, and demonstrates that native amyloid (amyloidin may be an ancient, evolutionarily conserved protein quaternary structure underpinning diverse pathways contributing to normal cell and tissue physiology.

  18. Functional amyloid formation within mammalian tissue.

    Directory of Open Access Journals (Sweden)

    Douglas M Fowler

    2006-01-01

    Full Text Available Amyloid is a generally insoluble, fibrous cross-beta sheet protein aggregate. The process of amyloidogenesis is associated with a variety of neurodegenerative diseases including Alzheimer, Parkinson, and Huntington disease. We report the discovery of an unprecedented functional mammalian amyloid structure generated by the protein Pmel17. This discovery demonstrates that amyloid is a fundamental nonpathological protein fold utilized by organisms from bacteria to humans. We have found that Pmel17 amyloid templates and accelerates the covalent polymerization of reactive small molecules into melanin-a critically important biopolymer that protects against a broad range of cytotoxic insults including UV and oxidative damage. Pmel17 amyloid also appears to play a role in mitigating the toxicity associated with melanin formation by sequestering and minimizing diffusion of highly reactive, toxic melanin precursors out of the melanosome. Intracellular Pmel17 amyloidogenesis is carefully orchestrated by the secretory pathway, utilizing membrane sequestration and proteolytic steps to protect the cell from amyloid and amyloidogenic intermediates that can be toxic. While functional and pathological amyloid share similar structural features, critical differences in packaging and kinetics of assembly enable the usage of Pmel17 amyloid for normal function. The discovery of native Pmel17 amyloid in mammals provides key insight into the molecular basis of both melanin formation and amyloid pathology, and demonstrates that native amyloid (amyloidin may be an ancient, evolutionarily conserved protein quaternary structure underpinning diverse pathways contributing to normal cell and tissue physiology.

  19. Myocardial ischemic protection in natural mammalian hibernation.

    Science.gov (United States)

    Yan, Lin; Kudej, Raymond K; Vatner, Dorothy E; Vatner, Stephen F

    2015-03-01

    Hibernating myocardium is an important clinical syndrome protecting the heart with chronic myocardial ischemia, named for its assumed resemblance to hibernating mammals in winter. However, the effects of myocardial ischemic protection have never been studied in true mammalian hibernation, which is a unique strategy for surviving extreme winter environmental stress. The goal of this investigation was to test the hypothesis that ischemic stress may also be protected in woodchucks as they hibernate in winter. Myocardial infarction was induced by coronary occlusion followed by reperfusion in naturally hibernating woodchucks in winter with and without hibernation and in summer, when not hibernating. The ischemic area at risk was similar among groups. Myocardial infarction was significantly less in woodchucks in winter, whether hibernating or not, compared with summer, and was similar to that resulting after ischemic preconditioning. Whereas several genes were up or downregulated in both hibernating woodchuck and with ischemic preconditioning, one mechanism was unique to hibernation, i.e., activation of cAMP-response element binding protein (CREB). When CREB was upregulated in summer, it induced protection similar to that observed in the woodchuck heart in winter. The cardioprotection in hibernation was also mediated by endothelial nitric oxide synthase, rather than inducible nitric oxide synthase. Thus, the hibernating woodchuck heart is a novel model to study cardioprotection for two major reasons: (1) powerful cardioprotection occurs naturally in winter months in the absence of any preconditioning stimuli, and (2) it resembles ischemic preconditioning, but with novel mechanisms, making this model potentially useful for clinical translation.

  20. Angiogenesis is inhibitory for mammalian digit regeneration

    Science.gov (United States)

    Yu, Ling; Yan, Mingquan; Simkin, Jennifer; Ketcham, Paulina D.; Leininger, Eric; Han, Manjong

    2014-01-01

    Abstract The regenerating mouse digit tip is a unique model for investigating blastema formation and epimorphic regeneration in mammals. The blastema is characteristically avascular and we previously reported that blastema expression of a known anti‐angiogenic factor gene, Pedf, correlated with a successful regenerative response (Yu, L., Han, M., Yan, M., Lee, E. C., Lee, J. & Muneoka, K. (2010). BMP signaling induces digit regeneration in neonatal mice. Development, 137, 551–559). Here we show that during regeneration Vegfa transcripts are not detected in the blastema but are expressed at the onset of differentiation. Treating the amputation wound with vascular endothelial growth factor enhances angiogenesis but inhibits regeneration. We next tested bone morphogenetic protein 9 (BMP9), another known mediator of angiogenesis, and found that BMP9 is also a potent inhibitor of digit tip regeneration. BMP9 induces Vegfa expression in the digit stump suggesting that regenerative failure is mediated by enhanced angiogenesis. Finally, we show that BMP9 inhibition of regeneration is completely rescued by treatment with pigment epithelium‐derived factor. These studies show that precocious angiogenesis is inhibitory for regeneration, and provide compelling evidence that the regulation of angiogenesis is a critical factor in designing therapies aimed at stimulating mammalian regeneration. PMID:27499862

  1. Presence of thiamine pyrophosphate in mammalian peroxisomes

    Directory of Open Access Journals (Sweden)

    Van Veldhoven Paul P

    2007-06-01

    Full Text Available Abstract Background Thiamine pyrophosphate (TPP is a cofactor for 2-hydroxyacyl-CoA lyase 1 (HACL1, a peroxisomal enzyme essential for the α-oxidation of phytanic acid and 2-hydroxy straight chain fatty acids. So far, HACL1 is the only known peroxisomal TPP-dependent enzyme in mammals. Little is known about the transport of metabolites and cofactors across the peroxisomal membrane and no peroxisomal thiamine or TPP carrier has been identified in mammals yet. This study was undertaken to get a better insight into these issues and to shed light on the role of TPP in peroxisomal metabolism. Results Because of the crucial role of the cofactor TPP, we reanalyzed its subcellular localization in rat liver. In addition to the known mitochondrial and cytosolic pools, we demonstrated, for the first time, that peroxisomes contain TPP (177 ± 2 pmol/mg protein. Subsequently, we verified whether TPP could be synthesized from its precursor thiamine, in situ, by a peroxisomal thiamine pyrophosphokinase (TPK. However, TPK activity was exclusively recovered in the cytosol. Conclusion Our results clearly indicate that mammalian peroxisomes do contain TPP but that no pyrophosphorylation of thiamine occurs in these organelles, implying that thiamine must enter the peroxisome already pyrophosphorylated. Consequently, TPP entry may depend on a specific transport system or, in a bound form, on HACL1 translocation.

  2. Evolution of acidic mammalian chitinase genes (CHIA) is related to body mass and insectivory in primates.

    Science.gov (United States)

    Janiak, Mareike C; Chaney, Morgan E; Tosi, Anthony J

    2017-12-05

    Insects are an important food resource for many primates, but the chitinous exoskeletons of arthropods have long been considered to be indigestible by the digestive enzymes of most mammals. However, recently mice and insectivorous bats were found to produce the enzyme acidic mammalian chitinase (AMCase) to digest insect exoskeletons. Here, we report on the gene CHIA and its paralogs, which encode AMCase, in a comparative sample of nonhuman primates. Our results show that early primates likely had three CHIA genes, suggesting that insects were an important component of the ancestral primate diet. With some exceptions, most extant primate species retain only one functional CHIA paralog. The exceptions include two colobine species, in which all CHIA genes have premature stop codons, and several New World monkey species that retain two functional genes. The most insectivorous species in our sample also have the largest number of functional CHIA genes. Tupaia chinensis and Otolemur garnettii retain three functional CHIA paralogs, while Tarsius syrichta has a total of five, two of which may be duplications specific to the tarsier lineage. Selection analyses indicate that CHIA genes are under more intense selection in species with higher insect consumption, as well as in smaller-bodied species (<500 g), providing molecular support for Kay's Threshold, a well-established component of primatological theory which proposes that only small primates can be primarily insectivorous. These findings suggest that primates, like mice and insectivorous bats, may use the enzyme AMCase to digest the chitin in insect exoskeletons, providing potentially significant nutritional benefits. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Ancestral amphibian v2rs are expressed in the main olfactory epithelium

    Science.gov (United States)

    Syed, Adnan S.; Sansone, Alfredo; Nadler, Walter; Manzini, Ivan; Korsching, Sigrun I.

    2013-01-01

    Mammalian olfactory receptor families are segregated into different olfactory organs, with type 2 vomeronasal receptor (v2r) genes expressed in a basal layer of the vomeronasal epithelium. In contrast, teleost fish v2r genes are intermingled with all other olfactory receptor genes in a single sensory surface. We report here that, strikingly different from both lineages, the v2r gene family of the amphibian Xenopus laevis is expressed in the main olfactory as well as the vomeronasal epithelium. Interestingly, late diverging v2r genes are expressed exclusively in the vomeronasal epithelium, whereas “ancestral” v2r genes, including the single member of v2r family C, are restricted to the main olfactory epithelium. Moreover, within the main olfactory epithelium, v2r genes are expressed in a basal zone, partially overlapping, but clearly distinct from an apical zone of olfactory marker protein and odorant receptor-expressing cells. These zones are also apparent in the spatial distribution of odor responses, enabling a tentative assignment of odor responses to olfactory receptor gene families. Responses to alcohols, aldehydes, and ketones show an apical localization, consistent with being mediated by odorant receptors, whereas amino acid responses overlap extensively with the basal v2r-expressing zone. The unique bimodal v2r expression pattern in main and accessory olfactory system of amphibians presents an excellent opportunity to study the transition of v2r gene expression during evolution of higher vertebrates. PMID:23613591

  4. Bats host diverse parvoviruses as possible origin of mammalian dependoparvoviruses and source for bat-swine interspecies transmission.

    Science.gov (United States)

    Lau, Susanna K P; Ahmed, Syed Shakeel; Tsoi, Hoi-Wah; Yeung, Hazel C; Li, Kenneth S M; Fan, Rachel Y Y; Zhao, Pyrear S H; Lau, Candy C C; Lam, Carol S F; Choi, Kelvin K F; Chan, Ben C H; Cai, Jian-Piao; Wong, Samson S Y; Chen, Honglin; Zhang, Hai-Lin; Zhang, Libiao; Wang, Ming; Woo, Patrick C Y; Yuen, Kwok-Yung

    2017-11-06

    Compared to the enormous species diversity of bats, relatively few parvoviruses have been reported. We detected diverse and potentially novel parvoviruses from bats in Hong Kong and mainland China. Parvoviruses belonging to Amdoparvovirus, Bocaparvovirus and Dependoparvovirus were detected in alimentary, liver and spleen samples from 16 different chiropteran species of five families by PCR. Phylogenetic analysis of partial helicase sequences showed that they potentially belonged to 25 bocaparvovirus, three dependoparvovirus and one amdoparvovirus species. Nearly complete genome sequencing confirmed the existence of at least four novel bat bocaparvovirus species (Rp-BtBoV1 and Rp-BtBoV2 from Rhinolophus pusillus, Rs-BtBoV2 from Rhinolophus sinicus and Rol-BtBoV1 from Rousettus leschenaultii) and two novel bat dependoparvovirus species (Rp-BtAAV1 from Rhinolophus pusillus and Rs-BtAAV1 from Rhinolophus sinicus). Rs-BtBoV2 was closely related to Ungulate bocaparvovirus 5 with 93, 72.1 and 78.7 % amino acid identities in the NS1, NP1 and VP1/VP2 genes, respectively. The detection of bat bocaparvoviruses, including Rs-BtBoV2, closely related to porcine bocaparvoviruses, suggests recent interspecies transmission of bocaparvoviruses between bats and swine. Moreover, Rp-BtAAV1 and Rs-BtAAV1 were most closely related to human AAV1 with 48.7 and 57.5 % amino acid identities in the rep gene. The phylogenetic relationship between BtAAVs and other mammalian AAVs suggests bats as the ancestral origin of mammalian AAVs. Furthermore, parvoviruses of the same species were detected from multiple bat species or families, supporting the ability of bat parvoviruses to cross species barriers. The results extend our knowledge on the diversity of bat parvoviruses and the role of bats in parvovirus evolution and emergence in humans and animals.

  5. Allo-allo-triploid Sphagnum × falcatulum: single individuals contain most of the Holantarctic diversity for ancestrally indicative markers.

    Science.gov (United States)

    Karlin, Eric F; Smouse, Peter E

    2017-08-01

    Allopolyploids exhibit both different levels and different patterns of genetic variation than are typical of diploids. However, scant attention has been given to the partitioning of allelic information and diversity in allopolyploids, particularly that among homeologous monoploid components of the hologenome. Sphagnum × falcatulum is a double allopolyploid peat moss that spans a considerable portion of the Holantarctic. With monoploid genomes from three ancestral species, this organism exhibits a complex evolutionary history involving serial inter-subgeneric allopolyploidizations. Studying populations from three disjunct regions [South Island (New Zealand); Tierra de Fuego archipelago (Chile, Argentina); Tasmania (Australia)], allelic information for five highly stable microsatellite markers that differed among the three (ancestral) monoploid genomes was examined. Using Shannon information and diversity measures, the holoploid information, as well as the information within and among the three component monoploid genomes, was partitioned into separate components for individuals within and among populations and regions, and those information components were then converted into corresponding diversity measures. The majority (76 %) of alleles detected across these five markers are most likely to have been captured by hybridization, but the information within each of the three monoploid genomes varied, suggesting a history of recurrent allopolyploidization between ancestral species containing different levels of genetic diversity. Information within individuals, equivalent to the information among monoploid genomes (for this dataset), was relatively stable, and represented 83 % of the grand total information across the Holantarctic, with both inter-regional and inter-population diversification each accounting for about 5 % of the total information. Sphagnum × falcatulum probably inherited the great majority of its genetic diversity at these markers by reticulation

  6. Saccharomyces cerevisiae Bat1 and Bat2 aminotransferases have functionally diverged from the ancestral-like Kluyveromyces lactis orthologous enzyme.

    Directory of Open Access Journals (Sweden)

    Maritrini Colón

    Full Text Available BACKGROUND: Gene duplication is a key evolutionary mechanism providing material for the generation of genes with new or modified functions. The fate of duplicated gene copies has been amply discussed and several models have been put forward to account for duplicate conservation. The specialization model considers that duplication of a bifunctional ancestral gene could result in the preservation of both copies through subfunctionalization, resulting in the distribution of the two ancestral functions between the gene duplicates. Here we investigate whether the presumed bifunctional character displayed by the single branched chain amino acid aminotransferase present in K. lactis has been distributed in the two paralogous genes present in S. cerevisiae, and whether this conservation has impacted S. cerevisiae metabolism. PRINCIPAL FINDINGS: Our results show that the KlBat1 orthologous BCAT is a bifunctional enzyme, which participates in the biosynthesis and catabolism of branched chain aminoacids (BCAAs. This dual role has been distributed in S. cerevisiae Bat1 and Bat2 paralogous proteins, supporting the specialization model posed to explain the evolution of gene duplications. BAT1 is highly expressed under biosynthetic conditions, while BAT2 expression is highest under catabolic conditions. Bat1 and Bat2 differential relocalization has favored their physiological function, since biosynthetic precursors are generated in the mitochondria (Bat1, while catabolic substrates are accumulated in the cytosol (Bat2. Under respiratory conditions, in the presence of ammonium and BCAAs the bat1Δ bat2Δ double mutant shows impaired growth, indicating that Bat1 and Bat2 could play redundant roles. In K. lactis wild type growth is independent of BCAA degradation, since a Klbat1Δ mutant grows under this condition. CONCLUSIONS: Our study shows that BAT1 and BAT2 differential expression and subcellular relocalization has resulted in the distribution of the

  7. Human Genetic Ancestral Composition Correlates with the Origin of Mycobacterium leprae Strains in a Leprosy Endemic Population.

    Directory of Open Access Journals (Sweden)

    Nora Cardona-Castro

    Full Text Available Recent reports have suggested that leprosy originated in Africa, extended to Asia and Europe, and arrived in the Americas during European colonization and the African slave trade. Due to colonization, the contemporary Colombian population is an admixture of Native-American, European and African ancestries. Because microorganisms are known to accompany humans during migrations, patterns of human migration can be traced by examining genomic changes in associated microbes. The current study analyzed 118 leprosy cases and 116 unrelated controls from two Colombian regions endemic for leprosy (Atlantic and Andean in order to determine possible associations of leprosy with patient ancestral background (determined using 36 ancestry informative markers, Mycobacterium leprae genotype and/or patient geographical origin. We found significant differences between ancestral genetic composition. European components were predominant in Andean populations. In contrast, African components were higher in the Atlantic region. M. leprae genotypes were then analyzed for cluster associations and compared with the ancestral composition of leprosy patients. Two M. leprae principal clusters were found: haplotypes C54 and T45. Haplotype C54 associated with African origin and was more frequent in patients from the Atlantic region with a high African component. In contrast, haplotype T45 associated with European origin and was more frequent in Andean patients with a higher European component. These results suggest that the human and M. leprae genomes have co-existed since the African and European origins of the disease, with leprosy ultimately arriving in Colombia during colonization. Distinct M. leprae strains followed European and African settlement in the country and can be detected in contemporary Colombian populations.

  8. High-density marker profiling confirms ancestral genomes of Avena species and identifies D-genome chromosomes of hexaploid oat.

    Science.gov (United States)

    Yan, Honghai; Bekele, Wubishet A; Wight, Charlene P; Peng, Yuanying; Langdon, Tim; Latta, Robert G; Fu, Yong-Bi; Diederichsen, Axel; Howarth, Catherine J; Jellen, Eric N; Boyle, Brian; Wei, Yuming; Tinker, Nicholas A

    2016-11-01

    Genome analysis of 27 oat species identifies ancestral groups, delineates the D genome, and identifies ancestral origin of 21 mapped chromosomes in hexaploid oat. We investigated genomic relationships among 27 species of the genus Avena using high-density genetic markers revealed by genotyping-by-sequencing (GBS). Two methods of GBS analysis were used: one based on tag-level haplotypes that were previously mapped in cultivated hexaploid oat (A. sativa), and one intended to sample and enumerate tag-level haplotypes originating from all species under investigation. Qualitatively, both methods gave similar predictions regarding the clustering of species and shared ancestral genomes. Furthermore, results were consistent with previous phylogenies of the genus obtained with conventional approaches, supporting the robustness of whole genome GBS analysis. Evidence is presented to justify the final and definitive classification of the tetraploids A. insularis, A. maroccana (=A. magna), and A. murphyi as containing D-plus-C genomes, and not A-plus-C genomes, as is most often specified in past literature. Through electronic painting of the 21 chromosome representations in the hexaploid oat consensus map, we show how the relative frequency of matches between mapped hexaploid-derived haplotypes and AC (DC)-genome tetraploids vs. A- and C-genome diploids can accurately reveal the genome origin of all hexaploid chromosomes, including the approximate positions of inter-genome translocations. Evidence is provided that supports the continued classification of a diverged B genome in AB tetraploids, and it is confirmed that no extant A-genome diploids, including A. canariensis, are similar enough to the D genome of tetraploid and hexaploid oat to warrant consideration as a D-genome diploid.

  9. Saccharomyces cerevisiae Bat1 and Bat2 Aminotransferases Have Functionally Diverged from the Ancestral-Like Kluyveromyces lactis Orthologous Enzyme

    Science.gov (United States)

    Colón, Maritrini; Hernández, Fabiola; López, Karla; Quezada, Héctor; González, James; López, Geovani; Aranda, Cristina; González, Alicia

    2011-01-01

    Background Gene duplication is a key evolutionary mechanism providing material for the generation of genes with new or modified functions. The fate of duplicated gene copies has been amply discussed and several models have been put forward to account for duplicate conservation. The specialization model considers that duplication of a bifunctional ancestral gene could result in the preservation of both copies through subfunctionalization, resulting in the distribution of the two ancestral functions between the gene duplicates. Here we investigate whether the presumed bifunctional character displayed by the single branched chain amino acid aminotransferase present in K. lactis has been distributed in the two paralogous genes present in S. cerevisiae, and whether this conservation has impacted S. cerevisiae metabolism. Principal Findings Our results show that the KlBat1 orthologous BCAT is a bifunctional enzyme, which participates in the biosynthesis and catabolism of branched chain aminoacids (BCAAs). This dual role has been distributed in S. cerevisiae Bat1 and Bat2 paralogous proteins, supporting the specialization model posed to explain the evolution of gene duplications. BAT1 is highly expressed under biosynthetic conditions, while BAT2 expression is highest under catabolic conditions. Bat1 and Bat2 differential relocalization has favored their physiological function, since biosynthetic precursors are generated in the mitochondria (Bat1), while catabolic substrates are accumulated in the cytosol (Bat2). Under respiratory conditions, in the presence of ammonium and BCAAs the bat1Δ bat2Δ double mutant shows impaired growth, indicating that Bat1 and Bat2 could play redundant roles. In K. lactis wild type growth is independent of BCAA degradation, since a Klbat1Δ mutant grows under this condition. Conclusions Our study shows that BAT1 and BAT2 differential expression and subcellular relocalization has resulted in the distribution of the biosynthetic and catabolic

  10. Ancestral polymorphism at the major histocompatibility complex (MHCIIß in the Nesospiza bunting species complex and its sister species (Rowettia goughensis

    Directory of Open Access Journals (Sweden)

    van Rensburg Alexandra

    2012-08-01

    Full Text Available Abstract Background The major histocompatibility complex (MHC is an important component of the vertebrate immune system and is frequently used to characterise adaptive variation in wild populations due to its co-evolution with pathogens. Passerine birds have an exceptionally diverse MHC with multiple gene copies and large numbers of alleles compared to other avian taxa. The Nesospiza bunting species complex (two species on Nightingale Island; one species with three sub-species on Inaccessible Island represents a rapid adaptive radiation at a small, isolated archipelago, and is thus an excellent model for the study of adaptation and speciation. In this first study of MHC in Nesospiza buntings, we aim to characterize MHCIIß variation, determine the strength of selection acting at this gene region and assess the level of shared polymorphism between the Nesospiza species complex and its putative sister taxon, Rowettia goughensis, from Gough Island. Results In total, 23 unique alleles were found in 14 Nesospiza and 2 R. goughensis individuals encoding at least four presumably functional loci and two pseudogenes. There was no evidence of ongoing selection on the peptide binding region (PBR. Of the 23 alleles, 15 were found on both the islands inhabited by Nesospiza species, and seven in both Nesospiza and Rowettia; indications of shared, ancestral polymorphism. A gene tree of Nesospiza MHCIIß alleles with several other passerine birds shows three highly supported Nesospiza-specific groups. All R. goughensis alleles were shared with Nesospiza, and these alleles were found in all three Nesospiza sequence groups in the gene tree, suggesting that most of the observed variation predates their phylogenetic split. Conclusions Lack of evidence of selection on the PBR, together with shared polymorphism across the gene tree, suggests that population variation of MHCIIß among Nesospiza and Rowettia is due to ancestral polymorphism rather than local selective

  11. Functional evolution of mammalian odorant receptors.

    Directory of Open Access Journals (Sweden)

    Kaylin A Adipietro

    Full Text Available The mammalian odorant receptor (OR repertoire is an attractive model to study evolution, because ORs have been subjected to rapid evolution between species, presumably caused by changes of the olfactory system to adapt to the environment. However, functional assessment of ORs in related species remains largely untested. Here we investigated the functional properties of primate and rodent ORs to determine how well evolutionary distance predicts functional characteristics. Using human and mouse ORs with previously identified ligands, we cloned 18 OR orthologs from chimpanzee and rhesus macaque and 17 mouse-rat orthologous pairs that are broadly representative of the OR repertoire. We functionally characterized the in vitro responses of ORs to a wide panel of odors and found similar ligand selectivity but dramatic differences in response magnitude. 87% of human-primate orthologs and 94% of mouse-rat orthologs showed differences in receptor potency (EC50 and/or efficacy (dynamic range to an individual ligand. Notably dN/dS ratio, an indication of selective pressure during evolution, does not predict functional similarities between orthologs. Additionally, we found that orthologs responded to a common ligand 82% of the time, while human OR paralogs of the same subfamily responded to the common ligand only 33% of the time. Our results suggest that, while OR orthologs tend to show conserved ligand selectivity, their potency and/or efficacy dynamically change during evolution, even in closely related species. These functional changes in orthologs provide a platform for examining how the evolution of ORs can meet species-specific demands.

  12. Identification of a mammalian silicon transporter.

    Science.gov (United States)

    Ratcliffe, Sarah; Jugdaohsingh, Ravin; Vivancos, Julien; Marron, Alan; Deshmukh, Rupesh; Ma, Jian Feng; Mitani-Ueno, Namiki; Robertson, Jack; Wills, John; Boekschoten, Mark V; Müller, Michael; Mawhinney, Robert C; Kinrade, Stephen D; Isenring, Paul; Bélanger, Richard R; Powell, Jonathan J

    2017-05-01

    Silicon (Si) has long been known to play a major physiological and structural role in certain organisms, including diatoms, sponges, and many higher plants, leading to the recent identification of multiple proteins responsible for Si transport in a range of algal and plant species. In mammals, despite several convincing studies suggesting that silicon is an important factor in bone development and connective tissue health, there is a critical lack of understanding about the biochemical pathways that enable Si homeostasis. Here we report the identification of a mammalian efflux Si transporter, namely Slc34a2 (also termed NaPiIIb), a known sodium-phosphate cotransporter, which was upregulated in rat kidney following chronic dietary Si deprivation. Normal rat renal epithelium demonstrated punctate expression of Slc34a2, and when the protein was heterologously expressed in Xenopus laevis oocytes, Si efflux activity (i.e., movement of Si out of cells) was induced and was quantitatively similar to that induced by the known plant Si transporter Os Lsi2 in the same expression system. Interestingly, Si efflux appeared saturable over time, but it did not vary as a function of extracellular [Formula: see text] or Na + concentration, suggesting that Slc34a2 harbors a functionally independent transport site for Si operating in the reverse direction to the site for phosphate. Indeed, in rats with dietary Si depletion-induced upregulation of transporter expression, there was increased urinary phosphate excretion. This is the first evidence of an active Si transport protein in mammals and points towards an important role for Si in vertebrates and explains interactions between dietary phosphate and silicon. Copyright © 2017 the American Physiological Society.

  13. Acidic mammalian chitinase in dry eye conditions.

    Science.gov (United States)

    Musumeci, Maria; Aragona, Pasquale; Bellin, Milena; Maugeri, Francesco; Rania, Laura; Bucolo, Claudio; Musumeci, Salvatore

    2009-07-01

    An acidic mammalian chitinase (AMCase) seems to be implicated in allergic asthma and allergic ocular pathologies. The aim of this work was to investigate the role of AMCase during Sjögren's Syndrome (SS) and Meibomian Gland Dysfunction (MGD) dry eye diseases. Six patients with MGD dry eye (20-58 years, median 40) and six patients with dry eye associated to SS (32-60 years, median 47) were enrolled in this study. AMCase activity was measured in tears and AMCase mRNA expression was evaluated by real-time polymerase chain reaction from RNA extracted from epithelial cells of the conjunctiva. Six healthy adult subjects of the same age (34-44 years, median 39) were also studied as the control group. AMCase activity was significantly increased in patients affected by MGD dry eye (18.54 +/- 1.5 nmol/ml/h) and SS dry eye (8.94 +/- 1.0 nmol/ml/h) respectively, compared to healthy controls (1.6 +/- 0.2 nmol/ml/h). AMCase activity was higher in the tears of subjects with MGD dry eye (P < 0.001). AMCase mRNA was detected in conjunctival epithelial cells and the expression was significantly higher in MGD dry eye than SS dry eye. A significant correlation between AMCase activity in the tears and mRNA in conjunctival epithelial cells was found. AMCase may be an important marker in the pathogenesis of dry eye, suggesting the potential role of AMCase as a therapeutic target in these frequent pathologies.

  14. Repair of furocoumarin adducts in mammalian cells

    International Nuclear Information System (INIS)

    Zolan, M.E.; Smith, C.A.; Hanawalt, P.C.

    1984-01-01

    DNA repair was studied in cultured mammalian cells treated with the furocoumarins 8-methoxypsoralen (8-MOP), aminomethyl trioxsalen, or angelicin and irradiated with near UV light. The amount of DNA cross-linked by 8-MOP in normal human cells decreased by about one-half in 24 hours after treatment; no decrease was observed in xeroderma pigmentosum cells, group A. At present, it is not known to what extent this decrease represents complete repair events at the sites of cross-links. Furocoumarin adducts elicited excision repair in normal human and monkey cells but not in xeroderma pigmentosum group A cells. This excision repair resembled in several aspects that elicited by pyrimidine dimers, formed in DNA by irradiation with 254-nm UV light; however, it appeared that for at least 8-MOP and aminomethyl trioxsalen, removal of adducts was not as efficient as was the removal of pyrimidine dimers. A comparison was also made of repair in the 172-base-pair repetitive alpha-DNA component of monkey cells to repair in the bulk of the genome. Although repair elicited by pyrimidine dimers in alpha-DNA was the same as in the bulk DNA, that following treatment of cells with either aminomethyl trioxsalen or angelicin and near UV was markedly deficient in alpha-DNA. This deficiency reflected the removal of fewer adducts from alpha-DNA after the same initial adduct frequencies. These results could mean that each furocoumarin may produce several structurally distinct adducts to DNA in cells and that the capacity of cellular repair systems to remove these various adducts may vary greatly

  15. Mammalian 26S proteasomes remain intact during protein degradation

    DEFF Research Database (Denmark)

    Kriegenburg, Franziska; Seeger, Michael; Saeki, Yasushi

    2008-01-01

    It has been suggested that degradation of polyubiquitylated proteins is coupled to dissociation of 26S proteasomes. In contrast, using several independent types of experiments, we find that mammalian proteasomes can degrade polyubiquitylated proteins without disassembling. Thus, immobilized, (35)...

  16. Does autophagy have a license to kill mammalian cells?

    NARCIS (Netherlands)

    Scarlatti, F.; Granata, R.; Meijer, A. J.; Codogno, P.

    2009-01-01

    Macroautophagy is an evolutionarily conserved vacuolar, self-digesting mechanism for cellular components, which end up in the lysosomal compartment. In mammalian cells, macroautophagy is cytoprotective, and protects the cells against the accumulation of damaged organelles or protein aggregates, the

  17. The impact of transposable elements on mammalian development

    Science.gov (United States)

    Garcia-Perez, Jose L.; Widmann, Thomas J.; Adams, Ian R.

    2018-01-01

    Summary Despite often being classified as selfish or junk DNA, transposable elements (TEs) are a group of abundant genetic sequences that significantly impact on mammalian development and genome regulation. In recent years, our understanding of how pre-existing TEs affect genome architecture, gene regulatory networks and protein function during mammalian embryogenesis has dramatically expanded. In addition, the mobilization of active TEs in selected cell types has been shown to generate genetic variation during development and in fully differentiated tissues. Importantly, the ongoing domestication and evolution of TEs appears to provide a rich source of regulatory elements, functional modules and genetic variation that fuels the evolution of mammalian developmental processes. Here, we review the functional impact that TEs exert on mammalian developmental processes and how the somatic activity of TEs can influence gene regulatory networks. PMID:27875251

  18. An Analytical Study of Mammalian Bite Wounds Requiring Inpatient Management

    Directory of Open Access Journals (Sweden)

    Young-Geun Lee

    2013-11-01

    Full Text Available BackgroundMammalian bite injuries create a public health problem because of their frequency, potential severity, and increasing number. Some researchers have performed fragmentary analyses of bite wounds caused by certain mammalian species. However, little practical information is available concerning serious mammalian bite wounds that require hospitalization and intensive wound management. Therefore, the purpose of this study was to perform a general review of serious mammalian bite wounds.MethodsWe performed a retrospective review of the medical charts of 68 patients who were referred to our plastic surgery department for the treatment of bite wounds between January 2003 and October 2012. The cases were analyzed according to the species, patient demographics, environmental factors, injury characteristics, and clinical course.ResultsAmong the 68 cases of mammalian bite injury, 58 (85% were caused by dogs, 8 by humans, and 2 by cats. Most of those bitten by a human and both of those bitten by cats were male. Only one-third of all the patients were children or adolescents. The most frequent site of injury was the face, with 40 cases, followed by the hand, with 16 cases. Of the 68 patients, 7 were treated with secondary intention healing. Sixty-one patients underwent delayed procedures, including delayed direct closure, skin graft, composite graft, and local flap.ConclusionsBased on overall findings from our review of the 68 cases of mammalian bites, we suggest practical guidelines for the management of mammalian bite injuries, which could be useful in the treatment of serious mammalian bite wounds.

  19. Methylated DNA Immunoprecipitation Analysis of Mammalian Endogenous Retroviruses.

    Science.gov (United States)

    Rebollo, Rita; Mager, Dixie L

    2016-01-01

    Endogenous retroviruses are repetitive sequences found abundantly in mammalian genomes which are capable of modulating host gene expression. Nevertheless, most endogenous retrovirus copies are under tight epigenetic control via histone-repressive modifications and DNA methylation. Here we describe a common method used in our laboratory to detect, quantify, and compare mammalian endogenous retrovirus DNA methylation. More specifically we describe methylated DNA immunoprecipitation (MeDIP) followed by quantitative PCR.

  20. Mammalian Endothermy Optimally Restricts Fungi and Metabolic Costs

    OpenAIRE

    Bergman, Aviv; Casadevall, Arturo

    2010-01-01

    Endothermy and homeothermy are mammalian characteristics whose evolutionary origins are poorly understood. Given that fungal species rapidly lose their capacity for growth above ambient temperatures, we have proposed that mammalian endothermy enhances fitness by creating exclusionary thermal zones that protect against fungal disease. According to this view, the relative paucity of invasive fungal diseases in immunologically intact mammals relative to other infectious diseases would reflect an...

  1. Evidence for an Ancestral Association of Human Coronavirus 229E with Bats.

    Science.gov (United States)

    Corman, Victor Max; Baldwin, Heather J; Tateno, Adriana Fumie; Zerbinati, Rodrigo Melim; Annan, Augustina; Owusu, Michael; Nkrumah, Evans Ewald; Maganga, Gael Darren; Oppong, Samuel; Adu-Sarkodie, Yaw; Vallo, Peter; da Silva Filho, Luiz Vicente Ribeiro Ferreira; Leroy, Eric M; Thiel, Volker; van der Hoek, Lia; Poon, Leo L M; Tschapka, Marco; Drosten, Christian; Drexler, Jan Felix

    2015-12-01

    We previously showed that close relatives of human coronavirus 229E (HCoV-229E) exist in African bats. The small sample and limited genomic characterizations have prevented further analyses so far. Here, we tested 2,087 fecal specimens from 11 bat species sampled in Ghana for HCoV-229E-related viruses by reverse transcription-PCR (RT-PCR). Only hipposiderid bats tested positive. To compare the genetic diversity of bat viruses and HCoV-229E, we tested historical isolates and diagnostic specimens sampled globally over 10 years. Bat viruses were 5- and 6-fold more diversified than HCoV-229E in the RNA-dependent RNA polymerase (RdRp) and spike genes. In phylogenetic analyses, HCoV-229E strains were monophyletic and not intermixed with animal viruses. Bat viruses formed three large clades in close and more distant sister relationships. A recently described 229E-related alpaca virus occupied an intermediate phylogenetic position between bat and human viruses. According to taxonomic criteria, human, alpaca, and bat viruses form a single CoV species showing evidence for multiple recombination events. HCoV-229E and the alpaca virus showed a major deletion in the spike S1 region compared to all bat viruses. Analyses of four full genomes from 229E-related bat CoVs revealed an eighth open reading frame (ORF8) located at the genomic 3' end. ORF8 also existed in the 229E-related alpaca virus. Reanalysis of HCoV-229E sequences showed a conserved transcription regulatory sequence preceding remnants of this ORF, suggesting its loss after acquisition of a 229E-related CoV by humans. These data suggested an evolutionary origin of 229E-related CoVs in hipposiderid bats, hypothetically with camelids as intermediate hosts preceding the establishment of HCoV-229E. The ancestral origins of major human coronaviruses (HCoVs) likely involve bat hosts. Here, we provide conclusive genetic evidence for an evolutionary origin of the common cold virus HCoV-229E in hipposiderid bats by analyzing a

  2. The Odyssey of the Ancestral Escherich Strain through Culture Collections: an Example of Allopatric Diversification.

    Science.gov (United States)

    Desroches, M; Royer, G; Roche, D; Mercier-Darty, M; Vallenet, D; Médigue, C; Bastard, K; Rodriguez, C; Clermont, O; Denamur, E; Decousser, J-W

    2018-01-01

    More than a century ago, Theodor Escherich isolated the bacterium that was to become Escherichia coli , one of the most studied organisms. Not long after, the strain began an odyssey and landed in many laboratories across the world. As laboratory culture conditions could be responsible for major changes in bacterial strains, we conducted a genome analysis of isolates of this emblematic strain from different culture collections (England, France, the United States, Germany). Strikingly, many discrepancies between the isolates were observed, as revealed by multilocus sequence typing (MLST), the presence of virulence-associated genes, core genome MLST, and single nucleotide polymorphism/indel analyses. These differences are correlated with the phylogeographic history of the strain and were due to an unprecedented number of mutations in coding DNA repair functions such as mismatch repair (MutL) and oxidized guanine nucleotide pool cleaning (MutT), conferring a specific mutational spectrum and leading to a mutator phenotype. The mutator phenotype was probably acquired during subculturing and corresponded to second-order selection. Furthermore, all of the isolates exhibited hypersusceptibility to antibiotics due to mutations in efflux pump- and porin-encoding genes, as well as a specific mutation in the sigma factor-encoding gene rpoS . These defects reflect a self-preservation and nutritional competence tradeoff allowing survival under the starvation conditions imposed by storage. From a clinical point of view, dealing with such mutator strains can lead microbiologists to draw false conclusions about isolate relatedness and may impact therapeutic effectiveness. IMPORTANCE Mutator phenotypes have been described in laboratory-evolved bacteria, as well as in natural isolates. Several genes can be impacted, each of them being associated with a typical mutational spectrum. By studying one of the oldest strains available, the ancestral Escherich strain, we were able to

  3. Conservation and diversification of an ancestral chordate gene regulatory network for dorsoventral patterning.

    Directory of Open Access Journals (Sweden)

    Iryna Kozmikova

    Full Text Available Formation of a dorsoventral axis is a key event in the early development of most animal embryos. It is well established that bone morphogenetic proteins (Bmps and Wnts are key mediators of dorsoventral patterning in vertebrates. In the cephalochordate amphioxus, genes encoding Bmps and transcription factors downstream of Bmp signaling such as Vent are expressed in patterns reminiscent of those of their vertebrate orthologues. However, the key question is whether the conservation of expression patterns of network constituents implies conservation of functional network interactions, and if so, how an increased functional complexity can evolve. Using heterologous systems, namely by reporter gene assays in mammalian cell lines and by transgenesis in medaka fish, we have compared the gene regulatory network implicated in dorsoventral patterning of the basal chordate amphioxus and vertebrates. We found that Bmp but not canonical Wnt signaling regulates promoters of genes encoding homeodomain proteins AmphiVent1 and AmphiVent2. Furthermore, AmphiVent1 and AmphiVent2 promoters appear to be correctly regulated in the context of a vertebrate embryo. Finally, we show that AmphiVent1 is able to directly repress promoters of AmphiGoosecoid and AmphiChordin genes. Repression of genes encoding dorsal-specific signaling molecule Chordin and transcription factor Goosecoid by Xenopus and zebrafish Vent genes represents a key regulatory interaction during vertebrate axis formation. Our data indicate high evolutionary conservation of a core Bmp-triggered gene regulatory network for dorsoventral patterning in chordates and suggest that co-option of the canonical Wnt signaling pathway for dorsoventral patterning in vertebrates represents one of the innovations through which an increased morphological complexity of vertebrate embryo is achieved.

  4. Incorporation of mammalian actin into microfilaments in plant cell nucleus

    Directory of Open Access Journals (Sweden)

    Paves Heiti

    2004-04-01

    Full Text Available Abstract Background Actin is an ancient molecule that shows more than 90% amino acid homology between mammalian and plant actins. The regions of the actin molecule that are involved in F-actin assembly are largely conserved, and it is likely that mammalian actin is able to incorporate into microfilaments in plant cells but there is no experimental evidence until now. Results Visualization of microfilaments in onion bulb scale epidermis cells by different techniques revealed that rhodamine-phalloidin stained F-actin besides cytoplasm also in the nuclei whereas GFP-mouse talin hybrid protein did not enter the nuclei. Microinjection of fluorescently labeled actin was applied to study the presence of nuclear microfilaments in plant cells. Ratio imaging of injected fluorescent rabbit skeletal muscle actin and phalloidin staining of the microinjected cells showed that mammalian actin was able to incorporate into plant F-actin. The incorporation occurred preferentially in the nucleus and in the perinuclear region of plant cells whereas part of plant microfilaments, mostly in the periphery of cytoplasm, did not incorporate mammalian actin. Conclusions Microinjected mammalian actin is able to enter plant cell's nucleus, whereas incorporation of mammalian actin into plant F-actin occurs preferentially in the nucleus and perinuclear area.

  5. Topologies of the conditional ancestral trees and full-likelihood-based inference in the general coalescent tree framework.

    Science.gov (United States)

    Sargsyan, Ori

    2010-08-01

    The general coalescent tree framework is a family of models for determining ancestries among random samples of DNA sequences at a nonrecombining locus. The ancestral models included in this framework can be derived under various evolutionary scenarios. Here, a computationally tractable full-likelihood-based inference method for neutral polymorphisms is presented, using the general coalescent tree framework and the infinite-sites model for mutations in DNA sequences. First, an exact sampling scheme is developed to determine the topologies of conditional ancestral trees. However, this scheme has some computational limitations and to overcome these limitations a second scheme based on importance sampling is provided. Next, these schemes are combined with Monte Carlo integrations to estimate the likelihood of full polymorphism data, the ages of mutations in the sample, and the time of the most recent common ancestor. In addition, this article shows how to apply this method for estimating the likelihood of neutral polymorphism data in a sample of DNA sequences completely linked to a mutant allele of interest. This method is illustrated using the data in a sample of DNA sequences at the APOE gene locus.

  6. Chromosome Painting in Callicebus nigrifrons Provides Insights into the Genome Evolution of Titi Monkeys and the Ancestral Callicebinae Karyotype.

    Science.gov (United States)

    Pereira Araújo, Naiara; Alves do Espírito Santo, Alice; do Socorro Pereira, Valéria; Stanyon, Roscoe; Svartman, Marta

    2017-01-01

    We studied the chromosomes of Callicebus nigrifrons with conventional and molecular cytogenetic methods. Our chromosome painting analysis in C. nigrifrons together with previous reports allowed us to hypothesize an ancestral Callicebinae karyotype with 2n = 48. The associations of human chromosomes (HSA) 2/22, 7/15, 10/11, and the inverted HSA2/16 would link Callicebus, Cheracebus, and Plecturocebus and would thus be present in the ancestral Callicebinae karyotype. Four fusions (HSA1b/1c, 3c/8b, 13/20, and 14/15/3/21) and 1 fission (HSA2/22) are synapomorphies of Callicebus. The associations HSA3/15 and HSA3/9 are chromosome features linking Callicebus and Cheracebus, whereas the association HSA13/17 would represent a link between Callicebus and the moloch group (Plecturocebus). Only 6 of the 33 recognized titi monkey species have now been painted with human chromosome-specific probes. Further analyses are needed to clarify the phylogenomic relationships in this species-rich group. © 2017 S. Karger AG, Basel.

  7. A Toxoplasma gondii locus required for the direct manipulation of host mitochondria has maintained multiple ancestral functions.

    Science.gov (United States)

    Blank, Matthew L; Parker, Michelle L; Ramaswamy, Raghavendran; Powell, Cameron J; English, Elizabeth D; Adomako-Ankomah, Yaw; Pernas, Lena F; Workman, Sean D; Boothroyd, John C; Boulanger, Martin J; Boyle, Jon P

    2018-03-05

    The Toxoplasma gondii locus mitochondrial association factor 1 (MAF1) encodes multiple paralogs, some of which mediate host mitochondrial association (HMA). Previous work showed that HMA was a trait that arose in T. gondii through neofunctionalization of an ancestral MAF1 ortholog. Structural analysis of HMA-competent and incompetent MAF1 paralogs (MAF1b and MAF1a, respectively) revealed that both paralogs harbor an ADP ribose binding macro domain, with comparatively low (micromolar) affinity for ADP ribose. Replacing the 16 C-terminal residues of MAF1b with those of MAF1a abrogated HMA, and we also show that only three residues in the C-terminal helix are required for MAF1-mediated HMA. Importantly these same three residues are also required for the in vivo growth advantage conferred by MAF1b, providing a definitive link between in vivo proliferation and manipulation of host mitochondria. Co-immunoprecipitation assays reveal that the ability to interact with the mitochondrial MICOS complex is shared by HMA-competent and incompetent MAF1 paralogs and mutants. The weak ADPr coordination and ability to interact with the MICOS complex shared between divergent paralogs may represent modular ancestral functions for this tandemly expanded and diversified T. gondii locus. This article is protected by copyright. All rights reserved. © 2018 John Wiley & Sons Ltd.

  8. The ghost of Afrikaner identity in Ancestral voices, Leap year and The long silence of Mario Salviati (Etienne van Heerden

    Directory of Open Access Journals (Sweden)

    Mariëtte van Graan

    2017-04-01

    Full Text Available Ghost characters are a characteristic of the novels of Etienne van Heerden, but little research has been done concerning the nature and function of these ghost characters. In this article I discuss Van Heerden’s use of ghost characters diachronically with reference to the novels Ancestral voices (1986, Leap year (1993 and The long silence of Mario Salviati (2000. In order to clarify the nature of these ghosts, I use the so-called science of the paranormal as a framework. The ghosts in the three novels will be classified accordingly, and then discussed within the context of the novels in which they appear. In this way, I shall show how the ghost characters in these novels can be read as a constantly changing embodiment of Afrikaner identity (a central theme in Van Heerden’s oeuvre. Van Heerden’s Afrikaner changes with the times: in Ancestral voices the ghost characters form a collective that represents a fragmented image of the stereotypical, archaic male Afrikaner identity; in Leap year a liminal character is written in a liminal time to embody a liminal Afrikaner identity; and in The long silence of Mario Salviati Van Heerden moves away from the exclusive Afrikaner identity to a broader South African identity by using ghost characters from very different backgrounds and origins. In conclusion I shall compare these identities and the historical contexts of these novels in order to show the function of Van Heerden’s ghost characters as constant rewritings of South African identities.

  9. Mammalian cell HPRT gene mutation assay: test methods.

    Science.gov (United States)

    Johnson, George E

    2012-01-01

    Using the combination of bacterial gene mutation assay and chromosomal aberrations test in mammalian cells may not detect a small proportion of mammalian specific mutagenic agents. Therefore, at the current time a third assay should be used, except for compounds for which there is little or no exposure (DOH (2000) Department of Health Guidance for the testing of chemicals for Mutagenicity. Committee on Mutagenicity of Chemicals in Food, Consumer Products and the Environment). The hypoxanthine phosphorybosyl transferase (HPRT) gene is on the X chromosome of mammalian cells, and it is used as a model gene to investigate gene mutations in mammalian cell lines. The assay can detect a wide range of chemicals capable of causing DNA damage that leads to gene mutation. The test follows a very similar methodology to the thymidine kinase (TK) mouse lymphoma assay (MLA), and both are included in the guidelines for mammalian gene mutation tests (OECD (1997) Organisation for Economic Co-operation and Development. Ninth addendum to the OECD Guidelines for the Testing of Chemicals. In Vitro Mammalian Cell Gene Mutation Test: 476). The HPRT methodology is such that mutations which destroy the functionality of the HPRT gene and or/protein are detected by positive selection using a toxic analogue, and HPRT ( - ) mutants are seen as viable colonies. Unlike bacterial reverse mutation assays, mammalian gene mutation assays respond to a broad spectrum of mutagens, since any mutation resulting in the ablation of gene expression/function produces a HPRT ( - ) mutant. Human cells are readily used, and mechanistic studies using the HPRT test methodology with modifications, such as knock-out cell lines for DNA repair, can provide details of the mode of action (MOA) of the test compound (24).This chapter provides the methodology for carrying out the assay in different cell lines in the presence and absence of metabolism with technical information and general advice on how to carry out the

  10. Positive Selection Linked with Generation of Novel Mammalian Dentition Patterns.

    Science.gov (United States)

    Machado, João Paulo; Philip, Siby; Maldonado, Emanuel; O'Brien, Stephen J; Johnson, Warren E; Antunes, Agostinho

    2016-09-11

    A diverse group of genes are involved in the tooth development of mammals. Several studies, focused mainly on mice and rats, have provided a detailed depiction of the processes coordinating tooth formation and shape. Here we surveyed 236 tooth-associated genes in 39 mammalian genomes and tested for signatures of selection to assess patterns of molecular adaptation in genes regulating mammalian dentition. Of the 236 genes, 31 (∼13.1%) showed strong signatures of positive selection that may be responsible for the phenotypic diversity observed in mammalian dentition. Mammalian-specific tooth-associated genes had accelerated mutation rates compared with older genes found across all vertebrates. More recently evolved genes had fewer interactions (either genetic or physical), were associated with fewer Gene Ontology terms and had faster evolutionary rates compared with older genes. The introns of these positively selected genes also exhibited accelerated evolutionary rates, which may reflect additional adaptive pressure in the intronic regions that are associated with regulatory processes that influence tooth-gene networks. The positively selected genes were mainly involved in processes like mineralization and structural organization of tooth specific tissues such as enamel and dentin. Of the 236 analyzed genes, 12 mammalian-specific genes (younger genes) provided insights on diversification of mammalian teeth as they have higher evolutionary rates and exhibit different expression profiles compared with older genes. Our results suggest that the evolution and development of mammalian dentition occurred in part through positive selection acting on genes that previously had other functions. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. A novel recombinant retrovirus in the genomes of modern birds combines features of avian and mammalian retroviruses.

    Science.gov (United States)

    Henzy, Jamie E; Gifford, Robert J; Johnson, Welkin E; Coffin, John M

    2014-03-01

    Endogenous retroviruses (ERVs) represent ancestral sequences of modern retroviruses or their extinct relatives. The majority of ERVs cluster alongside exogenous retroviruses into two main groups based on phylogenetic analyses of the reverse transcriptase (RT) enzyme. Class I includes gammaretroviruses, and class II includes lentiviruses and alpha-, beta-, and deltaretroviruses. However, analyses of the transmembrane subunit (TM) of the envelope glycoprotein (env) gene result in a different topology for some retroviruses, suggesting recombination events in which heterologous env sequences have been acquired. We previously demonstrated that the TM sequences of five of the six genera of orthoretroviruses can be divided into three types, each of which infects a distinct set of vertebrate classes. Moreover, these classes do not always overlap the host range of the associated RT classes. Thus, recombination resulting in acquisition of a heterologous env gene could in theory facilitate cross-species transmissions across vertebrate classes, for example, from mammals to reptiles. Here we characterized a family of class II avian ERVs, "TgERV-F," that acquired a mammalian gammaretroviral env sequence. Although TgERV-F clusters near a sister clade to alpharetroviruses, its genome also has some features of betaretroviruses. We offer evidence that this unusual recombinant has circulated among several avian orders and may still have infectious members. In addition to documenting the infection of a nongalliform avian species by a mammalian retrovirus, TgERV-F also underscores the importance of env sequences in reconstructing phylogenies and supports a possible role for env swapping in allowing cross-species transmissions across wide taxonomic distances. Retroviruses can sometimes acquire an envelope gene (env) from a distantly related retrovirus. Since env is a key determinant of host range, such an event affects the host range of the recombinant virus and can lead to the creation

  12. Insights into the evolution of mammalian telomerase: Platypus TERT shares similarities with genes of birds and other reptiles and localizes on sex chromosomes

    Directory of Open Access Journals (Sweden)

    Hrdličková Radmila

    2012-06-01

    Full Text Available Abstract Background The TERT gene encodes the catalytic subunit of the telomerase complex and is responsible for maintaining telomere length. Vertebrate telomerase has been studied in eutherian mammals, fish, and the chicken, but less attention has been paid to other vertebrates. The platypus occupies an important evolutionary position, providing unique insight into the evolution of mammalian genes. We report the cloning of a platypus TERT (OanTERT ortholog, and provide a comparison with genes of other vertebrates. Results The OanTERT encodes a protein with a high sequence similarity to marsupial TERT and avian TERT. Like the TERT of sauropsids and marsupials, as well as that of sharks and echinoderms, OanTERT contains extended variable linkers in the N-terminal region suggesting that they were present already in basal vertebrates and lost independently in ray-finned fish and eutherian mammals. Several alternatively spliced OanTERT variants structurally similar to avian TERT variants were identified. Telomerase activity is expressed in all platypus tissues like that of cold-blooded animals and murine rodents. OanTERT was localized on pseudoautosomal regions of sex chromosomes X3/Y2, expanding the homology between human chromosome 5 and platypus sex chromosomes. Synteny analysis suggests that TERT co-localized with sex-linked genes in the last common mammalian ancestor. Interestingly, female platypuses express higher levels of telomerase in heart and liver tissues than do males. Conclusions OanTERT shares many features with TERT of the reptilian outgroup, suggesting that OanTERT represents the ancestral mammalian TERT. Features specific to TERT of eutherian mammals have, therefore, evolved more recently after the divergence of monotremes.

  13. Insights into the evolution of mammalian telomerase: platypus TERT shares similarities with genes of birds and other reptiles and localizes on sex chromosomes.

    Science.gov (United States)

    Hrdličková, Radmila; Nehyba, Jiří; Lim, Shu Ly; Grützner, Frank; Bose, Henry R

    2012-06-01

    The TERT gene encodes the catalytic subunit of the telomerase complex and is responsible for maintaining telomere length. Vertebrate telomerase has been studied in eutherian mammals, fish, and the chicken, but less attention has been paid to other vertebrates. The platypus occupies an important evolutionary position, providing unique insight into the evolution of mammalian genes. We report the cloning of a platypus TERT (OanTERT) ortholog, and provide a comparison with genes of other vertebrates. The OanTERT encodes a protein with a high sequence similarity to marsupial TERT and avian TERT. Like the TERT of sauropsids and marsupials, as well as that of sharks and echinoderms, OanTERT contains extended variable linkers in the N-terminal region suggesting that they were present already in basal vertebrates and lost independently in ray-finned fish and eutherian mammals. Several alternatively spliced OanTERT variants structurally similar to avian TERT variants were identified. Telomerase activity is expressed in all platypus tissues like that of cold-blooded animals and murine rodents. OanTERT was localized on pseudoautosomal regions of sex chromosomes X3/Y2, expanding the homology between human chromosome 5 and platypus sex chromosomes. Synteny analysis suggests that TERT co-localized with sex-linked genes in the last common mammalian ancestor. Interestingly, female platypuses express higher levels of telomerase in heart and liver tissues than do males. OanTERT shares many features with TERT of the reptilian outgroup, suggesting that OanTERT represents the ancestral mammalian TERT. Features specific to TERT of eutherian mammals have, therefore, evolved more recently after the divergence of monotremes.

  14. Amino acids in the cultivation of mammalian cells.

    Science.gov (United States)

    Salazar, Andrew; Keusgen, Michael; von Hagen, Jörg

    2016-05-01

    Amino acids are crucial for the cultivation of mammalian cells. This importance of amino acids was realized soon after the development of the first cell lines, and a solution of a mixture of amino acids has been supplied to cultured cells ever since. The importance of amino acids is further pronounced in chemically defined mammalian cell culture media, making the consideration of their biological and chemical properties necessary. Amino acids concentrations have been traditionally adjusted to their cellular consumption rates. However, since changes in the metabolic equilibrium of amino acids can be caused by changes in extracellular concentrations, metabolomics in conjunction with flux balance analysis is being used in the development of culture media. The study of amino acid transporters is also gaining importance since they control the intracellular concentrations of these molecules and are influenced by conditions in cell culture media. A better understanding of the solubility, stability, dissolution kinetics, and interactions of these molecules is needed for an exploitation of these properties in the development of dry powdered chemically defined media for mammalian cells. Due to the complexity of these mixtures however, this has proven to be challenging. Studying amino acids in mammalian cell culture media will help provide a better understanding of how mammalian cells in culture interact with their environment. It would also provide insight into the chemical behavior of these molecules in solutions of complex mixtures, which is important in the understanding of the contribution of individual amino acids to protein structure.

  15. The complete mitochondrial genomes of two ghost moths, Thitarodes renzhiensis and Thitarodes yunnanensis: the ancestral gene arrangement in Lepidoptera.

    Science.gov (United States)

    Cao, Yong-Qiang; Ma, Chuan; Chen, Ji-Yue; Yang, Da-Rong

    2012-06-22

    Lepidoptera encompasses more than 160,000 described species that have been classified into 45-48 superfamilies. The previously determined Lepidoptera mitochondrial genomes (mitogenomes) are limited to six superfamilies of the lineage Ditrysia. Compared with the ancestral insect gene order, these mitogenomes all contain a tRNA rearrangement. To gain new insights into Lepidoptera mitogenome evolution, we sequenced the mitogenomes of two ghost moths that belong to the non-ditrysian lineage Hepialoidea and conducted a comparative mitogenomic analysis across Lepidoptera. The mitogenomes of Thitarodes renzhiensis and T. yunnanensis are 16,173 bp and 15,816 bp long with an A + T content of 81.28 % and 82.34 %, respectively. Both mitogenomes include 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and the A + T-rich region. Different tandem repeats in the A + T-rich region mainly account for the size difference between the two mitogenomes. All the protein-coding genes start with typical mitochondrial initiation codons, except for cox1 (CGA) and nad1 (TTG) in both mitogenomes. The anticodon of trnS(AGN) in T. renzhiensis and T. yunnanensis is UCU instead of the mostly used GCU in other sequenced Lepidoptera mitogenomes. The 1,584-bp sequence from rrnS to nad2 was also determined for an unspecified ghost moth (Thitarodes sp.), which has no repetitive sequence in the A + T-rich region. All three Thitarodes species possess the ancestral gene order with trnI-trnQ-trnM located between the A + T-rich region and nad2, which is different from the gene order trnM-trnI-trnQ in all previously sequenced Lepidoptera species. The formerly identified conserved elements of Lepidoptera mitogenomes (i.e. the motif 'ATAGA' and poly-T stretch in the A + T-rich region and the long intergenic spacer upstream of nad2) are absent in the Thitarodes mitogenomes. The mitogenomes of T. renzhiensis and T. yunnanensis exhibit unusual features compared with the previously determined

  16. MADS goes genomic in conifers: towards determining the ancestral set of MADS-box genes in seed plants.

    Science.gov (United States)

    Gramzow, Lydia; Weilandt, Lisa; Theißen, Günter

    2014-11-01

    MADS-box genes comprise a gene family coding for transcription factors. This gene family expanded greatly during land plant evolution such that the number of MADS-box genes ranges from one or two in green algae to around 100 in angiosperms. Given the crucial functions of MADS-box genes for nearly all aspects of plant development, the expansion of this gene family probably contributed to the increasing complexity of plants. However, the expansion of MADS-box genes during one important step of land plant evolution, namely the origin of seed plants, remains poorly understood due to the previous lack of whole-genome data for gymnosperms. The newly available genome sequences of Picea abies, Picea glauca and Pinus taeda were used to identify the complete set of MADS-box genes in these conifers. In addition, MADS-box genes were identified in the growing number of transcriptomes available for gymnosperms. With these datasets, phylogenies were constructed to determine the ancestral set of MADS-box genes of seed plants and to infer the ancestral functions of these genes. Type I MADS-box genes are under-represented in gymnosperms and only a minimum of two Type I MADS-box genes have been present in the most recent common ancestor (MRCA) of seed plants. In contrast, a large number of Type II MADS-box genes were found in gymnosperms. The MRCA of extant seed plants probably possessed at least 11-14 Type II MADS-box genes. In gymnosperms two duplications of Type II MADS-box genes were found, such that the MRCA of extant gymnosperms had at least 14-16 Type II MADS-box genes. The implied ancestral set of MADS-box genes for seed plants shows simplicity for Type I MADS-box genes and remarkable complexity for Type II MADS-box genes in terms of phylogeny and putative functions. The analysis of transcriptome data reveals that gymnosperm MADS-box genes are expressed in a great variety of tissues, indicating diverse roles of MADS-box genes for the development of gymnosperms. This study is

  17. Mating animals by minimising the covariance between ancestral contributions generates less inbreeding without compromising genetic gain in breeding schemes with truncation selection

    DEFF Research Database (Denmark)

    Henryon, M; Berg, P; Sørensen, A C

    2009-01-01

    We reasoned that mating animals by minimising the covariance between ancestral contributions (MCAC mating) will generate less inbreeding and at least as much genetic gain as minimum-coancestry mating in breeding schemes where the animals are truncation-selected. We tested this hypothesis by stoch......We reasoned that mating animals by minimising the covariance between ancestral contributions (MCAC mating) will generate less inbreeding and at least as much genetic gain as minimum-coancestry mating in breeding schemes where the animals are truncation-selected. We tested this hypothesis...

  18. Quantitative genetic-interaction mapping in mammalian cells

    Science.gov (United States)

    Roguev, Assen; Talbot, Dale; Negri, Gian Luca; Shales, Michael; Cagney, Gerard; Bandyopadhyay, Sourav; Panning, Barbara; Krogan, Nevan J

    2013-01-01

    Mapping genetic interactions (GIs) by simultaneously perturbing pairs of genes is a powerful tool for understanding complex biological phenomena. Here we describe an experimental platform for generating quantitative GI maps in mammalian cells using a combinatorial RNA interference strategy. We performed ~11,000 pairwise knockdowns in mouse fibroblasts, focusing on 130 factors involved in chromatin regulation to create a GI map. Comparison of the GI and protein-protein interaction (PPI) data revealed that pairs of genes exhibiting positive GIs and/or similar genetic profiles were predictive of the corresponding proteins being physically associated. The mammalian GI map identified pathways and complexes but also resolved functionally distinct submodules within larger protein complexes. By integrating GI and PPI data, we created a functional map of chromatin complexes in mouse fibroblasts, revealing that the PAF complex is a central player in the mammalian chromatin landscape. PMID:23407553

  19. Viral risk mitigation for Mammalian cell culture media.

    Science.gov (United States)

    Weaver, Bob; Rosenthal, Scott

    2010-01-01

    Adventitious viral contamination in mammalian cell culture manufacturing facilities can lead to loss of product due to regulatory concerns regarding potential health risks. These events can also result in manufacturing shutdowns for extended periods of time. Numerous measures are currently taken to minimize these risks. Nonetheless, raw materials remain a high-risk entry point for viral contamination of mammalian cell cultures. Two virucidal technologies, ultraviolet radiation in the C band and high-temperature short-time pasteurization, were tested for the treatment of mammalian cell culture media. The results demonstrated no impact to the cell culture process or the quality of the products produced at the chosen dosage while providing robust viral protection.

  20. EREM: Parameter Estimation and Ancestral Reconstruction by Expectation-Maximization Algorithm for a Probabilistic Model of Genomic Binary Characters Evolution

    Directory of Open Access Journals (Sweden)

    Liran Carmel

    2010-01-01

    Full Text Available Evolutionary binary characters are features of species or genes, indicating the absence (value zero or presence (value one of some property. Examples include eukaryotic gene architecture (the presence or absence of an intron in a particular locus, gene content, and morphological characters. In many studies, the acquisition of such binary characters is assumed to represent a rare evolutionary event, and consequently, their evolution is analyzed using various flavors of parsimony. However, when gain and loss of the character are not rare enough, a probabilistic analysis becomes essential. Here, we present a comprehensive probabilistic model to describe the evolution of binary characters on a bifurcating phylogenetic tree. A fast software tool, EREM, is provided, using maximum likelihood to estimate the parameters of the model and to reconstruct ancestral states (presence and absence in internal nodes and events (gain and loss events along branches.

  1. EREM: Parameter Estimation and Ancestral Reconstruction by Expectation-Maximization Algorithm for a Probabilistic Model of Genomic Binary Characters Evolution.

    Science.gov (United States)

    Carmel, Liran; Wolf, Yuri I; Rogozin, Igor B; Koonin, Eugene V

    2010-01-01

    Evolutionary binary characters are features of species or genes, indicating the absence (value zero) or presence (value one) of some property. Examples include eukaryotic gene architecture (the presence or absence of an intron in a particular locus), gene content, and morphological characters. In many studies, the acquisition of such binary characters is assumed to represent a rare evolutionary event, and consequently, their evolution is analyzed using various flavors of parsimony. However, when gain and loss of the character are not rare enough, a probabilistic analysis becomes essential. Here, we present a comprehensive probabilistic model to describe the evolution of binary characters on a bifurcating phylogenetic tree. A fast software tool, EREM, is provided, using maximum likelihood to estimate the parameters of the model and to reconstruct ancestral states (presence and absence in internal nodes) and events (gain and loss events along branches).

  2. Ancestral mutations as a tool for solubilizing proteins: The case of a hydrophobic phosphate-binding protein

    Directory of Open Access Journals (Sweden)

    Daniel Gonzalez

    2014-01-01

    Full Text Available Stable and soluble proteins are ideal candidates for functional and structural studies. Unfortunately, some proteins or enzymes can be difficult to isolate, being sometimes poorly expressed in heterologous systems, insoluble and/or unstable. Numerous methods have been developed to address these issues, from the screening of various expression systems to the modification of the target protein itself. Here we use a hydrophobic, aggregation-prone, phosphate-binding protein (HPBP as a case study. We describe a simple and fast method that selectively uses ancestral mutations to generate a soluble, stable and functional variant of the target protein, here named sHPBP. This variant is highly expressed in Escherichia coli, is easily purified and its structure was solved at much higher resolution than its wild-type progenitor (1.3 versus 1.9 Å, respectively.

  3. PhyloBot: A Web Portal for Automated Phylogenetics, Ancestral Sequence Reconstruction, and Exploration of Mutational Trajectories.

    Directory of Open Access Journals (Sweden)

    Victor Hanson-Smith

    2016-07-01

    Full Text Available The method of phylogenetic ancestral sequence reconstruction is a powerful approach for studying evolutionary relationships among protein sequence, structure, and function. In particular, this approach allows investigators to (1 reconstruct and "resurrect" (that is, synthesize in vivo or in vitro extinct proteins to study how they differ from modern proteins, (2 identify key amino acid changes that, over evolutionary timescales, have altered the function of the protein, and (3 order historical events in the evolution of protein function. Widespread use of this approach has been slow among molecular biologists, in part because the methods require significant computational expertise. Here we present PhyloBot, a web-based software tool that makes ancestral sequence reconstruction easy. Designed for non-experts, it integrates all the necessary software into a single user interface. Additionally, PhyloBot provides interactive tools to explore evolutionary trajectories between ancestors, enabling the rapid generation of hypotheses that can be tested using genetic or biochemical approaches. Early versions of this software were used in previous studies to discover genetic mechanisms underlying the functions of diverse protein families, including V-ATPase ion pumps, DNA-binding transcription regulators, and serine/threonine protein kinases. PhyloBot runs in a web browser, and is available at the following URL: http://www.phylobot.com. The software is implemented in Python using the Django web framework, and runs on elastic cloud computing resources from Amazon Web Services. Users can create and submit jobs on our free server (at the URL listed above, or use our open-source code to launch their own PhyloBot server.

  4. Cis-by-Trans regulatory divergence causes the asymmetric lethal effects of an ancestral hybrid incompatibility gene.

    Directory of Open Access Journals (Sweden)

    Shamoni Maheshwari

    Full Text Available The Dobzhansky and Muller (D-M model explains the evolution of hybrid incompatibility (HI through the interaction between lineage-specific derived alleles at two or more loci. In agreement with the expectation that HI results from functional divergence, many protein-coding genes that contribute to incompatibilities between species show signatures of adaptive evolution, including Lhr, which encodes a heterochromatin protein whose amino acid sequence has diverged extensively between Drosophila melanogaster and D. simulans by natural selection. The lethality of D. melanogaster/D. simulans F1 hybrid sons is rescued by removing D. simulans Lhr, but not D. melanogaster Lhr, suggesting that the lethal effect results from adaptive evolution in the D. simulans lineage. It has been proposed that adaptive protein divergence in Lhr reflects antagonistic coevolution with species-specific heterochromatin sequences and that defects in LHR protein localization cause hybrid lethality. Here we present surprising results that are inconsistent with this coding-sequence-based model. Using Lhr transgenes expressed under native conditions, we find no evidence that LHR localization differs between D. melanogaster and D. simulans, nor do we find evidence that it mislocalizes in their interspecific hybrids. Rather, we demonstrate that Lhr orthologs are differentially expressed in the hybrid background, with the levels of D. simulans Lhr double that of D. melanogaster Lhr. We further show that this asymmetric expression is caused by cis-by-trans regulatory divergence of Lhr. Therefore, the non-equivalent hybrid lethal effects of Lhr orthologs can be explained by asymmetric expression of a molecular function that is shared by both orthologs and thus was presumably inherited from the ancestral allele of Lhr. We present a model whereby hybrid lethality occurs by the interaction between evolutionarily ancestral and derived alleles.

  5. ¿Con o sin ancestros? Vigencia de lo ancestral en la Amazonía peruana

    Directory of Open Access Journals (Sweden)

    Thomas Mouriès

    2014-07-01

    Full Text Available The existence —or not— of the concept of ancestors in the indigenous Amazon has been the subject of much debate. However, regional leaders do not hesitate to call upon ‘ancestral’ knowledge, customs, or territories in the sense that, from an academic point of view, could appear enigmatic. «Ancestral, but… with or without ancestors?» is the question a confused anthropologist might ask. In this article, I propose to offer elements of a response to this question,based on a case study in Peru. First I analyze how Amazonian indigenous leaders, following international law, have adopted the legal notion of ‘ancestral possession’ of their territory to adapt it to the political sphere. This approach accounts for the recent generalization and uniformization of the term ‘ancestral’, but poses the problem of how it articulates with the indigenous cosmologies that it supposes to reflect. For this reason, I explore in the second section the pertinence of the category of ‘ancestor’ in the indigenous Amazon, briefly drawing upon the academic debate in order to define inwhat way this category takes on meaning. Based on testimony from an experienced Awajún leader, we thus return in the third section more explicitly to the different meanings and planes of reference that unfold when one uses the term ‘ancestral’, showing how Amazonian indigenous people not only adopt external conceptual elements and arguments, but also transform them based on their own cosmological singularities and political perspectives.

  6. Spodoptera frugiperda X-tox protein, an immune related defensin rosary, has lost the function of ancestral defensins.

    Directory of Open Access Journals (Sweden)

    Delphine Destoumieux-Garzón

    Full Text Available BACKGROUND: X-tox proteins are a family of immune-related proteins only found in Lepidoptera and characterized by imperfectly conserved tandem repeats of several defensin-like motifs. Previous phylogenetic analysis of X-tox genes supported the hypothesis that X-tox have evolved from defensins in a lineage-specific gene evolution restricted to Lepidoptera. In this paper, we performed a protein study in which we asked whether X-tox proteins have conserved the antimicrobial functions of their ancestral defensins and have evolved as defensin reservoirs. METHODOLOGY/PRINCIPAL FINDINGS: We followed the outcome of Spod-11-tox, an X-tox protein characterized in Spodoptera frugiperda, in bacteria-challenged larvae using both immunochemistry and antimicrobial assays. Three hours post infection, the Spod-11-tox protein was expressed in 80% of the two main classes of circulating hemocytes (granulocytes and plasmatocytes. Located in secretory granules of hemocytes, Spod-11-tox was never observed in contact with microorganisms entrapped within phagolyzosomes showing that Spod-11-tox is not involved in intracellular pathogen killing. In fact, the Spod-11-tox protein was found to be secreted into the hemolymph of experimentally challenged larvae. In order to determine antimicrobial properties of the Spod-11-tox protein, it was consequently fractionated according to a protocol frequently used for antimicrobial peptide purification. Over the course of purification, the anti-Spod-11-tox immunoreactivity was found to be dissociated from the antimicrobial activity. This indicates that Spod-11-tox is not processed into bioactive defensins in response to a microbial challenge. CONCLUSIONS/SIGNIFICANCE: Altogether, our results show that X-tox proteins have not evolved as defensin reservoirs and have lost the antimicrobial properties of the ancestral insect defensins. The lepidopteran X-tox protein family will provide a valuable and tractable model to improve our

  7. Spodoptera frugiperda X-tox protein, an immune related defensin rosary, has lost the function of ancestral defensins.

    Science.gov (United States)

    Destoumieux-Garzón, Delphine; Brehelin, Michel; Bulet, Philippe; Boublik, Yvan; Girard, Pierre-Alain; Baghdiguian, Stephen; Zumbihl, Robert; Escoubas, Jean-Michel

    2009-08-27

    X-tox proteins are a family of immune-related proteins only found in Lepidoptera and characterized by imperfectly conserved tandem repeats of several defensin-like motifs. Previous phylogenetic analysis of X-tox genes supported the hypothesis that X-tox have evolved from defensins in a lineage-specific gene evolution restricted to Lepidoptera. In this paper, we performed a protein study in which we asked whether X-tox proteins have conserved the antimicrobial functions of their ancestral defensins and have evolved as defensin reservoirs. We followed the outcome of Spod-11-tox, an X-tox protein characterized in Spodoptera frugiperda, in bacteria-challenged larvae using both immunochemistry and antimicrobial assays. Three hours post infection, the Spod-11-tox protein was expressed in 80% of the two main classes of circulating hemocytes (granulocytes and plasmatocytes). Located in secretory granules of hemocytes, Spod-11-tox was never observed in contact with microorganisms entrapped within phagolyzosomes showing that Spod-11-tox is not involved in intracellular pathogen killing. In fact, the Spod-11-tox protein was found to be secreted into the hemolymph of experimentally challenged larvae. In order to determine antimicrobial properties of the Spod-11-tox protein, it was consequently fractionated according to a protocol frequently used for antimicrobial peptide purification. Over the course of purification, the anti-Spod-11-tox immunoreactivity was found to be dissociated from the antimicrobial activity. This indicates that Spod-11-tox is not processed into bioactive defensins in response to a microbial challenge. Altogether, our results show that X-tox proteins have not evolved as defensin reservoirs and have lost the antimicrobial properties of the ancestral insect defensins. The lepidopteran X-tox protein family will provide a valuable and tractable model to improve our knowledge on the molecular evolution of defensins, a class of innate immune effectors largely

  8. Ancestral acquisitions, gene flow and multiple evolutionary trajectories of the type three secretion system and effectors in Xanthomonas plant pathogens.

    Science.gov (United States)

    Merda, Déborah; Briand, Martial; Bosis, Eran; Rousseau, Céline; Portier, Perrine; Barret, Matthieu; Jacques, Marie-Agnès; Fischer-Le Saux, Marion

    2017-11-01

    Deciphering the evolutionary history and transmission patterns of virulence determinants is necessary to understand the emergence of novel pathogens. The main virulence determinant of most pathogenic proteobacteria is the type three secretion system (T3SS). The Xanthomonas genus includes bacteria responsible for numerous epidemics in agroecosystems worldwide and represents a major threat to plant health. The main virulence factor of Xanthomonas is the Hrp2 family T3SS; however, this system is not conserved in all strains and it has not been previously determined whether the distribution of T3SS in this bacterial genus has resulted from losses or independent acquisitions. Based on comparative genomics of 82 genome sequences representing the diversity of the genus, we have inferred three ancestral acquisitions of the Hrp2 cluster during Xanthomonas evolution followed by subsequent losses in some commensal strains and re-acquisition in some species. While mutation was the main force driving polymorphism at the gene level, interspecies homologous recombination of large fragments expanding through several genes shaped Hrp2 cluster polymorphism. Horizontal gene transfer of the entire Hrp2 cluster also occurred. A reduced core effectome composed of xopF1, xopM, avrBs2 and xopR was identified that may allow commensal strains overcoming plant basal immunity. In contrast, stepwise accumulation of numerous type 3 effector genes was shown in successful pathogens responsible for epidemics. Our data suggest that capacity to intimately interact with plants through T3SS would be an ancestral trait of xanthomonads. Since its acquisition, T3SS has experienced a highly dynamic evolutionary history characterized by intense gene flux between species that may reflect its role in host adaptation. © 2017 John Wiley & Sons Ltd.

  9. Centromere Destiny in Dicentric Chromosomes: New Insights from the Evolution of Human Chromosome 2 Ancestral Centromeric Region.

    Science.gov (United States)

    Chiatante, Giorgia; Giannuzzi, Giuliana; Calabrese, Francesco Maria; Eichler, Evan E; Ventura, Mario

    2017-07-01

    Dicentric chromosomes are products of genomic rearrangements that place two centromeres on the same chromosome. Due to the presence of two primary constrictions, they are inherently unstable and overcome their instability by epigenetically inactivating and/or deleting one of the two centromeres, thus resulting in functionally monocentric chromosomes that segregate normally during cell division. Our understanding to date of dicentric chromosome formation, behavior and fate has been largely inferred from observational studies in plants and humans as well as artificially produced de novo dicentrics in yeast and in human cells. We investigate the most recent product of a chromosome fusion event fixed in the human lineage, human chromosome 2, whose stability was acquired by the suppression of one centromere, resulting in a unique difference in chromosome number between humans (46 chromosomes) and our most closely related ape relatives (48 chromosomes). Using molecular cytogenetics, sequencing, and comparative sequence data, we deeply characterize the relicts of the chromosome 2q ancestral centromere and its flanking regions, gaining insight into the ancestral organization that can be easily broadened to all acrocentric chromosome centromeres. Moreover, our analyses offered the opportunity to trace the evolutionary history of rDNA and satellite III sequences among great apes, thus suggesting a new hypothesis for the preferential inactivation of some human centromeres, including IIq. Our results suggest two possible centromere inactivation models to explain the evolutionarily stabilization of human chromosome 2 over the last 5-6 million years. Our results strongly favor centromere excision through a one-step process. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Stem cell-specific activation of an ancestral myc protooncogene with conserved basic functions in the early metazoan Hydra.

    Science.gov (United States)

    Hartl, Markus; Mitterstiller, Anna-Maria; Valovka, Taras; Breuker, Kathrin; Hobmayer, Bert; Bister, Klaus

    2010-03-02

    The c-myc protooncogene encodes a transcription factor (Myc) with oncogenic potential. Myc and its dimerization partner Max are bHLH-Zip DNA binding proteins controlling fundamental cellular processes. Deregulation of c-myc leads to tumorigenesis and is a hallmark of many human cancers. We have identified and extensively characterized ancestral forms of myc and max genes from the early diploblastic cnidarian Hydra, the most primitive metazoan organism employed so far for the structural, functional, and evolutionary analysis of these genes. Hydra myc is specifically activated in all stem cells and nematoblast nests which represent the rapidly proliferating cell types of the interstitial stem cell system and in proliferating gland cells. In terminally differentiated nerve cells, nematocytes, or epithelial cells, myc expression is not detectable by in situ hybridization. Hydra max exhibits a similar expression pattern in interstitial cell clusters. The ancestral Hydra Myc and Max proteins display the principal design of their vertebrate derivatives, with the highest degree of sequence identities confined to the bHLH-Zip domains. Furthermore, the 314-amino acid Hydra Myc protein contains basic forms of the essential Myc boxes I through III. A recombinant Hydra Myc/Max complex binds to the consensus DNA sequence CACGTG with high affinity. Hybrid proteins composed of segments from the retroviral v-Myc oncoprotein and the Hydra Myc protein display oncogenic potential in cell transformation assays. Our results suggest that the principal functions of the Myc master regulator arose very early in metazoan evolution, allowing their dissection in a simple model organism showing regenerative ability but no senescence.

  11. PhyloBot: A Web Portal for Automated Phylogenetics, Ancestral Sequence Reconstruction, and Exploration of Mutational Trajectories.

    Science.gov (United States)

    Hanson-Smith, Victor; Johnson, Alexander

    2016-07-01

    The method of phylogenetic ancestral sequence reconstruction is a powerful approach for studying evolutionary relationships among protein sequence, structure, and function. In particular, this approach allows investigators to (1) reconstruct and "resurrect" (that is, synthesize in vivo or in vitro) extinct proteins to study how they differ from modern proteins, (2) identify key amino acid changes that, over evolutionary timescales, have altered the function of the protein, and (3) order historical events in the evolution of protein function. Widespread use of this approach has been slow among molecular biologists, in part because the methods require significant computational expertise. Here we present PhyloBot, a web-based software tool that makes ancestral sequence reconstruction easy. Designed for non-experts, it integrates all the necessary software into a single user interface. Additionally, PhyloBot provides interactive tools to explore evolutionary trajectories between ancestors, enabling the rapid generation of hypotheses that can be tested using genetic or biochemical approaches. Early versions of this software were used in previous studies to discover genetic mechanisms underlying the functions of diverse protein families, including V-ATPase ion pumps, DNA-binding transcription regulators, and serine/threonine protein kinases. PhyloBot runs in a web browser, and is available at the following URL: http://www.phylobot.com. The software is implemented in Python using the Django web framework, and runs on elastic cloud computing resources from Amazon Web Services. Users can create and submit jobs on our free server (at the URL listed above), or use our open-source code to launch their own PhyloBot server.

  12. Engineered mammalian cells for production of recombinant proteins

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to mammalian cells modified to provide for improved expression of a recombinant protein of interest. In particular, the invention relates to CHO cells and other host cells in which the expression of one or more endogenous secreted proteins has been disrupted, as well...... as to the preparation, identification and use of such cells in the production of recombinant proteins.......The present invention relates to mammalian cells modified to provide for improved expression of a recombinant protein of interest. In particular, the invention relates to CHO cells and other host cells in which the expression of one or more endogenous secreted proteins has been disrupted, as well...

  13. Retention of the Native Epigenome in Purified Mammalian Chromatin.

    Directory of Open Access Journals (Sweden)

    Andreas H Ehrensberger

    Full Text Available A protocol is presented for the isolation of native mammalian chromatin as fibers of 25-250 nucleosomes under conditions that preserve the natural epigenetic signature. The material is composed almost exclusively of histones and DNA and conforms to the structure expected by electron microscopy. All sequences probed for were retained, indicating that the material is representative of the majority of the genome. DNA methylation marks and histone marks resembled the patterns observed in vivo. Importantly, nucleosome positions also remained largely unchanged, except on CpG islands, where nucleosomes were found to be unstable. The technical challenges of reconstituting biochemical reactions with native mammalian chromatin are discussed.

  14. A family history of DUX4: phylogenetic analysis of DUXA, B, C and Duxbl reveals the ancestral DUX gene

    Directory of Open Access Journals (Sweden)

    Hewitt Jane E

    2010-11-01

    Full Text Available Abstract Background DUX4 is causally involved in the molecular pathogenesis of the neuromuscular disorder facioscapulohumeral muscular dystrophy (FSHD. It has previously been proposed to have arisen by retrotransposition of DUXC, one of four known intron-containing DUX genes. Here, we investigate the evolutionary history of this multi-member double-homeobox gene family in eutherian mammals. Results Our analysis of the DUX family shows the distribution of different homologues across the mammalian class, including events of secondary loss. Phylogenetic comparison, analysis of gene structures and information from syntenic regions confirm the paralogous relationship of Duxbl and DUXB and characterize their relationship with DUXA and DUXC. We further identify Duxbl pseudogene orthologues in primates. A survey of non-mammalian genomes identified a single-homeobox gene (sDUX as a likely representative homologue of the mammalian DUX ancestor before the homeobox duplication. Based on the gene structure maps, we suggest a possible mechanism for the generation of the DUX gene structure. Conclusions Our study underlines how secondary loss of orthologues can obscure the true ancestry of individual gene family members. Their relationships should be considered when interpreting the relevance of functional data from DUX4 homologues such as Dux and Duxbl to FSHD.

  15. The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Science.gov (United States)

    Hurst, Laurence D; Ghanbarian, Avazeh T; Forrest, Alistair R R; Huminiecki, Lukasz

    2015-12-01

    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression

  16. The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Directory of Open Access Journals (Sweden)

    Laurence D Hurst

    2015-12-01

    Full Text Available X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE and data from the Functional Annotation of the Mammalian Genome (FANTOM5 project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds, as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased

  17. The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome

    KAUST Repository

    Hurst, Laurence D.

    2015-12-18

    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression

  18. Systematics and morphological evolution within the moss family Bryaceae: a comparison between parsimony and Bayesian methods for reconstruction of ancestral character states.

    Science.gov (United States)

    Pedersen, Niklas; Holyoak, David T; Newton, Angela E

    2007-06-01

    The Bryaceae are a large cosmopolitan moss family including genera of significant morphological and taxonomic complexity. Phylogenetic relationships within the Bryaceae were reconstructed based on DNA sequence data from all three genomic compartments. In addition, maximum parsimony and Bayesian inference were employed to reconstruct ancestral character states of 38 morphological plus four habitat characters and eight insertion/deletion events. The recovered phylogenetic patterns are generally in accord with previous phylogenies based on chloroplast DNA sequence data and three major clades are identified. The first clade comprises Bryum bornholmense, B. rubens, B. caespiticium, and Plagiobryum. This corroborates the hypothesis suggested by previous studies that several Bryum species are more closely related to Plagiobryum than to the core Bryum species. The second clade includes Acidodontium, Anomobryum, and Haplodontium, while the third clade contains the core Bryum species plus Imbribryum. Within the latter clade, B. subapiculatum and B. tenuisetum form the sister clade to Imbribryum. Reconstructions of ancestral character states under maximum parsimony and Bayesian inference suggest fourteen morphological synapomorphies for the ingroup and synapomorphies are detected for most clades within the ingroup. Maximum parsimony and Bayesian reconstructions of ancestral character states are mostly congruent although Bayesian inference shows that the posterior probability of ancestral character states may decrease dramatically when node support is taken into account. Bayesian inference also indicates that reconstructions may be ambiguous at internal nodes for highly polymorphic characters.

  19. Identification of chikungunya virus interacting proteins in mammalian ...

    Indian Academy of Sciences (India)

    Pre-incubation with anti-HSP70 antibody and miRNA silencing of HSP70 significantly reduced the CHIKV production in HEK-293T and Vero-E6 cells at early time points. These results suggest that CHIKV exploits the housekeeping molecules such as actin, HSP70 and STAT-2 to establish infection in the mammalian cells.

  20. Towards the structure of yeast and mammalian P4-ATPases

    DEFF Research Database (Denmark)

    Lyons, Joseph; Laban, Milena; Mikkelsen, Stine

    2017-01-01

    and biochemical studies of yeast and mammalian P4-ATPases, in particular the phosphatidylserine (PS) transporting Drs2p/Cdc50p (Saccharomyces cerevisiae) and bATP8A2/CDC50A (Bos taurus). However, questions surrounding the mechanism of lipid translocation remain. To address this deficit in knowledge and to provide...

  1. Incorporation of nanoparticles within mammalian spermatozoa using in vitro capacitation

    Science.gov (United States)

    There is still much unknown about the journey of spermatozoa within the female genital tract. Recent studies have investigated mammalian spermatozoa labeling with fluorescent quantum dot nanoparticles (QD) for non-invasive imaging. Furthermore, the incorporation of these QD within the spermatozoa ma...

  2. Aspects of the physiology of the mammalian kidney | Rugaganzi ...

    African Journals Online (AJOL)

    Aspects of the physiology of the mammalian kidney. B M Rugaganzi. Abstract. No Abstract. Kenya Veterinarian Vol. 14 1990: pp. 12-15. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/kenvet.v14i1.39467 · AJOL African Journals Online.

  3. Mammalian gamete plasma membranes re-assessments and reproductive implications

    Science.gov (United States)

    Establishment of the diploid status occurs with the fusion of female and male gametes. Both the mammalian oocyte and spermatozoa are haploid cells surrounded with plasma membranes that are rich in various proteins playing a crucial role during fertilization. Fertilization is a complex and ordered st...

  4. Towards conserving regional mammalian species diversity: a case ...

    African Journals Online (AJOL)

    S. Afr. Tydskr. Dierk. 1995,30(3). Towards conserving regional mammalian species diversity: a case study and data critique. Stefanie Freitag* and A.S. van Jaarsveld. Department of Zoology and Entomology. University of Pretoria. Pretoria 0002. South Africa. Received 3 March 1995; accepted 20 Ju/y 1995. Species richness ...

  5. Understanding and utilising mammalian venom via a platypus venom transcriptome.

    Science.gov (United States)

    Whittington, Camilla M; Koh, Jennifer M S; Warren, Wesley C; Papenfuss, Anthony T; Torres, Allan M; Kuchel, Philip W; Belov, Katherine

    2009-03-06

    Only five mammalian species are known to be venomous, and while a large amount of research has been carried out on reptile venom, mammalian venom has been poorly studied to date. Here we describe the status of current research into the venom of the platypus, a semi-aquatic egg-laying Australian mammal, and discuss our approach to platypus venom transcriptomics. We propose that such construction and analysis of mammalian venom transcriptomes from small samples of venom gland, in tandem with proteomics studies, will allow the identification of the full range of mammalian venom components. Functional studies and pharmacological evaluation of the identified toxins will then lay the foundations for the future development of novel biomedical substances. A large range of useful molecules have already been identified in snake venom, and many of these are currently in use in human medicine. It is therefore hoped that this basic research to identify the constituents of platypus venom will eventually yield novel drugs and new targets for painkillers.

  6. Somatic cell genetics and the radiation biology of mammalian cells

    International Nuclear Information System (INIS)

    Puck, T.T.

    1984-01-01

    Early application of somatic cell genetics to mammalian cell radiobiology provided a definitive measurement of the mean lethal dose of ionizing radiation for mammalian cells and re-defined cellular radiosensitivity in a quantitative fashion with important implications in radiotherapy. These studies demonstrated that the killing of mammalian cells by ionizing radiation is due to damage to the DNA. They first established the fundamental role of cell turnover in determining some of the major pathological effects of the mammalian radiation syndrome. They made possible production and study of many kinds of mutant and hybrid cells including radiation-repair deficient mutants. Methods of genetic-biochemical analysis of mutants and hybrids have been devised which make possible identification of specific metabolic effects resulting from irradiation and similar actions. These studies have demonstrated that X-irradiated cells can be used as feeder layers for nourishing other cells dependent on specific cell-cell interactions for their growth. More recently, new applications have provided improved detection and quantitation of effects of low levels of radiation and other mutagens, and have made possible fine structure mapping of human genes

  7. The different shades of mammalian pluripotent stem cells

    NARCIS (Netherlands)

    Kuijk, E.W.; Lopes, S.M.; Geijsen, N.; Macklon, N.S.; Roelen, B.A.J.

    2011-01-01

    The different shades of mammalian pluripotent stem cells Abstract BACKGROUND Pluripotent stem cells have been derived from a variety of sources such as from the inner cell mass of preimplantation embryos, from primordial germ cells, from teratocarcinomas and from male germ cells. The recent

  8. Mammalian motor neurons corelease glutamate and acetylcholine at central synapses

    DEFF Research Database (Denmark)

    Nishimaru, Hiroshi; Restrepo, Carlos Ernesto; Ryge, Jesper

    2005-01-01

    Motor neurons (MNs) are the principal neurons in the mammalian spinal cord whose activities cause muscles to contract. In addition to their peripheral axons, MNs have central collaterals that contact inhibitory Renshaw cells and other MNs. Since its original discovery > 60 years ago, it has been...

  9. Relative brain size in the mammalian carnivores of the Cape ...

    African Journals Online (AJOL)

    30 species of mammalian carnivores from the Cape Province of South Mrica. These species fall into five families: Canidae,. Mustelidae, Viverridae, Felidae and Hyaeoidae. In this paper, the behavioural and ecological aspects that may be associated with variations in EQ are e.wnined and discussed. Materials and Methods.

  10. Paired Chicken and Mammalian Erythrocyte Indicator Systems for ...

    African Journals Online (AJOL)

    Three levels of erythrocytes suspensions, 1.5%, 1% and 0.5% respectively from goat and guinea pig, were compared to conventional 0.5% chicken erythrocytes, in an attempt to investigate the suitability for the two sources of mammalian erythrocytes as indicators for Newcastle disease virus haemagglutination (HA) tests.

  11. Overview of structure and function of mammalian cilia

    DEFF Research Database (Denmark)

    Satir, Peter; Christensen, Søren Tvorup

    2007-01-01

    Cilia are membrane-bounded, centriole-derived projections from the cell surface that contain a microtubule cytoskeleton, the ciliary axoneme, surrounded by a ciliary membrane. Axonemes in multiciliated cells of mammalian epithelia are 9 + 2, possess dynein arms, and are motile. In contrast, single...

  12. Mammalian Prolactin – An Ancient But Still A Mysterious Hormone

    Indian Academy of Sciences (India)

    Table of contents. Mammalian Prolactin – An Ancient But Still A Mysterious Hormone · Prolactin inhibits LHRH action during lactational ammenorrhoea · Slide 3 · Slide 4 · REDUCTIONIST VIEW OF HORMONES · CONCERN · PURIFICATION PROTOCOLS · CHARACTERIZATION OF HORMONES · Slide 9 · Slide 10.

  13. In vivo strains in the femur of the Virginia opossum (Didelphis virginiana) during terrestrial locomotion: testing hypotheses of evolutionary shifts in mammalian bone loading and design.

    Science.gov (United States)

    Butcher, Michael T; White, Bartholomew J; Hudzik, Nathan B; Gosnell, W Casey; Parrish, John H A; Blob, Richard W

    2011-08-01

    Terrestrial locomotion can impose substantial loads on vertebrate limbs. Previous studies have shown that limb bones from cursorial species of eutherian mammals experience high bending loads with minimal torsion, whereas the limb bones of non-avian reptiles (and amphibians) exhibit considerable torsion in addition to bending. It has been hypothesized that these differences in loading regime are related to the difference in limb posture between upright mammals and sprawling reptiles, and that the loading patterns observed in non-avian reptiles may be ancestral for tetrapod vertebrates. To evaluate whether non-cursorial mammals show loading patterns more similar to those of sprawling lineages, we measured in vivo strains in the femur during terrestrial locomotion of the Virginia opossum (Didelphis virginiana), a marsupial that uses more crouched limb posture than most mammals from which bone strains have been recorded, and which belongs to a clade phylogenetically between reptiles and the eutherian mammals studied previously. The presence of substantial torsion in the femur of opossums, similar to non-avian reptiles, would suggest that this loading regime likely reflects an ancestral condition for tetrapod limb bone design. Strain recordings indicate the presence of both bending and appreciable torsion (shear strain: 419.1 ± 212.8 με) in the opossum femur, with planar strain analyses showing neutral axis orientations that placed the lateral aspect of the femur in tension at the time of peak strains. Such mediolateral bending was unexpected for a mammal running with near-parasagittal limb kinematics. Shear strains were similar in magnitude to peak compressive axial strains, with opossum femora experiencing similar bending loads but higher levels of torsion compared with most previously studied mammals. Analyses of peak femoral strains led to estimated safety factor ranges of 5.1-7.2 in bending and 5.5-7.3 in torsion, somewhat higher than typical mammalian values

  14. Testing the reliability of software tools in sex and ancestry estimation in a multi-ancestral Brazilian sample.

    Science.gov (United States)

    Urbanová, Petra; Ross, Ann H; Jurda, Mikoláš; Nogueira, Maria-Ines

    2014-09-01

    In the framework of forensic anthropology osteometric techniques are generally preferred over visual examinations due to a higher level of reproducibility and repeatability; qualities that are crucial within a legal context. The use of osteometric methods has been further reinforced by incorporating statistically-based algorithms and large reference samples in a variety of user-friendly software applications. However, the continued increase in admixture of human populations have made the use of osteometric methods for estimation of ancestry much more complex, which confounds one of major requirements of ancestry assessment - intra-population homogeneity. The present paper tests the accuracy of ancestry and sex assessment using four identification software tools, specifically FORDISC 2.0, FORDISC 3.1.293, COLIPR 1.5.2 and 3D-ID 1.0. Software accuracy was tested in a sample of 174 documented human crania of Brazilian origin composed of different ancestral groups (i.e., European Brazilians, Afro-Brazilians, and Japanese Brazilians and of admixed ancestry). The results show that regardless of the software algorithm employed and composition of the reference database, all methods were able to allocate approximately 50% of Brazilian specimens to an appropriate major reference group. Of the three ancestral groups, Afro-Brazilians were especially prone to misclassification. Japanese Brazilians, by contrast, were shown to be relatively easily recognizable as being of Asian descent but at the same time showed a strong affinity towards Hispanic crania, in particularly when the classification based on FDB was carried out in FORDISC. For crania of admixed origin all of the algorithms showed a considerable higher rate of inconsistency with a tendency for misclassification into Asian and American Hispanic groups. Sex assessments revealed an overall modest to poor reliability (60-71% of correctly classified specimens) using the tested software programs with unbalanced individual

  15. The effect of mammalian herbivory on inflorescence architecture in ornithophilous Babiana (Iridaceae): implications for the evolution of a bird perch.

    Science.gov (United States)

    de Waal, Caroli; Barrett, Spencer C H; Anderson, Bruce

    2012-06-01

    The showiness of floral displays is usually explained as an adaptation to attract pollinators. However, selection for less attractive displays imposed by non-pollinating agents, particularly herbivores, may balance pollinator-driven selection for highly visible inflorescences. We investigated whether inflorescence architecture, particularly the unusual ground-level flowering associated with a specialized bird perch in Babiana ringens may have originated, in part, as an adaptive response to mammalian herbivory. We measured levels of herbivory by antelope in populations of B. hirsuta, the putative sister species of B. ringens, which possesses the likely ancestral form of inflorescence architecture. To test for position-dependent effects of herbivory on flowers, we compared the herbivory rates and seed production of manipulated inflorescences in a field experiment. We predicted that flowers at the base of inflorescences would suffer less herbivory than those in apical positions. We found herbivore damage to flowers in 50% of naturally occurring B. hirsuta plants. Manipulated inflorescences with only basal flowers, and consequently similar inflorescence architecture to B. ringens, experienced significantly lower herbivory and higher seed set than inflorescences manipulated to have only apical flowers. Our results are consistent with the hypothesis that position-dependent herbivory on inflorescences could have played a role in the evolution of inflorescence design. More specifically, position-dependent herbivory may have selected for the loss of apical flowers. Position-dependent herbivory may have contributed toward the evolution of a naked inflorescence axis, a structure that characterizes B. ringens and functions as a bird perch facilitating cross-pollination by sunbirds.

  16. Natural environments, ancestral diets, and microbial ecology: is there a modern "paleo-deficit disorder"? Part II.

    Science.gov (United States)

    Logan, Alan C; Katzman, Martin A; Balanzá-Martínez, Vicent

    2015-03-10

    Famed microbiologist René J. Dubos (1901-1982) was an early pioneer in the developmental origins of health and disease (DOHaD) construct. In the 1960s, he conducted groundbreaking research concerning the ways in which early-life experience with nutrition, microbiota, stress, and other environmental variables could influence later-life health outcomes. He recognized the co-evolutionary relationship between microbiota and the human host. Almost 2 decades before the hygiene hypothesis, he suggested that children in developed nations were becoming too sanitized (vs. our ancestral past) and that scientists should determine whether the childhood environment should be "dirtied up in a controlled manner." He also argued that oft-celebrated growth chart increases via changes in the global food supply and dietary patterns should not be equated to quality of life and mental health. Here in the second part of our review, we reflect the words of Dubos off contemporary research findings in the areas of diet, the gut-brain-axis (microbiota and anxiety and depression) and microbial ecology. Finally, we argue, as Dubos did 40 years ago, that researchers should more closely examine the relevancy of silo-sequestered, reductionist findings in the larger picture of human quality of life. In the context of global climate change and the epidemiological transition, an allergy epidemic and psychosocial stress, our review suggests that discussions of natural environments, urbanization, biodiversity, microbiota, nutrition, and mental health, are often one in the same.

  17. Research on Non-Destructive Testing Technology in Conservation Repair Project of Ancestral Temple in Mukden Palace

    Science.gov (United States)

    Yang, J.; Fu, M.

    2017-08-01

    Due to the use of wood and other non-permanent materials, traditional Chinese architecture is one of the most fragile constructions in various heritage objects today. With the increasing emphasis on the protection of cultural relics, the repair project of wooden structure has become more and more important. There are various kinds of destructions, which pose a hidden danger to the overall safety of the ancient buildings, caused not only by time and nature, but also by improper repairs in history or nowadays. Today, the use of digital technology is a basic requirement in the conservation of cultural heritage. Detection technology, especially non-destructive testing technology, could provide more accurate records in capturing detailed physical characteristics of structures such as geometric deformation and invisible damage, as well as prevent a man-made destruction in the process of repair project. This paper aims to interpret with a typical example, Ancestral Temple in Mukden Palace, along with a discussion of how to use the non-destructive testing technology with ground penetrating radar, stress wave, resistograph and so on, in addition to find an appropriate protection method in repair project of traditional Chinese wooden architecture.

  18. Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants.

    Science.gov (United States)

    Moreau, Corrie S; Bell, Charles D

    2013-08-01

    Ants are one of the most ecologically and numerically dominant group of terrestrial organisms with most species diversity currently found in tropical climates. Several explanations for the disparity of biological diversity in the tropics compared to temperate regions have been proposed including that the tropics may act as a "museum" where older lineages persist through evolutionary time or as a "cradle" where new species continue to be generated. We infer the molecular phylogenetic relationships of 295 ant specimens including members of all 21 extant subfamilies to explore the evolutionary diversification and biogeography of the ants. By constraining the topology and age of the root node while using 45 fossils as minimum constraints, we converge on an age of 139-158 Mya for the modern ants. Further diversification analyses identified 10 periods with a significant change in the tempo of diversification of the ants, although these shifts did not appear to correspond to ancestral biogeographic range shifts. Likelihood-based historical biogeographic reconstructions suggest that the Neotropics were important in early ant diversification (e.g., Cretaceous). This finding coupled with the extremely high-current species diversity suggests that the Neotropics have acted as both a museum and cradle for ant diversity. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  19. What was the ancestral function of decidual stromal cells? A model for the evolution of eutherian pregnancy.

    Science.gov (United States)

    Chavan, Arun Rajendra; Bhullar, Bhart-Anjan S; Wagner, Günter P

    2016-04-01

    In human and mouse, decidual stromal cells (DSC) are necessary for the establishment (implantation) and the maintenance of pregnancy by preventing inflammation and the immune rejection of the semi-allograft conceptus. DSC originated along the stem lineage of eutherian mammals, coincidental with the origin of invasive placentation. Surprisingly, in many eutherian lineages decidual cells are lost after the implantation phase of pregnancy, making it unlikely that DSC are necessary for the maintenance of pregnancy in these animals. In order to understand this variation, we review the literature on the fetal-maternal interface in all major eutherian clades Euarchontoglires, Laurasiatheria, Xenarthra and Afrotheria, as well as the literature about the ancestral eutherian species. We conclude that maintaining pregnancy may not be a shared derived function of DSC among all eutherian mammals. Rather, we propose that DSC originated to manage the inflammatory reaction associated with invasive implantation. We envision that this happened in a stem eutherian that had invasive placenta but still a short gestation. We further propose that extended gestation evolved independently in the major eutherian clades explaining why the major lineages of eutherian mammals differ with respect to the mechanisms maintaining pregnancy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Ancestral polymorphisms and sex-biased migration shaped the demographic history of brown bears and polar bears.

    Science.gov (United States)

    Nakagome, Shigeki; Mano, Shuhei; Hasegawa, Masami

    2013-01-01

    Recent studies have reported discordant gene trees in the evolution of brown bears and polar bears. Genealogical histories are different among independent nuclear loci and between biparentally inherited autosomal DNA (aDNA) and matrilineal mitochondrial DNA (mtDNA). Based on multi-locus genomic sequences from aDNA and mtDNA, we inferred the population demography of brown and polar bears and found that brown bears have 6 times (aDNA) or more than 14 times (mtDNA) larger population sizes than polar bears and that polar bear lineage is derived from within brown bear diversity. In brown bears, the effective population size ratio of mtDNA to aDNA was at least 0.62, which deviated from the expected value of 0.25, suggesting matriarchal population due to female philopatry and male-biased migration. These results emphasize that ancestral polymorphisms and sex-biased migration may have contributed to conflicting branching patterns in brown and polar bears across aDNA genes and mtDNA.

  1. Evolution of the human diet: linking our ancestral diet to modern functional foods as a means of chronic disease prevention.

    Science.gov (United States)

    Jew, Stephanie; AbuMweis, Suhad S; Jones, Peter J H

    2009-10-01

    The evolution of the human diet over the past 10,000 years from a Paleolithic diet to our current modern pattern of intake has resulted in profound changes in feeding behavior. Shifts have occurred from diets high in fruits, vegetables, lean meats, and seafood to processed foods high in sodium and hydrogenated fats and low in fiber. These dietary changes have adversely affected dietary parameters known to be related to health, resulting in an increase in obesity and chronic disease, including cardiovascular disease (CVD), diabetes, and cancer. Some intervention trials using Paleolithic dietary patterns have shown promising results with favorable changes in CVD and diabetes risk factors. However, such benefits may be offset by disadvantages of the Paleolithic diet, which is low in vitamin D and calcium and high in fish potentially containing environmental toxins. More advantageous would be promotion of foods and food ingredients from our ancestral era that have been shown to possess health benefits in the form of functional foods. Many studies have investigated the health benefits of various functional food ingredients, including omega-3 fatty acids, polyphenols, fiber, and plant sterols. These bioactive compounds may help to prevent and reduce incidence of chronic diseases, which in turn could lead to health cost savings ranging from $2 to $3 billion per year as estimated by case studies using omega-3 and plant sterols as examples. Thus, public health benefits should result from promotion of the positive components of Paleolithic diets as functional foods.

  2. Reconstruction of the putative cervidae ancestral karyotype by chromosome painting of Siberian roe deer (Capreolus pygargus) with dromedary probes.

    Science.gov (United States)

    Dementyeva, P V; Trifonov, V A; Kulemzina, A I; Graphodatsky, A S

    2010-06-01

    The Siberian roe deer (Capreolus pygargus) is one of a few deer species presumably preserving the ancestral cervid karyotype. The comparative genomic data of the Siberian roe deer are critical for our understanding of the karyotypic relationships within artiodactyls. We have established chromosomal homologies between the Siberian roe deer and the dromedary (Camelus dromedarius) by cross-species chromosome painting with dromedary chromosome-specific painting probes. Dromedary chromosome paints detected 53 autosomal homologies in the genome of the Siberian roe deer. The identification of chromosomal homologies between the Siberian roe deer and cattle resulted from previously detected cattle-dromedary homologies. We have found 8 chromosomal rearrangements (6 fissions in the Siberian roe deer, 1 fission in the cattle and 1 inversion on the CPY11) that have separated the karyotypes of the cattle and the Siberian roe deer. The inversion on CPY11 might be an apomorphic trait of cervids, since we detected its presence in the gray brocket deer (Mazama gouazoubira). Thus our data further prove the scenario of chromosomal rearrangements that was previously proposed and add some new data. 2010 S. Karger AG, Basel.

  3. Total immediate ancestral longevity (TIAL) score as a longevity indicator: an analysis on Einstein and three of his scientist peers.

    Science.gov (United States)

    Sri Kantha, S

    2001-04-01

    The total immediate ancestral longevity (TIAL) score was first introduced by Raymond Pearl as a convenient parameter for quantitating human longevity. TIAL is the summed ages at death of the six immediate ancestors (namely parents and four grandparents) of a propositus. In this communication, I present the calculations of TIAL score for Einstein (1879--1955) and three of his scientist peers, namely Charles Darwin (1809--1882), Irene Joliot Curie (1897--1956) and Aage Bohr (1922--). The TIAL scores for Einstein, Darwin, Irene Curie and Aage Bohr were 390, 378, 372 and 436 respectively. These are markedly lower than 477 reported for Jeanne Calment, the French woman who died in 1997 at the oldest authenticated age of 122 years and 164 days. I conclude that the TIAL score is a convenient and easily quantifiable longevity parameter which anyone interested in determining his or her longevity can use to estimate a tentative number. More light could be shed on the worth of the TIAL score as a longevity indicator, if additional data on the TIAL scores of royalty and celebrities (for whom verified genealogical data are available) are reported. Copyright 2001 Harcourt Publishers Ltd.

  4. Pliocene terrace gravels of the ancestral Yukon River near Circle, Alaska: Palynology, paleobotany, paleoenvironmental reconstruction and regional correlation

    Science.gov (United States)

    Ager, T.A.; Matthews, J.V.; Yeend, W.

    1994-01-01

    Gravels deposited by the ancestral Yukon River are preserved in terrace remnants on the margins of the Yukon River valley near the village of Circle in east-central Alaska. Plant fossils recovered from sandy silt lenses within these gravels include cones and needles of Picea and Larix and a variety of seeds. Seed types include several taxa which no longer grow in Alaska, such as Epipremnum, Prunus and Weigela. Pollen types recovered from these deposits represent tree and shrub taxa that grow in interior Alaska today, such as Picea, Larix, Betula and Alnus, as well as several taxa that no longer grow in interior Alaska today, such as Pinus, Tsuga, Abies and Corylus. Pollen of herb taxa identified include Gramineae, Cyperaceae, Caryophyllaceae, Compositae, Polemonium and Epilobium. The fossil flora from the gravels near Circle are similar and probably age-equivalent to the flora recovered from the Nenana Gravel in the Alaska Range 250 km to the south. Palynological and tectonic evidence summarized in this paper now suggests that the Nenana Gravel was deposited during the early and middle Pliocene. The presence of plant fossils of Tsuga, Abies, Pinus, Weigela and Prunus suggests that the mean annual temperature (MAT) of eastern interior Alaska during the early and middle Pliocene was perhaps 7-9??C warmer and less continental than today's MAT of -6.4??C. ?? 1994.

  5. Ancestral polymorphisms and sex-biased migration shaped the demographic history of brown bears and polar bears.

    Directory of Open Access Journals (Sweden)

    Shigeki Nakagome

    Full Text Available Recent studies have reported discordant gene trees in the evolution of brown bears and polar bears. Genealogical histories are different among independent nuclear loci and between biparentally inherited autosomal DNA (aDNA and matrilineal mitochondrial DNA (mtDNA. Based on multi-locus genomic sequences from aDNA and mtDNA, we inferred the population demography of brown and polar bears and found that brown bears have 6 times (aDNA or more than 14 times (mtDNA larger population sizes than polar bears and that polar bear lineage is derived from within brown bear diversity. In brown bears, the effective population size ratio of mtDNA to aDNA was at least 0.62, which deviated from the expected value of 0.25, suggesting matriarchal population due to female philopatry and male-biased migration. These results emphasize that ancestral polymorphisms and sex-biased migration may have contributed to conflicting branching patterns in brown and polar bears across aDNA genes and mtDNA.

  6. Ancestral association between HLA and HFE H63D and C282Y gene mutations from northwest Colombia

    Directory of Open Access Journals (Sweden)

    Libia M Rodriguez

    2015-03-01

    Full Text Available A significant association between HFE gene mutations and the HLA-A*03-B*07 and HLA-A*29-B*44 haplotypes has been reported in the Spanish population. It has been proposed that these mutations are probably connected with Celtic and North African ancestry, respectively. We aimed to find the possible ancestral association between HLA alleles and haplotypes associated with the HFE gene (C282Y and H63D mutations in 214 subjects from Antioquia, Colombia. These were 18 individuals with presumed hereditary hemochromatosis (“HH” and 196 controls. The HLA-B*07 allele was in linkage disequilibrium (LD with C282Y, while HLA-A*23, A*29, HLA-B*44, and B*49 were in LD with H63D. Altogether, our results show that, although the H63D mutation is more common in the Antioquia population, it is not associated with any particular HLA haplotype, whereas the C282Y mutation is associated with HLA-A*03-B*07, this supporting a northern Spaniard ancestry.

  7. Genome-Wide Identification of the Mutation Underlying Fleece Variation and Discriminating Ancestral Hairy Species from Modern Woolly Sheep.

    Science.gov (United States)

    Demars, Julie; Cano, Margarita; Drouilhet, Laurence; Plisson-Petit, Florence; Bardou, Philippe; Fabre, Stéphane; Servin, Bertrand; Sarry, Julien; Woloszyn, Florent; Mulsant, Philippe; Foulquier, Didier; Carrière, Fabien; Aletru, Mathias; Rodde, Nathalie; Cauet, Stéphane; Bouchez, Olivier; Pirson, Maarten; Tosser-Klopp, Gwenola; Allain, Daniel

    2017-07-01

    The composition and structure of fleece variation observed in mammals is a consequence of a strong selective pressure for fiber production after domestication. In sheep, fleece variation discriminates ancestral species carrying a long and hairy fleece from modern domestic sheep (Ovis aries) owning a short and woolly fleece. Here, we report that the "woolly" allele results from the insertion of an antisense EIF2S2 retrogene (called asEIF2S2) into the 3' UTR of the IRF2BP2 gene leading to an abnormal IRF2BP2 transcript. We provide evidence that this chimeric IRF2BP2/asEIF2S2 messenger 1) targets the genuine sense EIF2S2 RNA and 2) creates a long endogenous double-stranded RNA which alters the expression of both EIF2S2 and IRF2BP2 mRNA. This represents a unique example of a phenotype arising via a RNA-RNA hybrid, itself generated through a retroposition mechanism. Our results bring new insights on the sheep population history thanks to the identification of the molecular origin of an evolutionary phenotypic variation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate

    Science.gov (United States)

    Heimberg, Alysha M.; Cowper-Sal·lari, Richard; Sémon, Marie; Donoghue, Philip C. J.; Peterson, Kevin J.

    2010-01-01

    Hagfish and lampreys are the only living representatives of the jawless vertebrates (agnathans), and compared with jawed vertebrates (gnathostomes), they provide insight into the embryology, genomics, and body plan of the ancestral vertebrate. However, this insight has been obscured by controversy over their interrelationships. Morphological cladistic analyses have identified lampreys and gnathostomes as closest relatives, whereas molecular phylogenetic studies recover a monophyletic Cyclostomata (hagfish and lampreys as closest relatives). Here, we show through deep sequencing of small RNA libraries, coupled with genomic surveys, that Cyclostomata is monophyletic: hagfish and lampreys share 4 unique microRNA families, 15 unique paralogues of more primitive microRNA families, and 22 unique substitutions to the mature gene products. Reanalysis of morphological data reveals that support for cyclostome paraphyly was based largely on incorrect character coding, and a revised dataset is not decisive on the mono- vs. paraphyly of cyclostomes. Furthermore, we show fundamental conservation of microRNA expression patterns among lamprey, hagfish, and gnathostome organs, implying that the role of microRNAs within specific organs is coincident with their appearance within the genome and is conserved through time. Together, these data support the monophyly of cyclostomes and suggest that the last common ancestor of all living vertebrates was a more complex organism than conventionally accepted by comparative morphologists and developmental biologists. PMID:20959416

  9. Lower Cretaceous fossils from China shed light on the ancestral body plan of crown softshell turtles (Trionychidae, Cryptodira).

    Science.gov (United States)

    Brinkman, Donald; Rabi, Márton; Zhao, Lijun

    2017-07-27

    Pan-trionychids or softshell turtles are a highly specialized and widespread extant group of aquatic taxa with an evolutionary history that goes back to the Early Cretaceous. The earliest pan-trionychids had already fully developed the "classic" softshell turtle morphology and it has been impossible to resolve whether they are stem members of the family or are within the crown. This has hindered our understanding of the evolution of the two basic body plans of crown-trionychids. Thus it remains unclear whether the more heavily ossified shell of the cyclanorbines or the highly reduced trionychine morphotype is the ancestral condition for softshell turtles. A new pan-trionychid from the Early Cretaceous of Zhejiang, China, Perochelys hengshanensis sp. nov., allows a revision of softshell-turtle phylogeny. Equal character weighting resulted in a topology that is fundamentally inconsistent with molecular divergence date estimates of deeply nested extant species. In contrast, implied weighting retrieved Lower Cretaceous Perochelys spp. and Petrochelys kyrgyzensis as stem trionychids, which is fully consistent with their basal stratigraphic occurrence and an Aptian-Santonian molecular age estimate for crown-trionychids. These results indicate that the primitive morphology for soft-shell turtles is a poorly ossified shell like that of crown-trionychines and that shell re-ossification in cyclanorbines (including re-acquisition of peripheral elements) is secondary.

  10. Distribution of ancestral proto-Actinopterygian chromosome arms within the genomes of 4R-derivative salmonid fishes (Rainbow trout and Atlantic salmon

    Directory of Open Access Journals (Sweden)

    Lubieniecki Krzysztof P

    2008-11-01

    Full Text Available Abstract Background Comparative genomic studies suggest that the modern day assemblage of ray-finned fishes have descended from an ancestral grouping of fishes that possessed 12–13 linkage groups. All jawed vertebrates are postulated to have experienced two whole genome duplications (WGD in their ancestry (2R duplication. Salmonids have experienced one additional WGD (4R duplication event compared to most extant teleosts which underwent a further 3R WGD compared to other vertebrates. We describe the organization of the 4R chromosomal segments of the proto-ray-finned fish karyotype in Atlantic salmon and rainbow trout based upon their comparative syntenies with two model species of 3R ray-finned fishes. Results Evidence is presented for the retention of large whole-arm affinities between the ancestral linkage groups of the ray-finned fishes, and the 50 homeologous chromosomal segments in Atlantic salmon and rainbow trout. In the comparisons between the two salmonid species, there is also evidence for the retention of large whole-arm homeologous affinities that are associated with the retention of duplicated markers. Five of the 7 pairs of chromosomal arm regions expressing the highest level of duplicate gene expression in rainbow trout share homologous synteny to the 5 pairs of homeologs with the greatest duplicate gene expression in Atlantic salmon. These regions are derived from proto-Actinopterygian linkage groups B, C, E, J and K. Conclusion Two chromosome arms in Danio rerio and Oryzias latipes (descendants of the 3R duplication can, in most instances be related to at least 4 whole or partial chromosomal arms in the salmonid species. Multiple arm assignments in the two salmonid species do not clearly support a 13 proto-linkage group model, and suggest that a 12 proto-linkage group arrangement (i.e., a separate single chromosome duplication and ancestral fusion/fissions/recombination within the putative G/H/I groupings may have occurred in

  11. Stability of resazurin in buffers and mammalian cell culture media

    DEFF Research Database (Denmark)

    Rasmussen, Eva; Nicolaisen, G.M.

    1999-01-01

    The utility of a ferricyanide/ferrocyanide system used in the AlamarBlue(TM) (Serotec, Oxford, UK) vital. dye to inhibit the reduction of resazurin by mammalian cell culture media is questioned. Resazurin was found to be relatively stable when dissolved in phosphate-buffered saline (PBS). The use...... of HEPES resulted in a huge immediate dye reduction, which was significantly enhanced by exposure to diffuse light from fluorescent tubes in the laboratory 8 h per day. The reduction of resazurin by various cell culture media was time and temperature dependent, and it was significantly enhanced......'s nutrient mixture F-10 and F-12. Fetal calf serum (5-20%) slightly decreased resazurin reduction during the first 2 days of incubation. The reduction of resazurin by mammalian cell culture media do not appear to be problematic under normal culture conditions, and it is primarily dependent upon the presence...

  12. The evolution of gene expression levels in mammalian organs

    DEFF Research Database (Denmark)

    Brawand, David; Soumillon, Magali; Necsulea, Anamaria

    2011-01-01

    Changes in gene expression are thought to underlie many of the phenotypic differences between species. However, large-scale analyses of gene expression evolution were until recently prevented by technological limitations. Here we report the sequencing of polyadenylated RNA from six organs across...... ten species that represent all major mammalian lineages (placentals, marsupials and monotremes) and birds (the evolutionary outgroup), with the goal of understanding the dynamics of mammalian transcriptome evolution. We show that the rate of gene expression evolution varies among organs, lineages...... and chromosomes, owing to differences in selective pressures: transcriptome change was slow in nervous tissues and rapid in testes, slower in rodents than in apes and monotremes, and rapid for the X chromosome right after its formation. Although gene expression evolution in mammals was strongly shaped...

  13. Mammalian cycles: internally defined periods and interaction-driven amplitudes

    Science.gov (United States)

    Krebs, CJ

    2015-01-01

    The cause of mammalian cycles—the rise and fall of populations over a predictable period of time—has remained controversial since these patterns were first observed over a century ago. In spite of extensive work on observable mammalian cycles, the field has remained divided upon what the true cause is, with a majority of opinions attributing it to either predation or to intra-species mechanisms. Here we unite the eigenperiod hypothesis, which describes an internal, maternal effect-based mechanism to explain the cycles’ periods with a recent generalization explaining the amplitude of snowshoe hare cycles in northwestern North America based on initial predator abundance. By explaining the period and the amplitude of the cycle with separate mechanisms, a unified and consistent view of the causation of cycles is reached. Based on our suggested theory, we forecast the next snowshoe hare cycle (predicted peak in 2016) to be of extraordinarily low amplitude. PMID:26339557

  14. Leadership in Mammalian Societies: Emergence, Distribution, Power, and Payoff.

    Science.gov (United States)

    Smith, Jennifer E; Gavrilets, Sergey; Mulder, Monique Borgerhoff; Hooper, Paul L; Mouden, Claire El; Nettle, Daniel; Hauert, Christoph; Hill, Kim; Perry, Susan; Pusey, Anne E; van Vugt, Mark; Smith, Eric Alden

    2016-01-01

    Leadership is an active area of research in both the biological and social sciences. This review provides a transdisciplinary synthesis of biological and social-science views of leadership from an evolutionary perspective, and examines patterns of leadership in a set of small-scale human and non-human mammalian societies. We review empirical and theoretical work on leadership in four domains: movement, food acquisition, within-group conflict mediation, and between-group interactions. We categorize patterns of variation in leadership in five dimensions: distribution (across individuals), emergence (achieved versus inherited), power, relative payoff to leadership, and generality (across domains). We find that human leadership exhibits commonalities with and differences from the broader mammalian pattern, raising interesting theoretical and empirical issues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Measurement of Heme Synthesis Levels in Mammalian Cells.

    Science.gov (United States)

    Hooda, Jagmohan; Alam, Maksudul; Zhang, Li

    2015-07-09

    Heme serves as the prosthetic group for a wide variety of proteins known as hemoproteins, such as hemoglobin, myoglobin and cytochromes. It is involved in various molecular and cellular processes such as gene transcription, translation, cell differentiation and cell proliferation. The biosynthesis levels of heme vary across different tissues and cell types and is altered in diseased conditions such as anemia, neuropathy and cancer. This technique uses [4-(14)C] 5-aminolevulinic acid ([(14)C] 5-ALA), one of the early precursors in the heme biosynthesis pathway to measure the levels of heme synthesis in mammalian cells. This assay involves incubation of cells with [(14)C] 5-ALA followed by extraction of heme and measurement of the radioactivity incorporated into heme. This procedure is accurate and quick. This method measures the relative levels of heme biosynthesis rather than the total heme content. To demonstrate the use of this technique the levels of heme biosynthesis were measured in several mammalian cell lines.

  16. Cancer-like metabolism of the mammalian retina.

    Science.gov (United States)

    Ng, Soo Khai; Wood, John P M; Chidlow, Glyn; Han, Guoge; Kittipassorn, Thaksaon; Peet, Daniel J; Casson, Robert J

    2015-01-01

    The retina, like many cancers, produces energy from glycolysis even in the presence of oxygen. This phenomenon is known as aerobic glycolysis and eponymously as the Warburg effect. In recent years, the Warburg effect has become an explosive area of study within the cancer research community. The expanding knowledge about the molecular mechanisms underpinning the Warburg effect in cancer promises to provide a greater understanding of mammalian retinal metabolism and has motivated cancer researchers to target the Warburg effect as a novel treatment strategy for cancer. However, if the molecular mechanisms underlying the Warburg effect are shared by the retina and cancer, treatments targeting the Warburg effect may have serious adverse effects on retinal metabolism. Herein, we provide an updated understanding of the Warburg effect in mammalian retina. © 2014 Royal Australian and New Zealand College of Ophthalmologists.

  17. Genetic modification of mammalian genome at chromosome level

    Directory of Open Access Journals (Sweden)

    OLEG L. SEROV

    2000-09-01

    Full Text Available The review is concerned with a progress in genetic modification of a mammalian genome in vitro and in vivo at chromosomal level. Recently three new approaches for the chromosome biotechnology have been developed: Using Cre/loxP-system a researcher is able to produce targeted rearrangements of whole chromosomes or their segments or particular genes within the genome, and therefore to modify the set, position and copy number of the endogenous elements of the genome. Mammalian artificial chromosomes (MACs provide a possibility to introduce into genome relatively large segments of alien chromosome material, either artificially constructed or derived from the genome of different species. Using ES-somatic cell hybrids allows to transfer whole chromosomes or their fragments between different genomes within and between species. Advantages and limitations of these approaches are discussed.

  18. Regeneration of hair cells in the mammalian vestibular system.

    Science.gov (United States)

    Li, Wenyan; You, Dan; Chen, Yan; Chai, Renjie; Li, Huawei

    2016-06-01

    Hair cells regenerate throughout the lifetime of non-mammalian vertebrates, allowing these animals to recover from hearing and balance deficits. Such regeneration does not occur efficiently in humans and other mammals. Thus, balance deficits become permanent and is a common sensory disorder all over the world. Since Forge and Warchol discovered the limited spontaneous regeneration of vestibular hair cells after gentamicininduced damage in mature mammals, significant efforts have been exerted to trace the origin of the limited vestibular regeneration in mammals after hair cell loss. Moreover, recently many strategies have been developed to promote the hair cell regeneration and subsequent functional recovery of the vestibular system, including manipulating the Wnt, Notch and Atoh1. This article provides an overview of the recent advances in hair cell regeneration in mammalian vestibular epithelia. Furthermore, this review highlights the current limitations of hair cell regeneration and provides the possible solutions to regenerate functional hair cells and to partially restore vestibular function.

  19. [The morphogenesis of mammalian cutaneous glands in evolutionary perspective].

    Science.gov (United States)

    Chernova, O F

    2012-01-01

    The morphogenesis of mammalian cutaneous glands is considered based on the analysis of the literature and our own original data with the focus on the issues of gland polymorphism and specific features in postnatal development (from the case study of circumanal hepatoid glands of newborn domestic dogs), including the features reflecting the evolutionary relationships of various types of cutaneous glands. The hepatoid glands are a component of the glandular complex ofthe hair follicle, which also includes sebaceous and sweat glands; have a specific structure; and produce protein secretion by a merocrine pathway. Characteristic of these glands are wide polymorphism, sex- and age-related differences in the degree of development, occurrence in only a few phylogenetically related mammalian taxa (even-toed ungulates and carnivores); and a signaling type of their secretion. The data support the "generative concept," relying on the idea of a separate and independent origination of diverse derivatives of the external integuments.

  20. Unconventional Trafficking of Mammalian Phospholipase D3 to Lysosomes

    Directory of Open Access Journals (Sweden)

    Adriana Carolina Gonzalez

    2018-01-01

    Full Text Available Variants in the phospholipase D3 (PLD3 gene have genetically been linked to late-onset Alzheimer's disease. We present a detailed biochemical analysis of PLD3 and reveal its endogenous localization in endosomes and lysosomes. PLD3 reaches lysosomes as a type II transmembrane protein via a (for mammalian cells uncommon intracellular biosynthetic route that depends on the ESCRT (endosomal sorting complex required for transport machinery. PLD3 is sorted into intraluminal vesicles of multivesicular endosomes, and ESCRT-dependent sorting correlates with ubiquitination. In multivesicular endosomes, PLD3 is subjected to proteolytic cleavage, yielding a stable glycosylated luminal polypeptide and a rapidly degraded N-terminal membrane-bound fragment. This pathway closely resembles the delivery route of carboxypeptidase S to the yeast vacuole. Our experiments reveal a biosynthetic route of PLD3 involving proteolytic processing and ESCRT-dependent sorting for its delivery to lysosomes in mammalian cells.

  1. Gut microbes of mammalian herbivores facilitate intake of plant toxins.

    Science.gov (United States)

    Kohl, Kevin D; Weiss, Robert B; Cox, James; Dale, Colin; Dearing, M Denise

    2014-10-01

    The foraging ecology of mammalian herbivores is strongly shaped by plant secondary compounds (PSCs) that defend plants against herbivory. Conventional wisdom holds that gut microbes facilitate the ingestion of toxic plants; however, this notion lacks empirical evidence. We investigated the gut microbiota of desert woodrats (Neotoma lepida), some populations of which specialise on highly toxic creosote bush (Larrea tridentata). Here, we demonstrate that gut microbes are crucial in allowing herbivores to consume toxic plants. Creosote toxins altered the population structure of the gut microbiome to facilitate an increase in abundance of genes that metabolise toxic compounds. In addition, woodrats were unable to consume creosote toxins after the microbiota was disrupted with antibiotics. Last, ingestion of toxins by naïve hosts was increased through microbial transplants from experienced donors. These results demonstrate that microbes can enhance the ability of hosts to consume PSCs and therefore expand the dietary niche breadth of mammalian herbivores. © 2014 John Wiley & Sons Ltd/CNRS.

  2. Mammalian cycles: internally defined periods and interaction-driven amplitudes

    Directory of Open Access Journals (Sweden)

    LR Ginzburg

    2015-08-01

    Full Text Available The cause of mammalian cycles—the rise and fall of populations over a predictable period of time—has remained controversial since these patterns were first observed over a century ago. In spite of extensive work on observable mammalian cycles, the field has remained divided upon what the true cause is, with a majority of opinions attributing it to either predation or to intra-species mechanisms. Here we unite the eigenperiod hypothesis, which describes an internal, maternal effect-based mechanism to explain the cycles’ periods with a recent generalization explaining the amplitude of snowshoe hare cycles in northwestern North America based on initial predator abundance. By explaining the period and the amplitude of the cycle with separate mechanisms, a unified and consistent view of the causation of cycles is reached. Based on our suggested theory, we forecast the next snowshoe hare cycle (predicted peak in 2016 to be of extraordinarily low amplitude.

  3. Prevalence of sexual dimorphism in mammalian phenotypic traits.

    Science.gov (United States)

    Karp, Natasha A; Mason, Jeremy; Beaudet, Arthur L; Benjamini, Yoav; Bower, Lynette; Braun, Robert E; Brown, Steve D M; Chesler, Elissa J; Dickinson, Mary E; Flenniken, Ann M; Fuchs, Helmut; Angelis, Martin Hrabe de; Gao, Xiang; Guo, Shiying; Greenaway, Simon; Heller, Ruth; Herault, Yann; Justice, Monica J; Kurbatova, Natalja; Lelliott, Christopher J; Lloyd, K C Kent; Mallon, Ann-Marie; Mank, Judith E; Masuya, Hiroshi; McKerlie, Colin; Meehan, Terrence F; Mott, Richard F; Murray, Stephen A; Parkinson, Helen; Ramirez-Solis, Ramiro; Santos, Luis; Seavitt, John R; Smedley, Damian; Sorg, Tania; Speak, Anneliese O; Steel, Karen P; Svenson, Karen L; Wakana, Shigeharu; West, David; Wells, Sara; Westerberg, Henrik; Yaacoby, Shay; White, Jacqueline K

    2017-06-26

    The role of sex in biomedical studies has often been overlooked, despite evidence of sexually dimorphic effects in some biological studies. Here, we used high-throughput phenotype data from 14,250 wildtype and 40,192 mutant mice (representing 2,186 knockout lines), analysed for up to 234 traits, and found a large proportion of mammalian traits both in wildtype and mutants are influenced by sex. This result has implications for interpreting disease phenotypes in animal models and humans.

  4. Mammalian Non-CpG Methylation: Stem Cells and Beyond

    Directory of Open Access Journals (Sweden)

    Sara E. Pinney

    2014-11-01

    Full Text Available Although CpG dinucleotides remain the primary site for DNA methylation in mammals, there is emerging evidence that DNA methylation at non-CpG sites (CpA, CpT and CpC is not only present in mammalian cells, but may play a unique role in the regulation of gene expression. For some time it has been known that non-CpG methylation is abundant in plants and present in mammalian embryonic stem cells, but non-CpG methylation was thought to be lost upon cell differentiation. However, recent publications have described a role for non-CpG methylation in adult mammalian somatic cells including the adult mammalian brain, skeletal muscle, and hematopoietic cells and new interest in this field has been stimulated by the availability of high throughput sequencing techniques that can accurately measure this epigenetic modification. Genome wide assays indicate that non-CpG methylation is negligible in human fetal brain, but abundant in human adult brain tissue. Genome wide measurement of non-CpG methylation coupled with RNA-Sequencing indicates that in the human adult brain non-CpG methylation levels are inversely proportional to the abundance of mRNA transcript at the associated gene. Additionally specific examples where alterations in non-CpG methylation lead to changes in gene expression have been described; in PGC1α in human skeletal muscle, IFN-γ in human T-cells and SYT11 in human brain, all of which contribute to the development of human disease.

  5. Mottled Mice and Non-Mammalian Models of Menkes Disease

    DEFF Research Database (Denmark)

    Lenartowicz, Małgorzata; Krzeptowski, Wojciech; Lipiński, Paweł

    2015-01-01

    Menkes disease is a multi-systemic copper metabolism disorder caused by mutations in the X-linked ATP7A gene and characterized by progressive neurodegeneration and severe connective tissue defects. The ATP7A protein is a copper (Cu)-transporting ATPase expressed in all tissues and plays a critica......-mammalian models of Menkes disease, Drosophila melanogaster and Danio rerio mutants were used in experiments which would be technically difficult to carry out in mammals....

  6. Photooxidative damage to mammalian cells and proteins by visible light

    International Nuclear Information System (INIS)

    Packer, L.; Kellogg, E.W. III

    1980-01-01

    In the present article, studies carried out in our laboratory on the effects of visible irradiation and O 2 in a variety of target systems ranging from cultured mammalian cells to purified catalase are reviewed. We will relate these studies of photooxidative damage to a scheme for the propagation of intracellular damage which traces a number of the possible pro-oxidant and anti-oxidant pathways found in the cell

  7. Amazonian bats : structuring of a megadiverse mammalian community

    OpenAIRE

    Pereira, Maria João Veloso da Costa Ramos, 1976-

    2010-01-01

    Tese de doutoramento, Biologia (Ecologia), Universidade de Lisboa, Faculdade de Ciências, 2011 Bats are the second more diverse mammalian order, reaching their taxonomic and ecological diversity peak in the neotropics, where they play key ecological roles. In spite of this, the factors that affect the distribution, diversity and abundance of bats at different spatial and temporal scales are still poorly known. This dissertation focused on the analysis of such factors. For the s...

  8. Digital microfluidic processing of mammalian embryos for vitrification.

    Science.gov (United States)

    Pyne, Derek G; Liu, Jun; Abdelgawad, Mohamed; Sun, Yu

    2014-01-01

    Cryopreservation is a key technology in biology and clinical practice. This paper presents a digital microfluidic device that automates sample preparation for mammalian embryo vitrification. Individual micro droplets manipulated on the microfluidic device were used as micro-vessels to transport a single mouse embryo through a complete vitrification procedure. Advantages of this approach, compared to manual operation and channel-based microfluidic vitrification, include automated operation, cryoprotectant concentration gradient generation, and feasibility of loading and retrieval of embryos.

  9. Mammalian Bite Injuries to the Hand and Their Management

    OpenAIRE

    Jha, Shilpa; Khan, Wasim S; Siddiqui, Nashat A

    2014-01-01

    Bite wounds are a common form of hand injury with the potential to lead to severe local and systemic sequelae and permanent functional impairment. Mammalian bite wounds may be caused by a variety of animal class and species; injuries resulting from dogs, cats and humans are the most widely discussed and reported in the literature. Bite wounds may be contaminated with aggressive pathogens and the anatomical vulnerability of structures within the hand means that without early recognition and tr...

  10. Photooxidative damage to mammalian cells and proteins by visible light

    Energy Technology Data Exchange (ETDEWEB)

    Packer, L.; Kellogg, E.W. III

    1980-01-01

    In the present article, studies carried out in our laboratory on the effects of visible irradiation and O/sub 2/ in a variety of target systems ranging from cultured mammalian cells to purified catalase are reviewed. We will relate these studies of photooxidative damage to a scheme for the propagation of intracellular damage which traces a number of the possible pro-oxidant and anti-oxidant pathways found in the cell.

  11. The Mammalian Diving Response: An Enigmatic Reflex to Preserve Life?

    Science.gov (United States)

    2013-01-01

    The mammalian diving response is a remarkable behavior that overrides basic homeostatic reflexes. It is most studied in large aquatic mammals but is seen in all vertebrates. Pelagic mammals have developed several physiological adaptations to conserve intrinsic oxygen stores, but the apnea, bradycardia, and vasoconstriction is shared with those terrestrial and is neurally mediated. The adaptations of aquatic mammals are reviewed here as well as the neural control of cardiorespiratory physiology during diving in rodents. PMID:23997188

  12. Study of sperm proteins in different mammalian species

    OpenAIRE

    Pohlová, Alžběta

    2016-01-01

    Reproduction is an essential feature of all animals and a fundamental step to produce new generations. Study of sperm proteins is crucial for understanding of the sperm-egg recognition. We searched out sperm surface proteins involving in the zona pellucida (ZP) binding and studied whether these proteins are preserved throughout mammalian species. Indirect immunofluorescent technique was used to test a panel of monoclonal antibodies prepared against boar sperm surface proteins on spermatozoa o...

  13. Host-virus interactions of mammalian endogenous retroviruses

    OpenAIRE

    Farkašová, Helena

    2017-01-01

    Endogenous retroviruses (ERVs) originate by germline infection and subsequent mendelian inheritance of their exogenous counterparts. With notable exceptions, all mammalian ERVs are evolutionarily old and fixed in the population of its host species. Some groups of retroviruses were believed not to be able to form endogenous copies. We discovered an additional endogenous Lentivirus and a first endogenous Deltaretrovirus. Both of these groups were previously considered unable to form endogenous ...

  14. Global patterns of fragmentation and connectivity of mammalian carnivore habitat

    OpenAIRE

    Crooks, Kevin R.; Burdett, Christopher L.; Theobald, David M.; Rondinini, Carlo; Boitani, Luigi

    2011-01-01

    Although mammalian carnivores are vulnerable to habitat fragmentation and require landscape connectivity, their global patterns of fragmentation and connectivity have not been examined. We use recently developed high-resolution habitat suitability models to conduct comparative analyses and to identify global hotspots of fragmentation and connectivity for the world's terrestrial carnivores. Species with less fragmentation (i.e. more interior high-quality habitat) had larger geographical ranges...

  15. Passive versus active local microrheology in mammalian cells and amoebae

    Science.gov (United States)

    Riviere, C.; Gazeau, F.; Marion, S.; Bacri, J.-C.; Wilhelm, C.

    2004-12-01

    We compare in this paper the rotational magnetic microrheology detailed by Marion et al [18] and Wilhelm et al [19] to the passive tracking microrheology. The rotational microrheology has been designed to explore, using magnetic rotating probes, the local intracellular microenvironment of living cells in terms of viscoelasticity. Passive microrheology techniques is based on the analysis of spontaneous diffusive motions of Brownian probes. The dependence of mean square displacement (MSD) with the time then directly reflects the type of movement (sub-, hyper- or diffusive motions). Using the same intracellular probes, we performed two types of measurements (active and passive). Based on the fluctuation-dissipation theorem, one should obtain the same information from the both techniques in a thermally equilibrium system. Interestingly, our measurements differ, and the discordances directly inform on active biological processes, which add to thermally activated fluctuations in our out-of equilibrium systems. In both cell models used, mammalian Hela cells and amoebae Entamoeba Histolytica, a hyper-diffusive regime at a short time is observed, which highlights the presence of an active non-thermal driving force, acting on the probe. However, the nature of this active force in mammalian cells and amoebae is different, according to their different phenotypes. In mammalian cells active processes are governed by the transport, via molecular motors, on the microtubule network. In amoebae, which are highly motile cells free of microtubule network, the active processes are dominated by strong fluxes of cytoplasm driven by extension of pseudopodia, in random directions, leading to an amplitude of motion one order of magnitude higher than for mammalian cells. Figs 7, Refs 32.

  16. Digital microfluidic processing of mammalian embryos for vitrification.

    Directory of Open Access Journals (Sweden)

    Derek G Pyne

    Full Text Available Cryopreservation is a key technology in biology and clinical practice. This paper presents a digital microfluidic device that automates sample preparation for mammalian embryo vitrification. Individual micro droplets manipulated on the microfluidic device were used as micro-vessels to transport a single mouse embryo through a complete vitrification procedure. Advantages of this approach, compared to manual operation and channel-based microfluidic vitrification, include automated operation, cryoprotectant concentration gradient generation, and feasibility of loading and retrieval of embryos.

  17. Generation of Induced Pluripotent Stem Cells from Mammalian Endangered Species.

    Science.gov (United States)

    Ben-Nun, Inbar Friedrich; Montague, Susanne C; Houck, Marlys L; Ryder, Oliver; Loring, Jeanne F

    2015-01-01

    For some highly endangered species there are too few reproductively capable animals to maintain adequate genetic diversity, and extraordinary measures are necessary to prevent their extinction. Cellular reprogramming is a means to capture the genomes of individual animals as induced pluripotent stem cells (iPSCs), which may eventually facilitate reintroduction of genetic material into breeding populations. Here, we describe a method for generating iPSCs from fibroblasts of mammalian endangered species.

  18. DNA repair and radiation sensitivity in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.J.C.; Stackhouse, M. [Los Alamos National Lab., NM (United States); Chen, D.S. [Rochester Univ., NY (United States). Dept. of Radiation Oncology

    1993-02-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population.

  19. DNA repair and radiation sensitivity in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.J.C.; Stackhouse, M. (Los Alamos National Lab., NM (United States)); Chen, D.S. (Rochester Univ., NY (United States). Dept. of Radiation Oncology)

    1993-01-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population.

  20. Mechanical constraint from growing jaw facilitates mammalian dental diversity.

    Science.gov (United States)

    Renvoisé, Elodie; Kavanagh, Kathryn D; Lazzari, Vincent; Häkkinen, Teemu J; Rice, Ritva; Pantalacci, Sophie; Salazar-Ciudad, Isaac; Jernvall, Jukka

    2017-08-29

    Much of the basic information about individual organ development comes from studies using model species. Whereas conservation of gene regulatory networks across higher taxa supports generalizations made from a limited number of species, generality of mechanistic inferences remains to be tested in tissue culture systems. Here, using mammalian tooth explants cultured in isolation, we investigate self-regulation of patterning by comparing developing molars of the mouse, the model species of mammalian research, and the bank vole. A distinct patterning difference between the vole and the mouse molars is the alternate cusp offset present in the vole. Analyses of both species using 3D reconstructions of developing molars and jaws, computational modeling of cusp patterning, and tooth explants cultured with small braces show that correct cusp offset requires constraints on the lateral expansion of the developing tooth. Vole molars cultured without the braces lose their cusp offset, and mouse molars cultured with the braces develop a cusp offset. Our results suggest that cusp offset, which changes frequently in mammalian evolution, is more dependent on the 3D support of the developing jaw than other aspects of tooth shape. This jaw-tooth integration of a specific aspect of the tooth phenotype indicates that organs may outsource specific aspects of their morphology to be regulated by adjacent body parts or organs. Comparative studies of morphologically different species are needed to infer the principles of organogenesis.

  1. Crude subcellular fractionation of cultured mammalian cell lines

    Directory of Open Access Journals (Sweden)

    Holden Paul

    2009-12-01

    Full Text Available Abstract Background The expression and study of recombinant proteins in mammalian culture systems can be complicated during the cell lysis procedure by contaminating proteins from cellular compartments distinct from those within which the protein of interest resides and also by solubility issues that may arise from the use of a single lysis buffer. Partial subcellular fractionation using buffers of increasing stringency, rather than whole cell lysis is one way in which to avoid or reduce this contamination and ensure complete recovery of the target protein. Currently published protocols involve time consuming centrifugation steps which may require expensive equipment and commercially available kits can be prohibitively expensive when handling large or multiple samples. Findings We have established a protocol to sequentially extract proteins from cultured mammalian cells in fractions enriched for cytosolic, membrane bound organellar, nuclear and insoluble proteins. All of the buffers used can be made inexpensively and easily and the protocol requires no costly equipment. While the method was optimized for a specific cell type, we demonstrate that the protocol can be applied to a variety of commonly used cell lines and anticipate that it can be applied to any cell line via simple optimization of the primary extraction step. Conclusion We describe a protocol for the crude subcellular fractionation of cultured mammalian cells that is both straightforward and cost effective and may facilitate the more accurate study of recombinant proteins and the generation of purer preparations of said proteins from cell extracts.

  2. Non-linear leak currents affect mammalian neuron physiology

    Directory of Open Access Journals (Sweden)

    Shiwei eHuang

    2015-11-01

    Full Text Available In their seminal works on squid giant axons, Hodgkin and Huxley approximated the membrane leak current as Ohmic, i.e. linear, since in their preparation, sub-threshold current rectification due to the influence of ionic concentration is negligible. Most studies on mammalian neurons have made the same, largely untested, assumption. Here we show that the membrane time constant and input resistance of mammalian neurons (when other major voltage-sensitive and ligand-gated ionic currents are discounted varies non-linearly with membrane voltage, following the prediction of a Goldman-Hodgkin-Katz-based passive membrane model. The model predicts that under such conditions, the time constant/input resistance-voltage relationship will linearize if the concentration differences across the cell membrane are reduced. These properties were observed in patch-clamp recordings of cerebellar Purkinje neurons (in the presence of pharmacological blockers of other background ionic currents and were more prominent in the sub-threshold region of the membrane potential. Model simulations showed that the non-linear leak affects voltage-clamp recordings and reduces temporal summation of excitatory synaptic input. Together, our results demonstrate the importance of trans-membrane ionic concentration in defining the functional properties of the passive membrane in mammalian neurons as well as other excitable cells.

  3. Base Composition Characteristics of Mammalian miRNAs

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2013-01-01

    Full Text Available MicroRNAs (miRNAs are short RNA sequences that repress protein synthesis by either inhibiting the translation of messenger RNA (mRNA or increasing mRNA degradation. Endogenous miRNAs have been found in various organisms, including animals, plants, and viruses. Mammalian miRNAs are evolutionarily conserved, are scattered throughout chromosomes, and play an important role in the immune response and the onset of cancer. For this study, the author explored the base composition characteristics of miRNA genes from the six mammalian species that contain the largest number of known miRNAs. It was found that mammalian miRNAs are evolutionarily conserved and GU-rich. Interestingly, in the miRNA sequences investigated, A residues are clearly the most frequent occupants of positions 2 and 3 of the 5′ end of miRNAs. Unlike G and U residues that may pair with C/U and A/G, respectively, A residues can only pair with U residues of target mRNAs, which may augment the recognition specificity of the 5′ seed region.

  4. DNA repair and radiation sensitivity in mammalian cells

    International Nuclear Information System (INIS)

    Chen, D.J.C.; Stackhouse, M.; Chen, D.S.

    1993-01-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population

  5. Comparative anatomy of the mammalian hypothalamic suprachiasmatic nucleus.

    Science.gov (United States)

    Cassone, V M; Speh, J C; Card, J P; Moore, R Y

    1988-01-01

    A detailed analysis of the cytoarchitecture, retinohypothalamic tract (RHT) projections, and immunohistochemical localization of major cell and fiber types within the hypothalamic suprachiasmatic nuclei (SCN) was conducted in five mammalian species: two species of opossum, the domestic cat, the guinea pig, and the house mouse. Cytoarchitectural and immunohistochemical studies were conducted in three additional species of marsupial mammals and in the domestic pig. The SCN in this diverse transect of mammalian taxonomy bear striking similarities. First, the SCN are similar in location, lying close to the third ventricle (3V) dorsal to the optic chiasm (OC), with a cytoarchitecture characterized by small, tightly packed neurons. Second, in all groups studied, the SCN receive bilateral retinal input. Third, the SCN contain immunohistochemically similar elements. These similarities suggest that the SCN developed characteristic features early in mammalian phylogeny. Some details of SCN organization vary among the species studied. In marsupials, vasopressin-like immunoreactive (VP-LI) and vasoactive intestinal polypeptide-like immunoreactive (VIP-LI) cells codistribute primarily in the dorsomedial aspects of the SCN, while in eutherians, VP-LI and VIP-LI cells are separated into SCN subnuclei. Furthermore, the marsupial RHT projects to the periventricular dorsomedial region, whereas the eutherian RHT projects more ventrally in the SCN into the zone that typically contains VIP-LI perikarya.

  6. Secondary osteons scale allometrically in mammalian humerus and femur.

    Science.gov (United States)

    Felder, A A; Phillips, C; Cornish, H; Cooke, M; Hutchinson, J R; Doube, M

    2017-11-01

    Intra-cortical bone remodelling is a cell-driven process that replaces existing bone tissue with new bone tissue in the bone cortex, leaving behind histological features called secondary osteons. While the scaling of bone dimensions on a macroscopic scale is well known, less is known about how the spatial dimensions of secondary osteons vary in relation to the adult body size of the species. We measured the cross-sectional area of individual intact secondary osteons and their central Haversian canals in transverse sections from 40 stylopodal bones of 39 mammalian species (body mass 0.3-21 000 kg). Scaling analysis of our data shows that mean osteonal resorption area (negative allometry, exponent 0.23, R 2  0.54, p <0.005) and Haversian canal area (negative allometry, exponent 0.31, R 2  0.45, p <0.005) are significantly related to body mass, independent of phylogeny. This study is the most comprehensive of its kind to date, and allows us to describe overall trends in the scaling behaviour of secondary osteon dimensions, supporting the inference that the osteonal resorption area may be limited by the need to avoid fracture in smaller mammalian species, but the need to maintain osteocyte viability in larger mammalian species.

  7. A vaccine grade of yeast Saccharomyces cerevisiae expressing mammalian myostatin

    Directory of Open Access Journals (Sweden)

    Zhang Tingting

    2012-12-01

    Full Text Available Abstract Background Yeast Saccharomyces cerevisiae is a widely-used system for protein expression. We previously showed that heat-killed whole recombinant yeast vaccine expressing mammalian myostatin can modulate myostatin function in mice, resulting in increase of body weight and muscle composition in these animals. Foreign DNA introduced into yeast cells can be lost soon unless cells are continuously cultured in selection media, which usually contain antibiotics. For cost and safety concerns, it is essential to optimize conditions to produce quality food and pharmaceutical products. Results We developed a simple but effective method to engineer a yeast strain stably expressing mammalian myostatin. This method utilized high-copy-number integration of myostatin gene into the ribosomal DNA of Saccharomyces cerevisiae. In the final step, antibiotic selection marker was removed using the Cre-LoxP system to minimize any possible side-effects for animals. The resulting yeast strain can be maintained in rich culture media and stably express mammalian myostatin for two years. Oral administration of the recombinant yeast was able to induce immune response to myostatin and modulated the body weight of mice. Conclusions Establishment of such yeast strain is a step further toward transformation of yeast cells into edible vaccine to improve meat production in farm animals and treat human muscle-wasting diseases in the future.

  8. The presence of the ancestral insect telomeric motif in kissing bugs (Triatominae) rules out the hypothesis of its loss in evolutionarily advanced Heteroptera (Cimicomorpha)

    Science.gov (United States)

    Pita, Sebastián; Panzera, Francisco; Mora, Pablo; Vela, Jesús; Palomeque, Teresa; Lorite, Pedro

    2016-01-01

    Abstract Next-generation sequencing data analysis on Triatoma infestans Klug, 1834 (Heteroptera, Cimicomorpha, Reduviidae) revealed the presence of the ancestral insect (TTAGG)n telomeric motif in its genome. Fluorescence in situ hybridization confirms that chromosomes bear this telomeric sequence in their chromosomal ends. Furthermore, motif amount estimation was about 0.03% of the total genome, so that the average telomere length in each chromosomal end is almost 18 kb long. We also detected the presence of (TTAGG)n telomeric repeat in mitotic and meiotic chromosomes in other three species of Triatominae: Triatoma dimidiata Latreille, 1811, Dipetalogaster maxima Uhler, 1894, and Rhodnius prolixus Ståhl, 1859. This is the first report of the (TTAGG)n telomeric repeat in the infraorder Cimicomorpha, contradicting the currently accepted hypothesis that evolutionarily recent heteropterans lack this ancestral insect telomeric sequence. PMID:27830050

  9. The genome of the THE I human transposable repetitive elements is composed of a basic motif homologous to an ancestral immunoglobulin gene sequence.

    OpenAIRE

    Hakim, I; Amariglio, N; Grossman, Z; Simoni-Brok, F; Ohno, S; Rechavi, G

    1994-01-01

    Amplification of rearranged human immunoglobulin heavy-chain genes using the polymerase chain reaction resulted unexpectedly in the amplification of human transposable repetitive element genomes. These were identified as members of the THE I (transposon-like human element I) transposable element family. Analysis of the THE I sequences revealed the presence of several copies of the ancestral building block described > 10 years ago by Ohno and coworkers as the primordial immunoglobulin sequence...

  10. The canonical twin-arginine translocase components are not required for secretion of folded green fluorescent protein from the ancestral strain of Bacillus subtilis.

    Science.gov (United States)

    Snyder, Anthony J; Mukherjee, Sampriti; Glass, J Kyle; Kearns, Daniel B; Mukhopadhyay, Suchetana

    2014-05-01

    Cellular processes, such as the digestion of macromolecules, phosphate acquisition, and cell motility, require bacterial secretion systems. In Bacillus subtilis, the predominant protein export pathways are Sec (generalized secretory pathway) and Tat (twin-arginine translocase). Unlike Sec, which secretes unfolded proteins, the Tat machinery secretes fully folded proteins across the plasma membrane and into the medium. Proteins are directed for Tat-dependent export by N-terminal signal peptides that contain a conserved twin-arginine motif. Thus, utilizing the Tat secretion system by fusing a Tat signal peptide is an attractive strategy for the production and export of heterologous proteins. As a proof of concept, we expressed green fluorescent protein (GFP) fused to the PhoD Tat signal peptide in the laboratory and ancestral strains of B. subtilis. Secretion of the Tat-GFP construct, as well as secretion of proteins in general, was substantially increased in the ancestral strain. Furthermore, our results show that secreted, fluorescent GFP could be purified directly from the extracellular medium. Nonetheless, export was not dependent on the known Tat secretion components or the signal peptide twin-arginine motif. We propose that the ancestral strain contains additional Tat components and/or secretion regulators that were abrogated following domestication.

  11. An ancestral haplotype of the human PERIOD2 gene associates with reduced sensitivity to light-induced melatonin suppression.

    Directory of Open Access Journals (Sweden)

    Tokiho Akiyama

    Full Text Available Humans show various responses to the environmental stimulus in individual levels as "physiological variations." However, it has been unclear if these are caused by genetic variations. In this study, we examined the association between the physiological variation of response to light-stimulus and genetic polymorphisms. We collected physiological data from 43 subjects, including light-induced melatonin suppression, and performed haplotype analyses on the clock genes, PER2 and PER3, exhibiting geographical differentiation of allele frequencies. Among the haplotypes of PER3, no significant difference in light sensitivity was found. However, three common haplotypes of PER2 accounted for more than 96% of the chromosomes in subjects, and 1 of those 3 had a significantly low-sensitive response to light-stimulus (P < 0.05. The homozygote of the low-sensitive PER2 haplotype showed significantly lower percentages of melatonin suppression (P < 0.05, and the heterozygotes of the haplotypes varied their ratios, indicating that the physiological variation for light-sensitivity is evidently related to the PER2 polymorphism. Compared with global haplotype frequencies, the haplotype with a low-sensitive response was more frequent in Africans than in non-Africans, and came to the root in the phylogenetic tree, suggesting that the low light-sensitive haplotype is the ancestral type, whereas the other haplotypes with high sensitivity to light are the derived types. Hence, we speculate that the high light-sensitive haplotypes have spread throughout the world after the Out-of-Africa migration of modern humans.

  12. Light from dark: A relictual troglobite reveals a broader ancestral distribution for kimulid harvestmen (Opiliones: Laniatores: Kimulidae) in South America

    Science.gov (United States)

    Ceccarelli, F. Sara; Monte, Bruno G. O.; Proud, Daniel N.; DaSilva, Márcio Bernardino; Bichuette, Maria E.

    2017-01-01

    A new troglobitic harvestman, Relictopiolus galadriel gen. nov et sp. nov., is described from Olhos d’Água cave, Itacarambi, Minas Gerais State, Brazil. Morphological characters, including male genitalia and exomorphology, suggest that this species belongs to the family Kimulidae, and it appears to share the greatest similarities with Tegipiolus pachypus. Bayesian inference analyses of a molecular dataset strongly support the inclusion of this species in Kimulidae and confirm the hypothesized sister-group relationship between R. galadriel and T. pachypus. A time calibrated phylogeny indicates that these sister-taxa diverged from a common ancestor approximately 40 Mya, during the Paleogene. The current range of Kimulidae illustrates a remarkable disjunct distribution, and leads us to hypothesize that the ancestral distribution of Kimulidae was once much more widespread across eastern Brazil. This may be attributed to the Eocene radiation associated with the warming (and humidifying) events in the Cenozoic when the best conditions for evergreen tropical vegetation in South America were established and followed by the extinction of kimulid epigean populations together with the retraction of rain forests during the Oligocene to Miocene cooling. The discovery of this relictual troglobite indicates that the Olhos d’Água cave was a stable refugium for this ancient lineage of kimulids and acted as a "museum" of biodiversity. Our findings, considered collectively with the diverse troglofauna of the Olhos d’Água cave, highlight it as one of the most important hotspots of troglobite diversity and endemism in the Neotropics. Given the ecological stresses on this habitat, the cavernicolous fauna are at risk of extinction and we emphasize the urgent need for appropriate conservation actions. Finally, we propose the transfer of Acanthominua, Euminua, Euminuoides and Pseudominua from Kimulidae to Zalmoxidae, resulting in two new synonymies and 13 new combinations. PMID

  13. Cross-species chromosome painting in bats from Madagascar: the contribution of Myzopodidae to revealing ancestral syntenies in Chiroptera.

    Science.gov (United States)

    Richards, Leigh R; Rambau, Ramugondo V; Lamb, Jennifer M; Taylor, Peter J; Yang, Fengtang; Schoeman, M Corrie; Goodman, Steven M

    2010-09-01

    The chiropteran fauna of Madagascar comprises eight of the 19 recognized families of bats, including the endemic Myzopodidae. While recent systematic studies of Malagasy bats have contributed to our understanding of the morphological and genetic diversity of the island's fauna, little is known about their cytosystematics. Here we investigate karyotypic relationships among four species, representing four families of Chiroptera endemic to the Malagasy region using cross-species chromosome painting with painting probes of Myotis myotis: Myzopodidae (Myzopoda aurita, 2n = 26), Molossidae (Mormopterus jugularis, 2n = 48), Miniopteridae (Miniopterus griveaudi, 2n = 46), and Vespertilionidae (Myotis goudoti, 2n = 44). This study represents the first time a member of the family Myzopodidae has been investigated using chromosome painting. Painting probes of M. myotis were used to delimit 29, 24, 23, and 22 homologous chromosomal segments in the genomes of M. aurita, M. jugularis, M. griveaudi, and M. goudoti, respectively. Comparison of GTG-banded homologous chromosomes/chromosomal segments among the four species revealed the genome of M. aurita has been structured through 14 fusions of chromosomes and chromosomal segments of M. myotis chromosomes leading to a karyotype consisting solely of bi-armed chromosomes. In addition, chromosome painting revealed a novel X-autosome translocation in M. aurita. Comparison of our results with published chromosome maps provided further evidence for karyotypic conservatism within the genera Mormopterus, Miniopterus, and Myotis. Mapping of chromosomal rearrangements onto a molecular consensus phylogeny revealed ancestral syntenies shared between Myzopoda and other bat species of the infraorders Pteropodiformes and Vespertilioniformes. Our study provides further evidence for the involvement of Robertsonian (Rb) translocations and fusions/fissions in chromosomal evolution within Chiroptera.

  14. Light from dark: A relictual troglobite reveals a broader ancestral distribution for kimulid harvestmen (Opiliones: Laniatores: Kimulidae in South America.

    Directory of Open Access Journals (Sweden)

    Abel Pérez-González

    Full Text Available A new troglobitic harvestman, Relictopiolus galadriel gen. nov et sp. nov., is described from Olhos d'Água cave, Itacarambi, Minas Gerais State, Brazil. Morphological characters, including male genitalia and exomorphology, suggest that this species belongs to the family Kimulidae, and it appears to share the greatest similarities with Tegipiolus pachypus. Bayesian inference analyses of a molecular dataset strongly support the inclusion of this species in Kimulidae and confirm the hypothesized sister-group relationship between R. galadriel and T. pachypus. A time calibrated phylogeny indicates that these sister-taxa diverged from a common ancestor approximately 40 Mya, during the Paleogene. The current range of Kimulidae illustrates a remarkable disjunct distribution, and leads us to hypothesize that the ancestral distribution of Kimulidae was once much more widespread across eastern Brazil. This may be attributed to the Eocene radiation associated with the warming (and humidifying events in the Cenozoic when the best conditions for evergreen tropical vegetation in South America were established and followed by the extinction of kimulid epigean populations together with the retraction of rain forests during the Oligocene to Miocene cooling. The discovery of this relictual troglobite indicates that the Olhos d'Água cave was a stable refugium for this ancient lineage of kimulids and acted as a "museum" of biodiversity. Our findings, considered collectively with the diverse troglofauna of the Olhos d'Água cave, highlight it as one of the most important hotspots of troglobite diversity and endemism in the Neotropics. Given the ecological stresses on this habitat, the cavernicolous fauna are at risk of extinction and we emphasize the urgent need for appropriate conservation actions. Finally, we propose the transfer of Acanthominua, Euminua, Euminuoides and Pseudominua from Kimulidae to Zalmoxidae, resulting in two new synonymies and 13 new

  15. Somatostatin signaling system as an ancestral mechanism: Myoregulatory activity of an Allatostatin-C peptide in Hydra.

    Science.gov (United States)

    Alzugaray, María Eugenia; Hernández-Martínez, Salvador; Ronderos, Jorge Rafael

    2016-08-01

    The coordination of physiological processes requires precise communication between cells. Cellular interactions allow cells to be functionally related, facilitating the maintaining of homeostasis. Neuropeptides functioning as intercellular signals are widely distributed in Metazoa. It is assumed that neuropeptides were the first intercellular transmitters, appearing early during the evolution. In Cnidarians, neuropeptides are mainly involved in neurotransmission, acting directly or indirectly on epithelial muscle cells, and thereby controlling coordinated movements. Allatostatins are a group of chemically unrelated neuropeptides that were originally characterized based on their ability to inhibit juvenil hormone synthesis in insects. Allatostatin-C has pleiotropic functions, acting as myoregulator in several insects. In these studies, we analyzed the myoregulatory effect of Aedes aegypti Allatostatin-C in Hydra sp., a member of the phylum Cnidaria. Allatostatin-C peptide conjugated with Qdots revealed specifically distributed cell populations that respond to the peptide in different regions of hydroids. In vivo physiological assays using Allatostatin-C showed that the peptide induced changes in shape and length in tentacles, peduncle and gastrovascular cavity. The observed changes were dose and time dependent suggesting the physiological nature of the response. Furthermore, at highest doses, Allatostatin-C induced peristaltic movements of the gastrovascular cavity resembling those that occur during feeding. In silico search of putative Allatostatin-C receptors in Cnidaria showed that genomes predict the existence of proteins of the somatostatin/Allatostatin-C receptors family. Altogether, these results suggest that Allatostatin-C has myoregulatory activity in Hydra sp, playing a role in the control of coordinated movements during feeding, indicating that Allatostatin-C/Somatostatin based signaling might be an ancestral mechanism. Copyright © 2016 Elsevier Inc. All

  16. Phylogenomic analysis of vertebrate thrombospondins reveals fish-specific paralogues, ancestral gene relationships and a tetrapod innovation

    Directory of Open Access Journals (Sweden)

    Adams Josephine C

    2006-04-01

    Full Text Available Abstract Background Thrombospondins (TSPs are evolutionarily-conserved, extracellular, calcium-binding glycoproteins with important roles in cell-extracellular matrix interactions, angiogenesis, synaptogenesis and connective tissue organisation. Five TSPs, designated TSP-1 through TSP-5, are encoded in the human genome. All but one have known roles in acquired or inherited human diseases. To further understand the roles of TSPs in human physiology and pathology, it would be advantageous to extend the repertoire of relevant vertebrate models. In general the zebrafish is proving an excellent model organism for vertebrate biology, therefore we set out to evaluate the status of TSPs in zebrafish and two species of pufferfish. Results We identified by bioinformatics that three fish species encode larger numbers of TSPs than vertebrates, yet all these sequences group as homologues of TSP-1 to -4. By phylogenomic analysis of neighboring genes, we uncovered that, in fish, a TSP-4-like sequence is encoded from the gene corresponding to the tetrapod TSP-5 gene. Thus, all TSP genes show conservation of synteny between fish and tetrapods. In the human genome, the TSP-1, TSP-3, TSP-4 and TSP-5 genes lie within paralogous regions that provide insight into the ancestral genomic context of vertebrate TSPs. Conclusion A new model for TSP evolution in vertebrates is presented. The TSP-5 protein sequence has evolved rapidly from a TSP-4-like sequence as an innovation in the tetrapod lineage. TSP biology in fish is complicated by the presence of additional lineage- and species-specific TSP paralogues. These novel results give deeper insight into the evolution of TSPs in vertebrates and open new directions for understanding the physiological and pathological roles of TSP-4 and TSP-5 in humans.

  17. Intraplate mountain building in response to continent continent collision—the Ancestral Rocky Mountains (North America) and inferences drawn from the Tien Shan (Central Asia)

    Science.gov (United States)

    Dickerson, Patricia Wood

    2003-04-01

    The intraplate Ancestral Rocky Mountains of western North America extend from British Columbia, Canada, to Chihuahua, Mexico, and formed during Early Carboniferous through Early Permian time in response to continent-continent collision of Laurentia with Gondwana—the conjoined masses of Africa and South America, including Yucatán and Florida. Uplifts and flanking basins also formed within the Laurentian Midcontinent. On the Gondwanan continent, well inboard from the marginal fold belts, a counterpart structural array developed during the same period. Intraplate deformation began when full collisional plate coupling had been achieved along the continental margin; the intervening ocean had been closed and subduction had ceased—that is, the distinction between upper versus lower plates became moot. Ancestral Rockies deformation was not accompanied by volcanism. Basement shear zones that formed during Mesoproterozoic rifting of Laurentia were reactivated and exerted significant control on the locations, orientations, and modes of displacement on late Paleozoic faults. Ancestral Rocky Mountain uplifts extend as far south as Chihuahua and west Texas (28° to 33°N, 102° to 109°W) and include the Florida-Moyotes, Placer de Guadalupe-Carrizalillo, Ojinaga-Tascotal and Hueco Mountain blocks, as well as the Diablo and Central Basin Platforms. All are cored with Laurentian Proterozoic crystalline basement rocks and host correlative Paleozoic stratigraphic successions. Pre-late Paleozoic deformational, thermal, and metamorphic histories are similar as well. Southern Ancestral Rocky Mountain structures terminate along a line that trends approximately N 40°E (present coordinates), a common orientation for Mesoproterozoic extensional structures throughout southern to central North America. Continuing Tien Shan intraplate deformation (Central Asia) has created an analogous array of uplifts and basins in response to the collision of India with Eurasia, beginning in late

  18. Movement adds bite to the evolutionary morphology of mammalian teeth

    Directory of Open Access Journals (Sweden)

    David Polly P

    2012-08-01

    Full Text Available Abstract Selection and constraints put limits on morphological evolution. Mammalian teeth are no exception, and the need for them to meet precisely exerts exacting constraints on a staggering array of developmental and functional factors that must be integrated to maintain their performance as they evolve. A study in BMC Evolutionary Biology demonstrates that mandibular movement is an important component of this integration, and one that should not be neglected in the quantitiative study of the evolution of tooth morphology. See research article http://www.biomedcentral.com/1471-2148/12/146/

  19. Robust expression of a bioactive mammalian protein in chlamydomonas chloroplast

    Science.gov (United States)

    Mayfield, Stephen P.

    2010-03-16

    Methods and compositions are disclosed to engineer chloroplast comprising heterologous mammalian genes via a direct replacement of chloroplast Photosystem II (PSII) reaction center protein coding regions to achieve expression of recombinant protein above 5% of total protein. When algae is used, algal expressed protein is produced predominantly as a soluble protein where the functional activity of the peptide is intact. As the host algae is edible, production of biologics in this organism for oral delivery or proteins/peptides, especially gut active proteins, without purification is disclosed.

  20. Factors affecting the spontaneous mutational spectra in somatic mammalian cells

    Directory of Open Access Journals (Sweden)

    О.А. Ковальова

    2006-04-01

    Full Text Available  In our survey of references we are discussed the influence of factors biological origin on the spontaneous mutation specters in mammalian. Seasonal and age components influence on the frequence of cytogenetic anomalies. The immune and endocrinous systems are take part in control of the alteration of the spontaneous mutation specters. Genetical difference of sensibility in animal and human at the alteration of factors enviroment as and  genetical differences of repair systems activity are may influence on individual variation of spontaneous destabilization characters of chromosomal apparatus.

  1. Cohesin in Oocytes—Tough Enough for Mammalian Meiosis?

    Directory of Open Access Journals (Sweden)

    Ekaterina Revenkova

    2010-12-01

    Full Text Available Sister chromatid cohesion is essential for cell division. During meiosis, it is also required for proper synapsis of pairs of sister chromatids and for chiasma formation and maintenance. Since mammalian oocytes remain arrested in late prophase for a very long period—up to five decades in humans—the preservation of cohesion throughout this period is a formidable challenge. Mouse models with cohesin deficiencies and aging wild-type mice showed that this challenge is not fully met: cohesion weakens and deteriorates with increasing age. These recent findings have highly significant implications for our comprehension of the genesis of aneuploidies.

  2. Movement of Naegleria fowleri stimulated by mammalian cells in vitro.

    Science.gov (United States)

    Cline, M; Carchman, R; Marciano-Cabral, F

    1986-02-01

    Naegleria fowleri amebae, but not those of N. australiensis, N. gruberi, or N. lovaniensis, demonstrated enhanced motility when placed in proximity to mammalian cells. Amebae of nonpathogenic species of Naegleria, however, were more motile in cell culture medium than the amebae of N. fowleri. The locomotory response of highly pathogenic mouse-passaged N. fowleri amebae to nerve cells was greater than axenically cultured amebae. The enhanced mobility elicited by whole nerve cells or disrupted nerve cells was not directed migration but chemokinetic. Naegleria fowleri responded to disrupted neuroblastoma cells more vigorously than to disrupted African green monkey kidney (Vero) cells.

  3. Neuronal Expression of Soluble Adenylyl Cyclase in the Mammalian Brain

    OpenAIRE

    Chen, Jonathan; Martinez, Jennifer; Milner, Teresa A.; Buck, Jochen; Levin, Lonny R.

    2013-01-01

    Cyclic 3’, 5’-adenosine monophosphate (cAMP) is a critical and ubiquitous second messenger involved in a multitude of signaling pathways. Soluble adenylyl cyclase (sAC) is a novel source of cAMP subject to unique localization and regulation. It was originally discovered in mammalian testis and found to be activated by bicarbonate and calcium. sAC has been implicated in diverse processes, including astrocyte-neuron metabolic coupling and axonal outgrowth of neurons. However, despite these func...

  4. The role of mitochondrial DNA mutations in mammalian aging.

    Directory of Open Access Journals (Sweden)

    Gregory C Kujoth

    2007-02-01

    Full Text Available Mitochondrial DNA (mtDNA accumulates both base-substitution mutations and deletions with aging in several tissues in mammals. Here, we examine the evidence supporting a causative role for mtDNA mutations in mammalian aging. We describe and compare human diseases and mouse models associated with mitochondrial genome instability. We also discuss potential mechanisms for the generation of these mutations and the means by which they may mediate their pathological consequences. Strategies for slowing the accumulation and attenuating the effects of mtDNA mutations are discussed.

  5. Equipment for large-scale mammalian cell culture.

    Science.gov (United States)

    Ozturk, Sadettin S

    2014-01-01

    This chapter provides information on commonly used equipment in industrial mammalian cell culture, with an emphasis on bioreactors. The actual equipment used in the cell culture process can vary from one company to another, but the main steps remain the same. The process involves expansion of cells in seed train and inoculation train processes followed by cultivation of cells in a production bioreactor. Process and equipment options for each stage of the cell culture process are introduced and examples are provided. Finally, the use of disposables during seed train and cell culture production is discussed.

  6. New challenges in the study of the mammalian tachykinins.

    Science.gov (United States)

    Page, Nigel M

    2005-08-01

    There is an expanding repertoire of mammalian tachykinins produced by a variety of tachykinin genes, gene splicing events and peptide processing. Novel tachykinin-binding molecules/receptors are proposed, but only, three tachykinin receptors are identified with certainty. The question remains - do more tachykinin receptors exist or is there just the need to reappraise our understanding of the known receptors? The tachykinin NK1 receptor, the preferred receptor for both substance P and the peripheral SP-like endokinins, exists in several tissue-specific conformations and isoforms and may provide some clues. This review addresses recent advances in this exciting field and raises challenging new concepts.

  7. Mammalian Cochlear Hair Cell Regeneration and Ribbon Synapse Reformation

    Directory of Open Access Journals (Sweden)

    Xiaoling Lu

    2016-01-01

    Full Text Available Hair cells (HCs are the sensory preceptor cells in the inner ear, which play an important role in hearing and balance. The HCs of organ of Corti are susceptible to noise, ototoxic drugs, and infections, thus resulting in permanent hearing loss. Recent approaches of HCs regeneration provide new directions for finding the treatment of sensor neural deafness. To have normal hearing function, the regenerated HCs must be reinnervated by nerve fibers and reform ribbon synapse with the dendrite of spiral ganglion neuron through nerve regeneration. In this review, we discuss the research progress in HC regeneration, the synaptic plasticity, and the reinnervation of new regenerated HCs in mammalian inner ear.

  8. A comprehensive elementary model of the mammalian circulatory system.

    Science.gov (United States)

    Sandquist, G M; Olsen, D B; Kolff, W J

    1982-01-01

    Beginning with a set of simplifying assumptions and the statements for the hydrodynamic and thermodynamic processes involved, a comprehensive mathematical model for the mammalian circulatory system is developed and evaluated. Analytical relationships are derived and examined for the circulatory component pressures, flow rates, blood volumes, flow resistances, pumping power and pumping rate. The essential circulatory model parameters are identified and inspected for their influence upon circulatory behavior. A complete and consistent set of circulatory model parameters is given for the adult human male and the model response is examined. In general, agreement of the model predictions for man with experimental data is good.

  9. Adult Mammalian Neural Stem Cells and Neurogenesis: Five Decades Later

    Science.gov (United States)

    Bond, Allison M.; Ming, Guo-li; Song, Hongjun

    2015-01-01

    Summary Adult somatic stem cells in various organs maintain homeostatic tissue regeneration and enhance plasticity. Since its initial discovery five decades ago, investigations of adult neurogenesis and neural stem cells have led to an established and expanding field that has significantly influenced many facets of neuroscience, developmental biology and regenerative medicine. Here we review recent progress and focus on questions related to adult mammalian neural stem cells that also apply to other somatic stem cells. We further discuss emerging topics that are guiding the field toward better understanding adult neural stem cells and ultimately applying these principles to improve human health. PMID:26431181

  10. The completion of the Mammalian Gene Collection (MGC)

    OpenAIRE

    Temple, Gary; Gerhard, Daniela S.; Rasooly, Rebekah; Feingold, Elise A.; Good, Peter J.; Robinson, Cristen; Mandich, Allison; Derge, Jeffrey G.; Lewis, Jeanne; Shoaf, Debonny; Collins, Francis S.; Jang, Wonhee; Wagner, Lukas; Shenmen, Carolyn M.; Misquitta, Leonie

    2009-01-01

    Since its start, the Mammalian Gene Collection (MGC) has sought to provide at least one full-protein-coding sequence cDNA clone for every human and mouse gene with a RefSeq transcript, and at least 6200 rat genes. The MGC cloning effort initially relied on random expressed sequence tag screening of cDNA libraries. Here, we summarize our recent progress using directed RT-PCR cloning and DNA synthesis. The MGC now contains clones with the entire protein-coding sequence for 92% of human and 89% ...

  11. Cyclic Dinucleotides in the Scope of the Mammalian Immune System.

    Science.gov (United States)

    Mankan, Arun K; Müller, Martina; Witte, Gregor; Hornung, Veit

    2017-01-01

    First discovered in prokaryotes and more recently in eukaryotes, cyclic dinucleotides (CDNs) constitute a unique branch of second messenger signaling systems. Within prokaryotes CDNs regulate a wide array of different biological processes, whereas in the vertebrate system CDN signaling is largely dedicated to activation of the innate immune system. In this book chapter we summarize the occurrence and signaling pathways of these small-molecule second messengers, most importantly in the scope of the mammalian immune system. In this regard, our main focus is the role of the cGAS-STING axis in the context of microbial infection and sterile inflammation and its implications for therapeutic applications.

  12. Whirling in the late Permian: ancestral Gyrinidae show early radiation of beetles before Permian-Triassic mass extinction.

    Science.gov (United States)

    Yan, Evgeny V; Beutel, Rolf G; Lawrence, John F

    2018-03-16

    Gyrinidae are a charismatic group of highly specialized beetles, adapted for a unique lifestyle of swimming on the water surface. They prey on drowning insects and other small arthropods caught in the surface film. Studies based on morphological and molecular data suggest that gyrinids were the first branch splitting off in Adephaga, the second largest suborder of beetles. Despite its basal position within this lineage and a very peculiar morphology, earliest Gyrinidae were recorded not earlier than from the Upper Triassic. Tunguskagyrus. with the single species Tunguskagyrus planus is described from Late Permian deposits of the Anakit area in Middle Siberia. The genus is assigned to the stemgroup of Gyrinidae, thus shifting back the minimum age of this taxon considerably: Tunguskagyrus demonstrates 250 million years of evolutionary stability for a very specialized lifestyle, with a number of key apomorphies characteristic for these epineuston predators and scavengers, but also with some preserved ancestral features not found in extant members of the family. It also implies that major splitting events in this suborder and in crown group Coleoptera had already occurred in the Permian. Gyrinidae and especially aquatic groups of Dytiscoidea flourished in the Mesozoic (for example Coptoclavidae and Dytiscidae) and most survive until the present day, despite the dramatic "Great Dying" - Permian-Triassic mass extinction, which took place shortly (in geological terms) after the time when Tunguskagyrus lived. Tunguskagyrus confirms a Permian origin of Adephaga, which was recently suggested by phylogenetic "tip-dating" analysis including both fossil and Recent gyrinids. This also confirms that main splitting events leading to the "modern" lineages of beetles took place before the Permian-Triassic mass extinction. Tunguskagyrus shows that Gyrinidae became adapted to swimming on the water surface long before Mesozoic invasions of the aquatic environment took place

  13. ¿Con o sin ancestros?: vigencia de lo ancestral en la Amazonía peruana

    Directory of Open Access Journals (Sweden)

    Thomas Mouriès

    2014-06-01

    Full Text Available La existencia o no de ancestros en la Amazonía indígena ha sido objeto de importantes debates. Sin embargo, los líderes de la región no dudan en llamar ‘ancestrales’ sus saberes, normas o territorios, en un sentido que, desde un punto de vista académico, puede parecer enigmático. «Ancestrales, pero… ¿con o sin ancestros?», preguntaría entonces, confuso, el antropólogo. En este artículo propongo aportar elementos de respuesta a esta pregunta a través del caso peruano. Primero analizo cómo los líderes indígenas amazónicos, conectándose al circuito del derecho internacional, adoptan la noción jurídica de ‘posesión ancestral’ del territorio para adaptarla al ámbito político. Este planteamiento rinde cuenta de la generalización y uniformización reciente del vocablo ‘ancestral’ pero deja pendiente el problema de su eventual articulación con las cosmologías indígenas que pretende reflejar. Por eso, en la segunda parte, intento sondear sobre la pertinencia de la categoría de ‘ancestro’ en la Amazonía indígena, recordando brevemente el debate académico para ir definiendo en qué medida esta categoría puede cobrar sentido. A partir del testimonio de un experimentado líder awajún, la tercera parte permite, entonces, volver más explícitos los diferentes sentidos y planos referenciales que despliega la referencia a lo ancestral, mostrando cómo los indígenas amazónicos no solo adoptan elementos conceptuales y discursivos externos, sino que al mismo tiempo los transforman a partir de sus propias singularidades cosmológicas y perspectivas políticas.

  14. Evolution and development of mammalian limb integumentary structures.

    Science.gov (United States)

    Hamrick, Mark W

    2003-08-15

    The adaptive radiation of mammalian clades has involved marked changes in limb morphology that have affected not only the skeleton but also the integumentary structures. For example, didelphid marsupials show distinct differences in nail and claw morphology that are functionally related to the evolution of arboreal, terrestrial, and aquatic foraging behaviors. Vespertilionoid bats have evolved different volar pad structures such as adhesive discs, scales, and skin folds, whereas didelphid marsupials have apical pads covered either with scales, ridges, or small cones. Comparative analysis of pad and claw development reveals subtle differences in mesenchymal and ectodermal patterning underlying interspecific variation in morphology. Analysis of gene expression during pad and claw development reveals that signaling molecules such as Msx1 and Hoxc13 play important roles in the morphogenesis of these integumentary structures. These findings suggest that evolutionary change in the expression of these molecules, and in the response of mesenchymal and ectodermal cells to these signaling factors, may underlie interspecific differences in nail, claw, and volar pad morphology. Evidence from comparative morphology, development, and functional genomics therefore sheds new light on both the patterns and mechanisms of evolutionary change in mammalian limb integumentary structures. Copyright 2003 Wiley-Liss, Inc.

  15. Hydrolytic function of Exo1 in mammalian mismatch repair

    Science.gov (United States)

    Shao, Hongbing; Baitinger, Celia; Soderblom, Erik J.; Burdett, Vickers; Modrich, Paul

    2014-01-01

    Genetic and biochemical studies have previously implicated exonuclease 1 (Exo1) in yeast and mammalian mismatch repair, with results suggesting that function of the protein in the reaction depends on both its hydrolytic activity and its ability to interact with other components of the repair system. However, recent analysis of an Exo1-E109K knockin mouse has concluded that Exo1 function in mammalian mismatch repair is restricted to a structural role, a conclusion based on a prior report that N-terminal His-tagged Exo1-E109K is hydrolytically defective. Because Glu-109 is distant from the nuclease hydrolytic center, we have compared the activity of untagged full-length Exo1-E109K with that of wild type Exo1 and the hydrolytically defective active site mutant Exo1-D173A. We show that the activity of Exo1-E109K is comparable to that of wild type enzyme in a conventional exonuclease assay and that in contrast to a D173A active site mutant, Exo1-E109K is fully functional in mismatch-provoked excision and repair. We conclude that the catalytic function of Exo1 is required for its participation in mismatch repair. We also consider the other phenotypes of the Exo1-E109K mouse in the context of Exo1 hydrolytic function. PMID:24829455

  16. NEK1 Facilitates Cohesin Removal during Mammalian Spermatogenesis

    Directory of Open Access Journals (Sweden)

    Paula E. Cohen

    2011-03-01

    Full Text Available Meiosis is a highly conserved process, which is stringently regulated in all organisms, from fungi through to humans. Two major events define meiosis in eukaryotes. The first is the pairing, or synapsis, of homologous chromosomes and the second is the exchange of genetic information in a process called meiotic recombination. Synapsis is mediated by the meiosis-specific synaptonemal complex structure in combination with the cohesins that tether sister chromatids together along chromosome arms through prophase I. Previously, we identified FKBP6 as a novel component of the mammalian synaptonemal complex. Further studies demonstrated an interaction between FKBP6 and the NIMA-related kinase-1, NEK1. To further investigate the role of NEK1 in mammalian meiosis, we have examined gametogenesis in the spontaneous mutant, Nek1kat2J. Homozygous mutant animals show decreased testis size, defects in testis morphology, and in cohesin removal at late prophase I of meiosis, causing complete male infertility. Cohesin protein SMC3 remains localized to the meiotic chromosome cores at diplonema in the Nek1 mutant, and also in the related Fkbp6 mutant, while in wild type cells SMC3 is removed from the cores at the end of prophase I and becomes more diffuse throughout the DAPI stained region of the nucleus. These data implicate NEK1 as a possible kinase involved in cohesin redistribution in murine spermatocytes.

  17. An insight into maternal recognition of pregnancy in mammalian species

    Directory of Open Access Journals (Sweden)

    Kabir Ayobami Raheem

    2017-01-01

    Full Text Available Pregnancy loss especially at the early state of gestation is a major cause of infertility in both human and animal species. This has been attributed to the impaired interaction between the maternal endometrium and the developing embryo and/or inadequate hormonal support for the pregnancy continuation. Progesterone is the hormone of pregnancy and is essential for establishment and sustainance of pregnancy in most mammals. It is principally produced by the corpus luteum which undergoes regression mostly due to luteolytic action of prostaglandins F2alpha at certain period of the oestrous cycle. Maternal recognition of pregnancy (MRP is the phenomenon through which luteolysis of corpus luteum is abrogated for continuous production of progesterone in a conceptive cycle and is achieved by different agents in different mammalian species. It is interferon tau in ruminant, oestrogen in pig, while it is human chorionic gonadotropin in human. In mare, the MRP agent remains ambiguous and was speculated to be some protein and prostaglandins E2. It is the purpose of this review to highlight the MRP signals in domestic mammals with emphasis on ruminant while discussing their mechanisms of action. Given the importance of progesterone in supporting pregnancy in all mammalian species, understanding the physiology of these mechanisms through which luteolysis is nullified will aid approaches necessary to correct pregnancy loss associated with defective MRP in one hand and may also lead to developing a novel contraceptive on the other hand.

  18. Host Responses to Malassezia spp. in the Mammalian Skin

    Directory of Open Access Journals (Sweden)

    Florian Sparber

    2017-11-01

    Full Text Available The skin of mammalian organisms is home for a myriad of microbes. Many of these commensals are thought to have beneficial effects on the host by critically contributing to immune homeostasis. Consequently, dysbiosis can have detrimental effects for the host that may manifest with inflammatory diseases at the barrier tissue. Besides bacteria, fungi make an important contribution to the microbiota and among these, the yeast Malassezia widely dominates in most areas of the skin in healthy individuals. There is accumulating evidence that Malassezia spp. are involved in a variety of skin disorders in humans ranging from non- or mildly inflammatory conditions such as dandruff and pityriasis versicolor to more severe inflammatory skin diseases like seborrheic eczema and atopic dermatitis. In addition, Malassezia is strongly linked to the development of dermatitis and otitis externa in dogs. However, the association of Malassezia spp. with such diseases remains poorly characterized. Until now, studies on the fungus–host interaction remain sparse and they are mostly limited to experiments with isolated host cells in vitro. They suggest a multifaceted crosstalk of Malassezia spp. with the skin by direct activation of the host via conserved pattern recognition receptors and indirectly via the release of fungus-derived metabolites that can modulate the function of hematopoietic and/or non-hematopoietic cells in the barrier tissue. In this review, we discuss our current understanding of the host response to Malassezia spp. in the mammalian skin.

  19. Toward an integrated evolutionary understanding of the mammalian placenta

    Science.gov (United States)

    Wildman, Derek E.

    2012-01-01

    The placenta is fundamentally important for the success of pregnancy. Disruptions outside the normal range for placenta function can result in pregnancy failure and other complications. The anatomy of the placenta varies greatly across mammals, as do key parameters in pregnancy such as neonatal body mass, length of gestation and number of offspring per pregnancy. An accurate understanding of the evolution of the mammalian placenta will require at minimum the integration of anatomical, developmental, physiological, genetic, and epigenetic data. Currently available data suggest that the placenta is a dynamic organ that has evolved rapidly in a lineage specific manner. Examination of the placenta from the perspective of human evolution shows that many anatomical features of the human placenta are relatively conserved. Despite the anatomical conservation of the human placenta there are many recently evolved placenta specific genes (e.g. CGB, LGALS13, GH2) that are important in the development and function of the human placenta. Other mammalian genomes have also evolved specific suites of placenta-expressed genes. For example, rodents have undergone expansions of the cathepsin and prolactin families, and artiodactyls have expanded their suite of pregnancy-associated glycoproteins. In addition to lineage-specific birth-and-death of gene family members, the pattern of imprinted loci varies greatly among species. Taken together, these studies suggest that a strategy reliant upon the sampling of placenta expressed and imprinted genes from a phylogenetically diverse range of species is appropriate for unraveling the conserved and derived aspects of placenta biology. PMID:21306776

  20. Host Responses to Malassezia spp. in the Mammalian Skin

    Science.gov (United States)

    Sparber, Florian; LeibundGut-Landmann, Salomé

    2017-01-01

    The skin of mammalian organisms is home for a myriad of microbes. Many of these commensals are thought to have beneficial effects on the host by critically contributing to immune homeostasis. Consequently, dysbiosis can have detrimental effects for the host that may manifest with inflammatory diseases at the barrier tissue. Besides bacteria, fungi make an important contribution to the microbiota and among these, the yeast Malassezia widely dominates in most areas of the skin in healthy individuals. There is accumulating evidence that Malassezia spp. are involved in a variety of skin disorders in humans ranging from non- or mildly inflammatory conditions such as dandruff and pityriasis versicolor to more severe inflammatory skin diseases like seborrheic eczema and atopic dermatitis. In addition, Malassezia is strongly linked to the development of dermatitis and otitis externa in dogs. However, the association of Malassezia spp. with such diseases remains poorly characterized. Until now, studies on the fungus–host interaction remain sparse and they are mostly limited to experiments with isolated host cells in vitro. They suggest a multifaceted crosstalk of Malassezia spp. with the skin by direct activation of the host via conserved pattern recognition receptors and indirectly via the release of fungus-derived metabolites that can modulate the function of hematopoietic and/or non-hematopoietic cells in the barrier tissue. In this review, we discuss our current understanding of the host response to Malassezia spp. in the mammalian skin. PMID:29213272

  1. Colour as a signal for entraining the mammalian circadian clock.

    Directory of Open Access Journals (Sweden)

    Lauren Walmsley

    2015-04-01

    Full Text Available Twilight is characterised by changes in both quantity ("irradiance" and quality ("colour" of light. Animals use the variation in irradiance to adjust their internal circadian clocks, aligning their behaviour and physiology with the solar cycle. However, it is currently unknown whether changes in colour also contribute to this entrainment process. Using environmental measurements, we show here that mammalian blue-yellow colour discrimination provides a more reliable method of tracking twilight progression than simply measuring irradiance. We next use electrophysiological recordings to demonstrate that neurons in the mouse suprachiasmatic circadian clock display the cone-dependent spectral opponency required to make use of this information. Thus, our data show that some clock neurons are highly sensitive to changes in spectral composition occurring over twilight and that this input dictates their response to changes in irradiance. Finally, using mice housed under photoperiods with simulated dawn/dusk transitions, we confirm that spectral changes occurring during twilight are required for appropriate circadian alignment under natural conditions. Together, these data reveal a new sensory mechanism for telling time of day that would be available to any mammalian species capable of chromatic vision.

  2. New factors in mammalian DNA repair-the chromatin connection.

    Science.gov (United States)

    Raschellà, G; Melino, G; Malewicz, M

    2017-08-17

    In response to DNA damage mammalian cells activate a complex network of stress response pathways collectively termed DNA damage response (DDR). DDR involves a temporary arrest of the cell cycle to allow for the repair of the damage. DDR also attenuates gene expression by silencing global transcription and translation. Main function of DDR is, however, to prevent the fixation of debilitating changes to DNA by activation of various DNA repair pathways. Proper execution of DDR requires careful coordination between these interdependent cellular responses. Deregulation of some aspects of DDR orchestration is potentially pathological and could lead to various undesired outcomes such as DNA translocations, cellular transformation or acute cell death. It is thus critical to understand the regulation of DDR in cells especially in the light of a strong linkage between the DDR impairment and the occurrence of common human diseases such as cancer. In this review we focus on recent advances in understanding of mammalian DNA repair regulation and a on the function of PAXX/c9orf142 and ZNF281 proteins that recently had been discovered to play a role in that process. We focus on regulation of double-strand DNA break (DSB) repair via the non-homologous end joining pathway, as unrepaired DSBs are the primary cause of pathological cellular states after DNA damage. Interestingly these new factors operate at the level of chromatin, which reinforces a notion of a central role of chromatin structure in the regulation of cellular DDR regulation.

  3. Differential proteomic analysis of mammalian tissues using SILAM.

    Directory of Open Access Journals (Sweden)

    Daniel B McClatchy

    2011-01-01

    Full Text Available Differential expression of proteins between tissues underlies organ-specific functions. Under certain pathological conditions, this may also lead to tissue vulnerability. Furthermore, post-translational modifications exist between different cell types and pathological conditions. We employed SILAM (Stable Isotope Labeling in Mammals combined with mass spectrometry to quantify the proteome between mammalian tissues. Using (15N labeled rat tissue, we quantified 3742 phosphorylated peptides in nuclear extracts from liver and brain tissue. Analysis of the phosphorylation sites revealed tissue specific kinase motifs. Although these tissues are quite different in their composition and function, more than 500 protein identifications were common to both tissues. Specifically, we identified an up-regulation in the brain of the phosphoprotein, ZFHX1B, in which a genetic deletion causes the neurological disorder Mowat-Wilson syndrome. Finally, pathway analysis revealed distinct nuclear pathways enriched in each tissue. Our findings provide a valuable resource as a starting point for further understanding of tissue specific gene regulation and demonstrate SILAM as a useful strategy for the differential proteomic analysis of mammalian tissues.

  4. Carbamazepine induces mitotic arrest in mammalian Vero cells

    International Nuclear Information System (INIS)

    Perez Martin, J.M.; Fernandez Freire, P.; Labrador, V.; Hazen, M.J.

    2008-01-01

    We reported recently that the anticonvulsant drug carbamazepine, at supratherapeutic concentrations, exerts antiproliferative effects in mammalian Vero cells, but the underlying mechanism has not been elucidated. This motivates us to examine rigorously whether growth arrest was associated with structural changes in cellular organization during mitosis. In the present work, we found that exposure of the cells to carbamazepine led to an increase in mitotic index, mainly due to the sustained block at the metaphase/anaphase boundary, with the consequent inhibition of cell proliferation. Indirect immunofluorescence, using antibodies directed against spindle apparatus proteins, revealed that mitotic arrest was associated with formation of monopolar spindles, caused by impairment of centrosome separation. The final consequence of the spindle defects induced by carbamazepine, depended on the duration of cell cycle arrest. Following the time course of accumulation of metaphase and apoptotic cells during carbamazepine treatments, we observed a causative relationship between mitotic arrest and induction of cell death. Conversely, cells released from the block of metaphase by removal of the drug, continued to progress through mitosis and resume normal proliferation. Our results show that carbamazepine shares a common antiproliferative mechanism with spindle-targeted drugs and contribute to a better understanding of the cytostatic activity previously described in Vero cells. Additional studies are in progress to extend these initial findings that define a novel mode of action of carbamazepine in cultured mammalian cells

  5. [Progress in proteomics of mammalian oocyte and early embryo].

    Science.gov (United States)

    Chen, Lingsheng; Xu, Ping; Shi, Deshun; Li, Xiangping

    2014-07-01

    The development of female germ cell is the cornerstone for animal reproduction. Mammalian oocyte and early embryo have many distinct phenomena and mechanisms during their growth and development, involving series dynamic changes of protein synthesis/degradation and phosphorylation. Research on the regulatory mechanism of oocyte division, maturation, and developmental principle of pre-implantation embryo is an important topic in the field of animal developmental biology. Proteomics using all of proteins expressed by a cell or tissue as research object, systematically identify, quantify and study the function of all these proteins. With the rapid development of protein separation and identification technology, proteomics provide some new methods and the research contents on fields of oogenesis, differentiation, maturation and quality control, such as protein quantification, modification, location and interaction important information which other omics technology can not provide. These information will contribute to uncover the molecular mechanisms of mammalian oocyte maturation and embryonic development. And it is great significant for improving the culture system of oocyte in vitro maturation, the efficiency of embryo production in vitro, somatic cell clone and transgenic animal production.

  6. Mammalian designer cells: Engineering principles and biomedical applications.

    Science.gov (United States)

    Xie, Mingqi; Fussenegger, Martin

    2015-07-01

    Biotechnology is a widely interdisciplinary field focusing on the use of living cells or organisms to solve established problems in medicine, food production and agriculture. Synthetic biology, the science of engineering complex biological systems that do not exist in nature, continues to provide the biotechnology industry with tools, technologies and intellectual property leading to improved cellular performance. One key aspect of synthetic biology is the engineering of deliberately reprogrammed designer cells whose behavior can be controlled over time and space. This review discusses the most commonly used techniques to engineer mammalian designer cells; while control elements acting on the transcriptional and translational levels of target gene expression determine the kinetic and dynamic profiles, coupling them to a variety of extracellular stimuli permits their remote control with user-defined trigger signals. Designer mammalian cells with novel or improved biological functions not only directly improve the production efficiency during biopharmaceutical manufacturing but also open the door for cell-based treatment strategies in molecular and translational medicine. In the future, the rational combination of multiple sets of designer cells could permit the construction and regulation of higher-order systems with increased complexity, thereby enabling the molecular reprogramming of tissues, organisms or even populations with highest precision. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. DNA polymerase delta is required for early mammalian embryogenesis.

    Directory of Open Access Journals (Sweden)

    Arikuni Uchimura

    Full Text Available BACKGROUND: In eukaryotic cells, DNA polymerase delta (Poldelta, whose catalytic subunit p125 is encoded in the Pold1 gene, plays a central role in chromosomal DNA replication, repair, and recombination. However, the physiological role of the Poldelta in mammalian development has not been thoroughly investigated. METHODOLOGY/PRINCIPAL FINDINGS: To examine this role, we used a gene targeting strategy to generate two kinds of Pold1 mutant mice: Poldelta-null (Pold1(-/- mice and D400A exchanged Poldelta (Pold1(exo/exo mice. The D400A exchange caused deficient 3'-5' exonuclease activity in the Poldelta protein. In Poldelta-null mice, heterozygous mice developed normally despite a reduction in Pold1 protein quantity. In contrast, homozygous Pold1(-/- mice suffered from peri-implantation lethality. Although Pold1(-/- blastocysts appeared normal, their in vitro culture showed defects in outgrowth proliferation and DNA synthesis and frequent spontaneous apoptosis, indicating Poldelta participates in DNA replication during mouse embryogenesis. In Pold1(exo/exo mice, although heterozygous Pold1(exo/+ mice were normal and healthy, Pold1(exo/exo and Pold1(exo/- mice suffered from tumorigenesis. CONCLUSIONS: These results clearly demonstrate that DNA polymerase delta is essential for mammalian early embryogenesis and that the 3'-5' exonuclease activity of DNA polymerase delta is dispensable for normal development but necessary to suppress tumorigenesis.

  8. Colour As a Signal for Entraining the Mammalian Circadian Clock

    Science.gov (United States)

    Walmsley, Lauren; Hanna, Lydia; Mouland, Josh; Martial, Franck; West, Alexander; Smedley, Andrew R.; Bechtold, David A.; Webb, Ann R.; Lucas, Robert J.; Brown, Timothy M.

    2015-01-01

    Twilight is characterised by changes in both quantity (“irradiance”) and quality (“colour”) of light. Animals use the variation in irradiance to adjust their internal circadian clocks, aligning their behaviour and physiology with the solar cycle. However, it is currently unknown whether changes in colour also contribute to this entrainment process. Using environmental measurements, we show here that mammalian blue–yellow colour discrimination provides a more reliable method of tracking twilight progression than simply measuring irradiance. We next use electrophysiological recordings to demonstrate that neurons in the mouse suprachiasmatic circadian clock display the cone-dependent spectral opponency required to make use of this information. Thus, our data show that some clock neurons are highly sensitive to changes in spectral composition occurring over twilight and that this input dictates their response to changes in irradiance. Finally, using mice housed under photoperiods with simulated dawn/dusk transitions, we confirm that spectral changes occurring during twilight are required for appropriate circadian alignment under natural conditions. Together, these data reveal a new sensory mechanism for telling time of day that would be available to any mammalian species capable of chromatic vision. PMID:25884537

  9. Apple derived cellulose scaffolds for 3D mammalian cell culture.

    Directory of Open Access Journals (Sweden)

    Daniel J Modulevsky

    Full Text Available There are numerous approaches for producing natural and synthetic 3D scaffolds that support the proliferation of mammalian cells. 3D scaffolds better represent the natural cellular microenvironment and have many potential applications in vitro and in vivo. Here, we demonstrate that 3D cellulose scaffolds produced by decellularizing apple hypanthium tissue can be employed for in vitro 3D culture of NIH3T3 fibroblasts, mouse C2C12 muscle myoblasts and human HeLa epithelial cells. We show that these cells can adhere, invade and proliferate in the cellulose scaffolds. In addition, biochemical functionalization or chemical cross-linking can be employed to control the surface biochemistry and/or mechanical properties of the scaffold. The cells retain high viability even after 12 continuous weeks of culture and can achieve cell densities comparable with other natural and synthetic scaffold materials. Apple derived cellulose scaffolds are easily produced, inexpensive and originate from a renewable source. Taken together, these results demonstrate that naturally derived cellulose scaffolds offer a complementary approach to existing techniques for the in vitro culture of mammalian cells in a 3D environment.

  10. Enhanced production of docosahexaenoic acid in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Guiming Zhu

    Full Text Available Docosahexaenoic acid (DHA, one of the important polyunsaturated fatty acids (PUFA with pharmaceutical and nutraceutical effects, may be obtained through diet or synthesized in vivo from dietary a-linolenic acid (ALA. However, the accumulation of DHA in human body or other mammals relies on the intake of high dose of DHA for a certain period of time, and the bioconversion of dietary ALA to DHA is very limited. Therefore the mammalian cells are not rich in DHA. Here, we report a new technology for increased production of DHA in mammalian cells. By using transient transfection method, Siganus canaliculatus Δ4 desaturase was heterologously expressed in chinese hamster ovary (CHO cells, and simultaneously, mouse Δ6-desaturase and Δ5-desaturase were overexpressed. The results demonstrated that the overexpression of Δ6/Δ5-desaturases significantly enhanced the ability of transfected cells to convert the added ALA to docosapentaenoic acid (DPA which in turn get converted into DHA directly and efficiently by the heterologously expressed Δ4 desaturase. This technology provides the basis for potential utility of these gene constructs in the creation of transgenic livestock for increased production of DHA/related products to meet the growing demand of this important PUFA.

  11. Characterizing Cardiac Molecular Mechanisms of Mammalian Hibernation via Quantitative Proteogenomics.

    Science.gov (United States)

    Vermillion, Katie L; Jagtap, Pratik; Johnson, James E; Griffin, Timothy J; Andrews, Matthew T

    2015-11-06

    This study uses advanced proteogenomic approaches in a nonmodel organism to elucidate cardioprotective mechanisms used during mammalian hibernation. Mammalian hibernation is characterized by drastic reductions in body temperature, heart rate, metabolism, and oxygen consumption. These changes pose significant challenges to the physiology of hibernators, especially for the heart, which maintains function throughout the extreme conditions, resembling ischemia and reperfusion. To identify novel cardioadaptive strategies, we merged large-scale RNA-seq data with large-scale iTRAQ-based proteomic data in heart tissue from 13-lined ground squirrels (Ictidomys tridecemlineatus) throughout the circannual cycle. Protein identification and data analysis were run through Galaxy-P, a new multiomic data analysis platform enabling effective integration of RNA-seq and MS/MS proteomic data. Galaxy-P uses flexible, modular workflows that combine customized sequence database searching and iTRAQ quantification to identify novel ground squirrel-specific protein sequences and provide insight into molecular mechanisms of hibernation. This study allowed for the quantification of 2007 identified cardiac proteins, including over 350 peptide sequences derived from previously uncharacterized protein products. Identification of these peptides allows for improved genomic annotation of this nonmodel organism, as well as identification of potential splice variants, mutations, and genome reorganizations that provides insights into novel cardioprotective mechanisms used during hibernation.

  12. Radioimmunoassay for mammalian type C viral reverse transcriptase

    International Nuclear Information System (INIS)

    Krakower, J.M.; Barbacid, M.; Aaronson, S.A.

    1977-01-01

    Radioimmunological techniques were applied to the analysis of reverse transcriptases of mammalian type C RNA viruses. The polymerase of Rauscher mouse leukemia virus was purified by ion exchange and sequential affinity chromatography. Radioimmunoassays that utilized the viral enzyme as a probe detected as little as 1 ng of purified polymerase. No cross-reactivity could be demonstrated between the reverse transcriptase and other known virus-coded proteins. By comparing the immunological reactivity of the purified enzyme with the reactivity of detergent-disrupted virions, Rauscher mouse leukemia virus was shown to contain the antigenic equivalent of 40 molecules of reverse transcriptase. In a homologous competition immunoassay, the Rauscher viral enzyme demonstrated type-specific antigenic determinants, which distinguish it from other mouse type C viral polymerases. In a broadly reactive interspecies immunoassay, the reverse transcriptases of a number of mammalian type C viruses were cross-reactive, indicating their shared antigenic determinants. Various treatments that inhibited or inactivated DNA polymerase activity had little or no effect on the immunological properties of the enzyme. Thus, radioimmunoassays should be useful in the search for type C viral reverse transcriptase as a marker of subviral expression

  13. Written Exercises: Ancestral Magic and Emergent Intellectuals in Mia Couto, Lhoussain Azergui and Dorota Masłowska

    Directory of Open Access Journals (Sweden)

    Ewa Łukaszyk

    2016-12-01

    Full Text Available Written Exercises: Ancestral Magic and Emergent Intellectuals in Mia Couto, Lhoussain Azergui and Dorota Masłowska The article consists in a comparative reading of three novels: Um rio chamado tempo by Mia Couto, Le pain des corbeaux by Lhoussain Azergui and Paw królowej by Dorota Masłowska. In spite of the difference of the historical circumstances of Mozambique, Morocco and Poland, these three books meet at an intersecting point: the emergence of an intelligentsia that uses literacy and writing as an instrument to deconstruct the post-colonial concept of nation and to operate a trans-colonial renegotiation of identity. By the notion of trans-colonial, I understand the opposition against new kinds of symbolic violence that emerged after the end of the colonial period; here this new form of oppression is related to the concept of national unity – an artificial construct that leaves no place for a dualism or pluralism of cultural reality (two shores of the Zambezi river, Arab and Berber dualism in Morocco, “small homelands” in Poland. The young heroes of the novels grasp the pen in order to break through the falseness or the taboos created by the fathers, establishing, at the same time, the relation of solidarity with the world of the grandfathers. The act of writing becomes an actualization of the ancestral universe of magic. The settlement of accounts with the parental generation concerns the vision of nation built upon the resistance against the colonizer (it also refers to the Polish cultural formation, based on the tradition of uprisings and resistance against the Russians.   Ćwiczenia pisemne: magia przodków i nowi intelektualiści w powieściach Mii Couto, Lhoussaina Azerguiego i Doroty Masłowskiej Na podstawie powieści Um rio chamado tempo, uma casa chamada terra Mii Couto (2002, Le pain des corbeaux Lhoussaina Azerguiego (2012 oraz Paw królowej Doroty Masłowskiej (2005 dokonano analizy zjawiska wyłonienia się nowej

  14. Human immunodeficiency virus type 1 subtype B ancestral envelope protein is functional and elicits neutralizing antibodies in rabbits similar to those elicited by a circulating subtype B envelope.

    Science.gov (United States)

    Doria-Rose, N A; Learn, G H; Rodrigo, A G; Nickle, D C; Li, F; Mahalanabis, M; Hensel, M T; McLaughlin, S; Edmonson, P F; Montefiori, D; Barnett, S W; Haigwood, N L; Mullins, J I

    2005-09-01

    Human immunodeficiency virus type 1 (HIV-1) is a difficult target for vaccine development, in part because of its ever-expanding genetic diversity and attendant capacity to escape immunologic recognition. Vaccine efficacy might be improved by maximizing immunogen antigenic similarity to viruses likely to be encountered by vaccinees. To this end, we designed a prototype HIV-1 envelope vaccine using a deduced ancestral state for the env gene. The ancestral state reconstruction method was shown to be >95% accurate by computer simulation and 99.8% accurate when estimating the known inoculum used in an experimental infection study in rhesus macaques. Furthermore, the deduced ancestor gene differed from the set of sequences used to derive the ancestor by an average of 12.3%, while these latter sequences were an average of 17.3% different from each other. A full-length ancestral subtype B HIV-1 env gene was constructed and shown to produce a glycoprotein of 160 kDa that bound and fused with cells expressing the HIV-1 coreceptor CCR5. This Env was also functional in a virus pseudotype assay. When either gp160- or gp140-expressing plasmids and recombinant gp120 were used to immunize rabbits in a DNA prime-protein boost regimen, the artificial gene induced immunoglobulin G antibodies capable of weakly neutralizing heterologous primary HIV-1 strains. The results were similar for rabbits immunized in parallel with a natural isolate, HIV-1 SF162. Further design efforts to better present conserved neutralization determinants are warranted.

  15. Mapuche Ancestral Recovery of Land. The Lof Inkaial WalMapu Meu case of study (Nahuel Huapí National Park, Río Negro, Argentina

    Directory of Open Access Journals (Sweden)

    Guido Galafassi

    2012-07-01

    Full Text Available The aim of this paper is to present and analyze the case of a recent social mobilization which involved a Mapuche community in the southern region of Argentina, known as Patagonia. An “ancestral recovery of land” was claimed to be the objective of the action. Several conflicts emerged due to the fact that the land in conflict is part of the Nahuel Huapi National Park, which implied a straightforward questioning of the National State rights over territory. Apart from that, the recovery process was strongly rejected by local residents. This brought about a new conflict that required the local government's mediation.

  16. Personal and Social Transformation in the Health Area through Education: A Brief Journey from the Ancestral Indigenous Wisdom to the Modern Tyranny of Healthiness

    Directory of Open Access Journals (Sweden)

    Andrés de Muller

    2015-09-01

    Full Text Available This paper aims at claiming the ancestral wisdom of indigenous people in the health area. It analyzes how health has been commodified in the interest of large companies (particularly those related to the pharmaceutical industry to the detriment of a holistic definition of wellness through education. Furthermore, the concept of health as a right disagrees with such commodification or sale to the highest bidder, which prompts dehumanization of health services and public misinformation. The abundance of self-proclaimed gurus or healers who appeal to autosuggestion contributes both to confusion and to an unhealthy cult of healthiness.

  17. Proto-Jabutí: a first attempt to reconstruct the ancestral language of the Arikapú and the Djeoromitxí

    Directory of Open Access Journals (Sweden)

    Hein van der Voort

    2007-08-01

    Full Text Available The Arikapú and Djeoromitxí languages form a small linguistic family in southern Rondônia, known as Jabutí. The languages are highly endangered and high quality data have become available only recently. This article is intended to create a basis of evidence for Curt Nimuendajú’s hypothesis that the Jabutí language family belongs to the Macro-Jê linguistic stock. After short descriptive sketches of both Jabutí languages and the historical and sociocultural background, the article focusses on the reconstruction of the ancestral language, Proto-Jabutí, following the principles of the historical-comparative method.

  18. A wave dynamics criterion for optimization of mammalian cardiovascular system.

    Science.gov (United States)

    Pahlevan, Niema M; Gharib, Morteza

    2014-05-07

    The cardiovascular system in mammals follows various optimization criteria covering the heart, the vascular network, and the coupling of the two. Through a simple dimensional analysis we arrived at a non-dimensional number (wave condition number) that can predict the optimum wave state in which the left ventricular (LV) pulsatile power (LV workload) is minimized in a mammalian cardiovascular system. This number is also universal among all mammals independent of animal size maintaining a value of around 0.1. By utilizing a unique in vitro model of human aorta, we tested our hypothesis against a wide range of aortic compliance (pulse wave velocity). We concluded that the optimum value of the wave condition number remains to be around 0.1 for a wide range of aorta compliance that we could simulate in our in-vitro system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. DNA computation in mammalian cells: microRNA logic operations.

    Science.gov (United States)

    Hemphill, James; Deiters, Alexander

    2013-07-17

    DNA computation can utilize logic gates as modules to create molecular computers with biological inputs. Modular circuits that recognize nucleic acid inputs through strand hybridization activate computation cascades to produce controlled outputs. This allows for the construction of synthetic circuits that can be interfaced with cellular environments. We have engineered oligonucleotide AND gates to respond to specific microRNA (miRNA) inputs in live mammalian cells. Both single and dual-sensing miRNA-based computation devices were synthesized for the cell-specific identification of endogenous miR-21 and miR-122. A logic gate response was observed with miRNA expression regulators, exhibiting molecular recognition of miRNA profile changes. Nucleic acid logic gates that are functional in a cellular environment and recognize endogenous inputs significantly expand the potential of DNA computation to monitor, image, and respond to cell-specific markers.

  20. Structure and permeation mechanism of a mammalian urea transporter

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Elena J.; Cao, Yu; Enkavi, Giray; Quick, Matthias; Pan, Yaping; Tajkhorshid, Emad; Zhou, Ming (UIUC); (Columbia)

    2012-09-17

    As an adaptation to infrequent access to water, terrestrial mammals produce urine that is hyperosmotic to plasma. To prevent osmotic diuresis by the large quantity of urea generated by protein catabolism, the kidney epithelia contain facilitative urea transporters (UTs) that allow rapid equilibration between the urinary space and the hyperosmotic interstitium. Here we report the first X-ray crystal structure of a mammalian UT, UT-B, at a resolution of 2.36 {angstrom}. UT-B is a homotrimer and each protomer contains a urea conduction pore with a narrow selectivity filter. Structural analyses and molecular dynamics simulations showed that the selectivity filter has two urea binding sites separated by an approximately 5.0 kcal/mol energy barrier. Functional studies showed that the rate of urea conduction in UT-B is increased by hypoosmotic stress, and that the site of osmoregulation coincides with the location of the energy barrier.