Sample records for analyze peptide cross-linking

  1. Peroxidase-mediated cross-linking of a tyrosine-containing peptide with ferulic acid

    NARCIS (Netherlands)

    Oudgenoeg, G.; Hilhorst, R.; Piersma, S.R.; Boeriu, C.G.; Gruppen, H.; Hessing, M.; Voragen, A.G.J.; Laane, C.


    The tyrosine-containing peptide Gly-Tyr-Gly (GYG) was oxidatively cross-linked by horseradish peroxidase in the presence of hydrogen peroxide. As products, covalently coupled di- to pentamers of the peptide were identified by LC-MS. Oxidative cross-linking of ferulic acid with horseradish peroxidase

  2. EGDMA-cross-linked polystyrene resin: An efficient support for gel phase peptide synthesis

    Indian Academy of Sciences (India)

    P K Ajikumar; K S Devaky


    This article illustrates the application of a 2% ethyleneglycol dimethacrylate-cross-linked polystyrene support (EGDMA-PS) in manual solid phase peptide synthesis. This copolymer has been characterised and optimised for peptide synthesis by performing the synthesis of a few model peptides and two biologically important peptides. EGDMA-cross-linked polystyrene support was prepared by the suspension polymerisation of the monomers EGDMA and styrene. EGDMA-PS resin undergoes facile swelling in a variety of solvents, both polar and nonpolar, used in peptide synthesis. The polymer was functionalised by Friedel-Crafts chloromethylation reaction. Peptides were assembled on a 2% cross-linked chloromethyl polymer support of capacity 1.63 mmol Cl/g. The biological peptides synthesised are an 11-residue peptide ATP binding site of the CDC2 kinase and a difficult sequence-a nineresidue peptide 34-42 corresponding to a portion of the hydrophobic terminus of the-amyloid protein 1-42. After synthesis, the peptides were cleaved from the support by treating with neat TFA. Purity of the peptides obtained in good yield was checked by TLC and HPLC methods and found to be fairly high.

  3. Chloroacetamide-Linked Nucleotides and DNA for Cross-Linking with Peptides and Proteins. (United States)

    Olszewska, Agata; Pohl, Radek; Brázdová, Marie; Fojta, Miroslav; Hocek, Michal


    Nucleotides, 2'-deoxyribonucleoside triphosphates (dNTPs), and DNA probes bearing reactive chloroacetamido group linked to nucleobase (cytosine or 7-deazadaenine) through a propargyl tether were prepared and tested in cross-linking with cysteine- or histidine-containing peptides and proteins. The chloroacetamide-modifed dNTPs proved to be good substrates for DNA polymerases in the enzymatic synthesis of modified DNA probes. Modified nucleotides and DNA reacted efficiently with cysteine and cysteine-containing peptides, whereas the reaction with histidine was sluggish and low yielding. The modified DNA efficiently cross-linked with p53 protein through alkylation of cysteine and showed potential for cross-linking with histidine (in C277H mutant of p53).

  4. Preparation of shell cross-linked nano-objects from hybrid-peptide block copolymers. (United States)

    Rodríguez-Hernández, Juan; Babin, Jérôme; Zappone, Bruno; Lecommandoux, Sébastien


    Supramolecular structures formed by self-assembly of diblock copolymers in solution are stable over restricted environmental conditions: concentration, temperature, pH, or ion strength among others. To enlarge their domain of application, it appears necessary to develop stabilization strategies. We report here different strategies to stabilize the shell of micelles formed by self-assembly of amphiphilic polydiene-b-polypeptide diblock copolymers. For this purpose, covalent bonds can be formed between either amine or carboxylic acid groups distributed along the soluble peptide block and a cross-linking agent that contains respectively aldehyde or amine functions. Shell stabilization affords systems with unique properties that combine three main advantages: shape persistence, control of the porosity, and stimuli-responsive behavior. The covalent capture of such macromolecular objects has been studied by light scattering, AFM, and conductimetry measurements.

  5. Photo-cross-linking approach to engineering small tyrosine-containing peptide hydrogels with enhanced mechanical stability. (United States)

    Ding, Yin; Li, Ying; Qin, Meng; Cao, Yi; Wang, Wei


    Peptide-based supramolecular hydrogels have been extensively explored in biomaterials owing to their unique bioactive, stimulus-responsive, and biocompatible features. However, peptide-based hydrogels often have low mechanical stability with storage moduli of 10-1000 Pa. They are susceptible to mechanical destruction and solvent erosion, greatly hindering their practical application. Here, we present a photo-cross-linking strategy to enhance the mechanical stability of a peptide-based hydrogel by 10(4)-fold with a storage modulus of ~100 kPa, which is one of the highest reported so far for hydrogels made of small peptide molecules. This method is based on the ruthenium-complex-catalyzed conversion of tyrosine to dityrosine upon light irradiation. The reinforcement of the hydrogel through photo-cross-linking can be achieved within 2 min thanks to the fast reaction kinetics. The enhancement of the mechanical stability was due to the formation of a densely entangled fibrous network of peptide dimers through a dityrosine linkage. We showed that in order to implement this method successfully, the peptide sequence should be rationally designed to avoid the cross talk between self-assembly and cross-linking. This method is convenient and versatile for the enhancement of the mechanical stability of tyrosine-containing peptide-based hydrogels. We anticipate that the photo-cross-linked supramolecular hydrogels with much improved mechanical stability will find broad applications in tissue engineering and drug controlled release.

  6. Isolation of cross-linked peptides by diagonal strong cation exchange chromatography for protein complex topology studies by peptide fragment fingerprinting from large sequence databases. (United States)

    Buncherd, Hansuk; Roseboom, Winfried; Ghavim, Behrad; Du, Weina; de Koning, Leo J; de Koster, Chris G; de Jong, Luitzen


    Knowledge of spatial proximity of amino acid residues obtained by chemical cross-linking and mass spectrometric analysis provides information about protein folding, protein-protein interactions and topology of macromolecular assemblies. We show that the use of bis(succinimidyl)-3-azidomethyl glutarate as a cross-linker provides a solution for two major analytical problems of cross-link mapping by peptide fragment fingerprinting (PFF) from complex sequence databases, i.e., low abundance of protease-generated target peptides and lack of knowledge of the masses of linked peptides. Tris(carboxyethyl)phosphine (TCEP) reduces the azido group in cross-linked peptides to an amine group in competition with cleavage of an amide bond formed in the cross-link reaction. TCEP-induced reaction products were separated by diagonal strong cation exchange (SCX) from unmodified peptides. The relation between the sum of the masses of the cleavage products and the mass of the parent cross-linked peptide enables determination of the masses of candidate linked peptides. By reversed phase LC-MS/MS analysis of secondary SCX fractions, we identified several intraprotein and interprotein cross-links in a HeLa cell nuclear extract, aided by software tools supporting PFF from the entire human sequence database. The data provide new information about interacting protein domains, among others from assemblies involved in splicing.

  7. CrossWork: Software-assisted identification of cross-linked peptides

    DEFF Research Database (Denmark)

    Rasmussen, Morten; Refsgaard, Jan; Peng, Li;


    The increased interest in chemical cross-linking for probing protein structure and interaction has led to a large increase in literature describing new cross-linkers and search programs. However, this has not led to a corresponding increase in the analysis of large and complex proteins. A major...... obstacle is that the new cross-linkers are either not readily available and/or have a low reactivity. In combination with aging search programs that are slow and have low sensitivity, or new search programs that are described but not released, these efforts do little to advance the field of cross......-linking. Here we present a method pipeline for chemical cross-linking, using two standard cross-linkers, BS3 and BS2G, combined with our freely available CrossWork search program. By this approach we generate cross-link data sufficient to derive structural information for large and complex proteins. Cross...

  8. Xlink Analyzer: software for analysis and visualization of cross-linking data in the context of three-dimensional structures. (United States)

    Kosinski, Jan; von Appen, Alexander; Ori, Alessandro; Karius, Kai; Müller, Christoph W; Beck, Martin


    Structural characterization of large multi-subunit protein complexes often requires integrating various experimental techniques. Cross-linking mass spectrometry (XL-MS) identifies proximal protein residues and thus is increasingly used to map protein interactions and determine the relative orientation of subunits within the structure of protein complexes. To fully adapt XL-MS as a structure characterization technique, we developed Xlink Analyzer, a software tool for visualization and analysis of XL-MS data in the context of the three-dimensional structures. Xlink Analyzer enables automatic visualization of cross-links, identifies cross-links violating spatial restraints, calculates violation statistics, maps chemically modified surfaces, and allows interactive manipulations that facilitate analysis of XL-MS data and aid designing new experiments. We demonstrate these features by mapping interaction sites within RNA polymerase I and the Rvb1/2 complex. Xlink Analyzer is implemented as a plugin to UCSF Chimera, a standard structural biology software tool, and thus enables seamless integration of XL-MS data with, e.g. fitting of X-ray structures to EM maps. Xlink Analyzer is available for download at

  9. Multiple and sequential data acquisition method: an improved method for fragmentation and detection of cross-linked peptides on a hybrid linear trap quadrupole Orbitrap Velos mass spectrometer. (United States)

    Rudashevskaya, Elena L; Breitwieser, Florian P; Huber, Marie L; Colinge, Jacques; Müller, André C; Bennett, Keiryn L


    The identification and validation of cross-linked peptides by mass spectrometry remains a daunting challenge for protein-protein cross-linking approaches when investigating protein interactions. This includes the fragmentation of cross-linked peptides in the mass spectrometer per se and following database searching, the matching of the molecular masses of the fragment ions to the correct cross-linked peptides. The hybrid linear trap quadrupole (LTQ) Orbitrap Velos combines the speed of the tandem mass spectrometry (MS/MS) duty circle with high mass accuracy, and these features were utilized in the current study to substantially improve the confidence in the identification of cross-linked peptides. An MS/MS method termed multiple and sequential data acquisition method (MSDAM) was developed. Preliminary optimization of the MS/MS settings was performed with a synthetic peptide (TP1) cross-linked with bis[sulfosuccinimidyl] suberate (BS(3)). On the basis of these results, MSDAM was created and assessed on the BS(3)-cross-linked bovine serum albumin (BSA) homodimer. MSDAM applies a series of multiple sequential fragmentation events with a range of different normalized collision energies (NCE) to the same precursor ion. The combination of a series of NCE enabled a considerable improvement in the quality of the fragmentation spectra for cross-linked peptides, and ultimately aided in the identification of the sequences of the cross-linked peptides. Concurrently, MSDAM provides confirmatory evidence from the formation of reporter ions fragments, which reduces the false positive rate of incorrectly assigned cross-linked peptides.

  10. Grafted Cross-Linked Polyolefin Substrates for Peptide Synthesis and Assays

    DEFF Research Database (Denmark)


    suited for use in solid-phase biosystems, notably bioassays, such as immunoassays, DNA hybridization assays or PCR amplification. The grafted chains may bear substituents which are such that the polymer-grafted cross-linked polyolefin substrate is swellable by water or aqueous media, in other words...

  11. Effect of chemical cross-linking on the mechanical properties of elastomeric peptides studied by single molecule force spectroscopy. (United States)

    Sbrana, Francesca; Lorusso, Marina; Canale, Claudio; Bochicchio, Brigida; Vassalli, Massimo


    Mechanical properties of animal tissues are mainly provided by the assembly of single elastomeric proteins into a complex network of filaments. Even if the overall elastic properties of such a reticulated structure depend on the mechanical characteristics of the constituents, it is not the only aspect to be considered. In addition, the aggregation mechanism has to be clarified to attain a full knowledge of the molecular basis of the elastic properties of natural nanostructured materials. This aim is even more crucial in the process of rational design of biomaterials with selected mechanical properties, in which not only the mechanics of single molecules but also of their assemblies has to be cared of. In this study, this aspect was approached by means of single molecule stretching experiments. In particular, the effect of chemical cross-linking on the mechanical properties of a naturally inspired elastomeric peptide was investigated. Accordingly, we observed that, in order to preserve the elastic properties of the single filament, the two strands of the dimer have to interact with each other. The results thus confirm that the influence of the aggregation process on the mechanical properties of a molecular assembly cannot be neglected.

  12. HPLC detection of loss rate and cell migration of HUVECs in a proanthocyanidin cross-linked recombinant human collagen-peptide (RHC)–chitosan scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Deng, Aipeng [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang, Yang [Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Gao, Lihu; Xu, Na; Liu, Xin; Hu, Lunxiang; Chen, Junhua [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang, Shulin, E-mail: [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)


    Porous scaffolds with appropriate pore structure, biocompatibility, mechanical property and processability play an important role in tissue engineering. In this paper, we fabricated a recombinant human collagen-peptide (RHC)–chitosan scaffold cross-linked by premixing 30% proanthocyanidin (PA) in one-step freeze-drying. To remove the residual acetic acid, optimized 0.2 M phosphate buffer of pH 6.24 with 30% ethanol (PBSE) was selected to neutralize the lyophilized scaffold followed by three times deionized water rinse. Ninhydrin assay was used to characterize the components loss during the fabrication process. To detect the exact RHC loss under optimized neutralization condition, high performance liquid chromatography (HPLC) equipped size exclusion chromatography column was used and the total RHC loss rate through PBSE rinse was 19.5 ± 5.08%. Fourier transform infrared spectroscopy (FT-IR) indicated hydrogen bonding among RHC, chitosan and PA, it also presented a probative but not strong hydrophobic interaction between phenyl rings of polyphenols and pyrrolidine rings of proline in RHC. Further, human umbilical vein endothelial cell (HUVEC) viability analyzed by a scanning electron microscope (SEM) and acridine orange/ethidium bromide (AO/EB) fluorescence staining exhibited that this scaffold could not only promote cell proliferation on scaffold surface but also permit cells migration into the scaffold. qRT-PCR exhibited that the optimized scaffold could stimulate angiogenesis associated genes VEGF and CD31 expression. These characterizations indicated that this scaffold can be considered as an ideal candidate for tissue engineering. - Highlights: • PA cross-linked recombinant human collagen–chitosan scaffold. • Fabrication in one-step lyophilization with neutralization. • HPLC detection of RHC loss rate • HUVEC proliferation and migration in scaffold • Angiogenesis associated gene expressions were increased in scaffold cell culturing.

  13. Error-prone translesion synthesis past DNA-peptide cross-links conjugated to the major groove of DNA via C5 of thymidine. (United States)

    Wickramaratne, Susith; Boldry, Emily J; Buehler, Charles; Wang, Yen-Chih; Distefano, Mark D; Tretyakova, Natalia Y


    DNA-protein cross-links (DPCs) are exceptionally bulky, structurally diverse DNA adducts formed in cells upon exposure to endogenous and exogenous bis-electrophiles, reactive oxygen species, and ionizing radiation. If not repaired, DPCs can induce toxicity and mutations. It has been proposed that the protein component of a DPC is proteolytically degraded, giving rise to smaller DNA-peptide conjugates, which can be subject to nucleotide excision repair and replication bypass. In this study, polymerase bypass of model DNA-peptide conjugates structurally analogous to the lesions induced by reactive oxygen species and DNA methyltransferase inhibitors was examined. DNA oligomers containing site-specific DNA-peptide conjugates were generated by copper-catalyzed [3 + 2] Huisgen cyclo-addition between an alkyne-functionalized C5-thymidine in DNA and an azide-containing 10-mer peptide. The resulting DNA-peptide conjugates were subjected to steady-state kinetic experiments in the presence of recombinant human lesion bypass polymerases κ and η, followed by PAGE-based assays to determine the catalytic efficiency and the misinsertion frequency opposite the lesion. We found that human polymerase κ and η can incorporate A, G, C, or T opposite the C5-dT-conjugated DNA-peptide conjugates, whereas human polymerase η preferentially inserts G opposite the lesion. Furthermore, HPLC-ESI(-)-MS/MS sequencing of the extension products has revealed that post-lesion synthesis was highly error-prone, resulting in mutations opposite the adducted site or at the +1 position from the adduct and multiple deletions. Collectively, our results indicate that replication bypass of peptides conjugated to the C5 position of thymine by human translesion synthesis polymerases leads to large numbers of base substitution and frameshift mutations.

  14. Isolation of cross-linked peptides by diagonal strong cation exchange chromatography for protein complex topology studies by peptide fragment fingerprinting from large sequence databases

    NARCIS (Netherlands)

    H. Buncherd; W. Roseboom; B. Ghavim; W. Du; L.J. de Koning; C.G. de Koster; L. de Jong


    Knowledge of spatial proximity of amino acid residues obtained by chemical cross-linking and mass spectrometric analysis provides information about protein folding, protein-protein interactions and topology of macromolecular assemblies. We show that the use of bis(succinimidyl)-3-azidomethyl glutara

  15. Use of proteinase K nonspecific digestion for selective and comprehensive identification of interpeptide cross-links: application to prion proteins. (United States)

    Petrotchenko, Evgeniy V; Serpa, Jason J; Hardie, Darryl B; Berjanskii, Mark; Suriyamongkol, Bow P; Wishart, David S; Borchers, Christoph H


    Chemical cross-linking combined with mass spectrometry is a rapidly developing technique for structural proteomics. Cross-linked proteins are usually digested with trypsin to generate cross-linked peptides, which are then analyzed by mass spectrometry. The most informative cross-links, the interpeptide cross-links, are often large in size, because they consist of two peptides that are connected by a cross-linker. In addition, trypsin targets the same residues as amino-reactive cross-linkers, and cleavage will not occur at these cross-linker-modified residues. This produces high molecular weight cross-linked peptides, which complicates their mass spectrometric analysis and identification. In this paper, we examine a nonspecific protease, proteinase K, as an alternative to trypsin for cross-linking studies. Initial tests on a model peptide that was digested by proteinase K resulted in a "family" of related cross-linked peptides, all of which contained the same cross-linking sites, thus providing additional verification of the cross-linking results, as was previously noted for other post-translational modification studies. The procedure was next applied to the native (PrP(C)) and oligomeric form of prion protein (PrPβ). Using proteinase K, the affinity-purifiable CID-cleavable and isotopically coded cross-linker cyanurbiotindipropionylsuccinimide and MALDI-MS cross-links were found for all of the possible cross-linking sites. After digestion with proteinase K, we obtained a mass distribution of the cross-linked peptides that is very suitable for MALDI-MS analysis. Using this new method, we were able to detect over 60 interpeptide cross-links in the native PrP(C) and PrPβ prion protein. The set of cross-links for the native form was used as distance constraints in developing a model of the native prion protein structure, which includes the 90-124-amino acid N-terminal portion of the protein. Several cross-links were unique to each form of the prion protein, including

  16. Chemical cross-linking of Chlamydia trachomatis

    DEFF Research Database (Denmark)

    Birkelund, Svend; Lundemose, AG; Christiansen, Gunna


    Purified elementary bodies (EBs) of Chlamydia trachomatis serovar L2 were analyzed by chemical cross-linking with disuccinimidyl selenodipropionate. The effect of the cross-linking was analyzed by immunoblotting sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated components which...

  17. Fast and Accurate Identification of Cross-Linked Peptides for the Structural Analysis of Large Protein Complexes and Elucidation of Interaction Networks. / Tahir, Salman; Bukowski-Wills, Jimi-Carlo; Rasmussen, Morten; Rappsilber, Juri

    DEFF Research Database (Denmark)

    Rasmussen, Morten

    Fast and Accurate Identification of Cross-Linked Peptides for the structural analysis of large protein complexes and to elucidate interaction networks. Salman Tahir Jimi-Carlo Bukowski-Wills; Morten Rasmussen; Juri RappsilberWellcome Trust Centre for Cell Biology, Edinburgh , United Kingdom   Novel...

  18. Chemical cross-linking with thiol-cleavable reagents combined with differential mass spectrometric peptide mapping--a novel approach to assess intermolecular protein contacts

    DEFF Research Database (Denmark)

    Bennett, K L; Kussmann, M; Björk, P;


    The intermolecular contact regions between monomers of the homodimeric DNA binding protein ParR and the interaction between the glycoproteins CD28 and CD80 were investigated using a strategy that combined chemical cross-linking with differential MALDI-MS analyses. ParR dimers were modified in vitro...... revealed the presence of an intermolecular cross-link between the receptor regions of the glycoprotein constructs, as well as a number of unexpected but nonetheless specific interactions between the fusion domains of CD28-IgG and the receptor domain of CD80-Fab. The strategy of chemical cross...

  19. Molecular Structures of Isolevuglandin-Protein Cross-Links. (United States)

    Bi, Wenzhao; Jang, Geeng-Fu; Zhang, Lei; Crabb, John W; Laird, James; Linetsky, Mikhail; Salomon, Robert G


    Isolevuglandins (isoLGs) are stereo and structurally isomeric γ-ketoaldehydes produced through free radical-induced oxidation of arachidonates. Some isoLG isomers are also generated through enzymatic cyclooxygenation. Post-translational modification of proteins by isoLGs is associated with loss-of-function, cross-linking and aggregation. We now report that a low level of modification by one or two molecules of isoLG has a profound effect on the activity of a multi subunit protease, calpain-1. Modification of one or two key lysyl residues apparently suffices to abolish catalytic activity. Covalent modification of calpain-1 led to intersubunit cross-linking. Hetero- and homo-oligomers of the catalytic and regulatory subunits of calpain-1 were detected by SDS-PAGE with Western blotting. N-Acetyl-glycyl-lysine methyl ester and β-amyloid(11-17) peptide EVHHQKL were used as models for characterizing the cross-linking of protein lysyl residues resulting from adduction of iso[4]LGE2. Aminal, bispyrrole, and trispyrrole cross-links of these two peptides were identified and fully characterized by mass spectrometry. Aminal and bispyrrole dimers were both detected. Furthermore, a complex mixture of derivatives of the bispyrrole cross-link containing one or more additional atoms of oxygen was found. Interesting differences are evident in the predominant cross-link type generated in the reaction of iso[4]LGE2 with these peptides. More aminal cross-links versus bispyrrole are formed during the reaction of the dipeptide with iso[4]LGE2. In contrast, more bispyrrole versus aminal cross-links are formed during the reaction of EVHHQKL with iso[4]LGE2. It is tempting to speculate that the EVHHQKL peptide-pyrrole modification forms noncovalent aggregates that favor the production of covalent bispyrrole cross-links because β-amyloid(11-17) tends to spontaneously oligomerize.

  20. Cross-linked structure of network evolution

    Energy Technology Data Exchange (ETDEWEB)

    Bassett, Danielle S., E-mail: [Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Department of Physics, University of California, Santa Barbara, California 93106 (United States); Sage Center for the Study of the Mind, University of California, Santa Barbara, California 93106 (United States); Wymbs, Nicholas F.; Grafton, Scott T. [Department of Psychology and UCSB Brain Imaging Center, University of California, Santa Barbara, California 93106 (United States); Porter, Mason A. [Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); CABDyN Complexity Centre, University of Oxford, Oxford, OX1 1HP (United Kingdom); Mucha, Peter J. [Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)


    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  1. Identification of dityrosine cross-linked sites in oxidized human serum albumin. (United States)

    Annibal, Andrea; Colombo, Graziano; Milzani, Aldo; Dalle-Donne, Isabella; Fedorova, Maria; Hoffmann, Ralf


    Reactive oxygen species (ROS) can oxidize virtually all cellular components. In proteins cysteine, methionine, tryptophan, and tyrosine residues are most prone to oxidation and their oxidized forms are thus considered as biomarkers of oxidative protein damages. Ultraviolet radiation and some endogenous ROS can produce tyrosine radicals reacting with other tyrosine residues yielding intra- or intermolecular cross-links in proteins. These 3,3'-dityrosines can be quantified by their characteristic fluorescence, but analytical methods to identify the modification sites in proteins are still missing. Although mass spectrometry (MS) is routinely used to map other post-translational modifications, the analysis of dityrosines is challenged by simultaneous fragmentations of both cross-linked peptide chains producing complex tandem mass spectra. Additionally, the fragmentation patterns differ from linear peptides. Here, we studied the fragmentation behavior of dityrosine cross-linked peptides obtained by incubating three peptides (AAVYHHFISDGVR, TEVSSNHVLIYLDK, and LVAYYTLIGASGQR) with horseradish peroxidase in the presence of hydrogen peroxide. Homo- and hetero-dimerization via dityrosine was monitored by fluorescence spectroscopy and MS. The fragmentation characteristics of dityrosine-linked peptides were studied on an ESI-LTQ-Orbitrap-MS using collision induced dissociation, which allowed localizing the cross-linked positions and provided generic rules to identify this oxidative modification. When human serum albumin oxidized with 50-fold molar excess of HOCl in phosphate buffer saline was analyzed by nanoRPC-ESI-MS/MS, an automatic database search considering all possible (in-silico generated) tyrosine-containing peptides as dynamic modifications revealed four different types of oxidatively modified tyrosine residues including dityrosines linking ten different Tyr residues. The automatic database search was confirmed by manual interpretation of each tandem mass spectrum.

  2. Thermal Analyse sof Cross-Linked Polyethylene

    Directory of Open Access Journals (Sweden)

    Radek Polansky


    Full Text Available The paper summarizes results obtained during the structural analyses measurements (Differential Scanning Calorimetry DSC, Thermogravimetry TG, Thermomechanical analysis TMA and Fourier transform infrared spectroscopy FT-IR. The samples of cross-linked polyethylene cable insulation were tested via these analyses. The DSC and TG were carried out using simultaneous thermal analyzer TA Instruments SDT Q600 with connection of Fourier transform infrared spectrometer Nicolet 380. Thermomechanical analysis was carried out by TMA Q400EM TA Instruments apparatus.

  3. Research Progress in Corneal Cross-linking Agents

    Institute of Scientific and Technical Information of China (English)

    Na Li; Xiujun Peng; Zhengjun Fan


    Corneal collagen cross-linking with UVA-riboflavin is cur-rently the only method for preventing the progression of kera-toconus from the pathological perspective. Topical application of a direct cross-linking agent is now attracting widespread at-tention in clinical settings..This article reviews the research progress in the application of indirect or direct cross-linking agents (e.g., riboflavin, glucose, ribose, glutaraldehyde, formaldehyde,.glyceraldehyde,.short chain aliphatic β-nitro alcohol, and genipin) in the treatment of corneal diseases and analyzes the cross-linking efficacy,.toxicity,.and merits and disadvantages of each cross-linking agent,.providing clinical information for further studies.

  4. Collagen cross linking: Current perspectives

    Directory of Open Access Journals (Sweden)

    Srinivas K Rao


    Full Text Available Keratoconus is a common ectatic disorder occurring in more than 1 in 1,000 individuals. The condition typically starts in adolescence and early adulthood. It is a disease with an uncertain cause and its progression is unpredictable, but in extreme cases, vision deteriorates and can require corneal transplant surgery. Corneal collagen cross-linking (CCL with riboflavin (C3R is a recent treatment option that can enhance the rigidity of the cornea and prevent disease progression. Since its inception, the procedure has evolved with newer instrumentation, surgical techniques, and is also now performed for expanded indications other than keratoconus. With increasing experience, newer guidelines regarding optimization of patient selection, the spectrum of complications and their management, and combination procedures are being described. This article in conjunction with the others in this issue, will try and explore the uses of collagen cross-linking (CXL in its current form.

  5. Chemical cross-linking of the urease complex from Helicobacter pylori and analysis by Fourier transform ion cyclotron resonance mass spectrometry and molecular modeling (United States)

    Carlsohn, Elisabet; Ångström, Jonas; Emmett, Mark R.; Marshall, Alan G.; Nilsson, Carol L.


    Chemical cross-linking of proteins is a well-established method for structural mapping of small protein complexes. When combined with mass spectrometry, cross-linking can reveal protein topology and identify contact sites between the peptide surfaces. When applied to surface-exposed proteins from pathogenic organisms, the method can reveal structural details that are useful in vaccine design. In order to investigate the possibilities of applying cross-linking on larger protein complexes, we selected the urease enzyme from Helicobacter pylori as a model. This membrane-associated protein complex consists of two subunits: [alpha] (26.5 kDa) and [beta] (61.7 kDa). Three ([alpha][beta]) heterodimers form a trimeric ([alpha][beta])3 assembly which further associates into a unique dodecameric 1.1 MDa complex composed of four ([alpha][beta])3 units. Cross-linked peptides from trypsin-digested urease complex were analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and molecular modeling. Two potential cross-linked peptides (present in the cross-linked sample but undetectable in [alpha], [beta], and native complex) were assigned. Molecular modeling of urease [alpha][beta] complex and trimeric urease units ([alpha][beta])3 revealed a linkage site between the [alpha]-subunit and the [beta]-subunit, and an internal cross-linkage in the [beta]-subunit.

  6. Elasticity of cross-linked semiflexible biopolymers under tension. (United States)

    von der Heydt, Alice; Wilkin, Daniel; Benetatos, Panayotis; Zippelius, Annette


    Aiming at the mechanical properties of cross-linked biopolymers, we set up and analyze a model of two weakly bending wormlike chains subjected to a tensile force, with regularly spaced inter-chain bonds (cross-links) represented by harmonic springs. Within this model, we compute the force-extension curve and the differential stiffness exactly and discuss several limiting cases. Cross-links effectively stiffen the chain pair by reducing thermal fluctuations transverse to the force and alignment direction. The extra alignment due to cross-links increases both with growing number and with growing strength of the cross-links, and is most prominent for small force f. For large f, the additional, cross-link-induced extension is subdominant except for the case of linking the chains rigidly and continuously along their contour. In this combined limit, we recover asymptotically the elasticity of a weakly bending wormlike chain without constraints, stiffened by a factor of 4. The increase in differential stiffness can be as large as 100% for small f or large numbers of cross-links.

  7. Electrospinning formaldehyde cross-linked zein solutions (United States)

    In order to develop zein fibers with improved physical properties and solvent resistance, formaldehyde was used as the cross-linking reagent before spinning. The cross-linking reaction was carried out in either acetic acid or ethanolic-HCl where the amount of cross-linking reagent was between 1 and...

  8. Gelation threshold of cross-linked polymer brushes. (United States)

    Hoffmann, Max; Lang, Michael; Sommer, Jens-Uwe


    The cross-linking of polymer brushes is studied using the bond-fluctuation model. By mapping the cross-linking process into a two-dimensional (2D) percolation problem within the lattice of grafting points, we investigate the gelation transition in detail. We show that the particular properties of cross-linked polymer brushes can be reduced to the distribution of bonds which are formed between the grafted chains, and we propose scaling arguments to relate the gelation threshold to the chain length and the grafting density. The gelation threshold is lower than the percolation threshold for 2D bond percolation because of the longer range and broad distribution of bonds formed by the cross-linking process. We term this type of percolation problem star percolation. We observe a broad crossover from mean-field to critical percolation behavior by analyzing the cluster size distribution near the gelation threshold.

  9. Elasticity of cross-linked semiflexible biopolymers under tension

    CERN Document Server

    von der Heydt, Alice; Benetatos, Panayotis; Zippelius, Annette


    Aiming at the mechanical properties of cross-linked biopolymers, we set up and analyze a model of two weakly bending wormlike chains subjected to a tensile force, with regularly spaced inter-chain bonds (cross-links) represented by harmonic springs. Within this model, we compute the force-extension curve and the differential stiffness exactly and discuss several limiting cases. Cross-links effectively stiffen the chain pair by reducing thermal fluctuations transverse to the force and alignment direction. The extra alignment due to cross-links increases both with growing number and with growing strength of the cross-links, and is most prominent for small force f. For large f, the additional, cross-link-induced extension is subdominant except for the case of linking the chains rigidly and continuously along their contour. In this combined limit, we recover asymptotically the elasticity of a weakly bending wormlike chain without constraints, stiffened by a factor four. The increase in differential stiffness can ...

  10. Corneal collagen cross-linking

    Directory of Open Access Journals (Sweden)

    Jankov II Mirko


    Full Text Available Corneal collagen cross-linking (CXL with riboflavin and ultraviolet-A (UVA is a new technique of corneal tissue strengthening by using riboflavin as a photosensitizer and UVA to increase the formation of intra- and interfibrillar covalent bonds by photosensitized oxidation. Keratocyte apoptosis in the anterior segment of the corneal stroma all the way down to a depth of about 300 microns has been described and a demarcation line between the treated and untreated cornea has been clearly shown. It is important to ensure that the cytotoxic threshold for the endothelium has not been exceeded by strictly respecting the minimal corneal thickness. Confocal microscopy studies show that repopulation of keratocytes is already visible 1 month after the treatment, reaching its pre-operative quantity and quality in terms of functional morphology within 6 months after the treatment. The major indication for the use of CXL is to inhibit the progression of corneal ectasias, such as keratoconus and pellucid marginal degeneration. CXL may also be effective in the treatment and prophylaxis of iatrogenic keratectasia, resulting from excessively aggressive photoablation. This treatment has also been used to treat infectious corneal ulcers with apparent favorable results. Combination with other treatments, such as intracorneal ring segment implantation, limited topography-guided photoablation and conductive keratoplasty have been used with different levels of success.

  11. Analysis of protein-nucleic acid interactions by photochemical cross-linking and mass spectrometry

    DEFF Research Database (Denmark)

    Steen, Hanno; Jensen, Ole Nørregaard


    Photochemical cross-linking is a commonly used method for studying the molecular details of protein-nucleic acid interactions. Photochemical cross-linking aids in defining nucleic acid binding sites of proteins via subsequent identification of cross-linked protein domains and amino acid residues....... Mass spectrometry (MS) has emerged as a sensitive and efficient analytical technique for determination of such cross-linking sites in proteins. The present review of the field describes a number of MS-based approaches for the characterization of cross-linked protein-nucleic acid complexes...... and for sequencing of peptide-nucleic acid heteroconjugates. The combination of photochemical cross-linking and MS provides a fast screening method to gain insights into the overall structure and formation of protein-oligonucleotide complexes. Because the analytical methods are continuously refined and protein...

  12. Characterization of the deoxyguanosine-lysine cross-link of methylglyoxal. (United States)

    Petrova, Katya V; Millsap, Amy D; Stec, Donald F; Rizzo, Carmelo J


    Methylglyoxal is a mutagenic bis-electrophile that is produced endogenously from carbohydrate precursors. Methylglyoxal has been reported to induce DNA-protein cross-links (DPCs) in vitro and in cultured cells. Previous work suggests that these cross-links are formed between guanine and either lysine or cysteine side chains. However, the chemical nature of the methylglyoxal induced DPC have not been determined. We have examined the reaction of methylglyoxal, deoxyguanosine (dGuo), and Nα-acetyllysine (AcLys) and determined the structure of the cross-link to be the N2-ethyl-1-carboxamide with the lysine side chain amino group (1). The cross-link was identified by mass spectrometry and the structure confirmed by comparison to a synthetic sample. Further, the cross-link between methylglyoxal, dGuo, and a peptide (AcAVAGKAGAR) was also characterized. The mechanism of cross-link formation is likely to involve an Amadori rearrangement.

  13. Mass spectrometric analysis of a UV-cross-linked protein-DNA complex: tryptophans 54 and 88 of E. coli SSB cross-link to DNA

    DEFF Research Database (Denmark)

    Steen, H; Petersen, J; Mann, M


    Protein-nucleic acid complexes are commonly studied by photochemical cross-linking. UV-induced cross-linking of protein to nucleic acid may be followed by structural analysis of the conjugated protein to localize the cross-linked amino acids and thereby identify the nucleic acid binding site. Mass...... spectrometry is becoming increasingly popular for characterization of purified peptide-nucleic acid heteroconjugates derived from UV cross-linked protein-nucleic acid complexes. The efficiency of mass spectrometry-based methods is, however, hampered by the contrasting physico-chemical properties of nucleic....... coli single-stranded DNA binding protein (SSB) that was UV-cross-linked to a 5-iodouracil containing DNA oligomer. Two methods were optimized to circumvent the need for standard liquid chromatography and gel electrophoresis, thereby dramatically increasing the overall sensitivity of the analysis...

  14. LFQProfiler and RNP(xl): Open-Source Tools for Label-Free Quantification and Protein-RNA Cross-Linking Integrated into Proteome Discoverer. (United States)

    Veit, Johannes; Sachsenberg, Timo; Chernev, Aleksandar; Aicheler, Fabian; Urlaub, Henning; Kohlbacher, Oliver


    Modern mass spectrometry setups used in today's proteomics studies generate vast amounts of raw data, calling for highly efficient data processing and analysis tools. Software for analyzing these data is either monolithic (easy to use, but sometimes too rigid) or workflow-driven (easy to customize, but sometimes complex). Thermo Proteome Discoverer (PD) is a powerful software for workflow-driven data analysis in proteomics which, in our eyes, achieves a good trade-off between flexibility and usability. Here, we present two open-source plugins for PD providing additional functionality: LFQProfiler for label-free quantification of peptides and proteins, and RNP(xl) for UV-induced peptide-RNA cross-linking data analysis. LFQProfiler interacts with existing PD nodes for peptide identification and validation and takes care of the entire quantitative part of the workflow. We show that it performs at least on par with other state-of-the-art software solutions for label-free quantification in a recently published benchmark ( Ramus, C.; J. Proteomics 2016 , 132 , 51 - 62 ). The second workflow, RNP(xl), represents the first software solution to date for identification of peptide-RNA cross-links including automatic localization of the cross-links at amino acid resolution and localization scoring. It comes with a customized integrated cross-link fragment spectrum viewer for convenient manual inspection and validation of the results.

  15. The effect of cross-link distributions in axially-ordered, cross-linked networks (United States)

    Bennett, C. Brad; Kruczek, James; Rabson, D. A.; Matthews, W. Garrett; Pandit, Sagar A.


    Cross-linking between the constituent chains of biopolymers has a marked effect on their materials’ properties. In certain of these materials, such as fibrillar collagen, increases in cross-linking lead to an increase in the melting temperature. Fibrillar collagen is an axially-ordered network of cross-linked polymer chains exhibiting a broadened denaturation transition, which has been explained in terms of the successive denaturation with temperature of multiple species. We model axially-ordered, cross-linked materials as stiff chains with distinct arrangements of cross-link-forming sites. Simulations suggest that systems composed of chains with identical arrangements of cross-link-forming sites exhibit critical behavior. In contrast, systems composed of non-identical chains undergo a crossover. This model suggests that the arrangement of cross-link-forming sites may contribute to the broadening of the denaturation transition in fibrillar collagen.

  16. An Open Data Format for Visualization and Analysis of Cross-Linked Mass Spectrometry Results. (United States)

    Hoopmann, Michael R; Mendoza, Luis; Deutsch, Eric W; Shteynberg, David; Moritz, Robert L


    Protein-protein interactions are an important element in the understanding of protein function, and chemical cross-linking shotgun mass spectrometry is rapidly becoming a routine approach to identify these specific interfaces and topographical interactions. Protein cross-link data analysis is aided by dozens of algorithm choices, but hindered by a lack of a common format for representing results. Consequently, interoperability between algorithms and pipelines utilizing chemical cross-linking remains a challenge. pepXML is an open, widely-used format for representing spectral search algorithm results that has facilitated information exchange and pipeline development for typical shotgun mass spectrometry analyses. We describe an extension of this format to incorporate cross-linking spectral search results. We demonstrate application of the extension by representing results of multiple cross-linking search algorithms. In addition, we demonstrate adapting existing pepXML-supporting software pipelines to analyze protein cross-linking results formatted in pepXML. Graphical Abstract ᅟ.

  17. Femtosecond laser collagen cross-linking without traditional photosensitizers (United States)

    Guo, Yizang; Wang, Chao; Celi, Nicola; Vukelic, Sinisa


    Collagen cross-linking in cornea has the capability of enhancing its mechanical properties and thereby providing an alternative treatment for eye diseases such as keratoconus. Currently, riboflavin assisted UVA light irradiation is a method of choice for cross-link induction in eyes. However, ultrafast pulsed laser interactions may be a powerful alternative enabling in-depth treatment while simultaneously diminishing harmful side effects such as, keratocyte apoptosis. In this study, femtosecond laser is utilized for treatment of bovine cornea slices. It is hypothesized that nonlinear absorption of femtosecond laser pulses plays a major role in the maturation of immature cross-links and the promotion of their growth. Targeted irradiation with tightly focused laser pulses allows for the absence of a photosensitizing agent. Inflation test was conducted on half treated porcine cornea to identify the changes of mechanical properties due to laser treatment. Raman spectroscopy was utilized to study subtle changes in the chemical composition of treated cornea. The effects of treatment are analyzed by observing shifts in Amide I and Amide III bands, which suggest deformation of the collagen structure in cornea due to presence of newly formed cross-links.

  18. Cross-linking chemistry of squid beak. (United States)

    Miserez, Ali; Rubin, Daniel; Waite, J Herbert


    In stark contrast to most aggressive predators, Dosidicus gigas (jumbo squids) do not use minerals in their powerful mouthparts known as beaks. Their beaks instead consist of a highly sclerotized chitinous composite with incremental hydration from the tip to the base. We previously reported l-3,4-dihydroxyphenylalanine (dopa)-histidine (dopa-His) as an important covalent cross-link providing mechanical strengthening to the beak material. Here, we present a more complete characterization of the sclerotization chemistry and describe additional cross-links from D. gigas beak. All cross-links presented in this report share common building blocks, a family of di-, tri-, and tetra-histidine-catecholic adducts, that were separated by affinity chromatography and high performance liquid chromatography (HPLC) and identified by tandem mass spectroscopy and proton nuclear magnetic resonance ((1)H NMR). The data provide additional insights into the unusually high cross-link density found in mature beaks. Furthermore, we propose both a low molecular weight catechol, and peptidyl-dopa, to be sclerotization agents of squid beak. This appears to represent a new strategy for forming hard tissue in animals. The interplay between covalent cross-linking and dehydration on the graded properties of the beaks is discussed.

  19. Method of preparing cross-linked enzyme particles

    NARCIS (Netherlands)

    Mateo, C.; Van Langen, L.M.; Van Rantwijk, F.


    The invention relates to a method of preparing cross-linked enzyme particles using a cross-linking agent. According to the invention, the enzyme particles are formed and subsequently cross-linked using a cross-linking agent having at least n reactive groups where N>=3 and a molecular weight of >2,00

  20. The cross linking of EPDM and NBR rubber

    Directory of Open Access Journals (Sweden)

    Samardžija-Jovanović Suzana


    Full Text Available In the process of macromolecule cross linking, the choice of type and quantity of the components and the experimental conditions are important to obtain the new cross linked materials with better mechanical and chemical characteristics. The cross linking method depends on the rubber type and structure. Intermolecular cross linking results in the formation elastomer network. The basis of the cross linking process, between ethylene propylene diene rubber (EPDM and acrylonitrile butadiene rubber (NBR, is a chemical reaction. Fillers and other additives are present in different mass ratios in the material. The exploitation properties of the cross linked materials depend on the quantity of additive in the cross linked systems.

  1. [Corneal collagen cross-linking for keratoconus]. (United States)

    Zotov, V V; Pashtaev, N P; Pozdeeva, N A


    Over the last decade, corneal collagen cross-linking (CXL) has become a conventional treatment method for progressive keratoconus. Laboratory studies have shown that CXL increases the diameter of collagen fibers and also the number of intra- and interfibrillar cross-links, thus, increasing biomechanical strength of the irradiated cornea. As confirmed by a series of clinical and randomized controlled trials, CXL is able to slow down and, perhaps, to stop the progression of keratoconus. In most post-CXL patients visual acuity improves, while keratometric readings, spherical equivalent, and higher order aberrations reduce. Although published results prove CXL effective in the treatment of progressive keratoconus, its late consequences are yet unknown. This article reviews the stages of CXL development and results of published experimental and clinical studies. Prospects for CXL modifications that do not require epithelial debridement are discussed.

  2. Collagen cross-linking in thin corneas

    Directory of Open Access Journals (Sweden)

    Prema Padmanabhan


    Full Text Available Collagen cross-linking (CXL has become the standard of care for progressive keratoconus, after numerous clinical studies have established its efficacy and safety in suitably selected eyes. The standard protocol is applicable in eyes which have a minimum corneal thickness of 400 μm after epithelial debridement. This prerequisite was stipulated to protect the corneal endothelium and intraocular tissues from the deleterious effect of ultraviolet-A (UVA radiation. However, patients with keratoconus often present with corneal thickness of less than 400 μm and could have otherwise benefited from this procedure. A few modifications of the standard procedure have been suggested to benefit these patients without a compromise in safety. Transepithelial cross-linking, pachymetry-guided epithelial debridement before cross-linking, and the use of hypoosmolar riboflavin are some of the techniques that have been attempted. Although clinical data is limited at the present time, these techniques are worth considering in patients with thin corneas. Further studies are needed to scientifically establish their efficacy and safety.

  3. Fiber optic immunosensor for cross-linked fibrin concentration (United States)

    Moskowitz, Samuel E.


    Working with calcium ions in the blood, platelets produce thromboplastin which transforms prothrombin into thrombin. Removing peptides, thrombin changes fibrinogen into fibrin. Cross-linked insoluble fibrin polymers are solubilized by enzyme plasmin found in blood plasma. Resulting D-dimers are elevated in patients with intravascular coagulation, deep venous thrombosis, pulmonary embolism, myocardial infarction, multiple trauma, cancer, impaired renal and liver functions, and sepsis. Consisting principally of a NIR 780 nm GaAlAs laser diode and a 800 nm avalanche photodiode (APD), the fiber-optic immunosensor can determined D-dimer concentration to levels detected by a second antibody which is labeled with NN 382 fluorescent dye. An evanescent wave traveling on an excitation optical fiber excites the antibody-antigen fluorophore complex. Concentration of cross-linked fibrin is directly proportional to the APD measured intensity of fluorescence. NIR fluorescence has advantages of low background interference, short fluorescence lifetime, and large difference between excitation and emission peaks. Competitive ELISA test for D-dimer concentration requires trained personnel performing a time consuming operation.

  4. Crown ether activation of cross-linked subtilisin Carlsberg crystals in organic solvents

    NARCIS (Netherlands)

    Unen, van Dirk-Jan; Sakodinskaya, Inna K.; Engbersen, Johan F.J.; Reinhoudt, David N.


    The activity of cross-linked subtilisin Carlsberg crystals in the catalysis of peptide bond formation can be significantly enhanced by pretreatment of the enzyme crystals with crown ethers. Soaking of the enzyme crystals in a solution of crown ether in acetonitrile followed by evaporation of the sol

  5. Cross-linking for microbial keratitis

    Directory of Open Access Journals (Sweden)

    Jayesh Vazirani


    Full Text Available The success of collagen cross-linking as a clinical modality to modify the clinical course in keratoconus seems to have fueled the search for alternative applications for this treatment. Current clinical data on its efficacy is limited and laboratory data seems to indicate that it performs poorly against resistant strains of bacteria and against slow growing organisms. However, the biological plausibility of crosslinking and the lack of effective strategies in managing infections with these organisms continue to focus attention on this potential treatment. Well-conducted experimental and clinical studies with controls are required to answer the questions of its efficacy in future.

  6. Macrophage response to cross-linked and conventional UHMWPE. (United States)

    Sethi, Rajiv K; Neavyn, Mark J; Rubash, Harry E; Shanbhag, Arun S


    To prevent wear debris-induced osteolysis and aseptic loosening, cross-linked ultra-high molecular weight polyethylene's (UHMWPE) with improved wear resistance have been developed. Hip simulator studies have demonstrated very low wear rates with these new materials leading to their widespread clinical use. However, the biocompatibility of this material is not known. We studied the macrophage response to cross-linked UHMWPE (XLPE) and compared it to conventional UHMWPE (CPE) as well as other clinically used orthopaedic materials such as titanium-alloy (TiAlV) and cobalt-chrome alloy (CoCr). Human peripheral blood monocytes and murine macrophages, as surrogates for cells mediating peri-implant inflammation, were cultured onto custom designed lipped disks fabricated from the test materials to isolate cells. Culture supernatants were collected at 24 and 48h and analyzed for cytokines such as IL-1alpha, IL-1beta, TNF-alpha and IL-6. Total RNA was extracted from adherent cells and gene expression was analyzed using qualitative RT-PCR. In both in vitro models, macrophages cultured on cross-linked and conventional polyethylene released similar levels of cytokines, which were also similar to levels on control tissue culture dishes. Macrophages cultured on TiAlV and CoCr-alloy released significantly higher levels of cytokines. Human monocytes from all donors varied in the magnitude of cytokines released when cultured on identical surfaces. The variability in individual donor responses to TiAlV and CoCr surfaces may reflect how individuals respond differently to similar stimuli and perhaps reveal a predisposed sensitivity to particular materials.

  7. The Cross - linking reaction of HEC

    Institute of Scientific and Technical Information of China (English)

    XIONG Jian; YE Jun; XUAN Zhiyong; XIE Guohui


    @@ Cellulose ethers are important components for light industries such as food and papermaking industries. Its modification research is a frontline science to widen their uses and realize their industrialization. The target of modification is to make high production value, low input and meet the needs better in industries. O-(2-hydroxyethl) cellulose (HEC) is one of the best-known cellulose ether derivatives. It is mainly used as thickeners, dispersants, adhesives, extenders, and films because of its water solubility and gel-forming properties. The present research,by means of cross-linking, we study the influence on HEC about rheological behavior.This will provide a feasible scheme for cellulose ethers modification.

  8. The Cross - linking reaction of HEC

    Institute of Scientific and Technical Information of China (English)

    XIONG; Jian


    Cellulose ethers are important components for light industries such as food and papermaking industries. Its modification research is a frontline science to widen their uses and realize their industrialization. The target of modification is to make high production value, low input and meet the needs better in industries.  O-(2-hydroxyethl) cellulose (HEC) is one of the best-known cellulose ether derivatives. It is mainly used as thickeners, dispersants, adhesives, extenders, and films because of its water solubility and gel-forming properties. The present research,by means of cross-linking, we study the influence on HEC about rheological behavior.This will provide a feasible scheme for cellulose ethers modification.……

  9. Azidopropylvinylsulfonamide as a New Bifunctional Click Reagent for Bioorthogonal Conjugations: Application for DNA-Protein Cross-Linking. (United States)

    Dadová, Jitka; Vrábel, Milan; Adámik, Matej; Brázdová, Marie; Pohl, Radek; Fojta, Miroslav; Hocek, Michal


    N-(3-Azidopropyl)vinylsulfonamide was developed as a new bifunctional bioconjugation reagent suitable for the cross-linking of biomolecules through copper(I)-catalyzed azide-alkyne cycloaddition and thiol Michael addition reactions under biorthogonal conditions. The reagent is easily clicked to an acetylene-containing DNA or protein and then reacts with cysteine-containing peptides or proteins to form covalent cross-links. Several examples of bioconjugations of ethynyl- or octadiynyl-modified DNA with peptides, p53 protein, or alkyne-modified human carbonic anhydrase with peptides are given.

  10. Effects of partial hydrolysis and subsequent cross-linking on wheat gluten physicochemical properties and structure. (United States)

    Wang, Kaiqiang; Luo, Shuizhong; Cai, Jing; Sun, Qiaoqiao; Zhao, Yanyan; Zhong, Xiyang; Jiang, Shaotong; Zheng, Zhi


    The rheological behavior and thermal properties of wheat gluten following partial hydrolysis using Alcalase and subsequent microbial transglutaminase (MTGase) cross-linking were investigated. The wheat gluten storage modulus (G') and thermal denaturation temperature (Tg) were significantly increased from 2.26 kPa and 54.43°C to 7.76 kPa and 57.69°C, respectively, by the combined action of partial hydrolysis (DH 0.187%) and cross-linking. The free SH content, surface hydrophobicity, and secondary structure analysis suggested that an appropriate degree of Alcalase-based hydrolysis allowed the compact wheat gluten structure to unfold, increasing the β-sheet content and surface hydrophobicity. This improved its molecular flexibility and exposed additional glutamine sites for MTGase cross-linking. SEM images showed that a compact 3D network formed, while SDS-PAGE profiles revealed that excessive hydrolysis resulted in high-molecular-weight subunits degrading to smaller peptides, unsuitable for cross-linking. It was also demonstrated that the combination of Alcalase-based partial hydrolysis with MTGase cross-linking might be an effective method for modifying wheat gluten rheological behavior and thermal properties.

  11. Cross-link guided molecular modeling with ROSETTA.

    Directory of Open Access Journals (Sweden)

    Abdullah Kahraman

    Full Text Available Chemical cross-links identified by mass spectrometry generate distance restraints that reveal low-resolution structural information on proteins and protein complexes. The technology to reliably generate such data has become mature and robust enough to shift the focus to the question of how these distance restraints can be best integrated into molecular modeling calculations. Here, we introduce three workflows for incorporating distance restraints generated by chemical cross-linking and mass spectrometry into ROSETTA protocols for comparative and de novo modeling and protein-protein docking. We demonstrate that the cross-link validation and visualization software Xwalk facilitates successful cross-link data integration. Besides the protocols we introduce XLdb, a database of chemical cross-links from 14 different publications with 506 intra-protein and 62 inter-protein cross-links, where each cross-link can be mapped on an experimental structure from the Protein Data Bank. Finally, we demonstrate on a protein-protein docking reference data set the impact of virtual cross-links on protein docking calculations and show that an inter-protein cross-link can reduce on average the RMSD of a docking prediction by 5.0 Å. The methods and results presented here provide guidelines for the effective integration of chemical cross-link data in molecular modeling calculations and should advance the structural analysis of particularly large and transient protein complexes via hybrid structural biology methods.

  12. A minimal model for stabilization of biomolecules by hydrocarbon cross-linking (United States)

    Hamacher, K.; Hübsch, A.; McCammon, J. A.


    Programmed cell death regulating protein motifs play an essential role in the development of an organism, its immune response, and disease-related cellular mechanisms. Among those motifs the BH3 domain of the BCL-2 family is found to be of crucial importance. Recent experiments showed how the isolated, otherwise unstructured BH3 peptide can be modified by a hydrocarbon linkage to regain function. We parametrized a reduced, dynamic model for the stability effects of such covalent cross-linking and confirmed that the model reproduces the reinforcement of the structural stability of the BH3 motif by cross-linking. We show that an analytically solvable model for thermostability around the native state is not capable of reproducing the stabilization effect. This points to the crucial importance of the peptide dynamics and the fluctuations neglected in the analytic model for the cross-linking system to function properly. This conclusion is supported by a thorough analysis of a simulated Gō model. The resulting model is suitable for rational design of generic cross-linking systems in silicio.

  13. Molecular contacts for chlorosome envelope proteins revealed by cross-linking studies with chlorosomes from Chlorobium tepidum

    DEFF Research Database (Denmark)

    Li, Hui; Frigaard, Niels-Ulrik; Bryant, Donald A


    type and mutants lacking a single chlorosome protein were cross-linked with the zero-length cross-linker 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC) and analyzed by gel electrophoresis. Similar cross-linking products were observed when the time and temperature were varied or when EDC...... was replaced with glutaraldehyde. Specific interactions between chlorosome proteins in cross-linked products were identified by immunoblotting with polyclonal antibodies raised against recombinant chlorosome proteins. We confirmed these interactions by demonstrating that these products were missing...... in appropriate mutants. Confirming the location of CsmA in the paracrystalline baseplate, cross-linking showed that CsmA forms dimers, trimers, and homomultimers as large as dodecamers and that CsmA directly interacts with the Fenna-Matthews-Olson protein. Cross-linking further suggests that the precursor form...

  14. Stiffening of semiflexible biopolymers and cross-linked networks

    CERN Document Server

    Van Dillen, T; Van der Giessen, E


    We study the mechanical stiffening behavior in two-dimensional (2D) cross-linked networks of semiflexible biopolymer filaments under simple shear. Filamental constituents immersed in a fluid undergo thermally excited bending motions. Pulling out these undulations results in an increase in the axial stiffness. We analyze this stiffening behavior of 2D semiflexible filaments in detail: we first investigate the average, {static} force-extension relation by considering the initially present undulated configuration that is pulled straight under a tensile force, and compare this result with the average response in which undulation dynamics is allowed during pulling, as derived earlier by MacKintosh and coworkers. We will show that the resulting mechanical behavior is rather similar, but with the axial stiffness being a factor 2 to 4 larger in the dynamic model. Furthermore, we study the stretching contribution in case of extensible filaments and show that, for 2D filaments, the mechanical response is dominated by {...

  15. Probing Protein 3D Structures and Conformational Changes Using Electrochemistry-Assisted Isotope Labeling Cross-Linking Mass Spectrometry (United States)

    Zheng, Qiuling; Zhang, Hao; Wu, Shiyong; Chen, Hao


    This study presents a new chemical cross-linking mass spectrometry (MS) method in combination with electrochemistry and isotope labeling strategy for probing both protein three-dimensional (3D) structures and conformational changes. For the former purpose, the target protein/protein complex is cross-linked with equal mole of premixed light and heavy isotope labeled cross-linkers carrying electrochemically reducible disulfide bonds (i.e., DSP-d0 and DSP-d8 in this study, DSP = dithiobis[succinimidyl propionate]), digested and then electrochemically reduced followed with online MS analysis. Cross-links can be quickly identified because of their reduced intensities upon electrolysis and the presence of doublet isotopic peak characteristics. In addition, electroreduction converts cross-links into linear peptides, facilitating MS/MS analysis to gain increased information about their sequences and modification sites. For the latter purpose of probing protein conformational changes, an altered procedure is adopted, in which the protein in two different conformations is cross-linked using DSP-d0 and DSP-d8 separately, and then the two protein samples are mixed in 1:1 molar ratio. The merged sample is subjected to digestion and electrochemical mass spectrometric analysis. In such a comparative cross-linking experiment, cross-links could still be rapidly recognized based on their responses to electrolysis. More importantly, the ion intensity ratios of light and heavy isotope labeled cross-links reveal the conformational changes of the protein, as exemplified by examining the effect of Ca2+ on calmodulin conformation alternation. This new cross-linking MS method is fast and would have high value in structural biology.

  16. Comparison of Wear and Oxidation in Retrieved Conventional and Highly Cross-Linked UHMWPE Tibial Inserts. (United States)

    Currier, Barbara H; Currier, John H; Franklin, Katherine J; Mayor, Michael B; Reinitz, Steven D; Van Citters, Douglas W


    Two groups of retrieved tibial inserts from one manufacturer's knee system were analyzed to evaluate the effect of a highly cross-linked bearing surface on wear and in vivo oxidation. The two groups ((1) conventional gamma-inert sterilized and (2) highly cross-linked, coupled with the same rough (Ra=0.25) Ti-6Al-4V tray) were matched with statistically similar in vivo duration and patient variables. The retrieved inserts were analyzed for ketone oxidation and wear in the form of dimensional change. The difference in oxidation rate between highly cross-linked and conventional gamma-inert sterilized inserts did not reach statistical significance. Observations suggest that the majority of wear can be accounted for by the backside interface with the rough Ti-6Al-4V tray; however, wear measured by thickness-change rate was statistically indistinguishable between the two bearing materials.

  17. Radiation cross-linked polyolefin-insulated wire (United States)

    Sano, K.; Ishitani, H.

    Because radiation cross-linked polyolefin has excellent mechanical heat resistance, its application limit can be expanded extremely by improving the resistance against heat oxidation and flame. This paper is concerning a halogen free radiation cross-linked polyolefin-insulated wire having excellent heat resistance and flameretardant property, which is used for appliances.

  18. Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels. (United States)

    Köhnke, Tobias; Elder, Thomas; Theliander, Hans; Ragauskas, Arthur J


    Structured xylan-based hydrogels, reinforced with cellulose nanocrystals (CNCs), have successfully been prepared from water suspensions by cross-linking during freeze-casting. In order to induce cross-linking during the solidification/sublimation operation, xylan was first oxidized using sodium periodate to introduce dialdehydes. The oxidized xylan was then mixed with CNCs after which the suspension was frozen unidirectionally in order to control the ice crystal formation and by that the pore morphology of the material. Finally the ice crystal templates were removed by freeze-drying. During the freeze-casting process hemiacetal bonds are formed between the aldehyde groups and hydroxyl groups, either on other xylan molecules or on CNCs, which cross-links the system. The proposed cross-linking reaction was confirmed by using cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR) spectroscopy. The pore morphology of the obtained materials was analyzed by scanning electron microscopy (SEM). The materials were also tested for compressive strength properties, both in dry and water swollen state. All together this study describes a novel combined freeze-casting/cross-linking process which enables fabrication of nanoreinforced biopolymer-based hydrogels with controlled porosity and 3-D architecture.

  19. Supercritical CO2 Foaming of Radiation Cross-Linked Isotactic Polypropylene in the Presence of TAIC

    Directory of Open Access Journals (Sweden)

    Chen-Guang Yang


    Full Text Available Since the maximum foaming temperature window is only about 4 °C for supercritical CO2 (scCO2 foaming of pristine polypropylene, it is important to raise the melt strength of polypropylene in order to more easily achieve scCO2 foaming. In this work, radiation cross-linked isotactic polypropylene, assisted by the addition of a polyfunctional monomer (triallylisocyanurate, TAIC, was employed in the scCO2 foaming process in order to understand the benefits of radiation cross-linking. Due to significantly enhanced melt strength and the decreased degree of crystallinity caused by cross-linking, the scCO2 foaming behavior of polypropylene was dramatically changed. The cell size distribution, cell diameter, cell density, volume expansion ratio, and foaming rate of radiation-cross-linked polypropylene under different foaming conditions were analyzed and compared. It was found that radiation cross-linking favors the foamability and formation of well-defined cell structures. The optimal absorbed dose with the addition of 2 wt % TAIC was 30 kGy. Additionally, the foaming temperature window was expanded to about 8 °C, making the handling of scCO2 foaming of isotactic polypropylene much easier.

  20. Synthesis of acrylic and allylic bifunctional cross-linking monomers derived from PET waste (United States)

    Cruz-Aguilar, A.; Herrera-González, A. M.; Vázquez-García, R. A.; Navarro-Rodríguez, D.; Coreño, J.


    An acrylic and two novel allylic monomers synthesized from bis (hydroxyethyl) terephthalate, BHET, are reported. This was obtained by glycolysis of post-consumer PET with boiling ethylene glycol. The bifunctional monomer bis(2-(acryloyloxy)ethyl) terephthalate was obtained from acryloyl chloride, while the allylic monomers 2-(((allyloxi)carbonyl)oxy) ethyl (2-hydroxyethyl) terephthalate and bis(2-(((allyloxi)carbonyl)oxy)ethyl) terephthalate, from allyl chloroformate. Cross-linking was studied in bulk polymerization using two different thermal initiators. Monomers were analyzed by means of 1H NMR and the cross-linked polymers by infrared spectroscopy. Gel content higher than 90% was obtained for the acrylic monomer. In the case of the mixture of the allylic monomers, the cross-linked polymer was 80 % using BPO initiator, being this mixture 24 times less reactive than the acrylic monomer.

  1. Preparation and in vitro evaluation of chitosan matrices cross-linked by formaldehyde vapors. (United States)

    Rao, B S; Murthy, K V


    Rifampicin-chitosan matrices were prepared by a chemical cross-linking method to develop a sustained-release form. The effects of cross-linking agent (formaldehyde) on the drug release rate and release kinetics were investigated in this study. Moreover, the kinetics of rifampicin released from chitosan matrices exposed to formaldehyde vapors for predetermined time intervals were analyzed using Ritger and Peppas exponential equation. The in vitro release kinetics exhibited a non-Fickian transport model. Increasing the exposure time to formaldehyde vapors decreased the release rate of rifampicin from chitosan matrices as a result of formation of greater structural strength and tighter texture.

  2. Characterization of receptor proteins using affinity cross-linking with biotinylated ligands. (United States)

    Shinya, Tomonori; Osada, Tomohiko; Desaki, Yoshitake; Hatamoto, Masahiro; Yamanaka, Yuko; Hirano, Hisashi; Takai, Ryota; Che, Fang-Sik; Kaku, Hanae; Shibuya, Naoto


    The plant genome encodes a wide range of receptor-like proteins but the function of most of these proteins is unknown. We propose the use of affinity cross-linking of biotinylated ligands for a ligand-based survey of the corresponding receptor molecules. Biotinylated ligands not only enable the analysis of receptor-ligand interactions without the use of radioactive compounds but also the isolation and identification of receptor molecules by a simple affinity trapping method. We successfully applied this method for the characterization, isolation and identification of the chitin elicitor binding protein (CEBiP). A biocytin hydrazide conjugate of N-acetylchitooctaose (GN8-Bio) was synthesized and used for the detection of CEBiP in the plasma or microsomal membrane preparations from rice and carrot cells. Binding characteristics of CEBiP analyzed by inhibition studies were in good agreement with the previous results obtained with the use of a radiolabeled ligand. The biotin-tagged CEBiP could be purified by avidin affinity chromatography and identified by LC-MALDI-MS/MS after tryptic digestion. We also used this method to detect OsFLS2, a rice receptor-like kinase for the perception of the peptide elicitor flg22, in membrane preparations from rice cells overexpressing OsFLS2. This work demonstrates the applicability of this method to the purification and identification of plant receptor proteins.

  3. Automated Assignment of MS/MS Cleavable Cross-Links in Protein 3D-Structure Analysis (United States)

    Götze, Michael; Pettelkau, Jens; Fritzsche, Romy; Ihling, Christian H.; Schäfer, Mathias; Sinz, Andrea


    CID-MS/MS cleavable cross-linkers hold an enormous potential for an automated analysis of cross-linked products, which is essential for conducting structural proteomics studies. The created characteristic fragment ion patterns can easily be used for an automated assignment and discrimination of cross-linked products. To date, there are only a few software solutions available that make use of these properties, but none allows for an automated analysis of cleavable cross-linked products. The MeroX software fills this gap and presents a powerful tool for protein 3D-structure analysis in combination with MS/MS cleavable cross-linkers. We show that MeroX allows an automatic screening of characteristic fragment ions, considering static and variable peptide modifications, and effectively scores different types of cross-links. No manual input is required for a correct assignment of cross-links and false discovery rates are calculated. The self-explanatory graphical user interface of MeroX provides easy access for an automated cross-link search platform that is compatible with commonly used data file formats, enabling analysis of data originating from different instruments. The combination of an MS/MS cleavable cross-linker with a dedicated software tool for data analysis provides an automated workflow for 3D-structure analysis of proteins. MeroX is available at .

  4. Current status of accelerated corneal cross-linking

    Directory of Open Access Journals (Sweden)

    Michael Mrochen


    Full Text Available Corneal cross-linking with riboflavin is a technique to stabilize or reduce corneal ectasia, in diseases such as keratoconus and post-laser-assisted in situ keratomileusis (LASIK ectasia. There is an interest by patient as well as clinicians to reduce the overall treatment time. Especially, the introduction of corneal cross-linking in combination with corneal laser surgery demands a shorter treatment time to assure a sufficient patient flow. The principles and techniques of accelerated corneal cross-linking is discussed.



    Atul; Superna; Bhimasankar; Vijayleela


    To evaluate the outcome of collagen cross linkage using riboflavin 0.1% and ultraviolet A radiation of a wavelength 370nm . PURPOSE : To determine the effect of collagen cross linking for keratoconus on pachymetry , corneal topography, uncorrected visual acuity, specular count, IOP at 1, 3, 6 months . METHODS : The current study was designed as a prospective interventional trial of corneal collagen cross - linking in subjects w...

  6. Photochemical Patterning of Ionically Cross-Linked Hydrogels

    Directory of Open Access Journals (Sweden)

    Marion Bruchet


    Full Text Available Iron(III cross-linked alginate hydrogel incorporating sodium lactate undergoes photoinduced degradation, thus serving as a biocompatible positive photoresist suitable for photochemical patterning. Alternatively, surface etching of iron(III cross-linked hydrogel contacting lactic acid solution can be used for controlling the thickness of the photochemical pattering. Due to biocompatibility, both of these approaches appear potentially useful for advanced manipulation with cell cultures including growing cells on the surface or entrapping them within the hydrogel.

  7. Characterization of the Raptor/4E-BP1 interaction by chemical cross-linking coupled with mass spectrometry analysis. (United States)

    Coffman, Kimberly; Yang, Bing; Lu, Jie; Tetlow, Ashley L; Pelliccio, Emelia; Lu, Shan; Guo, Da-Chuan; Tang, Chun; Dong, Meng-Qiu; Tamanoi, Fuyuhiko


    mTORC1 plays critical roles in the regulation of protein synthesis, growth, and proliferation in response to nutrients, growth factors, and energy conditions. One of the substrates of mTORC1 is 4E-BP1, whose phosphorylation by mTORC1 reverses its inhibitory action on eIF4E, resulting in the promotion of protein synthesis. Raptor in mTOR complex 1 is believed to recruit 4E-BP1, facilitating phosphorylation of 4E-BP1 by the kinase mTOR. We applied chemical cross-linking coupled with mass spectrometry analysis to gain insight into interactions between mTORC1 and 4E-BP1. Using the cross-linking reagent bis[sulfosuccinimidyl] suberate, we showed that Raptor can be cross-linked with 4E-BP1. Mass spectrometric analysis of cross-linked Raptor-4E-BP1 led to the identification of several cross-linked peptide pairs. Compilation of these peptides revealed that the most N-terminal Raptor N-terminal conserved domain (in particular residues from 89 to 180) of Raptor is the major site of interaction with 4E-BP1. On 4E-BP1, we found that cross-links with Raptor were clustered in the central region (amino acid residues 56-72) we call RCR (Raptor cross-linking region). Intramolecular cross-links of Raptor suggest the presence of two structured regions of Raptor: one in the N-terminal region and the other in the C-terminal region. In support of the idea that the Raptor N-terminal conserved domain and the 4E-BP1 central region are closely located, we found that peptides that encompass the RCR of 4E-BP1 inhibit cross-linking and interaction of 4E-BP1 with Raptor. Furthermore, mutations of residues in the RCR decrease the ability of 4E-BP1 to serve as a substrate for mTORC1 in vitro and in vivo.

  8. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils. (United States)

    Depalle, Baptiste; Qin, Zhao; Shefelbine, Sandra J; Buehler, Markus J


    Collagen is a ubiquitous protein with remarkable mechanical properties. It is highly elastic, shows large fracture strength and enables substantial energy dissipation during deformation. Most of the connective tissue in humans consists of collagen fibrils composed of a staggered array of tropocollagen molecules, which are connected by intermolecular cross-links. In this study, we report a three-dimensional coarse-grained model of collagen and analyze the influence of enzymatic cross-links on the mechanics of collagen fibrils. Two representatives immature and mature cross-links are implemented in the mesoscale model using a bottom-up approach. By varying the number, type and mechanical properties of cross-links in the fibrils and performing tensile test on the models, we systematically investigate the deformation mechanisms of cross-linked collagen fibrils. We find that cross-linked fibrils exhibit a three phase behavior, which agrees closer with experimental results than what was obtained using previous models. The fibril mechanical response is characterized by: (i) an initial elastic deformation corresponding to the collagen molecule uncoiling, (ii) a linear regime dominated by molecule sliding and (iii) the second stiffer elastic regime related to the stretching of the backbone of the tropocollagen molecules until the fibril ruptures. Our results suggest that both cross-link density and type dictate the stiffness of large deformation regime by increasing the number of interconnected molecules while cross-links mechanical properties determine the failure strain and strength of the fibril. These findings reveal that cross-links play an essential role in creating an interconnected fibrillar material of tunable toughness and strength.

  9. EVA交联机理的研究%The Research of EVA Cross-linking Mechanism

    Institute of Scientific and Technical Information of China (English)

    王川艳; 苑会林


    研究了过氧化二异丙苯(DCP)对乙烯-醋酸乙烯共聚物(EVA)交联的影响,分析交联过程的反应机理.对交联的EVA样品进行紫外光辐照,分析在该过程中所发生的反应,并研究加入紫外线吸收剂2-羟基-4-正辛氧基-二苯甲酮(UV-531)后,对交联EVA样品在紫外光辐照下交联的影响.%The effect of peroxide (DCP) on Ethylene-Vinyl Acetate (EVA) cross-linking were studied, the reaction mechanism of EVA cross-linking were analyzed. Upon the exposure of cross-linked EVA samples to ultraviolet light, the reaction during this process were analyzed, and also, after adding the ultraviolet absorber (UV-531) , the influences to cross-linked EVA samples during the ultraviolet radiation process were researched.

  10. Protein structure prediction guided by cross-linking restraints - A systematic evaluation of the impact of the cross-linking spacer length

    CERN Document Server

    Hofmann, Tommy; Meiler, Jens; Kalkhof, Stefan


    Recent development of high-resolution mass spectrometry (MS) instruments enables chemical cross-linking (XL) to become a high-throughput method for obtaining structural information about proteins. Restraints derived from XL-MS experiments have been used successfully for structure refinement and protein-protein docking. However, one formidable question is under which circumstances XL-MS data might be sufficient to determine a protein's tertiary structure de novo? Answering this question will not only include understanding the impact of XL-MS data on sampling and scoring within a de novo protein structure prediction algorithm, it must also determine an optimal cross-linker type and length for protein structure determination. While a longer cross-linker will yield more restraints, the value of each restraint for protein structure prediction decreases as the restraint is consistent with a larger conformational space. In this study, the number of cross-links and their discriminative power was systematically analyz...

  11. Laccase-Based CLEAs: Chitosan as a Novel Cross-Linking Agent

    Directory of Open Access Journals (Sweden)

    Alexandre Arsenault


    Full Text Available Laccase from Coriolopsis Polyzona was insolubilized as cross-linked enzyme aggregates (CLEAs for the first time with chitosan as the cross-linking agent. Concentrations between 0.01 and 1.867 g/L of chitosan were used and between 0.05 and 600 mM of 1-ethyl-3-(3-dimethylaminopropylcarbodiimide hydrochloride. The laccase was precipitated using ammonium sulphate and cross-linked simultaneously. Specific activity and thermal stability of these biocatalysts were measured. Activities of up to 737 U/g were obtained when 2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid (ABTS was used as a substrate. Moreover, the stability of these biocatalysts was improved with regards to thermal degradation compared to free laccase when exposed to denaturing conditions of high temperature and low pH. The CLEAs stability against chemical denaturants was also tested but no significant improvement was detected. The total amount of ABTS to be oxidized during thermal degradation by CLEAs and free laccase was calculated and the insolubilized enzymes were reported to oxidize more substrate than free laccase. The formation conditions were analyzed by response surface methodology in order to determine an optimal environment for the production of efficient laccase-based CLEAs using chitosan as the cross-linking agent. After 24 hours of formation at pH 3 and at 4°C without agitation, the CLEAs exhibit the best specific activity.

  12. Dynamic Heterogeneity in Highly Cross-linked Epoxy in the Vicinity of Glass Transition (United States)

    Lin, Po-Han; Khare, Rajesh


    Cross-linked epoxy has been widely used in aerospace and electronics industries. The highly cross-linked nature of these systems leads to different chain dynamics as compared to the linear polymeric systems. In this work, we have used molecular dynamics (MD) simulations to study the dynamic heterogeneity in cross-linked epoxy near the glass transition temperature. Well-relaxed atomistic models of cross-linked epoxy were first created by employing the simulated annealing polymerization approach. The specific epoxy system studied consisted of diglycidyl ether of bisphenol-A (DGEBA) as the epoxy monomer and trimethylene glycol di-p-aminobenzoate (TMAB) as the cross-linker. The glass transition temperature of these model structures was determined from MD simulation by monitoring their volume-temperature behaviour in a stepwise cooling run. The chain dynamics of these systems were characterized by their local translational and orientational mobility. Furthermore, dynamic heterogeneity was studied by analyzing the spatial distribution of the mobile and immobile atoms in the system near the glass transition temperature.

  13. Collagen/elastin hydrogels cross-linked by squaric acid. (United States)

    Skopinska-Wisniewska, J; Kuderko, J; Bajek, A; Maj, M; Sionkowska, A; Ziegler-Borowska, M


    Hydrogels based on collagen and elastin are very valuable materials for medicine and tissue engineering. They are biocompatible; however their mechanical properties and resistance for enzymatic degradation need to be improved by cross-linking. Up to this point many reagents have been tested but more secure reactants are still sought. Squaric acid (SqAc), 3,4-dihydroxy 3-cyclobutene 1,2-dione, is a strong, cyclic acid, which reacts easily with amine groups. The properties of hydrogels based on collagen/elastin mixtures (95/5, 90/10) containing 5%, 10% and 20% of SqAc and neutralized via dialysis against deionized water were tested. Cross-linked, 3-D, transparent hydrogels were created. The cross-linked materials are stiffer and more resistant to enzymatic degradation than those that are unmodified. The pore size, swelling ability and surface polarity are reduced due to 5% and 10% of SqAc addition. At the same time, the cellular response is not significantly affected by the cross-linking. Therefore, squaric acid would be regarded as a safe, effective cross-linking agent.

  14. Single-molecule dynamics of lysozyme processing distinguishes linear and cross-linked peptidoglycan substrates. (United States)

    Choi, Yongki; Moody, Issa S; Sims, Patrick C; Hunt, Steven R; Corso, Brad L; Seitz, David E; Blaszczak, Larry C; Blaszcazk, Larry C; Collins, Philip G; Weiss, Gregory A


    The dynamic processivity of individual T4 lysozyme molecules was monitored in the presence of either linear or cross-linked peptidoglycan substrates. Single-molecule monitoring was accomplished using a novel electronic technique in which lysozyme molecules were tethered to single-walled carbon nanotube field-effect transistors through pyrene linker molecules. The substrate-driven hinge-bending motions of lysozyme induced dynamic electronic signals in the underlying transistor, allowing long-term monitoring of the same molecule without the limitations of optical quenching or bleaching. For both substrates, lysozyme exhibited processive low turnover rates of 20-50 s(-1) and rapid (200-400 s(-1)) nonproductive motions. The latter nonproductive binding events occupied 43% of the enzyme's time in the presence of the cross-linked peptidoglycan but only 7% with the linear substrate. Furthermore, lysozyme catalyzed the hydrolysis of glycosidic bonds to the end of the linear substrate but appeared to sidestep the peptide cross-links to zigzag through the wild-type substrate.

  15. Angiotensin I-converting enzyme inhibitor derived from cross-linked oyster protein. (United States)

    Xie, Cheng-Liang; Kim, Jin-Soo; Ha, Jong-Myung; Choung, Se-Young; Choi, Yeung-Joon


    Following cross-linking by microbial transglutaminase, modified oyster proteins were hydrolyzed to improve inhibitory activity against angiotensin-converting enzyme (ACE) inhibitory activity with the use of a single protease, or a combination of six proteases. The oyster hydrolysate with the lowest 50% ACE inhibitory concentration (IC50) of 0.40 mg/mL was obtained by two-step hydrolysis of the cross-linked oyster protein using Protamex and Neutrase. Five ACE inhibitory peptides were purified from the oyster hydrolysate using a multistep chromatographic procedure comprised of ion-exchange, size exclusion, and reversed-phase liquid chromatography. Their sequences were identified as TAY, VK, KY, FYN, and YA, using automated Edman degradation and mass spectrometry. These peptides were synthesized, and their IC50 values were measured to be 16.7, 29.0, 51.5, 68.2, and 93.9 μM, respectively. Toxicity of the peptides on the HepG2 cell line was not detected. The oyster hydrolysate also significantly decreased the systolic blood pressure of spontaneously hypertensive rats (SHR). The antihypertensive effect of the oyster hydrolysate on SHR was rapid and long-lasting, compared to commercially obtained sardine hydrolysate. These results suggest that the oyster hydrolysate could be a source of effective nutraceuticals against hypertension.

  16. Angiotensin I-Converting Enzyme Inhibitor Derived from Cross-Linked Oyster Protein

    Directory of Open Access Journals (Sweden)

    Cheng-Liang Xie


    Full Text Available Following cross-linking by microbial transglutaminase, modified oyster proteins were hydrolyzed to improve inhibitory activity against angiotensin-converting enzyme (ACE inhibitory activity with the use of a single protease, or a combination of six proteases. The oyster hydrolysate with the lowest 50% ACE inhibitory concentration (IC50 of 0.40 mg/mL was obtained by two-step hydrolysis of the cross-linked oyster protein using Protamex and Neutrase. Five ACE inhibitory peptides were purified from the oyster hydrolysate using a multistep chromatographic procedure comprised of ion-exchange, size exclusion, and reversed-phase liquid chromatography. Their sequences were identified as TAY, VK, KY, FYN, and YA, using automated Edman degradation and mass spectrometry. These peptides were synthesized, and their IC50 values were measured to be 16.7, 29.0, 51.5, 68.2, and 93.9 μM, respectively. Toxicity of the peptides on the HepG2 cell line was not detected. The oyster hydrolysate also significantly decreased the systolic blood pressure of spontaneously hypertensive rats (SHR. The antihypertensive effect of the oyster hydrolysate on SHR was rapid and long-lasting, compared to commercially obtained sardine hydrolysate. These results suggest that the oyster hydrolysate could be a source of effective nutraceuticals against hypertension.

  17. Computer simulation of randomly cross-linked polymer networks

    CERN Document Server

    Williams, T P


    In this work, Monte Carlo and Stochastic Dynamics computer simulations of mesoscale model randomly cross-linked networks were undertaken. Task parallel implementations of the lattice Monte Carlo Bond Fluctuation model and Kremer-Grest Stochastic Dynamics bead-spring continuum model were designed and used for this purpose. Lattice and continuum precursor melt systems were prepared and then cross-linked to varying degrees. The resultant networks were used to study structural changes during deformation and relaxation dynamics. The effects of a random network topology featuring a polydisperse distribution of strand lengths and an abundance of pendant chain ends, were qualitatively compared to recent published work. A preliminary investigation into the effects of temperature on the structural and dynamical properties was also undertaken. Structural changes during isotropic swelling and uniaxial deformation, revealed a pronounced non-affine deformation dependant on the degree of cross-linking. Fractal heterogeneiti...

  18. Extreme dryness and DNA-protein cross-links (United States)

    Bieger-Dose, A.; Dose, K.; Meffert, R.; Mehler, M.; Risi, S.

    Exposure of fungal conidia (Aspergillus ochraceus) or spores of Bacillus subtilis to extreme dryness or vacuum induces DNA lesions, including strand breaks and the formation of DNA-protein cross-links. In wet cells only a small amount of protein is bound to DNA, but exposure to conditions of lowered water activity results in an increasing number of cross-links between DNA and proteins. In fungal conidia these cross-links are detected after selective iodination (125J) of the DNA-bound proteins followed by gel electrophoresis and subsequent autoradiography. Another approach is the labelling of DNA with 32p by means of nick translation and the detection of differences in the electrophoretic mobility of DNA before and after digestion with proteinase K of proteins bound to DNA.

  19. Determination of the 1-ethyl-3-[(3-dimethylamino)propyl]-carbodiimide- induced cross-link between the beta and epsilon subunits of Escherichia coli F1-ATPase. (United States)

    Dallmann, H G; Flynn, T G; Dunn, S D


    The zero-length cross-link between the inhibitory epsilon subunit and one of three catalytic beta subunits of Escherichia coli F1-ATPase (alpha 3 beta 3 gamma delta epsilon), induced by a water-soluble carbodiimide, 1-ethyl-3-[(3-dimethylamino) propyl]-carbodiimide (EDC), has been determined at the amino acid level. Lability of cross-linked beta-epsilon to base suggested an ester cross-link rather than the expected amide. A 10-kDa cross-linked CNBr fragment derived from beta-epsilon was identified by electrophoresis on high percentage polyacrylamide gels. Sequence analysis of this peptide revealed the constituent peptides to be Asp-380 to Met-431 of beta and Glu-96 to Met-138 of epsilon. Glu-381 of beta was absent from cycle 2 indicating that it was one of the cross-linked residues, but no potential cross-linked residue in epsilon was identified in this analysis. A form of epsilon containing a methionine residue in place of Val-112 (epsilon V112M) was produced by site-directed mutagenesis. epsilon V112M was incorporated into F1-ATPase which was then cross-linked with EDC. An 8-kDa cross-linked CNBr fragment of beta-epsilon V112M was shown to contain the peptide of epsilon between residues Glu-96 and Met-112 and the peptide of beta between residues Asp-380 and Met-431. Again residue Glu-381 of beta was notably reduced and no missing residue from the epsilon peptide could be identified, but the peptide sequence limited the possible choices to Ser-106, Ser-107, or Ser-108. Furthermore, an epsilon mutant in which Ser-108 was replaced by cysteine could no longer be cross-linked to a beta subunit in F1-ATPase by EDC. Both mutant forms of epsilon supported growth of an uncC-deficient E. coli strain and inhibited F1-ATPase. These results indicate that the EDC-induced cross-link between the beta and epsilon subunits of F1-ATPase is an ester linkage between beta-Glu-381 and, likely, epsilon-Ser-108. As these residues must be located immediately adjacent to one another in F1

  20. Molecular mechanisms in deformation of cross-linked hydrogel nanocomposite. (United States)

    Mathesan, Santhosh; Rath, Amrita; Ghosh, Pijush


    The self-folding behavior in response to external stimuli observed in hydrogels is potentially used in biomedical applications. However, the use of hydrogels is limited because of its reduced mechanical properties. These properties are enhanced when the hydrogels are cross-linked and reinforced with nanoparticles. In this work, molecular dynamics (MD) simulation is applied to perform uniaxial tension and pull out tests to understand the mechanism contributing towards the enhanced mechanical properties. Also, nanomechanical characterization is performed using quasi static nanoindentation experiments to determine the Young's modulus of hydrogels in the presence of nanoparticles. The stress-strain responses for chitosan (CS), chitosan reinforced with hydroxyapatite (HAP) and cross-linked chitosan are obtained from uniaxial tension test. It is observed that the Young's modulus and maximum stress increase as the HAP content increases and also with cross-linking process. Load displacement plot from pullout test is compared for uncross-linked and cross-linked chitosan chains on hydroxyapatite surface. MD simulation reveals that the variation in the dihedral conformation of chitosan chains and the evolution of internal structural variables are associated with mechanical properties. Additional results reveal that the formation of hydrogen bonds and electrostatic interactions is responsible for the above variations in different systems.

  1. Lactoferrin binding to transglutaminase cross-linked casein micelles

    NARCIS (Netherlands)

    Anema, S.G.; de Kruif, C.G.


    Casein micelles in skim milk were either untreated (untreated milk) or were cross-linked using transglutaminase (TGA-milk). Added lactoferrin (LF) bound to the casein micelles and followed Langmuir adsorption isotherms. The adsorption level was the same in both milks and decreased the micellar zeta

  2. Polyimide Aerogels with Three-Dimensional Cross-Linked Structure (United States)

    Meador, Mary Ann B. (Inventor)


    A method for creating a three dimensional cross-linked polyimide structure includes dissolving a diamine, a dianhydride, and a triamine in a solvent, imidizing a polyamic acid gel by heating the gel, extracting the gel in a second solvent, supercritically drying the gel, and removing the solvent to create a polyimide aerogel.

  3. Scleral lens tolerance after corneal cross-linking for keratoconus

    NARCIS (Netherlands)

    Visser, Esther Simone; Soeters, Nienke; Tahzib, Nayyirih G.


    Purpose. Subjective and objective evaluation of scleral lens tolerance and fitting before and after corneal cross-linking (CXL) for progressive keratoconus. Methods. In this prospective cohort, evaluations were made of 18 unilateral eyes in patients who underwent CXL and had been wearing scleral len

  4. Porous Cross-Linked Polyimide-Urea Networks (United States)

    Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor)


    Porous cross-linked polyimide-urea networks are provided. The networks comprise a subunit comprising two anhydride end-capped polyamic acid oligomers in direct connection via a urea linkage. The oligomers (a) each comprise a repeating unit of a dianhydride and a diamine and a terminal anhydride group and (b) are formulated with 2 to 15 of the repeating units. The subunit was formed by reaction of the diamine and a diisocyanate to form a diamine-urea linkage-diamine group, followed by reaction of the diamine-urea linkage-diamine group with the dianhydride and the diamine to form the subunit. The subunit has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups. The subunit has been chemically imidized to yield the porous cross-linked polyimide-urea network. Also provided are wet gels, aerogels, and thin films comprising the networks, and methods of making the networks.

  5. Simulation of Fracture Nucleation in Cross-Linked Polymer Networks (United States)

    Moller, J. C.; Barr, S. A.; Schultz, E. J.; Breitzman, T. D.; Berry, R. J.


    A novel atomistic simulation method is developed whereby polymer systems can undergo strain-rate-controlled deformation while bond scission is enabled. The aim is to provide insight into the nanoscale origins of fracture. Various highly cross-linked epoxy systems including various resin chain lengths and levels of nonreactive dilution were examined. Consistent with the results of physical experiments, cured resin strength increased and ductility decreased with increasing cross-link density. An analysis of dihedral angle activity shows the locations in the molecular network that are most absorptive of mechanical energy. Bond scission occurred principally at cross-link sites as well as between phenyl rings in the bisphenol moiety. Scissions typically occurred well after yield and were accompanied by steady increases in void size and dihedral angle motion between bisphenol moieties and at cross-link sites. The methods developed here could be more broadly applied to explore and compare the atomistic nature of deformation for various polymers such that mechanical and fracture properties could be tuned in a rational way. This method and its results could become part of a solution system that spans multiple length and time scales and that could more completely represent such mechanical events as fracture.

  6. The Database of Ribosomal Cross-links: an update.


    Baranov, P V; Kubarenko, A V; Gurvich, O L; Shamolina, T A; Brimacombe, R


    The Database of Ribosomal Cross-links (DRC) was created in 1997. Here we describe new data incorporated into this database and several new features of the DRC. The DRC is freely available via World Wide Web at or http://www. approximately ag_ribo/ag_brimacombe/drc/

  7. Advanced Corneal Cross-Linking System with Fluorescence Dosimetry

    Directory of Open Access Journals (Sweden)

    Marc D. Friedman


    Full Text Available Purpose. This paper describes an advanced system that combines corneal cross-linking with riboflavin with fluorescence dosimetry, the ability to measure riboflavin diffusion within the cornea both before and during UVA treatment. Methods and Results. A corneal cross-linking system utilizing a digital micromirror device (DMD was assembled and used to measure diffusion coefficients of 0.1% riboflavin in 20% dextran in porcine eyes. A value of (3.3±0.2×10−7 cm2/s was obtained for the stroma. Diffusion coefficients for the transepithelial formulation of 0.1% riboflavin in 0.44% saline and 0.02% BAK were also measured to be 4.7±0.3×10−8 cm2/s for epithelium only and (4.6±0.4×10−7 cm2/s for stroma only. Riboflavin consumption during a UVA treatment was also demonstrated. Conclusion. A new advanced corneal cross-linking system with fluorescence dosimetry of riboflavin has been demonstrated. It is hoped that this method may play a significant role in determining the underlying mechanisms of corneal cross-linking and assist with the development of additional riboflavin formulations. Moreover, dosimetry may prove valuable in providing a method to account for the biological differences between individuals, potentially informing cornea-specific UVA treatment doses in real time.

  8. 21 CFR 177.2420 - Polyester resins, cross-linked. (United States)


    .... Pentaerythritol. Polyoxypropylene ethers of 4,4′-isopropylide-nediphenol (containing an average of 2-7.5 moles of...-pentanediol. (3) Cross-linking agents: Butyl acrylate. Butyl methacrylate. Ethyl acrylate. Ethylhexyl acrylate... the production of the resins or added thereto to impart desired technical or physical...

  9. Hyper-cross-linked, hybrid membranes via interfacial polymerization

    NARCIS (Netherlands)

    Raaijmakers, M.J.T.


    Hyper-cross-linked, hybrid membranes consist of covalent networks of alternating organic and inorganic, or biological groups. This thesis reports on the preparation of such hybrid networks via interfacial polymerization. The structure-property relationships of the hybrid networks depend strongly on

  10. Mechanical properties and collagen cross-linking of the patellar tendon in old and young men

    DEFF Research Database (Denmark)

    Couppé, C; Hansen, P; Kongsgaard, M


    Age-related loss in muscle mass and strength impairs daily life function in the elderly. However, it remains unknown whether tendon properties also deteriorate with age. Cross-linking of collagen molecules provides structural integrity to the tendon fibrils and has been shown to change with age...... in animals but has never been examined in humans in vivo. In this study, we examined the mechanical properties and pyridinoline and pentosidine cross-link and collagen concentrations of the patellar tendon in vivo in old (OM) and young men (YM). Seven OM (67 +/- 3 years, 86 +/- 10 kg) and 10 YM (27 +/- 2...... contractions. Percutaneous tendon biopsies were taken and analyzed for hydroxylysyl pyridinoline (HP), lysyl pyridinoline (LP), pentosidine, and collagen concentrations. We found no significant differences in the dimensions or mechanical properties of the tendon between OM and YM. Collagen concentrations were...

  11. Transient Anisocoria after Corneal Collagen Cross-Linking (United States)

    Kymionis, George D.; Grentzelos, Michael A.; Stojanovic, Nela; Paraskevopoulos, Theodore A.; Detorakis, Efstathios T.


    Purpose. To report a case with transient anisocoria after corneal collagen cross-linking (CXL). Methods. Case report. Results. A 24-year-old male underwent corneal collagen cross-linking (CXL) in his right eye for keratoconus. At the end of the procedure, the pupil of the treated eye was irregular and dilated, while the pupil of the fellow eye was round, regular, and reactive (anisocoria). The following day, pupils were round, regular, and reactive in both eyes. Conclusion. Anisocoria may be a transient and innocuous complication after CXL. A possible cause for this complication might be the anesthetic drops used before and during the surgical procedure or/and the ultraviolet A irradiation during the treatment. PMID:25276451

  12. Transient Anisocoria after Corneal Collagen Cross-Linking

    Directory of Open Access Journals (Sweden)

    George D. Kymionis


    Full Text Available Purpose. To report a case with transient anisocoria after corneal collagen cross-linking (CXL. Methods. Case report. Results. A 24-year-old male underwent corneal collagen cross-linking (CXL in his right eye for keratoconus. At the end of the procedure, the pupil of the treated eye was irregular and dilated, while the pupil of the fellow eye was round, regular, and reactive (anisocoria. The following day, pupils were round, regular, and reactive in both eyes. Conclusion. Anisocoria may be a transient and innocuous complication after CXL. A possible cause for this complication might be the anesthetic drops used before and during the surgical procedure or/and the ultraviolet A irradiation during the treatment.

  13. Cytokines and growth factors cross-link heparan sulfate (United States)

    Migliorini, Elisa; Thakar, Dhruv; Kühnle, Jens; Sadir, Rabia; Dyer, Douglas P.; Li, Yong; Sun, Changye; Volkman, Brian F.; Handel, Tracy M.; Coche-Guerente, Liliane; Fernig, David G.; Lortat-Jacob, Hugues; Richter, Ralf P.


    The glycosaminoglycan heparan sulfate (HS), present at the surface of most cells and ubiquitous in extracellular matrix, binds many soluble extracellular signalling molecules such as chemokines and growth factors, and regulates their transport and effector functions. It is, however, unknown whether upon binding HS these proteins can affect the long-range structure of HS. To test this idea, we interrogated a supramolecular model system, in which HS chains grafted to streptavidin-functionalized oligoethylene glycol monolayers or supported lipid bilayers mimic the HS-rich pericellular or extracellular matrix, with the biophysical techniques quartz crystal microbalance (QCM-D) and fluorescence recovery after photobleaching (FRAP). We were able to control and characterize the supramolecular presentation of HS chains—their local density, orientation, conformation and lateral mobility—and their interaction with proteins. The chemokine CXCL12α (or SDF-1α) rigidified the HS film, and this effect was due to protein-mediated cross-linking of HS chains. Complementary measurements with CXCL12α mutants and the CXCL12γ isoform provided insight into the molecular mechanism underlying cross-linking. Fibroblast growth factor 2 (FGF-2), which has three HS binding sites, was also found to cross-link HS, but FGF-9, which has just one binding site, did not. Based on these data, we propose that the ability to cross-link HS is a generic feature of many cytokines and growth factors, which depends on the architecture of their HS binding sites. The ability to change matrix organization and physico-chemical properties (e.g. permeability and rigidification) implies that the functions of cytokines and growth factors may not simply be confined to the activation of cognate cellular receptors. PMID:26269427

  14. Electrochemical Characterization of Ultrathin Cross-Linked Metal Nanoparticle Films. (United States)

    Han, Chu; Percival, Stephen J; Zhang, Bo


    Here we report the preparation, characterization, and electrochemical study of conductive, ultrathin films of cross-linked metal nanoparticles (NPs). Nanoporous films ranging from 40 to 200 nm in thickness composed of gold and platinum NPs of ∼5 nm were fabricated via a powerful layer-by-layer spin coating process. This process allows preparation of uniform NP films as large as 2 × 2 cm(2) with precise control over thickness, structure, and electrochemical and electrocatalytic properties. Gold, platinum, and bimetallic NP films were fabricated and characterized using cyclic voltammetry, scanning electron microscopy, and conductance measurements. Their electrocatalytic activity toward the oxygen reduction reaction (ORR) was investigated. Our results show that the electrochemical activity of such NP films is initially hindered by the presence of dense thiolate cross-linking ligands. Both electrochemical cycling and oxygen plasma cleaning are effective means in restoring their electrochemical activity. Gold NP films have higher electric conductivity than platinum possibly due to more uniform film structure and closer particle-particle distance. The electrochemical and electrocatalytic performance of platinum NP films can be greatly enhanced by the incorporation of gold NPs. This work focuses on electrochemical characterization of cross-linked NP films and demonstrates several unique properties. These include quick and easy preparation, ultrathin and uniform film thickness, tunable structure and composition, and transferability to many other substrates.

  15. Reliable Identification of Cross-Linked Products in Protein Interaction Studies by 13C-Labeled p-Benzoylphenylalanine (United States)

    Pettelkau, Jens; Ihling, Christian H.; Frohberg, Petra; van Werven, Lars; Jahn, Olaf; Sinz, Andrea


    We describe the use of the 13C-labeled artificial amino acid p-benzoyl-L-phenylalanine (Bpa) to improve the reliability of cross-linked product identification. Our strategy is exemplified for two protein-peptide complexes. These studies indicate that in many cases the identification of a cross-link without additional stable isotope labeling would result in an ambiguous assignment of cross-linked products. The use of a 13C-labeled photoreactive amino acid is considered to be preferred over the use of deuterated cross-linkers as retention time shifts in reversed phase chromatography can be ruled out. The observation of characteristic fragment ions additionally increases the reliability of cross-linked product assignment. Bpa possesses a broad reactivity towards different amino acids and the derived distance information allows mapping of spatially close amino acids and thus provides more solid structural information of proteins and protein complexes compared to the longer deuterated amine-reactive cross-linkers, which are commonly used for protein 3D-structure analysis and protein-protein interaction studies.

  16. Relative toxicities of DNA cross-links and monoadducts: new insights from studies of decarbamoyl mitomycin C and mitomycin C. (United States)

    Palom, Yolanda; Suresh Kumar, Gopinatha; Tang, Li-Qian; Paz, Manuel M; Musser, Steven M; Rockwell, Sara; Tomasz, Maria


    Mitomycin C (MC), a cytotoxic anticancer drug and bifunctional DNA DNA alkylating agent, induces cross-linking of the complementary strands of DNA. The DNA interstrand cross-links (ICLs) are thought to be the critical cytotoxic lesions produced by MC. Decarbamoyl mitomycin C (DMC) has been regarded as a monofunctional mitomycin, incapable of causing ICLs. Paradoxically, DMC is slightly more toxic than MC to hypoxic EMT6 mouse mammary tumor cells as well as to CHO cells. To resolve this paradox, EMT6 cells were treated with MC or DMC under hypoxia at equimolar concentrations and the resulting DNA adducts were analyzed using HPLC and UV detection. MC treatment generated both intrastrand and interstrand cross-link adducts and four monoadducts, as shown previously. DMC generated two stereoisomeric monoadducts and two stereoisomeric ICL adducts, all of which were structurally characterized; one was identical with that formed with MC, the other was new and unique to DMC. Overall, adduct frequencies were strikingly higher (20-30-fold) with DMC than with MC. Although DMC monoadducts greatly exceeded DMC cross-link adducts ( approximately 10:1 ratio), the latter were equal or higher in number than the cross-link adducts from MC. DMC displayed a much higher monoadduct:cross-link ratio than MC. The similar cytotoxicities of the two drug show a correlation with their similar DNA cross-link adduct frequencies, but not with their total adduct or monoadduct frequencies. This provides specific experimental evidence that the ICLs rather than the monoadducts are critical factors in the cell death induced by MC. In vitro, overall alkylation of calf thymus DNA by DMC was much less efficient than by MC. Nevertheless, ICLs formed with DMC were clearly detectable. The chemical pathway of the cross-linking was shown to be analogous to that occurring with MC. These results also suggest that the differential sensitivity of Fanconi's Anemia cells to MC and DMC is related to factors other

  17. Study of cross-linking process in grafted polyethylene and ethylene based copolymer using a phase resolved photoacoustic method (United States)

    Dias, D. T.; Medina, A. N.; Baesso, M. L.; Bento, A. C.; Porto, M. F.; Muniz, E. C.; Rubira, A. F.


    In this work, the phase resolved photoacoustic method has been employed to monitor water saturated vapor cross linking in both copolymer and grafted polyethylene. The overtone bands and stretching frequencies combinations of the -Si-OH, =CH2, -CH3, and -CH2-CH3 were monitored and analyzed accordingly to a 32 factorial design with nine samples. The results showed that the cross-linking processes were more efficient when the samples were prepared at 80 °C with the catalyst in the concentration range between 3% and 5% for grafted PE, while 70 °C was the best temperature to obtain copolymer.

  18. Integrin-targeting thermally cross-linked superparamagnetic iron oxide nanoparticles for combined cancer imaging and drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mi Kyung; Park, Jinho; Jon, Sangyong [School of Life Sciences, Gwangju Institute of Science and Technology, 261 Chemdangwagi-ro, Gwangju 500-712 (Korea, Republic of); Jeong, Yong Yeon [Department of Diagnostic Radiology, Jeonnam National University Hwasun Hospital, 160 Ilsim-ri, Hwasun-eup, Jeonnam 519-809 (Korea, Republic of); Moon, Woo Kyung, E-mail: [Diagnostic Radiology, Seoul National University Hospital and the Institute of Radiation Medicine, Medical Research Center Seoul National University, Seoul 110-744 (Korea, Republic of)


    We report multifunctional nanoparticles that are capable of cancer targeting and simultaneous cancer imaging and therapy. The nanoparticles are composed of cyclic arginine-glycine-aspartic acid (cRGD) peptide ligand bioconjugated thermally cross-linked superparamagnetic iron oxide nanoparticles (TCL-SPION) that enable loading of the anticancer drug doxorubicin (Dox). The cyclic RGD-conjugated TCL-SPION (cRGD{sub T}CL-SPION) had a mean hydrodynamic size of 34 {+-} 8 nm with approximately 0.39 wt% of cyclic RGD attached to the surface of the nanoparticles. The cRGD{sub T}CL-SPION exhibited preferential binding towards target cancer cells (U87MG, integrin {alpha}{sub v{beta}3} +) when analyzed by T{sub 2}-weighted magnetic resonance (MR) imaging. When Dox was loaded onto the polymeric coating layers of cRGD{sub T}CL-SPION via ionic interaction, the resulting Dox-loaded cRGD{sub T}CL-SPION (Dox-cRGD{sub T}CL-SPION) showed much higher cytotoxicity in U87MG cells than Dox-TCL-SPION lacking cRGD (IC{sub 50} value of 0.02 {mu}M versus 0.12 {mu}M). These results suggest that Dox-cRGD{sub T}CL-SPION has potential for use as an integrin-targeted, combined imaging and therapeutic agent.

  19. Probing the structure of human protein disulfide isomerase by chemical cross-linking combined with mass spectrometry

    DEFF Research Database (Denmark)

    Peng, Li; Rasmussen, Morten Ib; Chailyan, Anna;


    Protein disulfide-isomerase (PDI) is a four-domain flexible protein that catalyzes the formation of disulfide bonds in the endoplasmic reticulum. Here we have analyzed native PDI purified from human placenta by chemical cross-linking followed by mass spectrometry (CXMS). In addition to PDI the sa...

  20. Preliminary clinical and radiographic results of large ceramic heads on highly cross-linked polyethylene. (United States)

    Meftah, Morteza; Ebrahimpour, Prouskeh Bruce; He, Chuan; Ranawat, Amar S; Ranawat, Chitranjan S


    Data are limited regarding large ceramic femoral heads with highly cross-linked polyethylene. We hypothesized that large ceramic head articulation with highly cross-linked polyethylene is safe with a low wear rate, comparable to metal-on-highly cross-linked polyethylene.The study group comprised 63 patients (72 hips) who had undergone total hip replacement (THR) with ceramic-on-highly cross-linked polyethylene between April 2006 and March 2007 with a minimum 2-year follow-up. Postoperative Western Ontario and Mc-Master Universities Arthritis Index (WOMAC) and Hospital for Special Surgery (HSS) scores were used for clinical assessment. Six-week and 2-year radiographs were analyzed by 2 independent observers using Roman 1.70 software. Twenty-six patients (29 hips) had 32-mm and 37 patients (43 hips) had 36-mm Biolox delta ceramic femoral heads (Ceramtec, Plochingen, Germany). Mean patient age was 60.9 ± 8.9 years, and mean follow-up was 2.9 ± 0.5 years. Mean postoperative WOMAC and HSS hip scores were 30.4 and 36.6, respectively. Mean wear at 1 and 2 years postoperatively was 0.06 ± 0.28 and 0.006 ± 0.12 mm/yr for all hips, respectively. Mean wear at 1 and 2 years postoperatively for the 32-mm femoral head was 0.063 ± 0.278 and 0.007 ± 0.126 mm/yr, respectively, and for the 36-mm femoral head was 0.057 ± 0.292 and 0.006 ± 0.118 mm/yr, respectively. No patient had any clinical complications, such as reoperation, infection, fractures, or radiographic evidence of osteolysis or loosening. The early results of THR with large ceramic heads demonstrate high safety and efficacy. Our data with 2-year follow-up show low wear rates, similar to published data for metal-on-highly cross-linked polyethylene.

  1. DNA interstrand cross-linking by a mycotoxic diepoxide. (United States)

    Millard, J T; Katz, J L; Goda, J; Frederick, E D; Pierce, S E; Speed, T J; Thamattoor, D M


    The diepoxide mycotoxin (2R, 3R, 8R, 9R)-4,6-decadiyne-2,3:8,9-diepoxy-1,10-diol (repandiol) was both isolated from the mushroom Hydnum repandum and synthesized de novo. Repandiol was found to form interstrand cross-links within a restriction fragment of DNA, linking deoxyguanosines on opposite strands primarily within the 5'-GNC and 5'-GNNC sequences preferred by diepoxyoctane. However, repandiol was a significantly less efficient cross-linker than either of the diepoxyalkanes (diepoxyoctane and diepoxybutane) to which it was compared.

  2. Newer protocols and future in collagen cross-linking

    Directory of Open Access Journals (Sweden)

    Arthur B Cummings


    Full Text Available Corneal Cross-Linking (CXL is an established surgical procedure for the treatment of corneal disorders such as corneal ectasia and keratoconus. This method of treatment stabilises the corneal structure and increases rigidity, reducing the requirement for corneal transplantation. Since its development, many scientific studies have been conducted to investigate ways of improving the procedure. Biomechanical stability of the cornea after exposure to UV-A light, and the effect of shortening procedure time has been some of the many topics explored

  3. Quantitative Raman characterization of cross-linked collagen thin films as a model system for diagnosing early osteoarthritis (United States)

    Wang, Chao; Durney, Krista M.; Fomovsky, Gregory; Ateshian, Gerard A.; Vukelic, Sinisa


    The onset of osteoarthritis (OA)in articular cartilage is characterized by degradation of extracellular matrix (ECM). Specifically, breakage of cross-links between collagen fibrils in the articular cartilage leads to loss of structural integrity of the bulk tissue. Since there are no broadly accepted, non-invasive, label-free tools for diagnosing OA at its early stage, Raman spectroscopyis therefore proposed in this work as a novel, non-destructive diagnostic tool. In this study, collagen thin films were employed to act as a simplified model system of the cartilage collagen extracellular matrix. Cross-link formation was controlled via exposure to glutaraldehyde (GA), by varying exposure time and concentration levels, and Raman spectral information was collected to quantitatively characterize the cross-link assignments imparted to the collagen thin films during treatment. A novel, quantitative method was developed to analyze the Raman signal obtained from collagen thin films. Segments of Raman signal were decomposed and modeled as the sum of individual bands, providing an optimization function for subsequent curve fitting against experimental findings. Relative changes in the concentration of the GA-induced pyridinium cross-links were extracted from the model, as a function of the exposure to GA. Spatially resolved characterization enabled construction of spectral maps of the collagen thin films, which provided detailed information about the variation of cross-link formation at various locations on the specimen. Results showed that Raman spectral data correlate with glutaraldehyde treatment and therefore may be used as a proxy by which to measure loss of collagen cross-links in vivo. This study proposes a promising system of identifying onset of OA and may enable early intervention treatments that may serve to slow or prevent osteoarthritis progression.

  4. Probing native protein structures by chemical cross-linking, mass spectrometry, and bioinformatics. (United States)

    Leitner, Alexander; Walzthoeni, Thomas; Kahraman, Abdullah; Herzog, Franz; Rinner, Oliver; Beck, Martin; Aebersold, Ruedi


    Chemical cross-linking of reactive groups in native proteins and protein complexes in combination with the identification of cross-linked sites by mass spectrometry has been in use for more than a decade. Recent advances in instrumentation, cross-linking protocols, and analysis software have led to a renewed interest in this technique, which promises to provide important information about native protein structure and the topology of protein complexes. In this article, we discuss the critical steps of chemical cross-linking and its implications for (structural) biology: reagent design and cross-linking protocols, separation and mass spectrometric analysis of cross-linked samples, dedicated software for data analysis, and the use of cross-linking data for computational modeling. Finally, the impact of protein cross-linking on various biological disciplines is highlighted.

  5. Cooperative assembly of Zn cross-linked artificial tripeptides with pendant hydroxyquinoline ligands. (United States)

    Zhang, Meng; Gallagher, Joy A; Coppock, Matthew B; Pantzar, Lisa M; Williams, Mary Elizabeth


    An artificial peptide with three pendant hydroxyquinoline (hq) ligands on a palindromic backbone was designed and used to form multimetallic assemblies. Reaction of the tripeptide with zinc acetate led to a highly fluorescent tripeptide duplex with three Zn(II) coordinative cross-links. The binding process was monitored using spectrophotometric absorbance and emission titrations; NMR spectroscopy and mass spectrometry confirmed the identity and stoichiometry of the product structure. Titrations monitoring duplex formation of the zinc-tripeptide structure had a sigmoidal shape, equilibrium constant larger than the monomeric analogue, and a Hill coefficient >1, all of which indicate positive cooperativity. Photophysical characterization of the quantum yield, excited state lifetime, and polarization anisotropy are compared with the monometallic zinc-hq analogue. A higher than expected quantum yield for the trimetallic complex suggests a structure in which the central chromophore is shielded from solvent by π-stacking with neighboring Zn(II) complexes.

  6. Cross-linked comb-shaped anion exchange membranes with high base stability

    Energy Technology Data Exchange (ETDEWEB)

    Li, NW; Wang, LZ; Hickner, M


    A unique one-step cross-linking strategy that connects quaternary ammonium centers using Grubbs II-catalyzed olefin metathesis was developed. The cross-linked anion exchange membranes showed swelling ratios of less than 10% and hydroxide conductivities of 18 to 40 mS cm(- 1). Cross-linking improved the membranes' stability to hydroxide degradation compared to their non-cross-linked analogues.

  7. Tea derived galloylated polyphenols cross-link purified gastrointestinal mucins.

    Directory of Open Access Journals (Sweden)

    Pantelis Georgiades

    Full Text Available Polyphenols derived from tea are thought to be important for human health. We show using a combination of particle tracking microrheology and small-angle neutron scattering that polyphenols acts as cross-linkers for purified gastrointestinal mucin, derived from the stomach and the duodenum. Both naturally derived purified polyphenols, and green and black tea extracts are shown to act as cross-linkers. The main active cross-linking component is found to be the galloylated forms of catechins. The viscosity, elasticity and relaxation time of the mucin solutions experience an order of magnitude change in value upon addition of the polyphenol cross-linkers. Similarly small-angle neutron scattering experiments demonstrate a sol-gel transition with the addition of polyphenols, with a large increase in the scattering at low angles, which is attributed to the formation of large scale (>10 nm heterogeneities during gelation. Cross-linking of mucins by polyphenols is thus expected to have an impact on the physicochemical environment of both the stomach and duodenum; polyphenols are expected to modulate the barrier properties of mucus, nutrient absorption through mucus and the viscoelastic microenvironments of intestinal bacteria.

  8. Cross-linking e segmento de anel corneano intraestromal

    Directory of Open Access Journals (Sweden)

    Adimara da Candelaria Renesto


    Full Text Available O cross-linking corneano é um procedimento usado para a estabilização mecânica e aumento da rigidez corneana em pacientes com ceratocone (reduzindo a possibilidade de progressão, e também em processos inflamatórios de afinamento corneano. Os segmentos de anéis corneanos intraestromais têm como princípio o aplanamento central da córnea. Inicialmente utilizados para correção de baixa miopia, a principal indicação atual é em pacientes com ceratocone, para melhorar a acuidade visual não corrigida, a acuidade visual corrigida e permitir uma melhor tolerância ao uso de lentes de contato como também retardar a necessidade de um transplante de córnea. O objetivo deste artigo é revisar algumas publicações relacionadas ao cross-linking corneano e à inserção do segmento de anel intraestromal, apresentando suas indicações, resultados e complicações relatadas até o momento.

  9. Adsorption of methyl orange onto protonated cross-linked chitosan

    Directory of Open Access Journals (Sweden)

    Ruihua Huang


    Full Text Available The adsorption of methyl orange (MO from aqueous solutions on protonated cross-linked chitosan was studied in a batch system. The results showed that the adsorption of MO onto protonated cross-linked chitosan was affected significantly by initial MO concentration, adsorbent dosage, adsorption temperature, and contact time. The pH value of solution had a minor impact on the adsorption of MO in a pH range of 1.0–9.1. The equilibrium isotherms at different temperatures (293, 303, and 313 K and pH values (4.5, 6.7, and 9.1 were investigated. Langmuir model was able to describe these Equilibrium data fitted perfectly. The maximum monolayer adsorption capacities obtained from the Langmuir model were 89.29, 130.9, and 180.2 mg/g at 293, 303, and 313 K, respectively. Adsorption kinetics at different concentrations (100, 200 and 300 mg/L and pH values (4.5, 6.7 and 9.1 were also studied. The kinetics was correlated well with the pseudo second-order model.

  10. Covalently Cross-Linked Arabinoxylans Films for Debaryomyces hansenii Entrapment

    Directory of Open Access Journals (Sweden)

    Ramsés González-Estrada


    Full Text Available In the present study, wheat water extractable arabinoxylans (WEAX were isolated and characterized, and their capability to form covalently cross-linked films in presence of Debaryomyces hansenii was evaluated. WEAX presented an arabinose to xylose ratio of 0.60, a ferulic acid and diferulic acid content of 2.1 and 0.04 µg∙mg−1 WEAX, respectively and a Fourier Transform Infra-Red (FT-IR spectrum typical of WEAX. The intrinsic viscosity and viscosimetric molecular weight values for WEAX were 3.6 dL∙g−1 and 440 kDa, respectively. The gelation of WEAX (1% w/v with and without D. hansenii (1 × 107 CFU∙cm−2 was rheologically investigated by small amplitude oscillatory shear. The entrapment of D. hansenii decreased gel elasticity from 1.4 to 0.3 Pa, probably by affecting the physical interactions between WEAX chains. Covalently cross-linked WEAX films containing D. hansenii were prepared by casting. Scanning electron microscopy images show that WEAX films containing D. hansenii were porous and consisted of granular-like and fibre microstructures. Average tensile strength, elongation at break and Young’s modulus values dropped when D. hansenii was present in the film. Covalently cross-lined WEAX containing D. hansenii could be a suitable as a functional entrapping film.

  11. Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels. (United States)

    Gyarmati, Benjámin; Mészár, E Zsuzsanna; Kiss, Lóránd; Deli, Mária A; László, Krisztina; Szilágyi, András


    Chemically cross-linked poly(aspartic acid) (PASP) gels were prepared by a solid-liquid phase separation technique, cryogelation, to achieve a supermacroporous interconnected pore structure. The precursor polymer of PASP, polysuccinimide (PSI) was cross-linked below the freezing point of the solvent and the forming crystals acted as templates for the pores. Dimethyl sulfoxide was chosen as solvent instead of the more commonly used water. Thus larger temperatures could be utilized for the preparation and the drawback of increase in specific volume of water upon freezing could be eliminated. The morphology of the hydrogels was characterized by scanning electron microscopy and interconnectivity of the pores was proven by the small flow resistance of the gels. Compression tests also confirmed the interconnected porous structure and the complete re-swelling and shape recovery of the supermacroporous PASP hydrogels. The prepared hydrogels are of interest for several biomedical applications as scaffolding materials because of their cytocompatibility, controllable morphology and pH-responsive character.

  12. One-step electrospinning of cross-linked chitosan fibers. (United States)

    Schiffman, Jessica D; Schauer, Caroline L


    Chitin is a nitrogen-rich polysaccharide that is abundant in crustaceans, mollusks, insects, and fungi and is the second most abundant organic material found in nature next to cellulose. Chitosan, the N-deacetylated derivative of chitin, is environmentally friendly, nontoxic, biodegradable, and antibacterial. Fibrous mats are typically used in industries for filter media, catalysis, and sensors. Decreasing fiber diameters within these mats causes many beneficial effects such as increased specific surface area to volume ratios. When the intrinsically beneficial effects of chitosan are combined with the enhanced properties of nanofibrous mats, applications arise in a wide range of fields, including medical, packaging, agricultural, and automotive. This is particularly important as innovative technologies that focus around bio-based materials are currently of high urgency, as they can decrease dependencies on fossil fuels. We have demonstrated that Schiff base cross-linked chitosan fibrous mats can be produced utilizing a one-step electrospinning process that is 25 times faster and, therefore, more economical than a previously reported two-step vapor-cross-linking method. These fibrous mats are insoluble in acidic, basic, and aqueous solutions for 72 h. Additionally, this improved production method results in a decreased average fiber diameter, which measures 128 +/- 40 nm. Chemical and structural analyses were conducted utilizing Fourier transform infrared spectroscopy, solubility studies, and scanning electron microscopy.

  13. Microbial Keratitis After Collagen Cross-linking Treatment

    Directory of Open Access Journals (Sweden)

    Banu Torun Acar


    Full Text Available A 33-year-old woman presented with pain, redness, and diminution of vision that occurred 2 days after collagen cross-linking had been performed for keratoconus in the right eye. Culture results from the patient's contact lens and corneal scrapings were positive for Staphylococcus epidermidis. According to the results of antibiotic susceptibility testing, the patient was treated with hourly topical fortified vancomycin and exocin. Before collagen cross-linking, the best-corrected visual acuity (BCVA was 4/10, the manifest refraction was -7.00 -1.755 3°. Four months after the procedure, the BCVA was 4/10, the manifest refraction was -5.50 -1.75 10°. Slit-lamp examination revealed a mild residual haze in the upper midperipheral cornea, and stromal opacities had disappeared. Collagen crosslinking is less invasive compared to other methods for treatment of keratoconus, but epithelial debridement and bandage contact lens wearing may lead to the development of bacterial keratitis. (Turk J Oph thal mol 2012; 42: 300-2

  14. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Olde Damink, L.H.H.; Dijkstra, P.J.; Luyn, van M.J.A.; Wachem, van P.B.; Nieuwenhuis, P.; Feijen, J.


    A cross-linking method for collagen-based biomaterials was developed using the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC). Cross-linking using EDC involves the activation of carboxylic acid groups to give O-acylisourea groups, which form cross-links

  15. Small Strain Topological Effects of Biopolymer Networks with Rigid Cross-Links

    NARCIS (Netherlands)

    Zagar, G.; Onck, P. R.; Van der Giessen, E.; Garikipati, K; Arruda, EM


    Networks of cross-linked filamentous biopolymers form topological structures characterized by L, T and X cross-link types of connectivity 2, 3 and 4, respectively. The distribution of cross-links over these three types proofs to be very important for the initial elastic shear stiffness of isotropic

  16. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers (United States)


    capacities (IECs). Solution cast membranes were thermally cross- linked to form anion exchange membranes. Cross-linking was achieved by taking advantage...distribution is unlimited. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers The views...Box 12211 Research Triangle Park, NC 27709-2211 Anion Exchnage Membrane, Polymer synthesis, Morphology, Anion Conductivity REPORT DOCUMENTATION PAGE

  17. Cross-linking of rabbit skeletal muscle troponin subunits: labeling of cysteine-98 of troponin C with 4-maleimidobenzophenone and analysis of products formed in the binary complex with troponin T and the ternary complex with troponins I and T. (United States)

    Leszyk, J; Collins, J H; Leavis, P C; Tao, T


    The sulfhydryl-specific, heterobifunctional, photoactivatable cross-linker 4-maleimidobenzophenone (BPMal) was used to study the interaction of rabbit skeletal muscle troponin subunits TnC, TnT, and TnI. TnC was labeled at Cys-98 by the maleimide moiety of BPMal and then mixed with either TnT alone or TnI plus TnT, in the presence of Ca2+. Upon photolysis, TnI and/or TnT formed covalent cross-links with TnC. The cross-linked TnC-TnT heterodimer obtained from the binary complex was digested into progressively smaller cross-linked peptides that were purified by HPLC and then characterized by amino acid analysis and sequencing. An initial cross-linked CNBr fraction contained the expected peptide CB9 (residues 84-135) of TnC, plus CNBr peptides spanning residues 152-230 of TnT. Results from a peptic digest of the CNBr cross-linked fraction permitted the identification of residues 159-197 as the most highly cross-linked region in TnT. A final subtilisin digest yielded a heterogeneous cross-linked fraction, which suggested that an especially high degree of cross-links was formed in the vicinity of residues 175-178 (Met-Lys-Lys-Lys) of TnT. Although this region of TnT had previously been implicated in binding, we show here for the first time that it is close to Cys-98 of TnC. In an analogous study on the binary complex of TnC and TnI [Leszyk, J., Collins, J. H., Leavis, P. C., & Tao, T. (1987) Biochemistry 26, 7042-7047], we previously showed that Cys-98 of TnC was cross-linked mainly to CN4, the "inhibitory region", of TnI.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. PH dependent adhesive peptides (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan


    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  19. Electrochemical oxidation and cleavage of peptides analyzed with on-line mass spectrometric detection

    NARCIS (Netherlands)

    Permentier, H.P.; Jurva, U; Barroso, B.; Bruins, A.P.


    An on-line electrochernistry/electrospray mass spectrometry system (EC/MS) is described that allows fast analysis of the oxidation products of peptides. A range of peptides was oxidized in an electrochemical cell by application of a potential ramp from 0 to 1.5 V during passage of the sample. Electr

  20. Yield and Failure Behavior Investigated for Cross-Linked Phenolic Resins Using Molecular Dynamics (United States)

    Monk, Joshua D.; Lawson, John W.


    Molecular dynamics simulations were conducted to fundamentally evaluate the yield and failure behavior of cross-linked phenolic resins at temperatures below the glass transition. Yield stress was investigated at various temperatures, strain rates, and degrees of cross-linking. The onset of non-linear behavior in the cross-linked phenolic structures was caused by localized irreversible molecular rearrangements through the rotation of methylene linkers followed by the formation or annihilation of neighboring hydrogen bonds. The yield stress results, with respect to temperature and strain rate, could be fit by existing models used to describe yield behavior of amorphous glasses. The degree of cross-linking only indirectly influences the maximum yield stress through its influence on glass transition temperature (Tg), however there is a strong relationship between the degree of cross-linking and the failure mechanism. Low cross-linked samples were able to separate through void formation, whereas the highly cross-linked structures exhibited bond scission.

  1. Biocatalytic cross-linking of pectic polysaccharides for designed food functionality

    DEFF Research Database (Denmark)

    Zaidel, Dayang Norulfairuz Abang; Meyer, Anne S.


    Recent research has demonstrated how cross-linking of pectic polysaccharides to obtain gel formation can be promoted by enzymatic catalysis reactions, and provide opportunities for functional upgrading of pectic polysaccharides present in agro-industrial sidestreams. This review highlights the me...... specific enzymatic reactions, and highlights the most recent data concerning enzyme catalyzed engineering of cross-links for in situ structural design of functional properties of foods.......Recent research has demonstrated how cross-linking of pectic polysaccharides to obtain gel formation can be promoted by enzymatic catalysis reactions, and provide opportunities for functional upgrading of pectic polysaccharides present in agro-industrial sidestreams. This review highlights...... the mechanisms of formation of functional pectic polysaccharide cross-links, including covalent cross-links (notably phenolic esters and uronyl ester linkages) and non-covalent, ionic cross-links (which involve calcium and borate ester links). The treatise examines how such cross-links can be designed via...

  2. Conventional Versus Cross-Linked Polyethylene for Total Hip Arthroplasty. (United States)

    Surace, Michele F; Monestier, Luca; Vulcano, Ettore; Harwin, Steven F; Cherubino, Paolo


    The clinical and radiographic outcomes of 88 patients who underwent primary total hip arthroplasty with either conventional polyethylene or cross-linked polyethylene (XLPE) from the same manufacturer were compared. There were no significant differences between the 2 subpopulations regarding average age, gender, side affected, or prosthetic stem and cup size. The average follow-up was 104 months (range, 55 to 131 months). To the authors' knowledge, this is the longest follow-up for this particular insert. Clinical and radiographic evaluations were performed at 1, 3, 6, and 12 months and then annually. Results showed that XLPE has a significantly greater wear reduction than that of standard polyethylene in primary total hip arthroplasty. At the longest available follow-up for these specific inserts, XLPE proved to be effective in reducing wear.

  3. Swelling properties of cross-linked DNA gels. (United States)

    Costa, Diana; Miguel, M Graça; Lindman, Björn


    This work represents our contribution to the field of physical chemistry of DNA gels, and concerns the synthesis and study of novel chemically cross-linked DNA gels. The use of covalent DNA gels is a very promising way to study DNA-cosolute interactions, as well as the dynamic behaviour of DNA and cationic compacting agents, like lipids, surfactants and polycations. Manipulating DNA in new ways, like DNA networks, allows a better understanding and characterization of DNA-cosolute complexes at the molecular level, and also allows us to follow the assembly structures of these complexes. The use of responsive polymer gels for targeted delivery of toxic and/or labile drugs has, during the past few years, shown to be a promising concept. The features found in the proposed system would find applications in a broader field of gel/drug interaction, for the development of controlled release and targeted delivery devices.

  4. Studies on N-vinylformamide cross-linked copolymers (United States)

    Świder, Joanna; Tąta, Agnieszka; Sokołowska, Katarzyna; Witek, Ewa; Proniewicz, Edyta


    Copolymers of N-vinylformamide (NVF) cross-linked with three multifunctional monomers, including divinylbenzene (DVB), ethylene glycol dimethacrylate (EGDMA), and N,N‧-methylenebisacrylamide (MBA) were synthetized by a three-dimensional free radical polymerization in inverse suspension using 2,2‧-azobis(2-methylpropionamide) dihydrochloride (AIBA) as an initiator. Methyl silicon oil was used as the continuous phase during the polymerization processes. Fourier-transform adsorption infrared (FT-IR) spectra revealed the presence of silicone oil traces and suggested that silicone oil strongly interacted with the copolymers surface. Purification procedure allowed to completely remove the silicon oil traces from P(NVF-co-DVB) only. The morphology and the structure of the investigated copolymers were examined by optical microscopy, FT-IR, and FT-Raman (Fourier-transform Raman spectroscopy) methods.

  5. DNA-Protein Cross-Links: Formation, Structural Identities, and Biological Outcomes. (United States)

    Tretyakova, Natalia Y; Groehler, Arnold; Ji, Shaofei


    complexity complicates structural and biological studies of DPC lesions. Two general strategies have been developed for creating DNA strands containing structurally defined, site-specific DPCs. Enzymatic methodologies that trap DNA modifying proteins on their DNA substrate are site specific and efficient, but do not allow for systematic studies of DPC lesion structure on their biological outcomes. Synthetic methodologies for DPC formation are based on solid phase synthesis of oligonucleotide strands containing protein-reactive unnatural DNA bases. The latter approach allows for a wider range of protein substrates to be conjugated to DNA and affords a greater flexibility for the attachment sites within DNA. In this Account, we outline the chemistry of DPC formation in cells, describe our recent efforts to identify the cross-linked proteins by mass spectrometry, and discuss various methodologies for preparing DNA strands containing structurally defined, site specific DPC lesions. Polymerase bypass experiments conducted with model DPCs indicate that the biological outcomes of these bulky lesions are strongly dependent on the peptide/protein size and the exact cross-linking site within DNA. Future studies are needed to elucidate the mechanisms of DPC repair and their biological outcomes in living cells.

  6. The wear of cross-linked polyethylene against itself. (United States)

    Joyce, T J; Ash, H E; Unsworth, A


    Cross-linked polyethylene (XLPE) may have an application as a material for an all-plastic surface replacement finger joint. It is inexpensive, biocompatible and can be injection-moulded into the complex shapes that are found on the ends of the finger bones. Further, the cross-linking of polyethylene has significantly improved its mechanical properties. Therefore, the opportunity exists for an all-XLPE joint, and so the wear characteristics of XLPE sliding against itself have been investigated. Wear tests were carried out on both reciprocating pin-on-plate machines and a finger function simulator. The reciprocating pin-on-plate machines had pins loaded at 10 N and 40 N. All pin-on-plate tests show wear factors from the plates very much greater than those of the pins. After 349 km of sliding, a mean wear factor of 0.46 x 10(-6) mm3/N m was found for the plates compared with 0.021 x 10(-6) mm3/N m for the pins. A fatigue mechanism may be causing this phenomenon of greater plate wear. Tests using the finger function simulator give an average wear rate of 0.22 x 10(-6) mm3/N m after 368 km. This sliding distance is equivalent to 12.5 years of use in vivo. The wear factors found were comparable with those of ultra-high molecular weight polyethylene (UHMWPE) against a metallic counterface and, therefore, as the loads across the finger joint are much less than those across the knee or the hip, it is probable that an all-XLPE finger joint will be viable from a wear point of view.

  7. Peptidoglycan Cross-Linking in Glycopeptide-Resistant Actinomycetales (United States)

    Hugonnet, Jean-Emmanuel; Haddache, Nabila; Veckerlé, Carole; Dubost, Lionel; Marie, Arul; Shikura, Noriyasu; Mainardi, Jean-Luc; Rice, Louis B.


    Synthesis of peptidoglycan precursors ending in d-lactate (d-Lac) is thought to be responsible for glycopeptide resistance in members of the order Actinomycetales that produce these drugs and in related soil bacteria. More recently, the peptidoglycan of several members of the order Actinomycetales was shown to be cross-linked by l,d-transpeptidases that use tetrapeptide acyl donors devoid of the target of glycopeptides. To evaluate the contribution of these resistance mechanisms, we have determined the peptidoglycan structure of Streptomyces coelicolor A(3)2, which harbors a vanHAX gene cluster for the production of precursors ending in d-Lac, and Nonomuraea sp. strain ATCC 39727, which is devoid of vanHAX and produces the glycopeptide A40296. Vancomycin retained residual activity against S. coelicolor A(3)2 despite efficient incorporation of d-Lac into cytoplasmic precursors. This was due to a d,d-transpeptidase-catalyzed reaction that generated a stem pentapeptide recognized by glycopeptides by the exchange of d-Lac for d-Ala and Gly. The contribution of l,d-transpeptidases to resistance was limited by the supply of tetrapeptide acyl donors, which are essential for the formation of peptidoglycan cross-links by these enzymes. In the absence of a cytoplasmic metallo-d,d-carboxypeptidase, the tetrapeptide substrate was generated by hydrolysis of the C-terminal d-Lac residue of the stem pentadepsipeptide in the periplasm in competition with the exchange reaction catalyzed by d,d-transpeptidases. In Nonomuraea sp. strain ATCC 39727, the contribution of l,d-transpeptidases to glycopeptide resistance was limited by the incomplete conversion of pentapeptides into tetrapeptides despite the production of a cytoplasmic metallo-d,d-carboxypeptidase. Since the level of drug production exceeds the level of resistance, we propose that l,d-transpeptidases merely act as a tolerance mechanism in this bacterium. PMID:24395229

  8. Grass Cell Walls: A Story of Cross-Linking (United States)

    Hatfield, Ronald D.; Rancour, David M.; Marita, Jane M.


    Cell wall matrices are complex composites mainly of polysaccharides, phenolics (monomers and polymers), and protein. We are beginning to understand the synthesis of these major wall components individually, but still have a poor understanding of how cell walls are assembled into complex matrices. Valuable insight has been gained by examining intact components to understand the individual elements that make up plant cell walls. Grasses are a prominent group within the plant kingdom, not only for their important roles in global agriculture, but also for the complexity of their cell walls. Ferulate incorporation into grass cell wall matrices (C3 and C4 types) leads to a cross-linked matrix that plays a prominent role in the structure and utilization of grass biomass compared to dicot species. Incorporation of p-coumarates as part of the lignin structure also adds to the complexity of grass cell walls. Feruoylation results in a wall with individual hemicellulosic polysaccharides (arabinoxylans) covalently linked to each other and to lignin. Evidence strongly suggests that ferulates not only cross-link arabinoxylans, but may be important factors in lignification of the cell wall. Therefore, the distribution of ferulates on arabinoxylans could provide a means of structuring regions of the matrix with the incorporation of lignin and have a significant impact upon localized cell wall organization. The role of other phenolics in cell wall formation such as p-coumarates (which can have concentrations higher than ferulates) remains unknown. It is possible that p-coumarates assist in the formation of lignin, especially syringyl rich lignin. The uniqueness of the grass cell wall compared to dicot sepcies may not be so much in the gross composition of the wall, but how the distinctive individual components are organized into a functional wall matrix. These features are discussed and working models are provided to illustrate how changing the organization of feruoylation and p

  9. Integrated Workflow for Structural Proteomics Studies Based on Cross-Linking/Mass Spectrometry with an MS/MS Cleavable Cross-Linker. (United States)

    Arlt, Christian; Götze, Michael; Ihling, Christian H; Hage, Christoph; Schäfer, Mathias; Sinz, Andrea


    Cross-linking combined with mass spectrometry (MS) has evolved as an alternative strategy in structural biology for characterizing three-dimensional structures of protein assemblies and for mapping protein-protein interactions. Here, we describe an integrated workflow for an automated identification of cross-linked products that is based on the use of a tandem mass spectrometry (MS/MS) cleavable cross-linker (containing a 1,3-bis-(4-oxo-butyl)-urea group, BuUrBu) generating characteristic doublet patterns upon fragmentation. We evaluate different fragmentation methods available on an Orbitrap Fusion mass spectrometer for three proteins and an E. coli cell lysate. An updated version of the dedicated software tool MeroX was employed for a fully automated identification of cross-links. The strength of our cleavable cross-linker is that characteristic patterns of the cross-linker as well as backbone fragments of the connected peptides are already observed at the MS/MS level, eliminating the need for conducting MS(3) or sequential CID (collision-induced dissociation)- and ETD (electron transfer dissociation)-MS/MS experiments. This makes our strategy applicable to a broad range of mass spectrometers with MS/MS capabilities. For purified proteins and protein complexes, our workflow using CID-MS/MS acquisition performs with high confidence, scoring cross-links at 0.5% false discovery rate (FDR). The cross-links provide structural insights into the intrinsically disordered tetrameric tumor suppressor protein p53. As a time-consuming manual inspection of cross-linking data is not required, our workflow will pave the way for making the cross-linking/MS approach a routine technique for structural proteomics studies.

  10. Photo-cross-linking of amniotic membranes for limbal epithelial cell cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jui-Yang, E-mail:


    In the present study, we developed photo-cross-linked amniotic membrane (AM) as a limbal stem cell niche. After ultraviolet (UV) irradiation for varying time periods, the biological tissues were studied by determinations of cross-linking structure, degradability, and nutrient permeation ability. Our results showed that the number of cross-links per unit mass of AM significantly increased with increasing illumination time from 5 to 50 min. However, the cross-link formation was inhibited by longer irradiation time (i.e., 150 min), probably due to the scission of tissue collagen chains through irradiation. The biological stability and matrix permeability of photo-cross-linked AM materials strongly depended on their cross-linking densities affected by the UV irradiation. In vitro biocompatibility studies including cell viability and pro-inflammatory gene expression analyses demonstrated that, irrespective of the irradiation time employed, the physically cross-linked biological tissues exhibited negligible cytotoxicity and similar interleukin-6 (IL-6) mRNA levels. The data clearly indicate that these AM matrices do not cause potential harm to the corneal epithelial cells. After the growth of limbal epithelial cells (LECs) on AM substrates, Western blot analyses were conducted to examine the expression of ABCG2. It was found that the ability of UV-irradiated AM to maintain the undifferentiated precursor cell phenotype was significantly enhanced with increasing extent of photo-cross-linking. In summary, the UV irradiation time may have a profound influence on the fabrication of photo-cross-linked AM matrices for LEC cultivation. - Highlights: • We report the development of photo-cross-linked AM as a limbal stem cell niche. • Cross-linked structure of tissue materials was controlled by UV irradiation time. • Biostability and matrix permeability of AM depended on cross-linking density. • All the studied photo-cross-linked AM showed good in vitro biocompatibility.

  11. Inactivation of Matrix-bound MMPs by Cross-linking Agents in Acid Etched Dentin (United States)

    Scheffel, Débora Lopes Salles; Hebling, Josimeri; Scheffel, Régis Henke; Agee, Kelly A.; Turco, Gianluca; de Souza Costa, Carlos Alberto; Pashley, David H.


    Objectives Published TEM analysis of in vivo resin-dentin bonds shows that in 44 months almost 70% of collagen fibrils from the hybrid layer disappear. Matrix metalloproteinases (MMPs) play an important role in that process and are thought to be the main factor responsible for the solubitization of dentin collagen. Therefore, this study aimed to evaluate the inactivation of matrix-bound MMPs by carbodiimide (EDC) or proanthocyanidin (PA) both cross-linking agents, or the MMP-inhibitor, chlorhexidine (CHX), on acid-etched dentin using a simplified MMP assay method. Methods Dentin beams (1×1×6mm) were obtained from mid-coronal dentin of sound third molars and randomly divided into 6 groups (G) according to the dentin treatment: G1: Deionized water (control), G2: 0.1M EDC, G3: 0.5M EDC, G4: 0.5M EDC+35% HEMA, G5: 5% Proanthocyanidin (PA) and G6: 2% CHX. The beams were etched for 15s with 37% phosphoric acid, rinsed and then immersed for 60s in one of the treatment solutions. The total MMP activity of dentin was analyzed for 1 h by colorimetric assay (Sensolyte). Data were submitted to Wilcoxon non-parametric test and Mann-Whitney tests (p>0.05). Results All experimental cross-linking solutions significantly reduced MMP activity compared to control, except 0.1M EDC (53.6% ±16.1). No difference was observed between cross-linking agents and 2% CHX 0.5M EDC + 35% HEMA (92.3% ±8.0) was similar to 0.5M EDC (89.1% ±6.4), 5% PA (100.8% ±10.9) and 2% CHX (83.4% ±10.9). Conclusion Dentin treatment with cross-linking agents is effective to significantly reduce MMP activity. Mixing 0.5M EDC and 35% HEMA did not influence EDC inhibitor potential. PMID:23786610

  12. Cross-linking immunoprecipitation-MS (xIP-MS): Topological Analysis of Chromatin-associated Protein Complexes Using Single Affinity Purification. (United States)

    Makowski, Matthew M; Willems, Esther; Jansen, Pascal W T C; Vermeulen, Michiel


    In recent years, cross-linking mass spectrometry has proven to be a robust and effective method of interrogating macromolecular protein complex topologies at peptide resolution. Traditionally, cross-linking mass spectrometry workflows have utilized homogenous complexes obtained through time-limiting reconstitution, tandem affinity purification, and conventional chromatography workflows. Here, we present cross-linking immunoprecipitation-MS (xIP-MS), a simple, rapid, and efficient method for structurally probing chromatin-associated protein complexes using small volumes of mammalian whole cell lysates, single affinity purification, and on-bead cross-linking followed by LC-MS/MS analysis. We first benchmarked xIP-MS using the structurally well-characterized phosphoribosyl pyrophosphate synthetase complex. We then applied xIP-MS to the chromatin-associated cohesin (SMC1A/3), XRCC5/6 (Ku70/86), and MCM complexes, and we provide novel structural and biological insights into their architectures and molecular function. Of note, we use xIP-MS to perform topological studies under cell cycle perturbations, showing that the xIP-MS protocol is sufficiently straightforward and efficient to allow comparative cross-linking experiments. This work, therefore, demonstrates that xIP-MS is a robust, flexible, and widely applicable methodology for interrogating chromatin-associated protein complex architectures.

  13. Cross-links between ribosomal proteins of 30S subunits in 70S tight couples and in 30S subunits. (United States)

    Lambert, J M; Boileau, G; Cover, J A; Traut, R R


    Ribosome 70S tight couples and 30S subunits derived from them were modified with 2-iminothiolane under conditions where about two sulfhydryl groups per protein were added to the ribosomal particles. The 70S and 30S particles were not treated with elevated concentrations of NH4Cl, in contrast to those used in earlier studies. The modified particles were oxidized to promote disulfide bond formation. Proteins were extracted from the cross-linked particles by using conditions to preclude disulfide interchange. Disulfide-linked protein complexes were fractionated on the basis of charge by electrophoresis in polyacrylamide/urea gels at pH 5.5. The proteins from sequential slices of the urea gels were analyzed by two-dimensional diagonal polyacrylamide/sodium dodecyl sulfate gel electrophoresis. Final identification of proteins in cross-linked complexes was made by radioiodination of the proteins, followed by two-dimensional polyacrylamide/urea gel electrophoresis. Attention was focused on cross-links between 30S proteins. We report the identification of 27 cross-linked dimers and 2 trimers of 30S proteins, all but one of which were found in both 70S ribosomes and free 30S subunits in similar yield. Seven of the cross-links, S3-S13, S13-S21, S14-S19, S7-S12, S9-S13, S11-S21, and S6-S18-S21, have not been reported previously when 2-iminothiolane was used. Cross-links S3-S13, S13-S21, S7-S12, S11-S21, and S6-S18-S21 are reported for the first time. The identification of the seven new cross-links is illustrated and discussed in detail. Ten of the dimers reported in the earlier studies of Sommer & Traut (1976) [Sommer, A., & Traut, R. R. (1976) J. Mol. Biol. 106, 995-1015], using 30S subunits treated with high salt concentrations, were not found in the experiments reported here.

  14. Nafion-assisted cross-linking of sulfonated poly(arylene ether ketone) bearing carboxylic acid groups and their composite membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Haidan; Zhao, Chengji; Na, Hui [Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Qianjin street 2699, Changchun 130012, Jilin (China)


    In this study, a new type of cross-linked composite membrane is prepared and considered for its potential applications in direct methanol fuel cell. Nafion and sulfonated poly(arylene ether ketone) bearing carboxylic acid groups (SPAEK-C) are blended and subsequently cross-linked by a Friedel-Craft reaction using the carboxylic acid groups in the SPAEK-C to achieve lower methanol permeability. The perfluoroalkyl sulfonic acid groups of Nafion act as a benign solid catalyst, which assist the cross-linking of SPAEK-C. The physical and chemical characterizations of the cross-linked composite membranes are performed by varying the contents of SPAEK-C. The c-Nafion-15% membrane exhibits appropriate water uptake (10.49-25.22%), low methanol permeability (2.57 x 10{sup -7} cm{sup 2} s{sup -1}), and high proton conductivity (0.179 S cm{sup -1} at 80 C). DSC and FTIR analyze suggest the cross-linking reaction. These results show that the self-cross-linking of SPAEK-C in the Nafion membrane can effectively reduce methanol permeability while maintaining high proton conductivity. (author)

  15. Characterization of Interstrand DNA-DNA Cross-Links Using the α-Hemolysin Protein Nanopore. (United States)

    Zhang, Xinyue; Price, Nathan E; Fang, Xi; Yang, Zhiyu; Gu, Li-Qun; Gates, Kent S


    Nanopore-based sensors have been studied extensively as potential tools for DNA sequencing, characterization of epigenetic modifications such as 5-methylcytosine, and detection of microRNA biomarkers. In the studies described here, the α-hemolysin protein nanopore embedded in a lipid bilayer was used for the detection and characterization of interstrand cross-links in duplex DNA. Interstrand cross-links are important lesions in medicinal chemistry and toxicology because they prevent the strand separation that is required for read-out of genetic information from DNA in cells. In addition, interstrand cross-links are used for the stabilization of duplex DNA in structural biology and materials science. Cross-linked DNA fragments produced unmistakable current signatures in the nanopore experiment. Some cross-linked substrates gave irreversible current blocks of >10 min, while others produced long current blocks (10-100 s) before the double-stranded DNA cross-link translocated through the α-hemolysin channel in a voltage-driven manner. The duration of the current block for the different cross-linked substrates examined here may be dictated by the stability of the duplex region left in the vestibule of the nanopore following partial unzipping of the cross-linked DNA. Construction of calibration curves measuring the frequency of cross-link blocking events (1/τon) as a function of cross-link concentration enabled quantitative determination of the amounts of cross-linked DNA present in samples. The unique current signatures generated by cross-linked DNA in the α-HL nanopore may enable the detection and characterization of DNA cross-links that are important in toxicology, medicine, and materials science.

  16. Polymeric redox-responsive delivery systems bearing ammonium salts cross-linked via disulfides

    Directory of Open Access Journals (Sweden)

    Christian Dollendorf


    Full Text Available A redox-responsive polycationic system was synthesized via copolymerization of N,N-diethylacrylamide (DEAAm and 2-(dimethylaminoethyl methacrylate (DMAEMA. N,N’-bis(4-chlorobutanoylcystamine was used as disulfide-containing cross-linker to form networks by the quaternization of tertiary amine groups. The insoluble cationic hydrogels become soluble by reduction of disulfide to mercaptanes by use of dithiothreitol (DTT, tris(2-carboxyethylphosphine (TCEP or cysteamine, respectively. The soluble polymeric system can be cross-linked again by using oxygen or hydrogen peroxide under basic conditions. The redox-responsive polymer networks can be used for molecular inclusion and controlled release. As an example, phenolphthalein, methylene blue and reactive orange 16 were included into the network. After treatment with DTT a release of the dye could be recognized. Physical properties of the cross-linked materials, e.g., glass transition temperature (Tg, swelling behavior and cloud points (Tc were investigated. Redox-responsive behavior was further analyzed by rheological measurements.

  17. Cross-linked polyethylenimine–tripolyphosphate nanoparticles for gene delivery

    Directory of Open Access Journals (Sweden)

    Huang XZ


    Full Text Available Xianzhang Huang,1 Sujing Shen,2 Zhanfeng Zhang,1 Junhua Zhuang1 1Department of Laboratory Science, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 2Department of Laboratory Science, Guangdong Second Provincial Traditional Chinese Medicine Hospital, Guangzhou, People’s Republic of China Abstract: The high transfection efficiency of polyethylenimine (PEI makes it an attractive potential nonviral genetic vector for gene delivery and therapy. However, the highly positive charge of PEI leads to cytotoxicity and limits its application. To reduce the cytotoxicity of PEI, we prepared anion-enriched nanoparticles that combined PEI with tripolyphosphate (TPP. We then characterized the PEI-TPP nanoparticles in terms of size, zeta potential, and Fourier-transform infrared (FTIR spectra, and assessed their transfection efficiency, cytotoxicity, and ability to resist deoxyribonuclease (DNase I digestion. The cellular uptake of PEI-TPP with phosphorylated internal ribosome entry site–enhanced green fluorescent protein C1 or FAM (fluorouracil, Adriamycin [doxorubicin] and mitomycin-labeled small interfering ribonucleic acids (siRNAs was monitored by fluorescence microscopy and confocal laser microscopy. The efficiency of transfected delivery of plasmid deoxyribonucleic acid (DNA and siRNA in vitro was 1.11- to 4.20-fold higher with the PEI-TPP particles (7.6% cross-linked than with the PEI, at all N:P ratios (nitrogen in PEI to phosphorus in DNA tested. The cell viability of different cell lines was more than 90% at the chosen N:P ratios of PEI-TPP/DNA complexes. Moreover, PEI-TPP nanoparticles resisted digestion by DNase I for more than 2 hours. The time-dependent absorption experiment showed that 7.6% of cross-linked PEI-TPP particles were internalized by 293T cells within 1 hour. In summary, PEI-TPP nanoparticles effectively transfected cells while conferring little or no toxicity, and thus have potential application in gene

  18. Riboflavin-ultraviolet a corneal cross-linking for keratoconus

    Directory of Open Access Journals (Sweden)

    El-Raggal Tamer


    Full Text Available Purpose: To evaluate the safety, efficacy of riboflavin-ultraviolet A irradiation (UVA corneal cross-linking and present refractive changes induced by the treatment in cases of keratoconus. Materials and Methods: The study includes 15 eyes of 9 patients with keratoconus with an average keratometric (K reading less than 54 D and minimal corneal thickness greater than 420 microns. The corneal epithelium was removed manually within the central 8.5 mm diameter area and the cornea was soaked with riboflavin eye drops (0.1% in 20% dextran t-500 for 30 minutes followed by exposure to UVA radiation (365 nm, 3 mW/cm 2 for 30 minutes. During the follow-up period, uncorrected visual acuity (UCVA, best spectacle-corrected visual acuity (BSCVA, manifest refraction, slit lamp examination and topographic changes were recorded at the first week, first month, 3 and 6 months. Results: There was statistically significant improvement of UCVA from a preoperative mean of 0.11 ± 0.07 (range 0.05-0.3 to a postoperative mean of 0.15 ± 0.06 (range 0.1-0.3 (P < 0.05. None of the eyes lost lines of preoperative UCVA but 1 eye lost 1 line of preoperative BSCVA. The preoperative mean K of 49.97 ± 2.81 D (range 47.20-51.75 changed to 48.34 ± 2.64 D (range 45.75-50.40. This decrease in K readings was statistically significant (P < 0.05. All eyes developed minimal faint stromal haze that cleared in 14 eyes within 1 month. In only 1 eye, this resulted in a very faint corneal scar. Other sight threatening complications were not encountered in this series. Progression of the original disease was not seen in any of the treated eyes within 6 months of follow-up. Conclusion: Riboflavin-UVA corneal cross-linking is a safe and promising method for keratoconus. Larger studies with longer follow up are recommended.

  19. Fabrication of patterned calcium cross-linked alginate hydrogel films and coatings through reductive cation exchange. (United States)

    Bruchet, Marion; Melman, Artem


    Calcium cross-linked alginate hydrogels are widely used in targeted drug delivery, tissue engineering, wound treatment, and other biomedical applications. We developed a method for preparing homogeneous alginate hydrogels cross-linked with Ca(2+) cations using reductive cation exchange in homogeneous iron(III) cross-linked alginate hydrogels. Treatment of iron(III) cross-linked alginate hydrogels with calcium salts and sodium ascorbate results in reduction of iron(III) cations to iron(II) that are instantaneously replaced with Ca(2+) cations, producing homogeneous ionically cross-linking hydrogels. Alternatively, the cation exchange can be performed by photochemical reduction in the presence of calcium chloride using a sacrificial photoreductant. This approach allows fabrication of patterned calcium alginate hydrogels through photochemical patterning of iron(III) cross-linked alginate hydrogel followed by the photochemical reductive exchange of iron cations to calcium.

  20. A Novel MALDI Matrix for Analyzing Peptides and Proteins: Paraffin Wax Immobilized Matrix

    Institute of Scientific and Technical Information of China (English)

    WEI Yuanlong; MEI Yuan; XU Zhe; WANG Cuihong; GUO Yinlong; DU Yiping; ZHANG Weibing


    A new kind of MALDI matrix, termed paraffin wax immobilized matrix, was used to study peptide mixtures and proteins. During the preparation process, the paraffin wax was heated and coated on the stainless-steel target plate, and then 2,5-dihydrobenzoic acid (DHB) was deposited on the paraffin layer and stainless-steel target plate to obtain different kinds of matrix spots. The morphology of matrices on different supports and peptide-matrix co-crystallization were observed by a high resolution digital-video microscopy system. Peptide mixtures and bovine serum albumin (BSA) digests were used to investigate the performance of the immobilized matrices on the paraffin target. The MALDI-FTMS analysis results also showed that the detection sensitivity of matrices immobilized in the paraffin sample support was better than that on other sample supports.

  1. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhang


    Full Text Available Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP, followed by proper corona charging. Young’s modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d33 coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d33 ⋅ g33 for a more typical d33 value of 400 pC/N is about 11.2 GPa−1. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm2 and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.

  2. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets (United States)

    Zhang, Xiaoqing; Wu, Liming; Sessler, Gerhard M.


    Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP), followed by proper corona charging. Young's modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d33 coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d33 ṡ g33) for a more typical d33 value of 400 pC/N is about 11.2 GPa-1. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm2 and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.

  3. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoqing [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology & School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Institute for Telecommunications Technology, Merckstrasse 25, 64283 Darmstadt (Germany); Wu, Liming [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology & School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Sessler, Gerhard M., E-mail: [Institute for Telecommunications Technology, Merckstrasse 25, 64283 Darmstadt (Germany)


    Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP), followed by proper corona charging. Young’s modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d{sub 33} coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d{sub 33} ⋅ g{sub 33}) for a more typical d{sub 33} value of 400 pC/N is about 11.2 GPa{sup −1}. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm{sup 2} and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.

  4. Subclinical inflammatory response after accelerated corneal cross-linking

    Institute of Scientific and Technical Information of China (English)

    Hassan Hashemi; Nahid Ashraf; Ebrahim Jafarzadehpur; Alireza Hedayatfar; Soheila Asgari


    Background: To evaluate the inlfammatory response after accelerated collagen cross-linking (CXL) in eyes with keratoconus. Methods: Consecutive eyes with keratoconus undergoing CXL surgery were included in this non-randomized interventional study. Aqueous lfare was measured pre- and post-operatively with a laser lfare photometer at 1 week, 1, 3 and 6 months after CXL. Results: Sixty eyes of 60 patients were entered into the study. Before CXL, the mean lfare value was 4.5 photons per millisecond (ph/ms). The lfare values observed at week 1 (7.1 ph/ms; P=0.008), month 1 (6.5 ph/ms; P=0.04), month 3 (6.7 ph/ms; P=0.004) and month 6 (6.7 ph/ms; P=0.004) were signiifcantly higher compared to baseline. Flare values were not signiifcantly different from week 1 up to 6 months after CXL (P=0.930). No statistically significant correlation was detected between the amount of inlfammation and keratometric indices. Conclusions: Accelerated CXL in patients with keratoconus may cause a subclinical inflammatory response which is evident as slight but rather long-lasting rise of aqueous lfare.

  5. Cross-linking da cornea: protocolo padrão

    Directory of Open Access Journals (Sweden)

    Marcony R. Santhiago

    Full Text Available RESUMO O objetivo desta revisão é de determinar as indicações e eficácia da cirurgia que promove novas ligações covalentes entre as fibras de colágeno da córnea, conhecida como Cross-Linking (CXL, assim como esclarecer seus objetivos. O ceratocone é uma doença ectasica da córnea, bilateral, assimétrica, que, principalmente, cursa com encurvamento e afinamentos progressivo, e se inicia em geral na segunda década de vida. O uso primário do CXL tem sido na interrupção da progressão do Ceratocone. Apesar do conhecido encurvamento no estroma da córnea ocorrer nesses pacientes, a fisiopatologia por trás do ceratocone ainda é desconhecida e parece ser multifatorial. Pela evidencia literária disponível até o momento, o CXL da córnea esta, portanto indicado nos pacientes com doença em progressão. Concluímos que existe evidencia suficiente para afirmar que o CXL da córnea é eficaz na estabilização da doença ectásica da cornea.

  6. Determination of theoretical retention times for peptides analyzed by reversed- -phase high-performance liquid chromatography

    Directory of Open Access Journals (Sweden)

    Jerzy Dziuba


    Full Text Available   Background. Peptides are important components of foods mainly due to their biological activity. The basic method of their identification is reversed phase high-performance liquid chromatography coupled with electrospray-ionization mass spectrometry (RP-HPLC-ESI-MS. Retention time (tR prediction in silico is very helpful in analysis of multicomponent peptide mixtures. One of problems associated with RP-HPLC-ESI-MS is deterioration of mass spectra quality by trifluoroacetic acid (TFA. This problem can be avoided through the use of chromatographic columns designed for work with low TFA concentrations in mobile phase. The objective of this study was to determine the correlations between peptide retention times predicted with the use of a program available on-line and experimental retention times obtained using the column working with low TFA concentrations. Material and methods. The set of synthetic peptides and bovine α-lactalbumin fragments (18 peptides was used in the experiment. Theoretical retention times were calculated using Sequence Specific Retention Calculator (SSRC program. The experimental retention times were measured via RP-HPLC-ESI-MS method using column working with low TFA content. The dependence between theoretical and experimental tR was expressed via empirical equations. Results. The best correlation between theoretical and experimental retention times of peptides containing at least four amino acid residues has been obtained when third order polynomial (R² = 0.9536. Prediction quality for di- and tripeptides was significantly lower. The method described can be applied for cysteine-containing peptides although our sample preparation procedure did not include modification of this amino acid, taken into attention by SSRC program. Conclusions. The results of this study validate the usefulness of a third degree polynomial as a simple function describing the correlation between peptide retention times predicted by an on

  7. Radiation cross-linking in ultra-high molecular weight polyethylene for orthopaedic applications


    Oral, Ebru; Muratoglu, Orhun K.


    The motivation for radiation cross-linking of ultra-high molecular weight polyethylene (UHMWPE) is to increase its wear resistance to be used as bearing surfaces for total joint arthroplasty. However, radiation also leaves behind long-lived residual free radicals in this polymer, the reactions of which can detrimentally affect mechanical properties. In this review, we focus on the radiation cross-linking and oxidative stability of first and second generation highly cross-linked UHMWPEs develo...

  8. Tailoring the properties of cholecyst-derived extracellular matrix using carbodiimide cross-linking.

    LENUS (Irish Health Repository)

    Burugapalli, Krishna


    Modulation of properties of extracellular matrix (ECM) based scaffolds is key for their application in the clinical setting. In the present study, cross-linking was used as a tool for tailoring the properties of cholecyst-derived extracellular matrix (CEM). CEM was cross-linked with varying cross-linking concentrations of N,N-(3-dimethyl aminopropyl)-N\\'-ethyl carbodiimide (EDC) in the presence of N-hydroxysuccinimide (NHS). Shrink temperature measurements and ATR-FT-IR spectra were used to determine the degree of cross-linking. The effect of cross-linking on degradation was tested using the collagenase assay. Uniaxial tensile properties and the ability to support fibroblasts were also evaluated as a function of cross-linking. Shrink temperature increased from 59 degrees C for non-cross-linked CEM to 78 degrees C for the highest EDC cross-linking concentration, while IR peak area ratios for the free -NH(2) group at 3290 cm(-1) to that of the amide I band at 1635 cm(-1) decreased with increasing EDC cross-linking concentration. Collagenase assay demonstrated that degradation rates for CEM can be tailored. EDC concentrations 0 to 0.0033 mmol\\/mg CEM were the cross-linking concentration range in which CEM showed varied susceptibility to collagenase degradation. Furthermore, cross-linking concentrations up to 0.1 mmol EDC\\/mg CEM did not have statistically significant effect on the uniaxial tensile strength, as well as morphology, viability and proliferation of fibroblasts on CEM. In conclusion, the degradation rates of CEM can be tailored using EDC-cross-linking, while maintaining the mechanical properties and the ability of CEM to support cells.

  9. Effect of Cross-Linking and Enzymatic Hydrolysis Composite Modification on the Properties of Rice Starches

    Directory of Open Access Journals (Sweden)

    Gao-Qiang Liu


    Full Text Available Native rice starch lacks the versatility necessary to function adequately under rigorous industrial processing, so modified starches are needed to meet the functional properties required in food products. This work investigated the impact of enzymatic hydrolysis and cross-linking composite modification on the properties of rice starches. Rice starch was cross-linked with epichlorohydrin (EPI with different concentrations (0.5%, 0.7%, 0.9% w/w, on a dry starch basis, affording cross-linked rice starches with the three different levels of cross-linking that were named R1, R2, and R3, respectively. The cross-linked rice starches were hydrolyzed by α-amylase and native, hydrolyzed, and hydrolyzed cross-linked rice starches were comparatively studied. It was found that hydrolyzed cross-linked rice starches showed a lower the degree of amylase hydrolysis compared with hydrolyzed rice starch. The higher the degree of cross-linking, the higher the capacity to resist enzyme hydrolysis. Hydrolyzed cross-linked rice starches further increased the adsorptive capacities of starches for liquids and decreased the trend of retrogradation, and it also strengthened the capacity to resist shear compared to native and hydrolyzed rice starches.

  10. Alkaline battery containing a separator of a cross-linked copolymer of vinyl alcohol and unsaturated carboxylic acid (United States)

    Hsu, L. C.; Philipp, W. H.; Sheibley, D. W.; Gonzalez-Sanabria, O. D. (Inventor)


    A battery separator for an alkaline battery is described. The separator comprises a cross linked copolymer of vinyl alcohol units and unsaturated carboxylic acid units. The cross linked copolymer is insoluble in water, has excellent zincate diffusion and oxygen gas barrier properties and a low electrical resistivity. Cross linking with a polyaldehyde cross linking agent is preferred.

  11. In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics (United States)

    Ai, Xiangzhao; Ho, Chris Jun Hui; Aw, Junxin; Attia, Amalina Binte Ebrahim; Mu, Jing; Wang, Yu; Wang, Xiaoyong; Wang, Yong; Liu, Xiaogang; Chen, Huabing; Gao, Mingyuan; Chen, Xiaoyuan; Yeow, Edwin K. L.; Liu, Gang; Olivo, Malini; Xing, Bengang


    The development of precision nanomedicines to direct nanostructure-based reagents into tumour-targeted areas remains a critical challenge in clinics. Chemical reaction-mediated localization in response to tumour environmental perturbations offers promising opportunities for rational design of effective nano-theranostics. Here, we present a unique microenvironment-sensitive strategy for localization of peptide-premodified upconversion nanocrystals (UCNs) within tumour areas. Upon tumour-specific cathepsin protease reactions, the cleavage of peptides induces covalent cross-linking between the exposed cysteine and 2-cyanobenzothiazole on neighbouring particles, thus triggering the accumulation of UCNs into tumour site. Such enzyme-triggered cross-linking of UCNs leads to enhanced upconversion emission upon 808 nm laser irradiation, and in turn amplifies the singlet oxygen generation from the photosensitizers attached on UCNs. Importantly, this design enables remarkable tumour inhibition through either intratumoral UCNs injection or intravenous injection of nanoparticles modified with the targeting ligand. Our strategy may provide a multimodality solution for effective molecular sensing and site-specific tumour treatment.


    Directory of Open Access Journals (Sweden)



    Full Text Available To evaluate the outcome of collagen cross linkage using riboflavin 0.1% and ultraviolet A radiation of a wavelength 370nm . PURPOSE : To determine the effect of collagen cross linking for keratoconus on pachymetry , corneal topography, uncorrected visual acuity, specular count, IOP at 1, 3, 6 months . METHODS : The current study was designed as a prospective interventional trial of corneal collagen cross - linking in subjects with progressive keratoconus between a period of J anuary 2013 to J uly 2014 including 50 eyes of 30 patients. This study rece ived approval from Ethics committee. Informed written consent was obtained from all patients prior to treatment. RESULTS: Mean follow up period of 6 months. There was statistically significant decline in effective k readings from mean pre op (51.7D to pos t op value (49.65D . Pachymetry showed initial increase post operatively followed by reduction in corneal thickness in 3 month s follow up , followed by gradual increase in thickness over a period of 6 months though it was not equivalent to pre - operative values. paired t test p value was 0.00 1 in 1 n 3 month and 0. 043 in 6 month, concluding significant reduction in early post op period with im provement over time . Specular count reduced from pre - op (2673.80 levels to post - op (2654.60 levels ,the reduction in specular count was not statistically significant P value (0.014 The uncorrected visual acuity showed decrease in refractive error with in crease in visual acuity gradually over 6 months, log MAR scale visual acuity was used for statistical analysis with P value (0.001 which was statistically significant .visual acuity improved by 1.5 lines in snellens equivalence or from 0.5 to 0.4 in log MA R char y ± 20cells/mm 3 , P value(0. 001 . IOP statically show ed no significant change in pre - operative and post operatively , paired t test p value was 0. 44 showing it was not significant . CONCLUSIONS : 1. Visual acuity improved in

  13. Encapsulation of volatiles by homogenized partially-cross linked alginates. (United States)

    Inguva, Pavan K; Ooi, Shing Ming; Desai, Parind M; Heng, Paul W S


    Cross-linked calcium alginate gels are too viscous to be efficaciously incorporated into spray dried formulations. Thus, viscosity reduction is essential to ensure the processability of calcium alginate gels to be sprayed. Viscosity reduction by high pressure homogenization can open new formulation possibilities. Presently, testing of microcapsule integrity is also limited because either single particle tests neglect collective particle behaviours in bulk or bulk testing methods are often associated with single compressions which may not fully characterize individual particle strengths. The aim of this study was sub-divided into three objectives. First objective was to evaluate the impact of high pressure homogenization on gel viscosity. Second objective was to explore the use of the homogenized gels with modified starch for microencapsulation by spray drying. The final objective was to develop a stamping system as microcapsule strength tester that can assess microcapsules in bulk and evaluate the impact of multiple compressions. Collectively, this study would lead towards developing a pressure-activated patch of microcapsules with encapsulated volatiles and the method to assess the patch efficacy. The alginate gels largely experienced an exponential decay in viscosity when homogenized. Furthermore, the homogenized gels were successfully incorporated in spray drying formulations for microencapsulation. The custom-designed microcapsule strength tester was successfully used and shown to possess the required sensitivity to discern batches of microcapsules containing volatiles to have different release profiles. Addition of homogenized gels strengthened the microcapsules only at high wall to core ratios with low mass-load alginate gels. High mass-load gels weaken the microcapsules, exhibiting a higher release at low stamping pressures and wrinkling on the microcapsules surface.

  14. The theory and art of corneal cross-linking

    Directory of Open Access Journals (Sweden)

    Rebecca McQuaid


    Full Text Available Before the discovery of corneal cross-linking (CXL, patients with keratoconus would have had to undergo corneal transplantation, or wear rigid gas permeable lenses (RGPs that would temporarily flatten the cone, thereby improving the vision. The RGP contact lens (CL would not however alter the corneal stability and if the keratoconus was progressive, the continued steepening of the cone would occur under the RGP CL. To date, the Siena Eye has been the largest study to investigate long term effects of standard CXL. Three hundred and sixty-three eyes were treated and monitored over 4 years, producing reliable long-term results proving long-term stability of the cornea by halting the progression of keratoconus, and proving the safety of the procedure. Traditionally, CXL requires epithelial removal prior to corneal soakage of a dextran-based 0.1% riboflavin solution, followed by exposure of ultraviolet-A (UV-A light for 30 min with an intensity of 3 mW/cm2. A series of in vitro investigations on human and porcine corneas examined the best treatment parameters for standard CXL, such as riboflavin concentration, intensity, wavelength of UV-A light, and duration of treatment. Photochemically, CXL is achieved by the generation of chemical bonds within the corneal stroma through localized photopolymerization, strengthening the cornea whilst minimizing exposure to the surrounding structures of the eye. In vitro studies have shown that CXL has an effect on the biomechanical properties of the cornea, with an increased corneal rigidity of approximately 70%. This is a result of the creation of new chemical bonds within the stroma.

  15. Collagen cross-linking in the treatment of pellucid marginal degeneration

    Directory of Open Access Journals (Sweden)

    Ziad Hassan


    Full Text Available Pellucid marginal degeneration (PMD is an uncommon cause of inferior peripheral corneal thinning disorder, characterized by irregular astigmatism. We analyzed a case of bilateral PMD patient and treated one eye with corneal collagen cross-linking (CXL therapy. Corneal topography was characteristic for PMD. Visual acuity, slitlamp examinations, tonometry, and corneal thickness were observed. Simulated keratometric and topographic index values were detected with corneal topography. Uncorrected, LogMAR visual acuity has improved from +0.8 to +0.55 during the 6 months and +0.3 during the 8 months follow-up after CXL. Pachymetry values and intraocular pressure showed no changes. Keratometric values and topografic indexes disclosed no progression of the disease. CXL may postpone or eliminate the need of corneal transplantation in cases with PMD.

  16. Synthesis and conformational analysis of novel trimeric maleimide cross-linking reagents. (United States)

    Szczepanska, Agnieszka; Espartero, José Luis; Moreno-Vargas, Antonio J; Carmona, Ana T; Robina, Inmaculada; Remmert, Sarah; Parish, Carol


    Nine homotrifunctional cross-linking reagents are presented. Their synthesis and chemical properties as well as their characterization by classical mechanical conformational searching techniques is reported. Mixed Low Mode and Monte Carlo searching techniques were used to exhaustively sample the OPLS2005/GBSA(water) potential energy surface of trisubstituted cyclohexane and benzene derivatives of C3 symmetry. Geometric structure, molecular length, and hydrogen-bonding patterns were analyzed. Nonaromatic compounds exhibited exclusively chair conformations at low energies, with a preference for axial or equatorial arms depending upon the presence of additional ring substituent Me groups. Increasing chain length often resulted in overall shorter molecular length due to additional chain flexibility. These results were consistent with one- and two-dimensional temperature-dependent NMR studies.

  17. Feruloylated arabinoxylans are oxidatively cross-linked by extracellular maize peroxidase but not by horseradish peroxidase. (United States)

    Burr, Sally J; Fry, Stephen C


    Covalent cross-linking of soluble extracellular arabinoxylans in living maize cultures, which models the cross-linking of wall-bound arabinoxylans, is due to oxidation of feruloyl esters to oligoferuloyl esters and ethers. The oxidizing system responsible could be H2O2/peroxidase, O2/laccase, or reactive oxygen species acting non-enzymically. To distinguish these possibilities, we studied arabinoxylan cross-linking in vivo and in vitro. In living cultures, exogenous, soluble, extracellular, feruloylated [pentosyl-3H]arabinoxylans underwent cross-linking, beginning abruptly 8 d after sub-culture. Cross-linking was suppressed by iodide, an H2O2 scavenger, indicating dependence on endogenous H2O2. However, exogenous H2O2 did not cause precocious cross-linking, despite the constant presence of endogenous peroxidases, suggesting that younger cultures contained natural cross-linking inhibitors. Dialysed culture-filtrates cross-linked [3H]arabinoxylans in vitro only if H2O2 was also added, indicating a peroxidase requirement. This cross-linking was highly ionic-strength-dependent. The peroxidases responsible were heat-labile, although relatively heat-stable peroxidases (assayed on o-dianisidine) were also present. Surprisingly, added horseradish peroxidase, even after heat-denaturation, blocked the arabinoxylan-cross-linking action of maize peroxidases, suggesting that the horseradish protein was a competing substrate for [3H]arabinoxylan coupling. In conclusion, we show for the first time that cross-linking of extracellular arabinoxylan in living maize cultures is an action of apoplastic peroxidases, some of whose unusual properties we report.

  18. Feruloylated Arabinoxylans Are Oxidatively Cross-Linked by Extracellular Maize Peroxidase but Not by Horseradish Peroxidase

    Institute of Scientific and Technical Information of China (English)

    Sally J. Burr; Stephen C. Fry


    Covalent cross-linking of soluble extraceUular arabinoxylans in living maize cultures, which models the cross-linking of wall-bound arabinoxylans, is due to oxidation of feruloyl esters to oligoferuloyl esters and ethers. The oxidizing system responsible could be H_2O_2/peroxidase, O_2/laccase, or reactive oxygen species acting non-enzymically. To distinguish these possibilities, we studied arabinoxylan cross-linking in vivo and in vitro. In living cultures, exogenous, soluble, extra-cellular, feruloylated [pentosyl-~3H]arabinoxylans underwent cross-linking, beginning abruptly 8 d after sub-culture. Cross-linking was suppressed by iodide, an H_2O_2 scavenger, indicating dependence on endogenous H2O2. However, exogenous H_2O_2 did not cause precocious cross-linking, despite the constant presence of endogenous peroxidases, suggesting that younger cultures contained natural cross-linking inhibitors. Dialysed culture-filtrates cross-linked [~3H]arabinoxylans in vitro only if H_20_2 was also added, indicating a peroxiclase requirement. This cross-linking was highly ionic-strength-dependent. The peroxidases responsible were heat-labile, although relatively heat-stable peroxidases (assayed on o-dianisidine) were also present, Surprisingly, added horseradish peroxidase, even after heat-denaturation, blocked the arabinoxylan-cross-linking action of maize peroxidases, suggesting that the horseradish protein was a competing substrate for [~3H]arabino-xylan coupling. In conclusion, we show for the first time that cross-linking of extracellular arabinoxylan in living maize cultures is an action of apoplastic peroxidases, some of whose unusual properties we report.

  19. Antigenicity of the HCV HVR1 Peptide Analyzed by Computer Modeling

    Institute of Scientific and Technical Information of China (English)

    郑宇; 苏琴; 林芳; 赵军; 何卫平; 李伯安; 李静; 高蓉; 程云


    To find out the protective polypeptide epitopes of HCV HVR1, the antigenieity of the synthetic pepfide was predicted by computer modeling and verified by ELISA and lymphocyte transformation test. It was found that the outcome of the computer modeling was in accord with the experimental results. The method by using computer modeling would be a economic approach by which the protective peptides could be identified quickly.

  20. Characterization of the somatogenic receptor in rat liver. Hydrodynamic properties and affinity cross-linking

    Energy Technology Data Exchange (ETDEWEB)

    Husman, B.; Haldosen, L.A.; Andersson, G.; Gustafsson, J.A.


    Rat liver somatogenic receptors have been characterized by gel permeation chromatography, sucrose density gradients in H/sub 2/O and D/sub 2/O, and affinity cross-linking using /sup 125/I-bovine growth hormone (bGH) as a specific somatogenic receptor ligand. Cross-linking of /sup 125/I-bovine growth hormone to a Triton X-100-treated low density fraction isolated from livers of late pregnant rats followed by sodium dodecylsulfate-polyacrylamide gel electrophoresis under reducing conditions showed three major binders with Mr 95,000, 86,000, and 43,000 and a minor binder of Mr 55,000, after correction for bound ligand assuming a 1:1 binding ratio of ligand-receptor. The Mr 86,000, 55,000, and 43,000 species were recovered in the detergent-soluble supernatant after high-speed centrifugation, whereas the Mr 95,000 species remained Triton X-100 insoluble. Detergent-soluble /sup 125/I-bGH-receptor complexes were further analyzed by sedimentation into sucrose density gradients. The sedimentation coefficient was S20,w = 5.2 S and the partial specific volume v = 0.72 ml/g. Gel permeation chromatography on a Sepharose S-400 column indicated a Stokes radius of 61 A for the /sup 125/I-bGH-receptor-Triton X-100 complex. Based on these figures, the molecular weight of the complex was calculated as 131,100. The molecular weight of the ligand-free receptor-Triton X-100 complex was calculated as Mr 109,100. Affinity cross-linking and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the 61 A peak from Sephacryl S-400 chromatography (cf. above) showed two binding entities, one major and one minor with Mr values 86,000 and 43,000, respectively, in the absence of reductant. When electrophoresis was run in the presence of reductant the Mr 43,000 species was the major binding entity.


    A facile method utilizing microwave irradiation is described that accomplishes the cross-linking reaction of PVA with metallic and bimetallic systems. Nanocomposites of PVA-cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-Pt, Pt-Fe, Cu...


    A facile microwave irradiation approach that results in a cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic and bimetallic systems is described. Nanocomposites of PVA cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-P...

  3. Covalently Cross-Linked Sulfone Polybenzimidazole Membranes with Poly(Vinylbenzyl Chloride) for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Aili, David; Li, Qingfeng;


    Covalently cross-linked polymer membranes were fabricated from poly(aryl sulfone benzimidazole) (SO(2) PBI) and poly(vinylbenzyl chloride) (PVBCl) as electrolytes for high-temperature proton-exchange-membrane fuel cells. The cross-linking imparted organo insolubility and chemical stability against...

  4. Self-assembly made durable: water-repellent materials formed by cross-linking fullerene derivatives. (United States)

    Wang, Jiaobing; Shen, Yanfei; Kessel, Stefanie; Fernandes, Paulo; Yoshida, Kaname; Yagai, Shiki; Kurth, Dirk G; Möhwald, Helmuth; Nakanishi, Takashi


    Fullerene flakes: A diacetylene-functionalized fullerene derivative self-organizes into flakelike microparticles (see picture). Both the diacetylene and C(60) moieties can be effectively cross-linked, which leads to supramolecular materials with remarkable resistivity to solvent, heat, and mechanical stress. Moreover, the surface of the cross-linked flakelike objects is highly durable and water-repellent.

  5. Effects of Supercritical CO 2 Conditioning on Cross-Linked Polyimide Membranes

    KAUST Repository

    Kratochvil, Adam M.


    The effects of supercritical CO2 (scCO2) conditioning on high-performance cross-linked polyimide membranes is examined through gas permeation and sorption experiments. Under supercritical conditions, the cross-linked polymers do not exhibit a structural reorganization of the polymer matrix that was observed in the non-cross-linkable, free acid polymer. Pure gas permeation isotherms and mixed gas permeabilities and selectivities show the cross-linked polymers to be much more stable to scCO2 conditioning than the free acid polymer. In fact, following scCO2 conditioning, the mixed gas CO2 permeabilities of the cross-linked polymers increased while the CO2/CH4 separation factors remained relatively unchanged. This response highlights the stability and high performance of these cross-linked membranes in aggressive environments. In addition, this response reveals the potential for the preconditioning of cross-linked polymer membranes to enhance productivity without sacrificing efficiency in practical applications which, in effect, provides another tool to \\'tune\\' membrane properties for a given separation. Finally, the dual mode model accurately describes the sorption and dilation characteristics of the cross-linked polymers. The changes in the dual mode sorption model parameters before and after the scCO2 exposure also provide insights into the alterations in the different glassy samples due to the cross-linking and scCO2 exposure. © 2010 American Chemical Society.


    NARCIS (Netherlands)



    Cross-linked, hydrophobically associating homo- and copolymers were synthesized by free-radical cyclo(co)polymerization of alkylmethyldiallylammonium bromide monomers with a small amount of N,N'-methylenebisacrylamide in aqueous solution using ammonium persulfate as the initiator. The cross-linked h

  7. Rheological properties of dispersions of enzymatically cross-linked apo-α-lactalbumin

    NARCIS (Netherlands)

    Saricay, Yunus; Wierenga, Peter A.; Vries, de Renko


    The enzymatic cross-linking of apo-α-lactalbumin (α-LA) with horseradish peroxidase (HRP) leads to the formation of hydrophilic protein aggregates with controlled size and architecture. We explore the rheological properties of dispersions of these HRP-cross-linked α-LA aggregates with a hydrodyna

  8. Biodegradation of differently cross-linked collagen membranes: an experimental study in the rat.

    NARCIS (Netherlands)

    Rothamel, D.; Schwarz, F.; Sager, M.; Herten, M. van; Sculean, A.; Becker, J.M.


    The aim of the present study was to compare the biodegradation of differently cross-linked collagen membranes in rats. Five commercially available and three experimental membranes (VN) were included: (1) BioGide (BG) (non-cross-linked porcine type I and III collagens), (2) BioMend (BM), (3) BioMendE

  9. Glucose-mediated cross-linking of collagen in rat tendon and skin

    NARCIS (Netherlands)

    Mentink, CJAL; Hendriks, M; Levels, AAG; Wolffenbuttel, BHR


    Back-ground: Cross-linking of macromolecules like collagen plays an important role in the development of complications in diabetes and ageing. One of the underlying mechanisms of this cross-linking is the formation of advanced glycation endproducts (AGEs). Methods: In this study, we assessed the use

  10. Quantification of carboxyl groups in carbodiimide cross-linked collagen sponges

    NARCIS (Netherlands)

    Everaerts, Frank; Torrianni, Mark; Hendriks, Marc; Feijen, Jan


    Glutaraldehyde (GA) fixation of bioprosthetic tissue is a well adapted technique, with commercial products on the market for almost 40 years. Amine groups present in tissue react with GA to form different types of cross-links. An estimation of the degree of cross-linking of the tissue can be obtaine

  11. Green tea polyphenol epigallocatechin-3-gallate (EGCG) induced intermolecular cross-linking of membrane proteins. (United States)

    Chen, Rong; Wang, Jian-Bo; Zhang, Xian-Qing; Ren, Jing; Zeng, Cheng-Ming


    Increasing evidence has demonstrated that EGCG possesses prooxidant potential in biological systems, including modifying proteins, breaking DNA strands and inducing the generation of reactive oxygen species. In the present study, the prooxidant effect of EGCG on erythrocyte membranes was investigated. SDS-PAGE and NBT-staining assay were utilized to detect the catechol-protein adducts that generated upon treating the membranes with EGCG. The results indicated that EGCG was able to bind covalently to sulfhydryl groups of membrane proteins, leading to the formation of protein aggregates with intermolecular cross-linking. We suggested that the catechol-quinone originated from the oxidation of EGCG acted as a cross-linker on which peptide chains were combined through thiol-S-alkylation at the C2- and C6-sites of the gallyl ring. EGC showed similar effects as EGCG on the ghost membranes, whereas ECG and EC did not, suggesting that a structure with a gallyl moiety is a prerequisite for a catechin to induce the aggregation of membrane proteins and to deplete membrane sulfhydryls. EDTA and ascorbic acid inhibited the EGCG-induced aggregation of membrane proteins by blocking the formation of catechol-quinone. The information of the present study may provide a fresh insight into the prooxidant effect and cytotoxicity of tea catechins.

  12. Characteristic of hyaluronic acid derivative films cross-linked by polyethylene glycol of low water content

    Institute of Scientific and Technical Information of China (English)

    Chen Jinghua; Chen Jingtao; Xu Zheng; Gu Qisheng


    Objective: To test the characteristics of byaluronic acid (HA) derivative cross-linked by polyethylene glycol films of low water content. Methods: The cross-linked HA film with 200 μm thickness was got at atmospheric pressure at 25℃ for 5 d. After dried, cross-linked films of 10 mm×10 mm were weighed and immersed in phosphate buffered saline (PBS pH 7.45) at 37℃ for 24 h. Then the solution fraction and water content were estimated. Meanwhile, cross-linked HA derivative films were immersed in phosphate buffered saline (PBS: pH 7.45) at 37℃ for determined time and then implanted subcutaneously in the back of white rats to test in vitro or in vivo degradation characteristic. Results and Conclusion: HA hydrogel cross-linked by polyethylene glycol with water content is as low as 60% and this kind of HA derivative has a slow degradation rate.

  13. Assessment of protein function following cross-linking by alpha-dicarbonyls. (United States)

    Miller, Antonia G; Gerrard, Juliet A


    Protein cross-linking via the Maillard reaction with alpha-dicarbonyl compounds has been the subject of intense scrutiny in the literature. We report here a study of the impact of this cross-linking on enzyme function. Protein function following glycation was examined by treating ribonuclease A with methylglyoxal, glyoxal, and diacetyl, which cross-linked the enzyme and impaired its activity. The effects of two reported Maillard reaction inhibitors, aminoguanidine and 3,5-dimethylpyrazole-1-carboxamidine, on the cross-linking reaction were assessed, with a parallel measurement of the effect on enzyme activity. The results demonstrate that preventing protein cross-linking does not necessarily preserve enzyme activity. These results cast doubt on the likely efficacy of some purported antiaging compounds in vivo.

  14. Solid-phase peptide synthesis of endothelin receptor antagonists on novel flexible, styrene-acryloyloxyhydroxypropyl methacrylate-tripropyleneglycol diacrylate [SAT] resin. (United States)

    Siyad, M A; Nair, Arun S V; Kumar, G S Vinod


    Novel cross-linked polymeric support by the copolymerization of styrene and 3-(acryloyloxy)-2-hydroxypropyl methacrylate with Tri(propyleneglycol) diacryalte (SAT) for solid-phase peptide synthesis is presented here. The synthesis of SAT is based on the cross-linking of 3-(acryloyloxy)-2-hydroxypropyl methacrylate with styrene by free-radical suspension polymerization, consisting of an ester and a secondary hydroxyl group. An additional cross-linker tri(propyleneglycol) diacryalte provides a hydrophilic environment throughout the resin, which will enhance the physicochemical properties of the resin toward organic synthesis. The resins were synthesized in various cross-linking densities to check the swelling property, mechanical stability, and functional loading capacity. The resin was characterized by the IR, (13)C NMR, and SEM techniques. The extent of swelling properties of the polymer of different cross-linking densities were studied and compared with Merrifield resin and TentaGel. To demonstrate the efficiency of SAT support was proved by synthesizing the challenging peptide sequence of acyl carrier protein (ACP) and compared with commercially available Merrifield resin. It was further tested by synthesizing endothelial receptor antagonist peptides using SAT resin and compared with commercially available TentaGel resin. The standard Fmoc strategy was adopted for peptide synthesis and was characterized by MALDI-TOF MS and analyzed the purity of peptides by HPLC.

  15. Disuccinimidyl suberate cross-linked hemoglobin as a novel red blood cell substitute

    Institute of Scientific and Technical Information of China (English)

    LU; Xiuling; ZHENG; Chunyang; XU; Yuhong; SU; Zhiguo


    Disuccinimidyl suberate (DSS) intramolecularly cross-linked hemoglobin (Hb) was developed as a novel red blood cell substitute. A multi-angle laser light scattering detector coupled with size exclusion HPLC was applied to determine the molecular weight of the modified Hb. SDS-PAGE was also used as a complement. It was proved that 83.8% of the product was intramolecularly cross-linked Hb with weight-average molecular weights (Mw) of 67.5 kD, 12% was dimeric Hb with Mw of 146.6 kD, and 4.2% was trimeric Hb with Mw of 306.4 kD. The tetramer structure of the cross-linked Hb was stable as shown in size-exclusion chromatography using a mobile phase containing 1 mol/L MgCl2. Analysis by LC-MS demonstrated that the reaction of DSS with Hb mainly took place between the twoα subunits within a Hb molecule, resulting in stabilization of the tetramer structure. However, the cross-linking was not site-specific. The P50 of the cross-linked Hb decreased from 21.8 mmHg to 14.3 mmHg, and the Hill coefficient decreased from 2.22 to 1.41. Result of isoelectric focusing showed that the pI of DSS cross-linked Hb was in the range of 4.6-5.2, similar to that of serum albumin. The safety of DSS cross-linked Hb was favored by animal tests on rats and guinea pigs. Exchange transfusion experiment with DSS cross-linked Hb using rats as a model indicated no pressor effect or other significant side effects. The characteristics and properties of DSS cross-linked Hb were also compared with that of diaspirin cross-linked Hb reported in the literature.

  16. Analysis of protein-RNA interactions in CRISPR proteins and effector complexes by UV-induced cross-linking and mass spectrometry. (United States)

    Sharma, Kundan; Hrle, Ajla; Kramer, Katharina; Sachsenberg, Timo; Staals, Raymond H J; Randau, Lennart; Marchfelder, Anita; van der Oost, John; Kohlbacher, Oliver; Conti, Elena; Urlaub, Henning


    Ribonucleoprotein (RNP) complexes play important roles in the cell by mediating basic cellular processes, including gene expression and its regulation. Understanding the molecular details of these processes requires the identification and characterization of protein-RNA interactions. Over the years various approaches have been used to investigate these interactions, including computational analyses to look for RNA binding domains, gel-shift mobility assays on recombinant and mutant proteins as well as co-crystallization and NMR studies for structure elucidation. Here we report a more specialized and direct approach using UV-induced cross-linking coupled with mass spectrometry. This approach permits the identification of cross-linked peptides and RNA moieties and can also pin-point exact RNA contact sites within the protein. The power of this method is illustrated by the application to different single- and multi-subunit RNP complexes belonging to the prokaryotic adaptive immune system, CRISPR-Cas (CRISPR: clustered regularly interspaced short palindromic repeats; Cas: CRISPR associated). In particular, we identified the RNA-binding sites within three Cas7 protein homologs and mapped the cross-linking results to reveal structurally conserved Cas7 - RNA binding interfaces. These results demonstrate the strong potential of UV-induced cross-linking coupled with mass spectrometry analysis to identify RNA interaction sites on the RNA binding proteins.

  17. Corneal changes following collagen cross linking and simultaneous topography guided photoablation with collagen cross linking for keratoconus

    Directory of Open Access Journals (Sweden)

    Prema Padmanabhan


    Full Text Available Purpose: To compare the outcome of Collagen cross-linking (CXL with that following topography-guided customized ablation treatment (T-CAT with simultaneous CXL in eyes with progressive keratoconus. Materials and Methods: This was a prospective, non-randomized single centre study of 66 eyes with progressive keratoconus. Of these, 40 eyes underwent CXL and 26 eyes underwent T-CAT + CXL. The refractive, topographic, tomographic and aberrometric changes measured at baseline, 1, 3 and 6 months post-operatively were compared between both groups. Results: After a mean follow-up of 7.7 ± 1.3 months, the mean retinoscopic cylinder decreased by 1.02 ± 3.16 D in the CXL group ( P = 0.1 and 2.87 ± 3.22 D in the T-CAT + CXL group ( P = 0.04. The Best corrected visual acuity increased by 2 lines or more in 10% of eyes in the CXL group and in 23.3% of eyes in the T-CAT + CXL group. The mean steepest-K reduced by 0.40 ± 3.71 D ( P = 0.77 in the CXL group and by 2.91 ± 2.01D ( P = 0.03 in the T-CAT + CXL group. The sag factor and surface asymmetry index showed no significant change in the CXL group but reduced by 3.59 ± 5.94 D ( P = 0.01 and 0.72 ± 1.18 ( P = 0.02 respectively in the T-CAT + CXL group. There was a significant increase in the highest posterior corneal elevation in both groups (9.57 ± 14.93 μ in the CXL group and 7.85 ± 9.25 μ in the T-CAT + CXL group, P ≤ 0.001 for both. There was significantly greater reduction of mean coma ( P < 0.001 and mean higher-order aberrations ( P = 0.01 following T-CAT + CXL compared to CXL. Conclusions: CAT + CXL is an effective approach to confer biomechanical stability and to improve the corneal contour in eyes with keratoconus and results in better refractive, topographic and aberrometric outcomes than CXL alone.

  18. Dehydration Mechanism of Secondary Cross-linked Gels%二次交联凝胶脱水机理研究

    Institute of Scientific and Technical Information of China (English)

    罗宪波; 武海燕; 周晶; 蒲万芬; 赵金洲


    In this paper, microscopic characteristics of preformed gels (PGs) and secondary cross-linked gels (SCG) with the same concentration were analyzed by atomic force microscopy (AFM). Experimental results indicate that the microstructure of secondary cross-linked gels is a thick 3-D network, in which micro-holes and irregular macro-holes are embedded. The maximum width of the irregular macro-holes is 200 nm. In the SCG, two different chemical bonds were formed, which leads to the structural inhomogeneity and the asymmetry of the crosslinking density. The structural inhomogeneity of SCG results in the formation of irregular macro-holes. The excessive cross-linking density is the primary reason for dehydration of SCG and the presence of irregular macro-holes in SCG can facilitate dehydration.

  19. Modified gum arabic cross-linked gelatin scaffold for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sarika, P.R. [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram, Kerala 695 547 (India); Cinthya, Kuriakose [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, Kerala 695 012 (India); Jayakrishnan, A. [Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036 (India); Anilkumar, P.R., E-mail: [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, Kerala 695 012 (India); James, Nirmala Rachel, E-mail: [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram, Kerala 695 547 (India)


    The present work deals with development of modified gum arabic cross-linked gelatin scaffold for cell culture. A new biocompatible scaffold was developed by cross-linking gelatin (Gel) with gum arabic, a polysaccharide. Gum arabic was subjected to periodate oxidation to obtain gum arabic aldehyde (GAA). GAA was reacted with gelatin under appropriate pH to prepare the cross-linked hydrogel. Cross-linking occurred due to Schiff's base reaction between aldehyde groups of oxidized gum arabic and amino groups of gelatin. The scaffold prepared from the hydrogel was characterized by swelling properties, degree of cross-linking, in vitro degradation and scanning electron microscopy (SEM). Cytocompatibility evaluation using L-929 and HepG2 cells confirmed non-cytotoxic and non-adherent nature of the scaffold. These properties are essential for generating multicellular spheroids and hence the scaffold is proposed to be a suitable candidate for spheroid cell culture. - Highlights: • Gum arabic cross-linked gelatin scaffold was developed for tissue engineering. • Cross-linking was achieved by Schiff's base reaction. • The scaffold is non-cytotoxic and non adherent to fibroblast and hepatocytes. • The scaffolds are potential candidates for spheroid cell culture.

  20. Chemistry and physical properties of melt-processed and solution-cross-linked corn zein. (United States)

    Sessa, David J; Mohamed, Abdellatif; Byars, Jeffrey A


    Corn zein was cross-linked with glutaraldehyde (GDA) using glacial acetic acid (HAc) as catalyst. The objectives are to evaluate the swelling characteristics of GDA cross-linked zein gels in water, ethanol, and their combinations. Similar formulations, upon solvent evaporation, form films. The mechanical properties of the films are compared to compression molded tensile bars from GDA melt-processed zein as a second objective. Chemistry of the cross-linking reaction was based on the aldehyde binding characteristics defined by use of fluorescence spectroscopy; sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) to demonstrate the cross-linking reaction; FTIR to observe absorption differences of the cross-linked product; differential scanning calorimetry, dynamic mechanical analysis and thermogravimetric analysis to assess thermal properties; and the use of Instron Universal Testing Machine to evaluate mechanical properties. A reaction mechanism for acid catalyzed GDA cross-linking of zein is proposed. Thermal and mechanical properties of tensile bars cut from either film or formed by compression molding were similar, where both showed increased tensile strengths, ductility and stiffness when compared with unmodified controls. Samples that were reacted with 8% GDA by weight based on weight of zein from either process retained their integrity when tensile bars from each were subjected to boiling water for 10 min or soaking in either water or HAc for 24 h. The melt-processed, cross-linked zein is a more environmentally friendly method that would eliminate the need for HAc recovery.

  1. Novel antimicrobial superporous cross-linked chitosan/pyromellitimide benzoyl thiourea hydrogels. (United States)

    Mohamed, Nadia A; Abd El-Ghany, Nahed A; Fahmy, Mona M


    In this work, chitosan (CS) was cross-linked with different amounts of pyromellitimide benzoyl thiourea moieties. The structure of the cross-linked CS was confirmed by elemental analyses, FTIR and (1)H- NMR spectroscopy. The cross-linking process proceeds via reacting of the amino groups of CS with the isothiocyanate groups of the N,N'-bis [4-(isothiocyanate carbonyl)phenyl] pyromellitimide cross-linker. The amount of the cross-linker was varied with respect to CS to produce four new pyromellitimide benzoyl thiourea cross-linked CS (PIBTU-CS) hydrogels designated as PIBTU-CS-1, PIBTU-CS-2, PIBTU-CS-3, and PIBTU-CS-4 of increasing cross-linking degree percent of 11, 22, 44 and 88%, respectively. The scanning electron microscopy observation indicates the extremely porous structure of the hydrogels. XRD results showed that the crystallinity of CS was decreased upon cross-linking. The four hydrogels exhibit a higher antibacterial activity on Bacillus subtilis and Streptococcus pneumoniae as Gram positive bacteria and against Escherichia coli as Gram negative bacteria and higher antifungal activity on Aspergillus fumigatus, Syncephalastrum racemosum and Geotricum candidum than that of the parent CS as shown from their higher inhibition zone diameters and their lower MIC values. The swell ability of the hydrogel as well as their antimicrobial activity increased with increasing cross-linking density.

  2. Shell and core cross-linked poly(L-lysine)/poly(acrylic acid) complex micelles. (United States)

    Hsieh, Yi-Hsuan; Hsiao, Yung-Tse; Jan, Jeng-Shiung


    We report the versatility of polyion complex (PIC) micelles for the preparation of shell and core cross-linked (SCL and CCL) micelles with their surface properties determined by the constituent polymer composition and cross-linking agent. The negatively and positively charged PIC micelles with their molecular structure and properties depending on the mixing weight percentage and polymer molecular weight were first prepared by mixing the negatively and positively charged polyions, poly(acrylic acid) (PAA) and poly(L-lysine) (PLL). The feasibility of preparing SCL micelles was demonstrated by cross-linking the shell of the negatively and positively charged micelles using cystamine and genipin, respectively. The core of the micelles can be cross-linked by silica deposition to stabilize the assemblies. The shell and/or core cross-linked micelles exhibited excellent colloid stability upon changing solution pH. The drug release from the drug-loaded SCL micelles revealed that the controllable permeability of the SCL micelles can be achieved by tuning the cross-linking degree and the SCL micelles exhibited noticeable pH-responsive behavior with accelerated release under acidic conditions. With the versatility of cross-linking strategies, it is possible to prepare a variety of SCL and CCL micelles from PIC micelles.

  3. Evidence for the Existence of Cross-Linked Intermediates during Unfolding and Refolding of CK in UGGE

    Institute of Scientific and Technical Information of China (English)

    王希成; 谢成; 杨建; 周海梦


    Urea gradient gel electrophoresis (UGGE) is an important technique for studying the conformation changes of proteins during denaturation. This paper reports on an investigation of the unfolding and refolding of creatine kinase (CK) by UGGE. The native and denatured CK underwent electrophoresis in polyacrylamide gels containing a linear 0-8 mol/L gradient of urea perpendicular to the direction of migration. The results showed that unfolding and refolding of CK is a relatively rapid process. The denatured enzyme could refold to a conformation with activity during electrophoresis at low urea concentrations, indicating that denaturation in urea is reversible. More importantly, both the native and denatured CK were separated into multiple parallel bands through UGGE, but the bands decreased significantly when mercaptoethanol was added to the samples.The results suggest that various kinds of unfolding and refolding intermediates were formed during UGGE,which are assumed to be oligomers with disulfide bonds between peptide chains. Urea/SDS (sodium dodecylsulphate) polyacrylamide two-dimensional electrophoresis proved that these unfolding and refolding intermediates formed during UGGE were oligomers which were composed of different number of subunits cross-linked by disulfide bonds. The results indicate that the unfolding and refolding of CK are relatively rapid processes with some cross-linked intermediates with disulfide bonds during unfolding and refolding of the enzyme.

  4. Characterization of solid UV cross-linked PEGDA for biological applications

    KAUST Repository

    Castro, David


    This paper reports on solid UV cross-linked Poly(ethylene)-glycol-diacrylate (PEGDA) as a material for microfluidic devices for biological applications. We have evaluated biocompatibility of PEGDA through two separate means: 1) by examining cell viability and attachment on cross-linked PEGDA surfaces for cell culture applications, and 2) by determining if cross-linked PEGDA inhibits the polymerase chain reaction (PCR) processes for on-chip PCR. Through these studies a correlation has been found between degree of curing and cell viability, attachment, as well as on PCR outcome.

  5. A genetic anomaly of oriented collagen biosynthesis and cross-linking: Keratoconus. (United States)

    Bourges, J L; Robert, A M; Robert, L


    Oriented collagen biosynthesis is one of the major mechanisms involved in tissue and organ formation during development. Corneal biogenesis is one example. Defects in this process lead to anomalies in tissue structure and function. The transparency of cornea and its achievement are a good example as well as its pathological modifications. Keratoconus is one example of this type of pathologies, involving also inappropriate cross-linking of collagen fibers. Among the tentatives to correct this anomaly, the riboflavin-potentiated UV-cross-linking (CXL) of keratoconus corneas appears clinically satisfactory, although none of the experiments and clinical results published prove effective cross-linking. The published results are reviewed in this article.

  6. Grafted, cross-linked carbon black as a double-layer capacitor electrode material

    Energy Technology Data Exchange (ETDEWEB)

    Richner, R.; Mueller, S.; Wokaun, A.


    Isocyanate prepolymers readily react with oxidic functional groups on carbon black. On carbon black grafted with diisocyanates, reactive isocyanate groups are available for cross-linking to a polyurethane system. This cross-linked carbon black was considered as a new active material for electrochemical electrodes. Active material for electric double-layer capacitor electrodes was produced which had values of specific capacitance of up to 200 F/g. Cross-linking efficiencies of up to 58 % of the polymers utilised were achieved. (author)

  7. Permanent Set of Cross-Linking Networks: Comparison of Theory with Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Rottach, Dana R.; Curro, John G.; Budzien, Joanne;


    is found from the strain of the network after it returns to the state-of-ease where the stress is zero. The permanent set simulations are compared with theory using the independent network hypothesis, together with the various theoretical rubber elasticity theories: affine, phantom, constrained junction......The permanent set of cross-linking networks is studied by molecular dynamics. The uniaxial stress for a bead-spring polymer network is investigated as a function of strain and cross-link density history, where cross-links are introduced in unstrained and strained networks. The permanent set...

  8. Comparative study of PBI Cross Linked Utilizing Agents of Varying Steric Configurations

    DEFF Research Database (Denmark)

    Kirkebcek, Andreas; Aili, David; Li, Qingfeng;


    The high thermal and chemical stability of poly[2,2'-(m-phenylene)-5,5' bibenzimidazole] (PBI) accounts for its wise spread use in high temperature polymer electrolyte membrane fuel cells (HT- PEMFC). By doping the membrane with phosphoric acid (PA) ionic conductivity is obtained. Thus conductivity...... ionic or covalent cross linking. When considering such, little attention is devoted to explore the effect of the sterical configuration of the cross linking agent. In this contribution three different cross linking agents are utilized to evaluate how these affects final membrane properties....... is dependent on the amount of PA present within the membrane. However mechanical properties are reduced are significantly reduced due to the plasticizing effect shown by PA [1]. This effect is due to PBI chain displacement. This effect can be lessened by use of cross linking [2-4]. This can be obtained using...

  9. Plasticizer migration from cross-linked flexible PVC. 1. Effects on tribology (United States)

    Pannico, M.; Persico, P.; Ambrogi, V.; Carfagna, C.


    Utilization of soft PVC is restricted by plasticizer migration that can affect material properties, as well as its toxicity. Modifying the chemical structure of PVC is one of the most effective tool to reduce the diffusion of plasticizer. In this work, a soft cross-linked PVC was obtained using a difunctional amine, namely isophoron diamine (IPDA) as the cross-linking agent. The gel content (wt %) was evaluated by weighting the insoluble portion obtained through solvent extraction technique. Thermogravimetric analysis (TGA) revealed that cross-linking reactions promote thermal degradation phenomena in the polymer matrix. Tribological properties of soft uncross-linked, cross-linked and rigid PVC were determined. Soft formulations were held in contact for 32 days with rigid PVC sheets. Plasticizer migration towards the interface causes an increase of dynamic friction compared to that of the reference rigid PVC.

  10. New insights into the pros and cons of cross-linking decellularized bioartificial organs. (United States)

    Hussein, Kamal H; Park, Kyung-Mee; Lee, Yun-Suk; Woo, Jae-Seok; Kang, Byung-Jae; Choi, Ki-Young; Kang, Kyung-Sun; Woo, Heung-Myong


    ABSTRACTDecellularization is an attractive method for scaffold designing in regenerative medicine. The resulting extracellular matrix (ECM) consists of structural proteins such as collagen and elastin, growth factors, and glycosaminoglycans, which can direct site-appropriate remodeling after in vivo implantation. Mainly, collagen and elastin of ECM are exposed to the enzymatic biodegradation in the host. To control the biodegradation process, treatment of decellularized tissue by a cross-linking agent is required. Cross-linking also reduces antigenicity and increases the storage properties. Cross-linkers should be nontoxic, with the ability to preserve the ECM components, especially glycosaminoglycans and associated growth factors for retention of scaffold bioactivity. In this review, we describe the different cross-linking agents and methods of evaluation of cross-linking efficiency.

  11. A Review of Collagen Cross-Linking in Cornea and Sclera

    Directory of Open Access Journals (Sweden)

    Xiao Zhang


    Full Text Available Riboflavin/UVA cross-linking is a technique introduced in the past decades for the treatment of keratoconus, keratectasia, and infectious keratitis. Its efficacy and safety have been investigated with clinical and laboratory studies since its first clinical application by Wollensak for the treatment of keratoconus. Although its complications are encountered during clinical practice, such as infection inducing risk, minimal invasion merits a further investigation on its future application in clinical practice. Recently, collagen cross-linking in sclera shows a promising prospect. In present study, we summarized the representative studies describing the clinical and laboratory application of collagen cross-linking published in past decades and provided our opinion on the positive and negative results of cross-linking in the treatment of ophthalmic disorders.

  12. Molecular Dynamics Simulations of Polymer Networks Undergoing Sequential Cross-Linking and Scission Reactions

    DEFF Research Database (Denmark)

    Rottach, Dana R.; Curro, John G.; Budzien, Joanne;


    The effects of sequential cross-linking and scission of polymer networks formed in two states of strain are investigated using molecular dynamics simulations. Two-stage networks are studied in which a network formed in the unstrained state (stage 1) undergoes additional cross-linking in a uniaxia......The effects of sequential cross-linking and scission of polymer networks formed in two states of strain are investigated using molecular dynamics simulations. Two-stage networks are studied in which a network formed in the unstrained state (stage 1) undergoes additional cross...... good agreement with the predictions of Flory and Fricker. It was found that the fractional stress reduction upon removal of the first-stage cross-links could be accurately calculated from the slip tube model of Rubinstein and Panyukov modified to use the theoretical transfer functions of Fricker.  ...

  13. Glutaraldehyde vapor cross-linked nanofibrous PVA mat with in situ formed silver nanoparticles. (United States)

    Destaye, Addisu Getachew; Lin, Cheng-Keng; Lee, Cheng-Kang


    Polyvinyl alcohol (PVA) nanofibrous mat can be easily prepared via electrospinning its aqueous solution. However, the obtained nanofibrous mat is instantaneously dissolved in water. Therefore, rendering the environmentally friendly nanofibrous mat water insoluble by cross-linking mechanism is of great interest. The electrospun PVA nanofibrous mat with an average fiber diameter of ca. 400 nm could be effectively cross-linked by glutaraldehyde vapor at room temperature. The cross-linking not only resulted in a water-insoluble nanofibrous mat but also generated an excess amount of unreacted aldehyde functional groups that could reduce silver salts into silver nanoparticles. The in situ formed silver nanoparticles along the fibrous surface showed excellent antimicrobial activity against Escherichia coli. The vapor cross-linked nanofibrous mat shows a high potential to be used for efficiently capturing and killing pathogenic bacteria.


    Directory of Open Access Journals (Sweden)

    A.G. Gurin


    Full Text Available A possibility of applying a pulse-periodic high-current induction electron accelerators to radiation polyethylene cross-linking is considered in the article. A comparative analysis with other devices used for irradiation is made.

  15. Stabilized sulfonated aromatic polymers by in situ solvothermal cross-linking

    Directory of Open Access Journals (Sweden)

    Maria Luisa eDi Vona


    Full Text Available The cross-link reaction via sulfone bridges of sulfonated polyetheretherketone (SPEEK by thermal treatment at 180 °C in presence of dimethylsulfoxide (DMSO is discussed. The modifications of properties subsequent to the cross-linking are presented. The mechanical strength as well as the hydrolytic stability increased with the thermal treatment time, i.e., with the degree of cross-linking. The proton conductivity was determined as function of temperature, IEC, degree of cross-linking and hydration number. The memory effect, which is the membrane ability to remember the water uptake reached at high temperature also at lower temperature, is exploited in order to achieve high values of conductivity. Membranes swelled at 110 °C can reach a conductivity of 0.14 S/cm at 80°C with a hydration number ( of 73.

  16. Tissue-specific effects of aldose reductase inhibition on fluorescence and cross-linking of extracellular matrix in chronic galactosemia. Relationship to pentosidine cross-links. (United States)

    Richard, S; Tamas, C; Sell, D R; Monnier, V M


    Chronic experimental hyperglycemia mediated by galactose has been shown to induce browning and cross-linking of rat tail tendon collagen that could be duplicated in vitro by nonenzymatic galactosylation. To investigate the nature of these changes, Sprague-Dawley rats were placed on a 33% galactose diet without and with sorbinil for 6 and 12 mo. Collagen-linked fluorescence and pentosidine cross-links increased with age and galactosemia in tail tendons (P less than 0.001) and skin but were essentially unresponsive to aldose reductase inhibition (ARI). In contrast, tendon breaking time in urea, a likely parameter of cross-linking, was markedly improved (P less than 0.001) by ARI. Fluorescence that was inhibited by sorbinil treatment was increased in pepsin and proteinase K digest of aortic tissue from galactosemic rats (P less than 0.001), but impaired enzymatic digestibility was not observed. Systolic blood pressure as potential consequence of aortic stiffening was not increased in galactosemia. These data suggest that fluorescence in skin and tendon might be in part due to advanced glycosylation and pentosidine formation because these were not decreased by ARI. However, they also suggest that nonfluorescent cross-links may also be forming because, in contrast to fluorescence, tail tendon breaking time was partly corrected by ARI. Thus, it appears that extracellular matrix changes in chronic galactosemia are complex, being partly attributable to advanced glycosylation and partly to polyol-pathway activation.

  17. Vitamin E-diffused highly cross-linked UHMWPE particles induce less osteolysis compared to highly cross-linked virgin UHMWPE particles in vivo

    DEFF Research Database (Denmark)

    Bichara, David A; Malchau, Erik; Sillesen, Nanna H;


    Recent in vitro findings suggest that UHMWPE wear particles containing vitamin E (VE) may have reduced biologic activity and decreased osteolytic potential. We hypothesized that particles from VE-stabilized, radiation cross-linked UHMWPE would cause less osteolysis in a murine calvarial bone mode...

  18. Computational exploration of polymer nanocomposite mechanical property modification via cross-linking topology. (United States)

    Lacevic, Naida; Gee, Richard H; Saab, Andrew; Maxwell, Robert


    Molecular dynamics simulations have been performed in order to study the effects of nanoscale filler cross-linking topologies and loading levels on the mechanical properties of a model elastomeric nanocomposite. The model system considered here is constructed from octafunctional polyhedral oligomeric silsesquioxane (POSS) dispersed in a poly(dimethylsiloxane) (PDMS) matrix. Shear moduli, G, have been computed for pure and for filled and unfilled PDMS as a function of cross-linking density, POSS fill loading level, and polymer network topology. The results reported here show that G increases as the cross-linking (covalent bonds formed between the POSS and the PDMS network) density increases. Further, G is found to have a strong dependence on cross-linking topology. The increase in shear modulus, G, for POSS filled PDMS is significantly higher than that for unfilled PDMS cross-linked with standard molecular species, suggesting an enhanced reinforcement mechanism for POSS. In contrast, in blended systems (POSS/PDMS mixture with no cross-linking) G was not observed to significantly increase with POSS loading. Finally, we find intriguing differences in the structural arrangement of bond strains between the cross-linked and the blended systems. In the unfilled PDMS the distribution of highly strained bonds appears to be random, while in the POSS filled system, the strained bonds form a netlike distribution that spans the network. Such a distribution may form a structural network "holding" the composite together and resulting in increases in G compared to an unfilled, cross-linked system. These results are of importance for engineering of new POSS-based multifunctional materials with tailor-made mechanical properties.

  19. Computational exploration of polymer nanocomposite mechanical property modification via cross-linking topology

    Energy Technology Data Exchange (ETDEWEB)

    Lacevic, N; Gee, R; Saab, A; Maxwell, R


    Molecular dynamics simulations have been performed in order to study the effects of nanoscale filler cross-linking topologies and loading levels on the mechanical properties of a model elastomeric nanocomposite. The model system considered here is constructed from octa-functional polyhedral oligomeric silsesquioxane (POSS) dispersed in a poly(dimethylsiloxane) (PDMS) matrix. Shear moduli, G, have been computed for pure and for filled and unfilled PDMS as a function of cross-linking density, POSS fill loading level, and polymer network topology. The results reported here show that G increases as the cross-linking (covalent bonds formed between the POSS and the PDMS network) density increases. Further, G is found to have a strong dependence on cross-linking topology. The increase in shear modulus, G, for POSS filled PDMS is significantly higher than that for unfilled PDMS cross-linked with standard molecular species, suggesting an enhanced reinforcement mechanism for POSS. In contrast, in blended systems (POSS/PDMS mixture with no cross-linking) G was not observed to significantly increase with POSS loading. Finally, we find intriguing differences in the structural arrangement of bond strains between the cross-linked and the blended systems. In the unfilled PDMS the distribution of highly strained bonds appears to be random, while in the POSS filled system, the strained bonds form a net-like distribution that spans the network. Such a distribution may form a structural network 'holding' the composite together and resulting in increases in G compared to an unfilled, cross-linked system. These results are of importance for engineering of new POSS-based multifunctional materials with tailor-made mechanical properties.

  20. Sorption of substituted indoles on highly cross-linked polystyrene from water-acetonitrile solutions (United States)

    Shafigulin, R. V.; Myakishev, A. A.; Il'Ina, E. A.; Il'in, M. M.; Davankov, V. A.; Bulanova, A. V.


    The sorption of first synthesized indole derivatives by highly cross-linked polystyrenes from water-acetonitrile solutions was studied by high-performance liquid chromatography. The retention factors and differences in the Gibbs energy of adsorption from infinite diluted solutions were calculated, and the applicability of the Snyder-Soczewinski and Scott-Kucera models for describing the chromatographic retention of sorbates on a polymer network of highly cross-linked polystyrene was shown.

  1. Novel thermoplastic vulcanizates (TPVs based on silicone rubber and polyamide exploring peroxide cross-linking

    Directory of Open Access Journals (Sweden)

    K. Naskar


    Full Text Available Novel thermoplastic vulcanizates (TPVs based on silicone rubber (PDMS and polyamide (PA12 have been prepared by dynamic vulcanization process. The effect of dynamic vulcanization and influence of various types of peroxides as cross-linking agents were studied in detail. All the TPVs were prepared at a ratio of 50/50 wt% of silicone rubber and polyamide. Three structurally different peroxides, namely dicumyl peroxide (DCP, 3,3,5,7,7-pentamethyl 1,2,4-trioxepane (PMTO and cumyl hydroperoxide (CHP were taken for investigation. Though DCP was the best option for curing the silicone rubber, at high temperature it suffers from scorch safety. An inhibitor 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO was added with DCP to stabilize the radicals in order to increase the scorch time. Though CHP (hydroperoxide had higher half life time than DCP at higher temperature, it has no significant effect on cross-linking of silicone rubber. PMTO showed prolonged scorch safety and better cross-linking efficiency rather than the other two. TPVs of DCP and PMTO were made up to 11 minutes of mixing. Increased values of tensile strength and elongation at break of PMTO cross-linked TPV indicate the superiority of PMTO. Scanning electron micrographs correlate with mechanical properties of the TPVs. High storage modulus (E' and lower loss tangent value of the PMTO cross-linked TPV indicate the higher degree of cross-linking which is also well supported by the overall cross-link density value. Thus PMTO was found to be the superior peroxide for cross-linking of silicone rubber at high temperature.

  2. Analysis of glycation induced protein cross-linking inhibitory effects of some antidiabetic plants and spices


    Perera, Handunge Kumudu Irani; Handuwalage, Charith Sandaruwan


    Background Protein cross-linking which occurs towards the latter part of protein glycation is implicated in the development of chronic diabetic complications. Glycation induced protein cross-linking inhibitory effects of nine antidiabetic plants and three spices were evaluated in this study using a novel, simple, electrophoresis based method. Methods Methanol extracts of thirteen plants including nine antidiabetic plants and three spices were used. Lysozyme and fructose were incubated at 37 °...

  3. The level of cross-linking and the structure of anisotropic magnetorheological elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Borin, Dmitry, E-mail: [Institute of Fluid Mechanics, Technische Universitaet Dresden, Dresden 01062 (Germany); Guenther, David [Institute of Fluid Mechanics, Technische Universitaet Dresden, Dresden 01062 (Germany); Hintze, Christian; Heinrich, Gert [Leibniz Institute of Polymer Research, Dresden 01069 (Germany); Odenbach, Stefan [Institute of Fluid Mechanics, Technische Universitaet Dresden, Dresden 01062 (Germany)


    The influence of the concentration of the magnetic powder on the level of cross-linking of magnetorheological elastomers (MREs) has been studied. Afterwards the structural characterisation of manufactured MREs has been performed by using non-destructive method, specifically the computed tomography. The correlation between internal structures of MREs and the developing of its cross-linking level during the curing was found. It was shown that changes in the concentration of the powder significantly affect morphologies of the sample.

  4. Porphyrin-induced photodynamic cross-linking of hepatic heme-binding proteins. (United States)

    Vincent, S H; Holeman, B; Cully, B C; Muller-Eberhard, U


    Three types of hepatic proteins, a heme-binding Z protein, a mixture of the glutathione S-transferases and a cytochrome P450 isozyme, were shown to be susceptible to photodynamic cross-linking and loss in antigenicity by naturally occurring porphyrins. At 50 microM, uroporphyrin caused the most and protoporphyrin the least photodecomposition. Hemopexin, a specific serum heme carrier, was photodecomposed but no cross-linking was detected. Heme and scavengers of singlet oxygen partially prevented protein photodecomposition.

  5. The Familial British Dementia Mutation Promotes Formation of Neurotoxic Cystine Cross-linked Amyloid Bri (ABri) Oligomers. (United States)

    Cantlon, Adam; Frigerio, Carlo Sala; Freir, Darragh B; Boland, Barry; Jin, Ming; Walsh, Dominic M


    Familial British dementia (FBD) is an inherited neurodegenerative disease believed to result from a mutation in the BRI2 gene. Post-translational processing of wild type BRI2 and FBD-BRI2 result in the production of a 23-residue long Bri peptide and a 34-amino acid long ABri peptide, respectively, and ABri is found deposited in the brains of individuals with FBD. Similarities in the neuropathology and clinical presentation shared by FBD and Alzheimer disease (AD) have led some to suggest that ABri and the AD-associated amyloid β-protein (Aβ) are molecular equivalents that trigger analogous pathogenic cascades. But the sequences and innate properties of ABri and Aβ are quite different, notably ABri contains two cysteine residues that can form disulfide bonds. Thus we sought to determine whether ABri was neurotoxic and if this activity was regulated by oxidation and/or aggregation. Crucially, the type of oxidative cross-linking dramatically influenced both ABri aggregation and toxicity. Cyclization of Bri and ABri resulted in production of biologically inert monomers that showed no propensity to assemble, whereas reduced ABri and reduced Bri aggregated forming thioflavin T-positive amyloid fibrils that lacked significant toxic activity. ABri was more prone to form inter-molecular disulfide bonds than Bri and the formation of covalently stabilized ABri oligomers was associated with toxicity. These results suggest that extension of the C-terminal of Bri causes a shift in the type of disulfide bonds formed and that structures built from covalently cross-linked oligomers can interact with neurons and compromise their function and viability.

  6. Digestibility of β-lactoglobulin following cross-linking by Trametes versicolor laccase and apple polyphenols

    Directory of Open Access Journals (Sweden)



    Full Text Available β-Lactoglobulin (BLG is an important nutrient of dairy products and an important allergen in cow’s milk allergy. The aim of this study was to investigate the potential of laccase to cross-link BLG in the presence of an apple phenolic extract (APE and to characterize the obtained products for their digestibility by pepsin and pancreatin. The composition of the apple phenolics used for cross-linking was determined by liquid chromatography–electrospray ionization-mass spectrometry (LC–ESI-MS. The apple phenolic extract contained significant amounts of quercetin glycosides, catechins and chlorogenic acid. The laccase cross-linked BLG in the presence of apple phenolics. The polymerization rendered the protein insoluble in the reaction mixture. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE analysis of the cross-linking reaction mixture revealed a heterogeneous mixture of high molecular masses (cross-linked BLG, with a fraction of the BLG remaining monomeric. Enzymatic processing of BLG by laccase and apple polyphenols as mediators can decrease the biphasal pepsin–pancreatin digestibility of the monomeric and cross-linked protein, thus decreasing its nutritional value. In addition, reduced BLG digestibility can decrease its allergenic potential. Apple polyphenols can find usage in the creation of new, more functional food products, designed to prevent obesity and hypersensitivity-related disorders.

  7. A novel strategy for preparing mechanically robust ionically cross-linked alginate hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Jejurikar, Aparna; Lawrie, Gwen; Groendahl, Lisbeth [School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072 (Australia); Martin, Darren, E-mail: [Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072 (Australia)


    The properties of alginate films modified using two cross-linker ions (Ca{sup 2+} and Ba{sup 2+}), comparing two separate cross-linking techniques (the traditional immersion (IM) method and a new strategy in a pressure-assisted diffusion (PD) method), are evaluated. This was achieved through measuring metal ion content, water uptake and film stability in an ionic solution ([Ca{sup 2+}] = 2 mM). Characterization of the internal structure and mechanical properties of hydrated films were established by cryogenic scanning electron microscopy and tensile testing, respectively. It was found that gels formed by the PD technique possessed greater stability and did not exhibit any delamination after 21 day immersion as compared to gels formed by the IM technique. The Ba{sup 2+} cross-linked gels possessed significantly higher cross-linking density as reflected in lower water content, a more dense internal structure and higher Young's modulus compared to Ca{sup 2+} cross-linked gels. For the Ca{sup 2+} cross-linked gels, a large improvement in the mechanical properties was observed in gels produced by the PD technique and this was attributed to thicker pore walls observed within the hydrogel structure. In contrast, for the Ba{sup 2+} cross-linked gels, the PD technique resulted in gels that had lower tensile strength and strain energy density and this was attributed to phase separation and larger macropores in this gel.

  8. Exogenous collagen cross-linking recovers tendon functional integrity in an experimental model of partial tear. (United States)

    Fessel, Gion; Wernli, Jeremy; Li, Yufei; Gerber, Christian; Snedeker, Jess G


    We investigated the hypothesis that exogenous collagen cross-linking can augment intact regions of tendon to mitigate mechanical propagation of partial tears. We first screened the low toxicity collagen cross-linkers genipin, methylglyoxal and ultra-violet (UV) light for their ability to augment tendon stiffness and failure load in rat tail tendon fascicles (RTTF). We then investigated cross-linking effects in load bearing equine superficial digital flexor tendons (SDFT). Data indicated that all three cross-linking agents augmented RTTF mechanical properties but reduced native viscoelasticity. In contrast to effects observed in fascicles, methylglyoxal treatment of SDFT detrimentally affected tendon mechanical integrity, and in the case of UV did not alter tendon mechanics. As in the RTTF experiments, genipin cross-linking of SDFT resulted in increased stiffness, higher failure loads and reduced viscoelasticity. Based on this result we assessed the efficacy of genipin in arresting tendon tear propagation in cyclic loading to failure. Genipin cross-linking secondary to a mid-substance biopsy-punch significantly reduced tissue strains, increased elastic modulus and increased resistance to fatigue failure. We conclude that genipin cross-linking of injured tendons holds potential for arresting tendon tear progression, and that implications of the treatment on matrix remodeling in living tendons should now be investigated.

  9. Cross-linking proteins by laccase-catalyzed oxidation: importance relative to other modifications. (United States)

    Steffensen, Charlotte L; Andersen, Mogens L; Degn, Peter E; Nielsen, Jacob H


    Laccase-catalyzed oxidation was able to induce intermolecular cross-links in beta-lactoglobulin, and ferulic acid-mediated laccase-catalyzed oxidation was able to induce intermolecular cross-links in alpha-casein, whereas transglutaminase cross-linked only alpha-casein. In addition, different patterns of laccase-induced oxidative modifications were detected, including dityrosine formation, formation of fluorescent tryptophan oxidation products, and carbonyls derived from histidine, tryptophan, and methionine. Laccase-catalyzed oxidation as well as transglutaminase induced only minor changes in surface tension of the proteins, and the changes could not be correlated to protein cross-linking. The presence of ferulic acid was found to influence the effect of laccase, allowing laccase to form irreducible intermolecular cross-links in beta-lactoglobulin and resulting in proteins exercising higher surface tensions due to cross-linking as well as other oxidative modifications. The outcome of using ferulic acid-mediated laccase-catalyzed oxidation to modify the functional properties of proteinaceous food components or other biosystems is expected to be highly dependent on the protein composition, resulting in different changes of the functional properties.

  10. Cross-linked chitosan improves the mechanical properties of calcium phosphate-chitosan cement. (United States)

    Aryaei, Ashkan; Liu, Jason; Jayatissa, Ahalapitiya H; Jayasuriya, A Champa


    Calcium phosphate (CaP) cements are highly applicable and valuable materials for filling bone defects by minimally invasive procedures. The chitosan (CS) biopolymer is also considered as one of the promising biomaterial candidates in bone tissue engineering. In the present study, some key features of CaP-CS were significantly improved by developing a novel CaP-CS composite. For this purpose, CS was the first cross-linked with tripolyphosphate (TPP) and then mixed with CaP matrix. A group of CaP-CS samples without cross-linking was also prepared. Samples were fabricated and tested based on the known standards. Additionally, the effect of different powder (P) to liquid (L) ratios was also investigated. Both cross-linked and uncross-linked CaP-CS samples showed excellent washout resistance. The most significant effects were observed on Young's modulus and compressive strength in wet condition as well as surface hardness. In dry conditions, the Young's modulus of cross-linked samples was slightly improved. Based on the presented results, cross-linking does not have a significant effect on porosity. As expected, by increasing the P/L ratio of a sample, ductility and injectability were decreased. However, in the most cases, mechanical properties were enhanced. The results have shown that cross-linking can improve the mechanical properties of CaP-CS and hence it can be used for bone tissue engineering applications.

  11. Directing the oligomer size distribution of peroxidase-mediated cross-linked bovine alpha-lactalbumin. (United States)

    Heijnis, Walter H; Wierenga, Peter A; van Berkel, Willem J H; Gruppen, Harry


    Enzymatic protein cross-linking is a powerful tool to change protein functionality. For optimal functionality in gel formation, the size of the cross-linked proteins needs to be controlled, prior to heating. In the current study, we addressed the optimization of the horseradish peroxidase-mediated cross-linking of calcium-depleted bovine alpha-lactalbumin. To characterize the formed products, the molecular weight distribution of the cross-linked protein was determined by size exclusion chromatography. At low ionic strength, more dimers of alpha-lactalbumin are formed than at high ionic strength, while the same conversion of monomers is observed. Similarly, at pH 5.9 more higher oligomers are formed than at pH 6.8. This is proposed to be caused by local changes in apo alpha-lactalbumin conformation as indicated by circular dichroism spectroscopy. A gradual supply of hydrogen peroxide improves the yield of cross-linked products and increases the proportion of higher oligomers. In conclusion, this study shows that the size distribution of peroxidase-mediated cross-linked alpha-lactalbumin can be directed toward the protein oligomers desired.

  12. A Comparative Study of the Characteristics of Cross-Linked, Oxidized and Dual-Modified Rice Starches

    Directory of Open Access Journals (Sweden)

    Feng-Xiang Yu


    Full Text Available Rice starch was cross-linked with epichlorohydrin (0.3%, w/w, on a dry starch basis and oxidized with sodium hypochlorite (2.5% w/w, respectively. Two dual-modified rice starch samples (oxidized cross-linked rice starch and cross-linked oxidized rice starch were obtained by the oxidation of cross-linked rice starch and the cross-linking of oxidized rice starch at the same level of reagents. The physicochemical properties of native rice starch, cross-linked rice starch and oxidized rice starch were also studied parallel with those of the two dual-modified rice starch samples using rapid visco analysis (RVA, differential scanning calorimetry (DSC, dynamic rheometry and scanning electron microscopy (SEM. It was found that the levels of cross-linking and oxidation used in this study did not cause any significant changes in the morphology of rice starch granules. Cross-linked oxidized starch showed lower swelling power (SP and solubility, and higher paste clarity in comparison with native starch. Cross-linked oxidized rice starch also had the lowest tendency of retrogradation and highest ability to resistant to shear compared with native, cross-linked, oxidized and oxidized cross-linked rice starches. These results suggest that the undesirable properties in native, cross-linked and oxidized rice starch samples could be overcome through dual-modification.

  13. Influence of ethanol concentration on softening tests for cross-link density evaluation of dental composites

    Directory of Open Access Journals (Sweden)

    Rafael Ratto de Moraes


    Full Text Available This study investigated the influence of ethanol concentration on softening tests for cross-link density evaluation (microhardness of dental composites. Specimens of Filtek Z100 (3M ESPE were light-activated by standard or pulse-delay methods. After initial Knoop hardness readings (KHN1, half of specimens (n = 10 for each irradiation method was stored in 100% ethanol, and half in 75% ethanol, during 24 hours, and hardness was determined anew. Hardness deterioration (DKHN was recorded as the difference between pre and post-storage values. KHN1 data were submitted to one-way ANOVA and Tukey's test (alpha = 0.05, and hardness deterioration was analyzed by two-way ANOVA and Tukey's test (alpha= 0.05. For KHN1, no significant differences were detected between the activation modes (p = 0.697. Samples light-activated by the pulse-delay method presented significantly higher softening compared to the standard mode when samples were immersed in 100% ethanol. Conversely, no significant differences between curing modes were detected for samples stored in 75% ethanol.

  14. Click Cross-Linking-Improved Waterborne Polymers for Environment-Friendly Coatings and Adhesives. (United States)

    Hu, Jianqing; Peng, Kaimei; Guo, Jinshan; Shan, Dingying; Kim, Gloria B; Li, Qiyao; Gerhard, Ethan; Zhu, Liang; Tu, Weiping; Lv, Weizhong; Hickner, Michael A; Yang, Jian


    Waterborne polymers, including waterborne polyurethanes (WPU), polyester dispersions (PED), and polyacrylate emulsions (PAE), are employed as environmentally friendly water-based coatings and adhesives. An efficient, fast, stable, and safe cross-linking strategy is always desirable to impart waterborne polymers with improved mechanical properties and water/solvent/thermal and abrasion resistance. For the first time, click chemistry was introduced into waterborne polymer systems as a cross-linking strategy. Click cross-linking rendered waterborne polymer films with significantly improved tensile strength, hardness, adhesion strength, and water/solvent resistance compared to traditional waterborne polymer films. For example, click cross-linked WPU (WPU-click) has dramatically improved the mechanical strength (tensile strength increased from 0.43 to 6.47 MPa, and Young's modulus increased from 3 to 40 MPa), hardness (increased from 59 to 73.1 MPa), and water resistance (water absorption percentage dropped from 200% to less than 20%); click cross-linked PED (PED-click) film also possessed more than 3 times higher tensile strength (∼28 MPa) than that of normal PED (∼8 MPa). The adhesion strength of click cross-linked PAE (PAE-click) to polypropylene (PP) was also improved (from 3 to 5.5 MPa). In addition, extra click groups can be preserved after click cross-linking for further functionalization of the waterborne polymeric coatings/adhesives. In this work, we have demonstrated that click modification could serve as a convenient and powerful approach to significantly improve the performance of a variety of traditional coatings and adhesives.

  15. Biodegradation of differently cross-linked collagen membranes: an experimental study in the rat. (United States)

    Rothamel, Daniel; Schwarz, Frank; Sager, Martin; Herten, Monika; Sculean, Anton; Becker, Jürgen


    The aim of the present study was to compare the biodegradation of differently cross-linked collagen membranes in rats. Five commercially available and three experimental membranes (VN) were included: (1) BioGide (BG) (non-cross-linked porcine type I and III collagens), (2) BioMend (BM), (3) BioMendExtend (BME) (glutaraldehyde cross-linked bovine type I collagen), (4) Ossix (OS) (enzymatic-cross-linked bovine type I collagen), (5) TutoDent (TD) (non-cross-linked bovine type I collagen, and (6-8) VN(1-3) (chemical cross-linked porcine type I and III collagens). Specimens were randomly allocated in unconnected subcutaneous pouches separated surgically on the back of 40 wistar rats, which were divided into five groups (2, 4, 8, 16, and 24 weeks), including eight animals each. After 2, 4, 8, 16, and 24 weeks of healing, the rats were sacrificed and explanted specimens were prepared for histologic and histometric analysis. The following parameters were evaluated: biodegradation over time, vascularization, tissue integration, and foreign body reaction. Highest vascularization and tissue integration was noted for BG followed by BM, BME, and VN(1); TD, VN(2), and VN(3) showed prolongated, while OS exhibited no vascularization. Subsequently, biodegradation of BG, BM, BME and VN(1) was faster than TD, VN(2), and VN(3). OS showed only a minute amount of superficial biodegradation 24 weeks following implantation. Biodegradation of TD, BM, BME, VN(2), and VN(3) was associated with the presence of inflammatory cells. Within the limits of the present study, it was concluded that cross-linking of bovine and porcine-derived collagen types I and III was associated with (i) prolonged biodegradation, (ii) decreased tissue integration and vascularization, and (iii) in case of TD, BM, BME, VN(2), and VN(3) foreign body reactions.

  16. Effects of cross-linking molecular weights in a hyaluronic acid-poly(ethylene oxide) hydrogel network on its properties

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Insup [Department of Chemical Engineering, Seoul National University of Technology, 172 Gongnung-dong, Nowon-gu, Seoul 139-743 (Korea, Republic of); Kim, Gun-Woo [Department of Chemical Engineering, Seoul National University of Technology, 172 Gongnung-dong, Nowon-gu, Seoul 139-743 (Korea, Republic of); Choi, Yoon-Jeong [Department of Chemical Engineering, Seoul National University of Technology, 172 Gongnung-dong, Nowon-gu, Seoul 139-743 (Korea, Republic of); Kim, Mi-Sook [Department of Chemical Engineering, Seoul National University of Technology, 172 Gongnung-dong, Nowon-gu, Seoul 139-743 (Korea, Republic of); Park, Yongdoo [Korea Artificial Organ Center, Korea University, Seoul 136-705 (Korea, Republic of); Lee, Kyu-Back [Korea Artificial Organ Center, Korea University, Seoul 136-705 (Korea, Republic of); Kim, In-Sook [Dental Research Institute, Seoul National University, Seoul 110-749 (Korea, Republic of); Hwang, Soon-Jung [Dental Research Institute, Seoul National University, Seoul 110-749 (Korea, Republic of); Tae, Giyoong [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)


    We examined the effects of cross-linking molecular weights on the properties of a hyaluronic acid (HA)-poly(ethylene oxide) (PEO) hydrogel. Swelling behaviors, mechanical strength and rheological behaviors of the HA-PEO hydrogel were evaluated by employing different cross-linking molecular weights (100 kDa and 1.63 mDa) of the HAs in the hydrogel networks. The low molecular weight of HA was obtained in advance by treating high molecular weight HA with a hydrogen chloride solution. Methacrylation of HA was obtained by grafting aminopropylmethacrylate to its caroboxylic acid functional groups. While reduction of the HA molecular weights was confirmed by gel permeation chromatography, the degree of methacrylate grafting to the HA was measured by {sup 1}H-nuclear magnetic resonance. Synthesis of the HA-PEO hydrogel was successfully achieved via the Michael-type addition reaction between the methacrylate arm groups in the HA and the six thiol groups in PEO. The hydrogel formation was not dependent upon the HA molecular weights and its gelation behaviors were markedly different. Compared to the properties of the high molecular weight HA-based PEO one, the low molecular weight HA-based hydrogel induced quicker hydrogelation, as observed from the behaviors of the elastic and viscous modulus. Furthermore, the low molecular weight HA-based hydrogel demonstrated stronger mechanical properties as measured with a texture analyzer, lower water absorption as measured with a microbalance and smaller pore sizes on its surface and cross section as observed with scanning electron microscopy. The information about the effects of the cross-linking molecular weights of the gel network on the properties of the HA-based PEO hydrogel may lead to better design of hydrogels, especially in tissue engineering applications.

  17. Vitamin E-diffused highly cross-linked UHMWPE particles induce less osteolysis compared to highly cross-linked virgin UHMWPE particles in vivo. (United States)

    Bichara, David A; Malchau, Erik; Sillesen, Nanna H; Cakmak, Selami; Nielsen, G Petur; Muratoglu, Orhun K


    Recent in vitro findings suggest that UHMWPE wear particles containing vitamin E (VE) may have reduced biologic activity and decreased osteolytic potential. We hypothesized that particles from VE-stabilized, radiation cross-linked UHMWPE would cause less osteolysis in a murine calvarial bone model when compared to virgin gamma irradiated cross-linked UHMWPE. Groups received equal amount of particulate debris overlaying the calvarium for 10 days. Calvarial bone was examined using high resolution micro-CT and histomorphometric analyses. There was a statistically significant difference between virgin (12.2%±8%) and VE-UHMWPE (3%±1.4%) groups in regards to bone resorption (P=0.005) and inflammatory fibrous tissue overlaying the calvaria (0.48 vs. 0.20, PUHMWPE particles have reduced osteolytic potential in vivo when compared to virgin UHMWPE.

  18. Incorporation of Decanethiol-Passivated Gold Nanoparticles into Cross-Linked Poly(Dimethylsiloxane Films

    Directory of Open Access Journals (Sweden)

    Motohiro Tagaya


    Full Text Available Cross-linking degree of a poly(dimethylsiloxane (PDMS film was controlled, and the incorporation of hydrophobic decanethiol-passivated gold (Au nanoparticles into the film was investigated. FT-IR spectra indicated that the hydrosilylation reaction between a vinyl group and a hydrosilyl group occurred with the cross-linking. The swelling degree of the film in toluene changed with a cross-linker concentration, indicating the control of the cross-linking degree of PDMS film. By EDX analysis, the amount of incorporated Au nanoparticles increased with decreasing a cross-linker concentration, indicating the enlarged free volume of the film. The Au nanoparticle-PDMS composite film containing a cross-linker at 6 wt% showed brown color attributed to plasmon resonance of Au nanoparticles, suggesting the Au nanoparticles in the film at monodispersion state. The UV-visible absorbance of the composite film decreased without spectralshift by swelling with toluene, and the changes were reversible. The aggregation among Au nanoparticles in the composite film after calcination also depended on the cross-linking degree. Thus, the control of cross-linking degree of PDMS film successfully leaded to a simple way of fabricating the Au nanoparticle-PDMS composite film at the mono-dispersion state.

  19. Novel Technique of Transepithelial Corneal Cross-Linking Using Iontophoresis in Progressive Keratoconus (United States)

    Raffa, Paolo; Rosati, Marianna


    In this work, the authors presented the techniques and the preliminary results at 6 months of a randomized controlled trial (NCT02117999) comparing a novel transepithelial corneal cross-linking protocol using iontophoresis with the Dresden protocol for the treatment of progressive keratoconus. At 6 months, there was a significant average improvement with an average flattening of the maximum simulated keratometry reading of 0.72 ± 1.20 D (P = 0.01); in addition, corrected distance visual acuity improved significantly (P = 0.08) and spherical equivalent refraction was significantly less myopic (P = 0.02) 6 months after transepithelial corneal cross-linking with iontophoresis. The novel protocol using iontophoresis showed comparable results with standard corneal cross-linking to halt progression of keratoconus during 6-month follow-up. Investigation of the long-term RCT outcomes are ongoing to verify the efficacy of this transepithelial corneal cross-linking protocol and to determine if it may be comparable with standard corneal cross-linking in the management of progressive keratoconus. PMID:27597895

  20. Novel Technique of Transepithelial Corneal Cross-Linking Using Iontophoresis in Progressive Keratoconus

    Directory of Open Access Journals (Sweden)

    Marco Lombardo


    Full Text Available In this work, the authors presented the techniques and the preliminary results at 6 months of a randomized controlled trial (NCT02117999 comparing a novel transepithelial corneal cross-linking protocol using iontophoresis with the Dresden protocol for the treatment of progressive keratoconus. At 6 months, there was a significant average improvement with an average flattening of the maximum simulated keratometry reading of 0.72±1.20 D (P=0.01; in addition, corrected distance visual acuity improved significantly (P=0.08 and spherical equivalent refraction was significantly less myopic (P=0.02 6 months after transepithelial corneal cross-linking with iontophoresis. The novel protocol using iontophoresis showed comparable results with standard corneal cross-linking to halt progression of keratoconus during 6-month follow-up. Investigation of the long-term RCT outcomes are ongoing to verify the efficacy of this transepithelial corneal cross-linking protocol and to determine if it may be comparable with standard corneal cross-linking in the management of progressive keratoconus.

  1. Cross-Linking Poly(lactic acid) Film Surface by Neutral Hyperthermal Hydrogen Molecule Bombardment. (United States)

    Du, Wangli; Shao, Hong; He, Zhoukun; Tang, Changyu; Liu, Yu; Shen, Tao; Zhu, Yan; Lau, Woon-ming; Hui, David


    Constructing a dense cross-linking layer on a polymer film surface is a good way to improve the water resistance of poly(lactic acid) (PLA). However, conventional plasma treatments have failed to achieve the aim as a result of the unavoidable surface damage arising from the charged species caused by the uncontrolled high energy coming from colliding ions and electrons. In this work, we report a modified plasma method called hyperthermal hydrogen-induced cross-linking (HHIC) technology to construct a dense cross-linking layer on PLA film surfaces. This method produces energy-controlled neutral hyperthermal hydrogen, which selectively cleaves C-H bonds by molecule collision from the PLA film without breaking other bonds (e.g., C-C bonds in the polymer backbone), and results in subsequent cross-linking of the carbon radicals generated from the organic molecules. The formation of a dense cross-linking layer can serve as a barrier layer to significantly improve both the hydrophobicity and water vapor barrier property of the PLA film. Because of the advantage of selective cleavage of C-H bonds by HHIC treatment, the original physical properties (e.g., mechanical strength and light transmittance) of the PLA films are well-preserved.

  2. Mapping of the dimer interface of the Escherichia coli mannitol permease by cysteine cross-linking. (United States)

    van Montfort, Bart A; Schuurman-Wolters, Gea K; Wind, Joyce; Broos, Jaap; Robillard, George T; Poolman, Bert


    A cysteine cross-linking approach was used to identify residues at the dimer interface of the Escherichia coli mannitol permease. This transport protein comprises two cytoplasmic domains and one membrane-embedded C domain per monomer, of which the latter provides the dimer contacts. A series of single-cysteine His-tagged C domains present in the native membrane were subjected to Cu(II)-(1,10-phenanthroline)(3)-catalyzed disulfide formation or cysteine cross-linking with dimaleimides of different length. The engineered cysteines were at the borders of the predicted membrane-spanning alpha-helices. Two residues were found to be located in close proximity of each other and capable of forming a disulfide, while four other locations formed cross-links with the longer dimaleimides. Solubilization of the membranes did only influence the cross-linking behavior at one position (Cys(73)). Mannitol binding only effected the cross-linking of a cysteine at the border of the third transmembrane helix (Cys(134)), indicating that substrate binding does not lead to large rearrangements in the helix packing or to dissociation of the dimer. Upon mannitol binding, the Cys(134) becomes more exposed but the residue is no longer capable of forming a stable disulfide in the dimeric IIC domain. In combination with the recently obtained projection structure of the IIC domain in two-dimensional crystals, a first proposal is made for alpha-helix packing in the mannitol permease.

  3. Cross-linking study on skeletal muscle actin: properties of suberimidate-treated actin. (United States)

    Ohara, O; Takahashi, S; Ooi, T; Fujiyoshi, Y


    Cross-linking experiments were performed on muscle skeletal actin, using imidoesters of various chain lengths. Chemical analyses on all products except one (derived from succinimidate) show evidence of the presence of intramolecular cross-links in the molecule. The detailed properties of suberimidate-treated actin (SA) are as follows: SA contains nearly 1 mol of intramolecular cross-link per mol of actin and less than 15% of intermolecularly cross-linked products. Even at a low salt concentration, SA is polymeric, exchanges slowly its bound nucleotide with free nucleotides in solution, and shows an F-actin-type CD spectrum. Electron micrographs of SA reveal that SA exists actually as fibrous polymers in solutions of low ionic strength, although the fibers seem to be less rigid than those at high salt concentration. The F-form of SA at a high salt concentration is indistinguishable from intact F-actin. SA can bind heavy meromyosin and activate the ATPase of heavy meromyosin as observed for intact F-actin. Tropomyosin binds SA only at a high salt concentration. These results show that SA possesses the properties of F-actin even in media of low salt concentration, which are favorable for depolymerization of F-actin. Thus, we may infer that the conformation of SA is frozen in the F-state of actin by the introduction of intramolecular cross-links in the protein.

  4. Studies on Cross-linking of succinic acid with chitosan/collagen

    Directory of Open Access Journals (Sweden)

    Tapas Mitra


    Full Text Available The present study summarizes the cross-linking property of succinic acid with chitosan /collagen. In detail, the chemistry behind the cross-linking and the improvement in mechanical and thermal properties of the cross-linked material were discussed with suitable instruments and bioinformatics tools. The concentration of succinic acid with reference to the chosen polymers was optimized. A 3D scaffold prepared using an optimized concentration of succinic acid (0.2% (w/v with chitosan (1.0% (w/v and similarly with collagen (0.5% (w/v, was subjected to surface morphology, FT-IR analysis, tensile strength assessment, thermal stability and biocompatibility. Results revealed, cross-linking with succinic acid impart appreciable mechanical strength to the scaffold material. In silico analysis suggested the prevalence of non-covalent interactions, which played a crucial role in improving the mechanical and thermal properties of the cross-linked scaffold. The resultant 3D scaffold may find application as wound dressing material, as an implant in clinical applications and as a tissue engineering material.

  5. Mechanical and biocompatible characterization of a cross-linked collagen-hyaluronic acid wound dressing. (United States)

    Kirk, James F; Ritter, Gregg; Finger, Isaac; Sankar, Dhyana; Reddy, Joseph D; Talton, James D; Nataraj, Chandra; Narisawa, Sonoko; Millán, José Luis; Cobb, Ronald R


    Collagen scaffolds have been widely employed as a dermal equivalent to induce fibroblast infiltrations and dermal regeneration in the treatment of chronic wounds and diabetic foot ulcers. Cross-linking methods have been developed to address the disadvantages of the rapid degradation associated with collagen-based scaffolds. To eliminate the potential drawbacks associated with glutaraldehyde cross-linking, methods using a water soluble carbodiimide have been developed. In the present study, the glycosaminoglycan (GAG) hyaluronic acid (HA), was covalently attached to an equine tendon derived collagen scaffold using 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) to create ntSPONGE The HA was shown to be homogeneously distributed throughout the collagen matrix. In vitro analyses of the scaffold indicated that the cross-linking enhanced the biological stability by decreasing the enzymatic degradation and increasing the thermal denaturation temperature. The material was shown to support the attachment and proliferation of mouse L929 fibroblast cells. In addition, the cross-linking decreased the resorption rate of the collagen as measured in an intramuscular implant model in rabbits. The material was also shown to be biocompatible in a variety of in vitro and in vivo assays. These results indicate that this cross-linked collagen-HA scaffold, ntSPONGE has the potential for use in chronic wound healing.

  6. Preparation of cross-linked hen-egg white lysozyme crystals free of cracks (United States)

    Yan, Er-Kai; Lu, Qin-Qin; Zhang, Chen-Yan; Liu, Ya-Li; He, Jin; Chen, Da; Wang, Bo; Zhou, Ren-Bin; Wu, Ping; Yin, Da-Chuan


    Cross-linked protein crystals (CLPCs) are very useful materials in applications such as biosensors, catalysis, and X-ray crystallography. Hence, preparation of CLPCs is an important research direction. During the preparation of CLPCs, an often encountered problem is that cracks may appear in the crystals, which may finally lead to shattering of the crystals into small pieces and cause problem in practical applications. To avoid cross-link induced cracking, it is necessary to study the cracking phenomenon in the preparation process. In this paper, we present an investigation on how to avoid cracking during preparation of CLPCs. An orthogonal experiment was designed to study the phenomenon of cross-link induced cracking of hen-egg white lysozyme (HEWL) crystals against five parameters (temperature, solution pH, crystal growth time, glutaraldehyde concentration, and cross-linking time). The experimental results showed that, the solution pH and crystal growth time can significantly affect cross-link induced cracking. The possible mechanism was studied, and optimized conditions for obtaining crack-free CLPCs were obtained and experimentally verified. PMID:27703210

  7. Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering. (United States)

    Jang, Jinah; Seol, Young-Joon; Kim, Hyeon Ji; Kundu, Joydip; Kim, Sung Won; Cho, Dong-Woo


    An effective cross-linking of alginate gel was made through reaction with calcium carbonate (CaCO3). We used human chondrocytes as a model cell to study the effects of cross-linking density. Three different pore size ranges of cross-linked alginate hydrogels were fabricated. The morphological, mechanical, and rheological properties of various alginate hydrogels were characterized and responses of biosynthesis of cells encapsulated in each gel to the variation in cross-linking density were investigated. Desired outer shape of structure was maintained when the alginate solution was cross-linked with the applied method. The properties of alginate hydrogel could be tailored through applying various concentrations of CaCO3. The rate of synthesized GAGs and collagens was significantly higher in human chondrocytes encapsulated in the smaller pore structure than that in the larger pore structure. The expression of chondrogenic markers, including collagen type II and aggrecan, was enhanced in the smaller pore structure. It was found that proper structural morphology is a critical factor to enhance the performance and tissue regeneration.

  8. DNA interstrand cross-link induced by estrogens as well as their complete and synergic carcinogenesis

    Institute of Scientific and Technical Information of China (English)


    The estrogens show negative activity in Ames test, but estrodiol and diethylstilbestrol in estrogens both are carcinogens based upon animal experiments and epidemiological investigation. It is concluded from the di-region theory, a mechanism conception put forward by one of the present authors, that the carcinogenesis of estrogens is switched on by the covalent cross-link between complementary DNA bases induced by them. We verified for the first time by the DNA alkaline elution method that both estrodiol and diethylstilbestrol cause covalent cross-link between DNA-protein and DNA interstrands after metabolic activation with dosage correlation, but neither the non-carcinogens cholesterol nor pyrene can lead to these sorts of cross-link in the same condition. It has been known that there is a synergetic effect between estrogen and pollution of polycyclic aromatic hydrocarbons. Although non-carcinogenic pyrene alone cannot induce cross-link, its addition with equal molar quantity to estrodiol culture causes synergically the total and DNA interstrand cross-link ratios to be respectively four and three times more than the ones in the cultivation with estrodiol only. It is shown that not only the estrodiol set off the formation of pyrene bi-radicals, but also the pyrene radicals arouse conversely the production of estrodiol bi-radicals.

  9. Characterization of cross-linked porous gelatin carriers and their interaction with corneal endothelium: biopolymer concentration effect.

    Directory of Open Access Journals (Sweden)

    Jui-Yang Lai

    Full Text Available Cell sheet-mediated tissue regeneration is a promising approach for corneal reconstruction. However, the fragility of bioengineered corneal endothelial cell (CEC monolayers allows us to take advantage of cross-linked porous gelatin hydrogels as cell sheet carriers for intraocular delivery. The aim of this study was to further investigate the effects of biopolymer concentrations (5-15 wt% on the characteristic and safety of hydrogel discs fabricated by a simple stirring process combined with freeze-drying method. Results of scanning electron microscopy, porosity measurements, and ninhydrin assays showed that, with increasing solid content, the pore size, porosity, and cross-linking index of carbodiimide treated samples significantly decreased from 508±30 to 292±42 µm, 59.8±1.1 to 33.2±1.9%, and 56.2±1.6 to 34.3±1.8%, respectively. The variation in biopolymer concentrations and degrees of cross-linking greatly affects the Young's modulus and swelling ratio of the gelatin carriers. Differential scanning calorimetry measurements and glucose permeation studies indicated that for the samples with a highest solid content, the highest pore wall thickness and the lowest fraction of mobile water may inhibit solute transport. When the biopolymer concentration is in the range of 5-10 wt%, the hydrogels have high freezable water content (0.89-0.93 and concentration of permeated glucose (591.3-615.5 µg/ml. These features are beneficial to the in vitro cultivation of CECs without limiting proliferation and changing expression of ion channel and pump genes such as ATP1A1, VDAC2, and AQP1. In vivo studies by analyzing the rabbit CEC morphology and count also demonstrate that the implanted gelatin discs with the highest solid content may cause unfavorable tissue-material interactions. It is concluded that the characteristics of cross-linked porous gelatin hydrogel carriers and their triggered biological responses are in relation to biopolymer

  10. Peptides from two sanguinovorous leeches analyzed by ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometric detector

    Directory of Open Access Journals (Sweden)

    Ling Xiao


    Full Text Available Background: Hirudo nipponica Whitman and Poecilobdella manillensis Lesson fall into the family of Hirudinidae Whitman, both of them are sanguinovorous leeches and used a anticoagulant medicines in China. Their medicinal parts are the dried bodies. However, the peptides in the dried body of the two leeches have not been very clear up to now. Objective: To analyze the peptides from two sanguinovorous leeches, H. nipponica and P. manillensis. Materials and Methods: In this article it is reported that the peptides were obtained from anticoagulant active extracted parts of dried bodies of the two leeches and their molecular weights were analyzed by ultra-performance liquid chromatography with electrospray ionization quadrupole time-of-flight mass spectrometry mass spectrometric detector online. Results: Three peptide components were identified from H. nipponica with their molecular weight separately 14998, 15988, and 15956, six peptide components were identified from P. manillensis with molecular weight 9590, 13642, 14998, 17631, 15988, and 16567. Two of peptides from P. manillensis have the same molecular weight 14998 and 15988 as that in H. nipponica. Conclusion: And the two peptides are the main peaks in the base peak ion chromatogram because they occupied a large ratio of total base peak area. Hence the composition of the extracted active part of the two leeches are very close, difference is in that the extract of P. manillensis has more small peptide peaks, but the extract of H. nipponica has not. Furthermore, the tryptic digestion hydrolysates of the extracted active part of each sample were analyzed and the results showed that there were four peaks which only exist in P. manillensis, but not in Hirudo nipponia. They may be the identified peak between the two leeches. This work support the viewpoint that P. manillensis can be used as a medicinal leech as H. nipponia and these peptide components of dried bodies of the two species leeches are a

  11. Synthesis of cross-linked magnetic composite microspheres containing carboxyl groups

    Institute of Scientific and Technical Information of China (English)

    Jili ZHAO; Zhaorang HAN; Qiang SONG; Ying WANG; Dan SUN


    Fe3O4 magnetic nano-particles were prepared by a co-precipitation method and were modified using oleic acid. Then, the cross-linked magnetic composite microspheres containing a carboxyl group were prepared by using an improved emulsion polymerization with divinylbenzene (DVB) as the cross-linking agent. The composite microspheres comprised the Fe3O4 magnetic nano-partictes as cores and the copolymer of styrene and acrylic acid as shells. The morphology and structure of the composite microsphere were characterized by FT-IR, transmission electron microscopy (TEM), X-ray diffrac-tion (XRD), X-ray photoelectron spectrum (XPS) and so on. The results show that the composite microspheres were well dispersed in emulsion with uniform sizes and carboxyl groups on their surface. They were cross-linked and stable in 1 mol/L of HCl and DMF.

  12. Light-triggered cross-linking of alginates with caged Ca2+. (United States)

    Cui, Jiaxi; Wang, Miao; Zheng, Yijun; Rodríguez Muñiz, Gemma Maria; del Campo, Aránzazu


    A strategy to light-trigger ionic cross-linking of alginates by incorporating a photosensitive Ca2+ cage (nitr-T) is presented. Upon irradiation, free Ca2+ was released, and this caused gelation of the alginate solution. Addition of Ca2+ "on-demand" allowed us to obtain homogeneous alginate (ALG) gels using concentrated initial ALG solutions (10%), not possible with other ionic gelation approaches. The cross-linking degree and derived mechanical properties of the hydrogel were modulated by the exposure dose. The light-mediated cross-linked alginate hydrogel displayed a significant improvement in the mechanical properties and homogeneity when compared to mixtures of alginate and soluble Ca2+ at comparable concentrations.

  13. Effect of cross-linking degree on selected properties of retrograded starch adipate. (United States)

    Kapelko, M; Zięba, T; Michalski, A; Gryszkin, A


    The aim of this study was to determine the effects of the concentration of paste used to produce retrograded starch, and esterification degree, on selected properties of the resultant distarch adipate. Starch paste was prepared from native potato starch (1, 4, 10, 18 or 30 g/100g), frozen, defrosted and dried. Thus produced preparations of retrograded starch were cross-linked with various doses of a cross-linking agent (0.125, 0.25, 0.5, 1.0 or 2.0 ml per 100g of starch). Properties of the produced adipates depended on both the concentration of paste used to produce retrograded starch and the degree of substitution with adipic acid residues. Solubility in water and swelling power of the cross-linked preparations of retrograded starch, as well as pasting temperature and viscosity of produced pastes, all decreased along with the increasing degree of substitution with adipic acid residues.

  14. Cross-linked PAN-based thin-film composite membranes for non-aqueous nanofiltration

    KAUST Repository

    Pérez-Manríquez, Liliana


    A new approach on the development of cross-linked PAN based thin film composite (TFC) membranes for non-aqueous application is presented in this work. Polypropylene backed neat PAN membranes fabricated by phase inversion process were cross-linked with hydrazine to get excellent solvent stability toward dimethylformamide (DMF). By interfacial polymerization a selective polyamide active layer was coated over the cross-linked PAN using N,N′-diamino piperazine (DAP) and trimesoyl chloride (TMC) as monomers. Permeation and molecular weight cut off (MWCO) experiments using various dyes were done to evaluate the performance of the membranes. Membranes developed by such method show excellent solvent stability toward DMF with a permeance of 1.7 L/m2 h bar and a molecular weight cut-off of less than 600 Da.

  15. Solution processed organic light-emitting diodes using the plasma cross-linking technology (United States)

    He, Kongduo; Liu, Yang; Gong, Junyi; Zeng, Pan; Kong, Xun; Yang, Xilu; Yang, Cheng; Yu, Yan; Liang, Rongqing; Ou, Qiongrong


    Solution processed multilayer organic light-emitting diodes (OLEDs) present challenges, especially regarding dissolution of the first layer during deposition of a second layer. In this work, we first demonstrated a plasma cross-linking technology to produce a solution processed OLED. The surfaces of organic films can be cross-linked after mixed acetylene and Ar plasma treatment for several tens of seconds and resist corrosion of organic solvent. The film thickness and surface morphology of emissive layers (EMLs) with plasma treatment and subsequently spin-rinsed with chlorobenzene are nearly unchanged. The solution processed triple-layer OLED is successfully fabricated and the current efficiency increases 50% than that of the double-layer OLED. Fluorescent characteristics of EMLs are also observed to investigate factors influencing the efficiency of the triple-layer OLED. Plasma cross-linking technology may open up a new pathway towards fabrication of all-solution processed multilayer OLEDs and other soft electronic devices.

  16. Improvement on Physical Properties of Pullulan Films by Novel Cross-Linking Strategy. (United States)

    Chen, Chieh-Ting; Chen, Kuan-I; Chiang, Hsin-Han; Chen, Yu-Kuo; Cheng, Kuan-Chen


    Pullulan based films possess several advantages, including high transparency, low toxicity, good biodegradability, good mechanical properties, and low oxygen permeability, are preferable for food packaging. The application of pullulan films on food packaging, however, has inherent disadvantage of high water solubility. In this study, glutaraldehyde and glycerol were used as the cross-linking reagent and the plasticizer respectively to improve water resistance and physical properties of the pullulan films. Effects of cross-linking degree on physical properties, including water absorptions, swelling behaviors, water vapor permeability and tensile strengths of films were evaluated. FTIR results demonstrated that the pullulan films were successfully cross-linked by glutaraldehyde. The tensile strength of pullulan films could be enhanced significantly (P glycerol as a plasticizer enhanced the extensibility of films as well as the hydrophilicity, resulting in higher water vapor permeability.

  17. Study on Chemical Cross-linking Modification of Hyaluronan and the Biocompatibility of its Derivatives

    Institute of Scientific and Technical Information of China (English)

    HU Guo-ying; LIU Xin; GU Han-qing


    Objective: Prepare cross-linked HA gels with higher mechanical stability,lower degradation velocity and desirable biocompatibility,so as to extend the usage of HA.Method: 1.Test molecular weight of HA (MrHA) by viscosimetry;2.Prepare cross-linked HA gels by DVS,GTA,DEC;3.Discuss the cross-linking and degradation procedure;4,evaluate the biocompatibility of the best HA gels.Results: The mechanical stability and durability to degradation of HA-DVS gels are superior to those of other gels,and when HA :DVS = 40:1 (g/g),at 35℃ and in 0.2M NaOH solution,the HA-DVS gel shows the best mechanical stability,and its cytotoxicity reaches class I,hemolysis ratio is lower than 5 %.Conclusion:Our HADVS gel can be used to prepare biologic scaffolds.

  18. Cheese whey protein recovery by ultrafiltration through transglutaminase (TG) catalysis whey protein cross-linking. (United States)

    Wen-Qiong, Wang; Lan-Wei, Zhang; Xue, Han; Yi, Lu


    In whey ultrafiltration (UF) production, two main problems are whey protein recovery and membrane fouling. In this study, membrane coupling protein transglutaminase (TG) catalysis protein cross-linking was investigated under different conditions to find out the best treatment. We found that the optimal conditions for protein recovery involved catalyzing whey protein cross-linking with TG (40U/g whey proteins) at 40°C for 60min at pH 5.0. Under these conditions, the recovery rate was increased 15-20%, lactose rejection rate was decreased by 10%, and relative permeate flux was increase 30-40% compared to the sample without enzyme treatment (control). It was noticeable that the total resistance and cake resistance were decreased after enzyme catalysis. This was mainly due to the increased particle size and decreased zeta potential. Therefore, membrane coupling enzyme catalysis protein cross-linking is a potential means for further use.

  19. Genipin Cross-Linked Polymeric Alginate-Chitosan Microcapsules for Oral Delivery: In-Vitro Analysis

    Directory of Open Access Journals (Sweden)

    Hongmei Chen


    Full Text Available We have previously reported the preparation of the genipin cross-linked alginate-chitosan (GCAC microcapsules composed of an alginate core with a genipin cross-linked chitosan membrane. This paper is the further investigation on their structural and physical characteristics. Results showed that the GCAC microcapsules had a smooth and dense surface and a networked interior. Cross-linking by genipin substantially reduced swelling and physical disintegration of microcapsules induced by nongelling ions and calcium sequestrants. Strong resistance to mechanical shear forces and enzymatic degradation was observed. Furthermore, the GCAC membranes were permeable to bovine serum albumin and maintained a molecular weight cutoff at 70 KD, analogous to the widely studied alginate-chitosan, and alginate-poly-L-lysine-alginate microcapsules. The release features and the tolerance of the GCAC microcapsules in the stimulated gastrointestinal environment were also investigated. This GCAC microcapsule formulation offers significant potential as a delivery vehicle for many biomedical applications.

  20. Photochromic cross-link polymer for color changing and sensing surface (United States)

    Fu, Richard; Shi, Jianmin; Forsythe, Eric; Srour, Merric


    Photochromic cross-link polymers were developed using patented ultraviolet (UV) photoinitiator and commercial photochromic dyes. The photochromic dyes have been characterized by measuring absorbance before and after UV activation using UV-visible (Vis) spectrometry with varying activation intensities and wavelengths. Photochromic cross-link polymers were characterized by a dynamic xenon and UV light activation and fading system. The curing processes on cloth were established and tested to obtain effective photochromic responses. Both PulseForge photonic curing and PulseForge plus heat surface curing processes had much better photochromic responses (18% to 19%, 16% to 25%, respectively) than the xenon lamp treatment (8%). The newly developed photochromic cross-link polymer showed remarkable coloration contrasts and fast and comparable coloration and fading rates. Those intelligent, controlled color changing and sensing capabilities will be used on flexible and "drapeable" surfaces, which will incorporate ultra-low power sensors, sensor indicators, and identifiers.

  1. Designing of superporous cross-linked hydrogels containing acrylic-based polymer network

    Directory of Open Access Journals (Sweden)

    Ray Debajyoti


    Full Text Available Biodegradable cross-linked polymer, 2-hydroxyethyl methacrylate-co-acrylic acid was synthesized by free radical polymerization technique using N,N"-methylene-bis-acrylamide as cross-linker and benzoyl peroxide as reaction initiator. FT-IR, 1 H-NMR, scanning electron microscopy (SEM, and thermogravimetric analysis (TGA studies of the copolymer along with homopolymers were carried out. FT-IR studies showed no interactions on copolymerization. SEM studies of the copolymer were carried out and mean particle size was found to be 50 µm. TGA analysis indicated an increase in thermal stability by cross-linking the polymer network. Swelling behavior of the copolymer showed more swelling by increasing pH of the medum and the prepared polymer was found to be biodegradable. The prepared cross-linked polymer system holds good for further drug delivery studies in connection to its super swelling and biodegradability.

  2. Effect of cross-linking on microstructure and physical performance of casein protein. (United States)

    Ghosh, Arun; Ali, M Azam; Dias, George J


    The development of advanced materials from biorenewable protein biopolymers requires the generation of more exogenous bonds to maintain the microstructure and durability in the final products. Casein is the main protein of milk, representing about 80% of the total protein. In the present investigation the casein protein was solubilized and/or emulsified in aqueous alkaline solutions, and 2D films and 3D matrices were produced. The effects of silane (3-aminopropyl triethoxy silane), DL-glyceraldehyde and glutaraldehyde on tensile properties and water swelling/absorption of 2D casein films and also the microstructure of the freeze-dried 3D matrices were analyzed. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed that there were no significant changes in the molecular weight (19-23.9 kDa) of the casein proteins on exposure to alkaline solutions of sodium hydroxide and silane. The casein films produced without glycerol plasticizer and with heat treatment (130 °C for 18 h) were fragile. However, the fragile films were transformed into ductile and tough materials on exposure to moisture (i.e., conditioned for one week at 50 ± 2% relative humidity and 22 ± 2 °C) and showed a maximum average tensile strength of 49-52 MPa and modulus of 1107-1391 MPa. The chemical cross-linkers (i.e., DL-glyceraldehyde and glutaraldehyde) improved the microstructure of glycerol plasticized casein protein, when analyzed under scanning electron microscope (SEM). Furthermore, these chemical cross-linking agents enhanced the mechanical properties and water resistant properties of casein films.

  3. A constant-force technique to measure corneal biomechanical changes after collagen cross-linking.

    Directory of Open Access Journals (Sweden)

    Olivier Richoz

    Full Text Available PURPOSE: To introduce a constant-force technique for the analysis of corneal biomechanical changes induced after collagen cross-linking (CXL that is better adapted to the natural loading in the eye than previous methods. METHODS: For the biomechanical testing, a total of 50 freshly enucleated eyes were obtained and subdivided in groups of 5 eyes each. A Zwicki-Line Testing Machine was used to analyze the strain of 11 mm long and 5 mm wide porcine corneal strips, with and without CXL. Before material testing, the corneal tissues were pre-stressed with 0.02 N until force stabilization. Standard strip extensiometry was performed as control technique. For the constant-force technique, tissue elongation (Δ strain, % was analyzed for 180 seconds while different constant forces (0.25 N, 0.5 N, 1 N, 5 N were applied. RESULTS: Using a constant force of 0.5 N, we observed a significant difference in Δstrain between 0.26±0.01% in controls and 0.12±0.03% in the CXL-treated group (p = 0.003 over baseline. Similarly, using a constant force of 1 N, Δstrain was 0.31±0.03% in controls and 0.19±0.02% after CXL treatment (p = 0.008. No significant differences were observed between CXL-treated groups and controls with 0.25 N or 5 N constant forces. Standard stress-strain extensiometry failed to show significant differences between CXL-treated groups and controls at all percentages of strains tested. CONCLUSION: We propose a constant-force technique to measure corneal biomechanics in a more physiologic way. When compared to standard stress-strain extensiometry, the constant-force technique provides less variability and thus reaches significant results with a lower sample number.

  4. Biomimetic acellular detoxified glutaraldehyde cross-linked bovine pericardium for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Mathapati, Santosh; Bishi, Dillip Kumar [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai (India); Frontier Lifeline Pvt Ltd. and Dr. K. M. Cherian Heart Foundation, Mogappair, Chennai (India); Healthcare and Energy Materials Laboratory, NUSNNI, Faculty of Engineering, National University of Singapore (Singapore); Guhathakurta, Soma [Departmet of Engineering Design, Indian Institute of Technology Madras, Chennai (India); Cherian, Kotturathu Mammen [Frontier Lifeline Pvt Ltd. and Dr. K. M. Cherian Heart Foundation, Mogappair, Chennai (India); Venugopal, Jayarama Reddy; Ramakrishna, Seeram [Healthcare and Energy Materials Laboratory, NUSNNI, Faculty of Engineering, National University of Singapore (Singapore); Verma, Rama Shanker, E-mail: [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai (India)


    Glutaraldehyde (GLUT) processing, cellular antigens, calcium ions in circulation, and phospholipids present in the native tissue are predominantly responsible for calcification, degeneration, and lack of natural microenvironment for host progenitor cell migration in tissue implants. The study presents an improved methodology for adhesion and proliferation of endothelial progenitor cells (EPCs) without significant changes in biomechanical and biodegradation properties of the processed acellular bovine pericardium. The anti-calcification potential of the processed tissue was enhanced by detoxification of GLUT-cross-linked bovine pericardium by decellularization, pretreating it with ethanol or removing the free aldehydes by citric acid treatment and lyophilization. The treated tissues were assessed for biomechanical properties, GLUT ligand quantification, adhesion, proliferation of EPCs, and biodegradability. The results indicate that there was no significant change in biomechanical properties and biodegradability when enzymatic hydrolysis (p > 0.05) is employed in detoxified acellular GLUT cross-linked tissue (DBP–G–CA–ET), compared with the native detoxified GLUT cross-linked bovine pericardium (NBP–G–CA–ET). DBP–G–CA–ET exhibited a significant (p > 0.05) increase in the viability of EPCs and cell adhesion as compared to acellular GLUT cross-linked bovine pericardium (p < 0.05). Lyophilized acellular detoxified GLUT cross-linked bovine pericardium, employed in our study as an alternative to conventional GLUT cross-linked bovine pericardium, might provide longer durability and better biocompatibility, and reduce calcification. The developed bovine pericardium patches could be used in cardiac reconstruction and repair, arteriotomy, soft tissue repair, and general surgical procedures with tissue regeneration dimensions. - Highlights: ► We improved the quality of patch biomaterial for cardiovascular surgical procedures. ► Bovine pericardium was

  5. Solvent Composition is Critical for Carbodiimide Cross-Linking of Hyaluronic Acid as an Ophthalmic Biomaterial

    Directory of Open Access Journals (Sweden)

    Jui-Yang Lai


    Full Text Available Hyaluronic acid (HA is one of the most important ophthalmic biomaterials, while also being used for tissue engineering and drug delivery. Although chemical cross-linking is an effective way to improve the material performance, it may as a consequence be detrimental to the living cells/tissues. Given that the cross-linking efficiency is mediated by the solvent composition during the chemical modification, this study aims to explore the stability and biocompatibility of carbodiimide cross-linked HA in relation to material processing conditions by varying the acetone/water volume ratio (from 70:30 to 95:5 at a constant 1-ethyl-3-(3-dimethyl aminopropyl carbodiimide (EDC concentration of 100 mM. Our results indicated that after the EDC treatment in the presence of an acetone/water mixture (85:15, v/v, the HA hydrogel membranes have the lowest equilibrium water content, the highest stress at break and the greatest resistance to hyaluronidase digestion. Live/Dead assays and pro-inflammatory cytokine expression analyses showed that the cross-linked HA hydrogel membranes, irrespective of the solvent composition, are compatible with human RPE cell lines without causing toxicity and inflammation. However, it should be noted that the test samples prepared by the cross-linking in the presence of acetone/water mixtures containing 70, 75, and 95 vol % of acetone slightly inhibit the metabolic activity of viable ARPE-19 cultures, probably due to the alteration in the ionic interaction between the medium nutrients and polysaccharide biomaterials. In summary, the water content, mechanical strength and RPE cell proliferative capacity strongly depends on the solvent composition for carbodiimide cross-linking of HA materials.

  6. Cross-linking and rheological changes of whey proteins treated with microbial transglutaminase. (United States)

    Truong, Van-Den; Clare, Debra A; Catignani, George L; Swaisgood, Harold E


    Modification of the functionality of whey proteins using microbial transglutaminase (TGase) has been the subject of recent studies. However, changes in rheological properties of whey proteins as affected by extensive cross-linking with TGase are not well studied. The factors affecting cross-linking of whey protein isolate (WPI) using both soluble and immobilized TGase were examined, and the rheological properties of the modified proteins were characterized. The enzyme was immobilized on aminopropyl glass beads (CPG-3000) by selective adsorption of the biotinylated enzyme on avidin that had been previously immobilized. WPI (4 and 8% w/w) in deionized water, pH 7.5, containing 10 mM dithiothreitol was cross-linked using enzyme/substrate ratios of 0.12-10 units of activity/g WPI. The reaction was carried out in a jacketed bioreactor for 8 h at 40 degrees C with continuous circulation. The gel point temperature of WPI solutions treated with 0.12 unit of immobilized TGase/g was slightly decreased, but the gel strength was unaffected. However, increasing the enzyme/substrate ratio resulted in extensive cross-linking of WPI that was manifested by increases in apparent viscosity and changes in the gelation properties. For example, using 10 units of soluble TGase/g resulted in extensive cross-linking of alpha-lactalbumin and beta-lactoglobulin in WPI, as evidenced by SDS-PAGE and Western blotting results. Interestingly, the gelling point of WPI solutions increased from 68 to 94 degrees C after a 4-h reaction, and the gel strength was drastically decreased (lower storage modulus, G'). Thus, extensive intra- and interchain cross-linking probably caused formation of polymers that were too large for effective network development. These results suggest that a process could be developed to produce heat-stable whey proteins for various food applications.

  7. Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction (United States)

    Woodley, D. T.; Yamauchi, M.; Wynn, K. C.; Mechanic, G.; Briggaman, R. A.


    Solubilized interstitial collagens will form a fibrillar, gel-like lattice when brought to physiologic conditions. In the presence of human dermal fibroblasts the collagen lattice will contract. The rate of contraction can be determined by computer-assisted planemetry. The mechanisms involved in contraction are as yet unknown. Using this system it was found that the rate of contraction was markedly decreased when collagen lacking telopeptides was substituted for native collagen. Histidinohydroxylysinonorleucine (HHL) is a major stable trifunctional collagen cross-link in mature skin that involves a carboxyl terminal, telopeptide site 16c, the sixteenth amino acid residue from the carboxy terminal of the telopeptide region of alpha 1 (I) in type I collagen. Little, if any, HHL was present in native, purified, reconstituted, soluble collagen fibrils from 1% acetic acid-extracted 2-year-old bovine skin. In contrast, HHL cross-links were present (0.22 moles of cross-link per mole of collagen) in lattices of the same collagen contracted by fibroblasts. However, rat tail tendon does not contain HHL cross-links, and collagen lattices made of rat tail tendon collagen are capable of contraction. This suggests that telopeptide sites, and not mature HHL cross-links per se, are essential for fibroblasts to contract collagen lattices. Beta-aminopropionitrile fumarate (BAPN), a potent lathyrogen that perturbs collagen cross-linking by inhibition of lysyl oxidase, also inhibited the rate of lattice cell contraction in lattices composed of native collagen. However, the concentrations of BAPN that were necessary to inhibit the contraction of collagen lattices also inhibited fibroblast growth suggestive of cellular toxicity. In accordance with other studies, we found no inhibition of the rate of lattice contraction when fibronectin-depleted serum was used. Electron microscopy of contracted gels revealed typical collagen fibers with a characteristic axial periodicity. The data

  8. pH-dependent cross-linking of catechols through oxidation via Fe(3+) and potential implications for mussel adhesion. (United States)

    Fullenkamp, Dominic E; Barrett, Devin G; Miller, Dusty R; Kurutz, Josh W; Messersmith, Phillip B


    The mussel byssus is a remarkable attachment structure that is formed by injection molding and rapid in-situ hardening of concentrated solutions of proteins enriched in the catecholic amino acid 3,4-dihydroxy-L-phenylalanine (DOPA). Fe(3+), found in high concentrations in the byssus, has been speculated to participate in redox reactions with DOPA that lead to protein polymerization, however direct evidence to support this hypothesis has been lacking. Using small molecule catechols, DOPA-containing peptides, and native mussel foot proteins, we report the first direct observation of catechol oxidation and polymerization accompanied by reduction of Fe(3+) to Fe(2+). In the case of the small molecule catechol, we identified two dominant dimer species and characterized their connectivities by nuclear magnetic resonance (NMR), with the C6-C6 and C5-C6 linked species as the major and minor products, respectively. For the DOPA-containing peptide, we studied the pH dependence of the reaction and demonstrated that catechol polymerization occurs readily at low pH, but is increasingly diminished in favor of metal-catechol coordination interactions at higher pH. Finally, we demonstrate that Fe(3+) can induce cross-links in native byssal mussel proteins mefp-1 and mcfp-1 at acidic pH. Based on these findings, we discuss the potential implications to the chemistry of mussel adhesion.

  9. Functional hydrophilic polystyrene beads with uniformly size and high cross-linking degree facilitated rapid separation of exenatide. (United States)

    Li, Qiang; Zhao, Lan; Zhang, Rongyue; Huang, Yongdong; Zhang, Yan; Zhang, Kun; Wu, Xuexing; Zhang, Zhigang; Gong, Fangling; Su, Zhiguo; Ma, Guanghui


    A high cross-linking polystyrene(PSt)-based anion-exchange material with uniformly size, high ion exchange capacity, and high hydrophilicity was synthesized by a novel surface functionalization approach in this study. Uniformly sized PSt microspheres were prepared by the membrane emulsion polymerization strategy, and then modified by (1) conversing resid ual surface vinyl groups to epoxy groups followed by quaternization, and (2) decorating aromatic ring matrix including nitration, reduction and attachment of glycidyltrimethylammonium chloride. The 3-D morphology and porous features of microspheres were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The surface of the modified PSt became roughness but the particle size remained same. Meanwhile, FT-IR spectra and laser scanning confocal microscope (LCSM) indicated that the modification groups had been successfully covalently coated onto the PSt microspheres. Modified PSt microspheres showed greatly improved hydrophilicity and biocompatibility with 0.387mmol/mL ion exchange capacity (IEC). In the application evaluation procedure, exenatide can be purified from 42.9% (peptide crudes) to 88.6% by modified PSt column with 97.1% recovery yield. This modified PSt microspheres had a large potential in application for efficient separation of peptides.

  10. Cross-linked aromatic cationic polymer electrolytes with enhanced stability for high temperature fuel cell applications

    DEFF Research Database (Denmark)

    Ma, Wenjia; Zhao, Chengji; Yang, Jingshuai


    anchoring of the molecule. Combining the excellent thermal stability, the addition of a small amount of diamines enhanced both the chemical and mechanical stability and the phosphoric acid doping (PA) ability of membranes. Fuel cell performance based on impregnated cross-linked membranes have been...... that the diamine-cross-linked membranes using the rigid cross-linker show much improved properties than that using the flexible cross-linker. More properties relating to the feasibility in high temperature proton exchange membrane fuel cell applications were investigated in detail....

  11. Reinforced films based on cross-linked water-soluble sulfonated carbon nanotubes with sulfonated polystyrene. (United States)

    Dai, Ying; Haiping, Hong; Guiver, Michael; Welsh, Jeffry S


    Reinforced films based on sulfonated polystyrene cross-linked with water-soluble sulfonated carbon nanotubes were fabricated using a free-standing film-making method. Transmission and scanning electron microscopy (TEM and SEM), and X-ray photoelectron spectroscopy (XPS) were used to verify the cross-linking reaction. The mechanical properties of these films demonstrated that the tensile strength increases with an increase in the sulfonated nanotube concentration. At 5 wt% nanotube loading, the tensile strength increased 84% compared with polymer containing no nanotube loading. The relationships between structure and mechanical properties are discussed and a possible direction for making ultra thin and ultra lightweight film is proposed.

  12. Increasing Thermal Stability of Gelatin by UV-Induced Cross-Linking with Glucose

    Directory of Open Access Journals (Sweden)

    Evan M. Masutani


    Full Text Available The effects of ultraviolet (254 nm radiation on a hydrated gelatin-glucose matrix were investigated for the development of a physiologically thermostable substrate for potential use in cell scaffold production. Experiments conducted with a differential scanning calorimeter indicate that ultraviolet irradiation of gelatin-glucose hydrogels dramatically increases thermal stability such that no melting is observed at temperatures of at least 90°C. The addition of glucose significantly increases the yield of cross-linked product, suggesting that glucose has a role in cross-link formation. Comparisons of lyophilized samples using scanning electron microscopy show that irradiated materials have visibly different densities.

  13. Kinetics of enzyme-catalyzed cross-linking of feruloylated arabinan from sugar beet

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Arnous, Anis; Holck, Jesper


    the kinetics of HRP catalyzed cross-linking of FA esterified to α-(1,5)-linked arabinans are affected by the length of the arabinan chains carrying the feruloyl substitutions. The kinetics of the HRP-catalyzed cross-linking of four sets of arabinan samples from sugar beet pulp, having different molecular...... weights and hence different degrees of polymerization, were monitored by the disappearance of FA absorbance at 316 nm. MALDI-TOF/TOF-MS analysis confirmed that the sugar beet arabinans were feruloyl-substituted, and HPLC analysis verified that the amounts of diFAs increased when FA levels decreased...

  14. 1,3-Diphenylethenylcarbazolyl-Based Monomer for Cross-Linked Hole Transporting Layers

    Directory of Open Access Journals (Sweden)

    Maryte Daskeviciene


    Full Text Available A new cross-linkable monomer containing 1,3-diphenylethenylcarbazolyl-based hole-transporting moieties and four reactive epoxy groups, was prepared by a multistep synthesis route from 1,3-bis(2,2-diphenylethenyl-9H-carbazol-2-ol and its application for the in situ formation of cross-linked hole transporting layers was investigated. A high concentration of flexible aliphatic epoxy chains ensures good solubility and makes this compound an attractive cross-linking agent. The synthesized compounds were characterized by various techniques, including differential scanning calorimetry, xerographic time of flight, and electron photoemission in air methods.

  15. Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase. (United States)

    Chen, Yukun; Yuan, Daosheng; Xu, Chuanhui


    We prepared a biobased material, dynamically vulcanized polylactide (PLA)/natural rubber (NR) blend in which the cross-linked NR phase owned a continuous network-like dispersion. This finding breaks the traditional concept of a sea-island morphology formed after dynamic vulcanization of the blends. The scan electron microscopy and dissolution/swell experiments provided the direct proof of the continuous cross-linked NR phase. This new biobased PLA/NR blend material with the novel structure is reported for the first time in the field of dynamic vulcanization and shows promise for development for various functional applications.

  16. Bioreducible cross-linked nanoshell enhances gene transfection of polycation/DNA polyplex in vivo. (United States)

    Piao, Ji-Gang; Ding, Sheng-Gang; Yang, Lu; Hong, Chun-Yan; You, Ye-Zi


    In this study, we have prepared a self-cross-linking PEG-based branched polymer, which easily forms a bioreducible nanoshell around polyplexes of cationic polymer and DNA, simply via heating the polyplex dispersions in the presence of this self-cross-linking branched polymer. This nanoshell can prevent the polyplex from dissociation and aggregation in physiological fluids without inhibiting the electrostatic interactions between the polymer and DNA. Furthermore, glutathione (GSH) can act as a stimulus to open the nanoshell after it has entered the cell. The polyplexes coated with the bioreducible nanoshell show an obvious enhancement in gene transfection in vivo compared with bare polyplexes.

  17. In Situ Cross-Linking of Stimuli-Responsive Hemicellulose Microgels during Spray Drying


    Zhao, Weifeng; Nugroho, Robertus Wahyu N.; Odelius, Karin; Edlund, Ulrica; Zhao, Changsheng; Albertsson, Ann-Christine


    Chemical cross-linking during spray drying offers the potential for green fabrication of microgels with a rapid stimuli response and good blood compatibility and provides a platform for stimuli-responsive hemicellulose microgels (SRHMGs). The cross-linking reaction occurs rapidly in situ at elevated temperature during spray drying, enabling the production of microgels in a large scale within a few minutes. The SRHMGs with an average size range of ∼1–4 μm contain O-acetyl-galactoglucomannan as...

  18. Analyzing the effect of peptide-HLA-binding ability on the immunogenicity of potential CD8+ and CD4+ T cell epitopes in a large dataset. (United States)

    Wang, Shufeng; Li, Jintao; Chen, Xiaoling; Wang, Li; Liu, Wei; Wu, Yuzhang


    Immunogenicity is a key factor that influences whether a peptide presented by major histocompatibility complex (MHC) can be a T cell epitope. However, peptide immunization experiments have shown that approximately half of MHC class I-binding peptides cannot elicit a T cell response, indicating the importance of analyzing the variables affecting the immunogenicity of MHC-binding peptides. In this study, we hierarchically investigated the contribution of the binding stability and affinity of peptide-MHC complexes to immunogenicity based on the available quantitative data. We found that the immunogenicity of peptides presented by human leukocyte antigen (HLA) class I molecules was still predictable using the experimental binding affinity, although approximately one-third of the peptides with a binding affinity stronger than 500 nM were non-immunogenic, whereas the immunogenicity of HLA-II-presented peptides was predicted well using the experimental affinity and even the predicted affinity. The positive correlation between the binding affinity and stability was only observed in peptide-HLA-I complexes with a binding affinity stronger than 500 nM, which suggested that the stability alone could not be used for the prediction of immunogenicity. A characterization and comparison of the 'holes' in the CD8+ and CD4+ T cell repertoire provided an explanation for the observed differences between the immunogenicity of peptides presented by HLA class I and II molecules. We also provided the optimal affinity threshold for the potential CD4+ and CD8+ T cell epitopes. Our results provide important insights into the cellular immune response and the accurate prediction of T cell epitopes.

  19. Physicochemical properties and micro-structural characteristics in starch from kudzu root as affected by cross-linking. (United States)

    Chen, Boru; Dang, Leping; Zhang, Xiao; Fang, Wenzhi; Hou, Mengna; Liu, Tiankuo; Wang, Zhanzhong


    Kudzu starch was cross-linked with sodium trimetaphosphate (STMP) at different temperatures, time and of STMP concentrations in this work. The cross-linked starches (CLSs) were fractionated further into cross-linked amylose and amylopectin in order to compare the effect of cross-linking on the microstructure. According to scanning electron microscope (SEM), CLSs displayed the resemble appearance of spherical and polygonal shapes like NS. X-ray diffraction (XRD) revealed that amylose of native starch (A), NS and CLS displayed a combination of A-type and B-type structure, while that was not found in amylose of cross-linked starch (CLA). The deconvoluted fourier transform infrared (FT-IR) indicated that crystal structure of kudzu starch was losing with the proceeding of cross-linking reaction. The CLSs exhibited a higher retrogradation and freeze-thaw stability than NS. This was accompanied by a significant decrease in sedimentation, transparency, swelling power and solubility.

  20. The Effect of Glutaraldehyde Cross-Linking on the Enzyme Activity of Immobilized &beta-Galactosidase on Chitosan Bead

    Directory of Open Access Journals (Sweden)

    He Chen


    Full Text Available The effect of glutaraldehyde solution concentration, cross-linking time, cross-linking pH and cross-linking temperature on the enzyme activity of the immobilized &beta-galactosidase on Chitosan beads were studied. The enzyme activity was measured after immobilized by detecting the absorbance value at 420 nm.The results were as follows: the immobilized enzyme activity reached the maximum when the concentration of glutaraldehyde solution was 0.3%.The immobilized enzyme had optimal cross-linking time of 3h, optimal cross-linking pH of 6.5, optimal cross-linking temperature of 25°C, under these conditions, the immobilized enzyme activity reached 101, 96, 90 U/g, respectively.

  1. Cross-linking Electrospun Polydioxanone-Soluble Elastin Blends: Material Characterization

    Directory of Open Access Journals (Sweden)

    Michael J. McClure


    Full Text Available The purpose of this study was to establish whether material properties of elastin co-electrospun with polydioxanone (PDO would change over time in both the uncross-linked state and the cross-linked state. First, uncross-linked scaffolds were placed in phosphate buffered saline (PBS for three separate time periods: 15 minutes, 1 hour, and 24 hours, and subsequently tested using uniaxial materials testing. Several cross-linking reagents were then investigated to verify their ability to crosslink elastin: 1-ethyl-3-(dimethylaminopropyl-carbodiimide (EDC, ethylene glycol diglycidyl ether (EGDE, and genipin. Uniaxial tensile testing was performed on scaffolds cross-linked with EDC and genipin, yielding results that warranted further investigation for PDO-elastin blends. Material properties of the cross-linked scaffolds were then found within range of both pig femoral artery and human femoral artery. These results demonstrate PDO-elastin blends could potentially be favorable as vascular grafts, thus warranting future in vitro and in vivo studies.

  2. 21 CFR 177.2710 - Styrene-divinylbenzene resins, cross-linked. (United States)


    ... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances..., preparing, treating, packaging, transporting, or holding food, in accordance with the following prescribed... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Styrene-divinylbenzene resins, cross-linked....

  3. Formation and Distribution of Space-Charge in Cross-Linked Polyethylene (United States)

    Zhang, Ye-Wen; Li, Ji-Xiao; Zheng, Fei-Hu; Peng, Zong-Ren; Wu, Chang-Shun; Xia, Zhong-Fu


    The formation and distribution of space-charge in a cross-linked polyethylene (XLPE) sample are investigated by means of pressure wave propagation, infrared spectroscopy and electrostatic force microscopy (EFM). The related mechanism of space-charge distribution and the structure of XLPE are discussed. The EFM images show that quite large quantitative space-charges locate at the surface of spherulites.

  4. Mature enzymatic collagen cross-links, hydroxylysylpyridinoline and lysylpyridinoline, in the aging human vitreous

    NARCIS (Netherlands)

    Ponsioen, T.L.; van Deemter, M.; Bank, R.A.; Snabel, J.M.; Zijlstra, G.S.; van der Worp, R.J.; Hooymans, J.M.M.; Los, L.I.


    Purpose. The vitreous body of the human eye undergoes progressive morphologic changes with aging. Since the enzymatic collagen cross-links hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP) are known to be important for the integrity of the collagen matrix, the presence in the vitreous on agin

  5. Mature Enzymatic Collagen Cross-Links, Hydroxylysylpyridinoline and Lysylpyridinoline, in the Aging Human Vitreous

    NARCIS (Netherlands)

    Ponsioen, Theodorus L.; van Deemter, Marielle; Bank, Rudolf A.; Snabel, Johanna M.; Zijlstra, Gerrit S.; van der Worp, Roelofje J.; Hooymans, Johanna M. M.; Los, Leonoor I.


    PURPOSE. The vitreous body of the human eye undergoes progressive morphologic changes with aging. Since the enzymatic collagen cross-links hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP) are known to be important for the integrity of the collagen matrix, the presence in the vitreous on agin

  6. Horseradish peroxidase-catalyzed cross-linking of feruloylated arabinoxylans with β-casein

    NARCIS (Netherlands)

    Boeriu, C.G.; Oudgenoeg, G.; Spekking, W.T.J.; Berendsen, L.B.J.M.; Vancon, L.; Boumans, H.; Gruppen, H.; Berkel, W.J.H. van; Laane, C.; Voragen, A.G.J.


    Heterologous conjugates of wheat arabinoxylan and β-casein were prepared via enzymatic cross-linking, using sequential addition of the arabinoxylan to a mixture of β-casein, peroxidase, and hydrogen peroxide. The maximal formation of adducts between the β-casein and the feruloylated arabinoxylan was

  7. Cross-linking methods of electrospun fibrinogen scaffolds for tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Sell, Scott A; Garg, Koyal; McClure, Michael J; Bowlin, Gary L [Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284-3067 (United States); Francis, Michael P [Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298-0709 (United States); Simpson, David G [Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709 (United States)], E-mail:


    The purpose of this study was to enhance the mechanical properties and slow the degradation of an electrospun fibrinogen scaffold, while maintaining the scaffold's high level of bioactivity. Three different cross-linkers were used to achieve this goal: glutaraldehyde vapour, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) in ethanol and genipin in ethanol. Scaffolds with a fibrinogen concentration of 120 mg ml{sup -1} were electrospun and cross-linked with one of the aforementioned cross-linkers. Mechanical properties were determined through uniaxial tensile testing performed on scaffolds incubated under standard culture conditions for 1 day, 7 days and 14 days. Cross-linked scaffolds were seeded with human foreskin fibroblasts (BJ-GFP-hTERT) and cultured for 7, 14 and 21 days, with histology and scanning electron microscopy performed upon completion of the time course. Mechanical testing revealed significantly increased peak stress and modulus values for the EDC and genipin cross-linked scaffolds, with significantly slowed degradation. However, cross-linking with EDC and genipin was shown to have some negative effect on the bioactivity of the scaffolds as cell migration throughout the thickness of the scaffold was slowed.

  8. The peptidoglycan of Mycobacterium abscessus is predominantly cross-linked by L,D-transpeptidases. (United States)

    Lavollay, Marie; Fourgeaud, Martine; Herrmann, Jean-Louis; Dubost, Lionel; Marie, Arul; Gutmann, Laurent; Arthur, Michel; Mainardi, Jean-Luc


    Few therapeutic alternatives remain for the treatment of infections due to multiresistant Mycobacterium abscessus. Here we show that the peptidoglycans of the "rough" and "smooth" morphotypes contain predominantly 3→3 cross-links generated by l,d-transpeptidases, indicating that these enzymes are attractive targets for the development of efficient drugs.

  9. Substituent distribution within cross-linked and hydroxypropylated sweet potato starch and potato starch

    NARCIS (Netherlands)

    Zhao, J.; Schols, H.A.; Chen Zenghong,; Jin Zhengyu,; Buwalda, P.L.; Gruppen, H.


    Revealing the substituents distribution within starch can help to understand the changes of starch properties after modification. The distribution of substituents over cross-linked and hydroxypropylated sweet potato starch was investigated and compared with modified potato starch. The starches were

  10. Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid

    Directory of Open Access Journals (Sweden)

    Pouria Falamarzpour


    Full Text Available Adipic acid, an abundant and nontoxic compound, was used to dissolve and cross-link chitosan. After the preparation of chitosan films through casting technique, the in situ amidation reaction was performed at 80–100 °C as verified by Fourier transform infrared (FT-IR. The reaction was accompanied by the release of water which was employed to investigate the reaction kinetics. Accordingly, the reaction rate followed the first-order model and Arrhenius equation, and the activation energy was calculated to be 18 kJ/mol. Furthermore, the mechanical properties of the chitosan films were comprehensively studied. First, optimal curing conditions (84 °C, 93 min were introduced through a central composite design. In order to evaluate the effects of adipic acid, the mechanical properties of physically cross-linked (uncured, chemically cross-linked (cured, and uncross-linked (prepared by acetic acid films were compared. The use of adipic acid improved the tensile strength of uncured and chemically cross-linked films more than 60% and 113%, respectively. Finally, the effect of cellulose nanofibrils (CNFs on the mechanical performance of cured films, in the presence of glycerol as a plasticizer, was investigated. The plasticized chitosan films reinforced by 5 wt % CNFs showed superior properties as a promising material for the development of chitosan-based biomaterials.

  11. Polymers and Cross-Linking: A CORE Experiment to Help Students Think on the Submicroscopic Level (United States)

    Bruce, Mitchell R. M.; Bruce, Alice E.; Avargil, Shirly; Amar, Francois G.; Wemyss, Thomas M.; Flood, Virginia J.


    The Polymers and Cross-Linking experiment is presented via a new three phase learning cycle: CORE (Chemical Observations, Representations, Experimentation), which is designed to model productive chemical inquiry and to promote a deeper understanding about the chemistry operating at the submicroscopic level. The experiment is built on two familiar…

  12. Design of phosphated cross-linked microspheres of bael fruit gum as a biodegradable carrier. (United States)

    Mahammed, Nawaz; Gowda, D V; Deshpande, Rohan D; Thirumaleshwar, Shailesh


    Present work was aimed at designing of phosphated cross-linked microspheres of bael fruit gum (BFG) by emulsification method using sodium-tri-meta phosphate as a cross-linking agent for treatment of colon cancer using 5-fluorouracil as model drug. Stirring speed was found to be 1,000 rpm for about 5 h to be optimal to obtain reproducible microspheres. It was found that there is an increase in particle size as polymer concentration is increased whereas a reduction in particle size was observed as there is increase in stirring speed. Cross-linked BFG microspheres were successfully prepared by emulsification method. Optimum surfactant concentration was found to be 2 % w/w. Scanning electron microscopy studies showed that the drug-loaded microspheres were non-aggregated and in spherical shape. Differential scanning calorimetry and Fourier transform infrared-spectroscopy studies showed that drug and excipients are compatible. Release studies showed that drug release was more profound in cecal medium induced with enzymes causing degradation of the cross linked BFG than that of the release showed in simulated intestinal fluid. Stability studies showed that there were no significant changes in the drug content and physical appearance of microspheres.

  13. Temperature dependence of creep compliance of highly cross-linked epoxy: A molecular simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Khabaz, Fardin, E-mail:; Khare, Ketan S., E-mail:; Khare, Rajesh, E-mail: [Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409 (United States)


    We have used molecular dynamics (MD) simulations to study the effect of temperature on the creep compliance of neat cross-linked epoxy. Experimental studies of mechanical behavior of cross-linked epoxy in literature commonly report creep compliance values, whereas molecular simulations of these systems have primarily focused on the Young’s modulus. In this work, in order to obtain a more direct comparison between experiments and simulations, atomistically detailed models of the cross-linked epoxy are used to study their creep compliance as a function of temperature using MD simulations. The creep tests are performed by applying a constant tensile stress and monitoring the resulting strain in the system. Our results show that simulated values of creep compliance increase with an increase in both time and temperature. We believe that such calculations of the creep compliance, along with the use of time temperature superposition, hold great promise in connecting the molecular insight obtained from molecular simulation at small length- and time-scales with the experimental behavior of such materials. To the best of our knowledge, this work is the first reported effort that investigates the creep compliance behavior of cross-linked epoxy using MD simulations.

  14. ROMP-based thermosetting polymers from modified castor oil with various cross-linking agents (United States)

    Ding, Rui

    Polymers derived from bio-renewable resources are finding an increase in global demand. In addition, polymers with distinctive functionalities are required in certain advanced fields, such as aerospace and civil engineering. In an attempt to meet both these needs, the goal of this work aims to develop a range of bio-based thermosetting matrix polymers for potential applications in multifunctional composites. Ring-opening metathesis polymerization (ROMP), which recently has been explored as a powerful method in polymer chemistry, was employed as a unique pathway to polymerize agricultural oil-based reactants. Specifically, a novel norbornyl-functionalized castor oil alcohol (NCA) was investigated to polymerize different cross-linking agents using ROMP. The effects of incorporating dicyclopentadiene (DCPD) and a norbornene-based crosslinker (CL) were systematically evaluated with respect to curing behavior and thermal mechanical properties of the polymers. Isothermal differential scanning calorimetry (DSC) was used to investigate the conversion during cure. Dynamic DSC scans at multiple heating rates revealed conversion-dependent activation energy by Ozawa-Flynn-Wall analysis. The glass transition temperature, storage modulus, and loss modulus for NCA/DCPD and NCA/CL copolymers with different cross-linking agent loading were compared using dynamic mechanical analysis. Cross-link density was examined to explain the very different dynamic mechanical behavior. Mechanical stress-strain curves were developed through tensile test, and thermal stability of the cross-linked polymers was evaluated by thermogravimetric analysis to further investigate the structure-property relationships in these systems.

  15. Ionically cross-linked hyaluronic acid: wetting, lubrication, and viscoelasticity of a modified adhesion barrier gel

    Directory of Open Access Journals (Sweden)

    Katherine Vorvolakos


    Full Text Available Katherine Vorvolakos1, Irada S Isayeva1, Hoan-My Do Luu1, Dinesh V Patwardhan1, Steven K Pollack21Division of Chemistry and Material Science, 2Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USAAbstract: Hyaluronic acid (HA, in linear or cross-linked form, is a common component of cosmetics, personal care products, combination medical products, and medical devices. In all cases, the ability of the HA solution or gel to wet surfaces and/or disrupt and lubricate interfaces is a limiting feature of its mechanism of action. We synthesized ferric ion–cross-linked networks of HA based on an adhesion barrier, varied the degree of cross-linking, and performed wetting goniometry, viscometry, and dynamic mechanical analysis. As cross-linking increases, so do contact angle, viscosity, storage modulus, and loss modulus; thus, wetting and lubrication are compromised. These findings have implications in medical device materials, such as adhesion barriers and mucosal drug delivery vehicles.Keywords: hyaluron, adhesion barrier, wetting, contact angle, viscosity, lubrication, elasticity, viscoelastic, hydrogel, ferric

  16. Pickering emulsions stabilized by whey protein nanoparticles prepared by thermal cross-linking

    NARCIS (Netherlands)

    Wu, Jiande; Shi, Mengxuan; Li, Wei; Zhao, Luhai; Wang, Ze; Yan, Xinzhong; Norde, Willem; Li, Yuan


    A Pickering (o/w) emulsion was formed and stabilized by whey protein isolate nanoparticles (WPI NPs). Those WPI NPs were prepared by thermal cross-linking of denatured WPI proteins within w/o emulsion droplets at 80. °C for 15. min. During heating of w/o emulsions containing 10% (w/v) WPI protein

  17. Corneal Cross-Linking for Pediatric Keratoconus : Long-Term Results

    NARCIS (Netherlands)

    Godefrooij, Daniel A; Soeters, Nienke; Imhof, Saskia M; Wisse, Robert P L


    PURPOSE: To assess the efficacy and safety of cross-linking in pediatric patients with keratoconus and to provide a systematic literature overview regarding this subject. METHODS: In this prospective cohort, 54 eyes of 36 pediatric patients with keratoconus underwent standard epithelium-off cross-li

  18. Is dialdehyde starch a valuable cross-linking agent for collagen/elastin based materials? (United States)

    Skopinska-Wisniewska, J; Wegrzynowska-Drzymalska, K; Bajek, A; Maj, M; Sionkowska, A


    Collagen and elastin are the main structural proteins in mammal bodies. They provide mechanical support, strength, and elasticity to various organs and tissues, e.g. skin, tendons, arteries, and bones. They are readily available, biodegradable, biocompatible and they stimulate cell growth. The physicochemical properties of collagen and elastin-based materials can be modified by cross-linking. Glutaraldehyde is one of the most efficient cross-linking agents. However, the unreacted molecules can be released from the material and cause cytotoxic reactions. Thus, the aim of our work was to investigate the influence of a safer, macromolecular cross-linking agent--dialdehyde starch (DAS). The properties of hydrogels based on collagen/elastin mixtures (95/5, 90/10) containing 5 and 10% of DAS and neutralized via dialysis against deionized water were tested. The homogenous, transparent, stiff hydrogels were obtained. The DAS addition causes the formation of intermolecular cross-linking bonds but does not affect the secondary structure of the proteins. As a result, the thermal stability, mechanical strength, and, surprisingly, swelling ability increased. At the same time, the surface properties test and in vitro study show that the materials are attractive for 3T3 cells. Moreover, the materials containing 10% of DAS are more resistant to enzymatic degradation.

  19. Design and Preparation of Cross-Linked Polystyrene Nanoparticles for Elastomer Reinforcement

    Directory of Open Access Journals (Sweden)

    Ming Lu


    Full Text Available Cross-linked polystyrene (PS particles in a latex form were synthesized by free radical emulsion polymerization. The nano-PS-filled elastomer composites were prepared by the energy-saving latex compounding method. Results showed that the PS particles took a spherical shape in the size of 40–60 nm with a narrow size distribution, and the glass-transition temperature of the PS nanoparticles increased with the cross-linking density. The outcomes from the mechanical properties demonstrated that when filled into styrene-butadiene rubber (SBR, nitrile-butadiene rubber (NBR, and natural rubber (NR, the cross-linked PS nano-particles exhibited excellent reinforcing capabilities in all the three matrices, and the best in the SBR matrix. In comparison with that of the carbon black filled composites, another distinguished advantage of the cross-linked PS particles filled elastomer composites was found to be light weight in density, which could help to save tremendous amount of energy when put into end products.

  20. Mocaf cross-linking with gluten to improve the quality of mocaf dough (United States)

    Raharja, Sapta; Udin, Faqih; Suparno, Ono; Febrianti, Faricha Helfi; Nuraisyah, Ani


    Crosslink between mocaf and gluten is conducted to increase the using of mocaf which has very big potential in Indonesia. The effort of cross-linking between mocaf and gluten is to get mocaf flour with better dough quality. This study aims to produce a cross-linked mocaf-gluten flour and to evaluate the influence of heating temperature (X1) and the addition of gluten concentration (X2) using completely randomized design factorial (RAFL). The cross-linking is carried out in alkaline solution with 10%, 20%, and 30% gluten addition and heating temperature at 50, 55, and 60 °C. The result showed that mocaf - gluten flour with the treatment of 30% gluten addition at 55 °C had the largest amount of protein and baking expansion (i.e 19.77% and 2.78 mL/g). Swelling power of the flour was increasing along with the increasing of water absorbing capacity of the mocaf - gluten flour. Birefringence properties of mocaf - gluten flour tended to be reduced as the increasing heating temperature. FTIR analysis of mocaf - gluten flour showed that there was peak strengthening of the infrared spectrum of the C - N bond at 1167-1159 cm-1 which was presumably resulted from the gluten addition and the cross-linking properties.

  1. Standard and hypoosmolar corneal cross-linking in various pachymetry groups

    NARCIS (Netherlands)

    Soeters, Nienke; Tahzib, Nayyirih G


    PURPOSE: To investigate the influence of corneal thickness on the outcome of corneal cross-linking (CXL) for progressive keratoconus. METHODS: In this cohort study, 72 unilateral eyes were treated by CXL and divided into three groups according to central corneal thickness (CCT) measured by ultrasoun

  2. Phosphoric acid doped polysulfone membranes with aminopyridine pendant groups and imidazole cross-links

    DEFF Research Database (Denmark)

    Hink, Steffen; Elsøe, Katrine; Cleemann, Lars Nilausen;


    Udel polysulfone based membranes with 4-aminopyridine pendant groups and cross-linking imidazole units are synthesized in a simple two step reaction. The ratio of 4-aminopyridine and imidazole is varied and the materials are extensively characterized. The average phosphoric acid uptake (in 85 wt...

  3. An Investigation on Rheology of Peroxide Cross-linking of Low Density Polyethylene

    DEFF Research Database (Denmark)

    Ghasemi, Ismaeil; Rasmussen, Henrik K.; Szabo, Peter


    One of the most important post-reactor modifications of polyethylene is cross-linking. It improves some properties of polyethylene such as environmental stress cracking resistance, chemical and abrasion resistance, and service temperature. In this study, the effect of peroxide cross...

  4. Effect of dual modification with hydroxypropylation and cross-linking on physicochemical properties of taro starch. (United States)

    Hazarika, Bidyut Jyoti; Sit, Nandan


    Dual modification of taro starch by hydroxypropylation and cross-linking was carried out and the properties of the modified starches were investigated. Two different levels of hydroxypropylation (5 and 10%) and cross-linking (0.05 and 0.10%) were used in different sequences. The amylose contents of the starch decreased due to single and dual modification. For the dual-modified starches, the swelling, solubility and clarity was found to increase with level of hydroxypropylation and decrease with level of cross-linking. The freeze-thaw stability of the dual-modified starches was also affected by the sequence of modification. The viscosities of the cross-linked and dual-modified starches were more than native and hydroxypropylated starches. The firmness of the dual-modified starches was also higher than native and single modified starches. The dual-modified starches have benefits of both type of modifications and could be used for specific purposes e.g. food products requiring high viscosity as well as freeze-thaw stability.

  5. Ultraviolet cross-linking of helical oligonucleotides to two monoclonal MRL-1pr/1pr anti-DNA autoantibodies. Variations in H and L chain binding to DNA

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Y.J.; Stollar, B.D. (Tufts Univ., Boston, MA (USA))


    Experiments were performed to determine whether both H and L chains of different anti-native DNA autoantibodies are uniformly involved in binding to DNA. Two purified monoclonal mouse (MRL-1pr/1pr) IgG autoantibodies, H241 and 2C10, were tested. They both bound synthetic helical oligonucleotides of 10 to 20 base pairs in a gel electrophoresis retardation assay but differed in their preferences for given base sequences. Exposure of antibody-radiolabeled oligonucleotide mixtures to UV light (254 nm) for 10 min led to specific covalent cross-linking of oligonucleotide to both the H and the L chains of H241 but only to the H chain of 2C10. Single labeling events were detected without higher aggregation. The oligonucleotides were not cross-linked to unrelated IgG, even after 2 h of irradiation. Cross-linked (radioactively labeled) H and L chains of H241 and 2C10 were isolated from denaturing electrophoresis gels and digested with lysyl endopeptidase and/or staphylococcal V8 protease. H241 and 2C10 H chains each yielded a major labeled peptide fragment, but the peptides from the two antibodies were different. These experiments measured only some of the antibody-DNA interactions, probably with bases in the major groove of the DNA. They indicated that two MRL-1pr/1pr IgG anti-native DNA antibodies differ in their H and L chain contacts with DNA and provide an approach to identifying affinity-labeled binding sites in the antibodies.

  6. Synthesis, Optimization, Property, Characterization, and Application of Dialdehyde Cross-Linking Guar Gum

    Directory of Open Access Journals (Sweden)

    Tang Hongbo


    Full Text Available Dialdehyde cross-linking guar gum (DCLGG, as a novel material, was synthesized using phosphorus oxychloride as a cross-linking reagent, sodium periodate as an oxidant, and ethanol as a solvent through keeping the original particle form of guar gum. The process parameters such as the reaction temperature, reaction time, pH, amount of sodium periodate, and amount of ethanol were optimized by the response surface methodology in order to obtain the regression model of the oxidization. The covalent binding of L-asparagine onto the surfaces of DCLGG was further investigated. The results showed that the best technological conditions for preparing DCLGG were as follows: reaction temperature = 40°C, reaction time = 3.0 h, pH = 4.0, and amount of ethanol = 74.5%. The swelling power of DCLGG was intermediate between cross-linking guar gum and dialdehyde guar gum. The cross-linking and dialdehyde oxidization reduced the viscosity of GG. The cross-liking reduced the melting enthalpy of GG. However, the oxidization increased melting enthalpy of ACLGG. The thermal stability of GG was increased by cross-linking or oxidization. The variation of the onset decomposition temperature and end decomposition temperature of GG was not consistent with thermal stability of GG. L-asparagine could be chemically bound well by DCLGG through forming Schiff base under the weak acidity. The maximum adsorption capacity of L-asparagine on DCLGG with aldehyde content of 56.2% reached 21.9 mg/g.

  7. Wear measurement of highly cross-linked UHMWPE using a 7Be tracer implantation technique. (United States)

    Wimmer, Markus A; Laurent, Michel P; Dwiwedi, Yasha; Gallardo, Luis A; Chipps, Kelly A; Blackmon, Jeffery C; Kozub, Raymond L; Bardayan, Daniel W; Gross, Carl J; Stracener, Daniel W; Smith, Michael S; Nesaraja, Caroline D; Erikson, Luke; Patel, Nidhi; Rehm, Karl E; Ahmad, Irshad; Greene, John P; Greife, Uwe


    The very low wear rates achieved with the current highly cross-linked ultrahigh molecular weight polyethylenes (UHMWPE) used in joint prostheses have proven to be difficult to measure accurately by gravimetry. Tracer methods are therefore being explored. The purpose of this study was to perform a proof-of-concept experiment on the use of the radioactive tracer beryllium-7 ((7)Be) for the determination of in vitro wear in a highly cross-linked orthopedic UHMWPE. Three cross-linked and four conventional UHMWPE pins made from compression-molded GUR 1050, were activated with 10(9) to 10(10) (7)Be nuclei using a new implantation setup that produced a homogenous distribution of implanted nuclei up to 8.5 μm below the surface. The pins were tested for wear in a six-station pin-on-flat apparatus for up to 7.1 million cycles (178 km). A Germanium gamma detector was employed to determine activity loss of the UHMWPE pins at preset intervals during the wear test. The wear of the cross-linked UHMWPE pins was readily detected and estimated to be 17 ± 3 μg per million cycles. The conventional-to-cross-linked ratio of the wear rates was 13.1 ± 0.8, in the expected range for these materials. Oxidative degradation damage from implantation was negligible; however, a weak dependence of wear on implantation dose was observed limiting the number of radioactive tracer atoms that can be introduced. Future applications of this tracer technology may include the analysis of location-specific wear, such as loss of material in the post or backside of a tibial insert.

  8. Preparation and characterization of a micro-porous polymer electrolyte with cross-linking network structure for dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Wei, T.C.; Wan, C.C.; Wang, Y.Y. [Department of Chemical Engineering, National Tsing-Hua University, 101, Section 2, Kuang Fu Road, Hsin-Chu 300 (China)


    A PVdF-HFP/PEG/PEGDMA cross-linking film has been prepared as the electrolyte for dye-sensitized solar cell (DSSC). The film can be made porous by controlling the evaporation behavior of solvents. Room temperature ionic conductivity of the micro-porous film exceeds 1 mS/cm. In addition, we also evaluated the significance of cell gap in DSSC by analyzing the impedance spectroscopy of the cell with polymer electrolyte. Finally, by decreasing the film thickness, the DSSC equipped with 11 {mu}m, micro-porous and cross-linked film showed a conversion efficiency over 4% and 5% under 1 and 0.16 Sun, respectively. (author)

  9. Applications of Crown Ether Cross-Linked Chitosan for the Analysis of Lead and Cadmium in Environmental Water Samples

    Institute of Scientific and Technical Information of China (English)


    A new type of crown ether cross-linked chitosan was synthesized by the reaction of chitosan with 4,4'-dibromodibenzo-18-crown-6 (Br-DBC). Its token structure was analyzed with FT-IR and NMR and the adsorption behaviors for lead and cadmium in environmental water samples by FAAS were studied. In addition the best analysis conditions were discussed and the adsorption mechanism was explained. As the enrichment factor is above 100, both recoveries are 94%-106%, the detection limits of lead and cadmium are 0.5μg*L-1and 0.04 μg*L-1 and the relatively standard deviations of lead and cadmium are 3.1% and 2.8% respectively, this new method was successfully applied to the determination of environmental water samples. This method is fast and simple and it greatly enhances the determination ability of FAAS for lead and cadmium.

  10. Ligand-induced movements of inner transmembrane helices of Glut1 revealed by chemical cross-linking of di-cysteine mutants.

    Directory of Open Access Journals (Sweden)

    Mike Mueckler

    Full Text Available The relative orientation and proximity of the pseudo-symmetrical inner transmembrane helical pairs 5/8 and 2/11 of Glut1 were analyzed by chemical cross-linking of di-cysteine mutants. Thirteen functional di-cysteine mutants were created from a C-less Glut1 reporter construct containing cysteine substitutions in helices 5 and 8 or helices 2 and 11. The mutants were expressed in Xenopus oocytes and the sensitivity of each mutant to intramolecular cross-linking by two homobifunctional thiol-specific reagents was ascertained by protease cleavage followed by immunoblot analysis. Five of 9 mutants with cysteine residues predicted to lie in close proximity to each other were susceptible to cross-linking by one or both reagents. None of 4 mutants with cysteine substitutions predicted to lie on opposite faces of their respective helices was susceptible to cross-linking. Additionally, the cross-linking of a di-cysteine pair (A70C/M420C, helices 2/11 predicted to lie near the exoplasmic face of the membrane was stimulated by ethylidene glucose, a non-transported glucose analog that preferentially binds to the exofacial substrate-binding site, suggesting that the binding of this ligand stimulates the closure of helices at the exoplasmic face of the membrane. In contrast, the cross-linking of a second di-cysteine pair (T158C/L325, helices 5/8, predicted to lie near the cytoplasmic face of the membrane, was stimulated by cytochalasin B, a glucose transport inhibitor that competitively inhibits substrate efflux, suggesting that this compound recruits the transporter to a conformational state in which closure of inner helices occurs at the cytoplasmic face of the membrane. This observation provides a structural explanation for the competitive inhibition of substrate efflux by cytochalasin B. These data indicate that the binding of competitive inhibitors of glucose efflux or influx induce occluded states in the transporter in which substrate is excluded from

  11. Oegylated and cross-linking carbazole dendrons and dendrimers: Synthesis, characterization, assembly and thin film fabrication (United States)

    Felipe, Mary Jane Legaspi


    Dendrimers and dendrons (fractional dendrimers) are macromolecular structures that have well-defined molecular weights and precise number of functional groups. Tailoring these structures has provided designer molecules that can be used for various applications including drug delivery, sensors, and anti-biofouling surfaces. Overall, this dissertation provides novel protocols for the understanding of molecular design, synthesis, and structure-property relationship of OEGylated and conjugated carbazole dendrons and dendrimers. In this design, the use of oligo(ethylene glycol) (OEG) allows for the fabrication of biocompatible materials and imparts hydrophilicity on the structure while the carbazole functionality allows the cross-linking of these designer molecules. Such fine-tuning of macromolecular structures leading to the fabrication of anti-biofouling thin films, nanostructuring at the air-water interface, and assembly into supramolecular superstructures are considered in this dissertation. Chapter 2 details the synthesis, characterization, and electrochemical cross-linking of OEGylated linear dendrons and "Janus-type" dendrimers. Cross-linking the carbazole moieties enables the deposition of these films on Au, indium tin oxide-coated glass, and doped silicon through cyclic voltammetry and provides films with secondary level of organization imparted by the inter- and intra-molecular interaction among the carbazole units. Chapter 3 describes the fabrication of nonspecific protein adsorption resistant surfaces through electrochemical grafting of three different dendrons on SAM carbazole-coated gold substrates. The predictable shape of each dendron and the ability to cross-link the carbazole units have enabled parametrization of OEG conformation and density on these interfaces. Chapter 4 demonstrates the fundamental architectural requirements for obtaining stable films with OEGylated linear dendron molecules providing a new architectural design of nanostructuring

  12. Synthesis and properties of reprocessable sulfonated polyimides cross-linked via acid stimulation for use as proton exchange membranes (United States)

    Zhang, Boping; Ni, Jiangpeng; Xiang, Xiongzhi; Wang, Lei; Chen, Yongming


    Cross-linked sulfonated polyimides are one of the most promising materials for proton exchange membrane (PEM) applications. However, these cross-linked membranes are difficult to reprocess because they are insoluble. In this study, a series of cross-linkable sulfonated polyimides with flexible pendant alkyl side chains containing trimethoxysilyl groups is successfully synthesized. The cross-linkable polymers are highly soluble in common solvents and can be used to prepare tough and smooth films. Before the cross-linking reaction is complete, the membranes can be reprocessed, and the recovery rate of the prepared films falls within an acceptable range. The cross-linked membranes are obtained rapidly when the cross-linkable membranes are immersed in an acid solution, yielding a cross-linking density of the gel fraction of greater than 90%. The cross-linked membranes exhibit high proton conductivities and tensile strengths under hydrous conditions. Compared with those of pristine membranes, the oxidative and hydrolytic stabilities of the cross-linked membranes are significantly higher. The CSPI-70 membrane shows considerable power density in a direct methanol fuel cell (DMFC) test. All of these results suggest that the prepared cross-linked membranes have great potential for applications in proton exchange membrane fuel cells.

  13. Simulation and theory of self-assembly and network formation in reversibly cross-linked equilibrium polymers (United States)

    Kindt, James T.


    A simulation model of hard spheres capable of reversible assembly into chains, which then may reversibly cross-link into networks, has been studied through grand canonical Monte Carlo simulation. Effects of varying intra- and interchain bond strengths, chain flexibilities, and restrictions on cross-linking angle were investigated. Observations including chain-length distributions and phase separation could be captured in most cases using a simple model theory. The coupling of chain growth to cross-linking was shown to be highly sensitive to the treatment of cross-linking by chain ends. In some systems, ladderlike domains of several cross-links joining two chains were common, resulting from cooperativity in the cross-linking. Extended to account for this phenomenon, the model theory predicts that such cooperativity will suppress phase separation in weakly polymerizing chains and at high cross-link concentration. In the present model, cross-linking stabilizes the isotropic phase with respect to the nematic phase, causing a shift in the isotropic-nematic transition to higher monomer concentration than in simple equilibrium polymers.

  14. Wheat gluten films cross-linked with 1-ethyl-3-(3-demethylaminopropyl) carbodiimide and N-hydroxysuccinimide

    NARCIS (Netherlands)

    Tropini, V.; Lens, J.P.; Mulder, W.J.; Silvestre, F.


    Wheat gluten films were cast from aqueous dispersions containing 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) as cross-linking reagents and glycerol as a plasticizer. Cross-linking was carried out to improve film properties such as water sensitivity and tensile

  15. Comparative studies of photochemical cross-linking methods for stabilizing the bulk hetero-junction morphology in polymer solar cells

    DEFF Research Database (Denmark)

    Carlé, Jon Eggert; Andreasen, Birgitta; Tromholt, Thomas;


    -light illumination to give solvent resistant films and reduced phase separation and growth of PCBM crystallites in polymer:PCBM films. The stability of solar cells based on the cross-linked polymers was tested under various conditions. This study showed that cross-linking can improve morphological stability...

  16. Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices

    Directory of Open Access Journals (Sweden)

    Fernanda M. Carbinatto


    Full Text Available Cross-linked pectin/high amylose mixtures were evaluated as a new excipient for matrix tablets formulations, since the mixing of polymers and cross-linking reaction represent rational tools to reach materials with modulated and specific properties that meet specific therapeutic needs. Objective: In this work the influence of polymer ratio and cross-linking process on the swelling and the mechanism driving the drug release from swellable matrix tablets prepared with this excipient was investigated. Methods: Cross-linked samples were characterized by their micromeritic properties (size and shape, density, angle of repose and flow rate and liquid uptake ability. Matrix tablets were evaluated according their physical properties and the drug release rates and mechanisms were also investigated. Results: Cross-linked samples demonstrated size homogeneity and irregular shape, with liquid uptake ability insensible to pH. Cross-linking process of samples allowed the control of drug release rates and the drug release mechanism was influenced by both polymer ratio and cross-linking process. The drug release of samples with minor proportion of pectin was driven by an anomalous transport and the increase of the pectin proportion contributed to the erosion of the matrix. Conclusion: The cross-linked mixtures of high amylose and pectin showed a suitable excipient for slowing the drug release rates.

  17. Dehydration of an ethanol/water azeotrope through alginate-DNA membranes cross-linked with metal ions by pervaporation. (United States)

    Uragami, Tadashi; Banno, Masashi; Miyata, Takashi


    To obtain high dehydration membranes for an ethanol/water azeotrope, dried blend membranes prepared from mixtures of sodium alginate (Alg-Na) and sodium deoxyribonucleate (DNA-Na) were cross-linked by immersing in a methanol solution of CaCl2 or MaCl2. In the dehydration of an ethanol/water azeotropic mixture by pervaporation, the effects of immersion time in methanol solution of CaCl2 or MaCl2 on the permeation rate and water/ethanol selectivity through Alg-DNA/Ca(2+) and Alg-DNA/Mg(2+) cross-linked membranes were investigated. Alg-DNA/Mg(2+) cross-linked membrane immersed for 12h in methanol solution of MaCl2 exhibited the highest water/ethanol selectivity. This results from depressed swelling of the membranes by formation of a cross-linked structure. However, excess immersion in solution containing cross-linker led to an increase in the hydrophobicity of cross-linked membrane. Therefore, the water/ethanol selectivity of Alg-DNA/Mg(2+) cross-linked membranes with an excess immersion in cross-linking solution was lowered. The relationship between the structure of Alg-DNA/Ca(2+) and Alg-DNA/Mg(2+) cross-linked membranes and their permeation and separation characteristics during pervaporation of an ethanol/water azeotropic mixture is discussed in detail.

  18. Impaired processing of FLP and NLP peptides in carboxypeptidase E (EGL-21)-deficient Caenorhabditis elegans as analyzed by mass spectrometry. (United States)

    Husson, Steven J; Janssen, Tom; Baggerman, Geert; Bogert, Brigitte; Kahn-Kirby, Amanda H; Ashrafi, Kaveh; Schoofs, Liliane


    Biologically active peptides are synthesized from inactive pre-proproteins or peptide precursors by the sequential actions of processing enzymes. Proprotein convertases cleave the precursor at pairs of basic amino acids, which are then removed from the carboxyl terminus of the generated fragments by a specific carboxypeptidase. Caenorhabditis elegans strains lacking proprotein convertase EGL-3 display a severely impaired neuropeptide profile (Husson et al. 2006, J. Neurochem.98, 1999-2012). In the present study, we examined the role of the C. elegans carboxypeptidase E orthologue EGL-21 in the processing of peptide precursors. More than 100 carboxy-terminally extended neuropeptides were detected in egl-21 mutant strains. These findings suggest that EGL-21 is a major carboxypeptidase involved in the processing of FMRFamide-like peptide (FLP) precursors and neuropeptide-like protein (NLP) precursors. The impaired peptide profile of egl-3 and egl-21 mutants is reflected in some similar phenotypes. They both share a severe widening of the intestinal lumen, locomotion defects, and retention of embryos. In addition, egl-3 animals have decreased intestinal fat content. Taken together, these results suggest that EGL-3 and EGL-21 are key enzymes for the proper processing of neuropeptides that control egg-laying, locomotion, fat storage and the nutritional status.

  19. Metal cation cross-linked nanocellulose hydrogels as tissue engineering substrates. (United States)

    Zander, Nicole E; Dong, Hong; Steele, Joshua; Grant, John T


    The use of cellulose materials for biomedical applications is attractive due to their low cost, biocompatibility, and biodegradability. Specific processing of cellulose to yield nanofibrils further improves mechanical properties and suitability as a tissue engineering substrate due to the similarity to the fibrous structure, porosity, and size-scale of the native extracellular matrix. In order to generate the substrate, nanocellulose hydrogels were fabricated from carboxylated cellulose nanofibrils via hydrogelation using metal salts. Hydrogels cross-linked with Ca(2+) and Fe(3+) were investigated as tissue culture substrates for C3H10T1/2 fibroblast cells. Control substrates as well as those with physically adsorbed and covalently attached fibronectin protein were evaluated with X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), and enzyme linked immunosorbent assay (ELISA). Significantly more cells were attached to surfaces modified with protein, with the highest number of cells adhered to the calcium cross-linked hydrogels with covalently attached protein.

  20. Cross-linked self-assembled micelle based nanosensor for intracellular pH measurements

    DEFF Research Database (Denmark)

    Ek, Pramod Kumar; Søndergaard, Rikke Vicki; Windschiegl, Barbara


    A micelle based nanosensor was synthesized and investigated as a ratiometric pH sensor for use in measurements in living cells by fluorescent microscopy. The nanosensor synthesis was based on self-assembly of an amphiphilic triblock copolymer, which was chemically cross-linked after micelle......-linked by an amidation reaction using 3,6,9-trioxaundecandioic acid cross-linker. The cross-linked micelle was functionalized with two pH sensitive fluorophores and one reference fluorophore, which resulted in a highly uniform ratiometric pH nanosensor with a diameter of 29 nm. The use of two sensor fluorophores...... provided a sensor with a very broad measurement range that seems to be influenced by the chemical design of the sensor. Cell experiments show that the sensor is capable of monitoring the pH distributions in HeLa cells....

  1. The cross-linking influence of electromagnetic radiation on water-soluble polyacrylan compositions with biopolymers

    Directory of Open Access Journals (Sweden)

    B. Grabowska


    Full Text Available The results of examinations of the cross-linking influence of electromagnetic radiation - in a microwave range – on polyacrylancompositions with biopolymers, are presented in the hereby paper. The cross-linking process of the tested compositions was determined on the basis of the FT-IR spectroscopic methods. It was shown that microwave operations can lead to the formation of new cross-linkedstructures with strong covalent bonds. The adsorption process and formation of active centres in polymer molecules as well as in highsilica sand were found due to microwave radiations. In this process hydroxyl groups (-OH - present in a polymer - and silane groups (Si- O-H - present in a matrix - are mainly taking part. Spectroscopic and strength tests performed for the system: biopolymer binding agent – matrix indicate that the microwave radiation can be applied for hardening moulding sands with biopolymer binders.

  2. Thermally Conductive-Silicone Composites with Thermally Reversible Cross-links. (United States)

    Wertz, J T; Kuczynski, J P; Boday, D J


    Thermally conductive-silicone composites that contain thermally reversible cross-links were prepared by blending diene- and dienophile-functionalized polydimethylsiloxane (PDMS) with an aluminum oxide conductive filler. This class of thermally conductive-silicones are useful as thermal interface materials (TIMs) within Information Technology (IT) hardware applications to allow rework of valuable components. The composites were rendered reworkable via retro Diels-Alder cross-links when temperatures were elevated above 130 °C and required little mechanical force to remove, making them advantageous over other TIM materials. Results show high thermal conductivity (0.4 W/m·K) at low filler loadings (45 wt %) compared to other TIM solutions (>45 wt %). Additionally, the adhesion of the material was found to be ∼7 times greater at lower temperatures (25 °C) and ∼2 times greater at higher temperatures (120 °C) than commercially available TIMs.

  3. Development and Evaluation of Dual Cross-Linked Pulsatile Beads for Chronotherapy of Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Abanesh kumar Bansal


    Full Text Available In the present investigation, pulsatile release beads were prepared by ionic gelation technique. Lornoxicam dual cross-linked beads were prepared by dropping dispersed phase of lornoxicam, pectin, and sodium alginate into the dispersion phase of different concentrations of calcium chloride solution followed by aluminium chloride solution. The formulated beads were further coated by Eudragit L & S 100 in the ratio 1 : 2 w/w in order to achieve desired lag time. In vitro release study showed lag time of 5–8 h before release of lornoxicam from the formulated beads. Thus, formulated dual cross-linked beads when administered at bed time may release lornoxicam when needed most for chronotherapeutics of early morning rheumatoid arthritis attacks in chronic patients.

  4. Polymeric Nanocapsule from Silica Nanoparticle@Cross-linked Polymer Nanoparticles via One-Pot Approach

    Directory of Open Access Journals (Sweden)

    Shen Ruoping


    Full Text Available Abstract A facile strategy was developed here to prepare cross-linked polymeric nanocapsules (CP nanocapsules with silica nanoparticles as templates. The silica nanoparticle@cross-linked polymer nanoparticles were prepared by the encapsulation of the silica nanoparticles by the one-pot approach via surface-initiated atom transfer radical polymerization of hydroxyethyl acrylate in the presence ofN,N′-methylenebisacrylamide as a cross-linker from the initiator-modified silica nanoparticles. After the silica nanoparticle templates were etched with hydrofluoric acid, the CP nanocapsules with particle size of about 100 nm were obtained. The strategy developed was confirmed with Fourier transform infrared, thermogravimetric analysis and transmission electron microscopy.

  5. Biochemical properties of bioplastics made from wheat gliadins cross-linked with cinnamaldehyde. (United States)

    Balaguer, M Pau; Gómez-Estaca, Joaquín; Gavara, Rafael; Hernandez-Munoz, Pilar


    The aim of this work has been to study the modification of gliadin films with cinnamaldehyde as a potential cross-linker agent. The molecular weight profile and cross-linking density showed that cinnamaldehyde increased reticulation in the resulting films. The participation of free amino groups of the protein in the newly created entanglements could be a possible mechanism of connection between the polypeptidic chains. The combination of a Schiff base and a Michael addition is a feasible approach to understanding this mechanism. The protein solubility in different media pointed to lower participation by both noncovalent and disulfide bonds in stabilizing the structure of the cross-linked films. The new covalent bonds formed by the cinnamaldehyde treatment hampered water absorption and weight loss, leading to more water-resistant matrices which had not disintegrated after 5 months. The properties of this novel bioplastic could be modified to suit the intended application by using cinnamaldehyde, a naturally occurring compound.

  6. Synthesis of Cross-Linked Polymeric Micelle pH Nanosensors

    DEFF Research Database (Denmark)

    Ek, Pramod Kumar; Jølck, Rasmus Irming; Andresen, Thomas Lars


    The design flexibility that polymeric micelles offer in the fabrication of optical nanosensors for ratiometric pH measurements is investigated. pH nanosensors based on polymeric micelles are synthesized either by a mixed-micellization approach or by a postmicelle modification strategy. In the mixed......-micellization approach, self-assembly of functionalized unimers followed by shell cross-linking by copper-catalyzed azide-alkyne cycloaddition (CuAAC) results in stabilized cRGD-functionalized micelle pH nanosensors. In the postmicelle modification strategy, simultaneous cross-linking and fluorophore conjugation...... at the micelle shell using CuAAC results in a stabilized micelle pH nanosensor. Compared to the postmicelle modification strategy, the mixed-micellization approach increases the control of the overall composition of the nanosensors.Both approaches provide stable nanosensors with similar pKa profiles and thereby...

  7. [Use of native and cross-linked collagen membranes for guided tissue and bone regeneration]. (United States)

    Schwarz, Frank; Sager, Martin; Rothamel, Daniel; Herten, Monika; Sculean, Anton; Becker, Jürgen


    A material which is used as a barrier for GBR/GTR procedures has to satisfy several physicochemical characteristics such as biocompatibility, tissue integration, barrier function, and dimensional stability. Recently, many investigations reported on the use of products derived from type I and type III porcine or bovine collagen. Collagen membranes are predominantly resorbed by enzymatic activity (protease and collagenase). To decrease resorption, various physical and chemical cross-linking techniques have been used. Although nowadays cross-linking of collagen seems to be a commonly used procedure, its impact on physicochemical properties of the membrane is still unknown. The aim of the present literature review is to evaluate the potential use of different collagen membranes for GBR/GTR procedures.

  8. Synthesis and Characterisation of Novel Cross Linked Biopolyesters from Olive Oil as Eco-friendly Biodegradable Materials

    Directory of Open Access Journals (Sweden)

    J. Shakina


    Full Text Available Novel cross linked biopolyesters were synthesised from naturally available olive oil, oligomeric polytriglyceride fumarate (o-PTF was prepared by glycerolysis of the olive oil followed by condensation with maleic anhydride. The (o-PTF was characterised by spectral (FTIR, UV, NMR and physicochemical properties (specific gravity, viscosity, saponification value, iodine value. The molecular weight of o-PTF was estimated using gel permeation chromatography (GPC. The cross linked biopolyesters were prepared by treating o-PTF of olive with N-vinyl-2-pyrrolidone and vinyl acetate. The cross linked biopolyesters were evaluated for spectral properties (FT IR, cross linked density, thermal properties, mechanical properties and biodegradation. The potential antifungal and anti bacterial activities of the newly prepared biopolyesters were evaluated. The environment degradation was assessed by soil burial test. The outcome of the studies has revealed that the newly prepared cross linked biopolyesters are potential biodegradable material for various consumer application like package materials and agricultural applications.

  9. The process of EDC-NHS cross-linking of reconstituted collagen fibres increases collagen fibrillar order and alignment (United States)

    Shepherd, D. V.; Shepherd, J. H.; Ghose, S.; Kew, S. J.; Cameron, R. E.; Best, S. M.


    We describe the production of collagen fibre bundles through a multi-strand, semi-continuous extrusion process. Cross-linking using an EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide), NHS (N-hydroxysuccinimide) combination was considered. Atomic Force Microscopy and Raman spectroscopy focused on how cross-linking affected the collagen fibrillar structure. In the cross-linked fibres, a clear fibrillar structure comparable to native collagen was observed which was not observed in the non-cross-linked fibre. The amide III doublet in the Raman spectra provided additional evidence of alignment in the cross-linked fibres. Raman spectroscopy also indicated no residual polyethylene glycol (from the fibre forming buffer) or water in any of the fibres.

  10. Fabrication and properties of irradiation-cross-linked poly(vinyl alcohol)/clay aerogel composites. (United States)

    Chen, Hong-Bing; Liu, Bo; Huang, Wei; Wang, Jun-Sheng; Zeng, Guang; Wu, Wen-Hao; Schiraldi, David A


    Poly(vinyl alcohol) (PVOH)/clay aerogel composites were fabricated by an environmentally friendly freeze-drying of the aqueous precursor suspensions, followed by cross-linking induced by gamma irradiation without chemical additives. The influences of cross-linking conditions, i.e., absorbed dose and polymer loading as well as density on the aerogel structure and properties, were investigated. The absorbed dose of 30 kGy was found to be the optimum dose for fabricating strong PVOH composites; the compressive modulus of an aerogel prepared from an aqueous suspension containing 2 wt % PVOH/8 wt % clay increased 10-fold, and that containing 1 wt % PVOH/9 wt % clay increased 12 times upon cross-linking with a dose of 30 kGy. Increasing the solids concentration led to an increase in the mechanical strength, in accordance with the changes in microstructure from layered structure to network structure. The increase of absorbed dose also led to decreased porous size of the network structure. Cross-linking and the increase of the PVOH lead to decreased thermal stability. The strengthened PVOH/clay aerogels possess very low flammability, as measured by cone calorimetry, with heat, smoke, and volatile products release value decreasing as increasing clay content. The mechanism of flame retardation in these materials was investigated with weight loss, FTIR, WAXD, and SEM of the burned residues. The proposed mechanism is that with decreasing fuel content (increasing clay content), increased heat and mass transport barriers are developed; simultaneously low levels of thermal conductivity are maintained during the burning.

  11. Sorption of adamantane phenylamide derivatives on hyper-cross-linked polystyrene from water-acetonitrile eluents (United States)

    Shafigulin, R. V.; Konstantinov, A. V.; Bulanova, A. V.; Il'in, M. M.; Davankov, V. A.


    Study of the main physicochemical features of the sorption of phenylamide adamantane derivatives on hyper-cross-linked polystyrene from water-acetonitrile solutions shows that both hydrophobic and electronic interactions make a large contribution to retention, especially for a chlorine-containing derivative in which there are π- p and π- d interactions between the outer-shell electrons of the chlorine atom in addition to π- π interactions between aromatic fragments of the sorbate and sorbent.

  12. Effects of polymerization on the oxygen carrying and redox properties of diaspirin cross-linked hemoglobin. (United States)

    Rogers, M S; Ryan, B B; Cashon, R E; Alayash, A I


    Human hemoglobin site specifically cross-linked with bis(3,5-dibromosalicyl)fumarate results in a low oxygen affinity hemoglobin-based red cell substitute (alpha-DBBF). Polymerization of alpha-DBBF by bis(maleoylglycylamide) polyethylene glycol (BMAA-PEG) yields poly alpha-DBBF which offers the added benefits of reduced renal clearance and increased retention in the vascular circulation. Oxygen equilibrium curves for poly alpha-DBBF are slightly left-shifted (higher O2 affinity) compared to those of alpha-DBBF; with a diminished cooperativity and a reduced Bohr effect. In rapid mixing experiments (oxygen dissociation and carbon monoxide binding), poly alpha-DBBF exhibits a several fold increase in the overall rate of deoxygenation and carbon monoxide binding kinetics over its cross-linked counterpart. The rate of nitric oxide binding to the oxidized form of poly alpha-DBBF shows little or no change compared to the intramolecularly cross-linked derivative. The reduction of cyanomet poly alpha-DBBF by dithionite is several fold faster than that of HbA0 and alpha-DBBF whereas the slow subsequent cyanide dissociation from the ferrous iron remained unchanged among all proteins. The propensity of poly alpha-DBBF for auto-oxidation is slightly enhanced over alpha-DBBF whereas the extent of oxidative modification by hydrogen peroxide is very similar. Polymerization appears to selectively modify ligand interactions and redox kinetics of the tetrameric cross-linked form which reflects a possibly more open heme pocket. The data suggests that changes in oxygenation properties of hemoglobin brought about by a given modification are not necessarily predictive of other functional changes.

  13. Blind testing of cross-linking/mass spectrometry hybrid methods in CASP11. (United States)

    Schneider, Michael; Belsom, Adam; Rappsilber, Juri; Brock, Oliver


    Hybrid approaches combine computational methods with experimental data. The information contained in the experimental data can be leveraged to probe the structure of proteins otherwise elusive to computational methods. Compared with computational methods, the structures produced by hybrid methods exhibit some degree of experimental validation. In spite of these advantages, most hybrid methods have not yet been validated in blind tests, hampering their development. Here, we describe the first blind test of a specific cross-link based hybrid method in CASP. This blind test was coordinated by the CASP organizers and utilized a novel, high-density cross-linking/mass-spectrometry (CLMS) approach that is able to collect high-density CLMS data in a matter of days. This experimental protocol was developed in the Rappsilber laboratory. This approach exploits the chemistry of a highly reactive, photoactivatable cross-linker to produce an order of magnitude more cross-links than homobifunctional cross-linkers. The Rappsilber laboratory generated experimental CLMS data based on this protocol, submitted the data to the CASP organizers which then released this data to the CASP11 prediction groups in a separate, CLMS assisted modeling experiment. We did not observe a clear improvement of assisted models, presumably because the properties of the CLMS data-uncertainty in cross-link identification and residue-residue assignment, and uneven distribution over the protein-were largely unknown to the prediction groups and their approaches were not yet tailored to this kind of data. We also suggest modifications to the CLMS-CASP experiment and discuss the importance of rigorous blind testing in the development of hybrid methods. Proteins 2016; 84(Suppl 1):152-163. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.

  14. A copper-hydrogen peroxide redox system induces dityrosine cross-links and chemokine oligomerisation. (United States)

    MacGregor, Helen J; Kato, Yoji; Marshall, Lindsay J; Nevell, Thomas G; Shute, Janis K


    The activity of the chemoattractant cytokines, the chemokines, in vivo is enhanced by oligomerisation and aggregation on glycosaminoglycan (GAG), particularly heparan sulphate, side chains of proteoglycans. The chemokine RANTES (CCL5) is a T-lymphocyte and monocyte chemoattractant, which has a minimum tetrameric structure for in vivo activity and a propensity to form higher order oligomers. RANTES is unusual among the chemokines in having five tyrosine residues, an amino acid susceptible to oxidative cross-linking. Using fluorescence emission spectroscopy, Western blot analysis and LCMS-MS, we show that a copper/H2O2 redox system induces the formation of covalent dityrosine cross-links and RANTES oligomerisation with the formation of tetramers, as well as higher order oligomers. Amongst the transition metals tested, namely copper, nickel, mercury, iron and zinc, copper appeared unique in this respect. At high (400 μM) concentrations of H2O2, RANTES monomers, dimers and oligomers are destroyed, but heparan sulphate protects the chemokine from oxidative damage, promoting dityrosine cross-links and multimer formation under oxidative conditions. Low levels of dityrosine cross-links were detected in copper/H2O2-treated IL-8 (CXCL8), which has one tyrosine residue, and none were detected in ENA-78 (CXCL5), which has none. Redox-treated RANTES was fully functional in Boyden chamber assays of T-cell migration and receptor usage on activated T-cells following RANTES oligomerisation was not altered. Our results point to a protective, anti-oxidant, role for heparan sulphate and a previously unrecognised role for copper in chemokine oligomerisation that may offer an explanation for the known anti-inflammatory effect of copper-chelators such as penicillamine and tobramycin.

  15. Comparative study between novel self cross-linking and conventional fluorinated acrylic latex

    Institute of Scientific and Technical Information of China (English)

    Li Jun Chen


    Novel self cross-linking fluorinated acrylic latex (SCLFAL) has been successfully prepared via starved seeded semi-batch emulsion polymerization. The resultant SCLFAL is characterized by Fourier transform infrared (FTTR) spectrometry. Contact angle (CA) and glass transition temperature (Tg) of the film are investigated. Results show that CA and Tg of the film can be improved when the moderate amount of HPMA is introduced into the mixed monomers.

  16. Synthesis and Properties of Lactic Acid-based Cross-linked Poly(ester-amide)

    Institute of Scientific and Technical Information of China (English)

    Yue Ying HE; Cong Ming XIAO


    A novel lactic acid-based cross-linked poly(ester-amide) (LCPEA) was synthesized. The gel fraction of the LCPEA could be modulated by the reaction conditions and it affected the mechanical and thermal properties of the LCPEA. The tensile strength, elastic modulus and bend strength of the LCPEA of 65% gel fraction were 4.65, 136.55 and 39.63 MPa, respectively. The thermal decomposition temperature (50 wt%) of the LCPEA was around 410 ℃.

  17. Histological response to injected gluteraldehyde cross-linked bovine collagen based implant in a rat model

    Directory of Open Access Journals (Sweden)

    Cağlar Melda


    Full Text Available Abstract Background The aim of present study is to investigate the short and long term histopathological alterations caused by submucosal injection of gluteraldehyde cross-linked bovine collagen based on an experimental rat model. Methods Sixty Sprague-Dawley rats were assigned into two groups as group I and II each containing 30 rats. 0.1 ml of saline solution and 0.1 ml of gluteraldehyde cross-linked bovine collagen were injected into the submucosa of bladder of first (control and second groups, respectively. Both group I and II were further subdivided into 3 other groups as Group IA, IB, IC and Group IIA, IIB, IIC according to the sacrification period. Group IA and IIA, IB and IIB, IC and IIC rats (10 rats for each group were sacrificed 3, 6, and 12 months after surgical procedure, respectively. Two slides prepared from injection site of the bladder were evaluated completely for each rat by being unaware of the groups and at random by two independent senior pathologists to determine the fibroblast invasion, collagen formation, capillary ingrowth and inflammatory reaction. Additionally, randomized brain sections from each rat were also examined to detect migration of the injection material. The measurements were made using an ocular micrometer at ×10 magnification. The results were assessed using t-tests for paired and independent samples, with p Results Migration to the brain was not detected in any group. Significant histopathological changes in the gluteraldehyde cross-linked bovine collagen injected groups were fibroblast invasion in 93.3%, collagen formation in 73.3%, capillary ingrowth in 46.6%, inflamatory reaction in 20%. Conclusion We emphasize that the usage of gluteraldehyde cross-linked bovine collagen in children appears to be safe for endoscopic treatment of vesicoureteral reflux.

  18. Long-term results of cornea collagen cross-linking with riboflavin for keratoconus

    Directory of Open Access Journals (Sweden)

    Vinay Agrawal


    Full Text Available Corneal collagen cross-linking with riboflavin and UVA light (CXL is the only method designed to arrest the progression of keratoconus. Visual improvement generally starts 3 months after treatment. Reduction is coma seen on aberrometry in early postoperative phase is also responsible for the improvement in visual acuity. In the light of currently available data we can thus say that CXL is a safe procedure that is successful in arresting keratoconus.

  19. Characterizing RNA-protein interaction using cross-linking and metabolite supplemented nuclear RNA-immunoprecipitation. (United States)

    Au, Phil Chi Khang; Helliwell, Chris; Wang, Ming-Bo


    RNA-immunoprecipitation (RNA-IP) is a method used to isolate and identify RNA molecules specifically associated with an RNA-binding protein. Non-coding RNAs are emerging as key regulators of many biological and developmental pathways and RNA-IP has become an important tool in studying their function(s). While RNA-IP is successfully used to determine protein-RNA interaction, specific details regarding the level of this association and the metabolic requirement of this interaction which can influence the success of RNA-IP remain unclear. Here, we investigate the conditions required for efficient nuclear RNA-IP using Arabidopsis AGO4 (Argonaute 4) and siRNA binding as the study model. We showed that formaldehyde cross-linking, but not UV cross-linking, allowed for efficient pull-down of 24-nt siRNAs, suggesting that AGO4-siRNA interaction involves other protein(s). We also showed that, while formaldehyde cross-linking could also be performed on purified nuclei, ATP supplementation to the nuclei isolation buffer was needed to efficiently pull down 24-nt siRNAs. This result indicates that ATP is required for efficient siRNA loading onto AGO4. As most of the known RNA-mediated regulatory processes occur in the nucleus, our findings on cross-linking conditions and metabolite requirement for successful AGO4 nuclear RNA-IP provide a valuable insight and future consideration when studying the function of protein-RNA interactions in plants.

  20. Fluorescence imaging of tryptophan and collagen cross-links to evaluate wound closure ex vivo (United States)

    Wang, Ying; Ortega-Martinez, Antonio; Farinelli, Bill; Anderson, R. R.; Franco, Walfre


    Wound size is a key parameter in monitoring healing. Current methods to measure wound size are often subjective, time-consuming and marginally invasive. Recently, we developed a non-invasive, non-contact, fast and simple but robust fluorescence imaging (u-FEI) method to monitor the healing of skin wounds. This method exploits the fluorescence of native molecules to tissue as functional and structural markers. The objective of the present study is to demonstrate the feasibility of using variations in the fluorescence intensity of tryptophan and cross-links of collagen to evaluate proliferation of keratinocyte cells and quantitate size of wound during healing, respectively. Circular dermal wounds were created in ex vivo human skin and cultured in different media. Two serial fluorescence images of tryptophan and collagen cross-links were acquired every two days. Histology and immunohistology were used to validate correlation between fluorescence and epithelialization. Images of collagen cross-links show fluorescence of the exposed dermis and, hence, are a measure of wound area. Images of tryptophan show higher fluorescence intensity of proliferating keratinocytes forming new epithelium, as compared to surrounding keratinocytes not involved in epithelialization. These images are complementary since collagen cross-links report on structure while tryptophan reports on function. HE and immunohistology show that tryptophan fluorescence correlates with newly formed epidermis. We have established a fluorescence imaging method for studying epithelialization processes during wound healing in a skin organ culture model, our approach has the potential to provide a non-invasive, non-contact, quick, objective and direct method for quantitative measurements in wound healing in vivo.

  1. Effect of Cross-linking Agent on the Properties of EVA Adhesive Film%交联剂对EVA胶膜性能的影响

    Institute of Scientific and Technical Information of China (English)

    周树东; 金正东


    测量了两种具有相同化学结构的有机过氧化物交联剂的电导率、氯含量、过氧化物含量及黄变指数,采用这两种过氧化物交联剂制备了EVA胶膜,并分析比较了两种EVA胶膜的体积电阻率、流变性能及储存稳定性。结果表明:有机过氧化物交联剂对EVA胶膜的性能有较大影响。%The conductivity, chlorine content, peroxide content and yellowing index of two kinds of organic peroxide cross-linking agent with the same chemical structure were tested. Two kinds of EVA adhesive films were prepared using the two organic peroxide cross-linking agent, and the volume resistivity, rheological property and storage stability of the two EVA adhesive films were analyzed and compared. The results show that the organic peroxide cross-linking agent has a significant influence on the properties of EVA adhesive films.

  2. 2D-ELDOR study of heterogeneity and domain structure changes in plasma membrane vesicles upon cross-linking of receptors. (United States)

    Chiang, Yun-Wei; Costa-Filho, Antonio J; Baird, Barbara; Freed, Jack H


    2D electron-electron double resonance (2D-ELDOR) with the "full Sc-" method of analysis is applied to the study of plasma membrane vesicles. Membrane structural changes upon antigen cross-linking of IgE receptors (IgE-FcεRI) in plasma membrane vesicles (PMVs) isolated from RBL-2H3 mast cells are investigated, for the first time, by means of these 2D-ELDOR techniques. Spectra of 1-palmitoyl-2-(16-doxyl stearoyl) phosphatidylcholine (16-PC) from PMVs before and after this stimulation at several temperatures are reported. The results demonstrate a coexistence of liquid-ordered (L(o)) and liquid-disordered (L(d)) components. We find that upon cross-linking, the membrane environment is remodeled to become more disordered, as shown by a moderate increase in the population of the L(d) component. This change in the relative amount of the L(o) versus L(d) components upon cross-linking is consistent with a model wherein the IgE receptors, which when clustered by antigen to cause cell stimulation, lead to more disordered lipids, and their dynamic and structural properties are slightly altered. This study demonstrates that 2D-ELDOR, analyzed by the full Sc- method, is a powerful approach for capturing the molecular dynamics in biological membranes. This is a particular case showing how 2D-ELDOR can be applied to study physical processes in complex systems that yield subtle changes.

  3. Wood Sawdust/Natural Rubber Ecocomposites Cross-Linked by Electron Beam Irradiation

    Directory of Open Access Journals (Sweden)

    Elena Manaila


    Full Text Available The obtaining and characterization of some polymeric eco-composites based on wood sawdust and natural rubber is presented. The natural rubber was cross-linked using the electron beam irradiation. The irradiation doses were of 75, 150, 300 and 600 kGy and the concentrations of wood sawdust were of 10 and 20 phr, respectively. As a result of wood sawdust adding, the physical and mechanical properties such as hardness, modulus at 100% elongation and tensile strength, showed significant improvements. The presence of wood sawdust fibers has a reinforcing effect on natural rubber, similar or better than of mineral fillers. An increase in the irradiation dose leads to the increasing of cross-link density, which is reflected in the improvement of hardness, modulus at 100% elongation and tensile strength of blends. The cross-linking rates, appreciated using the Flory-Rehner equation, have increased with the amount of wood sawdust in blends and with the irradiation dose. Even if the gel fraction values have varied irregularly with the amount of wood sawdust and irradiation dose it was over 90% for all blends, except for the samples without wood sawdust irradiated with 75 kGy. The water uptake increased with increasing of fiber content and decreased with the irradiation dose.

  4. Reasons for revision of first-generation highly cross-linked polyethylenes. (United States)

    Kurtz, Steven M; Medel, Francisco J; MacDonald, Daniel W; Parvizi, Javad; Kraay, Matthew J; Rimnac, Clare M


    Over a 10-year period, we prospectively evaluated the reasons for revision of contemporary and highly cross-linked polyethylene formulations in amulticenter retrieval program. Two hundred twelve consecutive retrievals were classified as conventional gamma inert sterilized (n = 37), annealed (Cross fire,[Stryker Orthopedics, Mahwah, NJ] n = 72), or remelted (Longevity [Zimmer ,Warsaw, Ind], XLPE[Smith and Nephew, Memphis, Tenn], Durasul [Zimmer,Warsaw, Ind] n = 103) liners. The most frequent reasons for revision were loosening (35%), instability(28%), and infection (21%) and were not related to polyethylene formulation (P = .17). Annealed and remelted liners had comparable linear penetration rates(0.03 and 0.04 mm/y, respectively, on average), and these were significantly lower than the rate in conventional retrievals (0.11 mm/y, P ≤ .0005). This retrieval study including first-generation highly cross linked liners demonstrated lower wear than conventional polyethylene. Although loosening remained as the most prevalent reason for revision, we could not demonstrate a relationship between wear and loosening.The long-term clinical performance of first-generation highly cross-linked liners remains promising based on the midterm outcomes of the components documented in this study [corrected].

  5. Light-harvesting cross-linked polymers for efficient heterogeneous photocatalysis. (United States)

    Wang, Cheng; Xie, Zhigang; deKrafft, Kathryn E; Lin, Wenbin


    Nonporous, phosphorescent cross-linked polymers (Ru-CP and Ir-CP) were synthesized via Pd-catalyzed Sonogashira cross-coupling reactions between tetra(p-ethynylphenyl)methane and dibrominated Ru(bpy)(3)(2+) or Ir(ppy)(2)(bpy)(+), respectively. The resultant particulate cross-linked polymer (CP) materials have very high catalyst loadings (76.3 wt % for Ru-CP and 71.6 wt % for Ir-CP), and are nonporous with negligibly small surface areas (2.9 m(2)/g for Ru-CP and 2.7 m(2)/g for Ir-CP). Despite their nonporous nature, the insoluble CP materials serve as highly active and recyclable heterogeneous photocatalysts for a range of organic transformations such as aza-Henry reaction, aerobic amine coupling, and dehalogenation of benzyl bromoacetate. An efficient light-harvesting mechanism, which involves collection of photons by exciting the (3)MLCT states of the phosphors and migration of the excited states to the particle surface, is proposed to account for the very high catalytic activities of these nonporous CPs. Steady-state and time-resolved emission data, as well as the reduced catalytic activity of Os(bpy)(3)(2+)-doped Ru-CPs supports efficient excited state migration for the CP frameworks. This work uncovers a new strategy in designing highly efficient photocatalysts based on light-harvesting cross-linked polymers.

  6. An atomistic model for cross-linked HNBR elastomers used in seals (United States)

    Molinari, Nicola; Sutton, Adrian; Stevens, John; Mostofi, Arash


    Hydrogenated nitrile butadiene rubber (HNBR) is one of the most common elastomeric materials used for seals in the oil and gas industry. These seals sometimes suffer ``explosive decompression,'' a costly problem in which gases permeate a seal at the elevated temperatures and pressures pertaining in oil and gas wells, leading to rupture when the seal is brought back to the surface. The experimental evidence that HNBR and its unsaturated parent NBR have markedly different swelling properties suggests that cross-linking may occur during hydrogenation of NBR to produce HNBR. We have developed a code compatible with the LAMMPS molecular dynamics package to generate fully atomistic HNBR configurations by hydrogenating initial NBR structures. This can be done with any desired degree of cross-linking. The code uses a model of atomic interactions based on the OPLS-AA force-field. We present calculations of the dependence of a number of bulk properties on the degree of cross-linking. Using our atomistic representations of HNBR and NBR, we hope to develop a better molecular understanding of the mechanisms that result in explosive decompression.

  7. Application of cross-linked and hydrolyzed arabinoxylans in baking of model rye bread. (United States)

    Buksa, Krzysztof; Nowotna, Anna; Ziobro, Rafał


    The role of water extractable arabinoxylan with varying molar mass and structure (cross-linked vs. hydrolyzed) in the structure formation of rye bread was examined using a model bread. Instead of the normal flour, the dough contained starch, arabinoxylan and protein, which were isolated from rye wholemeal. It was observed that the applied mixes of these constituents result in a product closely resembling typical rye bread, even if arabinoxylan was modified (by cross-linking or hydrolysis). The levels of arabinoxylan required for bread preparation depended on its modification and mix composition. At 3% protein, the maximum applicable level of poorly soluble cross-linked arabinoxylan was 3%, as higher amounts of this preparation resulted in an extensively viscous dough and diminished bread volume. On the other hand highly soluble, hydrolyzed arabinoxylan could be used at a higher level (6%) together with larger amounts of rye protein (3% or 6%). Further addition of arabinoxylan leads to excessive water absorption, resulting in a decreased viscosity of the dough during baking and insufficient gas retention.

  8. Core Cross-linked Star Polymers for Temperature/pH Controlled Delivery of 5-Fluorouracil

    Directory of Open Access Journals (Sweden)

    Elizabeth Sánchez-Bustos


    Full Text Available RAFT polymerization with cross-linking was used to prepare core cross-linked star polymers bearing temperature sensitive arms. The arms consisted of a diblock copolymer containing N-isopropylacrylamide (NIPAAm and 4-methacryloyloxy benzoic acid (4MBA in the temperature sensitive block and poly(hexyl acrylate forming the second hydrophobic block, while ethyleneglycol dimethacrylate was used to form the core. The acid comonomer provides pH sensitivity to the arms and also increases the transition temperature of polyNIPAAm to values in the range of 40 to 46°C. Light scattering and atomic force microscopy studies suggest that loose core star polymers were obtained. The star polymers were loaded with 5-fluorouracil (5-FU, an anticancer agent, in values of up to 30 w/w%. In vitro release experiments were performed at different temperatures and pH values, as well as with heating and cooling temperature cycles. Faster drug release was obtained at 42°C or pH 6, compared to normal physiological conditions (37°C, pH 7.4. The drug carriers prepared acted as nanopumps changing the release kinetics of 5-FU when temperatures cycles were applied, in contrast with release rates at a constant temperature. The prepared core cross-linked star polymers represent advanced drug delivery vehicles optimized for 5-FU with potential application in cancer treatment.

  9. Crosslink density, oxidation and chain scission in retrieved, highly cross-linked UHMWPE tibial bearings. (United States)

    Reinitz, Steven D; Currier, Barbara H; Levine, Rayna A; Van Citters, Douglas W


    Irradiated, thermally stabilized, highly cross-linked UHMWPE bearings have demonstrated superior wear performance and improved in vitro oxidation resistance compared with terminally gamma-sterilized bearings, yet retrieval analysis reveals unanticipated in vivo oxidation in these materials despite fewer or no measurable free radicals. There has been little evidence to date that the oxidation mechanism in thermally stabilized materials is the same as that in conventional materials, and so it is unknown whether oxidation in these materials is leading to chain scission and a degradation of mechanical properties, molecular weight, and crosslink density. The aim of this study was to determine whether measured in vivo oxidation in retrieved, highly cross-linked tibial bearings corresponds with a decreasing crosslink density. Analysis of three tibial bearing materials revealed that crosslink density decreased following in vivo duration, and that the change in crosslink density was strongly correlated with oxidation. The results suggest that oxidation in highly cross-linked materials is causing chain scissions that may, in time, impact the material properties. If in vivo oxidation continues over longer durations, there is potential for a clinically significant degradation of mechanical properties.

  10. Cross-linked polystyrene sulfonic acid and polyethylene glycol as a low-fouling material. (United States)

    Alghunaim, Abdullah; Zhang Newby, Bi-min


    A negatively charged hydrophilic low fouling film was prepared by thermally cross-linking a blend consisting of polystyrene sulfonic acid (PSS) and polyethylene glycol (PEG). The film was found to be stable by dip-washing. The fouling resistance of this material toward bacterial (Escherichia coli) and colloidal (polystyrene particles) attachment, non-specific protein (fibronectin) adsorption and cell (3T3 NIH) adhesion was evaluated and was compared with glass slides modified with polyethylene glycol (PEG) brushes, oxidized 3-mercaptopropyltrimethoxysilane (sulfonic acid, SA), and n-octadecyltrichlorosilane (OTS). The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory and thermodynamic models based on surface energy were used to explain the interaction behaviors of E. coli/polystyrene particles-substrate and protein-substrate interactions, respectively. The cross-linked PSS-PEG film was found to be slightly better than SA and PEG toward resisting non-specific protein adsorption, and showed comparable low attachment results as those of PEG toward particle, bacterial and NIH-3T3 cells adhesion. The low-fouling performance of PSS-PEG, a cross-linked film by a simple thermal curing process, could allow this material to be used for applications in aqueous environments, where most low fouling hydrophilic polymers, such as PSS or PEG, could not be easily retained.

  11. Electrospinning of Cross-Linked Magnetic Chitosan Nanofibers for Protein Release. (United States)

    Nicknejad, Ehsan Tayerani; Ghoreishi, Seyyed Mohammad; Habibi, Neda


    A poly(vinylalcohol) (PVA) electrospun/magnetic/chitosan nanocomposite fibrous cross-linked network was fabricated using in situ cross-linking electrospinning technique and used for bovine serum albumin (BSA) loading and release applications. Sodium tripolyphosphate (TPP) and glutaraldehyde (GA) were used as cross-linkers which modified magnetic-Fe3O4 chitosan as Fe3O4/CS/TPP and Fe3O4/CS/GA, respectively. BSA was used as a model protein drugs which was encapsulated to form Fe3O4/CS/TPP/BSA and Fe3O4/CS/GA/BSA nanoparticles. The composites were electrospun with PVA to form nanofibers. Nanofibers were characterized by field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). The characterization results suggest that Fe3O4 nanoparticles with average size of 45 nm were successfully bound on the surface of chitosan. The cross-linked nanofibers were found to contain uniformly dispersed Fe3O4 nanoparticles. The size and morphology of the nanofibers network was controlled by varying the cross-linker type. FTIR data show that these two polymers have intermolecular interactions. The sample with TPP cross-linker showed an enhancement of the controlled release properties of BSA during 30-h experimental investigation. Graphical Abstract ᅟ.

  12. Preparation of novel ferrocene-based shell cross-linked thermoresponsive hybrid micelles with antitumor efficacy. (United States)

    Wei, Hua; Quan, Chang-Yun; Chang, Cong; Zhang, Xian-Zheng; Zhuo, Ren-Xi


    The shell cross-linked (SCL) thermoresponsive hybrid poly(N-isopropylacrylamide-co-aminoethyl methacrylate)-b-polymethyl methacrylate (P(NIPAAm-co-AMA)-b-PMMA) micelle consisting of a cross-linked thermoresponsive hybrid shell and a hydrophobic core domain was fabricated via a two-step process: micellization of P(NIPAAm-co-AMA)-b-PMMA in aqueous solution followed by cross-linking of the hydrophilic shell layer via the amidation reaction between the amine groups of AMA units and the carboxylic acid functions of 1,1'-ferrocenedicarboxylic acid. The SCL micelle showed reversible dispersion/aggregation in response to the temperature cycles through the lower critical solution temperature (LCST) of the thermoresponsive hybrid shell at around 36 degrees C, observed by turbidity measurements and dynamic light scattering (DLS). Besides the usage as an inorganic difunctional cross-linker, the inorganic ferrocene segment further endowed the SCL hybrid micelle with the antitumor efficacy, namely, the resulting SCL micelle exhibited a remarkable cytotoxic effect for HeLa cells with a very low IC50. The results showed that the SCL hybrid micelle developed in this study could be potentially used as an antitumor agent, which is unique compared to the conventional tumor therapy by using the antitumor drug loaded in the micellar core.

  13. Molecular dynamics simulations of highly cross-linked polymer networks: prediction of thermal and mechanical properties (United States)

    Shenogina, Natalia; Tsige, Mesfin; Mukhopadhyay, Sharmila; Patnaik, Soumya


    We use all-atom molecular dynamics (MD) simulations to predict the mechanical and thermal properties of thermosetting polymers. Atomistic simulation is a promising tool which can provide detailed structure-property relationships of densely cross-linked polymer networks. In this work we study the thermo-mechanical properties of thermosetting polymers based on amine curing agents and epoxy resins and have focused on the DGEBA/DETDA epoxy system. At first we describe the modeling approach to construction of realistic all-atom models of densely cross-linked polymer matrices. Subsequently, a series of atomistic simulations was carried out to examine the simulation cell size effect as well as the role of cross-linking density and chain length of the resin strands on thermo-mechanical properties at different temperatures. Two different methods were used to deform the polymer networks. Both static and dynamic approaches to calculating the mechanical properties were considered and the thermo-mechanical properties obtained from our simulations were found in reasonable agreement with experimental values.

  14. Capacity of cognitive radio under imperfect secondary and cross link channel state information

    KAUST Repository

    Sboui, Lokman


    In this paper, we study the ergodic capacity of secondary user channel in a spectrum sharing scenario in which the secondary transmitter is instantaneously aware of estimated versions of the cross link (between the secondary transmitter and the primary receiver) and the secondary link Channel State Information (CSI). The secondary link optimal power profile along with the ergodic capacity are derived for a class of fading channels, under an average power constraint and an instantaneous interference outage constraint. We also show that our framework is rather general as it encompasses several previously studied spectrum sharing settings as special cases. In order to gain some insights on the capacity behavior, numerical results are shown for independent Rayleigh fading channels where it is found for instance, that at low SNR regime, only the secondary channel estimation matters and that the cross link CSI has no effect on the ergodic capacity; whereas at high SNR regime, the capacity is rather driven by the cross link CSI. © 2011 IEEE.

  15. Oxidation increases mucin polymer cross-links to stiffen airway mucus gels. (United States)

    Yuan, Shaopeng; Hollinger, Martin; Lachowicz-Scroggins, Marrah E; Kerr, Sheena C; Dunican, Eleanor M; Daniel, Brian M; Ghosh, Sudakshina; Erzurum, Serpel C; Willard, Belinda; Hazen, Stanley L; Huang, Xiaozhu; Carrington, Stephen D; Oscarson, Stefan; Fahy, John V


    Airway mucus in cystic fibrosis (CF) is highly elastic, but the mechanism behind this pathology is unclear. We hypothesized that the biophysical properties of CF mucus are altered because of neutrophilic oxidative stress. Using confocal imaging, rheology, and biochemical measures of inflammation and oxidation, we found that CF airway mucus gels have a molecular architecture characterized by a core of mucin covered by a web of DNA and a rheological profile characterized by high elasticity that can be normalized by chemical reduction. We also found that high levels of reactive oxygen species in CF mucus correlated positively and significantly with high concentrations of the oxidized products of cysteine (disulfide cross-links). To directly determine whether oxidation can cross-link mucins to increase mucus elasticity, we exposed induced sputum from healthy subjects to oxidizing stimuli and found a marked and thiol-dependent increase in sputum elasticity. Targeting mucin disulfide cross-links using current thiol-amino structures such as N-acetylcysteine (NAC) requires high drug concentrations to have mucolytic effects. We therefore synthesized a thiol-carbohydrate structure (methyl 6-thio-6-deoxy-α-D-galactopyranoside) and found that it had stronger reducing activity than NAC and more potent and fast-acting mucolytic activity in CF sputum. Thus, oxidation arising from airway inflammation or environmental exposure contributes to pathologic mucus gel formation in the lung, which suggests that it can be targeted by thiol-modified carbohydrates.

  16. Cross-linked multilayer-dye films deposited onto silica surfaces with high affinity for pepsin (United States)

    Bucatariu, Florin; Ghiorghita, Claudiu-Augustin; Cocarta, Ana-Irina; Dragan, Ecaterina Stela


    Cross-linked thin films based on pH-responsive polymers with a specific ligand inside the organic layer are useful materials in separation processes or in fabrication of controlled delivery systems. Herein, we report the step-by-step deposition of polymer multilayers based on poly(ethyleneimine) (PEI), poly(acrylic acid) (PAA) and poly(sodium methacrylate) (PMAA) followed by the Congo red (CR) immobilization onto composite Daisogel silica microparticles and silicon wafers. The non-crosslinked composites were not stable in extreme basic medium (pH = 13), while thermal and chemical cross-linked samples with CR inside were stable over a wide range of pH. The interaction properties of different proteins [pepsin (PEP), lysozyme, trypsin, bovine serum albumin] with modified solid surfaces were followed by potentiometric titrations, UV and AFM measurements. Only the PEP macromolecules were sorbed onto the Daisogel composite microparticles with CR inside the cross-linked multilayer. The maximum sorbed amount was nearly 200 mg PEP/g Daisogel//(PEI/PAA)4.5 + CR. This high sorbed amount was in accordance with the AFM images, the average high and roughness increased drastically after the sorption of PEP.

  17. Evaluation of ultrasonic atomization as a new approach to prepare ionically cross-linked chitosan microparticles. (United States)

    Albertini, Beatrice; Passerini, Nadia; Rodriguez, Lorenzo


    Ultrasonic atomization was evaluated as a new approach for the preparation of ionically cross-linked controlled-release chitosan microparticles loaded with theophylline as the model drug, using tripolyphosphate (TPP) as counter-ion. It was possible to nebulize both 2% and 3% (w/v) chitosan solutions as a function of their viscosity, usually not processed by employing the conventional nebulizer. The results of the chitosan molecular characterization using the SEC-MALS analysis revealed that ultrasonic atomization caused a certain depolymerization, probably due to the main chain scission of the 1,4-glycosidic bond; however, Fourier transform-infrared spectroscopy revealed the absence of other chemical modifications. The ultrasonic atomization allowed preparation of TPP cross-linked chitosan microparticles mostly ranging between 50 and 200 mum. As regards manufacturing parameters, the linking time and washing medium were found to affect the properties of the microparticles, while the stirring rate of the TPP solution did not show any influence. The evaluation of the formulation variables revealed that chitosan concentration strongly affected both the feasibility of the ultrasonic atomization and the drug release. All the microparticles showed an encapsulation efficiency of > 50 % and, after an initial burst effect, a controlled release of drug for 48 h. In conclusion, the ultrasonic atomization could be proposed as a robust and innovative single-step procedure with scale-up potential to successfully prepare ionically cross-linked chitosan microparticles.

  18. Cross-linked carbon nanotubes buckygel actuators: an in-depth study (United States)

    Gendron, David; Bubak, Grzegorz; Ceseracciu, Luca; Ansaldo, Alberto; Ricci, Davide


    Recently, materials that can convert electrical energy into mechanical work have drawn great attention. Applications in robotics, tactile or optical displays and microelectrochemical systems are currently investigated. Likewise, interest in actuators devices is increasing toward applications where low voltage and low weight properties are required. One way to achieve such prerequisites is to combine the mechanical and electronic properties of carbon nanotubes (CNTs) with the stability and conductivity of ionic liquids. Indeed, the CNTs can be dispersed in ionic liquids to form hybrid composites also named bucky gels, thanks to the non-covalent (π-π stacking and cation-π) interactions. In our previous studies, we demonstrated an improvement in actuator performance whilst using cross-linked CNTs. Indeed, our preliminary results showed an increase in the capacitance together with a faster response of the actuator. At the time, these results were explained by an actuation mechanism model. Herein, we designed new experiments in order to allow us to get a deeper insight in the effect the crosslinking process on the carbon nanotubes properties. Thus, we present a set of electromechanical and electrochemical data that shed light on the chemical modification of the CNTs, the different cross-linking strategies and also on the uses of cross-linked CNTS polymer blends. Finally, corresponding bucky gels actuators performances will also be discussed.

  19. Preparation and Characterization of a pH-Responsive Core Cross-linked Polymer Micelle

    Energy Technology Data Exchange (ETDEWEB)

    Kousaka, Shouta; Sugahara, Makoto; Endo, Tatsuya; Yusa, Shin-ichi, E-mail: [Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan)


    Poly(ethylene glycol)-b-poly(2-(diethylamino) ethyl methacrylate-co-2-cinnamoyl-oxyethyl acrylate) (PEG-b-P(DEA/CEA)) was prepared by reversible addition-fragmentation chain transfer (RAFT) controlled radical polymerization. pH-responsive association behaviour of PEG-b-P(DEA/CEA) in 0.1 M NaCl was characterized by dynamic light scattering (DLS). As solution pH is increased from an acidic pH, the hydrodynamic radius (R{sub h}) increases, indicative of the polymer micelle formation. The formation of a micelle was also supported by static light scattering (SLS) data. The cinnamoyl groups in the core of the polymer micelle undergo photodimerization, yielding cross-links between polymer chains. The core of the polymer micelle was fixed, which was confirmed by DLS, SLS, and small angle X-ray scattering (SAXS) techniques. When pH is decreased to 3, R{sub h} of the core cross-linked (CCL) polymer micelle slightly increases due to the protonation of the DEA unit in the cross-linked core. The reversible pH-induced swelling and shrinking behaviour can be observed.

  20. Fluorescent and cross-linked organic-inorganic hybrid nanoshells for monitoring drug delivery. (United States)

    Sun, Lijuan; Liu, Tianhui; Li, Hua; Yang, Liang; Meng, Lingjie; Lu, Qinghua; Long, Jiangang


    Functionalized and monodisperse nanoshells have attracted significant attention owing to their well-defined structure, unique properties, and wide range of potential applications. Here, the synthesis of cross-linked organic-inorganic hybrid nanoshells with strong fluorescence properties was reported via a facile precipitation polymerization of hexachlorocyclotriphosphazene (HCCP) and fluorescein on silica particles used as templates. The resulting poly(cyclotriphosphazene-co-fluorescein) (PCTPF) nanoshells were firm cross-linked shells with ∼2.2 nm mesopores that facilitated the transport of drug molecules. The fluorescent nanoshells also exhibited excellent water dispersibility and biocompatibility; thus, they can be considered as ideal drug vehicles with high doxorubicin storage capacity (26.2 wt %) and excellent sustained release (up to 14 days). Compared to doxorubicin (DOX) alone, the PCTPF nanoshells more efficiently delivered DOX into and killed cancer cells. Moreover, the PCTPF nanoshells also exhibited remarkable fluorescent emission properties and improved photobleaching stability in both suspension and solid state owing to the covalent immobilization of fluorescein in the highly cross-linked organic-inorganic hybrids. The exceptional fluorescent properties enabled the release of DOX as well as the distribution of nanoshells and DOX to be monitored.

  1. Fracture mechanics of collagen fibrils: influence of natural cross-links. (United States)

    Svensson, Rene B; Mulder, Hindrik; Kovanen, Vuokko; Magnusson, S Peter


    Tendons are important load-bearing structures, which are frequently injured in both sports and work. Type I collagen fibrils are the primary components of tendons and carry most of the mechanical loads experienced by the tissue, however, knowledge of how load is transmitted between and within fibrils is limited. The presence of covalent enzymatic cross-links between collagen molecules is an important factor that has been shown to influence mechanical behavior of the tendons. To improve our understanding of how molecular bonds translate into tendon mechanics, we used an atomic force microscopy technique to measure the mechanical behavior of individual collagen fibrils loaded to failure. Fibrils from human patellar tendons, rat-tail tendons (RTTs), NaBH₄ reduced RTTs, and tail tendons of Zucker diabetic fat rats were tested. We found a characteristic three-phase stress-strain behavior in the human collagen fibrils. There was an initial rise in modulus followed by a plateau with reduced modulus, which was finally followed by an even greater increase in stress and modulus before failure. The RTTs also displayed the initial increase and plateau phase, but the third region was virtually absent and the plateau continued until failure. The importance of cross-link lability was investigated by NaBH₄ reduction of the rat-tail fibrils, which did not alter their behavior. These findings shed light on the function of cross-links at the fibril level, but further studies will be required to establish the underlying mechanisms.

  2. Rheological characterization of cataplasm bases composed of cross-linked partially neutralized polyacrylate hydrogel. (United States)

    Wang, Jian; Zhang, Hongqin; An, Dianyun; Yu, Jian; Li, Wei; Shen, Teng; Wang, Jianxin


    Viscoelasticity is a useful parameter for characterizing the intrinsic properties of the cross-linked polyacrylate hydrogel used in cataplasm bases. The aim of this study was to investigate the effects of various formulation parameters on the rheological characteristics of polyacrylate hydrogel. The hydrogel layers were formed using a partially neutralized polyacrylate (Viscomate(™)), which contained acrylic acid and sodium acrylate in different copolymerization ratios, as the cross-linked gel framework. Dihydroxyaluminum aminoacetate (DAAA), which produces aluminum ions, was used as the cross-linking agent. Rheological analyses were performed using a "stress amplitude sweep" and a "frequency sweep". The results showed that greater amounts of acrylic acid in the structure of Viscomate as well as higher concentrations of DAAA and Viscomate led to an increase in the elastic modulus (G'). However, greater amounts of acrylic acid in the structure of Viscomate and higher concentrations of DAAA had an opposite on the viscous modulus (G″); this might be owing to higher steric hindrance. The results of this study can serve as guidelines for the optimization of formulations for cataplasms.

  3. Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation

    KAUST Repository

    Du, Naiying


    Cross-linked polymers of intrinsic microporosity (PIM)s for gas separation membranes, were prepared by a nitrene reaction from a representative PIM in the presence of two different diazide cross-linkers. The reaction temperature was optimized using TGA. The homogenous membranes were cast from THF solutions of different ratios of PIM to azides. The resulting cross-linked structures of the PIMs membranes were formed at 175 °C after 7.5 h and confirmed by TGA, XPS, FT-IR spectroscopy and gel content analysis. These resulting cross-linked polymeric membranes showed excellent gas separation performance and can be used for O 2/N 2 and CO 2/N 2 gas pairs, as well as for condensable gases, such as CO 2/CH 4, propylene/propane separation. Most importantly, and differently from typical gas separation membranes derived from glassy polymers, the crosslinked PIMs showed no obvious CO 2 plasticization up to 20 atm pressure of pure CO 2 and CO 2/CH 4 mixtures. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Mechanisms of plastic deformation in highly cross-linked UHMWPE for total hip components--the molecular physics viewpoint. (United States)

    Takahashi, Yasuhito; Shishido, Takaaki; Yamamoto, Kengo; Masaoka, Toshinori; Kubo, Kosuke; Tateiwa, Toshiyuki; Pezzotti, Giuseppe


    Plastic deformation is an unavoidable event in biomedical polymeric implants for load-bearing application during long-term in-vivo service life, which involves a mass transfer process, irreversible chain motion, and molecular reorganization. Deformation-induced microstructural alterations greatly affect mechanical properties and durability of implant devices. The present research focused on evaluating, from a molecular physics viewpoint, the impact of externally applied strain (or stress) in ultra-high molecular weight polyethylene (UHMWPE) prostheses, subjected to radiation cross-linking and subsequent remelting for application in total hip arthroplasty (THA). Two different types of commercial acetabular liners, which belong to the first-generation highly cross-linked UHMWPE (HXLPE), were investigated by means of confocal/polarized Raman microprobe spectroscopy. The amount of crystalline region and the spatial distribution of molecular chain orientation were quantitatively analyzed according to a combined theory including Raman selection rules for the polyethylene orthorhombic structure and the orientation distribution function (ODF) statistical approach. The structurally important finding was that pronounced recrystallization and molecular reorientation increasingly appeared in the near-surface regions of HXLPE liners with increasing the amount of plastic (compressive) deformation stored in the microstructure. Such molecular rearrangements, occurred in response to external strains, locally increase surface cross-shear (CS) stresses, which in turn trigger microscopic wear processes in HXLPE acetabular liners. Thus, on the basis of the results obtained at the molecular scale, we emphasize here the importance of minimizing the development of irrecoverable deformation strain in order to retain the pristine and intrinsically high wear performance of HXLPE components.

  5. Hydroxylysyl pyridinoline cross-link concentration affects the textural properties of fresh and smoked Atlantic salmon (Salmo salar L.) flesh. (United States)

    Li, Xuejun; Bickerdike, Ralph; Lindsay, Emma; Campbell, Patrick; Nickell, David; Dingwall, Alastair; Johnston, Ian A


    A simple HPLC method is presented to quantify the low concentration of hydroxylysyl pyridinoline (PYD) cross-links in Atlantic salmon (Salmo salar L.) muscle. The method involved the extraction of tissue with NaOH prior to hydrolysis, which greatly reduced the amount of protein to be hydrolyzed and made downstream operations easier and more reproducible. The concentration of PYD was 426 pmol g(-)(1) dry mass muscle in post-rigor muscle stored at 0 degrees C and sampled 3 d after death. Hydroxproline (HYP) concentration was determined following NaOH extraction as a measure of collagen content. In post-rigor samples, the alkaline-insoluble HYP fraction comprised 18.3% of the total HYP. Scanning electron microscopy revealed shrinkage of muscle fibers and a retraction of the connective tissue matrix in smoked salmon. PYD concentration was relatively resistant to processing to the smoked product, decreasing by around 11.7%, as compared to a 22.2% decrease in HYP. There was a positive correlation between PYD concentration and the firmness of post-rigor muscle samples as measured by an instrumental texture analyzer, explaining 25% of the total variation. A weaker but still significant correlation was found between PYD concentration and firmness in the smoked product. There was no relationship between fillet firmness and total collagen concentration, although the correlation with HYP in the alkaline-insoluble fraction was significant at the 6% level (P = 0.057). Our results indicate that only 1-3% of collagen molecules are linked by nonreducible mature cross-links in harvest size farmed Atlantic salmon and that PYD concentration is an important raw material characteristic for flesh quality.

  6. Stabilization of native amyloid β-protein oligomers by Copper and Hydrogen peroxide Induced Cross-linking of Unmodified Proteins (CHICUP). (United States)

    Williams, Thomas L; Serpell, Louise C; Urbanc, Brigita


    Oligomeric assemblies are postulated to be proximate neurotoxic species in human diseases associated with aberrant protein aggregation. Their heterogeneous and transient nature makes their structural characterization difficult. Size distributions of oligomers of several amyloidogenic proteins, including amyloid β-protein (Aβ) relevant to Alzheimer's disease (AD), have been previously characterized in vitro by photo-induced cross-linking of unmodified proteins (PICUP) followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Due to non-physiological conditions associated with the PICUP chemistry, Aβ oligomers cross-linked by PICUP may not be representative of in vivo conditions. Here, we examine an alternative Copper and Hydrogen peroxide Induced Cross-linking of Unmodified Proteins (CHICUP), which utilizes naturally occurring divalent copper ions and hydrogen peroxide and does not require photo activation. Our results demonstrate that CHICUP and PICUP applied to the two predominant Aβ alloforms, Aβ40 and Aβ42, result in similar oligomer size distributions. Thioflavin T fluorescence data and atomic force microscopy images demonstrate that both CHICUP and PICUP stabilize Aβ oligomers and attenuate fibril formation. Relative to noncross-linked peptides, CHICUP-treated Aβ40 and Aβ42 cause prolonged disruption to biomimetic lipid vesicles. CHICUP-stabilized Aβ oligomers link the amyloid cascade, metal, and oxidative stress hypotheses of AD into a more comprehensive understanding of the molecular basis of AD pathology. Because copper and hydrogen peroxide are elevated in the AD brain, CHICUP-stabilized Aβ oligomers are biologically relevant and should be further explored as a new therapeutic target.

  7. Graft copolymerization onto polybutadiene: Cross-linking and thermal degradation of vinyl polymers and copolymers (United States)

    Jiang, Dayue (David)

    This work consists of three parts. In Part I, the graft copolymerization of methyl methacrylate, methyl acrylate, methacylic acid and acrylic acid onto polybutadiene and its copolymers by benzoyl peroxide, BPO, or 2, 2'azobis(2-methylpropionitrile), AIBN, initiation were explored. The results show that these monomers can be grafted onto butadiene region of butadiene-containing polymers. The extent of both graft copolymerization and homopolymerization are dependent on the time and temperature of the reaction and the concentration of all of the reactants. One must specify the monomer, initiator and solvent for the efficient graft copolymerization. The methyl methacrylate adds directly to the radical sites which are formed on the backbone by the interaction of the polymer and the primary radical form the initiator, while for the other three monomers, the graft copolymerization occurs by addition of macro-radical to the double bonds. In Part II, the cross-linking of polybutadiene, butadiene-styrene copolymers, and polystyrene by irradiation, thermal and chemical processes, and Friedel-Crafts chemistry and the effect of cross-linking on the thermal stability were investigated. The proof of cross-linking of the polymer comes from the insolubility of the product after the cross-linking reaction and is characterized by gel content and swelling ratio. The results show that the thermal stability of the polymer can be improved by cross-linking. In Part III, the thermal degradation of three vinyl polymers, poly(vinylsulfonic acid) and its sodium salt and poly(vinylphosphonic acid) were studied by combination technique: TGA/FTIR. The results show that TGA/FTIR combined with analysis of residues provides an excellent opportunity to understand the degradation pathway of the compounds. The observation of foaming indicates that the char which is formed contains carbon as well as the inorganic salts which have been observed. The carbon is in a partially graphitized form. The salts

  8. Nondestructive fluorescence-based quantification of threose-induced collagen cross-linking in bovine articular cartilage (United States)

    Kinnunen, Jussi; Kokkonen, Harri T.; Kovanen, Vuokko; Hauta-Kasari, Markku; Vahimaa, Pasi; Lammi, Mikko J.; Töyräs, Juha; Jurvelin, Jukka S.


    Extensive collagen cross-linking affects the mechanical competence of articular cartilage: it can make the cartilage stiffer and more brittle. The concentrations of the best known cross-links, pyridinoline and pentosidine, can be accurately determined by destructive high-performance liquid chromatography (HPLC). We explore a nondestructive evaluation of cross-linking by using the intrinsic fluorescence of the intact cartilage. Articular cartilage samples from bovine knee joints were incubated in threose solution for 40 and 100 h to increase the collagen cross-linking. Control samples without threose were also prepared. Excitation-emission matrices at wavelengths of 220 to 950 nm were acquired from the samples, and the pentosidine and pyridinoline cross-links and the collagen concentrations were determined using HPLC. After the threose treatment, pentosidine and lysyl pyridinole (LP) concentrations increased. The intrinsic fluorescence, excited below 350 nm, decreased and was related to pentosidine [r=-0.90, 240/325 nm (excitation/emission)] or LP (r=-0.85, 235/285 nm) concentrations. Due to overlapping, the changes in emission could not be linked specifically to the recorded cross-links. However, the fluorescence signal enabled a nondestructive optical estimate of changes in the pentosidine and LP cross-linking of intact articular cartilage.

  9. Polyanionic collagen membranes for guided tissue regeneration: Effect of progressive glutaraldehyde cross-linking on biocompatibility and degradation. (United States)

    Veríssimo, D M; Leitão, R F C; Ribeiro, R A; Figueiró, S D; Sombra, A S B; Góes, J C; Brito, G A C


    The ultimate goal of periodontal therapy is to control periodontal tissue inflammation and to produce predictable regeneration of that part of the periodontium which has been lost as a result of periodontal disease. In guided tissue regeneration membranes function as mechanical barriers, excluding the epithelium and gingival corium from the root surface and allowing regeneration by periodontal ligament cells. This report aims to study the effect of glutaraldehyde (GA) cross-linking on mineralized polyanionic collagen (PAC) membranes by conducting a histological evaluation of the tissue response (biocompatibility) and by assessing the biodegradation of subcutaneous membrane implants in rats. We studied six different samples: a PAC, a PAC mineralized by alternate soaking processes for either 25 or 75 cycles (PAC 25 and PAC 75, respectively) and these films cross-linked by GA. Inflammatory infiltrate, cytokine dosage, fibrosis capsule thickness, metalloproteinase immunohistochemistry and membrane biodegradation after 1, 7, 15 and 30 days were measured. The inflammatory response was found to be more intense in membranes without cross-linking, while the fibrosis capsules became thicker in cross-linked membranes after 30 days. The membranes without cross-linking suffered intense biodegradation, while the membranes with cross-linking remained intact after 30 days. The cross-linking with GA reduced the inflammatory response and prevented degradation of the membranes over the entire course of the observation period. These membranes are thus an attractive option when the production of new bone depends on the prolonged presence of a mechanical barrier.

  10. Relationship between cross-linking conditions of ethylene vinyl acetate and potential induced degradation for crystalline silicon photovoltaic modules (United States)

    Jonai, Sachiko; Hara, Kohjiro; Tsutsui, Yuji; Nakahama, Hidenari; Masuda, Atsushi


    In this study, we investigated the relationship in crystalline silicon (c-Si) photovoltaic (PV) modules between the cross-linking level of copolymer of ethylene and vinyl acetate (EVA) as the encapsulant and the degree of degradation due to potential induced degradation (PID) phenomenon. We used three methods for the determination of cross-linking level of EVA: xylene method, which is one of the solvent extraction methods (SEM), curing degree by differential scanning calorimetry (DSC), and viscoelastic properties by dynamic mechanical analysis (DMA). The results indicate that degradation of PV modules by PID test depends on the cross-linking level of EVA. The PV modules encapsulated by EVA with higher cross-linking level show lower degradation degree due to PID phenomenon. Also we showed that EVA with higher cross-linking level tended to be higher volume resistivity. This tendency is similar to that for electrical resistance value during the PID test. The PID test was also done by changing thickness of EVA between front cover glass and c-Si with the same cross-linking level. The PV modules encapsulated by thicker EVA between front cover glass and c-Si cell show lower degradation by PID. From these results, the PV modules encapsulated by EVA with higher cross-linking level, higher volume resistivity and increased thickness would be tolerant of PID phenomenon.

  11. Higher number of pentosidine cross-links induced by ribose does not alter tissue stiffness of cancellous bone

    Energy Technology Data Exchange (ETDEWEB)

    Willems, Nop M.B.K., E-mail: [Dept. of Orthodontics, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands); Dept. of Oral Cell Biology and Functional Anatomy, MOVE Research Institute, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands); Langenbach, Geerling E.J. [Dept. of Oral Cell Biology and Functional Anatomy, MOVE Research Institute, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands); Stoop, Reinout [Dept. of Metabolic Health Research, TNO, P.O. Box 2215, 2301 CE Leiden (Netherlands); Toonder, Jaap M.J. den [Dept. of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Mulder, Lars [Dept. of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Zentner, Andrej [Dept. of Orthodontics, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands); Everts, Vincent [Dept. of Oral Cell Biology and Functional Anatomy, MOVE Research Institute, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands)


    The role of mature collagen cross-links, pentosidine (Pen) cross-links in particular, in the micromechanical properties of cancellous bone is unknown. The aim of this study was to examine nonenzymatic glycation effects on tissue stiffness of demineralized and non-demineralized cancellous bone. A total of 60 bone samples were derived from mandibular condyles of six pigs, and assigned to either control or experimental groups. Experimental handling included incubation in phosphate buffered saline alone or with 0.2 M ribose at 37 °C for 15 days and, in some of the samples, subsequent complete demineralization of the sample surface using 8% EDTA. Before and after experimental handling, bone microarchitecture and tissue mineral density were examined by means of microcomputed tomography. After experimental handling, the collagen content and the number of Pen, hydroxylysylpyridinoline (HP), and lysylpyridinoline (LP) cross-links were estimated using HPLC, and tissue stiffness was assessed by means of nanoindentation. Ribose treatment caused an up to 300-fold increase in the number of Pen cross-links compared to nonribose-incubated controls, but did not affect the number of HP and LP cross-links. This increase in the number of Pen cross-links had no influence on tissue stiffness of both demineralized and nondemineralized bone samples. These findings suggest that Pen cross-links do not play a significant role in bone tissue stiffness. - Highlights: • The assessment of effects of glycation in bone using HPLC, microCT, and nanoindentation • Ribose incubation: 300‐fold increase in the number of pentosidine cross-links • 300‐fold increase in the number of pentosidine cross-links: no changes in bone tissue stiffness.


    Oral, Ebru; Beckos, Christine Godleski; Malhi, Arnaz S.; Muratoglu, Orhun K.


    Vitamin E-stabilized, highly cross-linked ultrahigh molecular weight polyethylene (UHMWPE) is a promising oxidation and wear resistant UHMWPE with improved mechanical strength in comparison with the first generation, irradiated and melted UHMWPE. One approach of incorporating vitamin E in UHMWPE is through blending of vitamin E in UHMWPE powder followed by consolidation and radiation crosslinking. However radiation crosslinking efficiency of UHMWPE decreases in the presence of vitamin E. Therefore an optimum vitamin E concentration and radiation dose level needs to be determined to achieve a cross-link density comparable to 100-kGy irradiated and melted UHMWPE, which has shown excellent wear properties in vivo. We investigated the cross-link density and mechanical properties of vitamin E-blended UHMWPEs as a function of vitamin E concentration in the blend and gamma irradiation doses up to 200 kGy. We found that 0.3 wt% vitamin E-blended UHMWPE could not be cross-linked above a cross-link density achieved at a radiation dose of 65 kGy for virgin UHMWPE and 1.0 wt% vitamin E-blended UHMWPE could not be cross-linked above a cross-link density achieved at a radiation dose of 25 kGy for virgin UHMWPE even when the former were irradiated to a radiation dose of 200 kGy. In addition, higher plasticity at vitamin E concentrations at and above 0.3 wt% indicated that increased chain scissioning may be prevalent. Since the wear resistance of this irradiated UHMWPE would be expected to be low, vitamin E concentrations equal to or above 0.3 wt% are not recommended for subsequent irradiation to achieve a wear resistant cross-linked UHMWPE. The long–term oxidative stability of irradiated blends with low vitamin E concentrations has yet to be studied to determine an optimum between cross-link density and long-term oxidative stability. PMID:18514813

  13. Sub- T g Cross-Linking of a Polyimide Membrane for Enhanced CO 2 Plasticization Resistance for Natural Gas Separation

    KAUST Repository

    Qiu, Wulin


    Decarboxylation-induced thermal cross-linking occurs at elevated temperatures (∼15 °C above glass transition temperature) for 6FDA-DAM:DABA polyimides, which can stabilize membranes against swelling and plasticization in aggressive feed streams. Despite this advantage, such a high temperature might result in collapse of substructure and transition layers in the asymmetric structure of a hollow fibers based on such a material. In this work, the thermal cross-linking of the 6FDA-DAM:DABA at temperatures much below the glass transition temperature (∼387 °C by DSC) was demonstrated. This sub-Tg cross-linking capability enables extension to asymmetric structures useful for large scale membranes. The resulting polymer membranes were characterized by swelling in known solvents for the un-cross-linked materials, TGA analysis, and permeation tests of aggressive gas feed stream at higher pressure. The annealing temperature and time clearly influence the degree of cross-linking of the membranes, and results in a slight difference in selectivity for membranes under various cross-linking conditions. Results indicate that the sub-Tg thermal cross-linking of 6FDA-DAM:DABA dense film membrane can be carried out completely even at a temperature as low as 330 °C. Permeabilities were tested for the polyimide membranes using both pure gases (He, O2, N2, CH4, CO2) and mixed gases (CO2/CH4). The selectivity of the cross-linked membrane can be maintained even under very aggressive CO2 operating conditions that are not possible without cross-linking. Moreover, the plasticization resistance was demonstrated up to 700 psia for pure CO 2 gas or 1000 psia for 50% CO2 mixed gas feeds. © 2011 American Chemical Society.

  14. Phosphorylation of actin-binding protein (ABP-280; filamin) by tyrosine kinase p56lck modulates actin filament cross-linking. (United States)

    Pal Sharma, C; Goldmann, Wolfgang H


    Actin-binding protein (ABP-280; filamin) is a phosphoprotein present in the periphery of the cytoplasm where it can cross-link actin filaments, associate with lipid membranes, and bind to membrane surface receptors. Given its function and localization in the cell, we decided to investigate the possibility of whether it serves as substrate for p56lck, a lymphocyte-specific member of the src family of protein tyrosine kinases associated with cell surface glycoproteins. The interaction of p56lck with membrane glycoproteins is important for cell development and functional activation. Here, we show that purified p56lck interacts and catalyzes in vitro kinase reactions. Tyrosine phosphorylation by p56lck is restricted to a single peptide of labeled ABP-280 shown by protease digest. The addition of phorbol ester to cells results in the inhibition of phosphorylation of ABP-280 by p56lck. These results show a decrease in phosphorylation suggesting conformationally induced regulation. Dynamic light scattering confirmed increased actin filament cross-linking due to phosphorylation of ABP-280 by p56lck.


    Energy Technology Data Exchange (ETDEWEB)

    de O Buanafina, Marcia Maria


    DESCRIPTION/ABSTRACT This proposal focuses on cell wall feruloylation and our long term goal is to identify and isolate novel genes controlling feruloylation and to characterize the phenotype of mutants in this pathway, with a spotlight on cell wall properties. Currently, the genes underlying AX feruloylation have not been identified and the isolation of such genes could be of great importance in manipulating ferulates accretion to the wall. Mutation of the feruloyl transferase gene(s) should lead to less ferulates secreted to the cell wall and reduced ferulate cross-linking. Our current research is based on the hypothesis that controlling the level of total feruloylation will have a direct impact on the level of cross-linking and in turn impact biomass utility for forage and biofuel production. Our results/accomplishments for this project so far include: 1. Mutagenised Brachypodium population. We have developed EMS mutagenized populations of model grass species Brachypodium distachyon. EMS populations have been developed from over 28,000 mutagenized seeds generating 5,184 M2 families. A total of 20,793 plants have been screened and 1,233 were originally selected. 2. Selected Brachypodium mutants: Potential mutants on their levels of cell wall ferulates and cell wall AX ? have been selected from 708 M2 families. A total of 303 back-crosses to no-mutagenized parental stock have been done, followed by selfing selected genotypes in order to confirm heritability of traits and to remove extraneous mutations generated by EMS mutagenesis. We are currently growing 12 F5 and F6 populations in order to assess CW composition. If low level of ferulates are confirmed in the candidate lines selected the mutation could be altered in different in one or several kinds of genes such as genes encoding an AX feruloyl transferase; genes encoding the arabinosyl transferase; genes encoding the synthesis of the xylan backbone; genes encoding enzymes of the monolignol pathway affecting FA

  16. Syntheses of DNA Duplexes That Contain a N4C-alkyl-N4C Interstrand Cross-Link (United States)

    Miller, Paul S.


    A simple procedure is described for preparing short DNA duplexes that contain a single N4C-alkyl-N4C interstrand cross-link. The synthesis is carried out on an automated DNA synthesizer using standard phosphoramidite chemistry. The cross-link is introduced during the synthesis of the duplex. The method can be used to prepare mg quantities of cross-linked duplexes suitable for physical studies and for the preparation of larger DNA molecules that can be used as substrates to study DNA repair in whole cell extracts and in living cells in culture. PMID:21400705

  17. Enhancement of antiviral activity of collectin trimers through cross-linking and mutagenesis of the carbohydrate recognition domain

    DEFF Research Database (Denmark)

    White, Mitchell R; Boland, Patrick; Tecle, Tesfaldet


    . We have sought to find ways to increase the antiviral activity of collectin NCRDs. Cross-linking of the SP-D NCRD with nonblocking monoclonal antibodies (mAbs) markedly potentiates antiviral activity. In the present report, we demonstrate that F(ab')2 [but not F(ab')1] fragments of a cross-linking m...... collectins, we have constructed mutant versions of the human SP-D NCRD that have increased antiviral activity. These mutant NCRDs also had potentiated activity after cross-linking with F(ab')2 fragments or S protein complexes. Hence, the antiviral activity of NCRDs can be increased by 2 distinct...

  18. 1,2,3,4-Diepoxybutane-Induced DNA-Protein Cross-Linking in Human Fibrosarcoma (HT1080) Cells



    1,2,3,4-diepoxybutane (DEB) is the key carcinogenic metabolite of 1,3-butadiene (BD), an important industrial and environmental chemical present in urban air and in cigarette smoke. DEB is a genotoxic bis-electrophile capable of cross-linking cellular biomolecules to form DNA-DNA and DNA-protein cross-links (DPCs). In the present work, mass spectrometry-based proteomics was employed to characterize DEB-mediated DNA-protein cross-linking in human fibrosarcoma (HT1080) cells. Over 150 proteins ...

  19. Investigations on the effects of growth rate and dietary vitamin C on skeletal muscle collagen and hydroxylysyl pyridinoline cross-link concentration in farmed Atlantic salmon (Salmo salar). (United States)

    Li, Xuejun; Bickerdike, Ralph; Nickell, David; Campbell, Patrick; Dingwall, Alistair; Johnston, Ian A


    We have investigated the interactions between dietary vitamin C levels (at 33, 79, 135, and 424 mg kg-1 of wet mass feed) and growth rate on the collagen and cross-link contents of fast muscle in farmed juvenile Atlantic salmon (Salmo salar L.). The growth rate was measured over an 11 week period using the thermal growth coefficient (TGC). Alkaline-soluble (0.1 M NaOH) (a-s) hydroxyproline (HYP) and alkaline-insoluble (i-s) HYP were determined as a measure of collagen content and hydroxylysyl pyridinoline (PYD) as a measure of mature collagen cross-link concentration. There was a approximately 5-fold increase in muscle vitamin C concentration at similar feed conversion ratios ( approximately 0.82) as dietary vitamin C levels increased from 39 to 424 mg kg-1 of wet mass feed. However, even the lowest dietary vitamin C was sufficient for normal skeletal development and growth. The lowest dietary vitamin C level tested resulted in a approximately 27% decrease in the a-sHYP concentration relative to the other diets, whereas there was no significant effect of vitamin C on the i-sHYP and PYD concentrations. ANOVA revealed no significant interaction between vitamin C and growth rate, whereas the covariate TGC was significant for i-sHYP and PYD but not for a-sHYP. Pyridinoline cross-link and i-s HYP concentrations were 11.1 and 7.7% lower, respectively, in high (TGC > 3.9) mass than low (TGC < 3.9) growth rate fish. These small differences in collagen cross-linking were associated with a 15.6% decrease in fillet firmness measured with an instrumental texture analyzer. It was concluded that for healthy juvenile salmon reared under controlled growth conditions, the dietary vitamin C inclusion of 79 mg kg-1 of wet mass feed was sufficient to produce the required synthesis of soluble muscle collagen. Furthermore, post-translational modifications of the collagen leading to cross-linking showed a small decrease with increasing growth rate but was independent of vitamin C

  20. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. (United States)

    Balakrishnan, Biji; Jayakrishnan, A


    The injectable polymer scaffolds which are biocompatible and biodegradable are important biomaterials for tissue engineering and drug delivery. Hydrogels derived from natural proteins and polysaccharides are ideal scaffolds for tissue engineering since they resemble the extracellular matrices of the tissue comprised of various amino acids and sugar-based macromolecules. Here, we report a new class of hydrogels derived from oxidized alginate and gelatin. We show that periodate-oxidized sodium alginate having appropriate molecular weight and degree of oxidation rapidly cross-links proteins such as gelatin in the presence of small concentrations of sodium tetraborate (borax) to give injectable systems for tissue engineering, drug delivery and other medical applications. The rapid gelation in the presence of borax is attributed to the slightly alkaline pH of the medium as well as the ability of borax to complex with hydroxyl groups of polysaccharides. The effect of degree of oxidation and concentration of alginate dialdehyde, gelatin and borax on the speed of gelation was examined. As a general rule, the gelling time decreased with increase in concentration of oxidized alginate, gelatin and borax and increase in the degree of oxidation of alginate. Cross-linking parameters of the gel matrix were studied by swelling measurements and trinitrobenzene sulphonic acid (TNBS) assay. In general, the degree of cross-linking was found to increase with increase in the degree of oxidation of alginate, whereas the swelling ratio and the degree of swelling decreased. The gel was found to be biocompatible and biodegradable. The potential of the system as an injectable drug delivery vehicle and as a tissue-engineering scaffold is demonstrated by using primaquine as a model drug and by encapsulation of hepatocytes inside the gel matrix, respectively.

  1. Porous chitosan scaffold cross-linked by chemical and natural procedure applied to investigate cell regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Chih-Kai [Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China); Liao, Jiunn-Der, E-mail: [Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China); Center of Micro/Nano Science and Technology, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China); Chung, Chia-Wei; Sung, Wei-I. [Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China); Chang, Nai-Jen [Institute of Biomedical Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China)


    Highlights: Black-Right-Pointing-Pointer Polymeric scaffolds, made from chitosan-based films fixed by chemical (citrate) or natural method (genipin), were developed. Black-Right-Pointing-Pointer Nano-indentation with a constant harmonic frequency was applied on porous scaffolds to explore their surface mechanics. Black-Right-Pointing-Pointer The relationship between surface mechanical property and cell-surface interactions of scaffold materials was demonstrated. Black-Right-Pointing-Pointer Porous scaffolds cross-linked by genipin showed adequate cell affinity, non-toxicity, and suitable mechanical properties. - Abstract: Porous chitosan scaffold is used for tissue engineering and drug delivery, but is limited as a scaffold material due to its mechanical weakness, which restrains cell adhesion on the surface. In this study, a chemical reagent (citrate) and a natural reagent (genipin) are used as cross-linkers for the formation of chitosan-based films. Nanoindentation technique with a continuous stiffness measurement system is particularly applied on the porous scaffold surface to examine the characteristic modulus and nanohardness of a porous scaffold surface. The characteristic modulus of a genipin-cross-linked chitosan surface is Almost-Equal-To 2.325 GPa, which is significantly higher than that of an uncross-linked one ( Almost-Equal-To 1.292 GPa). The cell-scaffold surface interaction is assessed. The cell morphology and results of an MTS assay of 3T3-fibroblast cells of a genipin-cross-linked chitosan surface indicate that the enhancement of mechanical properties induced cell adhesion and proliferation on the modified porous scaffold surface. The pore size and mechanical properties of porous chitosan film can be tuned for specific applications such as tissue regeneration.

  2. Development of casein microgels from cross-linking of casein micelles by genipin. (United States)

    Silva, Naaman F Nogueira; Saint-Jalmes, Arnaud; de Carvalho, Antônio F; Gaucheron, Frédéric


    Casein micelles are porous colloidal particles, constituted of casein molecules, water, and minerals. The vulnerability of the supramolecular structure of casein micelles face to changes in the environmental conditions restrains their applications in other domains besides food. Thus, redesigning casein micelles is a challenge to create new functionalities for these biosourced particles. The objective of this work was to create stable casein microgels from casein micelles using a natural cross-linker, named genipin. Suspensions of purified casein micelles (25 g L(-1)) were mixed with genipin solutions to have final concentrations of 5, 10, and 20 mM genipin. Covalently linked casein microgels were formed via cross-linking of lysyl and arginyl residues of casein molecules. The reacted products exhibited blue color. The cross-linking reaction induced gradual changes on the colloidal properties of the particles. The casein microgels were smaller and more negatively charged and presented smoother surfaces than casein micelles. These results were explained based on the cross-linking of free NH2 present in an external layer of κ-casein. Light scattering and rheological measurements showed that the reaction between genipin and casein molecules was intramicellar, as one single population of particles was observed and the values of viscosity (and, consequently, the volume fraction of the particles) were reduced. Contrary to the casein micelles, the casein microgels were resistant to the presence of dissociating agents, e.g., citrate (calcium chelating) and urea, but swelled as a consequence of internal electrostatic repulsion and the disruption of hydrophobic interactions between protein chains. The casein microgels did not dissociate at the air-solution interface and formed solid-like interfaces rather than a viscoelastic gel. The potential use of casein microgels as adaptable nanocarriers is proposed in the article.

  3. Evaluation of epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Chenyu; Deng, Jia [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Xiang, Lin; Wu, Yingying [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Wei, Xiawei [State Key Laboratory of Biotherapy and Laboratory for Aging Research, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041 (China); Qu, Yili [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Man, Yi, E-mail: [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)


    Collagen membranes have ideal biological and mechanical properties for supporting infiltration and proliferation of osteoblasts and play a vital role in guided bone regeneration (GBR). However, pure collagen can lead to inflammation, resulting in progressive bone resorption. Therefore, a method for regulating the level of inflammatory cytokines at surgical sites is paramount for the healing process. Epigallocatechin-3-gallate (EGCG) is a component extracted from green tea with numerous biological activities including an anti-inflammatory effect. Herein, we present a novel cross-linked collagen membrane containing different concentrations of EGCG (0.0064%, 0.064%, and 0.64%) to regulate the level of inflammatory factors secreted by pre-osteoblast cells; improve cell proliferation; and increase the tensile strength, wettability, and thermal stability of collagen membranes. Scanning electron microscope images show that the surfaces of collagen membranes became smoother and the collagen fiber diameters became larger with EGCG treatment. Measurement of the water contact angle demonstrated that introducing EGCG improved membrane wettability. Fourier transform infrared spectroscopy analyses indicated that the backbone of collagen was intact, and the thermal stability was significant improved in differential scanning calorimetry. The mechanical properties of 0.064% and 0.64% EGCG-treated collagen membranes were 1.5-fold greater than those of the control. The extent of cross-linking was significantly increased, as determined by a 2,4,6-trinitrobenzenesulfonic acid solution assay. The Cell Counting Kit-8 (CCK-8) and live/dead assays revealed that collagen membrane cross-linked by 0.0064% EGCG induced greater cell proliferation than pure collagen membranes. Additionally, real-time polymerase chain reaction and enzyme-linked immunosorbent assay results showed that EGCG significantly affected the production of inflammatory factors secreted by MC3T3-E1 cells. Taken together, our

  4. Investigation of aging effects in cross-linked polyethylene insulated cable using terahertz waves (United States)

    Yan, Zhijin; Shi, Wei; Hou, Lei; Xu, Ming; Yang, Lei; Dong, Chengang; Li, Shengtao


    A method to detect the degree of aging in cross-linked polyethylene (XLPE) insulated cables, using terahertz (THz) waves, is reported in this letter. With increased aging time, the real permittivity decreases in the frequency range from 0.7 to 2.5 THz. The imaginary permittivity and absorption coefficient of unaged XLPE sample are larger than those of thermally aged XLPE insulated cables. These findings indicate that the aging degree of XLPE can be obtained by measuring its permittivity and absorption coefficient by THz waves.

  5. Viscoelastic Model of Cross-Linked Polyethylene Including Effects of Temperature and Crystallinity (United States)

    Olasz, L.; Gudmundson, P.


    Characterization of the mechanical behavior of cross-linked polyethylene (XLPE) commonly used in high voltage cable insulation was performed by an extensive set of isothermal uniaxial tensile relaxation tests. Tensile relaxation experiments were complemented by pressure-volume-temperature experiments as well as density and crystallinity measurements. Based on the experimental results, a viscoelastic power law model with four parameters was formulated, incorporating temperature and crystallinity dependence. It was found that a master curve can be developed by both horizontal and vertical shifting of the relaxation curves. The model was evaluated by making comparisons of the predicted stress responses with the measured responses in relaxation tests with transient temperature histories.

  6. The Effect of the Semiconductive Screen on Space Charge Suppression in Cross-Linked Polyethylene (United States)

    Li, Lin; Han, Bai; Song, Wei; Wang, Xuan; Lei, Qing-Quan


    The space charge distributions of cross-linked polyethylene (XLPE) with Borouge's Borlink™ semiconductive screen type LE0550 and LE0595 from a pulsed electro-acoustic method are obtained. The contact interface morphology at the semiconductive screen and the structure of XLPE near the interface are characterized. The dielectric spectrum and the conductivity current of XLPE with the different semiconductive electrodes are compared. The semiconductive screen changes the structure and the dielectric characteristic of XLPE near the contact interface, which may be the main reason for space charge suppression in XLPE with Borouge's type LE0550 semiconductive screen.


    Institute of Scientific and Technical Information of China (English)

    You-xiang Wang; Ying Zhu; Jia-cong Shen


    Enhanced stability of polyplexes in physiological condition was an important prerequisite for successful systemic gene delivery. Herein novel method was reported to develop stable gene vector by nanotechnology. Thiolated polyplexes were constructed and then cross-linked with gold nanoparticles (AuNPs) by gold-thiol interactions. TEM pictures showed that AuNPs were attached to the shell of spherical polyplexes. The hybrid gene vector was stable enough in physiological condition and maintained efficient transfection, which showed great potential in gene delivery research and application.

  8. Cross-Linked Liquid Crystalline Systems From Rigid Polymer Networks to Elastomers

    CERN Document Server

    Broer, Dirk


    With rapidly expanding interest in liquid crystalline polymers and elastomers among the liquid crystal community, researchers are currently exploring the wide range of possible application areas for these unique materials, including optical elements on displays, tunable lasers, strain gauges, micro-structures, and artificial muscles. Written by respected scientists from academia and industry around the world, who are not only active in the field but also well-known in more traditional areas of research, "Cross-Linked Liquid Crystalline Systems: From Rigid Polymer Networks to Elastomers&qu

  9. Evaluation of cross-linked chitosan microparticles containing acyclovir obtained by spray-drying

    Energy Technology Data Exchange (ETDEWEB)

    Stulzer, Hellen Karine [Laboratorio Quitech, Departamento de Quimica, Universidade Federal de Santa Catarina (Brazil); Laboratorio de Controle de Qualidade, Departamento de Ciencias Farmaceuticas, Universidade Federal de Santa Catarina (Brazil); Laboratorio de Controle de Qualidade, Departamento de Ciencias Farmaceuticas, Universidade Estadual de Ponta Grossa (Brazil)], E-mail:; Tagliari, Monika Piazzon [Laboratorio de Controle de Qualidade, Departamento de Ciencias Farmaceuticas, Universidade Federal de Santa Catarina (Brazil); Parize, Alexandre Luis [Laboratorio Quitech, Departamento de Quimica, Universidade Federal de Santa Catarina (Brazil); Silva, Marcos Antonio Segatto [Laboratorio de Controle de Qualidade, Departamento de Ciencias Farmaceuticas, Universidade Federal de Santa Catarina (Brazil); Laranjeira, Mauro Cesar Marghetti [Laboratorio Quitech, Departamento de Quimica, Universidade Federal de Santa Catarina (Brazil)


    The aim of this study was to obtain microparticles containing acyclovir (ACV) and chitosan cross-linked with tripolyphosphate using the spray-drying technique. The resultant system was evaluated through loading efficiency, differential scanning calorimetry (DSC), thermogravimetric analysis (TG), X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), in vitro release and stability studies. The results obtained indicated that the polymer/ACV ratio influenced the final properties of the microparticles, with higher ratios giving the best encapsulation efficiency, dissolution profiles and stability. The DSC and XRPD analyses indicated that the ACV was transformed into amorphous form during the spray-drying process.

  10. Towards aging mechanisms of cross-linked polyethylene (XLPE) cable insulation materials in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shuaishuai; Fifield, Leonard S.; Bowler, Nicola


    Cross-linked polyethylene (XLPE) cable insulation material undergoes simultaneous, accelerated thermal and gamma-radiation aging to simulate the long-term aging environment within nuclear power plants (NPPs). A variety of materials characterization tests, including scanning electron microscopy, thermo-gravimetric analysis, differential scanning calorimetry, oxidation induction time, gel-fraction and dielectric properties measurement, are conducted on pristine and differently aged XLPE samples. A preliminary model of one possible aging mechanism of XLPE cable insulation material under gamma radiation at elevated temperature of 115 °C is suggested.

  11. Charge regulation and energy dissipation while compressing and sliding a cross-linked chitosan hydrogel layer

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Tyrode, Eric


    Interactions between a silica surface and a surface coated with a grafted cross-linked hydrogel made from chitosan/PAA multilayers are investigated, utilizing colloidal probe atomic force microscopy. Attractive double-layer forces are found to dominate the long-range interaction over a broad range...... of pH and ionic strength conditions. The deduced potential at the hydrogel/aqueous interface is found to be very low. This situation is maintained in the whole pH-range investigated, even though the degree of protonation of chitosan changes significantly. This demonstrates that pH-variations change...

  12. Effect of Cross-linking Agent on Barbituric Acid-initiated Resin

    Institute of Scientific and Technical Information of China (English)


    To improve the tensile bond strength of dentin bonding agents, the adhesion between dentin and MMA resin was investigated by applying initiator systems containing 1-cyclohexyl-5-ethyl barbituric acid (CEB), copper acetyl acetonate (CAA), quaternary ammonium chloride (QAC), cupric ion, with the addition of TEGDMA, and pretreatment solution for dentin, and an HEMA primer. The effects of a cross-linking agent on barbituric acid-initiated dentin bonding resin were examined by measuring degree of conversion, molecular weight, hardness of bonding resin, and tensile bond strengths.

  13. Photoinduced cross-linkage, in situ, of Escherichia coli 30S ribosomal proteins to 16S rRNA: identification of cross-linked proteins and relationships between reactivity and ribosome structure. (United States)

    Gorelic, L


    The kinetics of photoinduced cross-linkage of Escherichia coli 30S ribosomal proteins to the 16S-rRNA molecule in the intact Escherichia coli 30S ribosomal subunit was studied in this report. All of the 30S ribosomal proteins become cross-linked to the 16S rRNA before changes in the sedimentation characteristics of the 30S ribosomal subunit can be detected. The proteins exhibit different reactivities in the cross-linkage reaction. One group of proteins-S3, S7-S9, S11, S12, and S15-S19-is cross-linked to the 16S rRNA by single-hit kinetics, or by photoprocesses of nonunity but low multiplicities. A second group of proteins--S1, S2, S4-S6, S10, S13, S14, and S21--is cross-linked to the 16S rRNA by photoprocesses of a complex nature. A comparison of these data with other properties of the individual 30S ribosomal proteins related to ribosome structure indicated that most of the 30S ribosomal proteins cross-linked to the 16S rRNA by photoprocesses of low multiplicities had been classified rRNA-binding proteins by nonphotochemical methods, and most of the proteins cross-linked to the 16S rRNA by photoprocesses of large multiplicities had been classified as nonbinding proteins. There were certain exceptions to these correlations. Proteins S4 and S20, both RNA-binding proteins, become cross-linked to the 16S rRNA by photoprocessses of large multiplicities, and proteins S3, S11, S12, and S18, none of which have been classified RNA-binding proteins, exhibited low multiplicities in the cross-linkage reaction. All of these exceptions could be explained in terms of limitations inherent in the photochemical methods used in this study and in other types of methods that have been used to study RNA-protein interactions in the 30S ribosomal subunit. The data presented here also suggest that labile RNA-protein cross-links are present in the uv-irradiated 30S ribosomal subunits, and that neither peptide-bond cleavage nor photoinduced modification of the charged side-chain groups in

  14. Gingival Crevicular Fluid Calprotectin, Osteocalcin and Cross-Linked N-Terminal Telopeptid Levels in Health and Different Periodontal Diseases

    Directory of Open Access Journals (Sweden)

    Sema Becerik


    Full Text Available Aim: The aim of the present study was to investigate gingival crevicular fluid (GCF calprotectin, osteocalcin and cross-linked N-terminal telopeptide (NTx levels in health along with different periodontal diseases.

  15. Structure and kinetics of chemically cross-linked protein gels from small-angle X-ray scattering

    CERN Document Server

    Kaieda, Shuji; Halle, Bertil


    Glutaraldehyde (GA) reacts with amino groups in proteins, forming intermolecular cross-links that, at sufficiently high protein concentration, can transform a protein solution into a gel. Although GA has been used as a cross-linking reagent for decades, neither the cross-linking chemistry nor the microstructure of the resulting protein gel have been clearly established. Here we use small-angle X-ray scattering (SAXS) to characterise the microstructure and structural kinetics of gels formed by cross-linking of pancreatic trypsin inhibitor, myoglobin or intestinal fatty acid-binding protein. By comparing the scattering from gels and dilute solutions, we extract the structure factor and the pair correlation function of the gel. The protein gels are spatially heterogeneous, with dense clusters linked by sparse networks. Within the clusters, adjacent protein molecules are almost in contact, but the protein concentration in the cluster is much lower than in a crystal. At the $\\sim$ 1 nm SAXS resolution, the native ...

  16. Cross-linked supramolecular polymer metallogels constructed via a self-sorting strategy and their multiple stimulus-response behaviors. (United States)

    Wang, Xu-Qing; Wang, Wei; Yin, Guang-Qiang; Wang, Yu-Xuan; Zhang, Chang-Wei; Shi, Jia-Meng; Yu, Yihua; Yang, Hai-Bo


    Novel cross-linked supramolecular polymer metallogels were successfully constructed from four components via a self-sorting strategy, and feature interesting multiple stimulus-response behaviors under various external stimuli, including halide, base, and competitive guests.

  17. The molecular mechanism of photodynamic therapy to fibrosis: Regulation on the pyridinoline cross-link formation in collagen

    Institute of Scientific and Technical Information of China (English)

    ZHANG JuCheng; LIU Wei; YI ZhongZhou; CHEN Rui; LI Ying; MIN Yong


    Fibrotic processes in tissues are characterised by an excessive accumulation of collagen containing increased levels of pyridinoline cross-links,which has been taken as an important criterion to diagnose the fibrosis.Hypocrellin B (HB) is a natural photosensitizer with excellent photodynamic activity but very low dark-toxicity.In the current work,main purpose was to clarify if photodynamic action of HB could be applied to regulating the level of pyridinoline cross-link in collagen.To use gelatin as a model collagen,it was observed that the pyridinoline cross-link formation was effectively degraded by HB photodynamic action in the gelatin,suggesting the level of pyridinoline cross-link formation in collagen may be photodynamically regulated to a normal level.Furthermore,mechanism of the photodynamic action of HB was studied.

  18. Glutaraldehyde Cross-Linking of TendonMechanical Effects at the Level of the Tendon Fascicle and Fibril

    DEFF Research Database (Denmark)

    Hansen, P.; Svensson, R.B.; Aagaard, P.;


    allowed for a detailed characterization of the effect of cross-linking in rat-tail tendon. The cross-link inducing agent glutaraldehyde augmented the tensile strength of tendon fascicles. Stress at failure increased from 8 MPa to 39 MPa. The mechanical effects of glutaraldehyde at the tendon fibril level......Conclusive insight into the microscopic principles that govern the strength of tendon and related connective tissues is lacking and the importance of collagen cross-linking has not been firmly established. The combined application of whole-tissue mechanical testing and atomic force spectroscopy...... were examined by atomic force microscopy. Peak forces increased from 1379 to 2622 pN while an extended Hertz fit of force-indentation data showed a 24 fold increase in Young's modulus on indentation. The effect of glutaraldehyde cross-linking on the tensile properties of a single collagen fibril...

  19. Quantitative assessment of fibrinogen cross-linking by epsilon aminocaproic acid in patients with end-stage liver disease. (United States)

    Quach, Thien; Tippens, Melissa; Szlam, Fania; Van Dyke, Rebecca; Levy, Jerrold H; Csete, Marie


    Analysis of the effectiveness of antifibrinolytic therapy for liver transplant recipients is hampered by lack of quantitative assays for assessing drug effects. We adapted chemical engineering tools used in polymerization studies to quantify fibrinogen cross-linking by plasma from liver transplant patients obtained before and after epsilon aminocaproic acid (EACA) therapy. A target fluorescein isothiocyanate-fibrinogen (FITC-fibrinogen) molecule was constructed; it fluoresces in a quantifiable pattern when in solution, and undergoes cross-linking in the presence of plasmin inhibitors. Cross-linking quenches the fluorescent signal, and the quenching is a quantifiable endpoint. Thus fluorescence from this reporter molecule can be used to assess functional improvement in fibrinogen cross-linking as a result of antifibrinolytic therapies, and it is sensitive to picomolar amounts of plasmin inhibitors and activators. Cross-linking of FITC-fibrinogen by patient plasma, before and after EACA therapy, was assessed using fluorescence spectrometry. Fluorescence patterns from FITC-fibrinogen indicated no significant cross-linking of the target fibrinogen as a consequence of EACA in posttreatment plasma. When the fibrinogen-FITC target was assayed without plasma in the presence of EACA at concentrations that bracket therapeutic levels (100 and 400 microg/ml), significant fluorescence quenching (target FITC-fibrinogen cross-linking) was achieved. These results suggest that fibrinogen-FITC fluorescence is sensitive enough to detect EACA activity in clinically relevant ranges, but that EACA given in usual doses is insufficient to promote fibrinogen cross-linking in patients with end-stage liver disease.

  20. Induction of DNA–protein cross-links by ionizing radiation and their elimination from the genome

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Toshiaki; Mitsusada, Yusuke [Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Salem, Amir M.H. [Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Department of Pathology, Medical Research Division, National Research Centre, El-Bohouth St., Dokki, Giza 12311 (Egypt); Shoulkamy, Mahmoud I. [Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Department of Zoology, Biological Science Building, Faculty of Science, Minia University, Minia 61519 (Egypt); Sugimoto, Tatsuya [Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Hirayama, Ryoichi; Uzawa, Akiko [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), Chiba 263-8555 (Japan); Furusawa, Yoshiya [Development and Support Center, National Institute of Radiological Sciences (NIRS), Chiba 263-8555 (Japan); Ide, Hiroshi, E-mail: [Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan)


    Highlights: • Normoxic and hypoxic mouse tumors were irradiated with X-rays and C-ion beams. • DNA–protein cross-links (DPCs) and DNA double-strand breaks (DSBs) were analyzed. • C-ion beams produced more DPCs than did X-rays in normoxic and hypoxic tumor cells. • DPCs were eliminated from the genome much more slowly than DSBs. • Persisting DPCs may have deleterious effects on cells in conjunction with DSBs. - Abstract: Ionizing radiation produces various types of DNA lesions, such as base damage, single-strand breaks, double-strand breaks (DSBs), and DNA–protein cross-links (DPCs). Of these, DSBs are the most critical lesions underlying the lethal effects of ionizing radiation. With DPCs, proteins covalently trapped in DNA constitute strong roadblocks to replication and transcription machineries, and hence can be lethal to cells. The formation of DPCs by ionizing radiation is promoted in the absence of oxygen, whereas that of DSBs is retarded. Accordingly, the contribution of DPCs to the lethal events in irradiated cells may not be negligible for hypoxic cells, such as those present in tumors. However, the role of DPCs in the lethal effects of ionizing radiation remains largely equivocal. In the present study, normoxic and hypoxic mouse tumors were irradiated with X-rays [low linear energy transfer (LET) radiation] and carbon (C)-ion beams (high LET radiation), and the resulting induction of DPCs and DSBs and their removal from the genome were analyzed. X-rays and C-ion beams produced more DPCs in hypoxic tumors than in normoxic tumors. Interestingly, the yield of DPCs was slightly but statistically significantly greater (1.3- to 1.5-fold) for C-ion beams than for X-rays. Both X-rays and C-ion beams generated two types of DPC that differed according to their rate of removal from the genome. This was also the case for DSBs. The half-lives of the rapidly removed components of DPCs and DSBs were similar (<1 h), but those of the slowly removed components

  1. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release (United States)

    Xu, Xinhua; Lu, Ping; Guo, Meiqing; Fang, Mingzhong


    A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly( DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.

  2. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xinhua, E-mail: [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Lu Ping; Guo Meiqing; Fang Mingzhong [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)


    A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly(DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.

  3. Thirteen-Year Evaluation of Highly Cross-Linked Polyethylene Articulating With Either 28-mm or 36-mm Femoral Heads Using Radiostereometric Analysis and Computerized Tomography

    DEFF Research Database (Denmark)

    Nebergall, Audrey K; Greene, Meridith E; Rubash, Harry


    radiograph, and CT follow-up. The 1-year and 13-year plain radiographs as well as the CT scans were analyzed for the presence of osteolysis. RESULTS: The 13-year mean ± standard error steady-state wear was 0.05 ± 0.02 mm with no significant increase over time or between the 2 head size groups. Two patients......BACKGROUND: The objective of this 13-year prospective evaluation of highly cross-linked ultra high molecular weight polyethylene (HXLPE) was to (1) assess the long-term wear of HXLPE articulating with 2 femoral head sizes using radiostereometric analysis (RSA) and to (2) determine if osteolysis...

  4. 1,2,3,4-Diepoxybutane-induced DNA-protein cross-linking in human fibrosarcoma (HT1080) cells. (United States)

    Gherezghiher, Teshome B; Ming, Xun; Villalta, Peter W; Campbell, Colin; Tretyakova, Natalia Y


    1,2,3,4-Diepoxybutane (DEB) is the key carcinogenic metabolite of 1,3-butadiene (BD), an important industrial and environmental chemical present in urban air and in cigarette smoke. DEB is a genotoxic bis-electrophile capable of cross-linking cellular biomolecules to form DNA-DNA and DNA-protein cross-links (DPCs). In the present work, mass spectrometry-based proteomics was employed to characterize DEB-mediated DNA-protein cross-linking in human fibrosarcoma (HT1080) cells. Over 150 proteins including histones, high mobility group proteins, transcription factors, splicing factors, and tubulins were found among those covalently cross-linked to chromosomal DNA in the presence of DEB. A large portion of the cross-linked proteins are known factors involved in DNA binding, transcriptional regulation, cell signaling, DNA repair, and DNA damage response. HPLC-ESI(+)-MS/MS analysis of total proteolytic digests revealed the presence of 1-(S-cysteinyl)-4-(guan-7-yl)-2,3-butanediol conjugates, confirming that DEB forms DPCs between cysteine thiols within proteins and the N-7 guanine positions within DNA. However, relatively high concentrations of DEB were required to achieve significant DPC formation, indicating that it is a poor cross-linking agent as compared to antitumor nitrogen mustards and platinum compounds.

  5. Neomycin and pentagalloyl glucose enhanced cross-linking for elastin and glycosaminoglycans preservation in bioprosthetic heart valves. (United States)

    Tripi, Daniel R; Vyavahare, Naren R


    Glutaraldehyde cross-linked bioprosthetic heart valves fail within 12-15 years of implantation due to limited durability. Glutaraldehyde does not adequately stabilize extracellular matrix components such as glycosaminoglycans and elastin, and loss of these components could be a major cause of degeneration of valve after implantation. We have shown earlier that neomycin-based cross-linking stabilizes glycosaminoglycans in the tissue but fails to stabilize elastin component. Here, we report a new treatment where neomycin and pentagalloyl glucose (PGG) were incorporated into glutaraldehyde cross-linking neomycin-PGG-Glutaraldehyde (NPG) to stabilize both glycosaminoglycans and elastin in porcine aortic valves. In vitro studies demonstrated a marked increase in extracellular matrix stability against enzymatic degradation after cross-linking and 10 month storage in NPG group when compared to glutaraldehyde controls. Tensile properties showed increased lower elastic modulus in both radial and circumferential directions in NPG group as compared to glutaraldehyde, probably due to increased elastin stabilization with no changes in upper elastic modulus and extensibility. The enhanced extracellular matrix stability was further maintained in NPG-treated tissues after rat subdermal implantation for three weeks. NPG group also showed reduced calcification when compared to glutaraldehyde controls. We conclude that NPG cross-linking would be an excellent alternative to glutaraldehyde cross-linking of bioprosthetic heart valves to improve its durability.

  6. The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid. (United States)

    Olsson, Erik; Menzel, Carolin; Johansson, Caisa; Andersson, Roger; Koch, Kristine; Järnström, Lars


    Citric acid cross-linking of starch for e.g. food packaging applications has been intensely studied during the last decade as a method of producing water-insensitive renewable barrier coatings. We managed to improve a starch formulation containing citric acid as cross-linking agent for industrial paper coating applications by adjusting the pH of the starch solution. The described starch formulations exhibited both cross-linking of starch by citric acid as well as satisfactory barrier properties, e.g. fairly low OTR values at 50% RH that are comparable with EVOH. Furthermore, it has been shown that barrier properties of coated papers with different solution pH were correlated to molecular changes in starch showing both hydrolysis and cross-linking of starch molecules in the presence of citric acid. Hydrolysis was shown to be almost completely hindered at solution pH≥4 at curing temperatures≤105 °C and at pH≥5 at curing temperatures≤150 °C, whereas cross-linking still occurred to some extent at pH≤6.5 and drying temperatures as low as 70 °C. Coated papers showed a minimum in water vapor transmission rate at pH 4 of the starch coating solution, corresponding to the point where hydrolysis was effectively hindered but where a significant degree of cross-linking still occurred.

  7. Electrospinning of polyvinyl alcohol/gelatin nanofiber composites and cross-linking for bone tissue engineering application. (United States)

    Linh, Nguyen Thuy Ba; Lee, Byong-Taek


    A three-dimensional polymer composite system consisting of polyvinyl alcohol/gelatin (PVA/GE) was fabricated via the electrospinning method and physically cross linked by methanol treatment. The effects of cross-linking between PVA/GE blend on physical, mechanical, and biological properties were investigated. After treating with methanol, PVA/GE mats become dense, hard, and aggregative with increased resistance to water dissolution. Osteoblasts like MG-63 cells were seeded on the surfaces of the cross linked PVA/GE mats and were found to attach firmly by expressing philopodial extensions. In addition, MTT assay and Western Blot analysis confirmed that the cells readily proliferated on the cross linked PVA/GE scaffolds. The osteoblast cell-matrix interaction demonstrated that the active biocompatibility of the mats was facilitated by using GE and cross-linking. In conclusion, our results suggest that cross-linked PVA/GE scaffolds hold promise for tissue engineering applications, especially in the field of artificial bone implant.

  8. Cross-linking of soybean protein isolate-chitosan coacervate with transglutaminase utilizing capsanthin as the model core. (United States)

    Huang, G Q; Xiao, J X; Qiu, H W; Yang, J


    Transglutaminase (TG) is an alternative coacervate cross-linking agent to aldehydes due to its safety. In this work, the cross-linking conditions of soybean protein isolate (SPI)-chitosan coacervates with TG-utilizing capsanthin as the model core were optimized and its cross-linking effectiveness was compared with that of glutaraldehyde. Results indicated that the optimum capsanthin microcapsule cross-linking conditions were as follows: a suspension pH of 6.0, an incubation duration of 3 h, a TG concentration of 18.75 U/g SPI and a reaction temperature of 45 °C. Under these conditions, TG provided a cross-linking effectiveness comparable with that of glutaraldehyde in regards to microcapsule stability against swelling in 80 °C water and heating at 150 °C. Differential scanning calorimetry analysis revealed that TG cross-linking increased the integrity of the microcapsule walls. It was concluded that the SPI-chitosan coacervation pair has potential applications in the food industry in terms of cross-linker safety and effectiveness.

  9. Inhibition of murine fibrocyte differentiation by cross-linked IgG is dependent on FcγRI. (United States)

    Pilling, Darrell; Crawford, Jeffrey R; Verbeek, J Sjef; Gomer, Richard H


    Monocyte-derived, fibroblast-like cells, called fibrocytes, participate in wound-healing and the formation of fibrotic lesions. Aggregated or cross-linked IgG are key effectors in infections, autoimmune diseases, anaphylaxis, and immunotherapy. Cells, including monocytes and fibrocytes, bind IgG using FcγRs, and aggregated or cross-linked IgG inhibits fibrocyte differentiation. Mice have four different FcγRs, and which of these, if any, mediate the cross-linked IgG effect on fibrocyte differentiation is unknown. We find that in mice, deletion of FcγRI or the common signaling protein FcRγ significantly reduces the ability of cross-linked IgG or IgG2a to inhibit fibrocyte differentiation. Cells from FcγRIIb/III/IV KO mice are still sensitive to cross-linked IgG, whereas cells from FcγRI/IIb/III/IV KO mice are insensitive to cross-linked IgG. These observations suggest that IgG-mediated inhibition of fibrocyte differentiation is mediated by FcγRs, with FcγRI mediating most of the signaling.

  10. Cross-linking staphylococcal enterotoxin A bound to major histocompatibility complex class I is required for TNF-alpha secretion (United States)

    Wright, A. D.; Chapes, S. K.


    The mechanism of how superantigens function to activate cells has been linked to their ability to bind and cross-link the major histocompatibility complex class II (MHCII) molecule. Cells that lack the MHCII molecule also respond to superantigens, however, with much less efficiency. Therefore, the purpose of this study was to confirm that staphylococcal enterotoxin A (SEA) could bind the MHCI molecule and to test the hypothesis that cross-linking SEA bound to MHCII-deficient macrophages would induce a more robust cytokine response than without cross-linking. We used a capture enzyme-linked immunosorbent assay and an immunprecipitation assay to directly demonstrate that MHCI molecules bind SEA. Directly cross-linking MHCI using monoclonal antibodies or cross-linking bound SEA with an anti-SEA antibody or biotinylated SEA with avidin increased TNF-alpha and IL-6 secretion by MHCII(-/-) macrophages. The induction of a vigorous macrophage cytokine response by SEA/anti-SEA cross-linking of MHCI offers a mechanism to explain how MHCI could play an important role in superantigen-mediated pathogenesis. Copyright 1999 Academic Press.

  11. DNA interstrand cross-links of an antitumor trinuclear platinum(II) complex: thermodynamic analysis and chemical probing. (United States)

    Malina, Jaroslav; Farrell, Nicholas P; Brabec, Viktor


    The trinuclear platinum compound [{trans-PtCl(NH(3))(2)}(2)(μ-trans-Pt(NH(3))(2){NH(2)(CH(2))(6)NH(2)}(2))](4+) (BBR3464) belongs to the polynuclear class of platinum-based anticancer agents. These agents form in DNA long-range (Pt,Pt) interstrand cross-links, whose role in the antitumor effects of BBR3464 predominates. Our results show for the first time that the interstrand cross-links formed by BBR3464 between two guanine bases in opposite strands separated by two base pairs (1,4-interstrand cross-links) exist as two distinct conformers, which are not interconvertible, not only if these cross-links are formed in the 5'-5', but also in the less-usual 3'-3' direction. Analysis of the conformers by differential scanning calorimetry, chemical probes of DNA conformation, and minor groove binder Hoechst 33258 demonstrate that each of the four conformers affects DNA in a distinctly different way and adopts a different conformation. The results also support the thesis that the molecule of antitumor BBR3464 when forming DNA interstrand cross-links may adopt different global structures, including different configurations of the linker chain of BBR3464 in the minor groove of DNA. Our findings suggest that the multiple DNA interstrand cross-links available to BBR3464 may all contribute substantially to its cytotoxicity.

  12. Numerical Modeling of Force-Stiffness Response of Cross-Linked Actin Networks Using Tensegrity Systems

    Directory of Open Access Journals (Sweden)

    Xian Xu


    Full Text Available A three-dimensional tensegrity structure is used as a computational model for cross-linked actin networks. The postbuckling behavior of the members under compression is considered and the constitutive relation of the postbuckling members is modeled as a second-order polynomial. A numerical scheme incorporating the equivalent constitution of the postbuckling members is used to predict the structural response of the tensegrity model under compression loads. The numerical simulation shows that the stiffness of the tensegrity structure nonlinearly increases before member buckling and abruptly decreases to a lower level as soon as members buckle. This result qualitatively mimics the experimentally observed stiffness to compression stress response of cross-linked actin networks. In order to take member length variety into account, a large number of simulations with the length of buckling members varying in the given range are also carried out. It is found that the mean response of the simulations using different buckling member length exhibits more resemblance to the experimental observation.

  13. Characterization of Chemical and Physical Properties of Hydroxypropylated and Cross-linked Arrowroot (Marantha arundinacea Starch

    Directory of Open Access Journals (Sweden)

    Rijanti Rahaju Maulani


    Full Text Available The modern food industry and a variety of food products require tolerant starch as raw material for processing in a broad range of techniques, from preparation to storage and distribution. Dual modification of arrowroot starch using hydroxypropylation and cross-linking was carried out to overcome the lack of native arrowroot starch in food processing application. The modifications applied were: combined propylene oxide (8%, 10%, and 12%; sodium tri meta phosphate/STMP (1%, 2%, and 3%; and sodium tri poly phosphate/STPP (4%, 5%, and 6%. These modifications significantly affected the composition of the amylose and amylopectin and the amount of phosphorus in the granules. Higher amounts of phosphate salt gave a higher phosphorus content, which increased the degree of substitution (DS and the degree of cross-link. Arrowroot starch that was modified using a concentration of 8-10% propylene oxide and 1-2% STMP : 3-5% STPP produced a starch with < 0.4% phosphorus content. A higher concentration of propylene oxide provided a higher degree of hydroxypropyl. The changed physical properties of the modified granular arrowroot starch were examined through SEM testing, and its changed crystalline patterns through X-ray diffraction measurements. Especially, provision of a high concentration of propylene oxide (12% combined with 3% STMP : 6% STPP affected the granular morphology and the crystallinity.

  14. Nanomechanical characterization and molecular mechanism study of nanoparticle reinforced and cross-linked chitosan biopolymer. (United States)

    Rath, Amrita; Mathesan, Santhosh; Ghosh, Pijush


    Chitosan (CS) is a biomaterial that offers many sophisticated and innovative applications in the biomedical field owing to its excellent characteristics of biodegradability, biocompatibility and non-toxicity. However, very low mechanical properties of chitosan polymer impose restriction on its further development. Cross-linking and nanoparticle reinforcement are the two possible methods to improve the mechanical properties of chitosan films. In this research, these two methods are adopted individually by using tripolyphosphate as cross-linker and nano-hydroxyapatite as particle reinforcement. The nanomechanical characterizations under static loading conditions are performed on these modified chitosan films. It is observed that nanoparticle reinforcement provided necessary mechanical properties such as ductility and modulus. The mechanisms involved in improvement of mechanical properties due to particle reinforcement are studied by molecular dynamics (MD). Further, improvement in mechanical properties due to combination of particle reinforcement and cross-linking agent with chitosan is investigated. The stress relaxation behavior for all these types of films is characterized under dynamic loading conditions using dynamic mechanical analysis (nanoDMA) experiment. A viscoelastic solid like response is observed for all types of film with modulus relaxing by 3-6% of its initial value. A suitable generalized Maxwell model is fitted with the obtained viscoelastic response of these films. The response to nano-scratch behavior is also studied for particle reinforced composite films.

  15. Preparation and adsorption property of aminated cross linking microbeads of GMA/EGDMA for bilirubin

    Indian Academy of Sciences (India)

    Zhiping Chen; Baojiao Gao; Xiaofeng Yang


    Cross linking microbeads with a controllable diameter were synthesized by suspension copolymerization of the monomer glycidyl methacrylate (GMA) and the cross linking agent ethylene glycol dimethylacrylate (EGDMA). By the ring-opening reaction of the epoxy groups, the microbeads GMA/EGDMA were modified with different aminating agents and resulting in the aminated microbeads. The morphology of the microbeads was characterized by SEM. The adsorption property of aminated microbeads for bilirubin was investigated, and the effects of various factors, such as the chemical structures of the aminating agents, pH values of the medium and the presence of bovine serum albumin in the adsorption medium, on the adsorption property were examined. The experimental results show that the aminated microbeads have strong adsorption ability for bilirubin, and the isotherm adsorption behaviour is fitted to Freundlich equation satisfactorily. The adsorption ability of the aminated microbeads modified with hexanediamine is stronger than that of others, and the longer the molecule of multi-ethylene multiamine, the weaker the adsorption ability for bilirubin. The pH value of the medium affects the adsorption ability greatly, as pH = 6, the adsorption ability is strongest. In the presence of BSA, the microbeads still have a higher adsorption capacity towards bilirubin.

  16. Chemical, Physical, and Mechanical Characterization of Isocyanate Cross-linked Amine-Modified Silica Aerogels (United States)

    Katti, Atul; Shimpi, Nilesh; Roy, Samit; Lu, Hongbing; Fabrizio, Eve F.; Dass, Amala; Capadona, Lynn A.; Leventis, Nicholas


    We describe a new mechanically strong lightweight porous composite material obtained by encapsulating the skeletal framework of amine-modified silica aerogels with polyurea. The conformal polymer coating preserves the mesoporous structure of the underlying silica framework and the thermal conductivity remains low at 0.041 plus or minus 0.001 W m(sup -1 K(sup -1). The potential of the new cross-linked silica aerogels for load-carrying applications was determined through characterization of their mechanical behavior under compression, three-point bending, and dynamic mechanical analysis (DMA). A primary glass transition temperature of 130 C was identified through DMA. At room temperature, results indicate a hyperfoam behavior where in compression cross-linked aerogels are linearly elastic under small strains (less than 4%) and then exhibit yield behavior (until 40% strain), followed by densification and inelastic hardening. At room temperature the compressive Young's modulus and the Poisson's ratio were determined to be 129 plus or minus 8 MPa and 0.18, respectively, while the strain at ultimate failure is 77% and the average specific compressive stress at ultimate failure is 3.89 x 10(exp 5) N m kg(sup -1). The specific flexural strength is 2.16 x 10(exp 4) N m kg(sup -1). Effects on the compressive behavior of strain rate and low temperature were also evaluated.

  17. Effects of Composition of Iron-Cross-Linked Alginate Hydrogels for Cultivation of Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Ikuko Machida-Sano


    Full Text Available We investigated the suitability of ferric-ion-cross-linked alginates (Fe-alginate with various proportions of L-guluronic acid (G and D-mannuronic acid (M residues as a culture substrate for human dermal fibroblasts. High-G and high-M Fe-alginate gels showed comparable efficacy in promoting initial cell adhesion and similar protein adsorption capacities, but superior cell proliferation was observed on high-G than on high-M Fe-alginate as culture time progressed. During immersion in culture medium, high-G Fe-alginate showed little change in gel properties in terms of swelling and polymer content, but the properties of high-M Fe-alginate gel were altered due to loss of ion cross-linking. However, the degree of cell proliferation on high-M Fe-alginate gel was improved after it had been stabilized by immersion in culture medium until no further changes occurred. These results suggest that the mode of cross-linkage between ferric ions and alginate differs depending on alginate composition and that the major factor giving rise to differences in cell growth on the two types of Fe-alginate films is gel stability during culture, rather than swelling of the original gel, polymer content, or protein adsorption ability. Our findings may be useful for extending the application of Fe-alginate to diverse biomedical fields.

  18. Alkaline membrane fuel cells with in-situ cross-linked ionomers

    Energy Technology Data Exchange (ETDEWEB)

    Leng, YJ; Wang, LZ; Hickner, MA; Wang, CY


    Improving cell performance and durability through both new materials and membrane electrode processing optimization is needed for the commercialization of alkaline membrane fuel cell (AMFC) technologies. In this work, we adopted an in-situ cross-linking strategy of an anion-conducting block copolymer to prepare durable ionomers for use in alkaline membrane fuel cells (AMFCs). Our goal was to use new ionomers and binders with an aim at improving long-term stability of AMFCs, especially at high operation temperatures. At 80 degrees C, AMFCs with in-situ cross-linked ionomers showed promising stability with an operating life time of more than 350 hours at 100 mA/cm(2). We found that the optimized electrode fabrication process and operating conditions can significantly improve the durability performance of AMFCs. For example, a suitable electrode binder in addition to the ion-conducting ionomer can greatly enhance the durability performance of AMFCs. Operating fuel cells under a cathode over-humification condition can also enhance the long-term stability of AMFCs. (C) 2014 Elsevier Ltd. All rights reserved.

  19. Synthesis of Covalently Cross-Linked Colloidosomes from Peroxidized Pickering Emulsions

    Directory of Open Access Journals (Sweden)

    Nadiya Popadyuk


    Full Text Available A new approach to the formation of cross-linked colloidosomes was developed on the basis of Pickering emulsions that were stabilized exclusively by peroxidized colloidal particles. Free radical polymerization and a soft template technique were used to convert droplets of a Pickering emulsion into colloidosomes. The peroxidized latex particles were synthesized in the emulsion polymerization process using amphiphilic polyperoxide copolymers poly(2-tert-butylperoxy-2-methyl-5-hexen-3-ine-co-maleic acid (PM-1-MAc or poly[N-(tert-butylperoxymethylacrylamide]-co-maleic acid (PM-2-MAc, which were applied as both initiators and surfactants (inisurfs. The polymerization in the presence of the inisurfs results in latexes with a controllable amount of peroxide and carboxyl groups at the particle surface. Peroxidized polystyrene latex particles with a covalently grafted layer of inisurf PM-1-MAc or PM-2-MAc were used as Pickering stabilizers to form Pickering emulsions. A mixture of styrene and/or butyl acrylate with divinylbenzene and hexadecane was applied as a template for the synthesis of colloidosomes. Peroxidized latex particles located at the interface are involved in the radical reactions of colloidosomes formation. As a result, covalently cross-linked colloidosomes were obtained. It was demonstrated that the structure of the synthesized (using peroxidized latex particles colloidosomes depends on the amount of functional groups and pH during the synthesis. Therefore, the size and morphology of colloidosomes can be controlled by latex particle surface properties.

  20. In situ cross-linking of stimuli-responsive hemicellulose microgels during spray drying. (United States)

    Zhao, Weifeng; Nugroho, Robertus Wahyu N; Odelius, Karin; Edlund, Ulrica; Zhao, Changsheng; Albertsson, Ann-Christine


    Chemical cross-linking during spray drying offers the potential for green fabrication of microgels with a rapid stimuli response and good blood compatibility and provides a platform for stimuli-responsive hemicellulose microgels (SRHMGs). The cross-linking reaction occurs rapidly in situ at elevated temperature during spray drying, enabling the production of microgels in a large scale within a few minutes. The SRHMGs with an average size range of ∼ 1-4 μm contain O-acetyl-galactoglucomannan as a matrix and poly(acrylic acid), aniline pentamer (AP), and iron as functional additives, which are responsive to external changes in pH, electrochemical stimuli, magnetic field, or dual-stimuli. The surface morphologies, chemical compositions, charge, pH, and mechanical properties of these smart microgels were evaluated using scanning electron microscopy, IR, zeta potential measurements, pH evaluation, and quantitative nanomechanical mapping, respectively. Different oxidation states were observed when AP was introduced, as confirmed by UV spectroscopy and cyclic voltammetry. Systematic blood compatibility evaluations revealed that the SRHMGs have good blood compatibility. This bottom-up strategy to synthesize SRHMGs enables a new route to the production of smart microgels for biomedical applications.

  1. Synthesis and antimicrobial activity of some novel cross-linked chitosan hydrogels. (United States)

    Mohamed, Nadia Ahmed; Fahmy, Mona Mohamed


    Four novel hydrogels based on chitosan were synthesized via a cross-linking reaction of chitosan with different concentrations of oxalyl bis 4-(2,5-dioxo-2H-pyrrol- 1(5H)-yl)benzamide. Their structures were confirmed by fourier transform infrared X-ray (FTIR), scanning electron microscopy (SEM) and X-ray diffraction. The antimicrobial activities of the hydrogels against two crop-threatening pathogenic fungi namely: Aspergillus fumigatus (A. fumigatus, RCMBA 06002), and Aspergillus niger (A. niger, RCMBA 06106), and five bacterial species namely: Bacillis subtilis (B. subtilis, RCMBA 6005), Staphylococcus aureus (S. aureus, RCMBA 2004), Streptococcus pneumoniae (S. pneumonia, RCMB 000101) as Gram positive bacteria, and Salmonella typhimurium (S. typhimurium, RCMB 000104), and Escherichia coli (E. coli, RCMBA 5003) as Gram negative bacteria have been investigated. The prepared hydrogels showed much higher antimicrobial activities than that of the parent chitosan. The hydrogels were more potent in case of Gram-positive bacteria than Gram-negative bacteria. Increasing the degree of cross-linking in the hydrogels resulted in a weaker antimicrobial activity.

  2. Synthesis and Antimicrobial Activity of Some Novel Cross-Linked Chitosan Hydrogels

    Directory of Open Access Journals (Sweden)

    Mona Mohamed Fahmy


    Full Text Available Four novel hydrogels based on chitosan were synthesized via a cross-linking reaction of chitosan with different concentrations of oxalyl bis 4-(2,5-dioxo-2H-pyrrol-1(5H-ylbenzamide. Their structures were confirmed by fourier transform infrared X-ray (FTIR, scanning electron microscopy (SEM and X-ray diffraction. The antimicrobial activities of the hydrogels against two crop-threatening pathogenic fungi namely: Aspergillus fumigatus (A. fumigatus, RCMBA 06002, and Aspergillus niger (A. niger, RCMBA 06106, and five bacterial species namely: Bacillis subtilis (B. subtilis, RCMBA 6005, Staphylococcus aureus (S. aureus, RCMBA 2004, Streptococcus pneumoniae (S. pneumonia, RCMB 000101 as Gram positive bacteria, and Salmonella typhimurium (S. typhimurium, RCMB 000104, and Escherichia coli (E. coli, RCMBA 5003 as Gram negative bacteria have been investigated. The prepared hydrogels showed much higher antimicrobial activities than that of the parent chitosan. The hydrogels were more potent in case of Gram-positive bacteria than Gram-negative bacteria. Increasing the degree of cross-linking in the hydrogels resulted in a weaker antimicrobial activity.

  3. A covalently cross-linked gel derived from the epidermis of the pilot whale Globicephala melas. (United States)

    Baum, C; Fleischer, L-G; Roessner, D; Meyer, W; Siebers, D


    The rheological properties of the stratum corneum of the pilot whale (Globicephala melas) were investigated with emphasis on their significance to the self-cleaning abilities of the skin surface smoothed by a jelly material enriched with various hydrolytic enzymes. The gel formation of the collected fluid was monitored by applying periodic-harmonic oscillating loads using a stress-controlled rheometer. In the mechanical spectrum of the gel, the plateau region of the storage modulus G' (120 Pa) were independent of frequency (omega = 43.98 to 0.13 rad x s(-1), tau = 15 Pa, T = 20 degrees C), indicating high elastic performance of a covalently cross-linked viscoelastic solid. In addition, multi-angle laser light scattering experiments (MALLS) were performed to analyse the potential time-dependent changes in the weight-average molar mass of the samples. The observed increase showed that the gel formation is based on the assembly of covalently cross-linked aggregates. The viscoelastic properties and the shear resistance of the gel assure that the enzyme-containing jelly material smoothing the skin surface is not removed from the stratum corneum by shear regimes during dolphin jumping. The even skin surface is considered to be most important for the self-cleaning abilities of the dolphin skin against biofouling.

  4. Continuous Sensing Photonic Lab-on-a-Chip Platform Based on Cross-Linked Enzyme Crystals. (United States)

    Conejero-Muriel, Mayte; Rodríguez-Ruiz, Isaac; Verdugo-Escamilla, Cristóbal; Llobera, Andreu; Gavira, José A


    Microfluidics or lab-on-a-chip technology offer clear advantages over conventional systems such as a dramatic reduction of reagent consumption or a shorter analysis time, which are translated into cost-effective systems. In this work, we present a photonic enzymatic lab-on-a-chip reactor based on cross-linked enzyme crystals (CLECs), able to work in continuous flow, as a highly sensitive, robust, reusable, and stable platform for continuous sensing with superior performance as compared to the state of the art. The microreactor is designed to facilitate the in situ crystallization and crystal cross-linking generating enzymatically active material that can be stored for months/years. Thus, and by means of monolithically integrated micro-optics elements, continuous enzymatic reactions can be spectrophotometrically monitored. Lipase, an enzyme with industrial significance for catalyzed transesterification, hydrolysis, and esterification reactions, is used to demonstrate the potential of the microplatforms as both a continuous biosensor and a microreactor for the synthesis of high value compounds.

  5. Oxidized pectin cross-linked carboxymethyl chitosan: a new class of hydrogels. (United States)

    Fan, Lihong; Sun, Yi; Xie, Weiguo; Zheng, Hua; Liu, Shuhua


    Oxidation of pectin was performed with sodium periodate to prepare pectin dialdehyde (PD). In this study we used the cross-linking reaction of the active aldehyde of PD and the amino of carboxymethyl chitosan (CMC) to prepare the hydrogels. By controlling the proportion of pectin dialdehyde and CMC we made different kinds of hydrogels. We systematically studied the characters of the hydrogels using Fourier transform infrared spectroscopy analysis of the pectin dialdehyde, CMC and the hydrogels, and also X-ray diffractometry and scanning electron microscopy analysis of the instrument of the hydrogels. Equilibrium swelling showed that the gels retained about 88-93% water. The water vapor transmission rate (WVTR) and the evaporation of water from gels showed that such hydrogels were optimal for maintaining a moist environment conducive for wound healing. Examination of the hemolytic potential showed that the hydrogels were nonhemolytic in nature. The hydrogels were non-toxic and blood-compatible. This hydrogel prepared from oxidized pectin and CMC without employing any extraneous cross-linking agents is expected to have potential as wound-dressing material.

  6. Mono-dispersed cross-linked polystyrene micro-spheres prepared by seed swelling polymerization method

    Institute of Scientific and Technical Information of China (English)

    Dongsha WANG; Yanjun LIU


    A two-step swelling procedure was adopted to synthesize mono-dispersed and highly cross-linked poly (St-divinylbenzene) particles with PSt micro-spheres (1.80 μmin diameter). The PSt micro-spheres were prepared by a dispersion polymerization method and used as seeds. The effects of monomer concentration, ratio of ethanol to water, swelling reagents, crosslinking reagents, swelling temper-ature and agitation speed on particle size were investigated in detail. The morphologies and size distributions of these micro-spheres were examined by SEM and particle size analysis (PSA). The Tg of the micro-spheres was measured by DSC. The results indicate that the particles (6.20 μm in diameter) exhibit excellent mono dispersed property and high crosslinking degree when the concentration of the swelling reagent was 25%, the concentration of the cross-linking reagents was 23%, the swelling temperature was 30℃ and the stirring speed was 150 r/min.

  7. Biomolecule-recognition gating membrane using biomolecular cross-linking and polymer phase transition. (United States)

    Kuroki, Hidenori; Ito, Taichi; Ohashi, Hidenori; Tamaki, Takanori; Yamaguchi, Takeo


    We present for the first time a biomolecule-recognition gating system that responds to small signals of biomolecules by the cooperation of biorecognition cross-linking and polymer phase transition in nanosized pores. The biomolecule-recognition gating membrane immobilizes the stimuli-responsive polymer, including the biomolecule-recognition receptor, onto the pore surface of a porous membrane. The pore state (open/closed) of this gating membrane depends on the formation of specific biorecognition cross-linking in the pores: a specific biomolecule having multibinding sites can be recognized by several receptors and acts as the cross-linker of the grafted polymer, whereas a nonspecific molecule cannot. The pore state can be distinguished by a volume phase transition of the grafted polymer. In the present study, the principle of the proposed system is demonstrated using poly(N-isopropylacrylamide) as the stimuli-responsive polymer and avidin-biotin as a multibindable biomolecule-specific receptor. As a result of the selective response to the specific biomolecule, a clear permeability change of an order of magnitude was achieved. The principle is versatile and can be applied to many combinations of multibindable analyte-specific receptors, including antibody-antigen and lectin-sugar analogues. The new gating system can find wide application in the bioanalytical field and aid the design of novel biodevices.

  8. Genipin-cross-linked fucose-chitosan/heparin nanoparticles for the eradication of Helicobacter pylori. (United States)

    Lin, Yu-Hsin; Tsai, Shih-Chang; Lai, Chih-Ho; Lee, Che-Hsin; He, Zih Sian; Tseng, Guan-Chin


    Helicobacter pylori is a significant human pathogen that recognizes specific carbohydrate receptors, such as the fucose receptor, and produces the vacuolating cytotoxin, which induces inflammatory responses and modulates the cell-cell junction integrity of the gastric epithelium. The clinical applicability of topical antimicrobial agents was needed to complete the eradication of H. pylori in the infected fundal area. In the present study, we combined fucose-conjugated chitosan and genipin-cross-linking technologies in preparing multifunctional genipin-cross-linked fucose-chitosan/heparin nanoparticles to encapsulate amoxicillin of targeting and directly make contact with the region of microorganism on the gastric epithelium. The results show that the nanoparticles effectively reduced drug release at gastric acids and then released amoxicillin in an H. pylori survival situation to inhibit H. pylori growth and reduce disruption of the cell-cell junction protein in areas of H. pylori infection. Furthermore, with amoxicillin-loaded nanoparticles, a more complete H. pylori clearance effect was observed, and H. pylori-associated gastric inflammation in an infected animal model was effectively reduced.

  9. Covalent Immobilization of Catalase onto Regenerated Silk Fibroins via Tyrosinase-Catalyzed Cross-Linking. (United States)

    Wang, Ping; Qi, Chenglong; Yu, Yuanyuan; Yuan, Jiugang; Cui, Li; Tang, Gengtie; Wang, Qiang; Fan, Xuerong


    Regenerated silk fibroins could be used as medical scaffolds and carrier materials for enzyme immobilization. In the present work, tyrosinase enzyme was used for enzymatic oxidation of silk fibroins, followed by immobilization of catalase onto the fibroin surfaces through physical adsorption and covalent cross-linking as well. Spectrophotometry, SDS-PAGE, and Fourier transform infrared spectroscopy (FTIR) were used to examine the efficiency of enzymatic oxidation and catalase immobilization, respectively. The results indicate that tyrosine residues in silk fibroins could be oxidized and converted to the active o-quinones. Incubating silk fibroins with catalase and tyrosinase led to a noticeable change of molecular weight distribution, indicating the occurrence of the cross-links between silk fibroins and catalase molecules. Two different pathways were proposed for the catalase immobilizations, and the method based on grafting of catalase onto the freeze-dried fibroin membrane is more acceptable. The residual enzyme activity for the immobilized catalase exhibited higher than that of the control after repeated washing cycles. Meanwhile, the thermal stability and alkali resistance were also slightly improved as compared to free catalase. The mechanisms of enzymatic immobilization are also concerned.

  10. Viability, Apoptosis, Proliferation, Activation, and Cytokine Secretion of Human Keratoconus Keratocytes after Cross-Linking

    Directory of Open Access Journals (Sweden)

    Xuefei Song


    Full Text Available Purpose. The purpose of this study was to determine the impact of cross-linking (CXL on viability, apoptosis, proliferation, activation, and cytokine secretion of human keratoconus (KC keratocytes, in vitro. Methods. Primary KC keratocytes were cultured in DMEM/Ham’s F12 medium supplemented with 10% FCS and underwent UVA illumination (370 nm, 2 J/cm2 during exposure to 0.1% riboflavin and 20% Dextran in PBS. Twenty-four hours after CXL, viability was assessed using Alamar blue assay; apoptosis using APO-DIRECT Kit; proliferation using ELISA-BrdU kit; and CD34 and alpha-smooth muscle actin (α-SMA expression using flow cytometry. Five and 24 hours after CXL, FGFb, HGF, TGFβ1, VEGF, KGF, IL-1β, IL-6, and IL-8 secretion was measured using enzyme-linked-immunoabsorbent assay (ELISA. Results. Following CXL, cell viability and proliferation decreased (P0.06. Five hours after CXL, FGFb secretion increased significantly (P=0.037; however no other cytokine secretion differed significantly from controls after 5 or 24 hours (P>0.12. Conclusions. Cross-linking decreases viability, triggers apoptosis, and inhibits proliferation, without an impact on multipotent hematopoietic stem cell transformation and myofibroblastic transformation of KC keratocytes. CXL triggers FGFb secretion of KC keratocytes transiently (5 hours, normalizing after 24 hours.

  11. Cross-linked chitosan/liposome hybrid system for the intestinal delivery of quercetin. (United States)

    Caddeo, Carla; Díez-Sales, Octavio; Pons, Ramon; Carbone, Claudia; Ennas, Guido; Puglisi, Giovanni; Fadda, Anna Maria; Manconi, Maria


    Quercetin is a flavonoid with antioxidant/anti-inflammatory properties, poorly absorbed when administered orally. To increase its bioavailability and optimize its release in the intestine, a hybrid system made of liposomes coated with cross-linked chitosan, named TPP-chitosomes, was developed and characterized by light scattering, transmission electron microscopy, differential scanning calorimetry, X-ray powder diffraction and Turbiscan® technology. The TPP-chitosomes were nanosized (∼180 nm), fairly spherical in shape and unilamellar. The actual coating of the surface of liposomes with the cross-linked chitosan was demonstrated by Small-Angle X-ray Scattering. The release of quercetin in simulated gastric and intestinal pH was investigated, the results showing that the system provided resistance to acidic conditions, and promoted the release in alkaline pH, mimicking the intestinal environment. The proposed hybrid system represents a promising combination of nanovesicles and chitosan for the delivery of quercetin to the intestine in the therapy of oxidative stress/inflammation related disorders.

  12. Removal of anionic azo dyes from aqueous solution by functional ionic liquid cross-linked polymer

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hejun [Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100 (China); Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000 (China); Kan, Taotao [CNOOC Energy Technology and Services-oilfield Technology Services Co., Tanggu, Tianjin 300452 (China); Zhao, Siyuan; Qian, Yixia; Cheng, Xiyuan; Wu, Wenli [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Wang, Xiaodong [Shandong Provincial Analysis and Test Center, Jinan 250100 (China); Zheng, Liqiang, E-mail: [Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100 (China)


    Highlights: • Equilibrium, kinetic and thermodynamic of adsorption of dyes onto PDVB-IL was investigated. • PDVB-IL has a high adsorption capacity to treat dyes solution. • Higher adsorption capacity is due to the functional groups of PDVB-IL. • Molecular structure of dyes influences the adsorption capacity. -- Abstract: A novel functional ionic liquid based cross-linked polymer (PDVB-IL) was synthesized from 1-aminoethyl-3-vinylimidazolium chloride and divinylbenzene for use as an adsorbent. The physicochemical properties of PDVB-IL were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetric analysis. The adsorptive capacity was investigated using anionic azo dyes of orange II, sunset yellow FCF, and amaranth as adsorbates. The maximum adsorption capacity could reach 925.09, 734.62, and 547.17 mg/g for orange II, sunset yellow FCF and amaranth at 25 °C, respectively, which are much better than most of the other adsorbents reported earlier. The effect of pH value was investigated in the range of 1–8. The result shows that a low pH value is found to favor the adsorption of those anionic azo dyes. The adsorption kinetics and isotherms are well fitted by a pseudo second-order model and Langmuir model, respectively. The adsorption process is found to be dominated by physisorption. The introduction of functional ionic liquid moieties into cross-linked poly(divinylbenzene) polymer constitutes a new and efficient kind of adsorbent.

  13. Dual Cross-Linked Carboxymethyl Sago Pulp-Gelatine Complex Coacervates for Sustained Drug Delivery

    Directory of Open Access Journals (Sweden)

    Saravanan Muniyandy


    Full Text Available In the present work, we report for the first time the complex coacervation of carboxymethyl sago pulp (CMSP with gelatine for sustained drug delivery. Toluene saturated with glutaraldehyde and aqueous aluminum chloride was employed as cross-linkers. Measurements of zeta potential confirm neutralization of two oppositely charged colloids due to complexation, which was further supported by infrared spectroscopy. The coacervates encapsulated a model drug ibuprofen and formed microcapsules with a loading of 29%–56% w/w and an entrapment efficiency of 85%–93% w/w. Fresh coacervates loaded with drug had an average diameter of 10.8 ± 1.93 µm (n = 3 ± s.d.. The coacervates could encapsulate only the micronized form of ibuprofen in the absence of surfactant. Analysis through an optical microscope evidenced the encapsulation of the drug in wet spherical coacervates. Scanning electron microscopy revealed the non-spherical geometry and surface roughness of dried drug-loaded microcapsules. X-ray diffraction, differential scanning calorimetry and thermal analysis confirmed intact and crystalline ibuprofen in the coacervates. Gas chromatography indicated the absence of residual glutaraldehyde in the microcapsules. Dual cross-linked microcapsules exhibited a slower release than mono-cross-linked microcapsules and could sustain the drug release over the period of 6 h following Fickian diffusion.

  14. Development and characterization of films based on chemically cross-linked gliadins. (United States)

    Hernández-Muñoz, Pilar; Kanavouras, Antonis; Lagaron, José M; Gavara, Rafael


    The aim of the present work has been to study the possibility of obtaining modified gliadin films with improved water resistance and mechanical properties by means of promoting intermolecular covalent bonds between polypeptide chains. Prior to casting films, formaldehyde, glutaraldehyde, and glyoxal were used to cross-link proteins at concentrations ranging from 1% to 4% (grams per 100 g of protein). Mechanical properties (tensile strength and elongation at break), water vapor permeability, moisture sorption isotherms, and optical properties of the films produced were evaluated as a function of the cross-linker used. Experimental results showed that some properties of gliadin films were considerably modified. Cross-linking improved the water resistance of films, avoiding their disintegration. Their water barrier properties were also enhanced, but their moisture sorption properties remained unchanged. Formaldehyde imparted greater mechanical strength to films than glutaraldehyde or glyoxal, increasing tensile strength values 10-fold. Addition of the cross-linkers at concentrations in excess of 2.5% did not further improve the mechanical or barrier properties. However, modification with glutaraldehyde or glyoxal imparted an increasingly yellowish tint to the films.

  15. Evaluation of Epithelial Integrity with Various Transepithelial Corneal Cross-Linking Protocols for Treatment of Keratoconus

    Directory of Open Access Journals (Sweden)

    Suphi Taneri


    Full Text Available Purpose. Corneal collagen cross-linking (CXL has been demonstrated to stiffen cornea and halt progression of ectasia. The original protocol requires debridement of central corneal epithelium to facilitate diffusion of a riboflavin solution to stroma. Recently, transepithelial CXL has been proposed to reduce risk of complications associated with epithelial removal. Aim of the study is to evaluate the impact of various transepithelial riboflavin delivery protocols on corneal epithelium in regard to pain and epithelial integrity in the early postoperative period. Methods. One hundred and sixty six eyes of 104 subjects affected by progressive keratoconus underwent transepithelial CXL using 6 different riboflavin application protocols. Postoperatively, epithelial integrity was evaluated at slit lamp and patients were queried regarding their ocular pain level. Results. One eye had a corneal infection associated with an epithelial defect. No other adverse event including endothelial decompensation or endothelial damage was observed, except for epithelial damages. Incidence of epithelial defects varied from 0 to 63%. Incidence of reported pain varied from 0 to 83%. Conclusion. Different transepithelial cross-linking protocols have varying impacts on epithelial integrity. At present, it seems impossible to have sufficient riboflavin penetration without any epithelial disruption. A compromise between efficacy and epithelial integrity has to be found.

  16. Abacavir forms novel cross-linking abacavir protein adducts in patients. (United States)

    Meng, Xiaoli; Lawrenson, Alexandre S; Berry, Neil G; Maggs, James L; French, Neil S; Back, David J; Khoo, Saye H; Naisbitt, Dean J; Park, B Kevin


    Abacavir (ABC), a nucleoside-analogue reverse transcriptase inhibitor, is associated with severe hypersensitivity reactions that are thought to involve the activation of CD8+ T cells in a HLA-B*57:01-restricted manner. Recent studies have claimed that noncovalent interactions of ABC with HLA-B*57:01 are responsible for the immunological reactions associated with ABC. However, the formation of hemoglobin-ABC aldehyde (ABCA) adducts in patients exposed to ABC suggests that protein conjugation might represent a pathway for antigen formation. To further characterize protein conjugation reactions, we used mass spectrometric methods to define ABCA modifications in patients receiving ABC therapy. ABCA formed a novel intramolecular cross-linking adduct on human serum albumin (HSA) in patients and in vitro via Michael addition, followed by nucleophilic adduction of the aldehyde with a neighboring protein nucleophile. Adducts were detected on Lys159, Lys190, His146, and Cys34 residues in the subdomain IB of HSA. Only a cysteine adduct and a putative cross-linking adduct were detected on glutathione S-transferase Pi (GSTP). These findings reveal that ABC forms novel types of antigens in all patients taking the drug. It is therefore vital that the immunological consequences of such pathways of haptenation are explored in the in vitro models that have been used by various groups to define new mechanisms of drug hypersensitivity exemplified by ABC.

  17. Size-dependent release of fluorescent macromolecules and nanoparticles from radically cross-linked hydrogels. (United States)

    Henke, Matthias; Brandl, Ferdinand; Goepferich, Achim M; Tessmar, Joerg K


    Hydrogels play an important role in drug delivery and tissue engineering applications due to their excellent biocompatibility and their variable mechanical and physical properties, which allow their optimization for many different aspects of the intended use. In this study, we examined the suitability of poly(ethylene glycol) (PEG)-based hydrogels as release systems for nanometer-sized drugs or drug carriers, like nanoparticles, using the radically cross-linkable oligo(poly(ethylene glycol)fumarate) (OPF) together with two cross-linking agents. Different fluorescent nanoparticulate probes with respect to size and physical structure were incorporated in the cross-linked hydrogels, and the obtained release profiles were correlated with the physical properties and the chemical structure of the gels, indicating a strong dependence of the release on the chosen PEG prepolymers. The prepared hydrogels were characterized by oscillatory rheometry and swelling experiments. Release experiments as well as diffusion measurements using fluorescence recovery after photobleaching showed the great potential of this type of hydrogels for the preparation of adjustable release systems by altering the molecular weights of the used PEG molecules.

  18. Entrapment of cross-linked cellulase colloids in alginate beads for hydrolysis of cellulose. (United States)

    Nguyen, Le Truc; Lau, Yun Song; Yang, Kun-Lin


    Entrapment of enzymes in calcium alginate beads is a popular enzyme immobilization method. However, leaching of immobilized enzymes from the alginate beads is a common problem because enzyme molecules are much smaller than the pore size of alginate beads (∼200nm). To address this issue, we employ a millifluidic reactor to prepare cross-linked cellulase aggregate (XCA) colloids with a uniform size (∼300nm). Subsequently, these colloids are immobilized in calcium alginate beads as biocatalysts to hydrolyze cellulose substrates. By using fluorescent microscopy, we conclude that the immobilized XCA colloids distribute uniformly inside the beads and do not leach out from the beads after long-term incubation. Meanwhile, the pore size of the alginate beads is big enough for the cellulose substrates and fibers to diffuse into the beads for hydrolysis. For example, palm oil fiber and microcrystalline cellulose can be hydrolyzed within 48h and release reducing sugar concentrations up to 2.48±0.08g/l and 4.99±0.09g/l, respectively. Moreover, after 10 cycles of hydrolysis, 96.4% of the XCA colloids remain inside the alginate beads and retain 67% of the original activity. In contrast, free cellulase immobilized in the alginate beads loses its activity completely after 10 cycles. The strategy can also be used to prepare other types of cross-linked enzyme aggregates with high uniformity.

  19. Internal acetylene unit as a cross-link site for polyimides

    Energy Technology Data Exchange (ETDEWEB)

    Takeichi, T.; Tanikawa, M. [Toyohashi Univ. of Technology (Japan)


    We have been studying on the cross-linking behavior of internal acetylenes linked meta-meta to aromatic connecting units which were introduced into the polyimide backbone utilizing 3,3`-diaminodiphenylacetylene (m-intA). In this study, we studied on the cross-linking behavior of internal acetylenes linked para-para to aromatic connecting units. The internal acetylene units were introduced into the polyimide backbone by the reaction of 4,4`-diaminodiphenylacetylene (p-intA) with such acid anhydrides as biphenyltetracarboxylic dianhydride (BPDA), pyromellitic dianhydride (PMDA), and 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA). The polyimides showed exotherm on DSC: The onset of the exotherm of p-intA appeared at around 330-390{degrees}C, which is 10-50{degrees}C higher than that of m-intA. The exotherm disappeared after thermal treatment at 400{degrees}C, suggesting the progress of crosslinking between acetylene units. The polyimides cured at 350{degrees}C or 400{degrees}C showed increased Tg and improved physical properties at high temperatures as confirmed by viscoelastic analyses. It was also made clear that polyimides containing p-intA showed higher modulus compared with polyimides containing m-intA, especially when coupled with BPDA and PMDA.

  20. Swelling Studies of Chitosan-Gelatin Films Cross-Linked by Sulfate

    Institute of Scientific and Technical Information of China (English)

    Xiao Ling; Yu Zu-yu; Yang Chao; Zhu Hua-yue; Du Yu-min


    Swelling properties of chitosan-gelatin films cross-linked by sulfate were investigated. Sulfate cross-linked chitosan-gelatin films (SCG) were prepared simply by dipping chitosan-gelatin films into sodium sulfate solution. The swelling behavior of SCG was investigated as a function of pH and ionic strength. Under acidic conditions pH less than 4, SCG swelled less than 120%, while under the conditions pH larger than 7.4, SCG swelled very significantly, the swelling ratio was over 350%. Sodium chloride weakened the electrostatic interaction between sulfate and amine ions of chitosan and gelatin, therefore facilitated the film swelling. The swelling ratio increased with increasing sodium chloride concentration, the SCG dissociated in the sodium chloride concentration of 0.20 mol·L-1. The parameters of film preparation such as sulfate concentration, dipping time, sulfate solution pH, influenced the film swelling behavior. The lower concentration and the higher pH of sulfate solution resulted in a larger swelling ratio.

  1. Laser cross-linking protein captures for living cells on a biochip (United States)

    Lin, Chih-Lang; Pan, Ming-Jeng; Chen, Hai-Wen; Lin, Che-Kuan; Lin, Chuen-Fu; Baldeck, Patrice L.


    In this study, bio-sensing pads are proposed to capture living cells, which are fabricated on cover glasses by cross-linking proteins/antibodies using laser induced photochemistry. The biological functions of the cross-linked protein/antibody were verified by capturing Staphylococcus aureus (S. aureus), Leptospira, and red blood cells (RBCs), separately, with associated protein/antibody sensing pads. The experimental results show that S. aureus were bound on GFP-AcmA' pad after minutes of incubation and phosphate buffered saline (PBS) rinsing. No binding was observed with reference pad made of neutral bovine serum albumin (BSA). Second, A-type RBCs were chosen as the model cell to demonstrate the blood typing feasibility of the anti-A pad in microchannel. The A-type RBCs were captured only by the anti-A pad, but not the reference pad made of BSA. The same experimental model was carried out on the Leptospira, which stuck on the blood serum pad after PBS rinsing, but not BSA pad. This study provides a potential platform for simple and direct detection of living full cells without culture that could be used in point-of-care settings.

  2. Neutron scattering and ab initio molecular dynamics study of cross-linking in biomedical phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, A J; Ahmed, I; Rudd, C D [Division of Materials, Mechanics and Structures, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Cuello, G J; Pellegrini, E; Richard, D; Johnson, M R, E-mail: [Institut Laue-Langevin, BP 156, 38042 Grenoble (France)


    Details of the microscopic structure of phosphate glasses destined for biomedical applications, which include sodium, magnesium and calcium cations, have been obtained from the static structure factor measured by means of neutron scattering. A complementary, molecular dynamics study has been performed on a range of phosphate glasses using density functional theory methods, which allow structural fluctuations, including bond breaking, in the liquid phase before quenching to the glass phase. Good agreement between experiment and simulation allows the molecular dynamics trajectories to be analysed in detail. In particular, attention is focused on the cross-linking of divalent cations in contrast with the structural aspects associated with monovalent cations. Magnesium cations are found equidistant and bridging between the phosphorus atoms of different phosphate chains, leading to a shorter phosphorus-phosphorus second neighbour distance (that is, a more compact packing of neighbouring phosphate chains) compared to the effect of sodium cations. Calcium cations show behaviour intermediate between those of magnesium and sodium. Molecular dynamics simulations give access to the cation mobility, which is lowest for magnesium, reflecting its structural, cross-linking role.

  3. Controlled Release of Salicylic Acid from Biodegradable Cross-Linked Polyesters. (United States)

    Dasgupta, Queeny; Chatterjee, Kaushik; Madras, Giridhar


    The purpose of this work was to develop a family of cross-linked poly(xylitol adipate salicylate)s with a wide range of tunable release properties for delivering pharmacologically active salicylic acid. The synthesis parameters and release conditions were varied to modulate polyester properties and to understand the mechanism of release. Varying release rates were obtained upon longer curing (35% in the noncured polymer to 10% in the cured polymer in 7 days). Differential salicylic acid loading led to the synthesis of polymers with variable cross-linking and the release could be tuned (100% release for the lowest loading to 30% in the highest loading). Controlled release was monitored by changing various factors, and the release profiles were dependent on the stoichiometric composition, pH, curing time, and presence of enzyme. The polymer released a combination of salicylic acid and disalicylic acid, and the released products were found to be nontoxic. Minimal hemolysis and platelet activation indicated good blood compatibility. These polymers qualify as "bioactive" and "resorbable" and can, therefore, find applications as immunomodulatory resorbable biomaterials with tunable release properties.

  4. Kinetics of copper ion absorption by cross-linked calcium polyacrylate membranes (United States)

    Philipp, W. H.; May, C. E.


    The absorption of copper ions from aqueous copper acetate solutions by cross-linked calcium acrylate membranes was found to obey parabolic kinetics similar to that found for oxidation of metals that form protective oxide layers. For pure calcium polyacrylate membranes the rate constant was essentially independent of copper acetate concentration and film thickness. For a cross-linked copolymer film of polyvinyl alcohol and calcium polyacrylate, the rate constant was much greater and dependent on the concentration of copper acetate. The proposed mechanism in each case involves the formation of a copper polyacrylate phase on the surface of the membrane. The diffusion of the copper ion through this phase appears to be the rate controlling step for the copolymer film. The diffusion of the calcium ion is apparently the rate controlling step for the calcium polyacrylate. At low pH, the copper polyacrylate phase consists of the normal copper salt; at higher pH, the phase appears to be the basic copper salt.

  5. Kinetics of chromium ion absorption by cross-linked polyacrylate films (United States)

    May, C. E.


    Three cross-linked ion exchange membranes were studied as to their ability to absorb chromium ion from aqueous chromium III nitrate solutions. Attention was given to the mechanism of absorption, composition of the absorbed product, and the chemical bonding. The membranes were: calcium polyacrylate, polyacrylic acid, and a copolymer of acrylic acid and vinyl alcohol. For the calcium polyacrylate and the copolymer, parabolic kinetics were observed, indicating the formation of a chromium polyacrylate phase as a coating on the membrane. The rate of absorption is controlled by the diffusion of the chromium ion through this coating. The product formed in the copolymer involves the formation of a coordination complex of a chromium ion with 6 carboxylic acid groups from the same molecule. The absorption of the chromium ion by the polyacrylic acid membranes appears to be more complicated, involving cross-linking. This is due to the coordination of the chromium ion with carboxylic acid groups from more than one polymer molecule. The absorption rate of the chromium ion by the calcium salt membrane was found to be more rapid than that by the free polyacrylic acid membrane.

  6. [Healing of osseous defects by guided bone regeneration using ribose cross linked collagen membranes]. (United States)

    Tal, H


    The ultimate goal of periodontal therapy has long been the complete regeneration of the periodontal attachment apparatus. Guided Tissue Regeneration (GTR) and Guided Bone Regeneration (GBR) are two regenerative procedures which converted this goal from a dream to reality. In search of a biocompatible resorbable tissue barrier, collagen, being a natural protein and a weak antigen, has attracted much interest and became the focus of much intention during the 80's and the 90's. The understanding that cross linking of collagen with aldehyde sugars, especially ribose, produces collagen which is highly resistant to resorption in vivo led to the development of a "natural" Crossed-Linked Collagen Barrier (CB-SX). Animal and Human studies have shown that the newly developed membrane is biocompatible, remains intact in the tissues 6 months and more, and results in impressive guided tissue/bone regeneration. Spontaneous early exposure of the membrane is common but the healing potential of the resulted tissue dehiscence is favorable with no tendency for bacterial infection. The commercial version of the CB-SX is especially suitable for GBR procedures; it is highly recommended that the gingival flaps involved will properly be released, will lack tension, and be thoroughly sutured.

  7. Clinical Observation of Transepithelial Corneal Collagen Cross-linking by Iontophoresis of Riboflavin in Treatment of Keratoconus

    Institute of Scientific and Technical Information of China (English)

    Na Li; Zhengjun Fan; Xiujun Peng; Xu Pang; Chunyu Tian


    Purpose: To evaluate the efficacy and safety of transepithelial collagen cross-linking by iontophoretic delivery of riboflavin in treatment of progressive keratoconus.Methods:.Eleven patients (15 eyes) with progressive kerato-conus were enrolled. After 0.1% riboflavin-distilled water so-lution was deliveried via transepithelial iontophpresis for 5 min with 1 mA current, and ultraviolet radiation (370 nm,.3 mW /cm2) was performed at a 1.5 cm distance for 30 min. The fol-low up were 6 months in all eyes. The uncorrected visual acu-ity, corrected visual acuity,endothelial cell counting, corneal thickness,.intraocular pressure, corneal curvature, corneal to-pography,.OCT and corneal opacity before and 6-month after surgery were analyzed.Results: At 6 month postoperatively, mean uncorrected visual acuity and corrected visual acuity changed from 0.36 to 0.30 and from 0.42 to 0.57 without statistical significance..The mean value of each index of corneal curvature declined with-out statistical significance.Kmax value dereased from 60.91 to 59.91, and the astigmatism declined from 3.86 to 3.19. Cen-tral corneal thickness decreased from 460.93 μm to 455.40μm,.and thinnest corneal thickness declined from 450.87 μm to 440.60 μm with no statistical significance..Intraocular pres-sure was significantly elevated from 10.85 mmHg to 12.62 mmHg. Endothelial cell count did not change significantly. No corneal haze occurred. Mean depth of corneal demarcation line was 288.46 μm at 1 month postoperatively..Conclusion:.Transepithelial corneal collagen cross-linking by iontophoresis is effective and safe in the treatment of progres-sive keratoconus, and yields stable clinical outcomes during 6-month follow up..However,.long-term follow up is urgently required. (Eye Science 2014; 29:160-164)

  8. Corneal collagen cross-linking with riboflavin and ultraviolet - A light for keratoconus: Results in Indian eyes

    Directory of Open Access Journals (Sweden)

    Agrawal Vinay


    Full Text Available Aim: To assess the results of corneal collagen cross-linking with riboflavin using ultraviolet - A light for keratoconus at one year in Indian eyes. Materials and Methods: Sixty-eight eyes of 41 patients with progressive keratoconus were included in this retrospective study. All eyes completed was 12 months of follow-up and 37 eyes had a one-year follow-up. The maximum follow-up was 16 months. Ocular examinations including refraction, best corrected visual acuity (BCVA, corneal topography, were recorded at each visit. Results: The mean age was 16.9 ± 3.5 years (range 12-39 years and the mean follow-up was 10.05 ± 3.55 months (range six to 16 months. Thirty seven eyes with a follow-up of at least 12 months were analyzed. The preoperative values on the day of treatment were compared with postoperative values of the 12-month examination. This showed that BCVA improved at least one line in 54% (20/37 of eyes and remained stable in 28% (10/37 of eyes ( P =0.006. Astigmatism decreased by a mean of 1.20 diopter (D in 47% (17/37 of eyes ( P =0.005 and remained stable (within ± 0.50 D in 42% (15/37 of eyes. The K value of the apex decreased by a mean of 2.73 D in 66% (24/37 of eyes ( P =0.004 and remained stable (within ± 0.50 D in 22% (8/37 of eyes. The maximum K value decreased by a mean of 2.47 D in 54% (20/37 of eyes ( P =0.004 and remained stable (within ± 0.50 D in 38% (14/37 of eyes. Corneal Wavefront analysis revealed that spherical and higher-order aberrations did not show significant variations in the follow-up period. The coma component showed a very significant reduction at six months after treatment and persisted throughout the follow-up period ( P =0.003 Conclusion: The results show a stabilization and improvement in keratoconus after collagen cross-linking in Indian eyes. This suggests that it is an effective treatment for progressive keratoconus.

  9. A Novel Peptide from Buthus Martensii Karch

    Institute of Scientific and Technical Information of China (English)

    Zheng Yu CAO; Xuan XIAO; Xue Mei LIU; Xiao Tian LIANG; De Quan YU


    A novel peptide was purified and characterized from Buthus martensii Karch.The peptide,named BmK M6,is a single-chain polypeptide cross-linked by four intramolecular disulfide bridges.The molecular weight of the peptide was determined by MOLDI-TOF-MS as 7034 Da.The partial amino acid sequence of BmK M6 from N-terminal is VRDAYIAKPEN CVYECGITQDCNKLCTENG.

  10. Evaluation of cross-linked aggregates from purified Bacillus subtilis levansucrase mutants for transfructosylation reactions

    Directory of Open Access Journals (Sweden)

    Munguia Agustin


    Full Text Available Abstract Background Increasing attention has been focused on inulin and levan-type oligosaccharides, including fructosyl-xylosides and other fructosides due to their nutraceutical properties. Bacillus subtilis levansucrase (LS catalyzes the synthesis of levan from sucrose, but it may also transfer the fructosyl moiety from sucrose to acceptor molecules included in the reaction medium. To study transfructosylation reactions with highly active and robust derivatives, cross-linked enzyme aggregates (CLEAs were prepared from wild LS and two mutants. CLEAs combine the catalytic features of pure protein preparations in terms of specific activity with the mechanical behavior of industrial biocatalysts. Results Two types of procedures were used for the preparation of biocatalysts from purified wild type LS (WT LS B. subtilis and the R360K and Y429N LS mutants: purified enzymes aggregated with glutaraldehyde (cross-linked enzyme aggregates: CLEAs, and covalently immobilized enzymes in Eupergit C®. The biocatalysts were characterized and used for fructoside synthesis using xylose as an acceptor model. CLEAs were able to catalyze the synthesis of fructosides as efficiently as soluble enzymes. The specific activity of CLEAs prepared from wild type LS (44.9 U/mg of CLEA, R360K (56.5 U/mg of CLEA and Y429N (1.2 U/mg of CLEA mutants were approximately 70, 40 and 200-fold higher, respectively, than equivalent Eupergit C® immobilized enzyme preparations (U/mg of Eupergit, where units refer to global LS activity. In contrast, the specific activity of the free enzymes was 160, 171.2 and 1.5 U/mg of protein, respectively. Moreover, all CLEAs had higher thermal stability than corresponding soluble enzymes. In the long term, the operational stability was affected by levan synthesis. Conclusion This is the first report of cross-linked transglycosidases aggregates. CLEAs prepared from purified LS and mutants have the highest specific activity for immobilized

  11. Use of cross-linked carboxymethyl cellulose for soft-tissue augmentation: preliminary clinical studies

    Directory of Open Access Journals (Sweden)

    Mauro Leonardis


    Full Text Available Mauro Leonardis1, Andrea Palange2, Rodrigo FV Dornelles3, Felipe Hund41Department of Plastic Surgery, Salvator Mundi International Hospital, Roma, Italy; 2Department of Aesthetic Medicine, Fisiobios, Roma, Italy; 3Department of Plastic Surgery, Núcleo de Plástica Avançada, São Paulo, SP, Brazil; 4Department of Plastic Surgery, Consultorio de Cirurgia Plastica, Criciuma, SC, BrazilPurpose: The continual search for new products for soft-tissue augmentation has in recent years led to the introduction of long lasting alternatives to hyaluronic acids and collagen that are composed of other polymers able to improve clinical persistence over time. This is the first report in which sodium carboxymethyl cellulose (CMC has been chemically treated by the cross-linking process and thus used as a hydrogel for soft-tissue augmentation through injection with thin needles. The study evaluates, from a clinical point of view, the behavior of cross-linked carboxymethyl cellulose hydrogel used in the aesthetic field and its side effects so as to check the safety and performance of the polymer following intradermal injections.Patients and methods: This work shows the preliminary results of an ongoing clinical study conducted between 2006 and 2009, performed on 84 healthy volunteers (62 females, 22 males aged between 18 and 72 years, for the treatment of 168 nasolabial folds, 45 perioral wrinkles, and 39 lip volume.Results: Study results show an excellent correction of facial defects. Tolerance and aesthetic quality of the correction obtained indicate considerable safety features and absence of side effects. From a clinical point of view, hydrogel is gradually absorbed into the injection site without migration issues.Conclusion: Cross-linked CMC hydrogel proves to be an ideal agent for soft tissue augmentation with regard to safety and ease of application. It did not cause infection, extrusion, migration, or adverse reactions in the patients who have been

  12. Light-Sensitive Ruthenium Complex-Loaded Cross-linked Polymeric Nanoassemblies for the Treatment of Cancer. (United States)

    Dickerson, M; Howerton, B; Bae, Y; Glazer, E


    This work focuses on improving the efficacy of photoactivatable Ru complexes for photodynamic therapy by employing cross-linked nanoassemblies (CNAs) as a delivery approach. The effects of complex photoactivation, hydrophobicity, and solution ionic strength and pH on complex loading and release from CNAs were analyzed. The cell cytotoxicity of CNA formulations was similar to free Ru complexes despite reduced or eliminated DNA interactions. The release rate and the amount of each Ru complex released (%) varied inversely with complex hydrophobicity, while the effect of solution ionic strength was dependent on complex hydrophobicity. Premature release of two photoactivatable prodrugs prior to irradiation was believed to account for higher activity in cells studies compared to DNA interaction studies; however, for photostable (1)O2 generator-loaded CNAs this cannot explain the high cytotoxicity and lack of DNA interactions because release was incomplete after 48 hrs. The cause remains unclear, but among other possibilities, accelerated release in a cell culture environment may be responsible.

  13. Carcinogenesis switched on by DNA cross-link between complementary bases aroused by aflatoxin and N-nitroso compounds

    Institute of Scientific and Technical Information of China (English)

    DAI Qianhuan; LU Ping; PENG Shaohua; ZHANG Qingrong


    The di-region theory put forward by Dai Qianhuan, a molecular mechanism of chemical carcinogenesis, concluded that the carcinogenesis induced by most of the environmental carcinogens is switched on by the cross-linking between DNA complementary bases aroused by the bifunctional alkylation of their metabolic intermediates. It was evidenced in this paper with DNA filter elution method that one carcinogenic mycotoxin, aflatoxin G1, four carcinogenic N-nitroso compounds, N-nitrosodiethyl-amine, N-nitrosodibutyl-amine, N-nitrosomorpholine and N-nitrosopyrrolidine, one carcinogenic diazo color, 4-dimethylaminodiazobenzene and one carcinogenic nitrogen-containing heterocyclic compound, quinoline, all induced DNA interstrands cross-linking with dosage correlation after metabolic activation. However, the non-carcinogens in corresponding series for control, aflatoxin B2, N-nitroso-diphenylamine, 4′-bromo-4-dimethylaminodiazobenzene and isoquinoline, cannot induce DNA interstrands cross-linking at all in the same condition. A method for the determination of cross-linking ratio between DNA complementary bases in total DNA interstrands cross-linking, which has no monitoring measure as yet, has been established for the first time based upon a 24 hour repairing experiment. The DNA complementary pair cross-linking ratio induced by a metabolized carcinogen is correlated with its carcinogenic potential. It may be concluded that the mutations including point and frameshift mutagenesis induced by aflatoxin and other carcinogens are switched on by their corresponding cross-linking base pair between complementary bases. Therefore, the di-region theory is a reasonable molecular mechanism for chemical, endogenous and physical carcinogenesis.

  14. Investigation of cross-linking characteristics of novel hole-transporting materials for solution-processed phosphorescent OLEDs (United States)

    Lee, Jaemin; Ameen, Shahid; Lee, Changjin


    After the success of commercialization of the vacuum-evaporated organic light-emitting diodes (OLEDs), solutionprocessing or printing of OLEDs are currently attracting much research interests. However, contrary to various kinds of readily available vacuum-evaporable OLED materials, the solution-processable OLED materials are still relatively rare. Hole-transporting layer (HTL) materials for solution-processed OLEDs are especially limited, because they need additional characteristics such as cross-linking to realize multilayer structures in solution-processed OLEDs, as well as their own electrically hole-transporting characteristics. The presence of such cross-linking characteristics of solutionprocessable HTL materials therefore makes them more challenging in the development stage, and also makes them essence of solution-processable OLED materials. In this work, the structure-property relationships of thermally crosslinkable HTL materials were systematically investigated by changing styrene-based cross-linking functionalities and modifying the carbazole-based hole-transporting core structures. The temperature dependency of the cross-linking characteristics of the HTL materials was systematically investigated by the UV-vis. absorption spectroscopy. The new HTL materials were also applied to green phosphorescent OLEDs, and their device characteristics were also investigated based on the chemical structures of the HTL materials. The device configuration was [ITO / PEDOT:PSS / HTL / EML / ETL / CsF / Al]. We found out that the chemical structures of the cross-linking functionalities greatly affect not only the cross-linking characteristics of the resultant HTL materials, but also the resultant OLED device characteristics. The increase of the maximum luminance and efficiency of OLEDs was evident as the cross-linking temperature decreases from higher than 200°C to at around 150°C.

  15. Monitoring human lymphocytic DNA-protein cross-links as biomarkers of biologically active doses of chromate. (United States)

    Costa, M; Zhitkovich, A; Toniolo, P; Taioli, E; Popov, T; Lukanova, A


    A simple and sensitive assay for DNA-protein cross-links has been used as a biomarker of chromate exposure and early carcinogenic effects. Pilot studies of DNA-protein cross-links in peripheral blood lymphocytes have been conducted with individuals who had higher exposure to chromate, including welders, and with individuals who had lower levels of exposure such as residents living in a chromium-contaminated area in Jersey City, New Jersey. Studies were also conducted in two Bulgarian cities (Jambol and Burgas) with different levels of air pollution and Cr(VI) exposure and in chrome platers in Bulgaria who had high exposure to chromate. DNA-protein cross-links in U.S. welders and in individuals living in Hudson County, New Jersey around chromium-contaminated areas were significantly higher compared to matched controls. Although blood and urinary levels of chromium were not extensively studied in these populations, we were able to obtain these measurements in the Bulgarian population. Chromium levels in red blood cells of controls living in Burgas were in the order of 1 to 2 ppb chromium, and these individuals had the lowest levels of DNA-protein cross-links. However, the chromium levels in Jambol ranged from about 2 to 7 ppb in red blood cells of city residents to about 22 ppb in chrome platers. DNA-protein cross-links were saturated at about 7 to 8 ppb chromium in the red blood cells, and cross-links correlated well only with chromium levels in red blood cells. Urinary chromium levels did not correlate well with either DNA-protein cross-links or chromium levels in with red blood cells.

  16. Coarse-Grained Molecular Dynamics Study of the Curing and Properties of Highly Cross-Linked Epoxy Polymers. (United States)

    Aramoon, Amin; Breitzman, Timothy D; Woodward, Christopher; El-Awady, Jaafar A


    In this work, a coarse-grained model is developed for highly cross-linked bisphenol A diglycidyl ether epoxy resin with diaminobutane hardener. In this model, all conformationally relevant coarse-grained degrees of freedom are accounted for by sampling over the free-energy surfaces of the atomic structures using quantum mechanical simulations. The interaction potentials between nonbonded coarse-grained particles are optimized to accurately predict the experimentally measured density and glass-transition temperature of the system. In addition, a new curing algorithm is also developed to model the creation of highly cross-linked epoxy networks. In this algorithm, to create a highly cross-linked network, the reactants are redistributed from regions with an excessive number of reactive molecules to regions with a lower number of reactants to increase the chances of cross-linking. This new algorithm also dynamically controls the rate of cross-linking at each local region to ensure uniformity of the resulting network. The curing simulation conducted using this algorithm is able to develop polymeric networks having a higher average degree of cross-linking, which is more uniform throughout the simulation cell as compared to that in the networks cured using other curing algorithms. The predicted gel point from the current curing algorithm is in the acceptable theoretical and experimental range of measured values. Also, the resulting cross-linked microstructure shows a volume shrinkage of 5%, which is close to the experimentally measured volume shrinkage of the cured epoxy. Finally, the thermal expansion coefficients of materials in the glassy and rubbery states show good agreement with the experimental values.

  17. Immunotherapy with Allergen Peptides

    Directory of Open Access Journals (Sweden)

    Larché Mark


    Full Text Available Specific allergen immunotherapy (SIT is disease-modifying and efficacious. However, the use of whole allergen preparations is associated with frequent allergic adverse events during treatment. Many novel approaches are being designed to reduce the allergenicity of immunotherapy preparations whilst maintaining immunogenicity. One approach is the use of short synthetic peptides which representing dominant T cell epitopes of the allergen. Short peptides exhibit markedly reduced capacity to cross link IgE and activate mast cells and basophils, due to lack of tertiary structure. Murine pre-clinical studies have established the feasibility of this approach and clinical studies are currently in progress in both allergic and autoimmune diseases.

  18. Space Charge Accumulation and Micro-Structure of Cross-linked Polyethylene (United States)

    Li, Jixiao; Zhang, Yewen; Zheng, Feihu; Wu, Changshun


    In this paper, laser induced pressure pulse (LIPP) method and electrostatic force microscopy (EFM) method are utilized to investigate the distribution of space charge in cross-linked polyethylene (XLPE), and the action on the groups of XLPE by the accumulative charge are investigated by infrared spectroscopy (IR) method. It was found that space charge in the sample has obvious influence on the vibration of chemical group, especially on group OH, group CH3 and group CH2. Group vibration affected considerably by space charge in XLPE sample locates on the interface between crystalline and amorphous domains. The experimental results also indicate that positive charge compared to negative charge has a different effect on bands.

  19. Highly cross-linked polyethylene in hip resurfacing arthroplasty: long-term follow-up. (United States)

    Amstutz, Harlan C; Takamura, Karren M; Ebramzadeh, Edward; Le Duff, Michel J


    Highly cross-linked polyethylene (XLPE) has improved wear properties. This study reports the results of a small series of patients treated over 10 years ago with a metal-on-XLPE hip resurfacing.A total of 21 hips in 20 patients received a hip resurfacing with a cobalt-chromium metal femoral head and metal-backed acetabular cup lined with a XLPE insert and were retrospectively studied. Kaplan-Meier Survivorship was calculated.Five patients who had initial extreme cystic disease in the femoral head failed due to femoral loosening. Survivorship was 95.2% at 5 years and 81.0% at 10 years.We found that XLPE wear was not implicated in these failures, which were primarily attributed to poor bone quality of the femoral head, early bone preparation, cementing technique and excessive head reaming to near the neck diameter, necessitated for the implantation of a thick two-part socket.

  20. Iontophoresis-Assisted Corneal Collagen Cross-Linking with Epithelial Debridement: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Paolo Vinciguerra


    Full Text Available Purpose. To report the early outcomes of iontophoresis-assisted corneal collagen cross-linking procedure with epithelial debridement (I-SCXL. Methods. Twenty eyes of twenty patients with progressive keratoconus were included in this prospective clinical study. Best spectacle corrected visual acuity (BSCVA, sphere and cylinder refraction, corneal topography, Scheimpflug tomography, aberrometry, anterior segment optical coherence tomography (AS-OCT, and endothelial cell count were assessed at baseline and at 1, 3, and 6 months of follow-up. The parameters considered to establish keratoconus progression were always proven with differential maps as change in curvature in the cone area of at least 1 diopter obtained with an instantaneous map. Results. Functional parameters showed a significant improvement (p0.05. Conclusion. The early results indicate that the I-SCXL may be able to reduce the treatment time and improve the riboflavin diffusion.

  1. Stabilization of porcine pancreatic elastase crystals by glutaraldehyde cross-linking. (United States)

    Hofbauer, Stefan; Brito, José A; Mulchande, Jalmira; Nogly, Przemyslaw; Pessanha, Miguel; Moreira, Rui; Archer, Margarida


    Elastase is a serine protease from the chymotrypsin family of enzymes with the ability to degrade elastin, an important component of connective tissues. Excessive elastin proteolysis leads to a number of pathological diseases. Porcine pancreatic elastase (PPE) is often used for drug development as a model for human leukocyte elastase (HLE), with which it shares high sequence identity. Crystals of PPE were grown overnight using sodium sulfate and sodium acetate at acidic pH. Cross-linking the crystals with glutaraldehyde was needed to resist the soaking procedure with a diethyl N-(methyl)pyridinyl-substituted oxo-β-lactam inhibitor. Crystals of PPE bound to the inhibitor belonged to the orthorhombic space group P2₁2₁2₁, with unit-cell parameters a = 51.0, b = 58.3, c = 74.9 Å, and diffracted to 1.8 Å resolution using an in-house X-ray source.

  2. Elevated carboxy terminal cross linked telopeptide of type I collagen in alcoholic cirrhosis

    DEFF Research Database (Denmark)

    Møller, S; Hansen, M; Hillingsø, Jens


    BACKGROUND: The carboxy terminal cross linked telopeptide of type I collagen (ICTP) has been put forward as a marker of bone resorption. Patients with alcoholic liver disease may have osteodystrophy. AIMS: To assess circulating and regional concentrations of ICTP in relation to liver dysfunction......, bone metabolism, and fibrosis. METHODS: In 15 patients with alcoholic cirrhosis and 20 controls, hepatic venous, renal venous, and femoral arterial concentrations of ICTP, and bone mass and metabolism were measured. RESULTS: Circulating ICTP was higher in patients with cirrhosis than in controls...... is highly elevated in patients with cirrhosis, with no detectable hepatic net production or disposal. No relation between ICTP and markers of bone metabolism was identified, but there was a relation to indicators of liver dysfunction and fibrosis. As the cirrhotic patients conceivably only had mild...

  3. Nanosecond laser-induced periodic surface structuring of cross-linked azo-polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Berta, Marco, E-mail: [Aix Marseille Université, CNRS, ICR (Institut de Chimie Radicalaire) UMR 7273, 13397 Marseille Cedex 20 (France); Biver, Émeric [Aix Marseille Université, CNRS, LP3 UMR 7341, 13288 Marseille (France); Maria, Sébastien; Phan, Trang N.T. [Aix Marseille Université, CNRS, ICR (Institut de Chimie Radicalaire) UMR 7273, 13397 Marseille Cedex 20 (France); D’Aleo, Anthony; Delaporte, Philippe; Fages, Frederic [Aix Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille (France); Gigmes, Didier [Aix Marseille Université, CNRS, ICR (Institut de Chimie Radicalaire) UMR 7273, 13397 Marseille Cedex 20 (France)


    In this work we discuss the response to laser ablation of a poly(4-vinylbenzyl azide-random-methyl methacrylate) (p((S-N{sub 3})-r-MMA)) random copolymer. This material is cross-linkable thermally and upon exposure to UV light, and on cross-linked films the irradiation with a 248 nm ns KrF laser induces the formation of laser induced periodical surface structure (LIPSS). The LIPSS morphology is dependent on the amount of 4-vinylbenzyl azide (S-N{sub 3}) groups in the pristine copolymer. We propose a crosslinking mechanism based on the scission of azide with formation of azo groups and we discuss the possible relationship between this chemical modifications and the formation of ripples on the bottom of laser ablation cavities.

  4. Nanosecond laser-induced periodic surface structuring of cross-linked azo-polymer films (United States)

    Berta, Marco; Biver, Émeric; Maria, Sébastien; Phan, Trang N. T.; D'Aleo, Anthony; Delaporte, Philippe; Fages, Frederic; Gigmes, Didier


    In this work we discuss the response to laser ablation of a poly(4-vinylbenzyl azide-random-methyl methacrylate) (p((S-N3)-r-MMA)) random copolymer. This material is cross-linkable thermally and upon exposure to UV light, and on cross-linked films the irradiation with a 248 nm ns KrF laser induces the formation of laser induced periodical surface structure (LIPSS). The LIPSS morphology is dependent on the amount of 4-vinylbenzyl azide (S-N3) groups in the pristine copolymer. We propose a crosslinking mechanism based on the scission of azide with formation of azo groups and we discuss the possible relationship between this chemical modifications and the formation of ripples on the bottom of laser ablation cavities.

  5. Hierarchical cross-linking in physical alginate gels: a rheological and dynamic light scattering investigation (United States)

    Larobina, Domenico; Cipelletti, Luca

    We investigate the dynamics of alginate gels, an important class of biopolymer-based viscoelastic materials, by combining mechanical tests and non-conventional, time-resolved light scattering methods. Two relaxation modes are observed upon applying a compressive or shear stress. Dynamic light scattering and diffusive wave spectroscopy measurements reveal that these modes are associated with discontinuous rearrangement events that restructure the gel network via anomalous, non-diffusive microscopic dynamics. We show that these dynamics are due to both thermal activation and internal stress stored during gelation and propose a scenario where a hierarchy of cross-links with different life times is responsible for the observed complex behavior. Measurements at various temperatures and sample ages are presented to support this scenario.

  6. Nonlinear behavior of ionically and covalently cross-linked alginate hydrogels (United States)

    Hashemnejad, Seyedmeysam; Zabet, Mahla; Kundu, Santanu


    Gels deform differently under applied load and the deformation behavior is related to their network structures and environmental conditions, specifically, strength and density of crosslinking, polymer concentration, applied load, and temperature. Here, we investigate the mechanical behavior of both ionically and covalent cross-linked alginate hydrogel using large amplitude oscillatory shear (LAOS) and cavitation experiments. Ionically-bonded alginate gels were obtained by using divalent calcium. Alginate volume fraction and alginate to calcium ratio were varied to obtain gels with different mechanical properties. Chemical gels were synthesized using adipic acid dihdrazide (AAD) as a cross-linker. The non-linear rheological parameters are estimated from the stress responses to elucidate the strain softening behavior of these gels. Fracture initiation and propagation mechanism during shear rheology and cavitation experiments will be presented. Our results provide a better understanding on the deformation mechanism of alginate gel under large-deformation.

  7. Enzyme catalyzed oxidative cross-linking of feruloylated pectic polysaccharides from sugar beet

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz

    -linking and consequently the properties of the gels formed. The kinetics of oxidative gelation of SBP, taking place via enzyme catalyzed cross-linking of FA, was evaluated by small angle oscillatory measurements. The result indicates a significant difference between the SBP gels produced from the catalysis of HRP...... and laccase, that is, laccase catalysis produced stronger SBP gels albeit slower rates of gelation than the HRP catalysis. Statistically design experiment has been constructed to investigate the effect of several reaction factors which might influence the rates of gelation of SBP catalyzed by HRP or laccase......, particularly the pectin level, temperature, enzyme dosage, pH and, for HRP, the H2O2 concentration. The result reveals that these reaction factors could be tuned in order to adjust the enzyme catalyzed gelation and the properties of the gels produced. Moreover, positive correlation between the rates...

  8. A thixotropic hydrogel from chemically cross-linked guar gum: synthesis, characterization and rheological behaviour. (United States)

    Barbucci, Rolando; Pasqui, Daniela; Favaloro, Roberto; Panariello, Giuseppe


    Polysaccharide guar gum (GG) was cross-linked in an alkaline solution with polyethylene glycol diglycidyl ether (PEGDGE) to create a new hydrogel. The GG hydrogel was examined by FT-IR spectroscopy, AFM analysis and SEM analysis. The water uptake of the GG hydrogel was measured at different pHs, and rheological studies were performed to verify the thixotropic nature of the material. Rheological studies revealed the pseudoplastic behaviour of the GG hydrogel and its thixotropic nature. AFM analysis on a sample which was subjected to shear stress showed the presence of nanoparticles in the hydrogel. When the sample was left to settle, the gel surface returned to its original homogenous morphology. The thixotropic and injectable nature of the GG hydrogel suggest its possible use in biomedical applications.

  9. Electron beam irradiation of maltodextrin and cinnamyl alcohol mixtures: influence of glycerol on cross-linking. (United States)

    Khandal, Dhriti; Aggarwal, Manjeet; Suri, Gunjan; Coqueret, Xavier


    The influence of glycerol on the electron beam-induced changes in maltodextrins-cinnamyl alcohol (CA) blends is examined with respect to its influence on the degree of chain scission, grafting, and cross-linking. The study is relevant to radiation-induced polysaccharide modification, specifically in the perspective of using blended starch as a thermoplastic material, where glycerol is commonly used as a plasticizer. In the absence of CA, glycerol protects maltodextrin from chromophore formation onto the main chain, but also induces more chain scission. The presence of CA provides efficient radiation-protection against scission. Glycerol is shown to affect the interaction between maltodextrin and CA, most likely in the form of an inclusion complex when glycerol is absent. The global behavior under radiation is therefore governed by the physical interactions between the blend constituents rather than on the role of glycerol role as a plasticizer, or as an OH˙ radical scavenger.

  10. Krebs cycle metabolon: structural evidence of substrate channeling revealed by cross-linking and mass spectrometry. (United States)

    Wu, Fei; Minteer, Shelley


    It has been hypothesized that the high metabolic flux in the mitochondria is due to the self-assembly of enzyme supercomplexes (called metabolons) that channel substrates from one enzyme to another, but there has been no experimental confirmation of this structure or the channeling. A structural investigation of enzyme organization within the Krebs cycle metabolon was accomplished by in vivo cross-linking and mass spectrometry. Eight Krebs cycle enzyme components were isolated upon chemical fixation, and interfacial residues between mitochondrial malate dehydrogenase, citrate synthase, and aconitase were identified. Using constraint protein docking, a low-resolution structure for the three-enzyme complex was achieved, as well as the two-fold symmetric octamer. Surface analysis showed formation of electrostatic channeling upon protein-protein association, which is the first structural evidence of substrate channeling in the Krebs cycle metabolon.

  11. Fabrication and morphology of spongelike polymer material based on cross-linked sulfonated polystyrene particles. (United States)

    Ji, Xiang; Wang, Mozhen; Xu, Dezhi; Ge, Xuewu; Liu, Huarong; Tang, Tao


    A novel spongelike polymer material has been fabricated by γ-ray induced polymerization of methylmethacrylate (MMA) in an emulsion containing cross-linked sulfonated polystyrene (CSP) particles. Scanning electron microscopy (SEM) images reveal that the spongelike structure is made up of interlinked nanosized PMMA particles with micrometer-sized CSP-PMMA particles embedded inside. The nitrogen adsorption isotherm discloses that the spongelike material has a high specific surface area of 29 m(2)/g and a narrow pore size distribution of 60-120 nm. The formation mechanism is discussed in this paper, which indicates that the key steps to form the spongelike material include a Pickering emulsion stabilized by the CSP particles, followed by the swelling process of MMA into these particles. This approach offers a more convenient alternative to prepare polymeric spongelike material without any etching procedure.

  12. A core cross-linked polymeric micellar platium(IV) prodrug with enhanced anticancer efficiency. (United States)

    Hou, Jie; Shang, Jincai; Jiao, Chengbin; Jiang, Peiyue; Xiao, Huijie; Luo, Lan; Liu, Tongjun


    A core cross-linked polymeric micellar cisplatin(IV) conjugate prodrug is prepared by attaching the cisplatin(IV) to mPEG-b-PLL biodegradable copolymers to form micellar nanoparticles that can disintegrate to release the active anticancer agent cisplatin(II) in a mild reducing environment. Moreover, in vitro studies show that this cisplatin(IV) conjugate prodrug displays enhanced cytotoxicity against HepG2 cancer cells compared with cisplatin(II). Further studies demonstrate that the high cellular uptake and platinum-DNA adduct of this cisplatin(IV) conjugate prodrug can induce more cancer-cell apoptosis than cisplatin(II), which is responsible for its enhanced anticancer activity.

  13. Cross-linked leucaena seed gum matrix: an affinity chromatography tool for galactose-specific lectins. (United States)

    Seshagirirao, Kottapalli; Leelavathi, Chaganti; Sasidhar, Vemula


    A cross-linked leucaena (Leucaena leucocephala) seed gum (CLLSG) matrix was prepared for the isolation of galactose-specific lectins by affinity chromatography. The matrix was evaluated for affinity with a known galactose-specific lectin from the seeds of snake gourd (Trichosanthes anguina). The matrix preparation was simple and inexpensive when compared to commercial galactose-specific matrices (i.e. about 1.5 US dollars/100 ml of matrix). The current method is also useful for the demonstration of the affinity chromatography technique in laboratories. Since leucaena seeds are abundant and inexpensive, and the matrix preparation is easy, CLLSG appears to be a promising tool for the separation of galactose-specific lectins.

  14. Iontophoresis-Assisted Corneal Collagen Cross-Linking with Epithelial Debridement: Preliminary Results (United States)

    Legrottaglie, Emanuela F.


    Purpose. To report the early outcomes of iontophoresis-assisted corneal collagen cross-linking procedure with epithelial debridement (I-SCXL). Methods. Twenty eyes of twenty patients with progressive keratoconus were included in this prospective clinical study. Best spectacle corrected visual acuity (BSCVA), sphere and cylinder refraction, corneal topography, Scheimpflug tomography, aberrometry, anterior segment optical coherence tomography (AS-OCT), and endothelial cell count were assessed at baseline and at 1, 3, and 6 months of follow-up. The parameters considered to establish keratoconus progression were always proven with differential maps as change in curvature in the cone area of at least 1 diopter obtained with an instantaneous map. Results. Functional parameters showed a significant improvement (p 0.05). Conclusion. The early results indicate that the I-SCXL may be able to reduce the treatment time and improve the riboflavin diffusion. PMID:27547758

  15. Physicochemical characterization of chitosan/nylon6/polyurethane foam chemically cross-linked ternary blends. (United States)

    Jayakumar, S; Sudha, P N


    Chitosan/nylon6/polyurethane foam (CS/Ny6/PUF) ternary blend was prepared and chemically cross-linked with glutaraldehyde. Structural, thermal and morphological studies were performed for the prepared ternary blends. Characterizations of the ternary blends were investigated by Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscope (SEM). The FTIR results showed that the strong intermolecular hydrogen bonds took place between CS, Ny6 and PUF. TGA and DSC studies reveal that the thermal stability of the blend is enhanced by glutaraldehyde as crosslinking agent. Results of XRD indicated that the relative crystalline of pure CS film was reduced when the polymeric network was reticulated by glutaraldehyde. Finally, the results of scanning electron microscopy (SEM) indicated that the morphology of the blend is rough and heterogeneous, further it confirms the interaction between the functional groups of the blend components.

  16. Corneal crossed links: a new alternative in the treatment of ectasia

    Directory of Open Access Journals (Sweden)

    Maygret Alberro Hernández


    Full Text Available Cross-linking a technique that allows increasing the creation of covalent links through the process of photo-oxidation among the collagen fibers and enhance the corneal biomechanical stabilization. The main objective of this procedure is to stop the development of ectasia. The indications include the Keratoconus and Pellucid Marginal Degeneration. This can reduce the necessity for permanent keratoplasty and is highly efficient in the treatment and prophylaxis of keratectasia after ablation caused by laser. Many reviewed articles prove the security and efficacy of this treatment. The confocal microscopy techniques have shown significant swelling and resistance of corneal stroma after this procedure. Density of endothelial cell and transparency of the cornea and crystallin remain unchanged. This is a simple, safe and non-invasive technique with promising results. Since this is not expensive it could be particularly useful in developing countries where corneal transplant and other procedures are very expensive.

  17. Corneal collagen cross-linking and liposomal amphotericin B combination therapy for fungal keratitis in rabbits (United States)

    Hao, Zhao-Qin; Song, Jin-Xin; Pan, Shi-Yin; Zhang, Lin; Cheng, Yan; Liu, Xian-Ning; Wu, Jie; Xiao, Xiang-Hua; Gao, Wei; Zhu, Hai-Feng


    AIM To observe the therapeutic effect of corneal collagen cross-linking (CXL) in combination with liposomal amphotericin B in fungal corneal ulcers. METHODS New Zealand rabbits were induced fungal corneal ulcers by scratching and randomly divided into 3 groups, i.e. control, treated with CXL, and combined therapy of CXL with 0.25% liposomal amphotericin B (n=5 each). The corneal lesions were documented with slit-lamp and confocal microscopy on 3, 7, 14, 21 and 28d after treatment. The corneas were examined with transmission electron microscopy (TEM) at 4wk. RESULTS A rabbit corneal ulcer model of Fusarium was successfully established. The corneal epithelium defect areas in the two treatment groups were smaller than that in the control group on 3, 7, 14 and 21d (Pulcers. The combined therapy could alleviate corneal inflammattions, accelerate corneal repair, and shorten the course of disease. PMID:27990355

  18. AlkB recognition of a bulky DNA base adduct stabilized by chemical cross-linking

    Institute of Scientific and Technical Information of China (English)


    E.coli AlkB is a direct DNA/RNA repair protein that oxidatively reverses N1 alkylated purines and N3 alkylated pyrimidines to regular bases.Previous crystal structures have revealed N1-methyl adenine(1-meA) recognition by AlkB and a unique base flipping mechanism,but how the AlkB active site can accommodate bulky base adducts is largely unknown.Employing a previously developed chemical cross-linking technique,we crystallized AlkB with a duplex DNA containing a caged thymine base(cagedT).The structure revealed a flexible hairpin lid and a reorganized substrate recognition loop used by AlkB to accommodate cagedT.These observations demonstrate,at the molecular level,how bulky DNA adducts may be recognized and processed by AlkB.

  19. Study on the Adsorption of Sulfate Ions onto Cross-Linked Chitosan (United States)

    Xue, Juanqin; Guo, Yingjuan; Bi, Qiang; Mao, Weibo; Li, Jingxian


    With chitosan as the raw material, a new type of resin material is synthesized through cross-linking with formaldehyde and benzaldehyde, and it was used as an adsorbent to adsorb sulfate ion from aqueous solution. The effect of different conditions and the kinetics of the adsorption were investigated. Under the conditions of 0.2 g of adsorbent dosage, 153.3 mg/L of sodium sulfate solution, 40°C of the temperature, 120 min of the equilibrium time and pH of 2.0, the adsorption efficiency (AE) and the adsorption capacity (AC) can both be obtained the optimal values. It shows that the applicability of the second-order model fit the experimental data well from the study of adsorption kinetics.

  20. Physicochemical characterization of chitosan/nylon6/polyurethane foam chemically cross-linked ternary blends (United States)

    Jayakumar, S.; Sudha, P. N.


    Chitosan/nylon6/polyurethane foam (CS/Ny6/PUF) ternary blend was prepared and chemically cross-linked with glutaraldehyde. Structural, thermal and morphological studies were performed for the prepared ternary blends. Characterizations of the ternary blends were investigated by Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscope (SEM). The FTIR results showed that the strong intermolecular hydrogen bonds took place between CS, Ny6 and PUF. TGA and DSC studies reveal that the thermal stability of the blend is enhanced by glutaraldehyde as crosslinking agent. Results of XRD indicated that the relative crystalline of pure CS film was reduced when the polymeric network was reticulated by glutaraldehyde. Finally, the results of scanning electron microscopy (SEM) indicated that the morphology of the blend is rough and heterogeneous, further it confirms the interaction between the functional groups of the blend components.

  1. Stabilization of human prostate acid phosphatase by cross-linking with diimidoesters. (United States)

    Wasylewska, E; Dulińska, J; Trubetskoy, V S; Torchilin, V P; Ostrowski, W S


    1. Modification of dimeric human prostate acid phosphatase (EC by diimidoesters leads to the formation of water-soluble preparations of high enzymatic activity, resistant to denaturing agents. 2. Monomeric, dimeric, trimeric and tetrameric species were found in SDS-polyacrylamide gel electrophoresis of the phosphatase cross-linked with dimethyl-suberimidate, and dimeric, trimeric and tetrameric enzymatically active species on thin-layer Sephadex 200 gel filtration. This molecular pattern evidenced formation of the inter-subunit covalent linkages. All molecular forms are immunoreactive against the polyclonal rabbit anti-phosphatase antibodies. 3. The catalytic properties of the modified phosphatase are almost the same as those of the native enzyme. Differences in the optical properties between the modified and the native enzymes point to slight conformational transitions in the modified enzyme.

  2. Preparation and characterization of a magneto-polymeric nanocomposite: Fe{sub 3}O{sub 4} nanoparticles in a grafted, cross-linked and plasticized poly(vinyl chloride) matrix

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Fernandez, Oliverio S. [Centro de Investigacion en Quimica Aplicada, Boulevard Enrique Reyna Hermosillo No. 140, Saltillo, Coahuila Mexico, C.P. 25253 (Mexico)], E-mail:; Rodriguez-Calzadiaz, C.A.; Yanez-Flores, Isaura G.; Montemayor, Sagrario M. [Centro de Investigacion en Quimica Aplicada, Boulevard Enrique Reyna Hermosillo No. 140, Saltillo, Coahuila Mexico, C.P. 25253 (Mexico)


    In this work two kind of materials: (1) grafted, cross-linked and plasticized poly(vinyl chloride) (PVC) 'plastic films' and (2) magnetic plastic films 'magneto-polymeric nanocomposites' were prepared. Precursor solutions or 'plastisols' used to obtain the plastic films were obtained by mixing PVC (emulsion grade) as polymeric matrix, di(2-ethylhexyl)phthalate (DOP) as plasticizer, a thermal stabilizer based in Ca/Zn salts, and a cross-linking agent, 3-mercaptopropyltrimethoxysilane (MTMS) or 3-aminopropyltriethoxysilane (ATES), at several concentrations. Flexible films were obtained from the plastisols using static casting. The stress-strain behavior and the gel content (determined by Soxhlet extraction with boiling THF) of the flexible films were measured in order to evaluate the effect of the cross-linking agent and their content on the degree of cross-linking. The magneto-polymeric nanocomposites were obtained by mixing the optimum composition of the plastisols (analyzed previously) with magnetite (Fe{sub 3}O{sub 4})-based ferrofluid and DOP. Later, flexible films were obtained by static casting of the plastisol/ferrofluid systems. The magnetic films were characterized by the above-mentioned techniques and X-ray diffraction, vibrating sample magnetometry and thermogravimetrical analy0009s.

  3. Preparation, Properties and Mechanism of Inhomogeneous Calcium Alginate Ion Cross-linking Gel Microspheres

    Institute of Scientific and Technical Information of China (English)


    Inhomogeneous calcium alginate ion cross-linking gel microspheres, a novel ion absorbent, were prepared by dropping a sodium alginate solution to a calcium chloride solution via an electronic droplet generator. Calcium alginate microspheres have uniform particle sizes, a smooth surface and a microporous structure. The electrode probe reveals the inhomogeneous distribution of calcium ions with the highest concentration on the surface, and the lowest concentration in the cores of the spheres. As a novel ion adsorbent, calcium alginate gel microspheres have a lower limiting adsorption mass concentration, a higher enrichment capacity and a higher adsorption capacity for Pb2+ than usual ion exchange resins. The highest percentage of the adsorption is 99.79%. The limiting adsorption mass concentration is 0.0426 mg/L. The adsorption capacity for Pb2+ is 644 mg/g. Calcium alginate gel microspheres have a much faster ion exchange velocity than D418 chelating resin and D113 polyacrylate resin. The moving boundary model was employed to interpret the ion exchange kinetics process, which indicates that the ion exchange process is controlled by intraparticle diffusion of adsorbable ions. So the formation of inhomogeneous gel microspheres reduces the diffusion distance of adsorbable ions within the spheres and enhances the ion exchange velocity. Alginate has a higher selectivity for Pb2+ than for Ca2+ and the selectivity coefficient KPbCa is 316. As an ion cross-linking gel, calcium alginate inhomogeneous microspheres can effectively adsorb heavy metal Pb2+ at a higher selectivity and a higher adsorption velocity. It is a novel and good ion adsorbent.

  4. Shape-memory behavior of cross-linked semi-crystalline polymers and their blends

    Directory of Open Access Journals (Sweden)

    I. Kolesov


    Full Text Available The present study deals with thermally induced one-way and invertible two-way shape-memory effect (SME in covalent networks on the basis of crystallizable (copolymers and their blends and is an attempt to generalize the results of own investigation received by the authors in the last ten years. The main focus of work clearly lies on research of covalently crosslinked binary and ternary blends having two and three crystalline phases with different thermal stability, respectively. The existence of two or three crystalline phases possessing different melting and crystallization temperatures in heterogeneous polymer networks can lead to triple-shape or even quadruple-shape behavior of such networks. However, the performed investigations point to crucial effect of phase morphology of crosslinked polymer blends on multiplicity of their shapememory behavior beside the influence of blend content, crystallinity and cross-link density of blend phases as well as of processing conditions. For instance, triple-shape memory behavior in binary blends can be realized only if the continuous phase has a lower melting temperature than the dispersed phase. Cross-linked polymer blends are a facile alternative to expensive and complex synthesis of interpenetrating or block-copolymer networks used for shape memory polymers. In addition to findings of experimental investigation of SME in crystallizable covalent polymer networks, the results of modeling their shape-memory behavior on the basis of self-developed physically reasonable model have been briefly described and discussed. Thereby, good accordance between results of theory and experiment was achieved with physically justified fitting parameters.

  5. Preparation and Characterization of Ionotropic Cross-Linked Chitosan Microparticles for Controlled Release of Aceclofenac

    Directory of Open Access Journals (Sweden)

    N. G. Raghavendra Rao


    Full Text Available Aceclofenac, (2-[2-[2-(2, 6-dichlorophenyl aminophenyl] acety] oxyacetic acid a non-steroidal anti-inflammatory drug (NSAID, has been indicated for various conditions like post-traumatic pain, rheumatoid arthritis, ankylosing spondylitis. Multiple-unit systems have been reported to avoid the variations in gastric emptying and different transit rates through gastro-intestinal and spread over a large area preventing exposure of the absorbing site to high drug concentration on chronic dosing. The purpose of this study was therefore to develop aceclofenac loaded chitosan microparticles by ionotropic gelation method. Drug loading efficiency (DLE of microparticles was found between 62.20 to 92.93 % and depended on the formulation variables. Increase in the Tripolyphosphate (TPP concentration, pH of the TPP solution and cross-linking time decreased the drug release. The particle size decreased with increase in cross-linking time and found between the ranges of 1194.1 to 1568.9 µm. Drug release showed slight burst effect in phosphate buffer pH 7.4 in first hour followed by prolonged release for 8 hrs. FTIR and DSC revealed that there was no interaction between drug and polymer. The release data was fitted into first order, zero order and Higuchi model to find release kinetics. The values of regression coefficient r2 were found to be greater (£ 0.9541 for first order than for zero order (£ 0.8740 and the r2 value for Higuchi was £ 0.9805 suggesting diffusion controlled process. The result concluded that TPP-chitosan microparticles developed by ionotropic gelation method might become potential delivery system to prolonging the release of aceclofenac.

  6. Effect of D-penicillamine on rat lung elastin cross-linking during the perinatal period. (United States)

    Koçtürk, Semra; Oktay, Gülgün; Güner, Gül; Pekçetin, Cetin; Güre, Ataman


    This study was designed to clarify the effects of D-penicillamine (DPA), a drug used for treatment of various pathological events, on lung elastin formation and maturation of the newborn in the perinatal period. The investigation was conducted on 20 newborn rats bred from 40 female and six male rats. DPA doses 400 mg kg(-1) day(-1) and physiological saline were given intraperitoneally (i.p) to experimental and control groups. To assess newborn maturation, their body and lung weights were determined. Serum Cu levels were measured by atomic absorption spectroscopy and ceruloplasmin (Cp) activities were measured spectrophotometrically. Newborn lung tissue elastin, desmosine (DES) and isodesmosine (IDES) levels were measured by HPLC. The results showed that DPA treatment caused loss of skin elasticity and reduction in body and lung weight in newborns of the experimental group. The serum Cu levels and Cp activity were found to be significantly lower in both maternal and newborn of the experimental groups compared with the control group. The lung DES, IDES and elastin values of newborns in the experimental group were decreased compared with the control group. In conclusion, our results indicate that 400 mg kg(-1) day(-1) DPA, a dose that is used in the treatment of Wilson's disease, rheumatoid arthritis and cystinuria, caused the retardation of newborn maturation, a decrease in DES-IDES cross-links and levels of lung elastin of offspring in the perinatal period. Another conclusion to be drawn from this study is that even low levels of Cu depletion due to DPA administration induces a change in cross-linking in lung elastin during the perinatal period.

  7. Pickering emulsions stabilized by whey protein nanoparticles prepared by thermal cross-linking. (United States)

    Wu, Jiande; Shi, Mengxuan; Li, Wei; Zhao, Luhai; Wang, Ze; Yan, Xinzhong; Norde, Willem; Li, Yuan


    A Pickering (o/w) emulsion was formed and stabilized by whey protein isolate nanoparticles (WPI NPs). Those WPI NPs were prepared by thermal cross-linking of denatured WPI proteins within w/o emulsion droplets at 80°C for 15 min. During heating of w/o emulsions containing 10% (w/v) WPI proteins in the water phase, the emulsions displayed turbid-transparent-turbid phase transitions, which is ascribed to the change in the size of the protein-containing water droplets caused by thermal cross-linking between denatured protein molecules. The transparent stage indicated the formation of WPI NPs. WPI NPs of different sizes were obtained by varying the mixing speed. WPI NPs of 200-500 nm were selected to prepare o/w Pickering emulsions because of their good stability against coalescence. By Confocal Laser Scanning Microscopy, it was observed that WPI NPs were closely packed and distributed at the surface of the emulsion droplets. By measuring water contact angles of WPI NPs films, it was found that under most conditions WPI NPs present good partial wetting properties, but that at the isoelectric point (pI) and high ionic strength the particles become more hydrophobic, resulting in less stable Pickering emulsion. Thus, at pH above and below the pI of WPI NPs and low to moderate ionic strengths (1-10 mM), and with a WPI NPs concentration of 2% (w/v), a stable Pickering emulsion can be obtained. The results may provide useful information for applications of WPI NPs in environmentally friendly and food grade applications, notably in food, pharmaceutical and cosmetic products.

  8. Paper based colorimetric biosensing platform utilizing cross-linked siloxane as probe. (United States)

    Zhou, Miao; Yang, Minghui; Zhou, Feimeng


    Paper based colorimetric biosensing platform utilizing cross-linked siloxane 3-aminopropyltriethoxysilane (APTMS) as probe was developed for the detection of a broad range of targets including H2O2, glucose and protein biomarker. APTMS was extensively used for the modification of filter papers to develop paper based analytical devices. We discovered when APTMS was cross-linked with glutaraldehyde (GA), the resulting complex (APTMS-GA) displays brick-red color, and a visual color change was observed when the complex reacted with H2O2. By integrating the APTMS-GA complex with filter paper, the modified paper enables quantitative detection of H2O2 through the monitoring of the color intensity change of the paper via software Image J. Then, with the immobilization of glucose oxidase (GOx) onto the modified paper, glucose can be detected through the detection of enzymatically generated H2O2. For protein biomarker prostate specific antigen (PSA) assay, we immobilized capture, not captured anti-PSA antibody (Ab1) onto the paper surface and using GOx modified gold nanorod (GNR) as detection anti-PSA antibody (Ab2) label. The detection of PSA was also achieved via the liberated H2O2 when the GOx label reacted with glucose. The results demonstrated the possibility of this paper based sensor for the detection of different analytes with wide linear range. The low cost and simplicity of this paper based sensor could be developed for "point-of-care" analysis and find wide application in different areas.

  9. Effect of base sequence on the DNA cross-linking properties of pyrrolobenzodiazepine (PBD) dimers. (United States)

    Rahman, Khondaker M; James, Colin H; Thurston, David E


    Pyrrolo[2,1-c][1,4]benzodiazepine (PBD) dimers are synthetic sequence-selective DNA minor-groove cross-linking agents that possess two electrophilic imine moieties (or their equivalent) capable of forming covalent aminal linkages with guanine C2-NH(2) functionalities. The PBD dimer SJG-136, which has a C8-O-(CH(2))(3)-O-C8'' central linker joining the two PBD moieties, is currently undergoing phase II clinical trials and current research is focused on developing analogues of SJG-136 with different linker lengths and substitution patterns. Using a reversed-phase ion pair HPLC/MS method to evaluate interaction with oligonucleotides of varying length and sequence, we recently reported (JACS, 2009, 131, 13 756) that SJG-136 can form three different types of adducts: inter- and intrastrand cross-linked adducts, and mono-alkylated adducts. These studies have now been extended to include PBD dimers with a longer central linker (C8-O-(CH(2))(5)-O-C8'), demonstrating that the type and distribution of adducts appear to depend on (i) the length of the C8/C8'-linker connecting the two PBD units, (ii) the positioning of the two reactive guanine bases on the same or opposite strands, and (iii) their separation (i.e. the number of base pairs, usually ATs, between them). Based on these data, a set of rules are emerging that can be used to predict the DNA-interaction behaviour of a PBD dimer of particular C8-C8' linker length towards a given DNA sequence. These observations suggest that it may be possible to design PBD dimers to target specific DNA sequences.

  10. Age-Related Long-Term Functional Results after Riboflavin UV A Corneal Cross-Linking

    Directory of Open Access Journals (Sweden)

    Aldo Caporossi


    Full Text Available Purpose. To report a comparative prospective long-term functional analysis after Riboflavin UV A corneal cross-linking (CXL in three different age groups of patients affected by progressive keratoconus (KC. Methods. Functional analysis comprised paediatric patients (≤18 years included 152 eyes (29.5%; intermediate group (19–26 years 286 eyes (55.4%, and adults (≥27 years 78 eyes (15.1%. CXL was performed according to the Siena protocol by using the Vega CBM (Caporossi-Baiocchi-Mazzotta X linker (CSO, Florence, Italy at Siena University by the same authors. Pre- and post-op examinations included UCVA, BSCVA, corneal topography, and surface aberrometry (CSO Eye Top, Florence, Italy, at 48 months followup. Results. At 48 months followup paediatrics, intermediate, and adult patients showed a mean gain in UCVA of +0.2, +0.14 and +0.12 Snellen lines. BSCVA gained by a mean of +0.21, +0.2, and +0.1 Snellen lines. Kmax was reduced by a mean value of −0.9 D, −0.6 D, and −0.5 D, respectively. Coma values improved by a mean of −0.45 μm, −0.91 μm, and −0.19 μm, respectively. Treatment ensured a long-term keratoconus stabilization in over 90% of treated patients. Conclusion. According to our long-term comparative results, epithelium-off Riboflavin UV A cross-linking should be the first choice therapy of progressive KC, particularly in paediatric age and patients under 26 years.

  11. Absorbed Pb2+ and Cd2+ Ions in Water by Cross-Linked Starch Xanthate

    Directory of Open Access Journals (Sweden)

    Kai Feng


    Full Text Available A cross-linked starch xanthate was prepared by graft copolymerization of acrylamide and sodium acrylate onto starch xanthate using potassium persulfate and sodium hydrogen sulfite initiating system and N,N′-methylenebisacrylamide as a cross-linker. As this kind of cross-linked potato starch xanthate can effectively absorb heavy metal ions, it was dispersed in aqueous solutions of divalent heavy metal ions (Pb2+ and Cd2+ to investigate their absorbency by the polymer. Factors that can influence absorbency were investigated, such as the ratio of matrix to monomers, the amount of initiator and cross-linker, pH, and the concentration of metal ions. Results were reached and conclusion was drawn that the best synthetic conditions for the polymer adsorbing Pb2+ and Cd2+ were as follows: the quality ratio of matrix to monomers was 1 : 12 and 1 : 11, the amount of initiator was 2.4% and 3.2% of matrix, and the amount of cross-linker was 12 mg and 13 mg. When the initial concentration of ions was 10 mg/L, the highest quantities of adsorption of Pb2+ and Cd2+ were 47.11 mg/g and 36.55 mg/g. Adsorption mechanism was discussed by using Fourier transform infrared (FTIR spectroscopy, X-ray diffraction (XRD, scanning electron microscope (SEM, Energy Dispersive X-Ray Spectroscopy (EDS test, and adsorption kinetic simulation.

  12. Comparative studies on performance of radiation-induced and thermal cross-linked ion-exchange membrane for water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, Tina; Jasti, Amaranadh [Electro-Membrane Processes Division, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR), G. B. Marg, Bhavnagar 364002, Gujarat (India); Goel, N.K. [Radiation Technology Division, Bhabha Atomic Research Center, Trombay, Mumbai (India); Shahi, Vinod K., E-mail: vkshahi@csmcri.or [Electro-Membrane Processes Division, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR), G. B. Marg, Bhavnagar 364002, Gujarat (India); Sabharwal, Sunil [Radiation Technology Division, Bhabha Atomic Research Center, Trombay, Mumbai (India)


    Radiation-induced and thermal cross-linked sulfonated poly(ether sulfone) (SPS)-sulfonated poly(ether ether ketone) (SPK) composite ion-exchange membranes (SPS/SPK({gamma}) and SPS/SPK(T), respectively) were prepared. Their performances for water electrolysis were comparatively assessed. Thermal cross-linked membrane (SPS/SPK(T)) showed cross-linking of part functional groups (-SO{sub 3}H) and thus deterioration in membrane conductivity. While, radiation-induced cross-linked membrane (SPS/SPK({gamma})) avoided any cross-linking between functional groups and thus conductivity. Electrolysis performances of these membranes were evaluated in comparison with Nafion117 membrane. Relatively low current efficiency (CE) for SPS/SPK and SPS/SPK(T) membranes was due to their high mass transfer (water) via electro-osmotic drag, which was negligible for SPS/SPK({gamma}) membrane. SPS/SPK({gamma}) membrane exhibited comparable stabilities and water splitting performance with Nafion117 membrane, which revealed its suitability as substitute for electrochemical applications.

  13. Comparative studies on performance of radiation-induced and thermal cross-linked ion-exchange membrane for water electrolysis (United States)

    Chakrabarty, Tina; Jasti, Amaranadh; Goel, N. K.; Shahi, Vinod K.; Sabharwal, Sunil


    Radiation-induced and thermal cross-linked sulfonated poly(ether sulfone) (SPS)-sulfonated poly(ether ether ketone) (SPK) composite ion-exchange membranes (SPS/SPK(γ) and SPS/SPK(T), respectively) were prepared. Their performances for water electrolysis were comparatively assessed. Thermal cross-linked membrane (SPS/SPK(T)) showed cross-linking of part functional groups (-SO 3H) and thus deterioration in membrane conductivity. While, radiation-induced cross-linked membrane (SPS/SPK(γ)) avoided any cross-linking between functional groups and thus conductivity. Electrolysis performances of these membranes were evaluated in comparison with Nafion117 membrane. Relatively low current efficiency (CE) for SPS/SPK and SPS/SPK(T) membranes was due to their high mass transfer (water) via electro-osmotic drag, which was negligible for SPS/SPK(γ) membrane. SPS/SPK(γ) membrane exhibited comparable stabilities and water splitting performance with Nafion117 membrane, which revealed its suitability as substitute for electrochemical applications.

  14. Effectiveness of trimethylopropane trimethacrylate for the electron-beam-irradiation-induced cross-linking of polylactic acid

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Hon-Meng [Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur (Malaysia); Bee, Soo-Tueen, E-mail: [Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur (Malaysia); Ratnam, C.T. [Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Sin, Lee Tin; Phang, Yee-Yao; Tee, Tiam-Ting [Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur (Malaysia); Rahmat, A.R. [Department of Polymer Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)


    Highlights: • Investigation of trimethylopropane trimethacrylate (TMPTMA) on electron beam irradiated PLA. • Irradiated PLA blends were weakened by incorporation of high amount of TMPTMA. • TMPTMA interacts with polymer free radicals to build crosslinking network. -- Abstract: The purpose of this research was to investigate the effects of various loading levels of trimethylopropane trimethacrylate (TMPTMA) on the properties of polylactic acid (PLA) cross-linked via electron-beam irradiation. PLA was compounded with 3–5 wt.% of TMPTMA to induce cross-linking upon subjection to electron-beam irradiation doses of 25–250 kGy. The physical properties of the PLA samples were characterised by means of X-ray diffraction, gel fraction and scanning electron microscopy analyses on fractured surfaces after tensile tests. The presence of TMPTMA in PLA was found to effectively increase the crystallite size and gel fraction. However, higher loading levels of TMPTMA could compromise the properties of the PLA/TMPTMA samples, indicating that a larger amount of monomer free radicals might promote degradation within the substantially cross-linked amorphous phase. Irradiation-induced cross-linking in the samples could improve the cross-linking density while decreasing the elongation and interfering with the crystallisation. These effects are caused by the intensive irradiation-induced chain scission that is responsible for the deterioration of the mechanical and crystalline properties of the samples.

  15. Entrapment of methyl parathion hydrolase in cross-linked poly(γ-glutamic acid)/gelatin hydrogel. (United States)

    Xie, Jianfei; Zhang, Huiwen; Li, Xu; Shi, Yuanliang


    Methyl parathion hydrolase (MPH) is an important enzyme in hydrolyzing toxic organophosphorus (OP) compounds. However, MPH is easily deactivated when subjected to extreme environmental conditions and is difficult to recover from the reaction system for reuse, thereby limiting its practical application. To address these shortcomings, we examined the entrapment of MPH in an environment-friendly, biocompatible and biodegradable cross-linked poly(γ-glutamic acid)/gelatin hydrogel. The cross-linked poly(γ-glutamic acid)/gelatin hydrogels were prepared with different gelatin/poly(γ-glutamic acid) mass ratios using water-soluble carbodiimide as the cross-linking agent. The MPH-entrapped cross-linked poly(γ-glutamic acid)/gelatin hydrogel (CPE-MPH) not only possessed improved thermostability, pH stability, and reusability but also exhibited enhanced efficiency in hydrolyzing OP compounds. Furthermore, CPE-MPH possesses high water-absorbing and water-retaining capabilities. We believe that the cross-linked poly(γ-glutamic acid)/gelatin hydrogels are an attractive carrier for the entrapment of diverse enzymes, affording a new approach for enzyme entrapment.

  16. Physically Cross-linked Polymer Binder Induced by Reversible Acid-Base Interaction for High-Performance Silicon Composite Anodes. (United States)

    Lim, Sanghyun; Chu, Hodong; Lee, Kukjoo; Yim, Taeeun; Kim, Young-Jun; Mun, Junyoung; Kim, Tae-Hyun


    Silicon is greatly promising for high-capacity anode materials in lithium-ion batteries (LIBs) due to their exceptionally high theoretical capacity. However, it has a big challenge of severe volume changes during charge and discharge, resulting in substantial deterioration of the electrode and restricting its practical application. This conflict requires a novel binder system enabling reliable cyclability to hold silicon particles without severe disintegration of the electrode. Here, a physically cross-linked polymer binder induced by reversible acid-base interaction is reported for high performance silicon-anodes. Chemical cross-linking of polymer binders, mainly based on acidic polymers including poly(acrylic acid) (PAA), have been suggested as effective ways to accommodate the volume expansion of Si-based electrodes. Unlike the common chemical cross-linking, which causes a gradual and nonreversible fracturing of the cross-linked network, a physically cross-linked binder based on PAA-PBI (poly(benzimidazole)) efficiently holds the Si particles even after the large volume changes due to its ability to reversibly reconstruct ionic bonds. The PBI-containing binder, PAA-PBI-2, exhibited large capacity (1376.7 mAh g(-1)), high Coulombic efficiency (99.1%) and excellent cyclability (751.0 mAh g(-1) after 100 cycles). This simple yet efficient method is promising to solve the failures relating with pulverization and isolation from the severe volume changes of the Si electrode, and advance the realization of high-capacity LIBs.

  17. Controlled delivery of valsartan by cross-linked polymeric matrices: Synthesis, in vitro and in vivo evaluation. (United States)

    Sohail, Muhammad; Ahmad, Mahmood; Minhas, Muhammad Usman; Ali, Liaqat; Khalid, Ikrima; Rashid, Haroon


    The purpose of study was to develop chemically cross-linked chitosan-co-poly(AMPS) hydrogel based on low molecular weight chitosan for pH-responsive and controlled drug delivery of a model drug. Cross-linking was achieved chemically, by using free radical polymerization technique. Polymer (low molecular weight chitosan) was chemically cross-linked with monomer (2-acrylamido-2-methylpropane sulfonic acid) in aqueous medium. N, N'-Methylenebisacrylamide (MBA) was used as cross-linking agent. Sodium hydrogen sulfite (SHS) and ammonium peroxodisulphate (APS) were used as initiators in a chemical reaction. Hydrogels were characterized by FT-IR, SEM and DSC. Swelling studies and pH-sensitivity of hydrogels were studies at pH 1.2 and 7.4. Chitosan-co-poly(AMPS) hydrogels were administered to rabbits orally to evaluate its pharmacokinetic behavior. As a result of successful cross-linking of polymer and monomer, novel co-polymer has been developed, having suitable characteristics as desired for controlled release drug delivery system. Maximum swelling, drug loading and release have been observed at pH 7.4. In vivo results exhibited significant drug release and absorption at pH 7.4 in rabbits. It is concluded that highly swelling chitosan-AMPS based hydrogels were developed having pH independent swelling and pH dependent drug release properties. These hydrogels have great potential to be used for loading and controlled release of various therapeutic agents.

  18. Food-contact epoxy resin: co-variation between migration and degree of cross-linking. Part II. (United States)

    Lambert, C; Larroque, M; Subirats, J T; Gérard, J F


    The study of epoxy resin composed of bisphenol A diglycidylether (BADGE), bisphenol F diglycidylether (BFDGE) (base), and primary aliphatic polyamines (hardener), has confirmed the interest of measuring certain physical parameters in order to evaluate the density of cross-linking of the network and thus predict the risks of resin molecules migrating into foodstuffs. This suggestion had been made in a preceding study on an epoxy resin composed of bisphenol A diglycidylether (BADGE) and primary aromatic polyamines. Samples with different densities of cross-linking, obtained by subjecting the resin to different curing temperatures (5, 20, 50 and 90 degrees C) for 7 days, were studied. The density of cross-linking increased with curing temperature, as indicated by the increase in glass transition temperature, the increased stability of the rubber storage modulus E'rub (increase in cross-link nodes), the fall in relaxation enthalpies (reduction in physical ageing) and the decreased amplitude of the loss-factor tan delta (reduction in chain mobility). Maximum cross-linking was obtained in the resin cured at 90 degrees C (temperature above Tg infinity). Concurrently, tests of migration into different liquid food simultants (distilled water, distilled water/ethanol/acetic acid, distilled water/ethanol) revealed a considerable reduction in specific migrations of BADGE and BFDGE, and of unidentified peaks.

  19. Effectiveness of trimethylopropane trimethacrylate for the electron-beam-irradiation-induced cross-linking of polylactic acid (United States)

    Ng, Hon-Meng; Bee, Soo-Tueen; Ratnam, C. T.; Sin, Lee Tin; Phang, Yee-Yao; Tee, Tiam-Ting; Rahmat, A. R.


    The purpose of this research was to investigate the effects of various loading levels of trimethylopropane trimethacrylate (TMPTMA) on the properties of polylactic acid (PLA) cross-linked via electron-beam irradiation. PLA was compounded with 3-5 wt.% of TMPTMA to induce cross-linking upon subjection to electron-beam irradiation doses of 25-250 kGy. The physical properties of the PLA samples were characterised by means of X-ray diffraction, gel fraction and scanning electron microscopy analyses on fractured surfaces after tensile tests. The presence of TMPTMA in PLA was found to effectively increase the crystallite size and gel fraction. However, higher loading levels of TMPTMA could compromise the properties of the PLA/TMPTMA samples, indicating that a larger amount of monomer free radicals might promote degradation within the substantially cross-linked amorphous phase. Irradiation-induced cross-linking in the samples could improve the cross-linking density while decreasing the elongation and interfering with the crystallisation. These effects are caused by the intensive irradiation-induced chain scission that is responsible for the deterioration of the mechanical and crystalline properties of the samples.

  20. Photo-cross-linked poly(ethylene carbonate) elastomers: synthesis, in vivo degradation, and determination of in vivo degradation mechanism. (United States)

    Cornacchione, L A; Qi, B; Bianco, J; Zhou, Z; Amsden, B G


    Low-molecular-weight poly(ethylene carbonate) diols of varying molecular weight were generated through catalyzed thermal degradation of high-molecular-weight poly(ethylene carbonate). These polymers were then end functionalized with acrylate groups. The resulting α,ω-diacrylates were effectively photo-cross-linked upon exposure to long-wave UV light in the presence of a photoinitiator to yield rubbery networks of low sol content. The degree of cross-linking effectively controlled the in vivo degradation rate of the networks by adherent macrophages; higher cross-link densities yielded slower degradation rates. The cross-link density did not affect the number of adherent macrophages at the elastomer/tissue interface, indicating that cross-linking affected the susceptibility of the elastomer to degradative species released by the macrophages. The reactive species likely responsible for in vivo degradation appears to be superoxide anion, as the in vivo results were in agreement with in vitro degradation via superoxide anion, while cholesterol esterase, known to degrade similar poly(alkylene carbonate)s, had no affect on elastomer degradation.

  1. Cross-linked Polyethylenimine as Potential DNA Vector for Gene Delivery with High Efficiency and Low Cytotoxicity

    Institute of Scientific and Technical Information of China (English)

    Wei DONG; Guang-Hui JIN; Shu-Feng LI; Qi-Ming SUN; Ding-Yuan MA; Zi-Chun HUA


    Polyethylenimine (PEI) has been known as an efficient gene carrier with the highest cationic charge potential. High transfection efficiency of PEI, along with its cytotoxicity, strongly depends on its molecular weight. To enhance its gene delivery efficiency and minimize cytotoxicity, we have synthesized small cross-linked PEI with biodegradable linkages and evaluated their transfection efficiencies in vitro. In this study, branched PEI with a molecular weight of 800 Da was cross-linked by small diacrylate [ 1,4-butanediol diacrylate or ethyleneglycol dimethacrylate (EGDMA)] for 2-6 h. The efficiencies of the cross-linked PEI in in vitro transfection of plasmid DNA containing enhanced green fluorescent protein (EGFP) reporter gene were assessed in melanoma B 16F10 cell line and other cell lines. Flow cytometry was used to quantify the cellular entry efficiency of plasmid and the transgene expression level. The cytotoxicities of the cross-linked PEI in these cells were evaluated by MTT assay. EGDMA-PEI 800-4h, a typical cross-linked PEI reported here, mediated a more efficient expression of reporter gene than the commercially available 25-kDa branched PEI control, and resulted in a 9-fold increase in gene delivery in B16F10 cells and a 16-fold increase in 293T cells, while no cytotoxicity was found at the optimized condition for gene delivery. Furthermore, the transfection activity of polyplexes was preserved in the presence of serum proteins.

  2. Chitosan-cross-linked nanofibrous PHBV nerve guide for rat sciatic nerve regeneration across a defect bridge. (United States)

    Biazar, Esmaeil; Keshel, Saeed Heidari


    The aim of this study was to produce a chitosan-cross-linked nanofibrous biodegradable poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit. The artificial nerve scaffold designed by electrospinning method and cross-linked with chitosan by chemical method. Afterwards, the scaffolds were evaluated by microscopic, physical, and mechanical analyses and cell culture assays with Schwann cells. The conduits were implanted into a 10 mm gap in the sciatic nerves of the rats. Four months after surgery, the regenerated nerves were evaluated by macroscopic assessments and histology. This polymeric conduit had sufficiently good mechanical properties to serve as a nerve guide. Cellular experiments showed a better cell adhesion, growth, and proliferation inside the cross-linked nanofibrous scaffolds compared with un-cross-linked ones, also Schwann cells well attached on chitosan-cross-linked nanofibrous surface. The in vivo results demonstrated that in the nanofibrous graft, the sciatic nerve trunk had been reconstructed with restoration of nerve continuity and formatted nerve fibers with myelination. This neural conduit appears to have the right organization for testing in vivo nerve tissue engineering studies.

  3. Networking properties of cyclodextrin-based cross-linked polymers probed by inelastic light-scattering experiments. (United States)

    Rossi, Barbara; Caponi, Silvia; Castiglione, Franca; Corezzi, Silvia; Fontana, Aldo; Giarola, Marco; Mariotto, Gino; Mele, Andrea; Petrillo, Caterina; Trotta, Francesco; Viliani, Gabriele


    An integrated experimental approach, based on inelastic light-scattering techniques, has been here employed for a multilength scale characterization of networking properties of cyclodextrin nanosponges, a new class of cross-linked polymeric materials built up from natural oligosaccharides cyclodextrins. By using Raman and Brillouin scattering experiments, we performed a detailed inspection of the vibrational dynamics of these polymers over a wide frequency window ranging from gigahertz to terahertz, with the aim of providing physical descriptors correlated to the cross-linking degree and elastic properties of the material. The results seem to suggest that the stiffness of cross-linked polymers can be successfully tuned by acting on the type and the relative amount of the cross-linker during the synthesis of a polymer matrix, predicting and controlling their swelling and entrapment properties. The proposed experimental approach is a useful tool for investigating the structural and physicochemical properties of polymeric network systems.

  4. Rotational echo double resonance detection of cross-links formed in mussel byssus under high-flow stress. (United States)

    McDowell, L M; Burzio, L A; Waite, J H; Schaefer, J


    13C2H rotational echo double resonance NMR has been used to provide the first evidence for the formation of quinone-derived cross-links in mussel byssal plaques. Labeling of byssus was achieved by allowing mussels to filter feed from seawater containing L-[phenol-4-13C]tyrosine and L-[ring-d4]tyrosine for 2 days. Plaques and threads were harvested from two groups of mussels over a period of 28 days. One group was maintained in stationary water while the other was exposed to turbulent flow at 20 cm/s. The flow-stressed byssal plaques exhibited significantly enhanced levels of 5, 5'-di-dihydroxyphenylalanine cross-links. The average concentration of di-dihydroxyphenylalanine cross-links in byssal plaques is 1 per 1800 total protein amino acid residues.

  5. Cross-Linking and Mass Spectrometry Methodologies to Facilitate Structural Biology: Finding a Path through the Maze

    Energy Technology Data Exchange (ETDEWEB)

    Merkley, Eric D.; Cort, John R.; Adkins, Joshua N.


    Multiprotein complexes, rather than individual proteins, make up a large part of the biological macromolecular machinery of a cell. Understanding the structure and organization of these complexes is critical to understanding cellular function. Chemical cross-linking coupled with mass spectrometry is emerging as a complementary technique to traditional structural biology methods and can provide low-resolution structural information for a multitude of purposes, such as distance constraints in computational modeling of protein complexes. In this review, we discuss the experimental considerations for successful application of chemical cross-linking-mass spectrometry in biological studies and highlight three examples of such studies from the recent literature. These examples (as well as many others) illustrate the utility of a chemical cross-linking-mass spectrometry approach in facilitating structural analysis of large and challenging complexes.

  6. Cross-Linked ZnO Nanowalls Immobilized onto Bamboo Surface and Their Use as Recyclable Photocatalysts

    Directory of Open Access Journals (Sweden)

    Chunde Jin


    Full Text Available A novel recyclable photocatalyst was fabricated by hydrothermal method to immobilize the cross-linked ZnO nanowalls on the bamboo surface. The resultant samples were characterized by using scanning electron microscopy (SEM, X-ray diffraction (XRD, energy dispersive spectroscopy (EDS, and Fourier transformation infrared (FTIR techniques. FTIR spectra demonstrated that the cross-linked wurtzite ZnO nanowalls and bamboo surface were interconnected with each other by hydrogen bonds. Meanwhile, the cross-linked ZnO nanowalls modified bamboo (CZNB presented a superior photocatalytic ability and could be recycled at least 3 times with a photocatalytic efficiency up to 70%. The current research provides a new opportunity for the development of a portable and recycled biomass-based photocatalysts which can be an efficiently degraded pollutant solution and reused several times.

  7. Effect of cross-linking with riboflavin and ultraviolet A on the chemical bonds and ultrastructure of human sclera (United States)

    Jung, Gyeong-Bok; Lee, Hui-Jae; Kim, Ji-Hye; Lim, Jin Ik; Choi, Samjin; Jin, Kyung-Hyun; Park, Hun-Kuk


    This study examined the effect of the cross-linking with riboflavin-ultraviolet A (UVA) irradiation on the chemical bonds and ultrastructural changes of human sclera tissues using Raman spectroscopy and atomic force microscopy (AFM). Raman spectroscopy of the normal and cross-linked human sclera tissue revealed different types of the riboflavin-UVA and collagen interactions, which could be identified from their unique peaks, intensity, and shape. Raman spectroscopy can prove to be a powerful tool for examining the chemical bond of collagenous tissues at the molecular level. After riboflavin-UVA treatment, unlike a regular parallel arrangement of normal collagen fibrils, the AFM image revealed interlocking arrangements of collagen fibrils. The observed changes in the surface topography of the collagen fibrils, as well as in their chemical bonds in the sclera tissue, support the formation of interfibrilar cross-links in sclera tissues.

  8. Cross-linked agarose for separation of low molecular weight natural products in hydrophilic interaction liquid chromatography. (United States)

    Tan, Tianwei; Su, Zhi-Guo; Gu, Ming; Xu, Jun; Janson, Jan-Christer


    Following its market introduction in 1982, the cross-linked 12% agarose gel media Superose 12 has become widely known as a tool for size exclusion chromatography of proteins and other biological macromolecules. In this review it is shown that, when appropriate mobile phases are used, Superose possesses adsorption properties similar to that of traditional media for hydrophilic interaction liquid chromatography (HILIC). This is illustrated by the separation and purification of low molecular weight compounds such as polyphenols including active components of traditional Chinese medicinal herbs and green tea. Structural features of the cross-linked agarose that likely cause the observed adsorption effects are discussed as well. These are identified as being primarily ether bonds acting as strong hydrogen bond acceptors as well as hydrophobic residues originating from the cross-linking reagents.

  9. Cross-linking and mass spectrometry methodologies to facilitate structural biology: finding a path through the maze. (United States)

    Merkley, Eric D; Cort, John R; Adkins, Joshua N


    Multiprotein complexes, rather than individual proteins, make up a large part of the biological macromolecular machinery of a cell. Understanding the structure and organization of these complexes is critical to understanding cellular function. Chemical cross-linking coupled with mass spectrometry is emerging as a complementary technique to traditional structural biology methods and can provide low-resolution structural information for a multitude of purposes, such as distance constraints in computational modeling of protein complexes. In this review, we discuss the experimental considerations for successful application of chemical cross-linking-mass spectrometry in biological studies and highlight three examples of such studies from the recent literature. These examples (as well as many others) illustrate the utility of a chemical cross-linking-mass spectrometry approach in facilitating structural analysis of large and challenging complexes.

  10. Study of temperature dependence of thermal conductivity in cross-linked epoxies using molecular dynamics simulations with long range interactions (United States)

    Kumar, A.; Sundararaghavan, V.; Browning, A. R.


    In this work, we demonstrate the use of the Green-Kubo integral of the heat flux autocorrelation function, incorporating long-range corrections to model the thermal conductivity versus temperature relationship of cross-linked polymers. The simulations were performed on a cross-linked epoxy made from DGEBA and a curing agent (diamino diphenyl sulfone) using a consistent valence force field (CVFF). A dendrimeric approach was utilized for building equilibrated cross-linked structures that allowed replication of the experimental dilatometric curve for the epoxy system. We demonstrate that the inclusion of a long-range correction within the Ewald/PPPM approach brings the results close to experimentally measured conductivity within an error of 10% while providing a good prediction of the relationship of thermal conductivity versus temperature. This method shows significant promise towards the computation of thermal conductivity from simulations even before synthesis of the polymer for purposes of materials by design.

  11. Cross-linked PEG via degradable phosphate ester bond: synthesis, water-swelling, and application as drug carrier. (United States)

    Liu, Zhaoxing; Wang, Lei; Bao, Chunyan; Li, Xinxin; Cao, Lei; Dai, Kerong; Zhu, Linyong


    A new series of degradable and water-swellable cross-linked PEG phosphoester polymers (CPPs) based on a facile cross-linked reaction between diphosphoesters of polyethylene glycol (P-PEG-P) and diglycidyl ether of polyethylene glycol (E-PEG-E) has been prepared and characterized. The molecular weights and ratios of the prepolymers played an important role for the properties of CPPs polymers, such as mechanical property, swelling, and degradation rates. In the curing process, the glycidyl ether was consumed by both hydroxyl of the phosphoester (P-OH) and hydroxyl generated from the opened glycidyl ethers (C-OH) with the presence of acid, which generated degradable phosphate esters as cross-linked points and ether bonds as the short branches, respectively. Drug entrapment and release test and biological cytotoxicity studies in vitro suggested that the polymers and generated hydrogels have great potential applications in drug delivery system and biological materials.

  12. Investigation of the efficiency of intrastromal ring segments with cross-linking using different sequence and timing for keratoconus

    Institute of Scientific and Technical Information of China (English)

    Xuan-Li; Liu; Ping-Hua; Li; Pierre; Fournie; Fran?ois; Malecaze


    · AIM: To evaluate and compare the efficacy and stability of intrastromal corneal ring segment(ICRs)implantation with cross-linking(CXL) using different sequence and timing.· METHODS: In this single retrospective study, 86 keratoconic eyes subjected the ICRs implantation. We analyzed only 41 eyes that had complete follow-ups.They were divided into three groups: ICRs implantation was applied only(group normal), ICRs first followed by CXL immediately(group CXL-S), CXL first followed by ICRs long after(group CXL-B). The visual acuity,refractive results, keratometry were compared preoperatively and 1y postoperatively. Their differences among the three groups were also analyzed.·RESULTS: Group normal comprised 25 eyes, group CXL-S 8 eyes, and group CXL-B 8 eyes. There were improvements in the mean uncorrected distance visual acuity(UDVA) and the mean corrected distance visual acuity(CDVA) compared preoperatively and 1y postoperatively [UDVA: 0.31(P =0.030) logarithmic minimum angle of resolution(log MAR) group normal, 0.4(P =0.020) group CXL-S, 0.45(P =0.001) group CXL-B;CDVA : 0. 21 log MAR( P = 0. 013) group normal, 0. 30(P =0.036) group CXL-S; 0.26(P =0.000) group CXL-B].The refractive and topographic outcomes also showed improvements. In terms of comparisons among the three groups, all the P values were above 0.05, showing no significant difference. But only group CXL-B had improvement in UDVA and CDVA for all the patients.·CONCLUSION: With safety and good visual outcomes,ICRs implantation is a viable alternative for keratoconus.No significant difference was found among these three groups.

  13. Clinical safety and wear resistance of the phospholipid polymer-grafted highly cross-linked polyethylene liner. (United States)

    Moro, Toru; Takatori, Yoshio; Tanaka, Sakae; Ishihara, Kazuhiko; Oda, Hiromi; Kim, Yoon Taek; Umeyama, Takashige; Fukatani, Eisei; Ito, Hideya; Kyomoto, Masayuki; Oshima, Hirofumi; Tanaka, Takeyuki; Kawaguchi, Hiroshi; Nakamura, Kozo


    To reduce the production of wear particles and subsequent aseptic loosening, we created a human articular cartilage-mimicked surface for a highly cross-linked polyethylene liner, whose surface grafted layer consisted of a biocompatible phospholipid polymer, poly(2-methacryloyloxyethyl phosphorylcholine). Although our previous in vitro findings showed that poly(2-methacryloyloxyethyl phosphorylcholine)-grafted particles were biologically inert and caused no subsequent bone resorptive responses, and poly(2-methacryloyloxyethyl phosphorylcholine) grafting markedly decreased wear in hip joint simulator tests, the clinical safety, and in vivo wear resistance of poly(2-methacryloyloxyethyl phosphorylcholine)-grafted highly cross-linked polyethylene liners remained open to question. Therefore, in the present study, we evaluated clinical and radiographic outcomes of poly(2-methacryloyloxyethyl phosphorylcholine)-grafted highly cross-linked polyethylene liners 5 years subsequent to total hip replacement in 68 consecutive patients. No reoperation was required for any reason, and no adverse events were associated with the implanted liners. The average Harris Hip Score increased from 38.6 preoperatively to 96.5 5 years postoperatively, and health-related quality of life, as indicated by the Short Form 36 Health Survey, improved. Radiographic analyses showed no periprosthetic osteolysis or implant migration. Between 1 and 5 years postoperatively, the mean steady-state wear rate was 0.002 mm/year, which represented a marked reduction relative to other highly cross-linked polyethylene liners, and appeared to be unaffected by patient-related or surgical factors. Although longer follow up is required, poly(2-methacryloyloxyethyl phosphorylcholine)-grafted highly cross-linked polyethylene liners improved mid-term clinical outcomes. The clinical safety and wear-resistance results are encouraging with respect to the improvement of long-term clinical outcomes with poly(2

  14. The effect of an additional phosphite stabilizer on the properties of radiation cross-linked vitamin E blends of UHMWPE. (United States)

    Oral, Ebru; Neils, Andrew; Yabannavar, Pooja; Muratoglu, Orhun K


    Antioxidant stabilization of radiation cross-linked ultrahigh molecular weight polyethylene (UHMWPE) has been introduced to improve the oxidative stability of total joint implant bearing surfaces. Blending of an antioxidant with UHMWPE resin powder followed by consolidation and radiation cross-linking has been cleared by the FDA for use in both total hips and total knees for designs incorporating two antioxidants, namely vitamin E and Covernox™ (a medical grade version of Irganox™ 1010). The antioxidants in the polymer are expected to protect the polymer during consolidation, during radiation cross-linking, on the shelf before implantation, and in vivo after implantation. To maximize the protection of the polymer afforded by the antioxidant in vivo, a novel approach may be the use of multiple antioxidants, especially to protect the primary antioxidant for a longer period of time. We hypothesized that the addition of a phosphite stabilizer (Irgafos 168™) commonly used in conjunction with hindered phenolic antioxidants in polymer processing could improve the oxidative stability of radiation cross-linked blends of vitamin E. To test our hypothesis, we prepared UHMWPE blends with 0.05 wt% Irgafos and 0.05 wt% vitamin E and compared its cross-link density, wear resistance, tensile properties, and impact strength to control blends containing only vitamin E. Our hypothesis was not supported; the cross-link density of UHMWPE was significantly decreased by the additive without additional benefit to oxidative stability. To our knowledge, this was the first attempt at using multiple stabilizers in medical grade UHMWPE.

  15. Cross-linked enzyme aggregates (CLEAs) of Pencilluim notatum lipase enzyme with improved activity, stability and reusability characteristics. (United States)

    Rehman, Saima; Bhatti, Haq Nawaz; Bilal, Muhammad; Asgher, Muhammad


    Cross-linked enzyme aggregates (CLEAs) are considered as an effective tool for the immobilization of enzyme. In this study, Pencillium notatum lipase (PNL) was immobilized as carrier free cross-linked enzyme aggregates using glutaraldehyde (GLA) and Ethylene glycol-bis [succinic acid N-hydroxysuccinimide] (EG-NHS) as cross-linking agents. The optimal conditions for the synthesis of an efficient lipase CLEAs such as precipitant type, the nature and amount of cross-linking reagent, and cross-linking time were optimized. The recovered activities of CLEAs were considerably dependent on the concentration of GLA; however, the activity recovery was not severely affected by EG-NHS as a mild cross-linker. The EG-NHS aggregates displayed superior hydrolytic (52.08±2.52%) and esterification (64.42%) activities as compared to GLA aggregates which showed 23.8±1.86 and 34.54% of hydrolytic and esterification activity, respectively. Morphological analysis by fluorescence and scanning electron microscope revealed that EG-NHS aggregates were smaller in size with larger surface area compared to GLA aggregates. The pH optima of both types of CLEAs were displaced to slightly alkaline region and higher temperature as compared to native enzyme. Highest enzyme activity of CLEAs was achieved at the pH of 9.0 and 42°C temperature. Moreover, a significant improvement in the thermal resistance was also recorded after immobilization. After ten reusability cycles in aqueous medium, GLA and EG-NHS cross-linked lipase CLEAs preserved 63.62% and 70.9% of their original activities, respectively. The results suggest that this novel CLEA-lipase is potentially usable in many industrial applications.

  16. Surface-gradient cross-linked polyethylene acetabular cups: oxidation resistance and wear against smooth and rough femoral balls. (United States)

    Shen, Fu-Wen; McKellop, Harry


    Two methods were developed and evaluated for cross-linking the bearing surface of a polyethylene acetabular cup to a limited depth, in order to improve its resistance to wear without degrading the mechanical properties of the bulk of the component. In the first method, low-energy electron beams were used to cross-link only the bearing surface of the cups to a maximum depth of about 2 mm. The cups then were annealed at 100 degrees C in vacuum for 3 or 6 days to reduce the residual free radicals, and the resultant resistance to oxidation was compared by artificially aging the cups at 80 degrees C in air. Chemically cross-linked surface layers were produced by coating the bearing surfaces of the cups with a thin layer of polyethylene powder mixed with 1% weight peroxide, and compressing them at 6.9 MPa (1000 psi) and 170 degrees C. This resulted in a cross-linked surface layer that extended about 3 mm deep, with a gradual transition to conventional (noncross-linked) polyethylene in the bulk of the implant. In hip simulator wear tests with highly polished (implant quality) femoral balls, both types of surface cross-linking were found to improve markedly the wear resistance of the acetabular cups. In tests with roughened femoral balls, the wear rates were much higher and were comparable to those obtained with similarly roughened balls against noncross-linked polyethylene cups in a previous study, indicating that the full benefit of cross-linking may not be realized under conditions of severe third-body abrasion. Nevertheless, these results show a promising approach for optimizing the wear resistance and the bulk mechanical properties of polyethylene components in total joint arthroplasty.

  17. pH/sugar dual responsive core-cross-linked PIC micelles for enhanced intracellular protein delivery. (United States)

    Ren, Jie; Zhang, Yanxin; Zhang, Ju; Gao, Hongjun; Liu, Gan; Ma, Rujiang; An, Yingli; Kong, Deling; Shi, Linqi


    Herein, a series of biocompatible, robust, pH/sugar-sensitive, core-cross-linked, polyion complex (PIC) micelles based on phenylboronic acid-catechol interaction were developed for protein intracellular delivery. The rationally designed poly(ethylene glycol)-b-poly(glutamic acid-co-glutamicamidophenylboronic acid) (PEG-b-P(Glu-co-GluPBA)) and poly(ethylene glycol)-b-poly(l-lysine-co-ε-3,4-dihydroxyphenylcarboxyl-L-lysine) (PEG-b-P(Lys-co-LysCA)) copolymers were successfully synthesized and self-assembled under neutral aqueous condition to form uniform micelles. These micelles possessed a distinct core-cross-linked core-shell structure comprised of the PEG outer shell and the PGlu/PLys polyion complex core bearing boronate ester cross-linking bonds. The cross-linked micelles displayed superior physiological stabilities compared with their non-cross-linked counterparts while swelling and disassembling in the presence of excess fructose or at endosomal pH. Notably, either negatively or positively charged proteins can be encapsulated into the micelles efficiently under mild conditions. The in vitro release studies showed that the release of protein cargoes under physiological conditions was minimized, while a burst release occurred in response to excess fructose or endosomal pH. The cytotoxicity of micelles was determined by cck-8 assay in HepG2 cells. The cytochrome C loaded micelles could efficiently delivery proteins into HepG2 cells and exhibited enhanced apoptosis ability. Hence, this type of core-cross-linked PIC micelles has opened a new avenue to intracellular protein delivery.

  18. Determination of the relationship between collagen cross-links and the bone-tissue stiffness in the porcine mandibular condyle. (United States)

    Willems, Nop M B K; Mulder, Lars; Bank, Ruud A; Grünheid, Thorsten; den Toonder, Jaap M J; Zentner, Andrej; Langenbach, Geerling E J


    Although bone-tissue stiffness is closely related to the degree to which bone has been mineralized, other determinants are yet to be identified. We, therefore, examined the extent to which the mineralization degree, collagen, and its cross-links are related to bone-tissue stiffness. A total of 50 cancellous and cortical bone samples were derived from the right mandibular condyles of five young and five adult female pigs. The degree of mineralization of bone (DMB) was assessed using micro-computed tomography. Using high-performance liquid chromatography, we quantified the collagen content and the number of cross-links per collagen molecule of two enzymatic cross-links: hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP), and one non-enzymatic cross-link: pentosidine (Pen). Nanoindentation was used to assess bone-tissue stiffness in three directions, and multiple linear regressions were used to calculate the correlation between collagen properties and bone-tissue stiffness, with the DMB as first predictor. Whereas the bone-tissue stiffness of cancellous bone did not differ between the three directions of nanoindentation, or between the two age groups, cortical bone-tissue stiffness was higher in the adult tissue. After correction for DMB, the cross-links studied did not increase the explained variance. In the young group, however, LP significantly improved the explained variance in bone-tissue stiffness. Approximately half of the variation in bone-tissue stiffness in cancellous and cortical bone was explained by the DMB and the LP cross-links and thus they cannot be considered the sole determinants of the bone-tissue stiffness.

  19. Identification of neighboring protein pairs cross-linked with dimethyl 3,3'-dithiobispropionimidate in rat liver 40S ribosomal subunits. (United States)

    Uchiumi, T; Terao, K; Ogata, K


    Rat liver 40S ribosomal subunits were treated with a bifunctional imidoester, dimethyl 3,3'-dithiobispropionimidate (DTP), and the neighboring protein pairs were identified. The cross-linked proteins were analyzed by acrylamide/SDS diagonal gel electrophoresis (Sommer & Traut (1974) Proc. Natl. Acad. Sci. U.S. 71, 3946-3950). The cross-linked components that fell off the diagonal upon adding 2-mercaptoethanol in the second dimension were labeled with 125I in the acrylamide gel and identified by two-dimensional acrylamide/urea gel electrophoresis, followed by radioautography. Considering these results and the molecular weights, we propose the following ten pairs, according to our numbering system (Terao & Ogata (1975) Biochim. Biophys. Acta 402, 219-229): S3-S5 (S3/S3a-S4), S3-S14 (S3/S3a-S14), S3-S17 (S3/S3a-S16), S5-S22 (S4-S23/S24), S10-S12 (S8-S11), S9-S16 (S9-S18), S9-S22 (S9-S23/S24), S6-S23 (S5-S25), S17-S21 (S16-S19), and S16-S26 (S18-S27). The designation according to the proposed uniform nomenclature (McConkey et al. (1979) Mol. Gen. Genet. 169, 1-6) are given in parentheses.

  20. Study on Electric Charge Trapping in Cross-linking Polyethylene and Byproducts by using Molecular Orbital Calculation (United States)

    Takada, Tatsuo; Hayase, Yuji; Miyake, Hiroaki; Tanaka, Yasuhiro; Yoshida, Masafumi

    This paper reports an examination of hetero-space charge trapping site in cross linked polyethylene (XLPE) using Molecular Orbital calculation. We chose a simple model for polyethylene (C24H50) with one molecular of acetophenone (one of cross linking byproducts), for the examination of XLPE sample. Molecular Orbital calculation can give the microscopic information of electron energy levels, electron density distributions and electro-static potential maps for the simple molecular mode of XLPE. It is presumed that the negative hetero-space charge (electron) and positive hetero-space charge (hole) were trapped at the permanent dipole of acetophenone, and the hole carrier could move in the polyethylene chain.