WorldWideScience

Sample records for anatomically accurate meshes

  1. Deformable meshes for medical image segmentation accurate automatic segmentation of anatomical structures

    CERN Document Server

    Kainmueller, Dagmar

    2014-01-01

    ? Segmentation of anatomical structures in medical image data is an essential task in clinical practice. Dagmar Kainmueller introduces methods for accurate fully automatic segmentation of anatomical structures in 3D medical image data. The author's core methodological contribution is a novel deformation model that overcomes limitations of state-of-the-art Deformable Surface approaches, hence allowing for accurate segmentation of tip- and ridge-shaped features of anatomical structures. As for practical contributions, she proposes application-specific segmentation pipelines for a range of anatom

  2. Generating Facial Expressions Using an Anatomically Accurate Biomechanical Model.

    Science.gov (United States)

    Wu, Tim; Hung, Alice; Mithraratne, Kumar

    2014-11-01

    This paper presents a computational framework for modelling the biomechanics of human facial expressions. A detailed high-order (Cubic-Hermite) finite element model of the human head was constructed using anatomical data segmented from magnetic resonance images. The model includes a superficial soft-tissue continuum consisting of skin, the subcutaneous layer and the superficial Musculo-Aponeurotic system. Embedded within this continuum mesh, are 20 pairs of facial muscles which drive facial expressions. These muscles were treated as transversely-isotropic and their anatomical geometries and fibre orientations were accurately depicted. In order to capture the relative composition of muscles and fat, material heterogeneity was also introduced into the model. Complex contact interactions between the lips, eyelids, and between superficial soft tissue continuum and deep rigid skeletal bones were also computed. In addition, this paper investigates the impact of incorporating material heterogeneity and contact interactions, which are often neglected in similar studies. Four facial expressions were simulated using the developed model and the results were compared with surface data obtained from a 3D structured-light scanner. Predicted expressions showed good agreement with the experimental data.

  3. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation.

    Science.gov (United States)

    Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime; Liebschner, Michael A K; Xia, James J

    2018-04-01

    Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians' need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical

  4. Anatomically accurate, finite model eye for optical modeling.

    Science.gov (United States)

    Liou, H L; Brennan, N A

    1997-08-01

    There is a need for a schematic eye that models vision accurately under various conditions such as refractive surgical procedures, contact lens and spectacle wear, and near vision. Here we propose a new model eye close to anatomical, biometric, and optical realities. This is a finite model with four aspheric refracting surfaces and a gradient-index lens. It has an equivalent power of 60.35 D and an axial length of 23.95 mm. The new model eye provides spherical aberration values within the limits of empirical results and predicts chromatic aberration for wavelengths between 380 and 750 nm. It provides a model for calculating optical transfer functions and predicting optical performance of the eye.

  5. Removal of Polypropylene Sling Mesh From the Urethra: An Anatomic Technique.

    Science.gov (United States)

    Freilich, Drew A; Rovner, Eric S

    2015-07-01

    To describe a technique for removal of intraurethral mesh with minimal disruption of the periurethral anatomy. Through a midline transvaginal approach the sling is located lateral to the urethra and divided. The medial portion of the divided sling is carefully dissected back to its entrance laterally into the urethral lumen. A stay suture is placed on the dissected sling. The sling is located on the contralateral side and likewise divided and dissected back to the urethral lumen. The completely dissected sling is pulled through such that the holding stitch is through and through the urethral lumen, allowing easy localization of the urethral defect on lateral walls of the urethra. These defects are closed with an absorbable suture and the vaginal incision is closed. Three patients have undergone a transvaginal removal of their intraurethral mesh using the described technique. At a mean follow-up of 6.0 months, there were no intraoperative or postoperative complications. All patients were obstructed preoperatively and all developed stress urinary incontinence postoperatively requiring 0-1 pads per day. Current approaches to the surgical repair of chronic intraurethral mesh have significant limitations that are minimized by the described technique. This anatomic removal of mesh from the urethra has several advantages including no disruption of the ventral wall of the urethra, complete removal of foreign body from the urethra, and simplified localization of the urethral wall defect to allow for anatomic closure. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Anatomical planes: are we teaching accurate surface anatomy?

    Science.gov (United States)

    Mirjalili, S Ali; McFadden, Sarah L; Buckenham, Tim; Wilson, Ben; Stringer, Mark D

    2012-10-01

    Anatomical planes used in clinical practice and teaching anatomy are largely derived from cadaver studies. Numerous inconsistencies in clinically important surface markings exist between and within anatomical reference texts. The aim of this study was to reassess the accuracy of common anatomical planes in vivo using computed tomographic (CT) imaging. CT scans of the trunk in supine adults at end tidal inspiration were analyzed by dual consensus reporting to determine the anatomy of five anatomical planes: sternal angle, transpyloric, subcostal, supracristal, and the plane of the pubic crest. Patients with kyphosis, scoliosis, or abnormal lordosis, distorting space-occupying lesions, or visceromegaly were excluded. Among 153 thoracic CT scans (mean age 63 years, 53% female), the sternal angle was most common at T4 (females) or T4/5 (males) vertebral level, and the tracheal bifurcation, aortic arch, and pulmonary trunk were most often below this plane. In 108 abdominal CT scans (mean age 60 years, 59% female), the subcostal and supracristal planes were most often at L2 (58%) and L4 (69%), respectively. In 52 thoracoabdominal CT scans (mean age 61 years, 56% female), the transpyloric plane was between lower L1 and upper L2 (75%); in this plane were the superior mesenteric artery (56%), formation of the portal vein (53%), tip of the ninth rib (60%), and the left renal hilum (54%), but the right renal hilum and gallbladder fundus were more often below. The surface anatomy of anatomical planes needs revising in the light of results from living subjects using modern imaging techniques. Copyright © 2012 Wiley Periodicals, Inc.

  7. Surface mesh to voxel data registration for patient-specific anatomical modeling

    Science.gov (United States)

    de Oliveira, Júlia E. E.; Giessler, Paul; Keszei, András.; Herrler, Andreas; Deserno, Thomas M.

    2016-03-01

    Virtual Physiological Human (VPH) models are frequently used for training, planning, and performing medical procedures. The Regional Anaesthesia Simulator and Assistant (RASimAs) project has the goal of increasing the application and effectiveness of regional anesthesia (RA) by combining a simulator of ultrasound-guided and electrical nerve-stimulated RA procedures and a subject-specific assistance system through an integration of image processing, physiological models, subject-specific data, and virtual reality. Individualized models enrich the virtual training tools for learning and improving regional anaesthesia (RA) skills. Therefore, we suggest patient-specific VPH models that are composed by registering the general mesh-based models with patient voxel data-based recordings. Specifically, the pelvis region has been focused for the support of the femoral nerve block. The processing pipeline is composed of different freely available toolboxes such as MatLab, the open Simulation framework (SOFA), and MeshLab. The approach of Gilles is applied for mesh-to-voxel registration. Personalized VPH models include anatomical as well as mechanical properties of the tissues. Two commercial VPH models (Zygote and Anatomium) were used together with 34 MRI data sets. Results are presented for the skin surface and pelvic bones. Future work will extend the registration procedure to cope with all model tissue (i.e., skin, muscle, bone, vessel, nerve, fascia) in a one-step procedure and extrapolating the personalized models to body regions actually being out of the captured field of view.

  8. D-BRAIN : Anatomically accurate simulated diffusion MRI brain data

    OpenAIRE

    Perrone, Daniele; Jeurissen, Ben; Aelterman, Jan; Roine, Timo; Sijbers, Jan; Pizurica, Aleksandra; Leemans, Alexander; Philips, Wilfried

    2016-01-01

    Diffusion Weighted (DW) MRI allows for the non-invasive study of water diffusion inside living tissues. As such, it is useful for the investigation of human brain white matter (WM) connectivity in vivo through fiber tractography (FT) algorithms. Many DW-MRI tailored restoration techniques and FT algorithms have been developed. However, it is not clear how accurately these methods reproduce the WM bundle characteristics in real-world conditions, such as in the presence of noise, partial volume...

  9. How accurate is anatomic limb alignment in predicting mechanical limb alignment after total knee arthroplasty?

    Science.gov (United States)

    Lee, Seung Ah; Choi, Sang-Hee; Chang, Moon Jong

    2015-10-27

    Anatomic limb alignment often differs from mechanical limb alignment after total knee arthroplasty (TKA). We sought to assess the accuracy, specificity, and sensitivity for each of three commonly used ranges for anatomic limb alignment (3-9°, 5-10° and 2-10°) in predicting an acceptable range (neutral ± 3°) for mechanical limb alignment after TKA. We also assessed whether the accuracy of anatomic limb alignment was affected by anatomic variation. This retrospective study included 314 primary TKAs. The alignment of the limb was measured with both anatomic and mechanical methods of measurement. We also measured anatomic variation, including the femoral bowing angle, tibial bowing angle, and neck-shaft angle of the femur. All angles were measured on the same full-length standing anteroposterior radiographs. The accuracy, specificity, and sensitivity for each range of anatomic limb alignment were calculated and compared using mechanical limb alignment as the reference standard. The associations between the accuracy of anatomic limb alignment and anatomic variation were also determined. The range of 2-10° for anatomic limb alignment showed the highest accuracy, but it was only 73 % (3-9°, 65 %; 5-10°, 67 %). The specificity of the 2-10° range was 81 %, which was higher than that of the other ranges (3-9°, 69 %; 5-10°, 67 %). However, the sensitivity of the 2-10° range to predict varus malalignment was only 16 % (3-9°, 35 %; 5-10°, 68 %). In addition, the sensitivity of the 2-10° range to predict valgus malalignment was only 43 % (3-9°, 71 %; 5-10°, 43 %). The accuracy of anatomical limb alignment was lower for knees with greater femoral (odds ratio = 1.2) and tibial (odds ratio = 1.2) bowing. Anatomic limb alignment did not accurately predict mechanical limb alignment after TKA, and its accuracy was affected by anatomic variation. Thus, alignment after TKA should be assessed by measuring mechanical alignment rather than anatomic

  10. Anatomical Thin Titanium Mesh Plate Structural Optimization for Zygomatic-Maxillary Complex Fracture under Fatigue Testing

    Directory of Open Access Journals (Sweden)

    Yu-Tzu Wang

    2018-01-01

    Full Text Available This study performs a structural optimization of anatomical thin titanium mesh (ATTM plate and optimal designed ATTM plate fabricated using additive manufacturing (AM to verify its stabilization under fatigue testing. Finite element (FE analysis was used to simulate the structural bending resistance of a regular ATTM plate. The Taguchi method was employed to identify the significance of each design factor in controlling the deflection and determine an optimal combination of designed factors. The optimal designed ATTM plate with patient-matched facial contour was fabricated using AM and applied to a ZMC comminuted fracture to evaluate the resting maxillary micromotion/strain under fatigue testing. The Taguchi analysis found that the ATTM plate required a designed internal hole distance to be 0.9 mm, internal hole diameter to be 1 mm, plate thickness to be 0.8 mm, and plate height to be 10 mm. The designed plate thickness factor primarily dominated the bending resistance up to 78% importance. The averaged micromotion (displacement and strain of the maxillary bone showed that ZMC fracture fixation using the miniplate was significantly higher than those using the AM optimal designed ATTM plate. This study concluded that the optimal designed ATTM plate with enough strength to resist the bending effect can be obtained by combining FE and Taguchi analyses. The optimal designed ATTM plate with patient-matched facial contour fabricated using AM provides superior stabilization for ZMC comminuted fractured bone segments.

  11. Accurate halo-galaxy mocks from automatic bias estimation and particle mesh gravity solvers

    Science.gov (United States)

    Vakili, Mohammadjavad; Kitaura, Francisco-Shu; Feng, Yu; Yepes, Gustavo; Zhao, Cheng; Chuang, Chia-Hsun; Hahn, ChangHoon

    2017-12-01

    Reliable extraction of cosmological information from clustering measurements of galaxy surveys requires estimation of the error covariance matrices of observables. The accuracy of covariance matrices is limited by our ability to generate sufficiently large number of independent mock catalogues that can describe the physics of galaxy clustering across a wide range of scales. Furthermore, galaxy mock catalogues are required to study systematics in galaxy surveys and to test analysis tools. In this investigation, we present a fast and accurate approach for generation of mock catalogues for the upcoming galaxy surveys. Our method relies on low-resolution approximate gravity solvers to simulate the large-scale dark matter field, which we then populate with haloes according to a flexible non-linear and stochastic bias model. In particular, we extend the PATCHY code with an efficient particle mesh algorithm to simulate the dark matter field (the FASTPM code), and with a robust MCMC method relying on the EMCEE code for constraining the parameters of the bias model. Using the haloes in the BigMultiDark high-resolution N-body simulation as a reference catalogue, we demonstrate that our technique can model the bivariate probability distribution function (counts-in-cells), power spectrum and bispectrum of haloes in the reference catalogue. Specifically, we show that the new ingredients permit us to reach percentage accuracy in the power spectrum up to k ∼ 0.4 h Mpc-1 (within 5 per cent up to k ∼ 0.6 h Mpc-1) with accurate bispectra improving previous results based on Lagrangian perturbation theory.

  12. The Quick Measure of a Nurbs Surface Curvature for Accurate Triangular Meshing

    Directory of Open Access Journals (Sweden)

    Kniat Aleksander

    2014-04-01

    Full Text Available NURBS surfaces are the most widely used surfaces for three-dimensional models in CAD/ CAE programs. When a model for FEM calculation is prepared with a CAD program it is inevitable to mesh it finally. There are many algorithms for meshing planar regions. Some of them may be used for meshing surfaces but it is necessary to take the curvature of the surface under consideration to avoid poor quality mesh. The mesh must be denser in the curved regions of the surface. In this paper, instead of analysing a surface curvature, the method to assess how close is a mesh triangle to the surface to which its vertices belong, is presented. The distance between a mesh triangle and a parallel tangent plane through a point on a surface is the measure of the triangle quality. Finding the surface point whose projection is located inside the mesh triangle and which is the tangency point to the plane parallel to this triangle is an optimization problem. Mathematical description of the problem and the algorithm to find its solution are also presented in the paper.

  13. The Space-Time Conservative Schemes for Large-Scale, Time-Accurate Flow Simulations with Tetrahedral Meshes

    Science.gov (United States)

    Venkatachari, Balaji Shankar; Streett, Craig L.; Chang, Chau-Lyan; Friedlander, David J.; Wang, Xiao-Yen; Chang, Sin-Chung

    2016-01-01

    Despite decades of development of unstructured mesh methods, high-fidelity time-accurate simulations are still predominantly carried out on structured, or unstructured hexahedral meshes by using high-order finite-difference, weighted essentially non-oscillatory (WENO), or hybrid schemes formed by their combinations. In this work, the space-time conservation element solution element (CESE) method is used to simulate several flow problems including supersonic jet/shock interaction and its impact on launch vehicle acoustics, and direct numerical simulations of turbulent flows using tetrahedral meshes. This paper provides a status report for the continuing development of the space-time conservation element solution element (CESE) numerical and software framework under the Revolutionary Computational Aerosciences (RCA) project. Solution accuracy and large-scale parallel performance of the numerical framework is assessed with the goal of providing a viable paradigm for future high-fidelity flow physics simulations.

  14. Development of anatomically and dielectrically accurate breast phantoms for microwave imaging applications

    Science.gov (United States)

    O'Halloran, M.; Lohfeld, S.; Ruvio, G.; Browne, J.; Krewer, F.; Ribeiro, C. O.; Inacio Pita, V. C.; Conceicao, R. C.; Jones, E.; Glavin, M.

    2014-05-01

    Breast cancer is one of the most common cancers in women. In the United States alone, it accounts for 31% of new cancer cases, and is second only to lung cancer as the leading cause of deaths in American women. More than 184,000 new cases of breast cancer are diagnosed each year resulting in approximately 41,000 deaths. Early detection and intervention is one of the most significant factors in improving the survival rates and quality of life experienced by breast cancer sufferers, since this is the time when treatment is most effective. One of the most promising breast imaging modalities is microwave imaging. The physical basis of active microwave imaging is the dielectric contrast between normal and malignant breast tissue that exists at microwave frequencies. The dielectric contrast is mainly due to the increased water content present in the cancerous tissue. Microwave imaging is non-ionizing, does not require breast compression, is less invasive than X-ray mammography, and is potentially low cost. While several prototype microwave breast imaging systems are currently in various stages of development, the design and fabrication of anatomically and dielectrically representative breast phantoms to evaluate these systems is often problematic. While some existing phantoms are composed of dielectrically representative materials, they rarely accurately represent the shape and size of a typical breast. Conversely, several phantoms have been developed to accurately model the shape of the human breast, but have inappropriate dielectric properties. This study will brie y review existing phantoms before describing the development of a more accurate and practical breast phantom for the evaluation of microwave breast imaging systems.

  15. Anatomical landmarks and skin markers are not reliable for accurate labeling of thoracic vertebrae on MRI

    International Nuclear Information System (INIS)

    Shabshin, Nogah; Schweitzer, Mark E.; Carrino, John A.

    2010-01-01

    Background: Numbering of the thoracic spine on MRI can be tedious if C2 and L5-S1 are not included and may lead to errors in lesion level. Purpose: To determine whether anatomic landmarks or external markers are reliable as an aid for accurate numbering of thoracic vertebrae on MRI. Material and Methods: Sixty-seven thoracic spine MR studies of 67 patients (30 males, 37 females, age range 18-83 years) were studied, composed of 52 consecutive MR studies and an additional 15 MRI in which vitamin E markers were placed over the skin. In the 52 thoracic MR examinations potential numbering aids such as the level of the sternal apex, pulmonary artery, aortic arch, and osseous or disc abnormalities were numbered on both cervical localizer (standard of reference) and thoracic sagittal images. The additional 15 examinations in which vitamin E markers were placed over the skin were evaluated for consistency in the level of the markers on different sequences in the same exam. Results: The sternal apex level ranged from T2 to T5 [T3 in 28/51 patients (55%), T2 in 10/51 (20%)]. The aortic arch level ranged from T2 to T4 [T4 in 18/48 (38%) and T3 in 17 (35%)]. Pulmonary artery level ranged from T4 to T6-7 disc [T5 in 20/52 patients (38%) and T6 in 14/52 (27%)]. In 3 of 12 patients who had abnormalities in a vertebral body or disc as definite point reference, the non-localizer image mislabelled the level. In 11/15 (73%) patients with vitamin E markers that were placed over the upper thoracic spine, the results showed consistency in the level of the markers in relation to the reference points or consistent inter-marker gap between the sequences. Conclusion: There are only two reliable ways to accurately define the levels if no landmarking feature is available on the magnet. The first is by including C2 in the thoracic sequence of a diagnostic quality, and the second is by using an abnormality in the discs or vertebral bodies as a point of reference

  16. Anatomical landmarks and skin markers are not reliable for accurate labeling of thoracic vertebrae on MRI

    Energy Technology Data Exchange (ETDEWEB)

    Shabshin, Nogah (Dept. of Diagnostic Imaging, Chaim Sheba Medical Center, Tel-HaShomer (Israel)), e-mail: shabshin@gmail.com; Schweitzer, Mark E. (Dept. of Diagnostic Imaging, Ottawa Hospital and Univ. of Ottawa, Ottawa (Canada)); Carrino, John A. (Dept. of Radiology, Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States))

    2010-11-15

    Background: Numbering of the thoracic spine on MRI can be tedious if C2 and L5-S1 are not included and may lead to errors in lesion level. Purpose: To determine whether anatomic landmarks or external markers are reliable as an aid for accurate numbering of thoracic vertebrae on MRI. Material and Methods: Sixty-seven thoracic spine MR studies of 67 patients (30 males, 37 females, age range 18-83 years) were studied, composed of 52 consecutive MR studies and an additional 15 MRI in which vitamin E markers were placed over the skin. In the 52 thoracic MR examinations potential numbering aids such as the level of the sternal apex, pulmonary artery, aortic arch, and osseous or disc abnormalities were numbered on both cervical localizer (standard of reference) and thoracic sagittal images. The additional 15 examinations in which vitamin E markers were placed over the skin were evaluated for consistency in the level of the markers on different sequences in the same exam. Results: The sternal apex level ranged from T2 to T5 [T3 in 28/51 patients (55%), T2 in 10/51 (20%)]. The aortic arch level ranged from T2 to T4 [T4 in 18/48 (38%) and T3 in 17 (35%)]. Pulmonary artery level ranged from T4 to T6-7 disc [T5 in 20/52 patients (38%) and T6 in 14/52 (27%)]. In 3 of 12 patients who had abnormalities in a vertebral body or disc as definite point reference, the non-localizer image mislabelled the level. In 11/15 (73%) patients with vitamin E markers that were placed over the upper thoracic spine, the results showed consistency in the level of the markers in relation to the reference points or consistent inter-marker gap between the sequences. Conclusion: There are only two reliable ways to accurately define the levels if no landmarking feature is available on the magnet. The first is by including C2 in the thoracic sequence of a diagnostic quality, and the second is by using an abnormality in the discs or vertebral bodies as a point of reference

  17. A new model with an anatomically accurate human renal collecting system for training in fluoroscopy-guided percutaneous nephrolithotomy access.

    Science.gov (United States)

    Turney, Benjamin W

    2014-03-01

    Obtaining renal access is one of the most important and complex steps in learning percutaneous nephrolithotomy (PCNL). Ideally, this skill should be practiced outside the operating room. There is a need for anatomically accurate and cheap models for simulated training. The objective was to develop a cost-effective, anatomically accurate, nonbiologic training model for simulated PCNL access under fluoroscopic guidance. Collecting systems from routine computed tomography urograms were extracted and reformatted using specialized software. These images were printed in a water-soluble plastic on a three-dimensional (3D) printer to create biomodels. These models were embedded in silicone and then the models were dissolved in water to leave a hollow collecting system within a silicone model. These PCNL models were filled with contrast medium and sealed. A layer of dense foam acted as a spacer to replicate the tissues between skin and kidney. 3D printed models of human collecting systems are a useful adjunct in planning PCNL access. The PCNL access training model is relatively low cost and reproduces the anatomy of the renal collecting system faithfully. A range of models reflecting the variety and complexity of human collecting systems can be reproduced. The fluoroscopic triangulation process needed to target the calix of choice can be practiced successfully in this model. This silicone PCNL training model accurately replicates the anatomic architecture and orientation of the human renal collecting system. It provides a safe, clean, and effective model for training in accurate fluoroscopy-guided PCNL access.

  18. Accurate reaction-diffusion operator splitting on tetrahedral meshes for parallel stochastic molecular simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hepburn, I.; De Schutter, E., E-mail: erik@oist.jp [Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495 (Japan); Theoretical Neurobiology & Neuroengineering, University of Antwerp, Antwerp 2610 (Belgium); Chen, W. [Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495 (Japan)

    2016-08-07

    Spatial stochastic molecular simulations in biology are limited by the intense computation required to track molecules in space either in a discrete time or discrete space framework, which has led to the development of parallel methods that can take advantage of the power of modern supercomputers in recent years. We systematically test suggested components of stochastic reaction-diffusion operator splitting in the literature and discuss their effects on accuracy. We introduce an operator splitting implementation for irregular meshes that enhances accuracy with minimal performance cost. We test a range of models in small-scale MPI simulations from simple diffusion models to realistic biological models and find that multi-dimensional geometry partitioning is an important consideration for optimum performance. We demonstrate performance gains of 1-3 orders of magnitude in the parallel implementation, with peak performance strongly dependent on model specification.

  19. Anatomically constrained dipole adjustment (ANACONDA) for accurate MEG/EEG focal source localizations

    Science.gov (United States)

    Im, Chang-Hwan; Jung, Hyun-Kyo; Fujimaki, Norio

    2005-10-01

    This paper proposes an alternative approach to enhance localization accuracy of MEG and EEG focal sources. The proposed approach assumes anatomically constrained spatio-temporal dipoles, initial positions of which are estimated from local peak positions of distributed sources obtained from a pre-execution of distributed source reconstruction. The positions of the dipoles are then adjusted on the cortical surface using a novel updating scheme named cortical surface scanning. The proposed approach has many advantages over the conventional ones: (1) as the cortical surface scanning algorithm uses spatio-temporal dipoles, it is robust with respect to noise; (2) it requires no a priori information on the numbers and initial locations of the activations; (3) as the locations of dipoles are restricted only on a tessellated cortical surface, it is physiologically more plausible than the conventional ECD model. To verify the proposed approach, it was applied to several realistic MEG/EEG simulations and practical experiments. From the several case studies, it is concluded that the anatomically constrained dipole adjustment (ANACONDA) approach will be a very promising technique to enhance accuracy of focal source localization which is essential in many clinical and neurological applications of MEG and EEG.

  20. Anatomically constrained dipole adjustment (ANACONDA) for accurate MEG/EEG focal source localizations

    International Nuclear Information System (INIS)

    Im, Chang-Hwan; Jung, Hyun-Kyo; Fujimaki, Norio

    2005-01-01

    This paper proposes an alternative approach to enhance localization accuracy of MEG and EEG focal sources. The proposed approach assumes anatomically constrained spatio-temporal dipoles, initial positions of which are estimated from local peak positions of distributed sources obtained from a pre-execution of distributed source reconstruction. The positions of the dipoles are then adjusted on the cortical surface using a novel updating scheme named cortical surface scanning. The proposed approach has many advantages over the conventional ones: (1) as the cortical surface scanning algorithm uses spatio-temporal dipoles, it is robust with respect to noise; (2) it requires no a priori information on the numbers and initial locations of the activations; (3) as the locations of dipoles are restricted only on a tessellated cortical surface, it is physiologically more plausible than the conventional ECD model. To verify the proposed approach, it was applied to several realistic MEG/EEG simulations and practical experiments. From the several case studies, it is concluded that the anatomically constrained dipole adjustment (ANACONDA) approach will be a very promising technique to enhance accuracy of focal source localization which is essential in many clinical and neurological applications of MEG and EEG

  1. The importance of accurate anatomic assessment for the volumetric analysis of the amygdala

    Directory of Open Access Journals (Sweden)

    L. Bonilha

    2005-03-01

    Full Text Available There is a wide range of values reported in volumetric studies of the amygdala. The use of single plane thick magnetic resonance imaging (MRI may prevent the correct visualization of anatomic landmarks and yield imprecise results. To assess whether there is a difference between volumetric analysis of the amygdala performed with single plane MRI 3-mm slices and with multiplanar analysis of MRI 1-mm slices, we studied healthy subjects and patients with temporal lobe epilepsy. We performed manual delineation of the amygdala on T1-weighted inversion recovery, 3-mm coronal slices and manual delineation of the amygdala on three-dimensional volumetric T1-weighted images with 1-mm slice thickness. The data were compared using a dependent t-test. There was a significant difference between the volumes obtained by the coronal plane-based measurements and the volumes obtained by three-dimensional analysis (P < 0.001. An incorrect estimate of the amygdala volume may preclude a correct analysis of the biological effects of alterations in amygdala volume. Three-dimensional analysis is preferred because it is based on more extensive anatomical assessment and the results are similar to those obtained in post-mortem studies.

  2. A Tissue Relevance and Meshing Method for Computing Patient-Specific Anatomical Models in Endoscopic Sinus Surgery Simulation

    Science.gov (United States)

    Audette, M. A.; Hertel, I.; Burgert, O.; Strauss, G.

    This paper presents on-going work on a method for determining which subvolumes of a patient-specific tissue map, extracted from CT data of the head, are relevant to simulating endoscopic sinus surgery of that individual, and for decomposing these relevant tissues into triangles and tetrahedra whose mesh size is well controlled. The overall goal is to limit the complexity of the real-time biomechanical interaction while ensuring the clinical relevance of the simulation. Relevant tissues are determined as the union of the pathology present in the patient, of critical tissues deemed to be near the intended surgical path or pathology, and of bone and soft tissue near the intended path, pathology or critical tissues. The processing of tissues, prior to meshing, is based on the Fast Marching method applied under various guises, in a conditional manner that is related to tissue classes. The meshing is based on an adaptation of a meshing method of ours, which combines the Marching Tetrahedra method and the discrete Simplex mesh surface model to produce a topologically faithful surface mesh with well controlled edge and face size as a first stage, and Almost-regular Tetrahedralization of the same prescribed mesh size as a last stage.

  3. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds

    International Nuclear Information System (INIS)

    Hockaday, L A; Kang, K H; Colangelo, N W; Cheung, P Y C; Duan, B; Wu, J; Bonassar, L J; Butcher, J T; Malone, E; Lipson, H; Girardi, L N; Chu, C C

    2012-01-01

    The aortic valve exhibits complex three-dimensional (3D) anatomy and heterogeneity essential for the long-term efficient biomechanical function. These are, however, challenging to mimic in de novo engineered living tissue valve strategies. We present a novel simultaneous 3D printing/photocrosslinking technique for rapidly engineering complex, heterogeneous aortic valve scaffolds. Native anatomic and axisymmetric aortic valve geometries (root wall and tri-leaflets) with 12–22 mm inner diameters (ID) were 3D printed with poly-ethylene glycol-diacrylate (PEG-DA) hydrogels (700 or 8000 MW) supplemented with alginate. 3D printing geometric accuracy was quantified and compared using Micro-CT. Porcine aortic valve interstitial cells (PAVIC) seeded scaffolds were cultured for up to 21 days. Results showed that blended PEG-DA scaffolds could achieve over tenfold range in elastic modulus (5.3±0.9 to 74.6±1.5 kPa). 3D printing times for valve conduits with mechanically contrasting hydrogels were optimized to 14 to 45 min, increasing linearly with conduit diameter. Larger printed valves had greater shape fidelity (93.3±2.6, 85.1±2.0 and 73.3±5.2% for 22, 17 and 12 mm ID porcine valves; 89.1±4.0, 84.1±5.6 and 66.6±5.2% for simplified valves). PAVIC seeded scaffolds maintained near 100% viability over 21 days. These results demonstrate that 3D hydrogel printing with controlled photocrosslinking can rapidly fabricate anatomical heterogeneous valve conduits that support cell engraftment. (paper)

  4. Accurate measurement of surface areas of anatomical structures by computer-assisted triangulation of computed tomography images

    Energy Technology Data Exchange (ETDEWEB)

    Allardice, J.T.; Jacomb-Hood, J.; Abulafi, A.M.; Williams, N.S. (Royal London Hospital (United Kingdom)); Cookson, J.; Dykes, E.; Holman, J. (London Hospital Medical College (United Kingdom))

    1993-05-01

    There is a need for accurate surface area measurement of internal anatomical structures in order to define light dosimetry in adjunctive intraoperative photodynamic therapy (AIOPDT). The authors investigated whether computer-assisted triangulation of serial sections generated by computed tomography (CT) scanning can give an accurate assessment of the surface area of the walls of the true pelvis after anterior resection and before colorectal anastomosis. They show that the technique of paper density tessellation is an acceptable method of measuring the surface areas of phantom objects, with a maximum error of 0.5%, and is used as the gold standard. Computer-assisted triangulation of CT images of standard geometric objects and accurately-constructed pelvic phantoms gives a surface area assessment with a maximum error of 2.5% compared with the gold standard. The CT images of 20 patients' pelves have been analysed by computer-assisted triangulation and this shows the surface area of the walls varies from 143 cm[sup 2] to 392 cm[sup 2]. (Author).

  5. Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Bache, Steven T.; Juang, Titania; Belley, Matthew D. [Duke University Medical Physics Graduate Program, Durham, North Carolina 27705 (United States); Koontz, Bridget F.; Yoshizumi, Terry T.; Kirsch, David G.; Oldham, Mark, E-mail: mark.oldham@duke.edu [Duke University Medical Center, Durham, North Carolina 27710 (United States); Adamovics, John [Rider University, Lawrenceville, New Jersey 08648 (United States)

    2015-02-15

    Purpose: Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1–15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm{sup 3}) optical computed tomography (optical-CT) dose read-out. Methods: Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180

  6. Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters

    International Nuclear Information System (INIS)

    Bache, Steven T.; Juang, Titania; Belley, Matthew D.; Koontz, Bridget F.; Yoshizumi, Terry T.; Kirsch, David G.; Oldham, Mark; Adamovics, John

    2015-01-01

    Purpose: Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1–15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm 3 ) optical computed tomography (optical-CT) dose read-out. Methods: Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180

  7. Beyond the complications: medium-term anatomical, sexual and functional outcomes following removal of trocar-guided transvaginal mesh. A retrospective cohort study.

    Science.gov (United States)

    Jeffery, Stephen T; Nieuwoudt, Andri

    2012-10-01

    The aims of this study were to assess the anatomical, sexual and functional outcomes of women undergoing surgical intervention for complications of the trocar-guided transvaginal mesh (TVM) procedure. This was a retrospective analysis of a clinical database of women who had developed a complication following a TVM procedure. This included dyspareunia, mesh erosion, urinary symptoms, mesh contraction and prolapse recurrence. Pre- and post-operatively, we assessed the women for prolapse, stress incontinence, urgency, defecatory difficulty, digitation, pain, dyspareunia and apareunia. We also recorded the Pelvic Organ Prolapse Quantification (POP-Q) score. The TVM was removed and a Biodesign graft was used in the majority of cases to prevent further prolapse. Follow-up was at 6 weeks, 6 months, 1 and 2 years. In our cohort of 21 women, 18 required surgery for pain and/or dyspareunia; 20 women had reached the 6-week follow-up at the time of analysis. At 6 weeks, two women still had pain and required a second intervention. Fifteen women had reached a 6-month follow-up and only one woman had persistent pain requiring repeat surgery. Of the 15 women, 7 were sexually active and in 6 cases the dyspareunia had resolved completely with 1 woman retaining an element of pain at intercourse. Six women had been seen at 12 months and all four of the sexually active women had no dyspareunia. There were no symptoms relating to prolapse in any of the women at 6 weeks, 6, 12 or 24 months. We report satisfactory outcomes following removal of a complicated TVM kit.

  8. Opfront: mesh

    DEFF Research Database (Denmark)

    2015-01-01

    Mesh generation and visualization software based on the CGAL library. Folder content: drawmesh Visualize slices of the mesh (surface/volumetric) as wireframe on top of an image (3D). drawsurf Visualize surfaces of the mesh (surface/volumetric). img2mesh Convert isosurface in image to volumetric m...... mesh (medit format). img2off Convert isosurface in image to surface mesh (off format). off2mesh Convert surface mesh (off format) to volumetric mesh (medit format). reduce Crop and resize 3D and stacks of images. data Example data to test the library on...

  9. Anatomically standardised {sup 99m}Tc-ECD brain perfusion SPET allows accurate differentiation between healthy volunteers, multiple system atrophy and idiopathic Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Bosman, Tommy [Division of Nuclear Medicine, P7, Ghent University Hospital, De Pintelaan 185, 9000 Ghent (Belgium); Van Laere, Koen [Department of Nuclear Medicine, Leuven University Hospital, Herestraat 49, 3000 Leuven (Belgium); Santens, Patrick [Department of Neurology, Ghent University Hospital, Ghent (Belgium)

    2003-01-01

    The clinical differentiation between typical idiopathic Parkinson's disease (IPD) and atypical parkinsonian disorders such as multiple system atrophy (MSA) is complicated by the presence of signs and symptoms common to both forms. The goal of this study was to re-evaluate the contribution of brain perfusion single-photon emission tomography (SPET) with anatomical standardisation and automated analysis in the differentiation of IPD and MSA. This was achieved by discriminant analysis in comparison with a large set of age- and gender-matched healthy volunteers. Technetium-99m ethyl cysteinate dimer SPET was performed on 140 subjects: 81 IPD patients (age 62.6{+-}10.2 years; disease duration 11.0{+-}6.4 years; 50 males/31 females), 15 MSA patients (61.5{+-}9.2 years; disease duration 3.0{+-}2.2 years; 9 males/6 females) and 44 age- and gender-matched healthy volunteers (age 59.2{+-}11.9 years; 27 males/17 females). Patients were matched for severity (Hoehn and Yahr stage). Automated predefined volume of interest (VOI) analysis was carried out after anatomical standardisation. Stepwise discriminant analysis with cross-validation using the leave-one-out method was used to determine the subgroup of variables giving the highest accuracy for this differential diagnosis. Between MSA and IPD, the only regions with highly significant differences in uptake after Bonferroni correction were the putamen VOIs. Comparing MSA versus normals and IPD, with putamen VOI values as discriminating variables, cross-validated performance showed correct classification of MSA patients with a sensitivity of 73.3%, a specificity of 84% and an accuracy of 83.6%. Additional input from the right caudate head and the left prefrontal and left mesial temporal cortex allowed 100% discrimination even after cross-validation. Discrimination between the IPD group alone and healthy volunteers was accurate in 94% of the cases after cross-validation, with a sensitivity of 91.4% and a specificity of 100

  10. Anatomically standardised 99mTc-ECD brain perfusion SPET allows accurate differentiation between healthy volunteers, multiple system atrophy and idiopathic Parkinson's disease

    International Nuclear Information System (INIS)

    Bosman, Tommy; Van Laere, Koen; Santens, Patrick

    2003-01-01

    The clinical differentiation between typical idiopathic Parkinson's disease (IPD) and atypical parkinsonian disorders such as multiple system atrophy (MSA) is complicated by the presence of signs and symptoms common to both forms. The goal of this study was to re-evaluate the contribution of brain perfusion single-photon emission tomography (SPET) with anatomical standardisation and automated analysis in the differentiation of IPD and MSA. This was achieved by discriminant analysis in comparison with a large set of age- and gender-matched healthy volunteers. Technetium-99m ethyl cysteinate dimer SPET was performed on 140 subjects: 81 IPD patients (age 62.6±10.2 years; disease duration 11.0±6.4 years; 50 males/31 females), 15 MSA patients (61.5±9.2 years; disease duration 3.0±2.2 years; 9 males/6 females) and 44 age- and gender-matched healthy volunteers (age 59.2±11.9 years; 27 males/17 females). Patients were matched for severity (Hoehn and Yahr stage). Automated predefined volume of interest (VOI) analysis was carried out after anatomical standardisation. Stepwise discriminant analysis with cross-validation using the leave-one-out method was used to determine the subgroup of variables giving the highest accuracy for this differential diagnosis. Between MSA and IPD, the only regions with highly significant differences in uptake after Bonferroni correction were the putamen VOIs. Comparing MSA versus normals and IPD, with putamen VOI values as discriminating variables, cross-validated performance showed correct classification of MSA patients with a sensitivity of 73.3%, a specificity of 84% and an accuracy of 83.6%. Additional input from the right caudate head and the left prefrontal and left mesial temporal cortex allowed 100% discrimination even after cross-validation. Discrimination between the IPD group alone and healthy volunteers was accurate in 94% of the cases after cross-validation, with a sensitivity of 91.4% and a specificity of 100%. The three

  11. Coarse mesh code development

    Energy Technology Data Exchange (ETDEWEB)

    Lieberoth, J.

    1975-06-15

    The numerical solution of the neutron diffusion equation plays a very important role in the analysis of nuclear reactors. A wide variety of numerical procedures has been proposed, at which most of the frequently used numerical methods are fundamentally based on the finite- difference approximation where the partial derivatives are approximated by the finite difference. For complex geometries, typical of the practical reactor problems, the computational accuracy of the finite-difference method is seriously affected by the size of the mesh width relative to the neutron diffusion length and by the heterogeneity of the medium. Thus, a very large number of mesh points are generally required to obtain a reasonably accurate approximate solution of the multi-dimensional diffusion equation. Since the computation time is approximately proportional to the number of mesh points, a detailed multidimensional analysis, based on the conventional finite-difference method, is still expensive even with modern large-scale computers. Accordingly, there is a strong incentive to develop alternatives that can reduce the number of mesh-points and still retain accuracy. One of the promising alternatives is the finite element method, which consists of the expansion of the neutron flux by piecewise polynomials. One of the advantages of this procedure is its flexibility in selecting the locations of the mesh points and the degree of the expansion polynomial. The small number of mesh points of the coarse grid enables to store the results of several of the least outer iterations and to calculate well extrapolated values of them by comfortable formalisms. This holds especially if only one energy distribution of fission neutrons is assumed for all fission processes in the reactor, because the whole information of an outer iteration is contained in a field of fission rates which has the size of all mesh points of the coarse grid.

  12. Management of complications of mesh surgery.

    Science.gov (United States)

    Lee, Dominic; Zimmern, Philippe E

    2015-07-01

    Transvaginal placements of synthetic mid-urethral slings and vaginal meshes have largely superseded traditional tissue repairs in the current era because of presumed efficacy and ease of implant with device 'kits'. The use of synthetic material has generated novel complications including mesh extrusion, pelvic and vaginal pain and mesh contraction. In this review, our aim is to discuss the management, surgical techniques and outcomes associated with mesh removal. Recent publications have seen an increase in presentation of these mesh-related complications, and reports from multiple tertiary centers have suggested that not all patients benefit from surgical intervention. Although the true incidence of mesh complications is unknown, recent publications can serve to guide physicians and inform patients of the surgical outcomes from mesh-related complications. In addition, the literature highlights the growing need for a registry to account for a more accurate reporting of these events and to counsel patients on the risk and benefits before proceeding with mesh surgeries.

  13. The quadrant method measuring four points is as a reliable and accurate as the quadrant method in the evaluation after anatomical double-bundle ACL reconstruction.

    Science.gov (United States)

    Mochizuki, Yuta; Kaneko, Takao; Kawahara, Keisuke; Toyoda, Shinya; Kono, Norihiko; Hada, Masaru; Ikegami, Hiroyasu; Musha, Yoshiro

    2017-11-20

    The quadrant method was described by Bernard et al. and it has been widely used for postoperative evaluation of anterior cruciate ligament (ACL) reconstruction. The purpose of this research is to further develop the quadrant method measuring four points, which we named four-point quadrant method, and to compare with the quadrant method. Three-dimensional computed tomography (3D-CT) analyses were performed in 25 patients who underwent double-bundle ACL reconstruction using the outside-in technique. The four points in this study's quadrant method were defined as point1-highest, point2-deepest, point3-lowest, and point4-shallowest, in femoral tunnel position. Value of depth and height in each point was measured. Antero-medial (AM) tunnel is (depth1, height2) and postero-lateral (PL) tunnel is (depth3, height4) in this four-point quadrant method. The 3D-CT images were evaluated independently by 2 orthopaedic surgeons. A second measurement was performed by both observers after a 4-week interval. Intra- and inter-observer reliability was calculated by means of intra-class correlation coefficient (ICC). Also, the accuracy of the method was evaluated against the quadrant method. Intra-observer reliability was almost perfect for both AM and PL tunnel (ICC > 0.81). Inter-observer reliability of AM tunnel was substantial (ICC > 0.61) and that of PL tunnel was almost perfect (ICC > 0.81). The AM tunnel position was 0.13% deep, 0.58% high and PL tunnel position was 0.01% shallow, 0.13% low compared to quadrant method. The four-point quadrant method was found to have high intra- and inter-observer reliability and accuracy. This method can evaluate the tunnel position regardless of the shape and morphology of the bone tunnel aperture for use of comparison and can provide measurement that can be compared with various reconstruction methods. The four-point quadrant method of this study is considered to have clinical relevance in that it is a detailed and accurate tool for

  14. Urogynecologic Surgical Mesh Implants

    Science.gov (United States)

    ... procedures performed to treat pelvic floor disorders with surgical mesh: Transvaginal mesh to treat POP Transabdominal mesh to treat ... address safety risks Final Order for Reclassification of Surgical Mesh for Transvaginal Pelvic Organ Prolapse Repair Final Order for Effective ...

  15. Unstructured mesh adaptivity for urban flooding modelling

    Science.gov (United States)

    Hu, R.; Fang, F.; Salinas, P.; Pain, C. C.

    2018-05-01

    Over the past few decades, urban floods have been gaining more attention due to their increase in frequency. To provide reliable flooding predictions in urban areas, various numerical models have been developed to perform high-resolution flood simulations. However, the use of high-resolution meshes across the whole computational domain causes a high computational burden. In this paper, a 2D control-volume and finite-element flood model using adaptive unstructured mesh technology has been developed. This adaptive unstructured mesh technique enables meshes to be adapted optimally in time and space in response to the evolving flow features, thus providing sufficient mesh resolution where and when it is required. It has the advantage of capturing the details of local flows and wetting and drying front while reducing the computational cost. Complex topographic features are represented accurately during the flooding process. For example, the high-resolution meshes around the buildings and steep regions are placed when the flooding water reaches these regions. In this work a flooding event that happened in 2002 in Glasgow, Scotland, United Kingdom has been simulated to demonstrate the capability of the adaptive unstructured mesh flooding model. The simulations have been performed using both fixed and adaptive unstructured meshes, and then results have been compared with those published 2D and 3D results. The presented method shows that the 2D adaptive mesh model provides accurate results while having a low computational cost.

  16. Clinical use of AO three-dimensionally preformed titanium mesh plates for orbital fractures

    Directory of Open Access Journals (Sweden)

    Ming Chen

    2015-01-01

    Full Text Available AIM:To evaluate the accuracy and practicability of three-dimensionally preformed Arbeitsgemeinschaft Osteosynthese AO titanium mesh plates for orbital fractures.METHODS:Forty-seven patients with isolated blow-out orbital fractures were included in this study. Fracture locations were as follows: floor/medial wall(n=26, 55%, medial wall(n=12, 26%, and floor(n=9, 19%. The floor fractures were exposed by a standard transconjunctival approach, whereas a combined transcaruncular transconjunctival approach was used in patients with medial wall fractures with temporary dissection of inferior oblique muscle. A three-dimensionally preformed AO titanium mesh plate was selected according to the size of the defect previously measured on the preoperative computed tomographic scan examination and fixed at the inferior orbital rim with 2 screws. The accuracy of plate positioning of the reconstructed orbit was assessed on the postoperative computed tomography(CTscan. The practicability of clinical use of AO three-dimensionally preformed titanium mesh plates was assessed on the preoperative and postoperative clinical data.RESULTS: Postoperative orbital CT scan showed an anatomic three-dimensional placement of the orbital mesh plates in all of the patients. All patients had a successful treatment outcome without clinical complications. 40 patients(87%had a successful enophthalmos correction. 25 patients(86%had a successful recovery from diplopia.CONCLUSION: Three-dimensionally preformed AO titanium mesh plates for orbital fracture reconstruction results in an accurate anatomic restoration of the bony orbital contour with a high rate of success to correctenophthalmos and diplopia.

  17. Transvaginal mesh procedures for pelvic organ prolapse.

    Science.gov (United States)

    Walter, Jens-Erik

    2011-02-01

    To provide an update on transvaginal mesh procedures, newly available minimally invasive surgical techniques for pelvic floor repair. The discussion is limited to minimally invasive transvaginal mesh procedures. PubMed and Medline were searched for articles published in English, using the key words "pelvic organ prolapse," transvaginal mesh," and "minimally invasive surgery." Results were restricted to systematic reviews, randomized control trials/controlled clinical trials, and observational studies. Searches were updated on a regular basis, and articles were incorporated in the guideline to May 2010. Grey (unpublished) literature was identified through searching the websites of health technology assessment and health technology assessment-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical specialty societies. The quality of evidence was rated using the criteria described in the Report of the Canadian Task Force on the Preventive Health Care. Recommendations for practice were ranked according to the method described in that report (Table 1). Counselling for the surgical treatment of pelvic organ prolapse should consider all benefits, harms, and costs of the surgical procedure, with particular emphasis on the use of mesh. 1. Patients should be counselled that transvaginal mesh procedures are considered novel techniques for pelvic floor repair that demonstrate high rates of anatomical cure in uncontrolled short-term case series. (II-2B) 2. Patients should be informed of the range of success rates until stronger evidence of superiority is published. (II-2B) 3. Training specific to transvaginal mesh procedures should be undertaken before procedures are performed. (III-C) 4. Patients should undergo thorough preoperative counselling regarding (a) the potential serious adverse sequelae of transvaginal mesh repairs, including mesh exposure, pain, and dyspareunia; and (b) the limited data available

  18. Mesh Excision: Is Total Mesh Excision Necessary?

    Science.gov (United States)

    Wolff, Gillian F; Winters, J Christian; Krlin, Ryan M

    2016-04-01

    Nearly 29% of women will undergo a secondary, repeat operation for pelvic organ prolapse (POP) symptom recurrence following a primary repair, as reported by Abbott et al. (Am J Obstet Gynecol 210:163.e1-163.e1, 2014). In efforts to decrease the rates of failure, graft materials have been utilized to augment transvaginal repairs. Following the success of using polypropylene mesh (PPM) for stress urinary incontinence (SUI), the use of PPM in the transvaginal repair of POP increased. However, in recent years, significant concerns have been raised about the safety of PPM mesh. Complications, some specific to mesh, such as exposures, erosion, dyspareunia, and pelvic pain, have been reported with increased frequency. In the current literature, there is not substantive evidence to suggest that PPM has intrinsic properties that warrant total mesh removal in the absence of complications. There are a number of complications that can occur after transvaginal mesh placement that do warrant surgical intervention after failure of conservative therapy. In aggregate, there are no high-quality controlled studies that clearly demonstrate that total mesh removal is consistently more likely to achieve pain reduction. In the cases of obstruction and erosion, it seems clear that definitive removal of the offending mesh is associated with resolution of symptoms in the majority of cases and reasonable practice. There are a number of complications that can occur with removal of mesh, and patients should be informed of this as they formulate a choice of treatment. We will review these considerations as we examine the clinical question of whether total versus partial removal of mesh is necessary for the resolution of complications following transvaginal mesh placement.

  19. Mesh Optimization for Ground Vehicle Aerodynamics

    OpenAIRE

    Adrian Gaylard; Essam F Abo-Serie; Nor Elyana Ahmad

    2010-01-01

    Mesh optimization strategy for estimating accurate drag of a ground vehicle is proposed based on examining the effect of different mesh parameters.  The optimized mesh parameters were selected using design of experiment (DOE) method to be able to work in a...

  20. Mesh requirements for neutron transport calculations

    International Nuclear Information System (INIS)

    Askew, J.R.

    1967-07-01

    Fine-structure calculations are reported for a cylindrical natural uranium-graphite cell using different solution methods (discrete ordinate and collision probability codes) and varying the spatial mesh. It is suggested that of formulations assuming the source constant in a mesh interval the differential approach is generally to be preferred. Due to cancellation between approximations made in the derivation of the finite difference equations and the errors in neglecting source variation, the discrete ordinate code gave a more accurate estimate of fine structure for a given mesh even for unusually coarse representations. (author)

  1. Advanced 3D Mesh Manipulation in Stereolithographic Files and Post-Print Processing for the Manufacturing of Patient-Specific Vascular Flow Phantoms.

    Science.gov (United States)

    O'Hara, Ryan P; Chand, Arpita; Vidiyala, Sowmya; Arechavala, Stacie M; Mitsouras, Dimitrios; Rudin, Stephen; Ionita, Ciprian N

    2016-02-27

    Complex vascular anatomies can cause the failure of image-guided endovascular procedures. 3D printed patient-specific vascular phantoms provide clinicians and medical device companies the ability to preemptively plan surgical treatments, test the likelihood of device success, and determine potential operative setbacks. This research aims to present advanced mesh manipulation techniques of stereolithographic (STL) files segmented from medical imaging and post-print surface optimization to match physiological vascular flow resistance. For phantom design, we developed three mesh manipulation techniques. The first method allows outlet 3D mesh manipulations to merge superfluous vessels into a single junction, decreasing the number of flow outlets and making it feasible to include smaller vessels. Next we introduced Boolean operations to eliminate the need to manually merge mesh layers and eliminate errors of mesh self-intersections that previously occurred. Finally we optimize support addition to preserve the patient anatomical geometry. For post-print surface optimization, we investigated various solutions and methods to remove support material and smooth the inner vessel surface. Solutions of chloroform, alcohol and sodium hydroxide were used to process various phantoms and hydraulic resistance was measured and compared with values reported in literature. The newly mesh manipulation methods decrease the phantom design time by 30 - 80% and allow for rapid development of accurate vascular models. We have created 3D printed vascular models with vessel diameters less than 0.5 mm. The methods presented in this work could lead to shorter design time for patient specific phantoms and better physiological simulations.

  2. Grid adaptation using chimera composite overlapping meshes

    Science.gov (United States)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1994-01-01

    The objective of this paper is to perform grid adaptation using composite overlapping meshes in regions of large gradient to accurately capture the salient features during computation. The chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using trilinear interpolation. Application to the Euler equations for shock reflections and to shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well-resolved.

  3. Grid adaption using Chimera composite overlapping meshes

    Science.gov (United States)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1993-01-01

    The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.

  4. Accurate Evaluation of Quantum Integrals

    Science.gov (United States)

    Galant, D. C.; Goorvitch, D.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    Combining an appropriate finite difference method with Richardson's extrapolation results in a simple, highly accurate numerical method for solving a Schrodinger's equation. Important results are that error estimates are provided, and that one can extrapolate expectation values rather than the wavefunctions to obtain highly accurate expectation values. We discuss the eigenvalues, the error growth in repeated Richardson's extrapolation, and show that the expectation values calculated on a crude mesh can be extrapolated to obtain expectation values of high accuracy.

  5. Predicting mesh density for adaptive modelling of the global atmosphere.

    Science.gov (United States)

    Weller, Hilary

    2009-11-28

    The shallow water equations are solved using a mesh of polygons on the sphere, which adapts infrequently to the predicted future solution. Infrequent mesh adaptation reduces the cost of adaptation and load-balancing and will thus allow for more accurate mapping on adaptation. We simulate the growth of a barotropically unstable jet adapting the mesh every 12 h. Using an adaptation criterion based largely on the gradient of the vorticity leads to a mesh with around 20 per cent of the cells of a uniform mesh that gives equivalent results. This is a similar proportion to previous studies of the same test case with mesh adaptation every 1-20 min. The prediction of the mesh density involves solving the shallow water equations on a coarse mesh in advance of the locally refined mesh in order to estimate where features requiring higher resolution will grow, decay or move to. The adaptation criterion consists of two parts: that resolved on the coarse mesh, and that which is not resolved and so is passively advected on the coarse mesh. This combination leads to a balance between resolving features controlled by the large-scale dynamics and maintaining fine-scale features.

  6. Hernia Surgical Mesh Implants

    Science.gov (United States)

    ... knitted mesh or non-knitted sheet forms. The synthetic materials used can be absorbable, non-absorbable or a combination of absorbable and non-absorbable materials. Animal-derived mesh are made of animal tissue, such as intestine or skin, that has been processed and disinfected to be ...

  7. To mesh or not to mesh: a review of pelvic organ reconstructive surgery

    Science.gov (United States)

    Dällenbach, Patrick

    2015-01-01

    Pelvic organ prolapse (POP) is a major health issue with a lifetime risk of undergoing at least one surgical intervention estimated at close to 10%. In the 1990s, the risk of reoperation after primary standard vaginal procedure was estimated to be as high as 30% to 50%. In order to reduce the risk of relapse, gynecological surgeons started to use mesh implants in pelvic organ reconstructive surgery with the emergence of new complications. Recent studies have nevertheless shown that the risk of POP recurrence requiring reoperation is lower than previously estimated, being closer to 10% rather than 30%. The development of mesh surgery – actively promoted by the marketing industry – was tremendous during the past decade, and preceded any studies supporting its benefit for our patients. Randomized trials comparing the use of mesh to native tissue repair in POP surgery have now shown better anatomical but similar functional outcomes, and meshes are associated with more complications, in particular for transvaginal mesh implants. POP is not a life-threatening condition, but a functional problem that impairs quality of life for women. The old adage “primum non nocere” is particularly appropriate when dealing with this condition which requires no treatment when asymptomatic. It is currently admitted that a certain degree of POP is physiological with aging when situated above the landmark of the hymen. Treatment should be individualized and the use of mesh needs to be selective and appropriate. Mesh implants are probably an important tool in pelvic reconstructive surgery, but the ideal implant has yet to be found. The indications for its use still require caution and discernment. This review explores the reasons behind the introduction of mesh augmentation in POP surgery, and aims to clarify the risks, benefits, and the recognized indications for its use. PMID:25848324

  8. Geometrically Consistent Mesh Modification

    KAUST Repository

    Bonito, A.

    2010-01-01

    A new paradigm of adaptivity is to execute refinement, coarsening, and smoothing of meshes on manifolds with incomplete information about their geometry and yet preserve position and curvature accuracy. We refer to this collectively as geometrically consistent (GC) mesh modification. We discuss the concept of discrete GC, show the failure of naive approaches, and propose and analyze a simple algorithm that is GC and accuracy preserving. © 2010 Society for Industrial and Applied Mathematics.

  9. An automated approach for solution based mesh adaptation to enhance numerical accuracy for a given number of grid cells

    NARCIS (Netherlands)

    Lucas, P.; Van Zuijlen, A.H.; Bijl, H.

    2009-01-01

    Mesh adaptation is a fairly established tool to obtain numerically accurate solutions for flow problems. Computational efficiency is, however, not always guaranteed for the adaptation strategies found in literature. Typically excessive mesh growth diminishes the potential efficiency gain. This

  10. To mesh or not to mesh: a review of pelvic organ reconstructive surgery

    Directory of Open Access Journals (Sweden)

    Dällenbach P

    2015-04-01

    Full Text Available Patrick Dällenbach Department of Gynecology and Obstetrics, Division of Gynecology, Urogynecology Unit, Geneva University Hospitals, Geneva, Switzerland Abstract: Pelvic organ prolapse (POP is a major health issue with a lifetime risk of undergoing at least one surgical intervention estimated at close to 10%. In the 1990s, the risk of reoperation after primary standard vaginal procedure was estimated to be as high as 30% to 50%. In order to reduce the risk of relapse, gynecological surgeons started to use mesh implants in pelvic organ reconstructive surgery with the emergence of new complications. Recent studies have nevertheless shown that the risk of POP recurrence requiring reoperation is lower than previously estimated, being closer to 10% rather than 30%. The development of mesh surgery – actively promoted by the marketing industry – was tremendous during the past decade, and preceded any studies supporting its benefit for our patients. Randomized trials comparing the use of mesh to native tissue repair in POP surgery have now shown better anatomical but similar functional outcomes, and meshes are associated with more complications, in particular for transvaginal mesh implants. POP is not a life-threatening condition, but a functional problem that impairs quality of life for women. The old adage “primum non nocere” is particularly appropriate when dealing with this condition which requires no treatment when asymptomatic. It is currently admitted that a certain degree of POP is physiological with aging when situated above the landmark of the hymen. Treatment should be individualized and the use of mesh needs to be selective and appropriate. Mesh implants are probably an important tool in pelvic reconstructive surgery, but the ideal implant has yet to be found. The indications for its use still require caution and discernment. This review explores the reasons behind the introduction of mesh augmentation in POP surgery, and aims to

  11. Documentation for MeshKit - Reactor Geometry (&mesh) Generator

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Rajeev [Argonne National Lab. (ANL), Argonne, IL (United States); Mahadevan, Vijay [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-30

    This report gives documentation for using MeshKit’s Reactor Geometry (and mesh) Generator (RGG) GUI and also briefly documents other algorithms and tools available in MeshKit. RGG is a program designed to aid in modeling and meshing of complex/large hexagonal and rectilinear reactor cores. RGG uses Argonne’s SIGMA interfaces, Qt and VTK to produce an intuitive user interface. By integrating a 3D view of the reactor with the meshing tools and combining them into one user interface, RGG streamlines the task of preparing a simulation mesh and enables real-time feedback that reduces accidental scripting mistakes that could waste hours of meshing. RGG interfaces with MeshKit tools to consolidate the meshing process, meaning that going from model to mesh is as easy as a button click. This report is designed to explain RGG v 2.0 interface and provide users with the knowledge and skills to pilot RGG successfully. Brief documentation of MeshKit source code, tools and other algorithms available are also presented for developers to extend and add new algorithms to MeshKit. RGG tools work in serial and parallel and have been used to model complex reactor core models consisting of conical pins, load pads, several thousands of axially varying material properties of instrumentation pins and other interstices meshes.

  12. Sacral colpopexy versus transvaginal mesh colpopexy in obese patients.

    Science.gov (United States)

    McDermott, Colleen D; Park, Jean; Terry, Colin L; Woodman, Patrick J; Hale, Douglass S

    2013-05-01

    Obesity can predispose women to pelvic organ prolapse and can also affect the success of pelvic organ prolapse surgery. The purpose of this study was to compare the postoperative anatomical outcomes following sacral colpopexy (SC) and transvaginal mesh colpopexy in a group of obese women with pelvic organ prolapse. We conducted a retrospective cohort study of obese women who underwent SC (n = 56) or transvaginal mesh colpopexy (n = 35). Follow-up ranged from 6 to 12 months. Preoperative, perioperative, and postoperative variables were compared using Student t, Mann-Whitney U, and Fisher exact tests, and by analysis of covariance. The women in the SC group had significantly higher mean apical vaginal measurements (P transvaginal mesh colpopexy group. There were no significant differences between the groups for other postoperative outcomes, including mesh erosion, recurrent prolapse symptoms, dyspareunia, and surgical satisfaction (P > 0.05). In these 91 obese patients with pelvic organ prolapse, SC resulted in better anatomical outcomes than transvaginal mesh colpopexy. However, the two procedures had similar outcomes with regard to recurrent symptoms and surgical satisfaction.

  13. Toward An Unstructured Mesh Database

    Science.gov (United States)

    Rezaei Mahdiraji, Alireza; Baumann, Peter Peter

    2014-05-01

    Unstructured meshes are used in several application domains such as earth sciences (e.g., seismology), medicine, oceanography, cli- mate modeling, GIS as approximate representations of physical objects. Meshes subdivide a domain into smaller geometric elements (called cells) which are glued together by incidence relationships. The subdivision of a domain allows computational manipulation of complicated physical structures. For instance, seismologists model earthquakes using elastic wave propagation solvers on hexahedral meshes. The hexahedral con- tains several hundred millions of grid points and millions of hexahedral cells. Each vertex node in the hexahedrals stores a multitude of data fields. To run simulation on such meshes, one needs to iterate over all the cells, iterate over incident cells to a given cell, retrieve coordinates of cells, assign data values to cells, etc. Although meshes are used in many application domains, to the best of our knowledge there is no database vendor that support unstructured mesh features. Currently, the main tool for querying and manipulating unstructured meshes are mesh libraries, e.g., CGAL and GRAL. Mesh li- braries are dedicated libraries which includes mesh algorithms and can be run on mesh representations. The libraries do not scale with dataset size, do not have declarative query language, and need deep C++ knowledge for query implementations. Furthermore, due to high coupling between the implementations and input file structure, the implementations are less reusable and costly to maintain. A dedicated mesh database offers the following advantages: 1) declarative querying, 2) ease of maintenance, 3) hiding mesh storage structure from applications, and 4) transparent query optimization. To design a mesh database, the first challenge is to define a suitable generic data model for unstructured meshes. We proposed ImG-Complexes data model as a generic topological mesh data model which extends incidence graph model to multi

  14. D-BRAIN : Anatomically accurate simulated diffusion MRI brain data

    NARCIS (Netherlands)

    Perrone, Daniele; Jeurissen, Ben; Aelterman, Jan; Roine, Timo; Sijbers, Jan; Pizurica, Aleksandra; Leemans, Alexander; Philips, Wilfried

    2016-01-01

    Diffusion Weighted (DW) MRI allows for the non-invasive study of water diffusion inside living tissues. As such, it is useful for the investigation of human brain white matter (WM) connectivity in vivo through fiber tractography (FT) algorithms. Many DW-MRI tailored restoration techniques and FT

  15. SUPERIMPOSED MESH PLOTTING IN MCNP

    Energy Technology Data Exchange (ETDEWEB)

    J. HENDRICKS

    2001-02-01

    The capability to plot superimposed meshes has been added to MCNP{trademark}. MCNP4C featured a superimposed mesh weight window generator which enabled users to set up geometries without having to subdivide geometric cells for variance reduction. The variance reduction was performed with weight windows on a rectangular or cylindrical mesh superimposed over the physical geometry. Experience with the new capability was favorable but also indicated that a number of enhancements would be very beneficial, particularly a means of visualizing the mesh and its values. The mathematics for plotting the mesh and its values is described here along with a description of other upgrades.

  16. Inexpensive anatomical trainer for bronchoscopy.

    Science.gov (United States)

    Di Domenico, Stefano; Simonassi, Claudio; Chessa, Leonardo

    2007-08-01

    Flexible fiberoptic bronchoscopy is an indispensable tool for optimal management of intensive care unit patients. However, the acquisition of sufficient training in bronchoscopy is not straightforward during residency, because of technical and ethical problems. Moreover, the use of commercial simulators is limited by their high cost. In order to overcome these limitations, we realized a low-cost anatomical simulator to acquire and maintain the basic skill to perform bronchoscopy in ventilated patients. We used 1.5 mm diameter iron wire to construct the bronchial tree scaffold; glazier-putty was applied to create the anatomical model. The model was covered by several layers of newspaper strips previously immersed in water and vinilic glue. When the model completely dried up, it was detached from the scaffold by cutting it into six pieces, it was reassembled, painted and fitted with an endotracheal tube. We used very cheap material and the final cost was euro16. The trainer resulted in real-scale and anatomically accurate, with appropriate correspondence on endoscopic view between model and patients. All bronchial segments can be explored and easily identified by endoscopic and external vision. This cheap simulator is a valuable tool for practicing, particularly in a hospital with limited resources for medical training.

  17. Wireless mesh networks.

    Science.gov (United States)

    Wang, Xinheng

    2008-01-01

    Wireless telemedicine using GSM and GPRS technologies can only provide low bandwidth connections, which makes it difficult to transmit images and video. Satellite or 3G wireless transmission provides greater bandwidth, but the running costs are high. Wireless networks (WLANs) appear promising, since they can supply high bandwidth at low cost. However, the WLAN technology has limitations, such as coverage. A new wireless networking technology named the wireless mesh network (WMN) overcomes some of the limitations of the WLAN. A WMN combines the characteristics of both a WLAN and ad hoc networks, thus forming an intelligent, large scale and broadband wireless network. These features are attractive for telemedicine and telecare because of the ability to provide data, voice and video communications over a large area. One successful wireless telemedicine project which uses wireless mesh technology is the Emergency Room Link (ER-LINK) in Tucson, Arizona, USA. There are three key characteristics of a WMN: self-organization, including self-management and self-healing; dynamic changes in network topology; and scalability. What we may now see is a shift from mobile communication and satellite systems for wireless telemedicine to the use of wireless networks based on mesh technology, since the latter are very attractive in terms of cost, reliability and speed.

  18. Polyhedral meshing in numerical analysis of conjugate heat transfer

    Science.gov (United States)

    Sosnowski, Marcin; Krzywanski, Jaroslaw; Grabowska, Karolina; Gnatowska, Renata

    2018-06-01

    Computational methods have been widely applied in conjugate heat transfer analysis. The very first and crucial step in such research is the meshing process which consists in dividing the analysed geometry into numerous small control volumes (cells). In Computational Fluid Dynamics (CFD) applications it is desirable to use the hexahedral cells as the resulting mesh is characterized by low numerical diffusion. Unfortunately generating such mesh can be a very time-consuming task and in case of complicated geometry - it may not be possible to generate cells of good quality. Therefore tetrahedral cells have been implemented into commercial pre-processors. Their advantage is the ease of its generation even in case of very complex geometry. On the other hand tetrahedrons cannot be stretched excessively without decreasing the mesh quality factor, so significantly larger number of cells has to be used in comparison to hexahedral mesh in order to achieve a reasonable accuracy. Moreover the numerical diffusion of tetrahedral elements is significantly higher. Therefore the polyhedral cells are proposed within the paper in order to combine the advantages of hexahedrons (low numerical diffusion resulting in accurate solution) and tetrahedrons (rapid semi-automatic generation) as well as to overcome the disadvantages of both the above mentioned mesh types. The major benefit of polyhedral mesh is that each individual cell has many neighbours, so gradients can be well approximated. Polyhedrons are also less sensitive to stretching than tetrahedrons which results in better mesh quality leading to improved numerical stability of the model. In addition, numerical diffusion is reduced due to mass exchange over numerous faces. This leads to a more accurate solution achieved with a lower cell count. Therefore detailed comparison of numerical modelling results concerning conjugate heat transfer using tetrahedral and polyhedral meshes is presented in the paper.

  19. Anterior colporrhaphy versus transvaginal mesh for pelvic-organ prolapse.

    Science.gov (United States)

    Altman, Daniel; Väyrynen, Tapio; Engh, Marie Ellström; Axelsen, Susanne; Falconer, Christian

    2011-05-12

    The use of standardized mesh kits for repair of pelvic-organ prolapse has spread rapidly in recent years, but it is unclear whether this approach results in better outcomes than traditional colporrhaphy. In this multicenter, parallel-group, randomized, controlled trial, we compared the use of a trocar-guided, transvaginal polypropylene-mesh repair kit with traditional colporrhaphy in women with prolapse of the anterior vaginal wall (cystocele). The primary outcome was a composite of the objective anatomical designation of stage 0 (no prolapse) or 1 (position of the anterior vaginal wall more than 1 cm above the hymen), according to the Pelvic Organ Prolapse Quantification system, and the subjective absence of symptoms of vaginal bulging 12 months after the surgery. Of 389 women who were randomly assigned to a study treatment, 200 underwent prolapse repair with the transvaginal mesh kit and 189 underwent traditional colporrhaphy. At 1 year, the primary outcome was significantly more common in the women treated with transvaginal mesh repair (60.8%) than in those who underwent colporrhaphy (34.5%) (absolute difference, 26.3 percentage points; 95% confidence interval, 15.6 to 37.0). The surgery lasted longer and the rates of intraoperative hemorrhage were higher in the mesh-repair group than in the colporrhaphy group (Pmesh-repair group and 0.5% in the colporrhaphy group (P=0.07), and the respective rates of new stress urinary incontinence after surgery were 12.3% and 6.3% (P=0.05). Surgical reintervention to correct mesh exposure during follow-up occurred in 3.2% of 186 patients in the mesh-repair group. As compared with anterior colporrhaphy, use of a standardized, trocar-guided mesh kit for cystocele repair resulted in higher short-term rates of successful treatment but also in higher rates of surgical complications and postoperative adverse events. (Funded by the Karolinska Institutet and Ethicon; ClinicalTrials.gov number, NCT00566917.).

  20. Anatomically Plausible Surface Alignment and Reconstruction

    DEFF Research Database (Denmark)

    Paulsen, Rasmus R.; Larsen, Rasmus

    2010-01-01

    With the increasing clinical use of 3D surface scanners, there is a need for accurate and reliable algorithms that can produce anatomically plausible surfaces. In this paper, a combined method for surface alignment and reconstruction is proposed. It is based on an implicit surface representation...

  1. Mesh erosion after abdominal sacrocolpopexy.

    Science.gov (United States)

    Kohli, N; Walsh, P M; Roat, T W; Karram, M M

    1998-12-01

    To report our experience with erosion of permanent suture or mesh material after abdominal sacrocolpopexy. A retrospective chart review was performed to identify patients who underwent sacrocolpopexy by the same surgeon over 8 years. Demographic data, operative notes, hospital records, and office charts were reviewed after sacrocolpopexy. Patients with erosion of either suture or mesh were treated initially with conservative therapy followed by surgical intervention as required. Fifty-seven patients underwent sacrocolpopexy using synthetic mesh during the study period. The mean (range) postoperative follow-up was 19.9 (1.3-50) months. Seven patients (12%) had erosions after abdominal sacrocolpopexy with two suture erosions and five mesh erosions. Patients with suture erosion were asymptomatic compared with patients with mesh erosion, who presented with vaginal bleeding or discharge. The mean (+/-standard deviation) time to erosion was 14.0+/-7.7 (range 4-24) months. Both patients with suture erosion were treated conservatively with estrogen cream. All five patients with mesh erosion required transvaginal removal of the mesh. Mesh erosion can follow abdominal sacrocolpopexy over a long time, and usually presents as vaginal bleeding or discharge. Although patients with suture erosion can be managed successfully with conservative treatment, patients with mesh erosion require surgical intervention. Transvaginal removal of the mesh with vaginal advancement appears to be an effective treatment in patients failing conservative management.

  2. Notes on the Mesh Handler and Mesh Data Conversion

    International Nuclear Information System (INIS)

    Lee, Sang Yong; Park, Chan Eok

    2009-01-01

    At the outset of the development of the thermal-hydraulic code (THC), efforts have been made to utilize the recent technology of the computational fluid dynamics. Among many of them, the unstructured mesh approach was adopted to alleviate the restriction of the grid handling system. As a natural consequence, a mesh handler (MH) has been developed to manipulate the complex mesh data from the mesh generator. The mesh generator, Gambit, was chosen at the beginning of the development of the code. But a new mesh generator, Pointwise, was introduced to get more flexible mesh generation capability. An open source code, Paraview, was chosen as a post processor, which can handle unstructured as well as structured mesh data. Overall data processing system for THC is shown in Figure-1. There are various file formats to save the mesh data in the permanent storage media. A couple of dozen of file formats are found even in the above mentioned programs. A competent mesh handler should have the capability to import or export mesh data as many as possible formats. But, in reality, there are two aspects that make it difficult to achieve the competence. The first aspect to consider is the time and efforts to program the interface code. And the second aspect, which is even more difficult one, is the fact that many mesh data file formats are proprietary information. In this paper, some experience of the development of the format conversion programs will be presented. File formats involved are Gambit neutral format, Ansys-CFX grid file format, VTK legacy file format, Nastran format and CGNS

  3. Streaming simplification of tetrahedral meshes.

    Science.gov (United States)

    Vo, Huy T; Callahan, Steven P; Lindstrom, Peter; Pascucci, Valerio; Silva, Cláudio T

    2007-01-01

    Unstructured tetrahedral meshes are commonly used in scientific computing to represent scalar, vector, and tensor fields in three dimensions. Visualization of these meshes can be difficult to perform interactively due to their size and complexity. By reducing the size of the data, we can accomplish real-time visualization necessary for scientific analysis. We propose a two-step approach for streaming simplification of large tetrahedral meshes. Our algorithm arranges the data on disk in a streaming, I/O-efficient format that allows coherent access to the tetrahedral cells. A quadric-based simplification is sequentially performed on small portions of the mesh in-core. Our output is a coherent streaming mesh which facilitates future processing. Our technique is fast, produces high quality approximations, and operates out-of-core to process meshes too large for main memory.

  4. Are patient specific meshes required for EIT head imaging?

    Science.gov (United States)

    Jehl, Markus; Aristovich, Kirill; Faulkner, Mayo; Holder, David

    2016-06-01

    Head imaging with electrical impedance tomography (EIT) is usually done with time-differential measurements, to reduce time-invariant modelling errors. Previous research suggested that more accurate head models improved image quality, but no thorough analysis has been done on the required accuracy. We propose a novel pipeline for creation of precise head meshes from magnetic resonance imaging and computed tomography scans, which was applied to four different heads. Voltages were simulated on all four heads for perturbations of different magnitude, haemorrhage and ischaemia, in five different positions and for three levels of instrumentation noise. Statistical analysis showed that reconstructions on the correct mesh were on average 25% better than on the other meshes. However, the stroke detection rates were not improved. We conclude that a generic head mesh is sufficient for monitoring patients for secondary strokes following head trauma.

  5. Surface meshing with curvature convergence

    KAUST Repository

    Li, Huibin; Zeng, Wei; Morvan, Jean-Marie; Chen, Liming; Gu, Xianfengdavid

    2014-01-01

    Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations. The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to the Riemannian metric and independent of the embedding. In practice, our meshing algorithm is much easier to implement and much more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm. © 2014 IEEE.

  6. Surface meshing with curvature convergence

    KAUST Repository

    Li, Huibin

    2014-06-01

    Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations. The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to the Riemannian metric and independent of the embedding. In practice, our meshing algorithm is much easier to implement and much more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm. © 2014 IEEE.

  7. h-Adaptive Mesh Generation using Electric Field Intensity Value as a Criterion (in Japanese)

    OpenAIRE

    Toyonaga, Kiyomi; Cingoski, Vlatko; Kaneda, Kazufumi; Yamashita, Hideo

    1994-01-01

    Finite mesh divisions are essential to obtain accurate solution of two dimensional electric field analysis. It requires the technical knowledge to generate a suitable fine mesh divisions. In electric field problem, analysts are usually interested in the electric field intensity and its distribution. In order to obtain electric field intensity with high-accuracy, we have developed and adaptive mesh generator using electric field intensity value as a criterion.

  8. Leveraging the power of mesh

    Energy Technology Data Exchange (ETDEWEB)

    Glass, H. [Cellnet, Alpharetta, GA (United States)

    2006-07-01

    Mesh network applications are used by utilities for metering, demand response, and mobile workforce management. This presentation provided an overview of a multi-dimensional mesh application designed to offer improved scalability and higher throughput in advanced metering infrastructure (AMI) systems. Mesh applications can be used in AMI for load balancing and forecasting, as well as for distribution and transmission planning. New revenue opportunities can be realized through the application's ability to improve notification and monitoring services, and customer service communications. Mesh network security features include data encryption, data fragmentation and the automatic re-routing of data. In order to use mesh network applications, networks must have sufficient bandwidth and provide flexibility at the endpoint layer to support multiple devices from multiple vendors, as well as support multiple protocols. It was concluded that smart meters will not enable energy response solutions without an underlying AMI that is reliable, scalable and self-healing. .refs., tabs., figs.

  9. 3D Mesh Compression and Transmission for Mobile Robotic Applications

    Directory of Open Access Journals (Sweden)

    Bailin Yang

    2016-01-01

    Full Text Available Mobile robots are useful for environment exploration and rescue operations. In such applications, it is crucial to accurately analyse and represent an environment, providing appropriate inputs for motion planning in order to support robot navigation and operations. 2D mapping methods are simple but cannot handle multilevel or multistory environments. To address this problem, 3D mapping methods generate structural 3D representations of the robot operating environment and its objects by 3D mesh reconstruction. However, they face the challenge of efficiently transmitting those 3D representations to system modules for 3D mapping, motion planning, and robot operation visualization. This paper proposes a quality-driven mesh compression and transmission method to address this. Our method is efficient, as it compresses a mesh by quantizing its transformed vertices without the need to spend time constructing an a-priori structure over the mesh. A visual distortion function is developed to govern the level of quantization, allowing mesh transmission to be controlled under different network conditions or time constraints. Our experiments demonstrate how the visual quality of a mesh can be manipulated by the visual distortion function.

  10. The quasidiffusion method for transport problems on unstructured meshes

    Science.gov (United States)

    Wieselquist, William A.

    2009-06-01

    In this work, we develop a quasidiffusion (QD) method for solving radiation transport problems on unstructured quadrilateral meshes in 2D Cartesian geometry, for example hanging-node meshes from adaptive mesh refinement (AMR) applications or skewed quadrilateral meshes from radiation hydrodynamics with Lagrangian meshing. The main result of the work is a new low-order quasidiffusion (LOQD) discretization on arbitrary quadrilaterals and a strategy for the efficient iterative solution which uses Krylov methods and incomplete LU factorization (ILU) preconditioning. The LOQD equations are a non-symmetric set of first-order PDEs that in second-order form resembles convection- diffusion with a diffusion tensor, with the difference that the LOQD equations contain extra cross-derivative terms. Our finite volume (FV) discretization of the LOQD equations is compared with three LOQD discretizations from literature. We then present a conservative, short characteristics discretization based on subcell balances (SCSB) that uses polynomial exponential moments to achieve robust behavior in various limits (e.g. small cells and voids) and is second- order accurate in space. A linear representation of the isotropic component of the scattering source based on face-average and cell-average scalar fluxes is also proposed and shown to be effective in some problems. In numerical tests, our QD method with linear scattering source representation shows some advantages compared to other transport methods. We conclude with avenues for future research and note that this QD method may easily be extended to arbitrary meshes in 3D Cartesian geometry.

  11. Streaming Compression of Hexahedral Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Isenburg, M; Courbet, C

    2010-02-03

    We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream documents when vertices are referenced for the last time (i.e. when it contains topological finalization tags). Our coder then continuously releases and reuses data structures that no longer contribute to compressing the remainder of the stream. This means in practice that our coder has only a small fraction of the whole mesh in memory at any time. We can therefore compress very large meshes - even meshes that do not file in memory. Compared to traditional, non-streaming approaches that load the entire mesh and globally reorder it during compression, our algorithm trades a less compact compressed representation for significant gains in speed, memory, and I/O efficiency. For example, on the 456k hexahedra 'blade' mesh, our coder is twice as fast and uses 88 times less memory (only 3.1 MB) with the compressed file increasing about 3% in size. We also present the first scheme for predictive compression of properties associated with hexahedral cells.

  12. Mesh Adaptation and Shape Optimization on Unstructured Meshes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR CRM proposes to implement the entropy adjoint method for solution adaptive mesh refinement into the Loci/CHEM unstructured flow solver. The scheme will...

  13. Anatomical curve identification

    Science.gov (United States)

    Bowman, Adrian W.; Katina, Stanislav; Smith, Joanna; Brown, Denise

    2015-01-01

    Methods for capturing images in three dimensions are now widely available, with stereo-photogrammetry and laser scanning being two common approaches. In anatomical studies, a number of landmarks are usually identified manually from each of these images and these form the basis of subsequent statistical analysis. However, landmarks express only a very small proportion of the information available from the images. Anatomically defined curves have the advantage of providing a much richer expression of shape. This is explored in the context of identifying the boundary of breasts from an image of the female torso and the boundary of the lips from a facial image. The curves of interest are characterised by ridges or valleys. Key issues in estimation are the ability to navigate across the anatomical surface in three-dimensions, the ability to recognise the relevant boundary and the need to assess the evidence for the presence of the surface feature of interest. The first issue is addressed by the use of principal curves, as an extension of principal components, the second by suitable assessment of curvature and the third by change-point detection. P-spline smoothing is used as an integral part of the methods but adaptations are made to the specific anatomical features of interest. After estimation of the boundary curves, the intermediate surfaces of the anatomical feature of interest can be characterised by surface interpolation. This allows shape variation to be explored using standard methods such as principal components. These tools are applied to a collection of images of women where one breast has been reconstructed after mastectomy and where interest lies in shape differences between the reconstructed and unreconstructed breasts. They are also applied to a collection of lip images where possible differences in shape between males and females are of interest. PMID:26041943

  14. Adaptive moving mesh methods for simulating one-dimensional groundwater problems with sharp moving fronts

    Science.gov (United States)

    Huang, W.; Zheng, Lingyun; Zhan, X.

    2002-01-01

    Accurate modelling of groundwater flow and transport with sharp moving fronts often involves high computational cost, when a fixed/uniform mesh is used. In this paper, we investigate the modelling of groundwater problems using a particular adaptive mesh method called the moving mesh partial differential equation approach. With this approach, the mesh is dynamically relocated through a partial differential equation to capture the evolving sharp fronts with a relatively small number of grid points. The mesh movement and physical system modelling are realized by solving the mesh movement and physical partial differential equations alternately. The method is applied to the modelling of a range of groundwater problems, including advection dominated chemical transport and reaction, non-linear infiltration in soil, and the coupling of density dependent flow and transport. Numerical results demonstrate that sharp moving fronts can be accurately and efficiently captured by the moving mesh approach. Also addressed are important implementation strategies, e.g. the construction of the monitor function based on the interpolation error, control of mesh concentration, and two-layer mesh movement. Copyright ?? 2002 John Wiley and Sons, Ltd.

  15. A prospective randomised trial comparing mesh types and fixation in totally extraperitoneal inguinal hernia repairs.

    Science.gov (United States)

    Cristaudo, Adam; Nayak, Arun; Martin, Sarah; Adib, Reza; Martin, Ian

    2015-05-01

    The totally extraperitoneal (TEP) approach for surgical repair of inguinal hernias has emerged as a popular technique. We conducted a prospective randomised trial to compare patient comfort scores using different mesh types and fixation using this technique. Over a 14 month period, 146 patients underwent 232 TEP inguinal hernia repairs. We compared the comfort scores of patients who underwent these procedures using different types of mesh and fixation. A non-absorbable 15 × 10 cm anatomical mesh fixed with absorbable tacks (Control group) was compared with either a non-absorbable 15 × 10 cm folding slit mesh with absorbable tacks (Group 2), a partially-absorbable 15 × 10 cm mesh with absorbable tacks (Group 3) or a non-absorbable 15 × 10 cm anatomical mesh fixed with 2 ml fibrin sealant (Group 4). Outcomes were compared at 1, 2, 4 and 12 weeks using the Carolina Comfort Scale (CCS) scores. At 1, 2, 4 and 12 weeks, the median global CCS scores were low for all treatment groups. Statistically significant differences were seen only for median CCS scores and subscores with the use of partially-absorbable mesh with absorbable tacks (Group 3) at weeks 2 and 4. However, these were no longer significant at week 12. In this study, the TEP inguinal hernia repair with minimal fixation results in low CCS scores. There were no statistical differences in CCS scores when comparing types of mesh, configuration of the mesh or fixation methods. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  16. Mesh size effects on assessments of planktonic hydrozoan abundance and assemblage structure

    Science.gov (United States)

    Nogueira Júnior, Miodeli; Pukanski, Luis Eduardo de M.; Souza-Conceição, José M.

    2015-04-01

    The choice of appropriate mesh-size is paramount to accurately quantify planktonic assemblages, however there is no such information available for hydrozoans. Here planktonic hydrozoan abundance and assemblage structure were compared using 200 and 500 μm meshes at Babitonga estuary (S Brazil), throughout a year cycle. Species richness and Shannon-Wiener diversity were higher in the 200 μm mesh, while evenness was typically higher in the 500 μm. Assemblage structure was significantly different between meshes (PERMANOVA, P 8 mm in October. These results suggest that both meshes have their drawbacks and the best choice would depend on the objectives of each study. Nevertheless species richness, total abundances and most taxa were better represented by the 200 μm mesh, suggesting that it is more appropriate to quantitatively sample planktonic hydrozoan assemblages.

  17. Mechanical behaviour of synthetic surgical meshes: finite element simulation of the herniated abdominal wall.

    Science.gov (United States)

    Hernández-Gascón, B; Peña, E; Melero, H; Pascual, G; Doblaré, M; Ginebra, M P; Bellón, J M; Calvo, B

    2011-11-01

    The material properties of meshes used in hernia surgery contribute to the overall mechanical behaviour of the repaired abdominal wall. The mechanical response of a surgical mesh has to be defined since the haphazard orientation of an anisotropic mesh can lead to inconsistent surgical outcomes. This study was designed to characterize the mechanical behaviour of three surgical meshes (Surgipro®, Optilene® and Infinit®) and to describe a mechanical constitutive law that accurately reproduces the experimental results. Finally, through finite element simulation, the behaviour of the abdominal wall was modelled before and after surgical mesh implant. Uniaxial loading of mesh samples in two perpendicular directions revealed the isotropic response of Surgipro® and the anisotropic behaviour of Optilene® and Infinit®. A phenomenological constitutive law was used to reproduce the measured experimental curves. To analyze the mechanical effect of the meshes once implanted in the abdomen, finite element simulation of the healthy and partially herniated repaired rabbit abdominal wall served to reproduce wall behaviour before and after mesh implant. In all cases, maximal displacements were lower and maximal principal stresses higher in the implanted abdomen than the intact wall model. Despite the fact that no mesh showed a behaviour that perfectly matched that of abdominal muscle, the Infinit® mesh was able to best comply with the biomechanics of the abdominal wall. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Complications of transvaginal silicone-coated polyester synthetic mesh sling.

    Science.gov (United States)

    Govier, F E; Kobashi, K C; Kuznetsov, D D; Comiter, C; Jones, P; Dakil, S E; James, R

    2005-10-01

    To report a premarket multicenter trial to test the feasibility of a transvaginal silicone-coated polyester synthetic mesh sling in women with anatomic incontinence. Fifty-one patients in four centers underwent transvaginal placement of a silicone-coated polyester synthetic mesh sling (American Medical Systems) during an 8-month period. Of the 51 patients, 31 were part of a prospective institutional review board-approved feasibility trial in three centers funded by American Medical Systems (group 1) and 20 underwent implantation by a single surgeon and their data were retrospectively reviewed (group 2). The studies were done concomitantly, and all slings were fixed transvaginally with bone anchors. All patients in group 1 were followed up at 4 weeks, 6 months, and 1 year (as applicable) with repeat questionnaires, physical examinations, and pad tests. In group 1, 20 patients completed 6 months of follow-up. Ten patients (32%) required a second surgical procedure at an average of 183 days (range 68 to 343) postoperatively. Eight patients (26%) had vaginal extrusion of the mesh, one (3%) required sling lysis, and one (3%) required sling removal because of infection. In group 2, 8 patients (40%) underwent sling removal for vaginal extrusion at a mean of 160 days (range 83 to 214). Transvaginally placed silicone-coated mesh slings used for the treatment of urinary incontinence demonstrated an unacceptably high vaginal extrusion rate in this study. Once identified, this study was immediately terminated, and this product was not marketed for this application in the United States.

  19. Reactor physics verification of the MCNP6 unstructured mesh capability

    International Nuclear Information System (INIS)

    Burke, T. P.; Kiedrowski, B. C.; Martz, R. L.; Martin, W. R.

    2013-01-01

    The Monte Carlo software package MCNP6 has the ability to transport particles on unstructured meshes generated from the Computed-Aided Engineering software Abaqus. Verification is performed using benchmarks with features relevant to reactor physics - Big Ten and the C5G7 computational benchmark. Various meshing strategies are tested and results are compared to reference solutions. Computational performance results are also given. The conclusions show MCNP6 is capable of producing accurate calculations for reactor physics geometries and the computational requirements for small lattice benchmarks are reasonable on modern computing platforms. (authors)

  20. Reactor physics verification of the MCNP6 unstructured mesh capability

    Energy Technology Data Exchange (ETDEWEB)

    Burke, T. P. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Kiedrowski, B. C.; Martz, R. L. [X-Computational Physics Division, Monte Carlo Codes Group, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Martin, W. R. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States)

    2013-07-01

    The Monte Carlo software package MCNP6 has the ability to transport particles on unstructured meshes generated from the Computed-Aided Engineering software Abaqus. Verification is performed using benchmarks with features relevant to reactor physics - Big Ten and the C5G7 computational benchmark. Various meshing strategies are tested and results are compared to reference solutions. Computational performance results are also given. The conclusions show MCNP6 is capable of producing accurate calculations for reactor physics geometries and the computational requirements for small lattice benchmarks are reasonable on modern computing platforms. (authors)

  1. Mersiline mesh in premaxillary augmentation.

    Science.gov (United States)

    Foda, Hossam M T

    2005-01-01

    Premaxillary retrusion may distort the aesthetic appearance of the columella, lip, and nasal tip. This defect is characteristically seen in, but not limited to, patients with cleft lip nasal deformity. This study investigated 60 patients presenting with premaxillary deficiencies in which Mersiline mesh was used to augment the premaxilla. All the cases had surgery using the external rhinoplasty technique. Two methods of augmentation with Mersiline mesh were used: the Mersiline roll technique, for the cases with central symmetric deficiencies, and the Mersiline packing technique, for the cases with asymmetric deficiencies. Premaxillary augmentation with Mersiline mesh proved to be simple technically, easy to perform, and not associated with any complications. Periodic follow-up evaluation for a mean period of 32 months (range, 12-98 months) showed that an adequate degree of premaxillary augmentation was maintained with no clinically detectable resorption of the mesh implant.

  2. GENERATION OF IRREGULAR HEXAGONAL MESHES

    Directory of Open Access Journals (Sweden)

    Vlasov Aleksandr Nikolaevich

    2012-07-01

    Decomposition is performed in a constructive way and, as option, it involves meshless representation. Further, this mapping method is used to generate the calculation mesh. In this paper, the authors analyze different cases of mapping onto simply connected and bi-connected canonical domains. They represent forward and backward mapping techniques. Their potential application for generation of nonuniform meshes within the framework of the asymptotic homogenization theory is also performed to assess and project effective characteristics of heterogeneous materials (composites.

  3. Field-aligned mesh joinery

    OpenAIRE

    Cignoni, Paolo; Pietroni, Nico; Malomo, Luigi

    2014-01-01

    Mesh joinery is an innovative method to produce illustrative shape approximations suitable for fabrication. Mesh joinery is capable of producing complex fabricable structures in an efficient and visually pleasing manner. We represent an input geometry as a set of planar pieces arranged to compose a rigid structure, by exploiting an efficient slit mechanism. Since slices are planar, to fabricate them a standard 2D cutting system is enough. We automatically arrange slices according to a smooth ...

  4. Early fetal anatomical sonography.

    LENUS (Irish Health Repository)

    Donnelly, Jennifer C

    2012-10-01

    Over the past decade, prenatal screening and diagnosis has moved from the second into the first trimester, with aneuploidy screening becoming both feasible and effective. With vast improvements in ultrasound technology, sonologists can now image the fetus in greater detail at all gestational ages. In the hands of experienced sonographers, anatomic surveys between 11 and 14 weeks can be carried out with good visualisation rates of many structures. It is important to be familiar with the normal development of the embryo and fetus, and to be aware of the major anatomical landmarks whose absence or presence may be deemed normal or abnormal depending on the gestational age. Some structural abnormalities will nearly always be detected, some will never be and some are potentially detectable depending on a number of factors.

  5. Medical Image Processing for Fully Integrated Subject Specific Whole Brain Mesh Generation

    Directory of Open Access Journals (Sweden)

    Chih-Yang Hsu

    2015-05-01

    Full Text Available Currently, anatomically consistent segmentation of vascular trees acquired with magnetic resonance imaging requires the use of multiple image processing steps, which, in turn, depend on manual intervention. In effect, segmentation of vascular trees from medical images is time consuming and error prone due to the tortuous geometry and weak signal in small blood vessels. To overcome errors and accelerate the image processing time, we introduce an automatic image processing pipeline for constructing subject specific computational meshes for entire cerebral vasculature, including segmentation of ancillary structures; the grey and white matter, cerebrospinal fluid space, skull, and scalp. To demonstrate the validity of the new pipeline, we segmented the entire intracranial compartment with special attention of the angioarchitecture from magnetic resonance imaging acquired for two healthy volunteers. The raw images were processed through our pipeline for automatic segmentation and mesh generation. Due to partial volume effect and finite resolution, the computational meshes intersect with each other at respective interfaces. To eliminate anatomically inconsistent overlap, we utilized morphological operations to separate the structures with a physiologically sound gap spaces. The resulting meshes exhibit anatomically correct spatial extent and relative positions without intersections. For validation, we computed critical biometrics of the angioarchitecture, the cortical surfaces, ventricular system, and cerebrospinal fluid (CSF spaces and compared against literature values. Volumina and surface areas of the computational mesh were found to be in physiological ranges. In conclusion, we present an automatic image processing pipeline to automate the segmentation of the main intracranial compartments including a subject-specific vascular trees. These computational meshes can be used in 3D immersive visualization for diagnosis, surgery planning with haptics

  6. Method and system for mesh network embedded devices

    Science.gov (United States)

    Wang, Ray (Inventor)

    2009-01-01

    A method and system for managing mesh network devices. A mesh network device with integrated features creates an N-way mesh network with a full mesh network topology or a partial mesh network topology.

  7. Mesh versus non-mesh repair of ventral abdominal hernias

    International Nuclear Information System (INIS)

    Jawaid, M.A.; Talpur, A.H.

    2008-01-01

    To investigate the relative effectiveness of mesh and suture repair of ventral abdominal hernias in terms of clinical outcome, quality of life and rate of recurrence in both the techniques. This is a retrospective descriptive analysis of 236 patients with mesh and non-mesh repair of primary ventral hernias performed between January 2000 to December 2004 at Surgery Department, Liaquat University of Medical and Health Sciences, Jamshoro. The record sheets of the patients were analyzed and data retrieved to compare the results of both techniques for short-term and long-term results. The data retrieved is statistically analyzed on SPSS version 11. There were 43 (18.22%) males and 193 (81.77%) females with a mean age of 51.79 years and a range of 59 (81-22). Para-umbilical hernia was the commonest of ventral hernia and accounted for 49.8% (n=118) of the total study population followed by incisional hernia comprising 24% (n=57) of the total number. There was a significant difference in the recurrent rate at 3 years interval with 23/101 (22.77%) recurrences in suture-repaired subjects compared to 10/135 (7.40%) in mesh repair group. Chronic pain lasting up to 1-2 years was noted in 14 patients with suture repair. Wound infection is comparatively more common (8.14%) in mesh group. The other variables such as operative and postoperative complications, total hospital stay and quality of life is also discussed. Mesh repair of ventral hernia is much superior to non-mesh suture repair in terms of recurrence and overall outcome. (author)

  8. Standardized anatomic space for abdominal fat quantification

    Science.gov (United States)

    Tong, Yubing; Udupa, Jayaram K.; Torigian, Drew A.

    2014-03-01

    The ability to accurately measure subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) from images is important for improved assessment and management of patients with various conditions such as obesity, diabetes mellitus, obstructive sleep apnea, cardiovascular disease, kidney disease, and degenerative disease. Although imaging and analysis methods to measure the volume of these tissue components have been developed [1, 2], in clinical practice, an estimate of the amount of fat is obtained from just one transverse abdominal CT slice typically acquired at the level of the L4-L5 vertebrae for various reasons including decreased radiation exposure and cost [3-5]. It is generally assumed that such an estimate reliably depicts the burden of fat in the body. This paper sets out to answer two questions related to this issue which have not been addressed in the literature. How does one ensure that the slices used for correlation calculation from different subjects are at the same anatomic location? At what anatomic location do the volumes of SAT and VAT correlate maximally with the corresponding single-slice area measures? To answer these questions, we propose two approaches for slice localization: linear mapping and non-linear mapping which is a novel learning based strategy for mapping slice locations to a standardized anatomic space so that same anatomic slice locations are identified in different subjects. We then study the volume-to-area correlations and determine where they become maximal. We demonstrate on 50 abdominal CT data sets that this mapping achieves significantly improved consistency of anatomic localization compared to current practice. Our results also indicate that maximum correlations are achieved at different anatomic locations for SAT and VAT which are both different from the L4-L5 junction commonly utilized.

  9. Influence of the different anteromedial portal on femoral tunnel orientation during anatomic ACL reconstruction

    Directory of Open Access Journals (Sweden)

    Dong-Kyu Moon

    2017-05-01

    Conclusions: In anatomic ACL reconstruction, a mal-positioned AM portal can cause abnormal tunnel orientation, which may lead to mechanical failure during ACL reconstruction. Therefore, it is important to select accurate AM portal positioning, and possibly using an AAM portal by measuring an accurate position when drilling a femoral tunnel in anatomic ACL reconstruction.

  10. User Manual for the PROTEUS Mesh Tools

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Micheal A. [Argonne National Lab. (ANL), Argonne, IL (United States); Shemon, Emily R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-06-01

    This report describes the various mesh tools that are provided with the PROTEUS code giving both descriptions of the input and output. In many cases the examples are provided with a regression test of the mesh tools. The most important mesh tools for any user to consider using are the MT_MeshToMesh.x and the MT_RadialLattice.x codes. The former allows the conversion between most mesh types handled by PROTEUS while the second allows the merging of multiple (assembly) meshes into a radial structured grid. Note that the mesh generation process is recursive in nature and that each input specific for a given mesh tool (such as .axial or .merge) can be used as “mesh” input for any of the mesh tools discussed in this manual.

  11. User Manual for the PROTEUS Mesh Tools

    International Nuclear Information System (INIS)

    Smith, Micheal A.; Shemon, Emily R.

    2015-01-01

    This report describes the various mesh tools that are provided with the PROTEUS code giving both descriptions of the input and output. In many cases the examples are provided with a regression test of the mesh tools. The most important mesh tools for any user to consider using are the MT M eshToMesh.x and the MT R adialLattice.x codes. The former allows the conversion between most mesh types handled by PROTEUS while the second allows the merging of multiple (assembly) meshes into a radial structured grid. Note that the mesh generation process is recursive in nature and that each input specific for a given mesh tool (such as .axial or .merge) can be used as ''mesh'' input for any of the mesh tools discussed in this manual.

  12. 3D face analysis by using Mesh-LBP feature

    Science.gov (United States)

    Wang, Haoyu; Yang, Fumeng; Zhang, Yuming; Wu, Congzhong

    2017-11-01

    Objective: Face Recognition is one of the widely application of image processing. Corresponding two-dimensional limitations, such as the pose and illumination changes, to a certain extent restricted its accurate rate and further development. How to overcome the pose and illumination changes and the effects of self-occlusion is the research hotspot and difficulty, also attracting more and more domestic and foreign experts and scholars to study it. 3D face recognition fusing shape and texture descriptors has become a very promising research direction. Method: Our paper presents a 3D point cloud based on mesh local binary pattern grid (Mesh-LBP), then feature extraction for 3D face recognition by fusing shape and texture descriptors. 3D Mesh-LBP not only retains the integrity of the 3D geometry, is also reduces the need for recognition process of normalization steps, because the triangle Mesh-LBP descriptor is calculated on 3D grid. On the other hand, in view of multi-modal consistency in face recognition advantage, construction of LBP can fusing shape and texture information on Triangular Mesh. In this paper, some of the operators used to extract Mesh-LBP, Such as the normal vectors of the triangle each face and vertex, the gaussian curvature, the mean curvature, laplace operator and so on. Conclusion: First, Kinect devices obtain 3D point cloud face, after the pretreatment and normalization, then transform it into triangular grid, grid local binary pattern feature extraction from face key significant parts of face. For each local face, calculate its Mesh-LBP feature with Gaussian curvature, mean curvature laplace operator and so on. Experiments on the our research database, change the method is robust and high recognition accuracy.

  13. A coarse-mesh nodal method-diffusive-mesh finite difference method

    International Nuclear Information System (INIS)

    Joo, H.; Nichols, W.R.

    1994-01-01

    Modern nodal methods have been successfully used for conventional light water reactor core analyses where the homogenized, node average cross sections (XSs) and the flux discontinuity factors (DFs) based on equivalence theory can reliably predict core behavior. For other types of cores and other geometries characterized by tightly-coupled, heterogeneous core configurations, the intranodal flux shapes obtained from a homogenized nodal problem may not accurately portray steep flux gradients near fuel assembly interfaces or various reactivity control elements. This may require extreme values of DFs (either very large, very small, or even negative) to achieve a desired solution accuracy. Extreme values of DFs, however, can disrupt the convergence of the iterative methods used to solve for the node average fluxes, and can lead to a difficulty in interpolating adjacent DF values. Several attempts to remedy the problem have been made, but nothing has been satisfactory. A new coarse-mesh nodal scheme called the Diffusive-Mesh Finite Difference (DMFD) technique, as contrasted with the coarse-mesh finite difference (CMFD) technique, has been developed to resolve this problem. This new technique and the development of a few-group, multidimensional kinetics computer program are described in this paper

  14. Short-term outcomes of the transvaginal minimal mesh procedure for pelvic organ prolapse

    Directory of Open Access Journals (Sweden)

    Naoko Takazawa

    2018-03-01

    Full Text Available Purpose: This study aimed to evaluate the clinical outcomes and complications of transvaginal minimal mesh repair without using commercially available kits for treatment of pelvic organ prolapse (POP. Materials and Methods: This retrospective cohort study involved 91 women who underwent surgical management of POP with originally designed small mesh between July 2014 and August 2015. This mesh is 56% smaller than the mesh widely used in Japan, and it has only two arms delivered into each right and left sacrospinous ligament. The main study outcome was the anatomic cure rate defined as recurrence of POP quantification (POP-Q stage II or more. We also assessed changes in the overactive bladder symptom score (OABSS and prolapse quality of life questionnaire (P-QOL and evaluated adverse events. Finally, we compared patient backgrounds between the patients with and without recurrence. Results: Prolapse recurred in 10 of 91 patients (11.0%, and all patients with recurrence were diagnosed as POP-Q stage II. As adverse events, only mesh erosion occurred in two (2.2% and pelvic pain in one (1.1% of the 91 patients. The OABSS and P-QOL were significantly improved by the operation. When we compared patient backgrounds between the patients with and without recurrence, body mass index was the only factor influencing affecting recurrence. Conclusions: Transvaginal minimal mesh repair resulted in successful outcomes with low mesh-related complications and anatomic recurrence at one year. Furthermore, significant improvement in QOL was offered by this procedure. Our minimal mesh technique should be considered as one treatment option for the management of POP.

  15. Short-term outcomes of the transvaginal minimal mesh procedure for pelvic organ prolapse.

    Science.gov (United States)

    Takazawa, Naoko; Fujisaki, Akiko; Yoshimura, Yasukuni; Tsujimura, Akira; Horie, Shigeo

    2018-03-01

    This study aimed to evaluate the clinical outcomes and complications of transvaginal minimal mesh repair without using commercially available kits for treatment of pelvic organ prolapse (POP). This retrospective cohort study involved 91 women who underwent surgical management of POP with originally designed small mesh between July 2014 and August 2015. This mesh is 56% smaller than the mesh widely used in Japan, and it has only two arms delivered into each right and left sacrospinous ligament. The main study outcome was the anatomic cure rate defined as recurrence of POP quantification (POP-Q) stage II or more. We also assessed changes in the overactive bladder symptom score (OABSS) and prolapse quality of life questionnaire (P-QOL) and evaluated adverse events. Finally, we compared patient backgrounds between the patients with and without recurrence. Prolapse recurred in 10 of 91 patients (11.0%), and all patients with recurrence were diagnosed as POP-Q stage II. As adverse events, only mesh erosion occurred in two (2.2%) and pelvic pain in one (1.1%) of the 91 patients. The OABSS and P-QOL were significantly improved by the operation. When we compared patient backgrounds between the patients with and without recurrence, body mass index was the only factor influencing affecting recurrence. Transvaginal minimal mesh repair resulted in successful outcomes with low mesh-related complications and anatomic recurrence at one year. Furthermore, significant improvement in QOL was offered by this procedure. Our minimal mesh technique should be considered as one treatment option for the management of POP.

  16. Computational mesh generation for vascular structures with deformable surfaces

    International Nuclear Information System (INIS)

    Putter, S. de; Laffargue, F.; Breeuwer, M.; Vosse, F.N. van de; Gerritsen, F.A.; Philips Medical Systems, Best

    2006-01-01

    Computational blood flow and vessel wall mechanics simulations for vascular structures are becoming an important research tool for patient-specific surgical planning and intervention. An important step in the modelling process for patient-specific simulations is the creation of the computational mesh based on the segmented geometry. Most known solutions either require a large amount of manual processing or lead to a substantial difference between the segmented object and the actual computational domain. We have developed a chain of algorithms that lead to a closely related implementation of image segmentation with deformable models and 3D mesh generation. The resulting processing chain is very robust and leads both to an accurate geometrical representation of the vascular structure as well as high quality computational meshes. The chain of algorithms has been tested on a wide variety of shapes. A benchmark comparison of our mesh generation application with five other available meshing applications clearly indicates that the new approach outperforms the existing methods in the majority of cases. (orig.)

  17. Energy dependent mesh adaptivity of discontinuous isogeometric discrete ordinate methods with dual weighted residual error estimators

    Science.gov (United States)

    Owens, A. R.; Kópházi, J.; Welch, J. A.; Eaton, M. D.

    2017-04-01

    In this paper a hanging-node, discontinuous Galerkin, isogeometric discretisation of the multigroup, discrete ordinates (SN) equations is presented in which each energy group has its own mesh. The equations are discretised using Non-Uniform Rational B-Splines (NURBS), which allows the coarsest mesh to exactly represent the geometry for a wide range of engineering problems of interest; this would not be the case using straight-sided finite elements. Information is transferred between meshes via the construction of a supermesh. This is a non-trivial task for two arbitrary meshes, but is significantly simplified here by deriving every mesh from a common coarsest initial mesh. In order to take full advantage of this flexible discretisation, goal-based error estimators are derived for the multigroup, discrete ordinates equations with both fixed (extraneous) and fission sources, and these estimators are used to drive an adaptive mesh refinement (AMR) procedure. The method is applied to a variety of test cases for both fixed and fission source problems. The error estimators are found to be extremely accurate for linear NURBS discretisations, with degraded performance for quadratic discretisations owing to a reduction in relative accuracy of the "exact" adjoint solution required to calculate the estimators. Nevertheless, the method seems to produce optimal meshes in the AMR process for both linear and quadratic discretisations, and is ≈×100 more accurate than uniform refinement for the same amount of computational effort for a 67 group deep penetration shielding problem.

  18. Anatomical imaging for radiotherapy

    International Nuclear Information System (INIS)

    Evans, Philip M

    2008-01-01

    The goal of radiation therapy is to achieve maximal therapeutic benefit expressed in terms of a high probability of local control of disease with minimal side effects. Physically this often equates to the delivery of a high dose of radiation to the tumour or target region whilst maintaining an acceptably low dose to other tissues, particularly those adjacent to the target. Techniques such as intensity modulated radiotherapy (IMRT), stereotactic radiosurgery and computer planned brachytherapy provide the means to calculate the radiation dose delivery to achieve the desired dose distribution. Imaging is an essential tool in all state of the art planning and delivery techniques: (i) to enable planning of the desired treatment, (ii) to verify the treatment is delivered as planned and (iii) to follow-up treatment outcome to monitor that the treatment has had the desired effect. Clinical imaging techniques can be loosely classified into anatomic methods which measure the basic physical characteristics of tissue such as their density and biological imaging techniques which measure functional characteristics such as metabolism. In this review we consider anatomical imaging techniques. Biological imaging is considered in another article. Anatomical imaging is generally used for goals (i) and (ii) above. Computed tomography (CT) has been the mainstay of anatomical treatment planning for many years, enabling some delineation of soft tissue as well as radiation attenuation estimation for dose prediction. Magnetic resonance imaging is fast becoming widespread alongside CT, enabling superior soft-tissue visualization. Traditionally scanning for treatment planning has relied on the use of a single snapshot scan. Recent years have seen the development of techniques such as 4D CT and adaptive radiotherapy (ART). In 4D CT raw data are encoded with phase information and reconstructed to yield a set of scans detailing motion through the breathing, or cardiac, cycle. In ART a set of

  19. Cache-Oblivious Mesh Layouts

    International Nuclear Information System (INIS)

    Yoon, S; Lindstrom, P; Pascucci, V; Manocha, D

    2005-01-01

    We present a novel method for computing cache-oblivious layouts of large meshes that improve the performance of interactive visualization and geometric processing algorithms. Given that the mesh is accessed in a reasonably coherent manner, we assume no particular data access patterns or cache parameters of the memory hierarchy involved in the computation. Furthermore, our formulation extends directly to computing layouts of multi-resolution and bounding volume hierarchies of large meshes. We develop a simple and practical cache-oblivious metric for estimating cache misses. Computing a coherent mesh layout is reduced to a combinatorial optimization problem. We designed and implemented an out-of-core multilevel minimization algorithm and tested its performance on unstructured meshes composed of tens to hundreds of millions of triangles. Our layouts can significantly reduce the number of cache misses. We have observed 2-20 times speedups in view-dependent rendering, collision detection, and isocontour extraction without any modification of the algorithms or runtime applications

  20. Connectivity editing for quadrilateral meshes

    KAUST Repository

    Peng, Chihan; Zhang, Eugene; Kobayashi, Yoshihiro; Wonka, Peter

    2011-01-01

    We propose new connectivity editing operations for quadrilateral meshes with the unique ability to explicitly control the location, orientation, type, and number of the irregular vertices (valence not equal to four) in the mesh while preserving sharp edges. We provide theoretical analysis on what editing operations are possible and impossible and introduce three fundamental operations to move and re-orient a pair of irregular vertices. We argue that our editing operations are fundamental, because they only change the quad mesh in the smallest possible region and involve the fewest irregular vertices (i.e., two). The irregular vertex movement operations are supplemented by operations for the splitting, merging, canceling, and aligning of irregular vertices. We explain how the proposed highlevel operations are realized through graph-level editing operations such as quad collapses, edge flips, and edge splits. The utility of these mesh editing operations are demonstrated by improving the connectivity of quad meshes generated from state-of-art quadrangulation techniques. © 2011 ACM.

  1. Connectivity editing for quadrilateral meshes

    KAUST Repository

    Peng, Chihan

    2011-12-12

    We propose new connectivity editing operations for quadrilateral meshes with the unique ability to explicitly control the location, orientation, type, and number of the irregular vertices (valence not equal to four) in the mesh while preserving sharp edges. We provide theoretical analysis on what editing operations are possible and impossible and introduce three fundamental operations to move and re-orient a pair of irregular vertices. We argue that our editing operations are fundamental, because they only change the quad mesh in the smallest possible region and involve the fewest irregular vertices (i.e., two). The irregular vertex movement operations are supplemented by operations for the splitting, merging, canceling, and aligning of irregular vertices. We explain how the proposed highlevel operations are realized through graph-level editing operations such as quad collapses, edge flips, and edge splits. The utility of these mesh editing operations are demonstrated by improving the connectivity of quad meshes generated from state-of-art quadrangulation techniques. © 2011 ACM.

  2. Benchmarking Academic Anatomic Pathologists

    Directory of Open Access Journals (Sweden)

    Barbara S. Ducatman MD

    2016-10-01

    Full Text Available The most common benchmarks for faculty productivity are derived from Medical Group Management Association (MGMA or Vizient-AAMC Faculty Practice Solutions Center ® (FPSC databases. The Association of Pathology Chairs has also collected similar survey data for several years. We examined the Association of Pathology Chairs annual faculty productivity data and compared it with MGMA and FPSC data to understand the value, inherent flaws, and limitations of benchmarking data. We hypothesized that the variability in calculated faculty productivity is due to the type of practice model and clinical effort allocation. Data from the Association of Pathology Chairs survey on 629 surgical pathologists and/or anatomic pathologists from 51 programs were analyzed. From review of service assignments, we were able to assign each pathologist to a specific practice model: general anatomic pathologists/surgical pathologists, 1 or more subspecialties, or a hybrid of the 2 models. There were statistically significant differences among academic ranks and practice types. When we analyzed our data using each organization’s methods, the median results for the anatomic pathologists/surgical pathologists general practice model compared to MGMA and FPSC results for anatomic and/or surgical pathology were quite close. Both MGMA and FPSC data exclude a significant proportion of academic pathologists with clinical duties. We used the more inclusive FPSC definition of clinical “full-time faculty” (0.60 clinical full-time equivalent and above. The correlation between clinical full-time equivalent effort allocation, annual days on service, and annual work relative value unit productivity was poor. This study demonstrates that effort allocations are variable across academic departments of pathology and do not correlate well with either work relative value unit effort or reported days on service. Although the Association of Pathology Chairs–reported median work relative

  3. Three new models for evaluation of standard involute spur gear mesh stiffness

    Science.gov (United States)

    Liang, Xihui; Zhang, Hongsheng; Zuo, Ming J.; Qin, Yong

    2018-02-01

    Time-varying mesh stiffness is one of the main internal excitation sources of gear dynamics. Accurate evaluation of gear mesh stiffness is crucial for gear dynamic analysis. This study is devoted to developing new models for spur gear mesh stiffness evaluation. Three models are proposed. The proposed model 1 can give very accurate mesh stiffness result but the gear bore surface must be assumed to be rigid. Enlighted by the proposed model 1, our research discovers that the angular deflection pattern of the gear bore surface of a pair of meshing gears under a constant torque basically follows a cosine curve. Based on this finding, two other models are proposed. The proposed model 2 evaluates gear mesh stiffness by using angular deflections at different circumferential angles of an end surface circle of the gear bore. The proposed model 3 requires using only the angular deflection at an arbitrary circumferential angle of an end surface circle of the gear bore but this model can only be used for a gear with the same tooth profile among all teeth. The proposed models are accurate in gear mesh stiffness evaluation and easy to use. Finite element analysis is used to validate the accuracy of the proposed models.

  4. Accurate evaluation of exchange fields in finite element micromagnetic solvers

    Science.gov (United States)

    Chang, R.; Escobar, M. A.; Li, S.; Lubarda, M. V.; Lomakin, V.

    2012-04-01

    Quadratic basis functions (QBFs) are implemented for solving the Landau-Lifshitz-Gilbert equation via the finite element method. This involves the introduction of a set of special testing functions compatible with the QBFs for evaluating the Laplacian operator. The results by using QBFs are significantly more accurate than those via linear basis functions. QBF approach leads to significantly more accurate results than conventionally used approaches based on linear basis functions. Importantly QBFs allow reducing the error of computing the exchange field by increasing the mesh density for structured and unstructured meshes. Numerical examples demonstrate the feasibility of the method.

  5. A simple nodal force distribution method in refined finite element meshes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jai Hak [Chungbuk National University, Chungju (Korea, Republic of); Shin, Kyu In [Gentec Co., Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2017-05-15

    In finite element analyses, mesh refinement is frequently performed to obtain accurate stress or strain values or to accurately define the geometry. After mesh refinement, equivalent nodal forces should be calculated at the nodes in the refined mesh. If field variables and material properties are available at the integration points in each element, then the accurate equivalent nodal forces can be calculated using an adequate numerical integration. However, in certain circumstances, equivalent nodal forces cannot be calculated because field variable data are not available. In this study, a very simple nodal force distribution method was proposed. Nodal forces of the original finite element mesh are distributed to the nodes of refined meshes to satisfy the equilibrium conditions. The effect of element size should also be considered in determining the magnitude of the distributing nodal forces. A program was developed based on the proposed method, and several example problems were solved to verify the accuracy and effectiveness of the proposed method. From the results, accurate stress field can be recognized to be obtained from refined meshes using the proposed nodal force distribution method. In example problems, the difference between the obtained maximum stress and target stress value was less than 6 % in models with 8-node hexahedral elements and less than 1 % in models with 20-node hexahedral elements or 10-node tetrahedral elements.

  6. Textile properties of synthetic prolapse mesh in response to uniaxial loading

    Science.gov (United States)

    Barone, William R.; Moalli, Pamela A.; Abramowitch, Steven D.

    2016-01-01

    BACKGROUND Although synthetic mesh is associated with superior anatomic outcomes for the repair of pelvic organ prolapse, the benefits of mesh have been questioned because of the relatively high complication rates. To date, the mechanisms that result in such complications are poorly understood, yet the textile characteristics of mesh products are believed to play an important role. Interestingly, the pore diameter of synthetic mesh has been shown to impact the host response after hernia repair greatly, and such findings have served as design criteria for prolapse meshes, with larger pores viewed as more favorable. Although pore size and porosity are well-characterized before implantation, the changes in these textile properties after implantation are unclear; the application of mechanical forces has the potential to greatly alter pore geometries in vivo. Understanding the impact of mechanical loading on the textile properties of mesh is essential for the development of more effective devices for prolapse repair. OBJECTIVE The objective of this study was to determine the effect of tensile loading and pore orientation on mesh porosity and pore dimensions. STUDY DESIGN In this study, the porosity and pore diameter of 4 currently available prolapse meshes were examined in response to uniaxial tensile loads of 0.1, 5, and 10 N while mimicking clinical loading conditions. The textile properties were compared with those observed for the unloaded mesh. Meshes included Gynemesh PS (Ethicon, Somerville, NJ), UltraPro (Artisyn; Ethicon), Restorelle (Coloplast, Minneapolis, MN), and Alyte Y-mesh (Bard, Covington, GA). In addition to the various pore geometries, 3 orientations of Restorelle (0-, 5-, 45-degree offset) and 2 orientations of UltraPro (0-, 90-degree offset) were examined. RESULTS In response to uniaxial loading, both porosity and pore diameter dramatically decreased for most mesh products. The application of 5 N led to reductions in porosity for nearly all groups

  7. Integrated approach for fusion multi-physics coupled analyses based on hybrid CAD and mesh geometries

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Yuefeng, E-mail: yuefeng.qiu@kit.edu; Lu, Lei; Fischer, Ulrich

    2015-10-15

    Highlights: • Integrated approach for neutronics, thermal and structural analyses was developed. • MCNP5/6, TRIPOLI-4 were coupled with CFX, Fluent and ANSYS Workbench. • A novel meshing approach has been proposed for describing MC geometry. - Abstract: Coupled multi-physics analyses on fusion reactor devices require high-fidelity neutronic models, and flexible, accurate data exchanging between various calculation codes. An integrated coupling approach has been developed to enable the conversion of CAD, mesh, or hybrid geometries for Monte Carlo (MC) codes MCNP5/6, TRIPOLI-4, and translation of nuclear heating data for CFD codes Fluent, CFX and structural mechanical software ANSYS Workbench. The coupling approach has been implemented based on SALOME platform with CAD modeling, mesh generation and data visualization capabilities. A novel meshing approach has been developed for generating suitable meshes for MC geometry descriptions. The coupling approach has been concluded to be reliable and efficient after verification calculations of several application cases.

  8. Occipital neuralgia: anatomic considerations.

    Science.gov (United States)

    Cesmebasi, Alper; Muhleman, Mitchel A; Hulsberg, Paul; Gielecki, Jerzy; Matusz, Petru; Tubbs, R Shane; Loukas, Marios

    2015-01-01

    Occipital neuralgia is a debilitating disorder first described in 1821 as recurrent headaches localized in the occipital region. Other symptoms that have been associated with this condition include paroxysmal burning and aching pain in the distribution of the greater, lesser, or third occipital nerves. Several etiologies have been identified in the cause of occipital neuralgia and include, but are not limited to, trauma, fibrositis, myositis, fracture of the atlas, and compression of the C-2 nerve root, C1-2 arthrosis syndrome, atlantoaxial lateral mass osteoarthritis, hypertrophic cervical pachymeningitis, cervical cord tumor, Chiari malformation, and neurosyphilis. The management of occipital neuralgia can include conservative approaches and/or surgical interventions. Occipital neuralgia is a multifactorial problem where multiple anatomic areas/structures may be involved with this pathology. A review of these etiologies may provide guidance in better understanding occipital neuralgia. © 2014 Wiley Periodicals, Inc.

  9. Multigrid for refined triangle meshes

    Energy Technology Data Exchange (ETDEWEB)

    Shapira, Yair

    1997-02-01

    A two-level preconditioning method for the solution of (locally) refined finite element schemes using triangle meshes is introduced. In the isotropic SPD case, it is shown that the condition number of the preconditioned stiffness matrix is bounded uniformly for all sufficiently regular triangulations. This is also verified numerically for an isotropic diffusion problem with highly discontinuous coefficients.

  10. Development and verification of unstructured adaptive mesh technique with edge compatibility

    International Nuclear Information System (INIS)

    Ito, Kei; Ohshima, Hiroyuki; Kunugi, Tomoaki

    2010-01-01

    In the design study of the large-sized sodium-cooled fast reactor (JSFR), one key issue is suppression of gas entrainment (GE) phenomena at a gas-liquid interface. Therefore, the authors have been developed a high-precision CFD algorithm to evaluate the GE phenomena accurately. The CFD algorithm has been developed on unstructured meshes to establish an accurate modeling of JSFR system. For two-phase interfacial flow simulations, a high-precision volume-of-fluid algorithm is employed. It was confirmed that the developed CFD algorithm could reproduce the GE phenomena in a simple GE experiment. Recently, the authors have been developed an important technique for the simulation of the GE phenomena in JSFR. That is an unstructured adaptive mesh technique which can apply fine cells dynamically to the region where the GE occurs in JSFR. In this paper, as a part of the development, a two-dimensional unstructured adaptive mesh technique is discussed. In the two-dimensional adaptive mesh technique, each cell is refined isotropically to reduce distortions of the mesh. In addition, connection cells are formed to eliminate the edge incompatibility between refined and non-refined cells. The two-dimensional unstructured adaptive mesh technique is verified by solving well-known lid-driven cavity flow problem. As a result, the two-dimensional unstructured adaptive mesh technique succeeds in providing a high-precision solution, even though poor-quality distorted initial mesh is employed. In addition, the simulation error on the two-dimensional unstructured adaptive mesh is much less than the error on the structured mesh with a larger number of cells. (author)

  11. Resterilized Polypropylene Mesh for Inguinal Hernia Repair

    African Journals Online (AJOL)

    2018-04-19

    Apr 19, 2018 ... Conclusion: The use of sterilized polypropylene mesh for the repair of inguinal ... and nonabsorbable materials to reduce the tissue–mesh. INTRODUCTION ... which we have been practicing in our center since we introduced ...

  12. 6th International Meshing Roundtable '97

    Energy Technology Data Exchange (ETDEWEB)

    White, D.

    1997-09-01

    The goal of the 6th International Meshing Roundtable is to bring together researchers and developers from industry, academia, and government labs in a stimulating, open environment for the exchange of technical information related to the meshing process. In the pas~ the Roundtable has enjoyed significant participation born each of these groups from a wide variety of countries. The Roundtable will consist of technical presentations from contributed papers and abstracts, two invited speakers, and two invited panels of experts discussing topics related to the development and use of automatic mesh generation tools. In addition, this year we will feature a "Bring Your Best Mesh" competition and poster session to encourage discussion and participation from a wide variety of mesh generation tool users. The schedule and evening social events are designed to provide numerous opportunities for informal dialog. A proceedings will be published by Sandia National Laboratories and distributed at the Roundtable. In addition, papers of exceptionally high quaIity will be submitted to a special issue of the International Journal of Computational Geometry and Applications. Papers and one page abstracts were sought that present original results on the meshing process. Potential topics include but are got limited to: Unstructured triangular and tetrahedral mesh generation Unstructured quadrilateral and hexahedral mesh generation Automated blocking and structured mesh generation Mixed element meshing Surface mesh generation Geometry decomposition and clean-up techniques Geometry modification techniques related to meshing Adaptive mesh refinement and mesh quality control Mesh visualization Special purpose meshing algorithms for particular applications Theoretical or novel ideas with practical potential Technical presentations from industrial researchers.

  13. Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur.

    Science.gov (United States)

    Grassi, Lorenzo; Hraiech, Najah; Schileo, Enrico; Ansaloni, Mauro; Rochette, Michel; Viceconti, Marco

    2011-01-01

    Various papers described mesh morphing techniques for computational biomechanics, but none of them provided a quantitative assessment of generality, robustness, automation, and accuracy in predicting strains. This study aims to quantitatively evaluate the performance of a novel mesh-morphing algorithm. A mesh-morphing algorithm based on radial-basis functions and on manual selection of corresponding landmarks on template and target was developed. The periosteal geometries of 100 femurs were derived from a computed tomography scan database and used to test the algorithm generality in producing finite element (FE) morphed meshes. A published benchmark, consisting of eight femurs for which in vitro strain measurements and standard FE model strain prediction accuracy were available, was used to assess the accuracy of morphed FE models in predicting strains. Relevant parameters were identified to test the algorithm robustness to operative conditions. Time and effort needed were evaluated to define the algorithm degree of automation. Morphing was successful for 95% of the specimens, with mesh quality indicators comparable to those of standard FE meshes. Accuracy of the morphed meshes in predicting strains was good (R(2)>0.9, RMSE%0.05) and partially to the number of landmark used. Producing a morphed mesh starting from the triangularized geometry of the specimen requires on average 10 min. The proposed method is general, robust, automated, and accurate enough to be used in bone FE modelling from diagnostic data, and prospectively in applications such as statistical shape modelling. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. User Manual for the PROTEUS Mesh Tools

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Micheal A. [Argonne National Lab. (ANL), Argonne, IL (United States); Shemon, Emily R [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-19

    PROTEUS is built around a finite element representation of the geometry for visualization. In addition, the PROTEUS-SN solver was built to solve the even-parity transport equation on a finite element mesh provided as input. Similarly, PROTEUS-MOC and PROTEUS-NEMO were built to apply the method of characteristics on unstructured finite element meshes. Given the complexity of real world problems, experience has shown that using commercial mesh generator to create rather simple input geometries is overly complex and slow. As a consequence, significant effort has been put into place to create multiple codes that help assist in the mesh generation and manipulation. There are three input means to create a mesh in PROTEUS: UFMESH, GRID, and NEMESH. At present, the UFMESH is a simple way to generate two-dimensional Cartesian and hexagonal fuel assembly geometries. The UFmesh input allows for simple assembly mesh generation while the GRID input allows the generation of Cartesian, hexagonal, and regular triangular structured grid geometry options. The NEMESH is a way for the user to create their own mesh or convert another mesh file format into a PROTEUS input format. Given that one has an input mesh format acceptable for PROTEUS, we have constructed several tools which allow further mesh and geometry construction (i.e. mesh extrusion and merging). This report describes the various mesh tools that are provided with the PROTEUS code giving both descriptions of the input and output. In many cases the examples are provided with a regression test of the mesh tools. The most important mesh tools for any user to consider using are the MT_MeshToMesh.x and the MT_RadialLattice.x codes. The former allows the conversion between most mesh types handled by PROTEUS while the second allows the merging of multiple (assembly) meshes into a radial structured grid. Note that the mesh generation process is recursive in nature and that each input specific for a given mesh tool (such as .axial

  15. Evaluation of 3D printed anatomically scalable transfemoral prosthetic knee.

    Science.gov (United States)

    Ramakrishnan, Tyagi; Schlafly, Millicent; Reed, Kyle B

    2017-07-01

    This case study compares a transfemoral amputee's gait while using the existing Ossur Total Knee 2000 and our novel 3D printed anatomically scalable transfemoral prosthetic knee. The anatomically scalable transfemoral prosthetic knee is 3D printed out of a carbon-fiber and nylon composite that has a gear-mesh coupling with a hard-stop weight-actuated locking mechanism aided by a cross-linked four-bar spring mechanism. This design can be scaled using anatomical dimensions of a human femur and tibia to have a unique fit for each user. The transfemoral amputee who was tested is high functioning and walked on the Computer Assisted Rehabilitation Environment (CAREN) at a self-selected pace. The motion capture and force data that was collected showed that there were distinct differences in the gait dynamics. The data was used to perform the Combined Gait Asymmetry Metric (CGAM), where the scores revealed that the overall asymmetry of the gait on the Ossur Total Knee was more asymmetric than the anatomically scalable transfemoral prosthetic knee. The anatomically scalable transfemoral prosthetic knee had higher peak knee flexion that caused a large step time asymmetry. This made walking on the anatomically scalable transfemoral prosthetic knee more strenuous due to the compensatory movements in adapting to the different dynamics. This can be overcome by tuning the cross-linked spring mechanism to emulate the dynamics of the subject better. The subject stated that the knee would be good for daily use and has the potential to be adapted as a running knee.

  16. TESS: A RELATIVISTIC HYDRODYNAMICS CODE ON A MOVING VORONOI MESH

    International Nuclear Information System (INIS)

    Duffell, Paul C.; MacFadyen, Andrew I.

    2011-01-01

    We have generalized a method for the numerical solution of hyperbolic systems of equations using a dynamic Voronoi tessellation of the computational domain. The Voronoi tessellation is used to generate moving computational meshes for the solution of multidimensional systems of conservation laws in finite-volume form. The mesh-generating points are free to move with arbitrary velocity, with the choice of zero velocity resulting in an Eulerian formulation. Moving the points at the local fluid velocity makes the formulation effectively Lagrangian. We have written the TESS code to solve the equations of compressible hydrodynamics and magnetohydrodynamics for both relativistic and non-relativistic fluids on a dynamic Voronoi mesh. When run in Lagrangian mode, TESS is significantly less diffusive than fixed mesh codes and thus preserves contact discontinuities to high precision while also accurately capturing strong shock waves. TESS is written for Cartesian, spherical, and cylindrical coordinates and is modular so that auxiliary physics solvers are readily integrated into the TESS framework and so that this can be readily adapted to solve general systems of equations. We present results from a series of test problems to demonstrate the performance of TESS and to highlight some of the advantages of the dynamic tessellation method for solving challenging problems in astrophysical fluid dynamics.

  17. Voltammetry at micro-mesh electrodes

    Directory of Open Access Journals (Sweden)

    Wadhawan Jay D.

    2003-01-01

    Full Text Available The voltammetry at three micro-mesh electrodes is explored. It is found that at sufficiently short experimental durations, the micro-mesh working electrode first behaves as an ensemble of microband electrodes, then follows the behaviour anticipated for an array of diffusion-independent micro-ring electrodes of the same perimeter as individual grid-squares within the mesh. During prolonged electrolysis, the micro-mesh electrode follows that behaviour anticipated theoretically for a cubically-packed partially-blocked electrode. Application of the micro-mesh electrode for the electrochemical determination of carbon dioxide in DMSO electrolyte solutions is further illustrated.

  18. 22nd International Meshing Roundtable

    CERN Document Server

    Staten, Matthew

    2014-01-01

    This volume contains the articles presented at the 22nd International Meshing Roundtable (IMR) organized, in part, by Sandia National Laboratories and was held on Oct 13-16, 2013 in Orlando, Florida, USA.  The first IMR was held in 1992, and the conference series has been held annually since.  Each year the IMR brings together researchers, developers, and application experts in a variety of disciplines, from all over the world, to present and discuss ideas on mesh generation and related topics.  The technical papers in this volume present theoretical and novel ideas and algorithms with practical potential, as well as technical applications in science and engineering, geometric modeling, computer graphics and visualization.

  19. 21st International Meshing Roundtable

    CERN Document Server

    Weill, Jean-Christophe

    2013-01-01

    This volume contains the articles presented at the 21st International Meshing Roundtable (IMR) organized, in part, by Sandia National Laboratories and was held on October 7–10, 2012 in San Jose, CA, USA. The first IMR was held in 1992, and the conference series has been held annually since. Each year the IMR brings together researchers, developers, and application experts in a variety of disciplines, from all over the world, to present and discuss ideas on mesh generation and related topics. The technical papers in this volume present theoretical and novel ideas and algorithms with practical potential, as well as technical applications in science and engineering, geometric modeling, computer graphics, and visualization.

  20. Adaptive Mesh Refinement in CTH

    International Nuclear Information System (INIS)

    Crawford, David

    1999-01-01

    This paper reports progress on implementing a new capability of adaptive mesh refinement into the Eulerian multimaterial shock- physics code CTH. The adaptivity is block-based with refinement and unrefinement occurring in an isotropic 2:1 manner. The code is designed to run on serial, multiprocessor and massive parallel platforms. An approximate factor of three in memory and performance improvements over comparable resolution non-adaptive calculations has-been demonstrated for a number of problems

  1. Development of a new generation of high-resolution anatomical models for medical device evaluation: the Virtual Population 3.0

    International Nuclear Information System (INIS)

    Gosselin, Marie-Christine; Neufeld, Esra; Moser, Heidi; Huber, Eveline; Farcito, Silvia; Gerber, Livia; Jedensjö, Maria; Hilber, Isabel; Gennaro, Fabienne Di; Lloyd, Bryn; Szczerba, Dominik; Kuster, Niels; Cherubini, Emilio; Kainz, Wolfgang

    2014-01-01

    The Virtual Family computational whole-body anatomical human models were originally developed for electromagnetic (EM) exposure evaluations, in particular to study how absorption of radiofrequency radiation from external sources depends on anatomy. However, the models immediately garnered much broader interest and are now applied by over 300 research groups, many from medical applications research fields. In a first step, the Virtual Family was expanded to the Virtual Population to provide considerably broader population coverage with the inclusion of models of both sexes ranging in age from 5 to 84 years old. Although these models have proven to be invaluable for EM dosimetry, it became evident that significantly enhanced models are needed for reliable effectiveness and safety evaluations of diagnostic and therapeutic applications, including medical implants safety. This paper describes the research and development performed to obtain anatomical models that meet the requirements necessary for medical implant safety assessment applications. These include implementation of quality control procedures, re-segmentation at higher resolution, more-consistent tissue assignments, enhanced surface processing and numerous anatomical refinements. Several tools were developed to enhance the functionality of the models, including discretization tools, posing tools to expand the posture space covered, and multiple morphing tools, e.g., to develop pathological models or variations of existing ones. A comprehensive tissue properties database was compiled to complement the library of models. The results are a set of anatomically independent, accurate, and detailed models with smooth, yet feature-rich and topologically conforming surfaces. The models are therefore suited for the creation of unstructured meshes, and the possible applications of the models are extended to a wider range of solvers and physics. The impact of these improvements is shown for the MRI exposure of an adult

  2. Development of a new generation of high-resolution anatomical models for medical device evaluation: the Virtual Population 3.0

    Science.gov (United States)

    Gosselin, Marie-Christine; Neufeld, Esra; Moser, Heidi; Huber, Eveline; Farcito, Silvia; Gerber, Livia; Jedensjö, Maria; Hilber, Isabel; Di Gennaro, Fabienne; Lloyd, Bryn; Cherubini, Emilio; Szczerba, Dominik; Kainz, Wolfgang; Kuster, Niels

    2014-09-01

    The Virtual Family computational whole-body anatomical human models were originally developed for electromagnetic (EM) exposure evaluations, in particular to study how absorption of radiofrequency radiation from external sources depends on anatomy. However, the models immediately garnered much broader interest and are now applied by over 300 research groups, many from medical applications research fields. In a first step, the Virtual Family was expanded to the Virtual Population to provide considerably broader population coverage with the inclusion of models of both sexes ranging in age from 5 to 84 years old. Although these models have proven to be invaluable for EM dosimetry, it became evident that significantly enhanced models are needed for reliable effectiveness and safety evaluations of diagnostic and therapeutic applications, including medical implants safety. This paper describes the research and development performed to obtain anatomical models that meet the requirements necessary for medical implant safety assessment applications. These include implementation of quality control procedures, re-segmentation at higher resolution, more-consistent tissue assignments, enhanced surface processing and numerous anatomical refinements. Several tools were developed to enhance the functionality of the models, including discretization tools, posing tools to expand the posture space covered, and multiple morphing tools, e.g., to develop pathological models or variations of existing ones. A comprehensive tissue properties database was compiled to complement the library of models. The results are a set of anatomically independent, accurate, and detailed models with smooth, yet feature-rich and topologically conforming surfaces. The models are therefore suited for the creation of unstructured meshes, and the possible applications of the models are extended to a wider range of solvers and physics. The impact of these improvements is shown for the MRI exposure of an adult

  3. Porcine dermis compared with polypropylene mesh for laparoscopic sacrocolpopexy: a randomized controlled trial.

    Science.gov (United States)

    Culligan, Patrick J; Salamon, Charbel; Priestley, Jennifer L; Shariati, Amir

    2013-01-01

    To compare the surgical outcomes 12 months after laparoscopic sacrocolpopexy performed with porcine dermis and the current gold standard of polypropylene mesh. Patients scheduled for laparoscopic sacrocolpopexy were eligible for this randomized controlled trial. Both our clinical research nurse and the patients were blinded as to which material was used. Our primary end point was objective anatomic cure defined as no pelvic organ prolapse quantification (POP-Q) points Stage 2 or greater at any postoperative interval. Our sample size calculation called for 57 patients in each group to achieve 90% power to detect a 23% difference in objective anatomic cure at 12 months (α=0.05). Our secondary end point was clinical cure. Any patient with a POP-Q point greater than zero, or Point C less than or equal to -5, or any complaints of prolapse symptoms whatsoever on Pelvic Floor Distress Inventory-20 or Pelvic Floor Impact Questionnaire, Short Form 7, or reoperation for prolapse were considered "clinical failures"; the rest were "clinical cures." Statistical comparisons were performed using the χ or independent samples t test as appropriate. As expected, there were no preoperative differences between the porcine (n=57) and mesh (n=58) groups. The 12-month objective anatomic cure rates for the porcine and mesh groups were 80.7% and 86.2%, respectively (P=.24), and the "clinical cure" rates for the porcine and mesh groups were 84.2% and 89.7%, respectively (P=.96). Pelvic Floor Distress Inventory-20 and Pelvic Floor Impact Questionnaire, Short Form 7 score improvements were significant for both groups with no differences found between groups. There were no major operative complications. There were similar outcomes in subjective or objective results 12 months after laparoscopic sacrocolpopexy performed with either porcine dermis or polypropylene mesh. ClinicalTrials.gov, www.clinicaltrials.gov, NCT00564083. I.

  4. Anatomical entity recognition with a hierarchical framework augmented by external resources.

    Directory of Open Access Journals (Sweden)

    Yan Xu

    Full Text Available References to anatomical entities in medical records consist not only of explicit references to anatomical locations, but also other diverse types of expressions, such as specific diseases, clinical tests, clinical treatments, which constitute implicit references to anatomical entities. In order to identify these implicit anatomical entities, we propose a hierarchical framework, in which two layers of named entity recognizers (NERs work in a cooperative manner. Each of the NERs is implemented using the Conditional Random Fields (CRF model, which use a range of external resources to generate features. We constructed a dictionary of anatomical entity expressions by exploiting four existing resources, i.e., UMLS, MeSH, RadLex and BodyPart3D, and supplemented information from two external knowledge bases, i.e., Wikipedia and WordNet, to improve inference of anatomical entities from implicit expressions. Experiments conducted on 300 discharge summaries showed a micro-averaged performance of 0.8509 Precision, 0.7796 Recall and 0.8137 F1 for explicit anatomical entity recognition, and 0.8695 Precision, 0.6893 Recall and 0.7690 F1 for implicit anatomical entity recognition. The use of the hierarchical framework, which combines the recognition of named entities of various types (diseases, clinical tests, treatments with information embedded in external knowledge bases, resulted in a 5.08% increment in F1. The resources constructed for this research will be made publicly available.

  5. Anatomical variations of paranasal sinuses at multislice computed tomography: what to look for

    International Nuclear Information System (INIS)

    Miranda, Christiana Maia Nobre Rocha de; Maranhao, Carol Pontes de Miranda; Padilha, Igor Gomes; Farias, Lucas de Padua Gomes de; Jatoba, Mayara Stephanie de Araujo; Andrade, Anna Carolina Mendonca de; Padilha, Bruno Gomes

    2011-01-01

    Multislice computed tomography is currently the imaging modality of choice for evaluating paranasal sinuses and adjacent structures. Such a method has been increasingly utilized in the assessment of anatomical variations, allowing their accurate identification with high anatomical details. Some anatomical variations may predispose to sinusal diseases, constituting areas of high risk for injuries and complications during surgical procedures. Therefore, the recognition of such variations is critical in the preoperative evaluation for endoscopic surgery. (author)

  6. Anatomical variations of paranasal sinuses at multislice computed tomography: what to look for

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Christiana Maia Nobre Rocha de; Maranhao, Carol Pontes de Miranda [Clinica de Medicina Nuclear e Radiologia de Maceio (Medradius), Maceio, AL (Brazil). Setor de Tomografia Computadorizada; Arraes, Fabiana Maia Nobre Rocha [Clinica Sinus, Maceio, AL (Brazil); Padilha, Igor Gomes; Farias, Lucas de Padua Gomes de; Jatoba, Mayara Stephanie de Araujo; Andrade, Anna Carolina Mendonca de; Padilha, Bruno Gomes [Universidade Federal de Alagoas (UFAL), Maceio, AL (Brazil)

    2011-07-15

    Multislice computed tomography is currently the imaging modality of choice for evaluating paranasal sinuses and adjacent structures. Such a method has been increasingly utilized in the assessment of anatomical variations, allowing their accurate identification with high anatomical details. Some anatomical variations may predispose to sinusal diseases, constituting areas of high risk for injuries and complications during surgical procedures. Therefore, the recognition of such variations is critical in the preoperative evaluation for endoscopic surgery. (author)

  7. Automatic mesh adaptivity for CADIS and FW-CADIS neutronics modeling of difficult shielding problems

    International Nuclear Information System (INIS)

    Ibrahim, A. M.; Peplow, D. E.; Mosher, S. W.; Wagner, J. C.; Evans, T. M.; Wilson, P. P.; Sawan, M. E.

    2013-01-01

    The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macro-material approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm de-couples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, obviating the need for a world-class super computer. (authors)

  8. Automatic mesh adaptivity for hybrid Monte Carlo/deterministic neutronics modeling of difficult shielding problems

    International Nuclear Information System (INIS)

    Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Wagner, John C.; Evans, Thomas M.; Grove, Robert E.

    2015-01-01

    The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer

  9. Dynamic evaluation of pelvic floor reconstructive surgery using radiopaque meshes and three-dimensional helical CT

    Directory of Open Access Journals (Sweden)

    Paulo Palma

    2010-04-01

    Full Text Available PURPOSE: This prospective study was performed to achieve visualization of the reestablishment of anatomy after reconstructive surgery in the different pelvic compartments with non-absorbable radiopaque meshes, providing valuable anatomic information for surgeons implanting meshes. MATERIALS AND METHODS: A total of 30 female patients with stress urinary incontinence (SUI, anterior and posterior vaginal wall prolapse, or both underwent surgical repair using radiopaque meshes after written informed consent. Patients with SUI underwent five different surgeries. Patients with anterior vaginal prolapse underwent a procedure using a combined pre-pubic and transobturator mesh, and those with posterior vaginal prolapse underwent posterior slingplasty. Three-dimensional reconstruction using helical CT was performed four weeks postoperatively. RESULTS: In all cases, the mesh was clearly visualized. Transobturator slings were shown at the midurethra, and the anchoring tails perforated the obturator foramen at the safety region. Mini-slings were in the proper place, and computed angiography revealed that the anchoring system was away from the obturator vessels. In patients undergoing procedure for anterior vaginal prolapse, both pre-pubic armpit and obturator slings were clearly seen and the mesh was in the proper position, supporting the bladder base and occluding the distal part of the urogenital hiatus. Transcoccygeal sacropexy revealed indirectly a well-supported "neo rectovaginal fascia" and the anchoring tails at the level of ischial spines. CONCLUSION: Three-dimensional helical tomography images of the female pelvis using radiopaque meshes have a potential role in improving our understanding of pelvic floor reconstructive surgeries. These radiopaque meshes might be the basis of a new investigative methodology.

  10. Adaptive and dynamic meshing methods for numerical simulations

    Science.gov (United States)

    Acikgoz, Nazmiye

    For the numerical simulation of many problems of engineering interest, it is desirable to have an automated mesh adaption tool capable of producing high quality meshes with an affordably low number of mesh points. This is important especially for problems, which are characterized by anisotropic features of the solution and require mesh clustering in the direction of high gradients. Another significant issue in meshing emerges in the area of unsteady simulations with moving boundaries or interfaces, where the motion of the boundary has to be accommodated by deforming the computational grid. Similarly, there exist problems where current mesh needs to be adapted to get more accurate solutions because either the high gradient regions are initially predicted inaccurately or they change location throughout the simulation. To solve these problems, we propose three novel procedures. For this purpose, in the first part of this work, we present an optimization procedure for three-dimensional anisotropic tetrahedral grids based on metric-driven h-adaptation. The desired anisotropy in the grid is dictated by a metric that defines the size, shape, and orientation of the grid elements throughout the computational domain. Through the use of topological and geometrical operators, the mesh is iteratively adapted until the final mesh minimizes a given objective function. In this work, the objective function measures the distance between the metric of each simplex and a target metric, which can be either user-defined (a-priori) or the result of a-posteriori error analysis. During the adaptation process, one tries to decrease the metric-based objective function until the final mesh is compliant with the target within a given tolerance. However, in regions such as corners and complex face intersections, the compliance condition was found to be very difficult or sometimes impossible to satisfy. In order to address this issue, we propose an optimization process based on an ad

  11. Nonlinear Analyses of Adobe Masonry Walls Reinforced with Fiberglass Mesh

    Directory of Open Access Journals (Sweden)

    Vincenzo Giamundo

    2014-02-01

    Full Text Available Adobe constructions were widespread in the ancient world, and earth was one of the most used construction materials in ancient times. Therefore, the preservation of adobe structures, especially against seismic events, is nowadays an important structural issue. Previous experimental tests have shown that the ratio between mortar and brick mechanical properties (i.e., strength, stiffness and elastic modulus influences the global response of the walls in terms of strength and ductility. Accurate analyses are presented in both the case of unreinforced and reinforced with fiberglass mesh when varying the mechanical properties of the materials composing the adobe masonry structure. The main issues and variability in the behavior of seismic resisting walls when varying the mechanical properties are herein highlighted. The aim of the overall research activity is to improve the knowledge about the structural behavior of adobe structural members unreinforced and reinforced with fiberglass mesh inside horizontal mortar joints.

  12. Laparoscopic appendicectomy for suspected mesh-induced appendicitis after laparoscopic transabdominal preperitoneal polypropylene mesh inguinal herniorraphy

    Directory of Open Access Journals (Sweden)

    Jennings Jason

    2010-01-01

    Full Text Available Laparoscopic inguinal herniorraphy via a transabdominal preperitoneal (TAPP approach using Polypropylene Mesh (Mesh and staples is an accepted technique. Mesh induces a localised inflammatory response that may extend to, and involve, adjacent abdominal and pelvic viscera such as the appendix. We present an interesting case of suspected Mesh-induced appendicitis treated successfully with laparoscopic appendicectomy, without Mesh removal, in an elderly gentleman who presented with symptoms and signs of acute appendicitis 18 months after laparoscopic inguinal hernia repair. Possible mechanisms for Mesh-induced appendicitis are briefly discussed.

  13. Sierra toolkit computational mesh conceptual model

    International Nuclear Information System (INIS)

    Baur, David G.; Edwards, Harold Carter; Cochran, William K.; Williams, Alan B.; Sjaardema, Gregory D.

    2010-01-01

    The Sierra Toolkit computational mesh is a software library intended to support massively parallel multi-physics computations on dynamically changing unstructured meshes. This domain of intended use is inherently complex due to distributed memory parallelism, parallel scalability, heterogeneity of physics, heterogeneous discretization of an unstructured mesh, and runtime adaptation of the mesh. Management of this inherent complexity begins with a conceptual analysis and modeling of this domain of intended use; i.e., development of a domain model. The Sierra Toolkit computational mesh software library is designed and implemented based upon this domain model. Software developers using, maintaining, or extending the Sierra Toolkit computational mesh library must be familiar with the concepts/domain model presented in this report.

  14. Anisotropic evaluation of synthetic surgical meshes.

    Science.gov (United States)

    Saberski, E R; Orenstein, S B; Novitsky, Y W

    2011-02-01

    The material properties of meshes used in hernia repair contribute to the overall mechanical behavior of the repair. The anisotropic potential of synthetic meshes, representing a difference in material properties (e.g., elasticity) in different material axes, is not well defined to date. Haphazard orientation of anisotropic mesh material can contribute to inconsistent surgical outcomes. We aimed to characterize and compare anisotropic properties of commonly used synthetic meshes. Six different polypropylene (Trelex(®), ProLite™, Ultrapro™), polyester (Parietex™), and PTFE-based (Dualmesh(®), Infinit) synthetic meshes were selected. Longitudinal and transverse axes were defined for each mesh, and samples were cut in each axis orientation. Samples underwent uniaxial tensile testing, from which the elastic modulus (E) in each axis was determined. The degree of anisotropy (λ) was calculated as a logarithmic expression of the ratio between the elastic modulus in each axis. Five of six meshes displayed significant anisotropic behavior. Ultrapro™ and Infinit exhibited approximately 12- and 20-fold differences between perpendicular axes, respectively. Trelex(®), ProLite™, and Parietex™ were 2.3-2.4 times. Dualmesh(®) was the least anisotropic mesh, without marked difference between the axes. Anisotropy of synthetic meshes has been underappreciated. In this study, we found striking differences between elastic properties of perpendicular axes for most commonly used synthetic meshes. Indiscriminate orientation of anisotropic mesh may adversely affect hernia repairs. Proper labeling of all implants by manufacturers should be mandatory. Understanding the specific anisotropic behavior of synthetic meshes should allow surgeons to employ rational implant orientation to maximize outcomes of hernia repair.

  15. Quadrilateral mesh fitting that preserves sharp features based on multi-normals for Laplacian energy

    Directory of Open Access Journals (Sweden)

    Yusuke Imai

    2014-04-01

    Full Text Available Because the cost of performance testing using actual products is expensive, manufacturers use lower-cost computer-aided design simulations for this function. In this paper, we propose using hexahedral meshes, which are more accurate than tetrahedral meshes, for finite element analysis. We propose automatic hexahedral mesh generation with sharp features to precisely represent the corresponding features of a target shape. Our hexahedral mesh is generated using a voxel-based algorithm. In our previous works, we fit the surface of the voxels to the target surface using Laplacian energy minimization. We used normal vectors in the fitting to preserve sharp features. However, this method could not represent concave sharp features precisely. In this proposal, we improve our previous Laplacian energy minimization by adding a term that depends on multi-normal vectors instead of using normal vectors. Furthermore, we accentuate a convex/concave surface subset to represent concave sharp features.

  16. Assessment of fusion facility dose rate map using mesh adaptivity enhancements of hybrid Monte Carlo/deterministic techniques

    International Nuclear Information System (INIS)

    Ibrahim, Ahmad M.; Wilson, Paul P.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Grove, Robert E.

    2014-01-01

    Highlights: •Calculate the prompt dose rate everywhere throughout the entire fusion energy facility. •Utilize FW-CADIS to accurately perform difficult neutronics calculations for fusion energy systems. •Develop three mesh adaptivity algorithms to enhance FW-CADIS efficiency in fusion-neutronics calculations. -- Abstract: Three mesh adaptivity algorithms were developed to facilitate and expedite the use of the CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques in accurate full-scale neutronics simulations of fusion energy systems with immense sizes and complicated geometries. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility and resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation. Additionally, because of the significant increase in the efficiency of FW-CADIS simulations, the three algorithms enabled this difficult calculation to be accurately solved on a regular computer cluster, eliminating the need for a world-class super computer

  17. Adaptive hybrid mesh refinement for multiphysics applications

    International Nuclear Information System (INIS)

    Khamayseh, Ahmed; Almeida, Valmor de

    2007-01-01

    The accuracy and convergence of computational solutions of mesh-based methods is strongly dependent on the quality of the mesh used. We have developed methods for optimizing meshes that are comprised of elements of arbitrary polygonal and polyhedral type. We present in this research the development of r-h hybrid adaptive meshing technology tailored to application areas relevant to multi-physics modeling and simulation. Solution-based adaptation methods are used to reposition mesh nodes (r-adaptation) or to refine the mesh cells (h-adaptation) to minimize solution error. The numerical methods perform either the r-adaptive mesh optimization or the h-adaptive mesh refinement method on the initial isotropic or anisotropic meshes to equidistribute weighted geometric and/or solution error function. We have successfully introduced r-h adaptivity to a least-squares method with spherical harmonics basis functions for the solution of the spherical shallow atmosphere model used in climate modeling. In addition, application of this technology also covers a wide range of disciplines in computational sciences, most notably, time-dependent multi-physics, multi-scale modeling and simulation

  18. Meshes optimized for discrete exterior calculus (DEC).

    Energy Technology Data Exchange (ETDEWEB)

    Mousley, Sarah C. [Univ. of Illinois, Urbana-Champaign, IL (United States); Deakin, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knupp, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Scott A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    We study the optimization of an energy function used by the meshing community to measure and improve mesh quality. This energy is non-traditional because it is dependent on both the primal triangulation and its dual Voronoi (power) diagram. The energy is a measure of the mesh's quality for usage in Discrete Exterior Calculus (DEC), a method for numerically solving PDEs. In DEC, the PDE domain is triangulated and this mesh is used to obtain discrete approximations of the continuous operators in the PDE. The energy of a mesh gives an upper bound on the error of the discrete diagonal approximation of the Hodge star operator. In practice, one begins with an initial mesh and then makes adjustments to produce a mesh of lower energy. However, we have discovered several shortcomings in directly optimizing this energy, e.g. its non-convexity, and we show that the search for an optimized mesh may lead to mesh inversion (malformed triangles). We propose a new energy function to address some of these issues.

  19. Transrectal Mesh Erosion Requiring Bowel Resection.

    Science.gov (United States)

    Kemp, Marta Maria; Slim, Karem; Rabischong, Benoît; Bourdel, Nicolas; Canis, Michel; Botchorishvili, Revaz

    To report a case of a transrectal mesh erosion as complication of laparoscopic promontofixation with mesh repair, necessitating bowel resection and subsequent surgical interventions. Sacrocolpopexy has become a standard procedure for vaginal vault prolapse [1], and the laparoscopic approach has gained popularity owing to more rapid recovery and less morbidity [2,3]. Mesh erosion is a well-known complication of surgical treatment for prolapse as reported in several negative evaluations, including a report from the US Food and Drug Administration in 2011 [4]. Mesh complications are more common after surgeries via the vaginal approach [5]; nonetheless, the incidence of vaginal mesh erosion after laparoscopic procedures is as high as 9% [6]. The incidence of transrectal mesh exposure after laparoscopic ventral rectopexy is roughly 1% [7]. The diagnosis may be delayed because of its rarity and variable presentation. In addition, polyester meshes, such as the mesh used in this case, carry a higher risk of exposure [8]. A 57-year-old woman experiencing genital prolapse, with the cervix classified as +3 according to the Pelvic Organ Prolapse Quantification system, underwent laparoscopic standard sacrocolpopexy using polyester mesh. Subtotal hysterectomy and bilateral adnexectomy were performed concomitantly. A 3-year follow-up consultation demonstrated no signs or symptoms of erosion of any type. At 7 years after the surgery, however, the patient presented with rectal discharge, diagnosed as infectious rectocolitis with the isolation of Clostridium difficile. She underwent a total of 5 repair surgeries in a period of 4 months, including transrectal resection of exposed mesh, laparoscopic ablation of mesh with digestive resection, exploratory laparoscopy with abscess drainage, and exploratory laparoscopy with ablation of residual mesh and transverse colostomy. She recovered well after the last intervention, exhibiting no signs of vaginal or rectal fistula and no recurrence

  20. RGG: Reactor geometry (and mesh) generator

    International Nuclear Information System (INIS)

    Jain, R.; Tautges, T.

    2012-01-01

    The reactor geometry (and mesh) generator RGG takes advantage of information about repeated structures in both assembly and core lattices to simplify the creation of geometry and mesh. It is released as open source software as a part of the MeshKit mesh generation library. The methodology operates in three stages. First, assembly geometry models of various types are generated by a tool called AssyGen. Next, the assembly model or models are meshed by using MeshKit tools or the CUBIT mesh generation tool-kit, optionally based on a journal file output by AssyGen. After one or more assembly model meshes have been constructed, a tool called CoreGen uses a copy/move/merge process to arrange the model meshes into a core model. In this paper, we present the current state of tools and new features in RGG. We also discuss the parallel-enabled CoreGen, which in several cases achieves super-linear speedups since the problems fit in available RAM at higher processor counts. Several RGG applications - 1/6 VHTR model, 1/4 PWR reactor core, and a full-core model for Monju - are reported. (authors)

  1. Parallel adaptive simulations on unstructured meshes

    International Nuclear Information System (INIS)

    Shephard, M S; Jansen, K E; Sahni, O; Diachin, L A

    2007-01-01

    This paper discusses methods being developed by the ITAPS center to support the execution of parallel adaptive simulations on unstructured meshes. The paper first outlines the ITAPS approach to the development of interoperable mesh, geometry and field services to support the needs of SciDAC application in these areas. The paper then demonstrates the ability of unstructured adaptive meshing methods built on such interoperable services to effectively solve important physics problems. Attention is then focused on ITAPs' developing ability to solve adaptive unstructured mesh problems on massively parallel computers

  2. A Wrapping Method for Inserting Titanium Micro-Mesh Implants in the Reconstruction of Blowout Fractures

    Directory of Open Access Journals (Sweden)

    Tae Joon Choi

    2016-01-01

    Full Text Available Titanium micro-mesh implants are widely used in orbital wall reconstructions because they have several advantageous characteristics. However, the rough and irregular marginal spurs of the cut edges of the titanium mesh sheet impede the efficacious and minimally traumatic insertion of the implant, because these spurs may catch or hook the orbital soft tissue, skin, or conjunctiva during the insertion procedure. In order to prevent this problem, we developed an easy method of inserting a titanium micro-mesh, in which it is wrapped with the aseptic transparent plastic film that is used to pack surgical instruments or is attached to one side of the inner suture package. Fifty-four patients underwent orbital wall reconstruction using a transconjunctival or transcutaneous approach. The wrapped implant was easily inserted without catching or injuring the orbital soft tissue, skin, or conjunctiva. In most cases, the implant was inserted in one attempt. Postoperative computed tomographic scans showed excellent placement of the titanium micro-mesh and adequate anatomic reconstruction of the orbital walls. This wrapping insertion method may be useful for making the insertion of titanium micro-mesh implants in the reconstruction of orbital wall fractures easier and less traumatic.

  3. Transvaginal mesh in the media following the 2011 US food and drug administration public health notification update.

    Science.gov (United States)

    Koo, Kevin; Gormley, E Ann

    2017-02-01

    Prompted by patients' changing perceptions of transvaginal mesh, this study examines how mesh has been reported in the news following the 2011 US Food and Drug Administration (FDA) updated notification about the use of mesh in the treatment of pelvic organ prolapse. Two national newspaper databases were queried for articles discussing transvaginal mesh published within 3 years of the FDA announcement. Content analysis included headline subjects, mesh-related complications, quoted sources, and the FDA recommendations. To determine whether more widely read sources publish higher quality reporting, a subgroup analysis was conducted based on newspaper circulation. Ninety-five articles met inclusion criteria. Mesh-related litigation was the most common headline subject (36 articles, 38%), and 54% of all articles referenced legal action. Fifty-seven articles (60%) cited at least one mesh-related complication. Only 18 articles (19%) quoted surgeons who use transvaginal mesh. For the FDA update, 40% of articles that first reported the announcement accurately specified that it applies to mesh for prolapse, not incontinence. This ambiguity persisted: half of all articles cited the warning, but only 23% distinguished between prolapse and incontinence. Higher newspaper circulation did not significantly improve the quality of reporting about the content or context of the FDA's recommendations. Despite frequent media coverage of transvaginal mesh and its complications since 2011, very few news sources that cited the FDA warning distinguished between prolapse and incontinence. Given prevalent reporting of mesh-related litigation, the findings raise concern about how patients perceive the safety and efficacy of transvaginal mesh, regardless of indication. Neurourol. Urodynam. 36:329-332, 2017. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  4. Tensile Behaviour of Welded Wire Mesh and Hexagonal Metal Mesh for Ferrocement Application

    Science.gov (United States)

    Tanawade, A. G.; Modhera, C. D.

    2017-08-01

    Tension tests were conducted on welded mesh and hexagonal Metal mesh. Welded Mesh is available in the market in different sizes. The two types are analysed viz. Ø 2.3 mm and Ø 2.7 mm welded mesh, having opening size 31.75 mm × 31.75 mm and 25.4 mm × 25.4 mm respectively. Tensile strength test was performed on samples of welded mesh in three different orientations namely 0°, 30° and 45° degrees with the loading axis and hexagonal Metal mesh of Ø 0.7 mm, having opening 19.05 × 19.05 mm. Experimental tests were conducted on samples of these meshes. The objective of this study was to investigate the behaviour of the welded mesh and hexagonal Metal mesh. The result shows that the tension load carrying capacity of welded mesh of Ø 2.7 mm of 0° orientation is good as compared to Ø2.3 mm mesh and ductility of hexagonal Metal mesh is good in behaviour.

  5. Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors

    KAUST Repository

    Zhang, Fang; Merrill, Matthew D.; Tokash, Justin C.; Saito, Tomonori; Cheng, Shaoan; Hickner, Michael A.; Logan, Bruce E.

    2011-01-01

    that the mesh properties of these cathodes can significantly affect performance. Cathodes made from the coarsest mesh (30-mesh) achieved the highest maximum power of 1616 ± 25 mW m-2 (normalized to cathode projected surface area; 47.1 ± 0.7 W m-3 based on liquid

  6. Intravesical midurethral sling mesh erosion secondary to transvaginal mesh reconstructive surgery

    Directory of Open Access Journals (Sweden)

    Sukanda Bin Jaili

    2015-05-01

    Conclusion: Repeated vaginal reconstructive surgery may jeopardize a primary mesh or sling, and pose a high risk of mesh erosion, which may be delayed for several years. Removal of the mesh erosion and bladder repair are feasible pervaginally with good outcome.

  7. Development of a pregnant woman phantom using polygonal mesh, for dosimetric evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Manuela O.M.; Vieira, Jose W., E-mail: manuela.omc@gmail.com [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Leal Neto, Viriato, E-mail: viriatoleal@yahoo.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil); Lima, Fernando R.A., E-mail: falima@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2014-07-01

    Due to the embryo/fetus radiosensitivity the accurate estimation of the absorbed dose distribution in the abdominal area is an additional problem caused by the exposure of pregnant women to ionizing radiation in medical applications. This paper reports the construction and insertion of a fetal representation in a female geometry by means of 3D modeling techniques. In order to characterize an ECM the Grupo de Dosimetria Numerica (GDN) is using, mainly, simulators emitting gamma sources and voxel phantoms coupled to a MC code. The phantoms are predominantly constructed from stacks of magnetic resonance images (MRI), computed tomography (CT) (obtained from scans of real patients) or from 3D modeling techniques. Due to the difficulty of obtaining medical images of pregnant women, 3D objects in several formats (.obj, .max, .blend, etc.) were acquired for anatomical representation of a non-pregnant adult. To construct a fetal representation, the 3D modeling technique called Poly Modeling (polygon mesh) was used inside of the software Autodesk 3ds Max 2014 (free student version). Information about the radiosensibility of organs included in the abdominal area will be used to fit and use the pregnant phantom in numerical dosimetry. For this, the phantom will be voxelized and the masses of organs of interest will be adjusted according to data provided by International Commission on Radiological Protection (ICRP). Finally, the phantom will be coupled to a MC code creating a MCE that will serve as base for the construction of several other models involving pregnant women submitted to ionizing radiation. (author)

  8. Development of a pregnant woman phantom using polygonal mesh, for dosimetric evaluations

    International Nuclear Information System (INIS)

    Cabral, Manuela O.M.; Vieira, Jose W.; Lima, Fernando R.A.

    2014-01-01

    Due to the embryo/fetus radiosensitivity the accurate estimation of the absorbed dose distribution in the abdominal area is an additional problem caused by the exposure of pregnant women to ionizing radiation in medical applications. This paper reports the construction and insertion of a fetal representation in a female geometry by means of 3D modeling techniques. In order to characterize an ECM the Grupo de Dosimetria Numerica (GDN) is using, mainly, simulators emitting gamma sources and voxel phantoms coupled to a MC code. The phantoms are predominantly constructed from stacks of magnetic resonance images (MRI), computed tomography (CT) (obtained from scans of real patients) or from 3D modeling techniques. Due to the difficulty of obtaining medical images of pregnant women, 3D objects in several formats (.obj, .max, .blend, etc.) were acquired for anatomical representation of a non-pregnant adult. To construct a fetal representation, the 3D modeling technique called Poly Modeling (polygon mesh) was used inside of the software Autodesk 3ds Max 2014 (free student version). Information about the radiosensibility of organs included in the abdominal area will be used to fit and use the pregnant phantom in numerical dosimetry. For this, the phantom will be voxelized and the masses of organs of interest will be adjusted according to data provided by International Commission on Radiological Protection (ICRP). Finally, the phantom will be coupled to a MC code creating a MCE that will serve as base for the construction of several other models involving pregnant women submitted to ionizing radiation. (author)

  9. A Novel Capacity Analysis for Wireless Backhaul Mesh Networks

    Science.gov (United States)

    Chung, Tein-Yaw; Lee, Kuan-Chun; Lee, Hsiao-Chih

    This paper derived a closed-form expression for inter-flow capacity of a backhaul wireless mesh network (WMN) with centralized scheduling by employing a ring-based approach. Through the definition of an interference area, we are able to accurately describe a bottleneck collision area for a WMN and calculate the upper bound of inter-flow capacity. The closed-form expression shows that the upper bound is a function of the ratio between transmission range and network radius. Simulations and numerical analysis show that our analytic solution can better estimate the inter-flow capacity of WMNs than that of previous approach.

  10. CDCC calculations with the Lagrange-mesh technique

    International Nuclear Information System (INIS)

    Druet, T.; Baye, D.; Descouvemont, P.; Sparenberg, J.-M.

    2010-01-01

    We apply the Lagrange-mesh technique to the Continuum Discretized Coupled Channel (CDCC) theory. The CDCC equations are solved with the R-matrix method, using Lagrange functions as variational basis. The choice of Lagrange functions is shown to be efficient and accurate for elastic scattering as well as for breakup reactions. We describe the general formalism for two-body projectiles, and apply it to the d+ 58 Ni collision at E d =80 MeV. Various numerical and physical aspects are discussed. Benchmark calculations on elastic scattering and breakup are presented.

  11. COMPLEX OPTICAL CHARACTERIZATION OF MESH IMPLANTS AND ENCAPSULATION AREA

    Directory of Open Access Journals (Sweden)

    VALERIY P. ZAKHAROV

    2013-04-01

    Full Text Available Complex investigation of mesh implants was performed involving laser confocal microscopy, backscattered probing and OCT imaging methods. The growth of endomysium and fat tissue with microcirculation vessels was observed in the mesh encapsulation region. Confocal microscopy analysis shows that such pathologies complications such as necrosis formation and microcavities were localized in the area near implant fibers with the size compatible with fiber diameter. And the number of such formations increase with the increase of the size, number and density of microdefects on the implant surface. Results of numerical simulations show that it is possible to control implant installation up to the depth to 4 mm with a help of backscattering probing. The applicability of OCT imaging for mesh implant control was demonstrated. Special two-stage OCT image noise-reduction algorithm, including empirical mode decomposition, was proposed for contrast increase and better abnormalities visualization by halving the signal-to-noise ratio. Joint usage of backscattered probing and OCT allows to accurately ascertain implant and surrounding tissue conditions, which reduces the risk of relapse probability.

  12. Laparoscopic Pelvic Floor Repair Using Polypropylene Mesh

    Directory of Open Access Journals (Sweden)

    Shih-Shien Weng

    2008-09-01

    Conclusion: Laparoscopic pelvic floor repair using a single piece of polypropylene mesh combined with uterosacral ligament suspension appears to be a feasible procedure for the treatment of advanced vaginal vault prolapse and enterocele. Fewer mesh erosions and postoperative pain syndromes were seen in patients who had no previous pelvic floor reconstructive surgery.

  13. Robust diamond meshes with unique wettability properties.

    Science.gov (United States)

    Yang, Yizhou; Li, Hongdong; Cheng, Shaoheng; Zou, Guangtian; Wang, Chuanxi; Lin, Quan

    2014-03-18

    Robust diamond meshes with excellent superhydrophobic and superoleophilic properties have been fabricated. Superhydrophobicity is observed for water with varying pH from 1 to 14 with good recyclability. Reversible superhydrophobicity and hydrophilicity can be easily controlled. The diamond meshes show highly efficient water-oil separation and water pH droplet transference.

  14. Mesh-graft urethroplasty: a case report

    OpenAIRE

    田中, 敏博; 滝川, 浩; 香川, 征; 長江, 浩朗

    1987-01-01

    We used a meshed free-foreskin transplant in a two-stage procedure for reconstruction of the extended stricture of urethra after direct vision urethrotomy. The results were excellent. Mesh-graft urethroplasty is a useful method for patients with extended strictures of the urethra or recurrent strictures after several operations.

  15. 7th International Meshing Roundtable '98

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, T.J.

    1998-10-01

    The goal of the 7th International Meshing Roundtable is to bring together researchers and developers from industry, academia, and government labs in a stimulating, open environment for the exchange of technical information related to the meshing process. In the past, the Roundtable has enjoyed significant participation from each of these groups from a wide variety of countries.

  16. Postoperative pain outcomes after transvaginal mesh revision.

    Science.gov (United States)

    Danford, Jill M; Osborn, David J; Reynolds, W Stuart; Biller, Daniel H; Dmochowski, Roger R

    2015-01-01

    Although the current literature discusses mesh complications including pain, as well as suggesting different techniques for removing mesh, there is little literature regarding pain outcomes after surgical removal or revision. The purpose of this study is to determine if surgical removal or revision of vaginal mesh improves patient's subjective complaints of pelvic pain associated with original placement of mesh. After obtaining approval from the Vanderbilt University Medical Center Institutional Review Board, a retrospective review of female patients with pain secondary to previous mesh placement who underwent excision or revision of vaginal mesh from January 2000 to August 2012 was performed. Patient age, relevant medical history including menopause status, previous hysterectomy, smoking status, and presence of diabetes, fibromyalgia, interstitial cystitis, and chronic pelvic pain, was obtained. Patients' postoperative pain complaints were assessed. Of the 481 patients who underwent surgery for mesh revision, removal or urethrolysis, 233 patients met our inclusion criteria. One hundred and sixty-nine patients (73 %) reported that their pain improved, 19 (8 %) reported that their pain worsened, and 45 (19 %) reported that their pain remained unchanged after surgery. Prior history of chronic pelvic pain was associated with increased risk of failure of the procedure to relieve pain (OR 0.28, 95 % CI 0.12-0.64, p = 0.003). Excision or revision of vaginal mesh appears to be effective in improving patients' pain symptoms most of the time. Patients with a history of chronic pelvic pain are at an increased risk of no improvement or of worsening pain.

  17. Converting skeletal structures to quad dominant meshes

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Misztal, Marek Krzysztof; Welnicka, Katarzyna

    2012-01-01

    We propose the Skeleton to Quad-dominant polygonal Mesh algorithm (SQM), which converts skeletal structures to meshes composed entirely of polar and annular regions. Both types of regions have a regular structure where all faces are quads except for a single ring of triangles at the center of each...

  18. Adaptive mesh refinement in titanium

    Energy Technology Data Exchange (ETDEWEB)

    Colella, Phillip; Wen, Tong

    2005-01-21

    In this paper, we evaluate Titanium's usability as a high-level parallel programming language through a case study, where we implement a subset of Chombo's functionality in Titanium. Chombo is a software package applying the Adaptive Mesh Refinement methodology to numerical Partial Differential Equations at the production level. In Chombo, the library approach is used to parallel programming (C++ and Fortran, with MPI), whereas Titanium is a Java dialect designed for high-performance scientific computing. The performance of our implementation is studied and compared with that of Chombo in solving Poisson's equation based on two grid configurations from a real application. Also provided are the counts of lines of code from both sides.

  19. Uniportal anatomic combined unusual segmentectomies.

    Science.gov (United States)

    González-Rivas, Diego; Lirio, Francisco; Sesma, Julio

    2017-01-01

    Nowadays, sublobar anatomic resections are gaining momentum as a valid alternative for early stage lung cancer. Despite being technically demanding, anatomic segmentectomies can be performed by uniportal video-assisted thoracic surgery (VATS) approach to combine the benefits of minimally invasiveness with the maximum lung sparing. This procedure can be even more complex if a combined resection of multiple segments from different lobes has to be done. Here we report five cases of combined and unusual segmentectomies done by the same experienced surgeon in high volume institutions to show uniportal VATS is a feasible approach for these complex resections and to share an excellent educational resource.

  20. Objective and subjective outcome 3 years after synthetic transobturator nonabsorbable anterior mesh use in symptomatic advanced pelvic organ prolapse surgery

    Directory of Open Access Journals (Sweden)

    Tsia-Shu Lo

    2015-05-01

    Conclusion: The Perigee System gave a favorable result in both anatomical and subjective success rates with a low rate of mesh-related morbidities. The strength of the study reported here is its long-term follow up of a relatively large number of patients and the use of validated questionnaires. Limitations are that it is not a RCT; hence, selection and indication bias is unavoidable. The favorable outcome and low morbidities resulting from mesh use is from a single surgeon's perspective and may not be generalized to others.

  1. Adaptive radial basis function mesh deformation using data reduction

    Science.gov (United States)

    Gillebaart, T.; Blom, D. S.; van Zuijlen, A. H.; Bijl, H.

    2016-09-01

    Radial Basis Function (RBF) mesh deformation is one of the most robust mesh deformation methods available. Using the greedy (data reduction) method in combination with an explicit boundary correction, results in an efficient method as shown in literature. However, to ensure the method remains robust, two issues are addressed: 1) how to ensure that the set of control points remains an accurate representation of the geometry in time and 2) how to use/automate the explicit boundary correction, while ensuring a high mesh quality. In this paper, we propose an adaptive RBF mesh deformation method, which ensures the set of control points always represents the geometry/displacement up to a certain (user-specified) criteria, by keeping track of the boundary error throughout the simulation and re-selecting when needed. Opposed to the unit displacement and prescribed displacement selection methods, the adaptive method is more robust, user-independent and efficient, for the cases considered. Secondly, the analysis of a single high aspect ratio cell is used to formulate an equation for the correction radius needed, depending on the characteristics of the correction function used, maximum aspect ratio, minimum first cell height and boundary error. Based on the analysis two new radial basis correction functions are derived and proposed. This proposed automated procedure is verified while varying the correction function, Reynolds number (and thus first cell height and aspect ratio) and boundary error. Finally, the parallel efficiency is studied for the two adaptive methods, unit displacement and prescribed displacement for both the CPU as well as the memory formulation with a 2D oscillating and translating airfoil with oscillating flap, a 3D flexible locally deforming tube and deforming wind turbine blade. Generally, the memory formulation requires less work (due to the large amount of work required for evaluating RBF's), but the parallel efficiency reduces due to the limited

  2. Automatic mesh generation with QMESH program

    International Nuclear Information System (INIS)

    Ise, Takeharu; Tsutsui, Tsuneo

    1977-05-01

    Usage of the two-dimensional self-organizing mesh generation program, QMESH, is presented together with the descriptions and the experience, as it has recently been converted and reconstructed from the NEACPL version to the FACOM. The program package consists of the QMESH code to generate quadrilaterial meshes with smoothing techniques, the QPLOT code to plot the data obtained from the QMESH on the graphic COM, and the RENUM code to renumber the meshes by using a bandwidth minimization procedure. The technique of mesh reconstructuring coupled with smoothing techniques is especially useful when one generates the meshes for computer codes based on the finite element method. Several typical examples are given for easy access to the QMESH program, which is registered in the R.B-disks of JAERI for users. (auth.)

  3. Fog water collection effectiveness: Mesh intercomparisons

    Science.gov (United States)

    Fernandez, Daniel; Torregrosa, Alicia; Weiss-Penzias, Peter; Zhang, Bong June; Sorensen, Deckard; Cohen, Robert; McKinley, Gareth; Kleingartner, Justin; Oliphant, Andrew; Bowman, Matthew

    2018-01-01

    To explore fog water harvesting potential in California, we conducted long-term measurements involving three types of mesh using standard fog collectors (SFC). Volumetric fog water measurements from SFCs and wind data were collected and recorded in 15-minute intervals over three summertime fog seasons (2014–2016) at four California sites. SFCs were deployed with: standard 1.00 m2 double-layer 35% shade coefficient Raschel; stainless steel mesh coated with the MIT-14 hydrophobic formulation; and FogHa-Tin, a German manufactured, 3-dimensional spacer fabric deployed in two orientations. Analysis of 3419 volumetric samples from all sites showed strong relationships between mesh efficiency and wind speed. Raschel mesh collected 160% more fog water than FogHa-Tin at wind speeds less than 1 m s–1 and 45% less for wind speeds greater than 5 m s–1. MIT-14 coated stainless-steel mesh collected more fog water than Raschel mesh at all wind speeds. At low wind speeds of steel mesh collected 3% more and at wind speeds of 4–5 m s–1, it collected 41% more. FogHa-Tin collected 5% more fog water when the warp of the weave was oriented vertically, per manufacturer specification, than when the warp of the weave was oriented horizontally. Time series measurements of three distinct mesh across similar wind regimes revealed inconsistent lags in fog water collection and inconsistent performance. Since such differences occurred under similar wind-speed regimes, we conclude that other factors play important roles in mesh performance, including in-situ fog event and aerosol dynamics that affect droplet-size spectra and droplet-to-mesh surface interactions.

  4. Towards accurate performance prediction of a vertical axis wind turbine operating at different tip speed ratios

    NARCIS (Netherlands)

    Rezaeiha, A.; Kalkman, I.; Blocken, B.J.E.

    2017-01-01

    Accurate prediction of the performance of a vertical-axis wind turbine (VAWT) using CFD simulation requires the employment of a sufficiently fine azimuthal increment (dθ) combined with a mesh size at which essential flow characteristics can be accurately resolved. Furthermore, the domain size needs

  5. The Fate of Anatomical Collections

    NARCIS (Netherlands)

    Knoeff, Rina; Zwijnenberg, Robert

    Almost every medical faculty possesses anatomical and/or pathological collections: human and animal preparations, wax- and other models, as well as drawings, photographs, documents and archives relating to them. In many institutions these collections are well-preserved, but in others they are poorly

  6. Adaptive Shape Functions and Internal Mesh Adaptation for Modelling Progressive Failure in Adhesively Bonded Joints

    Science.gov (United States)

    Stapleton, Scott; Gries, Thomas; Waas, Anthony M.; Pineda, Evan J.

    2014-01-01

    Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields, enabling more efficient, mesh independent finite element analysis. The shape functions are determined based on the analytical model rather than prescribed. This method was applied to adhesively bonded joints to model joint behavior with one element through the thickness. This study demonstrates two methods of maintaining the fidelity of such elements during adhesive non-linearity and cracking without increasing the mesh needed for an accurate solution. The first method uses adaptive shape functions, where the shape functions are recalculated at each load step based on the softening of the adhesive. The second method is internal mesh adaption, where cracking of the adhesive within an element is captured by further discretizing the element internally to represent the partially cracked geometry. By keeping mesh adaptations within an element, a finer mesh can be used during the analysis without affecting the global finite element model mesh. Examples are shown which highlight when each method is most effective in reducing the number of elements needed to capture adhesive nonlinearity and cracking. These methods are validated against analogous finite element models utilizing cohesive zone elements.

  7. [CLINICAL EVALUATION OF THE NEW ANTISEPTIC MESHES].

    Science.gov (United States)

    Gogoladze, M; Kiladze, M; Chkhikvadze, T; Jiqia, D

    2016-12-01

    Improving the results of hernia treatment and prevention of complications became a goal of our research which included two parts - experimental and clinical. Histomorphological and bacteriological researches showed that the best result out of the 3 control groups was received in case of covering implant "Coladerm"+ with chlorhexidine. Based on the experiment results working process continued in clinics in order to test and introduce new "coladerm"+ chlorhexidine covered poliprophilene meshes into practice. For clinical illustration there were 60 patients introduced to the research who had hernioplasty procedures by different nets: I group - standard meshes+"coladerm"+chlorhexidine, 35 patients; II group - standard meshes +"coladerm", 15 patients; III group - standard meshes, 10 patients. Assessment of the wound and echo-control was done post-surgery on the 8th, 30th and 90th days. This clinical research based on the experimental results once again showed the best anti-microbe features of new antiseptic polymeric biocomposite meshes (standard meshes+"coladerm"+chlorhexidine); timely termination of regeneration and reparation processes without any post-surgery suppurative complications. We hope that new antiseptic polymeric biocomposite meshes presented by us will be successfully used in surgical practice of hernia treatment based on and supported by expermental-clinical research.

  8. Spectrally accurate contour dynamics

    International Nuclear Information System (INIS)

    Van Buskirk, R.D.; Marcus, P.S.

    1994-01-01

    We present an exponentially accurate boundary integral method for calculation the equilibria and dynamics of piece-wise constant distributions of potential vorticity. The method represents contours of potential vorticity as a spectral sum and solves the Biot-Savart equation for the velocity by spectrally evaluating a desingularized contour integral. We use the technique in both an initial-value code and a newton continuation method. Our methods are tested by comparing the numerical solutions with known analytic results, and it is shown that for the same amount of computational work our spectral methods are more accurate than other contour dynamics methods currently in use

  9. Fog water collection effectiveness: Mesh intercomparisons

    Science.gov (United States)

    Fernandez, Daniel; Torregrosa, Alicia; Weiss-Penzias, Peter; Zhang, Bong June; Sorensen, Deckard; Cohen, Robert; McKinley, Gareth; Kleingartner, Justin; Oliphant, Andrew; Bowman, Matthew

    2018-01-01

    To explore fog water harvesting potential in California, we conducted long-term measurements involving three types of mesh using standard fog collectors (SFC). Volumetric fog water measurements from SFCs and wind data were collected and recorded in 15-minute intervals over three summertime fog seasons (2014–2016) at four California sites. SFCs were deployed with: standard 1.00 m2 double-layer 35% shade coefficient Raschel; stainless steel mesh coated with the MIT-14 hydrophobic formulation; and FogHa-Tin, a German manufactured, 3-dimensional spacer fabric deployed in two orientations. Analysis of 3419 volumetric samples from all sites showed strong relationships between mesh efficiency and wind speed. Raschel mesh collected 160% more fog water than FogHa-Tin at wind speeds less than 1 m s–1 and 45% less for wind speeds greater than 5 m s–1. MIT-14 coated stainless-steel mesh collected more fog water than Raschel mesh at all wind speeds. At low wind speeds of wind speeds of 4–5 m s–1, it collected 41% more. FogHa-Tin collected 5% more fog water when the warp of the weave was oriented vertically, per manufacturer specification, than when the warp of the weave was oriented horizontally. Time series measurements of three distinct mesh across similar wind regimes revealed inconsistent lags in fog water collection and inconsistent performance. Since such differences occurred under similar wind-speed regimes, we conclude that other factors play important roles in mesh performance, including in-situ fog event and aerosol dynamics that affect droplet-size spectra and droplet-to-mesh surface interactions.

  10. Automated hexahedral mesh generation from biomedical image data: applications in limb prosthetics.

    Science.gov (United States)

    Zachariah, S G; Sanders, J E; Turkiyyah, G M

    1996-06-01

    A general method to generate hexahedral meshes for finite element analysis of residual limbs and similar biomedical geometries is presented. The method utilizes skeleton-based subdivision of cross-sectional domains to produce simple subdomains in which structured meshes are easily generated. Application to a below-knee residual limb and external prosthetic socket is described. The residual limb was modeled as consisting of bones, soft tissue, and skin. The prosthetic socket model comprised a socket wall with an inner liner. The geometries of these structures were defined using axial cross-sectional contour data from X-ray computed tomography, optical scanning, and mechanical surface digitization. A tubular surface representation, using B-splines to define the directrix and generator, is shown to be convenient for definition of the structure geometries. Conversion of cross-sectional data to the compact tubular surface representation is direct, and the analytical representation simplifies geometric querying and numerical optimization within the mesh generation algorithms. The element meshes remain geometrically accurate since boundary nodes are constrained to lie on the tubular surfaces. Several element meshes of increasing mesh density were generated for two residual limbs and prosthetic sockets. Convergence testing demonstrated that approximately 19 elements are required along a circumference of the residual limb surface for a simple linear elastic model. A model with the fibula absent compared with the same geometry with the fibula present showed differences suggesting higher distal stresses in the absence of the fibula. Automated hexahedral mesh generation algorithms for sliced data represent an advancement in prosthetic stress analysis since they allow rapid modeling of any given residual limb and optimization of mesh parameters.

  11. Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors

    KAUST Repository

    Zhang, Fang

    2011-02-01

    Mesh current collectors made of stainless steel (SS) can be integrated into microbial fuel cell (MFC) cathodes constructed of a reactive carbon black and Pt catalyst mixture and a poly(dimethylsiloxane) (PDMS) diffusion layer. It is shown here that the mesh properties of these cathodes can significantly affect performance. Cathodes made from the coarsest mesh (30-mesh) achieved the highest maximum power of 1616 ± 25 mW m-2 (normalized to cathode projected surface area; 47.1 ± 0.7 W m-3 based on liquid volume), while the finest mesh (120-mesh) had the lowest power density (599 ± 57 mW m-2). Electrochemical impedance spectroscopy showed that charge transfer and diffusion resistances decreased with increasing mesh opening size. In MFC tests, the cathode performance was primarily limited by reaction kinetics, and not mass transfer. Oxygen permeability increased with mesh opening size, accounting for the decreased diffusion resistance. At higher current densities, diffusion became a limiting factor, especially for fine mesh with low oxygen transfer coefficients. These results demonstrate the critical nature of the mesh size used for constructing MFC cathodes. © 2010 Elsevier B.V. All rights reserved.

  12. Polygonal Prism Mesh in the Viscous Layers for the Polyhedral Mesh Generator, PolyGen

    International Nuclear Information System (INIS)

    Lee, Sang Yong; Park, Chan Eok; Kim, Shin Whan

    2015-01-01

    Polyhedral mesh has been known to have some benefits over the tetrahedral mesh. Efforts have been made to set up a polyhedral mesh generation system with open source programs SALOME and TetGen. The evaluation has shown that the polyhedral mesh generation system is promising. But it is necessary to extend the capability of the system to handle the viscous layers to be a generalized mesh generator. A brief review to the previous works on the mesh generation for the viscous layers will be made in section 2. Several challenging issues for the polygonal prism mesh generation will be discussed as well. The procedure to generate a polygonal prism mesh will be discussed in detail in section 3. Conclusion will be followed in section 4. A procedure to generate meshes in the viscous layers with PolyGen has been successfully designed. But more efforts have to be exercised to find the best way for the generating meshes for viscous layers. Using the extrusion direction of the STL data will the first of the trials in the near future

  13. Engagement of Metal Debris into Gear Mesh

    Science.gov (United States)

    handschuh, Robert F.; Krantz, Timothy L.

    2010-01-01

    A series of bench-top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

  14. Introducing 3-Dimensional Printing of a Human Anatomic Pathology Specimen: Potential Benefits for Undergraduate and Postgraduate Education and Anatomic Pathology Practice.

    Science.gov (United States)

    Mahmoud, Amr; Bennett, Michael

    2015-08-01

    Three-dimensional (3D) printing, a rapidly advancing technology, is widely applied in fields such as mechanical engineering and architecture. Three-dimensional printing has been introduced recently into medical practice in areas such as reconstructive surgery, as well as in clinical research. Three-dimensionally printed models of anatomic and autopsy pathology specimens can be used for demonstrating pathology entities to undergraduate medical, dental, and biomedical students, as well as for postgraduate training in examination of gross specimens for anatomic pathology residents and pathology assistants, aiding clinicopathological correlation at multidisciplinary team meetings, and guiding reconstructive surgical procedures. To apply 3D printing in anatomic pathology for teaching, training, and clinical correlation purposes. Multicolored 3D printing of human anatomic pathology specimens was achieved using a ZCorp 510 3D printer (3D Systems, Rock Hill, South Carolina) following creation of a 3D model using Autodesk 123D Catch software (Autodesk, Inc, San Francisco, California). Three-dimensionally printed models of anatomic pathology specimens created included pancreatoduodenectomy (Whipple operation) and radical nephrectomy specimens. The models accurately depicted the topographic anatomy of selected specimens and illustrated the anatomic relation of excised lesions to adjacent normal tissues. Three-dimensional printing of human anatomic pathology specimens is achievable. Advances in 3D printing technology may further improve the quality of 3D printable anatomic pathology specimens.

  15. Tetrahedral-Mesh Simulation of Turbulent Flows with the Space-Time Conservative Schemes

    Science.gov (United States)

    Chang, Chau-Lyan; Venkatachari, Balaji; Cheng, Gary C.

    2015-01-01

    Direct numerical simulations of turbulent flows are predominantly carried out using structured, hexahedral meshes despite decades of development in unstructured mesh methods. Tetrahedral meshes offer ease of mesh generation around complex geometries and the potential of an orientation free grid that would provide un-biased small-scale dissipation and more accurate intermediate scale solutions. However, due to the lack of consistent multi-dimensional numerical formulations in conventional schemes for triangular and tetrahedral meshes at the cell interfaces, numerical issues exist when flow discontinuities or stagnation regions are present. The space-time conservative conservation element solution element (CESE) method - due to its Riemann-solver-free shock capturing capabilities, non-dissipative baseline schemes, and flux conservation in time as well as space - has the potential to more accurately simulate turbulent flows using unstructured tetrahedral meshes. To pave the way towards accurate simulation of shock/turbulent boundary-layer interaction, a series of wave and shock interaction benchmark problems that increase in complexity, are computed in this paper with triangular/tetrahedral meshes. Preliminary computations for the normal shock/turbulence interactions are carried out with a relatively coarse mesh, by direct numerical simulations standards, in order to assess other effects such as boundary conditions and the necessity of a buffer domain. The results indicate that qualitative agreement with previous studies can be obtained for flows where, strong shocks co-exist along with unsteady waves that display a broad range of scales, with a relatively compact computational domain and less stringent requirements for grid clustering near the shock. With the space-time conservation properties, stable solutions without any spurious wave reflections can be obtained without a need for buffer domains near the outflow/farfield boundaries. Computational results for the

  16. Unification of Sinonasal Anatomical Terminology

    Directory of Open Access Journals (Sweden)

    Voegels, Richard Louis

    2015-07-01

    Full Text Available The advent of endoscopy and computed tomography at the beginning of the 1980s brought to rhinology a revival of anatomy and physiology study. In 1994, the International Conference of Sinus Disease was conceived because the official “Terminologia Anatomica”[1] had little information on the detailed sinonasal anatomy. In addition, there was a lack of uniformity of terminology and definitions. After 20 years, a new conference has been held. The need to use the same terminology led to the publication by the European Society of Rhinology of the “European Position Paper on the Anatomical Terminology of the Internal Nose and Paranasal Sinuses,” that can be accessed freely at www.rhinologyjournal.com. Professor Valerie Lund et al[2] wrote this document reviewing the anatomical terms, comparing to the “Terminology Anatomica” official order to define the structures without eponyms, while respecting the embryological development and especially universalizing and simplifying the terms. A must-read! The text's purpose lies beyond the review of anatomical terminology to universalize the language used to refer to structures of the nasal and paranasal cavities. Information about the anatomy, based on extensive review of the current literature, is arranged in just over 50 pages, which are direct and to the point. The publication may be pleasant reading for learners and teachers of rhinology. This text can be a starting point and enables searching the universal terminology used in Brazil, seeking to converge with this new European proposal for a nomenclature to help us communicate with our peers in Brazil and the rest of the world. The original text of the European Society of Rhinology provides English terms that avoided the use of Latin, and thus fall beyond several national personal translations. It would be admirable if we created our own cross-cultural adaptation of this new suggested anatomical terminology.

  17. [Cellular subcutaneous tissue. Anatomic observations].

    Science.gov (United States)

    Marquart-Elbaz, C; Varnaison, E; Sick, H; Grosshans, E; Cribier, B

    2001-11-01

    We showed in a companion paper that the definition of the French "subcutaneous cellular tissue" considerably varied from the 18th to the end of the 20th centuries and has not yet reached a consensus. To address the anatomic reality of this "subcutaneous cellular tissue", we investigated the anatomic structures underlying the fat tissue in normal human skin. Sixty specimens were excised from the surface to the deep structures (bone, muscle, cartilage) on different body sites of 3 cadavers from the Institut d'Anatomie Normale de Strasbourg. Samples were paraffin-embedded, stained and analysed with a binocular microscope taking x 1 photographs. Specimens were also excised and fixed after subcutaneous injection of Indian ink, after mechanic tissue splitting and after performing artificial skin folds. The aspects of the deep parts of the skin greatly varied according to their anatomic localisation. Below the adipose tissue, we often found a lamellar fibrous layer which extended from the interlobular septa and contained horizontally distributed fat cells. No specific tissue below the hypodermis was observed. Artificial skin folds concerned either exclusively the dermis, when they were superficial or included the hypodermis, but no specific structure was apparent in the center of the fold. India ink diffused to the adipose tissue, mainly along the septa, but did not localise in a specific subcutaneous compartment. This study shows that the histologic aspects of the deep part of the skin depend mainly on the anatomic localisation. Skin is composed of epidermis, dermis and hypodermis and thus the hypodermis can not be considered as being "subcutaneous". A difficult to individualise, fibrous lamellar structure in continuity with the interlobular septa is often found under the fat lobules. This structure is a cleavage line, as is always the case with loose connective tissues, but belongs to the hypodermis (i.e. fat tissue). No specific tissue nor any virtual space was

  18. Parallelization of Unsteady Adaptive Mesh Refinement for Unstructured Navier-Stokes Solvers

    Science.gov (United States)

    Schwing, Alan M.; Nompelis, Ioannis; Candler, Graham V.

    2014-01-01

    This paper explores the implementation of the MPI parallelization in a Navier-Stokes solver using adaptive mesh re nement. Viscous and inviscid test problems are considered for the purpose of benchmarking, as are implicit and explicit time advancement methods. The main test problem for comparison includes e ects from boundary layers and other viscous features and requires a large number of grid points for accurate computation. Ex- perimental validation against double cone experiments in hypersonic ow are shown. The adaptive mesh re nement shows promise for a staple test problem in the hypersonic com- munity. Extension to more advanced techniques for more complicated ows is described.

  19. Obtuse triangle suppression in anisotropic meshes

    KAUST Repository

    Sun, Feng; Choi, Yi King; Wang, Wen Ping; Yan, Dongming; Liu, Yang; Lé vy, Bruno L.

    2011-01-01

    Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.

  20. Connectivity editing for quad-dominant meshes

    KAUST Repository

    Peng, Chihan; Wonka, Peter

    2013-01-01

    and illustrate the advantages and disadvantages of different strategies for quad-dominant mesh design. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd.

  1. Shape space exploration of constrained meshes

    KAUST Repository

    Yang, Yongliang

    2011-12-12

    We present a general computational framework to locally characterize any shape space of meshes implicitly prescribed by a collection of non-linear constraints. We computationally access such manifolds, typically of high dimension and co-dimension, through first and second order approximants, namely tangent spaces and quadratically parameterized osculant surfaces. Exploration and navigation of desirable subspaces of the shape space with regard to application specific quality measures are enabled using approximants that are intrinsic to the underlying manifold and directly computable in the parameter space of the osculant surface. We demonstrate our framework on shape spaces of planar quad (PQ) meshes, where each mesh face is constrained to be (nearly) planar, and circular meshes, where each face has a circumcircle. We evaluate our framework for navigation and design exploration on a variety of inputs, while keeping context specific properties such as fairness, proximity to a reference surface, etc. © 2011 ACM.

  2. Shape space exploration of constrained meshes

    KAUST Repository

    Yang, Yongliang; Yang, Yijun; Pottmann, Helmut; Mitra, Niloy J.

    2011-01-01

    We present a general computational framework to locally characterize any shape space of meshes implicitly prescribed by a collection of non-linear constraints. We computationally access such manifolds, typically of high dimension and co-dimension, through first and second order approximants, namely tangent spaces and quadratically parameterized osculant surfaces. Exploration and navigation of desirable subspaces of the shape space with regard to application specific quality measures are enabled using approximants that are intrinsic to the underlying manifold and directly computable in the parameter space of the osculant surface. We demonstrate our framework on shape spaces of planar quad (PQ) meshes, where each mesh face is constrained to be (nearly) planar, and circular meshes, where each face has a circumcircle. We evaluate our framework for navigation and design exploration on a variety of inputs, while keeping context specific properties such as fairness, proximity to a reference surface, etc. © 2011 ACM.

  3. Obtuse triangle suppression in anisotropic meshes

    KAUST Repository

    Sun, Feng

    2011-12-01

    Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.

  4. Mesh Processing in Medical Image Analysis

    DEFF Research Database (Denmark)

    The following topics are dealt with: mesh processing; medical image analysis; interactive freeform modeling; statistical shape analysis; clinical CT images; statistical surface recovery; automated segmentation; cerebral aneurysms; and real-time particle-based representation....

  5. Capacity Analysis of Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    M. I. Gumel

    2012-06-01

    Full Text Available The next generation wireless networks experienced a great development with emergence of wireless mesh networks (WMNs, which can be regarded as a realistic solution that provides wireless broadband access. The limited available bandwidth makes capacity analysis of the network very essential. While the network offers broadband wireless access to community and enterprise users, the problems that limit the network capacity must be addressed to exploit the optimum network performance. The wireless mesh network capacity analysis shows that the throughput of each mesh node degrades in order of l/n with increasing number of nodes (n in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network.

  6. Energy-efficient wireless mesh networks

    CSIR Research Space (South Africa)

    Ntlatlapa, N

    2007-06-01

    Full Text Available This paper outlines the objectives of a recently formed research group at Meraka Institute. The authors consider application of wireless mesh networks in rural infrastructure deficient parts of the African continent where nodes operate on batteries...

  7. LR: Compact connectivity representation for triangle meshes

    Energy Technology Data Exchange (ETDEWEB)

    Gurung, T; Luffel, M; Lindstrom, P; Rossignac, J

    2011-01-28

    We propose LR (Laced Ring) - a simple data structure for representing the connectivity of manifold triangle meshes. LR provides the option to store on average either 1.08 references per triangle or 26.2 bits per triangle. Its construction, from an input mesh that supports constant-time adjacency queries, has linear space and time complexity, and involves ordering most vertices along a nearly-Hamiltonian cycle. LR is best suited for applications that process meshes with fixed connectivity, as any changes to the connectivity require the data structure to be rebuilt. We provide an implementation of the set of standard random-access, constant-time operators for traversing a mesh, and show that LR often saves both space and traversal time over competing representations.

  8. Seeking new surgical predictors of mesh exposure after transvaginal mesh repair.

    Science.gov (United States)

    Wu, Pei-Ying; Chang, Chih-Hung; Shen, Meng-Ru; Chou, Cheng-Yang; Yang, Yi-Ching; Huang, Yu-Fang

    2016-10-01

    The purpose of this study was to explore new preventable risk factors for mesh exposure. A retrospective review of 92 consecutive patients treated with transvaginal mesh (TVM) in the urogynecological unit of our university hospital. An analysis of perioperative predictors was conducted in patients after vaginal repairs using a type 1 mesh. Mesh complications were recorded according to International Urogynecological Association (IUGA) definitions. Mesh-exposure-free durations were calculated by using the Kaplan-Meier method and compared between different closure techniques using log-rank test. Hazard ratios (HR) of predictors for mesh exposure were estimated by univariate and multivariate analyses using Cox proportional hazards regression models. The median surveillance interval was 24.1 months. Two late occurrences were found beyond 1 year post operation. No statistically significant correlation was observed between mesh exposure and concomitant hysterectomy. Exposure risks were significantly higher in patients with interrupted whole-layer closure in univariate analysis. In the multivariate analysis, hematoma [HR 5.42, 95 % confidence interval (CI) 1.26-23.35, P = 0.024), Prolift mesh (HR 5.52, 95 % CI 1.15-26.53, P = 0.033), and interrupted whole-layer closure (HR 7.02, 95 % CI 1.62-30.53, P = 0.009) were the strongest predictors of mesh exposure. Findings indicate the risks of mesh exposure and reoperation may be prevented by avoiding hematoma, large amount of mesh, or interrupted whole-layer closure in TVM surgeries. If these risk factors are prevented, hysterectomy may not be a relative contraindication for TVM use. We also provide evidence regarding mesh exposure and the necessity for more than 1 year of follow-up and preoperative counselling.

  9. MHD simulations on an unstructured mesh

    International Nuclear Information System (INIS)

    Strauss, H.R.; Park, W.; Belova, E.; Fu, G.Y.; Sugiyama, L.E.

    1998-01-01

    Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D

  10. Towards Blockchain-enabled Wireless Mesh Networks

    OpenAIRE

    Selimi, Mennan; Kabbinale, Aniruddh Rao; Ali, Anwaar; Navarro, Leandro; Sathiaseelan, Arjuna

    2018-01-01

    Recently, mesh networking and blockchain are two of the hottest technologies in the telecommunications industry. Combining both can reformulate internet access and make connecting to the Internet not only easy, but affordable too. Hyperledger Fabric (HLF) is a blockchain framework implementation and one of the Hyperledger projects hosted by The Linux Foundation. We evaluate HLF in a real production mesh network and in the laboratory, quantify its performance, bottlenecks and limitations of th...

  11. Unstructured Mesh Movement and Viscous Mesh Generation for CFD-Based Design Optimization, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovations proposed are twofold: 1) a robust unstructured mesh movement method able to handle isotropic (Euler), anisotropic (viscous), mixed element (hybrid)...

  12. MHD simulations on an unstructured mesh

    International Nuclear Information System (INIS)

    Strauss, H.R.; Park, W.

    1996-01-01

    We describe work on a full MHD code using an unstructured mesh. MH3D++ is an extension of the PPPL MH3D resistive full MHD code. MH3D++ replaces the structured mesh and finite difference / fourier discretization of MH3D with an unstructured mesh and finite element / fourier discretization. Low level routines which perform differential operations, solution of PDEs such as Poisson's equation, and graphics, are encapsulated in C++ objects to isolate the finite element operations from the higher level code. The high level code is the same, whether it is run in structured or unstructured mesh versions. This allows the unstructured mesh version to be benchmarked against the structured mesh version. As a preliminary example, disruptions in DIIID reverse shear equilibria are studied numerically with the MH3D++ code. Numerical equilibria were first produced starting with an EQDSK file containing equilibrium data of a DIII-D L-mode negative central shear discharge. Using these equilibria, the linearized equations are time advanced to get the toroidal mode number n = 1 linear growth rate and eigenmode, which is resistively unstable. The equilibrium and linear mode are used to initialize 3D nonlinear runs. An example shows poloidal slices of 3D pressure surfaces: initially, on the left, and at an intermediate time, on the right

  13. How to model wireless mesh networks topology

    International Nuclear Information System (INIS)

    Sanni, M L; Hashim, A A; Anwar, F; Ali, S; Ahmed, G S M

    2013-01-01

    The specification of network connectivity model or topology is the beginning of design and analysis in Computer Network researches. Wireless Mesh Networks is an autonomic network that is dynamically self-organised, self-configured while the mesh nodes establish automatic connectivity with the adjacent nodes in the relay network of wireless backbone routers. Researches in Wireless Mesh Networks range from node deployment to internetworking issues with sensor, Internet and cellular networks. These researches require modelling of relationships and interactions among nodes including technical characteristics of the links while satisfying the architectural requirements of the physical network. However, the existing topology generators model geographic topologies which constitute different architectures, thus may not be suitable in Wireless Mesh Networks scenarios. The existing methods of topology generation are explored, analysed and parameters for their characterisation are identified. Furthermore, an algorithm for the design of Wireless Mesh Networks topology based on square grid model is proposed in this paper. The performance of the topology generated is also evaluated. This research is particularly important in the generation of a close-to-real topology for ensuring relevance of design to the intended network and validity of results obtained in Wireless Mesh Networks researches

  14. [Implants for genital prolapse : Contra mesh surgery].

    Science.gov (United States)

    Hampel, C

    2017-12-01

    Alloplastic transvaginal meshes have become very popular in the surgery of pelvic organ prolapse (POP) as did alloplastic suburethral slings in female stress incontinence surgery, but without adequate supporting data. The simplicity of the mesh procedure facilitates its propagation with acceptance of higher revision and complication rates. Since attending physicians do more and more prolapse surgeries without practicing or teaching alternative techniques, expertise in these alternatives, which might be very useful in cases of recurrence, persistence or complications, is permanently lost. It is doubtful that proper and detailed information about alternatives, risks, and benefits of transvaginal alloplastic meshes is provided to every single prolapse patient according to the recommendations of the German POP guidelines, since the number of implanted meshes exceeds the number of properly indicated mesh candidates by far. Although there is no dissent internationally about the available mesh data, thousands of lawsuits in the USA, insolvency of companies due to claims for compensation and unambiguous warnings from foreign urological societies leave German urogynecologists still unimpressed. The existing literature in pelvic organ prolapse exclusively focusses on POP stage and improvement of that stage with surgical therapy. Instead, typical prolapse symptoms should trigger therapy and improvement of these symptoms should be the utmost treatment goal. It is strongly recommended for liability reasons to obtain specific written informed consent.

  15. Fire performance of basalt FRP mesh reinforced HPC thin plates

    DEFF Research Database (Denmark)

    Hulin, Thomas; Hodicky, Kamil; Schmidt, Jacob Wittrup

    2013-01-01

    An experimental program was carried out to investigate the influence of basalt FRP (BFRP) reinforcing mesh on the fire behaviour of thin high performance concrete (HPC) plates applied to sandwich elements. Samples with BFRP mesh were compared to samples with no mesh, samples with steel mesh...

  16. Long-term outcome after transvaginal mesh repair of pelvic organ prolapse.

    Science.gov (United States)

    Heinonen, Pia; Aaltonen, Riikka; Joronen, Kirsi; Ala-Nissilä, Seija

    2016-07-01

    The aim of this study was to report long-term subjective and objective outcomes after the transvaginal mesh (TVM) procedure in long-term. Possible late-onset complications were of particular interest. This was a retrospective analysis of TVM performed using Prolift™ transvaginal mesh measuring subjective outcome using validated questionnaires. Objective outcome was assessed using the Pelvic Organ Prolapse Quantification (POP-Q) system using two definitions: POP-Q stage ≤ 1, and vaginal wall prolapse at or above the hymen or vaginal apex not descending below the upper third of the vagina. Complications were reported with the Prosthesis/Graft Complication Classification Code designed by the International Continence Society/International Urogynecological Association (ICS/IUGA). Of 195 patients, 161 (82.6 %) participated this study after a median of 7 years. The scores in questionnaires evaluating urinary (UI) or anal incontinence and constipation or pelvic floor symptoms were low, indicating favorable surgical outcomes. Altogether, 80.1 % of patients were satisfied with the procedure. Anatomical cure was 56.4 % and 69.3 % depending on the definition used. Reoperation due to POP in any compartment was performed in 16.2 % of patients. Mesh exposure rate was 23 %, most of these being asymptomatic and of late onset. Outcome of the TVM procedure was satisfactory. Anatomical cure was inferior to subjective cure. Mesh exposure rate was high; most exposures observed in the long-term were of late onset and were asymptomatic.

  17. From medical imaging data to 3D printed anatomical models.

    Directory of Open Access Journals (Sweden)

    Thore M Bücking

    Full Text Available Anatomical models are important training and teaching tools in the clinical environment and are routinely used in medical imaging research. Advances in segmentation algorithms and increased availability of three-dimensional (3D printers have made it possible to create cost-efficient patient-specific models without expert knowledge. We introduce a general workflow that can be used to convert volumetric medical imaging data (as generated by Computer Tomography (CT to 3D printed physical models. This process is broken up into three steps: image segmentation, mesh refinement and 3D printing. To lower the barrier to entry and provide the best options when aiming to 3D print an anatomical model from medical images, we provide an overview of relevant free and open-source image segmentation tools as well as 3D printing technologies. We demonstrate the utility of this streamlined workflow by creating models of ribs, liver, and lung using a Fused Deposition Modelling 3D printer.

  18. Methods for high-resolution anisotropic finite element modeling of the human head: automatic MR white matter anisotropy-adaptive mesh generation.

    Science.gov (United States)

    Lee, Won Hee; Kim, Tae-Seong

    2012-01-01

    This study proposes an advanced finite element (FE) head modeling technique through which high-resolution FE meshes adaptive to the degree of tissue anisotropy can be generated. Our adaptive meshing scheme (called wMesh) uses MRI structural information and fractional anisotropy maps derived from diffusion tensors in the FE mesh generation process, optimally reflecting electrical properties of the human brain. We examined the characteristics of the wMeshes through various qualitative and quantitative comparisons to the conventional FE regular-sized meshes that are non-adaptive to the degree of white matter anisotropy. We investigated numerical differences in the FE forward solutions that include the electrical potential and current density generated by current sources in the brain. The quantitative difference was calculated by two statistical measures of relative difference measure (RDM) and magnification factor (MAG). The results show that the wMeshes are adaptive to the anisotropic density of the WM anisotropy, and they better reflect the density and directionality of tissue conductivity anisotropy. Our comparison results between various anisotropic regular mesh and wMesh models show that there are substantial differences in the EEG forward solutions in the brain (up to RDM=0.48 and MAG=0.63 in the electrical potential, and RDM=0.65 and MAG=0.52 in the current density). Our analysis results indicate that the wMeshes produce different forward solutions that are different from the conventional regular meshes. We present some results that the wMesh head modeling approach enhances the sensitivity and accuracy of the FE solutions at the interfaces or in the regions where the anisotropic conductivities change sharply or their directional changes are complex. The fully automatic wMesh generation technique should be useful for modeling an individual-specific and high-resolution anisotropic FE head model incorporating realistic anisotropic conductivity distributions

  19. Prolapse Recurrence after Transvaginal Mesh Removal.

    Science.gov (United States)

    Rawlings, Tanner; Lavelle, Rebecca S; Coskun, Burhan; Alhalabi, Feras; Zimmern, Philippe E

    2015-11-01

    We determined the rate of pelvic organ prolapse recurrence after transvaginal mesh removal. Following institutional review board approval a longitudinally collected database of women undergoing transvaginal mesh removal for complications after transvaginal mesh placement with at least 1 year minimum followup was queried for pelvic organ prolapse recurrence. Recurrent prolapse was defined as greater than stage 1 on examination or the need for reoperation at the site of transvaginal mesh removal. Outcome measures were based on POP-Q (Pelvic Organ Prolapse Quantification System) at the last visit. Patients were grouped into 3 groups, including group 1--recurrent prolapse in the same compartment as transvaginal mesh removal, 2--persistent prolapse and 3--prolapse in a compartment different than transvaginal mesh removal. Of 73 women 52 met study inclusion criteria from 2007 to 2013, including 73% who presented with multiple indications for transvaginal mesh removal. The mean interval between insertion and removal was 45 months (range 10 to 165). Overall mean followup after transvaginal mesh removal was 30 months (range 12 to 84). In group 1 (recurrent prolapse) the rate was 15% (6 of 40 patients). Four women underwent surgery for recurrent prolapse at a mean 7 of months (range 5 to 10). Two patients elected observation. The rate of persistent prolapse (group 2) was 23% (12 of 52 patients). Three women underwent prolapse reoperation at a mean of 10 months (range 8 to 12). In group 3 (de novo/different compartment prolapse) the rate was 6% (3 of 52 patients). One woman underwent surgical repair at 52 months. At a mean 2.5-year followup 62% of patients (32 of 52) did not have recurrent or persistent prolapse after transvaginal mesh removal and 85% (44 of 52) did not undergo any further procedure for prolapse. Specifically for pelvic organ prolapse in the same compartment as transvaginal mesh removal 12% of patients had recurrence, of whom 8% underwent prolapse repair

  20. [TVT (transvaginal mesh) surgical method for complex resolution of pelvic floor defects].

    Science.gov (United States)

    Adamík, Z

    2006-01-01

    Assessment of the effects of a new surgical method for complex resolution of pelvic floor defects. Case study. Department of Obstetrics and Gynaecology, Bata Hospital, Zlín. We evaluated the procedures and results of the new TVM (transvaginal mesh) surgical method which we used in a group of 12 patients. Ten patients had vaginal prolapse following vaginal hysterectomy and in two cases there was uterine prolapse and vaginal prolapse. Only in one case there was a small protrusion in the range of 0.5 cm which we resolved by removal of the penetrated section. The resulting anatomic effect was very good in all the cases.

  1. Higher-order meshing of implicit geometries, Part II: Approximations on manifolds

    Science.gov (United States)

    Fries, T. P.; Schöllhammer, D.

    2017-11-01

    A new concept for the higher-order accurate approximation of partial differential equations on manifolds is proposed where a surface mesh composed by higher-order elements is automatically generated based on level-set data. Thereby, it enables a completely automatic workflow from the geometric description to the numerical analysis without any user-intervention. A master level-set function defines the shape of the manifold through its zero-isosurface which is then restricted to a finite domain by additional level-set functions. It is ensured that the surface elements are sufficiently continuous and shape regular which is achieved by manipulating the background mesh. The numerical results show that optimal convergence rates are obtained with a moderate increase in the condition number compared to handcrafted surface meshes.

  2. Parametric Quadrilateral Meshes for the Design and Optimization of Superconducting Magnets

    CERN Document Server

    Aleksa, Martin; Völlinger, Christine

    2002-01-01

    The program package ROXIE has been developed at CERN for the design and optimization of accelerator magnets. The necessity of extremely uniform fields in the superconducting accelerator magnets for LHC requires very accurate methods of field computation. For this purpose the coupled boundary-element / finite-element technique (BEM-FEM) is used. Quadrilateral higher order finite-element meshes are generated for the discretization of the iron domain (yoke) and stainless steel collars. A new mesh generator using geometrically optimized domain decomposition which was developed at the University of Stuttgart, Germany has been implemented into the ROXIE program providing fully automatic and user friendly mesh generation. The structure of the magnet cross-section can be modeled using parametric objects such as holes of different forms, elliptic, parabolic or hyperbolic arcs, notches, slots, .... For sensitivity analysis and parametric studies, point based morphing algorithms are applied to guarantee smooth adaptatio...

  3. Annotating patents with Medline MeSH codes via citation mapping.

    Science.gov (United States)

    Griffin, Thomas D; Boyer, Stephen K; Councill, Isaac G

    2010-01-01

    Both patents and Medline are important document collections for discovering new relationships between chemicals and biology, searching for prior art for patent applications and retrieving background knowledge for current research activities. Finding relevance to a topic within patents is often made difficult by poor categorization, badly written descriptions, and even intentional obfuscation. Unlike patents, the Medline corpus has Medical Subject Heading (MeSH) keywords manually added to their articles, giving a medically relevant taxonomy to the 18 million article abstracts. Our work attempts to accurately recognize the citations made in patents to Medline-indexed articles, linking them to their corresponding PubMed ID and exploiting the associated MeSH to enhance patent search by annotating the referencing patents with their Medline citations' MeSH codes. The techniques, system features, and benefits are explained.

  4. An Application of Geospatial Information Systems (GIS) Technology to Anatomic Dental Charting

    OpenAIRE

    Bartling, William C.; Schleyer, Titus K.L.

    2003-01-01

    Historically, an anatomic dental chart is a compilation of color-coded symbols and numbers used within a template, either paper or computerized, to create a graphic record of a patient’s oral health status. This poster depicts how Geospatial Information System (GIS) technology can be used to create an accurate, current anatomic dental chart that contains detailed information not present in current charting systems.

  5. Mobilization of the rectum: anatomic concepts and the bookshelf revisited.

    Science.gov (United States)

    Chapuis, Pierre; Bokey, Les; Fahrer, Marius; Sinclair, Gael; Bogduk, Nikolai

    2002-01-01

    Sound surgical technique is based on accurate anatomic knowledge. In surgery for cancer, the anatomy of the perirectal fascia and the retrorectal plane is the basis for correct mobilization of the rectum to ensure clear surgical margins and to minimize the risk of local recurrence. This review of the literature on the perirectal fascia is based on a translation of the original description by Thoma Jonnesco and a later account by Wilhelm Waldeyer. The Jonnesco description, first published in 1896 in French, is compared with the German account of 1899. These were critically analyzed in the context of our own and other techniques of mobilizing the rectum. Mobilization of the rectum for cancer can be performed along anatomic planes with minimal blood loss, preservation of the pelvic autonomic nerves and a low prevalence of local recurrence. Different techniques including total mesorectal excision are based on the same anatomic principles, however, popular words have been used to replace accepted, established terminology. In particular, the description of total mesorectal excision has been confusing because of its emphasis on the words "total" and "mesorectum." The use of the word "mesorectum" anatomically is inaccurate and the implication that total excision of all the perirectal fat contained within the perirectal fascia "en bloc" in all patients with rectal cancer will minimize local recurrence remains contentious.

  6. Anatomically based lower limb nerve model for electrical stimulation

    Directory of Open Access Journals (Sweden)

    Soboleva Tanya K

    2007-12-01

    Full Text Available Abstract Background Functional Electrical Stimulation (FES is a technique that aims to rehabilitate or restore functionality of skeletal muscles using external electrical stimulation. Despite the success achieved within the field of FES, there are still a number of questions that remain unanswered. One way of providing input to the answers is through the use of computational models. Methods This paper describes the development of an anatomically based computer model of the motor neurons in the lower limb of the human leg and shows how it can be used to simulate electrical signal propagation from the beginning of the sciatic nerve to a skeletal muscle. One-dimensional cubic Hermite finite elements were used to represent the major portions of the lower limb nerves. These elements were fit to data that had been digitised using images from the Visible Man project. Nerves smaller than approximately 1 mm could not be seen in the images, and thus a tree-branching algorithm was used to connect the ends of the fitted nerve model to the respective skeletal muscle. To simulate electrical propagation, a previously published mammalian nerve model was implemented and solved on the anatomically based nerve mesh using a finite difference method. The grid points for the finite difference method were derived from the fitted finite element mesh. By adjusting the tree-branching algorithm, it is possible to represent different levels of motor-unit recruitment. Results To illustrate the process of a propagating nerve stimulus to a muscle in detail, the above method was applied to the nerve tree that connects to the human semitendinosus muscle. A conduction velocity of 89.8 m/s was obtained for a 15 μm diameter nerve fibre. This signal was successfully propagated down the motor neurons to a selected group of motor units in the muscle. Conclusion An anatomically and physiologically based model of the posterior motor neurons in the human lower limb was developed. This

  7. Feature-Sensitive Tetrahedral Mesh Generation with Guaranteed Quality

    OpenAIRE

    Wang, Jun; Yu, Zeyun

    2012-01-01

    Tetrahedral meshes are being extensively used in finite element methods (FEM). This paper proposes an algorithm to generate feature-sensitive and high-quality tetrahedral meshes from an arbitrary surface mesh model. A top-down octree subdivision is conducted on the surface mesh and a set of tetrahedra are constructed using adaptive body-centered cubic (BCC) lattices. Special treatments are given to the tetrahedra near the surface such that the quality of the resulting tetrahedral mesh is prov...

  8. Laparoscopic mesh explantation and drainage of sacral abscess remote from transvaginal excision of exposed sacral colpopexy mesh.

    Science.gov (United States)

    Roth, Ted M; Reight, Ian

    2012-07-01

    Sacral colpopexy may be complicated by mesh exposure, and the surgical treatment of mesh exposure typically results in minor postoperative morbidity and few delayed complications. A 75-year-old woman presented 7 years after a laparoscopic sacral colpopexy, with Mersilene mesh, with an apical mesh exposure. She underwent an uncomplicated transvaginal excision and was asymptomatic until 8 months later when she presented with vaginal drainage and a sacral abscess. This was successfully treated with laparoscopic enterolysis, drainage of the abscess, and explantation of the remaining mesh. Incomplete excision of exposed colpopexy mesh can lead to ascending infection and sacral abscess. Laparoscopic drainage and mesh removal may be considered in these patients.

  9. Atlas-Based Automatic Generation of Subject-Specific Finite Element Tongue Meshes.

    Science.gov (United States)

    Bijar, Ahmad; Rohan, Pierre-Yves; Perrier, Pascal; Payan, Yohan

    2016-01-01

    Generation of subject-specific 3D finite element (FE) models requires the processing of numerous medical images in order to precisely extract geometrical information about subject-specific anatomy. This processing remains extremely challenging. To overcome this difficulty, we present an automatic atlas-based method that generates subject-specific FE meshes via a 3D registration guided by Magnetic Resonance images. The method extracts a 3D transformation by registering the atlas' volume image to the subject's one, and establishes a one-to-one correspondence between the two volumes. The 3D transformation field deforms the atlas' mesh to generate the subject-specific FE mesh. To preserve the quality of the subject-specific mesh, a diffeomorphic non-rigid registration based on B-spline free-form deformations is used, which guarantees a non-folding and one-to-one transformation. Two evaluations of the method are provided. First, a publicly available CT-database is used to assess the capability to accurately capture the complexity of each subject-specific Lung's geometry. Second, FE tongue meshes are generated for two healthy volunteers and two patients suffering from tongue cancer using MR images. It is shown that the method generates an appropriate representation of the subject-specific geometry while preserving the quality of the FE meshes for subsequent FE analysis. To demonstrate the importance of our method in a clinical context, a subject-specific mesh is used to simulate tongue's biomechanical response to the activation of an important tongue muscle, before and after cancer surgery.

  10. Utilization management in anatomic pathology.

    Science.gov (United States)

    Lewandrowski, Kent; Black-Schaffer, Steven

    2014-01-01

    There is relatively little published literature concerning utilization management in anatomic pathology. Nonetheless there are many utilization management opportunities that currently exist and are well recognized. Some of these impact only the cost structure within the pathology department itself whereas others reduce charges for third party payers. Utilization management may result in medical legal liabilities for breaching the standard of care. For this reason it will be important for pathology professional societies to develop national utilization guidelines to assist individual practices in implementing a medically sound approach to utilization management. © 2013.

  11. Parallel Adaptive Mesh Refinement for High-Order Finite-Volume Schemes in Computational Fluid Dynamics

    Science.gov (United States)

    Schwing, Alan Michael

    comparisons across a range of regimes. Unsteady and steady applications are considered in both subsonic and supersonic flows. Inviscid and viscous simulations achieve similar results at a much reduced cost when employing dynamic mesh adaptation. Several techniques for guiding adaptation are compared. Detailed analysis of statistics from the instrumented solver enable understanding of the costs associated with adaptation. Adaptive mesh refinement shows promise for the test cases presented here. It can be considerably faster than using conventional grids and provides accurate results. The procedures for adapting the grid are light-weight enough to not require significant computational time and yield significant reductions in grid size.

  12. Early experience with mesh excision for adverse outcomes after transvaginal mesh placement using prolapse kits.

    Science.gov (United States)

    Ridgeway, Beri; Walters, Mark D; Paraiso, Marie Fidela R; Barber, Matthew D; McAchran, Sarah E; Goldman, Howard B; Jelovsek, J Eric

    2008-12-01

    The purpose of this study was to determine the complications, treatments, and outcomes in patients choosing to undergo removal of mesh previously placed with a mesh procedural kit. This was a retrospective review of all patients who underwent surgical removal of transvaginal mesh for mesh-related complications during a 3-year period at Cleveland Clinic. At last follow-up, patients reported degree of pain, level of improvement, sexual activity, and continued symptoms. Nineteen patients underwent removal of mesh during the study period. Indications for removal included chronic pain (6/19), dyspareunia (6/19), recurrent pelvic organ prolapse (8/19), mesh erosion (12/19), and vesicovaginal fistula (3/19), with most patients (16/19) citing more than 1 reason. There were few complications related to the mesh removal. Most patients reported significant relief of symptoms. Mesh removal can be technically difficult but appears to be safe with few complications and high relief of symptoms, although some symptoms can persist.

  13. Cartesian anisotropic mesh adaptation for compressible flow

    International Nuclear Information System (INIS)

    Keats, W.A.; Lien, F.-S.

    2004-01-01

    Simulating transient compressible flows involving shock waves presents challenges to the CFD practitioner in terms of the mesh quality required to resolve discontinuities and prevent smearing. This paper discusses a novel two-dimensional Cartesian anisotropic mesh adaptation technique implemented for compressible flow. This technique, developed for laminar flow by Ham, Lien and Strong, is efficient because it refines and coarsens cells using criteria that consider the solution in each of the cardinal directions separately. In this paper the method will be applied to compressible flow. The procedure shows promise in its ability to deliver good quality solutions while achieving computational savings. The convection scheme used is the Advective Upstream Splitting Method (Plus), and the refinement/ coarsening criteria are based on work done by Ham et al. Transient shock wave diffraction over a backward step and shock reflection over a forward step are considered as test cases because they demonstrate that the quality of the solution can be maintained as the mesh is refined and coarsened in time. The data structure is explained in relation to the computational mesh, and the object-oriented design and implementation of the code is presented. Refinement and coarsening algorithms are outlined. Computational savings over uniform and isotropic mesh approaches are shown to be significant. (author)

  14. Mesh networks: an optimum solution for AMR

    Energy Technology Data Exchange (ETDEWEB)

    Mimno, G.

    2003-12-01

    Characteristics of mesh networks and the advantage of using them in automatic meter reading equipment (AMR) are discussed. Mesh networks are defined as being similar to a fishing net made of knots and links. In mesh networks the knots represent meter sites and the links are the radio paths between the meter sites and the neighbourhood concentrator. In mesh networks any knot in the communications chain can link to any other and the optimum path is calculated by the network by hopping from meter to meter until the radio message reaches a concentrator. This mesh communications architecture is said to be vastly superior to many older types of radio-based meter reading technologies; its main advantage is that it not only significantly improves the economics of fixed network deployment, but also supports time-of-use metering, remote disconnect services and advanced features, such as real-time pricing, demand response, and other efficiency measures, providing a better return on investment and reliability.

  15. The Role of Chronic Mesh Infection in Delayed-Onset Vaginal Mesh Complications or Recurrent Urinary Tract Infections: Results From Explanted Mesh Cultures.

    Science.gov (United States)

    Mellano, Erin M; Nakamura, Leah Y; Choi, Judy M; Kang, Diana C; Grisales, Tamara; Raz, Shlomo; Rodriguez, Larissa V

    2016-01-01

    Vaginal mesh complications necessitating excision are increasingly prevalent. We aim to study whether subclinical chronically infected mesh contributes to the development of delayed-onset mesh complications or recurrent urinary tract infections (UTIs). Women undergoing mesh removal from August 2013 through May 2014 were identified by surgical code for vaginal mesh removal. Only women undergoing removal of anti-incontinence mesh were included. Exclusion criteria included any women undergoing simultaneous prolapse mesh removal. We abstracted preoperative and postoperative information from the medical record and compared mesh culture results from patients with and without mesh extrusion, de novo recurrent UTIs, and delayed-onset pain. One hundred seven women with only anti-incontinence mesh removed were included in the analysis. Onset of complications after mesh placement was within the first 6 months in 70 (65%) of 107 and delayed (≥6 months) in 37 (35%) of 107. A positive culture from the explanted mesh was obtained from 82 (77%) of 107 patients, and 40 (37%) of 107 were positive with potential pathogens. There were no significant differences in culture results when comparing patients with delayed-onset versus immediate pain, extrusion with no extrusion, and de novo recurrent UTIs with no infections. In this large cohort of patients with mesh removed for a diverse array of complications, cultures of the explanted vaginal mesh demonstrate frequent low-density bacterial colonization. We found no differences in culture results from women with delayed-onset pain versus acute pain, vaginal mesh extrusions versus no extrusions, or recurrent UTIs using standard culture methods. Chronic prosthetic infections in other areas of medicine are associated with bacterial biofilms, which are resistant to typical culture techniques. Further studies using culture-independent methods are needed to investigate the potential role of chronic bacterial infections in delayed vaginal mesh

  16. Brain anatomical network and intelligence.

    Directory of Open Access Journals (Sweden)

    Yonghui Li

    2009-05-01

    Full Text Available Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence.

  17. Anatomic partial nephrectomy: technique evolution.

    Science.gov (United States)

    Azhar, Raed A; Metcalfe, Charles; Gill, Inderbir S

    2015-03-01

    Partial nephrectomy provides equivalent long-term oncologic and superior functional outcomes as radical nephrectomy for T1a renal masses. Herein, we review the various vascular clamping techniques employed during minimally invasive partial nephrectomy, describe the evolution of our partial nephrectomy technique and provide an update on contemporary thinking about the impact of ischemia on renal function. Recently, partial nephrectomy surgical technique has shifted away from main artery clamping and towards minimizing/eliminating global renal ischemia during partial nephrectomy. Supported by high-fidelity three-dimensional imaging, novel anatomic-based partial nephrectomy techniques have recently been developed, wherein partial nephrectomy can now be performed with segmental, minimal or zero global ischemia to the renal remnant. Sequential innovations have included early unclamping, segmental clamping, super-selective clamping and now culminating in anatomic zero-ischemia surgery. By eliminating 'under-the-gun' time pressure of ischemia for the surgeon, these techniques allow an unhurried, tightly contoured tumour excision with point-specific sutured haemostasis. Recent data indicate that zero-ischemia partial nephrectomy may provide better functional outcomes by minimizing/eliminating global ischemia and preserving greater vascularized kidney volume. Contemporary partial nephrectomy includes a spectrum of surgical techniques ranging from conventional-clamped to novel zero-ischemia approaches. Technique selection should be tailored to each individual case on the basis of tumour characteristics, surgical feasibility, surgeon experience, patient demographics and baseline renal function.

  18. Complications of grafts used in female pelvic floor reconstruction: Mesh erosion and extrusion

    Directory of Open Access Journals (Sweden)

    Tanya M Nazemi

    2007-01-01

    Full Text Available Introduction: Various grafts have been used in the treatment of urinary incontinence and pelvic prolapse. Autologous materials such as muscle and fascia were first utilized to provide additional anatomic support to the periurethral and pelvic tissues; however, attempts to minimize the invasiveness of the procedures have led to the use of synthetic materials. Complications such as infection and erosion or extrusion associated with these materials may be troublesome to manage. We review the literature and describe a brief overview of grafts used in pelvic floor reconstruction and focus on the management complications specifically related to synthetic materials. Materials and Methods: We performed a comprehensive review of the literature on grafts used in pelvic floor surgery using MEDLINE and resources cited in those peer-reviewed manuscripts. The results are presented. Results: Biologic materials provide adequate cure rates but have associated downfalls including potential complications from harvesting, variable tissue quality and cost. The use of synthetic materials as an alternative graft in pelvic floor repairs has become a popular option. Of all synthetic materials, the type I macroporous polypropylene meshes have demonstrated superiority in terms of efficacy and fewer complication rates due to their structure and composition. Erosion and extrusion of mesh are common and troublesome complications that may be managed conservatively with observation with or without local hormone therapy, with transvaginal debridement or with surgical exploration and total mesh excision, dependent upon the location of the mesh and the mesh type utilized. Conclusions: The ideal graft would provide structural integrity and durability with minimal adverse reaction by the host tissue. Biologic materials in general tend to have fewer associated complications, however, the risks of harvesting, variable integrity of allografts, availability and high cost has led to the

  19. Root-cause analysis of the better performance of the coarse-mesh finite-difference method for CANDU-type reactors

    International Nuclear Information System (INIS)

    Shen, W.

    2012-01-01

    Recent assessment results indicate that the coarse-mesh finite-difference method (FDM) gives consistently smaller percent differences in channel powers than the fine-mesh FDM when compared to the reference MCNP solution for CANDU-type reactors. However, there is an impression that the fine-mesh FDM should always give more accurate results than the coarse-mesh FDM in theory. To answer the question if the better performance of the coarse-mesh FDM for CANDU-type reactors was just a coincidence (cancellation of errors) or caused by the use of heavy water or the use of lattice-homogenized cross sections for the cluster fuel geometry in the diffusion calculation, three benchmark problems were set up with three different fuel lattices: CANDU, HWR and PWR. These benchmark problems were then used to analyze the root cause of the better performance of the coarse-mesh FDM for CANDU-type reactors. The analyses confirm that the better performance of the coarse-mesh FDM for CANDU-type reactors is mainly caused by the use of lattice-homogenized cross sections for the sub-meshes of the cluster fuel geometry in the diffusion calculation. Based on the analyses, it is recommended to use 2 x 2 coarse-mesh FDM to analyze CANDU-type reactors when lattice-homogenized cross sections are used in the core analysis. (authors)

  20. Root-cause analysis of the better performance of the coarse-mesh finite-difference method for CANDU-type reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shen, W. [Candu Energy Inc., 2285 Speakman Dr., Mississauga, ON L5B 1K (Canada)

    2012-07-01

    Recent assessment results indicate that the coarse-mesh finite-difference method (FDM) gives consistently smaller percent differences in channel powers than the fine-mesh FDM when compared to the reference MCNP solution for CANDU-type reactors. However, there is an impression that the fine-mesh FDM should always give more accurate results than the coarse-mesh FDM in theory. To answer the question if the better performance of the coarse-mesh FDM for CANDU-type reactors was just a coincidence (cancellation of errors) or caused by the use of heavy water or the use of lattice-homogenized cross sections for the cluster fuel geometry in the diffusion calculation, three benchmark problems were set up with three different fuel lattices: CANDU, HWR and PWR. These benchmark problems were then used to analyze the root cause of the better performance of the coarse-mesh FDM for CANDU-type reactors. The analyses confirm that the better performance of the coarse-mesh FDM for CANDU-type reactors is mainly caused by the use of lattice-homogenized cross sections for the sub-meshes of the cluster fuel geometry in the diffusion calculation. Based on the analyses, it is recommended to use 2 x 2 coarse-mesh FDM to analyze CANDU-type reactors when lattice-homogenized cross sections are used in the core analysis. (authors)

  1. Accurate quantum chemical calculations

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  2. Mesh refinement for uncertainty quantification through model reduction

    International Nuclear Information System (INIS)

    Li, Jing; Stinis, Panos

    2015-01-01

    We present a novel way of deciding when and where to refine a mesh in probability space in order to facilitate uncertainty quantification in the presence of discontinuities in random space. A discontinuity in random space makes the application of generalized polynomial chaos expansion techniques prohibitively expensive. The reason is that for discontinuous problems, the expansion converges very slowly. An alternative to using higher terms in the expansion is to divide the random space in smaller elements where a lower degree polynomial is adequate to describe the randomness. In general, the partition of the random space is a dynamic process since some areas of the random space, particularly around the discontinuity, need more refinement than others as time evolves. In the current work we propose a way to decide when and where to refine the random space mesh based on the use of a reduced model. The idea is that a good reduced model can monitor accurately, within a random space element, the cascade of activity to higher degree terms in the chaos expansion. In turn, this facilitates the efficient allocation of computational sources to the areas of random space where they are more needed. For the Kraichnan–Orszag system, the prototypical system to study discontinuities in random space, we present theoretical results which show why the proposed method is sound and numerical results which corroborate the theory

  3. Application of particle-mesh Ewald summation to ONIOM theory

    International Nuclear Information System (INIS)

    Kobayashi, Osamu; Nanbu, Shinkoh

    2015-01-01

    Highlights: • Particle-mesh Ewald sum is extended to ONIOM scheme. • Non-adiabatic MD simulation in solution is performed. • The behavior of excited (Z)-penta-2,4-dieniminium cation in methanol is simulated. • The difference between gas phase and solution is predicted. - Abstract: We extended a particle mesh Ewald (PME) summation method to the ONIOM (our Own N-layered Integrated molecular Orbitals and molecular Mechanics) scheme (PME-ONIOM) to validate the simulation in solution. This took the form of a nonadiabatic ab initio molecular dynamics (MD) simulation in which the Zhu-Nakamura trajectory surface hopping (ZN-TSH) method was performed for the photoisomerization of a (Z)-penta-2,4-dieniminium cation (protonated Schiff base, PSB3) electronically excited to the S 1 state in a methanol solution. We also calculated a nonadiabatic ab initio MD simulation with only minimum image convention (MI-ONIOM). The lifetime determined by PME-ONIOM-MD was 3.483 ps. The MI-ONIOM-MD lifetime of 0.4642 ps was much shorter than those of PME-ONIOM-MD and the experimentally determined excited state lifetime. The difference eminently illustrated the accurate treatment of the long-range solvation effect, which destines the electronically excited PSB3 for staying in S 1 at the pico-second or the femto-second time scale.

  4. A fast and accurate dihedral interpolation loop subdivision scheme

    Science.gov (United States)

    Shi, Zhuo; An, Yalei; Wang, Zhongshuai; Yu, Ke; Zhong, Si; Lan, Rushi; Luo, Xiaonan

    2018-04-01

    In this paper, we propose a fast and accurate dihedral interpolation Loop subdivision scheme for subdivision surfaces based on triangular meshes. In order to solve the problem of surface shrinkage, we keep the limit condition unchanged, which is important. Extraordinary vertices are handled using modified Butterfly rules. Subdivision schemes are computationally costly as the number of faces grows exponentially at higher levels of subdivision. To address this problem, our approach is to use local surface information to adaptively refine the model. This is achieved simply by changing the threshold value of the dihedral angle parameter, i.e., the angle between the normals of a triangular face and its adjacent faces. We then demonstrate the effectiveness of the proposed method for various 3D graphic triangular meshes, and extensive experimental results show that it can match or exceed the expected results at lower computational cost.

  5. Split-Cell Exponential Characteristic Transport Method for Unstructured Tetrahedral Meshes

    International Nuclear Information System (INIS)

    Brennan, Charles R.; Miller, Rodney L.; Mathews, Kirk A.

    2001-01-01

    The nonlinear, exponential characteristic (EC) method is extended to unstructured meshes of tetrahedral cells in three-dimensional Cartesian coordinates. The split-cell approach developed for the linear characteristic (LC) method on such meshes is used. Exponential distributions of the source within a cell and of the inflow flux on upstream faces of the cell are assumed. The coefficients of these distributions are determined by nonlinear root solving so as to match the zeroth and first moments of the source or entering flux. Good conditioning is achieved by casting the formulas for the moments of the source, inflow flux, and solution flux as sums of positive functions and by using accurate and robust algorithms for evaluation of those functions. Various test problems are used to compare the performance of the EC and LC methods. The EC method is somewhat less accurate than the LC method in regions of net out leakage but is strictly positive and retains good accuracy with optically thick cells, as in shielding problems, unlike the LC method. The computational cost per cell is greater for the EC method, but the use of substantially coarser meshes can make the EC method less expensive in total cost. The EC method, unlike the LC method, may fail if negative cross sections or angular quadrature weights are used. It is concluded that the EC and LC methods should be practical, reliable, and complimentary schemes for these meshes

  6. GPU-accelerated Lattice Boltzmann method for anatomical extraction in patient-specific computational hemodynamics

    Science.gov (United States)

    Yu, H.; Wang, Z.; Zhang, C.; Chen, N.; Zhao, Y.; Sawchuk, A. P.; Dalsing, M. C.; Teague, S. D.; Cheng, Y.

    2014-11-01

    Existing research of patient-specific computational hemodynamics (PSCH) heavily relies on software for anatomical extraction of blood arteries. Data reconstruction and mesh generation have to be done using existing commercial software due to the gap between medical image processing and CFD, which increases computation burden and introduces inaccuracy during data transformation thus limits the medical applications of PSCH. We use lattice Boltzmann method (LBM) to solve the level-set equation over an Eulerian distance field and implicitly and dynamically segment the artery surfaces from radiological CT/MRI imaging data. The segments seamlessly feed to the LBM based CFD computation of PSCH thus explicit mesh construction and extra data management are avoided. The LBM is ideally suited for GPU (graphic processing unit)-based parallel computing. The parallel acceleration over GPU achieves excellent performance in PSCH computation. An application study will be presented which segments an aortic artery from a chest CT dataset and models PSCH of the segmented artery.

  7. Connectivity editing for quad-dominant meshes

    KAUST Repository

    Peng, Chihan

    2013-08-01

    We propose a connectivity editing framework for quad-dominant meshes. In our framework, the user can edit the mesh connectivity to control the location, type, and number of irregular vertices (with more or fewer than four neighbors) and irregular faces (non-quads). We provide a theoretical analysis of the problem, discuss what edits are possible and impossible, and describe how to implement an editing framework that realizes all possible editing operations. In the results, we show example edits and illustrate the advantages and disadvantages of different strategies for quad-dominant mesh design. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd.

  8. ZONE: a finite element mesh generator

    International Nuclear Information System (INIS)

    Burger, M.J.

    1976-05-01

    The ZONE computer program is a finite-element mesh generator which produces the nodes and element description of any two-dimensional geometry. The geometry is subdivided into a mesh of quadrilateral and triangular zones arranged sequentially in an ordered march through the geometry. The order of march can be chosen so that the minimum bandwidth is obtained. The node points are defined in terms of the x and y coordinates in a global rectangular coordinate system. The zones generated are quadrilaterals or triangles defined by four node points in a counterclockwise sequence. Node points defining the outside boundary are generated to describe pressure boundary conditions. The mesh that is generated can be used as input to any two-dimensional as well as any axisymmetrical structure program. The output from ZONE is essentially the input file to NAOS, HONDO, and other axisymmetric finite element programs. 14 figures

  9. Open preperitoneal groin hernia repair with mesh

    DEFF Research Database (Denmark)

    Andresen, Kristoffer; Rosenberg, Jacob

    2017-01-01

    Background For the repair of inguinal hernias, several surgical methods have been presented where the purpose is to place a mesh in the preperitoneal plane through an open access. The aim of this systematic review was to describe preperitoneal repairs with emphasis on the technique. Data sources...... A systematic review was conducted and reported according to the PRISMA statement. PubMed, Cochrane library and Embase were searched systematically. Studies were included if they provided clinical data with more than 30 days follow up following repair of an inguinal hernia with an open preperitoneal mesh......-analysis. Open preperitoneal techniques with placement of a mesh through an open approach seem promising compared with the standard anterior techniques. This systematic review provides an overview of these techniques together with a description of surgical methods and clinical outcomes....

  10. Open preperitoneal groin hernia repair with mesh

    DEFF Research Database (Denmark)

    Andresen, Kristoffer; Rosenberg, Jacob

    2017-01-01

    BACKGROUND: For the repair of inguinal hernias, several surgical methods have been presented where the purpose is to place a mesh in the preperitoneal plane through an open access. The aim of this systematic review was to describe preperitoneal repairs with emphasis on the technique. DATA SOURCES......: A systematic review was conducted and reported according to the PRISMA statement. PubMed, Cochrane library and Embase were searched systematically. Studies were included if they provided clinical data with more than 30 days follow up following repair of an inguinal hernia with an open preperitoneal mesh......-analysis. Open preperitoneal techniques with placement of a mesh through an open approach seem promising compared with the standard anterior techniques. This systematic review provides an overview of these techniques together with a description of surgical methods and clinical outcomes....

  11. Learning-based stochastic object models for characterizing anatomical variations

    Science.gov (United States)

    Dolly, Steven R.; Lou, Yang; Anastasio, Mark A.; Li, Hua

    2018-03-01

    It is widely known that the optimization of imaging systems based on objective, task-based measures of image quality via computer-simulation requires the use of a stochastic object model (SOM). However, the development of computationally tractable SOMs that can accurately model the statistical variations in human anatomy within a specified ensemble of patients remains a challenging task. Previously reported numerical anatomic models lack the ability to accurately model inter-patient and inter-organ variations in human anatomy among a broad patient population, mainly because they are established on image data corresponding to a few of patients and individual anatomic organs. This may introduce phantom-specific bias into computer-simulation studies, where the study result is heavily dependent on which phantom is used. In certain applications, however, databases of high-quality volumetric images and organ contours are available that can facilitate this SOM development. In this work, a novel and tractable methodology for learning a SOM and generating numerical phantoms from a set of volumetric training images is developed. The proposed methodology learns geometric attribute distributions (GAD) of human anatomic organs from a broad patient population, which characterize both centroid relationships between neighboring organs and anatomic shape similarity of individual organs among patients. By randomly sampling the learned centroid and shape GADs with the constraints of the respective principal attribute variations learned from the training data, an ensemble of stochastic objects can be created. The randomness in organ shape and position reflects the learned variability of human anatomy. To demonstrate the methodology, a SOM of an adult male pelvis is computed and examples of corresponding numerical phantoms are created.

  12. Unstructured Adaptive Meshes: Bad for Your Memory?

    Science.gov (United States)

    Biswas, Rupak; Feng, Hui-Yu; VanderWijngaart, Rob

    2003-01-01

    This viewgraph presentation explores the need for a NASA Advanced Supercomputing (NAS) parallel benchmark for problems with irregular dynamical memory access. This benchmark is important and necessary because: 1) Problems with localized error source benefit from adaptive nonuniform meshes; 2) Certain machines perform poorly on such problems; 3) Parallel implementation may provide further performance improvement but is difficult. Some examples of problems which use irregular dynamical memory access include: 1) Heat transfer problem; 2) Heat source term; 3) Spectral element method; 4) Base functions; 5) Elemental discrete equations; 6) Global discrete equations. Nonconforming Mesh and Mortar Element Method are covered in greater detail in this presentation.

  13. Local adaptive mesh refinement for shock hydrodynamics

    International Nuclear Information System (INIS)

    Berger, M.J.; Colella, P.; Lawrence Livermore Laboratory, Livermore, 94550 California)

    1989-01-01

    The aim of this work is the development of an automatic, adaptive mesh refinement strategy for solving hyperbolic conservation laws in two dimensions. There are two main difficulties in doing this. The first problem is due to the presence of discontinuities in the solution and the effect on them of discontinuities in the mesh. The second problem is how to organize the algorithm to minimize memory and CPU overhead. This is an important consideration and will continue to be important as more sophisticated algorithms that use data structures other than arrays are developed for use on vector and parallel computers. copyright 1989 Academic Press, Inc

  14. Adaptive mesh refinement for storm surge

    KAUST Repository

    Mandli, Kyle T.; Dawson, Clint N.

    2014-01-01

    An approach to utilizing adaptive mesh refinement algorithms for storm surge modeling is proposed. Currently numerical models exist that can resolve the details of coastal regions but are often too costly to be run in an ensemble forecasting framework without significant computing resources. The application of adaptive mesh refinement algorithms substantially lowers the computational cost of a storm surge model run while retaining much of the desired coastal resolution. The approach presented is implemented in the GeoClaw framework and compared to ADCIRC for Hurricane Ike along with observed tide gauge data and the computational cost of each model run. © 2014 Elsevier Ltd.

  15. MUSIC: a mesh-unrestricted simulation code

    International Nuclear Information System (INIS)

    Bonalumi, R.A.; Rouben, B.; Dastur, A.R.; Dondale, C.S.; Li, H.Y.H.

    1978-01-01

    A general formalism to solve the G-group neutron diffusion equation is described. The G-group flux is represented by complementing an ''asymptotic'' mode with (G-1) ''transient'' modes. A particular reduction-to-one-group technique gives a high computational efficiency. MUSIC, a 2-group code using the above formalism, is presented. MUSIC is demonstrated on a fine-mesh calculation and on 2 coarse-mesh core calculations: a heavy-water reactor (HWR) problem and the 2-D lightwater reactor (LWR) IAEA benchmark. Comparison is made to finite-difference results

  16. Adaptive mesh refinement for storm surge

    KAUST Repository

    Mandli, Kyle T.

    2014-03-01

    An approach to utilizing adaptive mesh refinement algorithms for storm surge modeling is proposed. Currently numerical models exist that can resolve the details of coastal regions but are often too costly to be run in an ensemble forecasting framework without significant computing resources. The application of adaptive mesh refinement algorithms substantially lowers the computational cost of a storm surge model run while retaining much of the desired coastal resolution. The approach presented is implemented in the GeoClaw framework and compared to ADCIRC for Hurricane Ike along with observed tide gauge data and the computational cost of each model run. © 2014 Elsevier Ltd.

  17. Local mesh refinement for incompressible fluid flow with free surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Terasaka, H.; Kajiwara, H.; Ogura, K. [Tokyo Electric Power Company (Japan)] [and others

    1995-09-01

    A new local mesh refinement (LMR) technique has been developed and applied to incompressible fluid flows with free surface boundaries. The LMR method embeds patches of fine grid in arbitrary regions of interest. Hence, more accurate solutions can be obtained with a lower number of computational cells. This method is very suitable for the simulation of free surface movements because free surface flow problems generally require a finer computational grid to obtain adequate results. By using this technique, one can place finer grids only near the surfaces, and therefore greatly reduce the total number of cells and computational costs. This paper introduces LMR3D, a three-dimensional incompressible flow analysis code. Numerical examples calculated with the code demonstrate well the advantages of the LMR method.

  18. Nyx: Adaptive mesh, massively-parallel, cosmological simulation code

    Science.gov (United States)

    Almgren, Ann; Beckner, Vince; Friesen, Brian; Lukic, Zarija; Zhang, Weiqun

    2017-12-01

    Nyx code solves equations of compressible hydrodynamics on an adaptive grid hierarchy coupled with an N-body treatment of dark matter. The gas dynamics in Nyx use a finite volume methodology on an adaptive set of 3-D Eulerian grids; dark matter is represented as discrete particles moving under the influence of gravity. Particles are evolved via a particle-mesh method, using Cloud-in-Cell deposition/interpolation scheme. Both baryonic and dark matter contribute to the gravitational field. In addition, Nyx includes physics for accurately modeling the intergalactic medium; in optically thin limits and assuming ionization equilibrium, the code calculates heating and cooling processes of the primordial-composition gas in an ionizing ultraviolet background radiation field.

  19. Mesh removal following transvaginal mesh placement: a case series of 104 operations.

    Science.gov (United States)

    Marcus-Braun, Naama; von Theobald, Peter

    2010-04-01

    The objective of the study was to reveal the way we treat vaginal mesh complications in a trained referral center. This is a retrospective review of all patients who underwent surgical removal of transvaginal mesh for mesh-related complications during a 5-year period. Eighty-three patients underwent 104 operations including 61 complete mesh removal, 14 partial excision, 15 section of sub-urethral sling, and five laparoscopies. Main indications were erosion, infection, granuloma, incomplete voiding, and pain. Fifty-eight removals occurred more than 2 years after the primary mesh placement. Mean operation time was 21 min, and there were two intraoperative and ten minor postoperative complications. Stress urinary incontinence (SUI) recurred in 38% and cystocele in 19% of patients. In a trained center, mesh removal was found to be a quick and safe procedure. Mesh-related complications may frequently occur more than 2 years after the primary operation. Recurrence was mostly associated with SUI and less with genital prolapse.

  20. Pure transvaginal excision of mesh erosion involving the bladder.

    Science.gov (United States)

    Firoozi, Farzeen; Goldman, Howard B

    2013-06-01

    We present a pure transvaginal approach to the removal of eroded mesh involving the bladder secondary to placement of transvaginal mesh for management of pelvic organ prolapse (POP) using a mesh kit. Although technically challenging, we demonstrate the feasibility of a purely transvaginal approach, avoiding a potentially more morbid transabdominal approach. The video presents the surgical technique of pure transvaginal excision of mesh erosion involving the bladder after mesh placement using a prolapse kit was performed. This video shows that purely transvaginal removal of mesh erosion involving the bladder can be done safely and is feasible.

  1. 3-year results of transvaginal cystocele repair with transobturator four-arm mesh: A prospective study of 105 patients.

    Science.gov (United States)

    Kdous, Moez; Zhioua, Fethi

    2014-12-01

    To evaluate the long-term efficacy and safety of transobturator four-arm mesh for treating cystoceles. In this prospective study, 105 patients had a cystocele corrected between January 2004 and December 2008. All patients had a symptomatic cystocele of stage ⩾2 according to the Baden-Walker halfway stratification. We used only the transobturator four-arm mesh kit (Surgimesh®, Aspide Medical, France). All surgical procedures were carried out by the same experienced surgeon. The patients' characteristics and surgical variables were recorded prospectively. The anatomical outcome, as measured by a physical examination and postoperative stratification of prolapse, and functional outcome, as assessed by a questionnaire derived from the French equivalents of the Pelvic Floor Distress Inventory, Pelvic Floor Impact Questionnaire and the Pelvic Organ Prolapse-Urinary Incontinence-Sexual Questionnaire, were considered as the primary outcome measures. Peri- and postoperative complications constituted the secondary outcome measures. At 36 months after surgery the anatomical success rate (stage 0 or 1) was 93%. On a functional level, all the scores of quality of life and sexuality were improved. The overall satisfaction score (visual analogue scale) was 71.4%. There were no perioperative adverse events. Mesh erosion was reported in 7.6% and mesh retraction in 5.7% of the patients. If the guidelines and precautions are followed, vaginal prosthetic surgery for genitourinary prolapse has shown long-term benefits. It provides excellent results both anatomically and functionally. However, complications are not negligible and some are specific to prosthetic surgery.

  2. Mesh size in Lichtenstein repair: a systematic review and meta-analysis to determine the importance of mesh size.

    Science.gov (United States)

    Seker, D; Oztuna, D; Kulacoglu, H; Genc, Y; Akcil, M

    2013-04-01

    Small mesh size has been recognized as one of the factors responsible for recurrence after Lichtenstein hernia repair due to insufficient coverage or mesh shrinkage. The Lichtenstein Hernia Institute recommends a 7 × 15 cm mesh that can be trimmed up to 2 cm from the lateral side. We performed a systematic review to determine surgeons' mesh size preference for the Lichtenstein hernia repair and made a meta-analysis to determine the effect of mesh size, mesh type, and length of follow-up time on recurrence. Two medical databases, PubMed and ISI Web of Science, were systematically searched using the key word "Lichtenstein repair." All full text papers were selected. Publications mentioning mesh size were brought for further analysis. A mesh surface area of 90 cm(2) was accepted as the threshold for defining the mesh as small or large. Also, a subgroup analysis for recurrence pooled proportion according to the mesh size, mesh type, and follow-up period was done. In total, 514 papers were obtained. There were no prospective or retrospective clinical studies comparing mesh size and clinical outcome. A total of 141 papers were duplicated in both databases. As a result, 373 papers were obtained. The full text was available in over 95 % of papers. Only 41 (11.2 %) papers discussed mesh size. In 29 studies, a mesh larger than 90 cm(2) was used. The most frequently preferred commercial mesh size was 7.5 × 15 cm. No papers mentioned the size of the mesh after trimming. There was no information about the relationship between mesh size and patient BMI. The pooled proportion in recurrence for small meshes was 0.0019 (95 % confidence interval: 0.007-0.0036), favoring large meshes to decrease the chance of recurrence. Recurrence becomes more marked when follow-up period is longer than 1 year (p < 0.001). Heavy meshes also decreased recurrence (p = 0.015). This systematic review demonstrates that the size of the mesh used in Lichtenstein hernia repair is rarely

  3. Simulation of geothermal water extraction in heterogeneous reservoirs using dynamic unstructured mesh optimisation

    Science.gov (United States)

    Salinas, P.; Pavlidis, D.; Jacquemyn, C.; Lei, Q.; Xie, Z.; Pain, C.; Jackson, M.

    2017-12-01

    It is well known that the pressure gradient into a production well increases with decreasing distance to the well. To properly capture the local pressure drawdown into the well a high grid or mesh resolution is required; moreover, the location of the well must be captured accurately. In conventional simulation models, the user must interact with the model to modify grid resolution around wells of interest, and the well location is approximated on a grid defined early in the modelling process.We report a new approach for improved simulation of near wellbore flow in reservoir scale models through the use of dynamic mesh optimisation and the recently presented double control volume finite element method. Time is discretized using an adaptive, implicit approach. Heterogeneous geologic features are represented as volumes bounded by surfaces. Within these volumes, termed geologic domains, the material properties are constant. Up-, cross- or down-scaling of material properties during dynamic mesh optimization is not required, as the properties are uniform within each geologic domain. A given model typically contains numerous such geologic domains. Wells are implicitly coupled with the domain, and the fluid flows is modelled inside the wells. The method is novel for two reasons. First, a fully unstructured tetrahedral mesh is used to discretize space, and the spatial location of the well is specified via a line vector, ensuring its location even if the mesh is modified during the simulation. The well location is therefore accurately captured, the approach allows complex well trajectories and wells with many laterals to be modelled. Second, computational efficiency is increased by use of dynamic mesh optimization, in which an unstructured mesh adapts in space and time to key solution fields (preserving the geometry of the geologic domains), such as pressure, velocity or temperature, this also increases the quality of the solutions by placing higher resolution where required

  4. Multiconjugate adaptive optics applied to an anatomically accurate human eye model.

    Science.gov (United States)

    Bedggood, P A; Ashman, R; Smith, G; Metha, A B

    2006-09-04

    Aberrations of both astronomical telescopes and the human eye can be successfully corrected with conventional adaptive optics. This produces diffraction-limited imagery over a limited field of view called the isoplanatic patch. A new technique, known as multiconjugate adaptive optics, has been developed recently in astronomy to increase the size of this patch. The key is to model atmospheric turbulence as several flat, discrete layers. A human eye, however, has several curved, aspheric surfaces and a gradient index lens, complicating the task of correcting aberrations over a wide field of view. Here we utilize a computer model to determine the degree to which this technology may be applied to generate high resolution, wide-field retinal images, and discuss the considerations necessary for optimal use with the eye. The Liou and Brennan schematic eye simulates the aspheric surfaces and gradient index lens of real human eyes. We show that the size of the isoplanatic patch of the human eye is significantly increased through multiconjugate adaptive optics.

  5. How accurate is image-free computer navigation for hip resurfacing arthroplasty? An anatomical investigation

    International Nuclear Information System (INIS)

    Schnurr, C.; Nessler, J.; Koenig, D.P.; Meyer, C.; Schild, H.H.; Koebke, J.

    2009-01-01

    The existing studies concerning image-free navigated implantation of hip resurfacing arthroplasty are based on analysis of the accuracy of conventional biplane radiography. Studies have shown that these measurements in biplane radiography are imprecise and that precision is improved by use of three-dimensional (3D) computer tomography (CT) scans. To date, the accuracy of image-free navigation devices for hip resurfacing has not been investigated using CT scans, and anteversion accuracy has not been assessed at all. Furthermore, no study has tested the reliability of the navigation software concerning the automatically calculated implant position. The purpose of our study was to analyze the accuracy of varus-valgus and anteversion using an image-free hip resurfacing navigation device. The reliability of the software-calculated implant position was also determined. A total of 32 femoral hip resurfacing components were implanted on embalmed human femurs using an image-free navigation device. In all, 16 prostheses were implanted with the proposed position generated by the navigation software; the 16 prostheses were inserted in an optimized valgus position. A 3D CT scan was undertaken before and after operation. The difference between the measured and planned varus-valgus angle averaged 1 deg (mean±standard deviation (SD): group I, 1 deg±2 deg; group II, 1 deg±1 deg). The mean±SD difference between femoral neck anteversion and anteversion of the implant was 4 deg (group I, 4 deg±4 deg; group II, 4 deg±3 deg). The software-calculated implant position differed 7 deg±8 deg from the measured neck-shaft angle. These measured accuracies did not differ significantly between the two groups. Our study proved the high accuracy of the navigation device concerning the most important biomechanical factor: the varus-valgus angle. The software calculation of the proposed implant position has been shown to be inaccurate and needs improvement. Hence, manual adjustment of the implant position in the software-planning step is frequently required. (author)

  6. Multiconjugate adaptive optics applied to an anatomically accurate human eye model

    Science.gov (United States)

    Bedggood, P. A.; Ashman, R.; Smith, G.; Metha, A. B.

    2006-09-01

    Aberrations of both astronomical telescopes and the human eye can be successfully corrected with conventional adaptive optics. This produces diffraction-limited imagery over a limited field of view called the isoplanatic patch. A new technique, known as multiconjugate adaptive optics, has been developed recently in astronomy to increase the size of this patch. The key is to model atmospheric turbulence as several flat, discrete layers. A human eye, however, has several curved, aspheric surfaces and a gradient index lens, complicating the task of correcting aberrations over a wide field of view. Here we utilize a computer model to determine the degree to which this technology may be applied to generate high resolution, wide-field retinal images, and discuss the considerations necessary for optimal use with the eye. The Liou and Brennan schematic eye simulates the aspheric surfaces and gradient index lens of real human eyes. We show that the size of the isoplanatic patch of the human eye is significantly increased through multiconjugate adaptive optics.

  7. Properties of meshes used in hernia repair: a comprehensive review of synthetic and biologic meshes.

    Science.gov (United States)

    Ibrahim, Ahmed M S; Vargas, Christina R; Colakoglu, Salih; Nguyen, John T; Lin, Samuel J; Lee, Bernard T

    2015-02-01

    Data on the mechanical properties of the adult human abdominal wall have been difficult to obtain rendering manufacture of the ideal mesh for ventral hernia repair a challenge. An ideal mesh would need to exhibit greater biomechanical strength and elasticity than that of the abdominal wall. The aim of this study is to quantitatively compare the biomechanical properties of the most commonly used synthetic and biologic meshes in ventral hernia repair and presents a comprehensive literature review. A narrative review of the literature was performed using the PubMed database spanning articles from 1982 to 2012 including a review of company Web sites to identify all available information relating to the biomechanical properties of various synthetic and biologic meshes used in ventral hernia repair. There exist differences in the mechanical properties and the chemical nature of different meshes. In general, most synthetic materials have greater stiffness and elasticity than what is required for abdominal wall reconstruction; however, each exhibits unique properties that may be beneficial for clinical use. On the contrary, biologic meshes are more elastic but less stiff and with a lower tensile strength than their synthetic counterparts. The current standard of practice for the treatment of ventral hernias is the use of permanent synthetic mesh material. Recently, biologic meshes have become more frequently used. Most meshes exhibit biomechanical properties over the known abdominal wall thresholds. Augmenting strength requires increasing amounts of material contributing to more stiffness and foreign body reaction, which is not necessarily an advantage. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  8. Anatomical landmarks of radical prostatecomy.

    Science.gov (United States)

    Stolzenburg, Jens-Uwe; Schwalenberg, Thilo; Horn, Lars-Christian; Neuhaus, Jochen; Constantinides, Costantinos; Liatsikos, Evangelos N

    2007-03-01

    In the present study, we review current literature and based on our experience, we present the anatomical landmarks of open and laparoscopic/endoscopic radical prostatectomy. A thorough literature search was performed with the Medline database on the anatomy and the nomenclature of the structures surrounding the prostate gland. The correct handling of puboprostatic ligaments, external urethral sphincter, prostatic fascias and neurovascular bundle is necessary for avoiding malfunction of the urogenital system after radical prostatectomy. When evaluating new prostatectomy techniques, we should always take into account both clinical and final oncological outcomes. The present review adds further knowledge to the existing "postprostatectomy anatomical hazard" debate. It emphasizes upon the role of the puboprostatic ligaments and the course of the external urethral sphincter for urinary continence. When performing an intrafascial nerve sparing prostatectomy most urologists tend to approach as close to the prostatic capsula as possible, even though there is no concurrence regarding the nomenclature of the surrounding fascias and the course of the actual neurovascular bundles. After completion of an intrafascial technique the specimen does not contain any periprostatic tissue and thus the detection of pT3a disease is not feasible. This especially becomes problematic if the tumour reaches the resection margin. Nerve sparing open and laparoscopic radical prostatectomy should aim in maintaining sexual function, recuperating early continence after surgery, without hindering the final oncological outcome to the procedure. Despite the different approaches for radical prostatectomy the key for better results is the understanding of the anatomy of the bladder neck and the urethra.

  9. Electromagnetic forward modelling for realistic Earth models using unstructured tetrahedral meshes and a meshfree approach

    Science.gov (United States)

    Farquharson, C.; Long, J.; Lu, X.; Lelievre, P. G.

    2017-12-01

    Real-life geology is complex, and so, even when allowing for the diffusive, low resolution nature of geophysical electromagnetic methods, we need Earth models that can accurately represent this complexity when modelling and inverting electromagnetic data. This is particularly the case for the scales, detail and conductivity contrasts involved in mineral and hydrocarbon exploration and development, but also for the larger scale of lithospheric studies. Unstructured tetrahedral meshes provide a flexible means of discretizing a general, arbitrary Earth model. This is important when wanting to integrate a geophysical Earth model with a geological Earth model parameterized in terms of surfaces. Finite-element and finite-volume methods can be derived for computing the electric and magnetic fields in a model parameterized using an unstructured tetrahedral mesh. A number of such variants have been proposed and have proven successful. However, the efficiency and accuracy of these methods can be affected by the "quality" of the tetrahedral discretization, that is, how many of the tetrahedral cells in the mesh are long, narrow and pointy. This is particularly the case if one wants to use an iterative technique to solve the resulting linear system of equations. One approach to deal with this issue is to develop sophisticated model and mesh building and manipulation capabilities in order to ensure that any mesh built from geological information is of sufficient quality for the electromagnetic modelling. Another approach is to investigate other methods of synthesizing the electromagnetic fields. One such example is a "meshfree" approach in which the electromagnetic fields are synthesized using a mesh that is distinct from the mesh used to parameterized the Earth model. There are then two meshes, one describing the Earth model and one used for the numerical mathematics of computing the fields. This means that there are no longer any quality requirements on the model mesh, which

  10. Native tissue repair or transvaginal mesh for recurrent vaginal prolapse: what are the long-term outcomes?

    Science.gov (United States)

    Ow, Lin Li; Lim, Yik N; Dwyer, Peter L; Karmakar, Debjyoti; Murray, Christine; Thomas, Elizabeth; Rosamilia, Anna

    2016-09-01

    The objective of this study was to assess outcomes in native tissue (NT) and transvaginal mesh (TVM) repair in women with recurrent prolapse. A retrospective two-group observational study of 237 women who underwent prolapse repair after failed NT repair in two tertiary hospitals. A primary outcome of "success" was defined using a composite outcome of no vaginal bulge symptoms, no anatomical recurrence in the same compartment beyond the hymen (0 cm on POPQ) and no surgical re-treatment for prolapse in the same compartment. Secondary outcomes assessed included re-operation for prolapse in the same compartment, dyspareunia and mesh-related complications. Of a total of 336 repairs, 196 were performed in the anterior compartment and 140 in the posterior compartment. Compared with the TVM groups, women undergoing repeat NT repair were more likely to experience anatomical recurrence (anterior 40.9 % vs 25 %, p = 0.02, posterior 25.3 % vs 7.5 %, p = 0.01), report vaginal bulge (anterior 34.1 % vs 12 %, p mesh exposure were 9.3 % anteriorly and 15.1 % posteriorly. Although the number of women requiring a prolapse re-operation is lower in the TVM group, the overall re-operation rate was not significantly different when procedures to correct mesh complications were included. Although the success rate is better with the use of TVM for recurrent prolapse, the total re-operation rates are similar when mesh complication-related surgeries are included.

  11. Highly Symmetric and Congruently Tiled Meshes for Shells and Domes

    Science.gov (United States)

    Rasheed, Muhibur; Bajaj, Chandrajit

    2016-01-01

    We describe the generation of all possible shell and dome shapes that can be uniquely meshed (tiled) using a single type of mesh face (tile), and following a single meshing (tiling) rule that governs the mesh (tile) arrangement with maximal vertex, edge and face symmetries. Such tiling arrangements or congruently tiled meshed shapes, are frequently found in chemical forms (fullerenes or Bucky balls, crystals, quasi-crystals, virus nano shells or capsids), and synthetic shapes (cages, sports domes, modern architectural facades). Congruently tiled meshes are both aesthetic and complete, as they support maximal mesh symmetries with minimal complexity and possess simple generation rules. Here, we generate congruent tilings and meshed shape layouts that satisfy these optimality conditions. Further, the congruent meshes are uniquely mappable to an almost regular 3D polyhedron (or its dual polyhedron) and which exhibits face-transitive (and edge-transitive) congruency with at most two types of vertices (each type transitive to the other). The family of all such congruently meshed polyhedra create a new class of meshed shapes, beyond the well-studied regular, semi-regular and quasi-regular classes, and their duals (platonic, Catalan and Johnson). While our new mesh class is infinite, we prove that there exists a unique mesh parametrization, where each member of the class can be represented by two integer lattice variables, and moreover efficiently constructable. PMID:27563368

  12. Markov Random Fields on Triangle Meshes

    DEFF Research Database (Denmark)

    Andersen, Vedrana; Aanæs, Henrik; Bærentzen, Jakob Andreas

    2010-01-01

    In this paper we propose a novel anisotropic smoothing scheme based on Markov Random Fields (MRF). Our scheme is formulated as two coupled processes. A vertex process is used to smooth the mesh by displacing the vertices according to a MRF smoothness prior, while an independent edge process label...

  13. Performance Evaluation of Coded Meshed Networks

    DEFF Research Database (Denmark)

    Krigslund, Jeppe; Hansen, Jonas; Pedersen, Morten Videbæk

    2013-01-01

    of the former to enhance the gains of the latter. We first motivate our work through measurements in WiFi mesh networks. Later, we compare state-of-the-art approaches, e.g., COPE, RLNC, to CORE. Our measurements show the higher reliability and throughput of CORE over other schemes, especially, for asymmetric...

  14. Solid Mesh Registration for Radiotherapy Treatment Planning

    DEFF Research Database (Denmark)

    Noe, Karsten Østergaard; Sørensen, Thomas Sangild

    2010-01-01

    We present an algorithm for solid organ registration of pre-segmented data represented as tetrahedral meshes. Registration of the organ surface is driven by force terms based on a distance field representation of the source and reference shapes. Registration of internal morphology is achieved usi...

  15. Combining 3d Volume and Mesh Models for Representing Complicated Heritage Buildings

    Science.gov (United States)

    Tsai, F.; Chang, H.; Lin, Y.-W.

    2017-08-01

    This study developed a simple but effective strategy to combine 3D volume and mesh models for representing complicated heritage buildings and structures. The idea is to seamlessly integrate 3D parametric or polyhedral models and mesh-based digital surfaces to generate a hybrid 3D model that can take advantages of both modeling methods. The proposed hybrid model generation framework is separated into three phases. Firstly, after acquiring or generating 3D point clouds of the target, these 3D points are partitioned into different groups. Secondly, a parametric or polyhedral model of each group is generated based on plane and surface fitting algorithms to represent the basic structure of that region. A "bare-bones" model of the target can subsequently be constructed by connecting all 3D volume element models. In the third phase, the constructed bare-bones model is used as a mask to remove points enclosed by the bare-bones model from the original point clouds. The remaining points are then connected to form 3D surface mesh patches. The boundary points of each surface patch are identified and these boundary points are projected onto the surfaces of the bare-bones model. Finally, new meshes are created to connect the projected points and original mesh boundaries to integrate the mesh surfaces with the 3D volume model. The proposed method was applied to an open-source point cloud data set and point clouds of a local historical structure. Preliminary results indicated that the reconstructed hybrid models using the proposed method can retain both fundamental 3D volume characteristics and accurate geometric appearance with fine details. The reconstructed hybrid models can also be used to represent targets in different levels of detail according to user and system requirements in different applications.

  16. Vertex Normals and Face Curvatures of Triangle Meshes

    KAUST Repository

    Sun, Xiang; Jiang, Caigui; Wallner, Johannes; Pottmann, Helmut

    2016-01-01

    This study contributes to the discrete differential geometry of triangle meshes, in combination with discrete line congruences associated with such meshes. In particular we discuss when a congruence defined by linear interpolation of vertex normals

  17. Recurrence and Pain after Mesh Repair of Inguinal Hernias

    African Journals Online (AJOL)

    Abstract. Background: Surgery for inguinal hernias has ... repair. Methods: The study was conducted on all inguinal hernia patients operated between 1st. October ... bilateral (1.6%). Only 101 .... Open Mesh Versus Laparoscopic Mesh. Repair ...

  18. Surgical Management of Pelvic floor Prolapse in women using Mesh

    African Journals Online (AJOL)

    RAH

    polytetrafluoroethylene) . This article reviews our experience with polypropylene mesh in pelvic floor repair at the. Southern General Hospital Glasgow. The objective was to determine the safety and effectiveness of the prolene mesh in the repair ...

  19. VARIABLE MESH STIFFNESS OF SPUR GEAR TEETH USING ...

    African Journals Online (AJOL)

    gear engagement. A gear mesh kinematic simulation ... model is appropnate for VMS of a spur gear tooth. The assumptions for ... This process has been continued until one complete tooth meshing cycle is ..... Element Method. Using MATLAB,.

  20. Outcomes of Autologous Fascia Pubovaginal Sling for Patients with Transvaginal Mesh Related Complications Requiring Mesh Removal.

    Science.gov (United States)

    McCoy, Olugbemisola; Vaughan, Taylor; Nickles, S Walker; Ashley, Matt; MacLachlan, Lara S; Ginsberg, David; Rovner, Eric

    2016-08-01

    We reviewed the outcomes of the autologous fascial pubovaginal sling as a salvage procedure for recurrent stress incontinence after intervention for polypropylene mesh erosion/exposure and/or bladder outlet obstruction in patients treated with prior transvaginal synthetic mesh for stress urinary incontinence. In a review of surgical databases at 2 institutions between January 2007 and June 2013 we identified 46 patients who underwent autologous fascial pubovaginal sling following removal of transvaginal synthetic mesh in simultaneous or staged fashion. This cohort of patients was evaluated for outcomes, including subjective and objective success, change in quality of life and complications between those who underwent staged vs concomitant synthetic mesh removal with autologous fascial pubovaginal sling placement. All 46 patients had received at least 1 prior mesh sling for incontinence and 8 (17%) had received prior transvaginal polypropylene mesh for pelvic organ prolapse repair. A total of 30 patients underwent concomitant mesh incision with or without partial excision and autologous sling placement while 16 underwent staged autologous sling placement. Mean followup was 16 months. Of the patients 22% required a mean of 1.8 subsequent interventions an average of 6.5 months after autologous sling placement with no difference in median quality of life at final followup. At last followup 42 of 46 patients (91%) and 35 of 46 (76%) had achieved objective and subjective success, respectively. There was no difference in subjective success between patients treated with a staged vs a concomitant approach (69% vs 80%, p = 0.48). Autologous fascial pubovaginal sling placement after synthetic mesh removal can be performed successfully in patients with stress urinary incontinence as a single or staged procedure. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  1. Persistent pelvic pain following transvaginal mesh surgery: a cause for mesh removal.

    Science.gov (United States)

    Marcus-Braun, Naama; Bourret, Antoine; von Theobald, Peter

    2012-06-01

    Persistent pelvic pain after vaginal mesh surgery is an uncommon but serious complication that greatly affects women's quality of life. Our aim was to evaluate various procedures for mesh removal performed at a tertiary referral center in cases of persistent pelvic pain, and to evaluate the ensuing complications and outcomes. A retrospective study was conducted at the University Hospital of Caen, France, including all patients treated for removal or section of vaginal mesh due to pelvic pain as a primary cause, between January 2004 and September 2009. Ten patients met the inclusion criteria. Patients were diagnosed between 10 months and 3 years after their primary operation. Eight cases followed suburethral sling procedures and two followed mesh surgery for pelvic organ prolapse. Patients presented with obturator neuralgia (6), pudendal neuralgia (2), dyspareunia (1), and non-specific pain (1). The surgical treatment to release the mesh included: three cases of extra-peritoneal laparoscopy, four cases of complete vaginal mesh removal, one case of partial mesh removal and two cases of section of the suburethral sling. In all patients with obturator neuralgia, symptoms were resolved or improved, whereas in both cases of pudendal neuralgia the symptoms continued. There were no intra-operative complications. Post-operative Retzius hematoma was observed in one patient after laparoscopy. Mesh removal in a tertiary center is a safe procedure, necessary in some cases of persistent pelvic pain. Obturator neuralgia seems to be easier to treat than pudendal neuralgia. Early diagnosis is the key to success in prevention of chronic disease. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Automatic segmentation of rotational x-ray images for anatomic intra-procedural surface generation in atrial fibrillation ablation procedures.

    Science.gov (United States)

    Manzke, Robert; Meyer, Carsten; Ecabert, Olivier; Peters, Jochen; Noordhoek, Niels J; Thiagalingam, Aravinda; Reddy, Vivek Y; Chan, Raymond C; Weese, Jürgen

    2010-02-01

    Since the introduction of 3-D rotational X-ray imaging, protocols for 3-D rotational coronary artery imaging have become widely available in routine clinical practice. Intra-procedural cardiac imaging in a computed tomography (CT)-like fashion has been particularly compelling due to the reduction of clinical overhead and ability to characterize anatomy at the time of intervention. We previously introduced a clinically feasible approach for imaging the left atrium and pulmonary veins (LAPVs) with short contrast bolus injections and scan times of approximately 4 -10 s. The resulting data have sufficient image quality for intra-procedural use during electro-anatomic mapping (EAM) and interventional guidance in atrial fibrillation (AF) ablation procedures. In this paper, we present a novel technique to intra-procedural surface generation which integrates fully-automated segmentation of the LAPVs for guidance in AF ablation interventions. Contrast-enhanced rotational X-ray angiography (3-D RA) acquisitions in combination with filtered-back-projection-based reconstruction allows for volumetric interrogation of LAPV anatomy in near-real-time. An automatic model-based segmentation algorithm allows for fast and accurate LAPV mesh generation despite the challenges posed by image quality; relative to pre-procedural cardiac CT/MR, 3-D RA images suffer from more artifacts and reduced signal-to-noise. We validate our integrated method by comparing 1) automatic and manual segmentations of intra-procedural 3-D RA data, 2) automatic segmentations of intra-procedural 3-D RA and pre-procedural CT/MR data, and 3) intra-procedural EAM point cloud data with automatic segmentations of 3-D RA and CT/MR data. Our validation results for automatically segmented intra-procedural 3-D RA data show average segmentation errors of 1) approximately 1.3 mm compared with manual 3-D RA segmentations 2) approximately 2.3 mm compared with automatic segmentation of pre-procedural CT/MR data and 3

  3. Laparoscopic removal of mesh used in pelvic floor surgery.

    Science.gov (United States)

    Khong, Su-Yen; Lam, Alan

    2009-01-01

    Various meshes are being used widely in clinical practice for pelvic reconstructive surgery despite the lack of evidence of their long-term safety and efficacy. Management of complications such as mesh erosion and dyspareunia can be challenging. Most mesh-related complications can probably be managed successfully via the transvaginal route; however, this may be impossible if surgical access is poor. This case report demonstrates the successful laparoscopic removal of mesh after several failed attempts via the vaginal route.

  4. Anatomical and palynological characteristics of Salvia willeana ...

    African Journals Online (AJOL)

    In this study, anatomical and palynological features of the roots, stems, petiole and leaves of Salvia willeana (Holmboe) Hedge and Salvia veneris Hedge, Salvia species endemic to Cyprus, were investigated. In the anatomical characteristics of stem structures, it was found that the chlorenchyma composed of 6 or 7 rows of ...

  5. On Reducing Delay in Mesh-Based P2P Streaming: A Mesh-Push Approach

    Science.gov (United States)

    Liu, Zheng; Xue, Kaiping; Hong, Peilin

    The peer-assisted streaming paradigm has been widely employed to distribute live video data on the internet recently. In general, the mesh-based pull approach is more robust and efficient than the tree-based push approach. However, pull protocol brings about longer streaming delay, which is caused by the handshaking process of advertising buffer map message, sending request message and scheduling of the data block. In this paper, we propose a new approach, mesh-push, to address this issue. Different from the traditional pull approach, mesh-push implements block scheduling algorithm at sender side, where the block transmission is initiated by the sender rather than by the receiver. We first formulate the optimal upload bandwidth utilization problem, then present the mesh-push approach, in which a token protocol is designed to avoid block redundancy; a min-cost flow model is employed to derive the optimal scheduling for the push peer; and a push peer selection algorithm is introduced to reduce control overhead. Finally, we evaluate mesh-push through simulation, the results of which show mesh-push outperforms the pull scheduling in streaming delay, and achieves comparable delivery ratio at the same time.

  6. A finite element method with overlapping meshes for free-boundary axisymmetric plasma equilibria in realistic geometries

    Science.gov (United States)

    Heumann, Holger; Rapetti, Francesca

    2017-04-01

    Existing finite element implementations for the computation of free-boundary axisymmetric plasma equilibria approximate the unknown poloidal flux function by standard lowest order continuous finite elements with discontinuous gradients. As a consequence, the location of critical points of the poloidal flux, that are of paramount importance in tokamak engineering, is constrained to nodes of the mesh leading to undesired jumps in transient problems. Moreover, recent numerical results for the self-consistent coupling of equilibrium with resistive diffusion and transport suggest the necessity of higher regularity when approximating the flux map. In this work we propose a mortar element method that employs two overlapping meshes. One mesh with Cartesian quadrilaterals covers the vacuum chamber domain accessible by the plasma and one mesh with triangles discretizes the region outside. The two meshes overlap in a narrow region. This approach gives the flexibility to achieve easily and at low cost higher order regularity for the approximation of the flux function in the domain covered by the plasma, while preserving accurate meshing of the geometric details outside this region. The continuity of the numerical solution in the region of overlap is weakly enforced by a mortar-like mapping.

  7. Surgical management of lower urinary mesh perforation after mid-urethral polypropylene mesh sling: mesh excision, urinary tract reconstruction and concomitant pubovaginal sling with autologous rectus fascia.

    Science.gov (United States)

    Shah, Ketul; Nikolavsky, Dmitriy; Gilsdorf, Daniel; Flynn, Brian J

    2013-12-01

    We present our management of lower urinary tract (LUT) mesh perforation after mid-urethral polypropylene mesh sling using a novel combination of surgical techniques including total or near total mesh excision, urinary tract reconstruction, and concomitant pubovaginal sling with autologous rectus fascia in a single operation. We retrospectively reviewed the medical records of 189 patients undergoing transvaginal removal of polypropylene mesh from the lower urinary tract or vagina. The focus of this study is 21 patients with LUT mesh perforation after mid-urethral polypropylene mesh sling. We excluded patients with LUT mesh perforation from prolapse kits (n = 4) or sutures (n = 11), or mesh that was removed because of isolated vaginal wall exposure without concomitant LUT perforation (n = 164). Twenty-one patients underwent surgical removal of mesh through a transvaginal approach or combined transvaginal/abdominal approaches. The location of the perforation was the urethra in 14 and the bladder in 7. The mean follow-up was 22 months. There were no major intraoperative complications. All patients had complete resolution of the mesh complication and the primary symptom. Of the patients with urethral perforation, continence was achieved in 10 out of 14 (71.5 %). Of the patients with bladder perforation, continence was achieved in all 7. Total or near total removal of lower urinary tract (LUT) mesh perforation after mid-urethral polypropylene mesh sling can completely resolve LUT mesh perforation in a single operation. A concomitant pubovaginal sling can be safely performed in efforts to treat existing SUI or avoid future surgery for SUI.

  8. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold a...

  9. Multiphase flow of immiscible fluids on unstructured moving meshes

    DEFF Research Database (Denmark)

    Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam

    2012-01-01

    In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization op...

  10. Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes

    DEFF Research Database (Denmark)

    Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam

    2013-01-01

    In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization op...

  11. Anatomic variables affecting interdental papilla

    Directory of Open Access Journals (Sweden)

    Swapna A. Mahale

    2013-01-01

    Full Text Available Aim: The aim of this study is to evaluate the anatomic variables affecting the interdental papilla. Materials and Methods: Thirty adult patients were evaluated. Papilla score (PS, tooth form/shape, gingival thickness, crest bone height and keratinized gingiva/attached gingiva were recorded for 150 inter proximal sites. Data were analyzed using SPSS software package (version 7.0 and the significance level was set at 95% confidence interval. Pearson′s correlation was applied to correlate the relationship between the factors and the appearance of the papilla. Results: Competent papillae (complete fill interdentally were associated with: (1 Crown width (CW: length ≥0.87; (2 bone crest-contact point ≤5 mm; and (3 inter proximal gingival tissue thickness ≥1.5 mm. Gingival thickness correlated negatively with PS (r = −0.37 to −0.54 and positively with tissue height (r = 0.23-0.43. Tooth form (i.e., CW to length ratio correlated negatively with PS (r = −0.37 to −0.61. Conclusion: Gingival papilla appearance was associated significantly with tooth form/shape, crestal bone height and interproximal gingival thickness.

  12. Coupling LaGrit unstructured mesh generation and model setup with TOUGH2 flow and transport: A case study

    Science.gov (United States)

    Sentís, Manuel Lorenzo; Gable, Carl W.

    2017-11-01

    There are many applications in science and engineering modeling where an accurate representation of a complex model geometry in the form of a mesh is important. In applications of flow and transport in subsurface porous media, this is manifest in models that must capture complex geologic stratigraphy, structure (faults, folds, erosion, deposition) and infrastructure (tunnels, boreholes, excavations). Model setup, defined as the activities of geometry definition, mesh generation (creation, optimization, modification, refine, de-refine, smooth), assigning material properties, initial conditions and boundary conditions requires specialized software tools to automate and streamline the process. In addition, some model setup tools will provide more utility if they are designed to interface with and meet the needs of a particular flow and transport software suite. A control volume discretization that uses a two point flux approximation is for example most accurate when the underlying control volumes are 2D or 3D Voronoi tessellations. In this paper we will present the coupling of LaGriT, a mesh generation and model setup software suite and TOUGH2 (Pruess et al., 1999) to model subsurface flow problems and we show an example of how LaGriT can be used as a model setup tool for the generation of a Voronoi mesh for the simulation program TOUGH2. To generate the MESH file for TOUGH2 from the LaGriT output a standalone module Lagrit2Tough2 was developed, which is presented here and will be included in a future release of LaGriT. In this paper an alternative method to generate a Voronoi mesh for TOUGH2 with LaGriT is presented and thanks to the modular and command based structure of LaGriT this method is well suited to generating a mesh for complex models.

  13. Prosthetic Mesh Repair for Incarcerated Inguinal Hernia

    Directory of Open Access Journals (Sweden)

    Cihad Tatar

    2016-08-01

    Full Text Available Background: Incarcerated inguinal hernia is a commonly encountered urgent surgical condition, and tension-free repair is a well-established method for the treatment of noncomplicated cases. However, due to the risk of prosthetic material-related infections, the use of mesh in the repair of strangulated or incarcerated hernia has often been subject to debate. Recent studies have demonstrated that biomaterials represent suitable materials for performing urgent hernia repair. Certain studies recommend mesh repair only for cases where no bowel resection is required; other studies, however, recommend mesh repair for patients requiring bowel resection as well. Aim: The aim of this study was to compare the outcomes of different surgical techniques performed for strangulated hernia, and to evaluate the effect of mesh use on postoperative complications. Study Design: Retrospective cross-sectional study. Methods: This retrospective study was performed with 151 patients who had been admitted to our hospital’s emergency department to undergo surgery for a diagnosis of incarcerated inguinal hernia. The patients were divided into two groups based on the applied surgical technique. Group 1 consisted of 112 patients treated with mesh-based repair techniques, while Group 2 consisted of 39 patients treated with tissue repair techniques. Patients in Group 1 were further divided into two sub-groups: one consisting of patients undergoing bowel resection (Group 3, and the other consisting of patients not undergoing bowel resection (Group 4. Results: In Group 1, it was observed that eight (7.14% of the patients had wound infections, while two (1.78% had hematomas, four (3.57% had seromas, and one (0.89% had relapse. In Group 2, one (2.56% of the patients had a wound infection, while three (7.69% had hematomas, one (2.56% had seroma, and none had relapses. There were no statistically significant differences between the two groups with respect to wound infection

  14. Outcomes of Orbital Floor Reconstruction After Extensive Maxillectomy Using the Computer-Assisted Fabricated Individual Titanium Mesh Technique.

    Science.gov (United States)

    Zhang, Wen-Bo; Mao, Chi; Liu, Xiao-Jing; Guo, Chuan-Bin; Yu, Guang-Yan; Peng, Xin

    2015-10-01

    Orbital floor defects after extensive maxillectomy can cause severe esthetic and functional deformities. Orbital floor reconstruction using the computer-assisted fabricated individual titanium mesh technique is a promising method. This study evaluated the application and clinical outcomes of this technique. This retrospective study included 10 patients with orbital floor defects after maxillectomy performed from 2012 through 2014. A 3-dimensional individual stereo model based on mirror images of the unaffected orbit was obtained to fabricate an anatomically adapted titanium mesh using computer-assisted design and manufacturing. The titanium mesh was inserted into the defect using computer navigation. The postoperative globe projection and orbital volume were measured and the incidence of postoperative complications was evaluated. The average postoperative globe projection was 15.91 ± 1.80 mm on the affected side and 16.24 ± 2.24 mm on the unaffected side (P = .505), and the average postoperative orbital volume was 26.01 ± 1.28 and 25.57 ± 1.89 mL, respectively (P = .312). The mean mesh depth was 25.11 ± 2.13 mm. The mean follow-up period was 23.4 ± 7.7 months (12 to 34 months). Of the 10 patients, 9 did not develop diplopia or a decrease in visual acuity and ocular motility. Titanium mesh exposure was not observed in any patient. All patients were satisfied with their postoperative facial symmetry. Orbital floor reconstruction after extensive maxillectomy with an individual titanium mesh fabricated using computer-assisted techniques can preserve globe projection and orbital volume, resulting in successful clinical outcomes. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  15. [Three years results of transvaginal cystocele repair with polypropylene mesh using a tension-free technique].

    Science.gov (United States)

    El Harrech, Y; Ameur, A; Janane, A; Moufide, K; Ghadouane, M; Abbar, M

    2010-01-01

    To evaluate the long term efficacy and safety of transvaginal implantation of a non-resorbable synthetic prosthesis (Gynemesh) for the treatment of cystocele using transvaginal free tension technique. Prospective study of patients that have been submitted to correction of cystocele between April 2004 and July 2007. A prolene mesh was cut to an appropriate size to cover the whole cystocele leaving two tabs on each side. The two tabs of the mesh were then placed in paravaginal spaces, tension free, without stitches. Mesh was used in 31 patients. All patients had a symptomatic cystocele >or= 2 according to Baden-Walker halfway classification. Patients were reviewed initially at 1 and 3 month and then every 6 months. The mean age of the patients was 58 years (range: 47-70 years). Mean parity was 5.8 (range 1-11), and mean weight was 75 kg (range 60-82Kg). All women were postmenopausal. The operation was combined with vaginal hysterectomy in 2 patients, Posterior colporraphy in 2 patients, Perineorrhaphy in 1 patient, Sacrospinous fixation in 2 patients, transobturator tape for stress urinary incontinence in 7 women. Average time of surgery was 23 minutes for cystocele. There were no major complications, such as trauma to the bladder, urethra, bowels, or large vessels in the patient group treated. There was no immediate postoperative complications (up to 7 days) recorded. No hematoma or infection was observed in the operative area. Mesh erosion was detected in one patient. It was treated by excision of the eroded part of the mesh. Mean follow-up was 36.4 months (18 to 52 months). Using our definition of success based on both anatomic and functional outcomes, the overall cure rate was 74.19% (asymptomatic with no or grade 1 cystocele). The improvement rate (asymptomatic with a grade 2 cystocele) was 19.35% and the overall failure rate (symptomatic or with a grade 3 or 4 cystocele) was only 6.4% (2 women). The interposition of a sub-vesical transversal tension

  16. Partitioning of unstructured meshes for load balancing

    International Nuclear Information System (INIS)

    Martin, O.C.; Otto, S.W.

    1994-01-01

    Many large-scale engineering and scientific calculations involve repeated updating of variables on an unstructured mesh. To do these types of computations on distributed memory parallel computers, it is necessary to partition the mesh among the processors so that the load balance is maximized and inter-processor communication time is minimized. This can be approximated by the problem, of partitioning a graph so as to obtain a minimum cut, a well-studied combinatorial optimization problem. Graph partitioning algorithms are discussed that give good but not necessarily optimum solutions. These algorithms include local search methods recursive spectral bisection, and more general purpose methods such as simulated annealing. It is shown that a general procedure enables to combine simulated annealing with Kernighan-Lin. The resulting algorithm is both very fast and extremely effective. (authors) 23 refs., 3 figs., 1 tab

  17. Adaptive upscaling with the dual mesh method

    Energy Technology Data Exchange (ETDEWEB)

    Guerillot, D.; Verdiere, S.

    1997-08-01

    The objective of this paper is to demonstrate that upscaling should be calculated during the flow simulation instead of trying to enhance the a priori upscaling methods. Hence, counter-examples are given to motivate our approach, the so-called Dual Mesh Method. The main steps of this numerical algorithm are recalled. Applications illustrate the necessity to consider different average relative permeability values depending on the direction in space. Moreover, these values could be different for the same average saturation. This proves that an a priori upscaling cannot be the answer even in homogeneous cases because of the {open_quotes}dynamical heterogeneity{close_quotes} created by the saturation profile. Other examples show the efficiency of the Dual Mesh Method applied to heterogeneous medium and to an actual field case in South America.

  18. Variational mesh segmentation via quadric surface fitting

    KAUST Repository

    Yan, Dongming

    2012-11-01

    We present a new variational method for mesh segmentation by fitting quadric surfaces. Each component of the resulting segmentation is represented by a general quadric surface (including plane as a special case). A novel energy function is defined to evaluate the quality of the segmentation, which combines both L2 and L2 ,1 metrics from a triangle to a quadric surface. The Lloyd iteration is used to minimize the energy function, which repeatedly interleaves between mesh partition and quadric surface fitting. We also integrate feature-based and simplification-based techniques in the segmentation framework, which greatly improve the performance. The advantages of our algorithm are demonstrated by comparing with the state-of-the-art methods. © 2012 Elsevier Ltd. All rights reserved.

  19. Variational mesh segmentation via quadric surface fitting

    KAUST Repository

    Yan, Dongming; Wang, Wen Ping; Liu, Yang; Yang, Zhouwang

    2012-01-01

    We present a new variational method for mesh segmentation by fitting quadric surfaces. Each component of the resulting segmentation is represented by a general quadric surface (including plane as a special case). A novel energy function is defined to evaluate the quality of the segmentation, which combines both L2 and L2 ,1 metrics from a triangle to a quadric surface. The Lloyd iteration is used to minimize the energy function, which repeatedly interleaves between mesh partition and quadric surface fitting. We also integrate feature-based and simplification-based techniques in the segmentation framework, which greatly improve the performance. The advantages of our algorithm are demonstrated by comparing with the state-of-the-art methods. © 2012 Elsevier Ltd. All rights reserved.

  20. Meshed split skin graft for extensive vitiligo

    Directory of Open Access Journals (Sweden)

    Srinivas C

    2004-05-01

    Full Text Available A 30 year old female presented with generalized stable vitiligo involving large areas of the body. Since large areas were to be treated it was decided to do meshed split skin graft. A phototoxic blister over recipient site was induced by applying 8 MOP solution followed by exposure to UVA. The split skin graft was harvested from donor area by Padgett dermatome which was meshed by an ampligreffe to increase the size of the graft by 4 times. Significant pigmentation of the depigmented skin was seen after 5 months. This procedure helps to cover large recipient areas, when pigmented donor skin is limited with minimal risk of scarring. Phototoxic blister enables easy separation of epidermis thus saving time required for dermabrasion from recipient site.

  1. Energy-efficient wireless mesh infrastructures

    OpenAIRE

    Al-Hazmi, Y.; de Meer, Hermann; Hummel, Karin Anna; Meyer, Harald; Meo, Michela; Remondo Bueno, David

    2011-01-01

    The Internet comprises access segments with wired and wireless technologies. In the future, we can expect wireless mesh infrastructures (WMIs) to proliferate in this context. Due to the relatively low energy efficiency of wireless transmission, as compared to wired transmission, energy consumption of WMIs can represent a significant part of the energy consumption of the Internet as a whole. We explore different approaches to reduce energy consumption in WMIs, taking into accoun...

  2. MESHREF, Finite Elements Mesh Combination with Renumbering

    International Nuclear Information System (INIS)

    1973-01-01

    1 - Nature of physical problem solved: The program can assemble different meshes stored on tape or cards. Renumbering is performed in order to keep band width low. Voids and/ or local refinement are possible. 2 - Method of solution: Topology and geometry are read according to input specifications. Abundant nodes and elements are eliminated. The new topology and geometry are stored on tape. 3 - Restrictions on the complexity of the problem: Maximum number of nodes = 2000. Maximum number of elements = 1500

  3. Symmetries and the coarse-mesh method

    International Nuclear Information System (INIS)

    Makai, M.

    1980-10-01

    This report approaches the basic problem of the coarse-mesh method from a new side. Group theory is used for the determination of the space dependency of the flux. The result is a method called ANANAS after the analytic-analytic solution. This method was tested on two benchmark problems: one given by Melice and the IAEA benchmark. The ANANAS program is an experimental one. The method was intended for use in hexagonal geometry. (Auth.)

  4. Wireless experiments on a Motorola mesh testbed.

    Energy Technology Data Exchange (ETDEWEB)

    Riblett, Loren E., Jr.; Wiseman, James M.; Witzke, Edward L.

    2010-06-01

    Motomesh is a Motorola product that performs mesh networking at both the client and access point levels and allows broadband mobile data connections with or between clients moving at vehicular speeds. Sandia National aboratories has extensive experience with this product and its predecessors in infrastructure-less mobile environments. This report documents experiments, which characterize certain aspects of how the Motomesh network performs when obile units are added to a fixed network infrastructure.

  5. Current situation of transvaginal mesh repair for pelvic organ prolapse.

    Science.gov (United States)

    Zhu, Lan; Zhang, Lei

    2014-09-01

    Surgical mesh is a metallic or polymeric screen intended to be implanted to reinforce soft tissue or bone where weakness exists. Surgical mesh has been used since the 1950s to repair abdominal hernias. In the 1970s, gynecologists began using surgical mesh products to indicate the repair of pelvic organ prolapse (POP), and in the 1990s, gynecologists began using surgical mesh for POP. Then the U.S. Food and Drug Administration (FDA) approved the first surgical mesh product specifically for use in POP. Surgical mesh materials can be divided into several categories. Most surgical mesh devices cleared for POP procedures are composed of non-absorbable synthetic polypropylene. Mesh can be placed in the anterior vaginal wall to aid in the correction of cystocele (anterior repair), in the posterior vaginal wall to aid in correction of rectocele (posterior repair), or attached to the top of the vagina to correct uterine prolapse or vaginal apical prolapse (apical repair). Over the past decades, surgical mesh products for transvaginal POP repair became incorporated into "kits" that included tools to aid in the delivery and insertion of the mesh. Surgical mesh kits continue to evolve, adding new insertion tools, tissue fixation anchors, surgical techniques, and ab- sorbable and biological materials. This procedure has been performed popularly. It was also performed increased in China. But this new technique met some trouble recently and let shake in urogynecology.

  6. Topological patterns of mesh textures in serpentinites

    Science.gov (United States)

    Miyazawa, M.; Suzuki, A.; Shimizu, H.; Okamoto, A.; Hiraoka, Y.; Obayashi, I.; Tsuji, T.; Ito, T.

    2017-12-01

    Serpentinization is a hydration process that forms serpentine minerals and magnetite within the oceanic lithosphere. Microfractures crosscut these minerals during the reactions, and the structures look like mesh textures. It has been known that the patterns of microfractures and the system evolutions are affected by the hydration reaction and fluid transport in fractures and within matrices. This study aims at quantifying the topological patterns of the mesh textures and understanding possible conditions of fluid transport and reaction during serpentinization in the oceanic lithosphere. Two-dimensional simulation by the distinct element method (DEM) generates fracture patterns due to serpentinization. The microfracture patterns are evaluated by persistent homology, which measures features of connected components of a topological space and encodes multi-scale topological features in the persistence diagrams. The persistence diagrams of the different mesh textures are evaluated by principal component analysis to bring out the strong patterns of persistence diagrams. This approach help extract feature values of fracture patterns from high-dimensional and complex datasets.

  7. Improved Mesh_Based Image Morphing ‎

    Directory of Open Access Journals (Sweden)

    Mohammed Abdullah Taha

    2017-11-01

    Full Text Available Image morphing is a multi-step process that generates a sequence of transitions between two images. The thought is to get a ₔgrouping of middle pictures which, when ₔassembled with the first pictures would represent the change from one picture to the other.  The process of morphing requires time and attention to detail in order to get good results. Morphing image requires at least two processes warping and cross dissolve. Warping is the process of geometric transformation of images. The cross dissolve is the process interpolation of color of eachₔ pixel from the first image value to theₔ corresponding second imageₔ value over the time. Image morphing techniques differ from in the approach of image warping procedure. This work presents a survey of different techniques to construct morphing images by review the different warping techniques. One of the predominant approaches of warping process is mesh warping which suffers from some problems including ghosting. This work proposed and implements an improved mesh warping technique to construct morphing images. The results show that the proposed approach can overcome the problems of the traditional mesh technique

  8. Cu mesh for flexible transparent conductive electrodes.

    Science.gov (United States)

    Kim, Won-Kyung; Lee, Seunghun; Hee Lee, Duck; Hee Park, In; Seong Bae, Jong; Woo Lee, Tae; Kim, Ji-Young; Hun Park, Ji; Chan Cho, Yong; Ryong Cho, Chae; Jeong, Se-Young

    2015-06-03

    Copper electrodes with a micromesh/nanomesh structure were fabricated on a polyimide substrate using UV lithography and wet etching to produce flexible transparent conducting electrodes (TCEs). Well-defined mesh electrodes were realized through the use of high-quality Cu thin films. The films were fabricated using radio-frequency (RF) sputtering with a single-crystal Cu target--a simple but innovative approach that overcame the low oxidation resistance of ordinary Cu. Hybrid Cu mesh electrodes were fabricated by adding a capping layer of either ZnO or Al-doped ZnO. The sheet resistance and the transmittance of the electrode with an Al-doped ZnO capping layer were 6.197 ohm/sq and 90.657%, respectively, and the figure of merit was 60.502 × 10(-3)/ohm, which remained relatively unchanged after thermal annealing at 200 °C and 1,000 cycles of bending. This fabrication technique enables the mass production of large-area flexible TCEs, and the stability and high performance of Cu mesh hybrid electrodes in harsh environments suggests they have strong potential for application in smart displays and solar cells.

  9. Numerical Investigation of Corrugated Wire Mesh Laminate

    Directory of Open Access Journals (Sweden)

    Jeongho Choi

    2013-01-01

    Full Text Available The aim of this work is to develop a numerical model of Corrugated Wire Mesh Laminate (CWML capturing all its complexities such as nonlinear material properties, nonlinear geometry and large deformation behaviour, and frictional behaviour. Development of such a model will facilitate numerical simulation of the mechanical behaviour of the wire mesh structure under various types of loading as well as the variation of the CWML configuration parameters to tailor its mechanical properties to suit the intended application. Starting with a single strand truss model consisting of four waves with a bilinear stress-strain model to represent the plastic behaviour of stainless steel, the finite element model is gradually built up to study single-layer structures with 18 strands of corrugated wire meshes consistency and double- and quadruple-layered laminates with alternating crossply orientations. The compressive behaviour of the CWML model is simulated using contact elements to model friction and is compared to the load-deflection behaviour determined experimentally in uniaxial compression tests. The numerical model of the CWML is then employed to conduct the aim of establishing the upper and lower bounds of stiffness and load capacity achievable by such structures.

  10. MeSH Now: automatic MeSH indexing at PubMed scale via learning to rank.

    Science.gov (United States)

    Mao, Yuqing; Lu, Zhiyong

    2017-04-17

    MeSH indexing is the task of assigning relevant MeSH terms based on a manual reading of scholarly publications by human indexers. The task is highly important for improving literature retrieval and many other scientific investigations in biomedical research. Unfortunately, given its manual nature, the process of MeSH indexing is both time-consuming (new articles are not immediately indexed until 2 or 3 months later) and costly (approximately ten dollars per article). In response, automatic indexing by computers has been previously proposed and attempted but remains challenging. In order to advance the state of the art in automatic MeSH indexing, a community-wide shared task called BioASQ was recently organized. We propose MeSH Now, an integrated approach that first uses multiple strategies to generate a combined list of candidate MeSH terms for a target article. Through a novel learning-to-rank framework, MeSH Now then ranks the list of candidate terms based on their relevance to the target article. Finally, MeSH Now selects the highest-ranked MeSH terms via a post-processing module. We assessed MeSH Now on two separate benchmarking datasets using traditional precision, recall and F 1 -score metrics. In both evaluations, MeSH Now consistently achieved over 0.60 in F-score, ranging from 0.610 to 0.612. Furthermore, additional experiments show that MeSH Now can be optimized by parallel computing in order to process MEDLINE documents on a large scale. We conclude that MeSH Now is a robust approach with state-of-the-art performance for automatic MeSH indexing and that MeSH Now is capable of processing PubMed scale documents within a reasonable time frame. http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/MeSHNow/ .

  11. Adaptive mesh refinement and adjoint methods in geophysics simulations

    Science.gov (United States)

    Burstedde, Carsten

    2013-04-01

    It is an ongoing challenge to increase the resolution that can be achieved by numerical geophysics simulations. This applies to considering sub-kilometer mesh spacings in global-scale mantle convection simulations as well as to using frequencies up to 1 Hz in seismic wave propagation simulations. One central issue is the numerical cost, since for three-dimensional space discretizations, possibly combined with time stepping schemes, a doubling of resolution can lead to an increase in storage requirements and run time by factors between 8 and 16. A related challenge lies in the fact that an increase in resolution also increases the dimensionality of the model space that is needed to fully parametrize the physical properties of the simulated object (a.k.a. earth). Systems that exhibit a multiscale structure in space are candidates for employing adaptive mesh refinement, which varies the resolution locally. An example that we found well suited is the mantle, where plate boundaries and fault zones require a resolution on the km scale, while deeper area can be treated with 50 or 100 km mesh spacings. This approach effectively reduces the number of computational variables by several orders of magnitude. While in this case it is possible to derive the local adaptation pattern from known physical parameters, it is often unclear what are the most suitable criteria for adaptation. We will present the goal-oriented error estimation procedure, where such criteria are derived from an objective functional that represents the observables to be computed most accurately. Even though this approach is well studied, it is rarely used in the geophysics community. A related strategy to make finer resolution manageable is to design methods that automate the inference of model parameters. Tweaking more than a handful of numbers and judging the quality of the simulation by adhoc comparisons to known facts and observations is a tedious task and fundamentally limited by the turnaround times

  12. Data-Parallel Mesh Connected Components Labeling and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Cyrus; Childs, Hank; Gaither, Kelly

    2011-04-10

    We present a data-parallel algorithm for identifying and labeling the connected sub-meshes within a domain-decomposed 3D mesh. The identification task is challenging in a distributed-memory parallel setting because connectivity is transitive and the cells composing each sub-mesh may span many or all processors. Our algorithm employs a multi-stage application of the Union-find algorithm and a spatial partitioning scheme to efficiently merge information across processors and produce a global labeling of connected sub-meshes. Marking each vertex with its corresponding sub-mesh label allows us to isolate mesh features based on topology, enabling new analysis capabilities. We briefly discuss two specific applications of the algorithm and present results from a weak scaling study. We demonstrate the algorithm at concurrency levels up to 2197 cores and analyze meshes containing up to 68 billion cells.

  13. Patient perception of transvaginal mesh and the media.

    Science.gov (United States)

    Koski, Michelle Elaine; Chamberlain, Jennifer; Rosoff, James; Vaughan, Taylor; Kaufman, Melissa R; Winters, Jack C; Rovner, Eric S

    2014-09-01

    To assess the penetration of media-based information on transvaginal mesh (TVM) in our patient population and to determine whether exposure affects patient opinion. Since the 2011 Federal Drug Administration communication on TVM, many advertisements from legal practices have been directed toward patients. An 18-item survey was administered to female patients at 2 sites from August 2012 to April 2013. Patients presenting with new diagnoses of pelvic organ prolapse or stress urinary incontinence or patients who reported prior mesh surgery were excluded. Ninety-nine questionnaires were completed. Sixty-six of the patients (67%) were aware of TVM; and of these, 38 (58%) cited advertisements as the initial source of information. Only 12% were aware of the Food and Drug Administration's communication. Regarding opinion of TVM, 9% chose "it is a safe product," 9% "safety depends on factors related to patient," 4.5% "not a safe product," 1.5% "safety depends on the doctor," 68% "I don't know," and 4.5% marked 2 selections. Only 12% indicated knowing the difference in the use of TVM for pelvic organ prolapse vs stress urinary incontinence. When asked what influenced their opinion of TVM the most; responses were as follows: advertisement (33.3%), medical professional (22.7%), friends or family who underwent TVM procedure (12.1%), media article (6.1%), and "not sure" (25.8%). Advertisements of TVM lawsuits had a high penetration into our patient population but did not produce an overtly negative response in our sample. Clinicians should be aware of the impact of these advertisements on patient opinion and counsel patients accordingly with unbiased and scientifically accurate information. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Combination of ray-tracing and the method of moments for electromagnetic radiation analysis using reduced meshes

    Science.gov (United States)

    Delgado, Carlos; Cátedra, Manuel Felipe

    2018-05-01

    This work presents a technique that allows a very noticeable relaxation of the computational requirements for full-wave electromagnetic simulations based on the Method of Moments. A ray-tracing analysis of the geometry is performed in order to extract the critical points with significant contributions. These points are then used to generate a reduced mesh, considering the regions of the geometry that surround each critical point and taking into account the electrical path followed from the source. The electromagnetic analysis of the reduced mesh produces very accurate results, requiring a fraction of the resources that the conventional analysis would utilize.

  15. Oral, intestinal, and skin bacteria in ventral hernia mesh implants

    Directory of Open Access Journals (Sweden)

    Odd Langbach

    2016-07-01

    Full Text Available Background: In ventral hernia surgery, mesh implants are used to reduce recurrence. Infection after mesh implantation can be a problem and rates around 6–10% have been reported. Bacterial colonization of mesh implants in patients without clinical signs of infection has not been thoroughly investigated. Molecular techniques have proven effective in demonstrating bacterial diversity in various environments and are able to identify bacteria on a gene-specific level. Objective: The purpose of this study was to detect bacterial biofilm in mesh implants, analyze its bacterial diversity, and look for possible resemblance with bacterial biofilm from the periodontal pocket. Methods: Thirty patients referred to our hospital for recurrence after former ventral hernia mesh repair, were examined for periodontitis in advance of new surgical hernia repair. Oral examination included periapical radiographs, periodontal probing, and subgingival plaque collection. A piece of mesh (1×1 cm from the abdominal wall was harvested during the new surgical hernia repair and analyzed for bacteria by PCR and 16S rRNA gene sequencing. From patients with positive PCR mesh samples, subgingival plaque samples were analyzed with the same techniques. Results: A great variety of taxa were detected in 20 (66.7% mesh samples, including typical oral commensals and periodontopathogens, enterics, and skin bacteria. Mesh and periodontal bacteria were further analyzed for similarity in 16S rRNA gene sequences. In 17 sequences, the level of resemblance between mesh and subgingival bacterial colonization was 98–100% suggesting, but not proving, a transfer of oral bacteria to the mesh. Conclusion: The results show great bacterial diversity on mesh implants from the anterior abdominal wall including oral commensals and periodontopathogens. Mesh can be reached by bacteria in several ways including hematogenous spread from an oral site. However, other sites such as gut and skin may also

  16. Discretization of the Joule heating term for plasma discharge fluid models in unstructured meshes

    International Nuclear Information System (INIS)

    Deconinck, T.; Mahadevan, S.; Raja, L.L.

    2009-01-01

    The fluid (continuum) approach is commonly used for simulation of plasma phenomena in electrical discharges at moderate to high pressures (>10's mTorr). The description comprises governing equations for charged and neutral species transport and energy equations for electrons and the heavy species, coupled to equations for the electromagnetic fields. The coupling of energy from the electrostatic field to the plasma species is modeled by the Joule heating term which appears in the electron and heavy species (ion) energy equations. Proper numerical discretization of this term is necessary for accurate description of discharge energetics; however, discretization of this term poses a special problem in the case of unstructured meshes owing to the arbitrary orientation of the faces enclosing each cell. We propose a method for the numerical discretization of the Joule heating term using a cell-centered finite volume approach on unstructured meshes with closed convex cells. The Joule heating term is computed by evaluating both the electric field and the species flux at the cell center. The dot product of these two vector quantities is computed to obtain the Joule heating source term. We compare two methods to evaluate the species flux at the cell center. One is based on reconstructing the fluxes at the cell centers from the fluxes at the face centers. The other recomputes the flux at the cell center using the common drift-diffusion approximation. The reconstructed flux scheme is the most stable method and yields reasonably accurate results on coarse meshes.

  17. Parametric Quadrilateral Meshes for the Design and Optimization of Superconducting Magnets

    CERN Document Server

    Aleksa, Martin; Völlinger, Christine

    2000-01-01

    The program package ROXIE [1] has been developed at CERN for the design and optimization of the superconducting magnets for the LHC.The necessity of extremely uniform (coil dominated) fields in accelerator magnets requires very accurate methods of .eld computation. For this purpose a coupled boundary-element/ finite-element technique (BEM-FEM) is used [2]. Quadrilateral higher order finite-elements are used for the discretization of the iron domain.This is necessary for the accurate modeling of the iron contours and is favorable for 3D meshes. A new quadrilateral mesh generator using geometrically optimized domain decomposition which was developed at the University of Stuttgart, Germany [3] has been implemented into the ROXIE program providing fully automatic and user friendly mesh generation.The frequent application of mathematical optimization techniques requires parametric models which are set-up using a feature-based approach.The structure of the magnet cross-section can be modeled using parametric object...

  18. Anatomical Basis for the Cardiac Interventional Electrophysiologist

    Directory of Open Access Journals (Sweden)

    Damián Sánchez-Quintana

    2015-01-01

    Full Text Available The establishment of radiofrequency catheter ablation techniques as the mainstay in the treatment of tachycardia has renewed new interest in cardiac anatomy. The interventional arrhythmologist has drawn attention not only to the gross anatomic details of the heart but also to architectural and histological characteristics of various cardiac regions that are relevant to the development or recurrence of tachyarrhythmias and procedural related complications of catheter ablation. In this review, therefore, we discuss some anatomic landmarks commonly used in catheter ablations including the terminal crest, sinus node region, Koch’s triangle, cavotricuspid isthmus, Eustachian ridge and valve, pulmonary venous orifices, venoatrial junctions, and ventricular outflow tracts. We also discuss the anatomical features of important structures in the vicinity of the atria and pulmonary veins, such as the esophagus and phrenic nerves. This paper provides basic anatomic information to improve understanding of the mapping and ablative procedures for cardiac interventional electrophysiologists.

  19. A THREE-YEAR EXPERIENCE WITH ANTERIOR TRANSOBTURATOR MESH (ATOM AND POSTERIOR ISCHIORECTAL MESH (PIRM

    Directory of Open Access Journals (Sweden)

    Marijan Lužnik

    2018-02-01

    Full Text Available Background. Use of alloplastic mesh implantates allow a new urogynecologycal surgical techniques achieve a marked improvement in pelvic organ static and pelvic floor function with minimally invasive needle transvaginal intervention like an anterior transobturator mesh (ATOM and a posterior ischiorectal mesh (PIRM procedures. Methods. In three years, between April 2006 and May 2009, we performed one hundred and eightyfour operative corrections of female pelvic organ prolapse (POP and pelvic floor dysfunction (PFD with mesh implantates. The eighty-three patients with surgical procedure TVT-O or Monarc as solo intervention indicated by stress urinary incontinence without POP, are not included in this number. In 97 % of mesh operations, Gynemesh 10 × 15 cm was used. For correction of anterior vaginal prolapse with ATOM procedure, Gynemesh was individually trimmed in mesh with 6 free arms for tension-free transobturator application and tension-free apical collar. IVS (Intravaginal sling 04 Tunneller (Tyco needle system was used for transobturator application of 6 arms through 4 dermal incisions (2 on right and 2 on left. Minimal anterior median colpotomy was made in two separate parts. For correction of posterior vaginal prolapse with PIRM procedure Gynemesh was trimmed in mesh with 4 free arms and tension-free collar. Two ischiorectal long arms for tension-free application through fossa ischiorectale – right and left, and two short arms for perineal body also on both sides. IVS 02 Tunneller (Tyco needle system was used for tension-free application of 4 arms through 4 dermal incisions (2 on right and 2 on left in PIRM. Results. All 184 procedures were performed relatively safely. In 9 cases of ATOM we had perforation of bladder, in 5 by application of anterior needle, in 3 by application of posterior needle and in one case with pincette when collar was inserted in lateral vesico – vaginal space. In 2 cases of PIRM we had perforation of rectum

  20. [Establishment of anatomical terminology in Japan].

    Science.gov (United States)

    Shimada, Kazuyuki

    2008-12-01

    The history of anatomical terminology in Japan began with the publication of Waran Naikei Ihan-teimŏ in 1805 and Chŏtei Kaitai Shinsho in 1826. Although the establishment of Japanese anatomical terminology became necessary during the Meiji era when many western anatomy books imported into Janan were translated, such terminology was not unified during this period and varied among translators. In 1871, Tsukumo Ono's Kaibŏgaku Gosen was published by the Ministry of Education. Although this book is considered to be the first anatomical glossary terms in Japan, its contents were incomplete. Overseas, the German Anatomical Society established a unified anatomical terminology in 1895 called the Basle Nomina Anatomica (B.N.A.). Based on this development, Kaibŏgaku Meishŭ which follows the BNA, by Buntarŏ Suzuki was published in 1905. With the subsequent establishment in 1935 of Jena Nomina Anatomica (J.N.A.), the unification of anatomical terminology was also accelerated in Japan, leading to the further development of terminology.

  1. Development of a patient-specific anatomical foot model from structured light scan data.

    Science.gov (United States)

    Lochner, Samuel J; Huissoon, Jan P; Bedi, Sanjeev S

    2014-01-01

    The use of anatomically accurate finite element (FE) models of the human foot in research studies has increased rapidly in recent years. Uses for FE foot models include advancing knowledge of orthotic design, shoe design, ankle-foot orthoses, pathomechanics, locomotion, plantar pressure, tissue mechanics, plantar fasciitis, joint stress and surgical interventions. Similar applications but for clinical use on a per-patient basis would also be on the rise if it were not for the high costs associated with developing patient-specific anatomical foot models. High costs arise primarily from the expense and challenges of acquiring anatomical data via magnetic resonance imaging (MRI) or computed tomography (CT) and reconstructing the three-dimensional models. The proposed solution morphs detailed anatomy from skin surface geometry and anatomical landmarks of a generic foot model (developed from CT or MRI) to surface geometry and anatomical landmarks acquired from an inexpensive structured light scan of a foot. The method yields a patient-specific anatomical foot model at a fraction of the cost of standard methods. Average error for bone surfaces was 2.53 mm for the six experiments completed. Highest accuracy occurred in the mid-foot and lowest in the forefoot due to the small, irregular bones of the toes. The method must be validated in the intended application to determine if the resulting errors are acceptable.

  2. Texturing of continuous LOD meshes with the hierarchical texture atlas

    Science.gov (United States)

    Birkholz, Hermann

    2006-02-01

    For the rendering of detailed virtual environments, trade-offs have to be made between image quality and rendering time. An immersive experience of virtual reality always demands high frame-rates with the best reachable image qual-ity. Continuous Level of Detail (cLoD) triangle-meshes provide an continuous spectrum of detail for a triangle mesh that can be used to create view-dependent approximations of the environment in real-time. This enables the rendering with a constant number of triangles and thus with constant frame-rates. Normally the construction of such cLoD mesh representations leads to the loss of all texture information of the original mesh. To overcome this problem, a parameter domain can be created, in order to map the surface properties (colour, texture, normal) to it. This parameter domain can be used to map the surface properties back to arbitrary approximations of the original mesh. The parameter domain is often a simplified version of the mesh to be parameterised. This limits the reachable simplification to the domain mesh which has to map the surface of the original mesh with the least possible stretch. In this paper, a hierarchical domain mesh is presented, that scales between very coarse domain meshes and good property-mapping.

  3. Performance of the hybrid wireless mesh protocol for wireless mesh networks

    DEFF Research Database (Denmark)

    Boye, Magnus; Staalhagen, Lars

    2010-01-01

    Wireless mesh networks offer a new way of providing end-user access and deploying network infrastructure. Though mesh networks offer a price competitive solution to wired networks, they also come with a set of new challenges such as optimal path selection, channel utilization, and load balancing....... and proactive. Two scenarios of different node density are considered for both path selection modes. The results presented in this paper are based on a simulation model of the HWMP specification in the IEEE 802.11s draft 4.0 implemented in OPNET Modeler....

  4. Recent developments in the ROCS/MC code for retrieving local power information in coarse-mesh reactor analysis

    International Nuclear Information System (INIS)

    Grill, S.F.; Jonsson, A.; Crump, M.W.

    1983-01-01

    The inclusion of 3-D effects in PWR analysis is necessary for accurate predictions of reactivity, power distributions, and reactivity coefficients. The ROCS/MC code system has been developed by Combustion Engineering to provide 3-D coarse mesh analysis (ROCS) with the capability to retrieve local information on flux, power and burnup (MC). A review of the finite difference representation of the MC diffusion equation, along with recent improvements to the ROCS/MC system are presented. These improvements include the implementation if fine mesh radial boundary conditions and internal calculation of coarse mesh boundary conditions, generalization of the imbedded calculation to account for the local neighboring environment, and the automation of ROCS/MC links to C-E's code system for in-core power distribution monitoring and core-follow analysis. The results of the ROCS/MC verification program are described and show good agreement with C-E's ROCS/PDQ based methodologies

  5. A local level set method based on a finite element method for unstructured meshes

    International Nuclear Information System (INIS)

    Ngo, Long Cu; Choi, Hyoung Gwon

    2016-01-01

    A local level set method for unstructured meshes has been implemented by using a finite element method. A least-square weighted residual method was employed for implicit discretization to solve the level set advection equation. By contrast, a direct re-initialization method, which is directly applicable to the local level set method for unstructured meshes, was adopted to re-correct the level set function to become a signed distance function after advection. The proposed algorithm was constructed such that the advection and direct reinitialization steps were conducted only for nodes inside the narrow band around the interface. Therefore, in the advection step, the Gauss–Seidel method was used to update the level set function using a node-by-node solution method. Some benchmark problems were solved by using the present local level set method. Numerical results have shown that the proposed algorithm is accurate and efficient in terms of computational time

  6. A local level set method based on a finite element method for unstructured meshes

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Long Cu; Choi, Hyoung Gwon [School of Mechanical Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2016-12-15

    A local level set method for unstructured meshes has been implemented by using a finite element method. A least-square weighted residual method was employed for implicit discretization to solve the level set advection equation. By contrast, a direct re-initialization method, which is directly applicable to the local level set method for unstructured meshes, was adopted to re-correct the level set function to become a signed distance function after advection. The proposed algorithm was constructed such that the advection and direct reinitialization steps were conducted only for nodes inside the narrow band around the interface. Therefore, in the advection step, the Gauss–Seidel method was used to update the level set function using a node-by-node solution method. Some benchmark problems were solved by using the present local level set method. Numerical results have shown that the proposed algorithm is accurate and efficient in terms of computational time.

  7. Development of three-dimensional ENRICHED FREE MESH METHOD and its application to crack analysis

    International Nuclear Information System (INIS)

    Suzuki, Hayato; Matsubara, Hitoshi; Ezawa, Yoshitaka; Yagawa, Genki

    2010-01-01

    In this paper, we describe a method for three-dimensional high accurate analysis of a crack included in a large-scale structure. The Enriched Free Mesh Method (EFMM) is a method for improving the accuracy of the Free Mesh Method (FMM), which is a kind of meshless method. First, we developed an algorithm of the three-dimensional EFMM. The elastic problem was analyzed using the EFMM and we find that its accuracy compares advantageously with the FMM, and the number of CG iterations is smaller. Next, we developed a method for calculating the stress intensity factor by employing the EFMM. The structure with a crack was analyzed using the EFMM, and the stress intensity factor was calculated by the developed method. The analysis results were very well in agreement with reference solution. It was shown that the proposed method is very effective in the analysis of the crack included in a large-scale structure. (author)

  8. Simulation of transients with space-dependent feedback by coarse mesh flux expansion method

    International Nuclear Information System (INIS)

    Langenbuch, S.; Maurer, W.; Werner, W.

    1975-01-01

    For the simulation of the time-dependent behaviour of large LWR-cores, even the most efficient Finite-Difference (FD) methods require a prohibitive amount of computing time in order to achieve results of acceptable accuracy. Static CM-solutions computed with a mesh-size corresponding to the fuel element structure (about 20 cm) are at least as accurate as FD-solutions computed with about 5 cm mesh-size. For 3d-calculations this results in a reduction of storage requirements by a factor 60 and of computing costs by a factor 40, relative to FD-methods. These results have been obtained for pure neutronic calculations, where feedback is not taken into account. In this paper it is demonstrated that the method retains its accuracy also in kinetic calculations, even in the presence of strong space dependent feedback. (orig./RW) [de

  9. Spatiotemporal processing of gated cardiac SPECT images using deformable mesh modeling

    International Nuclear Information System (INIS)

    Brankov, Jovan G.; Yang Yongyi; Wernick, Miles N.

    2005-01-01

    In this paper we present a spatiotemporal processing approach, based on deformable mesh modeling, for noise reduction in gated cardiac single-photon emission computed tomography images. Because of the partial volume effect (PVE), clinical cardiac-gated perfusion images exhibit a phenomenon known as brightening--the myocardium appears to become brighter as the heart wall thickens. Although brightening is an artifact, it serves as an important diagnostic feature for assessment of wall thickening in clinical practice. Our proposed processing algorithm aims to preserve this important diagnostic feature while reducing the noise level in the images. The proposed algorithm is based on the use of a deformable mesh for modeling the cardiac motion in a gated cardiac sequence, based on which the images are processed by smoothing along space-time trajectories of object points while taking into account the PVE. Our experiments demonstrate that the proposed algorithm can yield significantly more-accurate results than several existing methods

  10. On the implementation of an accurate and efficient solver for convection-diffusion equations

    Science.gov (United States)

    Wu, Chin-Tien

    In this dissertation, we examine several different aspects of computing the numerical solution of the convection-diffusion equation. The solution of this equation often exhibits sharp gradients due to Dirichlet outflow boundaries or discontinuities in boundary conditions. Because of the singular-perturbed nature of the equation, numerical solutions often have severe oscillations when grid sizes are not small enough to resolve sharp gradients. To overcome such difficulties, the streamline diffusion discretization method can be used to obtain an accurate approximate solution in regions where the solution is smooth. To increase accuracy of the solution in the regions containing layers, adaptive mesh refinement and mesh movement based on a posteriori error estimations can be employed. An error-adapted mesh refinement strategy based on a posteriori error estimations is also proposed to resolve layers. For solving the sparse linear systems that arise from discretization, goemetric multigrid (MG) and algebraic multigrid (AMG) are compared. In addition, both methods are also used as preconditioners for Krylov subspace methods. We derive some convergence results for MG with line Gauss-Seidel smoothers and bilinear interpolation. Finally, while considering adaptive mesh refinement as an integral part of the solution process, it is natural to set a stopping tolerance for the iterative linear solvers on each mesh stage so that the difference between the approximate solution obtained from iterative methods and the finite element solution is bounded by an a posteriori error bound. Here, we present two stopping criteria. The first is based on a residual-type a posteriori error estimator developed by Verfurth. The second is based on an a posteriori error estimator, using local solutions, developed by Kay and Silvester. Our numerical results show the refined mesh obtained from the iterative solution which satisfies the second criteria is similar to the refined mesh obtained from

  11. Mesh-morphing algorithms for specimen-specific finite element modeling.

    Science.gov (United States)

    Sigal, Ian A; Hardisty, Michael R; Whyne, Cari M

    2008-01-01

    Despite recent advances in software for meshing specimen-specific geometries, considerable effort is still often required to produce and analyze specimen-specific models suitable for biomechanical analysis through finite element modeling. We hypothesize that it is possible to obtain accurate models by adapting a pre-existing geometry to represent a target specimen using morphing techniques. Here we present two algorithms for morphing, automated wrapping (AW) and manual landmarks (ML), and demonstrate their use to prepare specimen-specific models of caudal rat vertebrae. We evaluate the algorithms by measuring the distance between target and morphed geometries and by comparing response to axial loading simulated with finite element (FE) methods. First a traditional reconstruction process based on microCT was used to obtain two natural specimen-specific FE models. Next, the two morphing algorithms were used to compute mappings from the surface of one model, the source, to the other, the target, and to use this mapping to morph the source mesh to produce a target mesh. The microCT images were then used to assign element-specific material properties. In AW the mappings were obtained by wrapping the source and target surfaces with an auxiliary triangulated surface. In ML, landmarks were manually placed on corresponding locations on the surfaces of both source and target. Both morphing algorithms were successful in reproducing the shape of the target vertebra with a median distance between natural and morphed models of 18.8 and 32.2 microm, respectively, for AW and ML. Whereas AW-morphing produced a surface more closely resembling that of the target, ML guaranteed correspondence of the landmark locations between source and target. Morphing preserved the quality of the mesh producing models suitable for FE simulation. Moreover, there were only minor differences between natural and morphed models in predictions of deformation, strain and stress. We therefore conclude that

  12. An Anatomically Validated Brachial Plexus Contouring Method for Intensity Modulated Radiation Therapy Planning

    International Nuclear Information System (INIS)

    Van de Velde, Joris; Audenaert, Emmanuel; Speleers, Bruno; Vercauteren, Tom; Mulliez, Thomas; Vandemaele, Pieter; Achten, Eric; Kerckaert, Ingrid; D'Herde, Katharina; De Neve, Wilfried; Van Hoof, Tom

    2013-01-01

    Purpose: To develop contouring guidelines for the brachial plexus (BP) using anatomically validated cadaver datasets. Magnetic resonance imaging (MRI) and computed tomography (CT) were used to obtain detailed visualizations of the BP region, with the goal of achieving maximal inclusion of the actual BP in a small contoured volume while also accommodating for anatomic variations. Methods and Materials: CT and MRI were obtained for 8 cadavers positioned for intensity modulated radiation therapy. 3-dimensional reconstructions of soft tissue (from MRI) and bone (from CT) were combined to create 8 separate enhanced CT project files. Dissection of the corresponding cadavers anatomically validated the reconstructions created. Seven enhanced CT project files were then automatically fitted, separately in different regions, to obtain a single dataset of superimposed BP regions that incorporated anatomic variations. From this dataset, improved BP contouring guidelines were developed. These guidelines were then applied to the 7 original CT project files and also to 1 additional file, left out from the superimposing procedure. The percentage of BP inclusion was compared with the published guidelines. Results: The anatomic validation procedure showed a high level of conformity for the BP regions examined between the 3-dimensional reconstructions generated and the dissected counterparts. Accurate and detailed BP contouring guidelines were developed, which provided corresponding guidance for each level in a clinical dataset. An average margin of 4.7 mm around the anatomically validated BP contour is sufficient to accommodate for anatomic variations. Using the new guidelines, 100% inclusion of the BP was achieved, compared with a mean inclusion of 37.75% when published guidelines were applied. Conclusion: Improved guidelines for BP delineation were developed using combined MRI and CT imaging with validation by anatomic dissection

  13. Mesh-free free-form lensing - I. Methodology and application to mass reconstruction

    Science.gov (United States)

    Merten, Julian

    2016-09-01

    Many applications and algorithms in the field of gravitational lensing make use of meshes with a finite number of nodes to analyse and manipulate data. Specific examples in lensing are astronomical CCD images in general, the reconstruction of density distributions from lensing data, lens-source plane mapping or the characterization and interpolation of a point spread function. We present a numerical framework to interpolate and differentiate in the mesh-free domain, defined by nodes with coordinates that follow no regular pattern. The framework is based on radial basis functions (RBFs) to smoothly represent data around the nodes. We demonstrate the performance of Gaussian RBF-based, mesh-free interpolation and differentiation, which reaches the sub-percent level in both cases. We use our newly developed framework to translate ideas of free-form mass reconstruction from lensing on to the mesh-free domain. By reconstructing a simulated mock lens we find that strong-lensing only reconstructions achieve <10 per cent accuracy in the areas where these constraints are available but provide poorer results when departing from these regions. Weak-lensing only reconstructions give <10 per cent accuracy outside the strong-lensing regime, but cannot resolve the inner core structure of the lens. Once both regimes are combined, accurate reconstructions can be achieved over the full field of view. The reconstruction of a simulated lens, using constraints that mimics real observations, yields accurate results in terms of surface-mass density, Navarro-Frenk-White profile (NFW) parameters, Einstein radius and magnification map recovery, encouraging the application of this method to real data.

  14. A third-order moving mesh cell-centered scheme for one-dimensional elastic-plastic flows

    Science.gov (United States)

    Cheng, Jun-Bo; Huang, Weizhang; Jiang, Song; Tian, Baolin

    2017-11-01

    A third-order moving mesh cell-centered scheme without the remapping of physical variables is developed for the numerical solution of one-dimensional elastic-plastic flows with the Mie-Grüneisen equation of state, the Wilkins constitutive model, and the von Mises yielding criterion. The scheme combines the Lagrangian method with the MMPDE moving mesh method and adaptively moves the mesh to better resolve shock and other types of waves while preventing the mesh from crossing and tangling. It can be viewed as a direct arbitrarily Lagrangian-Eulerian method but can also be degenerated to a purely Lagrangian scheme. It treats the relative velocity of the fluid with respect to the mesh as constant in time between time steps, which allows high-order approximation of free boundaries. A time dependent scaling is used in the monitor function to avoid possible sudden movement of the mesh points due to the creation or diminishing of shock and rarefaction waves or the steepening of those waves. A two-rarefaction Riemann solver with elastic waves is employed to compute the Godunov values of the density, pressure, velocity, and deviatoric stress at cell interfaces. Numerical results are presented for three examples. The third-order convergence of the scheme and its ability to concentrate mesh points around shock and elastic rarefaction waves are demonstrated. The obtained numerical results are in good agreement with those in literature. The new scheme is also shown to be more accurate in resolving shock and rarefaction waves than an existing third-order cell-centered Lagrangian scheme.

  15. Unbiased Sampling and Meshing of Isosurfaces

    KAUST Repository

    Yan, Dongming

    2014-05-07

    In this paper, we present a new technique to generate unbiased samples on isosurfaces. An isosurface, F(x,y,z) = c , of a function, F , is implicitly defined by trilinear interpolation of background grid points. The key idea of our approach is that of treating the isosurface within a grid cell as a graph (height) function in one of the three coordinate axis directions, restricted to where the slope is not too high, and integrating / sampling from each of these three. We use this unbiased sampling algorithm for applications in Monte Carlo integration, Poisson-disk sampling, and isosurface meshing.

  16. Performance of FACTS equipment in Meshed systems

    Energy Technology Data Exchange (ETDEWEB)

    Lerch, E; Povh, D [Siemens AG, Berlin (Germany)

    1994-12-31

    Modern power electronic devices such as thyristors and GTOs have made it possible to design controllable network elements, which will play a considerable role in ensuring reliable economic operation of transmission systems as a result of their capability to rapidly change active and reactive power. A number of FACTS elements for high-speed active and reactive power control will be described. Control of power system fluctuations in meshed systems by modulation of active and reactive power will be demonstrated using a number of examples. (author) 7 refs., 11 figs.

  17. Symbolic Block Decomposition In Hexahedral Mesh Generation

    Directory of Open Access Journals (Sweden)

    Andrzej Adamek

    2005-01-01

    Full Text Available Hexahedral mesh generation for three-dimensional solid objects is often done in stages. Usually an object is first subdivided into simple-shaped subregions, which then are filled withhexahedral finite elements. This article presents an automatic subdividing method of polyhedron with planar faces. The subdivision is based on medial surface, axes and nodes of a solid.The main emphasis is put on creating a topology of subregions. Obtaining such a topologyinvolves defining a graph structure OMG which contains necessary information about medialsurface topology and object topology, followed by simple symbolic processing on it.

  18. Shadowfax: Moving mesh hydrodynamical integration code

    Science.gov (United States)

    Vandenbroucke, Bert

    2016-05-01

    Shadowfax simulates galaxy evolution. Written in object-oriented modular C++, it evolves a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. For the hydrodynamical integration, it makes use of a (co-) moving Lagrangian mesh. The code has a 2D and 3D version, contains utility programs to generate initial conditions and visualize simulation snapshots, and its input/output is compatible with a number of other simulation codes, e.g. Gadget2 (ascl:0003.001) and GIZMO (ascl:1410.003).

  19. Unbiased Sampling and Meshing of Isosurfaces

    KAUST Repository

    Yan, Dongming; Wallner, Johannes; Wonka, Peter

    2014-01-01

    In this paper, we present a new technique to generate unbiased samples on isosurfaces. An isosurface, F(x,y,z) = c , of a function, F , is implicitly defined by trilinear interpolation of background grid points. The key idea of our approach is that of treating the isosurface within a grid cell as a graph (height) function in one of the three coordinate axis directions, restricted to where the slope is not too high, and integrating / sampling from each of these three. We use this unbiased sampling algorithm for applications in Monte Carlo integration, Poisson-disk sampling, and isosurface meshing.

  20. Moving mesh generation with a sequential approach for solving PDEs

    DEFF Research Database (Denmark)

    In moving mesh methods, physical PDEs and a mesh equation derived from equidistribution of an error metrics (so-called the monitor function) are simultaneously solved and meshes are dynamically concentrated on steep regions (Lim et al., 2001). However, the simultaneous solution procedure...... a simple and robust moving mesh algorithm in one or multidimension. In this study, we propose a sequential solution procedure including two separate parts: prediction step to obtain an approximate solution to a next time level (integration of physical PDEs) and regriding step at the next time level (mesh...... generation and solution interpolation). Convection terms, which appear in physical PDEs and a mesh equation, are discretized by a WENO (Weighted Essentially Non-Oscillatory) scheme under the consrvative form. This sequential approach is to keep the advantages of robustness and simplicity for the static...

  1. Improved mesh generator for the POISSON Group Codes

    International Nuclear Information System (INIS)

    Gupta, R.C.

    1987-01-01

    This paper describes the improved mesh generator of the POISSON Group Codes. These improvements enable one to have full control over the way the mesh is generated and in particular the way the mesh density is distributed throughout this model. A higher mesh density in certain regions coupled with a successively lower mesh density in others keeps the accuracy of the field computation high and the requirements on the computer time and computer memory low. The mesh is generated with the help of codes AUTOMESH and LATTICE; both have gone through a major upgrade. Modifications have also been made in the POISSON part of these codes. We shall present an example of a superconducting dipole magnet to explain how to use this code. The results of field computations are found to be reliable within a few parts in a hundred thousand even in such complex geometries

  2. Image-Based Geometric Modeling and Mesh Generation

    CERN Document Server

    2013-01-01

    As a new interdisciplinary research area, “image-based geometric modeling and mesh generation” integrates image processing, geometric modeling and mesh generation with finite element method (FEM) to solve problems in computational biomedicine, materials sciences and engineering. It is well known that FEM is currently well-developed and efficient, but mesh generation for complex geometries (e.g., the human body) still takes about 80% of the total analysis time and is the major obstacle to reduce the total computation time. It is mainly because none of the traditional approaches is sufficient to effectively construct finite element meshes for arbitrarily complicated domains, and generally a great deal of manual interaction is involved in mesh generation. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion,...

  3. HypGrid2D. A 2-d mesh generator

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, N N

    1998-03-01

    The implementation of a hyperbolic mesh generation procedure, based on an equation for orthogonality and an equation for the cell face area is described. The method is fast, robust and gives meshes with good smoothness and orthogonality. The procedure is implemented in a program called HypGrid2D. The HypGrid2D program is capable of generating C-, O- and `H`-meshes for use in connection with the EllipSys2D Navier-Stokes solver. To illustrate the capabilities of the program, some test examples are shown. First a series of C-meshes are generated around a NACA-0012 airfoil. Secondly a series of O-meshes are generated around a NACA-65-418 airfoil. Finally `H`-meshes are generated over a Gaussian hill and a linear escarpment. (au)

  4. The Superconvergence Phenomenon and Proof of the MAC Scheme for the Stokes Equations on Non-uniform Rectangular Meshes

    KAUST Repository

    Li, Jichun

    2014-12-02

    For decades, the widely used finite difference method on staggered grids, also known as the marker and cell (MAC) method, has been one of the simplest and most effective numerical schemes for solving the Stokes equations and Navier–Stokes equations. Its superconvergence on uniform meshes has been observed by Nicolaides (SIAM J Numer Anal 29(6):1579–1591, 1992), but the rigorous proof is never given. Its behavior on non-uniform grids is not well studied, since most publications only consider uniform grids. In this work, we develop the MAC scheme on non-uniform rectangular meshes, and for the first time we theoretically prove that the superconvergence phenomenon (i.e., second order convergence in the (Formula presented.) norm for both velocity and pressure) holds true for the MAC method on non-uniform rectangular meshes. With a careful and accurate analysis of various sources of errors, we observe that even though the local truncation errors are only first order in terms of mesh size, the global errors after summation are second order due to the amazing cancellation of local errors. This observation leads to the elegant superconvergence analysis even with non-uniform meshes. Numerical results are given to verify our theoretical analysis.

  5. Controlling the error on target motion through real-time mesh adaptation: Applications to deep brain stimulation.

    Science.gov (United States)

    Bui, Huu Phuoc; Tomar, Satyendra; Courtecuisse, Hadrien; Audette, Michel; Cotin, Stéphane; Bordas, Stéphane P A

    2018-05-01

    An error-controlled mesh refinement procedure for needle insertion simulations is presented. As an example, the procedure is applied for simulations of electrode implantation for deep brain stimulation. We take into account the brain shift phenomena occurring when a craniotomy is performed. We observe that the error in the computation of the displacement and stress fields is localised around the needle tip and the needle shaft during needle insertion simulation. By suitably and adaptively refining the mesh in this region, our approach enables to control, and thus to reduce, the error whilst maintaining a coarser mesh in other parts of the domain. Through academic and practical examples we demonstrate that our adaptive approach, as compared with a uniform coarse mesh, increases the accuracy of the displacement and stress fields around the needle shaft and, while for a given accuracy, saves computational time with respect to a uniform finer mesh. This facilitates real-time simulations. The proposed methodology has direct implications in increasing the accuracy, and controlling the computational expense of the simulation of percutaneous procedures such as biopsy, brachytherapy, regional anaesthesia, or cryotherapy. Moreover, the proposed approach can be helpful in the development of robotic surgeries because the simulation taking place in the control loop of a robot needs to be accurate, and to occur in real time. Copyright © 2018 John Wiley & Sons, Ltd.

  6. Dynamic Mesh Adaptation for Front Evolution Using Discontinuous Galerkin Based Weighted Condition Number Mesh Relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Patrick T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schofield, Samuel P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nourgaliev, Robert [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-21

    A new mesh smoothing method designed to cluster mesh cells near a dynamically evolving interface is presented. The method is based on weighted condition number mesh relaxation with the weight function being computed from a level set representation of the interface. The weight function is expressed as a Taylor series based discontinuous Galerkin projection, which makes the computation of the derivatives of the weight function needed during the condition number optimization process a trivial matter. For cases when a level set is not available, a fast method for generating a low-order level set from discrete cell-centered elds, such as a volume fraction or index function, is provided. Results show that the low-order level set works equally well for the weight function as the actual level set. Meshes generated for a number of interface geometries are presented, including cases with multiple level sets. Dynamic cases for moving interfaces are presented to demonstrate the method's potential usefulness to arbitrary Lagrangian Eulerian (ALE) methods.

  7. AUTOMATIC MESH GENERATION OF 3-D GEOMETRIC MODELS

    Institute of Scientific and Technical Information of China (English)

    刘剑飞

    2003-01-01

    In this paper the presentation of the ball-packing method is reviewed,and a scheme to generate mesh for complex 3-D geometric models is given,which consists of 4 steps:(1)create nodes in 3-D models by ball-packing method,(2)connect nodes to generate mesh by 3-D Delaunay triangulation,(3)retrieve the boundary of the model after Delaunay triangulation,(4)improve the mesh.

  8. A moving mesh method with variable relaxation time

    OpenAIRE

    Soheili, Ali Reza; Stockie, John M.

    2006-01-01

    We propose a moving mesh adaptive approach for solving time-dependent partial differential equations. The motion of spatial grid points is governed by a moving mesh PDE (MMPDE) in which a mesh relaxation time \\tau is employed as a regularization parameter. Previously reported results on MMPDEs have invariably employed a constant value of the parameter \\tau. We extend this standard approach by incorporating a variable relaxation time that is calculated adaptively alongside the solution in orde...

  9. Bilateral Laparoscopic Totally Extraperitoneal Repair Without Mesh Fixation

    OpenAIRE

    Dehal, Ahmed; Woodward, Brandon; Johna, Samir; Yamanishi, Frank

    2014-01-01

    Background and Objectives: Mesh fixation during laparoscopic totally extraperitoneal repair is thought to be necessary to prevent recurrence. However, mesh fixation may increase postoperative chronic pain. This study aimed to describe the experience of a single surgeon at our institution performing this operation. Methods: We performed a retrospective review of the medical records of all patients who underwent bilateral laparoscopic totally extraperitoneal repair without mesh fixation for ing...

  10. Automated quadrilateral mesh generation for digital image structures

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With the development of advanced imaging technology, digital images are widely used. This paper proposes an automatic quadrilateral mesh generation algorithm for multi-colour imaged structures. It takes an original arbitrary digital image as an input for automatic quadrilateral mesh generation, this includes removing the noise, extracting and smoothing the boundary geometries between different colours, and automatic all-quad mesh generation with the above boundaries as constraints. An application example is...

  11. An Agent Based Collaborative Simplification of 3D Mesh Model

    Science.gov (United States)

    Wang, Li-Rong; Yu, Bo; Hagiwara, Ichiro

    Large-volume mesh model faces the challenge in fast rendering and transmission by Internet. The current mesh models obtained by using three-dimensional (3D) scanning technology are usually very large in data volume. This paper develops a mobile agent based collaborative environment on the development platform of mobile-C. Communication among distributed agents includes grasping image of visualized mesh model, annotation to grasped image and instant message. Remote and collaborative simplification can be efficiently conducted by Internet.

  12. Robotic removal of eroded vaginal mesh into the bladder.

    Science.gov (United States)

    Macedo, Francisco Igor B; O'Connor, Jeffrey; Mittal, Vijay K; Hurley, Patrick

    2013-11-01

    Vaginal mesh erosion into the bladder after midurethral sling procedure or cystocele repair is uncommon, with only a few cases having been reported in the literature. The ideal surgical management is still controversial. Current options for removal of eroded mesh include: endoscopic, transvaginal or abdominal (either open or laparoscopic) approaches. We, herein, present the first case of robotic removal of a large eroded vaginal mesh into the bladder and discuss potential benefits and limitations of the technique. © 2013 The Japanese Urological Association.

  13. Adaptive-mesh zoning by the equipotential method

    Energy Technology Data Exchange (ETDEWEB)

    Winslow, A.M.

    1981-04-01

    An adaptive mesh method is proposed for the numerical solution of differential equations which causes the mesh lines to move closer together in regions where higher resolution in some physical quantity T is desired. A coefficient D > 0 is introduced into the equipotential zoning equations, where D depends on the gradient of T . The equations are inverted, leading to nonlinear elliptic equations for the mesh coordinates with source terms which depend on the gradient of D. A functional form of D is proposed.

  14. Monitoring and evaluation of wire mesh forming life

    Science.gov (United States)

    Enemuoh, Emmanuel U.; Zhao, Ping; Kadlec, Alec

    2018-03-01

    Forming tables are used with stainless steel wire mesh conveyor belts to produce variety of products. The forming tables will typically run continuously for several days, with some hours of scheduled downtime for maintenance, cleaning and part replacement after several weeks of operation. The wire mesh conveyor belts show large variation in their remaining life due to associated variations in their nominal thicknesses. Currently the industry is dependent on seasoned operators to determine the replacement time for the wire mesh formers. The drawback of this approach is inconsistency in judgements made by different operators and lack of data knowledge that can be used to develop decision making system that will be more consistent with wire mesh life prediction and replacement time. In this study, diagnostic measurements about the health of wire mesh former is investigated and developed. The wire mesh quality characteristics considered are thermal measurement, tension property, gage thickness, and wire mesh wear. The results show that real time thermal sensor and wear measurements would provide suitable data for the estimation of wire mesh failure, therefore, can be used as a diagnostic parameter for developing structural health monitoring (SHM) system for stainless steel wire mesh formers.

  15. SALOME PLATFORM and TetGen for Polyhedral Mesh Generation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Yong; Park, Chan Eok; Kim, Shin Whan [KEPCO E and C Company, Inc., Daejeon (Korea, Republic of)

    2014-05-15

    SPACE and CUPID use the unstructured mesh and they also require reliable mesh generation system. The combination of CAD system and mesh generation system is necessary to cope with a large number of cells and the complex fluid system with structural materials inside. In the past, a CAD system Pro/Engineer and mesh generator Pointwise were evaluated for this application. But, the cost of those commercial CAD and mesh generator is sometimes a great burden. Therefore, efforts have been made to set up a mesh generation system with open source programs. The evaluation of the TetGen has been made in focusing the application for the polyhedral mesh generation. In this paper, SALOME will be evaluated for the efforts in conjunction with TetGen. In section 2, review will be made on the CAD and mesh generation capability of SALOME. SALOME and TetGen codes are being integrated to construct robust polyhedral mesh generator. Edge removal on the flat surface and vertex reattachment to the solid are two challenging tasks. It is worthwhile to point out that the Python script capability of the SALOME should be fully utilized for the future investigation.

  16. An Algorithm for Parallel Sn Sweeps on Unstructured Meshes

    International Nuclear Information System (INIS)

    Pautz, Shawn D.

    2002-01-01

    A new algorithm for performing parallel S n sweeps on unstructured meshes is developed. The algorithm uses a low-complexity list ordering heuristic to determine a sweep ordering on any partitioned mesh. For typical problems and with 'normal' mesh partitionings, nearly linear speedups on up to 126 processors are observed. This is an important and desirable result, since although analyses of structured meshes indicate that parallel sweeps will not scale with normal partitioning approaches, no severe asymptotic degradation in the parallel efficiency is observed with modest (≤100) levels of parallelism. This result is a fundamental step in the development of efficient parallel S n methods

  17. Reconfigurable lattice mesh designs for programmable photonic processors.

    Science.gov (United States)

    Pérez, Daniel; Gasulla, Ivana; Capmany, José; Soref, Richard A

    2016-05-30

    We propose and analyse two novel mesh design geometries for the implementation of tunable optical cores in programmable photonic processors. These geometries are the hexagonal and the triangular lattice. They are compared here to a previously proposed square mesh topology in terms of a series of figures of merit that account for metrics that are relevant to on-chip integration of the mesh. We find that that the hexagonal mesh is the most suitable option of the three considered for the implementation of the reconfigurable optical core in the programmable processor.

  18. Symptom resolution after operative management of complications from transvaginal mesh.

    Science.gov (United States)

    Crosby, Erin C; Abernethy, Melinda; Berger, Mitchell B; DeLancey, John O; Fenner, Dee E; Morgan, Daniel M

    2014-01-01

    Complications from transvaginal mesh placed for prolapse often require operative management. The aim of this study is to describe the outcomes of vaginal mesh removal. A retrospective review of all patients having surgery by the urogynecology group in the department of obstetrics and gynecology at our institution for a complication of transvaginal mesh placed for prolapse was performed. Demographics, presenting symptoms, surgical procedures, and postoperative symptoms were abstracted. Comparative statistics were performed using the χ or Fisher's exact test with significance at Pmesh and 84 had follow-up data. The most common presenting signs and symptoms were: mesh exposure, 62% (n=56); pain, 64% (n=58); and dyspareunia, 48% (n=43). During operative management, mesh erosion was encountered unexpectedly in a second area of the vagina in 5% (n=4), in the bladder in 1% (n=1), and in the bowel in 2% (n=2). After vaginal mesh removal, 51% (n=43) had resolution of all presenting symptoms. Mesh exposure was treated successfully in 95% of patients, whereas pain was only successfully treated in 51% of patients. Removal of vaginal mesh is helpful in relieving symptoms of presentation. Patients can be reassured that exposed mesh can almost always be successfully managed surgically, but pain and dyspareunia are only resolved completely in half of patients. III.

  19. The mesh controversy [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Joshua A. Cohn

    2016-09-01

    Full Text Available Pelvic organ prolapse and stress urinary incontinence are common conditions for which approximately 11% of women will undergo surgical intervention in their lifetime. The use of vaginal mesh for pelvic organ prolapse and stress urinary incontinence rose rapidly in the early 2000s as over 100 mesh products were introduced into the clinical armamentarium with little regulatory oversight for their use. US Food and Drug Administration Public Health Notifications in 2008 and 2011, as well as reclassification of transvaginal mesh for prolapse to class III in early 2016, were a response to debilitating complications associated with transvaginal mesh placement in many women. The midurethral sling has not been subject to the same reclassification and continues to be endorsed as the “gold standard” for surgical management of stress urinary incontinence by subspecialty societies. However, litigators have not differentiated between mesh for prolapse and mesh for incontinence. As such, all mesh, including that placed for stress urinary incontinence, faces continued controversy amidst an uncertain future. In this article, we review the background of the mesh controversy, recent developments, and the anticipated role of mesh in surgery for prolapse and stress urinary incontinence going forward.

  20. A Reconfigurable Mesh-Ring Topology for Bluetooth Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ben-Yi Wang

    2018-05-01

    Full Text Available In this paper, a Reconfigurable Mesh-Ring (RMR algorithm is proposed for Bluetooth sensor networks. The algorithm is designed in three stages to determine the optimal configuration of the mesh-ring network. Firstly, a designated root advertises and discovers its neighboring nodes. Secondly, a scatternet criterion is built to compute the minimum number of piconets and distributes the connection information for piconet and scatternet. Finally, a peak-search method is designed to determine the optimal mesh-ring configuration for various sizes of networks. To maximize the network capacity, the research problem is formulated by determining the best connectivity of available mesh links. During the formation and maintenance phases, three possible configurations (including piconet, scatternet, and hybrid are examined to determine the optimal placement of mesh links. The peak-search method is a systematic approach, and is implemented by three functional blocks: the topology formation block generates the mesh-ring topology, the routing efficiency block computes the routing performance, and the optimum decision block introduces a decision-making criterion to determine the optimum number of mesh links. Simulation results demonstrate that the optimal mesh-ring configuration can be determined and that the scatternet case achieves better overall performance than the other two configurations. The RMR topology also outperforms the conventional ring-based and cluster-based mesh methods in terms of throughput performance for Bluetooth configurable networks.

  1. Anatomical eponyms - unloved names in medical terminology.

    Science.gov (United States)

    Burdan, F; Dworzański, W; Cendrowska-Pinkosz, M; Burdan, M; Dworzańska, A

    2016-01-01

    Uniform international terminology is a fundamental issue of medicine. Names of various organs or structures have developed since early human history. The first proper anatomical books were written by Hippocrates, Aristotle and Galen. For this reason the modern terms originated from Latin or Greek. In a modern time the terminology was improved in particular by Vasalius, Fabricius and Harvey. Presently each known structure has internationally approved term that is explained in anatomical or histological terminology. However, some elements received eponyms, terms that incorporate the surname of the people that usually describe them for the first time or studied them (e.g., circle of Willis, follicle of Graff, fossa of Sylvious, foramen of Monro, Adamkiewicz artery). Literature and historical hero also influenced medical vocabulary (e.g. Achilles tendon and Atlas). According to various scientists, all the eponyms bring colour to medicine, embed medical traditions and culture to our history but lack accuracy, lead of confusion, and hamper scientific discussion. The current article presents a wide list of the anatomical eponyms with their proper anatomical term or description according to international anatomical terminology. However, since different eponyms are used in various countries, the list could be expanded.

  2. Determining customer satisfaction in anatomic pathology.

    Science.gov (United States)

    Zarbo, Richard J

    2006-05-01

    Measurement of physicians' and patients' satisfaction with laboratory services has become a standard practice in the United States, prompted by national accreditation requirements. Unlike other surveys of hospital-, outpatient care-, or physician-related activities, no ongoing, comprehensive customer satisfaction survey of anatomic pathology services is available for subscription that would allow continual benchmarking against peer laboratories. Pathologists, therefore, must often design their own local assessment tools to determine physician satisfaction in anatomic pathology. To describe satisfaction survey design that would elicit specific information from physician customers about key elements of anatomic pathology services. The author shares his experience in biannually assessing customer satisfaction in anatomic pathology with survey tools designed at the Henry Ford Hospital, Detroit, Mich. Benchmarks for physician satisfaction, opportunities for improvement, and characteristics that correlated with a high level of physician satisfaction were identified nationally from a standardized survey tool used by 94 laboratories in the 2001 College of American Pathologists Q-Probes quality improvement program. In general, physicians are most satisfied with professional diagnostic services and least satisfied with pathology services related to poor communication. A well-designed and conducted customer satisfaction survey is an opportunity for pathologists to periodically educate physician customers about services offered, manage unrealistic expectations, and understand the evolving needs of the physician customer. Armed with current information from physician customers, the pathologist is better able to strategically plan for resources that facilitate performance improvements in anatomic pathology laboratory services that align with evolving clinical needs in health care delivery.

  3. Transvaginal repair of genital prolapse: preliminary results of a new tension-free vaginal mesh (Prolift technique)--a case series multicentric study.

    Science.gov (United States)

    Fatton, B; Amblard, J; Debodinance, P; Cosson, M; Jacquetin, B

    2007-07-01

    Our goal was to report the preliminary results of a transvaginal mesh repair of genital prolapse using the Prolift system. This retrospective multicentric study includes 110 patients. All patients had a stage 3 (at the hymen) or stage 4 (beyond the hymen) prolapse. Total mesh was used in 59 patients (53.6%), an isolated anterior mesh in 22 patients (20%) and an isolated posterior mesh in 29 patients (26.4%). We report one bladder injury sutured at surgery and two haematomas requiring secondary surgical management. At 3 months, 106 patients were available for follow-up. Mesh exposure occurred in five patients (4.7%), two of them requiring a surgical management. Granuloma without exposure occurred in three patients (2.8%). Failure rate (recurrent prolapse even asymptomatic or low grade symptomatic prolapse) was 4.7%. According to the perioperative and immediate post-operative results, Prolift repair seems to be a safe technique to correct pelvic organ prolapse. Anatomical and functional results must be assessed with a long-term follow-up to confirm the effectiveness and safety of the procedure.

  4. Mesh-based parallel code coupling interface

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, K.; Steckel, B. (eds.) [GMD - Forschungszentrum Informationstechnik GmbH, St. Augustin (DE). Inst. fuer Algorithmen und Wissenschaftliches Rechnen (SCAI)

    2001-04-01

    MpCCI (mesh-based parallel code coupling interface) is an interface for multidisciplinary simulations. It provides industrial end-users as well as commercial code-owners with the facility to combine different simulation tools in one environment. Thereby new solutions for multidisciplinary problems will be created. This opens new application dimensions for existent simulation tools. This Book of Abstracts gives a short overview about ongoing activities in industry and research - all presented at the 2{sup nd} MpCCI User Forum in February 2001 at GMD Sankt Augustin. (orig.) [German] MpCCI (mesh-based parallel code coupling interface) definiert eine Schnittstelle fuer multidisziplinaere Simulationsanwendungen. Sowohl industriellen Anwender als auch kommerziellen Softwarehersteller wird mit MpCCI die Moeglichkeit gegeben, Simulationswerkzeuge unterschiedlicher Disziplinen miteinander zu koppeln. Dadurch entstehen neue Loesungen fuer multidisziplinaere Problemstellungen und fuer etablierte Simulationswerkzeuge ergeben sich neue Anwendungsfelder. Dieses Book of Abstracts bietet einen Ueberblick ueber zur Zeit laufende Arbeiten in der Industrie und in der Forschung, praesentiert auf dem 2{sup nd} MpCCI User Forum im Februar 2001 an der GMD Sankt Augustin. (orig.)

  5. Basic Algorithms for the Asynchronous Reconfigurable Mesh

    Directory of Open Access Journals (Sweden)

    Yosi Ben-Asher

    2002-01-01

    Full Text Available Many constant time algorithms for various problems have been developed for the reconfigurable mesh (RM in the past decade. All these algorithms are designed to work with synchronous execution, with no regard for the fact that large size RMs will probably be asynchronous. A similar observation about the PRAM model motivated many researchers to develop algorithms and complexity measures for the asynchronous PRAM (APRAM. In this work, we show how to define the asynchronous reconfigurable mesh (ARM and how to measure the complexity of asynchronous algorithms executed on it. We show that connecting all processors in a row of an n×n ARM (the analog of barrier synchronization in the APRAM model can be solved with complexity Θ(nlog⁡n. Intuitively, this is average work time for solving such a problem. Next, we describe general a technique for simulating T -step synchronous RM algorithms on the ARM with complexity of Θ(T⋅n2log⁡n. Finally, we consider the simulation of the classical synchronous algorithm for counting the number of non-zero bits in an n bits vector using (k

  6. Refficientlib: an efficient load-rebalanced adaptive mesh refinement algorithm for high-performance computational physics meshes

    OpenAIRE

    Baiges Aznar, Joan; Bayona Roa, Camilo Andrés

    2017-01-01

    No separate or additional fees are collected for access to or distribution of the work. In this paper we present a novel algorithm for adaptive mesh refinement in computational physics meshes in a distributed memory parallel setting. The proposed method is developed for nodally based parallel domain partitions where the nodes of the mesh belong to a single processor, whereas the elements can belong to multiple processors. Some of the main features of the algorithm presented in this paper a...

  7. Posterolateral supporting structures of the knee: findings on anatomic dissection, anatomic slices and MR images

    Energy Technology Data Exchange (ETDEWEB)

    Maeseneer, M. de; Shahabpour, M.; Vanderdood, K.; Ridder, F. de; Osteaux, M. [Dept. of Radiology, Free Univ. Brussels (Belgium); Roy, F. van [Dept. of Experimental Anatomy, Free Univ. Brussels (Belgium)

    2001-11-01

    In this article we study the ligaments and tendons of the posterolateral corner of the knee by anatomic dissection, MR-anatomic correlation, and MR imaging. The posterolateral aspect of two fresh cadaveric knee specimens was dissected. The MR-anatomic correlation was performed in three other specimens. The MR images of 122 patients were reviewed and assessed for the visualization of different posterolateral structures. Anatomic dissection and MR-anatomic correlation demonstrated the lateral collateral, fabellofibular, and arcuate ligaments, as well as the biceps and popliteus tendons. On MR images of patients the lateral collateral ligament was depicted in all cases. The fabellofibular, arcuate, and popliteofibular ligaments were visualized in 33, 25, and 38% of patients, respectively. Magnetic resonance imaging allows a detailed appreciation of the posterolateral corner of the knee. (orig.)

  8. CONSTRAINED-TRANSPORT MAGNETOHYDRODYNAMICS WITH ADAPTIVE MESH REFINEMENT IN CHARM

    International Nuclear Information System (INIS)

    Miniati, Francesco; Martin, Daniel F.

    2011-01-01

    We present the implementation of a three-dimensional, second-order accurate Godunov-type algorithm for magnetohydrodynamics (MHD) in the adaptive-mesh-refinement (AMR) cosmological code CHARM. The algorithm is based on the full 12-solve spatially unsplit corner-transport-upwind (CTU) scheme. The fluid quantities are cell-centered and are updated using the piecewise-parabolic method (PPM), while the magnetic field variables are face-centered and are evolved through application of the Stokes theorem on cell edges via a constrained-transport (CT) method. The so-called multidimensional MHD source terms required in the predictor step for high-order accuracy are applied in a simplified form which reduces their complexity in three dimensions without loss of accuracy or robustness. The algorithm is implemented on an AMR framework which requires specific synchronization steps across refinement levels. These include face-centered restriction and prolongation operations and a reflux-curl operation, which maintains a solenoidal magnetic field across refinement boundaries. The code is tested against a large suite of test problems, including convergence tests in smooth flows, shock-tube tests, classical two- and three-dimensional MHD tests, a three-dimensional shock-cloud interaction problem, and the formation of a cluster of galaxies in a fully cosmological context. The magnetic field divergence is shown to remain negligible throughout.

  9. Interaction of weak shock waves with rectangular meshes in plate

    Directory of Open Access Journals (Sweden)

    O.A. Mikulich

    2016-09-01

    Full Text Available In mechanical engineering, building and other industries a significant part of the process includes the presence of various dynamic loads due to technological and mechanical impacts. Consideration of such load effects allows more accurate assessment of the structural elements strength or machine parts. Aim: The aim is to develop an algorithm for calculating of dynamic stress state of plates with meshes for pulse loading in the form of a weak shock wave. Materials and Methods: An integral and discrete Fourier transform were used to solve the problem. An application of Fourier transform by time allowed reducing the dynamic problem of flat deformation to the solution of a finite number of problems for the established oscillations at fixed cyclic frequency values. In the area of Fourier-images the method of boundary integral equations and the apparatus of a complex variable function theory are used to study the dynamic stress concentration. Results: Based on the developed methodology the distribution change of the dynamic circle stress over time on the edge of a rectangular hole is studied. The time sections of stress distribution fields under the influence of pulse dynamic load is constructed.

  10. Variationally derived coarse mesh methods using an alternative flux representation

    International Nuclear Information System (INIS)

    Wojtowicz, G.; Holloway, J.P.

    1995-01-01

    Investigation of a previously reported variational technique for the solution of the 1-D, 1-group neutron transport equation in reactor lattices has inspired the development of a finite element formulation of the method. Compared to conventional homogenization methods in which node homogenized cross sections are used, the coefficients describing this system take on greater spatial dependence. However, the methods employ an alternative flux representation which allows the transport equation to be cast into a form whose solution has only a slow spatial variation and, hence, requires relatively few variables to describe. This alternative flux representation and the stationary property of a variational principle define a class of coarse mesh discretizations of transport theory capable of achieving order of magnitude reductions of eigenvalue and pointwise scalar flux errors as compared with diffusion theory while retaining diffusion theory's relatively low cost. Initial results of a 1-D spectral element approach are reviewed and used to motivate the finite element implementation which is more efficient and almost as accurate; one and two group results of this method are described

  11. Diagnosis and management of piriformis syndrome: a rare anatomic variant analyzed by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Tae Hoon Ro

    2018-01-01

    Full Text Available Piriformis syndrome is an uncommon condition that causes significant pain in the posterior lower buttocks and leg due to entrapment of the sciatic nerve at the level of the piriformis muscle. In the typical anatomical presentation, the sciatic nerve exits directly ventral and inferior to the piriformis muscle and continues down the posterior leg. Several causes that have been linked to this condition include trauma, differences in leg length, hip arthroplasty, inflammation, neoplastic mass effect, and anatomic variations. A female presented with left-sided lower back and buttock pain with radiation down the posterior leg. After magnetic resonance imaging was performed, an uncommon sciatic anatomical form was identified. Although research is limited, surgical intervention shows promising results for these conditions. Accurate diagnosis and imaging modalities may help in the appropriate management of these patients.

  12. MeshVoro: A Three-Dimensional Voronoi Mesh Building Tool for the TOUGH Family of Codes

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, C. M.; Boyle, K. L.; Reagan, M.; Johnson, J.; Rycroft, C.; Moridis, G. J.

    2013-09-30

    Few tools exist for creating and visualizing complex three-dimensional simulation meshes, and these have limitations that restrict their application to particular geometries and circumstances. Mesh generation needs to trend toward ever more general applications. To that end, we have developed MeshVoro, a tool that is based on the Voro (Rycroft 2009) library and is capable of generating complex threedimensional Voronoi tessellation-based (unstructured) meshes for the solution of problems of flow and transport in subsurface geologic media that are addressed by the TOUGH (Pruess et al. 1999) family of codes. MeshVoro, which includes built-in data visualization routines, is a particularly useful tool because it extends the applicability of the TOUGH family of codes by enabling the scientifically robust and relatively easy discretization of systems with challenging 3D geometries. We describe several applications of MeshVoro. We illustrate the ability of the tool to straightforwardly transform a complex geological grid into a simulation mesh that conforms to the specifications of the TOUGH family of codes. We demonstrate how MeshVoro can describe complex system geometries with a relatively small number of grid blocks, and we construct meshes for geometries that would have been practically intractable with a standard Cartesian grid approach. We also discuss the limitations and appropriate applications of this new technology.

  13. Production of Accurate Skeletal Models of Domestic Animals Using Three-Dimensional Scanning and Printing Technology

    Science.gov (United States)

    Li, Fangzheng; Liu, Chunying; Song, Xuexiong; Huan, Yanjun; Gao, Shansong; Jiang, Zhongling

    2018-01-01

    Access to adequate anatomical specimens can be an important aspect in learning the anatomy of domestic animals. In this study, the authors utilized a structured light scanner and fused deposition modeling (FDM) printer to produce highly accurate animal skeletal models. First, various components of the bovine skeleton, including the femur, the…

  14. Lacrimal Gland Pathologies from an Anatomical Perspective

    Directory of Open Access Journals (Sweden)

    Mahmut Sinan Abit

    2015-06-01

    Full Text Available Most of the patients in our daily practice have one or more ocular surface disorders including conjucntivitis, keratitis, dry eye disease, meibomian gland dysfunction, contact lens related symptoms, refractive errors,computer vision syndrome. Lacrimal gland has an important role in all above mentioned pathologies due to its major secretory product. An anatomical and physiological knowledge about lacrimal gland is a must in understanding basic and common ophthalmological cases. İn this paper it is aimed to explain the lacrimal gland diseases from an anatomical perspective.

  15. Approximating second-order vector differential operators on distorted meshes in two space dimensions

    International Nuclear Information System (INIS)

    Hermeline, F.

    2008-01-01

    A new finite volume method is presented for approximating second-order vector differential operators in two space dimensions. This method allows distorted triangle or quadrilateral meshes to be used without the numerical results being too much altered. The matrices that need to be inverted are symmetric positive definite therefore, the most powerful linear solvers can be applied. The method has been tested on a few second-order vector partial differential equations coming from elasticity and fluids mechanics areas. These numerical experiments show that it is second-order accurate and locking-free. (authors)

  16. Towards accurate emergency response behavior

    International Nuclear Information System (INIS)

    Sargent, T.O.

    1981-01-01

    Nuclear reactor operator emergency response behavior has persisted as a training problem through lack of information. The industry needs an accurate definition of operator behavior in adverse stress conditions, and training methods which will produce the desired behavior. Newly assembled information from fifty years of research into human behavior in both high and low stress provides a more accurate definition of appropriate operator response, and supports training methods which will produce the needed control room behavior. The research indicates that operator response in emergencies is divided into two modes, conditioned behavior and knowledge based behavior. Methods which assure accurate conditioned behavior, and provide for the recovery of knowledge based behavior, are described in detail

  17. Automatic generation of anatomic characteristics from cerebral aneurysm surface models.

    Science.gov (United States)

    Neugebauer, M; Lawonn, K; Beuing, O; Preim, B

    2013-03-01

    Computer-aided research on cerebral aneurysms often depends on a polygonal mesh representation of the vessel lumen. To support a differentiated, anatomy-aware analysis, it is necessary to derive anatomic descriptors from the surface model. We present an approach on automatic decomposition of the adjacent vessels into near- and far-vessel regions and computation of the axial plane. We also exemplarily present two applications of the geometric descriptors: automatic computation of a unique vessel order and automatic viewpoint selection. Approximation methods are employed to analyze vessel cross-sections and the vessel area profile along the centerline. The resulting transition zones between near- and far- vessel regions are used as input for an optimization process to compute the axial plane. The unique vessel order is defined via projection into the plane space of the axial plane. The viewing direction for the automatic viewpoint selection is derived from the normal vector of the axial plane. The approach was successfully applied to representative data sets exhibiting a broad variability with respect to the configuration of their adjacent vessels. A robustness analysis showed that the automatic decomposition is stable against noise. A survey with 4 medical experts showed a broad agreement with the automatically defined transition zones. Due to the general nature of the underlying algorithms, this approach is applicable to most of the likely aneurysm configurations in the cerebral vasculature. Additional geometric information obtained during automatic decomposition can support correction in case the automatic approach fails. The resulting descriptors can be used for various applications in the field of visualization, exploration and analysis of cerebral aneurysms.

  18. The application of TINA in the MESH project

    NARCIS (Netherlands)

    van Sinderen, Marten J.; Ferreira Pires, Luis; Pires, L.F.; Plagemann, Thomas; Goebel, Vera

    1998-01-01

    This paper discusses the application of TINA concepts, architectures and related design paradigms in the MESH project. MESH adopted TINA as a means to facilitate the design and implementation of a flexible platform for developing and providing interactive multimedia services. This paper reports on

  19. Capacity analysis of wireless mesh networks | Gumel | Nigerian ...

    African Journals Online (AJOL)

    ... number of nodes (n) in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network. Key words: Wireless mesh network (WMN), Adhoc network, Network capacity analysis, Bottleneck collision domain, Medium access control ...

  20. Volume Decomposition and Feature Recognition for Hexahedral Mesh Generation

    Energy Technology Data Exchange (ETDEWEB)

    GADH,RAJIT; LU,YONG; TAUTGES,TIMOTHY J.

    1999-09-27

    Considerable progress has been made on automatic hexahedral mesh generation in recent years. Several automatic meshing algorithms have proven to be very reliable on certain classes of geometry. While it is always worth pursuing general algorithms viable on more general geometry, a combination of the well-established algorithms is ready to take on classes of complicated geometry. By partitioning the entire geometry into meshable pieces matched with appropriate meshing algorithm the original geometry becomes meshable and may achieve better mesh quality. Each meshable portion is recognized as a meshing feature. This paper, which is a part of the feature based meshing methodology, presents the work on shape recognition and volume decomposition to automatically decompose a CAD model into meshable volumes. There are four phases in this approach: (1) Feature Determination to extinct decomposition features, (2) Cutting Surfaces Generation to form the ''tailored'' cutting surfaces, (3) Body Decomposition to get the imprinted volumes; and (4) Meshing Algorithm Assignment to match volumes decomposed with appropriate meshing algorithms. The feature determination procedure is based on the CLoop feature recognition algorithm that is extended to be more general. Results are demonstrated over several parts with complicated topology and geometry.

  1. Micro-mesh fabric pollination bags for switchgrass

    Science.gov (United States)

    Pollination bags for making controlled crosses between switchgrass plants were made from a polyester micro-mesh fabric with a mesh size of 41 µm which is smaller than the mean reported 43 µm diameter of switchgrass pollen. When used in paired plant crosses between switchgrass plants, the mean amoun...

  2. Lagrangian fluid dynamics using the Voronoi-Delauanay mesh

    International Nuclear Information System (INIS)

    Dukowicz, J.K.

    1981-01-01

    A Lagrangian technique for numerical fluid dynamics is described. This technique makes use of the Voronoi mesh to efficiently locate new neighbors, and it uses the dual (Delaunay) triangulation to define computational cells. This removes all topological restrictions and facilitates the solution of problems containing interfaces and multiple materials. To improve computational accuracy a mesh smoothing procedure is employed

  3. CAPAClTYANALYSIS OF WIRELESS MESH NET\\VORKS

    African Journals Online (AJOL)

    The limited available bandwidth makes capacity analysis of the network very essential. ... Wireless mesh networks can also be employed for wide variety ofapplications such ... wireless mesh networks using OPNET (Optimized Network Engineering Tool) Modeller 1-J..5. The .... /bps using I I Mbps data rate and 12000 bits.

  4. Sending policies in dynamic wireless mesh using network coding

    DEFF Research Database (Denmark)

    Pandi, Sreekrishna; Fitzek, Frank; Pihl, Jeppe

    2015-01-01

    This paper demonstrates the quick prototyping capabilities of the Python-Kodo library for network coding based performance evaluation and investigates the problem of data redundancy in a network coded wireless mesh with opportunistic overhearing. By means of several wireless meshed architectures ...

  5. Plated nickel wire mesh makes superior catalyst bed

    Science.gov (United States)

    Sill, M.

    1965-01-01

    Porous nickel mesh screen catalyst bed produces gas evolution in hydrogen peroxide thrust chambers used for attitude control of space vehicles. The nickel wire mesh disks in the catalyst bed are plated in rugose form with a silver-gold coating.

  6. Mesh Processing in Medical-Image Analysis-a Tutorial

    DEFF Research Database (Denmark)

    Levine, Joshua A.; Paulsen, Rasmus Reinhold; Zhang, Yongjie

    2012-01-01

    Medical-image analysis requires an understanding of sophisticated scanning modalities, constructing geometric models, building meshes to represent domains, and downstream biological applications. These four steps form an image-to-mesh pipeline. For research in this field to progress, the imaging...

  7. Scalable Video Streaming in Wireless Mesh Networks for Education

    Science.gov (United States)

    Liu, Yan; Wang, Xinheng; Zhao, Liqiang

    2011-01-01

    In this paper, a video streaming system for education based on a wireless mesh network is proposed. A wireless mesh network is a self-organizing, self-managing and reliable intelligent network, which allows educators to deploy a network quickly. Video streaming plays an important role in this system for multimedia data transmission. This new…

  8. Staged Closure of Giant Omphalocele using Synthetic Mesh

    OpenAIRE

    Parida, Lalit; Pal, Kamalesh; Al Buainain, Hussah; Elshafei, Hossam

    2014-01-01

    Giant omphalocele is difficult to manage and is associated with a poor outcome. A male newborn presented to our hospital with a giant omphalocele. We performed a staged closure of giant omphalocele using synthetic mesh to construct a silo and then mesh abdominoplasty in the neonatal period that led to a successful outcome within a reasonable period of hospital stay.

  9. Adaptive mesh generation for image registration and segmentation

    DEFF Research Database (Denmark)

    Fogtmann, Mads; Larsen, Rasmus

    2013-01-01

    measure. The method was tested on a T1 weighted MR volume of an adult brain and showed a 66% reduction in the number of mesh vertices compared to a red-subdivision strategy. The deformation capability of the mesh was tested by registration to five additional T1-weighted MR volumes....

  10. Laparoscopic sacrocolpopexy versus transvaginal mesh for recurrent pelvic organ prolapse.

    Science.gov (United States)

    Iglesia, Cheryl B; Hale, Douglass S; Lucente, Vincent R

    2013-03-01

    Both expert surgeons agree with the following: (1) Surgical mesh, whether placed laparoscopically or transvaginally, is indicated for pelvic floor reconstruction in cases involving recurrent advanced pelvic organ prolapse. (2) Procedural expertise and experience gained from performing a high volume of cases is fundamentally necessary. Knowledge of outcomes and complications from an individual surgeon's audit of cases is also needed when discussing the risks and benefits of procedures and alternatives. Yet controversy still exists on how best to teach new surgical techniques and optimal ways to efficiently track outcomes, including subjective and objective cure of prolapse as well as perioperative complications. A mesh registry will be useful in providing data needed for surgeons. Cost factors are also a consideration since laparoscopic and especially robotic surgical mesh procedures are generally more costly than transvaginal mesh kits when operative time, extra instrumentation and length of stay are included. Long-term outcomes, particularly for transvaginal mesh procedures, are lacking. In conclusion, all surgery poses risks; however, patients should be made aware of the pros and cons of various routes of surgery as well as the potential risks and benefits of using mesh. Surgeons should provide patients with honest information about their own experience implanting mesh and also their experience dealing with mesh-related complications.

  11. Energy mesh optimization for multi-level calculation schemes

    International Nuclear Information System (INIS)

    Mosca, P.; Taofiki, A.; Bellier, P.; Prevost, A.

    2011-01-01

    The industrial calculations of third generation nuclear reactors are based on sophisticated strategies of homogenization and collapsing at different spatial and energetic levels. An important issue to ensure the quality of these calculation models is the choice of the collapsing energy mesh. In this work, we show a new approach to generate optimized energy meshes starting from the SHEM 281-group library. The optimization model is applied on 1D cylindrical cells and consists of finding an energy mesh which minimizes the errors between two successive collision probability calculations. The former is realized over the fine SHEM mesh with Livolant-Jeanpierre self-shielded cross sections and the latter is performed with collapsed cross sections over the energy mesh being optimized. The optimization is done by the particle swarm algorithm implemented in the code AEMC and multigroup flux solutions are obtained from standard APOLLO2 solvers. By this new approach, a set of new optimized meshes which encompass from 10 to 50 groups has been defined for PWR and BWR calculations. This set will allow users to adapt the energy detail of the solution to the complexity of the calculation (assembly, multi-assembly, two-dimensional whole core). Some preliminary verifications, in which the accuracy of the new meshes is measured compared to a direct 281-group calculation, show that the 30-group optimized mesh offers a good compromise between simulation time and accuracy for a standard 17 x 17 UO 2 assembly with and without control rods. (author)

  12. Water Penetration through a Superhydrophobic Mesh During a Drop Impact

    Science.gov (United States)

    Ryu, Seunggeol; Sen, Prosenjit; Nam, Youngsuk; Lee, Choongyeop

    2017-01-01

    When a water drop impacts a mesh having submillimeter pores, a part of the drop penetrates through the mesh if the impact velocity is sufficiently large. Here we show that different surface wettability, i.e., hydrophobicity and superhydrophobicity, leads to different water penetration dynamics on a mesh during drop impact. We show, despite the water repellence of a superhydrophobic surface, that water can penetrate a superhydrophobic mesh more easily (i.e., at a lower impact velocity) over a hydrophobic mesh via a penetration mechanism unique to a superhydrophobic mesh. On a superhydrophobic mesh, the water penetration can occur during the drop recoil stage, which appears at a lower impact velocity than the critical impact velocity for water penetration right upon impact. We propose that this unique water penetration on a superhydrophobic mesh can be attributed to the combination of the hydrodynamic focusing and the momentum transfer from the water drop when it is about to bounce off the surface, at which point the water drop retrieves most of its kinetic energy due to the negligible friction on superhydrophobic surfaces.

  13. COSMOLOGICAL ADAPTIVE MESH REFINEMENT MAGNETOHYDRODYNAMICS WITH ENZO

    International Nuclear Information System (INIS)

    Collins, David C.; Xu Hao; Norman, Michael L.; Li Hui; Li Shengtai

    2010-01-01

    In this work, we present EnzoMHD, the extension of the cosmological code Enzo to include the effects of magnetic fields through the ideal magnetohydrodynamics approximation. We use a higher order Godunov method for the computation of interface fluxes. We use two constrained transport methods to compute the electric field from those interface fluxes, which simultaneously advances the induction equation and maintains the divergence of the magnetic field. A second-order divergence-free reconstruction technique is used to interpolate the magnetic fields in the block-structured adaptive mesh refinement framework already extant in Enzo. This reconstruction also preserves the divergence of the magnetic field to machine precision. We use operator splitting to include gravity and cosmological expansion. We then present a series of cosmological and non-cosmological test problems to demonstrate the quality of solution resulting from this combination of solvers.

  14. Parallel-In-Time For Moving Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Falgout, R. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Manteuffel, T. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Southworth, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schroder, J. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-02-04

    With steadily growing computational resources available, scientists must develop e ective ways to utilize the increased resources. High performance, highly parallel software has be- come a standard. However until recent years parallelism has focused primarily on the spatial domain. When solving a space-time partial di erential equation (PDE), this leads to a sequential bottleneck in the temporal dimension, particularly when taking a large number of time steps. The XBraid parallel-in-time library was developed as a practical way to add temporal parallelism to existing se- quential codes with only minor modi cations. In this work, a rezoning-type moving mesh is applied to a di usion problem and formulated in a parallel-in-time framework. Tests and scaling studies are run using XBraid and demonstrate excellent results for the simple model problem considered herein.

  15. Anatomic and functional leg-length inequality: A review and recommendation for clinical decision-making. Part I, anatomic leg-length inequality: prevalence, magnitude, effects and clinical significance

    Directory of Open Access Journals (Sweden)

    Knutson Gary A

    2005-07-01

    Full Text Available Abstract Background Leg-length inequality is most often divided into two groups: anatomic and functional. Part I of this review analyses data collected on anatomic leg-length inequality relative to prevalence, magnitude, effects and clinical significance. Part II examines the functional "short leg" including anatomic-functional relationships, and provides an outline for clinical decision-making. Methods Online database – Medline, CINAHL and MANTIS – and library searches for the time frame of 1970–2005 were done using the term "leg-length inequality". Results and Discussion Using data on leg-length inequality obtained by accurate and reliable x-ray methods, the prevalence of anatomic inequality was found to be 90%, the mean magnitude of anatomic inequality was 5.2 mm (SD 4.1. The evidence suggests that, for most people, anatomic leg-length inequality does not appear to be clinically significant until the magnitude reaches ~ 20 mm (~3/4". Conclusion Anatomic leg-length inequality is near universal, but the average magnitude is small and not likely to be clinically significant.

  16. Magnetic resonance angiography: infrequent anatomic variants

    International Nuclear Information System (INIS)

    Trejo, Mariano; Meli, Francisco; Lambre, Hector; Blessing, Ricardo; Gigy Traynor, Ignacio; Miguez, Victor

    2002-01-01

    We studied through RM angiography (3D TOF) with high magnetic field equipment (1.5 T) different infrequent intracerebral vascular anatomic variants. For their detection we emphasise the value of post-processed images obtained after conventional angiographic sequences. These post-processed images should be included in routine protocols for evaluation of the intracerebral vascular structures. (author)

  17. Report of a rare anatomic variant

    DEFF Research Database (Denmark)

    De Brucker, Y; Ilsen, B; Muylaert, C

    2015-01-01

    We report the CT findings in a case of partial anomalous pulmonary venous return (PAPVR) from the left upper lobe in an adult. PAPVR is an anatomic variant in which one to three pulmonary veins drain into the right atrium or its tributaries, rather than into the left atrium. This results in a left...

  18. HPV Vaccine Effective at Multiple Anatomic Sites

    Science.gov (United States)

    A new study from NCI researchers finds that the HPV vaccine protects young women from infection with high-risk HPV types at the three primary anatomic sites where persistent HPV infections can cause cancer. The multi-site protection also was observed at l

  19. TIBIAL LANDMARKS IN ACL ANATOMIC REPAIR

    Directory of Open Access Journals (Sweden)

    M. V. Demesсhenko

    2016-01-01

    Full Text Available Purpose: to identify anatomical landmarks on tibial articular surface to serve as reference in preparing tibial canal with respect to the center of ACL footprint during single bundle arthroscopic repair.Materials and methods. Twelve frozen knee joint specimens and 68 unpaired macerated human tibia were studied using anatomical, morphometric, statistical methods as well as graphic simulation.Results. Center of the tibial ACL footprint was located 13,1±1,7 mm anteriorly from posterior border of intercondylar eminence, at 1/3 of the distance along the line connecting apexes of internal and external tubercles and 6,1±0,5 mm anteriorly along the perpendicular raised to this point.Conclusion. Internal and external tubercles, as well as posterior border of intercondylar eminence can be considered as anatomical references to determine the center of the tibial ACL footprint and to prepare bone canals for anatomic ligament repair.

  20. Influences on anatomical knowledge: The complete arguments

    NARCIS (Netherlands)

    Bergman, E.M.; Verheijen, I.W.; Scherpbier, A.J.J.A.; Vleuten, C.P.M. van der; Bruin, A.B. De

    2014-01-01

    Eight factors are claimed to have a negative influence on anatomical knowledge of medical students: (1) teaching by nonmedically qualified teachers, (2) the absence of a core anatomy curriculum, (3) decreased use of dissection as a teaching tool, (4) lack of teaching anatomy in context, (5)

  1. Evolution of the Anatomical Theatre in Padova

    Science.gov (United States)

    Macchi, Veronica; Porzionato, Andrea; Stecco, Carla; Caro, Raffaele

    2014-01-01

    The anatomical theatre played a pivotal role in the evolution of medical education, allowing students to directly observe and participate in the process of dissection. Due to the increase of training programs in clinical anatomy, the Institute of Human Anatomy at the University of Padova has renovated its dissecting room. The main guidelines in…

  2. MR urography: Anatomical and quantitative information on ...

    African Journals Online (AJOL)

    Background and Aim: Magnetic resonance urography (MRU) is considered to be the next step in uroradiology. This technique combines superb anatomical images and functional information in a single test. In this article, we aim to present the topic of MRU in children and how it has been implemented in Northern Greece so ...

  3. Handbook of anatomical models for radiation dosimetry

    CERN Document Server

    Eckerman, Keith F

    2010-01-01

    Covering the history of human model development, this title presents the major anatomical and physical models that have been developed for human body radiation protection, diagnostic imaging, and nuclear medicine therapy. It explores how these models have evolved and the role that modern technologies have played in this development.

  4. Anatomical characteristics of southern pine stemwood

    Science.gov (United States)

    Elaine T. Howard; Floyd G. Manwiller

    1968-01-01

    To obtain a definitive description of the wood and anatomy of all 10 species of southern pine, juvenile, intermediate, and mature wood was sampled at three heights in one tree of each species and examined under a light microscope. Photographs and three-dimensional drawings were made to illustrate the morphology. No significant anatomical differences were found...

  5. Challenges in Second-Generation Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Pescapé Antonio

    2008-01-01

    Full Text Available Wireless mesh networks have the potential to provide ubiquitous high-speed Internet access at low costs. The good news is that initial deployments of WiFi meshes show the feasibility of providing ubiquitous Internet connectivity. However, their performance is far below the necessary and achievable limit. Moreover, users' subscription in the existing meshes is dismal even though the technical challenges to get connectivity are low. This paper provides an overview of the current status of mesh networks' deployment, and highlights the technical, economical, and social challenges that need to be addressed in the next years. As a proof-of-principle study, we discuss the above-mentioned challenges with reference to three real networks: (i MagNets, an operator-driven planned two-tier mesh network; (ii Berlin Freifunk network as a pure community-driven single-tier network; (iii Weimar Freifunk network, also a community-driven but two-tier network.

  6. Multi-phase Volume Segmentation with Tetrahedral Mesh

    DEFF Research Database (Denmark)

    Nguyen Trung, Tuan; Dahl, Vedrana Andersen; Bærentzen, Jakob Andreas

    Volume segmentation is efficient for reconstructing material structure, which is important for several analyses, e.g. simulation with finite element method, measurement of quantitative information like surface area, surface curvature, volume, etc. We are concerned about the representations of the 3......D volumes, which can be categorized into two groups: fixed voxel grids [1] and unstructured meshes [2]. Among these two representations, the voxel grids are more popular since manipulating a fixed grid is easier than an unstructured mesh, but they are less efficient for quantitative measurements....... In many cases, the voxel grids are converted to explicit meshes, however the conversion may reduce the accuracy of the segmentations, and the effort for meshing is also not trivial. On the other side, methods using unstructured meshes have difficulty in handling topology changes. To reduce the complexity...

  7. Current role of mesh in vaginal prolapse surgery.

    Science.gov (United States)

    Richter, Lee A; Carter, Charelle; Gutman, Robert E

    2014-10-01

    This report summarizes the latest literature on transvaginal mesh (TVM) for the treatment of pelvic organ prolapse, with a focus on indications for use and management of complications. We describe trends in TVM by reviewing the recent literature and summarizing national meeting presentations. Vaginal mesh complications are most often managed surgically, and the majority of patients experiencing mesh-related pain have symptom improvement after intervention. New efforts will focus on identifying variables associated with success after intervention for mesh-related complications, to aid reconstructive pelvic surgeons in outcome prediction and patient counselling. Although the use of TVM has plateaued in recent years, we are seeing an exponential rise in synthetic mesh implant removal. Reconstructive pelvic surgeons advising patients with TVM complications should report that surgical intervention is often necessary, improvement rates of pain-related symptoms after surgery are high, and up to a third may require multiple interventions.

  8. Evidence to justify retention of transvaginal mesh: comparison between laparoscopic sacral colpopexy and transvaginal Elevate™ mesh.

    Science.gov (United States)

    To, Valérie; Hengrasmee, Pattaya; Lam, Alan; Luscombe, Georgina; Lawless, Anna; Lam, Justin

    2017-12-01

    To determine if laparoscopic sacral colpopexy (LSC) offers better apical support with a lower exposure rate than transvaginal mesh surgery with Elevate™. This was a retrospective cohort study comparing patients with apical prolapse (POP-Q point C ≥ -1) who underwent Elevate™ mesh repair (n = 146) with patients who underwent laparoscopic sacral colpopexy (n = 267). The sacral colpopexy group had a mean age of 59 years and a BMI of 25.7. Patients in the Elevate™ group were older, with a mean age of 63 and a BMI of 26.3. Most of the patients of both groups presented with pelvic organ prolapse stage III (LSC 73.8% and Elevate™ 87.0%) and their mean POP-Q point C were not significantly different (LSC 1.4 vs Elevate™ 1.2 cm). Operative time was longer in the LSC group (113 vs 91 min, p < 0.001), but estimated blood loss was lower (75 cm 3 vs 137 cm 3 , p < 0.001). No difference in mesh exposure rate could be found between the two groups at one year (Elevate™ 0.7% vs LSC 2.6%, OR 0.26, 95% CI 0.03 to 2.10, p = 0.21). One-year objective cure rate, defined as no descent beyond the hymen, was 97.0% in the LSC group and 96.6% in the Elevate™ group (p = .81). The overall recurrence (objective, subjective recurrence or reoperation) was also not different between the groups (LSC 4.5% vs Elevate 4.8%, p = 0.89). Transvaginal Elevate™ mesh delivers comparable apical support with a low exposure rate similar to that of laparoscopic sacral colpopexy.

  9. Robust, multidimensional mesh motion based on Monge-Kantorovich equidistribution

    Energy Technology Data Exchange (ETDEWEB)

    Delzanno, G L [Los Alamos National Laboratory; Finn, J M [Los Alamos National Laboratory

    2009-01-01

    Mesh-motion (r-refinement) grid adaptivity schemes are attractive due to their potential to minimize the numerical error for a prescribed number of degrees of freedom. However, a key roadblock to a widespread deployment of the technique has been the formulation of robust, reliable mesh motion governing principles, which (1) guarantee a solution in multiple dimensions (2D and 3D), (2) avoid grid tangling (or folding of the mesh, whereby edges of a grid cell cross somewhere in the domain), and (3) can be solved effectively and efficiently. In this study, we formulate such a mesh-motion governing principle, based on volume equidistribution via Monge-Kantorovich optimization (MK). In earlier publications [1, 2], the advantages of this approach in regards to these points have been demonstrated for the time-independent case. In this study, demonstrate that Monge-Kantorovich equidistribution can in fact be used effectively in a time stepping context, and delivers an elegant solution to the otherwise pervasive problem of grid tangling in mesh motion approaches, without resorting to ad-hoc time-dependent terms (as in moving-mesh PDEs, or MMPDEs [3, 4]). We explore two distinct r-refinement implementations of MK: direct, where the current mesh relates to an initial, unchanging mesh, and sequential, where the current mesh is related to the previous one in time. We demonstrate that the direct approach is superior in regards to mesh distortion and robustness. The properties of the approach are illustrated with a paradigmatic hyperbolic PDE, the advection of a passive scalar. Imposed velocity flow fields or varying vorticity levels and flow shears are considered.

  10. Obturator foramen dissection for excision of symptomatic transobturator mesh.

    Science.gov (United States)

    Reynolds, W Stuart; Kit, Laura Chang; Kaufman, Melissa R; Karram, Mickey; Bales, Gregory T; Dmochowski, Roger R

    2012-05-01

    Groin pain after transobturator synthetic mesh placement can be recalcitrant to conservative therapy and ultimately requires surgical excision. We describe our experiences with and technique of obturator foramen dissection for mesh excision. The records of 8 patients treated from 2005 to 2010, were reviewed. Obturator dissection was performed via a lateral groin incision over the inferior pubic ramus at the level of the obturator foramen, typically in conjunction with orthopedic surgery. Five patients had transobturator mid urethral sling surgery for stress urinary incontinence, 2 had mid urethral sling and trocar based anterior vaginal wall mesh kits with transobturator passage of mesh arms for stress urinary incontinence and pelvic organ prolapse, and 1 had an anterior vaginal wall mesh kit for pelvic organ prolapse. Patients had 0 to 2 prior transvaginal mesh excisions before obturator surgery. All patients presented with intractable pain in the area of the obturator foramen and/or medial groin for which conservative treatment measures had failed. Six patients underwent concurrent vaginal and obturator dissection and 2 underwent obturator dissection alone. In all cases residual mesh (3 to 11 cm) was identified and excised from the obturator foramen. Mesh was closely associated to or traversing the adductor longus muscle and tendon with significant fibrous reaction in all cases. Postoperatively 5 patients were cured of pain and/or infection, and 3 reported no or some improvement at a mean followup of 6 months (range 1 to 12). Our experience suggests that surgical excision of residual mesh can alleviate many of the symptoms in many patients. In all cases mesh remnants were identified and removed, and typically involved neuromuscular structures adjacent to the obturator foramen. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. ANATOMIC STRUCTURE OF CAMPANULA ROTUNDIFOLIA L. GRASS

    Directory of Open Access Journals (Sweden)

    V. N. Bubenchikova

    2017-01-01

    Full Text Available The article present results of the study for a anatomic structure of Campanula rotundifolia grass from Campanulaceae family. Despite its dispersion and application in folk medicine, there are no data about its anatomic structure, therefore to estimate the indices of authenticity and quality of raw materials it is necessary to develop microdiagnostical features in the first place, which could help introducing of thisplant in a medical practice. The purpose of this work is to study anatomical structureof Campanula rotundifolia grass to determine its diagnostic features. Methods. Thestudy for anatomic structure was carried out in accordance with the requirements of State Pharmacopoeia, edition XIII. Micromed laboratory microscope with digital adjutage was used to create microphotoes, Photoshop CC was used for their processing. Result. We have established that stalk epidermis is prosenchymal, slightly winding with straight of splayed end cells. After study for the epidermis cells we established that upper epidermis cells had straight walls and are slightly winding. The cells of lower epidermishave more winding walls with prolong wrinkled cuticule. Presence of simple one-cell, thin wall, rough papillose hair on leaf and stalk epidermis. Cells of epidermis in fauces of corolla are prosenchymal, with winding walls, straight or winding walls in a cup. Papillary excrescences can be found along the cup edges. Stomatal apparatus is anomocytic. Conclusion. As the result of the study we have carried out the research for Campanula rotundifolia grass anatomic structure, and determined microdiagnostic features for determination of raw materials authenticity, which included presence of simple, one-cell, thin-walled, rough papillose hair on both epidermises of a leaf, along the veins, leaf edge, and stalk epidermis, as well as the presence of epidermis cells with papillary excrescences along the edges of leaves and cups. Intercellular canals are situatedalong the

  12. Influence of mesh density, cortical thickness and material properties on human rib fracture prediction.

    Science.gov (United States)

    Li, Zuoping; Kindig, Matthew W; Subit, Damien; Kent, Richard W

    2010-11-01

    The purpose of this paper was to investigate the sensitivity of the structural responses and bone fractures of the ribs to mesh density, cortical thickness, and material properties so as to provide guidelines for the development of finite element (FE) thorax models used in impact biomechanics. Subject-specific FE models of the second, fourth, sixth and tenth ribs were developed to reproduce dynamic failure experiments. Sensitivity studies were then conducted to quantify the effects of variations in mesh density, cortical thickness, and material parameters on the model-predicted reaction force-displacement relationship, cortical strains, and bone fracture locations for all four ribs. Overall, it was demonstrated that rib FE models consisting of 2000-3000 trabecular hexahedral elements (weighted element length 2-3mm) and associated quadrilateral cortical shell elements with variable thickness more closely predicted the rib structural responses and bone fracture force-failure displacement relationships observed in the experiments (except the fracture locations), compared to models with constant cortical thickness. Further increases in mesh density increased computational cost but did not markedly improve model predictions. A ±30% change in the major material parameters of cortical bone lead to a -16.7 to 33.3% change in fracture displacement and -22.5 to +19.1% change in the fracture force. The results in this study suggest that human rib structural responses can be modeled in an accurate and computationally efficient way using (a) a coarse mesh of 2000-3000 solid elements, (b) cortical shells elements with variable thickness distribution and (c) a rate-dependent elastic-plastic material model. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Regional Community Climate Simulations with variable resolution meshes in the Community Earth System Model

    Science.gov (United States)

    Zarzycki, C. M.; Gettelman, A.; Callaghan, P.

    2017-12-01

    Accurately predicting weather extremes such as precipitation (floods and droughts) and temperature (heat waves) requires high resolution to resolve mesoscale dynamics and topography at horizontal scales of 10-30km. Simulating such resolutions globally for climate scales (years to decades) remains computationally impractical. Simulating only a small region of the planet is more tractable at these scales for climate applications. This work describes global simulations using variable-resolution static meshes with multiple dynamical cores that target the continental United States using developmental versions of the Community Earth System Model version 2 (CESM2). CESM2 is tested in idealized, aquaplanet and full physics configurations to evaluate variable mesh simulations against uniform high and uniform low resolution simulations at resolutions down to 15km. Different physical parameterization suites are also evaluated to gauge their sensitivity to resolution. Idealized variable-resolution mesh cases compare well to high resolution tests. More recent versions of the atmospheric physics, including cloud schemes for CESM2, are more stable with respect to changes in horizontal resolution. Most of the sensitivity is due to sensitivity to timestep and interactions between deep convection and large scale condensation, expected from the closure methods. The resulting full physics model produces a comparable climate to the global low resolution mesh and similar high frequency statistics in the high resolution region. Some biases are reduced (orographic precipitation in the western United States), but biases do not necessarily go away at high resolution (e.g. summertime JJA surface Temp). The simulations are able to reproduce uniform high resolution results, making them an effective tool for regional climate studies and are available in CESM2.

  14. Repair of large frontal temporal parietal skull defect with digitally reconstructed titanium mesh: a report of 20 cases

    Directory of Open Access Journals (Sweden)

    Gang-ge CHENG

    2013-09-01

    Full Text Available Objective To explore the clinical effect and surgical technique of the repair of large defect involving frontal, temporal, and parietal regions using digitally reconstructed titanium mesh. Methods Twenty patients with large frontal, temporal, and parietal skull defect hospitalized in Air Force General Hospital from November 2006 to May 2012 were involved in this study. In these 20 patients, there were 13 males and 7 females, aged 18-58 years (mean 39 years, and the defect size measured from 7.0cm×9.0cm to 11.5cm×14.0cm (mean 8.5cm×12.0cm. Spiral CT head scan and digital three-dimensional reconstruction of skull were performed in all the patients. The shape and geometric size of skull defect was traced based on the symmetry principle, and then the data were transferred into digital precision lathe to reconstruct a titanium mesh slightly larger (1.0-1.5cm than the skull defect, and the finally the prosthesis was perfected after pruning the border. Cranioplasty was performed 6-12 months after craniotomy using the digitally reconstructed titanium mesh. Results The digitally reconstructed titanium mesh was used in 20 patients with large frontal, temporal, parietal skull defect. The surgical technique was relatively simple, and the surgical duration was shorter than before. The titanium mesh fit to the defect of skull accurately with satisfactory molding effect, good appearance and symmetrical in shape. No related complication was found in all the patients. Conclusion Repair of large frontal, temporal, parietal skull defect with digitally reconstructed titanium mesh is more advantageous than traditional manual reconstruction, and it can improve the life quality of patients.

  15. SU-D-207-04: GPU-Based 4D Cone-Beam CT Reconstruction Using Adaptive Meshing Method

    International Nuclear Information System (INIS)

    Zhong, Z; Gu, X; Iyengar, P; Mao, W; Wang, J; Guo, X

    2015-01-01

    Purpose: Due to the limited number of projections at each phase, the image quality of a four-dimensional cone-beam CT (4D-CBCT) is often degraded, which decreases the accuracy of subsequent motion modeling. One of the promising methods is the simultaneous motion estimation and image reconstruction (SMEIR) approach. The objective of this work is to enhance the computational speed of the SMEIR algorithm using adaptive feature-based tetrahedral meshing and GPU-based parallelization. Methods: The first step is to generate the tetrahedral mesh based on the features of a reference phase 4D-CBCT, so that the deformation can be well captured and accurately diffused from the mesh vertices to voxels of the image volume. After the mesh generation, the updated motion model and other phases of 4D-CBCT can be obtained by matching the 4D-CBCT projection images at each phase with the corresponding forward projections of the deformed reference phase of 4D-CBCT. The entire process of this 4D-CBCT reconstruction method is implemented on GPU, resulting in significantly increasing the computational efficiency due to its tremendous parallel computing ability. Results: A 4D XCAT digital phantom was used to test the proposed mesh-based image reconstruction algorithm. The image Result shows both bone structures and inside of the lung are well-preserved and the tumor position can be well captured. Compared to the previous voxel-based CPU implementation of SMEIR, the proposed method is about 157 times faster for reconstructing a 10 -phase 4D-CBCT with dimension 256×256×150. Conclusion: The GPU-based parallel 4D CBCT reconstruction method uses the feature-based mesh for estimating motion model and demonstrates equivalent image Result with previous voxel-based SMEIR approach, with significantly improved computational speed

  16. In-vitro examination of the biocompatibility of fibroblast cell lines on alloplastic meshes and sterilized polyester mosquito mesh.

    Science.gov (United States)

    Wiessner, R; Kleber, T; Ekwelle, N; Ludwig, K; Richter, D-U

    2017-06-01

    The use of alloplastic implants for tissue strengthening when treating hernias is an established therapy worldwide. Despite the high incidence of hernias in Africa and Asia, the implantation of costly mesh netting is not financially feasible. Because of that various investigative groups have examined the use of sterilized mosquito netting. The animal experiments as well as the clinical trials have both shown equivalent short- and long-term results. The goal of this paper is the comparison of biocompatibility of human fibroblasts on the established commercially available nets and on sterilized polyester mosquito mesh over a period of 12 weeks. Three commercially available plastic mesh types and a gas-sterilized mosquito polyethylenterephtalate (polyester) mesh were examined. Human fibroblasts from subcutaneous healthy tissue were used. Various tests for evaluating the growth behavior and the cell morphology of human fibroblasts were conducted. The semi-quantitative (light microscopy) and qualitative (scanning electron microscopy) analyses were performed after 1 week and then again after 12 weeks. The cell proliferation and cytotoxicity of the implants were investigated with the help of the 5'-bromo-2'-deoxyuridine (BrdU)-cell proliferation test and the LDH-cytotoxicity test. The number of live cells per ml was determined with the Bürker counting chamber. In addition, analyses were made of the cell metabolism (oxidative stress) by measuring the pH value, hydrogen peroxide, and glycolysis. After 12 weeks, a proliferation of fibroblasts on all mesh is documented. No mesh showed a complete apoptosis of the cells. This qualitative observation could be confirmed quantitatively in a biochemical assay by marking the proliferating cells with BrdU. The biochemical analysis brought the proof that the materials used, including the polyester of the mosquito mesh, are not cytotoxic for the fibroblasts. The vitality of the cells was between 94 and 98%. The glucose metabolism

  17. Accurate Calculation of Fringe Fields in the LHC Main Dipoles

    CERN Document Server

    Kurz, S; Siegel, N

    2000-01-01

    The ROXIE program developed at CERN for the design and optimization of the superconducting LHC magnets has been recently extended in a collaboration with the University of Stuttgart, Germany, with a field computation method based on the coupling between the boundary element (BEM) and the finite element (FEM) technique. This avoids the meshing of the coils and the air regions, and avoids the artificial far field boundary conditions. The method is therefore specially suited for the accurate calculation of fields in the superconducting magnets in which the field is dominated by the coil. We will present the fringe field calculations in both 2d and 3d geometries to evaluate the effect of connections and the cryostat on the field quality and the flux density to which auxiliary bus-bars are exposed.

  18. A New Multiscale Technique for Time-Accurate Geophysics Simulations

    Science.gov (United States)

    Omelchenko, Y. A.; Karimabadi, H.

    2006-12-01

    Large-scale geophysics systems are frequently described by multiscale reactive flow models (e.g., wildfire and climate models, multiphase flows in porous rocks, etc.). Accurate and robust simulations of such systems by traditional time-stepping techniques face a formidable computational challenge. Explicit time integration suffers from global (CFL and accuracy) timestep restrictions due to inhomogeneous convective and diffusion processes, as well as closely coupled physical and chemical reactions. Application of adaptive mesh refinement (AMR) to such systems may not be always sufficient since its success critically depends on a careful choice of domain refinement strategy. On the other hand, implicit and timestep-splitting integrations may result in a considerable loss of accuracy when fast transients in the solution become important. To address this issue, we developed an alternative explicit approach to time-accurate integration of such systems: Discrete-Event Simulation (DES). DES enables asynchronous computation by automatically adjusting the CPU resources in accordance with local timescales. This is done by encapsulating flux- conservative updates of numerical variables in the form of events, whose execution and synchronization is explicitly controlled by imposing accuracy and causality constraints. As a result, at each time step DES self- adaptively updates only a fraction of the global system state, which eliminates unnecessary computation of inactive elements. DES can be naturally combined with various mesh generation techniques. The event-driven paradigm results in robust and fast simulation codes, which can be efficiently parallelized via a new preemptive event processing (PEP) technique. We discuss applications of this novel technology to time-dependent diffusion-advection-reaction and CFD models representative of various geophysics applications.

  19. When Is Network Lasso Accurate?

    Directory of Open Access Journals (Sweden)

    Alexander Jung

    2018-01-01

    Full Text Available The “least absolute shrinkage and selection operator” (Lasso method has been adapted recently for network-structured datasets. In particular, this network Lasso method allows to learn graph signals from a small number of noisy signal samples by using the total variation of a graph signal for regularization. While efficient and scalable implementations of the network Lasso are available, only little is known about the conditions on the underlying network structure which ensure network Lasso to be accurate. By leveraging concepts of compressed sensing, we address this gap and derive precise conditions on the underlying network topology and sampling set which guarantee the network Lasso for a particular loss function to deliver an accurate estimate of the entire underlying graph signal. We also quantify the error incurred by network Lasso in terms of two constants which reflect the connectivity of the sampled nodes.

  20. Male infertility after mesh hernia repair: A prospective study.

    Science.gov (United States)

    Hallén, Magnus; Sandblom, Gabriel; Nordin, Pär; Gunnarsson, Ulf; Kvist, Ulrik; Westerdahl, Johan

    2011-02-01

    Several animal studies have raised concern about the risk for obstructive azoospermia owing to vasal fibrosis caused by the use of alloplastic mesh prosthesis in inguinal hernia repair. The aim of this study was to determine the prevalence of male infertility after bilateral mesh repair. In a prospective study, a questionnaire inquiring about involuntary childlessness, investigation for infertility and number of children was sent by mail to a group of 376 men aged 18-55 years, who had undergone bilateral mesh repair, identified in the Swedish Hernia Register (SHR). Questionnaires were also sent to 2 control groups, 1 consisting of 186 men from the SHR who had undergone bilateral repair without mesh, and 1 consisting of 383 men identified in the general population. The control group from the SHR was matched 2:1 for age and years elapsed since operation. The control group from the general population was matched 1:1 for age and marital status. The overall response rate was 525 of 945 (56%). Method of approach (anterior or posterior), type of mesh, and testicular status at the time of the repair had no significant impact on the answers to the questions. Nor did subgroup analysis of the men ≤40 years old reveal any significant differences. The results of this prospective study in men do not support the hypothesis that bilateral inguinal hernia repair with alloplastic mesh prosthesis causes male infertility at a significantly greater rate than those operated without mesh. Copyright © 2011 Mosby, Inc. All rights reserved.

  1. Does Attorney Advertising Influence Patient Perceptions of Pelvic Mesh?

    Science.gov (United States)

    Tippett, Elizabeth; King, Jesse; Lucent, Vincent; Ephraim, Sonya; Murphy, Miles; Taff, Eileen

    2018-01-01

    To measure the relative influence of attorney advertising on patient perceptions of pelvic mesh compared with a history of surgery and a first urology visit. A 52-item survey was administered to 170 female patients in 2 urology offices between 2014 and 2016. Multiple survey items were combined to form scales for benefit and risk perceptions of pelvic mesh, perceptions of the advertising, attitudes toward pelvic mesh, and knowledge of pelvic mesh and underlying medical conditions. Data were analyzed using hierarchical linear regression models. Exposure to attorney advertising was quite high; 88% reported seeing a mesh-related attorney advertisement in the last 6 months. Over half of patients reported seeing attorney advertisements more than once per week. A history of prior mesh implant surgery was the strongest predictor of benefit and risk perceptions of pelvic mesh. Exposure to attorney advertising was associated with higher risk perceptions but did not significantly affect perceptions of benefits. Past urologist visits increased perceptions of benefits but had no effect on risk perceptions. Attorney advertising appears to have some influence on risk perceptions, but personal experience and discussions with a urogynecologist or urologist also influence patient perceptions. Implications, limitations, and future research are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Selective laser vaporization of polypropylene sutures and mesh

    Science.gov (United States)

    Burks, David; Rosenbury, Sarah B.; Kennelly, Michael J.; Fried, Nathaniel M.

    2012-02-01

    Complications from polypropylene mesh after surgery for female stress urinary incontinence (SUI) may require tedious surgical revision and removal of mesh materials with risk of damage to healthy adjacent tissue. This study explores selective laser vaporization of polypropylene suture/mesh materials commonly used in SUI. A compact, 7 Watt, 647-nm, red diode laser was operated with a radiant exposure of 81 J/cm2, pulse duration of 100 ms, and 1.0-mm-diameter laser spot. The 647-nm wavelength was selected because its absorption by water, hemoglobin, and other major tissue chromophores is low, while polypropylene absorption is high. Laser vaporization of ~200-μm-diameter polypropylene suture/mesh strands, in contact with fresh urinary tissue samples, ex vivo, was performed. Non-contact temperature mapping of the suture/mesh samples with a thermal camera was also conducted. Photoselective vaporization of polypropylene suture and mesh using a single laser pulse was achieved with peak temperatures of 180 and 232 °C, respectively. In control (safety) studies, direct laser irradiation of tissue alone resulted in only a 1 °C temperature increase. Selective laser vaporization of polypropylene suture/mesh materials is feasible without significant thermal damage to tissue. This technique may be useful for SUI procedures requiring surgical revision.

  3. A Survey of Solver-Related Geometry and Meshing Issues

    Science.gov (United States)

    Masters, James; Daniel, Derick; Gudenkauf, Jared; Hine, David; Sideroff, Chris

    2016-01-01

    There is a concern in the computational fluid dynamics community that mesh generation is a significant bottleneck in the CFD workflow. This is one of several papers that will help set the stage for a moderated panel discussion addressing this issue. Although certain general "rules of thumb" and a priori mesh metrics can be used to ensure that some base level of mesh quality is achieved, inadequate consideration is often given to the type of solver or particular flow regime on which the mesh will be utilized. This paper explores how an analyst may want to think differently about a mesh based on considerations such as if a flow is compressible vs. incompressible or hypersonic vs. subsonic or if the solver is node-centered vs. cell-centered. This paper is a high-level investigation intended to provide general insight into how considering the nature of the solver or flow when performing mesh generation has the potential to increase the accuracy and/or robustness of the solution and drive the mesh generation process to a state where it is no longer a hindrance to the analysis process.

  4. Design Investigation on Applicable Mesh Structures for Medical Stent Applications

    Science.gov (United States)

    Asano, Shoji; He, Jianmei

    2017-11-01

    In recent years, utilization of medical stents is one of effective treatments for stenosis and occlusion occurring in a living body’s lumen indispensable for maintenance of human life such as superficial femoral artery (SFA) occlusion. However, there are concerns about the occurrence of fatigue fractures caused by stress concentrations, neointimal hyperplasia and the like due to the shape structure and the manufacturing method in the conventional stents, and a stent having high strength and high flexibility is required. Therefore, in this research, applicable mesh structures for medical stents based on the design concepts of high strength, high flexibility are interested to solve various problem of conventional stent. According to the shape and dimensions of SFA occlusion therapy stent and indwelling delivery catheter, shape design of the meshed stent are performed using 3-dimensional CAD software Solid Works first. Then analytical examination on storage characteristics and compression characteristics of such mesh structure applied stent models were carried out through finite element analysis software ANSYS Workbench. Meshed stent models with higher strength and higher flexibility with integral molding are investigated analytically. It was found that the storage characteristics and compression characteristics of meshed stent modles are highly dependent on the basic mesh shapes with same surface void ratio. Trade-off relationship between flexibility and storage characteristics is found exited, it is required to provide appropriate curvatures during basic mesh shape design.

  5. Finite element simulation of impact response of wire mesh screens

    Directory of Open Access Journals (Sweden)

    Wang Caizheng

    2015-01-01

    Full Text Available In this paper, the response of wire mesh screens to low velocity impact with blunt objects is investigated using finite element (FE simulation. The woven wire mesh is modelled with homogeneous shell elements with equivalent smeared mechanical properties. The mechanical behaviour of the woven wire mesh was determined experimentally with tensile tests on steel wire mesh coupons to generate the data for the smeared shell material used in the FE. The effects of impacts with a low mass (4 kg and a large mass (40 kg providing the same impact energy are studied. The joint between the wire mesh screen and the aluminium frame surrounding it is modelled using contact elements with friction between the corresponding elements. Damage to the screen of different types compromising its structural integrity, such as mesh separation and pulling out from the surrounding frame is modelled. The FE simulation is validated with results of impact tests conducted on woven steel wire screen meshes.

  6. The Accurate Particle Tracer Code

    OpenAIRE

    Wang, Yulei; Liu, Jian; Qin, Hong; Yu, Zhi

    2016-01-01

    The Accurate Particle Tracer (APT) code is designed for large-scale particle simulations on dynamical systems. Based on a large variety of advanced geometric algorithms, APT possesses long-term numerical accuracy and stability, which are critical for solving multi-scale and non-linear problems. Under the well-designed integrated and modularized framework, APT serves as a universal platform for researchers from different fields, such as plasma physics, accelerator physics, space science, fusio...

  7. Accurate x-ray spectroscopy

    International Nuclear Information System (INIS)

    Deslattes, R.D.

    1987-01-01

    Heavy ion accelerators are the most flexible and readily accessible sources of highly charged ions. These having only one or two remaining electrons have spectra whose accurate measurement is of considerable theoretical significance. Certain features of ion production by accelerators tend to limit the accuracy which can be realized in measurement of these spectra. This report aims to provide background about spectroscopic limitations and discuss how accelerator operations may be selected to permit attaining intrinsically limited data

  8. 3D Tensorial Elastodynamics for Isotropic Media on Vertically Deformed Meshes

    Science.gov (United States)

    Shragge, J. C.

    2017-12-01

    Solutions of the 3D elastodynamic wave equation are sometimes required in industrial and academic applications of elastic reverse-time migration (E-RTM) and full waveform inversion (E-FWI) that involve vertically deformed meshes. Examples include incorporating irregular free-surface topography and handling internal boundaries (e.g., water bottom) directly into the computational meshes. In 3D E-RTM and E-FWI applications, the number of forward modeling simulations can number in the tens of thousands (per iteration), which necessitates the development of stable, accurate and efficient 3D elastodynamics solvers. For topographic scenarios, most finite-difference solution approaches use a change-of-variable strategy that has a number of associated computational challenges, including difficulties in handling of the free-surface boundary condition. In this study, I follow a tensorial approach and use a generalized family of analytic transforms to develop a set of analytic equations for 3D elastodynamics that directly incorporates vertical grid deformations. Importantly, this analytic approach allows for the specification of an analytic free-surface boundary condition appropriate for vertically deformed meshes. These equations are both straightforward and efficient to solve using a velocity-stress formulation with finite-difference (MFD) operators implemented on a fully staggered grid. Moreover, I demonstrate that the use of mimetic finite difference (MFD) methods allows stable, accurate, and efficient numerical solutions to be simulated for typical topographic scenarios. Examples demonstrate that high-quality elastic wavefields can be generated for topographic surfaces exhibiting significant topographic relief.

  9. Challenging the Myth: Transvaginal Mesh is Not Associated with Carcinogenesis.

    Science.gov (United States)

    Chughtai, Bilal; Sedrakyan, Art; Mao, Jialin; Thomas, Dominique; Eilber, Karyn S; Clemens, J Quentin; Anger, Jennifer T

    2017-10-01

    We sought to determine if there was a potential link between synthetic polypropylene mesh implantation for transvaginal pelvic organ prolapse and stress urinary incontinence, and carcinogenesis using statewide administrative data. Women who underwent transvaginal surgery for pelvic organ prolapse or stress urinary incontinence with mesh between January 2008 and December 2009 in New York State were identified using ICD-9-CM procedure codes and CPT-4 codes. Patients in the mesh cohort were individually matched to 2 control cohorts based on comorbidities and procedure date. Carcinogenesis was determined before and after matching at 1, 2 and 3 years, and during the entire followup time. A total of 2,229 patients who underwent mesh based pelvic organ prolapse surgery and 10,401 who underwent sling surgery for stress urinary incontinence between January 2008 and December 2009 were included in the study. Mean followup was 6 years (range 5 to 7). Exact matching between the mesh and control cohorts resulted in 1,870 pairs for pelvic organ prolapse mesh and cholecystectomy (1:2), 1,278 pairs for pelvic organ prolapse mesh and hysterectomy (1:1), 7,986 pairs for sling and cholecystectomy (1:1) and 3,810 pairs for sling and hysterectomy (1:1). Transvaginal mesh implantation was not associated with an increased risk of a cancer diagnosis (pelvic/local cancers or any cancer) at 1 year and during the entire followup of up to 7 years. Transvaginal surgery with implantation of mesh was not associated with the development of malignancy at a mean followup of 6 years. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. Surgeon Experience and Complications of Transvaginal Prolapse Mesh.

    Science.gov (United States)

    Kelly, Erin C; Winick-Ng, Jennifer; Welk, Blayne

    2016-07-01

    To measure the proportion of women with transvaginal prolapse mesh complications and their association with surgeon volume. We conducted a retrospective, population-based cohort study of all women who underwent a mesh-based prolapse procedure using administrative data (hospital procedure and physician billing records) between 2002 and 2013 in Ontario, Canada. The primary outcome was surgical revision of the mesh. Primary exposure was surgeon volume: high (greater than the 75th percentile, requiring a median of five [interquartile range 5-6] procedures per year) and very high (greater than the 90th percentile, requiring a median of 13 [interquartile range 11-14] procedures per year) volume mesh implanters were identified each year. Primary analysis was an adjusted Cox proportional hazards model. A total of 5,488 women underwent mesh implantation by 1 of 368 unique surgeons. Median follow-up time was 5.4 (interquartile range 3.0-8.0) years. We found that 218 women (4.0%) underwent mesh reoperation a median of 1.17 (interquartile range 0.58-2.90) years after implantation. The hazard of reoperation for complications was only lower for patients of very high-volume surgeons (3.0% [145/3,001] compared with 4.8% [73/2,447], adjusted hazards ratio 0.59, 95% confidence interval 0.40-0.86). In multivariable modeling, younger age, concomitant hysterectomy, blood transfusion, and increased medical comorbidity were all associated with vaginal mesh reoperation. Approximately 5% of women who underwent mesh-based prolapse surgery required reoperation for a mesh complication within 10 years. The risk of reoperation was lowest for surgeons performing 14 or more procedures per year.

  11. r-Adaptive mesh generation for shell finite element analysis

    International Nuclear Information System (INIS)

    Cho, Maenghyo; Jun, Seongki

    2004-01-01

    An r-adaptive method or moving grid technique relocates a grid so that it becomes concentrated in the desired region. This concentration improves the accuracy and efficiency of finite element solutions. We apply the r-adaptive method to computational mesh of shell surfaces, which is initially regular and uniform. The r-adaptive method, given by Liao and Anderson [Appl. Anal. 44 (1992) 285], aggregate the grid in the region with a relatively high weight function without any grid-tangling. The stress error estimator is calculated in the initial uniform mesh for a weight function. However, since the r-adaptive method is a method that moves the grid, shell surface geometry error such as curvature error and mesh distortion error will increase. Therefore, to represent the exact geometry of a shell surface and to prevent surface geometric errors, we use the Naghdi's shell theory and express the shell surface by a B-spline patch. In addition, using a nine-node element, which is relatively less sensitive to mesh distortion, we try to diminish mesh distortion error in the application of an r-adaptive method. In the numerical examples, it is shown that the values of the error estimator for a cylinder, hemisphere, and torus in the overall domain can be reduced effectively by using the mesh generated by the r-adaptive method. Also, the reductions of the estimated relative errors are demonstrated in the numerical examples. In particular, a new functional is proposed to construct an adjusted mesh configuration by considering a mesh distortion measure as well as the stress error function. The proposed weight function provides a reliable mesh adaptation method after a parameter value in the weight function is properly chosen

  12. A novel 3D shape descriptor for automatic retrieval of anatomical structures from medical images

    Science.gov (United States)

    Nunes, Fátima L. S.; Bergamasco, Leila C. C.; Delmondes, Pedro H.; Valverde, Miguel A. G.; Jackowski, Marcel P.

    2017-03-01

    Content-based image retrieval (CBIR) aims at retrieving from a database objects that are similar to an object provided by a query, by taking into consideration a set of extracted features. While CBIR has been widely applied in the two-dimensional image domain, the retrieval of3D objects from medical image datasets using CBIR remains to be explored. In this context, the development of descriptors that can capture information specific to organs or structures is desirable. In this work, we focus on the retrieval of two anatomical structures commonly imaged by Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) techniques, the left ventricle of the heart and blood vessels. Towards this aim, we developed the Area-Distance Local Descriptor (ADLD), a novel 3D local shape descriptor that employs mesh geometry information, namely facet area and distance from centroid to surface, to identify shape changes. Because ADLD only considers surface meshes extracted from volumetric medical images, it substantially diminishes the amount of data to be analyzed. A 90% precision rate was obtained when retrieving both convex (left ventricle) and non-convex structures (blood vessels), allowing for detection of abnormalities associated with changes in shape. Thus, ADLD has the potential to aid in the diagnosis of a wide range of vascular and cardiac diseases.

  13. Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers

    Science.gov (United States)

    Balsara, Dinshaw S.; Dumbser, Michael

    2015-10-01

    Several advances have been reported in the recent literature on divergence-free finite volume schemes for Magnetohydrodynamics (MHD). Almost all of these advances are restricted to structured meshes. To retain full geometric versatility, however, it is also very important to make analogous advances in divergence-free schemes for MHD on unstructured meshes. Such schemes utilize a staggered Yee-type mesh, where all hydrodynamic quantities (mass, momentum and energy density) are cell-centered, while the magnetic fields are face-centered and the electric fields, which are so useful for the time update of the magnetic field, are centered at the edges. Three important advances are brought together in this paper in order to make it possible to have high order accurate finite volume schemes for the MHD equations on unstructured meshes. First, it is shown that a divergence-free WENO reconstruction of the magnetic field can be developed for unstructured meshes in two and three space dimensions using a classical cell-centered WENO algorithm, without the need to do a WENO reconstruction for the magnetic field on the faces. This is achieved via a novel constrained L2-projection operator that is used in each time step as a postprocessor of the cell-centered WENO reconstruction so that the magnetic field becomes locally and globally divergence free. Second, it is shown that recently-developed genuinely multidimensional Riemann solvers (called MuSIC Riemann solvers) can be used on unstructured meshes to obtain a multidimensionally upwinded representation of the electric field at each edge. Third, the above two innovations work well together with a high order accurate one-step ADER time stepping strategy, which requires the divergence-free nonlinear WENO reconstruction procedure to be carried out only once per time step. The resulting divergence-free ADER-WENO schemes with MuSIC Riemann solvers give us an efficient and easily-implemented strategy for divergence-free MHD on

  14. FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: I. Development of the anatomy

    Science.gov (United States)

    Cassola, V. F.; de Melo Lima, V. J.; Kramer, R.; Khoury, H. J.

    2010-01-01

    Among computational models, voxel phantoms based on computer tomographic (CT), nuclear magnetic resonance (NMR) or colour photographic images of patients, volunteers or cadavers have become popular in recent years. Although being true to nature representations of scanned individuals, voxel phantoms have limitations, especially when walled organs have to be segmented or when volumes of organs or body tissues, like adipose, have to be changed. Additionally, the scanning of patients or volunteers is usually made in supine position, which causes a shift of internal organs towards the ribcage, a compression of the lungs and a reduction of the sagittal diameter especially in the abdominal region compared to the regular anatomy of a person in the upright position, which in turn can influence organ and tissue absorbed or equivalent dose estimates. This study applies tools developed recently in the areas of computer graphics and animated films to the creation and modelling of 3D human organs, tissues, skeletons and bodies based on polygon mesh surfaces. Female and male adult human phantoms, called FASH (Female Adult meSH) and MASH (Male Adult meSH), have been designed using software, such as MakeHuman, Blender, Binvox and ImageJ, based on anatomical atlases, observing at the same time organ masses recommended by the International Commission on Radiological Protection for the male and female reference adult in report no 89. 113 organs, bones and tissues have been modelled in the FASH and the MASH phantoms representing locations for adults in standing posture. Most organ and tissue masses of the voxelized versions agree with corresponding data from ICRP89 within a margin of 2.6%. Comparison with the mesh-based male RPI_AM and female RPI_AF phantoms shows differences with respect to the material used, to the software and concepts applied, and to the anatomies created.

  15. FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: I. Development of the anatomy

    International Nuclear Information System (INIS)

    Cassola, V F; Kramer, R; Khoury, H J; De Melo Lima, V J

    2010-01-01

    Among computational models, voxel phantoms based on computer tomographic (CT), nuclear magnetic resonance (NMR) or colour photographic images of patients, volunteers or cadavers have become popular in recent years. Although being true to nature representations of scanned individuals, voxel phantoms have limitations, especially when walled organs have to be segmented or when volumes of organs or body tissues, like adipose, have to be changed. Additionally, the scanning of patients or volunteers is usually made in supine position, which causes a shift of internal organs towards the ribcage, a compression of the lungs and a reduction of the sagittal diameter especially in the abdominal region compared to the regular anatomy of a person in the upright position, which in turn can influence organ and tissue absorbed or equivalent dose estimates. This study applies tools developed recently in the areas of computer graphics and animated films to the creation and modelling of 3D human organs, tissues, skeletons and bodies based on polygon mesh surfaces. Female and male adult human phantoms, called FASH (Female Adult meSH) and MASH (Male Adult meSH), have been designed using software, such as MakeHuman, Blender, Binvox and ImageJ, based on anatomical atlases, observing at the same time organ masses recommended by the International Commission on Radiological Protection for the male and female reference adult in report no 89. 113 organs, bones and tissues have been modelled in the FASH and the MASH phantoms representing locations for adults in standing posture. Most organ and tissue masses of the voxelized versions agree with corresponding data from ICRP89 within a margin of 2.6%. Comparison with the mesh-based male RPI A M and female RPI A F phantoms shows differences with respect to the material used, to the software and concepts applied, and to the anatomies created.

  16. Autoclaved Sand-Lime Products with a Polypropylene Mesh

    Science.gov (United States)

    Kostrzewa, Paulina; Stępień, Anna

    2017-10-01

    The paper presents the results of the research on modifications of silicate bricks with a polypropylene mesh and their influence on physical, mechanical and microstructural properties of such bricks. The main goal of the paper was to determine effects of the polypropylene mesh on sand-lime product parameters. The analysis has focused on compressive strength, water absorption, bulk density and structural features of the material. The obtained product is characterized by improved basic performance characteristics compared to traditional silicate products. Using the polypropylene mesh increased compressive strength by 25% while decreasing the product density. The modified products retain their form and do not disintegrate after losing their bearing capacity.

  17. Discrete Surface Evolution and Mesh Deformation for Aircraft Icing Applications

    Science.gov (United States)

    Thompson, David; Tong, Xiaoling; Arnoldus, Qiuhan; Collins, Eric; McLaurin, David; Luke, Edward; Bidwell, Colin S.

    2013-01-01

    Robust, automated mesh generation for problems with deforming geometries, such as ice accreting on aerodynamic surfaces, remains a challenging problem. Here we describe a technique to deform a discrete surface as it evolves due to the accretion of ice. The surface evolution algorithm is based on a smoothed, face-offsetting approach. We also describe a fast algebraic technique to propagate the computed surface deformations into the surrounding volume mesh while maintaining geometric mesh quality. Preliminary results presented here demonstrate the ecacy of the approach for a sphere with a prescribed accretion rate, a rime ice accretion, and a more complex glaze ice accretion.

  18. Expected Transmission Energy Route Metric for Wireless Mesh Senor Networks

    Directory of Open Access Journals (Sweden)

    YanLiang Jin

    2011-01-01

    Full Text Available Mesh is a network topology that achieves high throughput and stable intercommunication. With great potential, it is expected to be the key architecture of future networks. Wireless sensor networks are an active research area with numerous workshops and conferences arranged each year. The overall performance of a WSN highly depends on the energy consumption of the network. This paper designs a new routing metric for wireless mesh sensor networks. Results from simulation experiments reveal that the new metric algorithm improves the energy balance of the whole network and extends the lifetime of wireless mesh sensor networks (WMSNs.

  19. Procedure for the automatic mesh generation of innovative gear teeth

    Directory of Open Access Journals (Sweden)

    Radicella Andrea Chiaramonte

    2016-01-01

    Full Text Available After having described gear wheels with teeth having the two sides constituted by different involutes and their importance in engineering applications, we stress the need for an efficient procedure for the automatic mesh generation of innovative gear teeth. First, we describe the procedure for the subdivision of the tooth profile in the various possible cases, then we show the method for creating the subdivision mesh, defined by two series of curves called meridians and parallels. Finally, we describe how the above procedure for automatic mesh generation is able to solve specific cases that may arise when dealing with teeth having the two sides constituted by different involutes.

  20. Watermarking on 3D mesh based on spherical wavelet transform.

    Science.gov (United States)

    Jin, Jian-Qiu; Dai, Min-Ya; Bao, Hu-Jun; Peng, Qun-Sheng

    2004-03-01

    In this paper we propose a robust watermarking algorithm for 3D mesh. The algorithm is based on spherical wavelet transform. Our basic idea is to decompose the original mesh into a series of details at different scales by using spherical wavelet transform; the watermark is then embedded into the different levels of details. The embedding process includes: global sphere parameterization, spherical uniform sampling, spherical wavelet forward transform, embedding watermark, spherical wavelet inverse transform, and at last resampling the mesh watermarked to recover the topological connectivity of the original model. Experiments showed that our algorithm can improve the capacity of the watermark and the robustness of watermarking against attacks.

  1. Vertex Normals and Face Curvatures of Triangle Meshes

    KAUST Repository

    Sun, Xiang

    2016-08-12

    This study contributes to the discrete differential geometry of triangle meshes, in combination with discrete line congruences associated with such meshes. In particular we discuss when a congruence defined by linear interpolation of vertex normals deserves to be called a ʼnormal’ congruence. Our main results are a discussion of various definitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula.

  2. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand

    2011-12-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.

  3. Engagement of Metal Debris into a Gear Mesh

    Science.gov (United States)

    Handschuh, Robert F.; Krantz, Timothy L.

    2010-01-01

    A series of bench top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock, and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

  4. Use of mesh in laparoscopic paraesophageal hernia repair

    DEFF Research Database (Denmark)

    Müller-Stich, Beat P.; Kenngott, Hannes G.; Gondan, Matthias

    2015-01-01

    Introduction. Mesh augmentation seems to reduce recurrences following laparoscopic paraesophageal hernia repair (LPHR). However, there is an uncertain risk of mesh-associated complications. Risk-benefit analysis might solve the dilemma. Materials and Methods. A systematic literature search...... potential benefits of LMAH. All data regarding LMAH were used to estimate risk of mesh-associated complications. Risk-benefit analysis was performed using a Markov Monte Carlo decision-analytic model. Results. Meta-analysis of 3 RCTs and 9 OCSs including 915 patients revealed a significantly lower...

  5. Numerical convergence of discrete exterior calculus on arbitrary surface meshes

    KAUST Repository

    Mohamed, Mamdouh S.

    2018-02-13

    Discrete exterior calculus (DEC) is a structure-preserving numerical framework for partial differential equations solution, particularly suitable for simplicial meshes. A longstanding and widespread assumption has been that DEC requires special (Delaunay) triangulations, which complicated the mesh generation process especially for curved surfaces. This paper presents numerical evidence demonstrating that this restriction is unnecessary. Convergence experiments are carried out for various physical problems using both Delaunay and non-Delaunay triangulations. Signed diagonal definition for the key DEC operator (Hodge star) is adopted. The errors converge as expected for all considered meshes and experiments. This relieves the DEC paradigm from unnecessary triangulation limitation.

  6. Optical breast shape capture and finite-element mesh generation for electrical impedance tomography

    International Nuclear Information System (INIS)

    Forsyth, J; Borsic, A; Halter, R J; Hartov, A; Paulsen, K D

    2011-01-01

    X-ray mammography is the standard for breast cancer screening. The development of alternative imaging modalities is desirable because mammograms expose patients to ionizing radiation. Electrical impedance tomography (EIT) may be used to determine tissue conductivity, a property which is an indicator of cancer presence. EIT is also a low-cost imaging solution and does not involve ionizing radiation. In breast EIT, impedance measurements are made using electrodes placed on the surface of the patient's breast. The complex conductivity of the volume of the breast is estimated by a reconstruction algorithm. EIT reconstruction is a severely ill-posed inverse problem. As a result, noisy instrumentation and incorrect modelling of the electrodes and domain shape produce significant image artefacts. In this paper, we propose a method that has the potential to reduce these errors by accurately modelling the patient breast shape. A 3D hand-held optical scanner is used to acquire the breast geometry and electrode positions. We develop methods for processing the data from the scanner and producing volume meshes accurately matching the breast surface and electrode locations, which can be used for image reconstruction. We demonstrate this method for a plaster breast phantom and a human subject. Using this approach will allow patient-specific finite-element meshes to be generated which has the potential to improve the clinical value of EIT for breast cancer diagnosis

  7. Anatomically corrected transposition of great vessels

    International Nuclear Information System (INIS)

    Ivanitskij, A.V.; Sarkisova, T.N.

    1989-01-01

    The paper is concerned with the description of rare congenital heart disease: anatomically corrected malposition of major vessels in a 9-mos 24 day old girl. The diagnosis of this disease was shown on the results of angiocardiography, concomitant congenital heart diseases were descibed. This abnormality is characterized by common atrioventricular and ventriculovascular joints and inversion position of the major vessels, it is always attended by congenital heart diseases. Surgical intervention is aimed at the elimination of concomitant heart dieseases

  8. Analytical reconstruction schemes for coarse-mesh spectral nodal solution of slab-geometry SN transport problems

    International Nuclear Information System (INIS)

    Barros, R. C.; Filho, H. A.; Platt, G. M.; Oliveira, F. B. S.; Militao, D. S.

    2009-01-01

    Coarse-mesh numerical methods are very efficient in the sense that they generate accurate results in short computational time, as the number of floating point operations generally decrease, as a result of the reduced number of mesh points. On the other hand, they generate numerical solutions that do not give detailed information on the problem solution profile, as the grid points can be located considerably away from each other. In this paper we describe two analytical reconstruction schemes for the coarse-mesh solution generated by the spectral nodal method for neutral particle discrete ordinates (S N ) transport model in slab geometry. The first scheme we describe is based on the analytical reconstruction of the coarse-mesh solution within each discretization cell of the spatial grid set up on the slab. The second scheme is based on the angular reconstruction of the discrete ordinates solution between two contiguous ordinates of the angular quadrature set used in the S N model. Numerical results are given so we can illustrate the accuracy of the two reconstruction schemes, as described in this paper. (authors)

  9. Characterization of the mechanism of drug-drug interactions from PubMed using MeSH terms.

    Science.gov (United States)

    Lu, Yin; Figler, Bryan; Huang, Hong; Tu, Yi-Cheng; Wang, Ju; Cheng, Feng

    2017-01-01

    Identifying drug-drug interaction (DDI) is an important topic for the development of safe pharmaceutical drugs and for the optimization of multidrug regimens for complex diseases such as cancer and HIV. There have been about 150,000 publications on DDIs in PubMed, which is a great resource for DDI studies. In this paper, we introduced an automatic computational method for the systematic analysis of the mechanism of DDIs using MeSH (Medical Subject Headings) terms from PubMed literature. MeSH term is a controlled vocabulary thesaurus developed by the National Library of Medicine for indexing and annotating articles. Our method can effectively identify DDI-relevant MeSH terms such as drugs, proteins and phenomena with high accuracy. The connections among these MeSH terms were investigated by using co-occurrence heatmaps and social network analysis. Our approach can be used to visualize relationships of DDI terms, which has the potential to help users better understand DDIs. As the volume of PubMed records increases, our method for automatic analysis of DDIs from the PubMed database will become more accurate.

  10. Characterization of the mechanism of drug-drug interactions from PubMed using MeSH terms.

    Directory of Open Access Journals (Sweden)

    Yin Lu

    Full Text Available Identifying drug-drug interaction (DDI is an important topic for the development of safe pharmaceutical drugs and for the optimization of multidrug regimens for complex diseases such as cancer and HIV. There have been about 150,000 publications on DDIs in PubMed, which is a great resource for DDI studies. In this paper, we introduced an automatic computational method for the systematic analysis of the mechanism of DDIs using MeSH (Medical Subject Headings terms from PubMed literature. MeSH term is a controlled vocabulary thesaurus developed by the National Library of Medicine for indexing and annotating articles. Our method can effectively identify DDI-relevant MeSH terms such as drugs, proteins and phenomena with high accuracy. The connections among these MeSH terms were investigated by using co-occurrence heatmaps and social network analysis. Our approach can be used to visualize relationships of DDI terms, which has the potential to help users better understand DDIs. As the volume of PubMed records increases, our method for automatic analysis of DDIs from the PubMed database will become more accurate.

  11. Fair packet scheduling in Wireless Mesh Networks

    KAUST Repository

    Nawab, Faisal

    2014-02-01

    In this paper we study the interactions of TCP and IEEE 802.11 MAC in Wireless Mesh Networks (WMNs). We use a Markov chain to capture the behavior of TCP sessions, particularly the impact on network throughput due to the effect of queue utilization and packet relaying. A closed form solution is derived to numerically determine the throughput. Based on the developed model, we propose a distributed MAC protocol called Timestamp-ordered MAC (TMAC), aiming to alleviate the unfairness problem in WMNs. TMAC extends CSMA/CA by scheduling data packets based on their age. Prior to transmitting a data packet, a transmitter broadcasts a request control message appended with a timestamp to a selected list of neighbors. It can proceed with the transmission only if it receives a sufficient number of grant control messages from these neighbors. A grant message indicates that the associated data packet has the lowest timestamp of all the packets pending transmission at the local transmit queue. We demonstrate that a loose ordering of timestamps among neighboring nodes is sufficient for enforcing local fairness, subsequently leading to flow rate fairness in a multi-hop WMN. We show that TMAC can be implemented using the control frames in IEEE 802.11, and thus can be easily integrated in existing 802.11-based WMNs. Our simulation results show that TMAC achieves excellent resource allocation fairness while maintaining over 90% of maximum link capacity across a large number of topologies.

  12. Exploring brain function from anatomical connectivity

    Directory of Open Access Journals (Sweden)

    Gorka eZamora-López

    2011-06-01

    Full Text Available The intrinsic relationship between the architecture of the brain and the range of sensory and behavioral phenomena it produces is a relevant question in neuroscience. Here, we review recent knowledge gained on the architecture of the anatomical connectivity by means of complex network analysis. It has been found that corticocortical networks display a few prominent characteristics: (i modular organization, (ii abundant alternative processing paths and (iii the presence of highly connected hubs. Additionally, we present a novel classification of cortical areas of the cat according to the role they play in multisensory connectivity. All these properties represent an ideal anatomical substrate supporting rich dynamical behaviors, as-well-as facilitating the capacity of the brain to process sensory information of different modalities segregated and to integrate them towards a comprehensive perception of the real world. The result here exposed are mainly based in anatomical data of cats’ brain, but we show how further observations suggest that, from worms to humans, the nervous system of all animals might share fundamental principles of organization.

  13. Anatomic variation of cranial parasympathetic ganglia

    Directory of Open Access Journals (Sweden)

    Selma Siéssere

    2008-06-01

    Full Text Available Having broad knowledge of anatomy is essential for practicing dentistry. Certain anatomical structures call for detailed studies due to their anatomical and functional importance. Nevertheless, some structures are difficult to visualize and identify due to their small volume and complicated access. Such is the case of the parasympathetic ganglia located in the cranial part of the autonomic nervous system, which include: the ciliary ganglion (located deeply in the orbit, laterally to the optic nerve, the pterygopalatine ganglion (located in the pterygopalatine fossa, the submandibular ganglion (located laterally to the hyoglossus muscle, below the lingual nerve, and the otic ganglion (located medially to the mandibular nerve, right beneath the oval foramen. The aim of this study was to present these structures in dissected anatomic specimens and perform a comparative analysis regarding location and morphology. The proximity of the ganglia and associated nerves were also analyzed, as well as the number and volume of fibers connected to them. Human heads were dissected by planes, partially removing the adjacent structures to the point we could reach the parasympathetic ganglia. With this study, we concluded that there was no significant variation regarding the location of the studied ganglia. Morphologically, our observations concur with previous classical descriptions of the parasympathetic ganglia, but we observed variations regarding the proximity of the otic ganglion to the mandibular nerve. We also observed that there were variations regarding the number and volume of fiber bundles connected to the submandibular, otic, and pterygopalatine ganglia.

  14. Laryngeal spaces and lymphatics: current anatomic concepts

    International Nuclear Information System (INIS)

    Welsh, L.W.; Welsh, J.J.; Rizzo, T.A. Jr.

    1983-01-01

    This investigation evaluates the anatomic concepts of individual spaces or compartments within the larynx by isotope and dye diffusion. The authors identified continuity of spaces particularly within the submucosal planes and a relative isolation within the fixed structures resulting from the longitudinal pattern of fibroelastic tissues, muscle bands, and perichondrium. The historical data of anatomic resistance are refuted by the radioisotope patterns of dispersion and the histologic evidence of tissue permeability to the carbon particles. There is little clinical application of the compartment concept to the perimeter of growth and the configuration of extensive endolaryngeal cancers. The internal and extralaryngeal lymphatic network is presented and the regional associations are identified. The normal ipsilateral relationship is distorted by dispersion within the endolarynx supervening the anatomic midline. The effects of lymphatic obstruction caused by regional lymphadenectomy, tumor fixation, and irradiation-infection sequelae are illustrated; these result in widespread bilateral lymphatic nodal terminals. Finally, the evidence suggests that the internal network is modified by external interruption to accommodate an outflow system in continuity with the residual patent lymphatic channels

  15. Prevalence of anatomical variations in maxillary sinus using cone beam computed tomography

    Directory of Open Access Journals (Sweden)

    Deepjyoti K Mudgade

    2018-01-01

    Full Text Available Introduction: The maxillary sinuses (MS are of particular importance to dentist because of their close proximity to the teeth and their associated structures, so increased risk of maxillary sinusitis has been reported with periapical abscess, periodontal diseases, dental trauma, tooth extraction, and implant placement. Complications of MS are related to its anatomic and pathologic variations. Thus, study was conducted to assess the prevalence of anatomic variations in MS by using cone-beam computerized tomography (CBCT. Aims and Objectives: To determine different anatomical variations in MS by using CBCT. Materials and Methods: CBCT scans of 150 subjects were collected between the age group of 18 years to 70 years and were analyzed for MS anatomical variation. Statistical Analysis: The distribution of age, sex, reasons for CBCT, and dimensions of sinus calculated using descriptive statistics and distribution of other anatomic findings using Chi-square test. Results: Prevalence of obstructed ostium is 23.3% and septa is 66.7%. Average height, width, and antero-posterior (A-P dimensions for right MS are 34.13 mm, 26.09 mm, 37.39 mm and that of left MS are 33.24 mm, 26.11 mm, 37.72 mm respectively. Average distance between lower border of ostium to sinus floor in right MS is 32.17 mm and that of left is 32.69 mm. Average diameter of ostium in right MS is 1.88 mm and that of left is 1.67 mm. Conclusion: Study highlights the importance of accurate assessment of MS and its variations in order to properly differentiate the pathologic lesions from anatomic variations avoiding unnecessary surgical explorations.

  16. [Establishment of A Clinical Prediction Model of Prolonged Air Leak 
after Anatomic Lung Resection].

    Science.gov (United States)

    Wu, Xianning; Xu, Shibin; Ke, Li; Fan, Jun; Wang, Jun; Xie, Mingran; Jiang, Xianliang; Xu, Meiqing

    2017-12-20

    Prolonged air leak (PAL) after anatomic lung resection is a common and challenging complication in thoracic surgery. No available clinical prediction model of PAL has been established in China. The aim of this study was to construct a model to identify patients at increased risk of PAL by using preoperative factors exclusively. We retrospectively reviewed clinical data and PAL occurrence of patients after anatomic lung resection, in department of thoracic surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, from January 2016 to October 2016. 359 patients were in group A, clinical data including age, body mass index (BMI), gender, smoking history, surgical methods, pulmonary function index, pleural adhesion, pathologic diagnosis, side and site of resected lung were analyzed. By using univariate and multivariate analysis, we found the independent predictors of PAL after anatomic lung resection and subsequently established a clinical prediction model. Then, another 112 patients (group B), who underwent anatomic lung resection in different time by different team, were chosen to verify the accuracy of the prediction model. Receiver-operating characteristic (ROC) curve was constructed using the prediction model. Multivariate Logistic regression analysis was used to identify six clinical characteristics [BMI, gender, smoking history, forced expiratory volume in one second to forced vital capacity ratio (FEV1%), pleural adhesion, site of resection] as independent predictors of PAL after anatomic lung resection. The area under the ROC curve for our model was 0.886 (95%CI: 0.835-0.937). The best predictive P value was 0.299 with sensitivity of 78.5% and specificity of 93.2%. Our prediction model could accurately identify occurrence risk of PAL in patients after anatomic lung resection, which might allow for more effective use of intraoperative prophylactic strategies.
.

  17. Accurate determination of antenna directivity

    DEFF Research Database (Denmark)

    Dich, Mikael

    1997-01-01

    The derivation of a formula for accurate estimation of the total radiated power from a transmitting antenna for which the radiated power density is known in a finite number of points on the far-field sphere is presented. The main application of the formula is determination of directivity from power......-pattern measurements. The derivation is based on the theory of spherical wave expansion of electromagnetic fields, which also establishes a simple criterion for the required number of samples of the power density. An array antenna consisting of Hertzian dipoles is used to test the accuracy and rate of convergence...

  18. Kinetic mesh-free method for flutter prediction in turbomachines

    Indian Academy of Sciences (India)

    Mesh-free kinetic upwind scheme; unsteady flows; modified CIR splitting ... scheme for solving the inviscid compressible Euler equations of gas ..... typically carried out for about five cycles in which the periodic behaviour of the flow is captured.

  19. Inductive Cross Shaped Metal Meshes in Silicon Substrate

    National Research Council Canada - National Science Library

    Sternberg, O; Moller, K. D; Grebel, H; Stewart, K. P; Henry, R. M

    2002-01-01

    .... The Micro-Stripes program was used for the calculation of resonance wavelength and width of resonance of cross shaped metal meshes and best- fit formulas were developed for the presentation of the data...

  20. Numerical convergence of discrete exterior calculus on arbitrary surface meshes

    KAUST Repository

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2018-01-01

    Discrete exterior calculus (DEC) is a structure-preserving numerical framework for partial differential equations solution, particularly suitable for simplicial meshes. A longstanding and widespread assumption has been that DEC requires special

  1. Dynamic power control for wireless backbone mesh networks: a survey

    CSIR Research Space (South Africa)

    Olwal, TO

    2010-01-01

    Full Text Available points of failures, and robust against RF interference, obstacles or power outage. This is because WMRs forming wireless backbone mesh networks (WBMNs) are built on advanced physical technologies. Such nodes perform both accessing and forwarding...

  2. Form-finding with polyhedral meshes made simple

    KAUST Repository

    Tang, Chengcheng; Sun, Xiang; Gomes, Maria Alexandra; Wallner, Johannes; Pottmann, Helmut

    2014-01-01

    We solve the form-finding problem for polyhedral meshes in a way which combines form, function and fabrication; taking care of user-specified constraints like boundary interpolation, planarity of faces, statics, panel size and shape, enclosed volume, and last, but not least, cost. Our main application is the interactive modeling of meshes for architectural and industrial design. Our approach can be described as guided exploration of the constraint space whose algebraic structure is simplified by introducing auxiliary variables and ensuring that constraints are at most quadratic. Computationally, we perform a projection onto the constraint space which is biased towards low values of an energy which expresses desirable "soft" properties like fairness. We have created a tool which elegantly handles difficult tasks, such as taking boundary-alignment of polyhedral meshes into account, planarization, fairing under planarity side conditions, handling hybrid meshes, and extending the treatment of static equilibrium to shapes which possess overhanging parts.

  3. Ordering schemes for parallel processing of certain mesh problems

    International Nuclear Information System (INIS)

    O'Leary, D.

    1984-01-01

    In this work, some ordering schemes for mesh points are presented which enable algorithms such as the Gauss-Seidel or SOR iteration to be performed efficiently for the nine-point operator finite difference method on computers consisting of a two-dimensional grid of processors. Convergence results are presented for the discretization of u /SUB xx/ + u /SUB yy/ on a uniform mesh over a square, showing that the spectral radius of the iteration for these orderings is no worse than that for the standard row by row ordering of mesh points. Further applications of these mesh point orderings to network problems, more general finite difference operators, and picture processing problems are noted

  4. Metal Mesh Filters for Terahertz Receivers, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The technical objective of this SBIR program is to develop and demonstrate metal mesh filters for use in NASA's low noise receivers for terahertz astronomy and...

  5. Form-finding with polyhedral meshes made simple

    KAUST Repository

    Tang, Chengcheng

    2014-07-27

    We solve the form-finding problem for polyhedral meshes in a way which combines form, function and fabrication; taking care of user-specified constraints like boundary interpolation, planarity of faces, statics, panel size and shape, enclosed volume, and last, but not least, cost. Our main application is the interactive modeling of meshes for architectural and industrial design. Our approach can be described as guided exploration of the constraint space whose algebraic structure is simplified by introducing auxiliary variables and ensuring that constraints are at most quadratic. Computationally, we perform a projection onto the constraint space which is biased towards low values of an energy which expresses desirable "soft" properties like fairness. We have created a tool which elegantly handles difficult tasks, such as taking boundary-alignment of polyhedral meshes into account, planarization, fairing under planarity side conditions, handling hybrid meshes, and extending the treatment of static equilibrium to shapes which possess overhanging parts.

  6. Comparative Study of Different Gill Net Mesh Sizes in the ...

    African Journals Online (AJOL)

    Bioline

    component weighting) in the catch, which were favoured by the bigger mesh sizes (70mm). ... METHODS ... fishes from each ice chest were identified using the ..... feeding habits), and population (abundance) (RPI ... biomass per unit effort.

  7. Application-specific mesh-based heterogeneous FPGA architectures

    CERN Document Server

    Parvez, Husain

    2011-01-01

    This volume presents a new exploration environment for mesh-based, heterogeneous FPGA architectures. Readers will find a description of state-of-the-art techniques for reducing area requirements, which both increase performance and enable power reduction.

  8. Trajectory Optimization Based on Multi-Interval Mesh Refinement Method

    Directory of Open Access Journals (Sweden)

    Ningbo Li

    2017-01-01

    Full Text Available In order to improve the optimization accuracy and convergence rate for trajectory optimization of the air-to-air missile, a multi-interval mesh refinement Radau pseudospectral method was introduced. This method made the mesh endpoints converge to the practical nonsmooth points and decreased the overall collocation points to improve convergence rate and computational efficiency. The trajectory was divided into four phases according to the working time of engine and handover of midcourse and terminal guidance, and then the optimization model was built. The multi-interval mesh refinement Radau pseudospectral method with different collocation points in each mesh interval was used to solve the trajectory optimization model. Moreover, this method was compared with traditional h method. Simulation results show that this method can decrease the dimensionality of nonlinear programming (NLP problem and therefore improve the efficiency of pseudospectral methods for solving trajectory optimization problems.

  9. Constructing C1 Continuous Surface on Irregular Quad Meshes

    Institute of Scientific and Technical Information of China (English)

    HE Jun; GUO Qiang

    2013-01-01

    A new method is proposed for surface construction on irregular quad meshes as extensions to uniform B-spline surfaces. Given a number of control points, which form a regular or irregular quad mesh, a weight function is constructed for each control point. The weight function is defined on a local domain and is C1 continuous. Then the whole surface is constructed by the weighted combination of all the control points. The property of the new method is that the surface is defined by piecewise C1 bi-cubic rational parametric polynomial with each quad face. It is an extension to uniform B-spline surfaces in the sense that its definition is an analogy of the B-spline surface, and it produces a uniform bi-cubic B-spline surface if the control mesh is a regular quad mesh. Examples produced by the new method are also included.

  10. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand; Alliez, Pierre; Morvan, Jean-Marie

    2011-01-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse

  11. The use of mesh implants in vaginal prolapse surgery: Position ...

    African Journals Online (AJOL)

    sponsored training have also played a role in the adoption of these new techniques. .... surface area and weight of type 1 polypropylene mesh used in different kits, make ... such as bladder and rectal injury, and further recurrence. Realistic.

  12. Coarse-mesh rebalancing acceleration for eigenvalue problems

    International Nuclear Information System (INIS)

    Asaoka, T.; Nakahara, Y.; Miyasaka, S.

    1974-01-01

    The coarse-mesh rebalance method is adopted for Monte Carlo schemes for aiming at accelerating the convergence of a source iteration process. At every completion of the Monte Carlo game for one batch of neutron histories, the scaling factor for the neutron flux is calculated to achieve the neutron balance in each coarse-mesh zone into which the total system is divided. This rebalance factor is multiplied to the weight of each fission source neutron in the coarse-mesh zone for playing the next Monte Carlo game. The numerical examples have shown that the coarse-mesh rebalance Monte Carlo calculation gives a good estimate of the eigenvalue already after several batches with a negligible extra computer time compared to the standard Monte Carlo. 5 references. (U.S.)

  13. Design and Implementation of the MESH Services Platform

    NARCIS (Netherlands)

    Batteram, Harold J.; Bakker, John-Luc; Verhoosel, Jack P.C.; Diakov, N.K.

    1999-01-01

    Industry acceptance of TINA (Telecommunications Information Networking Architecture) will depend heavily on both the evaluation of working systems that implement this architecture, and on the experiences obtained during the design and implementation of these systems. During the MESH' (Multimedia

  14. The use of mesh implants in vaginal prolapse surgery: Position ...

    African Journals Online (AJOL)

    Abstract. This is the 2014 updated guideline and position statement from the South African Urogynaecology Association on the use of transvaginal mesh for the surgical correction of pelvic organ prolapse.

  15. Interoperable mesh and geometry tools for advanced petascale simulations

    International Nuclear Information System (INIS)

    Diachin, L; Bauer, A; Fix, B; Kraftcheck, J; Jansen, K; Luo, X; Miller, M; Ollivier-Gooch, C; Shephard, M S; Tautges, T; Trease, H

    2007-01-01

    SciDAC applications have a demonstrated need for advanced software tools to manage the complexities associated with sophisticated geometry, mesh, and field manipulation tasks, particularly as computer architectures move toward the petascale. The Center for Interoperable Technologies for Advanced Petascale Simulations (ITAPS) will deliver interoperable and interchangeable mesh, geometry, and field manipulation services that are of direct use to SciDAC applications. The premise of our technology development goal is to provide such services as libraries that can be used with minimal intrusion into application codes. To develop these technologies, we focus on defining a common data model and data-structure neutral interfaces that unify a number of different services such as mesh generation and improvement, front tracking, adaptive mesh refinement, shape optimization, and solution transfer operations. We highlight the use of several ITAPS services in SciDAC applications

  16. Kinetic mesh-free method for flutter prediction in turbomachines

    Indian Academy of Sciences (India)

    -based mesh-free method for unsteady flows. ... Council for Scientific and Industrial Research, National Aerospace Laboratories, Computational and Theoretical Fluid Dynamics Division, Bangalore 560 017, India; Engineering Mechanics Unit, ...

  17. Finite element meshing approached as a global minimization process

    Energy Technology Data Exchange (ETDEWEB)

    WITKOWSKI,WALTER R.; JUNG,JOSEPH; DOHRMANN,CLARK R.; LEUNG,VITUS J.

    2000-03-01

    The ability to generate a suitable finite element mesh in an automatic fashion is becoming the key to being able to automate the entire engineering analysis process. However, placing an all-hexahedron mesh in a general three-dimensional body continues to be an elusive goal. The approach investigated in this research is fundamentally different from any other that is known of by the authors. A physical analogy viewpoint is used to formulate the actual meshing problem which constructs a global mathematical description of the problem. The analogy used was that of minimizing the electrical potential of a system charged particles within a charged domain. The particles in the presented analogy represent duals to mesh elements (i.e., quads or hexes). Particle movement is governed by a mathematical functional which accounts for inter-particles repulsive, attractive and alignment forces. This functional is minimized to find the optimal location and orientation of each particle. After the particles are connected a mesh can be easily resolved. The mathematical description for this problem is as easy to formulate in three-dimensions as it is in two- or one-dimensions. The meshing algorithm was developed within CoMeT. It can solve the two-dimensional meshing problem for convex and concave geometries in a purely automated fashion. Investigation of the robustness of the technique has shown a success rate of approximately 99% for the two-dimensional geometries tested. Run times to mesh a 100 element complex geometry were typically in the 10 minute range. Efficiency of the technique is still an issue that needs to be addressed. Performance is an issue that is critical for most engineers generating meshes. It was not for this project. The primary focus of this work was to investigate and evaluate a meshing algorithm/philosophy with efficiency issues being secondary. The algorithm was also extended to mesh three-dimensional geometries. Unfortunately, only simple geometries were tested

  18. Effect of computational grid on accurate prediction of a wind turbine rotor using delayed detached-eddy simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bangga, Galih; Weihing, Pascal; Lutz, Thorsten; Krämer, Ewald [University of Stuttgart, Stuttgart (Germany)

    2017-05-15

    The present study focuses on the impact of grid for accurate prediction of the MEXICO rotor under stalled conditions. Two different blade mesh topologies, O and C-H meshes, and two different grid resolutions are tested for several time step sizes. The simulations are carried out using Delayed detached-eddy simulation (DDES) with two eddy viscosity RANS turbulence models, namely Spalart- Allmaras (SA) and Menter Shear stress transport (SST) k-ω. A high order spatial discretization, WENO (Weighted essentially non- oscillatory) scheme, is used in these computations. The results are validated against measurement data with regards to the sectional loads and the chordwise pressure distributions. The C-H mesh topology is observed to give the best results employing the SST k-ω turbulence model, but the computational cost is more expensive as the grid contains a wake block that increases the number of cells.

  19. Reconstructive laparoscopic prolapse surgery to avoid mesh erosions

    Directory of Open Access Journals (Sweden)

    Devassy, Rajesh

    2013-09-01

    Full Text Available Introduction: The objective of the study is to examine the efficacy of the purely laparoscopic reconstructive management of cystocele and rectocele with mesh, to avoid the risk of erosion by the graft material, a well known complication in vaginal mesh surgery. Material and methods: We performed a prospective, single-case, non-randomized study in 325 patients who received laparoscopic reconstructive management of pelvic organe prolaps with mesh. The study was conducted between January 2004 and December 2012 in a private clinic in India. The most common prolapse symptoms were reducible vaginal lump, urinary stress incontinence, constipation and flatus incontinence, sexual dysfunction and dypareunia. The degree e of the prolaps was staged according to POPQ system. The approach was purely laparoscopic and involved the use of polypropylene (Prolene or polyurethane with activated regenerated cellulose coating (Parietex mesh. Results: The mean age was 55 (30–80 years and the most of the patients were multiparous (272/325. The patients received a plastic correction of the rectocele only (138 cases, a cystocele and rectocele (187 cases with mesh. 132 patients had a concomitant total hysterectomy; in 2 cases a laparoscopic supracervical hysterectomy was performed and 190 patients had a laparoscopic colposuspension. The mean operation time was 82.2 (60–210 minutes. The mean follow up was 3.4 (3–5 years. Urinary retention developed in 1 case, which required a new laparoscopical intervention. Bladder injury, observed in the same case was in one session closed with absorbable suture. There were four recurrences of the rectocele, receiving a posterior vaginal colporrhaphy. Erosions of the mesh were not reported or documented. Conclusion: The pure laparoscopic reconstructive management of the cystocele and rectocele with mesh seems to be a safe and effective surgical procedure potentially avoiding the risk of mesh erosions.

  20. AUTOMATIC MESH GENERATION OF 3—D GEOMETRIC MODELS

    Institute of Scientific and Technical Information of China (English)

    刘剑飞

    2003-01-01

    In this paper the presentation of the ball-packing method is reviewed, and a schemeto generate mesh for complex 3-D geometric models is given, which consists of 4 steps: (1) createnodes in 3-D models by ball-packing method, (2) connect nodes to generate mesh by 3-D Delaunaytriangulation, (3) retrieve the boundary of the model after Delaunay triangulation, (4) improve themesh.

  1. Feedforward Control of Gear Mesh Vibration Using Piezoelectric Actuators

    Directory of Open Access Journals (Sweden)

    Gerald T. Montague

    1994-01-01

    Full Text Available This article presents a novel means for suppressing gear mesh related vibrations. The key components in this approach are piezoelectric actuators and a high-frequency, analog feed forward controller. Test results are presented and show up to a 70% reduction in gear mesh acceleration and vibration control up to 4500 Hz. The principle of the approach is explained by an analysis of a harmonically excited, general linear vibratory system.

  2. Distributed Cross-layer Monitoring in Wireless Mesh Networks

    OpenAIRE

    Panmin, Ye; Yong,

    2009-01-01

    Wireless mesh networks has rapid development over the last few years. However, due to properties such as distributed infrastructure and interference, which strongly affect the performance of wireless mesh networks, developing technology has to face the challenge of architecture and protocol design issues. Traditional layered protocols do not function efficiently in multi-hop wireless environments. To get deeper understanding on interaction of the layered protocols and optimize the performance...

  3. Mesh Generation via Local Bisection Refinement of Triangulated Grids

    Science.gov (United States)

    2015-06-01

    Science and Technology Organisation DSTO–TR–3095 ABSTRACT This report provides a comprehensive implementation of an unstructured mesh generation method...and Technology Organisation 506 Lorimer St, Fishermans Bend, Victoria 3207, Australia Telephone: 1300 333 362 Facsimile: (03) 9626 7999 c© Commonwealth...their behaviour is critically linked to Maubach’s method and the data structures N and T . The top- level mesh refinement algorithm is also presented

  4. Two-dimensional isostatic meshes in the finite element method

    OpenAIRE

    Martínez Marín, Rubén; Samartín, Avelino

    2002-01-01

    In a Finite Element (FE) analysis of elastic solids several items are usually considered, namely, type and shape of the elements, number of nodes per element, node positions, FE mesh, total number of degrees of freedom (dot) among others. In this paper a method to improve a given FE mesh used for a particular analysis is described. For the improvement criterion different objective functions have been chosen (Total potential energy and Average quadratic error) and the number of nodes and dof's...

  5. Ventral hernia repair with poly-4-hydroxybutyrate mesh.

    Science.gov (United States)

    Plymale, Margaret A; Davenport, Daniel L; Dugan, Adam; Zachem, Amanda; Roth, John Scott

    2018-04-01

    Biomaterial research has made available a biologically derived fully resorbable poly-4-hydroxybutyrate (P4HB) mesh for use in ventral and incisional hernia repair (VIHR). This study evaluates outcomes of patients undergoing VIHR with P4HB mesh. An IRB-approved prospective pilot study was conducted to assess clinical and quality of life (QOL) outcomes for patients undergoing VIHR with P4HB mesh. Perioperative characteristics were defined. Clinical outcomes, employment status, QOL using 12-item short form survey (SF-12), and pain assessments were followed for 24 months postoperatively. 31 patients underwent VIHR with bioresorbable mesh via a Rives-Stoppa approach with retrorectus mesh placement. The median patient age was 52 years, median body mass index was 33 kg/m 2 , and just over half of the patients were female. Surgical site occurrences occurred in 19% of patients, most of which were seroma. Hernia recurrence rate was 0% (median follow-up = 414 days). Patients had significantly improved QOL at 24 months compared to baseline for SF-12 physical component summary and role emotional (p < 0.05). Ventral hernia repair with P4HB bioresorbable mesh results in favorable outcomes. Early hernia recurrence was not identified among the patient cohort. Quality of life improvements were noted at 24 months versus baseline for this cohort of patients with bioresorbable mesh. Use of P4HB mesh for ventral hernia repair was found to be feasible in this patient population. (ClinicalTrials.gov Identifier: NCT01863030).

  6. A general boundary capability embedded in an orthogonal mesh

    International Nuclear Information System (INIS)

    Hewett, D.W.; Yu-Jiuan Chen

    1995-01-01

    The authors describe how they hold onto orthogonal mesh discretization when dealing with curved boundaries. Special difference operators were constructed to approximate numerical zones split by the domain boundary; the operators are particularly simple for this rectangular mesh. The authors demonstrated that this simple numerical approach, termed Dynamic Alternating Direction Implicit, turned out to be considerably more efficient than more complex grid-adaptive algorithms that were tried previously

  7. Vaginal Approaches Using Synthetic Mesh to Treat Pelvic Organ Prolapse

    OpenAIRE

    Moon, Jei Won; Chae, Hee Dong

    2016-01-01

    Pelvic organ prolapse (POP) is a very common condition in elderly women. In women with POP, a sacrocolpopexy or a vaginal hysterectomy with anterior and posterior colporrhaphy has long been considered as the gold standard of treatment. However, in recent decades, the tendency to use a vaginal approach with mesh for POP surgery has been increasing. A vaginal approach using mesh has many advantages, such as its being less invasive than an abdominal approach and easier to do than a laparoscopic ...

  8. The mesh controversy [version 1; referees: 2 approved

    OpenAIRE

    Joshua A. Cohn; Elizabeth Timbrook Brown; Casey G. Kowalik; Melissa R. Kaufmann; Roger R. Dmochowski; W. Stuart Reynolds

    2016-01-01

    Pelvic organ prolapse and stress urinary incontinence are common conditions for which approximately 11% of women will undergo surgical intervention in their lifetime. The use of vaginal mesh for pelvic organ prolapse and stress urinary incontinence rose rapidly in the early 2000s as over 100 mesh products were introduced into the clinical armamentarium with little regulatory oversight for their use. US Food and Drug Administration Public Health Notifications in 2008 and 2011, as well as recla...

  9. Outcome of transvaginal mesh and tape removed for pain only.

    Science.gov (United States)

    Hou, Jack C; Alhalabi, Feras; Lemack, Gary E; Zimmern, Philippe E

    2014-09-01

    Because there is reluctance to operate for pain, we evaluated midterm outcomes of vaginal mesh and synthetic suburethral tape removed for pain as the only indication. After receiving institutional review board approval we reviewed a prospective database of women without a neurogenic condition who underwent surgery for vaginal mesh or suburethral tape removal with a focus on pain as the single reason for removal and a minimum 6-month followup. The primary outcome was pain level assessed by a visual analog scale (range 0 to 10) at baseline and at each subsequent visit with the score at the last visit used for analysis. Parameters evaluated included demographics, mean time to presentation and type of mesh or tape inserted. From 2005 to 2013, 123 patients underwent surgical removal of mesh (69) and suburethral tape (54) with pain as the only indication. Mean followup was 35 months (range 6 to 59) in the tape group and 22 months (range 6 to 47) in the mesh group. The visual analog scale score decreased from a mean preoperative level of 7.9 to 0.9 postoperatively (p = 0.0014) in the mesh group and from 5.3 to 1.5 (p = 0.00074) in the tape group. Pain-free status, considered a score of 0, was achieved in 81% of tape and 67% of mesh cases, respectively. No statistically significant difference was found between the groups. When pain is the only indication for suburethral tape or vaginal mesh removal, a significant decrease in the pain score can be durably expected after removal in most patients at midterm followup. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. Mesh joinery: a method for building fabricable structures

    OpenAIRE

    Cignoni, Paolo; Pietroni, Nico; Malomo, Luigi; Scopigno, Roberto

    2015-01-01

    Mesh joinery is an innovative method to produce illustrative shape approximations suitable for fabrication. Mesh joinery is capable of producing complex fabricable structures in an efficient and visually pleasing manner. We represent an input geometry as a set of planar pieces arranged to compose a rigid structure by exploiting an efficient slit mechanism. Since slices are planar, a standard 2D cutting system is sufficient to fabricate them.

  11. Incisional hernia prevention using a cyanoacrilate-fixed retrofascial mesh.

    Science.gov (United States)

    Hoyuela, Carlos; Juvany, Montserrat; Trias, Miquel; Ardid, Jordi; Martrat, Antoni

    2018-01-01

    The rate of incisional hernia in high-risk patients (obesity, cancer, etc.) is high, even in laparoscopic surgery. The aim of this study is to evaluate the safety of the use of cyanoacrylate fixed prophylactic meshes in the assistance incision in overweight or obese patients undergoing laparoscopic colorectal surgery. A prospective, non-randomized cohort study of patients undergoing elective laparoscopic resection for colorectal cancer between January 2013 and March 2016 was performed. Those with a body mass index greater than 25kg / m 2 were evaluated to implant a prophylactic meshes fixed with cyanoacrylate (Histoacryl®) as reinforcement of the assistance incision. 52 patients were analyzed (mean body mass index: 28.4±2kg / m 2 ). Prophylactic meshes was implanted in 15 patients. The time to put the mesh in place was always less than 5minutes. There was no significant difference in wound infection rate (12% vs. 10%). No mesh had to be explanted. Although the mean follow-up was shorter (14.1±4 vs. 22.3±9 months), there were no incisional hernia in the mesh group. On the other hand, in the non-mesh group, 1 acute evisceration (2.7%) and 4 incisional hernia of the assistance incision were observed (10.8%). There were no significant differences between groups regarding trocar incisional hernia (6.6 vs. 5.4%). The implantation of a reinforcement prophylactic mesh in overweight or obese patients undergoing laparoscopic colorectal surgery is safe and seems to reduce the short-term rate of incisional hernia. Fixation with cyanoacrylate is a rapid method that facilitates the procedure without additional complications. Copyright © 2017 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. An Implementation and Parallelization of the Scale Space Meshing Algorithm

    Directory of Open Access Journals (Sweden)

    Julie Digne

    2015-11-01

    Full Text Available Creating an interpolating mesh from an unorganized set of oriented points is a difficult problemwhich is often overlooked. Most methods focus indeed on building a watertight smoothed meshby defining some function whose zero level set is the surface of the object. However in some casesit is crucial to build a mesh that interpolates the points and does not fill the acquisition holes:either because the data are sparse and trying to fill the holes would create spurious artifactsor because the goal is to explore visually the data exactly as they were acquired without anysmoothing process. In this paper we detail a parallel implementation of the Scale-Space Meshingalgorithm, which builds on the scale-space framework for reconstructing a high precision meshfrom an input oriented point set. This algorithm first smoothes the point set, producing asingularity free shape. It then uses a standard mesh reconstruction technique, the Ball PivotingAlgorithm, to build a mesh from the smoothed point set. The final step consists in back-projecting the mesh built on the smoothed positions onto the original point set. The result ofthis process is an interpolating, hole-preserving surface mesh reconstruction.

  13. Thermal Analysis of Concrete Storage Cask with Bird Screen Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju-Chan; Bang, K.S.; Yu, S.H.; Cho, S.S.; Choi, W.S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, a thermal analysis of the cask with bird screen meshes has been performed using a porous media model. The overpack consists of a structural material, a concrete shielding, and a ventilation system. Heat is removed from the cask to the environment by a passive means only. Air inlet and outlet ducts are installed at the bottom and top of the cask for a ventilation system. Bird screen meshes are installed at the air inlet and outlet ducts to inhibit intrusion of debris from the external environment. The presence of this screens introduce an additional resistance to air flow through the ducts. Five types of meshes for bird screen were considered in this study. The bird screen meshes at the inlet and outlet vents reduce the open area for flow by about 44 - 79 %. Flow resistance coefficients for porous media model were deduced from the fluid flow analysis of bird screen meshes. Thermal analyses for the concrete cask have been carried out using a porous media model. The analysis results agreed well with the test results. Therefore, it was shown that the porous media model for the screen mesh was established to estimate the cask temperatures.

  14. Adaptive mesh refinement for shocks and material interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dai, William Wenlong [Los Alamos National Laboratory

    2010-01-01

    There are three kinds of adaptive mesh refinement (AMR) in structured meshes. Block-based AMR sometimes over refines meshes. Cell-based AMR treats cells cell by cell and thus loses the advantage of the nature of structured meshes. Patch-based AMR is intended to combine advantages of block- and cell-based AMR, i.e., the nature of structured meshes and sharp regions of refinement. But, patch-based AMR has its own difficulties. For example, patch-based AMR typically cannot preserve symmetries of physics problems. In this paper, we will present an approach for a patch-based AMR for hydrodynamics simulations. The approach consists of clustering, symmetry preserving, mesh continuity, flux correction, communications, management of patches, and load balance. The special features of this patch-based AMR include symmetry preserving, efficiency of refinement across shock fronts and material interfaces, special implementation of flux correction, and patch management in parallel computing environments. To demonstrate the capability of the AMR framework, we will show both two- and three-dimensional hydrodynamics simulations with many levels of refinement.

  15. Enriching Triangle Mesh Animations with Physically Based Simulation.

    Science.gov (United States)

    Li, Yijing; Xu, Hongyi; Barbic, Jernej

    2017-10-01

    We present a system to combine arbitrary triangle mesh animations with physically based Finite Element Method (FEM) simulation, enabling control over the combination both in space and time. The input is a triangle mesh animation obtained using any method, such as keyframed animation, character rigging, 3D scanning, or geometric shape modeling. The input may be non-physical, crude or even incomplete. The user provides weights, specified using a minimal user interface, for how much physically based simulation should be allowed to modify the animation in any region of the model, and in time. Our system then computes a physically-based animation that is constrained to the input animation to the amount prescribed by these weights. This permits smoothly turning physics on and off over space and time, making it possible for the output to strictly follow the input, to evolve purely based on physically based simulation, and anything in between. Achieving such results requires a careful combination of several system components. We propose and analyze these components, including proper automatic creation of simulation meshes (even for non-manifold and self-colliding undeformed triangle meshes), converting triangle mesh animations into animations of the simulation mesh, and resolving collisions and self-collisions while following the input.

  16. Parallel adaptation of general three-dimensional hybrid meshes

    International Nuclear Information System (INIS)

    Kavouklis, Christos; Kallinderis, Yannis

    2010-01-01

    A new parallel dynamic mesh adaptation and load balancing algorithm for general hybrid grids has been developed. The meshes considered in this work are composed of four kinds of elements; tetrahedra, prisms, hexahedra and pyramids, which poses a challenge to parallel mesh adaptation. Additional complexity imposed by the presence of multiple types of elements affects especially data migration, updates of local data structures and interpartition data structures. Efficient partition of hybrid meshes has been accomplished by transforming them to suitable graphs and using serial graph partitioning algorithms. Communication among processors is based on the faces of the interpartition boundary and the termination detection algorithm of Dijkstra is employed to ensure proper flagging of edges for refinement. An inexpensive dynamic load balancing strategy is introduced to redistribute work load among processors after adaptation. In particular, only the initial coarse mesh, with proper weighting, is balanced which yields savings in computation time and relatively simple implementation of mesh quality preservation rules, while facilitating coarsening of refined elements. Special algorithms are employed for (i) data migration and dynamic updates of the local data structures, (ii) determination of the resulting interpartition boundary and (iii) identification of the communication pattern of processors. Several representative applications are included to evaluate the method.

  17. Thermal Analysis of Concrete Storage Cask with Bird Screen Meshes

    International Nuclear Information System (INIS)

    Lee, Ju-Chan; Bang, K.S.; Yu, S.H.; Cho, S.S.; Choi, W.S.

    2016-01-01

    In this study, a thermal analysis of the cask with bird screen meshes has been performed using a porous media model. The overpack consists of a structural material, a concrete shielding, and a ventilation system. Heat is removed from the cask to the environment by a passive means only. Air inlet and outlet ducts are installed at the bottom and top of the cask for a ventilation system. Bird screen meshes are installed at the air inlet and outlet ducts to inhibit intrusion of debris from the external environment. The presence of this screens introduce an additional resistance to air flow through the ducts. Five types of meshes for bird screen were considered in this study. The bird screen meshes at the inlet and outlet vents reduce the open area for flow by about 44 - 79 %. Flow resistance coefficients for porous media model were deduced from the fluid flow analysis of bird screen meshes. Thermal analyses for the concrete cask have been carried out using a porous media model. The analysis results agreed well with the test results. Therefore, it was shown that the porous media model for the screen mesh was established to estimate the cask temperatures

  18. An optimization-based framework for anisotropic simplex mesh adaptation

    Science.gov (United States)

    Yano, Masayuki; Darmofal, David L.

    2012-09-01

    We present a general framework for anisotropic h-adaptation of simplex meshes. Given a discretization and any element-wise, localizable error estimate, our adaptive method iterates toward a mesh that minimizes error for a given degrees of freedom. Utilizing mesh-metric duality, we consider a continuous optimization problem of the Riemannian metric tensor field that provides an anisotropic description of element sizes. First, our method performs a series of local solves to survey the behavior of the local error function. This information is then synthesized using an affine-invariant tensor manipulation framework to reconstruct an approximate gradient of the error function with respect to the metric tensor field. Finally, we perform gradient descent in the metric space to drive the mesh toward optimality. The method is first demonstrated to produce optimal anisotropic meshes minimizing the L2 projection error for a pair of canonical problems containing a singularity and a singular perturbation. The effectiveness of the framework is then demonstrated in the context of output-based adaptation for the advection-diffusion equation using a high-order discontinuous Galerkin discretization and the dual-weighted residual (DWR) error estimate. The method presented provides a unified framework for optimizing both the element size and anisotropy distribution using an a posteriori error estimate and enables efficient adaptation of anisotropic simplex meshes for high-order discretizations.

  19. Automatic mesh refinement and local multigrid methods for contact problems: application to the Pellet-Cladding mechanical Interaction

    International Nuclear Information System (INIS)

    Liu, Hao

    2016-01-01

    This Ph.D. work takes place within the framework of studies on Pellet-Cladding mechanical Interaction (PCI) which occurs in the fuel rods of pressurized water reactor. This manuscript focuses on automatic mesh refinement to simulate more accurately this phenomena while maintaining acceptable computational time and memory space for industrial calculations. An automatic mesh refinement strategy based on the combination of the Local Defect Correction multigrid method (LDC) with the Zienkiewicz and Zhu a posteriori error estimator is proposed. The estimated error is used to detect the zones to be refined, where the local sub-grids of the LDC method are generated. Several stopping criteria are studied to end the refinement process when the solution is accurate enough or when the refinement does not improve the global solution accuracy anymore. Numerical results for elastic 2D test cases with pressure discontinuity show the efficiency of the proposed strategy. The automatic mesh refinement in case of unilateral contact problems is then considered. The strategy previously introduced can be easily adapted to the multi-body refinement by estimating solution error on each body separately. Post-processing is often necessary to ensure the conformity of the refined areas regarding the contact boundaries. A variety of numerical experiments with elastic contact (with or without friction, with or without an initial gap) confirms the efficiency and adaptability of the proposed strategy. (author) [fr

  20. Combined in vivo and ex vivo analysis of mesh mechanics in a porcine hernia model.

    Science.gov (United States)

    Kahan, Lindsey G; Lake, Spencer P; McAllister, Jared M; Tan, Wen Hui; Yu, Jennifer; Thompson, Dominic; Brunt, L Michael; Blatnik, Jeffrey A

    2018-02-01

    Hernia meshes exhibit variability in mechanical properties, and their mechanical match to tissue has not been comprehensively studied. We used an innovative imaging model of in vivo strain tracking and ex vivo mechanical analysis to assess effects of mesh properties on repaired abdominal walls in a porcine model. We hypothesized that meshes with dissimilar mechanical properties compared to native tissue would alter abdominal wall mechanics more than better-matched meshes. Seven mini-pigs underwent ventral hernia creation and subsequent open repair with one of two heavyweight polypropylene meshes. Following mesh implantation with attached radio-opaque beads, fluoroscopic images were taken at insufflation pressures from 5 to 30 mmHg on postoperative days 0, 7, and 28. At 28 days, animals were euthanized and ex vivo mechanical testing performed on full-thickness samples across repaired abdominal walls. Testing was conducted on 13 mini-pig controls, and on meshes separately. Stiffness and anisotropy (the ratio of stiffness in the transverse versus craniocaudal directions) were assessed. 3D reconstructions of repaired abdominal walls showed stretch patterns. As pressure increased, both meshes expanded, with no differences between groups. Over time, meshes contracted 17.65% (Mesh A) and 0.12% (Mesh B; p = 0.06). Mesh mechanics showed that Mesh A deviated from anisotropic native tissue more than Mesh B. Compared to native tissue, Mesh A was stiffer both transversely and craniocaudally. Explanted repaired abdominal walls of both treatment groups were stiffer than native tissue. Repaired tissue became less anisotropic over time, as mesh properties prevailed over native abdominal wall properties. This technique assessed 3D stretch at the mesh level in vivo in a porcine model. While the abdominal wall expanded, mesh-ingrown areas contracted, potentially indicating stresses at mesh edges. Ex vivo mechanics demonstrate that repaired tissue adopts mesh properties, suggesting

  1. Anatomic atlas for computed tomography in the mesaticephalic dog: head and neck

    International Nuclear Information System (INIS)

    George, T.F. II; Smallwood, J.E.

    1992-01-01

    The purpose of this study was to produce a comprehensive anatomic atlas of CT anatomy of the dog for use by veterinary radiologists, clinicians, and surgeons. Whole-body CT images of two mature beagle dogs were made with the dogs supported in sternal recumbency and using a slice thickness of 13 mm. The head was scanned using high-resolution imaging with a slice thickness of 8 mm. At the end of the CT session, each dog was euthanized, and while carefully maintaining the same position, the body was placed in a walk-in freezer until completely frozen. The body was then sectioned at 13-mm (head at 8-mm) intervals, with the cuts matched as closely as possible to the CT slices. The forzen sections were cleaned, photographed, and radiographed using xeroradiography. Each CT image was studied and compared with its corresponding xeroradiograph and anatomic section to assist in the accurate identification of specific structures. Intact, sagittally sectioned, and disarticulated dog skulls were used as reference models. Clinically relevant anatomic structures were identified and labeled in the three corresponding photographs (CT image, xeroradiograph, and anatomic section). In this paper, the CT anatomy of the head and neck of the mesaticephalic dog is presented

  2. Anatomic atlas for computed tomography in the mesaticephalic dog: caudal abdomen and pelvis

    International Nuclear Information System (INIS)

    Smallwood, J.E.; George, T. II.

    1993-01-01

    The purpose of this study was to produce a comprehensive anatomic atlas of CT anatomy of the dog for use by veterinary radiologists, clinicians, and surgeons. Whole-body CT images of two mature beagle dogs were made with the dogs supported in sternal recumbency and using a slice thickness of 13 mm. At the end of the CT session, each dog was euthanized, and while carefully maintaining the same position, the body was frozen. The body was then sectioned at 13-mm intervals, with the cuts matched as closely as possible to the CT slices. The frozen sections were cleaned, photographed, and radiographed using xeroradiography. Each CT image was studied and compared with its corresponding xeroradiograph and anatomic section to assist in the accurate identification of specific structures. Clinically relevant anatomic structures were identified and labeled in the three corresponding photographs (CT image, xeroradiograph, and anatomic section). In previous papers, the head and neck, and the thorax and cranial abdomen of the mesaticephalic (beagle) dog were presented. In this paper, the caudal part of the abdomen and pelvis of the bitch and male dog are presented

  3. Anatomical Variations of Brachial Artery - Its Morphology, Embryogenesis and Clinical Implications

    Science.gov (United States)

    KS, Siddaraju; Venumadhav, Nelluri; Sharma, Ashish; Kumar, Neeraj

    2014-01-01

    Background: Accurate knowledge of variation pattern of the major arteries of upper limb is of considerable practical importance in the conduct of reparative surgery in the arm, forearm and hand however brachial artery and its terminal branches variations are less common. Aim: Accordingly the present study was designed to evaluate the anatomical variations of the brachial artery and its morphology, embryogenesis and clinical implications. Materials and Methods: In an anatomical study 140 upper limb specimens of 70 cadavers (35 males and 35 females) were used and anatomical variations of the brachial artery have been documented. Results: Accessory brachial artery was noted in eight female cadavers (11.43%). Out of eight cadavers in three cadavers (4.29%) an unusual bilateral accessory brachial artery arising from the axillary artery and it is continuing in the forearm as superficial accessory ulnar artery was noted. Rare unusual variant unilateral accessory brachial artery and its reunion with the main brachial artery in the cubital fossa and its variable course in relation to the musculocutaneous nerve and median nerve were also noted in five cadavers (7.14%). Conclusion: As per our knowledge such anatomical variations of brachial artery and its terminal branches with their relation to the surrounding structures are not reported in the modern medical literature. An awareness of such a presence is valuable for the surgeons and radiologists in evaluation of angiographic images, vascular and re-constructive surgery or appropriate treatment for compressive neuropathies. PMID:25653931

  4. Anatomical Cystocele Recurrence: Development and Internal Validation of a Prediction Model.

    Science.gov (United States)

    Vergeldt, Tineke F M; van Kuijk, Sander M J; Notten, Kim J B; Kluivers, Kirsten B; Weemhoff, Mirjam

    2016-02-01

    To develop a prediction model that estimates the risk of anatomical cystocele recurrence after surgery. The databases of two multicenter prospective cohort studies were combined, and we performed a retrospective secondary analysis of these data. Women undergoing an anterior colporrhaphy without mesh materials and without previous pelvic organ prolapse (POP) surgery filled in a questionnaire, underwent translabial three-dimensional ultrasonography, and underwent staging of POP preoperatively and postoperatively. We developed a prediction model using multivariable logistic regression and internally validated it using standard bootstrapping techniques. The performance of the prediction model was assessed by computing indices of overall performance, discriminative ability, calibration, and its clinical utility by computing test characteristics. Of 287 included women, 149 (51.9%) had anatomical cystocele recurrence. Factors included in the prediction model were assisted delivery, preoperative cystocele stage, number of compartments involved, major levator ani muscle defects, and levator hiatal area during Valsalva. Potential predictors that were excluded after backward elimination because of high P values were age, body mass index, number of vaginal deliveries, and family history of POP. The shrinkage factor resulting from the bootstrap procedure was 0.91. After correction for optimism, Nagelkerke's R and the Brier score were 0.15 and 0.22, respectively. This indicates satisfactory model fit. The area under the receiver operating characteristic curve of the prediction model was 71.6% (95% confidence interval 65.7-77.5). After correction for optimism, the area under the receiver operating characteristic curve was 69.7%. This prediction model, including history of assisted delivery, preoperative stage, number of compartments, levator defects, and levator hiatus, estimates the risk of anatomical cystocele recurrence.

  5. Accurate Modeling of Advanced Reflectarrays

    DEFF Research Database (Denmark)

    Zhou, Min

    to the conventional phase-only optimization technique (POT), the geometrical parameters of the array elements are directly optimized to fulfill the far-field requirements, thus maintaining a direct relation between optimization goals and optimization variables. As a result, better designs can be obtained compared...... of the incident field, the choice of basis functions, and the technique to calculate the far-field. Based on accurate reference measurements of two offset reflectarrays carried out at the DTU-ESA Spherical NearField Antenna Test Facility, it was concluded that the three latter factors are particularly important...... using the GDOT to demonstrate its capabilities. To verify the accuracy of the GDOT, two offset contoured beam reflectarrays that radiate a high-gain beam on a European coverage have been designed and manufactured, and subsequently measured at the DTU-ESA Spherical Near-Field Antenna Test Facility...

  6. Probabilistic anatomical labeling of brain structures using statistical probabilistic anatomical maps

    International Nuclear Information System (INIS)

    Kim, Jin Su; Lee, Dong Soo; Lee, Byung Il; Lee, Jae Sung; Shin, Hee Won; Chung, June Key; Lee, Myung Chul

    2002-01-01

    The use of statistical parametric mapping (SPM) program has increased for the analysis of brain PET and SPECT images. Montreal neurological institute (MNI) coordinate is used in SPM program as a standard anatomical framework. While the most researchers look up Talairach atlas to report the localization of the activations detected in SPM program, there is significant disparity between MNI templates and Talairach atlas. That disparity between Talairach and MNI coordinates makes the interpretation of SPM result time consuming, subjective and inaccurate. The purpose of this study was to develop a program to provide objective anatomical information of each x-y-z position in ICBM coordinate. Program was designed to provide the anatomical information for the given x-y-z position in MNI coordinate based on the statistical probabilistic anatomical map (SPAM) images of ICBM. When x-y-z position was given to the program, names of the anatomical structures with non-zero probability and the probabilities that the given position belongs to the structures were tabulated. The program was coded using IDL and JAVA language for the easy transplantation to any operating system or platform. Utility of this program was shown by comparing the results of this program to those of SPM program. Preliminary validation study was performed by applying this program to the analysis of PET brain activation study of human memory in which the anatomical information on the activated areas are previously known. Real time retrieval of probabilistic information with 1 mm spatial resolution was archived using the programs. Validation study showed the relevance of this program: probability that the activated area for memory belonged to hippocampal formation was more than 80%. These programs will be useful for the result interpretation of the image analysis performed on MNI coordinate, as done in SPM program

  7. Accurate thickness measurement of graphene

    International Nuclear Information System (INIS)

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-01-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1–1.3 nm to 0.1–0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials. (paper)

  8. Familial intracranial aneurysms: is anatomic vulnerability heritable?

    Science.gov (United States)

    Mackey, Jason; Brown, Robert D; Moomaw, Charles J; Hornung, Richard; Sauerbeck, Laura; Woo, Daniel; Foroud, Tatiana; Gandhi, Dheeraj; Kleindorfer, Dawn; Flaherty, Matthew L; Meissner, Irene; Anderson, Craig; Rouleau, Guy; Connolly, E Sander; Deka, Ranjan; Koller, Daniel L; Abruzzo, Todd; Huston, John; Broderick, Joseph P

    2013-01-01

    Previous studies have suggested that family members with intracranial aneurysms (IAs) often harbor IAs in similar anatomic locations. IA location is important because of its association with rupture. We tested the hypothesis that anatomic susceptibility to IA location exists using a family-based IA study. We identified all affected probands and first-degree relatives (FDRs) with a definite or probable phenotype in each family. We stratified each IA of the probands by major arterial territory and calculated each family's proband-FDR territory concordance and overall contribution to the concordance analysis. We then matched each family unit to an unrelated family unit selected randomly with replacement and performed 1001 simulations. The median concordance proportions, odds ratios (ORs), and P values from the 1001 logistic regression analyses were used to represent the final results of the analysis. There were 323 family units available for analysis, including 323 probands and 448 FDRs, with a total of 1176 IAs. IA territorial concordance was higher in the internal carotid artery (55.4% versus 45.6%; OR, 1.54 [1.04-2.27]; P=0.032), middle cerebral artery (45.8% versus 30.5%; OR, 1.99 [1.22-3.22]; P=0.006), and vertebrobasilar system (26.6% versus 11.3%; OR, 2.90 [1.05-8.24], P=0.04) distributions in the true family compared with the comparison family. Concordance was also higher when any location was considered (53.0% versus 40.7%; OR, 1.82 [1.34-2.46]; PIA development, we found that IA territorial concordance was higher when probands were compared with their own affected FDRs than with comparison FDRs, which suggests that anatomic vulnerability to IA formation exists. Future studies of IA genetics should consider stratifying cases by IA location.

  9. Chronic ankle instability: Arthroscopic anatomical repair.

    Science.gov (United States)

    Arroyo-Hernández, M; Mellado-Romero, M; Páramo-Díaz, P; García-Lamas, L; Vilà-Rico, J

    Ankle sprains are one of the most common injuries. Despite appropriate conservative treatment, approximately 20-40% of patients continue to have chronic ankle instability and pain. In 75-80% of cases there is an isolated rupture of the anterior talofibular ligament. A retrospective observational study was conducted on 21 patients surgically treated for chronic ankle instability by means of an arthroscopic anatomical repair, between May 2012 and January 2013. There were 15 men and 6 women, with a mean age of 30.43 years (range 18-48). The mean follow-up was 29 months (range 25-33). All patients were treated by arthroscopic anatomical repair of anterior talofibular ligament. Four (19%) patients were found to have varus hindfoot deformity. Associated injuries were present in 13 (62%) patients. There were 6 cases of osteochondral lesions, 3 cases of posterior ankle impingement syndrome, and 6 cases of peroneal pathology. All these injuries were surgically treated in the same surgical time. A clinical-functional study was performed using the American Orthopaedic Foot and Ankle Society (AOFAS) score. The mean score before surgery was 66.12 (range 60-71), and after surgery it increased up to a mean of 96.95 (range 90-100). All patients were able to return to their previous sport activity within a mean of 21.5 weeks (range 17-28). Complications were found in 3 (14%) patients. Arthroscopic anatomical ligament repair technique has excellent clinical-functional results with a low percentage of complications, and enables patients to return to their previous sport activity within a short period of time. Copyright © 2016 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Talocalcaneal luxation: an anatomic and clinical study

    International Nuclear Information System (INIS)

    Gorse, M.J.; Purinton, P.T.; Penwick, R.C.; Aron, D.N.; Roberts, R.E.

    1990-01-01

    Talocalcaneal luxation in dogs was studied by anatomic dissection of the talocalcaneal joint in cadavers and review of five clinical cases. The integrity of the talocalcaneal joint was maintained by two strong ligaments traversing the tarsal sinus between the two bones. The joint was found to be a low motion joint. Luxation in clinical cases was not always apparent on standard radiographic views. Three dogs were treated surgically with a screw inserted in lag fashion from talus to calcaneus. One luxation was treated surgically with figure-of-eight orthopedic wires and one was treated with external coaptation. Four dogs returned to their previous levels of function without clinically detectable lameness

  11. Embryologic and anatomic basis of inguinal herniorrhaphy.

    Science.gov (United States)

    Skandalakis, J E; Colborn, G L; Androulakis, J A; Skandalakis, L J; Pemberton, L B

    1993-08-01

    The embryology and surgical anatomy of the inguinal area is presented with emphasis on embryologic and anatomic entities related to surgery. We have presented the factors, such as patent processus vaginalis and defective posterior wall of the inguinal canal, that may be responsible for the genesis of congenital inguinofemoral herniation. These, together with impaired collagen synthesis and trauma, are responsible for the formation of the acquired inguinofemoral hernia. Still, we do not have all the answers for an ideal repair. Despite the latest successes in repair, we, to paraphrase Ritsos, are awaiting the triumphant return of Theseus.

  12. A Rare Complication of Composite Dual Mesh: Migration and Enterocutaneous Fistula Formation

    Directory of Open Access Journals (Sweden)

    Ozgur Bostanci

    2015-01-01

    Full Text Available Introduction. Mesh is commonly employed for abdominal hernia repair because it ensures a low recurrence rate. However, enterocutaneous fistula due to mesh migration can occur as a very rare, late complication, for which diagnosis is very difficult. Presentation of Case. Here we report the case of an enterocutaneous fistula due to late mesh migration in a mentally retarded, diabetic, 35-year-old male after umbilical hernia repair with composite dual mesh in 2010. Discussion. Mesh is a foreign substance, because of that some of the complications including hematoma, seroma, foreign body reaction, organ damage, infection, mesh rejection, and fistula formation may occur after implantation of the mesh. In the literature, most cases of mesh-associated enterocutaneous fistula due to migration involved polypropylene meshes. Conclusion. This case serves as a reminder of migration of composite dual meshes.

  13. Anisotropic mesh adaptation for marine ice-sheet modelling

    Science.gov (United States)

    Gillet-Chaulet, Fabien; Tavard, Laure; Merino, Nacho; Peyaud, Vincent; Brondex, Julien; Durand, Gael; Gagliardini, Olivier

    2017-04-01

    Improving forecasts of ice-sheets contribution to sea-level rise requires, amongst others, to correctly model the dynamics of the grounding line (GL), i.e. the line where the ice detaches from its underlying bed and goes afloat on the ocean. Many numerical studies, including the intercomparison exercises MISMIP and MISMIP3D, have shown that grid refinement in the GL vicinity is a key component to obtain reliable results. Improving model accuracy while maintaining the computational cost affordable has then been an important target for the development of marine icesheet models. Adaptive mesh refinement (AMR) is a method where the accuracy of the solution is controlled by spatially adapting the mesh size. It has become popular in models using the finite element method as they naturally deal with unstructured meshes, but block-structured AMR has also been successfully applied to model GL dynamics. The main difficulty with AMR is to find efficient and reliable estimators of the numerical error to control the mesh size. Here, we use the estimator proposed by Frey and Alauzet (2015). Based on the interpolation error, it has been found effective in practice to control the numerical error, and has some flexibility, such as its ability to combine metrics for different variables, that makes it attractive. Routines to compute the anisotropic metric defining the mesh size have been implemented in the finite element ice flow model Elmer/Ice (Gagliardini et al., 2013). The mesh adaptation is performed using the freely available library MMG (Dapogny et al., 2014) called from Elmer/Ice. Using a setup based on the inter-comparison exercise MISMIP+ (Asay-Davis et al., 2016), we study the accuracy of the solution when the mesh is adapted using various variables (ice thickness, velocity, basal drag, …). We show that combining these variables allows to reduce the number of mesh nodes by more than one order of magnitude, for the same numerical accuracy, when compared to uniform mesh

  14. Numerical Solution of Stokes Flow in a Circular Cavity Using Mesh-free Local RBF-DQ

    DEFF Research Database (Denmark)

    Kutanaai, S Soleimani; Roshan, Naeem; Vosoughi, A

    2012-01-01

    This work reports the results of a numerical investigation of Stokes flow problem in a circular cavity as an irregular geometry using mesh-free local radial basis function-based differential quadrature (RBF-DQ) method. This method is the combination of differential quadrature approximation of der...... in solution of partial differential equations (PDEs).......This work reports the results of a numerical investigation of Stokes flow problem in a circular cavity as an irregular geometry using mesh-free local radial basis function-based differential quadrature (RBF-DQ) method. This method is the combination of differential quadrature approximation...... is applied on a two-dimensional geometry. The obtained results from the numerical simulations are compared with those gained by previous works. Outcomes prove that the current technique is in very good agreement with previous investigations and this fact that RBF-DQ method is an accurate and flexible method...

  15. Aberrant Anatomical Variation of Maxillary Sinus Mimicking Periapical Cyst: A Report of Two Cases and Role of CBCT in Diagnosis

    Directory of Open Access Journals (Sweden)

    Ahmet Ercan Sekerci

    2013-01-01

    Full Text Available Most periapical lesions are associated with microorganisms from infected root canal systems. Maxillary sinus can pose a diagnostic dilemma radiographically because of its anatomical variation which can mimic a periapical pathosis. The aim of this study was to describe two cases of aberrant anatomical variation of the maxillary sinus that presented radiographic similarities to a periapical cyst in order to call the attention of clinicians to the fact that several different diseases are able to mimic endodontic periapical lesions. An accurate assessment of this morphology was made with the help of cone-beam computed tomography (CBCT.

  16. Aberrant Anatomical Variation of Maxillary Sinus Mimicking Periapical Cyst: A Report of Two Cases and Role of CBCT in Diagnosis

    Science.gov (United States)

    Sekerci, Ahmet Ercan; Sisman, Yildiray; Etoz, Meryem; Bulut, Duygu Goller

    2013-01-01

    Most periapical lesions are associated with microorganisms from infected root canal systems. Maxillary sinus can pose a diagnostic dilemma radiographically because of its anatomical variation which can mimic a periapical pathosis. The aim of this study was to describe two cases of aberrant anatomical variation of the maxillary sinus that presented radiographic similarities to a periapical cyst in order to call the attention of clinicians to the fact that several different diseases are able to mimic endodontic periapical lesions. An accurate assessment of this morphology was made with the help of cone-beam computed tomography (CBCT). PMID:23710374

  17. [Anatomical study of men's nipple areola complex].

    Science.gov (United States)

    Vaucher, R; Dast, S; Assaf, N; Sinna, R

    2016-06-01

    The surgical approach of gynecomastia, sexual reassignment surgery in female-to-male transsexuals and the increase of number of obese wishing to turn to plastic surgery led us to deepen the anatomical knowledge of the nipple areola complex (NAC) in men, poorly retailed in the literature. By inspiring us of the methodology of a Japanese study, we studied 50 healthy volunteers male, from 18 to 55 years old, from July till August 2015. We measured various distances relative to the NAC to define its vertical and horizontal position, as well as the internipple distance according to the size, to the weight and to the body mass index (BMI). At the end of the analysis, we were able to underline a lower vertical thoracic position of the NAC in the tall category of person, a more side horizontal position to the subject presenting a high BMI and a linear relation between the BMI and the internipple (Em) defined by (Em)=8.96×BMI. The surgeon's judgment and the desires of the patient are essentials basis of therapeutics decisions that could be lean on this anatomical study, which allowed to establish an idea of the cartography of the NAC in man. It will be interesting and necessary to confront it with other studies with larger scale. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes

    KAUST Repository

    Pelties, Christian

    2012-02-18

    Accurate and efficient numerical methods to simulate dynamic earthquake rupture and wave propagation in complex media and complex fault geometries are needed to address fundamental questions in earthquake dynamics, to integrate seismic and geodetic data into emerging approaches for dynamic source inversion, and to generate realistic physics-based earthquake scenarios for hazard assessment. Modeling of spontaneous earthquake rupture and seismic wave propagation by a high-order discontinuous Galerkin (DG) method combined with an arbitrarily high-order derivatives (ADER) time integration method was introduced in two dimensions by de la Puente et al. (2009). The ADER-DG method enables high accuracy in space and time and discretization by unstructured meshes. Here we extend this method to three-dimensional dynamic rupture problems. The high geometrical flexibility provided by the usage of tetrahedral elements and the lack of spurious mesh reflections in the ADER-DG method allows the refinement of the mesh close to the fault to model the rupture dynamics adequately while concentrating computational resources only where needed. Moreover, ADER-DG does not generate spurious high-frequency perturbations on the fault and hence does not require artificial Kelvin-Voigt damping. We verify our three-dimensional implementation by comparing results of the SCEC TPV3 test problem with two well-established numerical methods, finite differences, and spectral boundary integral. Furthermore, a convergence study is presented to demonstrate the systematic consistency of the method. To illustrate the capabilities of the high-order accurate ADER-DG scheme on unstructured meshes, we simulate an earthquake scenario, inspired by the 1992 Landers earthquake, that includes curved faults, fault branches, and surface topography. Copyright 2012 by the American Geophysical Union.

  19. The accurate particle tracer code

    Science.gov (United States)

    Wang, Yulei; Liu, Jian; Qin, Hong; Yu, Zhi; Yao, Yicun

    2017-11-01

    The Accurate Particle Tracer (APT) code is designed for systematic large-scale applications of geometric algorithms for particle dynamical simulations. Based on a large variety of advanced geometric algorithms, APT possesses long-term numerical accuracy and stability, which are critical for solving multi-scale and nonlinear problems. To provide a flexible and convenient I/O interface, the libraries of Lua and Hdf5 are used. Following a three-step procedure, users can efficiently extend the libraries of electromagnetic configurations, external non-electromagnetic forces, particle pushers, and initialization approaches by use of the extendible module. APT has been used in simulations of key physical problems, such as runaway electrons in tokamaks and energetic particles in Van Allen belt. As an important realization, the APT-SW version has been successfully distributed on the world's fastest computer, the Sunway TaihuLight supercomputer, by supporting master-slave architecture of Sunway many-core processors. Based on large-scale simulations of a runaway beam under parameters of the ITER tokamak, it is revealed that the magnetic ripple field can disperse the pitch-angle distribution significantly and improve the confinement of energetic runaway beam on the same time.

  20. Quantifying agreement between anatomical and functional interhemispheric correspondences in the resting brain.

    Directory of Open Access Journals (Sweden)

    Hang Joon Jo

    Full Text Available The human brain is composed of two broadly symmetric cerebral hemispheres, with an abundance of reciprocal anatomical connections between homotopic locations. However, to date, studies of hemispheric symmetries have not identified correspondency precisely due to variable cortical folding patterns. Here we present a method to establish accurate correspondency using position on the unfolded cortical surface relative to gyral and sulcal landmarks. The landmark method is shown to outperform the method of reversing standard volume coordinates, and it is used to quantify the functional symmetry in resting fMRI data throughout the cortex. Resting brain activity was found to be maximally correlated with locations less than 1 cm away on the cortical surface from the corresponding anatomical location in nearly half of the cortex. While select locations exhibited asymmetric patterns, precise symmetric relationships were found to be the norm, with fine-grained symmetric functional maps demonstrated in motor, occipital, and inferior frontal cortex.