WorldWideScience

Sample records for analysis reveals complexity

  1. Comprehensive genetic analysis of OEIS complex reveals no evidence for a recurrent microdeletion or duplication.

    Science.gov (United States)

    Vlangos, Christopher N; Siuniak, Amanda; Ackley, Todd; van Bokhoven, Hans; Veltman, Joris; Iyer, Ram; Park, John M; Keppler-Noreuil, Kim; Keegan, Catherine E

    2011-01-01

    Omphalocele-exstrophy of the bladder-imperforate anus-spinal defects (OEIS) complex, or cloacal exstrophy (EC), is a rare constellation of malformations in humans involving the urogenital, gastrointestinal, and skeletal systems, and less commonly the central nervous system. Although OEIS complex is well-recognized in the clinical setting, there remains a significant lack of understanding of this condition at both the developmental and the genetic level. While most cases are sporadic, familial cases have been reported, suggesting that one or more specific genes may play a significant role in this condition. Several developmental mechanisms have been proposed to explain the etiology of OEIS complex, and it is generally considered to be a defect early in caudal mesoderm development and ventral body wall closure. The goal of this study was to identify genetic aberrations in 13 patients with OEIS/EC using a combination of candidate gene analysis and microarray studies. Analysis of 14 candidate genes in combination with either high resolution SNP or oligonucleotide microarray did not reveal any disease-causing mutations, although novel variants were identified in five patients. To our knowledge, this is the most comprehensive genetic analysis of patients with OEIS complex to date. We conclude that OEIS is a complex disorder from an etiological perspective, likely involving a combination of genetic and environmental predispositions. Based on our data, OEIS complex is unlikely to be caused by a recurrent chromosomal aberration. Copyright © 2010 Wiley-Liss, Inc.

  2. Heterogeneity of large macromolecular complexes revealed by 3-D cryo-EM variance analysis

    Science.gov (United States)

    Zhang, Wei; Kimmel, Marek; Spahn, Christian M.T.; Penczek, Pawel A.

    2008-01-01

    Macromolecular structure determination by cryo-electron microscopy (EM) and single particle analysis are based on the assumption that imaged molecules have identical structure. With the increased size of processed datasets it becomes apparent that many complexes coexist in a mixture of conformational states or contain flexible regions. As the cryo-EM data is collected in form of projections of imaged molecules, the information about variability of reconstructed density maps is not directly available. To address this problem, we describe a new implementation of the bootstrap resampling technique that yields estimates of voxel-by-voxel variance of a structure reconstructed from the set of its projections. We introduced a novel highly efficient reconstruction algorithm that is based on direct Fourier inversion and which incorporates correction for the transfer function of the microscope, thus extending the resolution limits of variance estimation. We also describe a validation method to determine the number of resampled volumes required to achieve stable estimate of the variance. The proposed bootstrap method was applied to a dataset of 70S ribosome complexed with tRNA and the elongation factor G. The variance map revealed regions of high variability: the L1 protein, the EF-G and the 30S head and the ratchet-like subunit rearrangement. The proposed method of variance estimation opens new possibilities for single particle analysis, by extending applicability of the technique to heterogeneous datasets of macromolecules, and to complexes with significant conformational variability. PMID:19081053

  3. A Systemic Analysis of Transcriptomic and Epigenomic Data To Reveal Regulation Patterns for Complex Disease.

    Science.gov (United States)

    Xu, Chao; Zhang, Ji-Gang; Lin, Dongdong; Zhang, Lan; Shen, Hui; Deng, Hong-Wen

    2017-07-05

    Integrating diverse genomics data can provide a global view of the complex biological processes related to the human complex diseases. Although substantial efforts have been made to integrate different omics data, there are at least three challenges for multi-omics integration methods: (i) How to simultaneously consider the effects of various genomic factors, since these factors jointly influence the phenotypes; (ii) How to effectively incorporate the information from publicly accessible databases and omics datasets to fully capture the interactions among (epi)genomic factors from diverse omics data; and (iii) Until present, the combination of more than two omics datasets has been poorly explored. Current integration approaches are not sufficient to address all of these challenges together. We proposed a novel integrative analysis framework by incorporating sparse model, multivariate analysis, Gaussian graphical model, and network analysis to address these three challenges simultaneously. Based on this strategy, we performed a systemic analysis for glioblastoma multiforme (GBM) integrating genome-wide gene expression, DNA methylation, and miRNA expression data. We identified three regulatory modules of genomic factors associated with GBM survival time and revealed a global regulatory pattern for GBM by combining the three modules, with respect to the common regulatory factors. Our method can not only identify disease-associated dysregulated genomic factors from different omics, but more importantly, it can incorporate the information from publicly accessible databases and omics datasets to infer a comprehensive interaction map of all these dysregulated genomic factors. Our work represents an innovative approach to enhance our understanding of molecular genomic mechanisms underlying human complex diseases. Copyright © 2017 Xu et al.

  4. Comparative functional genomic analysis of two Vibrio phages reveals complex metabolic interactions with the host cell

    Directory of Open Access Journals (Sweden)

    Dimitrios Skliros

    2016-11-01

    Full Text Available Sequencing and annotation was performed for two giant double stranded DNA bacteriophages, φGrn1 and φSt2 of the Myoviridae family, considered to be of great interest for phage therapy against Vibrios in aquaculture live feeds. In addition, phage-host metabolic interactions and exploitation was studied by transcript profiling of selected viral and host genes. Comparative genomic analysis with other giant Vibrio phages was also performed to establish the presence and location of homing endonucleases highlighting distinct features for both phages. Phylogenetic analysis revealed that they belong to the schizoT4like clade. Although many reports of newly sequenced viruses have provided a large set of information, basic research related to the shift of the bacterial metabolism during infection remains stagnant. The function of many viral protein products in the process of infection is still unknown. Genome annotation identified the presence of several viral ORFs participating in metabolism, including a Sir2/cobB (sirtuin protein and a number of genes involved in auxiliary NAD+ and nucleotide biosynthesis, necessary for phage DNA replication. Key genes were subsequently selected for detail study of their expression levels during infection. This work suggests a complex metabolic interaction and exploitation of the host metabolic pathways and biochemical processes, including a possible post-translational protein modification, by the virus during infection.

  5. Proteomic analysis reveals the diversity and complexity of membrane proteins in chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Jaiswal Dinesh Kumar

    2012-10-01

    Full Text Available Abstract Background Compartmentalization is a unique feature of eukaryotes that helps in maintaining cellular homeostasis not only in intra- and inter-organellar context, but also between the cells and the external environment. Plant cells are highly compartmentalized with a complex metabolic network governing various cellular events. The membranes are the most important constituents in such compartmentalization, and membrane-associated proteins play diverse roles in many cellular processes besides being part of integral component of many signaling cascades. Results To obtain valuable insight into the dynamic repertoire of membrane proteins, we have developed a proteome reference map of a grain legume, chickpea, using two-dimensional gel electrophoresis. MALDI-TOF/TOF and LC-ESI-MS/MS analysis led to the identification of 91 proteins involved in a variety of cellular functions viz., bioenergy, stress-responsive and signal transduction, metabolism, protein synthesis and degradation, among others. Significantly, 70% of the identified proteins are putative integral membrane proteins, possessing transmembrane domains. Conclusions The proteomic analysis revealed many resident integral membrane proteins as well as membrane-associated proteins including those not reported earlier. To our knowledge, this is the first report of membrane proteome from aerial tissues of a crop plant. The findings may provide a better understanding of the biochemical machinery of the plant membranes at the molecular level that might help in functional genomics studies of different developmental pathways and stress-responses.

  6. A Comprehensive Genomic Analysis Reveals the Genetic Landscape of Mitochondrial Respiratory Chain Complex Deficiencies.

    Directory of Open Access Journals (Sweden)

    Masakazu Kohda

    2016-01-01

    Full Text Available Mitochondrial disorders have the highest incidence among congenital metabolic disorders characterized by biochemical respiratory chain complex deficiencies. It occurs at a rate of 1 in 5,000 births, and has phenotypic and genetic heterogeneity. Mutations in about 1,500 nuclear encoded mitochondrial proteins may cause mitochondrial dysfunction of energy production and mitochondrial disorders. More than 250 genes that cause mitochondrial disorders have been reported to date. However exact genetic diagnosis for patients still remained largely unknown. To reveal this heterogeneity, we performed comprehensive genomic analyses for 142 patients with childhood-onset mitochondrial respiratory chain complex deficiencies. The approach includes whole mtDNA and exome analyses using high-throughput sequencing, and chromosomal aberration analyses using high-density oligonucleotide arrays. We identified 37 novel mutations in known mitochondrial disease genes and 3 mitochondria-related genes (MRPS23, QRSL1, and PNPLA4 as novel causative genes. We also identified 2 genes known to cause monogenic diseases (MECP2 and TNNI3 and 3 chromosomal aberrations (6q24.3-q25.1, 17p12, and 22q11.21 as causes in this cohort. Our approaches enhance the ability to identify pathogenic gene mutations in patients with biochemically defined mitochondrial respiratory chain complex deficiencies in clinical settings. They also underscore clinical and genetic heterogeneity and will improve patient care of this complex disorder.

  7. Comparative transcriptome analysis within the Lolium/Festuca species complex reveals high sequence conservation

    DEFF Research Database (Denmark)

    Czaban, Adrian; Sharma, Sapna; Byrne, Stephen

    2015-01-01

    -Festuca complex show very diverse phenotypes, including for many agronomically important traits. Analysis of sequenced transcriptomes of these non-model species may shed light on the molecular mechanisms underlying this phenotypic diversity. Results We have generated de novo transcriptome assemblies for four......Background The Lolium-Festuca complex incorporates species from the Lolium genera and the broad leaf fescues, both belonging to the subfamily Pooideae. This subfamily also includes wheat, barley, oat and rye, making it extremely important to world agriculture. Species within the Lolium...... species from the Lolium-Festuca complex, ranging from 52,166 to 72,133 transcripts per assembly. We have also predicted a set of proteins and validated it with a high-confidence protein database from three closely related species (H. vulgare, B. distachyon and O. sativa). We have obtained gene family...

  8. Comparative transcriptome analysis within the Lolium/Festuca species complex reveals high sequence conservation.

    Science.gov (United States)

    Czaban, Adrian; Sharma, Sapna; Byrne, Stephen L; Spannagl, Manuel; Mayer, Klaus F X; Asp, Torben

    2015-03-28

    The Lolium-Festuca complex incorporates species from the Lolium genera and the broad leaf fescues, both belonging to the subfamily Pooideae. This subfamily also includes wheat, barley, oat and rye, making it extremely important to world agriculture. Species within the Lolium-Festuca complex show very diverse phenotypes, and many of them are related to agronomically important traits. Analysis of sequenced transcriptomes of these non-model species may shed light on the molecular mechanisms underlying this phenotypic diversity. We have generated de novo transcriptome assemblies for four species from the Lolium-Festuca complex, ranging from 52,166 to 72,133 transcripts per assembly. We have also predicted a set of proteins and validated it with a high-confidence protein database from three closely related species (H. vulgare, B. distachyon and O. sativa). We have obtained gene family clusters for the four species using OrthoMCL and analyzed their inferred phylogenetic relationships. Our results indicate that VRN2 is a candidate gene for differentiating vernalization and non-vernalization types in the Lolium-Festuca complex. Grouping of the gene families based on their BLAST identity enabled us to divide ortholog groups into those that are very conserved and those that are more evolutionarily relaxed. The ratio of the non-synonumous to synonymous substitutions enabled us to pinpoint protein sequences evolving in response to positive selection. These proteins may explain some of the differences between the more stress tolerant Festuca, and the less stress tolerant Lolium species. Our data presents a comprehensive transcriptome sequence comparison between species from the Lolium-Festuca complex, with the identification of potential candidate genes underlying some important phenotypical differences within the complex (such as VRN2). The orthologous genes between the species have a very high %id (91,61%) and the majority of gene families were shared for all of them. It is

  9. Gene-disease network analysis reveals functional modules in mendelian, complex and environmental diseases.

    Science.gov (United States)

    Bauer-Mehren, Anna; Bundschus, Markus; Rautschka, Michael; Mayer, Miguel A; Sanz, Ferran; Furlong, Laura I

    2011-01-01

    Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors, such as drugs, contribute to diseases. The

  10. DNA Barcode Analysis of Thrips (Thysanoptera Diversity in Pakistan Reveals Cryptic Species Complexes.

    Directory of Open Access Journals (Sweden)

    Romana Iftikhar

    Full Text Available Although thrips are globally important crop pests and vectors of viral disease, species identifications are difficult because of their small size and inconspicuous morphological differences. Sequence variation in the mitochondrial COI-5' (DNA barcode region has proven effective for the identification of species in many groups of insect pests. We analyzed barcode sequence variation among 471 thrips from various plant hosts in north-central Pakistan. The Barcode Index Number (BIN system assigned these sequences to 55 BINs, while the Automatic Barcode Gap Discovery detected 56 partitions, a count that coincided with the number of monophyletic lineages recognized by Neighbor-Joining analysis and Bayesian inference. Congeneric species showed an average of 19% sequence divergence (range = 5.6% - 27% at COI, while intraspecific distances averaged 0.6% (range = 0.0% - 7.6%. BIN analysis suggested that all intraspecific divergence >3.0% actually involved a species complex. In fact, sequences for three major pest species (Haplothrips reuteri, Thrips palmi, Thrips tabaci, and one predatory thrips (Aeolothrips intermedius showed deep intraspecific divergences, providing evidence that each is a cryptic species complex. The study compiles the first barcode reference library for the thrips of Pakistan, and examines global haplotype diversity in four important pest thrips.

  11. Gene-Disease Network Analysis Reveals Functional Modules in Mendelian, Complex and Environmental Diseases

    Science.gov (United States)

    Bauer-Mehren, Anna; Bundschus, Markus; Rautschka, Michael; Mayer, Miguel A.; Sanz, Ferran; Furlong, Laura I.

    2011-01-01

    Background Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. Principal Findings We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. Conclusions For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors

  12. Gene-disease network analysis reveals functional modules in mendelian, complex and environmental diseases.

    Directory of Open Access Journals (Sweden)

    Anna Bauer-Mehren

    Full Text Available BACKGROUND: Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. PRINCIPAL FINDINGS: We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. CONCLUSIONS: For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and

  13. Bioinformatic analysis of the neprilysin (M13 family of peptidases reveals complex evolutionary and functional relationships

    Directory of Open Access Journals (Sweden)

    Pinney John W

    2008-01-01

    Full Text Available Abstract Background The neprilysin (M13 family of endopeptidases are zinc-metalloenzymes, the majority of which are type II integral membrane proteins. The best characterised of this family is neprilysin, which has important roles in inactivating signalling peptides involved in modulating neuronal activity, blood pressure and the immune system. Other family members include the endothelin converting enzymes (ECE-1 and ECE-2, which are responsible for the final step in the synthesis of potent vasoconstrictor endothelins. The ECEs, as well as neprilysin, are considered valuable therapeutic targets for treating cardiovascular disease. Other members of the M13 family have not been functionally characterised, but are also likely to have biological roles regulating peptide signalling. The recent sequencing of animal genomes has greatly increased the number of M13 family members in protein databases, information which can be used to reveal evolutionary relationships and to gain insight into conserved biological roles. Results The phylogenetic analysis successfully resolved vertebrate M13 peptidases into seven classes, one of which appears to be specific to mammals, and insect genes into five functional classes and a series of expansions, which may include inactive peptidases. Nematode genes primarily resolved into groups containing no other taxa, bar the two nematode genes associated with Drosophila DmeNEP1 and DmeNEP4. This analysis reconstructed only one relationship between chordate and invertebrate clusters, that of the ECE sub-group and the DmeNEP3 related genes. Analysis of amino acid utilisation in the active site of M13 peptidases reveals a basis for their biochemical properties. A relatively invariant S1' subsite gives the majority of M13 peptidases their strong preference for hydrophobic residues in P1' position. The greater variation in the S2' subsite may be instrumental in determining the specificity of M13 peptidases for their substrates

  14. System-Wide Analysis Reveals a Complex Network of Tumor-Fibroblast Interactions Involved in Tumorigenicity

    Science.gov (United States)

    Rajaram, Megha; Li, Jinyu; Egeblad, Mikala; Powers, R. Scott

    2013-01-01

    Many fibroblast-secreted proteins promote tumorigenicity, and several factors secreted by cancer cells have in turn been proposed to induce these proteins. It is not clear whether there are single dominant pathways underlying these interactions or whether they involve multiple pathways acting in parallel. Here, we identified 42 fibroblast-secreted factors induced by breast cancer cells using comparative genomic analysis. To determine what fraction was active in promoting tumorigenicity, we chose five representative fibroblast-secreted factors for in vivo analysis. We found that the majority (three out of five) played equally major roles in promoting tumorigenicity, and intriguingly, each one had distinct effects on the tumor microenvironment. Specifically, fibroblast-secreted amphiregulin promoted breast cancer cell survival, whereas the chemokine CCL7 stimulated tumor cell proliferation while CCL2 promoted innate immune cell infiltration and angiogenesis. The other two factors tested had minor (CCL8) or minimally (STC1) significant effects on the ability of fibroblasts to promote tumor growth. The importance of parallel interactions between fibroblasts and cancer cells was tested by simultaneously targeting fibroblast-secreted amphiregulin and the CCL7 receptor on cancer cells, and this was significantly more efficacious than blocking either pathway alone. We further explored the concept of parallel interactions by testing the extent to which induction of critical fibroblast-secreted proteins could be achieved by single, previously identified, factors produced by breast cancer cells. We found that although single factors could induce a subset of genes, even combinations of factors failed to induce the full repertoire of functionally important fibroblast-secreted proteins. Together, these results delineate a complex network of tumor-fibroblast interactions that act in parallel to promote tumorigenicity and suggest that effective anti-stromal therapeutic strategies

  15. Latent physiological factors of complex human diseases revealed by independent component analysis of clinarrays

    Directory of Open Access Journals (Sweden)

    Chen David P

    2010-10-01

    Full Text Available Abstract Background Diagnosis and treatment of patients in the clinical setting is often driven by known symptomatic factors that distinguish one particular condition from another. Treatment based on noticeable symptoms, however, is limited to the types of clinical biomarkers collected, and is prone to overlooking dysfunctions in physiological factors not easily evident to medical practitioners. We used a vector-based representation of patient clinical biomarkers, or clinarrays, to search for latent physiological factors that underlie human diseases directly from clinical laboratory data. Knowledge of these factors could be used to improve assessment of disease severity and help to refine strategies for diagnosis and monitoring disease progression. Results Applying Independent Component Analysis on clinarrays built from patient laboratory measurements revealed both known and novel concomitant physiological factors for asthma, types 1 and 2 diabetes, cystic fibrosis, and Duchenne muscular dystrophy. Serum sodium was found to be the most significant factor for both type 1 and type 2 diabetes, and was also significant in asthma. TSH3, a measure of thyroid function, and blood urea nitrogen, indicative of kidney function, were factors unique to type 1 diabetes respective to type 2 diabetes. Platelet count was significant across all the diseases analyzed. Conclusions The results demonstrate that large-scale analyses of clinical biomarkers using unsupervised methods can offer novel insights into the pathophysiological basis of human disease, and suggest novel clinical utility of established laboratory measurements.

  16. Comparative genomic analysis reveals 2-oxoacid dehydrogenase complex lipoylation correlation with aerobiosis in archaea.

    Directory of Open Access Journals (Sweden)

    Kirill Borziak

    Full Text Available Metagenomic analyses have advanced our understanding of ecological microbial diversity, but to what extent can metagenomic data be used to predict the metabolic capacity of difficult-to-study organisms and their abiotic environmental interactions? We tackle this question, using a comparative genomic approach, by considering the molecular basis of aerobiosis within archaea. Lipoylation, the covalent attachment of lipoic acid to 2-oxoacid dehydrogenase multienzyme complexes (OADHCs, is essential for metabolism in aerobic bacteria and eukarya. Lipoylation is catalysed either by lipoate protein ligase (LplA, which in archaea is typically encoded by two genes (LplA-N and LplA-C, or by a lipoyl(octanoyl transferase (LipB or LipM plus a lipoic acid synthetase (LipA. Does the genomic presence of lipoylation and OADHC genes across archaea from diverse habitats correlate with aerobiosis? First, analyses of 11,826 biotin protein ligase (BPL-LplA-LipB transferase family members and 147 archaeal genomes identified 85 species with lipoylation capabilities and provided support for multiple ancestral acquisitions of lipoylation pathways during archaeal evolution. Second, with the exception of the Sulfolobales order, the majority of species possessing lipoylation systems exclusively retain LplA, or either LipB or LipM, consistent with archaeal genome streamlining. Third, obligate anaerobic archaea display widespread loss of lipoylation and OADHC genes. Conversely, a high level of correspondence is observed between aerobiosis and the presence of LplA/LipB/LipM, LipA and OADHC E2, consistent with the role of lipoylation in aerobic metabolism. This correspondence between OADHC lipoylation capacity and aerobiosis indicates that genomic pathway profiling in archaea is informative and that well characterized pathways may be predictive in relation to abiotic conditions in difficult-to-study extremophiles. Given the highly variable retention of gene repertoires across

  17. Comprehensive genetic analysis of OEIS complex reveals no evidence for a recurrent microdeletion or duplication

    NARCIS (Netherlands)

    Vlangos, C.N.; Siuniak, A.; Ackley, T.; Bokhoven, H. van; Veltman, J.A.; Iyer, R.; Park, J.M.; Keppler-Noreuil, K.; Keegan, C.E.

    2011-01-01

    Omphalocele-exstrophy of the bladder-imperforate anus-spinal defects (OEIS) complex, or cloacal exstrophy (EC), is a rare constellation of malformations in humans involving the urogenital, gastrointestinal, and skeletal systems, and less commonly the central nervous system. Although OEIS complex is

  18. Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa.

    Science.gov (United States)

    Tong, Chaobo; Wang, Xiaowu; Yu, Jingyin; Wu, Jian; Li, Wanshun; Huang, Junyan; Dong, Caihua; Hua, Wei; Liu, Shengyi

    2013-10-07

    The species Brassica rapa (2n=20, AA) is an important vegetable and oilseed crop, and serves as an excellent model for genomic and evolutionary research in Brassica species. With the availability of whole genome sequence of B. rapa, it is essential to further determine the activity of all functional elements of the B. rapa genome and explore the transcriptome on a genome-wide scale. Here, RNA-seq data was employed to provide a genome-wide transcriptional landscape and characterization of the annotated and novel transcripts and alternative splicing events across tissues. RNA-seq reads were generated using the Illumina platform from six different tissues (root, stem, leaf, flower, silique and callus) of the B. rapa accession Chiifu-401-42, the same line used for whole genome sequencing. First, these data detected the widespread transcription of the B. rapa genome, leading to the identification of numerous novel transcripts and definition of 5'/3' UTRs of known genes. Second, 78.8% of the total annotated genes were detected as expressed and 45.8% were constitutively expressed across all tissues. We further defined several groups of genes: housekeeping genes, tissue-specific expressed genes and co-expressed genes across tissues, which will serve as a valuable repository for future crop functional genomics research. Third, alternative splicing (AS) is estimated to occur in more than 29.4% of intron-containing B. rapa genes, and 65% of them were commonly detected in more than two tissues. Interestingly, genes with high rate of AS were over-represented in GO categories relating to transcriptional regulation and signal transduction, suggesting potential importance of AS for playing regulatory role in these genes. Further, we observed that intron retention (IR) is predominant in the AS events and seems to preferentially occurred in genes with short introns. The high-resolution RNA-seq analysis provides a global transcriptional landscape as a complement to the B. rapa genome

  19. Cylindrocarpon root rot: multi-gene analysis reveals novel species within the Ilyonectria radicicola species complex

    NARCIS (Netherlands)

    Cabral, A.; Groenewald, J.Z.; Rego, C.; Oliveira, H.; Crous, P.W.

    2012-01-01

    Ilyonectria radicicola and its Cylindrocarpon-like anamorph represent a species complex that is commonly associated with root rot disease symptoms on a range of hosts. During the course of this study, several species could be distinguished from I. radicicola sensu stricto based on morphological and

  20. Gene Coexpression Analysis Reveals Complex Metabolism of the Monoterpene Alcohol Linalool in Arabidopsis FlowersW

    NARCIS (Netherlands)

    Ginglinger, J.F.; Boachon, B.; Hofer, R.; Paetz, C.; Kollner, T.G.; Miesch, L.; Lugan, R.; Baltenweck, R.; Mutterer, J.; Ullman, P.; Verstappen, F.W.A.; Bouwmeester, H.J.

    2013-01-01

    The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus

  1. Comparative genome analysis of entomopathogenic fungi reveals a complex set of secreted proteins.

    Science.gov (United States)

    Staats, Charley Christian; Junges, Angela; Guedes, Rafael Lucas Muniz; Thompson, Claudia Elizabeth; de Morais, Guilherme Loss; Boldo, Juliano Tomazzoni; de Almeida, Luiz Gonzaga Paula; Andreis, Fábio Carrer; Gerber, Alexandra Lehmkuhl; Sbaraini, Nicolau; da Paixão, Rana Louise de Andrade; Broetto, Leonardo; Landell, Melissa; Santi, Lucélia; Beys-da-Silva, Walter Orlando; Silveira, Carolina Pereira; Serrano, Thaiane Rispoli; de Oliveira, Eder Silva; Kmetzsch, Lívia; Vainstein, Marilene Henning; de Vasconcelos, Ana Tereza Ribeiro; Schrank, Augusto

    2014-09-29

    Metarhizium anisopliae is an entomopathogenic fungus used in the biological control of some agricultural insect pests, and efforts are underway to use this fungus in the control of insect-borne human diseases. A large repertoire of proteins must be secreted by M. anisopliae to cope with the various available nutrients as this fungus switches through different lifestyles, i.e., from a saprophytic, to an infectious, to a plant endophytic stage. To further evaluate the predicted secretome of M. anisopliae, we employed genomic and transcriptomic analyses, coupled with phylogenomic analysis, focusing on the identification and characterization of secreted proteins. We determined the M. anisopliae E6 genome sequence and compared this sequence to other entomopathogenic fungi genomes. A robust pipeline was generated to evaluate the predicted secretomes of M. anisopliae and 15 other filamentous fungi, leading to the identification of a core of secreted proteins. Transcriptomic analysis using the tick Rhipicephalus microplus cuticle as an infection model during two periods of infection (48 and 144 h) allowed the identification of several differentially expressed genes. This analysis concluded that a large proportion of the predicted secretome coding genes contained altered transcript levels in the conditions analyzed in this study. In addition, some specific secreted proteins from Metarhizium have an evolutionary history similar to orthologs found in Beauveria/Cordyceps. This similarity suggests that a set of secreted proteins has evolved to participate in entomopathogenicity. The data presented represents an important step to the characterization of the role of secreted proteins in the virulence and pathogenicity of M. anisopliae.

  2. Complex history of admixture during citrus domestication revealed by genome analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wu, G. Albert; Prochnik, Simon; Jenkins, Jerry; Salse, Jerome; Hellsten, Uffe; Murat, Florent; Perrier, Xavier; Ruiz, Manuel; Scalabrin, Simone; Terol, Javier; Takita, Marco Aur& #233; lio,; Labadie, Karine; Poulain, Julie; Couloux, Arnaud; Jabbari, Kamel; Cattonaro, Federica; Fabbro, Cristian Del; Pinosio, Sara; Zuccolo, Andrea; Chapman, Jarrod; Grimwood, Jane; Tadeo, Francisco; Estornell, Leandro H.; Mu?oz-Sanz, Juan V.; Ibanez, Victoria; Herrero-Ortega, Amparo; Aleza, Pablo; P& #233; rez, Juli& #225; n P& #233; rez,; Ramon, Daniel; Brunel, Dominique; Luro, Francois; Chen, Chunxian; Farmerie, William G.; Desany, Brian; Kodira, Chinnappa; Mohiuddin, Mohammed; Harkins, Tim; Fredrikson, Karin; Burns, Paul; Lomsadze, Alexandre; Borodovsky, Mark; Reforgiato, Giuseppe; Freitas-Astua, Juliana; Quetier, Francis; Navarro, Luis; Roose, Mikeal; Wincker, Patrick; Schmutz, Jeremy; Morgante, Michele; Machado, Marcos Antonio; Talon, Manuel; Jaillon, Olivier; Ollitrault, Patrick; Gmitter, Frederick; Rokhsar, Daniel

    2014-06-30

    Although Citrus is the most globally significant tree fruit, its domestication history is poorly understood. Cultivated citrus types are believed to comprise selections from and/or hybrids of several wild progenitor species, but the identities of these progenitors, and their contribution to modern cultivars, remain controversial. Here we report the genomes of a collection of mandarins, pummelos, and oranges, including a high quality reference sequence from a haploid Clementine mandarin. By comparative genome analysis we show that these cultivated types can be derived from two progenitor species. Cultivated pummelos represent selections from a single progenitor species C. maxima. Unexpectedly, however, we find that cultivated mandarins are introgressions of C. maxima into a distinct second population that we identify with the ancestral wild mandarin species C. reticulata. Sweet and sour oranges are found to be interspecific hybrids. Sweet orange, the most widely cultivated citrus, arose as the offspring of previously admixed individuals. In contrast, sour (or Seville) orange is an F1 hybrid of pure C. maxima and C. reticulata parents, implying that wild mandarins were part of the early breeding germplasm. Surprisingly, we also find that a wild Chinese mandarin from Mangshan, China shows substantial sequence divergence from C. reticulata and appears to represent a distinct taxon. Understanding the relationships and phylogeny of cultivated citrus through genome analysis will clarify taxonomic relationships and enable previously inconceivable opportunities for sequence-directed genetic improvement. Citrus are widely consumed worldwide as juice or fresh fruit, providing important sources of vitamin C and other health-promoting compounds. Global production in 2012 exceeded 86 million metric tons, with an estimated value of US$9 billion (http://www.fas.usda.gov/psdonline/circulars/citrus.pdf). The very narrow genetic diversity of cultivated citrus makes it highly

  3. Complex analysis

    CERN Document Server

    Freitag, Eberhard

    2005-01-01

    The guiding principle of this presentation of ``Classical Complex Analysis'' is to proceed as quickly as possible to the central results while using a small number of notions and concepts from other fields. Thus the prerequisites for understanding this book are minimal; only elementary facts of calculus and algebra are required. The first four chapters cover the essential core of complex analysis: - differentiation in C (including elementary facts about conformal mappings) - integration in C (including complex line integrals, Cauchy's Integral Theorem, and the Integral Formulas) - sequences and series of analytic functions, (isolated) singularities, Laurent series, calculus of residues - construction of analytic functions: the gamma function, Weierstrass' Factorization Theorem, Mittag-Leffler Partial Fraction Decomposition, and -as a particular highlight- the Riemann Mapping Theorem, which characterizes the simply connected domains in C. Further topics included are: - the theory of elliptic functions based on...

  4. Phylogenetic diversity and genotypical complexity of H9N2 influenza A viruses revealed by genomic sequence analysis.

    Directory of Open Access Journals (Sweden)

    Guoying Dong

    Full Text Available H9N2 influenza A viruses have become established worldwide in terrestrial poultry and wild birds, and are occasionally transmitted to mammals including humans and pigs. To comprehensively elucidate the genetic and evolutionary characteristics of H9N2 influenza viruses, we performed a large-scale sequence analysis of 571 viral genomes from the NCBI Influenza Virus Resource Database, representing the spectrum of H9N2 influenza viruses isolated from 1966 to 2009. Our study provides a panoramic framework for better understanding the genesis and evolution of H9N2 influenza viruses, and for describing the history of H9N2 viruses circulating in diverse hosts. Panorama phylogenetic analysis of the eight viral gene segments revealed the complexity and diversity of H9N2 influenza viruses. The 571 H9N2 viral genomes were classified into 74 separate lineages, which had marked host and geographical differences in phylogeny. Panorama genotypical analysis also revealed that H9N2 viruses include at least 98 genotypes, which were further divided according to their HA lineages into seven series (A-G. Phylogenetic analysis of the internal genes showed that H9N2 viruses are closely related to H3, H4, H5, H7, H10, and H14 subtype influenza viruses. Our results indicate that H9N2 viruses have undergone extensive reassortments to generate multiple reassortants and genotypes, suggesting that the continued circulation of multiple genotypical H9N2 viruses throughout the world in diverse hosts has the potential to cause future influenza outbreaks in poultry and epidemics in humans. We propose a nomenclature system for identifying and unifying all lineages and genotypes of H9N2 influenza viruses in order to facilitate international communication on the evolution, ecology and epidemiology of H9N2 influenza viruses.

  5. Complex Analysis

    CERN Document Server

    Stein, Elias M

    2009-01-01

    With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle.With this background, the reader is ready to learn a wealth of additional m

  6. Gene Coexpression Analysis Reveals Complex Metabolism of the Monoterpene Alcohol Linalool in Arabidopsis Flowers[W][OPEN

    Science.gov (United States)

    Ginglinger, Jean-François; Boachon, Benoit; Höfer, René; Paetz, Christian; Köllner, Tobias G.; Miesch, Laurence; Lugan, Raphael; Baltenweck, Raymonde; Mutterer, Jérôme; Ullmann, Pascaline; Beran, Franziska; Claudel, Patricia; Verstappen, Francel; Fischer, Marc J.C.; Karst, Francis; Bouwmeester, Harro; Miesch, Michel; Schneider, Bernd; Gershenzon, Jonathan; Ehlting, Jürgen; Werck-Reichhart, Danièle

    2013-01-01

    The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus predicted to be involved in monoterpenoid metabolism. We show that all four selected genes, the two terpene synthases (TPS10 and TPS14) and the two cytochrome P450s (CYP71B31 and CYP76C3), are simultaneously expressed at anthesis, mainly in upper anther filaments and in petals. Upon transient expression in Nicotiana benthamiana, the TPS enzymes colocalize in vesicular structures associated with the plastid surface, whereas the P450 proteins were detected in the endoplasmic reticulum. Whether they were expressed in Saccharomyces cerevisiae or in N. benthamiana, the TPS enzymes formed two different enantiomers of linalool: (−)-(R)-linalool for TPS10 and (+)-(S)-linalool for TPS14. Both P450 enzymes metabolize the two linalool enantiomers to form different but overlapping sets of hydroxylated or epoxidized products. These oxygenated products are not emitted into the floral headspace, but accumulate in floral tissues as further converted or conjugated metabolites. This work reveals complex linalool metabolism in Arabidopsis flowers, the ecological role of which remains to be determined. PMID:24285789

  7. Proteomic analysis of the crayfish gastrolith chitinous extracellular matrix reveals putative protein complexes and a central role for GAP 65.

    Science.gov (United States)

    Glazer, Lilah; Roth, Ziv; Weil, Simy; Aflalo, Eliahu D; Khalaila, Isam; Sagi, Amir

    2015-10-14

    Chitin is a major component of arthropod cuticles, where it forms a three-dimensional network that constitutes the scaffold upon which cuticles form. The chitin fibers that form this network are closely associated with specific structural proteins, while the cuticular matrix contains many additional structural, enzymatic and other proteins. We study the crayfish gastrolith as a simple model for the assembly of calcified cuticular structures, with particular focus on the proteins involved in this process. The present study integrates a gastrolith-forming epithelium transcriptomic library with data from mass spectrometry analysis of proteins extracted from the gastrolith matrix to obtain a near-complete picture of gastrolith protein content. Using native protein separation we identified 24 matrix proteins, of which 14 are novel. Further analysis led to discovery of three putative protein complexes, all containing GAP 65 the most abundant gastrolith structural protein. Using immunological methods we further studied the role of GAP 65 in the gastrolith matrix and forming epithelium, as well as in the newly identified protein complexes. We propose that gastrolith matrix construction is a sequential process in which protein complexes are dynamically assembled and disassembled around GAP 65, thus changing their functional properties to perform each step in the construction process. The scientific interest on which this study is based arises from three main features of gastroliths: (1) Gastroliths possess partial analogy to cuticles both in structural and molecular properties, and may be regarded, with the appropriate reservations (see Introduction), as simple models for cuticle assembly. At the same time, gastroliths are terminally assembled during a well-defined period, which can be controlled in the laboratory, making them significantly easier to study than cuticles. (2) Gastroliths, like the crayfish exoskeleton, contain stable amorphous calcium carbonate (ACC) rather

  8. Phosphoproteome analysis of functional mitochondria isolated from resting human muscle reveals extensive phosphorylation of inner membrane protein complexes and enzymes

    DEFF Research Database (Denmark)

    Zhao, Xiaolu; Leon, Ileana R; Bak, Steffen

    2011-01-01

    . In skeletal muscle, mitochondrial dysfunction is linked to insulin resistance in humans with obesity and type 2 diabetes. We performed a phosphoproteomic study of functional mitochondria isolated from human muscle biopsies with the aim to obtain a comprehensive overview of mitochondrial phosphoproteins....... Future comparative phosphoproteome analysis of mitochondria from healthy and diseased individuals will provide insights into the role of abnormal phosphorylation in pathologies, such as type 2 diabetes....... in insulin resistance. We also assigned phosphorylation sites in mitochondrial proteins involved in amino acid degradation, importers and transporters, calcium homeostasis, and apoptosis. Bioinformatics analysis of kinase motifs revealed that many of these mitochondrial phosphoproteins are substrates...

  9. A Functional Link Between Bir1 and the Saccharomyces cerevisiae Ctf19 Kinetochore Complex Revealed Through Quantitative Fitness Analysis.

    Science.gov (United States)

    Makrantoni, Vasso; Ciesiolka, Adam; Lawless, Conor; Fernius, Josefin; Marston, Adele; Lydall, David; Stark, Michael J R

    2017-09-07

    The chromosomal passenger complex (CPC) is a key regulator of eukaryotic cell division, consisting of the protein kinase Aurora B/Ipl1 in association with its activator (INCENP/Sli15) and two additional proteins (Survivin/Bir1 and Borealin/Nbl1). Here, we report a genome-wide genetic interaction screen in Saccharomyces cerevisiae using the bir1-17 mutant, identifying through quantitative fitness analysis deletion mutations that act as enhancers and suppressors. Gene knockouts affecting the Ctf19 kinetochore complex were identified as the strongest enhancers of bir1-17 , while mutations affecting the large ribosomal subunit or the mRNA nonsense-mediated decay pathway caused strong phenotypic suppression. Thus, cells lacking a functional Ctf19 complex become highly dependent on Bir1 function and vice versa. The negative genetic interaction profiles of bir1-17 and the cohesin mutant mcd1-1 showed considerable overlap, underlining the strong functional connection between sister chromatid cohesion and chromosome biorientation. Loss of some Ctf19 components, such as Iml3 or Chl4, impacted differentially on bir1-17 compared with mutations affecting other CPC components: despite the synthetic lethality shown by either iml3 ∆ or chl4 ∆ in combination with bir1-17 , neither gene knockout showed any genetic interaction with either ipl1-321 or sli15-3 Our data therefore imply a specific functional connection between the Ctf19 complex and Bir1 that is not shared with Ipl1. Copyright © 2017 Makrantoni et al.

  10. Genetic Analysis of Agrobacterium tumefaciens Unipolar Polysaccharide Production Reveals Complex Integrated Control of the Motile-to-Sessile Switch

    Science.gov (United States)

    Xu, Jing; Kim, Jinwoo; Koestler, Benjamin J.; Choi, Jeong-Hyeon; Waters, Christopher M.; Fuqua, Clay

    2013-01-01

    Summary Many bacteria colonize surfaces and transition to a sessile mode of growth. The plant pathogen Agrobacterium tumefaciens produces a unipolar polysaccharide (UPP) adhesin at single cell poles that contact surfaces. Here we report that elevated levels of the intracellular signal cyclic diguanosine monophosphate (c-di-GMP) lead to surface-contact-independent UPP production and a red colony phenotype due to production of UPP and the exopolysaccharide cellulose, when A. tumefaciens is incubated with the polysaccharide stain Congo Red. Transposon mutations with elevated Congo Red staining identified presumptive UPP negative regulators, mutants for which were hyperadherent, producing UPP irrespective of surface contact. Multiple independent mutations were obtained in visN and visR, activators of flagellar motility in A. tumefaciens, now found to inhibit UPP and cellulose production. Expression analysis in a visR mutant and isolation of suppressor mutations, identified three diguanylate cyclases inhibited by VisR. Null mutations for two of these genes decrease attachment and UPP production, but do not alter cellular c-di-GMP levels. However, analysis of catalytic site mutants revealed their GGDEF motifs are required to increase UPP production and surface attachment. Mutations in a specific presumptive cyclic diguanosine monophosphate phosphodiesterase also elevate UPP production and attachment, consistent with c-di-GMP activation of surface-dependent adhesin deployment. PMID:23829710

  11. Susceptibility genes for lung diseases in the major histocompatibility complex revealed by lung expression quantitative trait loci analysis

    NARCIS (Netherlands)

    Lamontagne, Maxime; Joubert, Philippe; Timens, Wim; Postma, Dirkje S.; Hao, Ke; Nickle, David; Sin, Don D.; Pare, Peter D.; Laviolette, Michel; Bosse, Yohan

    The major histocompatibility complex (MHC) has been linked with hundreds of diseases [1]. The MHC is one of the most complex regions of the human genome, because of the high gene density, extended linkage disequilibrium (LD) and sequence diversity [2]. Recent genome-wide association studies (GWAS)

  12. Phylogenetic analysis of glycerol 3-phosphate acyltransferases in opisthokonts reveals unexpected ancestral complexity and novel modern biosynthetic components.

    Directory of Open Access Journals (Sweden)

    Heather C Smart

    Full Text Available Glycerolipid synthesis represents a central metabolic process of all forms of life. In the last decade multiple genes coding for enzymes responsible for the first step of the pathway, catalyzed by glycerol 3-phosphate acyltransferase (GPAT, have been described, and characterized primarily in model organisms like Saccharomyces cerevisiae and mice. Notoriously, the fungal enzymes share low sequence identity with their known animal counterparts, and the nature of their homology is unclear. Furthermore, two mitochondrial GPAT isoforms have been described in animal cells, while no such enzymes have been identified in Fungi. In order to determine if the yeast and mammalian GPATs are representative of the set of enzymes present in their respective groups, and to test the hypothesis that metazoan orthologues are indeed absent from the fungal clade, a comparative genomic and phylogenetic analysis was performed including organisms spanning the breadth of the Opisthokonta supergroup. Surprisingly, our study unveiled the presence of 'fungal' orthologs in the basal taxa of the holozoa and 'animal' orthologues in the basal holomycetes. This includes a novel clade of fungal homologues, with putative peroxisomal targeting signals, of the mitochondrial/peroxisomal acyltransferases in Metazoa, thus potentially representing an undescribed metabolic capacity in the Fungi. The overall distribution of GPAT homologues is suggestive of high relative complexity in the ancestors of the opisthokont clade, followed by loss and sculpting of the complement in the descendent lineages. Divergence from a general versatile metabolic model, present in ancestrally deduced GPAT complements, points to distinctive contributions of each GPAT isoform to lipid metabolism and homeostasis in contemporary organisms like humans and their fungal pathogens.

  13. Comparative genomic analysis reveals species-dependent complexities that explain difficulties with microsatellite marker development in molluscs.

    Science.gov (United States)

    McInerney, C E; Allcock, A L; Johnson, M P; Bailie, D A; Prodöhl, P A

    2011-01-01

    Reliable population DNA molecular markers are difficult to develop for molluscs, the reasons for which are largely unknown. Identical protocols for microsatellite marker development were implemented in three gastropods. Success rates were lower for Gibbula cineraria compared to Littorina littorea and L. saxatilis. Comparative genomic analysis of 47.2 kb of microsatellite containing sequences (MCS) revealed a high incidence of cryptic repetitive DNA in their flanking regions. The majority of these were novel, and could be grouped into DNA families based upon sequence similarities. Significant inter-specific variation in abundance of cryptic repetitive DNA and DNA families was observed. Repbase scans show that a large proportion of cryptic repetitive DNA was identified as transposable elements (TEs). We argue that a large number of TEs and their transpositional activity may be linked to differential rates of DNA multiplication and recombination. This is likely to be an important factor explaining inter-specific variation in genome stability and hence microsatellite marker development success rates. Gastropods also differed significantly in the type of TEs classes (autonomous vs non-autonomous) observed. We propose that dissimilar transpositional mechanisms differentiate the TE classes in terms of their propensity for transposition, fixation and/or silencing. Consequently, the phylogenetic conservation of non-autonomous TEs, such as CvA, suggests that dispersal of these elements may have behaved as microsatellite-inducing elements. Results seem to indicate that, compared to autonomous, non-autonomous TEs maybe have a more active role in genome rearrangement processes. The implications of the findings for genomic rearrangement, stability and marker development are discussed.

  14. Proteomic analysis of HIV-1 Nef cellular binding partners reveals a role for exocyst complex proteins in mediating enhancement of intercellular nanotube formation

    Directory of Open Access Journals (Sweden)

    Mukerji Joya

    2012-06-01

    Full Text Available Abstract Background HIV-1 Nef protein contributes to pathogenesis via multiple functions that include enhancement of viral replication and infectivity, alteration of intracellular trafficking, and modulation of cellular signaling pathways. Nef stimulates formation of tunneling nanotubes and virological synapses, and is transferred to bystander cells via these intercellular contacts and secreted microvesicles. Nef associates with and activates Pak2, a kinase that regulates T-cell signaling and actin cytoskeleton dynamics, but how Nef promotes nanotube formation is unknown. Results To identify Nef binding partners involved in Pak2-association dependent Nef functions, we employed tandem mass spectrometry analysis of Nef immunocomplexes from Jurkat cells expressing wild-type Nef or Nef mutants defective for the ability to associate with Pak2 (F85L, F89H, H191F and A72P, A75P in NL4-3. We report that wild-type, but not mutant Nef, was associated with 5 components of the exocyst complex (EXOC1, EXOC2, EXOC3, EXOC4, and EXOC6, an octameric complex that tethers vesicles at the plasma membrane, regulates polarized exocytosis, and recruits membranes and proteins required for nanotube formation. Additionally, Pak2 kinase was associated exclusively with wild-type Nef. Association of EXOC1, EXOC2, EXOC3, and EXOC4 with wild-type, but not mutant Nef, was verified by co-immunoprecipitation assays in Jurkat cells. Furthermore, shRNA-mediated depletion of EXOC2 in Jurkat cells abrogated Nef-mediated enhancement of nanotube formation. Using bioinformatic tools, we visualized protein interaction networks that reveal functional linkages between Nef, the exocyst complex, and the cellular endocytic and exocytic trafficking machinery. Conclusions Exocyst complex proteins are likely a key effector of Nef-mediated enhancement of nanotube formation, and possibly microvesicle secretion. Linkages revealed between Nef and the exocyst complex suggest a new paradigm of

  15. Structure analysis of the IL-5 ligand-receptor complex reveals a wrench-like architecture for IL-5Rα.

    Science.gov (United States)

    Patino, Edwin; Kotzsch, Alexander; Saremba, Stefan; Nickel, Joachim; Schmitz, Werner; Sebald, Walter; Mueller, Thomas D

    2011-12-07

    Interleukin-5 (IL-5) is the key mediator for the function of eosinophil granulocytes, whose deregulation is characteristic of hypereosinophilic diseases and presumably contributes to allergic asthma. IL-5 signaling involves two transmembrane receptors, IL-5Rα and the common β chain, which upon formation of the ternary complex activate the JAK/STAT signaling cascade. To investigate the mechanism underlying ligand-receptor recognition, we determined the structure of IL-5 bound to the extracellular domain of IL-5Rα. IL-5 makes contact with all three fibronectin III-like domains of IL-5Rα, with the receptor architecture resembling a wrench. Mutagenesis data provide evidence that this wrench-like architecture is likely preformed. The structure demonstrates that for steric reasons, homodimeric IL-5 can bind only one receptor molecule, even though two equivalent receptor-binding sites exist. In regard to strong efforts being made to develop IL-5 antagonists for treating asthma and hypereosinophilic diseases, the advances in molecular understanding provided by this structure are of greatest value. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Metagenome analysis of a complex community reveals the metabolic blueprint of anammox bacterium ‘Candidatus Jettenia asiatica’

    Directory of Open Access Journals (Sweden)

    Ziye eHu

    2012-10-01

    Full Text Available Anammox bacteria are key players in the global nitrogen cycle and responsible for up to 50% of global nitrogen loss. Because of their cost effective application in anaerobic nitrogen removal, the anammox bacteria are widely implemented in wastewater treatment. Currently, five genera of anammox bacteria have been identified, together forming a deep branching order in the Planctomycetes-Verrucomicrobium- Chlamydiae (PVC superphylum. Members of all genera have been detected in wastewater treatment plants, but metagenomic information is not yet available for all genera. Here we report the metagenomic analysis of an enrichment dominated by ‘Candidatus Jettenia asiatica’. The whole microbial community of a granular sludge anammox reactor was sequenced using both illumina and 454 pyrosequencing. The sludge was previously shown to have a ~50% enrichment of the anammox bacterium ‘Candidatus Jettenia asiatica’ by 16S rRNA gene analysis. After de novo assembly 37,432 contigs with an average length of 571 nt were obtained. The contigs were then analyzed by BLASTx searches against the protein sequences of ‘Candidatus Kuenenia stuttgartiensis’ and a set of 25 genes essential in anammox metabolism were detected. Additionally all reads were mapped to the genome of an anammox strain KSU-1 and de novo assembly was performed again using the reads that could be mapped on KSU-1. Using this approach, a gene encoding copper-containing nitrite reductase NirK was identified in the genome, instead of cytochrome cd1-type nitrite reductase NirS that is responsible for the nitrite reduction of ‘Ca. Kuenenia stuttgartiensis’ and ‘Ca. Scalindua profunda’. Finally, the community composition was investigated through MetaCluster analysis, 16S rRNA gene analysis and read mapping, which showed the presence of other important community members such as aerobic ammonia-oxidizing bacteria, methane producing microorganisms and denitrifying methanotroph 'Ca

  17. Transcriptome analysis of complex I-deficient patients reveals distinct expression programs for subunits and assembly factors of the oxidative phosphorylation system.

    Science.gov (United States)

    van der Lee, Robin; Szklarczyk, Radek; Smeitink, Jan; Smeets, Hubert J M; Huynen, Martijn A; Vogel, Rutger

    2015-09-15

    Transcriptional control of mitochondrial metabolism is essential for cellular function. A better understanding of this process will aid the elucidation of mitochondrial disorders, in particular of the many genetically unsolved cases of oxidative phosphorylation (OXPHOS) deficiency. Yet, to date only few studies have investigated nuclear gene regulation in the context of OXPHOS deficiency. In this study we performed RNA sequencing of two control and two complex I-deficient patient cell lines cultured in the presence of compounds that perturb mitochondrial metabolism: chloramphenicol, AICAR, or resveratrol. We combined this with a comprehensive analysis of mitochondrial and nuclear gene expression patterns, co-expression calculations and transcription factor binding sites. Our analyses show that subsets of mitochondrial OXPHOS genes respond opposingly to chloramphenicol and AICAR, whereas the response of nuclear OXPHOS genes is less consistent between cell lines and treatments. Across all samples nuclear OXPHOS genes have a significantly higher co-expression with each other than with other genes, including those encoding mitochondrial proteins. We found no evidence for complex-specific mRNA expression regulation: subunits of different OXPHOS complexes are similarly (co-)expressed and regulated by a common set of transcription factors. However, we did observe significant differences between the expression of nuclear genes for OXPHOS subunits versus assembly factors, suggesting divergent transcription programs. Furthermore, complex I co-expression calculations identified 684 genes with a likely role in OXPHOS biogenesis and function. Analysis of evolutionarily conserved transcription factor binding sites in the promoters of these genes revealed almost all known OXPHOS regulators (including GABP, NRF1/2, SP1, YY1, E-box factors) and a set of novel candidates (ELK1, KLF7, SP4, EHF, ZNF143, and TEL2). OXPHOS genes share an expression program distinct from other genes

  18. Elastic network model-based normal mode analysis reveals the conformational couplings in the tripartite AcrAB-TolC multidrug efflux complex.

    Science.gov (United States)

    Wang, Beibei; Weng, Jingwei; Fan, Kangnian; Wang, Wenning

    2011-10-01

    The AcrAB-TolC drug efflux system, energized by proton movement down the transmembrane electrochemical gradient, is responsible for the resistance of the organism to a wide range of drugs. Experimental data suggest functional roles of each part of the assembly, but the detailed working mechanism of this machinery remains elusive. We used elastic network-based normal mode analysis (NMA) to explore the conformational dynamics of the AcrAB-TolC complex. The intrinsic flexibilities of the pore domain in AcrB monomer conform to the previously proposed three-step functionally rotating mechanism for asymmetric AcrB trimer. Conformational couplings across monomers in the AcrB trimer were observed, and the coupling between the transmembrane domain and the other parts of AcrB are strengthened through trimeric assembly. In the tripartite AcrAB-TolC assembly obtained through molecular docking, concerted motions were observed not only at the direct contact interfaces between various components but also between distant parts of the whole complex. The presence of AcrA was shown to significantly strengthen the motional couplings between AcrB and TolC. Overall, NMA revealed an allosteric network in the AcAB-TolC efflux system, which provides hints to our understanding of its detailed working mechanism. Copyright © 2011 Wiley-Liss, Inc.

  19. A Multiple Interaction Analysis Reveals ADRB3 as a Potential Candidate for Gallbladder Cancer Predisposition via a Complex Interaction with Other Candidate Gene Variations

    Directory of Open Access Journals (Sweden)

    Rajani Rai

    2015-11-01

    Full Text Available Gallbladder cancer is the most common and a highly aggressive biliary tract malignancy with a dismal outcome. The pathogenesis of the disease is multifactorial, comprising the combined effect of multiple genetic variations of mild consequence along with numerous dietary and environmental risk factors. Previously, we demonstrated the association of several candidate gene variations with GBC risk. In this study, we aimed to identify the combination of gene variants and their possible interactions contributing towards genetic susceptibility of GBC. Here, we performed Multifactor-Dimensionality Reduction (MDR and Classification and Regression Tree Analysis (CRT to investigate the gene–gene interactions and the combined effect of 14 SNPs in nine genes (DR4 (rs20576, rs6557634; FAS (rs2234767; FASL (rs763110; DCC (rs2229080, rs4078288, rs7504990, rs714; PSCA (rs2294008, rs2978974; ADRA2A (rs1801253; ADRB1 (rs1800544; ADRB3 (rs4994; CYP17 (rs2486758 involved in various signaling pathways. Genotyping was accomplished by PCR-RFLP or Taqman allelic discrimination assays. SPSS software version 16.0 and MDR software version 2.0 were used for all the statistical analysis. Single locus investigation demonstrated significant association of DR4 (rs20576, rs6557634, DCC (rs714, rs2229080, rs4078288 and ADRB3 (rs4994 polymorphisms with GBC risk. MDR analysis revealed ADRB3 (rs4994 to be crucial candidate in GBC susceptibility that may act either alone (p < 0.0001, CVC = 10/10 or in combination with DCC (rs714 and rs2229080, p < 0.0001, CVC = 9/10. Our CRT results are in agreement with the above findings. Further, in-silico results of studied SNPs advocated their role in splicing, transcriptional and/or protein coding regulation. Overall, our result suggested complex interactions amongst the studied SNPs and ADRB3 rs4994 as candidate influencing GBC susceptibility.

  20. Proteomic analysis of human norepinephrine transporter complexes reveals associations with protein phosphatase 2A anchoring subunit and 14-3-3 proteins

    International Nuclear Information System (INIS)

    Sung, Uhna; Jennings, Jennifer L.; Link, Andrew J.; Blakely, Randy D.

    2005-01-01

    The norepinephrine transporter (NET) terminates noradrenergic signals by clearing released NE at synapses. NET regulation by receptors and intracellular signaling pathways is supported by a growing list of associated proteins including syntaxin1A, protein phosphatase 2A (PP2A) catalytic subunit (PP2A-C), PICK1, and Hic-5. In the present study, we sought evidence for additional partnerships by mass spectrometry-based analysis of proteins co-immunoprecipitated with human NET (hNET) stably expressed in a mouse noradrenergic neuroblastoma cell line. Our initial proteomic analyses reveal multiple peptides derived from hNET, peptides arising from the mouse PP2A anchoring subunit (PP2A-Ar) and peptides derived from 14-3-3 proteins. We verified physical association of NET with PP2A-Ar via co-immunoprecipitation studies using mouse vas deferens extracts and with 14-3-3 via a fusion pull-down approach, implicating specifically the hNET NH 2 -terminus for interactions. The transporter complexes described likely support mechanisms regulating transporter activity, localization, and trafficking

  1. The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs.

    Directory of Open Access Journals (Sweden)

    Hongtao Hu

    Full Text Available MicroRNAs (miRNAs and secondary small interfering RNAs (principally phased siRNAs or trans-acting siRNAs are two distinct subfamilies of small RNAs (sRNAs that are emerging as key regulators of posttranscriptional gene expression in plants. Both miRNAs and secondary-siRNAs (sec-siRNAs are processed from longer RNA precursors by DICER-LIKE proteins (DCLs. Gossypium arboreum L., also known as tree cotton or Asian cotton, is a diploid, possibly ancestral relative of tetraploid Gossypium hirsutum L., the predominant type of commercially grown cotton worldwide known as upland cotton. To understand the biological significance of these gene regulators in G. arboreum, a bioinformatics analysis was performed on G. arboreum small RNAs produced from G. arboreum leaf, flower, and boll tissues. Consequently, 263 miRNAs derived from 353 precursors, including 155 conserved miRNAs (cs-miRNAs and 108 novel lineage-specific miRNAs (ls-miRNAs. Along with miRNAs, 2,033 miRNA variants (isomiRNAs were identified as well. Those isomiRNAs with variation at the 3'-miRNA end were expressed at the highest levels, compared to other types of variants. In addition, 755 pha-siRNAs derived 319 pha-siRNA gene transcripts (PGTs were identified, and the potential pha-siRNA initiators were predicted. Also, 2,251 non-phased siRNAs were found as well, of which 1,088 appeared to be produced by so-called cis- or trans-cleavage of the PGTs observed at positions differing from pha-siRNAs. Of those sRNAs, 148 miRNAs/isomiRNAs and 274 phased/non-phased siRNAs were differentially expressed in one or more pairs of tissues examined. Target analysis revealed that target genes for both miRNAs and pha-siRNAs are involved a broad range of metabolic and enzymatic activities. We demonstrate that secondary siRNA production could result from initial cleavage of precursors by both miRNAs or isomiRNAs, and that subsequently produced phased and unphased siRNAs could result that also serve as triggers

  2. The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs

    Science.gov (United States)

    Hu, Hongtao; Rashotte, Aaron M.; Singh, Narendra K.; Weaver, David B.; Goertzen, Leslie R.; Singh, Shree R.; Locy, Robert D.

    2015-01-01

    MicroRNAs (miRNAs) and secondary small interfering RNAs (principally phased siRNAs or trans-acting siRNAs) are two distinct subfamilies of small RNAs (sRNAs) that are emerging as key regulators of posttranscriptional gene expression in plants. Both miRNAs and secondary-siRNAs (sec-siRNAs) are processed from longer RNA precursors by DICER-LIKE proteins (DCLs). Gossypium arboreum L., also known as tree cotton or Asian cotton, is a diploid, possibly ancestral relative of tetraploid Gossypium hirsutum L., the predominant type of commercially grown cotton worldwide known as upland cotton. To understand the biological significance of these gene regulators in G. arboreum, a bioinformatics analysis was performed on G. arboreum small RNAs produced from G. arboreum leaf, flower, and boll tissues. Consequently, 263 miRNAs derived from 353 precursors, including 155 conserved miRNAs (cs-miRNAs) and 108 novel lineage-specific miRNAs (ls-miRNAs). Along with miRNAs, 2,033 miRNA variants (isomiRNAs) were identified as well. Those isomiRNAs with variation at the 3’-miRNA end were expressed at the highest levels, compared to other types of variants. In addition, 755 pha-siRNAs derived 319 pha-siRNA gene transcripts (PGTs) were identified, and the potential pha-siRNA initiators were predicted. Also, 2,251 non-phased siRNAs were found as well, of which 1,088 appeared to be produced by so-called cis- or trans-cleavage of the PGTs observed at positions differing from pha-siRNAs. Of those sRNAs, 148 miRNAs/isomiRNAs and 274 phased/non-phased siRNAs were differentially expressed in one or more pairs of tissues examined. Target analysis revealed that target genes for both miRNAs and pha-siRNAs are involved a broad range of metabolic and enzymatic activities. We demonstrate that secondary siRNA production could result from initial cleavage of precursors by both miRNAs or isomiRNAs, and that subsequently produced phased and unphased siRNAs could result that also serve as triggers of a

  3. Complex dynamics of text analysis

    Science.gov (United States)

    Ke, Xiaohua; Zeng, Yongqiang; Ma, Qinghua; Zhu, Lin

    2014-12-01

    This paper presents a novel method for the analysis of nonlinear text quality in Chinese language. Texts produced by university students in China were represented as scale-free networks (word adjacency model), from which typical network features such as the in/outdegree, clustering coefficient and network dynamics were obtained. The method integrates the classical concepts of network feature representation and text quality series variation. The analytical and numerical scheme leads to a parameter space representation that constitutes a valid alternative to represent the network features. The results reveal that complex network features of different text qualities can be clearly revealed and applied to potential applications in other instances of text analysis.

  4. Structure-Function Analysis of Friedreich's Ataxia Mutants Reveals Determinants of Frataxin Binding and Activation of the Fe-S Assembly Complex

    Energy Technology Data Exchange (ETDEWEB)

    Bridwell-Rabb, Jennifer; Winn, Andrew M; Barondeau, David P [TAM

    2012-08-01

    Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease associated with the loss of function of the protein frataxin (FXN) that results from low FXN levels due to a GAA triplet repeat expansion or, occasionally, from missense mutations in the FXN gene. Here biochemical and structural properties of FXN variants, including three FRDA missense mutations (N146K, Q148R, and R165C) and three related mutants (N146A, Q148G, and Q153A), were determined in an effort to understand the structural basis for the loss of function. In vitro assays revealed that although the three FRDA missense mutations exhibited similar losses of cysteine desulfurase and Fe-S cluster assembly activities, the causes for these activation defects were distinct. The R165C variant exhibited a kcat/KM higher than that of native FXN but weak binding to the NFS1, ISD11, and ISCU2 (SDU) complex, whereas the Q148R variant exhibited the lowest kcat/KM of the six tested FXN variants and only a modest binding deficiency. The order of the FXN binding affinities for the SDU Fe-S assembly complex was as follows: FXN > Q148R > N146A > Q148G > N146K > Q153A > R165C. Four different classes of FXN variants were identified on the basis of their biochemical properties. Together, these structure-function studies reveal determinants for the binding and allosteric activation of the Fe-S assembly complex and provide insight into how FRDA missense mutations are functionally compromised.

  5. Genetic analysis of acd6-1 reveals complex defense networks and leads to identification of novel defense genes in Arabidopsis

    Science.gov (United States)

    Lu, Hua; Salimian, Sasan; Gamelin, Emily; Wang, Guoying; Fedorowski, Jennifer; LaCourse, William; Greenberg, Jean T.

    2009-01-01

    Summary Pathogen infection leads to the activation of defense signaling networks in plants. To study these networks and the relationships between their components, we introduced various defense mutations into acd6-1, a constitutive gain-of-function Arabidopsis mutant that is highly disease resistant. acd6-1 plants show spontaneous cell death, reduced stature, and accumulate high levels of camalexin (an anti-fungal compound) and salicylic acid (SA, a signal molecule). Disruption of several defense genes revealed that in acd6-1, SA levels/signaling was positively correlated with the degree of disease resistance and defense gene expression. SA also modulates the severity of cell death. However, camalexin accumulation in acd6-1 is largely unaffected by reducing SA levels. In addition, acd6-1 shows ethylene- and jasmonic acid-mediated signaling that is antagonized and therefore masked by the presence of SA. Mutant analysis revealed a new relationship between the signaling components NPR1 and PAD4 and also indicated that multiple defense pathways were required for acd6-1-conferred phenotypes. In addition, our data confirmed that the size of acd6-1 was inversely correlated with SA levels/signaling. We exploited this unique feature of acd6-1 to identify two genes disrupted in acd6-1 suppressor (sup) mutants: one encodes a known SA biosynthetic component (SID2) and the other encodes an uncharacterized putative metalloprotease (At5g20660). Taken together, acd6-1 is a powerful tool not only for dissecting defense regulatory networks but also for discovering novel defense genes. PMID:19144005

  6. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells.

    Science.gov (United States)

    Poterlowicz, Krzysztof; Yarker, Joanne L; Malashchuk, Igor; Lajoie, Brian R; Mardaryev, Andrei N; Gdula, Michal R; Sharov, Andrey A; Kohwi-Shigematsu, Terumi; Botchkarev, Vladimir A; Fessing, Michael Y

    2017-09-01

    Mammalian genomes contain several dozens of large (>0.5 Mbp) lineage-specific gene loci harbouring functionally related genes. However, spatial chromatin folding, organization of the enhancer-promoter networks and their relevance to Topologically Associating Domains (TADs) in these loci remain poorly understood. TADs are principle units of the genome folding and represents the DNA regions within which DNA interacts more frequently and less frequently across the TAD boundary. Here, we used Chromatin Conformation Capture Carbon Copy (5C) technology to characterize spatial chromatin interaction network in the 3.1 Mb Epidermal Differentiation Complex (EDC) locus harbouring 61 functionally related genes that show lineage-specific activation during terminal keratinocyte differentiation in the epidermis. 5C data validated by 3D-FISH demonstrate that the EDC locus is organized into several TADs showing distinct lineage-specific chromatin interaction networks based on their transcription activity and the gene-rich or gene-poor status. Correlation of the 5C results with genome-wide studies for enhancer-specific histone modifications (H3K4me1 and H3K27ac) revealed that the majority of spatial chromatin interactions that involves the gene-rich TADs at the EDC locus in keratinocytes include both intra- and inter-TAD interaction networks, connecting gene promoters and enhancers. Compared to thymocytes in which the EDC locus is mostly transcriptionally inactive, these interactions were found to be keratinocyte-specific. In keratinocytes, the promoter-enhancer anchoring regions in the gene-rich transcriptionally active TADs are enriched for the binding of chromatin architectural proteins CTCF, Rad21 and chromatin remodeler Brg1. In contrast to gene-rich TADs, gene-poor TADs show preferential spatial contacts with each other, do not contain active enhancers and show decreased binding of CTCF, Rad21 and Brg1 in keratinocytes. Thus, spatial interactions between gene promoters and

  7. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells.

    Directory of Open Access Journals (Sweden)

    Krzysztof Poterlowicz

    2017-09-01

    Full Text Available Mammalian genomes contain several dozens of large (>0.5 Mbp lineage-specific gene loci harbouring functionally related genes. However, spatial chromatin folding, organization of the enhancer-promoter networks and their relevance to Topologically Associating Domains (TADs in these loci remain poorly understood. TADs are principle units of the genome folding and represents the DNA regions within which DNA interacts more frequently and less frequently across the TAD boundary. Here, we used Chromatin Conformation Capture Carbon Copy (5C technology to characterize spatial chromatin interaction network in the 3.1 Mb Epidermal Differentiation Complex (EDC locus harbouring 61 functionally related genes that show lineage-specific activation during terminal keratinocyte differentiation in the epidermis. 5C data validated by 3D-FISH demonstrate that the EDC locus is organized into several TADs showing distinct lineage-specific chromatin interaction networks based on their transcription activity and the gene-rich or gene-poor status. Correlation of the 5C results with genome-wide studies for enhancer-specific histone modifications (H3K4me1 and H3K27ac revealed that the majority of spatial chromatin interactions that involves the gene-rich TADs at the EDC locus in keratinocytes include both intra- and inter-TAD interaction networks, connecting gene promoters and enhancers. Compared to thymocytes in which the EDC locus is mostly transcriptionally inactive, these interactions were found to be keratinocyte-specific. In keratinocytes, the promoter-enhancer anchoring regions in the gene-rich transcriptionally active TADs are enriched for the binding of chromatin architectural proteins CTCF, Rad21 and chromatin remodeler Brg1. In contrast to gene-rich TADs, gene-poor TADs show preferential spatial contacts with each other, do not contain active enhancers and show decreased binding of CTCF, Rad21 and Brg1 in keratinocytes. Thus, spatial interactions between gene

  8. Complex analysis and geometry

    CERN Document Server

    Silva, Alessandro

    1993-01-01

    The papers in this wide-ranging collection report on the results of investigations from a number of linked disciplines, including complex algebraic geometry, complex analytic geometry of manifolds and spaces, and complex differential geometry.

  9. Mutational Analysis of the QRRQ Motif in the Yeast Hig1 Type 2 Protein Rcf1 Reveals a Regulatory Role for the Cytochrome c Oxidase Complex.

    Science.gov (United States)

    Garlich, Joshua; Strecker, Valentina; Wittig, Ilka; Stuart, Rosemary A

    2017-03-31

    The yeast Rcf1 protein is a member of the conserved family of proteins termed the hypoxia-induced gene (domain) 1 (Hig1 or HIGD1) family. Rcf1 interacts with components of the mitochondrial oxidative phosphorylation system, in particular the cytochrome bc 1 (complex III)-cytochrome c oxidase (complex IV) supercomplex (termed III-IV) and the ADP/ATP carrier proteins. Rcf1 plays a role in the assembly and modulation of the activity of complex IV; however, the molecular basis for how Rcf1 influences the activity of complex IV is currently unknown. Hig1 type 2 isoforms, which include the Rcf1 protein, are characterized in part by the presence of a conserved motif, (Q/I) X 3 (R/H) X R X 3 Q, termed here the QRRQ motif. We show that mutation of conserved residues within the Rcf1 QRRQ motif alters the interactions between Rcf1 and partner proteins and results in the destabilization of complex IV and alteration of its enzymatic properties. Our findings indicate that Rcf1 does not serve as a stoichiometric component, i.e. as a subunit of complex IV, to support its activity. Rather, we propose that Rcf1 serves to dynamically interact with complex IV during its assembly process and, in doing so, regulates a late maturation step of complex IV. We speculate that the Rcf1/Hig1 proteins play a role in the incorporation and/or remodeling of lipids, in particular cardiolipin, into complex IV and. possibly, other mitochondrial proteins such as ADP/ATP carrier proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Functional Genomic Analysis of Candida albicans Adherence Reveals a Key Role for the Arp2/3 Complex in Cell Wall Remodelling and Biofilm Formation.

    Science.gov (United States)

    Lee, Jason A; Robbins, Nicole; Xie, Jinglin L; Ketela, Troy; Cowen, Leah E

    2016-11-01

    Fungal biofilms are complex, structured communities that can form on surfaces such as catheters and other indwelling medical devices. Biofilms are of particular concern with Candida albicans, one of the leading opportunistic fungal pathogens of humans. C. albicans biofilms include yeast and filamentous cells that are surrounded by an extracellular matrix, and they are intrinsically resistant to antifungal drugs such that resolving biofilm infections often requires surgery to remove the contaminated device. C. albicans biofilms form through a regulated process of adhesion to surfaces, filamentation, maturation, and ultimately dispersion. To uncover new strategies to block the initial stages of biofilm formation, we utilized a functional genomic approach to identify genes that modulate C. albicans adherence. We screened a library of 1,481 double barcoded doxycycline-repressible conditional gene expression strains covering ~25% of the C. albicans genome. We identified five genes for which transcriptional repression impaired adherence, including: ARC18, PMT1, MNN9, SPT7, and orf19.831. The most severe adherence defect was observed upon transcriptional repression of ARC18, which encodes a member of the Arp2/3 complex that is involved in regulation of the actin cytoskeleton and endocytosis. Depletion of components of the Arp2/3 complex not only impaired adherence, but also caused reduced biofilm formation, increased cell surface hydrophobicity, and increased exposure of cell wall chitin and β-glucans. Reduced function of the Arp2/3 complex led to impaired cell wall integrity and activation of Rho1-mediated cell wall stress responses, thereby causing cell wall remodelling and reduced adherence. Thus, we identify important functional relationships between cell wall stress responses and a novel mechanism that controls adherence and biofilm formation, thereby illuminating novel strategies to cripple a leading fungal pathogen of humans.

  11. Geometric Mechanics Reveals Optimal Complex Terrestrial Undulation Patterns

    Science.gov (United States)

    Gong, Chaohui; Astley, Henry; Schiebel, Perrin; Dai, Jin; Travers, Matthew; Goldman, Daniel; Choset, Howie; CMU Team; GT Team

    Geometric mechanics offers useful tools for intuitively analyzing biological and robotic locomotion. However, utility of these tools were previously restricted to systems that have only two internal degrees of freedom and in uniform media. We show kinematics of complex locomotors that make intermittent contacts with substrates can be approximated as a linear combination of two shape bases, and can be represented using two variables. Therefore, the tools of geometric mechanics can be used to analyze motions of locomotors with many degrees of freedom. To demonstrate the proposed technique, we present studies on two different types of snake gaits which utilize combinations of waves in the horizontal and vertical planes: sidewinding (in the sidewinder rattlesnake C. cerastes) and lateral undulation (in the desert specialist snake C. occipitalis). C. cerastes moves by generating posteriorly traveling body waves in the horizontal and vertical directions, with a relative phase offset equal to +/-π/2 while C. occipitalismaintains a π/2 offset of a frequency doubled vertical wave. Geometric analysis reveals these coordination patterns enable optimal movement in the two different styles of undulatory terrestrial locomotion. More broadly, these examples demonstrate the utility of geometric mechanics in analyzing realistic biological and robotic locomotion.

  12. Complexity of Neutralizing Antibodies against Multiple Dengue Virus Serotypes after Heterotypic Immunization and Secondary Infection Revealed by In-Depth Analysis of Cross-Reactive Antibodies.

    Science.gov (United States)

    Tsai, Wen-Yang; Durbin, Anna; Tsai, Jih-Jin; Hsieh, Szu-Chia; Whitehead, Stephen; Wang, Wei-Kung

    2015-07-01

    The four serotypes of dengue virus (DENV) cause the most important and rapidly emerging arboviral diseases in humans. The recent phase 2b and 3 studies of a tetravalent dengue vaccine reported a moderate efficacy despite the presence of neutralizing antibodies, highlighting the need for a better understanding of neutralizing antibodies in polyclonal human sera. Certain type-specific (TS) antibodies were recently discovered to account for the monotypic neutralizing activity and protection after primary DENV infection. The nature of neutralizing antibodies after secondary DENV infection remains largely unknown. In this study, we examined sera from 10 vaccinees with well-documented exposure to first and second DENV serotypes through heterotypic immunization with live-attenuated vaccines. Higher serum IgG avidities to both exposed and nonexposed serotypes were found after secondary immunization than after primary immunization. Using a two-step depletion protocol to remove different anti-envelope antibodies, including group-reactive (GR) and complex-reactive (CR) antibodies separately, we found GR and CR antibodies together contributed to more than 50% of neutralizing activities against multiple serotypes after secondary immunization. Similar findings were demonstrated in patients after secondary infection. Anti-envelope antibodies recognizing previously exposed serotypes consisted of a large proportion of GR antibodies, CR antibodies, and a small proportion of TS antibodies, whereas those recognizing nonexposed serotypes consisted of GRand CR antibodies. These findings have implications for sequential heterotypic immunization or primary immunization of DENV-primed individuals as alternative strategies for DENV vaccination. The complexity of neutralizing antibodies after secondary infection provides new insights into the difficulty of their application as surrogates of protection. The four serotypes of dengue virus (DENV) are the leading cause of arboviral diseases in

  13. 4-D MRI flow analysis in the course of interrupted aortic arch reveals complex morphology and quantifies amount of collateral blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Hirtler, Daniel [University Hospital Freiburg, Department of Pediatric Cardiology and Congenital Heart Disease, Freiburg (Germany); Geiger, Julia; Jung, Bernd [University Hospital Freiburg, Department of Radiology, Medical Physics, Freiburg (Germany); Markl, Michael [Northwestern University, Departments of Radiology and Biomedical Engineering, Chicago, IL (United States); Arnold, Raoul [University Hospital Heidelberg, Department of Pediatric Cardiology and Congenital Heart Disease, Heidelberg (Germany)

    2013-08-15

    We present findings in a 17-year-old with interrupted aortic arch, in whom standard imaging techniques missed functional and morphological problems. Flow-sensitive four-dimensional magnetic resonance (4-D MR) enabled assessment of the complex anatomy and blood-flow characteristics in the entire aorta and direct quantification of blood flow in collateral vessels. Our findings highlight the entire morphological and functional problem of interrupted aortic arch and illustrate the potential of flow-sensitive 4-D MR for surgical planning in congenital heart disease. (orig.)

  14. Adaptation to High Ethanol Reveals Complex Evolutionary Pathways.

    Directory of Open Access Journals (Sweden)

    Karin Voordeckers

    2015-11-01

    Full Text Available Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts.

  15. Analysis of meiosis in SUN1 deficient mice reveals a distinct role of SUN2 in mammalian meiotic LINC complex formation and function.

    Directory of Open Access Journals (Sweden)

    Jana Link

    2014-02-01

    Full Text Available LINC complexes are evolutionarily conserved nuclear envelope bridges, composed of SUN (Sad-1/UNC-84 and KASH (Klarsicht/ANC-1/Syne/homology domain proteins. They are crucial for nuclear positioning and nuclear shape determination, and also mediate nuclear envelope (NE attachment of meiotic telomeres, essential for driving homolog synapsis and recombination. In mice, SUN1 and SUN2 are the only SUN domain proteins expressed during meiosis, sharing their localization with meiosis-specific KASH5. Recent studies have shown that loss of SUN1 severely interferes with meiotic processes. Absence of SUN1 provokes defective telomere attachment and causes infertility. Here, we report that meiotic telomere attachment is not entirely lost in mice deficient for SUN1, but numerous telomeres are still attached to the NE through SUN2/KASH5-LINC complexes. In Sun1(-/- meiocytes attached telomeres retained the capacity to form bouquet-like clusters. Furthermore, we could detect significant numbers of late meiotic recombination events in Sun1(-/- mice. Together, this indicates that even in the absence of SUN1 telomere attachment and their movement within the nuclear envelope per se can be functional.

  16. Crystallographic analysis of the ternary complex of octanoate and N-acetyl-l-methionine with human serum albumin reveals the mode of their stabilizing interactions.

    Science.gov (United States)

    Kawai, Akito; Chuang, Victor T G; Kouno, Yosuke; Yamasaki, Keishi; Miyamoto, Shuichi; Anraku, Makoto; Otagiri, Masaki

    2017-08-01

    During pasteurization and storage of albumin products, Sodium octanoate (Oct) and N-acethyl-l-tryptophan (N-AcTrp) are used as the thermal stabilizer and the antioxidant for human serum albumin (HSA), respectively. We recently reported that N-acethyl-l-methionine (N-AcMet) is an antioxidant for HSA, which is superior to N-AcTrp when it is especially exposed to light during storage. The objective of the present study is to clarify the molecular mechanism responsible for the HSA protective effect of Oct and N-AcMet based on their ternary complex structure. Crystal structure of the HSA-Oct-N-AcMet complex showed that one N-AcMet molecule is bound to the entrance of drug site 1 of HSA, and its side chain, which is susceptible to the oxidation, is exposed to the solvent. At the same time, two Oct binding sites are observed in drug sites 1 and 2 of HSA, respectively, and each Oct molecule occupies the hydrophobic cavity in them. These results indicate the molecular mechanism responsible for the HSA stabilization by these small molecules as follows. N-AcMet seals the entrance of drug site 1 while it acts as an antioxidant for HSA. Oct is chiefly bound to drug site 2 of HSA and it increases the thermal stability of HSA because of the occupying the largest intra-cavity of sub-domain IIIA in HSA. These findings suggest that N-AcMet acts positively as useful stabilizer for albumin formulated products such as functionalized HSA and HSA fusion proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Whole genome analysis of selected human and animal rotaviruses identified in Uganda from 2012 to 2014 reveals complex genome reassortment events between human, bovine, caprine and porcine strains.

    Directory of Open Access Journals (Sweden)

    Josephine Bwogi

    Full Text Available Rotaviruses of species A (RVA are a common cause of diarrhoea in children and the young of various other mammals and birds worldwide. To investigate possible interspecies transmission of RVAs, whole genomes of 18 human and 6 domestic animal RVA strains identified in Uganda between 2012 and 2014 were sequenced using the Illumina HiSeq platform. The backbone of the human RVA strains had either a Wa- or a DS-1-like genetic constellation. One human strain was a Wa-like mono-reassortant containing a DS-1-like VP2 gene of possible animal origin. All eleven genes of one bovine RVA strain were closely related to those of human RVAs. One caprine strain had a mixed genotype backbone, suggesting that it emerged from multiple reassortment events involving different host species. The porcine RVA strains had mixed genotype backbones with possible multiple reassortant events with strains of human and bovine origin.Overall, whole genome characterisation of rotaviruses found in domestic animals in Uganda strongly suggested the presence of human-to animal RVA transmission, with concomitant circulation of multi-reassortant strains potentially derived from complex interspecies transmission events. However, whole genome data from the human RVA strains causing moderate and severe diarrhoea in under-fives in Uganda indicated that they were primarily transmitted from person-to-person.

  18. Phylogenetic analysis of two single-copy nuclear genes revealed origin and complex relationships of polyploid species of Hordeum in Triticeae (Poaceae).

    Science.gov (United States)

    Hu, Qianni; Sun, Genlou

    2017-06-01

    Two single-copy nuclear genes, the second largest subunit of RNA polymerase II (RPB2) and thioredoxin-like gene (HTL), were used to explore the phylogeny and origin of polyploid species in Hordeum. Our results were partly in accord with previous studies, but disclosed additional complexity. Both RPB2 and HTL trees confirmed the presence of Xa genome in H. capense and H. secalinum, and that H. depressum originated from H. californicum together with other American diploids, either H. intercedens or H. pusillum. American diploids solely contributed to the origin of H. depressum. The Asian diploids, either H. bogdanii or H. brevisubulatum, contributed to the formation of American polyploids except H. depressum. RPB2 and HTL sequences showed that H. roshevitzii did not contribute to the origin of American tetraploids. Our data showed a close relationship between the hexaploids H. procerum and H. parodii and the tetraploids H. brachyantherum, H. fuegianum, H. guatemalense, H. jubatum, and H. tetraploidum. The involvement of the diploid H. pusillum and the tetraploid H. jubatum in the formation of H. arizonicum was also indicated in the HTL phylogeny. Our results suggested a possible gene introgression of W- and P-genome species into the tetraploid H. jubatum and the hexaploid H. procerum.

  19. Whole genome analysis of selected human and animal rotaviruses identified in Uganda from 2012 to 2014 reveals complex genome reassortment events between human, bovine, caprine and porcine strains.

    Science.gov (United States)

    Bwogi, Josephine; Jere, Khuzwayo C; Karamagi, Charles; Byarugaba, Denis K; Namuwulya, Prossy; Baliraine, Frederick N; Desselberger, Ulrich; Iturriza-Gomara, Miren

    2017-01-01

    Rotaviruses of species A (RVA) are a common cause of diarrhoea in children and the young of various other mammals and birds worldwide. To investigate possible interspecies transmission of RVAs, whole genomes of 18 human and 6 domestic animal RVA strains identified in Uganda between 2012 and 2014 were sequenced using the Illumina HiSeq platform. The backbone of the human RVA strains had either a Wa- or a DS-1-like genetic constellation. One human strain was a Wa-like mono-reassortant containing a DS-1-like VP2 gene of possible animal origin. All eleven genes of one bovine RVA strain were closely related to those of human RVAs. One caprine strain had a mixed genotype backbone, suggesting that it emerged from multiple reassortment events involving different host species. The porcine RVA strains had mixed genotype backbones with possible multiple reassortant events with strains of human and bovine origin.Overall, whole genome characterisation of rotaviruses found in domestic animals in Uganda strongly suggested the presence of human-to animal RVA transmission, with concomitant circulation of multi-reassortant strains potentially derived from complex interspecies transmission events. However, whole genome data from the human RVA strains causing moderate and severe diarrhoea in under-fives in Uganda indicated that they were primarily transmitted from person-to-person.

  20. Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture.

    Science.gov (United States)

    Lu, Zefu; Yu, Hong; Xiong, Guosheng; Wang, Jing; Jiao, Yongqing; Liu, Guifu; Jing, Yanhui; Meng, Xiangbing; Hu, Xingming; Qian, Qian; Fu, Xiangdong; Wang, Yonghong; Li, Jiayang

    2013-10-01

    Ideal plant architecture1 (IPA1) is critical in regulating rice (Oryza sativa) plant architecture and substantially enhances grain yield. To elucidate its molecular basis, we first confirmed IPA1 as a functional transcription activator and then identified 1067 and 2185 genes associated with IPA1 binding sites in shoot apices and young panicles, respectively, through chromatin immunoprecipitation sequencing assays. The Squamosa promoter binding protein-box direct binding core motif GTAC was highly enriched in IPA1 binding peaks; interestingly, a previously uncharacterized indirect binding motif TGGGCC/T was found to be significantly enriched through the interaction of IPA1 with proliferating cell nuclear antigen promoter binding factor1 or promoter binding factor2. Genome-wide expression profiling by RNA sequencing revealed IPA1 roles in diverse pathways. Moreover, our results demonstrated that IPA1 could directly bind to the promoter of rice teosinte branched1, a negative regulator of tiller bud outgrowth, to suppress rice tillering, and directly and positively regulate dense and erect panicle1, an important gene regulating panicle architecture, to influence plant height and panicle length. The elucidation of target genes of IPA1 genome-wide will contribute to understanding the molecular mechanisms underlying plant architecture and to facilitating the breeding of elite varieties with ideal plant architecture.

  1. Genome-Wide Binding Analysis of the Transcription Activator IDEAL PLANT ARCHITECTURE1 Reveals a Complex Network Regulating Rice Plant Architecture[W

    Science.gov (United States)

    Lu, Zefu; Yu, Hong; Xiong, Guosheng; Wang, Jing; Jiao, Yongqing; Liu, Guifu; Jing, Yanhui; Meng, Xiangbing; Hu, Xingming; Qian, Qian; Fu, Xiangdong; Wang, Yonghong; Li, Jiayang

    2013-01-01

    IDEAL PLANT ARCHITECTURE1 (IPA1) is critical in regulating rice (Oryza sativa) plant architecture and substantially enhances grain yield. To elucidate its molecular basis, we first confirmed IPA1 as a functional transcription activator and then identified 1067 and 2185 genes associated with IPA1 binding sites in shoot apices and young panicles, respectively, through chromatin immunoprecipitation sequencing assays. The SQUAMOSA PROMOTER BINDING PROTEIN-box direct binding core motif GTAC was highly enriched in IPA1 binding peaks; interestingly, a previously uncharacterized indirect binding motif TGGGCC/T was found to be significantly enriched through the interaction of IPA1 with proliferating cell nuclear antigen PROMOTER BINDING FACTOR1 or PROMOTER BINDING FACTOR2. Genome-wide expression profiling by RNA sequencing revealed IPA1 roles in diverse pathways. Moreover, our results demonstrated that IPA1 could directly bind to the promoter of rice TEOSINTE BRANCHED1, a negative regulator of tiller bud outgrowth, to suppress rice tillering, and directly and positively regulate DENSE AND ERECT PANICLE1, an important gene regulating panicle architecture, to influence plant height and panicle length. The elucidation of target genes of IPA1 genome-wide will contribute to understanding the molecular mechanisms underlying plant architecture and to facilitating the breeding of elite varieties with ideal plant architecture. PMID:24170127

  2. Three-Level Mixed-Effects Logistic Regression Analysis Reveals Complex Epidemiology of Swine Rotaviruses in Diagnostic Samples from North America.

    Directory of Open Access Journals (Sweden)

    Nitipong Homwong

    Full Text Available Rotaviruses (RV are important causes of diarrhea in animals, especially in domestic animals. Of the 9 RV species, rotavirus A, B, and C (RVA, RVB, and RVC, respectively had been established as important causes of diarrhea in pigs. The Minnesota Veterinary Diagnostic Laboratory receives swine stool samples from North America to determine the etiologic agents of disease. Between November 2009 and October 2011, 7,508 samples from pigs with diarrhea were submitted to determine if enteric pathogens, including RV, were present in the samples. All samples were tested for RVA, RVB, and RVC by real time RT-PCR. The majority of the samples (82% were positive for RVA, RVB, and/or RVC. To better understand the risk factors associated with RV infections in swine diagnostic samples, three-level mixed-effects logistic regression models (3L-MLMs were used to estimate associations among RV species, age, and geographical variability within the major swine production regions in North America. The conditional odds ratios (cORs for RVA and RVB detection were lower for 1-3 day old pigs when compared to any other age group. However, the cOR of RVC detection in 1-3 day old pigs was significantly higher (p 55 day old age groups. Furthermore, pigs in the 21-55 day old age group had statistically higher cORs of RV co-detection compared to 1-3 day old pigs (p < 0.001. The 3L-MLMs indicated that RV status was more similar within states than among states or within each region. Our results indicated that 3L-MLMs are a powerful and adaptable tool to handle and analyze large-hierarchical datasets. In addition, our results indicated that, overall, swine RV epidemiology is complex, and RV species are associated with different age groups and vary by regions in North America.

  3. Global analysis of double-strand break processing reveals in vivo properties of the helicase-nuclease complex AddAB.

    Science.gov (United States)

    Badrinarayanan, Anjana; Le, Tung B K; Spille, Jan-Hendrik; Cisse, Ibrahim I; Laub, Michael T

    2017-05-01

    In bacteria, double-strand break (DSB) repair via homologous recombination is thought to be initiated through the bi-directional degradation and resection of DNA ends by a helicase-nuclease complex such as AddAB. The activity of AddAB has been well-studied in vitro, with translocation speeds between 400-2000 bp/s on linear DNA suggesting that a large section of DNA around a break site is processed for repair. However, the translocation rate and activity of AddAB in vivo is not known, and how AddAB is regulated to prevent excessive DNA degradation around a break site is unclear. To examine the functions and mechanistic regulation of AddAB inside bacterial cells, we developed a next-generation sequencing-based approach to assay DNA processing after a site-specific DSB was introduced on the chromosome of Caulobacter crescentus. Using this assay we determined the in vivo rates of DSB processing by AddAB and found that putative chi sites attenuate processing in a RecA-dependent manner. This RecA-mediated regulation of AddAB prevents the excessive loss of DNA around a break site, limiting the effects of DSB processing on transcription. In sum, our results, taken together with prior studies, support a mechanism for regulating AddAB that couples two key events of DSB repair-the attenuation of DNA-end processing and the initiation of homology search by RecA-thereby helping to ensure that genomic integrity is maintained during DSB repair.

  4. Parallel pigment and transcriptomic analysis of four barley albina and xantha mutants reveals the complex network of the chloroplast-dependent metabolism.

    Science.gov (United States)

    Campoli, Chiara; Caffarri, Stefano; Svensson, Jan T; Bassi, Roberto; Stanca, A Michele; Cattivelli, Luigi; Crosatti, Cristina

    2009-09-01

    We investigated the pigment composition and the transcriptome of albina (alb-e ( 16 ) and alb-f ( 17 )) and xantha (xan-s ( 46 ) and xan-b ( 12 )) barley mutants to provide an overall transcriptional picture of genes whose expression is interconnected with chloroplast activities and to search for candidate genes associated with the mutations. Beside those encoding plastid-localized proteins, more than 3,000 genes involved in non-chloroplast localized metabolism were up-/down-regulated in the mutants revealing the network of chloroplast-dependent metabolic pathways. The alb-e ( 16 ) mutant was characterized by overaccumulation of protoporphyrin IX upon ALA (5-amino levulinic acid) feeding and down-regulation of the gene encoding one subunit of Mg-chelatase, suggesting a block of the chlorophyll biosynthetic pathway before Mg-protoporphyrin IX biosynthesis, while alb-f ( 17 ) overaccumulated Mg-protoporphyrin IX and repressed PorA expression, without alterations in Mg-chelatase mRNA level. The alb-f ( 17 )mutant also showed overexpression of several genes involved in phytochrome and in phytochrome-dependent pathways. The results indicate that the down-regulation of Lhcb genes in alb-e ( 16 ) cannot be mediated by the accumulation of Mg-protoporphyrin IX. After ALA treatment, xan-s ( 46 ) showed overaccumulation of Mg-protoporphyrin IX, while the relative porphyrin composition of xan-b ( 12 ) was similar to wild type. The transcripts encoding the components of several mitochondrial metabolic pathways were up-regulated in albina/xantha leaves to compensate for the absence of active chloroplasts. The mRNAs encoding gun3, gun4, and gun5 barley homologous genes showed significant expression variations and were used to search for co-expressed genes across all samples. These analyses provide additional evidences on a chloroplast-dependent covariation of large sets of nuclear genes.

  5. Global transcriptional analysis reveals the complex relationship between tea quality, leaf senescence and the responses to cold-drought combined stress in Camellia sinensis

    Directory of Open Access Journals (Sweden)

    Chao Zheng

    2016-12-01

    Full Text Available In field conditions, especially in arid and semi-arid areas, tea plants are often simultaneously exposed to various abiotic stresses such as cold and drought, which have profound effects on leaf senescence process and tea quality. However, most studies of gene expression in stress responses focus on a single inciting agent, and the confounding effect of multiple stresses on crop quality and leaf senescence remain unearthed. Here, global transcriptome profiles of tea leaves under separately cold and drought stress were compared with their combination using RNA-Seq technology. This revealed that tea plants shared a large overlap in unigenes displayed similar (26% expression pattern and avoid antagonistic responses (lowest level of prioritized mode: 0% to exhibit very congruent responses to co-occurring cold and drought stress; 31.5% differential expressed genes and 38% of the transcriptome changes in response to combined stresses were unpredictable from cold or drought single-case studies. We also identified 319 candidate genes for enhancing plant resistance to combined stress. We then investigated the combined effect of cold and drought on tea quality and leaf senescence. Our results showed that drought-induced leaf senescence were severely delayed by (i modulation of a number of senescence-associated genes and cold responsive genes, (ii enhancement of antioxidant capacity, (iii attenuation of lipid degradation, (iv maintenance of cell wall and photosynthetic system, (v alteration of senescence-induced sugar effect/sensitivity, as well as (vi regulation of secondary metabolism pathways that significantly influence the quality of tea during combined stress. Therefore, care should be taken when utilizing a set of stresses to try and maximize leaf longevity and tea quality.

  6. Intersubject information mapping: revealing canonical representations of complex natural stimuli

    Directory of Open Access Journals (Sweden)

    Nikolaus Kriegeskorte

    2015-03-01

    Full Text Available Real-world time-continuous stimuli such as video promise greater naturalism for studies of brain function. However, modeling the stimulus variation is challenging and introduces a bias in favor of particular descriptive dimensions. Alternatively, we can look for brain regions whose signal is correlated between subjects, essentially using one subject to model another. Intersubject correlation mapping (ICM allows us to find brain regions driven in a canonical manner across subjects by a complex natural stimulus. However, it requires a direct voxel-to-voxel match between the spatiotemporal activity patterns and is thus only sensitive to common activations sufficiently extended to match up in Talairach space (or in an alternative, e.g. cortical-surface-based, common brain space. Here we introduce the more general approach of intersubject information mapping (IIM. For each brain region, IIM determines how much information is shared between the subjects' local spatiotemporal activity patterns. We estimate the intersubject mutual information using canonical correlation analysis applied to voxels within a spherical searchlight centered on each voxel in turn. The intersubject information estimate is invariant to linear transforms including spatial rearrangement of the voxels within the searchlight. This invariance to local encoding will be crucial in exploring fine-grained brain representations, which cannot be matched up in a common space and, more fundamentally, might be unique to each individual – like fingerprints. IIM yields a continuous brain map, which reflects intersubject information in fine-grained patterns. Performed on data from functional magnetic resonance imaging (fMRI of subjects viewing the same television show, IIM and ICM both highlighted sensory representations, including primary visual and auditory cortices. However, IIM revealed additional regions in higher association cortices, namely temporal pole and orbitofrontal cortex. These

  7. Real and complex analysis

    CERN Document Server

    Apelian, Christopher; Taft, Earl; Nashed, Zuhair

    2009-01-01

    The Spaces R, Rk, and CThe Real Numbers RThe Real Spaces RkThe Complex Numbers CPoint-Set Topology Bounded SetsClassification of Points Open and Closed SetsNested Intervals and the Bolzano-Weierstrass Theorem Compactness and Connectedness Limits and Convergence Definitions and First Properties Convergence Results for SequencesTopological Results for Sequences Properties of Infinite SeriesManipulations of Series in RFunctions: Definitions and Limits DefinitionsFunctions as MappingsSome Elementary Complex FunctionsLimits of FunctionsFunctions: Continuity and Convergence Continuity Uniform Continuity Sequences and Series of FunctionsThe DerivativeThe Derivative for f: D1 → RThe Derivative for f: Dk → RThe Derivative for f: Dk → RpThe Derivative for f: D → CThe Inverse and Implicit Function TheoremsReal IntegrationThe Integral of f: [a, b] → RProperties of the Riemann Integral Further Development of Integration TheoryVector-Valued and Line IntegralsComplex IntegrationIntroduction to Complex Integrals Fu...

  8. Automatic Complexity Analysis

    DEFF Research Database (Denmark)

    Rosendahl, Mads

    1989-01-01

    One way to analyse programs is to to derive expressions for their computational behaviour. A time bound function (or worst-case complexity) gives an upper bound for the computation time as a function of the size of input. We describe a system to derive such time bounds automatically using abstrac...

  9. Higher order structures of Adalimumab, Infliximab and their complexes with TNFα revealed by electron microscopy.

    Science.gov (United States)

    Tran, Bich Ngoc; Chan, Siew Leong; Ng, Chloe; Shi, Jian; Correia, Ivan; Radziejewski, Czeslaw; Matsudaira, Paul

    2017-12-01

    Adalimumab and Infliximab are recombinant IgG1 monoclonal antibodies (mAbs) that bind and neutralize human tumor necrosis factor alpha (TNFα). TNFα forms a stable homotrimer with unique surface-exposed sites for Adalimumab, Infliximab, and TNF receptor binding. Here, we report the structures of Adalimumab-TNFα and Infliximab-TNFα complexes modeled from negative stain EM and cryo-EM images. EM images reveal complex structures consisting of 1:1, 1:2, 2:2, and 3:2 complexes of Adalimumab-TNFα and Infliximab-TNFα. The 2:2 complex structures of Adalimumab-TNFα and Infliximab-TNFα show diamond-shaped profiles and the 2D class averages reveal distinct orientations of the Fab domains, indicating different binding modes by Adalimumab and Infliximab to TNFα. After separation by size exclusion chromatography and analysis by negative stain EM, the 3:2 complexes of Adalimumab-TNFα or Infliximab-TNFα complexes are more complicated but retain features recognized in the 2:2 complexes. Preliminary cryo-EM analysis of 3:2 Adalimumab-TNFα complex generated a low-resolution density consistent with a TNFα trimer bound with three Fab domains from three individual antibody molecules, while each antibody molecule binds to two molecules of TNFα trimer. The Fc domains are not visible in the reconstruction. These results show the two mAbs form structurally distinct complexes with TNFα. © 2017 The Protein Society.

  10. Transcriptome analysis by Illumina high-throughout paired-end sequencing reveals the complexity of differential gene expression during in vitro plantlet growth and flowering in Amaranthus tricolor L.

    Directory of Open Access Journals (Sweden)

    Shengcai Liu

    Full Text Available Amaranthus tricolor L. is a C4 plant, which is consumed as a major leafy vegetable in some tropical countries. Under conditions of high temperature and short daylight, Am. tricolor readily bolts and blooms, degrading leaf quality. A preliminary in vitro flowering study demonstrated that the flowering control pathway in Am. tricolor may differ from that of Arabidopsis. Nevertheless, no transcriptome analysis of the flowering process in Amaranthus has been conducted. To study Am. tricolor floral regulatory mechanisms, we conducted a large-scale transcriptome analysis--based on Illumina HiSeq sequencing of cDNA libraries generated from Am. tricolor at young seedling (YSS, adult seedling (ASS, flower bud (FBS, and flowering (FS stages. A total of 99,312 unigenes were obtained. Using BLASTX, 43,088 unigenes (43.39% were found to have significant similarity with accessions in Nr, Nt, and Swiss-Prot databases. Of these unigenes, 11,291 were mapped to 266 KEGG pathways. Further analysis of the four digital transcriptomes revealed that 735, 17,184, 274, and 206 unigenes were specifically expressed during YSS, ASS, FBS, and FS, respectively, with 59,517 unigenes expressed throughout the four stages. These unigenes were involved in many metabolic pathways related to in vitro flowering. Among these pathways, 259 unigenes were associated with ubiquitin-mediated proteolysis, indicating its importance for in vitro flowering in Am. tricolor. Other pathways, such as circadian rhythm and cell cycle, also had important roles. Finally, 26 unigenes were validated by qRT-PCR in samples from Am. tricolor at YSS, ASS, FBS, and FS; their differential expressions at the various stages indicate their possible roles in Am. tricolor growth and development, but the results were somewhat similar to Arabidopsis. Because unigenes involved in many metabolic pathways or of unknown function were revealed to regulate in vitro plantlet growth and flowering in Am. tricolor, the

  11. Music analysis and Kolmogorov complexity

    DEFF Research Database (Denmark)

    Meredith, David

    to be explained. The theory of Kolmogorov complexity suggests that the length of such a program can be used as a measure of the complexity of the analysis that it represents. The analyst therefore needs a way to measure the length of a program so that this length reflects the quality of the analysis...... is proposed that overcomes some but not all of these problems. It is suggested that the solutions to the remaining problems may lie either in the field of concrete Kolmogorov complexity or in the design of languages specialized for expressing musical structure....

  12. Beyond Contagion: Reality Mining Reveals Complex Patterns of Social Influence.

    Science.gov (United States)

    Alshamsi, Aamena; Pianesi, Fabio; Lepri, Bruno; Pentland, Alex; Rahwan, Iyad

    2015-01-01

    Contagion, a concept from epidemiology, has long been used to characterize social influence on people's behavior and affective (emotional) states. While it has revealed many useful insights, it is not clear whether the contagion metaphor is sufficient to fully characterize the complex dynamics of psychological states in a social context. Using wearable sensors that capture daily face-to-face interaction, combined with three daily experience sampling surveys, we collected the most comprehensive data set of personality and emotion dynamics of an entire community of work. From this high-resolution data about actual (rather than self-reported) face-to-face interaction, a complex picture emerges where contagion (that can be seen as adaptation of behavioral responses to the behavior of other people) cannot fully capture the dynamics of transitory states. We found that social influence has two opposing effects on states: adaptation effects that go beyond mere contagion, and complementarity effects whereby individuals' behaviors tend to complement the behaviors of others. Surprisingly, these effects can exhibit completely different directions depending on the stable personality or emotional dispositions (stable traits) of target individuals. Our findings provide a foundation for richer models of social dynamics, and have implications on organizational engineering and workplace well-being.

  13. Beyond Contagion: Reality Mining Reveals Complex Patterns of Social Influence.

    Directory of Open Access Journals (Sweden)

    Aamena Alshamsi

    Full Text Available Contagion, a concept from epidemiology, has long been used to characterize social influence on people's behavior and affective (emotional states. While it has revealed many useful insights, it is not clear whether the contagion metaphor is sufficient to fully characterize the complex dynamics of psychological states in a social context. Using wearable sensors that capture daily face-to-face interaction, combined with three daily experience sampling surveys, we collected the most comprehensive data set of personality and emotion dynamics of an entire community of work. From this high-resolution data about actual (rather than self-reported face-to-face interaction, a complex picture emerges where contagion (that can be seen as adaptation of behavioral responses to the behavior of other people cannot fully capture the dynamics of transitory states. We found that social influence has two opposing effects on states: adaptation effects that go beyond mere contagion, and complementarity effects whereby individuals' behaviors tend to complement the behaviors of others. Surprisingly, these effects can exhibit completely different directions depending on the stable personality or emotional dispositions (stable traits of target individuals. Our findings provide a foundation for richer models of social dynamics, and have implications on organizational engineering and workplace well-being.

  14. Conjunctival lymphangioma in a 4-year-old girl revealed tuberous sclerosis complex

    Directory of Open Access Journals (Sweden)

    Freiberg, Florentina Joyce

    2016-09-01

    Full Text Available Background: To present a case of conjunctival lymphangioma in a girl with tuberous sclerosis complex.Methods/results: A 4-year-old girl presented with a relapsing cystic lesion of the bulbar conjunctiva in the right eye with string-of-pearl-like dilation of lymphatic vessels and right-sided facial swelling with mild pain. Best-corrected vision was not impaired. Examination of the skin revealed three hypomelanotic macules and a lumbal Shagreen patch. Magnetic resonance imaging (MRI findings displayed minimal enhancement of buccal fat on the right side. Cranial and orbital MRI showed signal enhancement in the right cortical and subcortical areas. Genetic analysis revealed a heterozygous deletion encompassing exon 1 and 2 of the gene (tuberous sclerosis complex 1 gene, confirming the diagnosis of tuberous sclerosis complex.Conclusion: In conjunctival lymphangioma, tuberous sclerosis complex should be considered as the primary disease.

  15. Hierarchicality of trade flow networks reveals complexity of products.

    Directory of Open Access Journals (Sweden)

    Peiteng Shi

    Full Text Available With globalization, countries are more connected than before by trading flows, which amounts to at least 36 trillion dollars today. Interestingly, around 30-60 percents of exports consist of intermediate products in global. Therefore, the trade flow network of particular product with high added values can be regarded as value chains. The problem is weather we can discriminate between these products from their unique flow network structure? This paper applies the flow analysis method developed in ecology to 638 trading flow networks of different products. We claim that the allometric scaling exponent η can be used to characterize the degree of hierarchicality of a flow network, i.e., whether the trading products flow on long hierarchical chains. Then, it is pointed out that the flow networks of products with higher added values and complexity like machinary, transport equipment etc. have larger exponents, meaning that their trade flow networks are more hierarchical. As a result, without the extra data like global input-output table, we can identify the product categories with higher complexity, and the relative importance of a country in the global value chain by the trading network solely.

  16. Hierarchicality of trade flow networks reveals complexity of products.

    Science.gov (United States)

    Shi, Peiteng; Zhang, Jiang; Yang, Bo; Luo, Jingfei

    2014-01-01

    With globalization, countries are more connected than before by trading flows, which amounts to at least 36 trillion dollars today. Interestingly, around 30-60 percents of exports consist of intermediate products in global. Therefore, the trade flow network of particular product with high added values can be regarded as value chains. The problem is weather we can discriminate between these products from their unique flow network structure? This paper applies the flow analysis method developed in ecology to 638 trading flow networks of different products. We claim that the allometric scaling exponent η can be used to characterize the degree of hierarchicality of a flow network, i.e., whether the trading products flow on long hierarchical chains. Then, it is pointed out that the flow networks of products with higher added values and complexity like machinary, transport equipment etc. have larger exponents, meaning that their trade flow networks are more hierarchical. As a result, without the extra data like global input-output table, we can identify the product categories with higher complexity, and the relative importance of a country in the global value chain by the trading network solely.

  17. Hierarchicality of Trade Flow Networks Reveals Complexity of Products

    Science.gov (United States)

    Shi, Peiteng; Zhang, Jiang; Yang, Bo; Luo, Jingfei

    2014-01-01

    With globalization, countries are more connected than before by trading flows, which amounts to at least trillion dollars today. Interestingly, around percents of exports consist of intermediate products in global. Therefore, the trade flow network of particular product with high added values can be regarded as value chains. The problem is weather we can discriminate between these products from their unique flow network structure? This paper applies the flow analysis method developed in ecology to 638 trading flow networks of different products. We claim that the allometric scaling exponent can be used to characterize the degree of hierarchicality of a flow network, i.e., whether the trading products flow on long hierarchical chains. Then, it is pointed out that the flow networks of products with higher added values and complexity like machinary, transport equipment etc. have larger exponents, meaning that their trade flow networks are more hierarchical. As a result, without the extra data like global input-output table, we can identify the product categories with higher complexity, and the relative importance of a country in the global value chain by the trading network solely. PMID:24905753

  18. Music analysis and Kolmogorov complexity

    OpenAIRE

    Meredith, David

    2012-01-01

    The goal of music analysis is to find the most satisfying explanations for musical works. It is proposed that this can best be achieved by attempting to write computer programs that are as short as possible and that generate representations that are as detailed as possible of the music to be explained. The theory of Kolmogorov complexity suggests that the length of such a program can be used as a measure of the complexity of the analysis that it represents. The analyst therefore needs a way t...

  19. Monosomic analysis reveals duplicated chromosomal segments in ...

    Indian Academy of Sciences (India)

    Monosomic analysis reveals duplicated chromosomal segments in maize genome. MAHESH C. YADAV1,2∗, J. K. S. ... cated chromosomal segments in maize genome. Materials and methods. Development and .... each in chromosomes 2 and 7, while 10 other pairs of du- plicate loci had one copy in chromosome 3 and the ...

  20. Genomics analysis of genes expressed reveals differential ...

    African Journals Online (AJOL)

    Genomics analysis of genes expressed reveals differential responses to low chronic nitrogen stress in maize. ... Most induced clones were largely involved in various metabolism processes including physiological process, organelle regulation of biological process, nutrient reservoir activity, transcription regulator activity and ...

  1. Determination of a complex crystal structure in the absence of single crystals: analysis of powder X-ray diffraction data, guided by solid-state NMR and periodic DFT calculations, reveals a new 2'-deoxyguanosine structural motif.

    Science.gov (United States)

    Hughes, Colan E; Reddy, G N Manjunatha; Masiero, Stefano; Brown, Steven P; Williams, P Andrew; Harris, Kenneth D M

    2017-05-01

    Derivatives of guanine exhibit diverse supramolecular chemistry, with a variety of distinct hydrogen-bonding motifs reported in the solid state, including ribbons and quartets, which resemble the G-quadruplex found in nucleic acids with sequences rich in guanine. Reflecting this diversity, the solid-state structural properties of 3',5'-bis- O -decanoyl-2'-deoxyguanosine, reported in this paper, reveal a hydrogen-bonded guanine ribbon motif that has not been observed previously for 2'-deoxyguanosine derivatives. In this case, structure determination was carried out directly from powder XRD data, representing one of the most challenging organic molecular structures (a 90-atom molecule) that has been solved to date by this technique. While specific challenges were encountered in the structure determination process, a successful outcome was achieved by augmenting the powder XRD analysis with information derived from solid-state NMR data and with dispersion-corrected periodic DFT calculations for structure optimization. The synergy of experimental and computational methodologies demonstrated in the present work is likely to be an essential feature of strategies to further expand the application of powder XRD as a technique for structure determination of organic molecular materials of even greater complexity in the future.

  2. From real to complex analysis

    CERN Document Server

    Dyer, R H

    2014-01-01

    The purpose of this book is to provide an integrated course in real and complex analysis for those who have already taken a preliminary course in real analysis. It particularly emphasises the interplay between analysis and topology. Beginning with the theory of the Riemann integral (and its improper extension) on the real line, the fundamentals of metric spaces are then developed, with special attention being paid to connectedness, simple connectedness and various forms of homotopy. The final chapter develops the theory of complex analysis, in which emphasis is placed on the argument, the winding number, and a general (homology) version of Cauchy's theorem which is proved using the approach due to Dixon. Special features are the inclusion of proofs of Montel's theorem, the Riemann mapping theorem and the Jordan curve theorem that arise naturally from the earlier development. Extensive exercises are included in each of the chapters, detailed solutions of the majority of which are given at the end. From Real to...

  3. Natural Product Screening Reveals Naphthoquinone Complex I Bypass Factors.

    Directory of Open Access Journals (Sweden)

    Scott B Vafai

    Full Text Available Deficiency of mitochondrial complex I is encountered in both rare and common diseases, but we have limited therapeutic options to treat this lesion to the oxidative phosphorylation system (OXPHOS. Idebenone and menadione are redox-active molecules capable of rescuing OXPHOS activity by engaging complex I-independent pathways of entry, often referred to as "complex I bypass." In the present study, we created a cellular model of complex I deficiency by using CRISPR genome editing to knock out Ndufa9 in mouse myoblasts, and utilized this cell line to develop a high-throughput screening platform for novel complex I bypass factors. We screened a library of ~40,000 natural product extracts and performed bioassay-guided fractionation on a subset of the top scoring hits. We isolated four plant-derived 1,4-naphthoquinone complex I bypass factors with structural similarity to menadione: chimaphilin and 3-chloro-chimaphilin from Chimaphila umbellata and dehydro-α-lapachone and dehydroiso-α-lapachone from Stereospermum euphoroides. We also tested a small number of structurally related naphthoquinones from commercial sources and identified two additional compounds with complex I bypass activity: 2-methoxy-1,4-naphthoquinone and 2-methoxy-3-methyl-1,4,-naphthoquinone. The six novel complex I bypass factors reported here expand this class of molecules and will be useful as tool compounds for investigating complex I disease biology.

  4. A theoretical lens for revealing the complexity of chronic care

    NARCIS (Netherlands)

    Borgermans, L.; de Maeseneer, J.; Wollersheim, H.; Vrijhoef, H.J.M.; Devroey, D.

    2013-01-01

    The increasing prevalence of co-occurring multiple chronic conditions in an aging population has influenced the debate on complexity in chronic care and nowadays provides an impetus to the reform of numerous health systems. This article presents a theoretical lens for understanding the complexity of

  5. Principles of assembly reveal a periodic table of protein complexes.

    Science.gov (United States)

    Ahnert, Sebastian E; Marsh, Joseph A; Hernández, Helena; Robinson, Carol V; Teichmann, Sarah A

    2015-12-11

    Structural insights into protein complexes have had a broad impact on our understanding of biological function and evolution. In this work, we sought a comprehensive understanding of the general principles underlying quaternary structure organization in protein complexes. We first examined the fundamental steps by which protein complexes can assemble, using experimental and structure-based characterization of assembly pathways. Most assembly transitions can be classified into three basic types, which can then be used to exhaustively enumerate a large set of possible quaternary structure topologies. These topologies, which include the vast majority of observed protein complex structures, enable a natural organization of protein complexes into a periodic table. On the basis of this table, we can accurately predict the expected frequencies of quaternary structure topologies, including those not yet observed. These results have important implications for quaternary structure prediction, modeling, and engineering. Copyright © 2015, American Association for the Advancement of Science.

  6. Complex Wavelet Based Modulation Analysis

    DEFF Research Database (Denmark)

    Luneau, Jean-Marc; Lebrun, Jérôme; Jensen, Søren Holdt

    2008-01-01

    Low-frequency modulation of sound carry important information for speech and music. The modulation spectrum i commonly obtained by spectral analysis of the sole temporal envelopes of the sub-bands out of a time-frequency analysis. Processing in this domain usually creates undesirable distortions...... polynomial trends. Moreover an analytic Hilbert-like transform is possible with complex wavelets implemented as an orthogonal filter bank. By working in an alternative transform domain coined as “Modulation Subbands”, this transform shows very promising denoising capabilities and suggests new approaches for joint...

  7. Efficient Analysis of Complex Structures

    Science.gov (United States)

    Kapania, Rakesh K.

    2000-01-01

    Last various accomplishments achieved during this project are : (1) A Survey of Neural Network (NN) applications using MATLAB NN Toolbox on structural engineering especially on equivalent continuum models (Appendix A). (2) Application of NN and GAs to simulate and synthesize substructures: 1-D and 2-D beam problems (Appendix B). (3) Development of an equivalent plate-model analysis method (EPA) for static and vibration analysis of general trapezoidal built-up wing structures composed of skins, spars and ribs. Calculation of all sorts of test cases and comparison with measurements or FEA results. (Appendix C). (4) Basic work on using second order sensitivities on simulating wing modal response, discussion of sensitivity evaluation approaches, and some results (Appendix D). (5) Establishing a general methodology of simulating the modal responses by direct application of NN and by sensitivity techniques, in a design space composed of a number of design points. Comparison is made through examples using these two methods (Appendix E). (6) Establishing a general methodology of efficient analysis of complex wing structures by indirect application of NN: the NN-aided Equivalent Plate Analysis. Training of the Neural Networks for this purpose in several cases of design spaces, which can be applicable for actual design of complex wings (Appendix F).

  8. 454 sequencing reveals extreme complexity of the class II Major Histocompatibility Complex in the collared flycatcher

    Directory of Open Access Journals (Sweden)

    Gustafsson Lars

    2010-12-01

    Full Text Available Abstract Background Because of their functional significance, the Major Histocompatibility Complex (MHC class I and II genes have been the subject of continuous interest in the fields of ecology, evolution and conservation. In some vertebrate groups MHC consists of multiple loci with similar alleles; therefore, the multiple loci must be genotyped simultaneously. In such complex systems, understanding of the evolutionary patterns and their causes has been limited due to challenges posed by genotyping. Results Here we used 454 amplicon sequencing to characterize MHC class IIB exon 2 variation in the collared flycatcher, an important organism in evolutionary and immuno-ecological studies. On the basis of over 152,000 sequencing reads we identified 194 putative alleles in 237 individuals. We found an extreme complexity of the MHC class IIB in the collared flycatchers, with our estimates pointing to the presence of at least nine expressed loci and a large, though difficult to estimate precisely, number of pseudogene loci. Many similar alleles occurred in the pseudogenes indicating either a series of recent duplications or extensive concerted evolution. The expressed alleles showed unambiguous signals of historical selection and the occurrence of apparent interlocus exchange of alleles. Placing the collared flycatcher's MHC sequences in the context of passerine diversity revealed transspecific MHC class II evolution within the Muscicapidae family. Conclusions 454 amplicon sequencing is an effective tool for advancing our understanding of the MHC class II structure and evolutionary patterns in Passeriformes. We found a highly dynamic pattern of evolution of MHC class IIB genes with strong signals of selection and pronounced sequence divergence in expressed genes, in contrast to the apparent sequence homogenization in pseudogenes. We show that next generation sequencing offers a universal, affordable method for the characterization and, in perspective

  9. Elementary real and complex analysis

    CERN Document Server

    Shilov, Georgi E

    1996-01-01

    In this book the renowned Russian mathematician Georgi E. Shilov brings his unique perspective to real and complex analysis, an area of perennial interest in mathematics. Although there are many books available on the topic, the present work is specially designed for undergraduates in mathematics, science and engineering. A high level of mathematical sophistication is not required.The book begins with a systematic study of real numbers, understood to be a set of objects satisfying certain definite axioms. The concepts of a mathematical structure and an isomorphism are introduced in Chapter 2,

  10. Structural Analysis of Complex Networks

    CERN Document Server

    Dehmer, Matthias

    2011-01-01

    Filling a gap in literature, this self-contained book presents theoretical and application-oriented results that allow for a structural exploration of complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems. Applications to biology, chemistry, linguistics, and data analysis are emphasized. The book is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science,

  11. Comparative Analysis of VNSA Complex Engineering Efforts

    Directory of Open Access Journals (Sweden)

    Gary Ackerman

    2016-03-01

    Full Text Available The case studies undertaken in this special issue demonstrate unequivocally that, despite being forced to operate clandestinely and facing the pressures of security forces seeking to hunt them down and neutralize them, at least a subset of violent non-state actors (VNSAs are capable of some genuinely impressive feats of engineering. At the same time, success in such endeavours is not guaranteed and VNSAs will undoubtedly face a number of obstacles along the way. A comparative analysis of the cases also reveals new insights about the factors influencing the decision to pursue complex engineering efforts, the implementation of such decisions and the determinants of the ultimate outcome. These result in a set of hypotheses and indicators that, if confirmed by future research, can contribute to both operational and strategic intelligence assessments. Overall, the current study enriches our understanding of how and why VNSAs might engage in complex engineering efforts.

  12. The Capsaspora genome reveals a complex unicellular prehistory of animals.

    Science.gov (United States)

    Suga, Hiroshi; Chen, Zehua; de Mendoza, Alex; Sebé-Pedrós, Arnau; Brown, Matthew W; Kramer, Eric; Carr, Martin; Kerner, Pierre; Vervoort, Michel; Sánchez-Pons, Núria; Torruella, Guifré; Derelle, Romain; Manning, Gerard; Lang, B Franz; Russ, Carsten; Haas, Brian J; Roger, Andrew J; Nusbaum, Chad; Ruiz-Trillo, Iñaki

    2013-01-01

    To reconstruct the evolutionary origin of multicellular animals from their unicellular ancestors, the genome sequences of diverse unicellular relatives are essential. However, only the genome of the choanoflagellate Monosiga brevicollis has been reported to date. Here we completely sequence the genome of the filasterean Capsaspora owczarzaki, the closest known unicellular relative of metazoans besides choanoflagellates. Analyses of this genome alter our understanding of the molecular complexity of metazoans' unicellular ancestors showing that they had a richer repertoire of proteins involved in cell adhesion and transcriptional regulation than previously inferred only with the choanoflagellate genome. Some of these proteins were secondarily lost in choanoflagellates. In contrast, most intercellular signalling systems controlling development evolved later concomitant with the emergence of the first metazoans. We propose that the acquisition of these metazoan-specific developmental systems and the co-option of pre-existing genes drove the evolutionary transition from unicellular protists to metazoans.

  13. Gastrin release: Antrum microdialysis reveals a complex neural control

    DEFF Research Database (Denmark)

    Ericsson, P; Håkanson, R; Rehfeld, Jens F.

    2010-01-01

    We used microdialysis to monitor local gastrin release in response to food, acid blockade and acute vagal excitation. For the first time, gastrin release has been monitored continuously in intact conscious rats in a physiologically relevant experimental setting in a fashion that minimizes...... the gastrin concentration in blood as well as microdialysate. The high gastrin concentration following omeprazole treatment was not affected by vagotomy. Vagal excitation stimulated the G cells: electrical vagal stimulation and pylorus ligation (fasted rats) raised the gastrin concentration transiently...... that the vagus has not only a prompt stimulatory but also a slow inhibitory effect on gastrin release. 2) Although vagal denervation did not affect the gastrin response to anacidity, the TTX experiments revealed that both food-evoked and anacidity-evoked gastrin release depends on neural input....

  14. Gastrin release: Antrum microdialysis reveals a complex neural control

    DEFF Research Database (Denmark)

    Ericsson, P; Håkanson, R; Rehfeld, Jens F.

    2010-01-01

    that the vagus has not only a prompt stimulatory but also a slow inhibitory effect on gastrin release. 2) Although vagal denervation did not affect the gastrin response to anacidity, the TTX experiments revealed that both food-evoked and anacidity-evoked gastrin release depends on neural input.......We used microdialysis to monitor local gastrin release in response to food, acid blockade and acute vagal excitation. For the first time, gastrin release has been monitored continuously in intact conscious rats in a physiologically relevant experimental setting in a fashion that minimizes...... in both serum and microdialysate. Food intake induced a 2- to 3-fold increase in serum gastrin, while gastrin in antral microdialysate increased 10- to 15-fold. In unilaterally vagotomized rats (fasted, 3 days post-op.), food evoked a prompt peak gastrin release followed by a gradual decline on the intact...

  15. Analysis of the Crystal Structure of the ExsC.ExsE Complex Reveals Distinctive Binding Interactions of the Pseudomonas aeruginosa Type III Secretion Chaperone ExsC with ExsE and ExsD

    Energy Technology Data Exchange (ETDEWEB)

    Vogelaar, N.J.; Robinson, H.; Jing, X.; Schubot, F. D.

    2010-07-20

    Pseudomonas aeruginosa, like many Gram-negative bacterial pathogens, requires its type III secretion system (T3SS) to facilitate acute infections. In P. aeruginosa, the expression of all T3SS-related genes is regulated by the transcriptional activator ExsA. A signaling cascade involving ExsA and three additional proteins, ExsC, ExsD, and ExsE, directly ties the upregulation of ExsA-mediated transcription to the activation of the type III secretion apparatus. In order to characterize the events underlying the signaling process, the crystal structure of the T3SS chaperone ExsC in complex with its cognate effector ExsE has been determined. The structure reveals critical contacts that mediate the interactions between these two proteins. Particularly striking is the presence of two Arg-X-Val-X-Arg motifs in ExsE that form identical interactions along opposite sides of an ExsC dimer. The structure also provides insights into the interactions of ExsC with the antiactivator protein ExsD. It was shown that the amino-terminal 46 residues of ExsD are sufficient for ExsC binding. On the basis of these findings, a new model for the ExsC {center_dot} ExsD complex is proposed to explain its distinctive 2:2 stoichiometry and why ExsC displays a weaker affinity for ExsD than for ExsE.

  16. Quantitative Analysis of Dynamic Protein Interactions during Transcription Reveals a Role for Casein Kinase II in Polymerase-associated Factor (PAF) Complex Phosphorylation and Regulation of Histone H2B Monoubiquitylation.

    Science.gov (United States)

    Bedard, Lynn Glowczewski; Dronamraju, Raghuvar; Kerschner, Jenny L; Hunter, Gerald O; Axley, Elizabeth DeVlieger; Boyd, Asha K; Strahl, Brian D; Mosley, Amber L

    2016-06-24

    Using affinity purification MS approaches, we have identified a novel role for casein kinase II (CKII) in the modification of the polymerase associated factor complex (PAF-C). Our data indicate that the facilitates chromatin transcription complex (FACT) interacts with CKII and may facilitate PAF complex phosphorylation. Posttranslational modification analysis of affinity-isolated PAF-C shows extensive CKII phosphorylation of all five subunits of PAF-C, although CKII subunits were not detected as interacting partners. Consistent with this, recombinant CKII or FACT-associated CKII isolated from cells can phosphorylate PAF-C in vitro, whereas no intrinsic kinase activity was detected in PAF-C samples. Significantly, PAF-C purifications combined with stable isotope labeling in cells (SILAC) quantitation for PAF-C phosphorylation from wild-type and CKII temperature-sensitive strains (cka1Δ cka2-8) showed that PAF-C phosphorylation at consensus CKII sites is significantly reduced in cka1Δ cka2-8 strains. Consistent with a role of CKII in FACT and PAF-C function, we show that decreased CKII function in vivo results in decreased levels of histone H2B lysine 123 monoubiquitylation, a modification dependent on FACT and PAF-C. Taken together, our results define a coordinated role of CKII and FACT in the regulation of RNA polymerase II transcription through chromatin via phosphorylation of PAF-C. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Genetic networking of the Bemisia tabaci cryptic species complex reveals pattern of biological invasions.

    Directory of Open Access Journals (Sweden)

    Paul De Barro

    Full Text Available BACKGROUND: A challenge within the context of cryptic species is the delimitation of individual species within the complex. Statistical parsimony network analytics offers the opportunity to explore limits in situations where there are insufficient species-specific morphological characters to separate taxa. The results also enable us to explore the spread in taxa that have invaded globally. METHODOLOGY/PRINCIPAL FINDINGS: Using a 657 bp portion of mitochondrial cytochrome oxidase 1 from 352 unique haplotypes belonging to the Bemisia tabaci cryptic species complex, the analysis revealed 28 networks plus 7 unconnected individual haplotypes. Of the networks, 24 corresponded to the putative species identified using the rule set devised by Dinsdale et al. (2010. Only two species proposed in Dinsdale et al. (2010 departed substantially from the structure suggested by the analysis. The analysis of the two invasive members of the complex, Mediterranean (MED and Middle East - Asia Minor 1 (MEAM1, showed that in both cases only a small number of haplotypes represent the majority that have spread beyond the home range; one MEAM1 and three MED haplotypes account for >80% of the GenBank records. Israel is a possible source of the globally invasive MEAM1 whereas MED has two possible sources. The first is the eastern Mediterranean which has invaded only the USA, primarily Florida and to a lesser extent California. The second are western Mediterranean haplotypes that have spread to the USA, Asia and South America. The structure for MED supports two home range distributions, a Sub-Saharan range and a Mediterranean range. The MEAM1 network supports the Middle East - Asia Minor region. CONCLUSION/SIGNIFICANCE: The network analyses show a high level of congruence with the species identified in a previous phylogenetic analysis. The analysis of the two globally invasive members of the complex support the view that global invasion often involve very small portions of

  18. Electrochemical analysis of metal complexes

    NARCIS (Netherlands)

    Jong, de H.G.

    1987-01-01

    The present study is concerned with the electroanalytical chemistry of complexes of metals with large ligands. The main purpose was to develop quantitative descriptions of the voltammetric current-potential relation of metal complex systems with different diffusion coefficients of the

  19. Software Performs Complex Design Analysis

    Science.gov (United States)

    2008-01-01

    Designers use computational fluid dynamics (CFD) to gain greater understanding of the fluid flow phenomena involved in components being designed. They also use finite element analysis (FEA) as a tool to help gain greater understanding of the structural response of components to loads, stresses and strains, and the prediction of failure modes. Automated CFD and FEA engineering design has centered on shape optimization, which has been hindered by two major problems: 1) inadequate shape parameterization algorithms, and 2) inadequate algorithms for CFD and FEA grid modification. Working with software engineers at Stennis Space Center, a NASA commercial partner, Optimal Solutions Software LLC, was able to utilize its revolutionary, one-of-a-kind arbitrary shape deformation (ASD) capability-a major advancement in solving these two aforementioned problems-to optimize the shapes of complex pipe components that transport highly sensitive fluids. The ASD technology solves the problem of inadequate shape parameterization algorithms by allowing the CFD designers to freely create their own shape parameters, therefore eliminating the restriction of only being able to use the computer-aided design (CAD) parameters. The problem of inadequate algorithms for CFD grid modification is solved by the fact that the new software performs a smooth volumetric deformation. This eliminates the extremely costly process of having to remesh the grid for every shape change desired. The program can perform a design change in a markedly reduced amount of time, a process that would traditionally involve the designer returning to the CAD model to reshape and then remesh the shapes, something that has been known to take hours, days-even weeks or months-depending upon the size of the model.

  20. The complex hybrid origins of the root knot nematodes revealed through comparative genomics

    Directory of Open Access Journals (Sweden)

    David H. Lunt

    2014-05-01

    Full Text Available Root knot nematodes (RKN can infect most of the world’s agricultural crop species and are among the most important of all plant pathogens. As yet however we have little understanding of their origins or the genomic basis of their extreme polyphagy. The most damaging pathogens reproduce by obligatory mitotic parthenogenesis and it has been suggested that these species originated from interspecific hybridizations between unknown parental taxa. We have sequenced the genome of the diploid meiotic parthenogen Meloidogyne floridensis, and use a comparative genomic approach to test the hypothesis that this species was involved in the hybrid origin of the tropical mitotic parthenogen Meloidogyne incognita. Phylogenomic analysis of gene families from M. floridensis, M. incognita and an outgroup species Meloidogyne hapla was carried out to trace the evolutionary history of these species’ genomes, and we demonstrate that M. floridensis was one of the parental species in the hybrid origins of M. incognita. Analysis of the M. floridensis genome itself revealed many gene loci present in divergent copies, as they are in M. incognita, indicating that it too had a hybrid origin. The triploid M. incognita is shown to be a complex double-hybrid between M. floridensis and a third, unidentified, parent. The agriculturally important RKN have very complex origins involving the mixing of several parental genomes by hybridization and their extreme polyphagy and success in agricultural environments may be related to this hybridization, producing transgressive variation on which natural selection can act. It is now clear that studying RKN variation via individual marker loci may fail due to the species’ convoluted origins, and multi-species population genomics is essential to understand the hybrid diversity and adaptive variation of this important species complex. This comparative genomic analysis provides a compelling example of the importance and complexity of

  1. An introduction to complex analysis and geometry

    CERN Document Server

    D'Angelo, John P

    2010-01-01

    An Introduction to Complex Analysis and Geometry provides the reader with a deep appreciation of complex analysis and how this subject fits into mathematics. The book developed from courses given in the Campus Honors Program at the University of Illinois Urbana-Champaign. These courses aimed to share with students the way many mathematics and physics problems magically simplify when viewed from the perspective of complex analysis. The book begins at an elementary level but also contains advanced material. The first four chapters provide an introduction to complex analysis with many elementary

  2. Transmitter receptors reveal segregation of the arcopallium/amygdala complex in pigeons (Columba livia).

    Science.gov (United States)

    Herold, Christina; Paulitschek, Christina; Palomero-Gallagher, Nicola; Güntürkün, Onur; Zilles, Karl

    2018-02-15

    At the beginning of the 20th century it was suggested that a complex group of nuclei in the avian posterior ventral telencephalon is comparable to the mammalian amygdala. Subsequent findings, however, revealed that most of these structures share premotor characteristics, while some indeed constitute the avian amygdala. These developments resulted in 2004 in a change of nomenclature of these nuclei, which from then on were named arcopallial or amygdala nuclei and referred to as the arcopallium/amygdala complex. The structural basis for the similarities between avian and mammalian arcopallial and amygdala subregions is poorly understood. Therefore, we analyzed binding site densities for glutamatergic AMPA, NMDA and kainate, GABAergic GABA A , muscarinic M 1 , M 2 and nicotinic acetylcholine (nACh; α 4 β 2 subtype), noradrenergic α 1 and α 2 , serotonergic 5-HT 1A and dopaminergic D 1/5 receptors using quantitative in vitro receptor autoradiography combined with a detailed analysis of the cyto- and myelo-architecture. Our approach supports a segregation of the pigeon's arcopallium/amygdala complex into the following subregions: the arcopallium anterius (AA), the arcopallium ventrale (AV), the arcopallium dorsale (AD), the arcopallium intermedium (AI), the arcopallium mediale (AM), the arcopallium posterius (AP), the nucleus posterioris amygdalopallii pars basalis (PoAb) and pars compacta (PoAc), the nucleus taeniae amgygdalae (TnA) and the area subpallialis amygdalae (SpA). Some of these subregions showed further subnuclei and each region of the arcopallium/amygdala complex are characterized by a distinct multi-receptor density expression. Here we provide a new detailed map of the pigeon's arcopallium/amygdala complex and compare the receptor architecture of the subregions to their possible mammalian counterparts. © 2017 Wiley Periodicals, Inc.

  3. On the Complexity of Numerical Analysis

    DEFF Research Database (Denmark)

    Miltersen, Peter Bro; Kjeldgaard-Pedersen, Johan; Burgisser, Peter

    2006-01-01

    We study two quite different approaches to understanding the complexity of fundamental problems in numerical analysis. We show that both hinge on the question of understanding the complexity of the following problem, which we call PosSLP: Given a division-free straight-line program producing...... of classical complexity classes) being PSPACE....

  4. Harmonic and complex analysis in several variables

    CERN Document Server

    Krantz, Steven G

    2017-01-01

    Authored by a ranking authority in harmonic analysis of several complex variables, this book embodies a state-of-the-art entrée at the intersection of two important fields of research: complex analysis and harmonic analysis. Written with the graduate student in mind, it is assumed that the reader has familiarity with the basics of complex analysis of one and several complex variables as well as with real and functional analysis. The monograph is largely self-contained and develops the harmonic analysis of several complex variables from the first principles. The text includes copious examples, explanations, an exhaustive bibliography for further reading, and figures that illustrate the geometric nature of the subject. Each chapter ends with an exercise set. Additionally, each chapter begins with a prologue, introducing the reader to the subject matter that follows; capsules presented in each section give perspective and a spirited launch to the segment; preludes help put ideas into context. Mathematicians and...

  5. Ten papers on complex analysis

    CERN Document Server

    Arakelyan, N U; Krushkal', S L; Gutlyanskii, V Ya; Kudyavin, V S

    1984-01-01

    The papers in this volume cover both one-variable and several-variable problems. An example of the former is a fifty-year-old classic on conformal mapping by M. A. Lavrent€´ev, while the latter is represented by a paper on the tangent complex of an analytic space by V. P. Palamodov.

  6. Revealing the Structural Complexity of Component Interactions of Topic-Specific PCK when Planning to Teach

    Science.gov (United States)

    Mavhunga, Elizabeth

    2018-04-01

    Teaching pedagogical content knowledge (PCK) at a topic-specific level requires clarity on the content-specific nature of the components employed, as well as the specific features that bring about the desirable depth in teacher explanations. Such understanding is often hazy; yet, it influences the nature of teacher tasks and learning opportunities afforded to pre-service teachers in a teaching program. The purpose of this study was twofold: firstly, to illuminate the emerging complexity when content-specific components of PCK interact when planning to teach a chemistry topic; and secondly, to identify the kinds of teacher tasks that promote the emergence of such complexity. Data collected were content representations (CoRes) in chemical equilibrium accompanied by expanded lesson outlines from 15 pre-service teachers in their final year of study towards a first degree in teaching (B Ed). The analysis involved extraction of episodes that exhibited component interaction by using a qualitative in-depth analysis method. The results revealed the structure in which the components of PCK in a topic interact among each other to be linear, interwoven, or a combination of the two. The interwoven interactions contained multiple components that connected explanations on different aspects of a concept, all working in a complementary manner. The most sophisticated component interactions emerged from teacher tasks on descriptions of a lesson sequence and a summary of a lesson. Recommendations in this study highlight core practices for making pedagogical transformation of topic content knowledge more accessible.

  7. Static Complexity Analysis of Higher Order Programs

    DEFF Research Database (Denmark)

    Avery, James Emil; Kristiansen, Lars; Moyen, Jean-Yves

    2009-01-01

    The overall goal of the research presented in this paper is to find^Mautomatic methods for static complexity analysis of higher order^Mprograms.......The overall goal of the research presented in this paper is to find^Mautomatic methods for static complexity analysis of higher order^Mprograms....

  8. Quantitative interactome analysis reveals a chemoresistant edgotype.

    Science.gov (United States)

    Chavez, Juan D; Schweppe, Devin K; Eng, Jimmy K; Zheng, Chunxiang; Taipale, Alex; Zhang, Yiyi; Takara, Kohji; Bruce, James E

    2015-08-03

    Chemoresistance is a common mode of therapy failure for many cancers. Tumours develop resistance to chemotherapeutics through a variety of mechanisms, with proteins serving pivotal roles. Changes in protein conformations and interactions affect the cellular response to environmental conditions contributing to the development of new phenotypes. The ability to understand how protein interaction networks adapt to yield new function or alter phenotype is limited by the inability to determine structural and protein interaction changes on a proteomic scale. Here, chemical crosslinking and mass spectrometry were employed to quantify changes in protein structures and interactions in multidrug-resistant human carcinoma cells. Quantitative analysis of the largest crosslinking-derived, protein interaction network comprising 1,391 crosslinked peptides allows for 'edgotype' analysis in a cell model of chemoresistance. We detect consistent changes to protein interactions and structures, including those involving cytokeratins, topoisomerase-2-alpha, and post-translationally modified histones, which correlate with a chemoresistant phenotype.

  9. Smoothed analysis of complex conic condition numbers

    OpenAIRE

    Buergisser, Peter; Cucker, Felipe; Lotz, Martin

    2006-01-01

    Smoothed analysis of complexity bounds and condition numbers has been done, so far, on a case by case basis. In this paper we consider a reasonably large class of condition numbers for problems over the complex numbers and we obtain smoothed analysis estimates for elements in this class depending only on geometric invariants of the corresponding sets of ill-posed inputs. These estimates are for a version of smoothed analysis proposed in this paper which, to the best of our knowledge, appears ...

  10. The laminA/NF-Y protein complex reveals an unknown transcriptional mechanism on cell proliferation.

    Science.gov (United States)

    Cicchillitti, Lucia; Manni, Isabella; Mancone, Carmine; Regazzo, Giulia; Spagnuolo, Manuela; Alonzi, Tonino; Carlomosti, Fabrizio; Dell'Anna, Maria Lucia; Dell'Omo, Giulia; Picardo, Mauro; Ciana, Paolo; Capogrossi, Maurizio C; Tripodi, Marco; Magenta, Alessandra; Rizzo, Maria Giulia; Gurtner, Aymone; Piaggio, Giulia

    2017-01-10

    Lamin A is a component of the nuclear matrix that also controls proliferation by largely unknown mechanisms. NF-Y is a ubiquitous protein involved in cell proliferation composed of three subunits (-YA -YB -YC) all required for the DNA binding and transactivation activity. To get clues on new NF-Y partner(s) we performed a mass spectrometry screening of proteins that co-precipitate with the regulatory subunit of the complex, NF-YA. By this screening we identified lamin A as a novel putative NF-Y interactor. Co-immunoprecipitation experiments and confocal analysis confirmed the interaction between the two endogenous proteins. Interestingly, this association occurs on euchromatin regions, too. ChIP experiments demonstrate lamin A enrichment in several promoter regions of cell cycle related genes in a NF-Y dependent manner. Gain and loss of function experiments reveal that lamin A counteracts NF-Y transcriptional activity. Taking advantage of a recently generated transgenic reporter mouse, called MITO-Luc, in which an NF-Y-dependent promoter controls luciferase expression, we demonstrate that lamin A counteracts NF-Y transcriptional activity not only in culture cells but also in living animals. Altogether, our data demonstrate the occurrence of lamin A/NF-Y interaction and suggest a possible role of this protein complex in regulation of NF-Y function in cell proliferation.

  11. Invariant distances and metrics in complex analysis

    CERN Document Server

    Jarnicki, Marek

    2013-01-01

    As in the field of ""Invariant Distances and Metrics in Complex Analysis"" there was and is a continuous progress this is the second extended edition of the corresponding monograph. This comprehensive book is about the study of invariant pseudodistances (non-negative functions on pairs of points) and pseudometrics (non-negative functions on the tangent bundle) in several complex variables. It is an overview over a highly active research area at the borderline between complex analysis, functional analysis and differential geometry. New chapters are covering the Wu, Bergman and several other met

  12. Linear and complex analysis problem

    CERN Document Server

    Nikolski, Nikolai

    1994-01-01

    The 2-volume book is an updated, reorganized and considerably enlarged version of the previous edition of the Research Problem Book in Analysis (LNM 1043), a collection familiar to many analysts, that has sparked off much research. This new edition, created in a joint effort by a large team of analysts, is, like its predecessor, a collection of unsolved problems of modern analysis designed as informally written mini-articles, each containing not only a statement of a problem but also historical and methodological comments, motivation, conjectures and discussion of possible connections, of plausible approaches as well as a list of references. There are now 342 of these mini- articles, almost twice as many as in the previous edition, despite the fact that a good deal of them have been solved!

  13. Linear and complex analysis problem

    CERN Document Server

    Nikolski, Nikolai

    1994-01-01

    The 2-volume-book is an updated, reorganized and considerably enlarged version of the previous edition of the Research Problem Book in Analysis (LNM 1043), a collection familiar to many analysts, that has sparked off much research. This new edition, created in a joint effort by a large team of analysts, is, like its predecessor, a collection of unsolved problems of modern analysis designed as informally written mini-articles, each containing not only a statement of a problem but also historical and metho- dological comments, motivation, conjectures and discussion of possible connections, of plausible approaches as well as a list of references. There are now 342 of these mini- articles, almost twice as many as in the previous edition, despite the fact that a good deal of them have been solved!

  14. Safety analysis for complex systems

    Science.gov (United States)

    Onesty, J. P.; Peercy, R. L., Jr.

    1981-01-01

    Operational risk assessment considers hardware, environment, and human factors. Technique starts with division of postulated mission into segments which are further subdivided into separate operational steps. Consequences of steps, nonoccurrence, premature operation, out-of-sequence operation, and inadvertent execution are examined at subevent, event, and phase levels. Hazards are identified and treated individually. Analysis is well suited to application in energy and transportation fields.

  15. Complex profitability analysis of fixed tangible assets

    OpenAIRE

    Mackevičius, J.; Subačienė, R.; Senkus, K.

    2012-01-01

    Analysis is the main tool for evaluation of an enterprise state and for decision making process according to the results of analysis. The article presents analysis of the level of fixed assets profitability; evaluation of factors, which influence the profit-ability of fixed tangible assets; analysis of relationship between profitability and other ratios. Authors of the article propose com-plex profitability analysis of fixed tangible assets approach, which would enable managers to use more ef...

  16. Integrative Genomic Analysis of Complex traits

    DEFF Research Database (Denmark)

    Ehsani, Ali Reza

    expression, and metabolite abundance of more and more populations in a multitude of invironments. However, a solid model for including all of this complex information in one analysis, to disentangle genetic variation and the underlying genetic architecture of complex traits and diseases, has not yet been...

  17. Automated analysis of complex data

    Science.gov (United States)

    Saintamant, Robert; Cohen, Paul R.

    1994-01-01

    We have examined some of the issues involved in automating exploratory data analysis, in particular the tradeoff between control and opportunism. We have proposed an opportunistic planning solution for this tradeoff, and we have implemented a prototype, Igor, to test the approach. Our experience in developing Igor was surprisingly smooth. In contrast to earlier versions that relied on rule representation, it was straightforward to increment Igor's knowledge base without causing the search space to explode. The planning representation appears to be both general and powerful, with high level strategic knowledge provided by goals and plans, and the hooks for domain-specific knowledge are provided by monitors and focusing heuristics.

  18. A complex analysis problem book

    CERN Document Server

    Alpay, Daniel

    2016-01-01

    This second edition presents a collection of exercises on the theory of analytic functions, including completed and detailed solutions. It introduces students to various applications and aspects of the theory of analytic functions not always touched on in a first course, while also addressing topics of interest to electrical engineering students (e.g., the realization of rational functions and its connections to the theory of linear systems and state space representations of such systems). It provides examples of important Hilbert spaces of analytic functions (in particular the Hardy space and the Fock space), and also includes a section reviewing essential aspects of topology, functional analysis and Lebesgue integration. Benefits of the 2nd edition Rational functions are now covered in a separate chapter. Further, the section on conformal mappings has been expanded.

  19. Substrate recognition by complement convertases revealed in the C5-cobra venom factor complex

    DEFF Research Database (Denmark)

    Laursen, Nick Stub; Andersen, Kasper Røjkjær; Braren, Ingke

    2011-01-01

    with a protease subunit (Bb or C2a). We determined the crystal structures of the C3b homologue cobra venom factor (CVF) in complex with C5, and in complex with C5 and the inhibitor SSL7 at 4.3 Å resolution. The structures reveal a parallel two-point attachment between C5 and CVF, where the presence of SSL7 only...

  20. Proteomic analysis of integrin adhesion complexes.

    Science.gov (United States)

    Byron, Adam; Humphries, Jonathan D; Bass, Mark D; Knight, David; Humphries, Martin J

    2011-04-05

    Integrin receptors regulate cell fate by coupling the binding of extracellular adhesion proteins to the assembly of intracellular cytoskeletal and signaling complexes. A detailed, integrative view of adhesion complexes will provide insight into the molecular mechanisms that control cell morphology, survival, movement, and differentiation. To date, membrane receptor-associated signaling complexes have been refractory to proteomic analysis because of their inherent lability and inaccessibility. We developed a methodology to isolate ligand-induced integrin adhesion complexes, and we used this technique to analyze the composition of complexes associated with multiple receptor-ligand pairs and define core and receptor-specific subnetworks. In particular, we identified regulator of chromosome condensation-2 (RCC2) as a component of fibronectin-activated signaling pathways that regulate directional cell movement. The development of this proteomics pipeline provides the means to investigate the molecular composition and function of various adhesion complexes.

  1. Genetic modifier screens reveal new components that interact with the Drosophila dystroglycan-dystrophin complex.

    Directory of Open Access Journals (Sweden)

    Mariya M Kucherenko

    Full Text Available The Dystroglycan-Dystrophin (Dg-Dys complex has a capacity to transmit information from the extracellular matrix to the cytoskeleton inside the cell. It is proposed that this interaction is under tight regulation; however the signaling/regulatory components of Dg-Dys complex remain elusive. Understanding the regulation of the complex is critical since defects in this complex cause muscular dystrophy in humans. To reveal new regulators of the Dg-Dys complex, we used a model organism Drosophila melanogaster and performed genetic interaction screens to identify modifiers of Dg and Dys mutants in Drosophila wing veins. These mutant screens revealed that the Dg-Dys complex interacts with genes involved in muscle function and components of Notch, TGF-beta and EGFR signaling pathways. In addition, components of pathways that are required for cellular and/or axonal migration through cytoskeletal regulation, such as Semaphorin-Plexin, Frazzled-Netrin and Slit-Robo pathways show interactions with Dys and/or Dg. These data suggest that the Dg-Dys complex and the other pathways regulating extracellular information transfer to the cytoskeletal dynamics are more intercalated than previously thought.

  2. Top-down label-free LC-MALDI analysis of the peptidome during neural progenitor cell differentiation reveals complexity in cytoskeletal protein dynamics and identifies progenitor cell markers.

    Science.gov (United States)

    Maltman, Daniel J; Brand, Sven; Belau, Eckhard; Paape, Rainer; Suckau, Detlev; Przyborski, Stefan A

    2011-10-01

    In the field of stem cell research, there is a strong requirement for the discovery of new biomarkers that more accurately define stem and progenitor cell populations, as well as their differentiated derivatives. The very-low-molecular-weight (differential abundance between undifferentiated and differentiated cultures. These proteins included major cytoskeletal components such as nestin, vimentin, and glial fibrillary acidic protein, which are all associated with neural development. Other cytoskeletal proteins identified were dihydropyrimidinase-related protein 2, prothymosin (thymosin α-1), and thymosin β-10. These findings highlight novel stem cell/progenitor cell marker candidates and demonstrate proteomic complexity, which underlies the limitations of major intermediate filament proteins long established as neural markers. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Revitalizing Complex Analysis: A Transition-to-Proof Course Centered on Complex Topics

    Science.gov (United States)

    Sachs, Robert

    2017-01-01

    A new transition course centered on complex topics would help in revitalizing complex analysis in two ways: first, provide early exposure to complex functions, sparking greater interest in the complex analysis course; second, create extra time in the complex analysis course by eliminating the "complex precalculus" part of the course. In…

  4. Multiparameter cytometric analysis of complex cellular response.

    Science.gov (United States)

    Šimečková, Šárka; Fedr, Radek; Remšík, Ján; Kahounová, Zuzana; Slabáková, Eva; Souček, Karel

    2018-02-01

    Complex analysis of cellular responses after experimental treatment is important for screening, mechanistic understanding of treatment effects, and the identification of sensitive and resistant cell phenotypes. Modern multicolor flow cytometry has demonstrated its power for such analyses. Here, we introduce a multiparametric protocol for complex analysis of cytokinetics by the simultaneous detection of seven fluorescence parameters. This analysis includes the detection of two surface markers for immunophenotyping, analysis of proliferation based on the cell cycle and the measurement of incorporated nucleoside analogue 5-ethynyl-2'-deoxyuridine (EdU) in newly synthesized DNA, analysis of DNA damage using an anti-phospho-histone H2A.X (Ser139) antibody, and determination of cell death using a fixable viability probe and intracellular detection of caspase-3 activation. To demonstrate the applicability of this protocol for the analysis of heterogeneous and complex cell responses, we used different treatments and model cell lines. We demonstrated that this protocol has the potential to provide complex and simultaneous analysis of cytokinetics and analyze the heterogeneity of the response at the single-cell level. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  5. Computational analysis of the Phanerochaete chrysosporium v2.0 genome database and mass spectrometry identiWcation of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins

    Science.gov (United States)

    Amber Vanden Wymelenberg; Patrick Minges; Grzegorz Sabat; Diego Martinez; Andrea Aerts; Asaf Salamov; Igor Grigoriev; Harris Shapiro; Nik Putnam; Paula Belinky; Carlos Dosoretz; Jill Gaskell; Phil Kersten; Dan Cullen

    2006-01-01

    The white-rot basidiomycete Phanerochaete chrysosporium employs extracellular enzymes to completely degrade the major polymers of wood: cellulose, hemicellulose, and lignin. Analysis of a total of 10,048 v2.1 gene models predicts 769 secreted proteins, a substantial increase over the 268 models identified in the earlier database (v1.0). Within the v2.1 ‘computational...

  6. A second course in complex analysis

    CERN Document Server

    Veech, William A

    2008-01-01

    A clear, self-contained treatment of important areas in complex analysis, this text is geared toward upper-level undergraduates and graduate students. The material is largely classical, with particular emphasis on the geometry of complex mappings.Author William A. Veech, the Edgar Odell Lovett Professor of Mathematics at Rice University, presents the Riemann mapping theorem as a special case of an existence theorem for universal covering surfaces. His focus on the geometry of complex mappings makes frequent use of Schwarz's lemma. He constructs the universal covering surface of an arbitrary pl

  7. Visualization and Analysis of Complex Covert Networks

    DEFF Research Database (Denmark)

    Memon, Bisharat

    This report discusses and summarize the results of my work so far in relation to my Ph.D. project entitled "Visualization and Analysis of Complex Covert Networks". The focus of my research is primarily on development of methods and supporting tools for visualization and analysis of networked......-users (intelligence analysts) in harvesting, filtering, storing, managing, structuring, mining, analyzing, interpreting, and visualizing data about offensive networks. The methods and tools proposed and discussed in this work can also be applied to analysis of more generic complex networks....... systems that are covert and hence inherently complex. My Ph.D. is positioned within the wider framework of CrimeFighter project. The framework envisions a number of key knowledge management processes that are involved in the workflow, and the toolbox provides supporting tools to assist human end...

  8. Network-based analysis of complex diseases.

    Science.gov (United States)

    Liu, Z-P; Wang, Y; Zhang, X-S; Chen, L

    2012-02-01

    Complex diseases are commonly believed to be caused by the breakdown of several correlated genes rather than individual genes. The availability of genome-wide data of high-throughput experiments provides us with new opportunity to explore this hypothesis by analysing the disease-related biomolecular networks, which are expected to bridge genotypes and disease phenotypes and further reveal the biological mechanisms of complex diseases. In this study, the authors review the existing network biology efforts to study complex diseases, such as breast cancer, diabetes and Alzheimer's disease, using high-throughput data and computational tools. Specifically, the authors categorise these existing methods into several classes based on the research topics, that is, disease genes, dysfunctional pathways, network signatures and drug-target networks. The authors also summarise the pros and cons of those methods from both computation and application perspectives, and further discuss research trends and future topics of this promising field.

  9. Mathematical Analysis of Evolution, Information, and Complexity

    CERN Document Server

    Arendt, Wolfgang

    2009-01-01

    Mathematical Analysis of Evolution, Information, and Complexity deals with the analysis of evolution, information and complexity. The time evolution of systems or processes is a central question in science, this text covers a broad range of problems including diffusion processes, neuronal networks, quantum theory and cosmology. Bringing together a wide collection of research in mathematics, information theory, physics and other scientific and technical areas, this new title offers elementary and thus easily accessible introductions to the various fields of research addressed in the book.

  10. Splice variants of the relaxin and INSL3 receptors reveal unanticipated molecular complexity.

    Science.gov (United States)

    Muda, Marco; He, Chaomei; Martini, Paolo G V; Ferraro, Tania; Layfield, Sharon; Taylor, Deanne; Chevrier, Colette; Schweickhardt, Rene; Kelton, Christie; Ryan, Peter L; Bathgate, Ross A D

    2005-08-01

    LGR7 and LGR8 are G protein-coupled receptors that belong to the leucine-rich repeat-containing G-protein coupled receptor (LGR) family, including the thyroid-stimulating hormone (TSH), LH and FSH receptors. LGR7 and LGR8 stimulate cAMP production upon binding of the cognate ligands, relaxin and insulin-like peptide 3 (INSL3), respectively. We cloned several novel splice variants of both LGR7 and LGR8 and analysed the function of four variants. LGR7.1 is a truncated receptor, including only the N-terminal region of the receptor and two leucine rich repeats. In contrast, LGR7.2, LGR7.10 and LGR 8.1 all contain an intact seven transmembrane domain and most of the extracellular region, lacking only one or two exons in the ectodomain. Our analysis demonstrates that although LGR7.10 and LGR8.1 are expressed at the cell surface, LGR7.2 is predominantly retained within cells and LGR7.1 is partially secreted. mRNA expression analysis revealed that several variants are co-expressed in various tissues. None of these variants were able to stimulate cAMP production following relaxin or INSL3 treatment. Unexpectedly, we did not detect any direct specific relaxin or INSL3 binding on any of the splice variants. The large number of receptor splice variants identified suggests an unforeseen complexity in the physiology of this novel hormone-receptor system.

  11. Stem cankers on sunflower (Helianthus annuus) in Australia reveal a complex of pathogenic Diaporthe (Phomopsis) species

    NARCIS (Netherlands)

    Thompson, S.M.; Tan, Y.P.; Young, A.J.; Neate, S.M.; Aitken, E.A.B.; Shivas, R.G.

    2012-01-01

    The identification of Diaporthe (anamorph Phomopsis) species associated with stem canker of sunflower (Helianthus annuus) in Australia was studied using morphology, DNA sequence analysis and pathology. Phylogenetic analysis revealed three clades that did not correspond with known taxa, and these are

  12. Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome

    DEFF Research Database (Denmark)

    Zhang, Guojie; Guo, Guangwu; Hu, Xueda

    2010-01-01

    fusion events are more common than expected. In-depth analysis revealed a multitude of fusion transcripts that might be by-products of alternative splicing. Validation and chimeric transcript structural analysis provided evidence that some of these transcripts are likely to be functional in the cell...

  13. On the complexity of numerical analysis

    DEFF Research Database (Denmark)

    Miltersen, Peter Bro; Allender, Eric; Burgisser, Peter

    2009-01-01

    We study two quite different approaches to understanding the complexity of fundamental problems in numerical analysis: • The Blum-Shub-Smale model of computation over the reals. • A problem we call the “Generic Task of Numerical Computation,” which captures an aspect of doing numerical computation...... in floating point, similar to the “long exponent model” that has been studied in the numerical computing community. We show that both of these approaches hinge on the question of understanding the complexity of the following problem, which we call PosSLP: Given a division-free straight-line program producing...... Salesman Problem lies in the counting hierarchy – the previous best upper bound for this important problem (in terms of classical complexity classes) being PSPACE. In the course of developing the context for our results on arithmetic circuits, we present some new observations on the complexity of ACIT...

  14. Using Modules in Teaching Complex Analysis

    Science.gov (United States)

    Kinney, William M.

    2017-01-01

    Educational modules can play an important part in revitalizing the teaching and learning of complex analysis. At the Westmont College workshop on the subject in June 2014, time was spent generating ideas and creating structures for module proposals. Sharing some of those ideas and giving a few example modules is the main purpose of this paper. The…

  15. Meta-Analysis of Complex Interventions.

    Science.gov (United States)

    Tanner-Smith, Emily E; Grant, Sean

    2018-04-01

    Meta-analysis is a prominent method for estimating the effects of public health interventions, yet these interventions are often complex in ways that pose challenges to using conventional meta-analytic methods. This article discusses meta-analytic techniques that can be used in research syntheses on the effects of complex public health interventions. We first introduce the use of complexity frameworks to conceptualize public health interventions. We then present a menu of meta-analytic procedures for addressing various sources of complexity when answering questions about the effects of public health interventions in research syntheses. We conclude with a review of important practices and key resources for conducting meta-analyses on complex interventions, as well as future directions for research synthesis more generally. Overall, we argue that it is possible to conduct meaningful quantitative syntheses of research on the effects of public health interventions, though these meta-analyses may require the use of advanced techniques to properly consider and attend to issues of complexity.

  16. Intentional risk management through complex networks analysis

    CERN Document Server

    Chapela, Victor; Moral, Santiago; Romance, Miguel

    2015-01-01

    This book combines game theory and complex networks to examine intentional technological risk through modeling. As information security risks are in constant evolution,  the methodologies and tools to manage them must evolve to an ever-changing environment. A formal global methodology is explained  in this book, which is able to analyze risks in cyber security based on complex network models and ideas extracted from the Nash equilibrium. A risk management methodology for IT critical infrastructures is introduced which provides guidance and analysis on decision making models and real situations. This model manages the risk of succumbing to a digital attack and assesses an attack from the following three variables: income obtained, expense needed to carry out an attack, and the potential consequences for an attack. Graduate students and researchers interested in cyber security, complex network applications and intentional risk will find this book useful as it is filled with a number of models, methodologies a...

  17. Metrical and dynamical aspects in complex analysis

    CERN Document Server

    2017-01-01

    The central theme of this reference book is the metric geometry of complex analysis in several variables. Bridging a gap in the current literature, the text focuses on the fine behavior of the Kobayashi metric of complex manifolds and its relationships to dynamical systems, hyperbolicity in the sense of Gromov and operator theory, all very active areas of research. The modern points of view expressed in these notes, collected here for the first time, will be of interest to academics working in the fields of several complex variables and metric geometry. The different topics are treated coherently and include expository presentations of the relevant tools, techniques and objects, which will be particularly useful for graduate and PhD students specializing in the area.

  18. Analysis of complex networks using aggressive abstraction.

    Energy Technology Data Exchange (ETDEWEB)

    Colbaugh, Richard; Glass, Kristin.; Willard, Gerald

    2008-10-01

    This paper presents a new methodology for analyzing complex networks in which the network of interest is first abstracted to a much simpler (but equivalent) representation, the required analysis is performed using the abstraction, and analytic conclusions are then mapped back to the original network and interpreted there. We begin by identifying a broad and important class of complex networks which admit abstractions that are simultaneously dramatically simplifying and property preserving we call these aggressive abstractions -- and which can therefore be analyzed using the proposed approach. We then introduce and develop two forms of aggressive abstraction: 1.) finite state abstraction, in which dynamical networks with uncountable state spaces are modeled using finite state systems, and 2.) onedimensional abstraction, whereby high dimensional network dynamics are captured in a meaningful way using a single scalar variable. In each case, the property preserving nature of the abstraction process is rigorously established and efficient algorithms are presented for computing the abstraction. The considerable potential of the proposed approach to complex networks analysis is illustrated through case studies involving vulnerability analysis of technological networks and predictive analysis for social processes.

  19. Micro-macro analysis of complex networks.

    Science.gov (United States)

    Marchiori, Massimo; Possamai, Lino

    2015-01-01

    Complex systems have attracted considerable interest because of their wide range of applications, and are often studied via a "classic" approach: study a specific system, find a complex network behind it, and analyze the corresponding properties. This simple methodology has produced a great deal of interesting results, but relies on an often implicit underlying assumption: the level of detail on which the system is observed. However, in many situations, physical or abstract, the level of detail can be one out of many, and might also depend on intrinsic limitations in viewing the data with a different level of abstraction or precision. So, a fundamental question arises: do properties of a network depend on its level of observability, or are they invariant? If there is a dependence, then an apparently correct network modeling could in fact just be a bad approximation of the true behavior of a complex system. In order to answer this question, we propose a novel micro-macro analysis of complex systems that quantitatively describes how the structure of complex networks varies as a function of the detail level. To this extent, we have developed a new telescopic algorithm that abstracts from the local properties of a system and reconstructs the original structure according to a fuzziness level. This way we can study what happens when passing from a fine level of detail ("micro") to a different scale level ("macro"), and analyze the corresponding behavior in this transition, obtaining a deeper spectrum analysis. The obtained results show that many important properties are not universally invariant with respect to the level of detail, but instead strongly depend on the specific level on which a network is observed. Therefore, caution should be taken in every situation where a complex network is considered, if its context allows for different levels of observability.

  20. Crystal structure of TAZ-TEAD complex reveals a distinct interaction mode from that of YAP-TEAD complex.

    Science.gov (United States)

    Kaan, Hung Yi Kristal; Chan, Siew Wee; Tan, Siew Kim Joyce; Guo, Fusheng; Lim, Chun Jye; Hong, Wanjin; Song, Haiwei

    2017-05-17

    The Hippo pathway is a tumor suppressor pathway that is implicated in the regulation of organ size. The pathway has three components: the upstream regulatory factors, the kinase core, and the downstream transcriptional machinery, which consists of YAP, TAZ (transcription co-activators) and TEAD (transcription factor). Formation of YAP/TAZ-TEAD complexes leads to the transcription of growth-promoting genes. Herein, we report the crystal structure of TAZ-TEAD4 complex, which reveals two binding modes. The first is similar to the published YAP-TEAD structure. The second is a unique binding mode, whereby two molecules of TAZ bind to and bridge two molecules of TEAD4. We validated the latter using cross-linking and multi-angle light scattering. Using siRNA, we showed that TAZ knockdown leads to a decrease in TEAD4 dimerization. Lastly, results from luciferase assays, using YAP/TAZ transfected or knockdown cells, give support to the non-redundancy of YAP/TAZ co-activators in regulating gene expression in the Hippo pathway.

  1. Complex Network Analysis of Guangzhou Metro

    OpenAIRE

    Yasir Tariq Mohmand; Fahad Mehmood; Fahd Amjad; Nedim Makarevic

    2015-01-01

    The structure and properties of public transportation networks can provide suggestions for urban planning and public policies. This study contributes a complex network analysis of the Guangzhou metro. The metro network has 236 kilometers of track and is the 6th busiest metro system of the world. In this paper topological properties of the network are explored. We observed that the network displays small world properties and is assortative in nature. The network possesses a high average degree...

  2. Automated analysis and design of complex structures

    International Nuclear Information System (INIS)

    Wilson, E.L.

    1977-01-01

    The present application of optimum design appears to be restricted to components of the structure rather than to the total structural system. Since design normally involved many analysis of the system any improvement in the efficiency of the basic methods of analysis will allow more complicated systems to be designed by optimum methods. The evaluation of the risk and reliability of a structural system can be extremely important. Reliability studies have been made of many non-structural systems for which the individual components have been extensively tested and the service environment is known. For such systems the reliability studies are valid. For most structural systems, however, the properties of the components can only be estimated and statistical data associated with the potential loads is often minimum. Also, a potentially critical loading condition may be completely neglected in the study. For these reasons and the previous problems associated with the reliability of both linear and nonlinear analysis computer programs it appears to be premature to place a significant value on such studies for complex structures. With these comments as background the purpose of this paper is to discuss the following: the relationship of analysis to design; new methods of analysis; new of improved finite elements; effect of minicomputer on structural analysis methods; the use of system of microprocessors for nonlinear structural analysis; the role of interacting graphics systems in future analysis and design. This discussion will focus on the impact of new, inexpensive computer hardware on design and analysis methods

  3. DNA entropy reveals a significant difference in complexity between housekeeping and tissue specific gene promoters.

    Science.gov (United States)

    Thomas, David; Finan, Chris; Newport, Melanie J; Jones, Susan

    2015-10-01

    The complexity of DNA can be quantified using estimates of entropy. Variation in DNA complexity is expected between the promoters of genes with different transcriptional mechanisms; namely housekeeping (HK) and tissue specific (TS). The former are transcribed constitutively to maintain general cellular functions, and the latter are transcribed in restricted tissue and cells types for specific molecular events. It is known that promoter features in the human genome are related to tissue specificity, but this has been difficult to quantify on a genomic scale. If entropy effectively quantifies DNA complexity, calculating the entropies of HK and TS gene promoters as profiles may reveal significant differences. Entropy profiles were calculated for a total dataset of 12,003 human gene promoters and for 501 housekeeping (HK) and 587 tissue specific (TS) human gene promoters. The mean profiles show the TS promoters have a significantly lower entropy (pentropy distributions for the 3 datasets show that promoter entropies could be used to identify novel HK genes. Functional features comprise DNA sequence patterns that are non-random and hence they have lower entropies. The lower entropy of TS gene promoters can be explained by a higher density of positive and negative regulatory elements, required for genes with complex spatial and temporary expression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Predictive ethoinformatics reveals the complex migratory behaviour of a pelagic seabird, the Manx Shearwater

    Science.gov (United States)

    Freeman, Robin; Dean, Ben; Kirk, Holly; Leonard, Kerry; Phillips, Richard A.; Perrins, Chris M.; Guilford, Tim

    2013-01-01

    Understanding the behaviour of animals in the wild is fundamental to conservation efforts. Advances in bio-logging technologies have offered insights into the behaviour of animals during foraging, migration and social interaction. However, broader application of these systems has been limited by device mass, cost and longevity. Here, we use information from multiple logger types to predict individual behaviour in a highly pelagic, migratory seabird, the Manx Shearwater (Puffinus puffinus). Using behavioural states resolved from GPS tracking of foraging during the breeding season, we demonstrate that individual behaviours can be accurately predicted during multi-year migrations from low cost, lightweight, salt-water immersion devices. This reveals a complex pattern of migratory stopovers: some involving high proportions of foraging, and others of rest behaviour. We use this technique to examine three consecutive years of global migrations, revealing the prominence of foraging behaviour during migration and the importance of highly productive waters during migratory stopover. PMID:23635496

  5. Quantitative Multiplex Immunohistochemistry Reveals Myeloid-Inflamed Tumor-Immune Complexity Associated with Poor Prognosis

    Directory of Open Access Journals (Sweden)

    Takahiro Tsujikawa

    2017-04-01

    Full Text Available Here, we describe a multiplexed immunohistochemical platform with computational image processing workflows, including image cytometry, enabling simultaneous evaluation of 12 biomarkers in one formalin-fixed paraffin-embedded tissue section. To validate this platform, we used tissue microarrays containing 38 archival head and neck squamous cell carcinomas and revealed differential immune profiles based on lymphoid and myeloid cell densities, correlating with human papilloma virus status and prognosis. Based on these results, we investigated 24 pancreatic ductal adenocarcinomas from patients who received neoadjuvant GVAX vaccination and revealed that response to therapy correlated with degree of mono-myelocytic cell density and percentages of CD8+ T cells expressing T cell exhaustion markers. These data highlight the utility of in situ immune monitoring for patient stratification and provide digital image processing pipelines to the community for examining immune complexity in precious tissue sections, where phenotype and tissue architecture are preserved to improve biomarker discovery and assessment.

  6. Hydra meiosis reveals unexpected conservation of structural synaptonemal complex proteins across metazoans

    Science.gov (United States)

    Fraune, Johanna; Alsheimer, Manfred; Volff, Jean-Nicolas; Busch, Karoline; Fraune, Sebastian; Bosch, Thomas C. G.; Benavente, Ricardo

    2012-01-01

    The synaptonemal complex (SC) is a key structure of meiosis, mediating the stable pairing (synapsis) of homologous chromosomes during prophase I. Its remarkable tripartite structure is evolutionarily well conserved and can be found in almost all sexually reproducing organisms. However, comparison of the different SC protein components in the common meiosis model organisms Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus revealed no sequence homology. This discrepancy challenged the hypothesis that the SC arose only once in evolution. To pursue this matter we focused on the evolution of SYCP1 and SYCP3, the two major structural SC proteins of mammals. Remarkably, our comparative bioinformatic and expression studies revealed that SYCP1 and SYCP3 are also components of the SC in the basal metazoan Hydra. In contrast to previous assumptions, we therefore conclude that SYCP1 and SYCP3 form monophyletic groups of orthologous proteins across metazoans. PMID:23012415

  7. Complex surveys analysis of categorical data

    CERN Document Server

    Mukhopadhyay, Parimal

    2016-01-01

    The primary objective of this book is to study some of the research topics in the area of analysis of complex surveys which have not been covered in any book yet. It discusses the analysis of categorical data using three models: a full model, a log-linear model and a logistic regression model. It is a valuable resource for survey statisticians and practitioners in the field of sociology, biology, economics, psychology and other areas who have to use these procedures in their day-to-day work. It is also useful for courses on sampling and complex surveys at the upper-undergraduate and graduate levels. The importance of sample surveys today cannot be overstated. From voters’ behaviour to fields such as industry, agriculture, economics, sociology, psychology, investigators generally resort to survey sampling to obtain an assessment of the behaviour of the population they are interested in. Many large-scale sample surveys collect data using complex survey designs like multistage stratified cluster designs. The o...

  8. Analysis of designed experiments with complex aliasing

    Science.gov (United States)

    Hamada, M.; Wu, C. F. J.

    1992-07-01

    Traditionally, Plackett-Burman (PB) designs have been used in screening experiments for identifying important main effects. The PB designs whose run sizes are not a power of two have been criticized for their complex aliasing patterns, which according to conventional wisdom gives confusing results. This paper goes beyond the traditional approach by proposing the analysis strategy that entertains interactions in addition to main effects. Based on the precepts of effect sparsity and effect heredity, the proposed procedure exploits the designs' complex aliasing patterns, thereby turning their 'liability' into an advantage. Demonstration of the procedure on three real experiments shows the potential for extracting important information available in the data that has, until now, been missed. Some limitations are discussed, and extentions to overcome them are given. The proposed procedure also applies to more general mixed level designs that have become increasingly popular.

  9. Mathematical analysis of complex cellular activity

    CERN Document Server

    Bertram, Richard; Teka, Wondimu; Vo, Theodore; Wechselberger, Martin; Kirk, Vivien; Sneyd, James

    2015-01-01

    This book contains two review articles on mathematical physiology that deal with closely related topics but were written and can be read independently. The first article reviews the basic theory of calcium oscillations (common to almost all cell types), including spatio-temporal behaviors such as waves. The second article uses, and expands on, much of this basic theory to show how the interaction of cytosolic calcium oscillators with membrane ion channels can result in highly complex patterns of electrical spiking. Through these examples one can see clearly how multiple oscillatory processes interact within a cell, and how mathematical methods can be used to understand such interactions better. The two reviews provide excellent examples of how mathematics and physiology can learn from each other, and work jointly towards a better understanding of complex cellular processes. Review 1: Richard Bertram, Joel Tabak, Wondimu Teka, Theodore Vo, Martin Wechselberger: Geometric Singular Perturbation Analysis of Burst...

  10. Structured analysis and modeling of complex systems

    Science.gov (United States)

    Strome, David R.; Dalrymple, Mathieu A.

    1992-01-01

    The Aircrew Evaluation Sustained Operations Performance (AESOP) facility at Brooks AFB, Texas, combines the realism of an operational environment with the control of a research laboratory. In recent studies we collected extensive data from the Airborne Warning and Control Systems (AWACS) Weapons Directors subjected to high and low workload Defensive Counter Air Scenarios. A critical and complex task in this environment involves committing a friendly fighter against a hostile fighter. Structured Analysis and Design techniques and computer modeling systems were applied to this task as tools for analyzing subject performance and workload. This technology is being transferred to the Man-Systems Division of NASA Johnson Space Center for application to complex mission related tasks, such as manipulating the Shuttle grappler arm.

  11. Protein-carbohydrate complex reveals circulating metastatic cells in a microfluidic assay

    KAUST Repository

    Simone, Giuseppina

    2013-02-11

    Advances in carbohydrate sequencing technologies reveal the tremendous complexity of the glycome and the role that glycomics might have to bring insight into the biological functions. Carbohydrate-protein interactions, in particular, are known to be crucial to most mammalian physiological processes as mediators of cell adhesion and metastasis, signal transducers, and organizers of protein interactions. An assay is developed here to mimic the multivalency of biological complexes that selectively and sensitively detect carbohydrate-protein interactions. The binding of β-galactosides and galectin-3 - a protein that is correlated to the progress of tumor and metastasis - is examined. The efficiency of the assay is related to the expression of the receptor while anchoring to the interaction\\'s strength. Comparative binding experiments reveal molecular binding preferences. This study establishes that the assay is robust to isolate metastatic cells from colon affected patients and paves the way to personalized medicine. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Analysis of Complex Valve and Feed Systems

    Science.gov (United States)

    Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Cavallo, Peter; Dash, Sanford

    2007-01-01

    A numerical framework for analysis of complex valve systems supports testing of propulsive systems by simulating key valve and control system components in the test loop. In particular, it is designed to enhance the analysis capability in terms of identifying system transients and quantifying the valve response to these transients. This system has analysis capability for simulating valve motion in complex systems operating in diverse flow regimes ranging from compressible gases to cryogenic liquids. A key feature is the hybrid, unstructured framework with sub-models for grid movement and phase change including cryogenic cavitations. The multi-element unstructured framework offers improved predictions of valve performance characteristics under steady conditions for structurally complex valves such as pressure regulator valve. Unsteady simulations of valve motion using this computational approach have been carried out for various valves in operation at Stennis Space Center such as the split-body valve and the 10-in. (approx.25.4-cm) LOX (liquid oxygen) valve and the 4-in. (approx.10 cm) Y-pattern valve (liquid nitrogen). Such simulations make use of variable grid topologies, thereby permitting solution accuracy and resolving important flow physics in the seat region of the moving valve. An advantage to this software includes possible reduction in testing costs incurred due to disruptions relating to unexpected flow transients or functioning of valve/flow control systems. Prediction of the flow anomalies leading to system vibrations, flow resonance, and valve stall can help in valve scheduling and significantly reduce the need for activation tests. This framework has been evaluated for its ability to predict performance metrics like flow coefficient for cavitating venturis and valve coefficient curves, and could be a valuable tool in predicting and understanding anomalous behavior of system components at rocket propulsion testing and design sites.

  13. A spider species complex revealed high cryptic diversity in South China caves.

    Science.gov (United States)

    Zhang, Yuanyuan; Li, Shuqiang

    2014-10-01

    Cryptic species, which are an important component of biodiversity, have rarely been studied in South China karst. We investigated cryptic diversity in the cave species complex Telema cucurbitina, which has a narrow niche but widespread distribution among multiple caves. We sampled another 15 populations (caves) in addition to the population from the type locality. Phylogenetic results indicated that individuals from the same cave constituted well-supported clades. Species diversity within this species complex was assessed in a coalescent framework, first with a Bayesian extension of the general mixed Yule coalescent (bGMYC) model and a Bayesian species delimitation method (BPP). Both species delimitation methods identified each cave population as a separate species. We propose that each cave population within this species complex was a separate evolving lineage and therefore 16 OTUs were recovered based on our molecular data despite their high morphological similarities. We also propose that the unrecognized organism's diversity within South China caves might be extremely large considering our case. Furthermore, our work reveals that species discovery of cave organisms by morphological data has a high probability of underestimating hidden diversity. Our work also highlights the need for conservation strategies to protect this largely neglected diversity of cave organisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Crystal structure of Mdm12 reveals the architecture and dynamic organization of the ERMES complex.

    Science.gov (United States)

    Jeong, Hanbin; Park, Jumi; Lee, Changwook

    2016-12-01

    The endoplasmic reticulum-mitochondria encounter structure (ERMES) is a protein complex that plays a tethering role in physically connecting ER and mitochondria membranes. The ERMES complex is composed of Mdm12, Mmm1, and Mdm34, which have a SMP domain in common, and Mdm10. Here, we report the crystal structure of S. cerevisiae Mdm12. The Mdm12 forms a dimeric SMP structure through domain swapping of the β1-strand comprising residues 1-7. Biochemical experiments reveal a phospholipid-binding site located along a hydrophobic channel of the Mdm12 structure and that Mdm12 might have a binding preference for glycerophospholipids harboring a positively charged head group. Strikingly, both full-length Mdm12 and Mdm12 truncated to exclude the disordered region (residues 74-114) display the same organization in the asymmetric unit, although they crystallize as a tetramer and hexamer, respectively. Taken together, these studies provide a novel understanding of the overall organization of SMP domains in the ERMES complex, indicating that Mdm12 interacts with Mdm34 through head-to-head contact, and with Mmm1 through tail-to-tail contact of SMP domains. © 2016 The Authors.

  15. DNA barcoding of Bemisia tabaci complex (Hemiptera: Aleyrodidae) reveals southerly expansion of the dominant whitefly species on cotton in Pakistan.

    Science.gov (United States)

    Ashfaq, Muhammad; Hebert, Paul D N; Mirza, M Sajjad; Khan, Arif M; Mansoor, Shahid; Shah, Ghulam S; Zafar, Yusuf

    2014-01-01

    Although whiteflies (Bemisia tabaci complex) are an important pest of cotton in Pakistan, its taxonomic diversity is poorly understood. As DNA barcoding is an effective tool for resolving species complexes and analyzing species distributions, we used this approach to analyze genetic diversity in the B. tabaci complex and map the distribution of B. tabaci lineages in cotton growing areas of Pakistan. Sequence diversity in the DNA barcode region (mtCOI-5') was examined in 593 whiteflies from Pakistan to determine the number of whitefly species and their distributions in the cotton-growing areas of Punjab and Sindh provinces. These new records were integrated with another 173 barcode sequences for B. tabaci, most from India, to better understand regional whitefly diversity. The Barcode Index Number (BIN) System assigned the 766 sequences to 15 BINs, including nine from Pakistan. Representative specimens of each Pakistan BIN were analyzed for mtCOI-3' to allow their assignment to one of the putative species in the B. tabaci complex recognized on the basis of sequence variation in this gene region. This analysis revealed the presence of Asia II 1, Middle East-Asia Minor 1, Asia 1, Asia II 5, Asia II 7, and a new lineage "Pakistan". The first two taxa were found in both Punjab and Sindh, but Asia 1 was only detected in Sindh, while Asia II 5, Asia II 7 and "Pakistan" were only present in Punjab. The haplotype networks showed that most haplotypes of Asia II 1, a species implicated in transmission of the cotton leaf curl virus, occurred in both India and Pakistan. DNA barcodes successfully discriminated cryptic species in B. tabaci complex. The dominant haplotypes in the B. tabaci complex were shared by India and Pakistan. Asia II 1 was previously restricted to Punjab, but is now the dominant lineage in southern Sindh; its southward spread may have serious implications for cotton plantations in this region.

  16. DNA barcoding of Bemisia tabaci complex (Hemiptera: Aleyrodidae reveals southerly expansion of the dominant whitefly species on cotton in Pakistan.

    Directory of Open Access Journals (Sweden)

    Muhammad Ashfaq

    Full Text Available Although whiteflies (Bemisia tabaci complex are an important pest of cotton in Pakistan, its taxonomic diversity is poorly understood. As DNA barcoding is an effective tool for resolving species complexes and analyzing species distributions, we used this approach to analyze genetic diversity in the B. tabaci complex and map the distribution of B. tabaci lineages in cotton growing areas of Pakistan.Sequence diversity in the DNA barcode region (mtCOI-5' was examined in 593 whiteflies from Pakistan to determine the number of whitefly species and their distributions in the cotton-growing areas of Punjab and Sindh provinces. These new records were integrated with another 173 barcode sequences for B. tabaci, most from India, to better understand regional whitefly diversity. The Barcode Index Number (BIN System assigned the 766 sequences to 15 BINs, including nine from Pakistan. Representative specimens of each Pakistan BIN were analyzed for mtCOI-3' to allow their assignment to one of the putative species in the B. tabaci complex recognized on the basis of sequence variation in this gene region. This analysis revealed the presence of Asia II 1, Middle East-Asia Minor 1, Asia 1, Asia II 5, Asia II 7, and a new lineage "Pakistan". The first two taxa were found in both Punjab and Sindh, but Asia 1 was only detected in Sindh, while Asia II 5, Asia II 7 and "Pakistan" were only present in Punjab. The haplotype networks showed that most haplotypes of Asia II 1, a species implicated in transmission of the cotton leaf curl virus, occurred in both India and Pakistan.DNA barcodes successfully discriminated cryptic species in B. tabaci complex. The dominant haplotypes in the B. tabaci complex were shared by India and Pakistan. Asia II 1 was previously restricted to Punjab, but is now the dominant lineage in southern Sindh; its southward spread may have serious implications for cotton plantations in this region.

  17. Complex configuration analysis at transonic speeds

    Science.gov (United States)

    Boppe, C. W.; Aidala, P. V.

    1980-01-01

    Advanced performance requirements of new combat and transport aircraft together with design time constraints intensify the development and application of three dimensional computational analyses. A computational method which was developed for the specific purpose of providing an engineering analysis of complex aircraft configurations at transonic speeds. Particular attention is given to the recently incorporated wing viscous interaction and canard capabilities. The treatment of fuselage fairings, nacelles, and pylons is reviewed. The means for keeping computing resources at reasonable levels are identified. Three configurations were selected for correlations with experimental data. Taken together, the comparisons illustrate the full extent of current analysis capabilities. The configurations include: (1) a wing fuselage canard fighter; (2) a transport with fuselage fairings, four nacelles, four pylons; and (3) a space vehicle which includes an external fuel tank and rocket boosters (transonic launch configuration).

  18. Invoking Thomas Kuhn: What Citation Analysis Reveals about Science Education

    Science.gov (United States)

    Loving, Cathleen C.; Cobern, William W.

    This paper analyzes how Thomas Kuhn's writings are used by others, especially science education researchers. Previous research in citation analysis is used to frame questions related to who cites Kuhn, in what manner and why. Research questions first focus on the variety of disciplines invoking Kuhn and to what extent Structure of Scientific Revolutions (SSR) is cited. The Web of Science database provides material from 1982 for this analysis. The science education literature is analyzed using back issues from 1985 of the Journal of Research in Science Teaching and Science Education. An article analysis reveals trends in terms of what Kuhnian ideas are most frequently invoked. Results indicate a wide array of disciplines from beekeeping to law cite Kuhn - especially generic citations to SSR. The science education journal analysis reveals pervasive use of the term paradigm, although use is quite varied. The two areas of research in science education most impacted by Kuhn appear to be conceptual change theory and constructivist epistemologies. Additional uses of Kuhn are discussed. The degree to which Kuhn is invoked in ways supporting the theoretical framework of citation analysis, whether his work is misappropriated, and the impact of Kuhn are discussed.

  19. Using team cognitive work analysis to reveal healthcare team interactions in a birthing unit

    Science.gov (United States)

    Ashoori, Maryam; Burns, Catherine M.; d'Entremont, Barbara; Momtahan, Kathryn

    2014-01-01

    Cognitive work analysis (CWA) as an analytical approach for examining complex sociotechnical systems has shown success in modelling the work of single operators. The CWA approach incorporates social and team interactions, but a more explicit analysis of team aspects can reveal more information for systems design. In this paper, Team CWA is explored to understand teamwork within a birthing unit at a hospital. Team CWA models are derived from theories and models of teamworkand leverage the existing CWA approaches to analyse team interactions. Team CWA is explained and contrasted with prior approaches to CWA. Team CWA does not replace CWA, but supplements traditional CWA to more easily reveal team information. As a result, Team CWA may be a useful approach to enhance CWA in complex environments where effective teamwork is required. Practitioner Summary: This paper looks at ways of analysing cognitive work in healthcare teams. Team Cognitive Work Analysis, when used to supplement traditional Cognitive Work Analysis, revealed more team information than traditional Cognitive Work Analysis. Team Cognitive Work Analysis should be considered when studying teams PMID:24837514

  20. Using team cognitive work analysis to reveal healthcare team interactions in a birthing unit.

    Science.gov (United States)

    Ashoori, Maryam; Burns, Catherine M; d'Entremont, Barbara; Momtahan, Kathryn

    2014-01-01

    Cognitive work analysis (CWA) as an analytical approach for examining complex sociotechnical systems has shown success in modelling the work of single operators. The CWA approach incorporates social and team interactions, but a more explicit analysis of team aspects can reveal more information for systems design. In this paper, Team CWA is explored to understand teamwork within a birthing unit at a hospital. Team CWA models are derived from theories and models of teamwork and leverage the existing CWA approaches to analyse team interactions. Team CWA is explained and contrasted with prior approaches to CWA. Team CWA does not replace CWA, but supplements traditional CWA to more easily reveal team information. As a result, Team CWA may be a useful approach to enhance CWA in complex environments where effective teamwork is required. This paper looks at ways of analysing cognitive work in healthcare teams. Team Cognitive Work Analysis, when used to supplement traditional Cognitive Work Analysis, revealed more team information than traditional Cognitive Work Analysis. Team Cognitive Work Analysis should be considered when studying teams.

  1. Exergy Analysis of Complex Ship Energy Systems

    Directory of Open Access Journals (Sweden)

    Pierre Marty

    2016-04-01

    Full Text Available With multiple primary and secondary energy converters (diesel engines, steam turbines, waste heat recovery (WHR and oil-fired boilers, etc. and extensive energy networks (steam, cooling water, exhaust gases, etc., ships may be considered as complex energy systems. Understanding and optimizing such systems requires advanced holistic energy modeling. This modeling can be done in two ways: The simpler approach focuses on energy flows, and has already been tested, approved and presented; a new, more complicated approach, focusing on energy quality, i.e., exergy, is presented in this paper. Exergy analysis has rarely been applied to ships, and, as a general rule, the shipping industry is not familiar with this tool. This paper tries to fill this gap. We start by giving a short reminder of what exergy is and describe the principles of exergy modeling to explain what kind of results should be expected from such an analysis. We then apply these principles to the analysis of a large two-stroke diesel engine with its cooling and exhaust systems. Simulation results are then presented along with the exergy analysis. Finally, we propose solutions for energy and exergy saving which could be applied to marine engines and ships in general.

  2. Revealing the Differences Between Free and Complexed Enzyme Mechanisms and Factors Contributing to Cell Wall Recalcitrance

    Energy Technology Data Exchange (ETDEWEB)

    Resch, M.

    2014-09-08

    Enzymatic depolymerization of polysaccharides is a key step in the production of fuels and chemicals from lignocellulosic biomass, and discovery of synergistic biomass-degrading enzyme paradigms will enable improved conversion processes. Historically, revealing insights into enzymatic saccharification mechanisms on plant cell walls has been hindered by uncharacterized substrates and low resolution imaging techniques. Also, translating findings between model substrates to intact biomass is critical for evaluating enzyme performance. Here we employ a fungal free enzyme cocktail, a complexed cellulosomal system, and a combination of the two to investigate saccharification mechanisms on cellulose I, II and III along with corn stover from Clean Fractionation (CF), which is an Organosolv pretreatment. The insoluble Cellulose Enriched Fraction (CEF) from CF contains mainly cellulose with minor amounts of residual hemicellulose and lignin, the amount of which depends on the CF pretreatment severity. Enzymatic digestions at both low and high-solids loadings demonstrate that CF reduces the amount of enzyme required to depolymerize polysaccharides relative to deacetylated, dilute acid pretreated corn stover. Transmission and scanning electron microscopy of the biomass provides evidence for the different mechanisms of enzymatic deconstruction between free and complexed enzyme systems, and reveals the basis for the synergistic relationship between the two enzyme paradigms on a process-relevant substrate for the first time. These results also demonstrate that the presence of lignin, rather than cellulose morphology, is more detrimental to cellulosome action than to free cellulases. As enzyme costs are a major economic driver for biorefineries, this study provides key inputs for the evaluation of CF as a pretreatment method for biomass conversion.

  3. Proteomic amino-termini profiling reveals targeting information for protein import into complex plastids.

    Directory of Open Access Journals (Sweden)

    Pitter F Huesgen

    Full Text Available In organisms with complex plastids acquired by secondary endosymbiosis from a photosynthetic eukaryote, the majority of plastid proteins are nuclear-encoded, translated on cytoplasmic ribosomes, and guided across four membranes by a bipartite targeting sequence. In-depth understanding of this vital import process has been impeded by a lack of information about the transit peptide part of this sequence, which mediates transport across the inner three membranes. We determined the mature N-termini of hundreds of proteins from the model diatom Thalassiosira pseudonana, revealing extensive N-terminal modification by acetylation and proteolytic processing in both cytosol and plastid. We identified 63 mature N-termini of nucleus-encoded plastid proteins, deduced their complete transit peptide sequences, determined a consensus motif for their cleavage by the stromal processing peptidase, and found evidence for subsequent processing by a plastid methionine aminopeptidase. The cleavage motif differs from that of higher plants, but is shared with other eukaryotes with complex plastids.

  4. Revealing complete complex KIR haplotypes phased by long-read sequencing technology.

    Science.gov (United States)

    Roe, D; Vierra-Green, C; Pyo, C-W; Eng, K; Hall, R; Kuang, R; Spellman, S; Ranade, S; Geraghty, D E; Maiers, M

    2017-09-01

    The killer cell immunoglobulin-like receptor (KIR) region of human chromosome 19 contains up to 16 genes for natural killer (NK) cell receptors that recognize human leukocyte antigen (HLA)/peptide complexes and other ligands. The KIR proteins fulfill functional roles in infections, pregnancy, autoimmune diseases and transplantation. However, their characterization remains a constant challenge. Not only are the genes highly homologous due to their recent evolution by tandem duplications, but the region is structurally dynamic due to frequent transposon-mediated recombination. A sequencing approach that precisely captures the complexity of KIR haplotypes for functional annotation is desirable. We present a unique approach to haplotype the KIR loci using single-molecule, real-time (SMRT) sequencing. Using this method, we have-for the first time-comprehensively sequenced and phased sixteen KIR haplotypes from eight individuals without imputation. The information revealed four novel haplotype structures, a novel gene-fusion allele, novel and confirmed insertion/deletion events, a homozygous individual, and overall diversity for the structural haplotypes and their alleles. These KIR haplotypes augment our existing knowledge by providing high-quality references, evolutionary informers, and source material for imputation. The haplotype sequences and gene annotations provide alternative loci for the KIR region in the human genome reference GrCh38.p8.

  5. Structure of the Leanyer orthobunyavirus nucleoprotein-RNA complex reveals unique architecture for RNA encapsidation.

    Science.gov (United States)

    Niu, Fengfeng; Shaw, Neil; Wang, Yao E; Jiao, Lianying; Ding, Wei; Li, Xiaomin; Zhu, Ping; Upur, Halmurat; Ouyang, Songying; Cheng, Genhong; Liu, Zhi-Jie

    2013-05-28

    Negative-stranded RNA viruses cover their genome with nucleoprotein (N) to protect it from the human innate immune system. Abrogation of the function of N offers a unique opportunity to combat the spread of the viruses. Here, we describe a unique fold of N from Leanyer virus (LEAV, Orthobunyavirus genus, Bunyaviridae family) in complex with single-stranded RNA refined to 2.78 Å resolution as well as a 2.68 Å resolution structure of LEAV N-ssDNA complex. LEAV N is made up of an N- and a C-terminal lobe, with the RNA binding site located at the junction of these lobes. The LEAV N tetramer binds a 44-nucleotide-long single-stranded RNA chain. Hence, oligomerization of N is essential for encapsidation of the entire genome and is accomplished by using extensions at the N and C terminus. Molecular details of the oligomerization of N are illustrated in the structure where a circular ring-like tertiary assembly of a tetramer of LEAV N is observed tethering the RNA in a positively charged cavity running along the inner edge. Hydrogen bonds between N and the C2 hydroxyl group of ribose sugar explain the specificity of LEAV N for RNA over DNA. In addition, base-specific hydrogen bonds suggest that some regions of RNA bind N more tightly than others. Hinge movements around F20 and V125 assist in the reversal of capsidation during transcription and replication of the virus. Electron microscopic images of the ribonucleoprotein complexes of LEAV N reveal a filamentous assembly similar to those found in phleboviruses.

  6. New Insight of Northern Apennines (Italy): SKS Splitting Measurements Reveal a Complex Anisotropic Structure

    Science.gov (United States)

    Salimbeni, S.; Pondrelli, S.; Margheriti, L.; Levin, V.; Park, J.; Plomerova, J.

    2006-12-01

    The multidisciplinary RETREAT project (REtreating-Trench, Extension and Accretion Tectonics) is focused on the development of a 3D self-consistent dynamic model of the syn-convergent extension in the Northern Apennines. The seismological deployment of the Project started on 2003 and closed on September 2006, using 10 instruments lent by the GFU and 25 instruments lent by PASSCAL, added to the permanent stations of the Italian National Network. Many of the stations were deployed along a NE-SW transect across the Apennine chain. We present here new results of seismic anisotropy analysis obtained from SKS core-refracted shear waves. The study of SKS splitting is applied on twenty teleseismic earthquakes; for all of them we calculate the anisotropic parameters (delay time and fast polarization direction) by minimizing the energy in the transverse component. Our analysis assesses uncertainty by testing the parameters for stability to noise. Previous studies of splitting analysis have found in the study region evidence for tectonic domains in which a coherent splitting signal can be found. The Tuscany domain (Tyrrhenian side) shows homogeneous NW-SE fast axes directions; the Po-Plain domain (Eastern side of the Apennines) shows a N-S to NE-SW directions, here strongly influenced by backazimuth. To better define the complex structure that may exist below the Northern Apennines and Po Plain we apply the cross convolution method of Menke and Levin (2003) to discriminate whether a two-layer anisotropic model fits the splitting pattern more convincingly that a simple one-layer model. Previous analysis suggested that structure beneath the Tuscany side is simpler; a single anisotropic layer with a NW-SE fast polarization direction is in agreement with all the dataset. Beneath the Po Plain the complexity of the structure is confirmed in the analysis of most stations.

  7. Microbiota analysis to reveal temperature abuse of fresh pork

    DEFF Research Database (Denmark)

    Buschhardt, Tasja; Bahl, Martin Iain; Hansen, Tina Beck

    monitored during aerobic chill-storage (4 °C and 7 °C) and temperature abuse (12 °C and 16 °C) for 96 hours, by culture-based methods and 16S rRNA gene sequencing. Bacterial genera that dominated during prolonged temperature abuse were Acinetobacter, Serratia and Pseudomonas, whereas chill-stored meat...... was dominated by Pseudomonas only. We also showed that the initial community affects subsequent changes during storage. The results suggest that principal coordinate analysis of beta diversity could be a useful tool to reveal temperature abused meat. Sequence data and culturing data revealed a strong positive......Violations of temperature regulations in the meat chain may affect meat safety. Methods are lacking to estimate whether meat has been subjected to temperature abuse. Exposure to too high temperatures may lead to systematic changes in the diverse bacterial communities of fresh meat. We investigated...

  8. Microbiota analysis to reveal temperature abuse of fresh pork

    DEFF Research Database (Denmark)

    Buschhardt, Tasja; Bahl, Martin Iain; Hansen, Tina Beck

    2017-01-01

    Violations of temperature regulations in the meat chain may affect meat safety. Methods are lacking to estimate whether meat has been subjected to temperature abuse. Exposure to too high temperatures may lead to systematic changes in the diverse bacterial communities of fresh meat. We investigated...... monitored during aerobic chill-storage (4 °C and 7 °C) and temperature abuse (12 °C and 16 °C) for 96 hours, by culture-based methods and 16S rRNA gene sequencing. Bacterial genera that dominated during prolonged temperature abuse were Acinetobacter, Serratia and Pseudomonas, whereas chill-stored meat...... was dominated by Pseudomonas only. We also showed that the initial community affects subsequent changes during storage. The results suggest that principal coordinate analysis of beta diversity could be a useful tool to reveal temperature abused meat. Sequence data and culturing data revealed a strong positive...

  9. Analysis of complex systems using neural networks

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1992-01-01

    The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms), to some of the problems of complex engineering systems has the potential to enhance the safety, reliability, and operability of these systems. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network (e.g., a fast Fourier transformation of the time-series data to produce a spectral plot of the data). Specific applications described include: (1) Diagnostics: State of the Plant (2) Hybrid System for Transient Identification, (3) Sensor Validation, (4) Plant-Wide Monitoring, (5) Monitoring of Performance and Efficiency, and (6) Analysis of Vibrations. Although specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems

  10. Quantitative genome-wide genetic interaction screens reveal global epistatic relationships of protein complexes in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Mohan Babu

    2014-02-01

    Full Text Available Large-scale proteomic analyses in Escherichia coli have documented the composition and physical relationships of multiprotein complexes, but not their functional organization into biological pathways and processes. Conversely, genetic interaction (GI screens can provide insights into the biological role(s of individual gene and higher order associations. Combining the information from both approaches should elucidate how complexes and pathways intersect functionally at a systems level. However, such integrative analysis has been hindered due to the lack of relevant GI data. Here we present a systematic, unbiased, and quantitative synthetic genetic array screen in E. coli describing the genetic dependencies and functional cross-talk among over 600,000 digenic mutant combinations. Combining this epistasis information with putative functional modules derived from previous proteomic data and genomic context-based methods revealed unexpected associations, including new components required for the biogenesis of iron-sulphur and ribosome integrity, and the interplay between molecular chaperones and proteases. We find that functionally-linked genes co-conserved among γ-proteobacteria are far more likely to have correlated GI profiles than genes with divergent patterns of evolution. Overall, examining bacterial GIs in the context of protein complexes provides avenues for a deeper mechanistic understanding of core microbial systems.

  11. Weighted Complex Network Analysis of Pakistan Highways

    Directory of Open Access Journals (Sweden)

    Yasir Tariq Mohmand

    2013-01-01

    Full Text Available The structure and properties of public transportation networks have great implications in urban planning, public policies, and infectious disease control. This study contributes a weighted complex network analysis of travel routes on the national highway network of Pakistan. The network is responsible for handling 75 percent of the road traffic yet is largely inadequate, poor, and unreliable. The highway network displays small world properties and is assortative in nature. Based on the betweenness centrality of the nodes, the most important cities are identified as this could help in identifying the potential congestion points in the network. Keeping in view the strategic location of Pakistan, such a study is of practical importance and could provide opportunities for policy makers to improve the performance of the highway network.

  12. Complex Network Analysis of Guangzhou Metro

    Directory of Open Access Journals (Sweden)

    Yasir Tariq Mohmand

    2015-11-01

    Full Text Available The structure and properties of public transportation networks can provide suggestions for urban planning and public policies. This study contributes a complex network analysis of the Guangzhou metro. The metro network has 236 kilometers of track and is the 6th busiest metro system of the world. In this paper topological properties of the network are explored. We observed that the network displays small world properties and is assortative in nature. The network possesses a high average degree of 17.5 with a small diameter of 5. Furthermore, we also identified the most important metro stations based on betweenness and closeness centralities. These could help in identifying the probable congestion points in the metro system and provide policy makers with an opportunity to improve the performance of the metro system.

  13. Mistletoe lectin I in complex with galactose and lactose reveals distinct sugar-binding properties

    Energy Technology Data Exchange (ETDEWEB)

    Mikeska, Ruth [Institute of Biochemistry and Food Chemistry, University of Hamburg, c/o DESY, Notkestrasse 85, Building 22a, 22603 Hamburg (Germany); Wacker, Roland [Institute of Physiological Chemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen (Germany); Arni, Raghuvir [Department of Physics, IBILCE/UNESP, São Jose do Rio Preto, São Paul (Brazil); Singh, Tej P. [Department of Biophysics, All India Institute of Medical Sciences, New Delhi (India); Mikhailov, Albert; Gabdoulkhakov, Azat [Institute of Crystallography of Russian Academy of Sciences, Leninsky Prospect 59, 117333 Moscow (Russian Federation); Voelter, Wolfgang [Institute of Physiological Chemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen (Germany); Betzel, Christian, E-mail: betzel@unisgi1.desy.de [Institute of Biochemistry and Food Chemistry, University of Hamburg, c/o DESY, Notkestrasse 85, Building 22a, 22603 Hamburg (Germany)

    2005-01-01

    The structures of mistletoe lectin I in complex with lactose and galactose reveal differences in binding by the two known sites in subdomains α1 and γ2 and suggest the presence of a third low-affinity site in subdomain β1. The structures of mistletoe lectin I (ML-I) from Viscum album complexed with lactose and galactose have been determined at 2.3 Å resolution and refined to R factors of 20.9% (R{sub free} = 23.6%) and 20.9 (R{sub free} = 24.6%), respectively. ML-I is a heterodimer and belongs to the class of ribosome-inactivating proteins of type II, which consist of two chains. The A-chain has rRNA N-glycosidase activity and irreversibly inhibits eukaryotic ribosomes. The B-chain is a lectin and preferentially binds to galactose-terminated glycolipids and glycoproteins on cell membranes. Saccharide binding is performed by two binding sites in subdomains α1 and γ2 of the ML-I B-chain separated by ∼62 Å from each other. The favoured binding of galactose in subdomain α1 is achieved via hydrogen bonds connecting the 4-hydroxyl and 3-hydroxyl groups of the sugar moiety with the side chains of Asp23B, Gln36B and Lys41B and the main chain of 26B. The aromatic ring of Trp38B on top of the preferred binding pocket supports van der Waals packing of the apolar face of galactose and stabilizes the sugar–lectin complex. In the galactose-binding site II of subdomain γ2, Tyr249B provides the hydrophobic stacking and the side chains of Asp235B, Gln238B and Asn256B are hydrogen-bonding partners for galactose. In the case of the galactose-binding site I, the 2-hydroxyl group also stabilizes the sugar–protein complex, an interaction thus far rarely detected in galactose-specific lectins. Finally, a potential third low-affinity galactose-binding site in subunit β1 was identified in the present ML-I structures, in which a glycerol molecule from the cryoprotectant buffer has bound, mimicking the sugar compound.

  14. More species of the Agononida incerta complex revealed by molecules and morphology (Crustacea: Decapoda: Anomura: Munididae).

    Science.gov (United States)

    Poore, Gary C B; Andreakis, Nikos

    2014-09-05

    Squat lobsters from Madagascar, Vanuatu, Papua New Guinea, Fiji, eastern Australia and French Polynesia belonging to the Agononida incerta (Henderson, 1888) species complex are described as four new species: A. madagascerta, A. polycerta, A. tasmancerta and A. vanuacerta. This brings to ten the number of species in this complex. All species are morphologically distinguishable only on the basis of the shape of the anterolateral margin of the telson and setation of the dactyli of pereopods 2-4. The morphological delineation of nine of the species and their taxonomic status are robustly supported by phylogenetic analysis of the partial 16S rDNA gene and the partial mitochondrial cytochrome oxidase subunit 1 genes, and in some cases by colour. A phylogenetic analysis of the nine species for which molecular data are available grouped the species in two clades, one of four species with facial spines on the upper surface of pereopod 4 and the other of five species lacking facial spines. 

  15. A complexity analysis of functional interpretations

    DEFF Research Database (Denmark)

    Hernest, Mircea-Dan; Kohlenbach, Ulrich

    2005-01-01

    Summary: We give a quantitative analysis of Gödel's functional     interpretation and its monotone variant. The two have been used     for the extraction of programs and numerical bounds as well as     for conservation results. They apply both to (semi-)intuitionistic     as well as (combined...... with negative translation) classical proofs.     The proofs may be formalized in systems ranging from weak base     systems to arithmetic and analysis (and numerous fragments of     these). We give upper bounds in basic proof data on the depth,     size, maximal type degree and maximal type arity...... of the extracted     terms as well as on the depth of the verifying proof. In all     cases terms of size linear in the size of the proof at input     can be extracted and the corresponding extraction algorithms     have cubic worst-time complexity. The verifying proofs have depth     linear in the depth...

  16. A Formal Analysis of Complexity Monotonicity

    Science.gov (United States)

    Bosse, Tibor; Sharpanskykh, Alexei; Treur, Jan

    Behaviour of organisms can occur in different types and complexities, varying from very simple behaviour to more sophisticated forms. Depending on the complexity of the externally observable behaviour, the internal mental representations and capabilities required to generate the behaviour also show a large variety in complexity. From an evolutionary viewpoint, for example, [1992] and [1871] point out how the development of behaviour relates to the development of more complex cognitive capabilities. [1996, p. 3] assumes a relationship between the complexity of the environment and the development of mental representations and capabilities. He formulates the main theme of his book in condensed form as follows: 'The function of cognition is to enable the agent to deal with environmental complexity' (the Environmental Complexity Thesis). In this paper, this thesis is refined as follows: the more complex the environment, the more sophisticated is the behaviour required to deal with this environment,

  17. Forced-rupture of cell-adhesion complexes reveals abrupt switch between two brittle states

    Science.gov (United States)

    Toan, Ngo Minh; Thirumalai, D.

    2018-03-01

    Cell adhesion complexes (CACs), which are activated by ligand binding, play key roles in many cellular functions ranging from cell cycle regulation to mediation of cell extracellular matrix adhesion. Inspired by single molecule pulling experiments using atomic force spectroscopy on leukocyte function-associated antigen-1 (LFA-1), expressed in T-cells, bound to intercellular adhesion molecules (ICAM), we performed constant loading rate (rf) and constant force (F) simulations using the self-organized polymer model to describe the mechanism of ligand rupture from CACs. The simulations reproduce the major experimental finding on the kinetics of the rupture process, namely, the dependence of the most probable rupture forces (f*s) on ln rf (rf is the loading rate) exhibits two distinct linear regimes. The first, at low rf, has a shallow slope, whereas the slope at high rf is much larger, especially for a LFA-1/ICAM-1 complex with the transition between the two occurring over a narrow rf range. Locations of the two transition states (TSs) extracted from the simulations show an abrupt change from a high value at low rf or constant force, F, to a low value at high rf or F. This unusual behavior in which the CACs switch from one brittle (TS position is a constant over a range of forces) state to another brittle state is not found in forced-rupture in other protein complexes. We explain this novel behavior by constructing the free energy profiles, F(Λ)s, as a function of a collective reaction coordinate (Λ), involving many key charged residues and a critical metal ion (Mg2+). The TS positions in F(Λ), which quantitatively agree with the parameters extracted using the Bell-Evans model, change abruptly at a critical force, demonstrating that it, rather than the molecular extension, is a good reaction coordinate. Our combined analyses using simulations performed in both the pulling modes (constant rf and F) reveal a new mechanism for the two loading regimes observed in the

  18. Perched Lava Pond Complex on South Rift of Axial Volcano Revealed in AUV Mapping

    Science.gov (United States)

    Paduan, J. B.; Clague, D. A.; Caress, D. W.; Thomas, H. J.

    2013-12-01

    An extraordinary lava pond complex is located on Axial Volcano's distal south rift. It was discovered in EM300 multibeam bathymetry collected in 1998, and explored and sampled with ROVs Tiburon in 2005 and Doc Ricketts in 2013. It was surveyed with the MBARI Mapping AUV D. Allan B. in 2011, in a complicated mission first flying above the levees at constant depth, then skimming ~5 m over the levees at a different constant depth to survey the floors, then twice switching to constant altitude mode to map outside the ponds. The AUV navigation was adjusted using the MB-System tool mbnavadjust so that bathymetric features match in overlapping and crossing swaths. The ~1-m resolution AUV bathymetry reveals extremely rough terrain, where low-resolution EM300 data had averaged acoustic returns and obscured details of walls, floors, a breach and surrounding flows, and gives context to the ROV observations and samples. The 6 x 1.5 km pond complex has 4 large and several smaller drained ponds with rims 67 to 106 m above the floors. The combined volume before draining was 0.56 km3. The ponds overflowed to build lobate-flow levees with elongate pillows draping outer flanks, then drained, leaving lava veneer on vertical inner walls. Levee rim depths vary by only 10 m and are deeper around the southern ponds. Deep collapse-pits in the levees suggest porosity of pond walls. The eastern levee of the northeastern pond breached, draining the interconnected ponds, and fed thick, rapidly-emplaced, sheet-flows along the complex's east side. These flows travelled at least 5.5 km down-rift and have 19-33 m deep drained ponds. They extended up-rift as well, forming a 10 x 2.5 km ponded flow with level 'bathtub rings' as high as 35 m above the floor marking that flow's high-stand. Despite the breach, at least 0.066 km3 of the molten interior of the large ponds also drained back down the eruptive fissures, as the pond floors are deeper than the sill and sea floor outside the complex. Tumulus

  19. Meditation effects within the hippocampal complex revealed by voxel-based morphometry and cytoarchitectonic probabilistic mapping

    Directory of Open Access Journals (Sweden)

    Eileen eLuders

    2013-07-01

    Full Text Available Scientific studies addressing anatomical variations in meditators’ brains have emerged rapidly over the last few years, where significant links are most frequently reported with respect to gray matter (GM. To advance prior work, this study examined GM characteristics in a large sample of 100 subjects (50 meditators, 50 controls, where meditators have been practicing close to twenty years, on average. A standard, whole-brain voxel-based morphometry approach was applied and revealed significant meditation effects in the vicinity of the hippocampus, showing more GM in meditators than in controls as well as positive correlations with the number of years practiced. However, the hippocampal complex is regionally segregated by architecture, connectivity, and functional relevance. Thus, to establish differential effects within the hippocampal formation (cornu ammonis, fascia dentate, entorhinal cortex, subiculum as well as the hippocampal-amygdaloid transition area, we utilized refined cytoarchitectonic probabilistic maps of (peri- hippocampal subsections. Significant meditation effects were observed within the subiculum specifically. Since the subiculum is known to play a key role in stress regulation and meditation is an established form of stress reduction, these GM findings may reflect neuronal preservation in long-term meditators – perhaps due to an attenuated release of stress hormones and decreased neurotoxicity.

  20. Crystal structure of Clostridium botulinum whole hemagglutinin reveals a huge triskelion-shaped molecular complex.

    Science.gov (United States)

    Amatsu, Sho; Sugawara, Yo; Matsumura, Takuhiro; Kitadokoro, Kengo; Fujinaga, Yukako

    2013-12-06

    Clostridium botulinum HA is a component of the large botulinum neurotoxin complex and is critical for its oral toxicity. HA plays multiple roles in toxin penetration in the gastrointestinal tract, including protection from the digestive environment, binding to the intestinal mucosal surface, and disruption of the epithelial barrier. At least two properties of HA contribute to these roles: the sugar-binding activity and the barrier-disrupting activity that depends on E-cadherin binding of HA. HA consists of three different proteins, HA1, HA2, and HA3, whose structures have been partially solved and are made up mainly of β-strands. Here, we demonstrate structural and functional reconstitution of whole HA and present the complete structure of HA of serotype B determined by x-ray crystallography at 3.5 Å resolution. This structure reveals whole HA to be a huge triskelion-shaped molecule. Our results suggest that whole HA is functionally and structurally separable into two parts: HA1, involved in recognition of cell-surface carbohydrates, and HA2-HA3, involved in paracellular barrier disruption by E-cadherin binding.

  1. Crystal Structures of Cyclohexanone Monooxygenase Reveal Complex Domain Movements and a Sliding Cofactor

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, I.; Yachnin, B; Wang, S; Grosse, S; Bergeron, H; Imura, A; Iwaki, H; Hasegawa, Y; Lau, P; Berghuis, A

    2009-01-01

    Cyclohexanone monooxygenase (CHMO) is a flavoprotein that carries out the archetypical Baeyer-Villiger oxidation of a variety of cyclic ketones into lactones. Using NADPH and O{sub 2} as cosubstrates, the enzyme inserts one atom of oxygen into the substrate in a complex catalytic mechanism that involves the formation of a flavin-peroxide and Criegee intermediate. We present here the atomic structures of CHMO from an environmental Rhodococcus strain bound with FAD and NADP+ in two distinct states, to resolutions of 2.3 and 2.2 {angstrom}. The two conformations reveal domain shifts around multiple linkers and loop movements, involving conserved arginine 329 and tryptophan 492, which effect a translation of the nicotinamide resulting in a sliding cofactor. Consequently, the cofactor is ideally situated and subsequently repositioned during the catalytic cycle to first reduce the flavin and later stabilize formation of the Criegee intermediate. Concurrent movements of a loop adjacent to the active site demonstrate how this protein can effect large changes in the size and shape of the substrate binding pocket to accommodate a diverse range of substrates. Finally, the previously identified BVMO signature sequence is highlighted for its role in coordinating domain movements. Taken together, these structures provide mechanistic insights into CHMO-catalyzed Baeyer-Villiger oxidation.

  2. An unexpected vestigial protein complex reveals the evolutionary origins of an s-triazine catabolic enzyme.

    Science.gov (United States)

    Esquirol, Lygie; Peat, Thomas S; Wilding, Matthew; Liu, Jian-Wei; French, Nigel G; Hartley, Carol J; Onagi, Hideki; Nebl, Thomas; Easton, Christopher J; Newman, Janet; Scott, Colin

    2018-03-09

    Cyanuric acid is a metabolic intermediate of s-triazines, such as atrazine (a common herbicide) and melamine (used in resins and plastics). Cyanuric acid is mineralized to ammonia and carbon dioxide by the soil bacterium Pseudomonas sp. strain ADP via three hydrolytic enzymes (AtzD, AtzE, and AtzF). Here, we report the purification and biochemical and structural characterization of AtzE. Contrary to previous reports, we found that AtzE is not a biuret amidohydrolase, but instead catalyzes the hydrolytic deamination of 1-carboxybiuret. X-ray crystal structures of apo AtzE and AtzE bound with the suicide inhibitor phenyl phosphorodiamidate revealed that the AtzE enzyme complex consists of two independent molecules in the asymmetric unit. We also show that AtzE forms an α2β2 heterotetramer with a hitherto unidentified 68-amino-acid-long protein (AtzG) encoded in the cyanuric acid mineralization operon from Pseudomonas sp. strain ADP. Moreover, we observed that AtzG is essential for the production of soluble, active AtzE and that this obligate interaction is a vestige of their shared evolutionary origin. We propose that AtzEG was likely recruited into the cyanuric acid-mineralizing pathway from an ancestral glutamine transamidosome that required protein-protein interactions to enforce the exclusion of solvent from the transamidation reaction. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Generalised power graph compression reveals dominant relationship patterns in complex networks.

    Science.gov (United States)

    Ahnert, Sebastian E

    2014-03-25

    We introduce a framework for the discovery of dominant relationship patterns in complex networks, by compressing the networks into power graphs with overlapping power nodes. When paired with enrichment analysis of node classification terms, the most compressible sets of edges provide a highly informative sketch of the dominant relationship patterns that define the network. In addition, this procedure also gives rise to a novel, link-based definition of overlapping node communities in which nodes are defined by their relationships with sets of other nodes, rather than through connections within the community. We show that this completely general approach can be applied to undirected, directed, and bipartite networks, yielding valuable insights into the large-scale structure of real-world networks, including social networks and food webs. Our approach therefore provides a novel way in which network architecture can be studied, defined and classified.

  4. Metagenomic signatures of a tropical mining-impacted stream reveal complex microbial and metabolic networks.

    Science.gov (United States)

    Reis, Mariana P; Dias, Marcela F; Costa, Patrícia S; Ávila, Marcelo P; Leite, Laura R; de Araújo, Flávio M G; Salim, Anna C M; Bucciarelli-Rodriguez, Mônica; Oliveira, Guilherme; Chartone-Souza, Edmar; Nascimento, Andréa M A

    2016-10-01

    Bacteria from aquatic ecosystems significantly contribute to biogeochemical cycles, but details of their community structure in tropical mining-impacted environments remain unexplored. In this study, we analyzed a bacterial community from circumneutral-pH tropical stream sediment by 16S rRNA and shotgun deep sequencing. Carrapatos stream sediment, which has been exposed to metal stress due to gold and iron mining (21 [g Fe]/kg), revealed a diverse community, with predominance of Proteobacteria (39.4%), Bacteroidetes (12.2%), and Parcubacteria (11.4%). Among Proteobacteria, the most abundant reads were assigned to neutrophilic iron-oxidizing taxa, such as Gallionella, Sideroxydans, and Mariprofundus, which are involved in Fe cycling and harbor several metal resistance genes. Functional analysis revealed a large number of genes participating in nitrogen and methane metabolic pathways despite the low concentrations of inorganic nitrogen in the Carrapatos stream. Our findings provide important insights into bacterial community interactions in a mining-impacted environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. [Technologies for Complex Intelligent Clinical Data Analysis].

    Science.gov (United States)

    Baranov, A A; Namazova-Baranova, L S; Smirnov, I V; Devyatkin, D A; Shelmanov, A O; Vishneva, E A; Antonova, E V; Smirnov, V I

    2016-01-01

    The paper presents the system for intelligent analysis of clinical information. Authors describe methods implemented in the system for clinical information retrieval, intelligent diagnostics of chronic diseases, patient's features importance and for detection of hidden dependencies between features. Results of the experimental evaluation of these methods are also presented. Healthcare facilities generate a large flow of both structured and unstructured data which contain important information about patients. Test results are usually retained as structured data but some data is retained in the form of natural language texts (medical history, the results of physical examination, and the results of other examinations, such as ultrasound, ECG or X-ray studies). Many tasks arising in clinical practice can be automated applying methods for intelligent analysis of accumulated structured array and unstructured data that leads to improvement of the healthcare quality. the creation of the complex system for intelligent data analysis in the multi-disciplinary pediatric center. Authors propose methods for information extraction from clinical texts in Russian. The methods are carried out on the basis of deep linguistic analysis. They retrieve terms of diseases, symptoms, areas of the body and drugs. The methods can recognize additional attributes such as "negation" (indicates that the disease is absent), "no patient" (indicates that the disease refers to the patient's family member, but not to the patient), "severity of illness", disease course", "body region to which the disease refers". Authors use a set of hand-drawn templates and various techniques based on machine learning to retrieve information using a medical thesaurus. The extracted information is used to solve the problem of automatic diagnosis of chronic diseases. A machine learning method for classification of patients with similar nosology and the methodfor determining the most informative patients'features are

  6. Morphometric analysis of the stylohyoid complex.

    Science.gov (United States)

    Petrović, Sladjana; Jovanović, Ivan; Ugrenović, Sladjana; Radovanović, Zoran; Pešić, Zoran; Vučković, Ivica; Stojković, Nikola; Petrović, Filip

    2017-05-01

    Stylohyoid complex is anatomical structure predisposed to numerous individual variations. These may result in its extreme elongation, medial deviation and finally Eagle's syndrome occurrence. The aim of this study was to measure the length, angulation, evaluate morphological variations of stylohyoid complex by computed tomography and, subsequently, relate obtained data to the gender and the age of the evaluated cases. The material included CT scans of stylohyoid complexes of 282 individuals. The entire length, maximal thickness, and angulation of the stylohyoid complexes in the coronal, transverse, and sagittal planes were measured. According to their morphology, orientation and length, stylohyoid complexes were classified into six morphological types. Elongated, bent, segmented, and segmented with attached stylohyoid ligament for the lesser horns of the hyoid bone stylohyoid complex types were characterized by significantly greater length, while pseudoarticulated type was characterized by significantly lower length in relation to normal stylohyoid complex type. The elongated type was additionally significantly thicker and with significantly lower value of medial angle in transverse plain than the normal stylohyoid complex type. Elongated, bent, and segmented types were significantly more frequent in males than in females. Furthermore, the frequency of the elongated stylohyoid complex type increased, whereas normal and pseudoarticulated types decreased with age. In conclusion, elongated and more medially deviated stylohyoid complexes are more frequent in males than in females. Their more frequent presence in the older age groups indirectly connects this phenomenon with the aging process.

  7. Complex patterns of faulting revealed by 3D seismic data at the West Galicia rifted margin

    Science.gov (United States)

    Reston, Timothy; Cresswell, Derren; Sawyer, Dale; Ranero, Cesar; Shillington, Donna; Morgan, Julia; Lymer, Gael

    2015-04-01

    The west Galicia margin is characterised by crust thinning to less than 3 km, well-defined fault blocks, which overlie a bright reflection (the S reflector) generally interpreted as a tectonic Moho. The margin exhibits neither voluminous magmatism nor thick sediment piles to obscure the structures and the amount of extension. As such is represents an ideal location to study the process of continental breakup both through seismic imaging and potentially through drilling. Prestack depth migration of existing 2D profiles has strongly supported the interpretation of the S reflector as both a detachment and as the crust-mantle boundary; wide-angle seismic has also shown that the mantle beneath S is serpentinised. Despite the quality of the existing 2D seismic images, a number of competing models have been advanced to explain the formation of this margin, including sequential faulting, polyphase faulting, multiple detachments and the gravitational collapse of the margin over exhumed mantle. As these models, all developed for the Galicia margin, have been subsequently applied to other margins, distinguishing between them has implications not only for the structure of the Galicia margin but for the process of rifting through to breakup more generally. To address these issues in summer of 2013 we collected a 3D combined seismic reflection and wide-angle dataset over this margin. Here we present some of the results of ongoing processing of the 3D volume, focussing on the internal structure of some of the fault blocks that overlies the S detachment. 2D processing of the data shows a relatively simple series of tilted fault block, bound by west-dipping faults that detach downwards onto the bright S reflector. However, inspection of the 3D volume produced by 3D pre-stack time migration reveals that the fault blocks contain a complex set of sedimentary packages, with strata tilted to the east, west, north and south, each package bound by faults. Furthermore, the top of crustal

  8. Simulation ofDeepwater Horizonoil plume reveals substrate specialization within a complex community of hydrocarbon degraders.

    Science.gov (United States)

    Hu, Ping; Dubinsky, Eric A; Probst, Alexander J; Wang, Jian; Sieber, Christian M K; Tom, Lauren M; Gardinali, Piero R; Banfield, Jillian F; Atlas, Ronald M; Andersen, Gary L

    2017-07-11

    The Deepwater Horizon (DWH) accident released an estimated 4.1 million barrels of oil and 10 10 mol of natural gas into the Gulf of Mexico, forming deep-sea plumes of dispersed oil droplets and dissolved gases that were largely degraded by bacteria. During the course of this 3-mo disaster a series of different bacterial taxa were enriched in succession within deep plumes, but the metabolic capabilities of the different populations that controlled degradation rates of crude oil components are poorly understood. We experimentally reproduced dispersed plumes of fine oil droplets in Gulf of Mexico seawater and successfully replicated the enrichment and succession of the principal oil-degrading bacteria observed during the DWH event. We recovered near-complete genomes, whose phylogeny matched those of the principal biodegrading taxa observed in the field, including the DWH Oceanospirillales (now identified as a Bermanella species), multiple species of Colwellia , Cycloclasticus , and other members of Gammaproteobacteria, Flavobacteria, and Rhodobacteria. Metabolic pathway analysis, combined with hydrocarbon compositional analysis and species abundance data, revealed substrate specialization that explained the successional pattern of oil-degrading bacteria. The fastest-growing bacteria used short-chain alkanes. The analyses also uncovered potential cooperative and competitive relationships, even among close relatives. We conclude that patterns of microbial succession following deep ocean hydrocarbon blowouts are predictable and primarily driven by the availability of liquid petroleum hydrocarbons rather than natural gases.

  9. Single cell transcriptional analysis reveals novel innate immune cell types

    Directory of Open Access Journals (Sweden)

    Linda E. Kippner

    2014-06-01

    Full Text Available Single-cell analysis has the potential to provide us with a host of new knowledge about biological systems, but it comes with the challenge of correctly interpreting the biological information. While emerging techniques have made it possible to measure inter-cellular variability at the transcriptome level, no consensus yet exists on the most appropriate method of data analysis of such single cell data. Methods for analysis of transcriptional data at the population level are well established but are not well suited to single cell analysis due to their dependence on population averages. In order to address this question, we have systematically tested combinations of methods for primary data analysis on single cell transcription data generated from two types of primary immune cells, neutrophils and T lymphocytes. Cells were obtained from healthy individuals, and single cell transcript expression data was obtained by a combination of single cell sorting and nanoscale quantitative real time PCR (qRT-PCR for markers of cell type, intracellular signaling, and immune functionality. Gene expression analysis was focused on hierarchical clustering to determine the existence of cellular subgroups within the populations. Nine combinations of criteria for data exclusion and normalization were tested and evaluated. Bimodality in gene expression indicated the presence of cellular subgroups which were also revealed by data clustering. We observed evidence for two clearly defined cellular subtypes in the neutrophil populations and at least two in the T lymphocyte populations. When normalizing the data by different methods, we observed varying outcomes with corresponding interpretations of the biological characteristics of the cell populations. Normalization of the data by linear standardization taking into account technical effects such as plate effects, resulted in interpretations that most closely matched biological expectations. Single cell transcription

  10. The resilience analysis grid taming complexity?

    NARCIS (Netherlands)

    Gallis, R.

    2012-01-01

    In this workshop we will look at the next step in safety: using resilience engineering as a tool for dealing with complexity. Present concepts such as Bow-ties use linear cause & effect relationships. More and more we see that companies are faced with a complex world with non linear systems. This

  11. Mixture model analysis of complex samples

    NARCIS (Netherlands)

    Wedel, M; ter Hofstede, F; Steenkamp, JBEM

    1998-01-01

    We investigate the effects of a complex sampling design on the estimation of mixture models. An approximate or pseudo likelihood approach is proposed to obtain consistent estimates of class-specific parameters when the sample arises from such a complex design. The effects of ignoring the sample

  12. Complex mutations & subpopulations of deletions at exon 19 of EGFR in NSCLC revealed by next generation sequencing: potential clinical implications.

    Directory of Open Access Journals (Sweden)

    Antonio Marchetti

    Full Text Available Microdeletions at exon 19 are the most frequent genetic alterations affecting the Epidermal Growth Factor Receptor (EGFR gene in non-small cell lung cancer (NSCLC and they are strongly associated with response to treatment with tyrosine kinase inhibitors. A series of 116 NSCLC DNA samples investigated by Sanger Sequencing (SS, including 106 samples carrying exon 19 EGFR deletions and 10 without deletions (control samples, were subjected to deep next generation sequencing (NGS. All samples with deletions at SS showed deletions with NGS. No deletions were seen in control cases. In 93 (88% cases, deletions detected by NGS were exactly corresponding to those identified by SS. In 13 cases (12% NGS resolved deletions not accurately characterized by SS. In 21 (20% cases the NGS showed presence of complex (double/multiple frameshift deletions producing a net in-frame change. In 5 of these cases the SS could not define the exact sequence of mutant alleles, in the other 16 cases the results obtained by SS were conventionally considered as deletions plus insertions. Different interpretative hypotheses for complex mutations are discussed. In 46 (43% tumors deep NGS showed, for the first time to our knowledge, subpopulations of DNA molecules carrying EGFR deletions different from the main one. Each of these subpopulations accounted for 0.1% to 17% of the genomic DNA in the different tumors investigated. Our findings suggest that a region in exon 19 is highly unstable in a large proportion of patients carrying EGFR deletions. As a corollary to this study, NGS data were compared with those obtained by immunohistochemistry using the 6B6 anti-mutant EGFR antibody. The immunoreaction was E746-A750del specific. In conclusion, NGS analysis of EGFR exon 19 in NSCLCs allowed us to formulate a new interpretative hypothesis for complex mutations and revealed the presence of subpopulations of deletions with potential pathogenetic and clinical impact.

  13. Comparative analysis reveals the underlying mechanism of vertebrate seasonal reproduction.

    Science.gov (United States)

    Ikegami, Keisuke; Yoshimura, Takashi

    2016-02-01

    Animals utilize photoperiodic changes as a calendar to regulate seasonal reproduction. Birds have highly sophisticated photoperiodic mechanisms and functional genomics analysis in quail uncovered the signal transduction pathway regulating avian seasonal reproduction. Birds detect light with deep brain photoreceptors. Long day (LD) stimulus induces secretion of thyroid-stimulating hormone (TSH) from the pars tuberalis (PT) of the pituitary gland. PT-derived TSH locally activates thyroid hormone (TH) in the hypothalamus, which induces gonadotropin-releasing hormone (GnRH) and hence gonadotropin secretion. However, during winter, low temperatures increase serum TH for adaptive thermogenesis, which accelerates germ cell apoptosis by activating the genes involved in metamorphosis. Therefore, TH has a dual role in the regulation of seasonal reproduction. Studies using TSH receptor knockout mice confirmed the involvement of PT-derived TSH in mammalian seasonal reproduction. In addition, studies in mice revealed that the tissue-specific glycosylation of TSH diversifies its function in the circulation to avoid crosstalk. In contrast to birds and mammals, one of the molecular machineries necessary for the seasonal reproduction of fish are localized in the saccus vasculosus from the photoreceptor to the neuroendocrine output. Thus, comparative analysis is a powerful tool to uncover the universality and diversity of fundamental properties in various organisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Advances in real and complex analysis with applications

    CERN Document Server

    Cho, Yeol; Agarwal, Praveen; Area, Iván

    2017-01-01

    This book discusses a variety of topics in mathematics and engineering as well as their applications, clearly explaining the mathematical concepts in the simplest possible way and illustrating them with a number of solved examples. The topics include real and complex analysis, special functions and analytic number theory, q-series, Ramanujan’s mathematics, fractional calculus, Clifford and harmonic analysis, graph theory, complex analysis, complex dynamical systems, complex function spaces and operator theory, geometric analysis of complex manifolds, geometric function theory, Riemannian surfaces, Teichmüller spaces and Kleinian groups, engineering applications of complex analytic methods, nonlinear analysis, inequality theory, potential theory, partial differential equations, numerical analysis , fixed-point theory, variational inequality, equilibrium problems, optimization problems, stability of functional equations, and mathematical physics.  It includes papers presented at the 24th International Confe...

  15. Genome-wide analyses of the Bemisia tabaci species complex reveal contrasting patterns of admixture and complex demographic histories.

    Directory of Open Access Journals (Sweden)

    S Elfekih

    Full Text Available Once considered a single species, the whitefly, Bemisia tabaci, is a complex of numerous morphologically indistinguishable species. Within the last three decades, two of its members (MED and MEAM1 have become some of the world's most damaging agricultural pests invading countries across Europe, Africa, Asia and the Americas and affecting a vast range of agriculturally important food and fiber crops through both feeding-related damage and the transmission of numerous plant viruses. For some time now, researchers have relied on a single mitochondrial gene and/or a handful of nuclear markers to study this species complex. Here, we move beyond this by using 38,041 genome-wide Single Nucleotide Polymorphisms, and show that the two invasive members of the complex are closely related species with signatures of introgression with a third species (IO. Gene flow patterns were traced between contemporary invasive populations within MED and MEAM1 species and these were best explained by recent international trade. These findings have profound implications for delineating the B. tabaci species status and will impact quarantine measures and future management strategies of this global pest.

  16. Complex Routes of Nosocomial Vancomycin-Resistant Enterococcus faecium Transmission Revealed by Genome Sequencing.

    Science.gov (United States)

    Raven, Kathy E; Gouliouris, Theodore; Brodrick, Hayley; Coll, Francesc; Brown, Nicholas M; Reynolds, Rosy; Reuter, Sandra; Török, M Estée; Parkhill, Julian; Peacock, Sharon J

    2017-04-01

    Vancomycin-resistant Enterococcus faecium (VREfm) is a leading cause of nosocomial infection. Here, we describe the utility of whole-genome sequencing in defining nosocomial VREfm transmission. A retrospective study at a single hospital in the United Kingdom identified 342 patients with E. faecium bloodstream infection over 7 years. Of these, 293 patients had a stored isolate and formed the basis for the study. The first stored isolate from each case was sequenced (200 VREfm [197 vanA, 2 vanB, and 1 isolate containing both vanA and vanB], 93 vancomycin-susceptible E. faecium) and epidemiological data were collected. Genomes were also available for E. faecium associated with bloodstream infections in 15 patients in neighboring hospitals, and 456 patients across the United Kingdom and Ireland. The majority of infections in the 293 patients were hospital-acquired (n = 249) or healthcare-associated (n = 42). Phylogenetic analysis showed that 291 of 293 isolates resided in a hospital-associated clade that contained numerous discrete clusters of closely related isolates, indicative of multiple introductions into the hospital followed by clonal expansion associated with transmission. Fine-scale analysis of 6 exemplar phylogenetic clusters containing isolates from 93 patients (32%) identified complex transmission routes that spanned numerous wards and years, extending beyond the detection of conventional infection control. These contained both vancomycin-resistant and -susceptible isolates. We also identified closely related isolates from patients at Cambridge University Hospitals NHS Foundation Trust and regional and national hospitals, suggesting interhospital transmission. These findings provide important insights for infection control practice and signpost areas for interventions. We conclude that sequencing represents a powerful tool for the enhanced surveillance and control of nosocomial E. faecium transmission and infection.

  17. Stability analysis of impulsive parabolic complex networks

    International Nuclear Information System (INIS)

    Wang Jinliang; Wu Huaining

    2011-01-01

    Highlights: → Two impulsive parabolic complex network models are proposed. → The global exponential stability of impulsive parabolic complex networks are considered. → The robust global exponential stability of impulsive parabolic complex networks are considered. - Abstract: In the present paper, two kinds of impulsive parabolic complex networks (IPCNs) are considered. In the first one, all nodes have the same time-varying delay. In the second one, different nodes have different time-varying delays. Using the Lyapunov functional method combined with the inequality techniques, some global exponential stability criteria are derived for the IPCNs. Furthermore, several robust global exponential stability conditions are proposed to take uncertainties in the parameters of the IPCNs into account. Finally, numerical simulations are presented to illustrate the effectiveness of the results obtained here.

  18. Complex cytogeographical patterns reveal a dynamic tetraploid–octoploid contact zone

    Science.gov (United States)

    Castro, Mariana; Castro, Sílvia; Figueiredo, Albano; Husband, Brian; Loureiro, João

    2018-01-01

    Abstract The distribution of cytotypes in mixed-ploidy species is crucial for evaluating ecological processes involved in the establishment and evolution of polyploid taxa. Here, we use flow cytometry and chromosome counts to explore cytotype diversity and distributions within a tetraploid–octoploid contact zone. We then use niche modelling and ploidy seed screening to assess the roles of niche differentiation among cytotypes and reproductive interactions, respectively, in promoting cytotype coexistence. Two cytotypes, tetraploids and octoploids, were dominant within the contact zone. They were most often distributed parapatrically or allopatrically, resulting in high geographic isolation. Still, 16.7 % of localities comprised two or more cytotypes, including the intermediate hexaploid cytotype. Tetraploids and octoploids had high environmental niche overlap and associated with similar climatic environments, suggesting they have similar ecological requirements. Given the geographical separation and habitat similarity among cytotypes, mixed-ploidy populations may be transitional and subject to the forces of minority cytotype exclusion which lead to pure-ploidy populations. However, seed ploidy analysis suggests that strong reproductive barriers may enforce assortative mating which favours stable cytotype coexistence. High cytogenetic diversity detected in the field suggests that unreduced gamete formation and hybridization events seem frequent in the studied polyploid complex and might be involved with the recurrent polyploid formation, governing, as well, the gene flow between cytogenetic entities. PMID:29593853

  19. Patterns of kinesin evolution reveal a complex ancestral eukaryote with a multifunctional cytoskeleton

    Directory of Open Access Journals (Sweden)

    Richards Thomas A

    2010-04-01

    Full Text Available Abstract Background The genesis of the eukaryotes was a pivotal event in evolution and was accompanied by the acquisition of numerous new cellular features including compartmentalization by cytoplasmic organelles, mitosis and meiosis, and ciliary motility. Essential for the development of these features was the tubulin cytoskeleton and associated motors. It is therefore possible to map ancient cell evolution by reconstructing the evolutionary history of motor proteins. Here, we have used the kinesin motor repertoire of 45 extant eukaryotes to infer the ancestral state of this superfamily in the last common eukaryotic ancestor (LCEA. Results We bioinformatically identified 1624 putative kinesin proteins, determined their protein domain architectures and calculated a comprehensive Bayesian phylogeny for the kinesin superfamily with statistical support. These data enabled us to define 51 anciently-derived kinesin paralogs (including three new kinesin families and 105 domain architectures. We then mapped these characters across eukaryotes, accounting for secondary loss within established eukaryotic groupings, and alternative tree topologies. Conclusions We show that a minimum of 11 kinesin families and 3 protein domain architectures were present in the LCEA. This demonstrates that the microtubule-based cytoskeleton of the LCEA was surprisingly highly developed in terms of kinesin motor types, but that domain architectures have been extensively modified during the diversification of the eukaryotes. Our analysis provides molecular evidence for the existence of several key cellular functions in the LCEA, and shows that a large proportion of motor family diversity and cellular complexity had already arisen in this ancient cell.

  20. EXPLORATORY DATA ANALYSIS AND MULTIVARIATE STRATEGIES FOR REVEALING MULTIVARIATE STRUCTURES IN CLIMATE DATA

    Directory of Open Access Journals (Sweden)

    2016-12-01

    Full Text Available This paper is on data analysis strategy in a complex, multidimensional, and dynamic domain. The focus is on the use of data mining techniques to explore the importance of multivariate structures; using climate variables which influences climate change. Techniques involved in data mining exercise vary according to the data structures. The multivariate analysis strategy considered here involved choosing an appropriate tool to analyze a process. Factor analysis is introduced into data mining technique in order to reveal the influencing impacts of factors involved as well as solving for multicolinearity effect among the variables. The temporal nature and multidimensionality of the target variables is revealed in the model using multidimensional regression estimates. The strategy of integrating the method of several statistical techniques, using climate variables in Nigeria was employed. R2 of 0.518 was obtained from the ordinary least square regression analysis carried out and the test was not significant at 5% level of significance. However, factor analysis regression strategy gave a good fit with R2 of 0.811 and the test was significant at 5% level of significance. Based on this study, model building should go beyond the usual confirmatory data analysis (CDA, rather it should be complemented with exploratory data analysis (EDA in order to achieve a desired result.

  1. Functional complexity of the axonal growth cone: a proteomic analysis.

    Directory of Open Access Journals (Sweden)

    Adriana Estrada-Bernal

    Full Text Available The growth cone, the tip of the emerging neurite, plays a crucial role in establishing the wiring of the developing nervous system. We performed an extensive proteomic analysis of axonal growth cones isolated from the brains of fetal Sprague-Dawley rats. Approximately 2000 proteins were identified at ≥ 99% confidence level. Using informatics, including functional annotation cluster and KEGG pathway analysis, we found great diversity of proteins involved in axonal pathfinding, cytoskeletal remodeling, vesicular traffic and carbohydrate metabolism, as expected. We also found a large and complex array of proteins involved in translation, protein folding, posttranslational processing, and proteasome/ubiquitination-dependent degradation. Immunofluorescence studies performed on hippocampal neurons in culture confirmed the presence in the axonal growth cone of proteins representative of these processes. These analyses also provide evidence for rough endoplasmic reticulum and reveal a reticular structure equipped with Golgi-like functions in the axonal growth cone. Furthermore, Western blot revealed the growth cone enrichment, relative to fetal brain homogenate, of some of the proteins involved in protein synthesis, folding and catabolism. Our study provides a resource for further research and amplifies the relatively recently developed concept that the axonal growth cone is equipped with proteins capable of performing a highly diverse range of functions.

  2. Genome re-sequencing of semi-wild soybean reveals a complex Soja population structure and deep introgression.

    Science.gov (United States)

    Qiu, Jie; Wang, Yu; Wu, Sanling; Wang, Ying-Ying; Ye, Chu-Yu; Bai, Xuefei; Li, Zefeng; Yan, Chenghai; Wang, Weidi; Wang, Ziqiang; Shu, Qingyao; Xie, Jiahua; Lee, Suk-Ha; Fan, Longjiang

    2014-01-01

    Semi-wild soybean is a unique type of soybean that retains both wild and domesticated characteristics, which provides an important intermediate type for understanding the evolution of the subgenus Soja population in the Glycine genus. In this study, a semi-wild soybean line (Maliaodou) and a wild line (Lanxi 1) collected from the lower Yangtze regions were deeply sequenced while nine other semi-wild lines were sequenced to a 3-fold genome coverage. Sequence analysis revealed that (1) no independent phylogenetic branch covering all 10 semi-wild lines was observed in the Soja phylogenetic tree; (2) besides two distinct subpopulations of wild and cultivated soybean in the Soja population structure, all semi-wild lines were mixed with some wild lines into a subpopulation rather than an independent one or an intermediate transition type of soybean domestication; (3) high heterozygous rates (0.19-0.49) were observed in several semi-wild lines; and (4) over 100 putative selective regions were identified by selective sweep analysis, including those related to the development of seed size. Our results suggested a hybridization origin for the semi-wild soybean, which makes a complex Soja population structure.

  3. Genome re-sequencing of semi-wild soybean reveals a complex Soja population structure and deep introgression.

    Directory of Open Access Journals (Sweden)

    Jie Qiu

    Full Text Available Semi-wild soybean is a unique type of soybean that retains both wild and domesticated characteristics, which provides an important intermediate type for understanding the evolution of the subgenus Soja population in the Glycine genus. In this study, a semi-wild soybean line (Maliaodou and a wild line (Lanxi 1 collected from the lower Yangtze regions were deeply sequenced while nine other semi-wild lines were sequenced to a 3-fold genome coverage. Sequence analysis revealed that (1 no independent phylogenetic branch covering all 10 semi-wild lines was observed in the Soja phylogenetic tree; (2 besides two distinct subpopulations of wild and cultivated soybean in the Soja population structure, all semi-wild lines were mixed with some wild lines into a subpopulation rather than an independent one or an intermediate transition type of soybean domestication; (3 high heterozygous rates (0.19-0.49 were observed in several semi-wild lines; and (4 over 100 putative selective regions were identified by selective sweep analysis, including those related to the development of seed size. Our results suggested a hybridization origin for the semi-wild soybean, which makes a complex Soja population structure.

  4. Network Analysis Reveals Putative Genes Affecting Meat Quality in Angus Cattle

    Directory of Open Access Journals (Sweden)

    Raluca G. Mateescu

    2017-11-01

    Full Text Available Improvements in eating satisfaction will benefit consumers and should increase beef demand which is of interest to the beef industry. Tenderness, juiciness, and flavor are major determinants of the palatability of beef and are often used to reflect eating satisfaction. Carcass qualities are used as indicator traits for meat quality, with higher quality grade carcasses expected to relate to more tender and palatable meat. However, meat quality is a complex concept determined by many component traits making interpretation of genome-wide association studies (GWAS on any one component challenging to interpret. Recent approaches combining traditional GWAS with gene network interactions theory could be more efficient in dissecting the genetic architecture of complex traits. Phenotypic measures of 23 traits reflecting carcass characteristics, components of meat quality, along with mineral and peptide concentrations were used along with Illumina 54k bovine SNP genotypes to derive an annotated gene network associated with meat quality in 2,110 Angus beef cattle. The efficient mixed model association (EMMAX approach in combination with a genomic relationship matrix was used to directly estimate the associations between 54k SNP genotypes and each of the 23 component traits. Genomic correlated regions were identified by partial correlations which were further used along with an information theory algorithm to derive gene network clusters. Correlated SNP across 23 component traits were subjected to network scoring and visualization software to identify significant SNP. Significant pathways implicated in the meat quality complex through GO term enrichment analysis included angiogenesis, inflammation, transmembrane transporter activity, and receptor activity. These results suggest that network analysis using partial correlations and annotation of significant SNP can reveal the genetic architecture of complex traits and provide novel information regarding

  5. Expression of secreted Wnt pathway components reveals unexpected complexity of the planarian amputation response.

    Science.gov (United States)

    Gurley, Kyle A; Elliott, Sarah A; Simakov, Oleg; Schmidt, Heiko A; Holstein, Thomas W; Sánchez Alvarado, Alejandro

    2010-11-01

    Regeneration is widespread throughout the animal kingdom, but our molecular understanding of this process in adult animals remains poorly understood. Wnt/β-catenin signaling plays crucial roles throughout animal life from early development to adulthood. In intact and regenerating planarians, the regulation of Wnt/β-catenin signaling functions to maintain and specify anterior/posterior (A/P) identity. Here, we explore the expression kinetics and RNAi phenotypes for secreted members of the Wnt signaling pathway in the planarian Schmidtea mediterranea. Smed-wnt and sFRP expression during regeneration is surprisingly dynamic and reveals fundamental aspects of planarian biology that have been previously unappreciated. We show that after amputation, a wounding response precedes rapid re-organization of the A/P axis. Furthermore, cells throughout the body plan can mount this response and reassess their new A/P location in the complete absence of stem cells. While initial stages of the amputation response are stem cell independent, tissue remodeling and the integration of a new A/P address with anatomy are stem cell dependent. We also show that WNT5 functions in a reciprocal manner with SLIT to pattern the planarian mediolateral axis, while WNT11-2 patterns the posterior midline. Moreover, we perform an extensive phylogenetic analysis on the Smed-wnt genes using a method that combines and integrates both sequence and structural alignments, enabling us to place all nine genes into Wnt subfamilies for the first time. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Complex surface deformation of Akutan volcano, Alaska revealed from InSAR time series

    Science.gov (United States)

    Wang, Teng; DeGrandpre, Kimberly; Lu, Zhong; Freymueller, Jeffrey T.

    2018-02-01

    Akutan volcano is one of the most active volcanoes in the Aleutian arc. An intense swarm of volcano-tectonic earthquakes occurred across the island in 1996. Surface deformation after the 1996 earthquake sequence has been studied using Interferometric Synthetic Aperture Radar (InSAR), yet it is hard to determine the detailed temporal behavior and spatial extent of the deformation due to decorrelation and the sparse temporal sampling of SAR data. Atmospheric delay anomalies over Akutan volcano are also strong, bringing additional technical challenges. Here we present a time series InSAR analysis from 2003 to 2016 to reveal the surface deformation in more detail. Four tracks of Envisat data acquired from 2003 to 2010 and one track of TerraSAR-X data acquired from 2010 to 2016 are processed to produce high-resolution surface deformation, with a focus on studying two transient episodes of inflation in 2008 and 2014. For the TerraSAR-X data, the atmospheric delay is estimated and removed using the common-master stacking method. These derived deformation maps show a consistently uplifting area on the northeastern flank of the volcano. From the TerraSAR-X data, we quantify the velocity of the subsidence inside the caldera to be as high as 10 mm/year, and identify another subsidence area near the ground cracks created during the 1996 swarm.

  7. Metatranscriptomic analysis of diverse microbial communities reveals core metabolic pathways and microbiome-specific functionality.

    Science.gov (United States)

    Jiang, Yue; Xiong, Xuejian; Danska, Jayne; Parkinson, John

    2016-01-12

    Metatranscriptomics is emerging as a powerful technology for the functional characterization of complex microbial communities (microbiomes). Use of unbiased RNA-sequencing can reveal both the taxonomic composition and active biochemical functions of a complex microbial community. However, the lack of established reference genomes, computational tools and pipelines make analysis and interpretation of these datasets challenging. Systematic studies that compare data across microbiomes are needed to demonstrate the ability of such pipelines to deliver biologically meaningful insights on microbiome function. Here, we apply a standardized analytical pipeline to perform a comparative analysis of metatranscriptomic data from diverse microbial communities derived from mouse large intestine, cow rumen, kimchi culture, deep-sea thermal vent and permafrost. Sequence similarity searches allowed annotation of 19 to 76% of putative messenger RNA (mRNA) reads, with the highest frequency in the kimchi dataset due to its relatively low complexity and availability of closely related reference genomes. Metatranscriptomic datasets exhibited distinct taxonomic and functional signatures. From a metabolic perspective, we identified a common core of enzymes involved in amino acid, energy and nucleotide metabolism and also identified microbiome-specific pathways such as phosphonate metabolism (deep sea) and glycan degradation pathways (cow rumen). Integrating taxonomic and functional annotations within a novel visualization framework revealed the contribution of different taxa to metabolic pathways, allowing the identification of taxa that contribute unique functions. The application of a single, standard pipeline confirms that the rich taxonomic and functional diversity observed across microbiomes is not simply an artefact of different analysis pipelines but instead reflects distinct environmental influences. At the same time, our findings show how microbiome complexity and availability of

  8. Sequential analysis of the numerical Stroop effect reveals response suppression.

    Science.gov (United States)

    Cohen Kadosh, Roi; Gevers, Wim; Notebaert, Wim

    2011-09-01

    Automatic processing of irrelevant stimulus dimensions has been demonstrated in a variety of tasks. Previous studies have shown that conflict between relevant and irrelevant dimensions can be reduced when a feature of the irrelevant dimension is repeated. The specific level at which the automatic process is suppressed (e.g., perceptual repetition, response repetition), however, is less understood. In the current experiment we used the numerical Stroop paradigm, in which the processing of irrelevant numerical values of 2 digits interferes with the processing of their physical size, to pinpoint the precise level of the suppression. Using a sequential analysis, we dissociated perceptual repetition from response repetition of the relevant and irrelevant dimension. Our analyses of reaction times, error rates, and diffusion modeling revealed that the congruity effect is significantly reduced or even absent when the response sequence of the irrelevant dimension, rather than the numerical value or the physical size, is repeated. These results suggest that automatic activation of the irrelevant dimension is suppressed at the response level. The current results shed light on the level of interaction between numerical magnitude and physical size as well as the effect of variability of responses and stimuli on automatic processing. (c) 2011 APA, all rights reserved.

  9. Complex patterns of divergence among green-sensitive (RH2a African cichlid opsins revealed by Clade model analyses

    Directory of Open Access Journals (Sweden)

    Weadick Cameron J

    2012-10-01

    Full Text Available Abstract Background Gene duplications play an important role in the evolution of functional protein diversity. Some models of duplicate gene evolution predict complex forms of paralog divergence; orthologous proteins may diverge as well, further complicating patterns of divergence among and within gene families. Consequently, studying the link between protein sequence evolution and duplication requires the use of flexible substitution models that can accommodate multiple shifts in selection across a phylogeny. Here, we employed a variety of codon substitution models, primarily Clade models, to explore how selective constraint evolved following the duplication of a green-sensitive (RH2a visual pigment protein (opsin in African cichlids. Past studies have linked opsin divergence to ecological and sexual divergence within the African cichlid adaptive radiation. Furthermore, biochemical and regulatory differences between the RH2aα and RH2aβ paralogs have been documented. It thus seems likely that selection varies in complex ways throughout this gene family. Results Clade model analysis of African cichlid RH2a opsins revealed a large increase in the nonsynonymous-to-synonymous substitution rate ratio (ω following the duplication, as well as an even larger increase, one consistent with positive selection, for Lake Tanganyikan cichlid RH2aβ opsins. Analysis using the popular Branch-site models, by contrast, revealed no such alteration of constraint. Several amino acid sites known to influence spectral and non-spectral aspects of opsin biochemistry were found to be evolving divergently, suggesting that orthologous RH2a opsins may vary in terms of spectral sensitivity and response kinetics. Divergence appears to be occurring despite intronic gene conversion among the tandemly-arranged duplicates. Conclusions Our findings indicate that variation in selective constraint is associated with both gene duplication and divergence among orthologs in African

  10. Sensitization trajectories in childhood revealed by using a cluster analysis.

    Science.gov (United States)

    Schoos, Ann-Marie M; Chawes, Bo L; Melén, Erik; Bergström, Anna; Kull, Inger; Wickman, Magnus; Bønnelykke, Klaus; Bisgaard, Hans; Rasmussen, Morten A

    2017-12-01

    Assessment of sensitization at a single time point during childhood provides limited clinical information. We hypothesized that sensitization develops as specific patterns with respect to age at debut, development over time, and involved allergens and that such patterns might be more biologically and clinically relevant. We sought to explore latent patterns of sensitization during the first 6 years of life and investigate whether such patterns associate with the development of asthma, rhinitis, and eczema. We investigated 398 children from the at-risk Copenhagen Prospective Studies on Asthma in Childhood 2000 (COPSAC 2000 ) birth cohort with specific IgE against 13 common food and inhalant allergens at the ages of ½, 1½, 4, and 6 years. An unsupervised cluster analysis for 3-dimensional data (nonnegative sparse parallel factor analysis) was used to extract latent patterns explicitly characterizing temporal development of sensitization while clustering allergens and children. Subsequently, these patterns were investigated in relation to asthma, rhinitis, and eczema. Verification was sought in an independent unselected birth cohort (BAMSE) constituting 3051 children with specific IgE against the same allergens at 4 and 8 years of age. The nonnegative sparse parallel factor analysis indicated a complex latent structure involving 7 age- and allergen-specific patterns in the COPSAC 2000 birth cohort data: (1) dog/cat/horse, (2) timothy grass/birch, (3) molds, (4) house dust mites, (5) peanut/wheat flour/mugwort, (6) peanut/soybean, and (7) egg/milk/wheat flour. Asthma was solely associated with pattern 1 (odds ratio [OR], 3.3; 95% CI, 1.5-7.2), rhinitis with patterns 1 to 4 and 6 (OR, 2.2-4.3), and eczema with patterns 1 to 3 and 5 to 7 (OR, 1.6-2.5). All 7 patterns were verified in the independent BAMSE cohort (R 2  > 0.89). This study suggests the presence of specific sensitization patterns in early childhood differentially associated with development of

  11. Structural Model of RNA Polymerase II Elongation Complex with Complete Transcription Bubble Reveals NTP Entry Routes.

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2015-07-01

    Full Text Available The RNA polymerase II (Pol II is a eukaryotic enzyme that catalyzes the synthesis of the messenger RNA using a DNA template. Despite numerous biochemical and biophysical studies, it remains elusive whether the "secondary channel" is the only route for NTP to reach the active site of the enzyme or if the "main channel" could be an alternative. On this regard, crystallographic structures of Pol II have been extremely useful to understand the structural basis of transcription, however, the conformation of the unpaired non-template DNA part of the full transcription bubble (TB is still unknown. Since diffusion routes of the nucleoside triphosphate (NTP substrate through the main channel might overlap with the TB region, gaining structural information of the full TB is critical for a complete understanding of Pol II transcription process. In this study, we have built a structural model of Pol II with a complete transcription bubble based on multiple sources of existing structural data and used Molecular Dynamics (MD simulations together with structural analysis to shed light on NTP entry pathways. Interestingly, we found that although both channels have enough space to allow NTP loading, the percentage of MD conformations containing enough space for NTP loading through the secondary channel is twice higher than that of the main channel. Further energetic study based on MD simulations with NTP loaded in the channels has revealed that the diffusion of the NTP through the main channel is greatly disfavored by electrostatic repulsion between the NTP and the highly negatively charged backbones of nucleotides in the non-template DNA strand. Taken together, our results suggest that the secondary channel is the major route for NTP entry during Pol II transcription.

  12. Complex analysis a modern first course in function theory

    CERN Document Server

    Muir, Jerry R

    2015-01-01

    A thorough introduction to the theory of complex functions emphasizing the beauty, power, and counterintuitive nature of the subject Written with a reader-friendly approach, Complex Analysis: A Modern First Course in Function Theory features a self-contained, concise development of the fundamental principles of complex analysis. After laying groundwork on complex numbers and the calculus and geometric mapping properties of functions of a complex variable, the author uses power series as a unifying theme to define and study the many rich and occasionally surprising properties of analytic fun

  13. Morphological and Molecular Data Reveal Three Distinct Populations of Indian Wild Rice Oryza rufipogon Griff. Species Complex

    Science.gov (United States)

    Singh, Balwant; Singh, Nisha; Mishra, Shefali; Tripathi, Kabita; Singh, Bikram P.; Rai, Vandna; Singh, Ashok K.; Singh, Nagendra K.

    2018-01-01

    Wild relatives of crops possess adaptive mutations for agronomically important traits, which could play significant role in crop improvement for sustainable agriculture. However, global climate change and human activities pose serious threats to the natural habitats leading to erosion of genetic diversity of wild rice populations. The purpose of this study was to explore and characterize India’s huge untapped wild rice diversity in Oryza rufipogon Griff. species complex from a wide range of ecological niches. We made strategic expeditions around diversity hot spots in 64 districts of nine different agro-climatic zones of the country and collected 418 wild rice accessions. Significant variation was observed among the accessions for 46 morphological descriptors, allowing classification into O. nivara, O. rufipogon, and O. sativa f. spontanea morpho-taxonomic groups. Genome-specific pSINE1 markers confirmed all the accessions having AA genome, which were further classified using ecotype-specific pSINE1 markers into annual, perennial, intermediate, and an unknown type. Principal component analysis revealed continuous variation for the morphological traits in each ecotype group. Genetic diversity analysis based on multi-allelic SSR markers clustered these accessions into three major groups and analysis of molecular variance for nine agro-climatic zones showed that 68% of the genetic variation was inherent amongst individuals while only 11% of the variation separated the zones, though there was significant correlation between genetic and spatial distances of the accessions. Model based population structure analysis using genome wide bi-allelic SNP markers revealed three sub-populations designated ‘Pro-Indica,’ ‘Pro-Aus,’ and ‘Mid-Gangetic,’ which showed poor correspondence with the morpho-taxonomic classification or pSINE1 ecotypes. There was Pan-India distribution of the ‘Pro-Indica’ and ‘Pro-Aus’ sub-populations across agro-climatic zones

  14. Morphological and Molecular Data Reveal Three Distinct Populations of Indian Wild Rice Oryza rufipogon Griff. Species Complex

    Directory of Open Access Journals (Sweden)

    Balwant Singh

    2018-02-01

    Full Text Available Wild relatives of crops possess adaptive mutations for agronomically important traits, which could play significant role in crop improvement for sustainable agriculture. However, global climate change and human activities pose serious threats to the natural habitats leading to erosion of genetic diversity of wild rice populations. The purpose of this study was to explore and characterize India’s huge untapped wild rice diversity in Oryza rufipogon Griff. species complex from a wide range of ecological niches. We made strategic expeditions around diversity hot spots in 64 districts of nine different agro-climatic zones of the country and collected 418 wild rice accessions. Significant variation was observed among the accessions for 46 morphological descriptors, allowing classification into O. nivara, O. rufipogon, and O. sativa f. spontanea morpho-taxonomic groups. Genome-specific pSINE1 markers confirmed all the accessions having AA genome, which were further classified using ecotype-specific pSINE1 markers into annual, perennial, intermediate, and an unknown type. Principal component analysis revealed continuous variation for the morphological traits in each ecotype group. Genetic diversity analysis based on multi-allelic SSR markers clustered these accessions into three major groups and analysis of molecular variance for nine agro-climatic zones showed that 68% of the genetic variation was inherent amongst individuals while only 11% of the variation separated the zones, though there was significant correlation between genetic and spatial distances of the accessions. Model based population structure analysis using genome wide bi-allelic SNP markers revealed three sub-populations designated ‘Pro-Indica,’ ‘Pro-Aus,’ and ‘Mid-Gangetic,’ which showed poor correspondence with the morpho-taxonomic classification or pSINE1 ecotypes. There was Pan-India distribution of the ‘Pro-Indica’ and ‘Pro-Aus’ sub-populations across agro

  15. CNV-association meta-analysis in 191,161 European adults reveals new loci associated with anthropometric traits

    DEFF Research Database (Denmark)

    Macé, Aurélien; Tuke, Marcus A; Deelen, Patrick

    2017-01-01

    There are few examples of robust associations between rare copy number variants (CNVs) and complex continuous human traits. Here we present a large-scale CNV association meta-analysis on anthropometric traits in up to 191,161 adult samples from 26 cohorts. The study reveals five CNV associations ...

  16. RNA profiles of porcine embryos during genome activation reveal complex metabolic switch sensitive to in vitro conditions.

    Directory of Open Access Journals (Sweden)

    Olga Østrup

    Full Text Available Fertilization is followed by complex changes in cytoplasmic composition and extensive chromatin reprogramming which results in the abundant activation of totipotent embryonic genome at embryonic genome activation (EGA. While chromatin reprogramming has been widely studied in several species, only a handful of reports characterize changing transcriptome profiles and resulting metabolic changes in cleavage stage embryos. The aims of the current study were to investigate RNA profiles of in vivo developed (ivv and in vitro produced (ivt porcine embryos before (2-cell stage and after (late 4-cell stage EGA and determine major metabolic changes that regulate totipotency. The period before EGA was dominated by transcripts responsible for cell cycle regulation, mitosis, RNA translation and processing (including ribosomal machinery, protein catabolism, and chromatin remodelling. Following EGA an increase in the abundance of transcripts involved in transcription, translation, DNA metabolism, histone and chromatin modification, as well as protein catabolism was detected. The further analysis of members of overlapping GO terms revealed that despite that comparable cellular processes are taking place before and after EGA (RNA splicing, protein catabolism, different metabolic pathways are involved. This strongly suggests that a complex metabolic switch accompanies EGA. In vitro conditions significantly altered RNA profiles before EGA, and the character of these changes indicates that they originate from oocyte and are imposed either before oocyte aspiration or during in vitro maturation. IVT embryos have altered content of apoptotic factors, cell cycle regulation factors and spindle components, and transcription factors, which all may contribute to reduced developmental competence of embryos produced in vitro. Overall, our data are in good accordance with previously published, genome-wide profiling data in other species. Moreover, comparison with mouse and

  17. Complex Surveys A Guide to Analysis Using R

    CERN Document Server

    Lumley, Thomas

    2010-01-01

    A complete guide to carrying out complex survey analysis using R. As survey analysis continues to serve as a core component of sociological research, researchers are increasingly relying upon data gathered from complex surveys to carry out traditional analyses. Complex Surveys is a practical guide to the analysis of this kind of data using R, the freely available and downloadable statistical programming language. As creator of the specific survey package for R, the author provides the ultimate presentation of how to successfully use the software for analyzing data from complex surveys while al

  18. Isotope analysis reveals foraging area dichotomy for atlantic leatherback turtles.

    Directory of Open Access Journals (Sweden)

    Stéphane Caut

    Full Text Available BACKGROUND: The leatherback turtle (Dermochelys coriacea has undergone a dramatic decline over the last 25 years, and this is believed to be primarily the result of mortality associated with fisheries bycatch followed by egg and nesting female harvest. Atlantic leatherback turtles undertake long migrations across ocean basins from subtropical and tropical nesting beaches to productive frontal areas. Migration between two nesting seasons can last 2 or 3 years, a time period termed the remigration interval (RI. Recent satellite transmitter data revealed that Atlantic leatherbacks follow two major dispersion patterns after nesting season, through the North Gulf Stream area or more eastward across the North Equatorial Current. However, information on the whole RI is lacking, precluding the accurate identification of feeding areas where conservation measures may need to be applied. METHODOLOGY/PRINCIPAL FINDINGS: Using stable isotopes as dietary tracers we determined the characteristics of feeding grounds of leatherback females nesting in French Guiana. During migration, 3-year RI females differed from 2-year RI females in their isotope values, implying differences in their choice of feeding habitats (offshore vs. more coastal and foraging latitude (North Atlantic vs. West African coasts, respectively. Egg-yolk and blood isotope values are correlated in nesting females, indicating that egg analysis is a useful tool for assessing isotope values in these turtles, including adults when not available. CONCLUSIONS/SIGNIFICANCE: Our results complement previous data on turtle movements during the first year following the nesting season, integrating the diet consumed during the year before nesting. We suggest that the French Guiana leatherback population segregates into two distinct isotopic groupings, and highlight the urgent need to determine the feeding habitats of the turtle in the Atlantic in order to protect this species from incidental take by

  19. Mitochondrial Genome Analysis Reveals Historical Lineages in Yellowstone Bison.

    Directory of Open Access Journals (Sweden)

    David Forgacs

    Full Text Available Yellowstone National Park is home to one of the only plains bison populations that have continuously existed on their present landscape since prehistoric times without evidence of domestic cattle introgression. Previous studies characterized the relatively high levels of nuclear genetic diversity in these bison, but little is known about their mitochondrial haplotype diversity. This study assessed mitochondrial genomes from 25 randomly selected Yellowstone bison and found 10 different mitochondrial haplotypes with a haplotype diversity of 0.78 (± 0.06. Spatial analysis of these mitochondrial DNA (mtDNA haplotypes did not detect geographic population subdivision (FST = -0.06, p = 0.76. However, we identified two independent and historically important lineages in Yellowstone bison by combining data from 65 bison (defined by 120 polymorphic sites from across North America representing a total of 30 different mitochondrial DNA haplotypes. Mitochondrial DNA haplotypes from one of the Yellowstone lineages represent descendants of the 22 indigenous bison remaining in central Yellowstone in 1902. The other mitochondrial DNA lineage represents descendants of the 18 females introduced from northern Montana in 1902 to supplement the indigenous bison population and develop a new breeding herd in the northern region of the park. Comparing modern and historical mitochondrial DNA diversity in Yellowstone bison helps uncover a historical context of park restoration efforts during the early 1900s, provides evidence against a hypothesized mitochondrial disease in bison, and reveals the signature of recent hybridization between American plains bison (Bison bison bison and Canadian wood bison (B. b. athabascae. Our study demonstrates how mitochondrial DNA can be applied to delineate the history of wildlife species and inform future conservation actions.

  20. Quantitative flux analysis reveals folate-dependent NADPH production

    Science.gov (United States)

    Fan, Jing; Ye, Jiangbin; Kamphorst, Jurre J.; Shlomi, Tomer; Thompson, Craig B.; Rabinowitz, Joshua D.

    2014-06-01

    ATP is the dominant energy source in animals for mechanical and electrical work (for example, muscle contraction or neuronal firing). For chemical work, there is an equally important role for NADPH, which powers redox defence and reductive biosynthesis. The most direct route to produce NADPH from glucose is the oxidative pentose phosphate pathway, with malic enzyme sometimes also important. Although the relative contribution of glycolysis and oxidative phosphorylation to ATP production has been extensively analysed, similar analysis of NADPH metabolism has been lacking. Here we demonstrate the ability to directly track, by liquid chromatography-mass spectrometry, the passage of deuterium from labelled substrates into NADPH, and combine this approach with carbon labelling and mathematical modelling to measure NADPH fluxes. In proliferating cells, the largest contributor to cytosolic NADPH is the oxidative pentose phosphate pathway. Surprisingly, a nearly comparable contribution comes from serine-driven one-carbon metabolism, in which oxidation of methylene tetrahydrofolate to 10-formyl-tetrahydrofolate is coupled to reduction of NADP+ to NADPH. Moreover, tracing of mitochondrial one-carbon metabolism revealed complete oxidation of 10-formyl-tetrahydrofolate to make NADPH. As folate metabolism has not previously been considered an NADPH producer, confirmation of its functional significance was undertaken through knockdown of methylenetetrahydrofolate dehydrogenase (MTHFD) genes. Depletion of either the cytosolic or mitochondrial MTHFD isozyme resulted in decreased cellular NADPH/NADP+ and reduced/oxidized glutathione ratios (GSH/GSSG) and increased cell sensitivity to oxidative stress. Thus, although the importance of folate metabolism for proliferating cells has been long recognized and attributed to its function of producing one-carbon units for nucleic acid synthesis, another crucial function of this pathway is generating reducing power.

  1. Proteomic analysis reveals novel proteins associated with progression and differentiation of colorectal carcinoma

    Directory of Open Access Journals (Sweden)

    Yi Gan

    2014-01-01

    Full Text Available Aim: The objective of this study is to characterize differential proteomic expression among well-differentiation and poor-differentiation colorectal carcinoma tissues and normal mucous epithelium. Materials and Methods: The study is based on quantitative 2-dimensional gel electrophoresis and analyzed by PDquest. Results: Excluding redundancies due to proteolysis and posttranslational modified isoforms of over 600 protein spots, 11 proteins were revealed as regulated with statistical variance being within the 95 th confidence level and were identified by peptide mass fingerprinting in matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Progression-associated proteins belong to the functional complexes of tumorigenesis, proliferation, differentiation, metabolism, and the regulation of major histocompatibility complex processing and other functions. Partial but significant overlap was revealed with previous proteomics and transcriptomics studies in CRC. Among various differentiation stage of CRC tissues, we identified calreticulin precursor, MHC class I antigen (human leukocyte antigen A , glutathione S-transferase pi1, keratin 8, heat shock protein 27, tubulin beta chain, triosephosphate, fatty acid-binding protein, hemoglobin (deoxy mutant with val b 1 replaced by met (HBB, and zinc finger protein 312 (FEZF2. Conclusions: Their functional networks were analyzed by Ingenuity systems Ingenuity Pathways Analysis and revealed the potential roles as novel biomarkers for progression in various differentiation stages of CRC.

  2. Variability analysis of complex networks measures based on stochastic distances

    Science.gov (United States)

    Cabral, Raquel S.; Frery, Alejandro C.; Ramírez, Jaime A.

    2014-12-01

    Complex networks can model the structure and dynamics of different types of systems. It has been shown that they are characterized by a set of measures. In this work, we evaluate the variability of complex network measures face to perturbations and, for this purpose, we impose controlled perturbations and quantify their effect. We analyze theoretical models (random, small-world and scale-free) and real networks (a collaboration network and a metabolic networks) along with the shortest path length, vertex degree, local cluster coefficient and betweenness centrality measures. In such an analysis, we propose the use of three stochastic quantifiers: the Kullback-Leibler divergence and the Jensen-Shannon and Hellinger distances. The sensitivity of these measures was analyzed with respect to the following perturbations: edge addition, edge removal, edge rewiring and node removal, all of them applied at different intensities. The results reveal that the evaluated measures are influenced by these perturbations. Additionally, hypotheses tests were performed to verify the behavior of the degree distribution to identify the intensity of the perturbations that leads to break this property.

  3. Complexity analysis in particulate matter measurements

    Directory of Open Access Journals (Sweden)

    Luciano Telesca

    2011-09-01

    Full Text Available We investigated the complex temporal fluctuations of particulate matter data recorded in London area by using the Fisher-Shannon (FS information plane. In the FS plane the PM10 and PM2.5 data are aggregated in two different clusters, characterized by different degrees of order and organization. This results could be related to different sources of the particulate matter.

  4. Multivariate Complexity Analysis of Swap Bribery

    Science.gov (United States)

    Dorn, Britta; Schlotter, Ildikó

    We consider the computational complexity of a problem modeling bribery in the context of voting systems. In the scenario of Swap Bribery, each voter assigns a certain price for swapping the positions of two consecutive candidates in his preference ranking. The question is whether it is possible, without exceeding a given budget, to bribe the voters in a way that the preferred candidate wins in the election.

  5. A complex network approach reveals a pivotal substructure of genes linked to schizophrenia.

    Directory of Open Access Journals (Sweden)

    Alfonso Monaco

    Full Text Available Research on brain disorders with a strong genetic component and complex heritability, such as schizophrenia, has led to the development of brain transcriptomics. This field seeks to gain a deeper understanding of gene expression, a key factor in exploring further research issues. Our study focused on how genes are associated amongst each other. In this perspective, we have developed a novel data-driven strategy for characterizing genetic modules, i.e., clusters of strongly interacting genes. The aim was to uncover a pivotal community of genes linked to a target gene for schizophrenia. Our approach combined network topological properties with information theory to highlight the presence of a pivotal community, for a specific gene, and to simultaneously assess the information content of partitions with the Shannon's entropy based on betweenness. We analyzed the publicly available BrainCloud dataset containing post-mortem gene expression data and focused on the Dopamine D2 receptor, encoded by the DRD2 gene. We used four different community detection algorithms to evaluate the consistence of our approach. A pivotal DRD2 community emerged for all the procedures applied, with a considerable reduction in size, compared to the initial network. The stability of the results was confirmed by a Dice index ≥80% within a range of tested parameters. The detected community was also the most informative, as it represented an optimization of the Shannon entropy. Lastly, we verified the strength of connection of the DRD2 community, which was stronger than any other randomly selected community and even more so than the Weighted Gene Co-expression Network Analysis module, commonly considered the standard approach for such studies. This finding substantiates the conclusion that the detected community represents a more connected and informative cluster of genes for the DRD2 community, and therefore better elucidates the behavior of this module of strongly related

  6. Analysis and control of complex dynamical systems robust bifurcation, dynamic attractors, and network complexity

    CERN Document Server

    Imura, Jun-ichi; Ueta, Tetsushi

    2015-01-01

    This book is the first to report on theoretical breakthroughs on control of complex dynamical systems developed by collaborative researchers in the two fields of dynamical systems theory and control theory. As well, its basic point of view is of three kinds of complexity: bifurcation phenomena subject to model uncertainty, complex behavior including periodic/quasi-periodic orbits as well as chaotic orbits, and network complexity emerging from dynamical interactions between subsystems. Analysis and Control of Complex Dynamical Systems offers a valuable resource for mathematicians, physicists, and biophysicists, as well as for researchers in nonlinear science and control engineering, allowing them to develop a better fundamental understanding of the analysis and control synthesis of such complex systems.

  7. Survey of large protein complexes D. vulgaris reveals great structural diversity

    Energy Technology Data Exchange (ETDEWEB)

    Han, B.-G.; Dong, M.; Liu, H.; Camp, L.; Geller, J.; Singer, M.; Hazen, T. C.; Choi, M.; Witkowska, H. E.; Ball, D. A.; Typke, D.; Downing, K. H.; Shatsky, M.; Brenner, S. E.; Chandonia, J.-M.; Biggin, M. D.; Glaeser, R. M.

    2009-08-15

    An unbiased survey has been made of the stable, most abundant multi-protein complexes in Desulfovibrio vulgaris Hildenborough (DvH) that are larger than Mr {approx} 400 k. The quaternary structures for 8 of the 16 complexes purified during this work were determined by single-particle reconstruction of negatively stained specimens, a success rate {approx}10 times greater than that of previous 'proteomic' screens. In addition, the subunit compositions and stoichiometries of the remaining complexes were determined by biochemical methods. Our data show that the structures of only two of these large complexes, out of the 13 in this set that have recognizable functions, can be modeled with confidence based on the structures of known homologs. These results indicate that there is significantly greater variability in the way that homologous prokaryotic macromolecular complexes are assembled than has generally been appreciated. As a consequence, we suggest that relying solely on previously determined quaternary structures for homologous proteins may not be sufficient to properly understand their role in another cell of interest.

  8. Molecular data reveal a cryptic species within the Culex pipiens mosquito complex.

    Science.gov (United States)

    Dumas, E; Atyame, C M; Malcolm, C A; Le Goff, G; Unal, S; Makoundou, P; Pasteur, N; Weill, M; Duron, O

    2016-12-01

    The Culex pipiens mosquito complex is a group of evolutionarily closely related species including C. pipiens and Culex quinquefasciatus, both infected by the cytoplasmically inherited Wolbachia symbiont. A Wolbachia-uninfected population of C. pipiens was however described in South Africa and was recently proposed to represent a cryptic species. In this study, we reconsidered the existence of this species by undertaking an extensive screening for the presence of Wolbachia-uninfected C. pipiens specimens and by characterizing their genetic relatedness with known members of the complex. We first report on the presence of Wolbachia-uninfected specimens in several breeding sites. We next confirm that these uninfected specimens unambiguously belong to the C. pipiens complex. Remarkably, all uninfected specimens harbour mitochondrial haplotypes that are either novel or identical to those previously found in South Africa. In all cases, these mitochondrial haplotypes are closely related, but different, to those found in other C. pipiens complex members known to be infected by Wolbachia. Altogether, these results corroborate the presence of a widespread cryptic species within the C. pipiens species complex. The potential role of this cryptic C. pipiens species in the transmission of pathogens remains however to be determined. The designation 'Culex juppi nov. sp.' is proposed for this mosquito species. © 2016 The Royal Entomological Society.

  9. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi.

    Science.gov (United States)

    Zhao, Zhongtao; Liu, Huiquan; Wang, Chenfang; Xu, Jin-Rong

    2013-04-23

    Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 103 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also revealed a complex

  10. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    Science.gov (United States)

    2013-01-01

    Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 103 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also

  11. Homonyms's complex networks to semantic analysis textual

    Directory of Open Access Journals (Sweden)

    Jadson da Silva Santos

    2017-04-01

    Full Text Available Introduction: Study centres in natural language processing already spread and the study have several applications. Relate with this research area, it is common the use technic for manipulation a text. These technic is be able to determine the word morphology and the word syntax. There are tools that do this work, however adding engines for semantic identification of the words is essential for increase the automatic understanding the used language. Objective: On the basis of that, This paper present the process of using complex networks as a comparative database to determine by context the meaning of words that express different positions. Moreover, they are classified as same morphology and syntax , as with some homonyms. Methodology: Through of a experimental methodology, the model proposed it is based in consolidate researches in Natural Language Processing for building a Complex Network that receives as vertices the words of a certain text and establishes its connections from the occurrence of adjacency between these terms. Therefore, observing the variations of network, it is identified how to textual namesakes are related and through an context analyzed how if be there, check whether it is used to express more than one meaning. Results: A generic process with stages of preprocessing, building of a Complex Network used to Natural Language Processing for the building of a network homonyms to extract semantic information textual. Conclusions: The analyze of homonyms selected and labeled is the process not only morphosyntatic, adding semantic in the phrase, paragraph or text where the words are applied. However, with Natural Language Processing an events and philosophical facts can be better analyzed through of a world written textually, for example, the power of argument and the writing of an author profile.

  12. Topological analysis of complexity in multiagent systems

    Science.gov (United States)

    Abaid, Nicole; Bollt, Erik; Porfiri, Maurizio

    2012-04-01

    Social organisms at every level of evolutionary complexity live in groups, such as fish schools, locust swarms, and bird flocks. The complex exchange of multifaceted information across group members may result in a spectrum of salient spatiotemporal patterns characterizing collective behaviors. While instances of collective behavior in animal groups are readily identifiable by trained and untrained observers, a working definition to distinguish these patterns from raw data is not yet established. In this work, we define collective behavior as a manifestation of low-dimensional manifolds in the group motion and we quantify the complexity of such behaviors through the dimensionality of these structures. We demonstrate this definition using the ISOMAP algorithm, a data-driven machine learning algorithm for dimensionality reduction originally formulated in the context of image processing. We apply the ISOMAP algorithm to data from an interacting self-propelled particle model with additive noise, whose parameters are selected to exhibit different behavioral modalities, and from a video of a live fish school. Based on simulations of such model, we find that increasing noise in the system of particles corresponds to increasing the dimensionality of the structures underlying their motion. These low-dimensional structures are absent in simulations where particles do not interact. Applying the ISOMAP algorithm to fish school data, we identify similar low-dimensional structures, which may act as quantitative evidence for order inherent in collective behavior of animal groups. These results offer an unambiguous method for measuring order in data from large-scale biological systems and confirm the emergence of collective behavior in an applicable mathematical model, thus demonstrating that such models are capable of capturing phenomena observed in animal groups.

  13. How Can We Explain Poverty? Case Study of Dee Reveals the Complexities

    Science.gov (United States)

    Seccombe, Karen

    2011-01-01

    Many theories have been offered to explain why people are impoverished. This article by Karen Seccombe uses the case study of "Dee," a newly single mother, to explore four of the most common: individualism, social structuralism, the culture of poverty, and fatalism. She concludes that poverty is a highly complex phenomenon, and it is likely that…

  14. Cilium transition zone proteome reveals compartmentalization and differential dynamics of ciliopathy complexes

    Czech Academy of Sciences Publication Activity Database

    Dean, S.; Moreira-Leite, F.; Varga, Vladimír; Gull, K.

    2016-01-01

    Roč. 113, č. 35 (2016), E5135-E5143 ISSN 0027-8424 Institutional support: RVO:68378050 Keywords : transition zone * cilium/flagellum * BBSome * MKS/B9 complex * trypanosome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.661, year: 2016

  15. Structural biology. Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning

    NARCIS (Netherlands)

    Taylor, D.W.; Zhu, Y.; Staals, R.H.J.; Kornfeld, J.E.; Shinkai, A.; Oost, van der J.; Nogales, E.; Doudna, J.A.

    2015-01-01

    Adaptive immunity in bacteria involves RNA-guided surveillance complexes that use CRISPR (clustered regularly interspaced short palindromic repeats)-associated (Cas) proteins together with CRISPR RNAs (crRNAs) to target invasive nucleic acids for degradation. Whereas type I and type II CRISPR-Cas

  16. An approach to transdisciplinary analysis of Health Law complex

    Directory of Open Access Journals (Sweden)

    Mártin Marks Szinvelski

    2016-12-01

    Full Text Available The process of social evolution creates impact on the structure of social systems, or because new rights make complex the process, or because the function of reducing the complexity, inherent in the function of each system, leading to increased the complexity. The subject of right to health is fertile for analysis doubleheader increase / reduction of complexity. In this article, the analysis is based on a vision that goes beyond the limits of a single science. Thus, will be analyzed the Social Health System, in view of the transdisciplinary impact in the ensuring the right to health.

  17. Understanding complex interactions using social network analysis.

    Science.gov (United States)

    Pow, Janette; Gayen, Kaberi; Elliott, Lawrie; Raeside, Robert

    2012-10-01

    The aim of this paper is to raise the awareness of social network analysis as a method to facilitate research in nursing research. The application of social network analysis in assessing network properties has allowed greater insight to be gained in many areas including sociology, politics, business organisation and health care. However, the use of social networks in nursing has not received sufficient attention. Review of literature and illustration of the application of the method of social network analysis using research examples. First, the value of social networks will be discussed. Then by using illustrative examples, the value of social network analysis to nursing will be demonstrated. The method of social network analysis is found to give greater insights into social situations involving interactions between individuals and has particular application to the study of interactions between nurses and between nurses and patients and other actors. Social networks are systems in which people interact. Two quantitative techniques help our understanding of these networks. The first is visualisation of the network. The second is centrality. Individuals with high centrality are key communicators in a network. Applying social network analysis to nursing provides a simple method that helps gain an understanding of human interaction and how this might influence various health outcomes. It allows influential individuals (actors) to be identified. Their influence on the formation of social norms and communication can determine the extent to which new interventions or ways of thinking are accepted by a group. Thus, working with key individuals in a network could be critical to the success and sustainability of an intervention. Social network analysis can also help to assess the effectiveness of such interventions for the recipient and the service provider. © 2012 Blackwell Publishing Ltd.

  18. Representational Similarity Analysis Reveals Heterogeneous Networks Supporting Speech Motor Control

    DEFF Research Database (Denmark)

    Zheng, Zane; Cusack, Rhodri; Johnsrude, Ingrid

    The everyday act of speaking involves the complex processes of speech motor control. One important feature of such control is regulation of articulation when auditory concomitants of speech do not correspond to the intended motor gesture. While theoretical accounts of speech monitoring posit...... multiple functional components required for detection of errors in speech planning (e.g., Levelt, 1983), neuroimaging studies generally indicate either single brain regions sensitive to speech production errors, or small, discrete networks. Here we demonstrate that the complex system controlling speech...... is supported by a complex neural network that is involved in linguistic, motoric and sensory processing. With the aid of novel real-time acoustic analyses and representational similarity analyses of fMRI signals, our data show functionally differentiated networks underlying auditory feedback control of speech....

  19. Whole genome sequencing reveals complex evolution patterns of multidrug-resistant Mycobacterium tuberculosis Beijing strains in patients.

    Directory of Open Access Journals (Sweden)

    Matthias Merker

    Full Text Available Multidrug-resistant (MDR Mycobacterium tuberculosis complex (MTBC strains represent a major threat for tuberculosis (TB control. Treatment of MDR-TB patients is long and less effective, resulting in a significant number of treatment failures. The development of further resistances leads to extensively drug-resistant (XDR variants. However, data on the individual reasons for treatment failure, e.g. an induced mutational burst, and on the evolution of bacteria in the patient are only sparsely available. To address this question, we investigated the intra-patient evolution of serial MTBC isolates obtained from three MDR-TB patients undergoing longitudinal treatment, finally leading to XDR-TB. Sequential isolates displayed identical IS6110 fingerprint patterns, suggesting the absence of exogenous re-infection. We utilized whole genome sequencing (WGS to screen for variations in three isolates from Patient A and four isolates from Patient B and C, respectively. Acquired polymorphisms were subsequently validated in up to 15 serial isolates by Sanger sequencing. We determined eight (Patient A and nine (Patient B polymorphisms, which occurred in a stepwise manner during the course of the therapy and were linked to resistance or a potential compensatory mechanism. For both patients, our analysis revealed the long-term co-existence of clonal subpopulations that displayed different drug resistance allele combinations. Out of these, the most resistant clone was fixed in the population. In contrast, baseline and follow-up isolates of Patient C were distinguished each by eleven unique polymorphisms, indicating an exogenous re-infection with an XDR strain not detected by IS6110 RFLP typing. Our study demonstrates that intra-patient microevolution of MDR-MTBC strains under longitudinal treatment is more complex than previously anticipated. However, a mutator phenotype was not detected. The presence of different subpopulations might confound phenotypic and

  20. Revealing the Differences Between Free and Complexed Enzyme Mechanisms and Factors Contributing to Cell Wall Recalcitrance

    Energy Technology Data Exchange (ETDEWEB)

    Resch, Michael G.; Donohoe, Byron; Ciesielski, Peter; Nill, Jennifer; McKinney, Kellene; Mittal, Ashutosh; Katahira, Rui; Himmel, Michael; Biddy, Mary; Beckham, Gregg; Decker, Steve

    2014-09-08

    Enzymatic depolymerization of polysaccharides is a key step in the production of fuels and chemicals from lignocellulosic biomass, and discovery of synergistic biomass-degrading enzyme paradigms will enable improved conversion processes. Historically, revealing insights into enzymatic saccharification mechanisms on plant cell walls has been hindered by uncharacterized substrates and low resolution.

  1. Multidimensional approach to complex system resilience analysis

    International Nuclear Information System (INIS)

    Gama Dessavre, Dante; Ramirez-Marquez, Jose E.; Barker, Kash

    2016-01-01

    Recent works have attempted to formally define a general metric for quantifying resilience for complex systems as a relationship of performance of the systems against time. The technical content in the proposed work introduces a new model that allows, for the first time, to compare the system resilience among systems (or different modifications to a system), by introducing a new dimension to system resilience models, called stress, to mimic the definition of resilience in material science. The applicability and usefulness of the model is shown with a new heat map visualization proposed in this work, and it is applied to a simulated network resilience case to exemplify its potential benefits. - Highlights: • We analyzed two of the main current metrics of resilience. • We create a new model that relates events with the effects they have. • We develop a novel heat map visualization to compare system resilience. • We showed the model and visualization usefulness in a simulated case.

  2. NEXCADE: perturbation analysis for complex networks.

    Directory of Open Access Journals (Sweden)

    Gitanjali Yadav

    Full Text Available Recent advances in network theory have led to considerable progress in our understanding of complex real world systems and their behavior in response to external threats or fluctuations. Much of this research has been invigorated by demonstration of the 'robust, yet fragile' nature of cellular and large-scale systems transcending biology, sociology, and ecology, through application of the network theory to diverse interactions observed in nature such as plant-pollinator, seed-dispersal agent and host-parasite relationships. In this work, we report the development of NEXCADE, an automated and interactive program for inducing disturbances into complex systems defined by networks, focusing on the changes in global network topology and connectivity as a function of the perturbation. NEXCADE uses a graph theoretical approach to simulate perturbations in a user-defined manner, singly, in clusters, or sequentially. To demonstrate the promise it holds for broader adoption by the research community, we provide pre-simulated examples from diverse real-world networks including eukaryotic protein-protein interaction networks, fungal biochemical networks, a variety of ecological food webs in nature as well as social networks. NEXCADE not only enables network visualization at every step of the targeted attacks, but also allows risk assessment, i.e. identification of nodes critical for the robustness of the system of interest, in order to devise and implement context-based strategies for restructuring a network, or to achieve resilience against link or node failures. Source code and license for the software, designed to work on a Linux-based operating system (OS can be downloaded at http://www.nipgr.res.in/nexcade_download.html. In addition, we have developed NEXCADE as an OS-independent online web server freely available to the scientific community without any login requirement at http://www.nipgr.res.in/nexcade.html.

  3. NEXCADE: perturbation analysis for complex networks.

    Science.gov (United States)

    Yadav, Gitanjali; Babu, Suresh

    2012-01-01

    Recent advances in network theory have led to considerable progress in our understanding of complex real world systems and their behavior in response to external threats or fluctuations. Much of this research has been invigorated by demonstration of the 'robust, yet fragile' nature of cellular and large-scale systems transcending biology, sociology, and ecology, through application of the network theory to diverse interactions observed in nature such as plant-pollinator, seed-dispersal agent and host-parasite relationships. In this work, we report the development of NEXCADE, an automated and interactive program for inducing disturbances into complex systems defined by networks, focusing on the changes in global network topology and connectivity as a function of the perturbation. NEXCADE uses a graph theoretical approach to simulate perturbations in a user-defined manner, singly, in clusters, or sequentially. To demonstrate the promise it holds for broader adoption by the research community, we provide pre-simulated examples from diverse real-world networks including eukaryotic protein-protein interaction networks, fungal biochemical networks, a variety of ecological food webs in nature as well as social networks. NEXCADE not only enables network visualization at every step of the targeted attacks, but also allows risk assessment, i.e. identification of nodes critical for the robustness of the system of interest, in order to devise and implement context-based strategies for restructuring a network, or to achieve resilience against link or node failures. Source code and license for the software, designed to work on a Linux-based operating system (OS) can be downloaded at http://www.nipgr.res.in/nexcade_download.html. In addition, we have developed NEXCADE as an OS-independent online web server freely available to the scientific community without any login requirement at http://www.nipgr.res.in/nexcade.html.

  4. Transcriptome analysis reveals dynamic changes in the gene ...

    Indian Academy of Sciences (India)

    tion, assimilate transport, plant stoma regulation, electrical neutralization and osmoregulation (Clarkson and ... ∗For correspondence. E-mail: lilq88@126.com. potassium environment, plants have developed complex .... Transmembrane transport is a vital mechanism of nutrient transport in plant cells and is the foundation of ...

  5. Discourse analysis: making complex methodology simple

    NARCIS (Netherlands)

    Bondarouk, Tatiana; Ruel, Hubertus Johannes Maria; Leino, T.; Saarinen, T.; Klein, S.

    2004-01-01

    Discursive-based analysis of organizations is not new in the field of interpretive social studies. Since not long ago have information systems (IS) studies also shown a keen interest in discourse (Wynn et al, 2002). The IS field has grown significantly in its multiplicity that is echoed in the

  6. A Complexity Analysis of Functional Interpretations

    DEFF Research Database (Denmark)

    Hernest, Mircea-Dan; Kohlenbach, Ulrich

    2003-01-01

    We give a quantitative analysis of G ̈odel’s functional interpretation and its monotone variant. The two have been used for the extraction of programs and numerical bounds as well as for conservation results. They apply both to (semi-)intuitionistic as well as (combined with negative translation...

  7. Structures of Adnectin/Protein Complexes Reveal an Expanded Binding Footprint

    Energy Technology Data Exchange (ETDEWEB)

    Ramamurthy, Vidhyashankar; Krystek, Jr., Stanley R.; Bush, Alexander; Wei, Anzhi; Emanuel, Stuart L.; Gupta, Ruchira Das; Janjua, Ahsen; Cheng, Lin; Murdock, Melissa; Abramczyk, Bozena; Cohen, Daniel; Lin, Zheng; Morin, Paul; Davis, Jonathan H.; Dabritz, Michael; McLaughlin, Douglas C.; Russo, Katie A.; Chao, Ginger; Wright, Martin C.; Jenny, Victoria A.; Engle, Linda J.; Furfine, Eric; Sheriff, Steven (BMS)

    2014-10-02

    Adnectins are targeted biologics derived from the tenth type III domain of human fibronectin ({sup 10}Fn3), a member of the immunoglobulin superfamily. Target-specific binders are selected from libraries generated by diversifying the three {sup 10}Fn3 loops that are analogous to the complementarity determining regions of antibodies. The crystal structures of two Adnectins were determined, each in complex with its therapeutic target, EGFR or IL-23. Both Adnectins bind different epitopes than those bound by known monoclonal antibodies. Molecular modeling suggests that some of these epitopes might not be accessible to antibodies because of the size and concave shape of the antibody combining site. In addition to interactions from the Adnectin diversified loops, residues from the N terminus and/or the {beta} strands interact with the target proteins in both complexes. Alanine-scanning mutagenesis confirmed the calculated binding energies of these {beta} strand interactions, indicating that these nonloop residues can expand the available binding footprint.

  8. Symbolic Competence in Multilingual Interactions in a University Setting: A Complexity Analysis

    Science.gov (United States)

    Gu, Michelle

    2017-01-01

    This paper, drawing on the notion of symbolic competence and insights from complexity theory, investigates the multilingual practices of university students in group discussions. The data analysis reveals that the protagonists' language uses index the various ways in which their rehearsal of potential identities, language ideologies, histories,…

  9. Visualization of PML nuclear import complexes reveals FG-repeat nucleoporins at cargo retrieval sites.

    Science.gov (United States)

    Lång, Anna; Eriksson, Jens; Schink, Kay Oliver; Lång, Emma; Blicher, Pernille; Połeć, Anna; Brech, Andreas; Dalhus, Bjørn; Bøe, Stig Ove

    2017-07-04

    Selective nuclear import in eukaryotic cells involves sequential interactions between nuclear import receptors and phenylalanine-glycine (FG)-repeat nucleoporins. Traditionally, binding of cargoes to import receptors is perceived as a nuclear pore complex independent event, while interactions between import complexes and nucleoporins are thought to take place at the nuclear pores. However, studies have shown that nucleoporins are mobile and not static within the nuclear pores, suggesting that they may become engaged in nuclear import before nuclear pore entry. Here we have studied post-mitotic nuclear import of the tumor suppressor protein PML. Since this protein forms nuclear compartments called PML bodies that persist during mitosis, the assembly of putative PML import complexes can be visualized on the surface of these protein aggregates as the cell progress from an import inactive state in mitosis to an import active state in G1. We show that these post-mitotic cytoplasmic PML bodies incorporate a multitude of peripheral nucleoporins, but not scaffold or nuclear basket nucleoporins, in a manner that depends on FG-repeats, the KPNB1 import receptor, and the PML nuclear localization signal. The study suggests that nucleoporins have the ability to target certain nuclear cargo proteins in a nuclear pore-uncoupled state, before nuclear pore entry.

  10. Species delimitation in the Stenocereus griseus (Cactaceae species complex reveals a new species, S. huastecorum.

    Directory of Open Access Journals (Sweden)

    Hernán Alvarado-Sizzo

    Full Text Available The Stenocereus griseus species complex (SGSC has long been considered taxonomically challenging because the number of taxa belonging to the complex and their geographical boundaries remain poorly understood. Bayesian clustering and genetic distance-based methods were used based on nine microsatellite loci in 377 individuals of three main putative species of the complex. The resulting genetic clusters were assessed for ecological niche divergence and areolar morphology, particularly spination patterns. We based our species boundaries on concordance between genetic, ecological, and morphological data, and were able to resolve four species, three of them corresponding to S. pruinosus from central Mexico, S. laevigatus from southern Mexico, and S. griseus from northern South America. A fourth species, previously considered to be S. griseus and commonly misidentified as S. pruinosus in northern Mexico showed significant genetic, ecological, and morphological differentiation suggesting that it should be considered a new species, S. huastecorum, which we describe here. We show that population genetic analyses, ecological niche modeling, and morphological studies are complementary approaches for delimiting species in taxonomically challenging plant groups such as the SGSC.

  11. Empirical and theoretical analysis of complex systems

    Science.gov (United States)

    Zhao, Guannan

    This thesis is an interdisciplinary work under the heading of complexity science which focuses on an arguably common "hard" problem across physics, finance and biology [1], to quantify and mimic the macroscopic "emergent phenomenon" in large-scale systems consisting of many interacting "particles" governed by microscopic rules. In contrast to traditional statistical physics, we are interested in systems whose dynamics are subject to feedback, evolution, adaption, openness, etc. Global financial markets, like the stock market and currency market, are ideal candidate systems for such a complexity study: there exists a vast amount of accurate data, which is the aggregate output of many autonomous agents continuously competing with each other. We started by examining the ultrafast "mini flash crash (MFC)" events in the US stock market. An abrupt system-wide composition transition from a mixed human machine phase to a new all-machine phase is uncovered, and a novel theory developed to explain this observation. Then in the study of FX market, we found an unexpected variation in the synchronicity of price changes in different market subsections as a function of the overall trading activity. Several survival models have been tested in analyzing the distribution of waiting times to the next price change. In the region of long waiting-times, the distribution for each currency pair exhibits a power law with exponent in the vicinity of 3.5. By contrast, for short waiting times only, the market activity can be mimicked by the fluctuations emerging from a finite resource competition model containing multiple agents with limited rationality (so called El Farol Model). Switching to the biomedical domain, we present a minimal mathematical model built around a co-evolving resource network and cell population, yielding good agreement with primary tumors in mice experiment and with clinical metastasis data. In the quest to understand contagion phenomena in systems where social group

  12. The Precambrian Singo Igneous Complex (SIC), Uganda Revealed As a Mineralized Nested Ring Complex Using High Resolution Airborne Radiometric and Magnetic Data.

    Science.gov (United States)

    Atekwana, E. A.; LePera, A.; Abdelsalam, M. G.; Katumwehe, A. B.; Achang, M.

    2014-12-01

    We used high-resolution radiometrics and aeromagnetic data to investigate the Precambrian Singo Igneous Complex (SIC) in Uganda. The SIC covers an area of about 700 km² and is host to hydrothermally formed economic minerals such as Gold and Tungsten. The distribution of the ore deposits is not well known and current mine workings are limited to the western margins of the complex. Our objectives were to (1) provide a detailed geological map of the SIC and surrounding, (2) investigate relationships between preserved intrusive bodies and Precambrian tectonic structures to provide insight into emplacement of the complex, (3) examine links between magma emplacement, discontinuities and hydrothermal alteration (4) generate two-dimensional (2-D) and three-dimensional (3-D) models of the complex to understand its subsurface geometry, (5) investigate the relationship between the structure of the SIC and mineral occurrences as an aid to future exploration programs. Edge enhancement filters such as the analytical signal, vertical and tilt derivatives were applied to the magnetic data. In addition, 2-D and 3-D models were produced using Geosoft's GM-SYS 2-D and Voxi modules. The filtered data provided unprecedented structural details of the complex and revealed the following: (1) the edge of the SIC is characterized by higher magnetic susceptibility and Thorium content than its interior, (2) the SIC is characterized by eight to nine nested ring complexes with diameters ranging from 2.5 to 14 km, (3) the 3-D inversion suggests near vertical walls for the ring complexes extending to a depth of about 7 km, (4) the SIC was emplaced within a Precambrian folded basement and was traversed by numerous NW-trending dykes and (5) present day mining activities are concentrated within the folded basement units although occurrences of Tungsten and Gold are found associated with the highly magnetized edge of the ring complexes. We interpret the highly magnetized edges of the nested ring

  13. Complexity analysis of experimental cardiac arrhythmia

    OpenAIRE

    Xu, Binbin; Binczak, Stéphane; Jacquir, Sabir; Pont, Oriol; Yahia, Hussein

    2014-01-01

    International audience; To study the cardiac arrhythmia, an in vitro experimental model and Multielectrodes Array (MEA) are used. This platform serves as an intermediary of the electrical activities of cardiac cells and the signal processing / dynamics analysis. Through it the extracellular potential of cardiac cells is acquired, allowing a real-time monitoring / analyzing. Since MEA has 60 electrodes / channels dispatched in a rectangular region, it allows real-time monitoring and signal acq...

  14. Optimization Issues with Complex Rotorcraft Comprehensive Analysis

    Science.gov (United States)

    Walsh, Joanne L.; Young, Katherine C.; Tarzanin, Frank J.; Hirsh, Joel E.; Young, Darrell K.

    1998-01-01

    This paper investigates the use of the general purpose automatic differentiation (AD) tool called Automatic Differentiation of FORTRAN (ADIFOR) as a means of generating sensitivity derivatives for use in Boeing Helicopter's proprietary comprehensive rotor analysis code (VII). ADIFOR transforms an existing computer program into a new program that performs a sensitivity analysis in addition to the original analysis. In this study both the pros (exact derivatives, no step-size problems) and cons (more CPU, more memory) of ADIFOR are discussed. The size (based on the number of lines) of the VII code after ADIFOR processing increased by 70 percent and resulted in substantial computer memory requirements at execution. The ADIFOR derivatives took about 75 percent longer to compute than the finite-difference derivatives. However, the ADIFOR derivatives are exact and are not functions of step-size. The VII sensitivity derivatives generated by ADIFOR are compared with finite-difference derivatives. The ADIFOR and finite-difference derivatives are used in three optimization schemes to solve a low vibration rotor design problem.

  15. In vivo dynamics of skeletal muscle Dystrophin in zebrafish embryos revealed by improved FRAP analysis.

    Science.gov (United States)

    Bajanca, Fernanda; Gonzalez-Perez, Vinicio; Gillespie, Sean J; Beley, Cyriaque; Garcia, Luis; Theveneau, Eric; Sear, Richard P; Hughes, Simon M

    2015-10-13

    Dystrophin forms an essential link between sarcolemma and cytoskeleton, perturbation of which causes muscular dystrophy. We analysed Dystrophin binding dynamics in vivo for the first time. Within maturing fibres of host zebrafish embryos, our analysis reveals a pool of diffusible Dystrophin and complexes bound at the fibre membrane. Combining modelling, an improved FRAP methodology and direct semi-quantitative analysis of bleaching suggests the existence of two membrane-bound Dystrophin populations with widely differing bound lifetimes: a stable, tightly bound pool, and a dynamic bound pool with high turnover rate that exchanges with the cytoplasmic pool. The three populations were found consistently in human and zebrafish Dystrophins overexpressed in wild-type or dmd(ta222a/ta222a) zebrafish embryos, which lack Dystrophin, and in Gt(dmd-Citrine)(ct90a) that express endogenously-driven tagged zebrafish Dystrophin. These results lead to a new model for Dystrophin membrane association in developing muscle, and highlight our methodology as a valuable strategy for in vivo analysis of complex protein dynamics.

  16. Phylogenomic Analysis Reveals Extensive Phylogenetic Mosaicism in the Human GPCR Superfamily

    Directory of Open Access Journals (Sweden)

    Mathew Woodwark

    2007-01-01

    Full Text Available A novel high throughput phylogenomic analysis (HTP was applied to the rhodopsin G-protein coupled receptor (GPCR family. Instances of phylogenetic mosaicism between receptors were found to be frequent, often as instances of correlated mosaicism and repeated mosaicism. A null data set was constructed with the same phylogenetic topology as the rhodopsin GPCRs. Comparison of the two data sets revealed that mosaicism was found in GPCRs in a higher frequency than would be expected by homoplasy or the effects of topology alone. Various evolutionary models of differential conservation, recombination and homoplasy are explored which could result in the patterns observed in this analysis. We find that the results are most consistent with frequent recombination events. A complex evolutionary history is illustrated in which it is likely frequent recombination has endowed GPCRs with new functions. The pattern of mosaicism is shown to be informative for functional prediction for orphan receptors. HTP analysis is complementary to conventional phylogenomic analyses revealing mosaicism that would not otherwise have been detectable through conventional phylogenetics.

  17. Molecular systematics reveals increased diversity within the South African Laurencia complex (Rhodomelaceae, Rhodophyta).

    Science.gov (United States)

    Francis, Caitlynne; Bolton, John J; Mattio, Lydiane; Mandiwana-Neudani, Tshifhiwa G; Anderson, Robert J

    2017-08-01

    Previous publications list ten species in the Laurencia complex from South Africa with all ascribed to the genus Laurencia sensu stricto. However, the diversity of the complex in South Africa has not yet been re-assessed following the numerous recent taxonomic changes. This study investigated the phylogenetic relationships and taxonomy of this group in South Africa using recent collections. Methods included molecular phylogenetic analyses of plastid rbcL gene sequences (a total of 146; including eleven outgroup taxa) using Maximum Likelihood and Bayesian Inference, and the examination of morphological and anatomical characters, including the number of corps en cerise when present. The seven genera of the Laurencia complex formed monophyletic clades with high posterior probabilities. Seventeen morphotypes were identified: 14 in the genus Laurencia sensu stricto, among which eight corresponded to Laurencia species currently recognized from South Africa and one each to species of Palisada, Chondrophycus, and Laurenciella. The six remaining morphotypes in Laurencia sensu stricto did not match any descriptions and are described here as five new species: Laurencia alfredensis sp. nov., Laurencia dichotoma sp. nov., Laurencia digitata sp. nov., Laurencia multiclavata sp. nov. and Laurencia sodwaniensis sp. nov. and a new variety: Laurencia pumila var. dehoopiensis var. nov. Laurencia stegengae nom. nov. is established to replace Laurencia peninsularis Stegenga, Bolton and Anderson nom. illeg. The diversity is likely greater, with six additional unidentified specimens found in this molecular investigation. These findings place South Africa alongside Australia in having one of the most diverse floras of this group in the world. © 2017 Phycological Society of America.

  18. Diverse roles and interactions of the SWI/SNF chromatin remodeling complex revealed using global approaches.

    Directory of Open Access Journals (Sweden)

    Ghia M Euskirchen

    2011-03-01

    Full Text Available A systems understanding of nuclear organization and events is critical for determining how cells divide, differentiate, and respond to stimuli and for identifying the causes of diseases. Chromatin remodeling complexes such as SWI/SNF have been implicated in a wide variety of cellular processes including gene expression, nuclear organization, centromere function, and chromosomal stability, and mutations in SWI/SNF components have been linked to several types of cancer. To better understand the biological processes in which chromatin remodeling proteins participate, we globally mapped binding regions for several components of the SWI/SNF complex throughout the human genome using ChIP-Seq. SWI/SNF components were found to lie near regulatory elements integral to transcription (e.g. 5' ends, RNA Polymerases II and III, and enhancers as well as regions critical for chromosome organization (e.g. CTCF, lamins, and DNA replication origins. Interestingly we also find that certain configurations of SWI/SNF subunits are associated with transcripts that have higher levels of expression, whereas other configurations of SWI/SNF factors are associated with transcripts that have lower levels of expression. To further elucidate the association of SWI/SNF subunits with each other as well as with other nuclear proteins, we also analyzed SWI/SNF immunoprecipitated complexes by mass spectrometry. Individual SWI/SNF factors are associated with their own family members, as well as with cellular constituents such as nuclear matrix proteins, key transcription factors, and centromere components, implying a ubiquitous role in gene regulation and nuclear function. We find an overrepresentation of both SWI/SNF-associated regions and proteins in cell cycle and chromosome organization. Taken together the results from our ChIP and immunoprecipitation experiments suggest that SWI/SNF facilitates gene regulation and genome function more broadly and through a greater diversity of

  19. Transcriptomic analysis of human retinal detachment reveals both inflammatory response and photoreceptor death.

    Directory of Open Access Journals (Sweden)

    Marie-Noëlle Delyfer

    Full Text Available BACKGROUND: Retinal detachment often leads to a severe and permanent loss of vision and its therapeutic management remains to this day exclusively surgical. We have used surgical specimens to perform a differential analysis of the transcriptome of human retinal tissues following detachment in order to identify new potential pharmacological targets that could be used in combination with surgery to further improve final outcome. METHODOLOGY/PRINCIPAL FINDINGS: Statistical analysis reveals major involvement of the immune response in the disease. Interestingly, using a novel approach relying on coordinated expression, the interindividual variation was monitored to unravel a second crucial aspect of the pathological process: the death of photoreceptor cells. Within the genes identified, the expression of the major histocompatibility complex I gene HLA-C enables diagnosis of the disease, while PKD2L1 and SLCO4A1 -which are both down-regulated- act synergistically to provide an estimate of the duration of the retinal detachment process. Our analysis thus reveals the two complementary cellular and molecular aspects linked to retinal detachment: an immune response and the degeneration of photoreceptor cells. We also reveal that the human specimens have a higher clinical value as compared to artificial models that point to IL6 and oxidative stress, not implicated in the surgical specimens studied here. CONCLUSIONS/SIGNIFICANCE: This systematic analysis confirmed the occurrence of both neurodegeneration and inflammation during retinal detachment, and further identifies precisely the modification of expression of the different genes implicated in these two phenomena. Our data henceforth give a new insight into the disease process and provide a rationale for therapeutic strategies aimed at limiting inflammation and photoreceptor damage associated with retinal detachment and, in turn, improving visual prognosis after retinal surgery.

  20. Quantitative Analysis of Complex Tropical Forest Stands: A Review ...

    African Journals Online (AJOL)

    The importance of data analysis in quantitative assessment of natural resources remains significant in the sustainable management of complex tropical forest resources. Analyses of data from complex tropical forest stands have not been easy or clear due to improper data management. It is pivotal to practical researches ...

  1. Multifractal analysis of forest fires in complex regions

    Science.gov (United States)

    Vega Orozco, C. D.; Kanevski, M.; Golay, J.; Tonini, M.; Conedera, M.

    2012-04-01

    Forest fires can be studied as point processes where the ignition points represent the set of locations of the observed events in a defined study region. Their spatial and temporal patterns can be characterized by their fractal properties; which quantify the global aspect of the geometry of the support data. However, a monofractal dimension can not completely describe the pattern structure and related scaling properties. Enhancements in fractal theory had developed the multifractal concept which describes the measures from which interlinked fractal sets can be retrieved and characterized by their fractal dimension and singularity strength [1, 2]. The spatial variability of forest fires is conditioned by an intermixture of human, topographic, meteorological and vegetation factors. This heterogeneity makes fire patterns complex scale-invariant processes difficult to be depicted by a single scale. Therefore, this study proposes an exploratory data analysis through a multifractal formalism to characterize and quantify the multiscaling behaviour of the spatial distribution pattern of this phenomenon in a complex region like the Swiss Alps. The studied dataset is represented by 2,401 georeferenced forest fire ignition points in canton Ticino, Switzerland, in a 40-years period from 1969 to 2008. Three multifractal analyses are performed: one assesses the multiscaling behaviour of fire occurrence probability of the support data (raw data) and four random patterns simulated within three different support domains; second analysis studies the multifractal behavior of patterns from anthropogenic and natural ignited fires (arson-, accident- and lightning-caused fires); and third analysis aims at detecting scale-dependency of the size of burned area. To calculate the generalized dimensions, Dq, a generalization of the box counting methods is carried out based on the generalization of Rényi information of the qth order moment of the probability distribution. For q > 0, Dq

  2. Ecomorph or endangered coral? DNA and microstructure reveal hawaiian species complexes: Montipora dilatata/flabellata/turgescens & M. patula/verrilli.

    Directory of Open Access Journals (Sweden)

    Zac H Forsman

    2010-12-01

    Full Text Available M. dilatata, M. flabellata, and M. patula and 80 other scleractinian corals were petitioned to be listed under the US Endangered Species Act (ESA, which would have major conservation implications. One of the difficulties with this evaluation is that reproductive boundaries between morphologically defined coral species are often permeable, and morphology can be wildly variable. We examined genetic and morphological variation in Hawaiian Montipora with a suite of molecular markers (mitochondrial: COI, CR, Cyt-B, 16S, ATP6; nuclear: ATPsβ, ITS and microscopic skeletal measurements. Mitochondrial markers and the ITS region revealed four distinct clades: I M. patula/M. verrilli, II M. cf. incrassata, III M. capitata, IV M. dilatata/M. flabellata/M. cf. turgescens. These clades are likely to occur outside of Hawai'i according to mitochondrial control region haplotypes from previous studies. The ATPsβ intron data showed a pattern often interpreted as resulting from hybridization and introgression; however, incomplete lineage sorting may be more likely since the multicopy nuclear ITS region was consistent with the mitochondrial data. Furthermore, principal components analysis (PCA of skeletal microstructure was concordant with the mitochondrial clades, while nominal taxa overlapped. The size and shape of verrucae or papillae contributed most to identifying groups, while colony-level morphology was highly variable. It is not yet clear if these species complexes represent population-level variation or incipient speciation (CA<1MYA, two alternatives that have very different conservation implications. This study highlights the difficulty in understanding the scale of genetic and morphological variation that corresponds to species as opposed to population-level variation, information that is essential for conservation and for understanding coral biodiversity.

  3. Molecular fingerprinting of complex grass allergoids: size assessments reveal new insights in epitope repertoires and functional capacities.

    Science.gov (United States)

    Starchenka, S; Bell, A J; Mwange, J; Skinner, M A; Heath, M D

    2017-01-01

    Subcutaneous allergen immunotherapy (SCIT) is a well-documented treatment for allergic disease which involves injections of native allergen or modified (allergoid) extracts. The use of allergoid vaccines is a growing sector of the allergy immunotherapy market, associated with shorter-course therapy. The aim of this study was the structural and immunological characterisation of group 1 (Lol p 1) IgG-binding epitopes within a complex mix grass allergoid formulation containing rye grass. HP-SEC was used to resolve a mix grass allergoid preparation of high molecular weight into several distinct fractions with defined molecular weight and elution profiles. Allergen verification of the HP-SEC allergoid fractions was confirmed by mass spectrometry analysis. IgE and IgG immunoreactivity of the allergoid preparations was explored and Lol p 1 specific IgG-binding epitopes mapped by SPOT synthesis technology (PepSpot™) with structural analysis based on a Lol p 1 homology model. Grass specific IgE reactivity of the mix grass modified extract (allergoid) was diminished in comparison with the mix grass native extract. A difference in IgG profiles was observed between an intact mix grass allergoid preparation and HP-SEC allergoid fractions, which indicated enhancement of accessible reactive IgG epitopes across size distribution profiles of the mix grass allergoid formulation. Detailed analysis of the epitope specificity showed retention of six Lol p 1 IgG-binding epitopes in the mix grass modified extract. The structural and immunological changes which take place following the grass allergen modification process was further unravelled revealing distinct IgG immunological profiles. All epitopes were mapped on the solvent exposed area of Lol p 1 homology model accessible for IgG binding. One of the epitopes was identified as an 'immunodominant' Lol p 1 IgG-binding epitope (62-IFKDGRGCGSCFEIK-76) and classified as a novel epitope. The results from this study support the concept

  4. eQTL Networks Reveal Complex Genetic Architecture in the Immature Soybean Seed

    Directory of Open Access Journals (Sweden)

    Yung-Tsi Bolon

    2014-03-01

    Full Text Available The complex network of regulatory factors and interactions involved in transcriptional regulation within the seed is not well understood. To evaluate gene expression regulation in the immature seed, we utilized a genetical genomics approach on a soybean [ (L. Merr.] recombinant inbred line (RIL population and produced a genome-wide expression quantitative trait loci (eQTL dataset. The validity of the dataset was confirmed by mapping the eQTL hotspot for flavonoid biosynthesis-related genes to a region containing repeats of chalcone synthase (CHS genes known to correspond to the soybean inhibitor locus that regulates seed color. We then identified eQTL for genes with seed-specific expression and discovered striking eQTL hotspots at distinct genomic intervals on chromosomes (Chr 20, 7, and 13. The main eQTL hotspot for transcriptional regulation of fatty acid biosynthesis genes also coincided with regulation of oleosin genes. Transcriptional upregulation of genesets from eQTL with opposite allelic effects were also found. Gene–eQTL networks were constructed and candidate regulatory genes were identified from these three key loci specific to seed expression and enriched in genes involved in seed oil accumulation. Our data provides new insight into the complex nature of gene networks in the immature soybean seed and the genetic architecture that contributes to seed development.

  5. Structure of the subtilisin Carlsberg-OMTKY3 complex reveals two different ovomucoid conformations.

    Science.gov (United States)

    Maynes, Jason T; Cherney, Maia M; Qasim, M A; Laskowski, Michael; James, Michael N G

    2005-05-01

    One of the most studied protein proteinase inhibitors is the turkey ovomucoid third domain, OMTKY3. This inhibitor contains a reactive-site loop (Lys13I-Arg21I) that binds in a nearly identical manner to all studied serine proteinases, regardless of their clan or specificity. The crystal structure of OMTKY3 bound to subtilisin Carlsberg (CARL) has been determined. There are two complete copies of the complexes in the crystallographic asymmetric unit. Whereas the two enzyme molecules are virtually identical [0.16 A root-mean-square difference (r.m.s.d.) for 274 C(alpha) atoms], the two inhibitor molecules show dramatic differences between one another (r.m.s.d. = 2.4 A for 50 C(alpha) atoms). When compared with other proteinase-bound OMTKY3 molecules, these inhibitors show even larger differences. This work facilitates a re-evaluation of the importance of certain ovomucoid residues in proteinase binding and explains why additivity and sequence-based binding-prediction methods fail for the CARL-OMTKY3 complex.

  6. Molecular phylogeny of Glossodoris (Ehrenberg, 1831) nudibranchs and related genera reveals cryptic and pseudocryptic species complexes

    KAUST Repository

    Matsuda, Shayle B.

    2017-03-01

    Chromodorid nudibranchs (Chromodorididae) are brightly coloured sea slugs that live in some of the most biodiverse and threatened coral reefs on the planet. However, the evolutionary relationships within this family have not been well understood, especially in the genus Glossodoris. Members of Glossodoris have experienced large-scale taxonomic instability over the last century and have been the subject of repeated taxonomic changes, in part due to morphological characters being the sole traditional taxonomic sources of data. Changing concepts of traditional generic boundaries based on morphology also have contributed to this instability. Despite recent advances in molecular systematics, many aspects of chromodorid taxonomy remain poorly understood, particularly at the traditional species and generic levels. In this study, 77 individuals comprising 32 previously defined species were used to build the most robust phylogenetic tree of Glossodoris and related genera using mitochondrial genes cytochrome c oxidase subunit I and 16S, and the nuclear gene 28S. Bayesian inference, maximum likelihood, and maximum parsimony analyses verify the most recent hypothesized evolutionary relationships within Glossodoris. Additionally, a pseudocryptic and cryptic species complex within Glossodoris cincta and a pseudocryptic complex within Glossodoris pallida emerged, and three new species of Doriprismatica are identified.

  7. Distinct configurations of protein complexes and biochemical pathways revealed by epistatic interaction network motifs

    LENUS (Irish Health Repository)

    Casey, Fergal

    2011-08-22

    Abstract Background Gene and protein interactions are commonly represented as networks, with the genes or proteins comprising the nodes and the relationship between them as edges. Motifs, or small local configurations of edges and nodes that arise repeatedly, can be used to simplify the interpretation of networks. Results We examined triplet motifs in a network of quantitative epistatic genetic relationships, and found a non-random distribution of particular motif classes. Individual motif classes were found to be associated with different functional properties, suggestive of an underlying biological significance. These associations were apparent not only for motif classes, but for individual positions within the motifs. As expected, NNN (all negative) motifs were strongly associated with previously reported genetic (i.e. synthetic lethal) interactions, while PPP (all positive) motifs were associated with protein complexes. The two other motif classes (NNP: a positive interaction spanned by two negative interactions, and NPP: a negative spanned by two positives) showed very distinct functional associations, with physical interactions dominating for the former but alternative enrichments, typical of biochemical pathways, dominating for the latter. Conclusion We present a model showing how NNP motifs can be used to recognize supportive relationships between protein complexes, while NPP motifs often identify opposing or regulatory behaviour between a gene and an associated pathway. The ability to use motifs to point toward underlying biological organizational themes is likely to be increasingly important as more extensive epistasis mapping projects in higher organisms begin.

  8. Aeroelastic Analysis of Modern Complex Wings

    Science.gov (United States)

    Kapania, Rakesh K.; Bhardwaj, Manoj K.; Reichenbach, Eric; Guruswamy, Guru P.

    1996-01-01

    A process is presented by which aeroelastic analysis is performed by using an advanced computational fluid dynamics (CFD) code coupled with an advanced computational structural dynamics (CSD) code. The process is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas Aerospace East CFD code) coupled with NASTRAN. The process is also demonstrated on an aeroelastic research wing (ARW-2) using ENSAERO (an in-house NASA Ames Research Center CFD code) coupled with a finite element wing-box structures code. Good results have been obtained for the F/A-18 Stabilator while results for the ARW-2 supercritical wing are still being obtained.

  9. Coping with Complexity Model Reduction and Data Analysis

    CERN Document Server

    Gorban, Alexander N

    2011-01-01

    This volume contains the extended version of selected talks given at the international research workshop 'Coping with Complexity: Model Reduction and Data Analysis', Ambleside, UK, August 31 - September 4, 2009. This book is deliberately broad in scope and aims at promoting new ideas and methodological perspectives. The topics of the chapters range from theoretical analysis of complex and multiscale mathematical models to applications in e.g., fluid dynamics and chemical kinetics.

  10. RNA-Seq reveals complex genetic response to deepwater horizon oil release in Fundulus grandis

    Directory of Open Access Journals (Sweden)

    Garcia Tzintzuni I

    2012-09-01

    Full Text Available Abstract Background The release of oil resulting from the blowout of the Deepwater Horizon (DH drilling platform was one of the largest in history discharging more than 189 million gallons of oil and subject to widespread application of oil dispersants. This event impacted a wide range of ecological habitats with a complex mix of pollutants whose biological impact is still not yet fully understood. To better understand the effects on a vertebrate genome, we studied gene expression in the salt marsh minnow Fundulus grandis, which is local to the northern coast of the Gulf of Mexico and is a sister species of the ecotoxicological model Fundulus heteroclitus. To assess genomic changes, we quantified mRNA expression using high throughput sequencing technologies (RNA-Seq in F. grandis populations in the marshes and estuaries impacted by DH oil release. This application of RNA-Seq to a non-model, wild, and ecologically significant organism is an important evaluation of the technology to quickly assess similar events in the future. Results Our de novo assembly of RNA-Seq data produced a large set of sequences which included many duplicates and fragments. In many cases several of these could be associated with a common reference sequence using blast to query a reference database. This reduced the set of significant genes to 1,070 down-regulated and 1,251 up-regulated genes. These genes indicate a broad and complex genomic response to DH oil exposure including the expected AHR-mediated response and CYP genes. In addition a response to hypoxic conditions and an immune response are also indicated. Several genes in the choriogenin family were down-regulated in the exposed group; a response that is consistent with AH exposure. These analyses are in agreement with oligonucleotide-based microarray analyses, and describe only a subset of significant genes with aberrant regulation in the exposed set. Conclusion RNA-Seq may be successfully applied to feral and

  11. Antidiabetic phospholipid-nuclear receptor complex reveals the mechanism for phospholipid-driven gene regulation

    Energy Technology Data Exchange (ETDEWEB)

    Musille, Paul M; Pathak, Manish C; Lauer, Janelle L; Hudson, William H; Griffin, Patrick R; Ortlund, Eric A [Emory-MED; (Scripps)

    2013-01-31

    The human nuclear receptor liver receptor homolog-1 (LRH-1) has an important role in controlling lipid and cholesterol homeostasis and is a potential target for the treatment of diabetes and hepatic diseases. LRH-1 is known to bind phospholipids, but the role of phospholipids in controlling LRH-1 activation remains highly debated. Here we describe the structure of both apo LRH-1 and LRH-1 in complex with the antidiabetic phospholipid dilauroylphosphatidylcholine (DLPC). Together with hydrogen-deuterium exchange MS and functional data, our studies show that DLPC binding is a dynamic process that alters co-regulator selectivity. We show that the lipid-free receptor undergoes previously unrecognized structural fluctuations, allowing it to interact with widely expressed co-repressors. These observations enhance our understanding of LRH-1 regulation and highlight its importance as a new therapeutic target for controlling diabetes.

  12. The locus coeruleus complex of the bottlenose dolphin (Tursiops truncatus) as revealed by tyrosine hydroxylase immunohistochemistry.

    Science.gov (United States)

    Manger, Paul R; Ridgway, Sam H; Siegel, Jerome M

    2003-06-01

    Using tyrosine hydroxylase immunohistochemistry we examined the structure of the pontine, or rostral rhombencephalic, catecholaminergic cells groups, which may be collectively termed the locus coeruleus complex (LC), in the bottlenose dolphin. The present study is the first to describe the LC in a cetacean species and, at 1.3 kg, represents the largest non-human brain to date in which the LC has been investigated. We identified four catecholaminergic cell groups in the dorsal pontine tegementum and peri-aqueductal gray matter: A6 dorsal (locus coeruleus), A6 ventral (locus coeruleus alpha), A7 (subcoeruleus), and A5 (fifth arcuate nucleus). No patterns of cellular distribution, nuclear subdivision, or cellular morphology indicate specialization of the LC, which might have been anticipated because of the large absolute brain size and unihemispheric sleep phenomenology of cetaceans.

  13. A Polychaete's powerful punch: venom gland transcriptomics of Glycera reveals a complex cocktail of toxin homologs.

    Science.gov (United States)

    von Reumont, Björn M; Campbell, Lahcen I; Richter, Sandy; Hering, Lars; Sykes, Dan; Hetmank, Jörg; Jenner, Ronald A; Bleidorn, Christoph

    2014-09-05

    Glycerids are marine annelids commonly known as bloodworms. Bloodworms have an eversible proboscis adorned with jaws connected to venom glands. Bloodworms prey on invertebrates, and it is known that the venom glands produce compounds that can induce toxic effects in animals. Yet, none of these putative toxins has been characterized on a molecular basis. Here we present the transcriptomic profiles of the venom glands of three species of bloodworm, Glycera dibranchiata, Glycera fallax and Glycera tridactyla, as well as the body tissue of G. tridactyla. The venom glands express a complex mixture of transcripts coding for putative toxin precursors. These transcripts represent 20 known toxin classes that have been convergently recruited into animal venoms, as well as transcripts potentially coding for Glycera-specific toxins. The toxins represent five functional categories: Pore-forming and membrane-disrupting toxins, neurotoxins, protease inhibitors, other enzymes, and CAP domain toxins. Many of the transcripts coding for putative Glycera toxins belong to classes that have been widely recruited into venoms, but some are homologs of toxins previously only known from the venoms of scorpaeniform fish and monotremes (stonustoxin-like toxin), turrid gastropods (turripeptide-like peptides), and sea anemones (gigantoxin I-like neurotoxin). This complex mixture of toxin homologs suggests that bloodworms employ venom while predating on macroscopic prey, casting doubt on the previously widespread opinion that G. dibranchiata is a detritivore. Our results further show that researchers should be aware that different assembly methods, as well as different methods of homology prediction, can influence the transcriptomic profiling of venom glands. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Competitive PCR reveals the complexity of postcopulatory sexual selection in Teleogryllus commodus.

    Science.gov (United States)

    Hall, Matthew D; Bussière, Luc F; Demont, Marco; Ward, Paul I; Brooks, Robert C

    2010-02-01

    The outcome of mate choice depends on complex interactions between males and females both before and after copulation. Although the competition between males for access to mates and premating choice by females are relatively well understood, the nature of interactions between cryptic female choice and male sperm competition within the female reproductive tract is less clear. Understanding the complexity of postcopulatory sexual selection requires an understanding of how anatomy, physiology and behaviour mediate sperm transfer and storage within multiply mated females. Here we use a newly developed molecular technique to directly quantify mixed sperm stores in multiple mating females of the black field cricket, Teleogryllus commodus. In this species, female postcopulatory choice is easily observed and manipulated as females delay the removal of the spermatophore in favour of preferred males. Using twice-mated females, we find that the proportion of sperm in the spermatheca attributed to the second male to mate with a female (S2) increases linearly with the time of spermatophore attachment. Moreover, we show that the insemination success of a male increases with its attractiveness and decreases with the size of the female. The effect of male attractiveness in this context suggests a previously unknown episode of mate choice in this species that reinforces the sexual selection imposed by premating choice and conflicts with the outcome of postmating male harassment. Our results provide some of the clearest evidence yet for how sperm transfer and displacement in multiply mated females can lead directly to cryptic female choice, and that three distinct periods of sexual selection operate in black field crickets.

  15. A detailed, hierarchical study of Giardia lamblia's ventral disc reveals novel microtubule-associated protein complexes.

    Directory of Open Access Journals (Sweden)

    Cindi L Schwartz

    Full Text Available Giardia lamblia is a flagellated, unicellular parasite of mammals infecting over one billion people worldwide. Giardia's two-stage life cycle includes a motile trophozoite stage that colonizes the host small intestine and an infectious cyst form that can persist in the environment. Similar to many eukaryotic cells, Giardia contains several complex microtubule arrays that are involved in motility, chromosome segregation, organelle transport, maintenance of cell shape and transformation between the two life cycle stages. Giardia trophozoites also possess a unique spiral microtubule array, the ventral disc, made of approximately 50 parallel microtubules and associated microribbons, as well as a variety of associated proteins. The ventral disc maintains trophozoite attachment to the host intestinal epithelium. With the help of a combined SEM/microtome based slice and view method called 3View® (Gatan Inc., Pleasanton, CA, we present an entire trophozoite cell reconstruction and describe the arrangement of the major cytoskeletal elements. To aid in future analyses of disc-mediated attachment, we used electron-tomography of freeze-substituted, plastic-embedded trophozoites to explore the detailed architecture of ventral disc microtubules and their associated components. Lastly, we examined the disc microtubule array in three dimensions in unprecedented detail using cryo-electron tomography combined with internal sub-tomogram volume averaging of repetitive domains. We discovered details of protein complexes stabilizing microtubules by attachment to their inner and outer wall. A unique tri-laminar microribbon structure is attached vertically to the disc microtubules and is connected to neighboring microribbons via crossbridges. This work provides novel insight into the structure of the ventral disc microtubules, microribbons and associated proteins. Knowledge of the components comprising these structures and their three-dimensional organization is

  16. Transcriptome and secretome analyses of Phanerochaete chrysosporium reveal complex patterns of gene expression

    Science.gov (United States)

    Amber J. Vanden Wymelenberg; Jill A. Gaskell; Michael D. Mozuch; Philip J. Kersten; Grzegorz Sabat; Diego Martinez; Daniel Cullen

    2009-01-01

    The wood decay basidiomycete Phanerochaete chrysosporium was grown under standard ligninolytic or cellulolytic conditions and subjected to whole-genome expression microarray analysis and liquid chromatography-tandem mass spectrometry of extracellular proteins. A total of 545 genes were flagged on the basis of significant changes in transcript accumulation and/or...

  17. Systematics and biogeography of the Automolus infuscatus complex (Aves; Furnariidae): Cryptic diversity reveals western Amazonia as the origin of a transcontinental radiation.

    Science.gov (United States)

    Schultz, Eduardo D; Burney, Curtis W; Brumfield, Robb T; Polo, Erico M; Cracraft, Joel; Ribas, Camila C

    2017-02-01

    A revision of the avian Neotropical genus Automolus and the Furnariidae family points to the paraphyly of A. infuscatus and reveals a species complex comprising A. infuscatus, A. ochrolaemus, A. paraensis, A. leucophthalmus, A. lammi and A. subulatus, the latter historically classified in the genus Hyloctistes. Detailed knowledge of the taxonomy, geographic distribution, phylogenetic relationship and divergence times of a taxon allows exploration of its evolutionary history and the testing of different scenarios of diversification. In this context, we studied the A. infuscatus complex using molecular data in order to unveil its cryptic diversity and reveal its evolutionary history. For that we sequenced two mitochondrial (ND2 and cytb) and three nuclear markers (G3PDH, ACO, Fib7) for 302 individuals belonging to all species in the complex and most described subspecies. Our analysis supports the paraphyly of A. infuscatus, indicating the existence of at least two distinct clades not closely related. The remaining species were all recovered as monophyletic. Notwithstanding, a well-structured intraspecific diversity was found with 19 lineages suggesting substantial cryptic diversity within the described species. A. subulatus was recovered within the complex, corroborating its position inside the genus. In spite of the high congruence between distributions of different lineages, with several sister lineages currently separated by the same barriers, the temporal incongruence between divergences over the same barriers reveals a complex evolutionary history. While older events might be related to the emergence of barriers such as the Andes and major Amazonian rivers, younger events suggest dispersal after the consolidation of those barriers. Our analysis suggests that the complex had its origin around 6million years (Ma) and inhabited Western Amazonia in Late Miocene-Early Pliocene. Considering the riparian habit of species in its sister clade, the rise and early

  18. High-speed image analysis reveals chaotic vibratory behaviors of pathological vocal folds

    International Nuclear Information System (INIS)

    Zhang Yu; Shao Jun; Krausert, Christopher R.; Zhang Sai; Jiang, Jack J.

    2011-01-01

    Research highlights: → Low-dimensional human glottal area data. → Evidence of chaos in human laryngeal activity from high-speed digital imaging. → Traditional perturbation analysis should be cautiously applied to aperiodic high speed image signals. → Nonlinear dynamic analysis may be helpful for understanding disordered behaviors in pathological laryngeal systems. - Abstract: Laryngeal pathology is usually associated with irregular dynamics of laryngeal activity. High-speed imaging facilitates direct observation and measurement of vocal fold vibrations. However, chaotic dynamic characteristics of aperiodic high-speed image data have not yet been investigated in previous studies. In this paper, we will apply nonlinear dynamic analysis and traditional perturbation methods to quantify high-speed image data from normal subjects and patients with various laryngeal pathologies including vocal fold nodules, polyps, bleeding, and polypoid degeneration. The results reveal the low-dimensional dynamic characteristics of human glottal area data. In comparison to periodic glottal area series from a normal subject, aperiodic glottal area series from pathological subjects show complex reconstructed phase space, fractal dimension, and positive Lyapunov exponents. The estimated positive Lyapunov exponents provide the direct evidence of chaos in pathological human vocal folds from high-speed digital imaging. Furthermore, significant differences between the normal and pathological groups are investigated for nonlinear dynamic and perturbation analyses. Jitter in the pathological group is significantly higher than in the normal group, but shimmer does not show such a difference. This finding suggests that the traditional perturbation analysis should be cautiously applied to high speed image signals. However, the correlation dimension and the maximal Lyapunov exponent reveal a statistically significant difference between normal and pathological groups. Nonlinear dynamic

  19. Structures of GRP94-nucleotide complexes reveal mechanistic differences between the hsp90 chaperones.

    Science.gov (United States)

    Dollins, D Eric; Warren, Joshua J; Immormino, Robert M; Gewirth, Daniel T

    2007-10-12

    GRP94, an essential endoplasmic reticulum chaperone, is required for the conformational maturation of proteins destined for cell-surface display or export. The extent to which GRP94 and its cytosolic paralog, Hsp90, share a common mechanism remains controversial. GRP94 has not been shown conclusively to hydrolyze ATP or bind cochaperones, and both activities, by contrast, result in conformational changes and N-terminal dimerization in Hsp90 that are critical for its function. Here, we report the 2.4 A crystal structure of mammalian GRP94 in complex with AMPPNP and ADP. The chaperone is conformationally insensitive to the identity of the bound nucleotide, adopting a "twisted V" conformation that precludes N-terminal domain dimerization. We also present conclusive evidence that GRP94 possesses ATPase activity. Our observations provide a structural explanation for GRP94's observed rate of ATP hydrolysis and suggest a model for the role of ATP binding and hydrolysis in the GRP94 chaperone cycle.

  20. Crystal structure of equine serum albumin in complex with cetirizine reveals a novel drug binding site.

    Science.gov (United States)

    Handing, Katarzyna B; Shabalin, Ivan G; Szlachta, Karol; Majorek, Karolina A; Minor, Wladek

    2016-03-01

    Serum albumin (SA) is the main transporter of drugs in mammalian blood plasma. Here, we report the first crystal structure of equine serum albumin (ESA) in complex with antihistamine drug cetirizine at a resolution of 2.1Å. Cetirizine is bound in two sites--a novel drug binding site (CBS1) and the fatty acid binding site 6 (CBS2). Both sites differ from those that have been proposed in multiple reports based on equilibrium dialysis and fluorescence studies for mammalian albumins as cetirizine binding sites. We show that the residues forming the binding pockets in ESA are highly conserved in human serum albumin (HSA), and suggest that binding of cetirizine to HSA will be similar. In support of that hypothesis, we show that the dissociation constants for cetirizine binding to CBS2 in ESA and HSA are identical using tryptophan fluorescence quenching. Presence of lysine and arginine residues that have been previously reported to undergo nonenzymatic glycosylation in CBS1 and CBS2 suggests that cetirizine transport in patients with diabetes could be altered. A review of all available SA structures from the PDB shows that in addition to the novel drug binding site we present here (CBS1), there are two pockets on SA capable of binding drugs that do not overlap with fatty acid binding sites and have not been discussed in published reviews. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Generalized additive models reveal the intrinsic complexity of wood formation dynamics.

    Science.gov (United States)

    Cuny, Henri E; Rathgeber, Cyrille B K; Kiessé, Tristan Senga; Hartmann, Felix P; Barbeito, Ignacio; Fournier, Meriem

    2013-04-01

    The intra-annual dynamics of wood formation, which involves the passage of newly produced cells through three successive differentiation phases (division, enlargement, and wall thickening) to reach the final functional mature state, has traditionally been described in conifers as three delayed bell-shaped curves followed by an S-shaped curve. Here the classical view represented by the 'Gompertz function (GF) approach' was challenged using two novel approaches based on parametric generalized linear models (GLMs) and 'data-driven' generalized additive models (GAMs). These three approaches (GFs, GLMs, and GAMs) were used to describe seasonal changes in cell numbers in each of the xylem differentiation phases and to calculate the timing of cell development in three conifer species [Picea abies (L.), Pinus sylvestris L., and Abies alba Mill.]. GAMs outperformed GFs and GLMs in describing intra-annual wood formation dynamics, showing two left-skewed bell-shaped curves for division and enlargement, and a right-skewed bimodal curve for thickening. Cell residence times progressively decreased through the season for enlargement, whilst increasing late but rapidly for thickening. These patterns match changes in cell anatomical features within a tree ring, which allows the separation of earlywood and latewood into two distinct cell populations. A novel statistical approach is presented which renews our understanding of xylogenesis, a dynamic biological process in which the rate of cell production interplays with cell residence times in each developmental phase to create complex seasonal patterns.

  2. Resistivity imaging reveals complex pattern of saltwater intrusion along Monterey coast

    Science.gov (United States)

    Goebel, Meredith; Pidlisecky, Adam; Knight, Rosemary

    2017-08-01

    Electrical Resistivity Tomography data were acquired along 40 km of the Monterey Bay coast in central California. These data resulted in electrical resistivity images to depths of approximately 280 m.b.s.l., which were used to understand the distribution of freshwater and saltwater in the subsurface, and factors controlling this distribution. The resulting resistivity sections were interpreted in conjunction with existing data sets, including well logs, seismic reflection data, geologic reports, hydrologic reports, and land use maps from the region. Interpretation of these data shows a complex pattern of saltwater intrusion resulting from geology, pumping, and recharge. The resistivity profiles were used to identify geological flow conduits and barriers such as palaeo-channels and faults, localized saltwater intrusion from individual pumping wells, infiltration zones of surface fresh and brackish water, and regions showing improvements in water quality due to management actions. The use of ERT data for characterizing the subsurface in this region has led to an understanding of the spatial distribution of freshwater and saltwater at a level of detail unattainable with the previously deployed traditional well based salinity mapping and monitoring techniques alone. Significant spatial variability in the extent and geometry of intrusion observed in the acquired data highlights the importance of adopting continuous subsurface characterization methods such as this one.

  3. Subfield profitability analysis reveals an economic case for cropland diversification

    Science.gov (United States)

    Brandes, E.; McNunn, G. S.; Schulte, L. A.; Bonner, I. J.; Muth, D. J.; Babcock, B. A.; Sharma, B.; Heaton, E. A.

    2016-01-01

    Public agencies and private enterprises increasingly desire to achieve ecosystem service outcomes in agricultural systems, but are limited by perceived conflicts between economic and ecosystem service goals and a lack of tools enabling effective operational management. Here we use Iowa—an agriculturally homogeneous state representative of the Maize Belt—to demonstrate an economic rationale for cropland diversification at the subfield scale. We used a novel computational framework that integrates disparate but publicly available data to map ˜3.3 million unique potential management polygons (9.3 Mha) and reveal subfield opportunities to increase overall field profitability. We analyzed subfield profitability for maize/soybean fields during 2010-2013—four of the most profitable years in recent history—and projected results for 2015. While cropland operating at a loss of US 250 ha-1 or more was negligible between 2010 and 2013 at 18 000-190 000 ha (<2% of row-crop land), the extent of highly unprofitable land increased to 2.5 Mha, or 27% of row-crop land, in the 2015 projection. Aggregation of these areas to the township level revealed ‘hotspots’ for potential management change in Western, Central, and Northeast Iowa. In these least profitable areas, incorporating conservation management that breaks even (e.g., planting low-input perennials), into low-yielding portions of fields could increase overall cropland profitability by 80%. This approach is applicable to the broader region and differs substantially from the status quo of ‘top-down’ land management for conservation by harnessing private interest to align profitability with the production of ecosystem services.

  4. Complexity of CNC transcription factors as revealed by gene targeting of the Nrf3 locus.

    Science.gov (United States)

    Derjuga, Anna; Gourley, Tania S; Holm, Teresa M; Heng, Henry H Q; Shivdasani, Ramesh A; Ahmed, Rafi; Andrews, Nancy C; Blank, Volker

    2004-04-01

    Cap'n'collar (CNC) family basic leucine zipper transcription factors play crucial roles in the regulation of mammalian gene expression and development. To determine the in vivo function of the CNC protein Nrf3 (NF-E2-related factor 3), we generated mice deficient in this transcription factor. We performed targeted disruption of two Nrf3 exons coding for CNC homology, basic DNA-binding, and leucine zipper dimerization domains. Nrf3 null mice developed normally and revealed no obvious phenotypic differences compared to wild-type animals. Nrf3(-/-) mice were fertile, and gross anatomy as well as behavior appeared normal. The mice showed normal age progression and did not show any apparent additional phenotype during their life span. We observed no differences in various blood parameters and chemistry values. We infected wild-type and Nrf3(-/-) mice with acute lymphocytic choriomeningitis virus and found no differences in these animals with respect to their number of virus-specific CD8 and CD4 T cells as well as their B-lymphocyte response. To determine whether the mild phenotype of Nrf3 null animals is due to functional redundancy, we generated mice deficient in multiple CNC factors. Contrary to our expectations, an absence of Nrf3 does not seem to cause additional lethality in compound Nrf3(-/-)/Nrf2(-/-) and Nrf3(-/-)/p45(-/-) mice. We hypothesize that the role of Nrf3 in vivo may become apparent only after appropriate challenge to the mice.

  5. First DNA sequences from Asian cave bear fossils reveal deep divergences and complex phylogeographic patterns.

    Science.gov (United States)

    Knapp, Michael; Rohland, Nadin; Weinstock, Jacobo; Baryshnikov, Gennady; Sher, Andrei; Nagel, Doris; Rabeder, Gernot; Pinhasi, Ron; Schmidt, Heiko A; Hofreiter, Michael

    2009-03-01

    Until recently, cave bears were believed to have only inhabited Europe. However, recent morphological evidence suggests that cave bears' geographic range extended as far east as Transbaikalia, Eastern Siberia. These Asian cave bears were morphologically distinct from European cave bears. However, how they related to European lineages remains unclear, stressing the need to assess the phylogenetic and phylogeographic relationship between Asian cave bears and their European relatives. In this work, we address this issue using a 227 base-pair fragment of the mitochondrial control region obtained from nine fossil bone samples from eight sites from the Urals, Caucasus, Altai Mountains, Ukraine and Yana River region in Eastern Siberia. Results of the phylogenetic analyses indicate that (i) the cave bear from the Yana River is most closely related to cave bears from the Caucasus region; (ii) the Caucasus/Yana group of bears is genetically very distinct from both European cave bears and brown bears, suggesting that these bears could represent an independent species; and (iii) the Western European cave bear lineage reached at least temporarily to the Altai Mountains, 7000 km east of their known centre of distribution. These results suggest that the diversity of cave bears was greater than previously believed, and that they could survive in a much wider range of ecological conditions than previously assumed. They also agree with recent studies on other extinct and extant species, such as wolves, hyenas and steppe bison, which have also revealed higher genetic and ecological diversity in Pleistocene populations than previously known.

  6. Blockade of cholesterol absorption by ezetimibe reveals a complex homeostatic network in enterocytes[S

    Science.gov (United States)

    Engelking, Luke J.; McFarlane, Matthew R.; Li, Christina K.; Liang, Guosheng

    2012-01-01

    Enterocyte cholesterol homeostasis reflects aggregated rates of sterol synthesis, efflux, and uptake from plasma and gut lumen. Cholesterol synthesis and LDL uptake are coordinately regulated by sterol regulatory element-binding proteins (SREBP), whereas sterol efflux is regulated by liver X receptors (LXR). How these processes are coordinately regulated in enterocytes, the site of cholesterol absorption, is not well understood. Here, we treat mice with ezetimibe to investigate the effect of blocking cholesterol absorption on intestinal SREBPs, LXRs, and their effectors. Ezetimibe increased nuclear SREBP-2 8-fold. HMG-CoA reductase (HMGR) and LDL receptor (LDLR) mRNA levels increased less than 3-fold, whereas their protein levels increased 30- and 10-fold, respectively. Expression of inducible degrader of LDLR (IDOL), an LXR-regulated gene that degrades LDLRs, was reduced 50% by ezetimibe. Coadministration of ezetimibe with the LXR agonist T0901317 abolished the reduction in IDOL and prevented the increase in LDLR protein. Ezetimibe-stimulated LDLR expression was independent of proprotein convertase subtilisin/kexin type 9 (PSCK9), a protein that degrades LDLRs. To maintain cholesterol homeostasis in the face of ezetimibe, enterocytes boost LDL uptake by increasing LDLR number, and they boost sterol synthesis by increasing HMGR and other cholesterologenic genes. These studies reveal a hitherto undescribed homeostatic network in enterocytes triggered by blockade of cholesterol absorption. PMID:22523394

  7. Analysis of a complex shape chain plate using Transmission Photoelasticity

    Directory of Open Access Journals (Sweden)

    Dasari N.

    2010-06-01

    -3]. A loading fixture was used to load the model during stress freezing in the furnace. The integrated fringe pattern of the offset chain plate is shown in Figure 2. Slices are cut in the offset zone to understand the nature of the stress distribution. A Simple photoelastic analysis of this has revealed a wealth of information to take suitable decision on the design of such plates taking into account the constraints in manufacturing.

  8. A genetic analysis of segregation distortion revealed by molecular ...

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. RESEARCH NOTE. A genetic analysis of segregation ... 2College of Life Science, Northeast Forest University, Harbin 150040, People's Republic of China. [Cai J., Zhang X., Wang B., Yan M., Qi Y. and Kong L. ... elite agronomic traits (Zhang et al. 2011). However, there is still no report about ...

  9. Network analysis reveals multiscale controls on streamwater chemistry

    Science.gov (United States)

    Kevin J. McGuire; Christian E. Torgersen; Gene E. Likens; Donald C. Buso; Winsor H. Lowe; Scott W. Bailey

    2014-01-01

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in...

  10. Antigenic Characterization of the HCMV gH/gL/gO and Pentamer Cell Entry Complexes Reveals Binding Sites for Potently Neutralizing Human Antibodies.

    Directory of Open Access Journals (Sweden)

    Claudio Ciferri

    2015-10-01

    Full Text Available Human Cytomegalovirus (HCMV is a major cause of morbidity and mortality in transplant patients and in fetuses following congenital infection. The glycoprotein complexes gH/gL/gO and gH/gL/UL128/UL130/UL131A (Pentamer are required for HCMV entry in fibroblasts and endothelial/epithelial cells, respectively, and are targeted by potently neutralizing antibodies in the infected host. Using purified soluble forms of gH/gL/gO and Pentamer as well as a panel of naturally elicited human monoclonal antibodies, we determined the location of key neutralizing epitopes on the gH/gL/gO and Pentamer surfaces. Mass Spectrometry (MS coupled to Chemical Crosslinking or to Hydrogen Deuterium Exchange was used to define residues that are either in proximity or part of neutralizing epitopes on the glycoprotein complexes. We also determined the molecular architecture of the gH/gL/gO- and Pentamer-antibody complexes by Electron Microscopy (EM and 3D reconstructions. The EM analysis revealed that the Pentamer specific neutralizing antibodies bind to two opposite surfaces of the complex, suggesting that they may neutralize infection by different mechanisms. Together, our data identify the location of neutralizing antibodies binding sites on the gH/gL/gO and Pentamer complexes and provide a framework for the development of antibodies and vaccines against HCMV.

  11. Statistical inference on genetic data reveals the complex demographic history of human populations in central Asia.

    Science.gov (United States)

    Palstra, Friso P; Heyer, Evelyne; Austerlitz, Frédéric

    2015-06-01

    The demographic history of modern humans constitutes a combination of expansions, colonizations, contractions, and remigrations. The advent of large scale genetic data combined with statistically refined methods facilitates inference of this complex history. Here we study the demographic history of two genetically admixed ethnic groups in Central Asia, an area characterized by high levels of genetic diversity and a history of recurrent immigration. Using Approximate Bayesian Computation, we infer that the timing of admixture markedly differs between the two groups. Admixture in the traditionally agricultural Tajiks could be dated back to the onset of the Neolithic transition in the region, whereas admixture in Kyrgyz is more recent, and may have involved the westward movement of Turkic peoples. These results are confirmed by a coalescent method that fits an isolation-with-migration model to the genetic data, with both Central Asian groups having received gene flow from the extremities of Eurasia. Interestingly, our analyses also uncover signatures of gene flow from Eastern to Western Eurasia during Paleolithic times. In conclusion, the high genetic diversity currently observed in these two Central Asian peoples most likely reflects the effects of recurrent immigration that likely started before historical times. Conversely, conquests during historical times may have had a relatively limited genetic impact. These results emphasize the need for a better understanding of the genetic consequences of transmission of culture and technological innovations, as well as those of invasions and conquests. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Long-term changes in abundances of Sonoran Desert lizards reveal complex responses to climatic variation.

    Science.gov (United States)

    Flesch, Aaron D; Rosen, Philip C; Holm, Peter

    2017-12-01

    Understanding how climatic variation affects animal populations and communities is essential for addressing threats posed by climate change, especially in systems where impacts are projected to be high. We evaluated abundance dynamics of five common species of diurnal lizards over 25 years in a Sonoran Desert transition zone where precipitation decreased and temperature increased across time, and assessed hypotheses for the influence of climatic flux on spatiotemporal variation in abundances. We repeatedly surveyed lizards in spring and summer of each year at up to 32 sites, and used hierarchical mixture models to estimate detection probabilities, abundances, and population growth rates. Among terrestrial species, abundances of a short-lived, winter-spring breeder increased markedly by an estimated 237%-285% across time, while two larger spring-summer breeders with higher thermal preferences declined by up to 64%. Abundances of two arboreal species that occupy shaded and thus sheltered microhabitats fluctuated but did not decline systematically. Abundances of all species increased with precipitation at short lag times (1-1.5 years) likely due to enhanced food availability, but often declined after periods of high precipitation at longer lag times (2-4 years) likely due to predation and other biotic pressures. Although rising maximum daily temperatures (T max ) are expected to drive global declines of lizards, associations with T max were variable and weak for most species. Instead, abundances of all species declined with rising daily minimum temperatures, suggesting degradation of cool refugia imposed widespread metabolic or other costs. Our results suggest climate warming and drying are having major impacts on lizard communities by driving declines in species with traits that augment exposure to abiotic extremes and by modifying species interactions. The complexity of patterns we report indicates that evaluating and responding to the influence of climate change

  13. Mechanics of severing for large microtubule complexes revealed by coarse-grained simulations.

    Science.gov (United States)

    Theisen, Kelly E; Desai, Neha J; Volski, Allison M; Dima, Ruxandra I

    2013-09-28

    We investigate the mechanical behavior of microtubule (MT) protofilaments under the action of bending forces, ramped up linearly in time, to provide insight into the severing of MTs by microtubule associated proteins (MAPs). We used the self-organized polymer model which employs a coarse-grained description of the protein chain and ran Brownian dynamics simulations accelerated on graphics processing units that allow us to follow the dynamics of a MT system on experimental timescales. Our study focused on the role played in the MT depolymerization dynamics by the inter-tubulin contacts a protofilament experiences when embedded in the MT lattice, and the number of binding sites of MAPs on MTs. We found that proteins inducing breaking of MTs must have at least three attachment points on any tubulin dimer from an isolated protofilament. In contrast, two points of contact would suffice when dimers are located in an intact MT lattice, in accord with experimental findings on MT severing proteins. Our results show that confinement of a protofilament in the MT lattice leads to a drastic reduction in the energy required for the removal of tubulin dimers, due to the drastic reduction in entropy. We further showed that there are differences in the energetic requirements based on the location of the dimer to be removed by severing. Comparing the energy of tubulin dimers removal revealed by our simulations with the amount of energy resulting from one ATP hydrolysis, which is the source of energy for all MAPs, we provided strong evidence for the experimental finding that severing proteins do not bind uniformly along the MT wall.

  14. Identifying habitats at risk: simple models can reveal complex ecosystem dynamics.

    Science.gov (United States)

    Maxwell, Paul S; Pitt, Kylie A; Olds, Andrew D; Rissik, David; Connolly, Rod M

    2015-03-01

    The relationship between ecological impact and ecosystem structure is often strongly nonlinear, so that small increases in impact levels can cause a disproportionately large response in ecosystem structure. Nonlinear ecosystem responses can be difficult to predict because locally relevant data sets can be difficult or impossible to obtain. Bayesian networks (BN) are an emerging tool that can help managers to define ecosystem relationships using a range of data types from comprehensive quantitative data sets to expert opinion. We show how a simple BN can reveal nonlinear dynamics in seagrass ecosystems using ecological relationships sourced from the literature. We first developed a conceptual diagram by cataloguing the ecological responses of seagrasses to a range of drivers and impacts. We used the conceptual diagram to develop a BN populated with values sourced from published studies. We then applied the BN to show that the amount of initial seagrass biomass has a mitigating effect on the level of impact a meadow can withstand without loss, and that meadow recovery can often require disproportionately large improvements in impact levels. This mitigating effect resulted in the middle ranges of impact levels having a wide likelihood of seagrass presence, a situation known as bistability. Finally, we applied the model in a case study to identify the risk of loss and the likelihood of recovery for the conservation and management of seagrass meadows in Moreton Bay, Queensland, Australia. We used the model to predict the likelihood of bistability in 23 locations in the Bay. The model predicted bistability in seven locations, most of which have experienced seagrass loss at some stage in the past 25 years providing essential information for potential future restoration efforts. Our results demonstrate the capacity of simple, flexible modeling tools to facilitate collation and synthesis of disparate information. This approach can be adopted in the initial stages of

  15. Revealing the underlying drivers of disaster risk: a global analysis

    Science.gov (United States)

    Peduzzi, Pascal

    2017-04-01

    Disasters events are perfect examples of compound events. Disaster risk lies at the intersection of several independent components such as hazard, exposure and vulnerability. Understanding the weight of each component requires extensive standardisation. Here, I show how footprints of past disastrous events were generated using GIS modelling techniques and used for extracting population and economic exposures based on distribution models. Using past event losses, it was possible to identify and quantify a wide range of socio-politico-economic drivers associated with human vulnerability. The analysis was applied to about nine thousand individual past disastrous events covering earthquakes, floods and tropical cyclones. Using a multiple regression analysis on these individual events it was possible to quantify each risk component and assess how vulnerability is influenced by various hazard intensities. The results show that hazard intensity, exposure, poverty, governance as well as other underlying factors (e.g. remoteness) can explain the magnitude of past disasters. Analysis was also performed to highlight the role of future trends in population and climate change and how this may impacts exposure to tropical cyclones in the future. GIS models combined with statistical multiple regression analysis provided a powerful methodology to identify, quantify and model disaster risk taking into account its various components. The same methodology can be applied to various types of risk at local to global scale. This method was applied and developed for the Global Risk Analysis of the Global Assessment Report on Disaster Risk Reduction (GAR). It was first applied on mortality risk in GAR 2009 and GAR 2011. New models ranging from global assets exposure and global flood hazard models were also recently developed to improve the resolution of the risk analysis and applied through CAPRA software to provide probabilistic economic risk assessments such as Average Annual Losses (AAL

  16. Proteomics Analysis Reveals Previously Uncharacterized Virulence Factors in Vibrio proteolyticus.

    Science.gov (United States)

    Ray, Ann; Kinch, Lisa N; de Souza Santos, Marcela; Grishin, Nick V; Orth, Kim; Salomon, Dor

    2016-07-26

    Members of the genus Vibrio include many pathogens of humans and marine animals that share genetic information via horizontal gene transfer. Hence, the Vibrio pan-genome carries the potential to establish new pathogenic strains by sharing virulence determinants, many of which have yet to be characterized. Here, we investigated the virulence properties of Vibrio proteolyticus, a Gram-negative marine bacterium previously identified as part of the Vibrio consortium isolated from diseased corals. We found that V. proteolyticus causes actin cytoskeleton rearrangements followed by cell lysis in HeLa cells in a contact-independent manner. In search of the responsible virulence factor involved, we determined the V. proteolyticus secretome. This proteomics approach revealed various putative virulence factors, including active type VI secretion systems and effectors with virulence toxin domains; however, these type VI secretion systems were not responsible for the observed cytotoxic effects. Further examination of the V. proteolyticus secretome led us to hypothesize and subsequently demonstrate that a secreted hemolysin, belonging to a previously uncharacterized clan of the leukocidin superfamily, was the toxin responsible for the V. proteolyticus-mediated cytotoxicity in both HeLa cells and macrophages. Clearly, there remains an armory of yet-to-be-discovered virulence factors in the Vibrio pan-genome that will undoubtedly provide a wealth of knowledge on how a pathogen can manipulate host cells. The pan-genome of the genus Vibrio is a potential reservoir of unidentified toxins that can provide insight into how members of this genus have successfully risen as emerging pathogens worldwide. We focused on Vibrio proteolyticus, a marine bacterium that was previously implicated in virulence toward marine animals, and characterized its interaction with eukaryotic cells. We found that this bacterium causes actin cytoskeleton rearrangements and leads to cell death. Using a

  17. Virtual mutagenesis of the yeast cyclins genetic network reveals complex dynamics of transcriptional control networks.

    Directory of Open Access Journals (Sweden)

    Eliska Vohradska

    Full Text Available Study of genetic networks has moved from qualitative description of interactions between regulators and regulated genes to the analysis of the interaction dynamics. This paper focuses on the analysis of dynamics of one particular network--the yeast cyclins network. Using a dedicated mathematical model of gene expression and a procedure for computation of the parameters of the model from experimental data, a complete numerical model of the dynamics of the cyclins genetic network was attained. The model allowed for performing virtual experiments on the network and observing their influence on the expression dynamics of the genes downstream in the regulatory cascade. Results show that when the network structure is more complicated, and the regulatory interactions are indirect, results of gene deletion are highly unpredictable. As a consequence of quantitative behavior of the genes and their connections within the network, causal relationship between a regulator and target gene may not be discovered by gene deletion. Without including the dynamics of the system into the network, its functional properties cannot be studied and interpreted correctly.

  18. Sensitization trajectories in childhood revealed by using a cluster analysis

    DEFF Research Database (Denmark)

    Schoos, Ann-Marie M.; Chawes, Bo L.; Melen, Erik

    2017-01-01

    BACKGROUND: Assessment of sensitization at a single time point during childhood provides limited clinical information. We hypothesized that sensitization develops as specific patterns with respect to age at debut, development over time, and involved allergens and that such patterns might be more...... biologically and clinically relevant. OBJECTIVE: We sought to explore latent patterns of sensitization during the first 6 years of life and investigate whether such patterns associate with the development of asthma, rhinitis, and eczema. METHODS: We investigated 398 children from the at-risk Copenhagen...... Prospective Studies on Asthma in Childhood 2000 (COPSAC2000) birth cohort with specific IgE against 13 common food and inhalant allergens at the ages of ½, 1½, 4, and 6 years. An unsupervised cluster analysis for 3-dimensional data (nonnegative sparse parallel factor analysis) was used to extract latent...

  19. Pathway-based analysis tools for complex diseases: a review.

    Science.gov (United States)

    Jin, Lv; Zuo, Xiao-Yu; Su, Wei-Yang; Zhao, Xiao-Lei; Yuan, Man-Qiong; Han, Li-Zhen; Zhao, Xiang; Chen, Ye-Da; Rao, Shao-Qi

    2014-10-01

    Genetic studies are traditionally based on single-gene analysis. The use of these analyses can pose tremendous challenges for elucidating complicated genetic interplays involved in complex human diseases. Modern pathway-based analysis provides a technique, which allows a comprehensive understanding of the molecular mechanisms underlying complex diseases. Extensive studies utilizing the methods and applications for pathway-based analysis have significantly advanced our capacity to explore large-scale omics data, which has rapidly accumulated in biomedical fields. This article is a comprehensive review of the pathway-based analysis methods-the powerful methods with the potential to uncover the biological depths of the complex diseases. The general concepts and procedures for the pathway-based analysis methods are introduced and then, a comprehensive review of the major approaches for this analysis is presented. In addition, a list of available pathway-based analysis software and databases is provided. Finally, future directions and challenges for the methodological development and applications of pathway-based analysis techniques are discussed. This review will provide a useful guide to dissect complex diseases. Copyright © 2014 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  20. Demographic analysis reveals gradual senescence in the flatworm Macrostomum lignano

    OpenAIRE

    Mouton, Stijn; Willems, Maxime; Back, Patricia; Braeckman, Bart; Borgonie, Gaetan

    2009-01-01

    Abstract Free-living flatworms ("Turbellaria") are appropriate model organisms to gain better insight into the role of stem cells in ageing and rejuvenation. Ageing research in flatworms is, however, still scarce. This is partly due to culture difficulties and the lack of a complete set of demographic data, including parameters such as median lifespan and age-specific mortality rate. In this paper, we report on the first flatworm survival analysis. We used the species Macrostomum lignano, whi...

  1. Proteomics Analysis Reveals Previously Uncharacterized Virulence Factors in Vibrio proteolyticus

    Directory of Open Access Journals (Sweden)

    Ann Ray

    2016-07-01

    Full Text Available Members of the genus Vibrio include many pathogens of humans and marine animals that share genetic information via horizontal gene transfer. Hence, the Vibrio pan-genome carries the potential to establish new pathogenic strains by sharing virulence determinants, many of which have yet to be characterized. Here, we investigated the virulence properties of Vibrio proteolyticus, a Gram-negative marine bacterium previously identified as part of the Vibrio consortium isolated from diseased corals. We found that V. proteolyticus causes actin cytoskeleton rearrangements followed by cell lysis in HeLa cells in a contact-independent manner. In search of the responsible virulence factor involved, we determined the V. proteolyticus secretome. This proteomics approach revealed various putative virulence factors, including active type VI secretion systems and effectors with virulence toxin domains; however, these type VI secretion systems were not responsible for the observed cytotoxic effects. Further examination of the V. proteolyticus secretome led us to hypothesize and subsequently demonstrate that a secreted hemolysin, belonging to a previously uncharacterized clan of the leukocidin superfamily, was the toxin responsible for the V. proteolyticus-mediated cytotoxicity in both HeLa cells and macrophages. Clearly, there remains an armory of yet-to-be-discovered virulence factors in the Vibrio pan-genome that will undoubtedly provide a wealth of knowledge on how a pathogen can manipulate host cells.

  2. Proteomic Analysis of Hylocereus polyrhizus Reveals Metabolic Pathway Changes.

    Science.gov (United States)

    Hua, Qingzhu; Zhou, Qianjun; Gan, Susheng; Wu, Jingyu; Chen, Canbin; Li, Jiaqiang; Ye, Yaoxiong; Zhao, Jietang; Hu, Guibing; Qin, Yonghua

    2016-09-28

    Red dragon fruit or red pitaya ( Hylocereus polyrhizus ) is the only edible fruit that contains betalains. The color of betalains ranges from red and violet to yellow in plants. Betalains may also serve as an important component of health-promoting and disease-preventing functional food. Currently, the biosynthetic and regulatory pathways for betalain production remain to be fully deciphered. In this study, isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analyses were used to reveal the molecular mechanism of betalain biosynthesis in H. polyrhizus fruits at white and red pulp stages, respectively. A total of 1946 proteins were identified as the differentially expressed between the two samples, and 936 of them were significantly highly expressed at the red pulp stage of H. polyrhizus . RNA-seq and iTRAQ analyses showed that some transcripts and proteins were positively correlated; they belonged to "phenylpropanoid biosynthesis", "tyrosine metabolism", "flavonoid biosynthesis", "ascorbate and aldarate metabolism", "betalains biosynthesis" and "anthocyanin biosynthesis". In betalains biosynthesis pathway, several proteins/enzymes such as polyphenol oxidase, CYP76AD3 and 4,5-dihydroxy-phenylalanine (DOPA) dioxygenase extradiol-like protein were identified. The present study provides a new insight into the molecular mechanism of the betalain biosynthesis at the posttranscriptional level.

  3. Proteomic Analysis of Hylocereus polyrhizus Reveals Metabolic Pathway Changes

    Directory of Open Access Journals (Sweden)

    Qingzhu Hua

    2016-09-01

    Full Text Available Red dragon fruit or red pitaya (Hylocereus polyrhizus is the only edible fruit that contains betalains. The color of betalains ranges from red and violet to yellow in plants. Betalains may also serve as an important component of health-promoting and disease-preventing functional food. Currently, the biosynthetic and regulatory pathways for betalain production remain to be fully deciphered. In this study, isobaric tags for relative and absolute quantitation (iTRAQ-based proteomic analyses were used to reveal the molecular mechanism of betalain biosynthesis in H. polyrhizus fruits at white and red pulp stages, respectively. A total of 1946 proteins were identified as the differentially expressed between the two samples, and 936 of them were significantly highly expressed at the red pulp stage of H. polyrhizus. RNA-seq and iTRAQ analyses showed that some transcripts and proteins were positively correlated; they belonged to “phenylpropanoid biosynthesis”, “tyrosine metabolism”, “flavonoid biosynthesis”, “ascorbate and aldarate metabolism”, “betalains biosynthesis” and “anthocyanin biosynthesis”. In betalains biosynthesis pathway, several proteins/enzymes such as polyphenol oxidase, CYP76AD3 and 4,5-dihydroxy-phenylalanine (DOPA dioxygenase extradiol-like protein were identified. The present study provides a new insight into the molecular mechanism of the betalain biosynthesis at the posttranscriptional level.

  4. Uranium complexes with macrosyclic polyethers. Synthesis and structural chemical analysis

    International Nuclear Information System (INIS)

    Elbasyouny, A.

    1983-01-01

    This dissertation reports about studies on the chemical coordination behaviour of uranium of oxidation stages IV and VI with regard to twelve different macrocyclic ligands. For the preparation of the complexes, for every system a different method has been developed. The elementary analysis of the various complexes including the uranium had been done by X-ray fluorescence analysis, and the structural characterization proceeded via vibrational, uv-vis and emission spectroscopy as well as 1 H-NMR and 13 C-spin-lattice relaxation time studies. Conformational analysis of the polyethers used allowed the structural changes in the complexes to be observed. The structural analysis of the hydrous uranium VI crown ether complexes yielded information of characteristic features of these types of complexes. The first coordination sphere of the uranyl ion with covalently bonded anion remains unchanged. As to the water content, there is a certain range. Depending upon the solvent used, the complexes have two or four H 2 O molecules per formula unit. (orig./EF) [de

  5. Multiple mating reveals complex patterns of assortative mating by personality and body size.

    Science.gov (United States)

    Montiglio, Pierre-Olivier; Wey, Tina W; Chang, Ann T; Fogarty, Sean; Sih, Andrew

    2016-01-01

    Understanding patterns of non-random mating is central to predicting the consequences of sexual selection. Most studies quantifying assortative mating focus on testing for correlations among partners' phenotypes in mated pairs. Few studies have distinguished between assortative mating arising from preferences for similar partners (expressed by all or a subset of the population) vs. from phenotypic segregation in the environment. Also, few studies have assessed the robustness of assortative mating against temporal changes in social conditions. We tracked multiple matings by stream water striders (Aquarius remigis) across variable social conditions to investigate mating patterns by both body size and behavioural type (personality). We documented temporal changes in partner availability and used a mixed model approach to analyse individual behaviours and changes in mating status recorded on an hourly basis. We assessed whether all or only a subset of individuals in the population expressed a tendency to mate with similar phenotypes. Our analyses took into account variation in the level of competition and in the phenotypes of available partners. Males and females exhibited significant assortative mating by body size: the largest males and females, and the smallest males and females mated together more often than random. However, individuals of intermediate size were equally likely to mate with small, intermediate or large partners. Individuals also displayed two contrasting patterns of assortative mating by personality (activity level). Individuals generally mated preferentially with partners of similar activity level. However, beyond that general trend, individuals with more extreme personalities tended to exhibit disassortative mating: the most active males mated disproportionately with less active females and the least active males tended to mate with more active females. Our analyses thus revealed multiple, distinct patterns of nonrandom mating. These mating

  6. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    Science.gov (United States)

    2014-01-01

    . Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also revealed a complex history of lineage-specific expansions and attritions for the PL1 family. Conclusions Our study provides insights into the variety and expansion of fungal CAZyme classes and revealed the relationship of CAZyme size and diversity with their nutritional strategy and host specificity. PMID:24422981

  7. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi.

    Science.gov (United States)

    Zhao, Zhongtao; Liu, Huiquan; Wang, Chenfang; Xu, Jin-Rong

    2014-01-03

    families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also revealed a complex history of lineage-specific expansions and attritions for the PL1 family. Our study provides insights into the variety and expansion of fungal CAZyme classes and revealed the relationship of CAZyme size and diversity with their nutritional strategy and host specificity.

  8. Architecture of the Pol III–clamp–exonuclease complex reveals key roles of the exonuclease subunit in processive DNA synthesis and repair

    Science.gov (United States)

    Toste Rêgo, Ana; Holding, Andrew N; Kent, Helen; Lamers, Meindert H

    2013-01-01

    DNA polymerase III (Pol III) is the catalytic α subunit of the bacterial DNA Polymerase III holoenzyme. To reach maximum activity, Pol III binds to the DNA sliding clamp β and the exonuclease ɛ that provide processivity and proofreading, respectively. Here, we characterize the architecture of the Pol III–clamp–exonuclease complex by chemical crosslinking combined with mass spectrometry and biochemical methods, providing the first structural view of the trimeric complex. Our analysis reveals that the exonuclease is sandwiched between the polymerase and clamp and enhances the binding between the two proteins by providing a second, indirect, interaction between the polymerase and clamp. In addition, we show that the exonuclease binds the clamp via the canonical binding pocket and thus prevents binding of the translesion DNA polymerase IV to the clamp, providing a novel insight into the mechanism by which the replication machinery can switch between replication, proofreading, and translesion synthesis. PMID:23549287

  9. Archetypal analysis of diverse Pseudomonas aeruginosa transcriptomes reveals adaptation in cystic fibrosis airways

    Science.gov (United States)

    2013-01-01

    Background Analysis of global gene expression by DNA microarrays is widely used in experimental molecular biology. However, the complexity of such high-dimensional data sets makes it difficult to fully understand the underlying biological features present in the data. The aim of this study is to introduce a method for DNA microarray analysis that provides an intuitive interpretation of data through dimension reduction and pattern recognition. We present the first “Archetypal Analysis” of global gene expression. The analysis is based on microarray data from five integrated studies of Pseudomonas aeruginosa isolated from the airways of cystic fibrosis patients. Results Our analysis clustered samples into distinct groups with comprehensible characteristics since the archetypes representing the individual groups are closely related to samples present in the data set. Significant changes in gene expression between different groups identified adaptive changes of the bacteria residing in the cystic fibrosis lung. The analysis suggests a similar gene expression pattern between isolates with a high mutation rate (hypermutators) despite accumulation of different mutations for these isolates. This suggests positive selection in the cystic fibrosis lung environment, and changes in gene expression for these isolates are therefore most likely related to adaptation of the bacteria. Conclusions Archetypal analysis succeeded in identifying adaptive changes of P. aeruginosa. The combination of clustering and matrix factorization made it possible to reveal minor similarities among different groups of data, which other analytical methods failed to identify. We suggest that this analysis could be used to supplement current methods used to analyze DNA microarray data. PMID:24059747

  10. Transcriptome network analysis reveals potential candidate genes for ankylosing spondylitis.

    Science.gov (United States)

    Zhu, Z-Q; Tang, J-S; Cao, X-J

    2013-12-01

    Ankylosing spondylitis (AS) is a chronic, inflammatory arthritis and autoimmune disease. The main symptom of AS is inflammatory spinal pain; with time, some patients develop ankylosis and spinal immobility. We aim to find cure available for ankylosing spondylitis. We used the GSE11886 series to identify potential genes that related to AS to construct a regulation network. In the network, some of TFs and target genes have been proved related with AS in previous study, such as NFKB1, STAT1, STAT4, TNFSF10, IL2RA, and IL2RB. We also found some new TFs (Franscription Factors) and target genes response to AS, such as BXDC5, and EGFR. Further analysis indicated some significant pathways are associated with AS, including antigen processing and presentation and cytokine-cytokine receptor interaction, etc.; although not significant, there was evident that they play an important role in AS progression, such as apoptosis and systemic lupus erythematosus. Therefore, it is demonstrated that transcriptome network analysis is useful in identification of the candidate genes in AS.

  11. Analysis of macromolecules, ligands and macromolecule-ligand complexes

    Science.gov (United States)

    Von Dreele, Robert B [Los Alamos, NM

    2008-12-23

    A method for determining atomic level structures of macromolecule-ligand complexes through high-resolution powder diffraction analysis and a method for providing suitable microcrystalline powder for diffraction analysis are provided. In one embodiment, powder diffraction data is collected from samples of polycrystalline macromolecule and macromolecule-ligand complex and the refined structure of the macromolecule is used as an approximate model for a combined Rietveld and stereochemical restraint refinement of the macromolecule-ligand complex. A difference Fourier map is calculated and the ligand position and points of interaction between the atoms of the macromolecule and the atoms of the ligand can be deduced and visualized. A suitable polycrystalline sample of macromolecule-ligand complex can be produced by physically agitating a mixture of lyophilized macromolecule, ligand and a solvent.

  12. Network Catastrophe: Self-Organized Patterns Reveal both the Instability and the Structure of Complex Networks

    Science.gov (United States)

    Moon, Hankyu; Lu, Tsai-Ching

    2015-03-01

    Critical events in society or biological systems can be understood as large-scale self-emergent phenomena due to deteriorating stability. We often observe peculiar patterns preceding these events, posing a question of--how to interpret the self-organized patterns to know more about the imminent crisis. We start with a very general description -- of interacting population giving rise to large-scale emergent behaviors that constitute critical events. Then we pose a key question: is there a quantifiable relation between the network of interactions and the emergent patterns? Our investigation leads to a fundamental understanding to: 1. Detect the system's transition based on the principal mode of the pattern dynamics; 2. Identify its evolving structure based on the observed patterns. The main finding of this study is that while the pattern is distorted by the network of interactions, its principal mode is invariant to the distortion even when the network constantly evolves. Our analysis on real-world markets show common self-organized behavior near the critical transitions, such as housing market collapse and stock market crashes, thus detection of critical events before they are in full effect is possible.

  13. Genome sequencing reveals complex secondary metabolome in themarine actinomycete Salinispora tropica

    Energy Technology Data Exchange (ETDEWEB)

    Udwary, Daniel W.; Zeigler, Lisa; Asolkar, Ratnakar; Singan,Vasanth; Lapidus, Alla; Fenical, William; Jensen, Paul R.; Moore, BradleyS.

    2007-05-01

    Recent fermentation studies have identified actinomycetes ofthe marine-dwelling genus Salinispora as prolific natural productproducers. To further evaluate their biosynthetic potential, we analyzedall identifiable secondary natural product gene clusters from therecently sequenced 5,184,724 bp S. tropica CNB-440 circular genome. Ouranalysis shows that biosynthetic potential meets or exceeds that shown byprevious Streptomyces genome sequences as well as other naturalproduct-producing actinomycetes. The S. tropica genome features ninepolyketide synthase systems of every known formally classified family,non-ribosomal peptide synthetases and several hybrid clusters. While afew clusters appear to encode molecules previously identified inStreptomyces species,the majority of the 15 biosynthetic loci are novel.Specific chemical information about putative and observed natural productmolecules is presented and discussed. In addition, our bioinformaticanalysis was critical for the structure elucidation of the novelpolyenemacrolactam salinilactam A. This study demonstrates the potentialfor genomic analysis to complement and strengthen traditional naturalproduct isolation studies and firmly establishes the genus Salinispora asa rich source of novel drug-like molecules.

  14. Essential gene disruptions reveal complex relationships between phenotypic robustness, pleiotropy, and fitness

    Science.gov (United States)

    Bauer, Christopher R; Li, Shuang; Siegal, Mark L

    2015-01-01

    The concept of robustness in biology has gained much attention recently, but a mechanistic understanding of how genetic networks regulate phenotypic variation has remained elusive. One approach to understand the genetic architecture of variability has been to analyze dispensable gene deletions in model organisms; however, the most important genes cannot be deleted. Here, we have utilized two systems in yeast whereby essential genes have been altered to reduce expression. Using high-throughput microscopy and image analysis, we have characterized a large number of morphological phenotypes, and their associated variation, for the majority of essential genes in yeast. Our results indicate that phenotypic robustness is more highly dependent upon the expression of essential genes than on the presence of dispensable genes. Morphological robustness appears to be a general property of a genotype that is closely related to pleiotropy. While the fitness profile across a range of expression levels is idiosyncratic to each gene, the global pattern indicates that there is a window in which phenotypic variation can be released before fitness effects are observable. PMID:25609648

  15. Network catastrophe: self-organized patterns reveal both the instability and the structure of complex networks.

    Science.gov (United States)

    Moon, Hankyu; Lu, Tsai-Ching

    2015-03-30

    Critical events in society or biological systems can be understood as large-scale self-emergent phenomena due to deteriorating stability. We often observe peculiar patterns preceding these events, posing a question of-how to interpret the self-organized patterns to know more about the imminent crisis. We start with a very general description - of interacting population giving rise to large-scale emergent behaviors that constitute critical events. Then we pose a key question: is there a quantifiable relation between the network of interactions and the emergent patterns? Our investigation leads to a fundamental understanding to: 1. Detect the system's transition based on the principal mode of the pattern dynamics; 2. Identify its evolving structure based on the observed patterns. The main finding of this study is that while the pattern is distorted by the network of interactions, its principal mode is invariant to the distortion even when the network constantly evolves. Our analysis on real-world markets show common self-organized behavior near the critical transitions, such as housing market collapse and stock market crashes, thus detection of critical events before they are in full effect is possible.

  16. Reliability analysis of large, complex systems using ASSIST

    Science.gov (United States)

    Johnson, Sally C.

    1988-01-01

    The SURE reliability analysis program is discussed as well as the ASSIST model generation program. It is found that semi-Markov modeling using model reduction strategies with the ASSIST program can be used to accurately solve problems at least as complex as other reliability analysis tools can solve. Moreover, semi-Markov analysis provides the flexibility needed for modeling realistic fault-tolerant systems.

  17. Complex Hydrocarbon Chemistry in Interstellar and Solar System Ices Revealed: A Combined Infrared Spectroscopy and Reflectron Time-of-flight Mass Spectrometry Analysis of Ethane (C2H6) and D6-Ethane (C2D6) Ices Exposed to Ionizing Radiation

    Science.gov (United States)

    Abplanalp, Matthew J.; Kaiser, Ralf I.

    2016-08-01

    The irradiation of pure ethane (C2H6/C2D6) ices at 5.5 K, under ultrahigh vacuum conditions was conducted to investigate the formation of complex hydrocarbons via interaction with energetic electrons simulating the secondary electrons produced in the track of galactic cosmic rays. The chemical modifications of the ices were monitored in situ using Fourier transform infrared spectroscopy (FTIR) and during temperature-programmed desorption via mass spectrometry exploiting a quadrupole mass spectrometer with electron impact ionization (EI-QMS) as well as a reflectron time-of-flight mass spectrometer coupled to a photoionization source (PI-ReTOF-MS). FTIR confirmed previous ethane studies by detecting six molecules: methane (CH4), acetylene (C2H2), ethylene (C2H4), the ethyl radical (C2H5), 1-butene (C4H8), and n-butane (C4H10). However, the TPD phase, along with EI-QMS, and most importantly, PI-ReTOF-MS, revealed the formation of at least 23 hydrocarbons, many for the first time in ethane ice, which can be arranged in four groups with an increasing carbon-to-hydrogen ratio: C n H2n+2 (n = 3, 4, 6, 8, 10), C n H2n (n = 3-10), {{{C}}}n{{{H}}}2n-2 (n = 3-10), and {{{C}}}n{{{H}}}2n-4 (n = 4-6). The processing of simple ethane ices is relevant to the hydrocarbon chemistry in the interstellar medium, as ethane has been shown to be a major product of methane, as well as in the outer solar system. These data reveal that the processing of ethane ices can synthesize several key hydrocarbons such as C3H4 and C4H6 isomers, which ha­ve been found to synthesize polycyclic aromatic hydrocarbons like indene (C9H8) and naphtha­lene (C10H8) in the ISM and in hydrocarbon-rich atmospheres of planets and their moons such as Titan.

  18. Reliable Strategy for Analysis of Complex Biosensor Data.

    Science.gov (United States)

    Forssén, Patrik; Multia, Evgen; Samuelsson, Jörgen; Andersson, Marie; Aastrup, Teodor; Altun, Samuel; Wallinder, Daniel; Wallbing, Linus; Liangsupree, Thanaporn; Riekkola, Marja-Liisa; Fornstedt, Torgny

    2018-04-05

    When using biosensors, analyte biomolecules of several different concentrations are percolated over a chip with immobilized ligand molecules that form complexes with analytes. However, in many cases of biological interest, e.g., in antibody interactions, complex formation steady-state is not reached. The data measured are so-called sensorgram, one for each analyte concentration, with total complex concentration vs time. Here we present a new four-step strategy for more reliable processing of this complex kinetic binding data and compare it with the standard global fitting procedure. In our strategy, we first calculate a dissociation graph to reveal if there are any heterogeneous interactions. Thereafter, a new numerical algorithm, AIDA, is used to get the number of different complex formation reactions for each analyte concentration level. This information is then used to estimate the corresponding complex formation rate constants by fitting to the measured sensorgram one by one. Finally, all estimated rate constants are plotted and clustered, where each cluster represents a complex formation. Synthetic and experimental data obtained from three different QCM biosensor experimental systems having fast (close to steady-state), moderate, and slow kinetics (far from steady-state) were evaluated using the four-step strategy and standard global fitting. The new strategy allowed us to more reliably estimate the number of different complex formations, especially for cases of complex and slow dissociation kinetics. Moreover, the new strategy proved to be more robust as it enables one to handle system drift, i.e., data from biosensor chips that deteriorate over time.

  19. Ethical analysis in HTA of complex health interventions

    OpenAIRE

    Lysdahl, Kristin Bakke; Oortwijn, Wija; Wilt, Gert Jan van der; Refolo, Pietro; Sacchini, Dario; Mozygemba, Kati; Gerhardus, Ansgar; Brereton, Louise; Hofmann, Bjørn

    2016-01-01

    Background: In the field of health technology assessment (HTA), there are several approaches that can be used for ethical analysis. However, there is a scarcity of literature that critically evaluates and compares the strength and weaknesses of these approaches when they are applied in practice. In this paper, we analyse the applicability of some selected approaches for addressing ethical issues in HTA in the field of complex health interventions. Complex health interventions have been the fo...

  20. Ethical analysis in HTA of complex health interventions

    OpenAIRE

    Lysdahl, K.B.; Oortwijn, W.; Wilt, G.J. van der; Refolo, P.; Sacchini, D.; Mozygemba, K.; Gerhardus, A.; Brereton, L.; Hofmann, B.

    2016-01-01

    Background In the field of health technology assessment (HTA), there are several approaches that can be used for ethical analysis. However, there is a scarcity of literature that critically evaluates and compares the strength and weaknesses of these approaches when they are applied in practice. In this paper, we analyse the applicability of some selected approaches for addressing ethical issues in HTA in the field of complex health interventions. Complex health intervention...

  1. Analysis and design of complex impedance transforming marchand baluns

    OpenAIRE

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld M.

    2014-01-01

    A new type of Marchand balun is presented in this paper, which has the property of complex impedance transformation. To allow the Marchand balun to transform between arbitrary complex impedances, three reactances should be added to the circuit. A detailed analysis of the circuit gives the governing equations. To verify the theory, a design and electromagnetic simulation of a lumped element Marchand balun is made in a SiGe BiCMOS technology. The lumped element impementation is favorable becaus...

  2. Genome analysis of the platypus reveals unique signatures of evolution.

    Science.gov (United States)

    Warren, Wesley C; Hillier, LaDeana W; Marshall Graves, Jennifer A; Birney, Ewan; Ponting, Chris P; Grützner, Frank; Belov, Katherine; Miller, Webb; Clarke, Laura; Chinwalla, Asif T; Yang, Shiaw-Pyng; Heger, Andreas; Locke, Devin P; Miethke, Pat; Waters, Paul D; Veyrunes, Frédéric; Fulton, Lucinda; Fulton, Bob; Graves, Tina; Wallis, John; Puente, Xose S; López-Otín, Carlos; Ordóñez, Gonzalo R; Eichler, Evan E; Chen, Lin; Cheng, Ze; Deakin, Janine E; Alsop, Amber; Thompson, Katherine; Kirby, Patrick; Papenfuss, Anthony T; Wakefield, Matthew J; Olender, Tsviya; Lancet, Doron; Huttley, Gavin A; Smit, Arian F A; Pask, Andrew; Temple-Smith, Peter; Batzer, Mark A; Walker, Jerilyn A; Konkel, Miriam K; Harris, Robert S; Whittington, Camilla M; Wong, Emily S W; Gemmell, Neil J; Buschiazzo, Emmanuel; Vargas Jentzsch, Iris M; Merkel, Angelika; Schmitz, Juergen; Zemann, Anja; Churakov, Gennady; Kriegs, Jan Ole; Brosius, Juergen; Murchison, Elizabeth P; Sachidanandam, Ravi; Smith, Carly; Hannon, Gregory J; Tsend-Ayush, Enkhjargal; McMillan, Daniel; Attenborough, Rosalind; Rens, Willem; Ferguson-Smith, Malcolm; Lefèvre, Christophe M; Sharp, Julie A; Nicholas, Kevin R; Ray, David A; Kube, Michael; Reinhardt, Richard; Pringle, Thomas H; Taylor, James; Jones, Russell C; Nixon, Brett; Dacheux, Jean-Louis; Niwa, Hitoshi; Sekita, Yoko; Huang, Xiaoqiu; Stark, Alexander; Kheradpour, Pouya; Kellis, Manolis; Flicek, Paul; Chen, Yuan; Webber, Caleb; Hardison, Ross; Nelson, Joanne; Hallsworth-Pepin, Kym; Delehaunty, Kim; Markovic, Chris; Minx, Pat; Feng, Yucheng; Kremitzki, Colin; Mitreva, Makedonka; Glasscock, Jarret; Wylie, Todd; Wohldmann, Patricia; Thiru, Prathapan; Nhan, Michael N; Pohl, Craig S; Smith, Scott M; Hou, Shunfeng; Nefedov, Mikhail; de Jong, Pieter J; Renfree, Marilyn B; Mardis, Elaine R; Wilson, Richard K

    2008-05-08

    We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation.

  3. Genome analysis of the platypus reveals unique signatures of evolution

    Science.gov (United States)

    Warren, Wesley C.; Hillier, LaDeana W.; Marshall Graves, Jennifer A.; Birney, Ewan; Ponting, Chris P.; Grützner, Frank; Belov, Katherine; Miller, Webb; Clarke, Laura; Chinwalla, Asif T.; Yang, Shiaw-Pyng; Heger, Andreas; Locke, Devin P.; Miethke, Pat; Waters, Paul D.; Veyrunes, Frédéric; Fulton, Lucinda; Fulton, Bob; Graves, Tina; Wallis, John; Puente, Xose S.; López-Otín, Carlos; Ordóñez, Gonzalo R.; Eichler, Evan E.; Chen, Lin; Cheng, Ze; Deakin, Janine E.; Alsop, Amber; Thompson, Katherine; Kirby, Patrick; Papenfuss, Anthony T.; Wakefield, Matthew J.; Olender, Tsviya; Lancet, Doron; Huttley, Gavin A.; Smit, Arian F. A.; Pask, Andrew; Temple-Smith, Peter; Batzer, Mark A.; Walker, Jerilyn A.; Konkel, Miriam K.; Harris, Robert S.; Whittington, Camilla M.; Wong, Emily S. W.; Gemmell, Neil J.; Buschiazzo, Emmanuel; Vargas Jentzsch, Iris M.; Merkel, Angelika; Schmitz, Juergen; Zemann, Anja; Churakov, Gennady; Kriegs, Jan Ole; Brosius, Juergen; Murchison, Elizabeth P.; Sachidanandam, Ravi; Smith, Carly; Hannon, Gregory J.; Tsend-Ayush, Enkhjargal; McMillan, Daniel; Attenborough, Rosalind; Rens, Willem; Ferguson-Smith, Malcolm; Lefèvre, Christophe M.; Sharp, Julie A.; Nicholas, Kevin R.; Ray, David A.; Kube, Michael; Reinhardt, Richard; Pringle, Thomas H.; Taylor, James; Jones, Russell C.; Nixon, Brett; Dacheux, Jean-Louis; Niwa, Hitoshi; Sekita, Yoko; Huang, Xiaoqiu; Stark, Alexander; Kheradpour, Pouya; Kellis, Manolis; Flicek, Paul; Chen, Yuan; Webber, Caleb; Hardison, Ross; Nelson, Joanne; Hallsworth-Pepin, Kym; Delehaunty, Kim; Markovic, Chris; Minx, Pat; Feng, Yucheng; Kremitzki, Colin; Mitreva, Makedonka; Glasscock, Jarret; Wylie, Todd; Wohldmann, Patricia; Thiru, Prathapan; Nhan, Michael N.; Pohl, Craig S.; Smith, Scott M.; Hou, Shunfeng; Renfree, Marilyn B.; Mardis, Elaine R.; Wilson, Richard K.

    2009-01-01

    We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation. PMID:18464734

  4. Genetic structure of pike (Esox lucius) reveals a complex and previously unrecognized colonization history of Ireland.

    Science.gov (United States)

    Pedreschi, Debbi; Kelly-Quinn, Mary; Caffrey, Joe; O'Grady, Martin; Mariani, Stefano; Phillimore, Albert

    2014-03-01

    We investigated genetic variation of Irish pike populations and their relationship with European outgroups, in order to elucidate the origin of this species to the island, which is largely assumed to have occurred as a human-mediated introduction over the past few hundred years. We aimed thereby to provide new insights into population structure to improve fisheries and biodiversity management in Irish freshwaters. Ireland, Britain and continental Europe. A total of 752 pike ( Esox lucius ) were sampled from 15 locations around Ireland, and 9 continental European sites, and genotyped at six polymorphic microsatellite loci. Patterns and mechanisms of population genetic structure were assessed through a diverse array of methods, including Bayesian clustering, hierarchical analysis of molecular variance, and approximate Bayesian computation. Varying levels of genetic diversity and a high degree of population genetic differentiation were detected. Clear substructure within Ireland was identified, with two main groups being evident. One of the Irish populations showed high similarity with British populations. The other, more widespread, Irish strain did not group with any European population examined. Approximate Bayesian computation suggested that this widespread Irish strain is older, and may have colonized Ireland independently of humans. Population genetic substructure in Irish pike is high and comparable to the levels observed elsewhere in Europe. A comparison of evolutionary scenarios upholds the possibility that pike may have colonized Ireland in two 'waves', the first of which, being independent of human colonization, would represent the first evidence for natural colonization of a non-anadromous freshwater fish to the island of Ireland. Although further investigations using comprehensive genomic techniques will be necessary to confirm this, the present results warrant a reappraisal of current management strategies for this species.

  5. Identification of Complete Repertoire of Apis florea Odorant Receptors Reveals Complex Orthologous Relationships with Apis mellifera

    Science.gov (United States)

    Karpe, Snehal D.; Jain, Rikesh; Brockmann, Axel; Sowdhamini, Ramanathan

    2016-01-01

    Abstract We developed a computational pipeline for homology based identification of the complete repertoire of olfactory receptor (OR) genes in the Asian honey bee species, Apis florea. Apis florea is phylogenetically the most basal honey bee species and also the most distant sister species to the Western honey bee Apis mellifera, for which all OR genes had been identified before. Using our pipeline, we identified 180 OR genes in A. florea, which is very similar to the number of ORs identified in A. mellifera (177 ORs). Many characteristics of the ORs including gene structure, synteny of tandemly repeated ORs and basic phylogenetic clustering are highly conserved. The composite phylogenetic tree of A. florea and A. mellifera ORs could be divided into 21 clades which are in harmony with the existing Hymenopteran tree. However, we found a few nonorthologous OR relationships between both species as well as independent pseudogenization of ORs suggesting separate evolutionary changes. Particularly, a subgroup of the OR gene clade XI, which had been hypothesized to code cuticular hydrocarbon receptors showed a high number of species-specific ORs. RNAseq analysis detected a total number of 145 OR transcripts in male and 162 in female antennae. Most of the OR genes were highly expressed on the female antennae. However, we detected five distinct male-biased OR genes, out of which three genes (AfOr11, AfOr18, AfOr170P) were shown to be male-biased in A. mellifera, too, thus corroborating a behavioral function in sex-pheromone communication. PMID:27540087

  6. Genetic structure of pike (Esox lucius) reveals a complex and previously unrecognized colonization history of Ireland

    Science.gov (United States)

    Pedreschi, Debbi; Kelly-Quinn, Mary; Caffrey, Joe; O’Grady, Martin; Mariani, Stefano; Phillimore, Albert

    2014-01-01

    Aim We investigated genetic variation of Irish pike populations and their relationship with European outgroups, in order to elucidate the origin of this species to the island, which is largely assumed to have occurred as a human-mediated introduction over the past few hundred years. We aimed thereby to provide new insights into population structure to improve fisheries and biodiversity management in Irish freshwaters. Location Ireland, Britain and continental Europe. Methods A total of 752 pike (Esox lucius) were sampled from 15 locations around Ireland, and 9 continental European sites, and genotyped at six polymorphic microsatellite loci. Patterns and mechanisms of population genetic structure were assessed through a diverse array of methods, including Bayesian clustering, hierarchical analysis of molecular variance, and approximate Bayesian computation. Results Varying levels of genetic diversity and a high degree of population genetic differentiation were detected. Clear substructure within Ireland was identified, with two main groups being evident. One of the Irish populations showed high similarity with British populations. The other, more widespread, Irish strain did not group with any European population examined. Approximate Bayesian computation suggested that this widespread Irish strain is older, and may have colonized Ireland independently of humans. Main conclusions Population genetic substructure in Irish pike is high and comparable to the levels observed elsewhere in Europe. A comparison of evolutionary scenarios upholds the possibility that pike may have colonized Ireland in two ‘waves’, the first of which, being independent of human colonization, would represent the first evidence for natural colonization of a non-anadromous freshwater fish to the island of Ireland. Although further investigations using comprehensive genomic techniques will be necessary to confirm this, the present results warrant a reappraisal of current management strategies

  7. Complex analysis with applications to flows and fields

    CERN Document Server

    Braga da Costa Campos, Luis Manuel

    2012-01-01

    Complex Analysis with Applications to Flows and Fields presents the theory of functions of a complex variable, from the complex plane to the calculus of residues to power series to conformal mapping. The book explores numerous physical and engineering applications concerning potential flows, the gravity field, electro- and magnetostatics, steady heat conduction, and other problems. It provides the mathematical results to sufficiently justify the solution of these problems, eliminating the need to consult external references.The book is conveniently divided into four parts. In each part, the ma

  8. Engineering Complex Systems: Multiscale Analysis and Evolutionary Engineering

    Science.gov (United States)

    Bar-Yam, Yaneer

    We describe an analytic approach, multiscale analysis, that can demonstrate the fundamental limitations of decomposition based engineering for the development of highly complex systems. The interdependence of components and communication between design teams limits any planning based process. Recognizing this limitation, we found that a new strategy for constructing many highly complex systems should be modeled after biological evolution, or market economies, where multiple design efforts compete in parallel for adoption through testing in actual use. Evolution is the only process that is known to create highly complex systems.

  9. Changes in cod muscle proteins during frozen storage revealed by proteome analysis and multivariate data analysis

    DEFF Research Database (Denmark)

    Kjærsgård, Inger Vibeke Holst; Nørrelykke, M.R.; Jessen, Flemming

    2006-01-01

    Multivariate data analysis has been combined with proteomics to enhance the recovery of information from 2-DE of cod muscle proteins during different storage conditions. Proteins were extracted according to 11 different storage conditions and samples were resolved by 2-DE. Data generated by 2-DE...... was subjected to principal component analysis (PCA) and discriminant partial least squares regression (DPLSR). Applying PCA to 2-DE data revealed the samples to form groups according to frozen storage time, whereas differences due to different storage temperatures or chilled storage in modified atmosphere...... light chain 1, 2 and 3, triose-phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, aldolase A and two ?-actin fragments, and a nuclease diphosphate kinase B fragment to change in concentration, during frozen storage. Application of proteomics, multivariate data analysis and MS/MS to analyse...

  10. Characterization and 454 pyrosequencing of Major Histocompatibility Complex class I genes in the great tit reveal complexity in a passerine system

    Directory of Open Access Journals (Sweden)

    Sepil Irem

    2012-05-01

    Full Text Available Abstract Background The critical role of Major Histocompatibility Complex (Mhc genes in disease resistance and their highly polymorphic nature make them exceptional candidates for studies investigating genetic effects on survival, mate choice and conservation. Species that harbor many Mhc loci and high allelic diversity are particularly intriguing as they are potentially under strong selection and studies of such species provide valuable information as to the mechanisms maintaining Mhc diversity. However comprehensive genotyping of complex multilocus systems has been a major challenge to date with the result that little is known about the consequences of this complexity in terms of fitness effects and disease resistance. Results In this study, we genotyped the Mhc class I exon 3 of the great tit (Parus major from two nest-box breeding populations near Oxford, UK that have been monitored for decades. Characterization of Mhc class I exon 3 was adopted and bidirectional sequencing was carried using the 454 sequencing platform. Full analysis of sequences through a stepwise variant validation procedure allowed reliable typing of more than 800 great tits based on 214,357 reads; from duplicates we estimated the repeatability of typing as 0.94. A total of 862 alleles were detected, and the presence of at least 16 functional loci was shown - the highest number characterized in a wild bird species. Finally, the functional alleles were grouped into 17 supertypes based on their antigen binding affinities. Conclusions We found extreme complexity at the Mhc class I of the great tit both in terms of allelic diversity and gene number. The presence of many functional loci was shown, together with a pseudogene family and putatively non-functional alleles; there was clear evidence that functional alleles were under strong balancing selection. This study is the first step towards an in-depth analysis of this gene complex in this species, which will help

  11. In situ structural analysis of the human nuclear pore complex.

    Science.gov (United States)

    von Appen, Alexander; Kosinski, Jan; Sparks, Lenore; Ori, Alessandro; DiGuilio, Amanda L; Vollmer, Benjamin; Mackmull, Marie-Therese; Banterle, Niccolo; Parca, Luca; Kastritis, Panagiotis; Buczak, Katarzyna; Mosalaganti, Shyamal; Hagen, Wim; Andres-Pons, Amparo; Lemke, Edward A; Bork, Peer; Antonin, Wolfram; Glavy, Joseph S; Bui, Khanh Huy; Beck, Martin

    2015-10-01

    Nuclear pore complexes are fundamental components of all eukaryotic cells that mediate nucleocytoplasmic exchange. Determining their 110-megadalton structure imposes a formidable challenge and requires in situ structural biology approaches. Of approximately 30 nucleoporins (Nups), 15 are structured and form the Y and inner-ring complexes. These two major scaffolding modules assemble in multiple copies into an eight-fold rotationally symmetric structure that fuses the inner and outer nuclear membranes to form a central channel of ~60 nm in diameter. The scaffold is decorated with transport-channel Nups that often contain phenylalanine-repeat sequences and mediate the interaction with cargo complexes. Although the architectural arrangement of parts of the Y complex has been elucidated, it is unclear how exactly it oligomerizes in situ. Here we combine cryo-electron tomography with mass spectrometry, biochemical analysis, perturbation experiments and structural modelling to generate, to our knowledge, the most comprehensive architectural model of the human nuclear pore complex to date. Our data suggest previously unknown protein interfaces across Y complexes and to inner-ring complex members. We show that the transport-channel Nup358 (also known as Ranbp2) has a previously unanticipated role in Y-complex oligomerization. Our findings blur the established boundaries between scaffold and transport-channel Nups. We conclude that, similar to coated vesicles, several copies of the same structural building block--although compositionally identical--engage in different local sets of interactions and conformations.

  12. Network analysis reveals distinct clinical syndromes underlying acute mountain sickness.

    Directory of Open Access Journals (Sweden)

    David P Hall

    Full Text Available Acute mountain sickness (AMS is a common problem among visitors at high altitude, and may progress to life-threatening pulmonary and cerebral oedema in a minority of cases. International consensus defines AMS as a constellation of subjective, non-specific symptoms. Specifically, headache, sleep disturbance, fatigue and dizziness are given equal diagnostic weighting. Different pathophysiological mechanisms are now thought to underlie headache and sleep disturbance during acute exposure to high altitude. Hence, these symptoms may not belong together as a single syndrome. Using a novel visual analogue scale (VAS, we sought to undertake a systematic exploration of the symptomatology of AMS using an unbiased, data-driven approach originally designed for analysis of gene expression. Symptom scores were collected from 292 subjects during 1110 subject-days at altitudes between 3650 m and 5200 m on Apex expeditions to Bolivia and Kilimanjaro. Three distinct patterns of symptoms were consistently identified. Although fatigue is a ubiquitous finding, sleep disturbance and headache are each commonly reported without the other. The commonest pattern of symptoms was sleep disturbance and fatigue, with little or no headache. In subjects reporting severe headache, 40% did not report sleep disturbance. Sleep disturbance correlates poorly with other symptoms of AMS (Mean Spearman correlation 0.25. These results challenge the accepted paradigm that AMS is a single disease process and describe at least two distinct syndromes following acute ascent to high altitude. This approach to analysing symptom patterns has potential utility in other clinical syndromes.

  13. Systematic Epigenomic Analysis Reveals Chromatin States Associated with Melanoma Progression.

    Science.gov (United States)

    Fiziev, Petko; Akdemir, Kadir C; Miller, John P; Keung, Emily Z; Samant, Neha S; Sharma, Sneha; Natale, Christopher A; Terranova, Christopher J; Maitituoheti, Mayinuer; Amin, Samirkumar B; Martinez-Ledesma, Emmanuel; Dhamdhere, Mayura; Axelrad, Jacob B; Shah, Amiksha; Cheng, Christine S; Mahadeshwar, Harshad; Seth, Sahil; Barton, Michelle C; Protopopov, Alexei; Tsai, Kenneth Y; Davies, Michael A; Garcia, Benjamin A; Amit, Ido; Chin, Lynda; Ernst, Jason; Rai, Kunal

    2017-04-25

    The extent and nature of epigenomic changes associated with melanoma progression is poorly understood. Through systematic epigenomic profiling of 35 epigenetic modifications and transcriptomic analysis, we define chromatin state changes associated with melanomagenesis by using a cell phenotypic model of non-tumorigenic and tumorigenic states. Computation of specific chromatin state transitions showed loss of histone acetylations and H3K4me2/3 on regulatory regions proximal to specific cancer-regulatory genes in important melanoma-driving cell signaling pathways. Importantly, such acetylation changes were also observed between benign nevi and malignant melanoma human tissues. Intriguingly, only a small fraction of chromatin state transitions correlated with expected changes in gene expression patterns. Restoration of acetylation levels on deacetylated loci by histone deacetylase (HDAC) inhibitors selectively blocked excessive proliferation in tumorigenic cells and human melanoma cells, suggesting functional roles of observed chromatin state transitions in driving hyperproliferative phenotype. Through these results, we define functionally relevant chromatin states associated with melanoma progression. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Interspecific differences revealed with in Drosophila Photometric Analysis

    Directory of Open Access Journals (Sweden)

    Hoenigsberg H. F.

    1964-12-01

    Full Text Available The above refer to experiments present a new method which permits the study of philogenesis in the genus Drosophila. There are several types of results: a close kinship among the various geographical races of  D. melanogaster in the neo-tropics coincides with their spectrophotometric similarities; b the interspecific differences are also identified with the photometric analysis; c finally there are optical density affinities among the various species which belong to the same taxonomic groups.  Acknowledgment. The authors want to express their gratitude to Professor Everet of the physico-chemical laboratory of the National University for the use of his Beckman DU spectrophotometer and for his generous advice. This research is supported by the American Agricultural Research Service grant F. G. Co 107. For technical assistance we are indebted to Miss B. I. Cortés and to Mr. L. Castro.

  15. Comparative proteomics of tuber induction, development and maturation reveal the complexity of tuberization process in potato (Solanum tuberosum L.).

    Science.gov (United States)

    Agrawal, Lalit; Chakraborty, Subhra; Jaiswal, Dinesh Kumar; Gupta, Sonika; Datta, Asis; Chakraborty, Niranjan

    2008-09-01

    Tuberization in potato ( Solanum tuberosum L.) is a developmental process that serves a double function, as a storage organ and as a vegetative propagation system. It is a multistep, complex process and the underlying mechanisms governing these overlapping steps are not fully understood. To understand the molecular basis of tuberization in potato, a comparative proteomic approach has been applied to monitor differentially expressed proteins at different development stages using two-dimensional gel electrophoresis (2-DE). The differentially displayed proteomes revealed 219 protein spots that change their intensities more than 2.5-fold. The LC-ES-MS/MS analyses led to the identification of 97 differentially regulated proteins that include predicted and novel tuber-specific proteins. Nonhierarchical clustering revealed coexpression patterns of functionally similar proteins. The expression of reactive oxygen species catabolizing enzymes, viz., superoxide dismutase, ascorbate peroxidase and catalase, were induced by more than 2-fold indicating their possible role during the developmental transition from stolons into tubers. We demonstrate that nearly 100 proteins, some presumably associated with tuber cell differentiation, regulate diverse functions like protein biogenesis and storage, bioenergy and metabolism, and cell defense and rescue impinge on the complexity of tuber development in potato.

  16. Systematic analysis of essential genes reveals important regulators of G protein signaling.

    Science.gov (United States)

    Cappell, Steven D; Baker, Rachael; Skowyra, Dorota; Dohlman, Henrik G

    2010-06-11

    The yeast pheromone pathway consists of a canonical heterotrimeric G protein and MAP kinase cascade. To identify additional signaling components, we systematically evaluated 870 essential genes using a library of repressible-promoter strains. Quantitative transcription-reporter and MAPK activity assays were used to identify strains that exhibit altered pheromone sensitivity. Of the 92 newly identified essential genes required for proper G protein signaling, those involved with protein degradation were most highly represented. Included in this group are members of the Skp, Cullin, F box (SCF) ubiquitin ligase complex. Further genetic and biochemical analysis reveals that SCF(Cdc4) acts together with the Cdc34 ubiquitin-conjugating enzyme at the level of the G protein; promotes degradation of the G protein alpha subunit, Gpa1, in vivo; and catalyzes Gpa1 ubiquitination in vitro. These insights to the G protein signaling network reveal the essential genome as an untapped resource for identifying new components and regulators of signal transduction pathways. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  17. Association genetics and transcriptome analysis reveal a gibberellin-responsive pathway involved in regulating photosynthesis.

    Science.gov (United States)

    Xie, Jianbo; Tian, Jiaxing; Du, Qingzhang; Chen, Jinhui; Li, Ying; Yang, Xiaohui; Li, Bailian; Zhang, Deqiang

    2016-05-01

    Gibberellins (GAs) regulate a wide range of important processes in plant growth and development, including photosynthesis. However, the mechanism by which GAs regulate photosynthesis remains to be understood. Here, we used multi-gene association to investigate the effect of genes in the GA-responsive pathway, as constructed by RNA sequencing, on photosynthesis, growth, and wood property traits, in a population of 435 Populus tomentosa By analyzing changes in the transcriptome following GA treatment, we identified many key photosynthetic genes, in agreement with the observed increase in measurements of photosynthesis. Regulatory motif enrichment analysis revealed that 37 differentially expressed genes related to photosynthesis shared two essential GA-related cis-regulatory elements, the GA response element and the pyrimidine box. Thus, we constructed a GA-responsive pathway consisting of 47 genes involved in regulating photosynthesis, including GID1, RGA, GID2, MYBGa, and 37 photosynthetic differentially expressed genes. Single nucleotide polymorphism (SNP)-based association analysis showed that 142 SNPs, representing 40 candidate genes in this pathway, were significantly associated with photosynthesis, growth, and wood property traits. Epistasis analysis uncovered interactions between 310 SNP-SNP pairs from 37 genes in this pathway, revealing possible genetic interactions. Moreover, a structural gene-gene matrix based on a time-course of transcript abundances provided a better understanding of the multi-gene pathway affecting photosynthesis. The results imply a functional role for these genes in mediating photosynthesis, growth, and wood properties, demonstrating the potential of combining transcriptome-based regulatory pathway construction and genetic association approaches to detect the complex genetic networks underlying quantitative traits. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights

  18. Complex of the equipment for instrumental element analysis

    International Nuclear Information System (INIS)

    Borisov, G.I.; Komkov, M.M.; Kuz'michev, V.A.

    1986-01-01

    Complex of the equipment for instrumental element analysis at the IR-8 reactor is designed, fabricated and taken into operation. The complex is provided with a multichannel system of vacuum pneumatic transport with radiation positions in the reactor horizontal tangential channel for neutron-activation analysis by short-lived isotopes; specialized dry vertical channels in a beryllium reflector of the reactor and remote system of radioactive sample replacement for neutron-activation analysis by long-lived isotopes; a specialized horizontal tangential channel for neutron beam extraction by means of a beryllium converter and remote device for studied sample replacement under radiation and measurement of prompt γ-radiation for neutron-radiation analysis; a measuring center using minicomputers for experimental data accumulation and processing and analysis control

  19. Network analysis reveals multiscale controls on streamwater chemistry

    Science.gov (United States)

    McGuire, Kevin J.; Torgersen, Christian E.; Likens, Gene E.; Buso, Donald C.; Lowe, Winsor H.; Bailey, Scott W.

    2014-01-01

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.

  20. Demographic analysis reveals gradual senescence in the flatworm Macrostomum lignano

    Directory of Open Access Journals (Sweden)

    Braeckman Bart P

    2009-07-01

    Full Text Available Abstract Free-living flatworms ("Turbellaria" are appropriate model organisms to gain better insight into the role of stem cells in ageing and rejuvenation. Ageing research in flatworms is, however, still scarce. This is partly due to culture difficulties and the lack of a complete set of demographic data, including parameters such as median lifespan and age-specific mortality rate. In this paper, we report on the first flatworm survival analysis. We used the species Macrostomum lignano, which is an emerging model for studying the reciprocal influence between stem cells, ageing and rejuvenation. This species has a median lifespan of 205 ± 13 days (average ± standard deviation [SD] and a 90th percentile lifespan of 373 ± 32 days. The maximum lifespan, however, is more than 745 days, and the average survival curve is characterised by a long tail because a small number of individuals lives twice as long as 90% of the population. Similar to earlier observations in a wide range of animals, in M. lignano the age-specific mortality rate increases exponentially, but levels off at the oldest ages. To compare the senescence of M. lignano with that of other ageing models, we determined the mortality rate doubling time, which is 0.20 ± 0.02 years. As a result, we can conclude that M. lignano shows gradual senescence at a rate similar to the vertebrate ageing models Rattus norvegicus and Mus musculus. We argue that M. lignano is a suitable model for ageing and rejuvenation research, and especially for the role of stem cells in these processes, due to its accessible stem cell system and regeneration capacity, and the possibility of combining stem cell studies with demographic analyses.

  1. Demographic analysis reveals gradual senescence in the flatworm Macrostomum lignano.

    Science.gov (United States)

    Mouton, Stijn; Willems, Maxime; Back, Patricia; Braeckman, Bart P; Borgonie, Gaetan

    2009-07-30

    Free-living flatworms ("Turbellaria") are appropriate model organisms to gain better insight into the role of stem cells in ageing and rejuvenation. Ageing research in flatworms is, however, still scarce. This is partly due to culture difficulties and the lack of a complete set of demographic data, including parameters such as median lifespan and age-specific mortality rate. In this paper, we report on the first flatworm survival analysis. We used the species Macrostomum lignano, which is an emerging model for studying the reciprocal influence between stem cells, ageing and rejuvenation. This species has a median lifespan of 205 +/- 13 days (average +/- standard deviation [SD]) and a 90th percentile lifespan of 373 +/- 32 days. The maximum lifespan, however, is more than 745 days, and the average survival curve is characterised by a long tail because a small number of individuals lives twice as long as 90% of the population. Similar to earlier observations in a wide range of animals, in M. lignano the age-specific mortality rate increases exponentially, but levels off at the oldest ages. To compare the senescence of M. lignano with that of other ageing models, we determined the mortality rate doubling time, which is 0.20 +/- 0.02 years. As a result, we can conclude that M. lignano shows gradual senescence at a rate similar to the vertebrate ageing models Rattus norvegicus and Mus musculus. We argue that M. lignano is a suitable model for ageing and rejuvenation research, and especially for the role of stem cells in these processes, due to its accessible stem cell system and regeneration capacity, and the possibility of combining stem cell studies with demographic analyses.

  2. Stimulus Complexity and Categorical Effects in Human Auditory Cortex: An Activation Likelihood Estimation Meta-Analysis

    Science.gov (United States)

    Samson, Fabienne; Zeffiro, Thomas A.; Toussaint, Alain; Belin, Pascal

    2011-01-01

    Investigations of the functional organization of human auditory cortex typically examine responses to different sound categories. An alternative approach is to characterize sounds with respect to their amount of variation in the time and frequency domains (i.e., spectral and temporal complexity). Although the vast majority of published studies examine contrasts between discrete sound categories, an alternative complexity-based taxonomy can be evaluated through meta-analysis. In a quantitative meta-analysis of 58 auditory neuroimaging studies, we examined the evidence supporting current models of functional specialization for auditory processing using grouping criteria based on either categories or spectro-temporal complexity. Consistent with current models, analyses based on typical sound categories revealed hierarchical auditory organization and left-lateralized responses to speech sounds, with high speech sensitivity in the left anterior superior temporal cortex. Classification of contrasts based on spectro-temporal complexity, on the other hand, revealed a striking within-hemisphere dissociation in which caudo-lateral temporal regions in auditory cortex showed greater sensitivity to spectral changes, while anterior superior temporal cortical areas were more sensitive to temporal variation, consistent with recent findings in animal models. The meta-analysis thus suggests that spectro-temporal acoustic complexity represents a useful alternative taxonomy to investigate the functional organization of human auditory cortex. PMID:21833294

  3. Current topics in pure and computational complex analysis

    CERN Document Server

    Dorff, Michael; Lahiri, Indrajit

    2014-01-01

    The book contains 13 articles, some of which are survey articles and others research papers. Written by eminent mathematicians, these articles were presented at the International Workshop on Complex Analysis and Its Applications held at Walchand College of Engineering, Sangli. All the contributing authors are actively engaged in research fields related to the topic of the book. The workshop offered a comprehensive exposition of the recent developments in geometric functions theory, planar harmonic mappings, entire and meromorphic functions and their applications, both theoretical and computational. The recent developments in complex analysis and its applications play a crucial role in research in many disciplines.

  4. Ethical analysis in HTA of complex health interventions.

    Science.gov (United States)

    Lysdahl, Kristin Bakke; Oortwijn, Wija; van der Wilt, Gert Jan; Refolo, Pietro; Sacchini, Dario; Mozygemba, Kati; Gerhardus, Ansgar; Brereton, Louise; Hofmann, Bjørn

    2016-03-22

    In the field of health technology assessment (HTA), there are several approaches that can be used for ethical analysis. However, there is a scarcity of literature that critically evaluates and compares the strength and weaknesses of these approaches when they are applied in practice. In this paper, we analyse the applicability of some selected approaches for addressing ethical issues in HTA in the field of complex health interventions. Complex health interventions have been the focus of methodological attention in HTA. However, the potential methodological challenges for ethical analysis are as yet unknown. Six of the most frequently described and applied ethical approaches in HTA were critically assessed against a set of five characteristics of complex health interventions: multiple and changing perspectives, indeterminate phenomena, uncertain causality, unpredictable outcomes, and ethical complexity. The assessments are based on literature and the authors' experiences of developing, applying and assessing the approaches. The Interactive, participatory HTA approach is by its nature and flexibility, applicable across most complexity characteristics. Wide Reflective Equilibrium is also flexible and its openness to different perspectives makes it better suited for complex health interventions than more rigid conventional approaches, such as Principlism and Casuistry. Approaches developed for HTA purposes are fairly applicable for complex health interventions, which one could expect because they include various ethical perspectives, such as the HTA Core Model® and the Socratic approach. This study shows how the applicability for addressing ethical issues in HTA of complex health interventions differs between the selected ethical approaches. Knowledge about these differences may be helpful when choosing and applying an approach for ethical analyses in HTA. We believe that the study contributes to increasing awareness and interest of the ethical aspects of complex

  5. Comparative Genomic Analyses of the Human NPHP1 Locus Reveal Complex Genomic Architecture and Its Regional Evolution in Primates.

    Directory of Open Access Journals (Sweden)

    Bo Yuan

    2015-12-01

    Full Text Available Many loci in the human genome harbor complex genomic structures that can result in susceptibility to genomic rearrangements leading to various genomic disorders. Nephronophthisis 1 (NPHP1, MIM# 256100 is an autosomal recessive disorder that can be caused by defects of NPHP1; the gene maps within the human 2q13 region where low copy repeats (LCRs are abundant. Loss of function of NPHP1 is responsible for approximately 85% of the NPHP1 cases-about 80% of such individuals carry a large recurrent homozygous NPHP1 deletion that occurs via nonallelic homologous recombination (NAHR between two flanking directly oriented ~45 kb LCRs. Published data revealed a non-pathogenic inversion polymorphism involving the NPHP1 gene flanked by two inverted ~358 kb LCRs. Using optical mapping and array-comparative genomic hybridization, we identified three potential novel structural variant (SV haplotypes at the NPHP1 locus that may protect a haploid genome from the NPHP1 deletion. Inter-species comparative genomic analyses among primate genomes revealed massive genomic changes during evolution. The aggregated data suggest that dynamic genomic rearrangements occurred historically within the NPHP1 locus and generated SV haplotypes observed in the human population today, which may confer differential susceptibility to genomic instability and the NPHP1 deletion within a personal genome. Our study documents diverse SV haplotypes at a complex LCR-laden human genomic region. Comparative analyses provide a model for how this complex region arose during primate evolution, and studies among humans suggest that intra-species polymorphism may potentially modulate an individual's susceptibility to acquiring disease-associated alleles.

  6. Protein complex prediction via dense subgraphs and false positive analysis.

    Directory of Open Access Journals (Sweden)

    Cecilia Hernandez

    Full Text Available Many proteins work together with others in groups called complexes in order to achieve a specific function. Discovering protein complexes is important for understanding biological processes and predict protein functions in living organisms. Large-scale and throughput techniques have made possible to compile protein-protein interaction networks (PPI networks, which have been used in several computational approaches for detecting protein complexes. Those predictions might guide future biologic experimental research. Some approaches are topology-based, where highly connected proteins are predicted to be complexes; some propose different clustering algorithms using partitioning, overlaps among clusters for networks modeled with unweighted or weighted graphs; and others use density of clusters and information based on protein functionality. However, some schemes still require much processing time or the quality of their results can be improved. Furthermore, most of the results obtained with computational tools are not accompanied by an analysis of false positives. We propose an effective and efficient mining algorithm for discovering highly connected subgraphs, which is our base for defining protein complexes. Our representation is based on transforming the PPI network into a directed acyclic graph that reduces the number of represented edges and the search space for discovering subgraphs. Our approach considers weighted and unweighted PPI networks. We compare our best alternative using PPI networks from Saccharomyces cerevisiae (yeast and Homo sapiens (human with state-of-the-art approaches in terms of clustering, biological metrics and execution times, as well as three gold standards for yeast and two for human. Furthermore, we analyze false positive predicted complexes searching the PDBe (Protein Data Bank in Europe database in order to identify matching protein complexes that have been purified and structurally characterized. Our analysis shows

  7. Is agriculture driving the diversification of the Bemisia tabaci species complex (Hemiptera: Sternorrhyncha: Aleyrodidae)?: Dating, diversification and biogeographic evidence revealed.

    Science.gov (United States)

    Boykin, Laura M; Bell, Charles D; Evans, Gregory; Small, Ian; De Barro, Paul J

    2013-10-18

    Humans and insect herbivores are competing for the same food crops and have been for thousands of years. Despite considerable advances in crop pest management, losses due to insects remain considerable. The global homogenisation of agriculture has supported the range expansion of numerous insect pests and has been driven in part by human-assisted dispersal supported through rapid global trade and low-cost air passenger transport. One of these pests, is the whitefly, Bemisia tabaci, a cryptic species complex that contains some of the world's most damaging pests of agriculture. The complex shows considerable genetic diversity and strong phylogeographic relationships. One consequence of the considerable impact that members of the B. tabaci complex have on agriculture, is the view that human activity, particularly in relation to agricultural practices, such as use of insecticides, has driven the diversification found within the species complex. This has been particularly so in the case of two members of the complex, Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED), which have become globally distributed invasive species. An alternative hypothesis is that diversification is due to paleogeographic and paleoclimatological changes. The idea that human activity is driving speciation within the B. tabaci complex has never been tested, but the increased interest in fossil whiteflies and the growth in molecular data have enabled us to apply a relaxed molecular clock and so estimate divergence dates for the major lineages within the B. tabaci species complex. The divergence estimates do not support the view that human activity has been a major driver of diversification. Our analysis suggests that the major lineages within the complex arose approximately 60-30 mya and the highly invasive MED and MEAM1 split from the rest of the species complex around 12 mya well before the evolution of Homo sapiens and agriculture. Furthermore, the divergence dates coincide with a period

  8. Clinical array-based karyotyping of breast cancer with equivocal HER2 status resolves gene copy number and reveals chromosome 17 complexity

    Directory of Open Access Journals (Sweden)

    Zadeh Soheila

    2010-07-01

    Full Text Available Abstract Background HER2 gene copy status, and concomitant administration of trastuzumab (Herceptin, remains one of the best examples of targeted cancer therapy based on understanding the genomic etiology of disease. However, newly diagnosed breast cancer cases with equivocal HER2 results present a challenge for the oncologist who must make treatment decisions despite the patient's unresolved HER2 status. In some cases both immunohistochemistry (IHC and fluorescence in situ hybridization (FISH are reported as equivocal, whereas in other cases IHC results and FISH are discordant for positive versus negative results. The recent validation of array-based, molecular karyotyping for clinical oncology testing provides an alternative method for determination of HER2 gene copy number status in cases remaining unresolved by traditional methods. Methods In the current study, DNA extracted from 20 formalin fixed paraffin embedded (FFPE tissue samples from newly diagnosed cases of invasive ductal carcinoma referred to our laboratory with unresolved HER2 status, were analyzed using a clinically validated genomic array containing 127 probes covering the HER2 amplicon, the pericentromeric regions, and both chromosome 17 arms. Results Array-based comparative genomic hybridization (array CGH analysis of chromosome 17 resolved HER2 gene status in [20/20] (100% of cases and revealed additional chromosome 17 copy number changes in [18/20] (90% of cases. Array CGH analysis also revealed two false positives and one false negative by FISH due to "ratio skewing" caused by chromosomal gains and losses in the centromeric region. All cases with complex rearrangements of chromosome 17 showed genome-wide chromosomal instability. Conclusions These results illustrate the analytical power of array-based genomic analysis as a clinical laboratory technique for resolution of HER2 status in breast cancer cases with equivocal results. The frequency of complex chromosome 17

  9. Novel measures based on the Kolmogorov complexity for use in complex system behavior studies and time series analysis

    Directory of Open Access Journals (Sweden)

    Mihailović Dragutin T.

    2015-01-01

    Full Text Available We propose novel metrics based on the Kolmogorov complexity for use in complex system behavior studies and time series analysis. We consider the origins of the Kolmogorov complexity and discuss its physical meaning. To get better insights into the nature of complex systems and time series analysis we introduce three novel measures based on the Kolmogorov complexity: (i the Kolmogorov complexity spectrum, (ii the Kolmogorov complexity spectrum highest value and (iii the overall Kolmogorov complexity. The characteristics of these measures have been tested using a generalized logistic equation. Finally, the proposed measures have been applied to different time series originating from: a model output (the biochemical substance exchange in a multi-cell system, four different geophysical phenomena (dynamics of: river flow, long term precipitation, indoor 222Rn concentration and UV radiation dose and the economy (stock price dynamics. The results obtained offer deeper insights into the complexity of system dynamics and time series analysis with the proposed complexity measures.

  10. Novel measures based on the Kolmogorov complexity for use in complex system behavior studies and time series analysis

    Science.gov (United States)

    Mihailović, Dragutin T.; Mimić, Gordan; Nikolić-Djorić, Emilija; Arsenić, Ilija

    2015-01-01

    We propose novel metrics based on the Kolmogorov complexity for use in complex system behavior studies and time series analysis. We consider the origins of the Kolmogorov complexity and discuss its physical meaning. To get better insights into the nature of complex systems and time series analysis we introduce three novel measures based on the Kolmogorov complexity: (i) the Kolmogorov complexity spectrum, (ii) the Kolmogorov complexity spectrum highest value and (iii) the overall Kolmogorov complexity. The characteristics of these measures have been tested using a generalized logistic equation. Finally, the proposed measures have been applied to different time series originating from: a model output (the biochemical substance exchange in a multi-cell system), four different geophysical phenomena (dynamics of: river flow, long term precipitation, indoor 222Rn concentration and UV radiation dose) and the economy (stock price dynamics). The results obtained offer deeper insights into the complexity of system dynamics and time series analysis with the proposed complexity measures.

  11. Mechanisms of molecular recognition: crystal structure analysis of human and rat transthyretin inhibitor complexes.

    Science.gov (United States)

    Cody, Vivian

    2002-12-01

    Structure-activity data show that many pharmacological agents are strong competitive inhibitors for thyroxine (T4) binding to transthyretin (TTR) and that this competition can interfere with their normal pharmacological actions. TTR is a tetrameric serum protein responsible for the transport of 20% of the circulating T4 in man, while in lower vertebrates such as rats it is the only carrier. The sequence of rat TTR is 85% homologous to the human protein. Crystallographic analyses of ligand co-crystal complexes of human and rat TTR have been studied to understand the molecular basis for binding selectivity of competitor binding to TTR. Analysis of TTR crystal complexes with several classes of competitors (hormone metabolites, flavonoids, fluorescent probes, analgesics and cardiac agents) revealed multiple modes of binding with both forward and reverse ligand binding orientations. These ligands also have different binding positions along the length of the channel with the smallest ligands located deeper within the hormone domain. Data for the human TTR complex with the bromoflavone EMD21388 incubated at different times revealed variable binding positions and occupancies dependent upon incubation time. Comparison of the structures of T4 thyroacetic acid in complex with both human and rat TTR revealed forward and reverse binding, but also showed different modes of binding in the rat compared to the human complex. These data highlight the importance of hydrogen bonding with Lys-15 and Ser-117 and provide insight into ligand binding affinity and negative cooperativity.

  12. Correlation analysis of the Taurus molecular cloud complex

    International Nuclear Information System (INIS)

    Kleiner, S.C.

    1985-01-01

    Autocorrelation and power spectrum methods were applied to the analysis of the density and velocity structure of the Taurus Complex and Heiles Cloud 2 as traced out by 13 CO J = 1 → 0 molecular line observations obtained with the 14m antenna of the Five College Radio Astronomy Observatory. Statistically significant correlations in the spacing of density fluctuations within the Taurus Complex and Heiles 2 were uncovered. The length scales of the observed correlations correspond in magnitude to the Jeans wavelengths characterizing gravitational instabilities with (i) interstellar atomic hydrogen gas for the case of the Taurus complex, and (ii) molecular hydrogen for Heiles 2. The observed correlations may be the signatures of past and current gravitational instabilities frozen into the structure of the molecular gas. The appendices provide a comprehensive description of the analytical and numerical methods developed for the correlation analysis of molecular clouds

  13. Analysis of stress and deformation fields of shape complex beams

    Directory of Open Access Journals (Sweden)

    Pástor Miroslav

    2018-01-01

    Full Text Available In this paper is investigated the analysis of stress and deformation fields of shape complex beams. The shape complex beams are made from load-bearing sheet (trapezoidal sheet circumferentially connected with strips of sheet metal, these beams are a substitute for more complex and heavier beams. The numerical analysis with static load are performed for these beams. The effect of three different types of connections between load-bearing sheet and strips of sheet metal is investigated. The first type of connection is represented by the trapezoidal sheet perfectly welded to the strips of sheet metal, the second type of connection is represented by the trapezoidal sheet welded to the strips of sheet metal only on the base sides of the trapezoidal sheet. The third one is represented by point welds. The stress and deformation fields for all types of the connections are compared and the suitable variant is chosen.

  14. Big and complex data analysis methodologies and applications

    CERN Document Server

    2017-01-01

    This volume conveys some of the surprises, puzzles and success stories in high-dimensional and complex data analysis and related fields. Its peer-reviewed contributions showcase recent advances in variable selection, estimation and prediction strategies for a host of useful models, as well as essential new developments in the field. The continued and rapid advancement of modern technology now allows scientists to collect data of increasingly unprecedented size and complexity. Examples include epigenomic data, genomic data, proteomic data, high-resolution image data, high-frequency financial data, functional and longitudinal data, and network data. Simultaneous variable selection and estimation is one of the key statistical problems involved in analyzing such big and complex data. The purpose of this book is to stimulate research and foster interaction between researchers in the area of high-dimensional data analysis. More concretely, its goals are to: 1) highlight and expand the breadth of existing methods in...

  15. Complex adaptive responses during antagonistic coevolution between Tribolium castaneum and its natural parasite Nosema whitei revealed by multiple fitness components

    Directory of Open Access Journals (Sweden)

    Bérénos Camillo

    2012-01-01

    Full Text Available Abstract Background Host-parasite coevolution can lead to local adaptation of either parasite or host if there is specificity (GxG interactions and asymmetric evolutionary potential between host and parasite. This has been demonstrated both experimentally and in field studies, but a substantial proportion of studies fail to detect such clear-cut patterns. One explanation for this is that adaptation can be masked by counter-adaptation by the antagonist. Additionally, genetic architecture underlying the interaction is often highly complex thus preventing specific adaptive responses. Here, we have employed a reciprocal cross-infection experiment to unravel the adaptive responses of two components of fitness affecting both parties with different complexities of the underlying genetic architecture (i.e. mortality and spore load. Furthermore, our experimental coevolution of hosts (Tribolium castaneum and parasites (Nosema whitei included paired replicates of naive hosts from identical genetic backgrounds to allow separation between host- and parasite-specific responses. Results In hosts, coevolution led to higher resistance and altered resistance profiles compared to paired control lines. Host genotype × parasite genotype interactions (GH × GP were observed for spore load (the trait of lower genetic complexity, but not for mortality. Overall parasite performance correlated with resistance of its matching host coevolution background reflecting a directional and unspecific response to strength of selection during coevolution. Despite high selective pressures exerted by the obligatory killing parasite, and host- and parasite-specific mortality profiles, no general pattern of local adaptation was observed, but one case of parasite maladaptation was consistently observed on both coevolved and control host populations. In addition, the use of replicate control host populations in the assay revealed one case of host maladaptation and one case of parasite

  16. Quantitative Analysis of Complex Tropical Forest Stands: A Review ...

    African Journals Online (AJOL)

    FIRST LADY

    Disciplinary Journal, Ethiopia. Vol. 4 (3a) July, 2010. ISSN 1994-9057 (Print). ISSN 2070-0083 (Online). Quantitative Analysis of Complex Tropical Forest. Stands: A Review (Pp. 367-377). Oyebade, B. A. - Forest Biometrics & Measurement Unit, ...

  17. Some G Pólya Gems from Complex Analysis

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 4. Some G Polya Gems from Complex Analysis. Shobha Madan. General Article Volume 19 Issue 4 April 2014 pp 323-337 ... Author Affiliations. Shobha Madan1. Department of Mathematics Indian Institute of Technology Kanpur 208 016, India.

  18. Large-Eddy-Simulation-based analysis of complex flow structures ...

    Indian Academy of Sciences (India)

    Further, in turbulence modelling within centrifugal pumps, it is also important to model the complete interaction amongst different variables rather than a simplistic single blade passage flow analysis. In the present work, the complex blade–tongue interactions and their consequent effects on the pressure fluctuations within ...

  19. Linear analysis of degree correlations in complex networks

    Indian Academy of Sciences (India)

    2016-11-02

    Nov 2, 2016 ... interaction network and the Internet map. Ma and Szeta. [25] gave a linear analysis of the total degrees of the nearest neighbours as a function of vertex degree by extending the Aboav–Wearie law to complex networks. The studies provide alternative ways to analyse the degree correlation in the networks, ...

  20. Simplified Worst-Case Analysis of Complex Systems

    Science.gov (United States)

    Pond, C. L.

    1985-01-01

    Statistical method avoids excessive computer time. Technique involves simplified Monte Carlo simulation of system with randomly chosen parameters and comparison of tolerance extremes of several of worst-case situations found. Resulting combination of tolerance extremes then used in detailed analysis - one that makes use of full complex nonlinear model capable of accurate simulations.

  1. Motor control in complex regional pain syndrome: A kinematic analysis

    NARCIS (Netherlands)

    Schilder, J.C.M.; Schouten, A.C.; Perez, R.S.G.M.; Huygen, F.J.P.M.; Dahan, A.; Noldus, L.P.J.J.; van Hilten, J.J.; Marinus, J.

    2012-01-01

    This study evaluated movement velocity, frequency, and amplitude, as well as the number of arrests in three different subject groups, by kinematic analysis of repetitive movements during a finger tapping (FT) task. The most affected hands of 80 patients with complex regional pain syndrome (CRPS)

  2. Intestinal transcriptome analysis revealed differential salinity adaptation between two tilapiine species.

    Science.gov (United States)

    Ronkin, Dana; Seroussi, Eyal; Nitzan, Tali; Doron-Faigenboim, Adi; Cnaani, Avner

    2015-03-01

    Tilapias are a group of freshwater species, which vary in their ability to adapt to high salinity water. Osmotic regulation in fish is conducted mainly in the gills, kidney, and gastrointestinal tract (GIT). The mechanisms involved in ion and water transport through the GIT is not well-characterized, with only a few described complexes. Comparing the transcriptome of the anterior and posterior intestinal sections of a freshwater and saltwater adapted fish by deep-sequencing, we examined the salinity adaptation of two tilapia species: the high salinity-tolerant Oreochromis mossambicus (Mozambique tilapia), and the less salinity-tolerant Oreochromis niloticus (Nile tilapia). This comparative analysis revealed high similarity in gene expression response to salinity change between species in the posterior intestine and large differences in the anterior intestine. Furthermore, in the anterior intestine 68 genes were saltwater up-regulated in one species and down-regulated in the other species (47 genes up-regulated in O. niloticus and down-regulated in O. mossambicus, with 21 genes showing the reverse pattern). Gene ontology (GO) analysis showed a high proportion of transporter and ion channel function among these genes. The results of this study point to a group of genes that differed in their salinity-dependent regulation pattern in the anterior intestine as potentially having a role in the differential salinity tolerance of these two closely related species. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Proteome analysis of schizophrenia patients Wernicke's area reveals an energy metabolism dysregulation

    Directory of Open Access Journals (Sweden)

    Marangoni Sérgio

    2009-04-01

    Full Text Available Abstract Background Schizophrenia is likely to be a consequence of DNA alterations that, together with environmental factors, will lead to protein expression differences and the ultimate establishment of the illness. The superior temporal gyrus is implicated in schizophrenia and executes functions such as the processing of speech, language skills and sound processing. Methods We performed an individual comparative proteome analysis using two-dimensional gel electrophoresis of 9 schizophrenia and 6 healthy control patients' left posterior superior temporal gyrus (Wernicke's area – BA22p identifying by mass spectrometry several protein expression alterations that could be related to the disease. Results Our analysis revealed 11 downregulated and 14 upregulated proteins, most of them related to energy metabolism. Whereas many of the identified proteins have been previously implicated in schizophrenia, such as fructose-bisphosphate aldolase C, creatine kinase and neuron-specific enolase, new putative disease markers were also identified such as dihydrolipoyl dehydrogenase, tropomyosin 3, breast cancer metastasis-suppressor 1, heterogeneous nuclear ribonucleoproteins C1/C2 and phosphate carrier protein, mitochondrial precursor. Besides, the differential expression of peroxiredoxin 6 (PRDX6 and glial fibrillary acidic protein (GFAP were confirmed by western blot in schizophrenia prefrontal cortex. Conclusion Our data supports a dysregulation of energy metabolism in schizophrenia as well as suggests new markers that may contribute to a better understanding of this complex disease.

  4. The Proteome of the Isolated Chlamydia trachomatis Containing Vacuole Reveals a Complex Trafficking Platform Enriched for Retromer Components.

    Directory of Open Access Journals (Sweden)

    Lukas Aeberhard

    2015-06-01

    Full Text Available Chlamydia trachomatis is an important human pathogen that replicates inside the infected host cell in a unique vacuole, the inclusion. The formation of this intracellular bacterial niche is essential for productive Chlamydia infections. Despite its importance for Chlamydia biology, a holistic view on the protein composition of the inclusion, including its membrane, is currently missing. Here we describe the host cell-derived proteome of isolated C. trachomatis inclusions by quantitative proteomics. Computational analysis indicated that the inclusion is a complex intracellular trafficking platform that interacts with host cells' antero- and retrograde trafficking pathways. Furthermore, the inclusion is highly enriched for sorting nexins of the SNX-BAR retromer, a complex essential for retrograde trafficking. Functional studies showed that in particular, SNX5 controls the C. trachomatis infection and that retrograde trafficking is essential for infectious progeny formation. In summary, these findings suggest that C. trachomatis hijacks retrograde pathways for effective infection.

  5. Crystal structure of a PCP/Sfp complex reveals the structural basis for carrier protein posttranslational modification.

    Science.gov (United States)

    Tufar, Peter; Rahighi, Simin; Kraas, Femke I; Kirchner, Donata K; Löhr, Frank; Henrich, Erik; Köpke, Jürgen; Dikic, Ivan; Güntert, Peter; Marahiel, Mohamed A; Dötsch, Volker

    2014-04-24

    Phosphopantetheine transferases represent a class of enzymes found throughout all forms of life. From a structural point of view, they are subdivided into three groups, with transferases from group II being the most widespread. They are required for the posttranslational modification of carrier proteins involved in diverse metabolic pathways. We determined the crystal structure of the group II phosphopantetheine transferase Sfp from Bacillus in complex with a substrate carrier protein in the presence of coenzyme A and magnesium, and observed two protein-protein interaction sites. Mutational analysis showed that only the hydrophobic contacts between the carrier protein's second helix and the C-terminal domain of Sfp are essential for their productive interaction. Comparison with a similar structure of a complex of human proteins suggests that the mode of interaction is highly conserved in all domains of life. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Purification and SAXS analysis of the integrin linked kinase, PINCH, parvin (IPP heterotrimeric complex.

    Directory of Open Access Journals (Sweden)

    Amy L Stiegler

    Full Text Available The heterotrimeric protein complex containing the integrin linked kinase (ILK, parvin, and PINCH proteins, termed the IPP complex, is an essential component of focal adhesions, where it interacts with many proteins to mediate signaling from integrin adhesion receptors. Here we conduct a biochemical and structural analysis of the minimal IPP complex, comprising full-length human ILK, the LIM1 domain of PINCH1, and the CH2 domain of α-parvin. We provide a detailed purification protocol for IPP and show that the purified IPP complex is stable and monodisperse in solution. Using small-angle X-ray scattering (SAXS, we also conduct the first structural characterization of IPP, which reveals an elongated shape with dimensions 120×60×40 Å. Flexibility analysis using the ensemble optimization method (EOM is consistent with an IPP complex structure with limited flexibility, raising the possibility that inter-domain interactions exist. However, our studies suggest that the inter-domain linker in ILK is accessible and we detect no inter-domain contacts by gel filtration analysis. This study provides a structural foundation to understand the conformational restraints that govern the IPP complex.

  7. Distinguishing PTSD, Complex PTSD, and Borderline Personality Disorder: A latent class analysis

    Directory of Open Access Journals (Sweden)

    Marylène Cloitre

    2014-09-01

    Full Text Available Background: There has been debate regarding whether Complex Posttraumatic Stress Disorder (Complex PTSD is distinct from Borderline Personality Disorder (BPD when the latter is comorbid with PTSD. Objective: To determine whether the patterns of symptoms endorsed by women seeking treatment for childhood abuse form classes that are consistent with diagnostic criteria for PTSD, Complex PTSD, and BPD. Method: A latent class analysis (LCA was conducted on an archival dataset of 280 women with histories of childhood abuse assessed for enrollment in a clinical trial for PTSD. Results: The LCA revealed four distinct classes of individuals: a Low Symptom class characterized by low endorsements on all symptoms; a PTSD class characterized by elevated symptoms of PTSD but low endorsement of symptoms that define the Complex PTSD and BPD diagnoses; a Complex PTSD class characterized by elevated symptoms of PTSD and self-organization symptoms that defined the Complex PTSD diagnosis but low on the symptoms of BPD; and a BPD class characterized by symptoms of BPD. Four BPD symptoms were found to greatly increase the odds of being in the BPD compared to the Complex PTSD class: frantic efforts to avoid abandonment, unstable sense of self, unstable and intense interpersonal relationships, and impulsiveness. Conclusions: Findings supported the construct validity of Complex PTSD as distinguishable from BPD. Key symptoms that distinguished between the disorders were identified, which may aid in differential diagnosis and treatment planning.

  8. Distinguishing PTSD, Complex PTSD, and Borderline Personality Disorder: A latent class analysis.

    Science.gov (United States)

    Cloitre, Marylène; Garvert, Donn W; Weiss, Brandon; Carlson, Eve B; Bryant, Richard A

    2014-01-01

    There has been debate regarding whether Complex Posttraumatic Stress Disorder (Complex PTSD) is distinct from Borderline Personality Disorder (BPD) when the latter is comorbid with PTSD. To determine whether the patterns of symptoms endorsed by women seeking treatment for childhood abuse form classes that are consistent with diagnostic criteria for PTSD, Complex PTSD, and BPD. A latent class analysis (LCA) was conducted on an archival dataset of 280 women with histories of childhood abuse assessed for enrollment in a clinical trial for PTSD. THE LCA REVEALED FOUR DISTINCT CLASSES OF INDIVIDUALS: a Low Symptom class characterized by low endorsements on all symptoms; a PTSD class characterized by elevated symptoms of PTSD but low endorsement of symptoms that define the Complex PTSD and BPD diagnoses; a Complex PTSD class characterized by elevated symptoms of PTSD and self-organization symptoms that defined the Complex PTSD diagnosis but low on the symptoms of BPD; and a BPD class characterized by symptoms of BPD. Four BPD symptoms were found to greatly increase the odds of being in the BPD compared to the Complex PTSD class: frantic efforts to avoid abandonment, unstable sense of self, unstable and intense interpersonal relationships, and impulsiveness. Findings supported the construct validity of Complex PTSD as distinguishable from BPD. Key symptoms that distinguished between the disorders were identified, which may aid in differential diagnosis and treatment planning.

  9. System for decision analysis support on complex waste management issues

    International Nuclear Information System (INIS)

    Shropshire, D.E.

    1997-01-01

    A software system called the Waste Flow Analysis has been developed and applied to complex environmental management processes for the United States Department of Energy (US DOE). The system can evaluate proposed methods of waste retrieval, treatment, storage, transportation, and disposal. Analysts can evaluate various scenarios to see the impacts to waste slows and schedules, costs, and health and safety risks. Decision analysis capabilities have been integrated into the system to help identify preferred alternatives based on a specific objectives may be to maximize the waste moved to final disposition during a given time period, minimize health risks, minimize costs, or combinations of objectives. The decision analysis capabilities can support evaluation of large and complex problems rapidly, and under conditions of variable uncertainty. The system is being used to evaluate environmental management strategies to safely disposition wastes in the next ten years and reduce the environmental legacy resulting from nuclear material production over the past forty years

  10. Twenty-one lectures on complex analysis a first course

    CERN Document Server

    Isaev, Alexander

    2017-01-01

    At its core, this concise textbook presents standard material for a first course in complex analysis at the advanced undergraduate level. This distinctive text will prove most rewarding for students who have a genuine passion for mathematics as well as certain mathematical maturity. Primarily aimed at undergraduates with working knowledge of real analysis and metric spaces, this book can also be used to instruct a graduate course. The text uses a conversational style with topics purposefully apportioned into 21 lectures, providing a suitable format for either independent study or lecture-based teaching. Instructors are invited to rearrange the order of topics according to their own vision. A clear and rigorous exposition is supported by engaging examples and exercises unique to each lecture; a large number of exercises contain useful calculation problems. Hints are given for a selection of the more difficult exercises. This text furnishes the reader with a means of learning complex analysis as well as a subtl...

  11. Dynamic analysis of the human brain with complex cerebral sulci.

    Science.gov (United States)

    Tseng, Jung-Ge; Huang, Bo-Wun; Ou, Yi-Wen; Yen, Ke-Tien; Wu, Yi-Te

    2016-07-03

    The brain is one of the most vulnerable organs inside the human body. Head accidents often appear in daily life and are easy to cause different level of brain damage inside the skull. Once the brain suffered intense locomotive impact, external injuries, falls, or other accidents, it will result in different degrees of concussion. This study employs finite element analysis to compare the dynamic characteristics between the geometric models of an assumed simple brain tissue and a brain tissue with complex cerebral sulci. It is aimed to understand the free vibration of the internal brain tissue and then to protect the brain from injury caused by external influences. Reverse engineering method is used for a Classic 5-Part Brain (C18) model produced by 3B Scientific Corporation. 3D optical scanner is employed to scan the human brain structure model with complex cerebral sulci and imported into 3D graphics software to construct a solid brain model to simulate the real complex brain tissue. Obtaining the normal mode analysis by inputting the material properties of the true human brain into finite element analysis software, and then to compare the simplified and the complex of brain models.

  12. Genome-wide study of an elite rice pedigree reveals a complex history of genetic architecture for breeding improvement.

    Science.gov (United States)

    Chen, Shaoxia; Lin, Zechuan; Zhou, Degui; Wang, Chongrong; Li, Hong; Yu, Renbo; Deng, Hanchao; Tang, Xiaoyan; Zhou, Shaochuan; Wang Deng, Xing; He, Hang

    2017-04-04

    Improving breeding has been widely utilized in crop breeding and contributed to yield and quality improvement, yet few researches have been done to analyze genetic architecture underlying breeding improvement comprehensively. Here, we collected genotype and phenotype data of 99 cultivars from the complete pedigree including Huanghuazhan, an elite, high-quality, conventional indica rice that has been grown over 4.5 million hectares in southern China and from which more than 20 excellent cultivars have been derived. We identified 1,313 selective sweeps (SSWs) revealing four stage-specific selection patterns corresponding to improvement preference during 65 years, and 1113 conserved Huanghuazhan traceable blocks (cHTBs) introduced from different donors and conserved in >3 breeding generations were the core genomic regions for superior performance of Huanghuazhan. Based on 151 quantitative trait loci (QTLs) identified for 13 improved traits in the pedigree, we reproduced their improvement process in silico, highlighting improving breeding works well for traits controlled by major/major + minor effect QTLs, but was inefficient for traits controlled by QTLs with complex interactions or explaining low levels of phenotypic variation. These results indicate long-term breeding improvement is efficient to construct superior genetic architecture for elite performance, yet molecular breeding with designed genotype of QTLs can facilitate complex traits improvement.

  13. Membrane association of the PTEN tumor suppressor: neutron scattering and MD simulations reveal the structure of protein-membrane complexes.

    Science.gov (United States)

    Nanda, Hirsh; Heinrich, Frank; Lösche, Mathias

    2015-05-01

    Neutron reflection (NR) from planar interfaces is an emerging technology that provides unique and otherwise inaccessible structural information on disordered molecular systems such as membrane proteins associated with fluid bilayers, thus addressing one of the remaining challenges of structural biology. Although intrinsically a low-resolution technique, using structural information from crystallography or NMR allows the construction of NR models that describe the architecture of protein-membrane complexes at high resolution. In addition, a combination of these methods with molecular dynamics (MD) simulations has the potential to reveal the dynamics of protein interactions with the bilayer in atomistic detail. We review recent advances in this area by discussing the application of these techniques to the complex formed by the PTEN phosphatase with the plasma membrane. These studies provide insights in the cellular regulation of PTEN, its interaction with PI(4,5)P2 in the inner plasma membrane and the pathway by which its substrate, PI(3,4,5)P3, accesses the PTEN catalytic site. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Crystal Structure of the Core Region of Hantavirus Nucleocapsid Protein Reveals the Mechanism for Ribonucleoprotein Complex Formation

    Science.gov (United States)

    Guo, Yu; Wang, Wenming; Sun, Yuna; Ma, Chao; Wang, Xu; Wang, Xin; Liu, Pi; Shen, Shu; Li, Baobin; Lin, Jianping; Deng, Fei

    2015-01-01

    ABSTRACT Hantaviruses, which belong to the genus Hantavirus in the family Bunyaviridae, infect mammals, including humans, causing either hemorrhagic fever with renal syndrome (HFRS) or hantavirus cardiopulmonary syndrome (HCPS) in humans with high mortality. Hantavirus encodes a nucleocapsid protein (NP) to encapsidate the genome and form a ribonucleoprotein complex (RNP) together with viral polymerase. Here, we report the crystal structure of the core domains of NP (NPcore) encoded by Sin Nombre virus (SNV) and Andes virus (ANDV), which are two representative members that cause HCPS in the New World. The constructs of SNV and ANDV NPcore exclude the N- and C-terminal portions of full polypeptide to obtain stable proteins for crystallographic study. The structure features an N lobe and a C lobe to clamp RNA-binding crevice and exhibits two protruding extensions in both lobes. The positively charged residues located in the RNA-binding crevice play a key role in RNA binding and virus replication. We further demonstrated that the C-terminal helix and the linker region connecting the N-terminal coiled-coil domain and NPcore are essential for hantavirus NP oligomerization through contacts made with two adjacent protomers. Moreover, electron microscopy (EM) visualization of native RNPs extracted from the virions revealed that a monomer-sized NP-RNA complex is the building block of viral RNP. This work provides insight into the formation of hantavirus RNP and provides an understanding of the evolutionary connections that exist among bunyaviruses. IMPORTANCE Hantaviruses are distributed across a wide and increasing range of host reservoirs throughout the world. In particular, hantaviruses can be transmitted via aerosols of rodent excreta to humans or from human to human and cause HFRS and HCPS, with mortalities of 15% and 50%, respectively. Hantavirus is therefore listed as a category C pathogen. Hantavirus encodes an NP that plays essential roles both in RNP formation and

  15. CISAPS: Complex Informational Spectrum for the Analysis of Protein Sequences

    Directory of Open Access Journals (Sweden)

    Charalambos Chrysostomou

    2015-01-01

    Full Text Available Complex informational spectrum analysis for protein sequences (CISAPS and its web-based server are developed and presented. As recent studies show, only the use of the absolute spectrum in the analysis of protein sequences using the informational spectrum analysis is proven to be insufficient. Therefore, CISAPS is developed to consider and provide results in three forms including absolute, real, and imaginary spectrum. Biologically related features to the analysis of influenza A subtypes as presented as a case study in this study can also appear individually either in the real or imaginary spectrum. As the results presented, protein classes can present similarities or differences according to the features extracted from CISAPS web server. These associations are probable to be related with the protein feature that the specific amino acid index represents. In addition, various technical issues such as zero-padding and windowing that may affect the analysis are also addressed. CISAPS uses an expanded list of 611 unique amino acid indices where each one represents a different property to perform the analysis. This web-based server enables researchers with little knowledge of signal processing methods to apply and include complex informational spectrum analysis to their work.

  16. Operator Semigroups meet Complex Analysis, Harmonic Analysis and Mathematical Physics

    CERN Document Server

    Chill, Ralph; Tomilov, Yuri

    2015-01-01

    This proceedings volume originates from a conference held in Herrnhut in June 2013. It provides unique insights into the power of abstract methods and techniques in dealing successfully with numerous applications stemming from classical analysis and mathematical physics. The book features diverse topics in the area of operator semigroups, including partial differential equations, martingale and Hilbert transforms, Banach and von Neumann algebras, Schrödinger operators, maximal regularity and Fourier multipliers, interpolation, operator-theoretical problems (concerning generation, perturbation and dilation, for example), and various qualitative and quantitative Tauberian theorems with a focus on transfinite induction and magics of Cantor. The last fifteen years have seen the dawn of a new era for semigroup theory with the emphasis on applications of abstract results, often unexpected and far removed from traditional ones. The aim of the conference was to bring together prominent experts in the field of modern...

  17. Electron microscopy and in vitro deneddylation reveal similar architectures and biochemistry of isolated human and Flag-mouse COP9 signalosome complexes

    International Nuclear Information System (INIS)

    Rockel, Beate; Schmaler, Tilo; Huang, Xiaohua; Dubiel, Wolfgang

    2014-01-01

    Highlights: • Deneddylation rates of human erythrocyte and mouse fibroblast CSN are very similar. • 3D models of native human and mouse CSN reveal common architectures. • The cryo-structure of native mammalian CSN shows a horseshoe subunit arrangement. - Abstract: The COP9 signalosome (CSN) is a regulator of the ubiquitin (Ub) proteasome system (UPS). In the UPS, proteins are Ub-labeled for degradation by Ub ligases conferring substrate specificity. The CSN controls a large family of Ub ligases called cullin-RING ligases (CRLs), which ubiquitinate cell cycle regulators, transcription factors and DNA damage response proteins. The CSN possesses structural similarities with the 26S proteasome Lid complex and the translation initiation complex 3 (eIF3) indicating similar ancestry and function. Initial structures were obtained 14 years ago by 2D electron microscopy (EM). Recently, first 3D molecular models of the CSN were created on the basis of negative-stain EM and single-particle analysis, mostly with recombinant complexes. Here, we compare deneddylating activity and structural features of CSN complexes purified in an elaborate procedure from human erythrocytes and efficiently pulled down from mouse Flag-CSN2 B8 fibroblasts. In an in vitro deneddylation assay both the human and the mouse CSN complexes deneddylated Nedd8-Cul1 with comparable rates. 3D structural models of the erythrocyte CSN as well as of the mouse Flag-CSN were generated by negative stain EM and by cryo-EM. Both complexes show a central U-shaped segment from which several arms emanate. This structure, called the horseshoe, is formed by the PCI domain subunits. CSN5 and CSN6 point away from the horseshoe. Compared to 3D models of negatively stained CSN complexes, densities assigned to CSN2 and CSN4 are better defined in the cryo-map. Because biochemical and structural results obtained with CSN complexes isolated from human erythrocytes and purified by Flag-CSN pulldown from mouse B8 fibroblasts

  18. Electron microscopy and in vitro deneddylation reveal similar architectures and biochemistry of isolated human and Flag-mouse COP9 signalosome complexes

    Energy Technology Data Exchange (ETDEWEB)

    Rockel, Beate [Department of Molecular Structural Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried (Germany); Schmaler, Tilo; Huang, Xiaohua [Division of Molecular Biology, Department of General, Visceral, Vascular and Thoracic Surgery, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin (Germany); Dubiel, Wolfgang, E-mail: Wolfgang.dubiel@charite.de [Division of Molecular Biology, Department of General, Visceral, Vascular and Thoracic Surgery, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin (Germany)

    2014-07-25

    Highlights: • Deneddylation rates of human erythrocyte and mouse fibroblast CSN are very similar. • 3D models of native human and mouse CSN reveal common architectures. • The cryo-structure of native mammalian CSN shows a horseshoe subunit arrangement. - Abstract: The COP9 signalosome (CSN) is a regulator of the ubiquitin (Ub) proteasome system (UPS). In the UPS, proteins are Ub-labeled for degradation by Ub ligases conferring substrate specificity. The CSN controls a large family of Ub ligases called cullin-RING ligases (CRLs), which ubiquitinate cell cycle regulators, transcription factors and DNA damage response proteins. The CSN possesses structural similarities with the 26S proteasome Lid complex and the translation initiation complex 3 (eIF3) indicating similar ancestry and function. Initial structures were obtained 14 years ago by 2D electron microscopy (EM). Recently, first 3D molecular models of the CSN were created on the basis of negative-stain EM and single-particle analysis, mostly with recombinant complexes. Here, we compare deneddylating activity and structural features of CSN complexes purified in an elaborate procedure from human erythrocytes and efficiently pulled down from mouse Flag-CSN2 B8 fibroblasts. In an in vitro deneddylation assay both the human and the mouse CSN complexes deneddylated Nedd8-Cul1 with comparable rates. 3D structural models of the erythrocyte CSN as well as of the mouse Flag-CSN were generated by negative stain EM and by cryo-EM. Both complexes show a central U-shaped segment from which several arms emanate. This structure, called the horseshoe, is formed by the PCI domain subunits. CSN5 and CSN6 point away from the horseshoe. Compared to 3D models of negatively stained CSN complexes, densities assigned to CSN2 and CSN4 are better defined in the cryo-map. Because biochemical and structural results obtained with CSN complexes isolated from human erythrocytes and purified by Flag-CSN pulldown from mouse B8 fibroblasts

  19. Nostradamus 2014 prediction, modeling and analysis of complex systems

    CERN Document Server

    Suganthan, Ponnuthurai; Chen, Guanrong; Snasel, Vaclav; Abraham, Ajith; Rössler, Otto

    2014-01-01

    The prediction of behavior of complex systems, analysis and modeling of its structure is a vitally important problem in engineering, economy and generally in science today. Examples of such systems can be seen in the world around us (including our bodies) and of course in almost every scientific discipline including such “exotic” domains as the earth’s atmosphere, turbulent fluids, economics (exchange rate and stock markets), population growth, physics (control of plasma), information flow in social networks and its dynamics, chemistry and complex networks. To understand such complex dynamics, which often exhibit strange behavior, and to use it in research or industrial applications, it is paramount to create its models. For this purpose there exists a rich spectrum of methods, from classical such as ARMA models or Box Jenkins method to modern ones like evolutionary computation, neural networks, fuzzy logic, geometry, deterministic chaos amongst others. This proceedings book is a collection of accepted ...

  20. Cryo-electron Microscopy Analysis of Structurally Heterogeneous Macromolecular Complexes.

    Science.gov (United States)

    Jonić, Slavica

    2016-01-01

    Cryo-electron microscopy (cryo-EM) has for a long time been a technique of choice for determining structure of large and flexible macromolecular complexes that were difficult to study by other experimental techniques such as X-ray crystallography or nuclear magnetic resonance. However, a fast development of instruments and software for cryo-EM in the last decade has allowed that a large range of complexes can be studied by cryo-EM, and that their structures can be obtained at near-atomic resolution, including the structures of small complexes (e.g., membrane proteins) whose size was earlier an obstacle to cryo-EM. Image analysis to identify multiple coexisting structures in the same specimen (multiconformation reconstruction) is now routinely done both to solve structures at near-atomic resolution and to study conformational dynamics. Methods for multiconformation reconstruction and latest examples of their applications are the focus of this review.

  1. Highly active and stable oxaloacetate decarboxylase Na⁺ pump complex for structural analysis.

    Science.gov (United States)

    Inoue, Michio; Li, Xiaodan

    2015-11-01

    The oxaloacetate decarboxylase primary Na(+) pump (Oad) produces energy for the surviving of some pathogenic bacteria under anaerobic conditions. Oad composes of three subunits: Oad-α, a biotinylated soluble subunit and catalyzes the decarboxylation of oxaloacetate; Oad-β, a transmembrane subunit and functions as a Na(+) pump; and Oad-γ, a single transmembrane α-helical anchor subunit and assembles Oad-α/β/γ complex. The molecular mechanism of Oad complex coupling the exothermic decarboxylation to generate the Na(+) electrochemical gradient remains unsolved. Our biophysical and biochemical studies suggested that the stoichiometry of Oad complex from Vibrio cholerae composed of α, β, γ in 4:2:2 stoichiometry not that of 4:4:4. The high-resolution structure determination of the Oad complex would reveal the energetic transformation mechanism from the catalytical soluble α subunit to membrane β subunit. Sufficient amount stable, conformational homogenous and active Oad complex with the right stoichiometry is the prerequisite for structural analysis. Here we report an easy and reproducible protocol to obtain high quantity and quality Oad complex protein for structural analysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Wavelet-Based Multi-Scale Entropy Analysis of Complex Rainfall Time Series

    Directory of Open Access Journals (Sweden)

    Chien-Ming Chou

    2011-01-01

    Full Text Available This paper presents a novel framework to determine the number of resolution levels in the application of a wavelet transformation to a rainfall time series. The rainfall time series are decomposed using the à trous wavelet transform. Then, multi-scale entropy (MSE analysis that helps to elucidate some hidden characteristics of the original rainfall time series is applied to the decomposed rainfall time series. The analysis shows that the Mann-Kendall (MK rank correlation test of MSE curves of residuals at various resolution levels could determine the number of resolution levels in the wavelet decomposition. The complexity of rainfall time series at four stations on a multi-scale is compared. The results reveal that the suggested number of resolution levels can be obtained using MSE analysis and MK test. The complexity of rainfall time series at various locations can also be analyzed to provide a reference for water resource planning and application.

  3. Modeling data irregularities and structural complexities in data envelopment analysis

    CERN Document Server

    Zhu, Joe

    2007-01-01

    In a relatively short period of time, Data Envelopment Analysis (DEA) has grown into a powerful quantitative, analytical tool for measuring and evaluating performance. It has been successfully applied to a whole variety of problems in many different contexts worldwide. This book deals with the micro aspects of handling and modeling data issues in modeling DEA problems. DEA's use has grown with its capability of dealing with complex "service industry" and the "public service domain" types of problems that require modeling of both qualitative and quantitative data. This handbook treatment deals with specific data problems including: imprecise or inaccurate data; missing data; qualitative data; outliers; undesirable outputs; quality data; statistical analysis; software and other data aspects of modeling complex DEA problems. In addition, the book will demonstrate how to visualize DEA results when the data is more than 3-dimensional, and how to identify efficiency units quickly and accurately.

  4. Complexity, Analysis and Control of Singular Biological Systems

    CERN Document Server

    Zhang, Qingling; Zhang, Xue

    2012-01-01

    Complexity, Analysis and Control of Singular Biological Systems follows the control of real-world biological systems at both ecological and phyisological levels concentrating on the application of now-extensively-investigated singular system theory. Much effort has recently been dedicated to the modelling and analysis of developing bioeconomic systems and the text establishes singular examples of these, showing how proper control can help to maintain sustainable economic development of biological resources. The book begins from the essentials of singular systems theory and bifurcations before tackling  the use of various forms of control in singular biological systems using examples including predator-prey relationships and viral vaccination and quarantine control. Researchers and graduate students studying the control of complex biological systems are shown how a variety of methods can be brought to bear and practitioners working with the economics of biological systems and their control will also find the ...

  5. Proteomics analysis reveals the molecular mechanism underlying the transition from primary to secondary growth of poplar.

    Science.gov (United States)

    Li, Yuan; Jin, Feng; Chao, Qing; Wang, Bai-Chen

    2017-06-01

    Wood is the most important natural source of energy and also provides fuel and fiber. Considering the significant role of wood, it is critical to understand how wood is formed. Integration of knowledge about wood development at the cellular and molecular levels will allow more comprehensive understanding of this complex process. In the present study, we used a comparative proteomic approach to investigate the differences in protein profiles between primary and secondary growth in young poplar stems using tandem mass tag (TMT)-labeling. More than 10,816 proteins were identified, and, among these, 3106 proteins were differentially expressed during primary to secondary growth. Proteomic data were validated using a combination of histochemical staining, enzyme activity assays, and quantitative real-time PCR. Bioinformatics analysis revealed that these differentially expressed proteins are related to various metabolic pathways, mainly including signaling, phytohormones, cell cycle, cell wall, secondary metabolism, carbohydrate and energy metabolism, and protein metabolism as well as redox and stress pathways. This large proteomics dataset will be valuable for uncovering the molecular changes occurring during the transition from primary to secondary growth. Further, it provides new and accurate information for tree breeding to modify wood properties. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Genome-wide screening of Oryza sativa ssp. japonica and indica reveals a complex family of proteins with ribosome-inactivating protein domains.

    Science.gov (United States)

    Wytynck, Pieter; Rougé, Pierre; Van Damme, Els J M

    2017-11-01

    Ribosome-inactivating proteins (RIPs) are cytotoxic enzymes capable of halting protein synthesis by irreversible modification of ribosomes. Although RIPs are widespread they are not ubiquitous in the plant kingdom. The physiological importance of RIPs is not fully elucidated, but evidence suggests a role in the protection of the plant against biotic and abiotic stresses. Searches in the rice genome revealed a large and highly complex family of proteins with a RIP domain. A comparative analysis retrieved 38 RIP sequences from the genome sequence of Oryza sativa subspecies japonica and 34 sequences from the subspecies indica. The RIP sequences are scattered over different chromosomes but are mostly found on the third chromosome. The phylogenetic tree revealed the pairwise clustering of RIPs from japonica and indica. Molecular modeling and sequence analysis yielded information on the catalytic site of the enzyme, and suggested that a large part of RIP domains probably possess N-glycosidase activity. Several RIPs are differentially expressed in plant tissues and in response to specific abiotic stresses. This study provides an overview of RIP motifs in rice and will help to understand their biological role(s) and evolutionary relationships. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Process analysis and metrics of complex organisational processes

    OpenAIRE

    Bošković, Dražen

    2008-01-01

    The model of process analysis and process metrics is presented for complex organisational processes, as applied in the management of construction contract documents. The model was applied on four test samples of public-works clients. The qualitative data collected during the survey were converted into quantitative ones using the modified Likert scale. It was demonstrated that the organisational capacity is at the basic level, with an insufficient integration and optimisation of processes, and...

  8. Procedure for the analysis of americium in complex matrices

    International Nuclear Information System (INIS)

    Knab, D.

    1978-02-01

    A radioanalytical procedure for the analysis of americium in complex matrices has been developed. Clean separations of americium can be obtained from up to 100 g of sample ash, regardless of the starting material. The ability to analyze large masses of material provides the increased sensitivity necessary to detect americium in many environmental samples. The procedure adequately decontaminates from rare earth elements and natural radioactive nuclides that interfere with the alpha spectrometric measurements

  9. Transonic analysis of complex configurations using TRANAIR program

    Science.gov (United States)

    Saaris, G. R.; Gilkey, R. D.; Smit, K. L.; Tinoco, E. N.

    1989-01-01

    The application of a three-dimensional transonic flow analysis method, TRANAIR, is explored from the point of view of a user. Detailed features of the program are outlined to give a better understanding of capability. Numerous results are presented to show some of the complex configurations which have been analyzed. In particular, examples are provided which show the application to turbofan engine installation on transport aircraft.

  10. Complexity analysis based on generalized deviation for financial markets

    Science.gov (United States)

    Li, Chao; Shang, Pengjian

    2018-03-01

    In this paper, a new modified method is proposed as a measure to investigate the correlation between past price and future volatility for financial time series, known as the complexity analysis based on generalized deviation. In comparison with the former retarded volatility model, the new approach is both simple and computationally efficient. The method based on the generalized deviation function presents us an exhaustive way showing the quantization of the financial market rules. Robustness of this method is verified by numerical experiments with both artificial and financial time series. Results show that the generalized deviation complexity analysis method not only identifies the volatility of financial time series, but provides a comprehensive way distinguishing the different characteristics between stock indices and individual stocks. Exponential functions can be used to successfully fit the volatility curves and quantify the changes of complexity for stock market data. Then we study the influence for negative domain of deviation coefficient and differences during the volatile periods and calm periods. after the data analysis of the experimental model, we found that the generalized deviation model has definite advantages in exploring the relationship between the historical returns and future volatility.

  11. Dissection of the complex phenotype in cuticular mutants of Arabidopsis reveals a role of SERRATE as a mediator.

    Directory of Open Access Journals (Sweden)

    Derry Voisin

    2009-10-01

    Full Text Available Mutations in LACERATA (LCR, FIDDLEHEAD (FDH, and BODYGUARD (BDG cause a complex developmental syndrome that is consistent with an important role for these Arabidopsis genes in cuticle biogenesis. The genesis of their pleiotropic phenotypes is, however, poorly understood. We provide evidence that neither distorted depositions of cutin, nor deficiencies in the chemical composition of cuticular lipids, account for these features, instead suggesting that the mutants alleviate the functional disorder of the cuticle by reinforcing their defenses. To better understand how plants adapt to these mutations, we performed a genome-wide gene expression analysis. We found that apparent compensatory transcriptional responses in these mutants involve the induction of wax, cutin, cell wall, and defense genes. To gain greater insight into the mechanism by which cuticular mutations trigger this response in the plants, we performed an overlap meta-analysis, which is termed MASTA (MicroArray overlap Search Tool and Analysis, of differentially expressed genes. This suggested that different cell integrity pathways are recruited in cesA cellulose synthase and cuticular mutants. Using MASTA for an in silico suppressor/enhancer screen, we identified SERRATE (SE, which encodes a protein of RNA-processing multi-protein complexes, as a likely enhancer. In confirmation of this notion, the se lcr and se bdg double mutants eradicate severe leaf deformations as well as the organ fusions that are typical of lcr and bdg and other cuticular mutants. Also, lcr does not confer resistance to Botrytis cinerea in a se mutant background. We propose that there is a role for SERRATE-mediated RNA signaling in the cuticle integrity pathway.

  12. Whole exome sequencing in 342 congenital cardiac left sided lesion cases reveals extensive genetic heterogeneity and complex inheritance patterns.

    Science.gov (United States)

    Li, Alexander H; Hanchard, Neil A; Furthner, Dieter; Fernbach, Susan; Azamian, Mahshid; Nicosia, Annarita; Rosenfeld, Jill; Muzny, Donna; D'Alessandro, Lisa C A; Morris, Shaine; Jhangiani, Shalini; Parekh, Dhaval R; Franklin, Wayne J; Lewin, Mark; Towbin, Jeffrey A; Penny, Daniel J; Fraser, Charles D; Martin, James F; Eng, Christine; Lupski, James R; Gibbs, Richard A; Boerwinkle, Eric; Belmont, John W

    2017-10-31

    Left-sided lesions (LSLs) account for an important fraction of severe congenital cardiovascular malformations (CVMs). The genetic contributions to LSLs are complex, and the mutations that cause these malformations span several diverse biological signaling pathways: TGFB, NOTCH, SHH, and more. Here, we use whole exome sequence data generated in 342 LSL cases to identify likely damaging variants in putative candidate CVM genes. Using a series of bioinformatics filters, we focused on genes harboring population-rare, putative loss-of-function (LOF), and predicted damaging variants in 1760 CVM candidate genes constructed a priori from the literature and model organism databases. Gene variants that were not observed in a comparably sequenced control dataset of 5492 samples without severe CVM were then subjected to targeted validation in cases and parents. Whole exome sequencing data from 4593 individuals referred for clinical sequencing were used to bolster evidence for the role of candidate genes in CVMs and LSLs. Our analyses revealed 28 candidate variants in 27 genes, including 17 genes not previously associated with a human CVM disorder, and revealed diverse patterns of inheritance among LOF carriers, including 9 confirmed de novo variants in both novel and newly described human CVM candidate genes (ACVR1, JARID2, NR2F2, PLRG1, SMURF1) as well as established syndromic CVM genes (KMT2D, NF1, TBX20, ZEB2). We also identified two genes (DNAH5, OFD1) with evidence of recessive and hemizygous inheritance patterns, respectively. Within our clinical cohort, we also observed heterozygous LOF variants in JARID2 and SMAD1 in individuals with cardiac phenotypes, and collectively, carriers of LOF variants in our candidate genes had a four times higher odds of having CVM (odds ratio = 4.0, 95% confidence interval 2.5-6.5). Our analytical strategy highlights the utility of bioinformatic resources, including human disease records and model organism phenotyping, in novel gene

  13. Whole exome sequencing in 342 congenital cardiac left sided lesion cases reveals extensive genetic heterogeneity and complex inheritance patterns

    Directory of Open Access Journals (Sweden)

    Alexander H. Li

    2017-10-01

    Full Text Available Abstract Background Left-sided lesions (LSLs account for an important fraction of severe congenital cardiovascular malformations (CVMs. The genetic contributions to LSLs are complex, and the mutations that cause these malformations span several diverse biological signaling pathways: TGFB, NOTCH, SHH, and more. Here, we use whole exome sequence data generated in 342 LSL cases to identify likely damaging variants in putative candidate CVM genes. Methods Using a series of bioinformatics filters, we focused on genes harboring population-rare, putative loss-of-function (LOF, and predicted damaging variants in 1760 CVM candidate genes constructed a priori from the literature and model organism databases. Gene variants that were not observed in a comparably sequenced control dataset of 5492 samples without severe CVM were then subjected to targeted validation in cases and parents. Whole exome sequencing data from 4593 individuals referred for clinical sequencing were used to bolster evidence for the role of candidate genes in CVMs and LSLs. Results Our analyses revealed 28 candidate variants in 27 genes, including 17 genes not previously associated with a human CVM disorder, and revealed diverse patterns of inheritance among LOF carriers, including 9 confirmed de novo variants in both novel and newly described human CVM candidate genes (ACVR1, JARID2, NR2F2, PLRG1, SMURF1 as well as established syndromic CVM genes (KMT2D, NF1, TBX20, ZEB2. We also identified two genes (DNAH5, OFD1 with evidence of recessive and hemizygous inheritance patterns, respectively. Within our clinical cohort, we also observed heterozygous LOF variants in JARID2 and SMAD1 in individuals with cardiac phenotypes, and collectively, carriers of LOF variants in our candidate genes had a four times higher odds of having CVM (odds ratio = 4.0, 95% confidence interval 2.5–6.5. Conclusions Our analytical strategy highlights the utility of bioinformatic resources, including human

  14. Structure of the CaMKIIdelta/calmodulin complex reveals the molecular mechanism of CaMKII kinase activation.

    Directory of Open Access Journals (Sweden)

    Peter Rellos

    2010-07-01

    Full Text Available Long-term potentiation (LTP, a long-lasting enhancement in communication between neurons, is considered to be the major cellular mechanism underlying learning and memory. LTP triggers high-frequency calcium pulses that result in the activation of Calcium/Calmodulin (CaM-dependent kinase II (CaMKII. CaMKII acts as a molecular switch because it remains active for a long time after the return to basal calcium levels, which is a unique property required for CaMKII function. Here we describe the crystal structure of the human CaMKIIdelta/Ca2+/CaM complex, structures of all four human CaMKII catalytic domains in their autoinhibited states, as well as structures of human CaMKII oligomerization domains in their tetradecameric and physiological dodecameric states. All four autoinhibited human CaMKIIs were monomeric in the determined crystal structures but associated weakly in solution. In the CaMKIIdelta/Ca2+/CaM complex, the inhibitory region adopted an extended conformation and interacted with an adjacent catalytic domain positioning T287 into the active site of the interacting protomer. Comparisons with autoinhibited CaMKII structures showed that binding of calmodulin leads to the rearrangement of residues in the active site to a conformation suitable for ATP binding and to the closure of the binding groove for the autoinhibitory helix by helix alphaD. The structural data, together with biophysical interaction studies, reveals the mechanism of CaMKII activation by calmodulin and explains many of the unique regulatory properties of these two essential signaling molecules.This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3-D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the Web plugin are available in Text S1.

  15. Structures of BmrR-Drug Complexes Reveal a Rigid Multidrug Binding Pocket And Transcription Activation Through Tyrosine Expulsion

    Energy Technology Data Exchange (ETDEWEB)

    Newberry, K.J.; Huffman, J.L.; Miller, M.C.; Vazquez-Laslop, N.; Neyfakh, A.A.; Brennan, R.G.

    2009-05-22

    BmrR is a member of the MerR family and a multidrug binding transcription factor that up-regulates the expression of the bmr multidrug efflux transporter gene in response to myriad lipophilic cationic compounds. The structural mechanism by which BmrR binds these chemically and structurally different drugs and subsequently activates transcription is poorly understood. Here, we describe the crystal structures of BmrR bound to rhodamine 6G (R6G) or berberine (Ber) and cognate DNA. These structures reveal each drug stacks against multiple aromatic residues with their positive charges most proximal to the carboxylate group of Glu-253 and that, unlike other multidrug binding pockets, that of BmrR is rigid. Substitution of Glu-253 with either alanine (E253A) or glutamine (E253Q) results in unpredictable binding affinities for R6G, Ber, and tetraphenylphosphonium. Moreover, these drug binding studies reveal that the negative charge of Glu-253 is not important for high affinity binding to Ber and tetraphenylphosphonium but plays a more significant, but unpredictable, role in R6G binding. In vitro transcription data show that E253A and E253Q are constitutively active, and structures of the drug-free E253A-DNA and E253Q-DNA complexes support a transcription activation mechanism requiring the expulsion of Tyr-152 from the multidrug binding pocket. In sum, these data delineate the mechanism by which BmrR binds lipophilic, monovalent cationic compounds and suggest the importance of the redundant negative electrostatic nature of this rigid drug binding pocket that can be used to discriminate against molecules that are not substrates of the Bmr multidrug efflux pump.

  16. Bliss and Loewe interaction analyses of clinically relevant drug combinations in human colon cancer cell lines reveal complex patterns of synergy and antagonism.

    Science.gov (United States)

    Kashif, Muhammad; Andersson, Claes; Mansoori, Sharmineh; Larsson, Rolf; Nygren, Peter; Gustafsson, Mats G

    2017-11-28

    We analyzed survival effects for 15 different pairs of clinically relevant anti-cancer drugs in three iso-genic pairs of human colorectal cancer carcinoma cell lines, by applying for the first time our novel software (R package) called COMBIA. In our experiments iso-genic pairs of cell lines were used, differing only with respect to a single clinically important KRAS or BRAF mutation. Frequently, concentration dependent but mutation independent joint Bliss and Loewe synergy/antagonism was found statistically significant. Four combinations were found synergistic/antagonistic specifically to the parental (harboring KRAS or BRAF mutation) cell line of the corresponding iso-genic cell lines pair. COMBIA offers considerable improvements over established software for synergy analysis such as MacSynergy™ II as it includes both Bliss (independence) and Loewe (additivity) analyses, together with a tailored non-parametric statistical analysis employing heteroscedasticity, controlled resampling, and global (omnibus) testing. In many cases Loewe analyses found significant synergistic as well as antagonistic effects in a cell line at different concentrations of a tested drug combination. By contrast, Bliss analysis found only one type of significant effect per cell line. In conclusion, the integrated Bliss and Loewe interaction analysis based on non-parametric statistics may provide more robust interaction analyses and reveal complex patterns of synergy and antagonism.

  17. Interaction structure of the complex between neuroprotective factor humanin and Alzheimer's β-amyloid peptide revealed by affinity mass spectrometry and molecular modeling.

    Science.gov (United States)

    Maftei, Madalina; Tian, Xiaodan; Manea, Marilena; Exner, Thomas E; Schwanzar, Daniel; von Arnim, Christine A F; Przybylski, Michael

    2012-06-01

    Humanin (HN) is a linear 24-aa peptide recently detected in human Alzheimer's disease (AD) brain. HN specifically inhibits neuronal cell death in vitro induced by ß-amyloid (Aß) peptides and by amyloid precursor protein and its gene mutations in familial AD, thereby representing a potential therapeutic lead structure for AD; however, its molecular mechanism of action is not well understood. We report here the identification of the binding epitopes between HN and Aß(1-40) and characterization of the interaction structure through a molecular modeling study. Wild-type HN and HN-sequence mutations were synthesized by SPPS and the HPLC-purified peptides characterized by MALDI-MS. The interaction epitopes between HN and Aß(1-40) were identified by affinity-MS using proteolytic epitope excision and extraction, followed by elution and mass spectrometric characterization of the affinity-bound peptides. The affinity-MS analyses revealed HN(5-15) as the epitope sequence of HN, whereas Aß(17-28) was identified as the Aß interaction epitope. The epitopes and binding sites were ascertained by ELISA of the complex of HN peptides with immobilized Aß(1-40) and by ELISA with Aß(1-40) and Aß-partial sequences as ligands to immobilized HN. The specificity and affinity of the HN-Aß interaction were characterized by direct ESI-MS of the HN-Aß(1-40) complex and by bioaffinity analysis using a surface acoustic wave biosensor, providing a K(D) of the complex of 610 nm. A molecular dynamics simulation of the HN-Aß(1-40) complex was consistent with the binding specificity and shielding effects of the HN and Aß interaction epitopes. These results indicate a specific strong association of HN and Aß(1-40) polypeptide and provide a molecular basis for understanding the neuroprotective function of HN. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.

  18. Analysis of costs-benefits tradeoffs of complex security systems

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, M.J. [Sandia National Labs., Albuquerque, NM (United States). Security Systems Analysis and Development Dept.

    1996-12-31

    Essential to a systems approach to design of security systems is an analysis of the cost effectiveness of alternative designs. While the concept of analysis of costs and benefits is straightforward, implementation can be at the least tedious and, for complex designs and alternatives, can become nearly intractable without the help of structured analysis tools. PACAIT--Performance and Cost Analysis Integrated Tools--is a prototype tool. The performance side of the analysis collates and reduces data from ASSESS, and existing DOE PC-based security systems performance analysis tool. The costs side of the analysis uses ACE, an existing DOD PC-based costs analysis tool. Costs are reported over the full life-cycle of the system, that is, the costs to procure, operate, maintain and retire the system and all of its components. Results are collected in Microsoft{reg_sign} Excel workbooks and are readily available to analysts and decision makers in both tabular and graphical formats and at both the system and path-element levels.

  19. Analysis of costs-benefits tradeoffs of complex security systems

    International Nuclear Information System (INIS)

    Hicks, M.J.

    1996-01-01

    Essential to a systems approach to design of security systems is an analysis of the cost effectiveness of alternative designs. While the concept of analysis of costs and benefits is straightforward, implementation can be at the least tedious and, for complex designs and alternatives, can become nearly intractable without the help of structured analysis tools. PACAIT--Performance and Cost Analysis Integrated Tools--is a prototype tool. The performance side of the analysis collates and reduces data from ASSESS, and existing DOE PC-based security systems performance analysis tool. The costs side of the analysis uses ACE, an existing DOD PC-based costs analysis tool. Costs are reported over the full life-cycle of the system, that is, the costs to procure, operate, maintain and retire the system and all of its components. Results are collected in Microsoft reg-sign Excel workbooks and are readily available to analysts and decision makers in both tabular and graphical formats and at both the system and path-element levels

  20. Analysis of chromosome rearrangements on the basis of synaptonemal complexes in the offspring of mice exposed to γ-rays

    International Nuclear Information System (INIS)

    Kalikinskaya, E.I.; Bogdanov, Yu.F.; Kolomiets, O.L.; Shevchenko, V.A.

    1986-01-01

    Electron-microscopic analysis of synaptonemic complexes (SC), spread on the hypophase surface, was conducted to investigate chromosome rearrangements in sterile and semisterile F 1 malemause offsprings, exposed to 5 Gy γ-rays Paralelly Chromosome rearrangement account in diakinesis-metaphase 1 was conducted using light microscope, in the same animals. During SC analysis in pachytene chromosome rearrangements were found in 63% of spermatocytes. Under chromosome analysis in diakinesis-metaphase 1 in the same animals chromosome rearrangements were found only in 32% of cells. SC analysis allows one to reveal chromosome rearrangements, which can not be revealed in diakinesis-metaphase 1

  1. Population genomic analysis of elongated skulls reveals extensive female-biased immigration in Early Medieval Bavaria.

    Science.gov (United States)

    Veeramah, Krishna R; Rott, Andreas; Groß, Melanie; van Dorp, Lucy; López, Saioa; Kirsanow, Karola; Sell, Christian; Blöcher, Jens; Wegmann, Daniel; Link, Vivian; Hofmanová, Zuzana; Peters, Joris; Trautmann, Bernd; Gairhos, Anja; Haberstroh, Jochen; Päffgen, Bernd; Hellenthal, Garrett; Haas-Gebhard, Brigitte; Harbeck, Michaela; Burger, Joachim

    2018-03-12

    Modern European genetic structure demonstrates strong correlations with geography, while genetic analysis of prehistoric humans has indicated at least two major waves of immigration from outside the continent during periods of cultural change. However, population-level genome data that could shed light on the demographic processes occurring during the intervening periods have been absent. Therefore, we generated genomic data from 41 individuals dating mostly to the late 5th/early 6th century AD from present-day Bavaria in southern Germany, including 11 whole genomes (mean depth 5.56×). In addition we developed a capture array to sequence neutral regions spanning a total of 5 Mb and 486 functional polymorphic sites to high depth (mean 72×) in all individuals. Our data indicate that while men generally had ancestry that closely resembles modern northern and central Europeans, women exhibit a very high genetic heterogeneity; this includes signals of genetic ancestry ranging from western Europe to East Asia. Particularly striking are women with artificial skull deformations; the analysis of their collective genetic ancestry suggests an origin in southeastern Europe. In addition, functional variants indicate that they also differed in visible characteristics. This example of female-biased migration indicates that complex demographic processes during the Early Medieval period may have contributed in an unexpected way to shape the modern European genetic landscape. Examination of the panel of functional loci also revealed that many alleles associated with recent positive selection were already at modern-like frequencies in European populations ∼1,500 years ago. Copyright © 2018 the Author(s). Published by PNAS.

  2. Historical and contemporary geographic data reveal complex spatial and temporal responses of vegetation to climate and land stewardship

    Science.gov (United States)

    Villarreal, Miguel L.; Norman, Laura M.; Webb, Robert H.; Turner, Raymond M.

    2013-01-01

    Vegetation and land-cover changes are not always directional but follow complex trajectories over space and time, driven by changing anthropogenic and abiotic conditions. We present a multi-observational approach to land-change analysis that addresses the complex geographic and temporal variability of vegetation changes related to climate and land use. Using land-ownership data as a proxy for land-use practices, multitemporal land-cover maps, and repeat photography dating to the late 19th century, we examine changing spatial and temporal distributions of two vegetation types with high conservation value in the southwestern United States: grasslands and riparian vegetation. In contrast to many reported vegetation changes, notably shrub encroachment in desert grasslands, we found an overall increase in grassland area and decline of xeroriparian and riparian vegetation. These observed change patterns were neither temporally directional nor spatially uniform over the landscape. Historical data suggest that long-term vegetation changes coincide with broad climate fluctuations while fine-scale patterns are determined by land-management practices. In some cases, restoration and active management appear to weaken the effects of climate on vegetation; therefore, if land managers in this region act in accord with on-going directional changes, the current drought and associated ecological reorganization may provide an opportunity to achieve desired restoration endpoints.

  3. Complex network models reveal correlations among network metrics, exercise intensity and role of body changes in the fatigue process.

    Science.gov (United States)

    Pereira, Vanessa Helena; Gama, Maria Carolina Traina; Sousa, Filipe Antônio Barros; Lewis, Theodore Gyle; Gobatto, Claudio Alexandre; Manchado-Gobatto, Fúlvia Barros

    2015-05-21

    The aims of the present study were analyze the fatigue process at distinct intensity efforts and to investigate its occurrence as interactions at distinct body changes during exercise, using complex network models. For this, participants were submitted to four different running intensities until exhaustion, accomplished in a non-motorized treadmill using a tethered system. The intensities were selected according to critical power model. Mechanical (force, peak power, mean power, velocity and work) and physiological related parameters (heart rate, blood lactate, time until peak blood lactate concentration (lactate time), lean mass, anaerobic and aerobic capacities) and IPAQ score were obtained during exercises and it was used to construction of four complex network models. Such models have both, theoretical and mathematical value, and enables us to perceive new insights that go beyond conventional analysis. From these, we ranked the influences of each node at the fatigue process. Our results shows that nodes, links and network metrics are sensibility according to increase of efforts intensities, been the velocity a key factor to exercise maintenance at models/intensities 1 and 2 (higher time efforts) and force and power at models 3 and 4, highlighting mechanical variables in the exhaustion occurrence and even training prescription applications.

  4. Complex network models reveal correlations among network metrics, exercise intensity and role of body changes in the fatigue process

    Science.gov (United States)

    Pereira, Vanessa Helena; Gama, Maria Carolina Traina; Sousa, Filipe Antônio Barros; Lewis, Theodore Gyle; Gobatto, Claudio Alexandre; Manchado-Gobatto, Fúlvia Barros

    2015-05-01

    The aims of the present study were analyze the fatigue process at distinct intensity efforts and to investigate its occurrence as interactions at distinct body changes during exercise, using complex network models. For this, participants were submitted to four different running intensities until exhaustion, accomplished in a non-motorized treadmill using a tethered system. The intensities were selected according to critical power model. Mechanical (force, peak power, mean power, velocity and work) and physiological related parameters (heart rate, blood lactate, time until peak blood lactate concentration (lactate time), lean mass, anaerobic and aerobic capacities) and IPAQ score were obtained during exercises and it was used to construction of four complex network models. Such models have both, theoretical and mathematical value, and enables us to perceive new insights that go beyond conventional analysis. From these, we ranked the influences of each node at the fatigue process. Our results shows that nodes, links and network metrics are sensibility according to increase of efforts intensities, been the velocity a key factor to exercise maintenance at models/intensities 1 and 2 (higher time efforts) and force and power at models 3 and 4, highlighting mechanical variables in the exhaustion occurrence and even training prescription applications.

  5. High-density PhyloChip profiling of stimulated aquifer microbial communities reveals a complex response to acetate amendment.

    Science.gov (United States)

    Handley, Kim M; Wrighton, Kelly C; Piceno, Yvette M; Andersen, Gary L; DeSantis, Todd Z; Williams, Kenneth H; Wilkins, Michael J; N'Guessan, A Lucie; Peacock, Aaron; Bargar, John; Long, Philip E; Banfield, Jillian F

    2012-07-01

    There is increasing interest in harnessing the functional capacities of indigenous microbial communities to transform and remediate a wide range of environmental contaminants. Information about which community members respond to stimulation can guide the interpretation and development of remediation approaches. To comprehensively determine community membership and abundance patterns among a suite of samples associated with uranium bioremediation experiments, we employed a high-density microarray (PhyloChip). Samples were unstimulated, naturally reducing, or collected during Fe(III) (early) and sulfate reduction (late biostimulation) from an acetate re-amended/amended aquifer in Rifle, Colorado, and from laboratory experiments using field-collected materials. Deep community sampling with PhyloChip identified hundreds-to-thousands of operational taxonomic units (OTUs) present during amendment, and revealed close similarity among highly enriched taxa from drill core and groundwater well-deployed column sediment. Overall, phylogenetic data suggested that stimulated community membership was most affected by a carryover effect between annual stimulation events. Nevertheless, OTUs within the Fe(III)- and sulfate-reducing lineages, Desulfuromonadales and Desulfobacterales, were repeatedly stimulated. Less consistent, co-enriched taxa represented additional lineages associated with Fe(III) and sulfate reduction (e.g. Desulfovibrionales; Syntrophobacterales; Peptococcaceae) and autotrophic sulfur oxidation (Sulfurovum; Campylobacterales). Data implies complex membership among highly stimulated taxa and, by inference, biogeochemical responses to acetate, a nonfermentable substrate. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  6. GlcNAc-1-P-transferase–tunicamycin complex structure reveals basis for inhibition of N-glycosylation

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jiho; Mashalidis, Ellene H.; Kuk, Alvin C. Y.; Yamamoto, Kazuki; Kaeser, Benjamin; Ichikawa, Satoshi; Lee, Seok-Yong

    2018-02-19

    N-linked glycosylation is a predominant post-translational modification of protein in eukaryotes, and its dysregulation is the etiology of several human disorders. The enzyme UDP-N-acetylglucosamine:dolichyl-phosphate N-acetylglucosaminephosphotransferase (GlcNAc-1-P-transferase or GPT) catalyzes the first and committed step of N-linked glycosylation in the endoplasmic reticulum membrane, and it is the target of the natural product tunicamycin. Tunicamycin has potent antibacterial activity, inhibiting the bacterial cell wall synthesis enzyme MraY, but its usefulness as an antibiotic is limited by off-target inhibition of human GPT. Our understanding of how tunicamycin inhibits N-linked glycosylation and efforts to selectively target MraY are hampered by a lack of structural information. Here we present crystal structures of human GPT in complex with tunicamycin. In conclusion, structural and functional analyses reveal the difference between GPT and MraY in their mechanisms of inhibition by tunicamycin. We demonstrate that this difference could be exploited to design MraY-specific inhibitors as potential antibiotics.

  7. Cryo-EM Structure of a KCNQ1/CaM Complex Reveals Insights into Congenital Long QT Syndrome.

    Science.gov (United States)

    Sun, Ji; MacKinnon, Roderick

    2017-06-01

    KCNQ1 is the pore-forming subunit of cardiac slow-delayed rectifier potassium (I Ks ) channels. Mutations in the kcnq1 gene are the leading cause of congenital long QT syndrome (LQTS). Here, we present the cryoelectron microscopy (cryo-EM) structure of a KCNQ1/calmodulin (CaM) complex. The conformation corresponds to an "uncoupled," PIP 2 -free state of KCNQ1, with activated voltage sensors and a closed pore. Unique structural features within the S4-S5 linker permit uncoupling of the voltage sensor from the pore in the absence of PIP 2 . CaM contacts the KCNQ1 voltage sensor through a specific interface involving a residue on CaM that is mutated in a form of inherited LQTS. Using an electrophysiological assay, we find that this mutation on CaM shifts the KCNQ1 voltage-activation curve. This study describes one physiological form of KCNQ1, depolarized voltage sensors with a closed pore in the absence of PIP 2 , and reveals a regulatory interaction between CaM and KCNQ1 that may explain CaM-mediated LQTS. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. High-Resolution Imaging Reveals New Features of Nuclear Export of mRNA through the Nuclear Pore Complexes

    Directory of Open Access Journals (Sweden)

    Joseph M. Kelich

    2014-08-01

    Full Text Available The nuclear envelope (NE of eukaryotic cells provides a physical barrier for messenger RNA (mRNA and the associated proteins (mRNPs traveling from sites of transcription in the nucleus to locations of translation processing in the cytoplasm. Nuclear pore complexes (NPCs embedded in the NE serve as a dominant gateway for nuclear export of mRNA. However, the fundamental characterization of export dynamics of mRNPs through the NPC has been hindered by several technical limits. First, the size of NPC that is barely below the diffraction limit of conventional light microscopy requires a super-resolution microscopy imaging approach. Next, the fast transit of mRNPs through the NPC further demands a high temporal resolution by the imaging approach. Finally, the inherent three-dimensional (3D movements of mRNPs through the NPC demand the method to provide a 3D mapping of both transport kinetics and transport pathways of mRNPs. This review will highlight the recently developed super-resolution imaging techniques advanced from 1D to 3D for nuclear export of mRNPs and summarize the new features in the dynamic nuclear export process of mRNPs revealed from these technical advances.

  9. Economic development and wage inequality: A complex system analysis

    Science.gov (United States)

    Pugliese, Emanuele; Pietronero, Luciano

    2017-01-01

    Adapting methods from complex system analysis, this paper analyzes the features of the complex relationship between wage inequality and the development and industrialization of a country. Development is understood as a combination of a monetary index, GDP per capita, and a recently introduced measure of a country’s economic complexity: Fitness. Initially the paper looks at wage inequality on a global scale, over the time period 1990–2008. Our empirical results show that globally the movement of wage inequality along with the ongoing industrialization of countries has followed a longitudinally persistent pattern comparable to the one theorized by Kuznets in the fifties: countries with an average level of development suffer the highest levels of wage inequality. Next, the study narrows its focus on wage inequality within the United States. By using data on wages and employment in the approximately 3100 US counties over the time interval 1990–2014, it generalizes the Fitness-Complexity metric for geographic units and industrial sectors, and then investigates wage inequality between NAICS industries. The empirical time and scale dependencies are consistent with a relation between wage inequality and development driven by institutional factors comparing countries, and by change in the structural compositions of sectors in a homogeneous institutional environment, such as the counties of the United States. PMID:28926577

  10. Economic development and wage inequality: A complex system analysis.

    Directory of Open Access Journals (Sweden)

    Angelica Sbardella

    Full Text Available Adapting methods from complex system analysis, this paper analyzes the features of the complex relationship between wage inequality and the development and industrialization of a country. Development is understood as a combination of a monetary index, GDP per capita, and a recently introduced measure of a country's economic complexity: Fitness. Initially the paper looks at wage inequality on a global scale, over the time period 1990-2008. Our empirical results show that globally the movement of wage inequality along with the ongoing industrialization of countries has followed a longitudinally persistent pattern comparable to the one theorized by Kuznets in the fifties: countries with an average level of development suffer the highest levels of wage inequality. Next, the study narrows its focus on wage inequality within the United States. By using data on wages and employment in the approximately 3100 US counties over the time interval 1990-2014, it generalizes the Fitness-Complexity metric for geographic units and industrial sectors, and then investigates wage inequality between NAICS industries. The empirical time and scale dependencies are consistent with a relation between wage inequality and development driven by institutional factors comparing countries, and by change in the structural compositions of sectors in a homogeneous institutional environment, such as the counties of the United States.

  11. Use of neural networks in the analysis of complex systems

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1992-01-01

    The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms) to some of the problems of complex engineering systems has the potential to enhance the safety reliability and operability of these systems. The work described here deals with complex systems or parts of such systems that can be isolated from the total system. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network. The neural networks are usually simulated on modern high-speed computers that carry out the calculations serially. However, it is possible to implement neural networks using specially designed microchips where the network calculations are truly carried out in parallel, thereby providing virtually instantaneous outputs for each set of inputs. Specific applications described include: Diagnostics: State of the Plant; Hybrid System for Transient Identification; Detection of Change of Mode in Complex Systems; Sensor Validation; Plant-Wide Monitoring; Monitoring of Performance and Efficiency; and Analysis of Vibrations. Although the specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems

  12. State analysis requirements database for engineering complex embedded systems

    Science.gov (United States)

    Bennett, Matthew B.; Rasmussen, Robert D.; Ingham, Michel D.

    2004-01-01

    It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer's intent, potentially leading to software errors. This problem is addressed by a systems engineering tool called the State Analysis Database, which provides a tool for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using the State Analysis Database.

  13. Fire hazard analysis for Plutonium Finishing Plant complex

    Energy Technology Data Exchange (ETDEWEB)

    MCKINNIS, D.L.

    1999-02-23

    A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41, Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards.

  14. Particle-based shape analysis of multi-object complexes.

    Science.gov (United States)

    Cates, Joshua; Fletcher, P Thomas; Styner, Martin; Hazlett, Heather Cody; Whitaker, Ross

    2008-01-01

    This paper presents a new method for optimizing surface point correspondences for shape modeling of multiobject anatomy, or shape complexes. The proposed method is novel in that it optimizes correspondence positions in the full, joint shape space of the object complex. Researchers have previously only considered the correspondence problem separately for each structure, thus ignoring the interstructural shape correlations that are increasingly of interest in many clinical contexts, such as the study of the effects of disease on groups of neuroanatomical structures. The proposed method uses a nonparametric, dynamic particle system to simultaneously sample object surfaces and optimize correspondence point positions. This paper also suggests a principled approach to hypothesis testing using the Hotelling T2 test in the PCA space of the correspondence model, with a simulation-based choice of the number of PCA modes. We also consider statistical analysis of object poses. The modeling and analysis methods are illustrated on brain structure complexes from an ongoing clinical study of pediatric autism.

  15. Fire hazard analysis for Plutonium Finishing Plant complex

    International Nuclear Information System (INIS)

    MCKINNIS, D.L.

    1999-01-01

    A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41, Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards

  16. RNA profiles of porcine embryos during genome activation reveal complex metabolic switch sensitive to in vitro conditions

    DEFF Research Database (Denmark)

    Østrup, Olga; Olbricht, Gayla; Østrup, Esben

    2013-01-01

    a handful of reports characterize changing transcriptome profiles and resulting metabolic changes in cleavage stage embryos. The aims of the current study were to investigate RNA profiles of in vivo developed (ivv) and in vitro produced (ivt) porcine embryos before (2-cell stage) and after (late 4-cell...... stage) EGA and determine major metabolic changes that regulate totipotency. The period before EGA was dominated by transcripts responsible for cell cycle regulation, mitosis, RNA translation and processing (including ribosomal machinery), protein catabolism, and chromatin remodelling. Following EGA...... an increase in the abundance of transcripts involved in transcription, translation, DNA metabolism, histone and chromatin modification, as well as protein catabolism was detected. The further analysis of members of overlapping GO terms revealed that despite that comparable cellular processes are taking place...

  17. Glycoproteomic analysis of seven major allergenic proteins reveals novel post-translational modifications

    DEFF Research Database (Denmark)

    Halim, Adnan; Carlsson, Michael C; Mathiesen, Caroline Benedicte K

    2015-01-01

    characterization by bottom-up analysis. In addition, top-down mass spectrometry is utilized for targeted analysis of individual proteins, revealing hitherto unknown PTMs of HDM allergens. We demonstrate the presence of lysine-linked polyhexose glycans and asparagine-linked N-acetylhexosamine glycans on HDM...

  18. Spectroscopic, thermal analysis and DFT computational studies of salen-type Schiff base complexes

    Science.gov (United States)

    Ebrahimi, Hossein Pasha; Hadi, Jabbar S.; Abdulnabi, Zuhair A.; Bolandnazar, Zeinab

    2014-01-01

    A new series of metal(II) complexes of Co(II), Ni(II), Cu(II), Zn(II), and Pb(II) have been synthesized from a salen-type Schiff base ligand derived from o-vanillin and 4-methyl-1,2-phenylenediamine and characterized by elemental analysis, spectral (IR, UV-Vis, 1H NMR, 13C NMR and EI-mass), molar conductance measurements and thermal analysis techniques. Coats-Redfern method has been utilized to calculate the kinetic and thermodynamic parameters of the metal complexes. The molecular geometry, Mulliken atomic charges of the studied compounds were investigated theoretically by performing density functional theory (DFT) to access reliable results to the experimental values. The theoretical 13C chemical shift results of the studied compounds have been calculated at the B3LYP, PBEPBE and PW91PW91 methods and standard 6-311+G(d,p) basis set starting from optimized geometry. The comparison of the results indicates that B3LYP/6-311+G(d,p) yields good agreement with the observed chemical shifts. The measured low molar conductance values in DMF indicate that the metal complexes are non-electrolytes. The spectral and thermal analysis reveals that all complexes have octahedral geometry except Cu(II) complex which can attain the square planner arrangement. The presence of lattice and coordinated water molecules are indicated by thermograms of the complexes. The thermogravimetric (TG/DTG) analyses confirm high stability for all complexes followed by thermal decomposition in different steps.

  19. Comparative Genome Analysis of Lolium-Festuca Complex Species

    DEFF Research Database (Denmark)

    Czaban, Adrian; Byrne, Stephen; Sharma, Sapna

    2015-01-01

    The Lolium-Festuca complex incorporates species from the Lolium genera and the broad leaf Fescues. Plants belonging to this complex exhibit significant phenotypic plasticity for agriculturally important traits, such as annuality/perenniality, establishment potential, growth speed, nutritional value......, winter hardiness, drought tolerance and resistance to grazing. In this study we have sequenced and assembled the low copy fraction of the genomes of Lolium westerwoldicum, Lolium multiflorum, Festuca pratensis and Lolium temulentum. We have also generated de-novo transcriptome assemblies for each species....... Our dataset enabled us to perform comparative gene family analysis for CBF (C-Repeat Binding Factor) proteins, which are key regulators of cold acclimation and freezing tolerance in plants....

  20. Inositol pyrophosphates and their unique metabolic complexity: analysis by gel electrophoresis.

    Directory of Open Access Journals (Sweden)

    Oriana Losito

    Full Text Available Inositol pyrophosphates are a recently characterized cell signalling molecules responsible for the pyrophosphorylation of protein substrates. Though likely involved in a wide range of cellular functions, the study of inositol pyrophosphates has suffered from a lack of readily available methods for their analysis.We describe a novel, sensitive and rapid polyacrylamide gel electrophoresis (PAGE-based method for the analysis of inositol pyrophosphates. Using 4',6-diamidino-2-phenylindole (DAPI and Toluidine Blue we demonstrate the unequivocal detection of various inositol pyrophosphate species.The use of the PAGE-based method reveals the likely underestimation of inositol pyrophosphates and their signalling contribution in cells when measured via traditional HPLC-based techniques. PAGE-based analyses also reveals the existence of a number of additional, previously uncharacterised pyrophosphorylated inositol reaction products, defining a more complex metabolism associated with the catalytically flexible kinase class responsible for the production of these highly energetic cell signalling molecules.

  1. Crystal Structures of GII.10 and GII.12 Norovirus Protruding Domains in Complex with Histo-Blood Group Antigens Reveal Details for a Potential Site of Vulnerability

    Energy Technology Data Exchange (ETDEWEB)

    Hansman, Grant S.; Biertümpfel, Christian; Georgiev, Ivelin; McLellan, Jason S.; Chen, Lei; Zhou, Tongqing; Katayama, Kazuhiko; Kwong, Peter D. (NIH); (NIID-Japan)

    2011-10-10

    Noroviruses are the dominant cause of outbreaks of gastroenteritis worldwide, and interactions with human histo-blood group antigens (HBGAs) are thought to play a critical role in their entry mechanism. Structures of noroviruses from genogroups GI and GII in complex with HBGAs, however, reveal different modes of interaction. To gain insight into norovirus recognition of HBGAs, we determined crystal structures of norovirus protruding domains from two rarely detected GII genotypes, GII.10 and GII.12, alone and in complex with a panel of HBGAs, and analyzed structure-function implications related to conservation of the HBGA binding pocket. The GII.10- and GII.12-apo structures as well as the previously solved GII.4-apo structure resembled each other more closely than the GI.1-derived structure, and all three GII structures showed similar modes of HBGA recognition. The primary GII norovirus-HBGA interaction involved six hydrogen bonds between a terminal {alpha}fucose1-2 of the HBGAs and a dimeric capsid interface, which was composed of elements from two protruding subdomains. Norovirus interactions with other saccharide units of the HBGAs were variable and involved fewer hydrogen bonds. Sequence analysis revealed a site of GII norovirus sequence conservation to reside under the critical {alpha}fucose1-2 and to be one of the few patches of conserved residues on the outer virion-capsid surface. The site was smaller than that involved in full HBGA recognition, a consequence of variable recognition of peripheral saccharides. Despite this evasion tactic, the HBGA site of viral vulnerability may provide a viable target for small molecule- and antibody-mediated neutralization of GII norovirus.

  2. Multilocus phylogeny of the avian family Alaudidae (larks) reveals complex morphological evolution, non-monophyletic genera and hidden species diversity.

    Science.gov (United States)

    Alström, Per; Barnes, Keith N; Olsson, Urban; Barker, F Keith; Bloomer, Paulette; Khan, Aleem Ahmed; Qureshi, Masood Ahmed; Guillaumet, Alban; Crochet, Pierre-André; Ryan, Peter G

    2013-12-01

    The Alaudidae (larks) is a large family of songbirds in the superfamily Sylvioidea. Larks are cosmopolitan, although species-level diversity is by far largest in Africa, followed by Eurasia, whereas Australasia and the New World have only one species each. The present study is the first comprehensive phylogeny of the Alaudidae. It includes 83.5% of all species and representatives from all recognised genera, and was based on two mitochondrial and three nuclear loci (in total 6.4 kbp, although not all loci were available for all species). In addition, a larger sample, comprising several subspecies of some polytypic species was analysed for one of the mitochondrial loci. There was generally good agreement in trees inferred from different loci, although some strongly supported incongruences were noted. The tree based on the concatenated multilocus data was overall well resolved and well supported by the data. We stress the importance of performing single gene as well as combined data analyses, as the latter may obscure significant incongruence behind strong nodal support values. The multilocus tree revealed many unpredicted relationships, including some non-monophyletic genera (Calandrella, Mirafra, Melanocorypha, Spizocorys). The tree based on the extended mitochondrial data set revealed several unexpected deep divergences between taxa presently treated as conspecific (e.g. within Ammomanes cinctura, Ammomanes deserti, Calandrella brachydactyla, Eremophila alpestris), as well as some shallow splits between currently recognised species (e.g. Certhilauda brevirostris-C. semitorquata-C. curvirostris; Calendulauda barlowi-C. erythrochlamys; Mirafra cantillans-M. javanica). Based on our results, we propose a revised generic classification, and comment on some species limits. We also comment on the extraordinary morphological adaptability in larks, which has resulted in numerous examples of parallel evolution (e.g. in Melanocorypha mongolica and Alauda leucoptera [both

  3. Structure and function analysis of protein-nucleic acid complexes

    Science.gov (United States)

    Kuznetsova, S. A.; Oretskaya, T. S.

    2016-05-01

    The review summarizes published data on the results and achievements in the field of structure and function analysis of protein-nucleic acid complexes by means of main physical and biochemical methods, including X-ray diffraction, nuclear magnetic resonance spectroscopy, electron and atomic force microscopy, small-angle X-ray and neutron scattering, footprinting and cross-linking. Special attention is given to combined approaches. The advantages and limitations of each method are considered, and the prospects of their application for wide-scale structural studies in vivo are discussed. The bibliography includes 145 references.

  4. Complex experimental analysis of rifle-shooter interaction

    Directory of Open Access Journals (Sweden)

    Michał Taraszewski, M.ScEng, PhD. candidate

    2017-10-01

    Full Text Available In this study, a complex analysis of a man-weapon interaction based on experimental effort is presented. The attention is focused on how a shooter can influence on a rifle, opposite to generally considered in literature rifle's impact on a shooter. It is shown, based on the kbk AKM weapon, that each support point of the rifle has an substantial impact on the system. It is said that identifying human reactions on weapon may let to describe gun movement and thus may be applied to weapon accuracy determination.

  5. Analysis and visualization of complex unsteady three-dimensional flows

    Science.gov (United States)

    Van Dalsem, William R.; Buning, Pieter G.; Dougherty, F. Carroll; Smith, Merritt H.

    1989-01-01

    Flow field animation is the natural choice as a tool in the analysis of the numerical simulations of complex unsteady three-dimensional flows. The PLOT4D extension of the widely used PLOT3D code to allow the interactive animation of a broad range of flow variables was developed and is presented. To allow direct comparison with unsteady experimental smoke and dye flow visualization, the code STREAKER was developed to produce time accurate streaklines. Considerations regarding the development of PLOT4D and STREAKER, and example results are presented.

  6. Integrated analysis of multiple data sources reveals modular structure of biological networks

    International Nuclear Information System (INIS)

    Lu Hongchao; Shi Baochen; Wu Gaowei; Zhang Yong; Zhu Xiaopeng; Zhang Zhihua; Liu Changning; Zhao, Yi; Wu Tao; Wang Jie; Chen Runsheng

    2006-01-01

    It has been a challenging task to integrate high-throughput data into investigations of the systematic and dynamic organization of biological networks. Here, we presented a simple hierarchical clustering algorithm that goes a long way to achieve this aim. Our method effectively reveals the modular structure of the yeast protein-protein interaction network and distinguishes protein complexes from functional modules by integrating high-throughput protein-protein interaction data with the added subcellular localization and expression profile data. Furthermore, we take advantage of the detected modules to provide a reliably functional context for the uncharacterized components within modules. On the other hand, the integration of various protein-protein association information makes our method robust to false-positives, especially for derived protein complexes. More importantly, this simple method can be extended naturally to other types of data fusion and provides a framework for the study of more comprehensive properties of the biological network and other forms of complex networks

  7. Complex mean circulation over the inner shelf south of Martha's Vineyard revealed by observations and a high-resolution model

    Science.gov (United States)

    Ganju, Neil K.; Lentz, Steven J.; Kirincich, Anthony R.; Farrar, J. Thomas

    2011-01-01

    Inner-shelf circulation is governed by the interaction between tides, baroclinic forcing, winds, waves, and frictional losses; the mean circulation ultimately governs exchange between the coast and ocean. In some cases, oscillatory tidal currents interact with bathymetric features to generate a tidally rectified flow. Recent observational and modeling efforts in an overlapping domain centered on the Martha's Vineyard Coastal Observatory (MVCO) provided an opportunity to investigate the spatial and temporal complexity of circulation on the inner shelf. ADCP and surface radar observations revealed a mean circulation pattern that was highly variable in the alongshore and cross-shore directions. Nested modeling incrementally improved representation of the mean circulation as grid resolution increased and indicated tidal rectification as the generation mechanism of a counter-clockwise gyre near the MVCO. The loss of model skill with decreasing resolution is attributed to insufficient representation of the bathymetric gradients (Δh/h), which is important for representing nonlinear interactions between currents and bathymetry. The modeled momentum balance was characterized by large spatial variability of the pressure gradient and horizontal advection terms over short distances, suggesting that observed inner-shelf momentum balances may be confounded. Given the available observational and modeling data, this work defines the spatially variable mean circulation and its formation mechanism—tidal rectification—and illustrates the importance of model resolution for resolving circulation and constituent exchange near the coast. The results of this study have implications for future observational and modeling studies near the MVCO and other inner-shelf locations with alongshore bathymetric variability.

  8. ALMA Reveals Sequential High-mass Star Formation in the G9.62+0.19 Complex

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tie; Kim, Kee-Tae [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon, Korea 34055 (Korea, Republic of); Lacy, John [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Li, Pak Shing [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Wang, Ke [European Southern Observatory, Karl-Schwarzschild-Str.2, D-85748 Garching bei München (Germany); Qin, Sheng-Li [Department of Astronomy, Yunnan University, and Key Laboratory of Astroparticle Physics of Yunnan Province, Kunming, 650091 (China); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Garay, Guido; Mardones, Diego [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Wu, Yuefang [Department of Astronomy, Peking University, Beijing 100871 (China); Zhu, Qingfeng [Astronomy Department, University of Science and Technology, Chinese Academy of Sciences, Hefei 210008 (China); Tatematsu, Ken’ichi; Hirota, Tomoya [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Ren, Zhiyuan; Li, Di [National Astronomical Observatories, Chinese Academy of Science, A20 Datun Road, Chaoyang District, Beijing 100012 (China); Liu, Sheng-Yuan; Chen, Huei-Ru; Su, Yu-Nung, E-mail: liutiepku@gmail.com [Academia Sinica, Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China)

    2017-11-01

    Stellar feedback from high-mass stars (e.g., H ii regions) can strongly influence the surrounding interstellar medium and regulate star formation. Our new ALMA observations reveal sequential high-mass star formation taking place within one subvirial filamentary clump (the G9.62 clump) in the G9.62+0.19 complex. The 12 dense cores (MM1–MM12) detected by ALMA are at very different evolutionary stages, from the starless core phase to the UC H ii region phase. Three dense cores (MM6, MM7/G, MM8/F) are associated with outflows. The mass–velocity diagrams of the outflows associated with MM7/G and MM8/F can be well-fit by broken power laws. The mass–velocity diagram of the SiO outflow associated with MM8/F breaks much earlier than other outflow tracers (e.g., CO, SO, CS, HCN), suggesting that SiO traces newly shocked gas, while the other molecular lines (e.g., CO, SO, CS, HCN) mainly trace the ambient gas continuously entrained by outflow jets. Five cores (MM1, MM3, MM5, MM9, MM10) are massive starless core candidates whose masses are estimated to be larger than 25 M {sub ☉}, assuming a dust temperature of ≤20 K. The shocks from the expanding H ii regions (“B” and “C”) to the west may have a great impact on the G9.62 clump by compressing it into a filament and inducing core collapse successively, leading to sequential star formation. Our findings suggest that stellar feedback from H ii regions may enhance the star formation efficiency and suppress low-mass star formation in adjacent pre-existing massive clumps.

  9. CFD three dimensional wake analysis in complex terrain

    Science.gov (United States)

    Castellani, F.; Astolfi, D.; Terzi, L.

    2017-11-01

    Even if wind energy technology is nowadays fully developed, the use of wind energy in very complex terrain is still challenging. In particular, it is challenging to characterize the combination effects of wind ow over complex terrain and wake interactions between nearby turbines and this has a practical relevance too, for the perspective of mitigating anomalous vibrations and loads as well improving the farm efficiency. In this work, a very complex terrain site has been analyzed through a Reynolds-averaged CFD (Computational Fluid Dynamics) numerical wind field model; in the simulation the inuence of wakes has been included through the Actuator Disk (AD) approach. In particular, the upstream turbine of a cluster of 4 wind turbines having 2.3 MW of rated power is studied. The objective of this study is investigating the full three-dimensional wind field and the impact of three-dimensionality on the evolution of the waked area between nearby turbines. A post-processing method of the output of the CFD simulation is developed and this allows to estimate the wake lateral deviation and the wake width. The reliability of the numerical approach is inspired by and crosschecked through the analysis of the operational SCADA (Supervisory Control and Data Acquisition) data of the cluster of interest.

  10. Proteomic analysis reveals differential protein expression in variants of papillary thyroid carcinoma

    Directory of Open Access Journals (Sweden)

    Yasemin Ucal

    2017-12-01

    Full Text Available Introduction: Fine Needle Aspiration Biopsy (FNAB allows the cytological differentiation of benign and malignant thyroid nodules. However, the method itself is not adequate in determining some cases. For example, the diagnosis of Follicular Variant Papillary Thyroid Carcinoma (FV-PTC can be challenging. In the current study we investigate the protein profiles of FV-PTC and classical variant PTC (CV-PTC with no lymph node metastasis and compare it with benign thyroid tissue. Method: We used CV-PTC (n = 6, FV-PTC (n = 6 and benign thyroid tissues (n = 6 to prepare tissue lysates. Proteins from each group were trypsin and lys-C digested. The samples were analyzed on a Q Exactive Orbitrap mass spectrometer. Results: We identified 2560 proteins across all 18 specimens. Protein profiles revealed that there was no clear distinction between benign and FV-PTC samples. However, further examination of our data showed that proteins in energy metabolism have altered in FV-PTC. Proteomic pathway analysis showed marked alteration of the actin cytoskeleton proteins, especially several members of Arp2/3 complex were significantly increased in CV-PTC. We made the novel observation that IQGAP1 protein was significantly increased in CV-PTC, whereas IQGAP2 protein was highly expressed in FV-PTC lesions, suggesting differential roles of IQGAP proteins in thyroid pathology. Conclusion: In the present study, mass spectrometry based label free quantification approach was applied to investigate the protein profiles of FV-PTC, CV-PTC and benign thyroid tissues. This study pointed out that actin cytoskeleton proteins, IQGAP proteins and changes in energy metabolism play predominant roles in thyroid pathology. Keywords: Papillary thyroid carcinoma, IQGAP, Proteomics, Mass spectrometry

  11. Sequence analysis of mtDNA COI barcode region revealed three haplotypes within Culex pipiens assemblage.

    Science.gov (United States)

    Koosha, Mona; Oshaghi, Mohammad Ali; Sedaghat, Mohammad Mehdi; Vatandoost, Hassan; Azari-Hamidian, Shahyad; Abai, Mohammad Reza; Hanafi-Bojd, Ahmad Ali; Mohtarami, Fatemeh

    2017-10-01

    Members of the Culex (Culex) pipiens assemblage are known vectors of deadly encephalitides, periodic filariasis, and West Nile virus throughout the world. However, members of this assemblage are morphologically indistinguishable or hard to distinguish and play distinct roles in transmission of the diseases. The current study aimed to provide further evidence on utility of the two most popular nuclear (ITS2-rDNA) and mitochondrial (COI barcode region) genetic markers to identify members of the assemblage. Culex pipiens assemblage specimens from different climate zones of Iran were collected and identified to species level based on morphological characteristics. Nucleotide sequences of the loci for the specimens plus available data in the GenBank were analyzed to find species specific genetic structures useful for diagnosis purposes. ITS2 region was highly divergent within species or populations suggesting lack of consistency as a reliable molecular marker. In contrast, sequence analysis of 710 bp of COI gene revealed three fixed haplotypes named here "C, T, H" within the assemblage which can be distinguished by HaeIII and AluI enzymes. There were a correlation between the haplotypes and the world climate regions, where the haplotypes H/T and C are present mainly in temperate and tropical regions of the world, respectively. In the New world, Australia, and Japan only haplotype H is found. In conjunction between tropical and temperate regions such Iran, China, and Turkey, a mix of C/H or C/H/T are present. Although, the haplotypes are not strictly species-specific, however, Cx. quinquefasciatus was mainly of haplotype C. Due to the lack of mating barrier and questionable taxonomic situation of the complex members, the mentioned haplotypes in combination with other morphological and molecular characters might be used to address the genetic structure of the studied populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Diversity in a Polymicrobial Community Revealed by Analysis of Viromes, Endolysins and CRISPR Spacers.

    Directory of Open Access Journals (Sweden)

    Michelle Davison

    Full Text Available The polymicrobial biofilm communities in Mushroom and Octopus Spring in Yellowstone National Park (YNP are well characterized, yet little is known about the phage populations. Dominant species, Synechococcus sp. JA-2-3B'a(2-13, Synechococcus sp. JA-3-3Ab, Chloroflexus sp. Y-400-fl, and Roseiflexus sp. RS-1, contain multiple CRISPR-Cas arrays, suggesting complex interactions with phage predators. To analyze phage populations from Octopus Spring biofilms, we sequenced a viral enriched fraction. To assemble and analyze phage metagenomic data, we developed a custom module, VIRITAS, implemented within the MetAMOS framework. This module bins contigs into groups based on tetranucleotide frequencies and CRISPR spacer-protospacer matching and ORF calling. Using this pipeline we were able to assemble phage sequences into contigs and bin them into three clusters that corroborated with their potential host range. The virome contained 52,348 predicted ORFs; some were clearly phage-like; 9319 ORFs had a recognizable Pfam domain while the rest were hypothetical. Of the recognized domains with CRISPR spacer matches, was the phage endolysin used by lytic phage to disrupt cells. Analysis of the endolysins present in the thermophilic cyanophage contigs revealed a subset of characterized endolysins as well as a Glyco_hydro_108 (PF05838 domain not previously associated with sequenced cyanophages. A search for CRISPR spacer matches to all identified phage endolysins demonstrated that a majority of endolysin domains were targets. This strategy provides a general way to link host and phage as endolysins are known to be widely distributed in bacteriophage. Endolysins can also provide information about host cell wall composition and have the additional potential to be used as targets for novel therapeutics.

  13. Quantifying complex shapes: elliptical fourier analysis of octocoral sclerites.

    Science.gov (United States)

    Carlo, Joseph M; Barbeitos, Marcos S; Lasker, Howard R

    2011-06-01

    Species descriptions of most alcyonacean octocorals rely heavily on the morphology of sclerites, the calcium carbonate spicules embedded in the soft tissue. Sclerites provide taxonomic characters for species delineation but require qualitative descriptions, which introduce ambiguities in recognizing morphological features. Elliptical Fourier analysis of the outline of sclerites was used to quantify the morphology of eight species of gorgoniid octocoral in the genus Pseudopterogorgia. Sclerites from one to seven colonies of each species were compared. Scaphoids and spindles were examined separately; rods and octoradiates were excluded from the analyses because of their morphologic similarity across all species. Discriminant analysis of elliptical Fourier descriptors (EFDs) was used to determine whether the elliptical Fourier analysis could be used to identify the specimens. Sclerites were highly variable even within a single colony. Correct species assignments of individual sclerites were greater than 50% for both scaphoids and spindles. Species assignments based on averages of the EFDs for each colony approached 90%. Elliptical Fourier analysis quantifies morphological differences between species and measures colony variance in sclerite size and shape among colonies and species. Phylogenetic analysis based on EFDs did not capture monophyletic groups. The quantification of complex shapes such as sclerites provides an important tool in alpha taxonomy but may be less useful in phylogenetic analyses.

  14. Optimal fatigue analysis of structures during complex loadings

    Directory of Open Access Journals (Sweden)

    Karaouni Habib

    2016-01-01

    Full Text Available A new framework for high cycle fatigue analysis of metallic structures under complex multi-parameter loadings was here developed. This allows to reduce the analysis on a 2-D window with a characterized one-parameter cyclic loading thanks to an equivalence rule relative to damage between any two loadings. The simplified inelastic analysis introduced by J. Zarka [J. Zarka et al. 1990. A new approach in inelastic analysis of structures. CADLM] was used to find the limit state of the structure. A new design rules for fatigue analysis by utilizing automatic learning systems was successfully performed. A database was built by coupling numerical simulations and experimental results on several welded specimens which are considered as a general structure in the proposed approach. This could be possible by the introduction of an intelligent description of a general fatigue case based on the actual theories and models. A software, FATPRO [M.I. Systems, FatPro, available at http://www.mzintsys.com/our_products_fatpro.html], based on this work has been developed at MZ Intelligent Systems.

  15. Proteomic and bioinformatic analysis of epithelial tight junction reveals an unexpected cluster of synaptic molecules

    Directory of Open Access Journals (Sweden)

    Tang Vivian W

    2006-12-01

    Full Text Available Abstract Background Zonula occludens, also known as the tight junction, is a specialized cell-cell interaction characterized by membrane "kisses" between epithelial cells. A cytoplasmic plaque of ~100 nm corresponding to a meshwork of densely packed proteins underlies the tight junction membrane domain. Due to its enormous size and difficulties in obtaining a biochemically pure fraction, the molecular composition of the tight junction remains largely unknown. Results A novel biochemical purification protocol has been developed to isolate tight junction protein complexes from cultured human epithelial cells. After identification of proteins by mass spectroscopy and fingerprint analysis, candidate proteins are scored and assessed individually. A simple algorithm has been devised to incorporate transmembrane domains and protein modification sites for scoring membrane proteins. Using this new scoring system, a total of 912 proteins have been identified. These 912 hits are analyzed using a bioinformatics approach to bin the hits in 4 categories: configuration, molecular function, cellular function, and specialized process. Prominent clusters of proteins related to the cytoskeleton, cell adhesion, and vesicular traffic have been identified. Weaker clusters of proteins associated with cell growth, cell migration, translation, and transcription are also found. However, the strongest clusters belong to synaptic proteins and signaling molecules. Localization studies of key components of synaptic transmission have confirmed the presence of both presynaptic and postsynaptic proteins at the tight junction domain. To correlate proteomics data with structure, the tight junction has been examined using electron microscopy. This has revealed many novel structures including end-on cytoskeletal attachments, vesicles fusing/budding at the tight junction membrane domain, secreted substances encased between the tight junction kisses, endocytosis of tight junction

  16. Discrete Fourier Transform Analysis in a Complex Vector Space

    Science.gov (United States)

    Dean, Bruce H.

    2009-01-01

    Alternative computational strategies for the Discrete Fourier Transform (DFT) have been developed using analysis of geometric manifolds. This approach provides a general framework for performing DFT calculations, and suggests a more efficient implementation of the DFT for applications using iterative transform methods, particularly phase retrieval. The DFT can thus be implemented using fewer operations when compared to the usual DFT counterpart. The software decreases the run time of the DFT in certain applications such as phase retrieval that iteratively call the DFT function. The algorithm exploits a special computational approach based on analysis of the DFT as a transformation in a complex vector space. As such, this approach has the potential to realize a DFT computation that approaches N operations versus Nlog(N) operations for the equivalent Fast Fourier Transform (FFT) calculation.

  17. Automated sensitivity analysis: New tools for modeling complex dynamic systems

    International Nuclear Information System (INIS)

    Pin, F.G.

    1987-01-01

    Sensitivity analysis is an established methodology used by researchers in almost every field to gain essential insight in design and modeling studies and in performance assessments of complex systems. Conventional sensitivity analysis methodologies, however, have not enjoyed the widespread use they deserve considering the wealth of information they can provide, partly because of their prohibitive cost or the large initial analytical investment they require. Automated systems have recently been developed at ORNL to eliminate these drawbacks. Compilers such as GRESS and EXAP now allow automatic and cost effective calculation of sensitivities in FORTRAN computer codes. In this paper, these and other related tools are described and their impact and applicability in the general areas of modeling, performance assessment and decision making for radioactive waste isolation problems are discussed

  18. Automatic differential analysis of NMR experiments in complex samples.

    Science.gov (United States)

    Margueritte, Laure; Markov, Petar; Chiron, Lionel; Starck, Jean-Philippe; Vonthron-Sénécheau, Catherine; Bourjot, Mélanie; Delsuc, Marc-André

    2017-11-20

    Liquid state nuclear magnetic resonance (NMR) is a powerful tool for the analysis of complex mixtures of unknown molecules. This capacity has been used in many analytical approaches: metabolomics, identification of active compounds in natural extracts, and characterization of species, and such studies require the acquisition of many diverse NMR measurements on series of samples. Although acquisition can easily be performed automatically, the number of NMR experiments involved in these studies increases very rapidly, and this data avalanche requires to resort to automatic processing and analysis. We present here a program that allows the autonomous, unsupervised processing of a large corpus of 1D, 2D, and diffusion-ordered spectroscopy experiments from a series of samples acquired in different conditions. The program provides all the signal processing steps, as well as peak-picking and bucketing of 1D and 2D spectra, the program and its components are fully available. In an experiment mimicking the search of a bioactive species in a natural extract, we use it for the automatic detection of small amounts of artemisinin added to a series of plant extracts and for the generation of the spectral fingerprint of this molecule. This program called Plasmodesma is a novel tool that should be useful to decipher complex mixtures, particularly in the discovery of biologically active natural products from plants extracts but can also in drug discovery or metabolomics studies. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Informational analysis involving application of complex information system

    Science.gov (United States)

    Ciupak, Clébia; Vanti, Adolfo Alberto; Balloni, Antonio José; Espin, Rafael

    The aim of the present research is performing an informal analysis for internal audit involving the application of complex information system based on fuzzy logic. The same has been applied in internal audit involving the integration of the accounting field into the information systems field. The technological advancements can provide improvements to the work performed by the internal audit. Thus we aim to find, in the complex information systems, priorities for the work of internal audit of a high importance Private Institution of Higher Education. The applied method is quali-quantitative, as from the definition of strategic linguistic variables it was possible to transform them into quantitative with the matrix intersection. By means of a case study, where data were collected via interview with the Administrative Pro-Rector, who takes part at the elaboration of the strategic planning of the institution, it was possible to infer analysis concerning points which must be prioritized at the internal audit work. We emphasize that the priorities were identified when processed in a system (of academic use). From the study we can conclude that, starting from these information systems, audit can identify priorities on its work program. Along with plans and strategic objectives of the enterprise, the internal auditor can define operational procedures to work in favor of the attainment of the objectives of the organization.

  20. Complexity and Vulnerability Analysis of Critical Infrastructures: A Methodological Approach

    Directory of Open Access Journals (Sweden)

    Yongliang Deng

    2017-01-01

    Full Text Available Vulnerability analysis of network models has been widely adopted to explore the potential impacts of random disturbances, deliberate attacks, and natural disasters. However, almost all these models are based on a fixed topological structure, in which the physical properties of infrastructure components and their interrelationships are not well captured. In this paper, a new research framework is put forward to quantitatively explore and assess the complexity and vulnerability of critical infrastructure systems. Then, a case study is presented to prove the feasibility and validity of the proposed framework. After constructing metro physical network (MPN, Pajek is employed to analyze its corresponding topological properties, including degree, betweenness, average path length, network diameter, and clustering coefficient. With a comprehensive understanding of the complexity of MPN, it would be beneficial for metro system to restrain original near-miss or accidents and support decision-making in emergency situations. Moreover, through the analysis of two simulation protocols for system component failure, it is found that the MPN turned to be vulnerable under the condition that the high-degree nodes or high-betweenness edges are attacked. These findings will be conductive to offer recommendations and proposals for robust design, risk-based decision-making, and prioritization of risk reduction investment.

  1. Genetic structure and diversity in the Dioscorea cayenensis/D. rotundata complex revealed by morphological and isozyme markers.

    Science.gov (United States)

    Bressan, E A; Briner Neto, T; Zucchi, M I; Rabello, R J; Veasey, E A

    2014-01-21

    Of the 600 known yam species, only 10 are utilized as food, and the Dioscorea cayenensis/D. rotundata species complex is among the most cultivated. In Brazil, these species are commercially cultivated in the northeast region and are cultivated in the south and southeast regions as subsistence crops by traditional agriculturists. This study aimed to evaluate the genetic diversity of 21 local varieties of D. cayenensis and 2 D. rotundata accessions using 7 isozymic loci and 24 morphological markers, and to investigate the diversity distribution in different levels of organization, such as swidden fields and communities of Vale do Ribeira. Cluster analyses for both the isozymic and morphological data separated the 2 D. rotundata accessions from the D. cayenensis accessions from Vale do Ribeira. The analysis with morphological characteristics showed the presence of 2 subgroups (Iguape and Cananéia) within group I, which included all of the local varieties from Vale do Ribeira; this result may indicate the influence of the cultural units on the morphological variation. Molecular analysis of variance indicated that most of the isozymic variability was concentrated among swiddens within communities (42.5%) and within communities (40.3%). Most of the morphological variability was also concentrated among swidden fields within communities (44.8%). The correlation between geographic and genetic distances indicated that neither morphological (r = 0.17) nor isozymic diversity (r = -0.15) is structured in space. Thus, the traditional agriculturists of Vale do Ribeira maintain and manage a great diversity of D. cayenensis varieties in their communities.

  2. Genomewide effects of peroxisome proliferator-activated receptor gamma in macrophages and dendritic cells--revealing complexity through systems biology.

    Science.gov (United States)

    Cuaranta-Monroy, Ixchelt; Kiss, Mate; Simandi, Zoltan; Nagy, Laszlo

    2015-09-01

    Systems biology approaches have become indispensable tools in biomedical and basic research. These data integrating bioinformatic methods gained prominence after high-throughput technologies became available to investigate complex cellular processes, such as transcriptional regulation and protein-protein interactions, on a scale that had not been studied before. Immunology is one of the medical fields that systems biology impacted profoundly due to the plasticity of cell types involved and the accessibility of a wide range of experimental models. In this review, we summarize the most important recent genomewide studies exploring the function of peroxisome proliferator-activated receptor γ in macrophages and dendritic cells. PPARγ ChIP-seq experiments were performed in adipocytes derived from embryonic stem cells to complement the existing data sets and to provide comparators to macrophage data. Finally, lists of regulated genes generated from such experiments were analysed with bioinformatics and system biology approaches. We show that genomewide studies utilizing high-throughput data acquisition methods made it possible to gain deeper insights into the role of PPARγ in these immune cell types. We also demonstrate that analysis and visualization of data using network-based approaches can be used to identify novel genes and functions regulated by the receptor. The example of PPARγ in macrophages and dendritic cells highlights the crucial importance of systems biology approaches in establishing novel cellular functions for long-known signaling pathways. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  3. Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development

    Directory of Open Access Journals (Sweden)

    Yonglong Yu

    2016-04-01

    Full Text Available Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar (Jimai 20 during grain development using the GeneChip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis (DPA was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves. Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further information about differentially expressed genes, and MapMan analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by qRT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.

  4. The Human Embryoid Body Cystic Core Exhibits Architectural Complexity Revealed by use of High Throughput Polymer Microarrays.

    Science.gov (United States)

    Tomov, Martin L; Olmsted, Zachary T; Paluh, Janet L

    2015-07-01

    In pluripotent stem cell differentiation, embryoid bodies (EBs) provide a three-dimensional [3D] multicellular precursor in lineage specification. The internal structure of EBs is not well characterized yet is predicted to be an important parameter to differentiation. Here, we use custom SU-8 molds to generate transparent lithography-templated arrays of polydimethylsiloxane (LTA-PDMS) for high throughput analysis of human embryonic stem cell (hESC) EB formation and internal architecture. EBs formed in 200 and 500 μm diameter microarray wells by use of single cells, 2D clusters, or 3D early aggregates were compared. We observe that 200 μm EBs are monocystic versus 500 μm multicystic EBs that contain macro, meso and microsized cysts. In adherent differentiation of 500 μm EBs, the multicystic character impairs the 3D to 2D transition creating non-uniform monolayers. Our findings reveal that EB core structure has a size-dependent character that influences its architecture and cell population uniformity during early differentiation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nonlinear analysis of gas-water/oil-water two-phase flow in complex networks

    CERN Document Server

    Gao, Zhong-Ke; Wang, Wen-Xu

    2014-01-01

    Understanding the dynamics of multi-phase flows has been a challenge in the fields of nonlinear dynamics and fluid mechanics. This chapter reviews our work on two-phase flow dynamics in combination with complex network theory. We systematically carried out gas-water/oil-water two-phase flow experiments for measuring the time series of flow signals which is studied in terms of the mapping from time series to complex networks. Three network mapping methods were proposed for the analysis and identification of flow patterns, i.e. Flow Pattern Complex Network (FPCN), Fluid Dynamic Complex Network (FDCN) and Fluid Structure Complex Network (FSCN). Through detecting the community structure of FPCN based on K-means clustering, distinct flow patterns can be successfully distinguished and identified. A number of FDCN’s under different flow conditions were constructed in order to reveal the dynamical characteristics of two-phase flows. The FDCNs exhibit universal power-law degree distributions. The power-law exponent ...

  6. DNA Barcoding of Bemisia tabaci Complex (Hemiptera: Aleyrodidae) Reveals Southerly Expansion of the Dominant Whitefly Species on Cotton in Pakistan

    OpenAIRE

    Ashfaq, Muhammad; Hebert, Paul D. N.; Mirza, M. Sajjad; Khan, Arif M.; Mansoor, Shahid; Shah, Ghulam S.; Zafar, Yusuf

    2014-01-01

    Background Although whiteflies (Bemisia tabaci complex) are an important pest of cotton in Pakistan, its taxonomic diversity is poorly understood. As DNA barcoding is an effective tool for resolving species complexes and analyzing species distributions, we used this approach to analyze genetic diversity in the B. tabaci complex and map the distribution of B. tabaci lineages in cotton growing areas of Pakistan. Methods/Principal Findings Sequence diversity in the DNA barcode region (mtCOI-5′) ...

  7. Stochastic analysis of complex reaction networks using binomial moment equations.

    Science.gov (United States)

    Barzel, Baruch; Biham, Ofer

    2012-09-01

    The stochastic analysis of complex reaction networks is a difficult problem because the number of microscopic states in such systems increases exponentially with the number of reactive species. Direct integration of the master equation is thus infeasible and is most often replaced by Monte Carlo simulations. While Monte Carlo simulations are a highly effective tool, equation-based formulations are more amenable to analytical treatment and may provide deeper insight into the dynamics of the network. Here, we present a highly efficient equation-based method for the analysis of stochastic reaction networks. The method is based on the recently introduced binomial moment equations [Barzel and Biham, Phys. Rev. Lett. 106, 150602 (2011)]. The binomial moments are linear combinations of the ordinary moments of the probability distribution function of the population sizes of the interacting species. They capture the essential combinatorics of the reaction processes reflecting their stoichiometric structure. This leads to a simple and transparent form of the equations, and allows a highly efficient and surprisingly simple truncation scheme. Unlike ordinary moment equations, in which the inclusion of high order moments is prohibitively complicated, the binomial moment equations can be easily constructed up to any desired order. The result is a set of equations that enables the stochastic analysis of complex reaction networks under a broad range of conditions. The number of equations is dramatically reduced from the exponential proliferation of the master equation to a polynomial (and often quadratic) dependence on the number of reactive species in the binomial moment equations. The aim of this paper is twofold: to present a complete derivation of the binomial moment equations; to demonstrate the applicability of the moment equations for a representative set of example networks, in which stochastic effects play an important role.

  8. Students' concept patterns revealed by computer analysis of language-constrained science concept maps

    Science.gov (United States)

    Fife, Barbara Mae

    This dissertation consists of four studies that develop a computer-based methodology to construct and evaluate concept maps to explore commonalities in students' representation of ideas in a domain. It also explores whether a progression in learning is evident in concept maps of cross-age students who have experienced a similar curriculum. The first two studies determine the validity and reliability of the language-constrained concept mapping using The Computer-assisted Concept Mapper as a software analog to traditional concept mapping. Students manipulate teacher-provided concepts and linking phrases; the program encodes each concept map to preserve the relations and equivalent topology. Validity and reliability of this approach is confirmed. The third study explores the ability of The Concept Map Analyzer hypercard stack to analyze a large number of concept maps and discriminate groups of similar maps. Three hundred seventy-eight sixth, ninth, and twelfth grade students in one school district created concept maps selecting from thirty provided concepts and ten linking phrases related to the water cycle. All pairs of maps are compared for similarities in concepts used and concepts-connected. The algorithm, based on the Pathfinder analysis C-measure, divides the set of common elements by the set of all elements in both concept maps. The similarity ratios which define the congruence between each pair of maps are subjected to cluster analysis to identify groups of similar maps. The number of concepts used and concepts-connected increases from sixth through twelfth grade; however, all three grade levels are represented in each of the seven clusters. The fourth study explores represented levels of understanding. Software provides a graphic composite of each cluster that shows relations selected by at least the specified percentage of students. The complexity and richness of composite maps generally increases with grade level; however, grade-level composites in this

  9. Deep sequencing reveals the complex and coordinated transcriptional regulation of genes related to grain quality in rice cultivars

    Directory of Open Access Journals (Sweden)

    An Gynheung

    2011-04-01

    Full Text Available Abstract Background Milling yield and eating quality are two important grain quality traits in rice. To identify the genes involved in these two traits, we performed a deep transcriptional analysis of developing seeds using both massively parallel signature sequencing (MPSS and sequencing-by-synthesis (SBS. Five MPSS and five SBS libraries were constructed from 6-day-old developing seeds of Cypress (high milling yield, LaGrue (low milling yield, Ilpumbyeo (high eating quality, YR15965 (low eating quality, and Nipponbare (control. Results The transcriptomes revealed by MPSS and SBS had a high correlation co-efficient (0.81 to 0.90, and about 70% of the transcripts were commonly identified in both types of the libraries. SBS, however, identified 30% more transcripts than MPSS. Among the highly expressed genes in Cypress and Ilpumbyeo, over 100 conserved cis regulatory elements were identified. Numerous specifically expressed transcription factor (TF genes were identified in Cypress (282, LaGrue (312, Ilpumbyeo (363, YR15965 (260, and Nipponbare (357. Many key grain quality-related genes (i.e., genes involved in starch metabolism, aspartate amino acid metabolism, storage and allergenic protein synthesis, and seed maturation that were expressed at high levels underwent alternative splicing and produced antisense transcripts either in Cypress or Ilpumbyeo. Further, a time course RT-PCR analysis confirmed a higher expression level of genes involved in starch metabolism such as those encoding ADP glucose pyrophosphorylase (AGPase and granule bound starch synthase I (GBSS I in Cypress than that in LaGrue during early seed development. Conclusion This study represents the most comprehensive analysis of the developing seed transcriptome of rice available to date. Using two high throughput sequencing methods, we identified many differentially expressed genes that may affect milling yield or eating quality in rice. Many of the identified genes are involved

  10. Deep sequencing reveals the complex and coordinated transcriptional regulation of genes related to grain quality in rice cultivars.

    Science.gov (United States)

    Venu, Rc; Sreerekha, Mv; Nobuta, Kan; Beló, André; Ning, Yuese; An, Gynheung; Meyers, Blake C; Wang, Guo-Liang

    2011-04-14

    Milling yield and eating quality are two important grain quality traits in rice. To identify the genes involved in these two traits, we performed a deep transcriptional analysis of developing seeds using both massively parallel signature sequencing (MPSS) and sequencing-by-synthesis (SBS). Five MPSS and five SBS libraries were constructed from 6-day-old developing seeds of Cypress (high milling yield), LaGrue (low milling yield), Ilpumbyeo (high eating quality), YR15965 (low eating quality), and Nipponbare (control). The transcriptomes revealed by MPSS and SBS had a high correlation co-efficient (0.81 to 0.90), and about 70% of the transcripts were commonly identified in both types of the libraries. SBS, however, identified 30% more transcripts than MPSS. Among the highly expressed genes in Cypress and Ilpumbyeo, over 100 conserved cis regulatory elements were identified. Numerous specifically expressed transcription factor (TF) genes were identified in Cypress (282), LaGrue (312), Ilpumbyeo (363), YR15965 (260), and Nipponbare (357). Many key grain quality-related genes (i.e., genes involved in starch metabolism, aspartate amino acid metabolism, storage and allergenic protein synthesis, and seed maturation) that were expressed at high levels underwent alternative splicing and produced antisense transcripts either in Cypress or Ilpumbyeo. Further, a time course RT-PCR analysis confirmed a higher expression level of genes involved in starch metabolism such as those encoding ADP glucose pyrophosphorylase (AGPase) and granule bound starch synthase I (GBSS I) in Cypress than that in LaGrue during early seed development. This study represents the most comprehensive analysis of the developing seed transcriptome of rice available to date. Using two high throughput sequencing methods, we identified many differentially expressed genes that may affect milling yield or eating quality in rice. Many of the identified genes are involved in the biosynthesis of starch, aspartate

  11. Proteomic analysis of three gonad types of swamp eel reveals genes differentially expressed during sex reversal

    OpenAIRE

    Yue Sheng; Wei Zhao; Ying Song; Zhigang Li; Majing Luo; Quan Lei; Hanhua Cheng; Rongjia Zhou

    2015-01-01

    A variety of mechanisms are engaged in sex determination in vertebrates. The teleost fish swamp eel undergoes sex reversal naturally and is an ideal model for vertebrate sexual development. However, the importance of proteome-wide scanning for gonad reversal was not previously determined. We report a 2-D electrophoresis analysis of three gonad types of proteomes during sex reversal. MS/MS analysis revealed a group of differentially expressed proteins during ovary to ovotestis to testis transf...

  12. Using risk analysis to reveal opportunities for the management of unplanned ignitions in wilderness

    Science.gov (United States)

    Kevin Barnett; Carol Miller; Tyron J. Venn

    2016-01-01

    A goal of fire management in wilderness is to allow fire to play its natural ecological role without intervention. Unfortunately, most unplanned ignitions in wilderness are suppressed, in part because of the risk they might pose to values outside of the wilderness. We capitalize on recent advances in fire risk analysis to demonstrate a risk-based approach for revealing...

  13. Architecture of the RNA polymerase II-TFIIF complex revealed by cross-linking and mass spectrometry

    DEFF Research Database (Denmark)

    Chen, Zhuo Angel; Jawhari, Anass; Fischer, Lutz

    2010-01-01

    Higher-order multi-protein complexes such as RNA polymerase II (Pol II) complexes with transcription initiation factors are often not amenable to X-ray structure determination. Here, we show that protein cross-linking coupled to mass spectrometry (MS) has now sufficiently advanced as a tool...

  14. Hurst Exponent Analysis of Resting-State fMRI Signal Complexity across the Adult Lifespan

    Directory of Open Access Journals (Sweden)

    Jianxin Dong

    2018-02-01

    Full Text Available Exploring functional information among various brain regions across time enables understanding of healthy aging process and holds great promise for age-related brain disease diagnosis. This paper proposed a method to explore fractal complexity of the resting-state functional magnetic resonance imaging (rs-fMRI signal in the human brain across the adult lifespan using Hurst exponent (HE. We took advantage of the examined rs-fMRI data from 116 adults 19 to 85 years of age (44.3 ± 19.4 years, 49 females from NKI/Rockland sample. Region-wise and voxel-wise analyses were performed to investigate the effects of age, gender, and their interaction on complexity. In region-wise analysis, we found that the healthy aging is accompanied by a loss of complexity in frontal and parietal lobe and increased complexity in insula, limbic, and temporal lobe. Meanwhile, differences in HE between genders were found to be significant in parietal lobe (p = 0.04, corrected. However, there was no interaction between gender and age. In voxel-wise analysis, the significant complexity decrease with aging was found in frontal and parietal lobe, and complexity increase was found in insula, limbic lobe, occipital lobe, and temporal lobe with aging. Meanwhile, differences in HE between genders were found to be significant in frontal, parietal, and limbic lobe. Furthermore, we found age and sex interaction in right parahippocampal gyrus (p = 0.04, corrected. Our findings reveal HE variations of the rs-fMRI signal across the human adult lifespan and show that HE may serve as a new parameter to assess healthy aging process.

  15. Evidence for proposed ICD-11 PTSD and complex PTSD: a latent profile analysis

    Directory of Open Access Journals (Sweden)

    Marylène Cloitre

    2013-05-01

    Full Text Available Background: The WHO International Classification of Diseases, 11th version (ICD-11, has proposed two related diagnoses, posttraumatic stress disorder (PTSD and complex PTSD within the spectrum of trauma and stress-related disorders. Objective: To use latent profile analysis (LPA to determine whether there are classes of individuals that are distinguishable according to the PTSD and complex PTSD symptom profiles and to identify potential differences in the type of stressor and severity of impairment associated with each profile. Method: An LPA and related analyses were conducted on 302 individuals who had sought treatment for interpersonal traumas ranging from chronic trauma (e.g., childhood abuse to single-incident events (e.g., exposure to 9/11 attacks. Results: The LPA revealed three classes of individuals: (1 a complex PTSD class defined by elevated PTSD symptoms as well as disturbances in three domains of self-organization: affective dysregulation, negative self-concept, and interpersonal problems; (2 a PTSD class defined by elevated PTSD symptoms but low scores on the three self-organization symptom domains; and (3 a low symptom class defined by low scores on all symptoms and problems. Chronic trauma was more strongly predictive of complex PTSD than PTSD and, conversely, single-event trauma was more strongly predictive of PTSD. In addition, complex PTSD was associated with greater impairment than PTSD. The LPA analysis was completed both with and without individuals with borderline personality disorder (BPD yielding identical results, suggesting the stability of these classes regardless of BPD comorbidity. Conclusion: Preliminary data support the proposed ICD-11 distinction between PTSD and complex PTSD and support the value of testing the clinical utility of this distinction in field trials. Replication of results is necessary.For the abstract or full text in other languages, please see Supplementary files under Article Tools online

  16. Automated modelling of complex refrigeration cycles through topological structure analysis

    International Nuclear Information System (INIS)

    Belman-Flores, J.M.; Riesco-Avila, J.M.; Gallegos-Munoz, A.; Navarro-Esbri, J.; Aceves, S.M.

    2009-01-01

    We have developed a computational method for analysis of refrigeration cycles. The method is well suited for automated analysis of complex refrigeration systems. The refrigerator is specified through a description of flows representing thermodynamic sates at system locations; components that modify the thermodynamic state of a flow; and controls that specify flow characteristics at selected points in the diagram. A system of equations is then established for the refrigerator, based on mass, energy and momentum balances for each of the system components. Controls specify the values of certain system variables, thereby reducing the number of unknowns. It is found that the system of equations for the refrigerator may contain a number of redundant or duplicate equations, and therefore further equations are necessary for a full characterization. The number of additional equations is related to the number of loops in the cycle, and this is calculated by a matrix-based topological method. The methodology is demonstrated through an analysis of a two-stage refrigeration cycle.

  17. Analysis and design of complex impedance transforming marchand baluns

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld M.

    2014-01-01

    A new type of Marchand balun is presented in this paper, which has the property of complex impedance transformation. To allow the Marchand balun to transform between arbitrary complex impedances, three reactances should be added to the circuit. A detailed analysis of the circuit gives the governing...... equations. To verify the theory, a design and electromagnetic simulation of a lumped element Marchand balun is made in a SiGe BiCMOS technology. The lumped element impementation is favorable because capacitors are placed where the additional reactances should be added. Thus it is possible to absorb...... a positive reactance by reducing a capacitor. At the design frequency of 10.5 GHz it matches 50Ω to 50 - j66Ω. It has an insertion loss of 5.1 dB, an input reflection of −20.8 dB, as well as phase and magnitude imbalance better than 0.2° and 0.12 dB, respectively....

  18. Recent Developments in Complex Analysis and Computer Algebra

    CERN Document Server

    Kajiwara, Joji; Xu, Yongzhi

    1999-01-01

    This volume consists of papers presented in the special sessions on "Complex and Numerical Analysis", "Value Distribution Theory and Complex Domains", and "Use of Symbolic Computation in Mathematics Education" of the ISAAC'97 Congress held at the University of Delaware, during June 2-7, 1997. The ISAAC Congress coincided with a U.S.-Japan Seminar also held at the University of Delaware. The latter was supported by the National Science Foundation through Grant INT-9603029 and the Japan Society for the Promotion of Science through Grant MTCS-134. It was natural that the participants of both meetings should interact and consequently several persons attending the Congress also presented papers in the Seminar. The success of the ISAAC Congress and the U.S.-Japan Seminar has led to the ISAAC'99 Congress being held in Fukuoka, Japan during August 1999. Many of the same participants will return to this Seminar. Indeed, it appears that the spirit of the U.S.-Japan Seminar will be continued every second year as part of...

  19. Weighted Complex Network Analysis of Shanghai Rail Transit System

    Directory of Open Access Journals (Sweden)

    Yingying Xing

    2016-01-01

    Full Text Available With increasing passenger flows and construction scale, Shanghai rail transit system (RTS has entered a new era of networking operation. In addition, the structure and properties of the RTS network have great implications for urban traffic planning, design, and management. Thus, it is necessary to acquire their network properties and impacts. In this paper, the Shanghai RTS, as well as passenger flows, will be investigated by using complex network theory. Both the topological and dynamic properties of the RTS network are analyzed and the largest connected cluster is introduced to assess the reliability and robustness of the RTS network. Simulation results show that the distribution of nodes strength exhibits a power-law behavior and Shanghai RTS network shows a strong weighted rich-club effect. This study also indicates that the intentional attacks are more detrimental to the RTS network than to the random weighted network, but the random attacks can cause slightly more damage to the random weighted network than to the RTS network. Our results provide a richer view of complex weighted networks in real world and possibilities of risk analysis and policy decisions for the RTS operation department.

  20. Digitonthophagus Balthasar, 1959: taxonomy, systematics, and morphological phylogeny of the genus revealing an African species complex (Coleoptera: Scarabaeidae: Scarabaeinae).

    Science.gov (United States)

    Génier, François; Moretto, Philippe

    2017-03-31

    The taxonomy and systematics of the genus Digitonthophagus Balthasar (Coleoptera: Scarabaeidae: Scarabaeinae: Onthophagini) is revised. A detailed study of the male genitalia combined with external morphology suggests that the variability, previously recognized, for D. gazella is hiding a species complex within the Afrotropical region and the Arabian Peninsula. The current study recognizes 16 species; 13 from the Afrotropical region and Arabian Peninsula and three from the eastern portion of the Saharo-Arabian region and the continental Indomalayan region. Species are organized into six species groups based on the results of the morphology-based phylogenetic analysis. The following 12 species are described as new: D. aksumensis Génier new species; D. biflagellatus Génier new species; D. dilatatus Génier new species; D. eucatta Génier new species; D. falciger Génier new species; D. fimator Génier new species; D. namaquensis Génier new species; D. petilus Génier new species; D. sahelicus Moretto new species; D. uks Génier new species; D. ulcerosus Génier new species; and D. viridicollis Génier new species. In order to stabilize nomenclature, lectotypes are designated for Scarabaeus bonasus Fabricius, 1775; Scarabaeus catta Fabricius, 1787, and Onthophagus gazella lusinganus d'Orbigny. A neotype is designated for Scarabaeus dorcas Olivier, 1789 whose status and synonymy need to be altered in order to clarify the status of Scarabaeus gazella auctorum, the widely introduced species with economic importance. A naming scheme is presented for the sclerites of the internal sac. External and male genitalia are illustrated and distribution maps are provided for each species.

  1. Analysis and Reduction of Complex Networks Under Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Knio, Omar M

    2014-04-09

    This is a collaborative proposal that aims at developing new methods for the analysis and reduction of complex multiscale networks under uncertainty. The approach is based on combining methods of computational singular perturbation (CSP) and probabilistic uncertainty quantification. In deterministic settings, CSP yields asymptotic approximations of reduced-dimensionality “slow manifolds” on which a multiscale dynamical system evolves. Introducing uncertainty raises fundamentally new issues, particularly concerning its impact on the topology of slow manifolds, and means to represent and quantify associated variability. To address these challenges, this project uses polynomial chaos (PC) methods to reformulate uncertain network models, and to analyze them using CSP in probabilistic terms. Specific objectives include (1) developing effective algorithms that can be used to illuminate fundamental and unexplored connections among model reduction, multiscale behavior, and uncertainty, and (2) demonstrating the performance of these algorithms through applications to model problems.

  2. New Global Synchronization Analysis for Complex Networks with Coupling Delay

    Directory of Open Access Journals (Sweden)

    Jinfang Zhang

    2014-01-01

    Full Text Available Global synchronization analysis for complex networks with coupling delay is investigated. Firstly the constant time delay is analyzed and then the case for time-varying delay is considered. Sufficient conditions for network synchronization are given based on Lyapunov functional, linear matrix inequality, and Kronecker product technique. The unknown variables in the sufficient conditions are fewer than those in the recent reference. Moreover, for the time-varying delay case, we find that the conditions are dependent on the bounds of both time delay and its derivative, and the derivative of the time-varying delay can be any value in the bounds. Finally, numerical examples are given to validate the effectiveness of the obtained results.

  3. Fractal dimension analysis of complexity in Ligeti piano pieces

    Science.gov (United States)

    Bader, Rolf

    2005-04-01

    Fractal correlation dimensional analysis has been performed with whole solo piano pieces by Gyrgy Ligeti at every 50ms interval of the pieces. The resulting curves of development of complexity represented by the fractal dimension showed up a very reasonable correlation with the perceptional density of events during these pieces. The seventh piece of Ligeti's ``Musica ricercata'' was used as a test case. Here, each new part of the piece was followed by an increase of the fractal dimension because of the increase of information at the part changes. The second piece ``Galamb borong,'' number seven of the piano Etudes was used, because Ligeti wrote these Etudes after studying fractal geometry. Although the piece is not fractal in the strict mathematical sense, the overall structure of the psychoacoustic event-density as well as the detailed event development is represented by the fractal dimension plot.

  4. Quantitative trait loci in hop (Humulus lupulus L.) reveal complex genetic architecture underlying variation in sex, yield and cone chemistry.

    Science.gov (United States)

    McAdam, Erin L; Freeman, Jules S; Whittock, Simon P; Buck, Emily J; Jakse, Jernej; Cerenak, Andreja; Javornik, Branka; Kilian, Andrzej; Wang, Cai-Hong; Andersen, Dave; Vaillancourt, René E; Carling, Jason; Beatson, Ron; Graham, Lawrence; Graham, Donna; Darby, Peter; Koutoulis, Anthony

    2013-05-30

    Hop (Humulus lupulus L.) is cultivated for its cones, the secondary metabolites of which contribute bitterness, flavour and aroma to beer. Molecular breeding methods, such as marker assisted selection (MAS), have great potential for improving the efficiency of hop breeding. The success of MAS is reliant on the identification of reliable marker-trait associations. This study used quantitative trait loci (QTL) analysis to identify marker-trait associations for hop, focusing on traits related to expediting plant sex identification, increasing yield capacity and improving bittering, flavour and aroma chemistry. QTL analysis was performed on two new linkage maps incorporating transferable Diversity Arrays Technology (DArT) markers. Sixty-three QTL were identified, influencing 36 of the 50 traits examined. A putative sex-linked marker was validated in a different pedigree, confirming the potential of this marker as a screening tool in hop breeding programs. An ontogenetically stable QTL was identified for the yield trait dry cone weight; and a QTL was identified for essential oil content, which verified the genetic basis for variation in secondary metabolite accumulation in hop cones. A total of 60 QTL were identified for 33 secondary metabolite traits. Of these, 51 were pleiotropic/linked, affecting a substantial number of secondary metabolites; nine were specific to individual secondary metabolites. Pleiotropy and linkage, found for the first time to influence multiple hop secondary metabolites, have important implications for molecular selection methods. The selection of particular secondary metabolite profiles using pleiotropic/linked QTL will be challenging because of the difficulty of selecting for specific traits without adversely changing others. QTL specific to individual secondary metabolites, however, offer unequalled value to selection programs. In addition to their potential for selection, the QTL identified in this study advance our understanding of the

  5. High-density PhyloChip profiling of stimulated aquifer microbial communities reveals a complex response to acetate amendment

    Energy Technology Data Exchange (ETDEWEB)

    Handley, Kim M.; Wrighton, Kelly E.; Piceno, Y. M.; Anderson, Gary L.; DeSantis, Todd; Williams, Kenneth H.; Wilkins, Michael J.; N' Guessan, A. L.; Peacock, Aaron; Bargar, John R.; Long, Philip E.; Banfield, Jillian F.

    2012-06-13

    There is increasing interest in harnessing the functional diversity of indigenous microbial communities to transform and remediate a wide range of environmental contaminants. Understanding the response of communities to stimulation, including flanking taxa, presents important opportunities for optimizing remediation approaches. We used high-density PhyloChip microarray analysis to comprehensively determine community membership and abundance patterns amongst a suite of samples from U(VI) bioremediation experiments. Samples were unstimulated or collected during Fe(III) and sulfate reduction from an acetate-augmented aquifer in Rifle, Colorado, and from laboratory experiments using field-collected materials. Results showed the greatest diversity in abundant SRB lineages was present in naturally-reduced sediment. Desulfuromonadales and Desulfobacterales were consistently identified as the dominant Fe(III)- and sulfate-reducing bacteria (IRB and SRB) throughout acetate amendment experiments. Stimulated communities also exhibited a high degree of functional redundancy amongst enriched flanking members. Not surprisingly, competition for both sulfate and iron was evident amongst abundant taxa, but the distribution and abundance of these ancillary SRB (Peptococcaceae, Desulfovibrionales and Syntrophobacterales), and lineages containing IRB (excluding Desulfobacteraceae) was heterogeneous amongst sample types. Interesting, amongst the most abundant taxa, particularly during sulfate reduction, were Epsilonproteobacteria that perform microaerobic or nitrate-dependant sulfur oxidation, and a number of bacteria other than Geobacteraceae that may enzymatically reduce U(VI). Finally, in depth community probing with PhyloChip determined the efficacy of experimental approaches, notably revealing striking similarity amongst stimulated sediment (from drill cores and in-situ columns) and groundwater communities, and demonstrating that sediment-packed in-situ (down-well) columns served

  6. Characterization of the mycobacterial acyl-CoA carboxylase holo complexes reveals their functional expansion into amino acid catabolism.

    Directory of Open Access Journals (Sweden)

    Matthias T Ehebauer

    2015-02-01

    Full Text Available Biotin-mediated carboxylation of short-chain fatty acid coenzyme A esters is a key step in lipid biosynthesis that is carried out by multienzyme complexes to extend fatty acids by one methylene group. Pathogenic mycobacteria have an unusually high redundancy of carboxyltransferase genes and biotin carboxylase genes, creating multiple combinations of protein/protein complexes of unknown overall composition and functional readout. By combining pull-down assays with mass spectrometry, we identified nine binary protein/protein interactions and four validated holo acyl-coenzyme A carboxylase complexes. We investigated one of these--the AccD1-AccA1 complex from Mycobacterium tuberculosis with hitherto unknown physiological function. Using genetics, metabolomics and biochemistry we found that this complex is involved in branched amino-acid catabolism with methylcrotonyl coenzyme A as the substrate. We then determined its overall architecture by electron microscopy and found it to be a four-layered dodecameric arrangement that matches the overall dimensions of a distantly related methylcrotonyl coenzyme A holo complex. Our data argue in favor of distinct structural requirements for biotin-mediated γ-carboxylation of α-β unsaturated acid esters and will advance the categorization of acyl-coenzyme A carboxylase complexes. Knowledge about the underlying structural/functional relationships will be crucial to make the target category amenable for future biomedical applications.

  7. Final Report. Analysis and Reduction of Complex Networks Under Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Marzouk, Youssef M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Coles, T. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Spantini, A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Tosatto, L. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-09-30

    The project was a collaborative effort among MIT, Sandia National Laboratories (local PI Dr. Habib Najm), the University of Southern California (local PI Prof. Roger Ghanem), and The Johns Hopkins University (local PI Prof. Omar Knio, now at Duke University). Our focus was the analysis and reduction of large-scale dynamical systems emerging from networks of interacting components. Such networks underlie myriad natural and engineered systems. Examples important to DOE include chemical models of energy conversion processes, and elements of national infrastructure—e.g., electric power grids. Time scales in chemical systems span orders of magnitude, while infrastructure networks feature both local and long-distance connectivity, with associated clusters of time scales. These systems also blend continuous and discrete behavior; examples include saturation phenomena in surface chemistry and catalysis, and switching in electrical networks. Reducing size and stiffness is essential to tractable and predictive simulation of these systems. Computational singular perturbation (CSP) has been effectively used to identify and decouple dynamics at disparate time scales in chemical systems, allowing reduction of model complexity and stiffness. In realistic settings, however, model reduction must contend with uncertainties, which are often greatest in large-scale systems most in need of reduction. Uncertainty is not limited to parameters; one must also address structural uncertainties—e.g., whether a link is present in a network—and the impact of random perturbations, e.g., fluctuating loads or sources. Research under this project developed new methods for the analysis and reduction of complex multiscale networks under uncertainty, by combining computational singular perturbation (CSP) with probabilistic uncertainty quantification. CSP yields asymptotic approximations of reduceddimensionality “slow manifolds” on which a multiscale dynamical system evolves. Introducing

  8. Monte Carlo isotopic inventory analysis for complex nuclear systems

    Science.gov (United States)

    Phruksarojanakun, Phiphat

    . Potential applications of MCise include molten salt fueled reactors and liquid breeders in fusion blankets. As an example, the inventory analysis of a liquid actinide fuel in the In-Zinerator, a sub-critical power reactor driven by a fusion source, is examined. The result reassures MCise as a reliable tool for inventory analysis of complex nuclear systems.

  9. Functional analysis for complex systems of nuclear fusion plant

    Energy Technology Data Exchange (ETDEWEB)

    Pinna, Tonio, E-mail: tonio.pinna@enea.it; Dongiovanni, Danilo Nicola; Iannone, Francesco

    2016-11-01

    Highlights: • Functional analysis for complex systems. • Functional Flow Block Diagrams (FFBD). • IDEFØ diagrams. • Petri Net algorithm - Abstract: In system engineering context, a functional analysis is the systematic process of identifying, describing and correlating the functions a system must perform in order to be successful at any foreseen life-cycle phase or operational state/mode. By focusing on what the system must do disregarding the implementation, the functional analysis supports an unbiased system requirement allocation analysis. The system function architecture is defined in terms of process, protection (interlock) or nuclear safety functions. Then, the system functions are analyzed from several points of view in order to highlight the various pieces of information defining the way the system is designed to accomplish its mission as defined in the system requirement documents. The process functional flow is identified and represented by Functional Flow Block Diagrams (FFBD) while the system function interfaces are identified and represented by IDEFØ diagrams. Function interfaces are defined as relationships across identified functions in terms of function input (from other functions or requirements), output (added value or outcome of the function), controls (from other functions or systems) and mechanisms necessary to fulfill the function. The function architecture is further detailed by considering for each function: a) the phase of application, b) the actions performed c) the controlled variable and control actions to be foreseen in the implementation of the functions, d) the system involved in the control action, e) the equipment involved in the function, f) the requirements allocated to the function. The methodology here presented are suggested for the designing of fusion facilities and reactors already from the first phases of the pre-conceptual design, as it is now for DEMO.

  10. Revealing the Complexity in CD8 T Cell Responses to Infection in Inbred C57B/6 versus Outbred Swiss Mice.

    Science.gov (United States)

    Martin, Matthew D; Danahy, Derek B; Hartwig, Stacey M; Harty, John T; Badovinac, Vladimir P

    2017-01-01

    Recent work has suggested that current mouse models may underrepresent the complexity of human immune responses. While most mouse immunology studies utilize inbred mouse strains, it is unclear if conclusions drawn from inbred mice can be extended to all mouse strains or generalized to humans. We recently described a "surrogate activation marker" approach that could be used to track polyclonal CD8 T cell responses in inbred and outbred mice and noted substantial discord in the magnitude and kinetics of CD8 T cell responses in individual outbred mice following infection. However, how the memory CD8 T cell response develops following infection and the correlates of memory CD8 T cell-mediated protection against re-infection in outbred mice remains unknown. In this study, we investigated development of pathogen-specific memory CD8 T cell responses in inbred C57B/6 and outbred National Institutes of Health Swiss mice following lymphocytic choriomeningitis virus or L. monocytogenes infection. Interestingly, the size of the memory CD8 T cell pool generated and rate of phenotypic progression was considerably more variable in individual outbred compared to inbred mice. Importantly, while prior infection provided both inbred and outbred cohorts of mice with protection against re-infection that was dependent on the dose of primary infection, levels of memory CD8 T cells generated and degree of protection against re-infection did not correlate with primary infection dose in all outbred mice. While variation in CD8 T cell responses to infection is not entirely surprising due to the genetic diversity present, analysis of infection-induced immunity in outbred hosts may reveal hidden complexity in CD8 T cell responses in genetically diverse populations and might help us further bridge the gap between mouse and human studies.

  11. Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Hubin, Elizabeth A.; Lilic, Mirjana; Darst, Seth A.; Campbell, Elizabeth A.

    2017-07-13

    The mycobacteria RNA polymerase (RNAP) is a target for antimicrobials against tuberculosis, motivating structure/function studies. Here we report a 3.2 Å-resolution crystal structure of a Mycobacterium smegmatis (Msm) open promoter complex (RPo), along with structural analysis of the Msm RPo and a previously reported 2.76 Å-resolution crystal structure of an Msm transcription initiation complex with a promoter DNA fragment. We observe the interaction of the Msm RNAP α-subunit C-terminal domain (αCTD) with DNA, and we provide evidence that the αCTD may play a role in Mtb transcription regulation. Our results reveal the structure of an Actinobacteria-unique insert of the RNAP β' subunit. Finally, our analysis reveals the disposition of the N-terminal segment of Msm σA, which may comprise an intrinsically disordered protein domain unique to mycobacteria. The clade-specific features of the mycobacteria RNAP provide clues to the profound instability of mycobacteria RPo compared with E. coli.

  12. Of mice and the 'Age of Discovery': the complex history of colonization of the Azorean archipelago by the house mouse (Mus musculus) as revealed by mitochondrial DNA variation.

    Science.gov (United States)

    Gabriel, S I; Mathias, M L; Searle, J B

    2015-01-01

    Humans have introduced many species onto remote oceanic islands. The house mouse (Mus musculus) is a human commensal and has consequently been transported to oceanic islands around the globe as an accidental stowaway. The history of these introductions can tell us not only about the mice themselves but also about the people that transported them. Following a phylogeographic approach, we used mitochondrial D-loop sequence variation (within an 849- to 864-bp fragment) to study house mouse colonization of the Azores. A total of 239 sequences were obtained from all nine islands, and interpretation was helped by previously published Iberian sequences and 66 newly generated Spanish sequences. A Bayesian analysis revealed presence in the Azores of most of the D-loop clades previously described in the domesticus subspecies of the house mouse, suggesting a complex colonization history of the archipelago as a whole from multiple geographical origins, but much less heterogeneity (often single colonization?) within islands. The expected historical link with mainland Portugal was reflected in the pattern of D-loop variation of some of the islands but not all. A more unexpected association with a distant North European source area was also detected in three islands, possibly reflecting human contact with the Azores prior to the 15th century discovery by Portuguese mariners. Widening the scope to colonization of the Macaronesian islands as a whole, human linkages between the Azores, Madeira, the Canaries, Portugal and Spain were revealed through the sharing of mouse sequences between these areas. From these and other data, we suggest mouse studies may help resolve historical uncertainties relating to the 'Age of Discovery'. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  13. Two scales of inflation at Lastarria-Cordon del Azufre volcanic complex, central Andes, revealed from ASAR-ENVISAT interferometric data

    Science.gov (United States)

    Froger, J.-L.; Remy, D.; Bonvalot, S.; Legrand, D.

    2007-03-01

    ASAR-ENVISAT Interferometric Synthetic Aperture Radar (InSAR) data collected over the Lastarria-Cordon del Azufre complex (Chile-Argentina) between March 2003 and May 2005 show the persistence of the large wavelength ground inflation revealed by Pritchard and Simons in 2002 from the analysis of ERS InSAR data [Nature 418 (2002) 167-170]. After reducing the tropospheric contribution in the interferograms using a combination of data network adjustment and analysis of MODIS images, we produced an accurate interferometric time series showing a 2 yr long temporal evolution of the ground displacements patterns. Two distinct inflating signals are detected. The main signal covers an elliptical area with a 45 km NNE-SSW major axis and a 37 km minor axis. It is correlated with a regional topographic dome. We estimated its maximum inflation rate to ˜ 2.5 cm yr - 1 . We inverted the InSAR data for a range of source geometries (spherical, prolate ellipsoids, penny-shaped cracks). The inferred source parameters for 2003-2005 period are consistent with an over-pressured reservoir at shallow to intermediate crustal depths (7-15 km), with an average volumetric rate of inflation of about 14 × 10 6 m 3 yr - 1 . In addition to this main signal a new feature highlighted by the ASAR data is short wavelength inflation (6 km wide) at the location of Lastarria volcano on the northern margin of the large wavelength signal. We explain this short wavelength signal by a spherical over-pressured source lying 1000 m below the summit of Lastarria volcano. We estimate the average volume