WorldWideScience

Sample records for analysis identifies mitochondrial

  1. High-throughput respirometric assay identifies predictive toxicophore of mitochondrial injury

    International Nuclear Information System (INIS)

    Wills, Lauren P.; Beeson, Gyda C.; Trager, Richard E.; Lindsey, Christopher C.; Beeson, Craig C.; Peterson, Yuri K.; Schnellmann, Rick G.

    2013-01-01

    Many environmental chemicals and drugs negatively affect human health through deleterious effects on mitochondrial function. Currently there is no chemical library of mitochondrial toxicants, and no reliable methods for predicting mitochondrial toxicity. We hypothesized that discrete toxicophores defined by distinct chemical entities can identify previously unidentified mitochondrial toxicants. We used a respirometric assay to screen 1760 compounds (5 μM) from the LOPAC and ChemBridge DIVERSet libraries. Thirty-one of the assayed compounds decreased uncoupled respiration, a stress test for mitochondrial dysfunction, prior to a decrease in cell viability and reduced the oxygen consumption rate in isolated mitochondria. The mitochondrial toxicants were grouped by chemical similarity and two clusters containing four compounds each were identified. Cheminformatic analysis of one of the clusters identified previously uncharacterized mitochondrial toxicants from the ChemBridge DIVERSet. This approach will enable the identification of mitochondrial toxicants and advance the prediction of mitochondrial toxicity for both drug discovery and risk assessment. - Highlights: • Respirometric assay conducted in RPTC to create mitochondrial toxicant database. • Chemically similar mitochondrial toxicants aligned as mitochondrial toxicophores • Mitochondrial toxicophore identifies five novel mitochondrial toxicants

  2. Systematic expression analysis of the mitochondrial complex III subunits identifies UQCRC1 as biomarker in clear cell renal cell carcinoma.

    Science.gov (United States)

    Ellinger, Jörg; Gromes, Arabella; Poss, Mirjam; Brüggemann, Maria; Schmidt, Doris; Ellinger, Nadja; Tolkach, Yuri; Dietrich, Dimo; Kristiansen, Glen; Müller, Stefan C

    2016-12-27

    Mitochondrial dysfunction is common in cancer, and the mitochondrial electron transport chain is often affected in carcinogenesis. So far, few is known about the expression of the mitochondrial complex III (ubiquinol-cytochrome c reductase complex) subunits in clear cell renal cell carcinoma (ccRCC). In this study, the NextBio database was used to determine an expression profile of the mitochondrial complex III subunits based on published microarray studies. We observed that five out of 11 subunits of the complex III were downregulated in at least three microarray studies. The decreased mRNA expression level of UQCRFS1 and UQCRC1 in ccRCC was confirmed using PCR. Low mRNA levels UQCRC1 were also correlated with a shorter period of cancer-specific and overall survival. Furthermore, UQCRFS1 and UQCRC1 were also decreased in ccRCC on the protein level as determined using Western blotting and immunohistochemistry. UQCRC1 protein expression was also lower in ccRCC than in papillary and chromophobe subtypes. Analyzing gene expression and DNA methylation in The Cancer Genome Atlas cohort revealed an inverse correlation of gene expression and DNA methylation, suggesting that DNA hypermethylation is regulating the expression of UQCRC1 and UQCRFS1. Taken together, our data implicate that dysregulated UQCRC1 and UQCRFS1 are involved in impaired mitochondrial electron transport chain function.

  3. Proteomic analysis identifies mitochondrial metabolic enzymes as major discriminators between different stages of the failing human myocardium

    DEFF Research Database (Denmark)

    Urbonavicius, Sigitas; Wiggers, Henrik; Bøtker, Hans Erik

    2009-01-01

    Our aim was to identify patterns in differentially regulated proteins associated with the progression of chronic heart failure. We specifically studied proteomics in chronic reversibly (RDM) and irreversibly dysfunctional myocardium (IRDM), as well as end-stage failing myocardium (ESFM)....

  4. Joint Analysis of Nuclear and Mitochondrial Variants in Age-Related Macular Degeneration Identifies Novel Loci TRPM1 and ABHD2/RLBP1.

    Science.gov (United States)

    Persad, Patrice J; Heid, Iris M; Weeks, Daniel E; Baird, Paul N; de Jong, Eiko K; Haines, Jonathan L; Pericak-Vance, Margaret A; Scott, William K

    2017-08-01

    Presently, 52 independent nuclear single nucleotide polymorphisms (nSNPs) have been associated with age-related macular degeneration (AMD) but their effects do not explain all its variance. Genetic interactions between the nuclear and mitochondrial (mt) genome may unearth additional genetic loci previously unassociated with AMD risk. Joint effects of nSNPs and selected mtSNPs were analyzed by two degree of freedom (2df) joint tests of association in the International AMD Genomics Consortium (IAMDGC) dataset (17,832 controls and 16,144 advanced AMD cases of European ancestry). Subjects were genotyped on the Illumina HumanCoreExome array. After imputation using MINIMAC and the 1000 Genomes Project Phase I reference panel, pairwise linkage disequilibrium pruning, and quality control, 3.9 million nSNPs were analyzed for interaction with mtSNPs chosen based on association in this dataset or publications: A4917G, T5004C, G12771A, and C16069T. Novel locus TRPM1 was identified with genome-wide significant joint effects (P < 5.0 × 10-8) of two intronic TRPM1 nSNPs and AMD-associated nonsynonymous MT-ND2 mtSNP A4917G. Stratified analysis by mt allele identified an association only in 4917A (major allele) carriers (P = 4.4 × 10-9, odds ratio [OR] = 0.90, 95% confidence interval [CI] = 0.87-0.93). Intronic and intergenic ABHD2/RLBP1 nSNPs demonstrated genome-wide significant joint effects (2df joint test P values from 1.8 × 10-8 to 4.9 × 10-8) and nominally statistically significant interaction effects with MT-ND5 synonymous mtSNP G12771A. Although a positive association was detected in both strata, the association was stronger in 12771A subjects (P = 0.0020, OR = 2.17, 95% CI = 1.34-3.60). These results show that joint tests of main effects and gene-gene interaction reveal associations at some novel loci that were missed when considering main effects alone.

  5. Joint Analysis of Nuclear and Mitochondrial Variants in Age-Related Macular Degeneration Identifies Novel Loci TRPM1 and ABHD2/RLBP1

    NARCIS (Netherlands)

    Persad, P.J.; Heid, I.M.; Weeks, D.E.; Baird, P.N.; Jong, E.K.; Haines, J.L.; Pericak-Vance, M.A.; Scott, W.K.

    2017-01-01

    Purpose: Presently, 52 independent nuclear single nucleotide polymorphisms (nSNPs) have been associated with age-related macular degeneration (AMD) but their effects do not explain all its variance. Genetic interactions between the nuclear and mitochondrial (mt) genome may unearth additional genetic

  6. Identifying selectively important amino acid positions associated with alternative habitat environments in fish mitochondrial genomes.

    Science.gov (United States)

    Xia, Jun Hong; Li, Hong Lian; Zhang, Yong; Meng, Zi Ning; Lin, Hao Ran

    2017-04-19

    Fish species inhabitating seawater (SW) or freshwater (FW) habitats have to develop genetic adaptations to alternative environment factors, especially salinity. Functional consequences of the protein variations associated with habitat environments in fish mitochondrial genomes have not yet received much attention. We analyzed 829 complete fish mitochondrial genomes and compared the amino acid differences of 13 mitochondrial protein families between FW and SW fish groups. We identified 47 specificity determining sites (SDS) that associated with FW or SW environments from 12 mitochondrial protein families. Thirty-two (68%) of the SDS sites are hydrophobic, 13 (28%) are neutral, and the remaining sites are acidic or basic. Seven of those SDS from ND1, ND2 and ND5 were scored as probably damaging to the protein structures. Furthermore, phylogenetic tree based Bayes Empirical Bayes analysis also detected 63 positive sites associated with alternative habitat environments across ten mtDNA proteins. These signatures could be important for studying mitochondrial genetic variation relevant to fish physiology and ecology.

  7. Mitochondrial Genome Analysis Reveals Historical Lineages in Yellowstone Bison.

    Directory of Open Access Journals (Sweden)

    David Forgacs

    Full Text Available Yellowstone National Park is home to one of the only plains bison populations that have continuously existed on their present landscape since prehistoric times without evidence of domestic cattle introgression. Previous studies characterized the relatively high levels of nuclear genetic diversity in these bison, but little is known about their mitochondrial haplotype diversity. This study assessed mitochondrial genomes from 25 randomly selected Yellowstone bison and found 10 different mitochondrial haplotypes with a haplotype diversity of 0.78 (± 0.06. Spatial analysis of these mitochondrial DNA (mtDNA haplotypes did not detect geographic population subdivision (FST = -0.06, p = 0.76. However, we identified two independent and historically important lineages in Yellowstone bison by combining data from 65 bison (defined by 120 polymorphic sites from across North America representing a total of 30 different mitochondrial DNA haplotypes. Mitochondrial DNA haplotypes from one of the Yellowstone lineages represent descendants of the 22 indigenous bison remaining in central Yellowstone in 1902. The other mitochondrial DNA lineage represents descendants of the 18 females introduced from northern Montana in 1902 to supplement the indigenous bison population and develop a new breeding herd in the northern region of the park. Comparing modern and historical mitochondrial DNA diversity in Yellowstone bison helps uncover a historical context of park restoration efforts during the early 1900s, provides evidence against a hypothesized mitochondrial disease in bison, and reveals the signature of recent hybridization between American plains bison (Bison bison bison and Canadian wood bison (B. b. athabascae. Our study demonstrates how mitochondrial DNA can be applied to delineate the history of wildlife species and inform future conservation actions.

  8. Editing site analysis in a gymnosperm mitochondrial genome reveals similarities with angiosperm mitochondrial genomes

    OpenAIRE

    Salmans, Michael Lee; Chaw, Shu-Miaw; Lin, Ching-Ping; Shih, Arthur Chun-Chieh; Wu, Yu-Wei; Mulligan, R. Michael

    2010-01-01

    Sequence analysis of organelle genomes and comprehensive analysis of C-to-U editing sites from flowering and non-flowering plants have provided extensive sequence information from diverse taxa. This study includes the first comprehensive analysis of RNA editing sites from a gymnosperm mitochondrial genome, and utilizes informatics analyses to determine conserved features in the RNA sequence context around editing sites. We have identified 565 editing sites in 21 full-length and 4 partial cDNA...

  9. Integrative analysis of the mitochondrial proteome in yeast.

    Directory of Open Access Journals (Sweden)

    Holger Prokisch

    2004-06-01

    Full Text Available In this study yeast mitochondria were used as a model system to apply, evaluate, and integrate different genomic approaches to define the proteins of an organelle. Liquid chromatography mass spectrometry applied to purified mitochondria identified 546 proteins. By expression analysis and comparison to other proteome studies, we demonstrate that the proteomic approach identifies primarily highly abundant proteins. By expanding our evaluation to other types of genomic approaches, including systematic deletion phenotype screening, expression profiling, subcellular localization studies, protein interaction analyses, and computational predictions, we show that an integration of approaches moves beyond the limitations of any single approach. We report the success of each approach by benchmarking it against a reference set of known mitochondrial proteins, and predict approximately 700 proteins associated with the mitochondrial organelle from the integration of 22 datasets. We show that a combination of complementary approaches like deletion phenotype screening and mass spectrometry can identify over 75% of the known mitochondrial proteome. These findings have implications for choosing optimal genome-wide approaches for the study of other cellular systems, including organelles and pathways in various species. Furthermore, our systematic identification of genes involved in mitochondrial function and biogenesis in yeast expands the candidate genes available for mapping Mendelian and complex mitochondrial disorders in humans.

  10. Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT--relationship to newly identified mitochondrial pyruvate carrier proteins.

    Directory of Open Access Journals (Sweden)

    Jerry R Colca

    Full Text Available Thiazolidinedione (TZD insulin sensitizers have the potential to effectively treat a number of human diseases, however the currently available agents have dose-limiting side effects that are mediated via activation of the transcription factor PPARγ. We have recently shown PPARγ-independent actions of TZD insulin sensitizers, but the molecular target of these molecules remained to be identified. Here we use a photo-catalyzable drug analog probe and mass spectrometry-based proteomics to identify a previously uncharacterized mitochondrial complex that specifically recognizes TZDs. These studies identify two well-conserved proteins previously known as brain protein 44 (BRP44 and BRP44 Like (BRP44L, which recently have been renamed Mpc2 and Mpc1 to signify their function as a mitochondrial pyruvate carrier complex. Knockdown of Mpc1 or Mpc2 in Drosophila melanogaster or pre-incubation with UK5099, an inhibitor of pyruvate transport, blocks the crosslinking of mitochondrial membranes by the TZD probe. Knockdown of these proteins in Drosophila also led to increased hemolymph glucose and blocked drug action. In isolated brown adipose tissue (BAT cells, MSDC-0602, a PPARγ-sparing TZD, altered the incorporation of (13C-labeled carbon from glucose into acetyl CoA. These results identify Mpc1 and Mpc2 as components of the mitochondrial target of TZDs (mTOT and suggest that understanding the modulation of this complex, which appears to regulate pyruvate entry into the mitochondria, may provide a viable target for insulin sensitizing pharmacology.

  11. Orbicularis oculi muscle biopsies for mitochondrial DNA analysis in suspected mitochondrial myopathy

    NARCIS (Netherlands)

    A. Roefs (Anne); P.J. Waters (Paula); G.R.W. Moore (G. R. Wayne); P.J. Dolman (Peter)

    2012-01-01

    textabstractAims: We wished to demonstrate the feasibility of performing diagnostic mitochondrial DNA (mtDNA) analysis on biopsies of the orbicularis oculi muscle in patients with a chronic progressive external ophthalmoplegia (CPEO) phenotype and suspicion of an underlying mitochondrial disorder.

  12. High resolution respirometry analysis of polyethylenimine-mediated mitochondrial energy crisis and cellular stress

    DEFF Research Database (Denmark)

    Hall, Arnaldur; Larsen, Anna Karina; Parhamifar, Ladan

    2013-01-01

    -PEI-B), in a concentration and time-dependent manner, facilitates mitochondrial proton leak and inhibits the electron transport system. These events were associated with gradual reduction of the mitochondrial membrane potential and mitochondrial ATP synthesis. The intracellular ATP levels further declined as a consequence...... as well as lowered ADP phosphorylation (state 3) and mitochondrial ATP synthesis. Polycation-mediated reduction of electron transport system activity was further demonstrated in 'broken mitochondria' (freeze-thawed mitochondrial preparations). Moreover, by using both high-resolution respirometry...... and spectrophotometry analysis of cytochrome c oxidase activity we were able to identify complex IV (cytochrome c oxidase) as a likely specific site of PEI mediated inhibition within the electron transport system. Unraveling the mechanisms of PEI-mediated mitochondrial energy crisis is central for combinatorial design...

  13. Mitochondrial DNA analysis of ancient Peruvian highlanders.

    Science.gov (United States)

    Shinoda, Ken-ichi; Adachi, Noboru; Guillen, Sonia; Shimada, Izumi

    2006-09-01

    Ancient DNA recovered from 57 individuals excavated by Hiram Bingham at the rural communities of Paucarcancha, Patallacta, and Huata near the famed Inca royal estate and ritual site of Machu Picchu was analyzed by polymerase chain reaction, and the results were compared with ancient and modern DNA from various Central Andean areas to test their hypothesized indigenous highland origins. The control and coding regions of the mitochondrial DNA (mtDNA) of 35 individuals in this group were sequenced, and the haplogroups of each individual were determined. The frequency data for the haplogroups of these samples show clear proximity to those of modern Quechua and Aymara populations in the Peruvian and Bolivian highlands, and contrast with those of pre-Hispanic individuals of the north coast of Peru that we defined previously. Our study suggests a strong genetic affinity between sampled late pre-Hispanic individuals and modern Andean highlanders. A previous analysis of the Machu Picchu osteological collection suggests that the residents there were a mixed group of natives from various coastal and highland regions relocated by the Inca state for varied purposes. Overall, our study indicates that the sampled individuals from Paucarcancha and Patallacta were indigenous highlanders who provided supportive roles for nearby Machu Picchu. 2006 Wiley-Liss, Inc.

  14. Analysis of Mitochondrial Network Morphology in Cultured Myoblasts from Patients with Mitochondrial Disorders

    Czech Academy of Sciences Publication Activity Database

    Sládková, J.; Spáčilová, J.; Čapek, Martin; Tesařová, M.; Hansíková, H.; Honzík, T.; Martínek, J.; Zámečník, J.; Kostková, O.; Zeman, J.

    2015-01-01

    Roč. 39, č. 5 (2015), s. 340-350 ISSN 0191-3123 R&D Projects: GA ČR(CZ) GB14-36804G; GA MŠk(CZ) LH13028 Institutional support: RVO:67985823 Keywords : cristae * Fiji * image analysis * mitochondrial disorders * myoblasts * ultrastructure Subject RIV: EA - Cell Biology Impact factor: 0.828, year: 2015

  15. N-terminome analysis of the human mitochondrial proteome.

    Science.gov (United States)

    Vaca Jacome, Alvaro Sebastian; Rabilloud, Thierry; Schaeffer-Reiss, Christine; Rompais, Magali; Ayoub, Daniel; Lane, Lydie; Bairoch, Amos; Van Dorsselaer, Alain; Carapito, Christine

    2015-07-01

    The high throughput characterization of protein N-termini is becoming an emerging challenge in the proteomics and proteogenomics fields. The present study describes the free N-terminome analysis of human mitochondria-enriched samples using trimethoxyphenyl phosphonium (TMPP) labelling approaches. Owing to the extent of protein import and cleavage for mitochondrial proteins, determining the new N-termini generated after translocation/processing events for mitochondrial proteins is crucial to understand the transformation of precursors to mature proteins. The doublet N-terminal oriented proteomics (dN-TOP) strategy based on a double light/heavy TMPP labelling has been optimized in order to improve and automate the workflow for efficient, fast and reliable high throughput N-terminome analysis. A total of 2714 proteins were identified and 897 N-terminal peptides were characterized (424 N-α-acetylated and 473 TMPP-labelled peptides). These results allowed the precise identification of the N-terminus of 693 unique proteins corresponding to 26% of all identified proteins. Overall, 120 already annotated processing cleavage sites were confirmed while 302 new cleavage sites were characterized. The accumulation of experimental evidence of mature N-termini should allow increasing the knowledge of processing mechanisms and consequently also enhance cleavage sites prediction algorithms. Complete datasets have been deposited to the ProteomeXchange Consortium with identifiers PXD001521, PXD001522 and PXD001523 (http://proteomecentral.proteomexchange.org/dataset/PXD001521, http://proteomecentral.proteomexchange.org/dataset/PXD0001522 and http://proteomecentral.proteomexchange.org/dataset/PXD001523, respectively). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Diagnostic value of MRS-quantified brain tissue lactate level in identifying children with mitochondrial disorders

    Energy Technology Data Exchange (ETDEWEB)

    Lunsing, Roelineke J.; Strating, Kim [University Medical Centre Groningen, University of Groningen, Department of Child Neurology, Groningen (Netherlands); Koning, Tom J. de [University Medical Centre Groningen, University of Groningen, Department of Pediatric Metabolic Diseases, Groningen (Netherlands); Sijens, Paul E. [University Medical Centre Groningen, University of Groningen, Department of Radiology, Groningen (Netherlands)

    2017-03-15

    Magnetic resonance spectroscopy (MRS) of children with or without neurometabolic disease is used for the first time for quantitative assessment of brain tissue lactate signals, to elaborate on previous suggestions of MRS-detected lactate as a marker of mitochondrial disease. Multivoxel MRS of a transverse plane of brain tissue cranial to the ventricles was performed in 88 children suspected of having neurometabolic disease, divided into 'definite' (n = 17, ≥1 major criteria), 'probable' (n = 10, ≥2 minor criteria), 'possible' (n = 17, 1 minor criterion) and 'unlikely' mitochondrial disease (n = 44, none of the criteria). Lactate levels, expressed in standardized arbitrary units or relative to creatine, were derived from summed signals from all voxels. Ten 'unlikely' children with a normal neurological exam served as the MRS reference subgroup. For 61 of 88 children, CSF lactate values were obtained. MRS lactate level (>12 arbitrary units) and the lactate-to-creatine ratio (L/Cr >0.22) differed significantly between the definite and the unlikely group (p = 0.015 and p = 0.001, respectively). MRS L/Cr also differentiated between the probable and the MRS reference subgroup (p = 0.03). No significant group differences were found for CSF lactate. MRS-quantified brain tissue lactate levels can serve as diagnostic marker for identifying mitochondrial disease in children. (orig.)

  17. Genetic characterization of Phytophthora nicotianae by the analysis of polymorphic regions of the mitochondrial DNA.

    Science.gov (United States)

    A new method based on the analysis of mitochondrial intergenic regions characterized by intraspecific variation in DNA sequences was developed and applied to the study of the plant pathogen Phytophthora nicotianae. Two regions flanked by genes trny and rns and trnw and cox2 were identified by compa...

  18. Analysis of polymorphisms in the mitochondrial ND5 gene in ...

    African Journals Online (AJOL)

    The aim of this study was to assess genetic variation between a population of Pantaneira sheep in the Brazilian state of Mato Grosso do Sul, and Creole sheep from the south of the country by molecular analysis of the ND5 gene in mitochondrial DNA. The analysis revealed the presence of 16 haplotypes with all Pantaneira ...

  19. Phylogenetic Analysis of Tibetan Mastiffs Based on Mitochondrial ...

    Indian Academy of Sciences (India)

    Navya

    Phylogenetic analysis of Tibetan Mastiffs. RESEARCH ARTICLE. Phylogenetic Analysis of Tibetan Mastiffs Based on. Mitochondrial Hyper variable Region I. Zhanjun Ren*, Huiling Chen, Xuejiao Yang and Chengdong Zhang. College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi.

  20. Sequence analysis of mitochondrial 16S ribosomal RNA gene ...

    Indian Academy of Sciences (India)

    Unknown

    Sequence analysis of mitochondrial 16S ribosomal RNA gene fragment from seven mosquito species. YOGESH S SHOUCHE* and MILIND S PATOLE. National Center for Cell Science, Pune University Campus, Pune 411 007, India. *Corresponding author (Fax, 91-20-5672259; Email, yogesh@nccs.res.in). Mosquitoes are ...

  1. The Complete Mitochondrial Genome of Gossypium hirsutum and Evolutionary Analysis of Higher Plant Mitochondrial Genomes

    Science.gov (United States)

    Su, Aiguo; Geng, Jianing; Grover, Corrinne E.; Hu, Songnian; Hua, Jinping

    2013-01-01

    Background Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. Methodology/Principal Findings We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. Conclusion The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species. PMID:23940520

  2. Use of a mitochondrial COI sequence to identify species of the subtribe Aphidina (Hemiptera, Aphididae

    Directory of Open Access Journals (Sweden)

    Jianfeng WANG

    2011-08-01

    Full Text Available Aphids of the subtribe Aphidina are found mainly in the North Temperate Zone. The relative lack of diagnostic morphological characteristics has obscured the identification of species in this group. However, DNA-based taxonomic methods can clarify species relationships within this group. Sequence variation in a partial segment of the mitochondrial COI gene was highly effective for resolving species relationships within Aphidina. Forty-five species were correctly identified in a neighbor-joining tree. Mean intraspecific sequence divergence was 0.17%, with a range of 0.00% to 1.54%. Mean interspecific divergence within previously recognized genera or morphologically similar species groups was 4.54%, with variation mainly in the range of 3.50% to 8.00%. Possible reasons for anomalous levels of mean nucleotide divergence within or between some taxa are discussed.

  3. Screen for abnormal mitochondrial phenotypes in mouse embryonic stem cells identifies a model for succinyl-CoA ligase deficiency and mtDNA depletion

    Directory of Open Access Journals (Sweden)

    Taraka R. Donti

    2014-02-01

    Full Text Available Mutations in subunits of succinyl-CoA synthetase/ligase (SCS, a component of the citric acid cycle, are associated with mitochondrial encephalomyopathy, elevation of methylmalonic acid (MMA, and mitochondrial DNA (mtDNA depletion. A FACS-based retroviral-mediated gene trap mutagenesis screen in mouse embryonic stem (ES cells for abnormal mitochondrial phenotypes identified a gene trap allele of Sucla2 (Sucla2SAβgeo, which was used to generate transgenic mice. Sucla2 encodes the ADP-specific β-subunit isoform of SCS. Sucla2SAβgeo homozygotes exhibited recessive lethality, with most mutants dying late in gestation (e18.5. Mutant placenta and embryonic (e17.5 brain, heart and muscle showed varying degrees of mtDNA depletion (20–60%. However, there was no mtDNA depletion in mutant liver, where the gene is not normally expressed. Elevated levels of MMA were observed in embryonic brain. SCS-deficient mouse embryonic fibroblasts (MEFs demonstrated a 50% reduction in mtDNA content compared with wild-type MEFs. The mtDNA depletion resulted in reduced steady state levels of mtDNA encoded proteins and multiple respiratory chain deficiencies. mtDNA content could be restored by reintroduction of Sucla2. This mouse model of SCS deficiency and mtDNA depletion promises to provide insights into the pathogenesis of mitochondrial diseases with mtDNA depletion and into the biology of mtDNA maintenance. In addition, this report demonstrates the power of a genetic screen that combines gene trap mutagenesis and FACS analysis in mouse ES cells to identify mitochondrial phenotypes and to develop animal models of mitochondrial dysfunction.

  4. Network analysis reveals a causal role of mitochondrial gene activity in atherosclerotic lesion formation.

    Science.gov (United States)

    Vilne, Baiba; Skogsberg, Josefin; Foroughi Asl, Hassan; Talukdar, Husain Ahammad; Kessler, Thorsten; Björkegren, Johan L M; Schunkert, Heribert

    2017-12-01

    Mitochondrial damage and augmented production of reactive oxygen species (ROS) may represent an intermediate step by which hypercholesterolemia exacerbates atherosclerotic lesion formation. To test this hypothesis, in mice with severe but genetically reversible hypercholesterolemia (i.e. the so called Reversa mouse model), we performed time-resolved analyses of mitochondrial transcriptome in the aortic arch employing a systems-level network approach. During hypercholesterolemia, we observed a massive down-regulation (>28%) of mitochondrial genes, specifically at the time of rapid atherosclerotic lesion expansion and foam cell formation, i.e. between 30 and 40 weeks of age. Both phenomena - down-regulation of mitochondrial genes and lesion expansion - were largely reversible by genetically lowering plasma cholesterol (by >80%, from 427 to 54 ± 31 mg/L) at 30 weeks. Co-expression network analysis revealed that both mitochondrial signature genes were highly connected in two modules, negatively correlating with lesion size and supported as causal for coronary artery disease (CAD) in humans, as expression-associated single nucleotide polymorphisms (eSNPs) representing their genes overlapped markedly with established disease risk loci. Within these modules, we identified the transcription factor estrogen related receptor (ERR)-α and its co-factors PGC1-α and -β, i.e. two members of the peroxisome proliferator-activated receptor γ co-activator 1 family of transcription regulators, as key regulatory genes. Together, these factors are known as major orchestrators of mitochondrial biogenesis and antioxidant responses. Using a network approach, we demonstrate how hypercholesterolemia could hamper mitochondrial activity during atherosclerosis progression and pinpoint potential therapeutic targets to counteract these processes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Complementary RNA and Protein Profiling Identifies Iron as a Key Regulator of Mitochondrial Biogenesis

    Directory of Open Access Journals (Sweden)

    Jarred W. Rensvold

    2013-01-01

    Full Text Available Mitochondria are centers of metabolism and signaling whose content and function must adapt to changing cellular environments. The biological signals that initiate mitochondrial restructuring and the cellular processes that drive this adaptive response are largely obscure. To better define these systems, we performed matched quantitative genomic and proteomic analyses of mouse muscle cells as they performed mitochondrial biogenesis. We find that proteins involved in cellular iron homeostasis are highly coordinated with this process and that depletion of cellular iron results in a rapid, dose-dependent decrease of select mitochondrial protein levels and oxidative capacity. We further show that this process is universal across a broad range of cell types and fully reversed when iron is reintroduced. Collectively, our work reveals that cellular iron is a key regulator of mitochondrial biogenesis, and provides quantitative data sets that can be leveraged to explore posttranscriptional and posttranslational processes that are essential for mitochondrial adaptation.

  6. Characteristics and phylogenetic analysis of the complete mitochondrial genome of Cheilodactylus quadricornis (Perciformes, Cheilodactylidae).

    Science.gov (United States)

    Wang, Aishuai; Sun, Yuena; Wu, Changwen

    2016-11-01

    The complete mitochondrial genome of the Cheilodactylus quadricornis was firstly determined in the present study. The mitochondrial genome of C. quadricornis is 16 521 nucleotides, comprising 13 protein-coding genes and 2 ribosomal RNA genes, 22 tRNA genes and 2 main non-coding regions (the control region and the origin of the light-strand replication). The overall base composition was T, 26.3%; C, 29.6%; A, 27.8% and G, 16.3%. The gene arrangement, base composition, and tRNA structures of the complete mitochondrial genome of C. quadricornis is similar to other teleosts. Only two central conserved sequence blocks (CSB-2 and CSB-3) were identified in the control region. In addition, the conserved motif 5'-GCCGG-3' was identified in the origin of light-strand replication of C. quadricornis. The complete mitochondrial genome of C. quadricornis was used to construct phylogenetic tree, which shows that C. quadricornis and C. variegatus clustered in a clade and formed a sister relationship. This mitogenome sequence data would play an important role in population genetics and phylogenetic analysis of the Cheilodactylidae.

  7. Identification, cloning and expression analysis of strawberry (Fragaria x ananassa) mitochondrial citrate synthase and mitochondrial malate dehydrogenase.

    Science.gov (United States)

    Iannetta, Pietro P. M.; Escobar, Nieves Medina; Ross, Heather A.; Souleyre, Edwige J. F.; Hancock, Robert D.; Witte, Claus-Peter; Davies, Howard V.

    2004-05-01

    Salt-extractable proteins from the cell walls of immature and ripe strawberry (Fragaria x ananassa Duch. cv. Elsanta) fruit were separated using two-dimensional polyacrylamide gel electrophoresis. Seven polypeptides (enzymes) were characterized from their N-terminal sequences: (1) glyceraldhyde-3-phosphate dehydrogenase (EC 1.2.1.12); (2) triose phosphate isomerase (TPI; EC 5.3.1.1); (3) mitochondrial malate dehydrogenase (mMDH; EC 1.1.1.37); (4) NADH glutamate dehydrogenase (EC 1.4.1.3); (5) chalcone synthase (ChS; EC 2.3.1.74); (6) mitochondrial citrate synthase (mCS; EC 4.1.3.7); and (7) UDP glucose:flavonoid 3-O-glucosyltransferase (UDPG:FGT; EC 2.4.1.91). The sequenced polypeptides identified only cytosolic proteins, two of which (ChS and UDPG:FGT) had already been identified as being up-regulated in ripening (strawberry) fruit and important contributors to ripe fruit character. Our focus was therefore diverted to the enzymes mMDH and mCS for further molecular characterization as potentially important determinants of fruit flavour via regulation of the sugar : acid balance. Citrate synthase (CS) and malate dehydrogenase (MDH) enzyme activities increased substantially during ripening, as did citrate and malate contents. The increase in CS activity is supported by western blot analysis. One strawberry mCS (Fa-mCS-I) and two mMDH (Fa-mMDH-I and -II) cDNAs were cloned that were 77, 82 and 53% identical (respectively) to sequences from other plant sources. Northern analysis showed that CS and MDH expression did not correlate with enzyme activities and these findings are discussed.

  8. Mitochondrial disease in autism spectrum disorder patients: a cohort analysis.

    Directory of Open Access Journals (Sweden)

    Jacqueline R Weissman

    Full Text Available Previous reports indicate an association between autism spectrum disorders (ASD and disorders of mitochondrial oxidative phosphorylation. One study suggested that children with both diagnoses are clinically indistinguishable from children with idiopathic autism. There are, however, no detailed analyses of the clinical and laboratory findings in a large cohort of these children. Therefore, we undertook a comprehensive review of patients with ASD and a mitochondrial disorder.We reviewed medical records of 25 patients with a primary diagnosis of ASD by DSM-IV-TR criteria, later determined to have enzyme- or mutation-defined mitochondrial electron transport chain (ETC dysfunction. Twenty-four of 25 patients had one or more major clinical abnormalities uncommon in idiopathic autism. Twenty-one patients had histories of significant non-neurological medical problems. Nineteen patients exhibited constitutional symptoms, especially excessive fatigability. Fifteen patients had abnormal neurological findings. Unusual developmental phenotypes included marked delay in early gross motor milestones (32% and unusual patterns of regression (40%. Levels of blood lactate, plasma alanine, and serum ALT and/or AST were increased at least once in 76%, 36%, and 52% of patients, respectively. The most common ETC disorders were deficiencies of complex I (64% and complex III (20%. Two patients had rare mtDNA mutations of likely pathogenicity.Although all patients' initial diagnosis was idiopathic autism, careful clinical and biochemical assessment identified clinical findings that differentiated them from children with idiopathic autism. These and prior data suggest a disturbance of mitochondrial energy production as an underlying pathophysiological mechanism in a subset of individuals with autism.

  9. Characterizing nuclear and mitochondrial DNA in spent embryo culture media: genetic contamination identified.

    Science.gov (United States)

    Hammond, Elizabeth R; McGillivray, Brent C; Wicker, Sophie M; Peek, John C; Shelling, Andrew N; Stone, Peter; Chamley, Larry W; Cree, Lynsey M

    2017-01-01

    To characterize nuclear and mitochondrial DNA (mtDNA) in spent culture media from normally developing blastocysts to determine whether it could be used for noninvasive genetic assessment. Prospective embryo cohort study. Academic center and private in vitro fertilization (IVF) clinic. Seventy patients undergoing intracytoplasmic sperm injection (ICSI) and 227 blastocysts. Culture media assessment, artificial blastocoele fluid collapse and DNA analysis using digital polymerase chain reaction (dPCR), long-range PCR, quantitative PCR (qPCR), and DNA fingerprinting. Presence of nuclear and mtDNA in three different commercial culture media from Vitrolife and Irvine Scientific, spent embryo media assessment at the cleavage and blastocyst stages of development, and analysis of the internal media controls for each patient that had been exposed to identical conditions as embryo media but did not come into contact with embryos. Higher levels of nuclear and mtDNA were observed in the culture media that had been exposed to embryos compared with the internal media controls. Nuclear DNA (∼4 copies) and mtDNA (∼600 copies) could be detected in spent media, and the levels increased at the blastocyst stage. No increase in DNA was detected after artificial blastocoele fluid collapse. Mixed sex chromosome DNA was detected. This originated from contamination in the culture media and from maternal (cumulus) cells. Due to the limited amount of template, the presence of embryonic nuclear DNA could not be confirmed by DNA fingerprinting analysis. Currently DNA from culture media cannot be used for genetic assessment because embryo-associated structures release DNA into the culture medium and the DNA is of mixed origin. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  10. Analysis of 953 human proteins from a mitochondrial HEK293 fraction by complexome profiling.

    Directory of Open Access Journals (Sweden)

    Hans J C T Wessels

    Full Text Available Complexome profiling is a novel technique which uses shotgun proteomics to establish protein migration profiles from fractionated blue native electrophoresis gels. Here we present a dataset of blue native electrophoresis migration profiles for 953 proteins by complexome profiling. By analysis of mitochondrial ribosomal complexes we demonstrate its potential to verify putative protein-protein interactions identified by affinity purification-mass spectrometry studies. Protein complexes were extracted in their native state from a HEK293 mitochondrial fraction and separated by blue native gel electrophoresis. Gel lanes were cut into gel slices of even size and analyzed by shotgun proteomics. Subsequently, the acquired protein migration profiles were analyzed for co-migration via hierarchical cluster analysis. This dataset holds great promise as a comprehensive resource for de novo identification of protein-protein interactions or to underpin and prioritize candidate protein interactions from other studies. To demonstrate the potential use of our dataset we focussed on the mitochondrial translation machinery. Our results show that mitoribosomal complexes can be analyzed by blue native gel electrophoresis, as at least four distinct complexes. Analysis of these complexes confirmed that 24 proteins that had previously been reported to co-purify with mitoribosomes indeed co-migrated with subunits of the mitochondrial ribosome. Co-migration of several proteins involved in biogenesis of inner mitochondrial membrane complexes together with mitoribosomal complexes suggested the possibility of co-translational assembly in human cells. Our data also highlighted a putative ribonucleotide complex that potentially contains MRPL10, MRPL12 and MRPL53 together with LRPPRC and SLIRP.

  11. Mutation analysis in mitochondrial fatty acid oxidation defects

    DEFF Research Database (Denmark)

    Gregersen, N; Andresen, B S; Corydon, M J

    2001-01-01

    implications of mutation type, as well as the modulating effect of the mitochondrial protein quality control systems, composed of molecular chaperones and intracellular proteases. We propose that the unraveling of the genetic and cellular determinants of the modulating effects of protein quality control...... the need for profile analyses of additional genetic variations. The rapid development of mutation detection systems, such as the chip technologies, makes such profile analyses feasible. However, it remains to be seen to what extent mutation analysis will be used for diagnosis of fatty acid oxidation...

  12. Comparative analysis of the mitochondrial genomes in gastropods

    International Nuclear Information System (INIS)

    Arquez, Moises; Uribe, Juan Esteban; Castro, Lyda Raquel

    2012-01-01

    In this work we presented a comparative analysis of the mitochondrial genomes in gastropods. Nucleotide and amino acids composition was calculated and a comparative visual analysis of the start and termination codons was performed. The organization of the genome was compared calculating the number of intergenic sequences, the location of the genes and the number of reorganized genes (breakpoints) in comparison with the sequence that is presumed to be ancestral for the group. In order to calculate variations in the rates of molecular evolution within the group, the relative rate test was performed. In spite of the differences in the size of the genomes, the amino acids number is conserved. The nucleotide and amino acid composition is similar between Vetigastropoda, Ceanogastropoda and Neritimorpha in comparison to Heterobranchia and Patellogastropoda. The mitochondrial genomes of the group are very compact with few intergenic sequences, the only exception is the genome of Patellogastropoda with 26,828 bp. Start codons of the Heterobranchia and Patellogastropoda are very variable and there is also an increase in genome rearrangements for these two groups. Generally, the hypothesis of constant rates of molecular evolution between the groups is rejected, except when the genomes of Caenogastropoda and Vetigastropoda are compared.

  13. Chemical screening identifies ROCK as a target for recovering mitochondrial function in Hutchinson-Gilford progeria syndrome.

    Science.gov (United States)

    Kang, Hyun Tae; Park, Joon Tae; Choi, Kobong; Choi, Hyo Jei Claudia; Jung, Chul Won; Kim, Gyu Ree; Lee, Young-Sam; Park, Sang Chul

    2017-06-01

    Hutchinson-Gilford progeria syndrome (HGPS) constitutes a genetic disease wherein an aging phenotype manifests in childhood. Recent studies indicate that reactive oxygen species (ROS) play important roles in HGPS phenotype progression. Thus, pharmacological reduction in ROS levels has been proposed as a potentially effective treatment for patient with this disorder. In this study, we performed high-throughput screening to find compounds that could reduce ROS levels in HGPS fibroblasts and identified rho-associated protein kinase (ROCK) inhibitor (Y-27632) as an effective agent. To elucidate the underlying mechanism of ROCK in regulating ROS levels, we performed a yeast two-hybrid screen and discovered that ROCK1 interacts with Rac1b. ROCK activation phosphorylated Rac1b at Ser71 and increased ROS levels by facilitating the interaction between Rac1b and cytochrome c. Conversely, ROCK inactivation with Y-27632 abolished their interaction, concomitant with ROS reduction. Additionally, ROCK activation resulted in mitochondrial dysfunction, whereas ROCK inactivation with Y-27632 induced the recovery of mitochondrial function. Furthermore, a reduction in the frequency of abnormal nuclear morphology and DNA double-strand breaks was observed along with decreased ROS levels. Thus, our study reveals a novel mechanism through which alleviation of the HGPS phenotype is mediated by the recovery of mitochondrial function upon ROCK inactivation. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. [Determining mitochondrial molecular markers suitable for genetic diversity analysis of Cordyceps militaris].

    Science.gov (United States)

    Zhang, Yongjie; Guo, Lihong; Zhang, Shu; Liu, Xingzhong

    2015-07-04

    To screen efficient molecular markers suitable for genetic diversity analysis of Cordyceps militaris from mitochondrial DNA. We amplified 12 mitochondrial DNA fragments and 3 nuclear DNA fragments from each of 20 C. militaris isolates and analyzed nucleotide variations on these DNA fragments. We revealed a greatly higher genetic variation in mitochondrial DNA fragments than in nuclear DNA fragments. Specifically, C. militaris isolates exhibited intron presence/absence diversity in some mitochondrial fragments, and more variable sites were found in mitochondrial fragments than in nuclear fragments. The extent of nucleotide variations also varied by mitochondrial fragment, and intronic proteins seemed to be more vulnerable to amino acid changes than exonic proteins. Genetic diversity increased with the number of molecular markers used. We recommended using (in order) nad3-cox2. cox2-nad5, cox2, cox3, cob, and cox1 for future genetic diversity and population genetic studies of C. militaris.

  15. Functional genomic analysis of human mitochondrial RNA processing.

    Science.gov (United States)

    Wolf, Ashley R; Mootha, Vamsi K

    2014-05-08

    Both strands of human mtDNA are transcribed in continuous, multigenic units that are cleaved into the mature rRNAs, tRNAs, and mRNAs required for respiratory chain biogenesis. We sought to systematically identify nuclear-encoded proteins that contribute to processing of mtRNAs within the organelle. First, we devised and validated a multiplex MitoString assay that quantitates 27 mature and precursor mtDNA transcripts. Second, we applied MitoString profiling to evaluate the impact of silencing each of 107 mitochondrial-localized, predicted RNA-binding proteins. With the resulting data set, we rediscovered the roles of recently identified RNA-processing enzymes, detected unanticipated roles of known disease genes in RNA processing, and identified new regulatory factors. We demonstrate that one such factor, FASTKD4, modulates the half-lives of a subset of mt-mRNAs and associates with mtRNAs in vivo. MitoString profiling may be useful for diagnosing and deciphering the pathogenesis of mtDNA disorders. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Functional Genomic Analysis of Human Mitochondrial RNA Processing

    Directory of Open Access Journals (Sweden)

    Ashley R. Wolf

    2014-05-01

    Full Text Available Both strands of human mtDNA are transcribed in continuous, multigenic units that are cleaved into the mature rRNAs, tRNAs, and mRNAs required for respiratory chain biogenesis. We sought to systematically identify nuclear-encoded proteins that contribute to processing of mtRNAs within the organelle. First, we devised and validated a multiplex MitoString assay that quantitates 27 mature and precursor mtDNA transcripts. Second, we applied MitoString profiling to evaluate the impact of silencing each of 107 mitochondrial-localized, predicted RNA-binding proteins. With the resulting data set, we rediscovered the roles of recently identified RNA-processing enzymes, detected unanticipated roles of known disease genes in RNA processing, and identified new regulatory factors. We demonstrate that one such factor, FASTKD4, modulates the half-lives of a subset of mt-mRNAs and associates with mtRNAs in vivo. MitoString profiling may be useful for diagnosing and deciphering the pathogenesis of mtDNA disorders.

  17. A Comprehensive Genomic Analysis Reveals the Genetic Landscape of Mitochondrial Respiratory Chain Complex Deficiencies.

    Directory of Open Access Journals (Sweden)

    Masakazu Kohda

    2016-01-01

    Full Text Available Mitochondrial disorders have the highest incidence among congenital metabolic disorders characterized by biochemical respiratory chain complex deficiencies. It occurs at a rate of 1 in 5,000 births, and has phenotypic and genetic heterogeneity. Mutations in about 1,500 nuclear encoded mitochondrial proteins may cause mitochondrial dysfunction of energy production and mitochondrial disorders. More than 250 genes that cause mitochondrial disorders have been reported to date. However exact genetic diagnosis for patients still remained largely unknown. To reveal this heterogeneity, we performed comprehensive genomic analyses for 142 patients with childhood-onset mitochondrial respiratory chain complex deficiencies. The approach includes whole mtDNA and exome analyses using high-throughput sequencing, and chromosomal aberration analyses using high-density oligonucleotide arrays. We identified 37 novel mutations in known mitochondrial disease genes and 3 mitochondria-related genes (MRPS23, QRSL1, and PNPLA4 as novel causative genes. We also identified 2 genes known to cause monogenic diseases (MECP2 and TNNI3 and 3 chromosomal aberrations (6q24.3-q25.1, 17p12, and 22q11.21 as causes in this cohort. Our approaches enhance the ability to identify pathogenic gene mutations in patients with biochemically defined mitochondrial respiratory chain complex deficiencies in clinical settings. They also underscore clinical and genetic heterogeneity and will improve patient care of this complex disorder.

  18. Sequence analysis of mitochondrial DNA hypervariable region III of ...

    African Journals Online (AJOL)

    The aims of this research were to study mitochondrial DNA hypervariable region III and establish the degree of variation characteristic of a fragment. The mitochondrial DNA (mtDNA) is a small circular genome located within the mitochondria in the cytoplasm of the cell and a smaller 1.2 kb pair fragment, called the control ...

  19. Sequence analysis of mitochondrial DNA hypervariable region III of ...

    African Journals Online (AJOL)

    Aghomotsegin

    2015-07-01

    Jul 1, 2015 ... may in time accumulate differences in the mitochondrial. DNA but show little difference in the nuclear DNA and finally, maternal inheritance: A further reason for the use of mitochondrial DNA in species testing, and in forensic science, is its mode of inheritance. Mitochondria exist within the cytoplasm of cells, ...

  20. Mitochondrial behavior during oogenesis in zebrafish: a confocal microscopy analysis.

    Science.gov (United States)

    Zhang, Yong-Zhong; Ouyang, Ying-Chun; Hou, Yi; Schatten, Heide; Chen, Da-Yuan; Sun, Qing-Yuan

    2008-03-01

    The behavior of mitochondria during early oogenesis remains largely unknown in zebrafish. We used three mitochondrial probes (Mito Tracker Red CMXRos, Mito Tracker Green FM, and JC-1) to stain early zebrafish oocyte mitochondria, and confocal microscopy to analyze mitochondrial aggregation and distribution. By using fluorescence recovery after photobleaching (FRAP), we traced mitochondrial movement. The microtubule assembly inhibitor nocodazole and microfilament inhibitor cytochalasin B (CB) were used to analyze the role of microtubules and microfilaments on mitochondrial movement. By using the dual emission probe, JC-1, and oxidative phosphorylation uncoupler, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), we determined the distribution of active and inactive (low-active) mitochondria. Green/red fluorescence ratios of different sublocations in different oocyte groups stained by JC-1 were detected in merged (green and red) images. Our results showed that mitochondria exhibited a unique distribution pattern in early zebrafish oocytes. They tended to aggregate into large clusters in early stage I oocytes, but in a threadlike state in latter stage I oocytes. We detected a lower density mitochondrial area and a higher density mitochondrial area on opposite sides of the germinal vesicle. The green/red fluorescence ratios in different sublocations in normal oocytes were about 1:1. This implies that active mitochondria were distributed in all sublocations. FCCP treatment caused significant increases in the ratios. CB and nocodazole treatment caused an increase of the ratios in clusters and mitochondrial cloud, but not in dispersed areas. Mitochondria in different sublocations underwent fast dynamic movement. Inhibition or disruption of microtubules or microfilaments resulted in even faster mitochondrial free movement.

  1. Respiromics – An integrative analysis linking mitochondrial bioenergetics to molecular signatures

    Directory of Open Access Journals (Sweden)

    Ellen Walheim

    2018-03-01

    Full Text Available Objective: Energy metabolism is challenged upon nutrient stress, eventually leading to a variety of metabolic diseases that represent a major global health burden. Methods: Here, we combine quantitative mitochondrial respirometry (Seahorse technology and proteomics (LC-MS/MS-based total protein approach to understand how molecular changes translate to changes in mitochondrial energy transduction during diet-induced obesity (DIO in the liver. Results: The integrative analysis reveals that significantly increased palmitoyl-carnitine respiration is supported by an array of proteins enriching lipid metabolism pathways. Upstream of the respiratory chain, the increased capacity for ATP synthesis during DIO associates strongest to mitochondrial uptake of pyruvate, which is routed towards carboxylation. At the respiratory chain, robust increases of complex I are uncovered by cumulative analysis of single subunit concentrations. Specifically, nuclear-encoded accessory subunits, but not mitochondrial-encoded or core units, appear to be permissive for enhanced lipid oxidation. Conclusion: Our integrative analysis, that we dubbed “respiromics”, represents an effective tool to link molecular changes to functional mechanisms in liver energy metabolism, and, more generally, can be applied for mitochondrial analysis in a variety of metabolic and mitochondrial disease models. Keywords: Mitochondria, Respirometry, Proteomics, Mitochondrial pyruvate carrier, Liver disease, Bioenergetics, Obesity, Diabetes

  2. Analysis of the complete Fischoederius elongatus (Paramphistomidae, Trematoda) mitochondrial genome.

    Science.gov (United States)

    Yang, Xin; Zhao, Yunyang; Wang, Lixia; Feng, Hanli; Tan, Li; Lei, Weiqiang; Zhao, Pengfei; Hu, Min; Fang, Rui

    2015-05-20

    Fischoederius elongates is an important trematode of Paramphistomes in ruminants. Animals infected with F. elongates often don't show obvious symptoms, so it is easy to be ignored. However it can cause severe economic losses to the breeding industry. Knowledge of the mitochondrial genome of F. elongates can be used for phylogenetic and epidemiological studies. The complete mt genome sequence of F. elongates is 14,120 bp in length and contains 12 protein-coding genes, 22 tRNA genes, two rRNA genes and two non-coding regions (LNR and SNR). The gene arrangement of F. elongates is the same as other trematodes, such as Fasciola hepatica and Paramphistomum cervi. Phylogenetic analyses using concatenated amino acid sequences of the 12 protein-coding genes by Maximum-likelihood and Neighbor-joining analysis method showed that F. elongates was closely related to P. cervi. The complete mt genome sequence of F. elongates should provide information for phylogenetic and epidemiological studies for F. elongates and the family Paramphistomidae.

  3. Hepatic mitochondrial function analysis using needle liver biopsy samples.

    Directory of Open Access Journals (Sweden)

    Michael J J Chu

    Full Text Available BACKGROUNDS AND AIM: Current assessment of pre-operative liver function relies upon biochemical blood tests and histology but these only indirectly measure liver function. Mitochondrial function (MF analysis allows direct measurement of cellular metabolic function and may provide an additional index of hepatic health. Conventional MF analysis requires substantial tissue samples (>100 mg obtained at open surgery. Here we report a method to assess MF using <3 mg of tissue obtained by a Tru-cut® biopsy needle making it suitable for percutaneous application. METHODS: An 18G Bard® Max-core® biopsy instrument was used to collect samples. The optimal Tru-cut® sample weight, stability in ice-cold University of Wisconsin solution, reproducibility and protocol utility was initially evaluated in Wistar rat livers then confirmed in human samples. MF was measured in saponin-permeabilized samples using high-resolution respirometry. RESULTS: The average mass of a single rat and human liver Tru-cut® biopsy was 5.60±0.30 and 5.16±0.15 mg, respectively (mean; standard error of mean. Two milligram of sample was found the lowest feasible mass for the MF assay. Tissue MF declined after 1 hour of cold storage. Six replicate measurements within rats and humans (n = 6 each showed low coefficient of variation (<10% in measurements of State-III respiration, electron transport chain (ETC capacity and respiratory control ratio (RCR. Ischemic rat and human liver samples consistently showed lower State-III respiration, ETC capacity and RCR, compared to normal perfused liver samples. CONCLUSION: Consistent measurement of liver MF and detection of derangement in a disease state was successfully demonstrated using less than half the tissue from a single Tru-cut® biopsy. Using this technique outpatient assessment of liver MF is now feasible, providing a new assay for the evaluation of hepatic function.

  4. Accurate mitochondrial DNA sequencing using off-target reads provides a single test to identify pathogenic point mutations.

    Science.gov (United States)

    Griffin, Helen R; Pyle, Angela; Blakely, Emma L; Alston, Charlotte L; Duff, Jennifer; Hudson, Gavin; Horvath, Rita; Wilson, Ian J; Santibanez-Koref, Mauro; Taylor, Robert W; Chinnery, Patrick F

    2014-12-01

    Mitochondrial disorders are a common cause of inherited metabolic disease and can be due to mutations affecting mitochondrial DNA or nuclear DNA. The current diagnostic approach involves the targeted resequencing of mitochondrial DNA and candidate nuclear genes, usually proceeds step by step, and is time consuming and costly. Recent evidence suggests that variations in mitochondrial DNA sequence can be obtained from whole-exome sequence data, raising the possibility of a comprehensive single diagnostic test to detect pathogenic point mutations. We compared the mitochondrial DNA sequence derived from off-target exome reads with conventional mitochondrial DNA Sanger sequencing in 46 subjects. Mitochondrial DNA sequences can be reliably obtained using three different whole-exome sequence capture kits. Coverage correlates with the relative amount of mitochondrial DNA in the original genomic DNA sample, heteroplasmy levels can be determined using variant and total read depths, and-providing there is a minimum read depth of 20-fold-rare sequencing errors occur at a rate similar to that observed with conventional Sanger sequencing. This offers the prospect of using whole-exome sequence in a diagnostic setting to screen not only all protein coding nuclear genes but also all mitochondrial DNA genes for pathogenic mutations. Off-target mitochondrial DNA reads can also be used to assess quality control and maternal ancestry, inform on ethnic origin, and allow genetic disease association studies not previously anticipated with existing whole-exome data sets.

  5. Comparative mitochondrial genome analysis reveals the evolutionary rearrangement mechanism in Brassica.

    Science.gov (United States)

    Yang, J; Liu, G; Zhao, N; Chen, S; Liu, D; Ma, W; Hu, Z; Zhang, M

    2016-05-01

    The genus Brassica has many species that are important for oil, vegetable and other food products. Three mitochondrial genome types (mitotype) originated from its common ancestor. In this paper, a B. nigra mitochondrial main circle genome with 232,407 bp was generated through de novo assembly. Synteny analysis showed that the mitochondrial genomes of B. rapa and B. oleracea had a better syntenic relationship than B. nigra. Principal components analysis and development of a phylogenetic tree indicated maternal ancestors of three allotetraploid species in Us triangle of Brassica. Diversified mitotypes were found in allotetraploid B. napus, in which napus-type B. napus was derived from B. oleracea, while polima-type B. napus was inherited from B. rapa. In addition, the mitochondrial genome of napus-type B. napus was closer to botrytis-type than capitata-type B. oleracea. The sub-stoichiometric shifting of several mitochondrial genes suggested that mitochondrial genome rearrangement underwent evolutionary selection during domestication and/or plant breeding. Our findings clarify the role of diploid species in the maternal origin of allotetraploid species in Brassica and suggest the possibility of breeding selection of the mitochondrial genome. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Variation in Mitochondrial Cytochrome c Oxidase I DNA Can Successfully Identify Culex (Melanoconion) pedroi (Diptera: Culicidae) and Culex (Melanoconion) ribeirensis (Diptera: Culicidae).

    Science.gov (United States)

    Araki, A S; Maia, D A; Gil-Santana, H R; de Mello, C F; Martins, A de J; Alencar, J

    2017-03-01

    Culex (Melanoconion) pedroiSirivanakarn & Belkin 1980 and Culex (Melanoconion) ribeirensisForattini & Sallum 1985 are two morphologically very similar species of the Pedroi subgroup of mosquitoes in the Spissipes section of the subgenus Melanoconion of the genus Culex L. 1758. We carried out an analysis of the mitochondrial cytochrome c oxidase I (COI) DNA variation between these two species. The recent observation of sympatric coexistence in a forested area of Rio de Janeiro State (Brazil) triggered the need to validate these two species previously identified based on morphology. We concluded that the COI is a useful tool for identification of Cx. pedroi and Cx. ribeirensis. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Sequencing and analysis of the complete mitochondrial genome in Anopheles sinensis (Diptera: Culicidae).

    Science.gov (United States)

    Chen, Kai; Wang, Yan; Li, Xiang-Yu; Peng, Heng; Ma, Ya-Jun

    2017-10-02

    Anopheles sinensis (Diptera: Culicidae) is a primary vector of Plasmodium vivax and Brugia malayi in most regions of China. In addition, its phylogenetic relationship with the cryptic species of the Hyrcanus Group is complex and remains unresolved. Mitochondrial genome sequences are widely used as molecular markers for phylogenetic studies of mosquito species complexes, of which mitochondrial genome data of An. sinensis is not available. An. sinensis samples was collected from Shandong, China, and identified by molecular marker. Genomic DNA was extracted, followed by the Illumina sequencing. Two complete mitochondrial genomes were assembled and annotated using the mitochondrial genome of An. gambiae as reference. The mitochondrial genomes sequences of the 28 known Anopheles species were aligned and reconstructed phylogenetic tree by Maximum Likelihood (ML) method. The length of complete mitochondrial genomes of An. sinensis was 15,076 bp and 15,138 bp, consisting of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and an AT-rich control region. As in other insects, most mitochondrial genes are encoded on the J strand, except for ND5, ND4, ND4L, ND1, two rRNA and eight tRNA genes, which are encoded on the N strand. The bootstrap value was set as 1000 in ML analyses. The topologies restored phylogenetic affinity within subfamily Anophelinae. The ML tree showed four major clades, corresponding to the subgenera Cellia, Anopheles, Nyssorhynchus and Kerteszia of the genus Anopheles. The complete mitochondrial genomes of An. sinensis were obtained. The number, order and transcription direction of An. sinensis mitochondrial genes were the same as in other species of family Culicidae.

  8. Digital Imaging Analysis for the Study of Endotoxin-Induced Mitochondrial Ultrastructure Injury

    Directory of Open Access Journals (Sweden)

    Mandar S. Joshi

    2000-01-01

    Full Text Available Primary defects in mitochondrial function have been implicated in over 100 diverse diseases. In situ, mitochondria possess unique and well-defined morphology in normal healthy cells, but diseases linked to defective mitochondrial function are characterized by the presence of morphologically abnormal and swollen mitochondria with distorted cristae. In situ study of mitochondrial morphology is established as an indicator of mitochondrial health but thus far assessments have been via subjective evaluations by trained observers using discontinuous scoring systems. Here we investigated the value of digital imaging analysis to provide for unbiased, reproducible, and convenient evaluations of mitochondrial ultrastructure. Electron photomicrographs of ileal mucosal mitochondria were investigated using a scoring system previously described by us, and also analyzed digitally by using six digital parameters which define size, shape, and electron density characteristics of over 700 individual mitochondria. Statistically significant changes in mitochondrial morphology were detected in LPS treated animals relative to vehicle control using both the subjective scoring system and digital imaging parameters (p < 0:05. However, the imaging approach provided convenient and high throughput capabilities and was easily automated to remove investigator influences. These results illustrate significant changes in ileal mucosal mitochondrial ultrastructure during sepsis and demonstrate the value of digital imaging technology for routine assessments in this setting.

  9. Molecular Modeling Analysis of the Inhibition of Mitochondrial Cytochrome BC1 Complex Activity by Tocol Derivatives

    Science.gov (United States)

    Singh, Awantika; Hauer-Jensen, Martin; Compadre, Cesar M.; Kumar, K. Sree

    2011-06-01

    The biological functions of vitamin E related compounds have been of interest in biomedical research for several decades. Among those compounds, α-, β-, δ-, and γ-tocopherols and their oxidation products, α-, β-, δ-, γ-tocopherylquinone and their analogs α-TQo, γ-TQo, TMC20 and TMC40 were recently shown to inhibit the mitochondrial cytochrome bc1 complex. In this investigation the effects of the structural variation on the inhibition of the mitochondrial cytochrome bc1 complex were analyzed using Comparative Molecular Field Analysis (CoMFA). CoMFA performed using steric and electrostatic molecular fields produced a very good correlation. The best CoMFA models were obtained using the manual alignment of 12 compounds with 5 components (q2 = 0.589, SPRESS = 0.515, r2 = 0.992, s = 0.068 and F value = 156.520). The resulting contour maps produced by the best CoMFA model were helpful in identifying the structural features required for the biological activity of compounds under study. These results would be helpful for predicting the activity of new compounds, and they could be used for guiding the design, synthesis and development of new and more effective agents.

  10. Complete Sequence and Analysis of Coconut Palm (Cocos nucifera) Mitochondrial Genome.

    Science.gov (United States)

    Aljohi, Hasan Awad; Liu, Wanfei; Lin, Qiang; Zhao, Yuhui; Zeng, Jingyao; Alamer, Ali; Alanazi, Ibrahim O; Alawad, Abdullah O; Al-Sadi, Abdullah M; Hu, Songnian; Yu, Jun

    2016-01-01

    Coconut (Cocos nucifera L.), a member of the palm family (Arecaceae), is one of the most economically important crops in tropics, serving as an important source of food, drink, fuel, medicine, and construction material. Here we report an assembly of the coconut (C. nucifera, Oman local Tall cultivar) mitochondrial (mt) genome based on next-generation sequencing data. This genome, 678,653bp in length and 45.5% in GC content, encodes 72 proteins, 9 pseudogenes, 23 tRNAs, and 3 ribosomal RNAs. Within the assembly, we find that the chloroplast (cp) derived regions account for 5.07% of the total assembly length, including 13 proteins, 2 pseudogenes, and 11 tRNAs. The mt genome has a relatively large fraction of repeat content (17.26%), including both forward (tandem) and inverted (palindromic) repeats. Sequence variation analysis shows that the Ti/Tv ratio of the mt genome is lower as compared to that of the nuclear genome and neutral expectation. By combining public RNA-Seq data for coconut, we identify 734 RNA editing sites supported by at least two datasets. In summary, our data provides the second complete mt genome sequence in the family Arecaceae, essential for further investigations on mitochondrial biology of seed plants.

  11. Sequence analysis of mitochondrial 16S ribosomal RNA gene ...

    Indian Academy of Sciences (India)

    Unknown

    Taxonomically, mosquito classification based on above criteria is in a confused state. Genome organiza- tion studies have aided in understanding the systematics and evolution of mosquitoes. These studies are performed by making use of several molecular features such as DNA content, chromosomal and mitochondrial ...

  12. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling.

    Directory of Open Access Journals (Sweden)

    Wei Li

    2008-01-01

    Full Text Available Specificity of protein ubiquitylation is conferred by E3 ubiquitin (Ub ligases. We have annotated approximately 617 putative E3s and substrate-recognition subunits of E3 complexes encoded in the human genome. The limited knowledge of the function of members of the large E3 superfamily prompted us to generate genome-wide E3 cDNA and RNAi expression libraries designed for functional screening. An imaging-based screen using these libraries to identify E3s that regulate mitochondrial dynamics uncovered MULAN/FLJ12875, a RING finger protein whose ectopic expression and knockdown both interfered with mitochondrial trafficking and morphology. We found that MULAN is a mitochondrial protein - two transmembrane domains mediate its localization to the organelle's outer membrane. MULAN is oriented such that its E3-active, C-terminal RING finger is exposed to the cytosol, where it has access to other components of the Ub system. Both an intact RING finger and the correct subcellular localization were required for regulation of mitochondrial dynamics, suggesting that MULAN's downstream effectors are proteins that are either integral to, or associated with, mitochondria and that become modified with Ub. Interestingly, MULAN had previously been identified as an activator of NF-kappaB, thus providing a link between mitochondrial dynamics and mitochondria-to-nucleus signaling. These findings suggest the existence of a new, Ub-mediated mechanism responsible for integration of mitochondria into the cellular environment.

  13. mitoSAVE: mitochondrial sequence analysis of variants in Excel.

    Science.gov (United States)

    King, Jonathan L; Sajantila, Antti; Budowle, Bruce

    2014-09-01

    The mitochondrial genome (mtGenome) contains genetic information amenable to numerous applications such as medical research, population and evolutionary studies, and human identity testing. However, inconsistent nomenclature assignment makes haplotype comparison difficult and can lead to false exclusion of potentially useful profiles. Massively Parallel Sequencing (MPS) is a platform for sequencing large datasets and potentially whole populations with relative ease. However, the data generated are not easily parsed and interpreted. With this in mind, mitoSAVE has been developed to enable fast conversion of Variant Call Format (VCF) files. mitoSAVE is an Excel-based workbook that converts data within the VCF into mtDNA haplotypes using phylogenetically-established nomenclature as well as rule-based alignments consistent with current forensic standards. mitoSAVE is formatted for human mitochondrial genome; however, it can easily be adapted to support other reasonably small genomes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Advances in the quantification of mitochondrial function in primary human immune cells through extracellular flux analysis.

    Directory of Open Access Journals (Sweden)

    Dequina Nicholas

    Full Text Available Numerous studies show that mitochondrial energy generation determines the effectiveness of immune responses. Furthermore, changes in mitochondrial function may regulate lymphocyte function in inflammatory diseases like type 2 diabetes. Analysis of lymphocyte mitochondrial function has been facilitated by introduction of 96-well format extracellular flux (XF96 analyzers, but the technology remains imperfect for analysis of human lymphocytes. Limitations in XF technology include the lack of practical protocols for analysis of archived human cells, and inadequate data analysis tools that require manual quality checks. Current analysis tools for XF outcomes are also unable to automatically assess data quality and delete untenable data from the relatively high number of biological replicates needed to power complex human cell studies. The objectives of work presented herein are to test the impact of common cellular manipulations on XF outcomes, and to develop and validate a new automated tool that objectively analyzes a virtually unlimited number of samples to quantitate mitochondrial function in immune cells. We present significant improvements on previous XF analyses of primary human cells that will be absolutely essential to test the prediction that changes in immune cell mitochondrial function and fuel sources support immune dysfunction in chronic inflammatory diseases like type 2 diabetes.

  15. The complete mitochondrial genome analysis of the tiger (Panthera tigris).

    Science.gov (United States)

    Kitpipit, Thitika; Tobe, Shanan S; Linacre, Adrian

    2012-05-01

    The complete mitochondrial genomes of five tiger samples from three subspecies (P. t. sumatrae, P. t. altica, and P. t. tigris) were successfully obtained by using 26 specifically designed Panthera-specific primer sets. The genome organization and gene arrangement of the five tiger samples were similar to each other; however polymorphic tandem repeat sequences were observed in the control region (CR). This led to a difference in the genome lengths obtained from these five samples with an average size of 16,994 bp for the five tiger mitochondrial genomes. The nucleotide base composition was on average as follows: A, 31.8%; T, 27.0%; C, 26.6%; G, 14.6% and exhibited compositional asymmetry. Most of tiger mitochondrial genome characteristics are similar to those of other common vertebrate species; however, some distinctive features were observed in the CR. First, the repetitive sequence 2 (RS 2) contained two repeat units of 80 bp and the first 15 bp of what would be the third repeat motif. The repetitive sequence 3 (RS 3) contained 47-50 repeat motifs of a shorter 8 bp (ACGTAYAC)(n). Second, length heteroplasmy polycystosine (poly-C) stretches was observed at the end of the HV I locus in all tiger samples.

  16. Investigating mitochondrial metabolism in contracting HL-1 cardiomyocytes following hypoxia and pharmacological HIF activation identifies HIF-dependent and independent mechanisms of regulation.

    Science.gov (United States)

    Ambrose, Lucy J A; Abd-Jamil, Amira H; Gomes, Renata S M; Carter, Emma E; Carr, Carolyn A; Clarke, Kieran; Heather, Lisa C

    2014-11-01

    mitochondrial metabolic changes to be identified. © The Author(s) 2014.

  17. Identification of goat cashmere and sheep wool by PCR-RFLP analysis of mitochondrial 12S rRNA gene.

    Science.gov (United States)

    Geng, Rong-Qing; Yuan, Chao; Chen, Yu-Lin

    2012-12-01

    The efficacy of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of mitochondrial 12S rRNA gene in identification of goat cashmere and sheep wool samples was evaluated. The specific fragments of the mitochondrial 12S rRNA gene, which were about 440 bp, were obtained using the PCR. Restriction enzyme digestion of the PCR products with endonucleases BspT I and Hinf I revealed species-specific RFLP patterns. Application of this technique on mixed samples could identify goat cashmere and sheep wool from each other within the proportion of 8:1. The technique, however, could detect only one species when the proportion of mixture was more than 9:1. The PCR-RFLP technique was demonstrated to possess potential value in precise identification of goat cashmere and sheep wool.

  18. An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers.

    Science.gov (United States)

    Blein, Sophie; Bardel, Claire; Danjean, Vincent; McGuffog, Lesley; Healey, Sue; Barrowdale, Daniel; Lee, Andrew; Dennis, Joe; Kuchenbaecker, Karoline B; Soucy, Penny; Terry, Mary Beth; Chung, Wendy K; Goldgar, David E; Buys, Saundra S; Janavicius, Ramunas; Tihomirova, Laima; Tung, Nadine; Dorfling, Cecilia M; van Rensburg, Elizabeth J; Neuhausen, Susan L; Ding, Yuan Chun; Gerdes, Anne-Marie; Ejlertsen, Bent; Nielsen, Finn C; Hansen, Thomas Vo; Osorio, Ana; Benitez, Javier; Conejero, Raquel Andrés; Segota, Ena; Weitzel, Jeffrey N; Thelander, Margo; Peterlongo, Paolo; Radice, Paolo; Pensotti, Valeria; Dolcetti, Riccardo; Bonanni, Bernardo; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Manoukian, Siranoush; Varesco, Liliana; Capone, Gabriele L; Papi, Laura; Ottini, Laura; Yannoukakos, Drakoulis; Konstantopoulou, Irene; Garber, Judy; Hamann, Ute; Donaldson, Alan; Brady, Angela; Brewer, Carole; Foo, Claire; Evans, D Gareth; Frost, Debra; Eccles, Diana; Douglas, Fiona; Cook, Jackie; Adlard, Julian; Barwell, Julian; Walker, Lisa; Izatt, Louise; Side, Lucy E; Kennedy, M John; Tischkowitz, Marc; Rogers, Mark T; Porteous, Mary E; Morrison, Patrick J; Platte, Radka; Eeles, Ros; Davidson, Rosemarie; Hodgson, Shirley; Cole, Trevor; Godwin, Andrew K; Isaacs, Claudine; Claes, Kathleen; De Leeneer, Kim; Meindl, Alfons; Gehrig, Andrea; Wappenschmidt, Barbara; Sutter, Christian; Engel, Christoph; Niederacher, Dieter; Steinemann, Doris; Plendl, Hansjoerg; Kast, Karin; Rhiem, Kerstin; Ditsch, Nina; Arnold, Norbert; Varon-Mateeva, Raymonda; Schmutzler, Rita K; Preisler-Adams, Sabine; Markov, Nadja Bogdanova; Wang-Gohrke, Shan; de Pauw, Antoine; Lefol, Cédrick; Lasset, Christine; Leroux, Dominique; Rouleau, Etienne; Damiola, Francesca; Dreyfus, Hélène; Barjhoux, Laure; Golmard, Lisa; Uhrhammer, Nancy; Bonadona, Valérie; Sornin, Valérie; Bignon, Yves-Jean; Carter, Jonathan; Van Le, Linda; Piedmonte, Marion; DiSilvestro, Paul A; de la Hoya, Miguel; Caldes, Trinidad; Nevanlinna, Heli; Aittomäki, Kristiina; Jager, Agnes; van den Ouweland, Ans Mw; Kets, Carolien M; Aalfs, Cora M; van Leeuwen, Flora E; Hogervorst, Frans Bl; Meijers-Heijboer, Hanne Ej; Oosterwijk, Jan C; van Roozendaal, Kees Ep; Rookus, Matti A; Devilee, Peter; van der Luijt, Rob B; Olah, Edith; Diez, Orland; Teulé, Alex; Lazaro, Conxi; Blanco, Ignacio; Del Valle, Jesús; Jakubowska, Anna; Sukiennicki, Grzegorz; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Agnarsson, Bjarni A; Maugard, Christine; Amadori, Alberto; Montagna, Marco; Teixeira, Manuel R; Spurdle, Amanda B; Foulkes, William; Olswold, Curtis; Lindor, Noralane M; Pankratz, Vernon S; Szabo, Csilla I; Lincoln, Anne; Jacobs, Lauren; Corines, Marina; Robson, Mark; Vijai, Joseph; Berger, Andreas; Fink-Retter, Anneliese; Singer, Christian F; Rappaport, Christine; Kaulich, Daphne Geschwantler; Pfeiler, Georg; Tea, Muy-Kheng; Greene, Mark H; Mai, Phuong L; Rennert, Gad; Imyanitov, Evgeny N; Mulligan, Anna Marie; Glendon, Gord; Andrulis, Irene L; Tchatchou, Sandrine; Toland, Amanda Ewart; Pedersen, Inge Sokilde; Thomassen, Mads; Kruse, Torben A; Jensen, Uffe Birk; Caligo, Maria A; Friedman, Eitan; Zidan, Jamal; Laitman, Yael; Lindblom, Annika; Melin, Beatrice; Arver, Brita; Loman, Niklas; Rosenquist, Richard; Olopade, Olufunmilayo I; Nussbaum, Robert L; Ramus, Susan J; Nathanson, Katherine L; Domchek, Susan M; Rebbeck, Timothy R; Arun, Banu K; Mitchell, Gillian; Karlan, Beth Y; Lester, Jenny; Orsulic, Sandra; Stoppa-Lyonnet, Dominique; Thomas, Gilles; Simard, Jacques; Couch, Fergus J; Offit, Kenneth; Easton, Douglas F; Chenevix-Trench, Georgia; Antoniou, Antonis C; Mazoyer, Sylvie; Phelan, Catherine M; Sinilnikova, Olga M; Cox, David G

    2015-04-25

    Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.

  19. The mitochondrial contact site complex, a determinant of mitochondrial architecture

    OpenAIRE

    Harner, Max; Körner, Christian; Walther, Dirk; Mokranjac, Dejana; Kaesmacher, Johannes; Welsch, Ulrich; Griffith, Janice; Mann, Matthias; Reggiori, Fulvio; Neupert, Walter

    2011-01-01

    The outer and inner mitochondrial membranes are physically linked. Quantitative high resolution mass spectrometry now identifies the molecular nature of the Mitochondrial Contact Site complex (MICOS). MICOS is required for crista junctions formation, respiration and mitochondrial DNA inheritance.

  20. Eukaryote-wide sequence analysis of mitochondrial β-barrel outer membrane proteins

    Directory of Open Access Journals (Sweden)

    Fujita Naoya

    2011-01-01

    Full Text Available Abstract Background The outer membranes of mitochondria are thought to be homologous to the outer membranes of Gram negative bacteria, which contain 100's of distinct families of β-barrel membrane proteins (BOMPs often forming channels for transport of nutrients or drugs. However, only four families of mitochondrial BOMPs (MBOMPs have been confirmed to date. Although estimates as high as 100 have been made in the past, the number of yet undiscovered MBOMPs is an open question. Fortunately, the recent discovery of a membrane integration signal (the β-signal for MBOMPs gave us an opportunity to look for undiscovered MBOMPs. Results We present the results of a comprehensive survey of eukaryotic protein sequences intended to identify new MBOMPs. Our search employs recent results on β-signals as well as structural information and a novel BOMP predictor trained on both bacterial and mitochondrial BOMPs. Our principal finding is circumstantial evidence suggesting that few MBOMPs remain to be discovered, if one assumes that, like known MBOMPs, novel MBOMPs will be monomeric and β-signal dependent. In addition to this, our analysis of MBOMP homologs reveals some exceptions to the current model of the β-signal, but confirms its consistent presence in the C-terminal region of MBOMP proteins. We also report a β-signal independent search for MBOMPs against the yeast and Arabidopsis proteomes. We find no good candidates MBOMPs in yeast but the Arabidopsis results are less conclusive. Conclusions Our results suggest there are no remaining MBOMPs left to discover in yeast; and if one assumes all MBOMPs are β-signal dependent, few MBOMP families remain undiscovered in any sequenced organism.

  1. Analysis of mitochondrial DNA sequences in childhood encephalomyopathies reveals new disease-associated variants.

    Directory of Open Access Journals (Sweden)

    Aijaz A Wani

    Full Text Available BACKGROUND: Mitochondrial encephalomyopathies are a heterogeneous group of clinical disorders generally caused due to mutations in either mitochondrial DNA (mtDNA or nuclear genes encoding oxidative phosphorylation (OXPHOS. We analyzed the mtDNA sequences from a group of 23 pediatric patients with clinical and morphological features of mitochondrial encephalopathies and tried to establish a relationship of identified variants with the disease. METHODOLOGY/PRINCIPLE FINDINGS: Complete mitochondrial genomes were amplified by PCR and sequenced by automated DNA sequencing. Sequencing data was analyzed by SeqScape software and also confirmed by BLASTn program. Nucleotide sequences were compared with the revised Cambridge reference sequence (CRS and sequences present in mitochondrial databases. The data obtained shows that a number of known and novel mtDNA variants were associated with the disease. Most of the non-synonymous variants were heteroplasmic (A4136G, A9194G and T11916A suggesting their possibility of being pathogenic in nature. Some of the missense variants although homoplasmic were showing changes in highly conserved amino acids (T3394C, T3866C, and G9804A and were previously identified with diseased conditions. Similarly, two other variants found in tRNA genes (G5783A and C8309T could alter the secondary structure of Cys-tRNA and Lys-tRNA. Most of the variants occurred in single cases; however, a few occurred in more than one case (e.g. G5783A and A10149T. CONCLUSIONS AND SIGNIFICANCE: The mtDNA variants identified in this study could be the possible cause of mitochondrial encephalomyopathies with childhood onset in the patient group. Our study further strengthens the pathogenic score of known variants previously reported as provisionally pathogenic in mitochondrial diseases. The novel variants found in the present study can be potential candidates for further investigations to establish the relationship between their incidence and role

  2. Mitochondrial DNA analysis of two southern African elephant populations

    Directory of Open Access Journals (Sweden)

    M.F. Essop

    1996-08-01

    Full Text Available The modern view is that there are at most only two valid forms of the African elephant namely Loxodonta qfricana africana, the bush elephant, and L.a. cyclotis, the forest elephant (Ansell 1974; Meester et al. 1986. The Knysna elephant which was also described as a separate sub-species is now almost extinct. Plans to augment the remnant population by introducing other animals must take into account the taxonomic questions and issue of conserving elephant gene pools (Greig 1982a. Mitochondrial DNA (mtDNA restriction fragment-size comparisons were performed on specimens from the Kruger National Park and the Addo Elephant National Park. If the Addo population's results are extrapolated to the Knysna population, it may be concluded that there is no genetic evidence for the Kruger and Knysna elephant populations to be considered as different sub-species.

  3. Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles.

    Science.gov (United States)

    Farshidfar, Farshad; Zheng, Siyuan; Gingras, Marie-Claude; Newton, Yulia; Shih, Juliann; Robertson, A Gordon; Hinoue, Toshinori; Hoadley, Katherine A; Gibb, Ewan A; Roszik, Jason; Covington, Kyle R; Wu, Chia-Chin; Shinbrot, Eve; Stransky, Nicolas; Hegde, Apurva; Yang, Ju Dong; Reznik, Ed; Sadeghi, Sara; Pedamallu, Chandra Sekhar; Ojesina, Akinyemi I; Hess, Julian M; Auman, J Todd; Rhie, Suhn K; Bowlby, Reanne; Borad, Mitesh J; Zhu, Andrew X; Stuart, Josh M; Sander, Chris; Akbani, Rehan; Cherniack, Andrew D; Deshpande, Vikram; Mounajjed, Taofic; Foo, Wai Chin; Torbenson, Michael S; Kleiner, David E; Laird, Peter W; Wheeler, David A; McRee, Autumn J; Bathe, Oliver F; Andersen, Jesper B; Bardeesy, Nabeel; Roberts, Lewis R; Kwong, Lawrence N

    2017-03-14

    Cholangiocarcinoma (CCA) is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles

    Directory of Open Access Journals (Sweden)

    Farshad Farshidfar

    2017-03-01

    Full Text Available Cholangiocarcinoma (CCA is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance.

  5. Permeabilization of brain tissue in situ enables multiregion analysis of mitochondrial function in a single mouse brain.

    Science.gov (United States)

    Herbst, Eric A F; Holloway, Graham P

    2015-02-15

    Mitochondrial function in the brain is traditionally assessed through analysing respiration in isolated mitochondria, a technique that possesses significant tissue and time requirements while also disrupting the cooperative mitochondrial reticulum. We permeabilized brain tissue in situ to permit analysis of mitochondrial respiration with the native mitochondrial morphology intact, removing the need for isolation time and minimizing tissue requirements to ∼2 mg wet weight. The permeabilized brain technique was validated against the traditional method of isolated mitochondria and was then further applied to assess regional variation in the mouse brain with ischaemia-reperfusion injuries. A transgenic mouse model overexpressing catalase within mitochondria was applied to show the contribution of mitochondrial reactive oxygen species to ischaemia-reperfusion injuries in different brain regions. This technique enhances the accessibility of addressing physiological questions in small brain regions and in applying transgenic mouse models to assess mechanisms regulating mitochondrial function in health and disease. Mitochondria function as the core energy providers in the brain and symptoms of neurodegenerative diseases are often attributed to their dysregulation. Assessing mitochondrial function is classically performed in isolated mitochondria; however, this process requires significant isolation time, demand for abundant tissue and disruption of the cooperative mitochondrial reticulum, all of which reduce reliability when attempting to assess in vivo mitochondrial bioenergetics. Here we introduce a method that advances the assessment of mitochondrial respiration in the brain by permeabilizing existing brain tissue to grant direct access to the mitochondrial reticulum in situ. The permeabilized brain preparation allows for instant analysis of mitochondrial function with unaltered mitochondrial morphology using significantly small sample sizes (∼2 mg), which permits

  6. Morphometric Analysis of Larval Rostellar Hooks in Taenia multiceps of Sheep in Iran and Its Association with Mitochondrial Gene Variability.

    Directory of Open Access Journals (Sweden)

    Sima Rostami

    2013-12-01

    Full Text Available The purposes of the present study were morphometric characterization of rostellar hooks of Taenia multiceps and to investigate the association of hook length variation and the variability within two mitochondrial genes of sheep isolates of the parasite.Up to 4500 sheep brains were examined for the presence of C. cerebralis. Biometric characters based on the larval rostellar hook size were measured for each individual isolate. Representative mitochondrial CO1 and 12S rRNA gene sequences for each of the isolates were obtained from NCBI GenBank. Morphometric and genetic data were analyzed using cluster analysis, Interclass Correlation Coefficient (ICC and random effects model.One hundred and fourteen sheep (2.5% were found infected with the coenuri. The minimum and maximum number of scoleces per cyst was 40 and 550 respectively. Each scolex contained 22-27 hooks arranged in two rows of large and small hooks. The average total length of the large and small hooks was 158.9 and 112.1 μm, respectively. Using ICC, statistically significant clusters of different hook sizes were identified within the isolates. The length of the large and small hooks was significantly associated with the variability in mitochondrial 12S rRNA gene.Taenia multiceps, is a relatively important zoonotic infection in Iranian sheep with the prevalence rate of 2.5%. Hook length analysis revealed statistically significant difference among individual isolates. Associations between the rostellar hook length and variability in the mitochondrial 12S rRNA was documented.

  7. Sequence analysis of the mitochondrial genomes from Dutch pedigrees with Leber hereditary optic neuropathy

    NARCIS (Netherlands)

    Howell, Neil; Oostra, Roelof-Jan; Bolhuis, Piet A.; Spruijt, Liesbeth; Clarke, Lorne A.; Mackey, David A.; Preston, Gwen; Herrnstadt, Corinna

    2003-01-01

    The complete mitochondrial DNA (mtDNA) sequences for 63 Dutch pedigrees with Leber hereditary optic neuropathy (LHON) were determined, 56 of which carried one of the classic LHON mutations at nucleotide (nt) 3460, 11778, or 14484. Analysis of these sequences indicated that there were several

  8. Differentiating among horse (Equus caballus), donkey (Equus asinus) and their hybrids with combined analysis of nuclear and mitochondrial gene polymorphism.

    Science.gov (United States)

    Zhao, C J; Han, G C; Qin, Y H; Wu, Ch

    2005-08-01

    A novel and brief method of differentiating among horse (Equus caballus) and donkey (Equus asinus) and their hybrids (mule, E. asinus x E. caballus and hinny, E. caballus x E. asinus) with combined analysis of nuclear and mitochondrial gene polymorphism (CANMGP) was reported in the present report. A nuclear gene, protamine P1 gene of donkey was sequenced and compared with the known horse sequence from GenBank while a published equid mitochondrial gene, cytochrome b gene of donkey was compared with that of horse. In each of the two genes, a fixed nucleotide substitution within an exon that could be recognized by Dpn II restriction enzyme was found between the two species. Two pairs of primers were designed for amplifying the fragments within the two genes containing the informative nucleotide positions in 65 horses and 41 donkeys and 38 hybrids and conditions of polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) analysis were optimized. Horse, donkey and mule and hinny had their own specific cleavage patterns after the PCR-RFLP analysis was performed, which made it very easy to identify them from each other. As multiplex PCR can be conducted with the two pairs of primers and only one restriction enzyme is involved in PCR-RFLP analysis, the method described in the present study is a convenient way to identify horse and donkey and their hybrids. The idea involved in the method of CANMGP can be also used to differentiate other animal species or breeds and their hybrids.

  9. Sequencing of mitochondrial genomes of nine Aspergillus and Penicillium species identifies mobile introns and accessory genes as main sources of genome size variability

    Directory of Open Access Journals (Sweden)

    Joardar Vinita

    2012-12-01

    Full Text Available Abstract Background The genera Aspergillus and Penicillium include some of the most beneficial as well as the most harmful fungal species such as the penicillin-producer Penicillium chrysogenum and the human pathogen Aspergillus fumigatus, respectively. Their mitochondrial genomic sequences may hold vital clues into the mechanisms of their evolution, population genetics, and biology, yet only a handful of these genomes have been fully sequenced and annotated. Results Here we report the complete sequence and annotation of the mitochondrial genomes of six Aspergillus and three Penicillium species: A. fumigatus, A. clavatus, A. oryzae, A. flavus, Neosartorya fischeri (A. fischerianus, A. terreus, P. chrysogenum, P. marneffei, and Talaromyces stipitatus (P. stipitatum. The accompanying comparative analysis of these and related publicly available mitochondrial genomes reveals wide variation in size (25–36 Kb among these closely related fungi. The sources of genome expansion include group I introns and accessory genes encoding putative homing endonucleases, DNA and RNA polymerases (presumed to be of plasmid origin and hypothetical proteins. The two smallest sequenced genomes (A. terreus and P. chrysogenum do not contain introns in protein-coding genes, whereas the largest genome (T. stipitatus, contains a total of eleven introns. All of the sequenced genomes have a group I intron in the large ribosomal subunit RNA gene, suggesting that this intron is fixed in these species. Subsequent analysis of several A. fumigatus strains showed low intraspecies variation. This study also includes a phylogenetic analysis based on 14 concatenated core mitochondrial proteins. The phylogenetic tree has a different topology from published multilocus trees, highlighting the challenges still facing the Aspergillus systematics. Conclusions The study expands the genomic resources available to fungal biologists by providing mitochondrial genomes with consistent

  10. The exome sequencing identified the mutation in YARS2 encoding the mitochondrial tyrosyl-tRNA synthetase as a nuclear modifier for the phenotypic manifestation of Leber's hereditary optic neuropathy-associated mitochondrial DNA mutation.

    Science.gov (United States)

    Jiang, Pingping; Jin, Xiaofen; Peng, Yanyan; Wang, Meng; Liu, Hao; Liu, Xiaoling; Zhang, Zengjun; Ji, Yanchun; Zhang, Juanjuan; Liang, Min; Zhao, Fuxin; Sun, Yan-Hong; Zhang, Minglian; Zhou, Xiangtian; Chen, Ye; Mo, Jun Qin; Huang, Taosheng; Qu, Jia; Guan, Min-Xin

    2016-02-01

    Leber's hereditary optic neuropathy (LHON) is the most common mitochondrial disorder. Nuclear modifier genes are proposed to modify the phenotypic expression of LHON-associated mitochondrial DNA (mtDNA) mutations. By using an exome sequencing approach, we identified a LHON susceptibility allele (c.572G>T, p.191Gly>Val) in YARS2 gene encoding mitochondrial tyrosyl-tRNA synthetase, which interacts with m.11778G>A mutation to cause visual failure. We performed functional assays by using lymphoblastoid cell lines derived from members of Chinese families (asymptomatic individuals carrying m.11778G>A mutation, or both m.11778G>A and heterozygous p.191Gly>Val mutations and symptomatic subjects harboring m.11778G>A and homozygous p.191Gly>Val mutations) and controls lacking these mutations. The 191Gly>Val mutation reduced the YARS2 protein level in the mutant cells. The aminoacylated efficiency and steady-state level of tRNA(Tyr) were markedly decreased in the cell lines derived from patients both carrying homozygous YARS2 p.191Gly>Val and m.11778G>A mutations. The failure in tRNA(Tyr) metabolism impaired mitochondrial translation, especially for polypeptides with high content of tyrosine codon such as ND4, ND5, ND6 and COX2 in cells lines carrying homozygous YARS2 p.191Gly>Val and m.11778G>A mutations. The YARS2 p.191Gly>Val mutation worsened the respiratory phenotypes associated with m.11778G>A mutation, especially reducing activities of complexes I and IV. The respiratory deficiency altered the efficiency of mitochondrial ATP synthesis and increased the production of reactive oxygen species. Thus, mutated YARS2 aggravates mitochondrial dysfunctions associated with the m.11778G>A mutation, exceeding the threshold for the expression of blindness phenotype. Our findings provided new insights into the pathophysiology of LHON that were manifested by interaction between mtDNA mutation and mutated nuclear-modifier YARS2. © The Author 2015. Published by Oxford University Press

  11. Systematic Analysis of Small RNAs Associated with Human Mitochondria by Deep Sequencing: Detailed Analysis of Mitochondrial Associated miRNA

    Science.gov (United States)

    Sripada, Lakshmi; Tomar, Dhanendra; Prajapati, Paresh; Singh, Rochika; Singh, Arun Kumar; Singh, Rajesh

    2012-01-01

    Mitochondria are one of the central regulators of many cellular processes beyond its well established role in energy metabolism. The inter-organellar crosstalk is critical for the optimal function of mitochondria. Many nuclear encoded proteins and RNA are imported to mitochondria. The translocation of small RNA (sRNA) including miRNA to mitochondria and other sub-cellular organelle is still not clear. We characterized here sRNA including miRNA associated with human mitochondria by cellular fractionation and deep sequencing approach. Mitochondria were purified from HEK293 and HeLa cells for RNA isolation. The sRNA library was generated and sequenced using Illumina system. The analysis showed the presence of unique population of sRNA associated with mitochondria including miRNA. Putative novel miRNAs were characterized from unannotated sRNA sequences. The study showed the association of 428 known, 196 putative novel miRNAs to mitochondria of HEK293 and 327 known, 13 putative novel miRNAs to mitochondria of HeLa cells. The alignment of sRNA to mitochondrial genome was also studied. The targets were analyzed using DAVID to classify them in unique networks using GO and KEGG tools. Analysis of identified targets showed that miRNA associated with mitochondria regulates critical cellular processes like RNA turnover, apoptosis, cell cycle and nucleotide metabolism. The six miRNAs (counts >1000) associated with mitochondria of both HEK293 and HeLa were validated by RT-qPCR. To our knowledge, this is the first systematic study demonstrating the associations of sRNA including miRNA with mitochondria that may regulate site-specific turnover of target mRNA important for mitochondrial related functions. PMID:22984580

  12. Implementation of DNA mitochondrial analysis in rhinoclemmys nasuta (Testudines: Geoemydidae)

    International Nuclear Information System (INIS)

    Molina Henao, Yherson Franchesco; Barreto, Guillermo; Giraldo, Alan

    2014-01-01

    Rhinoclemmys nasuta (Testudines: geoemydidae) is considered an almost endemic specie to Colombia and the most primitive species of rhynoclemmys. However, it is classified data deficient by iucn because the available information is not enough to make a direct or indirect assessment of its extinction risk. Here, we describe the implementation of the method to analyze the mitochondrial DNA control sequence (mtdna) of R. nasuta in order to generate tools for future studies in systematics and population conservation. Genomic MTDNA was extracted by salting-out from blood samples from Isla Palma and Playa Chucheros (Bahia Malaga Colombian Pacific Coast) and we used a pair of degenerate primers (reported for chrysemys picta, testudines: emydidae) to perform amplification. Fragments of 800pb were obtained and the sequencing reaction was effective. A homology percentage above of 92 % was established between the obtained sequences and MTDNA sequences from Sacalia quadriocellata (Testudines: geoemydidae), and Cuora aurocapitata (Testudines: geoemydidae) reported in the genbank. This result shows that the described method can be a useful tool for the study of R. nasuta populations in the Colombian pacific region, achieving an effective sequencing of the MTDNA control region of this species.

  13. Identifiable Data Files - Medicare Provider Analysis and ...

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Medicare Provider Analysis and Review (MEDPAR) File contains data from claims for services provided to beneficiaries admitted to Medicare certified inpatient...

  14. The mitochondrial genome of the terrestrial carnivorous plant Utricularia reniformis (Lentibulariaceae): Structure, comparative analysis and evolutionary landmarks.

    Science.gov (United States)

    Silva, Saura R; Alvarenga, Danillo O; Aranguren, Yani; Penha, Helen A; Fernandes, Camila C; Pinheiro, Daniel G; Oliveira, Marcos T; Michael, Todd P; Miranda, Vitor F O; Varani, Alessandro M

    2017-01-01

    The carnivorous plants of the family Lentibulariaceae have attained recent attention not only because of their interesting lifestyle, but also because of their dynamic nuclear genome size. Lentibulariaceae genomes span an order of magnitude and include species with the smallest genomes in angiosperms, making them a powerful system to study the mechanisms of genome expansion and contraction. However, little is known about mitochondrial DNA (mtDNA) sequences of this family, and the evolutionary forces that shape this organellar genome. Here we report the sequencing and assembly of the complete mtDNA from the endemic terrestrial Brazilian species Utricularia reniformis. The 857,234bp master circle mitochondrial genome encodes 70 transcriptionaly active genes (42 protein-coding, 25 tRNAs and 3 rRNAs), covering up to 7% of the mtDNA. A ltrA-like protein related to splicing and mobility and a LAGLIDADG homing endonuclease have been identified in intronic regions, suggesting particular mechanisms of genome maintenance. RNA-seq analysis identified properties with putative diverse and important roles in genome regulation and evolution: 1) 672kbp (78%) of the mtDNA is covered by full-length reads; 2) most of the 243kbp intergenic regions exhibit transcripts; and 3) at least 69 novel RNA editing sites in the protein-coding genes. Additional genomic features are hypothetical ORFs (48%), chloroplast insertions, including truncated plastid genes that have been lost from the chloroplast DNA (5%), repeats (5%), relics of transposable elements mostly related to LTR retrotransposons (5%), and truncated mitovirus sequences (0.4%). Phylogenetic analysis based on 32 different Lamiales mitochondrial genomes corroborate that Lentibulariaceae is a monophyletic group. In summary, the U. reniformis mtDNA represents the eighth largest plant mtDNA described to date, shedding light on the genomic trends and evolutionary characteristics and phylogenetic history of the family Lentibulariaceae.

  15. The mitochondrial genome of the terrestrial carnivorous plant Utricularia reniformis (Lentibulariaceae: Structure, comparative analysis and evolutionary landmarks.

    Directory of Open Access Journals (Sweden)

    Saura R Silva

    Full Text Available The carnivorous plants of the family Lentibulariaceae have attained recent attention not only because of their interesting lifestyle, but also because of their dynamic nuclear genome size. Lentibulariaceae genomes span an order of magnitude and include species with the smallest genomes in angiosperms, making them a powerful system to study the mechanisms of genome expansion and contraction. However, little is known about mitochondrial DNA (mtDNA sequences of this family, and the evolutionary forces that shape this organellar genome. Here we report the sequencing and assembly of the complete mtDNA from the endemic terrestrial Brazilian species Utricularia reniformis. The 857,234bp master circle mitochondrial genome encodes 70 transcriptionaly active genes (42 protein-coding, 25 tRNAs and 3 rRNAs, covering up to 7% of the mtDNA. A ltrA-like protein related to splicing and mobility and a LAGLIDADG homing endonuclease have been identified in intronic regions, suggesting particular mechanisms of genome maintenance. RNA-seq analysis identified properties with putative diverse and important roles in genome regulation and evolution: 1 672kbp (78% of the mtDNA is covered by full-length reads; 2 most of the 243kbp intergenic regions exhibit transcripts; and 3 at least 69 novel RNA editing sites in the protein-coding genes. Additional genomic features are hypothetical ORFs (48%, chloroplast insertions, including truncated plastid genes that have been lost from the chloroplast DNA (5%, repeats (5%, relics of transposable elements mostly related to LTR retrotransposons (5%, and truncated mitovirus sequences (0.4%. Phylogenetic analysis based on 32 different Lamiales mitochondrial genomes corroborate that Lentibulariaceae is a monophyletic group. In summary, the U. reniformis mtDNA represents the eighth largest plant mtDNA described to date, shedding light on the genomic trends and evolutionary characteristics and phylogenetic history of the family

  16. Comparison of 16S and COX1 genes mitochondrial regions and their usefulness for genetic analysis of ticks (Acari: Ixodidae).

    Science.gov (United States)

    Paternina, Luis Enrique; Verbel-Vergara, Daniel; Bejarano, Eduar Elías

    2016-06-03

    In recent decades the analysis of mitochondrial genes has been used for population and phylogenetic studies of ticks allowing many advances in their systematics. Mitochondrial ribosomal 16S (16S) subunit is one of the most frequently used among those genes available for tick analysis, whereas cytochrome oxidase gene 1 (COX1) has recently been used and proposed as an alternative to the traditional 16S gene marker.  To evaluate the usefulness of 16S and COX1 in genetic studies of ticks by analyzing sequences of three species commonly found in the Caribbean region of Colombia.  The analysis of both genes sequences allowed us to identify the three species with high levels of confidence and interspecific genetic divergence (19-22%), although only COX1 allowed us to detect intraspecific genetic variability (up to ~0.8%). A substitution saturation analysis indicated that the 16S gene was not saturated with transitions while the COX1 gene showed saturation distances starting at ~17%.  Our results indicated that the 16S gene seems to have better features for interspecific phylogenetic analyses because of its high level of genetic divergence and low saturation pattern, while the COX1 gene appears to be more useful for intraspecific genetic variability studies. However, as our study was conducted at a local scale, future studies at different biogeographical scales would help to establish its usefulness in wider and more complex scenarios.

  17. Identification of a new hominin bone from Denisova Cave, Siberia using collagen fingerprinting and mitochondrial DNA analysis

    Science.gov (United States)

    Brown, Samantha; Higham, Thomas; Slon, Viviane; Pääbo, Svante; Meyer, Matthias; Douka, Katerina; Brock, Fiona; Comeskey, Daniel; Procopio, Noemi; Shunkov, Michael; Derevianko, Anatoly; Buckley, Michael

    2016-03-01

    DNA sequencing has revolutionised our understanding of archaic humans during the Middle and Upper Palaeolithic. Unfortunately, while many Palaeolithic sites contain large numbers of bones, the majority of these lack the diagnostic features necessary for traditional morphological identification. As a result the recovery of Pleistocene-age human remains is extremely rare. To circumvent this problem we have applied a method of collagen fingerprinting to more than 2000 fragmented bones from the site of Denisova Cave, Russia, in order to facilitate the discovery of human remains. As a result of our analysis a single hominin bone (Denisova 11) was identified, supported through in-depth peptide sequencing analysis, and found to carry mitochondrial DNA of the Neandertal type. Subsequent radiocarbon dating revealed the bone to be >50,000 years old. Here we demonstrate the huge potential collagen fingerprinting has for identifying hominin remains in highly fragmentary archaeological assemblages, improving the resources available for wider studies into human evolution.

  18. Identifying MMORPG Bots: A Traffic Analysis Approach

    Directory of Open Access Journals (Sweden)

    Wen-Chin Chen

    2008-11-01

    Full Text Available Massively multiplayer online role playing games (MMORPGs have become extremely popular among network gamers. Despite their success, one of MMORPG's greatest challenges is the increasing use of game bots, that is, autoplaying game clients. The use of game bots is considered unsportsmanlike and is therefore forbidden. To keep games in order, game police, played by actual human players, often patrol game zones and question suspicious players. This practice, however, is labor-intensive and ineffective. To address this problem, we analyze the traffic generated by human players versus game bots and propose general solutions to identify game bots. Taking Ragnarok Online as our subject, we study the traffic generated by human players and game bots. We find that their traffic is distinguishable by 1 the regularity in the release time of client commands, 2 the trend and magnitude of traffic burstiness in multiple time scales, and 3 the sensitivity to different network conditions. Based on these findings, we propose four strategies and two ensemble schemes to identify bots. Finally, we discuss the robustness of the proposed methods against countermeasures of bot developers, and consider a number of possible ways to manage the increasingly serious bot problem.

  19. Tracing the biological origin of animal glues used in paintings through mitochondrial DNA analysis.

    Science.gov (United States)

    Albertini, Emidio; Raggi, Lorenzo; Vagnini, Manuela; Sassolini, Alessandro; Achilli, Alessandro; Marconi, Gianpiero; Cartechini, Laura; Veronesi, Fabio; Falcinelli, Mario; Brunetti, Brunetto Giovanni; Miliani, Costanza

    2011-03-01

    We report the development of a suitable protocol for the identification of the biological origin of binding media on tiny samples from ancient paintings, by exploitation of the high specificity and high sensitivity offered by the state-of-the art DNA analysis. In particular, our aim was to molecularly characterize mitochondrial regions of the animal species traditionally employed for obtaining glues. The model has been developed using aged painting models and then tested to analyze the organic components in samples from the polychrome terracotta Madonna of Citerna by Donatello (1415-1420), where, by GC-MS and FTIR spectroscopy, animal glues and siccative oils were identified. The results obtained are good in terms of both sensibility and specificity of the method. First of all, it was possible to confirm that Donatello used animal glue for the preparation of the painted layers of the Madonna of Citerna and, specifically, glue derived from Bos taurus. Data obtained from sequencing confirm that each sample contains animal glue, revealing that it was mostly prepared from two common European taurine lineages called T2 and T3. There is one remarkable exception represented by one sample which falls into a surviving lineage of the now extinct European aurochs.

  20. Analysis of common mitochondrial DNA mutations by allele-specific oligonucleotide and Southern blot hybridization.

    Science.gov (United States)

    Tang, Sha; Halberg, Michelle C; Floyd, Kristen C; Wang, Jing

    2012-01-01

    Mitochondrial disorders are clinically and genetically heterogeneous. There are a set of recurrent point mutations in the mitochondrial DNA (mtDNA) that are responsible for common mitochondrial diseases, including MELAS (mitochondrial encephalopathy, lactic acidosis, stroke-like episodes), MERRF (myoclonic epilepsy and ragged red fibers), LHON (Leber's hereditary optic neuropathy), NARP (neuropathy, ataxia, retinitis pigmentosa), and Leigh syndrome. Most of the pathogenic mtDNA point mutations are present in the heteroplasmic state, meaning that the wild-type and mutant-containing mtDNA molecules are coexisting. Clinical heterogeneity may be due to the degree of mutant load (heteroplasmy) and distribution of heteroplasmic mutations in affected tissues. Additionally, Kearns-Sayre syndrome and Pearson syndrome are caused by large mtDNA deletions. In this chapter, we describe a multiplex PCR/allele-specific oligonucleotide (ASO) hybridization method for the screening of 13 common point mutations. This method allows the detection of low percentage of mutant heteroplasmy. In addition, a nonradioactive Southern blot hybridization protocol for the analysis of mtDNA large deletions is also described.

  1. Electron tomographic analysis reveals ultrastructural features of mitochondrial cristae architecture which reflect energetic state and aging.

    Science.gov (United States)

    Jiang, Yi-Fan; Lin, Shao-Syuan; Chen, Jing-Min; Tsai, Han-Zen; Hsieh, Tao-Shih; Fu, Chi-Yu

    2017-03-30

    Within mitochondria, the ability to produce energy relies upon the architectural hallmarks of double membranes and cristae invaginations. Herein, we describe novel features of mitochondrial cristae structure, which correspond to the energetic state of the organelle. In concordance with high-energy demand, mitochondria of Drosophila indirect flight muscle exhibited extensive intra-mitochondrial membrane switches between densely packed lamellar cristae that resulted in a spiral-like cristae network and allowed for bidirectional matrix confluency. This highly interconnected architecture is expected to allow rapid equilibration of membrane potential and biomolecules across integrated regions. In addition, mutant flies with mtDNA replication defect and an accelerated aging phenotype accumulated mitochondria that contained subsections of swirling membrane alongside normal cristae. The swirling membrane had impaired energy production capacity as measured by protein composition and function. Furthermore, mitochondrial fusion and fission dynamics were affected in the prematurely aged flies. Interestingly, the normal cristae that remained in the mitochondria with swirling membranes maintained acceptable function that camouflaged them from quality control elimination. Overall, structural features of mitochondrial cristae were described in three-dimension from serial section electron tomographic analysis which reflect energetic state and mtDNA-mediated aging.

  2. Complete mitochondrial genome phylogeographic analysis of killer whales (Orcinus orca) indicates multiple species.

    Science.gov (United States)

    Morin, Phillip A; Archer, Frederick I; Foote, Andrew D; Vilstrup, Julia; Allen, Eric E; Wade, Paul; Durban, John; Parsons, Kim; Pitman, Robert; Li, Lewyn; Bouffard, Pascal; Abel Nielsen, Sandra C; Rasmussen, Morten; Willerslev, Eske; Gilbert, M Thomas P; Harkins, Timothy

    2010-07-01

    Killer whales (Orcinus orca) currently comprise a single, cosmopolitan species with a diverse diet. However, studies over the last 30 yr have revealed populations of sympatric "ecotypes" with discrete prey preferences, morphology, and behaviors. Although these ecotypes avoid social interactions and are not known to interbreed, genetic studies to date have found extremely low levels of diversity in the mitochondrial control region, and few clear phylogeographic patterns worldwide. This low level of diversity is likely due to low mitochondrial mutation rates that are common to cetaceans. Using killer whales as a case study, we have developed a method to readily sequence, assemble, and analyze complete mitochondrial genomes from large numbers of samples to more accurately assess phylogeography and estimate divergence times. This represents an important tool for wildlife management, not only for killer whales but for many marine taxa. We used high-throughput sequencing to survey whole mitochondrial genome variation of 139 samples from the North Pacific, North Atlantic, and southern oceans. Phylogenetic analysis indicated that each of the known ecotypes represents a strongly supported clade with divergence times ranging from approximately 150,000 to 700,000 yr ago. We recommend that three named ecotypes be elevated to full species, and that the remaining types be recognized as subspecies pending additional data. Establishing appropriate taxonomic designations will greatly aid in understanding the ecological impacts and conservation needs of these important marine predators. We predict that phylogeographic mitogenomics will become an important tool for improved statistical phylogeography and more precise estimates of divergence times.

  3. The mitochondrial genome of the legume Vigna radiata and the analysis of recombination across short mitochondrial repeats.

    Directory of Open Access Journals (Sweden)

    Andrew J Alverson

    2011-01-01

    Full Text Available The mitochondrial genomes of seed plants are exceptionally fluid in size, structure, and sequence content, with the accumulation and activity of repetitive sequences underlying much of this variation. We report the first fully sequenced mitochondrial genome of a legume, Vigna radiata (mung bean, and show that despite its unexceptional size (401,262 nt, the genome is unusually depauperate in repetitive DNA and "promiscuous" sequences from the chloroplast and nuclear genomes. Although Vigna lacks the large, recombinationally active repeats typical of most other seed plants, a PCR survey of its modest repertoire of short (38-297 nt repeats nevertheless revealed evidence for recombination across all of them. A set of novel control assays showed, however, that these results could instead reflect, in part or entirely, artifacts of PCR-mediated recombination. Consequently, we recommend that other methods, especially high-depth genome sequencing, be used instead of PCR to infer patterns of plant mitochondrial recombination. The average-sized but repeat- and feature-poor mitochondrial genome of Vigna makes it ever more difficult to generalize about the factors shaping the size and sequence content of plant mitochondrial genomes.

  4. Phylogenetic analysis of mitochondrial substitution rate variation in the angiosperm tribe Sileneae

    Directory of Open Access Journals (Sweden)

    Rautenberg Anja

    2009-10-01

    Full Text Available Abstract Background Recent phylogenetic studies have revealed that the mitochondrial genome of the angiosperm Silene noctiflora (Caryophyllaceae has experienced a massive mutation-driven acceleration in substitution rate, placing it among the fastest evolving eukaryotic genomes ever identified. To date, it appears that other species within Silene have maintained more typical substitution rates, suggesting that the acceleration in S. noctiflora is a recent and isolated evolutionary event. This assessment, however, is based on a very limited sampling of taxa within this diverse genus. Results We analyzed the substitution rates in 4 mitochondrial genes (atp1, atp9, cox3 and nad9 across a broad sample of 74 species within Silene and related genera in the tribe Sileneae. We found that S. noctiflora shares its history of elevated mitochondrial substitution rate with the closely related species S. turkestanica. Another section of the genus (Conoimorpha has experienced an acceleration of comparable magnitude. The phylogenetic data remain ambiguous as to whether the accelerations in these two clades represent independent evolutionary events or a single ancestral change. Rate variation among genes was equally dramatic. Most of the genus exhibited elevated rates for atp9 such that the average tree-wide substitution rate for this gene approached the values for the fastest evolving branches in the other three genes. In addition, some species exhibited major accelerations in atp1 and/or cox3 with no correlated change in other genes. Rates of non-synonymous substitution did not increase proportionally with synonymous rates but instead remained low and relatively invariant. Conclusion The patterns of phylogenetic divergence within Sileneae suggest enormous variability in plant mitochondrial mutation rates and reveal a complex interaction of gene and species effects. The variation in rates across genomic and phylogenetic scales raises questions about the

  5. Cloning and functional analysis of human mTERFL encoding a novel mitochondrial transcription termination factor-like protein

    International Nuclear Information System (INIS)

    Chen Yao; Zhou Guangjin; Yu Min; He Yungang; Tang Wei; Lai Jianhua; He Jie; Liu Wanguo; Tan Deyong

    2005-01-01

    Serum plays an important role in the regulation of cell cycle and cell growth. To identify novel serum-inhibitory factors and study their roles in cell cycle regulation, we performed mRNA differential display analysis of U251 cells in the presence or absence of serum and cloned a novel gene encoding the human mitochondrial transcription termination factor-like protein (mTERFL). The full-length mTERFL cDNA has been isolated and the genomic structure determined. The mTERFL gene consists of three exons and encodes 385 amino acids with 52% sequence similarity to the human mitochondrial transcription termination factor (mTERF). However, mTERFL and mTERF have an opposite expression pattern in response to serum. The expression of mTERFL is dramatically inhibited by the addition of serum in serum-starved cells while the mTERF is rather induced. Northern blot analysis detected three mTERFL transcripts of 1.7, 3.2, and 3.5 kb. Besides the 3.2 kb transcript that is unique to skeletal muscle, other two transcripts express predominant in heart, liver, pancreas, and skeletal muscle. Expression of the GFP-mTERFL fusion protein in HeLa cells localized it to the mitochondria. Furthermore, ectopic expression of mTERFL suppresses cell growth and arrests cells in the G1 stage demonstrated by MTT and flow cytometry analysis. Collectively, our data suggest that mTERFL is a novel mTERF family member and a serum-inhibitory factor probably participating in the regulation of cell growth through the modulation of mitochondrial transcription

  6. Analysis of Translesion DNA Synthesis by the Mitochondrial DNA Polymerase γ.

    Science.gov (United States)

    Copeland, William C; Kasiviswanathan, Rajesh; Longley, Matthew J

    2016-01-01

    Mitochondrial DNA is replicated by the nuclear-encoded DNA polymerase γ (pol γ) which is composed of a single 140 kDa catalytic subunit and a dimeric 55 kDa accessory subunit. Mitochondrial DNA is vulnerable to various forms of damage, including several types of oxidative lesions, UV-induced photoproducts, chemical adducts from environmental sources, as well as alkylation and inter-strand cross-links from chemotherapy agents. Although many of these lesions block DNA replication, pol γ can bypass some lesions by nucleotide incorporation opposite a template lesion and further extension of the DNA primer past the lesion. This process of translesion synthesis (TLS) by pol γ can occur in either an error-free or an error-prone manner. Assessment of TLS requires extensive analysis of oligonucleotide substrates and replication products by denaturing polyacrylamide sequencing gels. This chapter presents protocols for the analysis of translesion DNA synthesis.

  7. Intraspecific phylogenetic analysis of Siberian woolly mammoths using complete mitochondrial genomes

    DEFF Research Database (Denmark)

    Gilbert, M Thomas P; Drautz, Daniela I; Lesk, Arthur M

    2008-01-01

    We report five new complete mitochondrial DNA (mtDNA) genomes of Siberian woolly mammoth (Mammuthus primigenius), sequenced with up to 73-fold coverage from DNA extracted from hair shaft material. Three of the sequences present the first complete mtDNA genomes of mammoth clade II. Analysis...... to indicate any important functional difference between genomes belonging to the two clades, suggesting that the loss of clade II more likely is due to genetic drift than a selective sweep....

  8. Polymorphism in mitochondrial DNA of humans as revealed by restriction endonuclease analysis.

    OpenAIRE

    Brown, W M

    1980-01-01

    Mitochondrial DNA samples from each of 21 humans of diverse racial and geographic origin were digested with each of 18 restriction endonucleases. The sizes of the resulting DNA fragments were compared after gel electrophoresis. No differences among the samples were detected in digest with 7 of the enzymes. Analysis of digests with the remaining enzymes showed one or more differences. Each of the 21 samples could be characterized individually on the basis of these digests. All between-sample d...

  9. Analysis of codon usage pattern of mitochondrial protein-coding genes in different hookworms.

    Science.gov (United States)

    Deb, Bornali; Uddin, Arif; Mazumder, Gulshana Akthar; Chakraborty, Supriyo

    2018-01-01

    The phenomenon of unequal usage of synonymous codons encoding an amino acid in which some codons are more preferred to others is the codon usage bias (CUB) and it is species specific. Analysis of CUB helps in understanding evolution at molecular level and acquires significance in mRNA translation, design of transgenes and new gene discovery. In our current study, we analyzed synonymous codon usage pattern and the factors influencing it on mitochondrial protein coding genes of 6 different hookworms i.e. Ancylostoma ceylanicum, Ancylostoma duodenale, Necator americanus, Ancylostoma tubaeforme, Ancylostoma caninum and Uncinaria sanguinis as no work was reported yet. The effective number of codons for mitochondrial genes suggested that codon usage bias was high in most species. The GC content was lower than AT content i.e. genes were AT rich as indicated by nucleotide composition analysis. The overall nucleotide composition along with its composition at 3rd codon position and correspondence analysis suggested that both natural selection and mutation pressure might have affected the codon usage bias in mitochondrial genes. However, neutrality plot revealed that mutation pressure might have played a major role in A. ceylanicum while natural selection might have played the dominant role in Ancylostoma duodenale, Necator americanus, Ancylostoma tubaeforme, Ancylostoma caninum and Uncinaria sanguinis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. AQME: A forensic mitochondrial DNA analysis tool for next-generation sequencing data.

    Science.gov (United States)

    Sturk-Andreaggi, Kimberly; Peck, Michelle A; Boysen, Cecilie; Dekker, Patrick; McMahon, Timothy P; Marshall, Charla K

    2017-11-01

    The feasibility of generating mitochondrial DNA (mtDNA) data has expanded considerably with the advent of next-generation sequencing (NGS), specifically in the generation of entire mtDNA genome (mitogenome) sequences. However, the analysis of these data has emerged as the greatest challenge to implementation in forensics. To address this need, a custom toolkit for use in the CLC Genomics Workbench (QIAGEN, Hilden, Germany) was developed through a collaborative effort between the Armed Forces Medical Examiner System - Armed Forces DNA Identification Laboratory (AFMES-AFDIL) and QIAGEN Bioinformatics. The AFDIL-QIAGEN mtDNA Expert, or AQME, generates an editable mtDNA profile that employs forensic conventions and includes the interpretation range required for mtDNA data reporting. AQME also integrates an mtDNA haplogroup estimate into the analysis workflow, which provides the analyst with phylogenetic nomenclature guidance and a profile quality check without the use of an external tool. Supplemental AQME outputs such as nucleotide-per-position metrics, configurable export files, and an audit trail are produced to assist the analyst during review. AQME is applied to standard CLC outputs and thus can be incorporated into any mtDNA bioinformatics pipeline within CLC regardless of sample type, library preparation or NGS platform. An evaluation of AQME was performed to demonstrate its functionality and reliability for the analysis of mitogenome NGS data. The study analyzed Illumina mitogenome data from 21 samples (including associated controls) of varying quality and sample preparations with the AQME toolkit. A total of 211 tool edits were automatically applied to 130 of the 698 total variants reported in an effort to adhere to forensic nomenclature. Although additional manual edits were required for three samples, supplemental tools such as mtDNA haplogroup estimation assisted in identifying and guiding these necessary modifications to the AQME-generated profile. Along

  11. Analysis of the whole mitochondrial genome: translation of the Ion Torrent Personal Genome Machine system to the diagnostic bench?

    Science.gov (United States)

    Seneca, Sara; Vancampenhout, Kim; Van Coster, Rudy; Smet, Joél; Lissens, Willy; Vanlander, Arnaud; De Paepe, Boel; Jonckheere, An; Stouffs, Katrien; De Meirleir, Linda

    2015-01-01

    Next-generation sequencing (NGS), an innovative sequencing technology that enables the successful analysis of numerous gene sequences in a massive parallel sequencing approach, has revolutionized the field of molecular biology. Although NGS was introduced in a rather recent past, the technology has already demonstrated its potential and effectiveness in many research projects, and is now on the verge of being introduced into the diagnostic setting of routine laboratories to delineate the molecular basis of genetic disease in undiagnosed patient samples. We tested a benchtop device on retrospective genomic DNA (gDNA) samples of controls and patients with a clinical suspicion of a mitochondrial DNA disorder. This Ion Torrent Personal Genome Machine platform is a high-throughput sequencer with a fast turnaround time and reasonable running costs. We challenged the chemistry and technology with the analysis and processing of a mutational spectrum composed of samples with single-nucleotide substitutions, indels (insertions and deletions) and large single or multiple deletions, occasionally in heteroplasmy. The output data were compared with previously obtained conventional dideoxy sequencing results and the mitochondrial revised Cambridge Reference Sequence (rCRS). We were able to identify the majority of all nucleotide alterations, but three false-negative results were also encountered in the data set. At the same time, the poor performance of the PGM instrument in regions associated with homopolymeric stretches generated many false-positive miscalls demanding additional manual curation of the data.

  12. Comparative analysis of mitochondrial genomes of five aphid species (Hemiptera: Aphididae and phylogenetic implications.

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    Full Text Available Insect mitochondrial genomes (mitogenomes are of great interest in exploring molecular evolution, phylogenetics and population genetics. Only two mitogenomes have been previously released in the insect group Aphididae, which consists of about 5,000 known species including some agricultural, forestry and horticultural pests. Here we report the complete 16,317 bp mitogenome of Cavariella salicicola and two nearly complete mitogenomes of Aphis glycines and Pterocomma pilosum. We also present a first comparative analysis of mitochondrial genomes of aphids. Results showed that aphid mitogenomes share conserved genomic organization, nucleotide and amino acid composition, and codon usage features. All 37 genes usually present in animal mitogenomes were sequenced and annotated. The analysis of gene evolutionary rate revealed the lowest and highest rates for COI and ATP8, respectively. A unique repeat region exclusively in aphid mitogenomes, which included variable numbers of tandem repeats in a lineage-specific manner, was highlighted for the first time. This region may have a function as another origin of replication. Phylogenetic reconstructions based on protein-coding genes and the stem-loop structures of control regions confirmed a sister relationship between Cavariella and pterocommatines. Current evidence suggest that pterocommatines could be formally transferred into Macrosiphini. Our paper also offers methodological instructions for obtaining other Aphididae mitochondrial genomes.

  13. [Analysis of UQCRB gene mutation in a child with mitochondrial complex III deficiency].

    Science.gov (United States)

    Zhang, Ting; Hong, Fang; Qian, Guling; Tong, Fan; Zhou, Xuelian; Huang, Xiaolei; Yang, Rulai; Huang, Xinwen

    2017-06-10

    To delineate the clinical, biochemical and genetic mutational characteristics of a child with mitochondrial complex III deficiency. Clinical information and results of auxiliary examination of the patient were analyzed. Next-generation sequencing of the mitochondrial genome and related nuclear genes was carried out. Suspected mutation was confirmed in both parents with Sanger sequencing. Heterozygous deletion was mapped with chromosomal microarray analysis and confirmed with real-time PCR. The patient presented with vomiting, polypnea, fever, metabolic acidosis, hyperlactatemia, hypoglycemia, dysfunction of coagulation and immune system, in addition with increased lactate dehydrogenase and creatine kinase isoenzyme. Elevation of blood alanine and acylcarnitines as well as urinary ketotic dicarboxylic acid were also noted. The patient also presented development delay, mental retardation and hypotonia. Sequence analysis revealed two mutations in the nuclear gene UQCRB, which included a previously reported frameshift mutation c.306_309delAAAA(p.Arg105Lysfs*22) and a novel large deletion encompassing the entire UQCRB gene. The clinical, biochemical and gene mutation characteristics of a child with mitochondrial complex III deficiency caused by mutations of the UQCRB gene have been delineated.

  14. Mitochondrial DNA analysis of the putative heart of Louis XVII, son of Louis XVI and Marie-Antoinette.

    Science.gov (United States)

    Jehaes, E; Pfeiffer, H; Toprak, K; Decorte, R; Brinkmann, B; Cassiman, J J

    2001-03-01

    According to official historiography, the 10-year-old Louis XVII died in the Temple of Paris on June 8, 1795. However, public rumour spread the theory that Louis XVII escaped and that his descendants would be alive today. One such putative 'Louis XVII' was Carl Wilhelm Naundorff, who died in 1845 in Delft (the Netherlands). Comparative mitochondrial DNA (mtDNA) analysis gave evidence that his remains could not be identified as those of Louis XVII. In the present study, mtDNA analysis was performed on the heart of the young boy who died in the prison of Paris in 1795. In order to obtain the strongest evidence possible, two laboratories independently analysed the heart. The results showed that the consensus mtDNA sequence of the heart was identical to that of the maternal relatives of Louis XVII.

  15. A systems biological analysis links ROS metabolism to mitochondrial protein quality control.

    Science.gov (United States)

    Kowald, Axel; Hamann, Andrea; Zintel, Sandra; Ullrich, Sebastian; Klipp, Edda; Osiewacz, Heinz D

    2012-05-01

    The analyses of previously generated Podospora anserina strains in which the mitochondrial superoxide dismutase, PaSOD3, is increased in abundance, revealed unexpected results, which, at first glance, are contradictory to the 'free radical theory of aging' (FRTA). To re-analyze these results, we performed additional experiments and developed a mathematical model consisting of a set of differential equations describing the time course of various ROS (reactive oxygen species), components of the cellular antioxidant system (PaSOD3 and mitochondrial peroxiredoxin, PaPRX1), and PaCLPP, a mitochondrial matrix protease involved in protein quality control. Incorporating these components we could identify a positive feed-back loop and demonstrate that the role of superoxide as the primary ROS responsible for age-related molecular damage is more complicated than originally stated by the FRTA. Our study is a first step towards the integration of the various pathways known to be involved in the control of biological aging. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Characterization of the complete mitochondrial genome of Acanthoscelides obtectus (Coleoptera: Chrysomelidae: Bruchinae) with phylogenetic analysis.

    Science.gov (United States)

    Yao, Jie; Yang, Hong; Dai, Renhuai

    2017-10-01

    Acanthoscelides obtectus is a common species of the subfamily Bruchinae and a worldwide-distributed seed-feeding beetle. The complete mitochondrial genome of A. obtectus is 16,130 bp in length with an A + T content of 76.4%. It contains a positive AT skew and a negative GC skew. The mitogenome of A. obtectus contains 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes and a non-coding region (D-loop). All PCGs start with an ATN codon, and seven (ND3, ATP6, COIII, ND3, ND4L, ND6, and Cytb) of them terminate with TAA, while the remaining five (COI, COII, ND1, ND4, and ND5) terminate with a single T, ATP8 terminates with TGA. Except tRNA Ser , the secondary structures of 21 tRNAs that can be folded into a typical clover-leaf structure were identified. The secondary structures of lrRNA and srRNA were also predicted in this study. There are six domains with 48 helices in lrRNA and three domains with 32 helices in srRNA. The control region of A. obtectus is 1354 bp in size with the highest A + T content (83.5%) in a mitochondrial gene. Thirteen PCGs in 19 species have been used to infer their phylogenetic relationships. Our results show that A. obtectus belongs to the family Chrysomelidae (subfamily-Bruchinae). This is the first study on phylogenetic analyses involving the mitochondrial genes of A. obtectus and could provide basic data for future studies of mitochondrial genome diversities and the evolution of related insect lineages.

  17. 8-year retrospective analysis of intravenous arginine therapy for acute metabolic strokes in pediatric mitochondrial disease.

    Science.gov (United States)

    Ganetzky, Rebecca D; Falk, Marni J

    2018-03-01

    Intravenous (IV) arginine has been reported to ameliorate acute metabolic stroke symptoms in adult patients with Mitochondrial Encephalopathy with Lactic Acidosis and Stroke-like Episodes (MELAS) syndrome, where its therapeutic benefit is postulated to result from arginine acting as a nitric oxide donor to reverse vasospasm. Further, reduced plasma arginine may occur in mitochondrial disease since the biosynthesis of arginine's precursor, citrulline, requires ATP. Metabolic strokes occur across a wide array of primary mitochondrial diseases having diverse molecular etiologies that are likely to share similar pathophysiologic mechanisms. Therefore, IV arginine has been increasingly used for the acute clinical treatment of metabolic stroke across a broad mitochondrial disease population. We performed retrospective analysis of a large cohort of subjects who were under 18 years of age at IRB #08-6177 study enrollment and had molecularly-confirmed primary mitochondrial disease (n = 71, excluding the common MELAS m.3243A>G mutation). 9 unrelated subjects in this cohort received acute arginine IV treatment for one or more stroke-like episodes (n = 17 total episodes) between 2009 and 2016 at the Children's Hospital of Philadelphia. Retrospectively reviewed data included subject genotype, clinical symptoms, age, arginine dosing, neuroimaging (if performed), prophylactic therapies, and adverse events. Genetic etiologies of subjects who presented with acute metabolic strokes included 4 mitochondrial DNA (mtDNA) pathogenic point mutations, 1 mtDNA deletion, and 4 nuclear gene disorders. Subject age ranged from 19 months to 23 years at the time of any metabolic stroke episode (median, 8 years). 3 subjects had recurrent stroke episodes. 70% of subjects were on prophylactic arginine or citrulline therapy at the time of a stroke-like episode. IV arginine was initiated on initial presentation in 65% of cases. IV arginine was given for 1-7 days (median, 1 day). A

  18. Limited diagnostic value of enzyme analysis in patients with mitochondrial tRNA mutations

    DEFF Research Database (Denmark)

    Wibrand, Flemming; Jeppesen, Tina Dysgaard; Frederiksen, Anja L

    2010-01-01

    We evaluated the diagnostic value of respiratory chain (RC) enzyme analysis of muscle in adult patients with mitochondrial myopathy (MM). RC enzyme activity was measured in muscle biopsies from 39 patients who carry either the 3243A>G mutation, other tRNA point mutations, or single, large......, respectively, in these three groups. The results indicate that RC enzyme analysis in muscle is not a sensitive test for MM in adults. In these patients, abnormal muscle histochemistry appears to be a better predictor ofMM....

  19. PineElm_SSRdb: a microsatellite marker database identified from genomic, chloroplast, mitochondrial and EST sequences of pineapple (Ananas comosus(L.) Merrill).

    Science.gov (United States)

    Chaudhary, Sakshi; Mishra, Bharat Kumar; Vivek, Thiruvettai; Magadum, Santoshkumar; Yasin, Jeshima Khan

    2016-01-01

    Simple Sequence Repeats or microsatellites are resourceful molecular genetic markers. There are only few reports of SSR identification and development in pineapple. Complete genome sequence of pineapple available in the public domain can be used to develop numerous novel SSRs. Therefore, an attempt was made to identify SSRs from genomic, chloroplast, mitochondrial and EST sequences of pineapple which will help in deciphering genetic makeup of its germplasm resources. A total of 359511 SSRs were identified in pineapple (356385 from genome sequence, 45 from chloroplast sequence, 249 in mitochondrial sequence and 2832 from EST sequences). The list of EST-SSR markers and their details are available in the database. PineElm_SSRdb is an open source database available for non-commercial academic purpose at http://app.bioelm.com/ with a mapping tool which can develop circular maps of selected marker set. This database will be of immense use to breeders, researchers and graduates working on Ananas spp. and to others working on cross-species transferability of markers, investigating diversity, mapping and DNA fingerprinting.

  20. Whole-exome sequencing identifies homozygous AFG3L2 mutations in a spastic ataxia-neuropathy syndrome linked to mitochondrial m-AAA proteases.

    Directory of Open Access Journals (Sweden)

    Tyler Mark Pierson

    2011-10-01

    Full Text Available We report an early onset spastic ataxia-neuropathy syndrome in two brothers of a consanguineous family characterized clinically by lower extremity spasticity, peripheral neuropathy, ptosis, oculomotor apraxia, dystonia, cerebellar atrophy, and progressive myoclonic epilepsy. Whole-exome sequencing identified a homozygous missense mutation (c.1847G>A; p.Y616C in AFG3L2, encoding a subunit of an m-AAA protease. m-AAA proteases reside in the mitochondrial inner membrane and are responsible for removal of damaged or misfolded proteins and proteolytic activation of essential mitochondrial proteins. AFG3L2 forms either a homo-oligomeric isoenzyme or a hetero-oligomeric complex with paraplegin, a homologous protein mutated in hereditary spastic paraplegia type 7 (SPG7. Heterozygous loss-of-function mutations in AFG3L2 cause autosomal-dominant spinocerebellar ataxia type 28 (SCA28, a disorder whose phenotype is strikingly different from that of our patients. As defined in yeast complementation assays, the AFG3L2(Y616C gene product is a hypomorphic variant that exhibited oligomerization defects in yeast as well as in patient fibroblasts. Specifically, the formation of AFG3L2(Y616C complexes was impaired, both with itself and to a greater extent with paraplegin. This produced an early-onset clinical syndrome that combines the severe phenotypes of SPG7 and SCA28, in additional to other "mitochondrial" features such as oculomotor apraxia, extrapyramidal dysfunction, and myoclonic epilepsy. These findings expand the phenotype associated with AFG3L2 mutations and suggest that AFG3L2-related disease should be considered in the differential diagnosis of spastic ataxias.

  1. Species trees for spiny lizards (genus Sceloporus): identifying points of concordance and conflict between nuclear and mitochondrial data.

    Science.gov (United States)

    Leaché, Adam D

    2010-01-01

    Spiny lizards (genus Sceloporus) represent one of the most diverse and species rich clades of squamate reptiles in continental North America. Sceloporus contains 90+ species, which are partitioned into 21 species groups containing anywhere from one to 15 species. Despite substantial progress towards elucidating the phylogeographic patterns for many species of Sceloporus, efforts to resolve the phylogenetic relationships among the major species groups remain limited. In this study, the phylogenetic relationships of 53 species of Sceloporus, representing all 21 species groups, are estimated based on four nuclear genes (BDNF, PNN, R35, RAG-1; >3.3 kb) and contrasted with a new mitochondrial DNA genealogy based on six genes (12S, ND1, ND4, and the histidine, serine, and leucine tRNA genes; >2.5 kb). Species trees estimated from the nuclear loci using data concatenation or a coalescent-based inference method result in concordant topologies, but the coalescent approach provides lower resolution and support. When comparing nuclear versus mtDNA-based topologies for Sceloporus species groups, conflicting relationships outnumber concordant relationships. Incongruence is not restricted to weak or unresolved nodes as might be expected under a scenario of rapid diversification, but extends to conflicts involving strongly support clades. The points of concordance and conflict between the nuclear and mtDNA data are discussed, and arguments for preferring the species trees estimated from the multilocus nuclear data are presented.

  2. Assessing Mitochondrial DNA Variation and Copy Number in Lymphocytes of ~2,000 Sardinians Using Tailored Sequencing Analysis Tools.

    Directory of Open Access Journals (Sweden)

    Jun Ding

    2015-07-01

    Full Text Available DNA sequencing identifies common and rare genetic variants for association studies, but studies typically focus on variants in nuclear DNA and ignore the mitochondrial genome. In fact, analyzing variants in mitochondrial DNA (mtDNA sequences presents special problems, which we resolve here with a general solution for the analysis of mtDNA in next-generation sequencing studies. The new program package comprises 1 an algorithm designed to identify mtDNA variants (i.e., homoplasmies and heteroplasmies, incorporating sequencing error rates at each base in a likelihood calculation and allowing allele fractions at a variant site to differ across individuals; and 2 an estimation of mtDNA copy number in a cell directly from whole-genome sequencing data. We also apply the methods to DNA sequence from lymphocytes of ~2,000 SardiNIA Project participants. As expected, mothers and offspring share all homoplasmies but a lesser proportion of heteroplasmies. Both homoplasmies and heteroplasmies show 5-fold higher transition/transversion ratios than variants in nuclear DNA. Also, heteroplasmy increases with age, though on average only ~1 heteroplasmy reaches the 4% level between ages 20 and 90. In addition, we find that mtDNA copy number averages ~110 copies/lymphocyte and is ~54% heritable, implying substantial genetic regulation of the level of mtDNA. Copy numbers also decrease modestly but significantly with age, and females on average have significantly more copies than males. The mtDNA copy numbers are significantly associated with waist circumference (p-value = 0.0031 and waist-hip ratio (p-value = 2.4×10-5, but not with body mass index, indicating an association with central fat distribution. To our knowledge, this is the largest population analysis to date of mtDNA dynamics, revealing the age-imposed increase in heteroplasmy, the relatively high heritability of copy number, and the association of copy number with metabolic traits.

  3. Statistical analysis of post mortem DNA damage-derived miscoding lesions in Neandertal mitochondrial DNA

    DEFF Research Database (Denmark)

    Vives, Sergi; Gilbert, M Thomas; Arenas, Conchita

    2008-01-01

    ABSTRACT: BACKGROUND: We have analysed the distribution of post mortem DNA damage derived miscoding lesions from the datasets of seven published Neandertal specimens that have extensive cloned sequence coverage over the mitochondrial DNA (mtDNA) hypervariable region 1 (HVS1). The analysis......-->A miscoding lesions (observed ratio of 67:2 compared to an expected ratio of 7:2), implying that the mtDNA Light strand molecule suffers proportionally more damage-derived miscoding lesions than the Heavy strand. CONCLUSION: The clustering of Cs in the Light strand as opposed to the singleton pattern of Cs...

  4. Unraveling Biochemical Pathways Affected by Mitochondrial Dysfunctions Using Metabolomic Approaches

    Directory of Open Access Journals (Sweden)

    Stéphane Demine

    2014-09-01

    Full Text Available Mitochondrial dysfunction(s (MDs can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy in the obesity and insulin resistance thematic.

  5. Unraveling Biochemical Pathways Affected by Mitochondrial Dysfunctions Using Metabolomic Approaches

    Science.gov (United States)

    Demine, Stéphane; Reddy, Nagabushana; Renard, Patricia; Raes, Martine; Arnould, Thierry

    2014-01-01

    Mitochondrial dysfunction(s) (MDs) can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy) in the obesity and insulin resistance thematic. PMID:25257998

  6. Whole-exome sequencing identifies a variant of the mitochondrial MT-ND1 gene associated with epileptic encephalopathy: west syndrome evolving to Lennox-Gastaut syndrome.

    Science.gov (United States)

    Delmiro, Aitor; Rivera, Henry; García-Silva, María Teresa; García-Consuegra, Inés; Martín-Hernández, Elena; Quijada-Fraile, Pilar; de Las Heras, Rogelio Simón; Moreno-Izquierdo, Ana; Martín, Miguel Ángel; Arenas, Joaquín; Martínez-Azorín, Francisco

    2013-12-01

    We describe a West syndrome (WS) patient with unidentified etiology that evolved to Lennox-Gastaut syndrome. The mitochondrial respiratory chain of the patient showed a simple complex I deficiency in fibroblasts. Whole-exome sequencing (WES) uncovered two heterozygous mutations in NDUFV2 gene that were reassigned to a pseudogene. With the WES data, it was possible to obtain whole mitochondrial DNA sequencing and to identify a heteroplasmic variant in the MT-ND1 (MTND1) gene (m.3946G>A, p.E214K). The expression of the gene in patient fibroblasts was not affected but the protein level was significantly reduced, suggesting that protein stability was affected by this mutation. The lower protein level also affected assembly of complex I and supercomplexes (I/III2 /IV and I/III2 ), leading to complex I deficiency. While ATP levels at steady state under stress conditions were not affected, the amount of ROS produced by complex I was significantly increased. © 2013 WILEY PERIODICALS, INC.

  7. Computed tomography examination and mitochondrial DNA analysis of Japanese wolf skull covered with skin

    Science.gov (United States)

    ISHIGURO, Naotaka; INOSHIMA, Yasuo; SASAKI, Motoki

    2016-01-01

    A Canis skull, right half of the mandible and part of the left half of the mandible were subjected to three-dimensional (3D) computed tomography (CT) observation and mitochondrial DNA (mtDNA) analysis in order to determine whether the specimens belonged to the extinct Japanese wolf, Canis lupus hodophilax (Temminck, 1839). Osteometric analysis of the skull and right half of the mandible revealed that the material (JW275) was indeed typical of the Japanese wolf. Sequence analysis of a 600-bp mtDNA region revealed that the JW275 belonged to haplotype Group B, which is characterized by an 8-bp deletion in the mtDNA control region. The findings of this study suggest that 3D CT analysis is well suited to examining fragile and valuable biological samples, as it removes the need for destructive sampling. PMID:27746405

  8. Detailed Analysis of the Human Mitochondrial Contact Site Complex Indicate a Hierarchy of Subunits

    OpenAIRE

    Ott, Christine; Dorsch, Eva; Fraunholz, Martin; Straub, Sebastian; Kozjak-Pavlovic, Vera

    2015-01-01

    Mitochondrial inner membrane folds into cristae, which significantly increase its surface and are important for mitochondrial function. The stability of cristae depends on the mitochondrial contact site (MICOS) complex. In human mitochondria, the inner membrane MICOS complex interacts with the outer membrane sorting and assembly machinery (SAM) complex, to form the mitochondrial intermembrane space bridging complex (MIB). We have created knockdown cell lines of most of the MICOS and MIB compo...

  9. Mitochondrial morphological features are associated with fission and fusion events.

    Directory of Open Access Journals (Sweden)

    Laura M Westrate

    Full Text Available Mitochondria are dynamic organelles that undergo constant remodeling through the regulation of two opposing processes, mitochondrial fission and fusion. Although several key regulators and physiological stimuli have been identified to control mitochondrial fission and fusion, the role of mitochondrial morphology in the two processes remains to be determined. To address this knowledge gap, we investigated whether morphological features extracted from time-lapse live-cell images of mitochondria could be used to predict mitochondrial fate. That is, we asked if we could predict whether a mitochondrion is likely to participate in a fission or fusion event based on its current shape and local environment. Using live-cell microscopy, image analysis software, and supervised machine learning, we characterized mitochondrial dynamics with single-organelle resolution to identify features of mitochondria that are predictive of fission and fusion events. A random forest (RF model was trained to correctly classify mitochondria poised for either fission or fusion based on a series of morphological and positional features for each organelle. Of the features we evaluated, mitochondrial perimeter positively correlated with mitochondria about to undergo a fission event. Similarly mitochondrial solidity (compact shape positively correlated with mitochondria about to undergo a fusion event. Our results indicate that fission and fusion are positively correlated with mitochondrial morphological features; and therefore, mitochondrial fission and fusion may be influenced by the mechanical properties of mitochondrial membranes.

  10. Phylogenetic analysis of 16S mitochondrial DNA data in sloths and anteaters

    Directory of Open Access Journals (Sweden)

    Barros Maria Claudene

    2003-01-01

    Full Text Available We sequenced part of the 16S rRNA mitochondrial gene in 17 extant taxa of Pilosa (sloths and anteaters and used these sequences along with GenBank sequences of both extant and extinct sloths to perform phylogenetic analysis based on parsimony, maximum-likelihood and Bayesian methods. By increasing the taxa density for anteaters and sloths we were able to clarify some points of the Pilosa phylogenetic tree. Our mitochondrial 16S results show Bradypodidae as a monophyletic and robustly supported clade in all the analysis. However, the Pleistocene fossil Mylodon darwinii does not group significantly to either Bradypodidae or Megalonychidae which indicates that trichotomy best represents the relationship between the families Mylodontidae, Bradypodidae and Megalonychidae. Divergence times also allowed us to discuss the taxonomic status of Cyclopes and the three species of three-toed sloths, Bradypus tridactylus, Bradypus variegatus and Bradypus torquatus. In the Bradypodidae the split between Bradypus torquatus and the proto-Bradypus tridactylus / B. variegatus was estimated as about 7.7 million years ago (MYA, while in the Myrmecophagidae the first offshoot was Cyclopes at about 31.8 MYA followed by the split between Myrmecophaga and Tamandua at 12.9 MYA. We estimate the split between sloths and anteaters to have occurred at about 37 MYA.

  11. Complete mitochondrial genome sequence of Marmota himalayana (Rodentia: Sciuridae) and phylogenetic analysis within Rodentia.

    Science.gov (United States)

    Chao, Q J; Li, Y D; Geng, X X; Zhang, L; Dai, X; Zhang, X; Li, J; Zhang, H J

    2014-04-14

    This is the first report of a complete mitochondrial genome sequence from Himalayan marmot (Marmota himalayana, class Marmota). We determined the M. himalayana mitochondrial (mt) genome sequence by using long-PCR methods and a primer-walking sequencing strategy with genus-specific primers. The complete mt genome of M. himalayana was 16,443 bp in length and comprised 13 protein-coding genes, 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and a typical control region (CR). Gene order and orientation were identical to those in mt genomes of most vertebrates. The heavy strand showed an overall A+T content of 63.49%. AT and GC skews for the mt genome of the M. himalayana were 0.012 and -0.300, respectively, indicating a nucleotide bias against T and G. The control region was 997 bp in size and displayed some unusual features, including absence of repeated motifs and two conserved sequence blocks (CSB2 and CSB3), which is consistent with observations from two other rodent species, Sciurus vulgaris and Myoxus glis. Phylogenetic analysis of complete mt DNA sequences without the control region including 30 taxa of Rodentia was performed with Maximum-Likelihood (ML) and Bayesian Inference (BI) methods and provided strong support for Sciurognathi polyphyly and Hystricognathi monophyly. This analysis also provided evidence that M. himalayana mt DNA was closely related to that from Sciurus vulgaris (Sciuridae) and was similar to mt DNA from Myoxus glis.

  12. A biophysical analysis of mitochondrial movement: differences between transport in neuronal cell bodies versus processes.

    Science.gov (United States)

    Narayanareddy, Babu Reddy Janakaloti; Vartiainen, Suvi; Hariri, Neema; O'Dowd, Diane K; Gross, Steven P

    2014-07-01

    There is an increasing interest in factors that can impede cargo transport by molecular motors inside the cell. Although potentially relevant (Yi JY, Ori-McKenney KM, McKenney RJ, Vershinin M, Gross SP, Vallee RB. High-resolution imaging reveals indirect coordination of opposite motors and a role for LIS1 in high-load axonal transport. J Cell Biol 2011;195:193-201), the importance of cargo size and subcellular location has received relatively little attention. Here we address these questions taking advantage of the fact that mitochondria - a common cargo - in Drosophila neurons exhibit a wide distribution of sizes. In addition, the mitochondria can be genetically marked with green fluorescent protein (GFP) making it possible to visualize and compare their movement in the cell bodies and in the processes of living cells. Using total internal reflection microscopy coupled with particle tracking and analysis, we quantified the transport properties of GFP-positive mitochondria as a function of their size and location. In neuronal cell bodies, we find little evidence for significant opposition to motion, consistent with a previous study on lipid droplets (Shubeita GT, Tran SL, Xu J, Vershinin M, Cermelli S, Cotton SL, Welte MA, Gross SP. Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets. Cell 2008;135:1098-1107). However, in the processes, we observe an inverse relationship between the mitochondrial size and velocity and the run distances. This can be ameliorated via hypotonic treatment to increase process size, suggesting that motor-mediated movement is impeded in this more-confined environment. Interestingly, we also observe local mitochondrial accumulations in processes but not in cell bodies. Such accumulations do not completely block the transport but do increase the probability of mitochondria-mitochondria interactions. They are thus particularly interesting in relation to mitochondrial exchange of elements.

  13. Characterization of complete mitochondrial genome of Dezhou donkey (Equus asinus) and evolutionary analysis.

    Science.gov (United States)

    Sun, Yan; Jiang, Qiang; Yang, Chunhong; Wang, Xiuge; Tian, Fang; Wang, Yinchao; Ma, Yong; Ju, Zhihua; Huang, Jinming; Zhou, Xiangshan; Zhong, Jifeng; Wang, Changfa

    2016-05-01

    Mitochondrial DNA (mtDNA) has been widely used in species identification and genetic diversification. Comparisons among mtDNAs of closely related species are valuable for phylogenetic studies. However, only the partial mtDNA Cytb gene and the D-loop sequences were used to analysis the phylogenetic relationship between donkey breeds due to lack of complete mitochondrial genome. Dezhou donkey, as a bigger somatotype ass, is one of Chinese domestic donkey breeds, and used by many places as breeding stock. To further investigate the phylogenetic relationship of Dezhou donkey with other breeds, the complete mtDNA was firstly sequenced and de novo assembled using next generation sequence data from total genomic DNA. The genome was 16,813 bp in length (NCBI submission number: KT182635) and contained 13 protein coding genes, 2 ribosomal RNA genes, 25 transfer RNA genes, and 1 control region. Based on the novel complete mtDNA sequence, the sequences of 13 protein coding genes and 2 ribosomal RNA genes were amplifying in other 2 Dezhou donkeys and 3 Yunnan donkeys, respectively. The pattern of genetic variation in horse, wild ass and domestic donkeys among these 15 genes indicated the sequence polymorphisms. The more accurate phylogenetic relationships of donkey species (Dezhou donkey, Yunnan donkey and previously published donkeys) were first obtained using the combined sequences of 12S rRNA+16S rRNA+13 protein-coding genes. Molecular-based phylogeny supported the hypothesis that Chinese domestic donkey breeds may have originated from Somali wild ass, not from Asian wild ass by analyzing mitochondrial genomes.

  14. A new whole mitochondrial genome qPCR (WMG-qPCR) with SYBR Green®to identify phlebotomine sand fly blood meals.

    Science.gov (United States)

    Rodrigues, Ana Caroline Moura; Magalhães, Rafaela Damasceno; Romcy, Kalil Andrade Mubarac; Freitas, Jeferson Lucas Sousa; Melo, Ana Carolina Fonseca Lindoso; Rodon, Fernanda Cristina Macedo; Bevilaqua, Claudia Maria Leal; Melo, Luciana Magalhães

    2017-04-30

    Phlebotomine sand flies are blood-feeding insects of marked medical and veterinary significance. Investigations on the biology of these insects hold great importance for both ecological and epidemiological purposes. The present work describes a new approach for real-time PCR (qPCR) with SYBR Green ® , named WMG-qPCR, to identify phlebotomine blood meals. The novelty of the assay was to design primers based on the Whole Mitochondrial Genome (WMG) of the potential hosts (human, dog, cat, brown rat and chicken) aiming to amplify through qPCR the regions of mitochondrial DNA (mtDNA) which are less conserved among all species. Initially, the best method for mtDNA extraction to be applied in WMG-qPCR was determined. Afterwards, amplification specificities were accessed by cross-reaction assays with mtDNA samples from all animal species, besides phlebotomine DNA. Finally, the selected primers were also tested for their limit of DNA detection through standard curves constructed by serial dilution of blood DNA obtained for each target animal species. The WMG-qPCR was able to detect as low as 10pL of blood, equivalent to 26, 84, 130, and 320fg DNA of cat, human, dog and rat, respectively. The assay was also capable to amplify as low as 5pL of chicken blood (5pg DNA). In conclusion, WMG-qPCR seems to be a promising tool to identify phlebotomine blood meals, with high species-specificity and sensitivity. Furthermore, as no supplementary techniques are required, this new approach presents minimized costs and simplified technical-training requirements for execution. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Stock discrimination in Great Lakes Walleye using mitochondrial DNA restriction analysis

    International Nuclear Information System (INIS)

    Billington, N.; Hebert, P.D.N.

    1986-01-01

    Over the past two years it has become evident that because of its strict maternal inheritance and rapid rate of evolutionary differentiation, mitochondrial (mt) DNA diversity offers exceptional promise in the discrimination of fish stocks. The current project aims to determine the extent of mt DNA variation among stocks of walleye (Stizostedion vitreum) from the Great Lakes. At this point, mt DNA has been isolated from 68 walleye representing the Thames River stock and a reef breeding stock from western Lake Erie, as well as from individuals of S. canadense, a species which hybridizes with S. vitreum. Mitochondrial DNA was extracted from livers of these fish, purified by CsCl density gradient centrifugation and digested using 20 endonucleases. Polymorphisms were detected with 8 of the enzymes. There was a great deal of variation among fish from both spawning populations, so much so that individual fish could be identified by this technique. No single enzyme allowed discrimination of the two stocks, but restriction pattern variation following Dde I digestion permitted separation of 50% of Lake Erie fish from Thames River stock. Comparison of mt DNA restriction patterns of walleye and sauger showed that two species are easily separable, setting the stage for a more detailed study of hybridization between the taxa

  16. A specific indel marker for the Philippines Schistosoma japonicum revealed by analysis of mitochondrial genome sequences.

    Science.gov (United States)

    Li, Juan; Chen, Fen; Sugiyama, Hiromu; Blair, David; Lin, Rui-Qing; Zhu, Xing-Quan

    2015-07-01

    In the present study, near-complete mitochondrial (mt) genome sequences for Schistosoma japonicum from different regions in the Philippines and Japan were amplified and sequenced. Comparisons among S. japonicum from the Philippines, Japan, and China revealed a geographically based length difference in mt genomes, but the mt genomic organization and gene arrangement were the same. Sequence differences among samples from the Philippines and all samples from the three endemic areas were 0.57-2.12 and 0.76-3.85 %, respectively. The most variable part of the mt genome was the non-coding region. In the coding portion of the genome, protein-coding genes varied more than rRNA genes and tRNAs. The near-complete mt genome sequences for Philippine specimens were identical in length (14,091 bp) which was 4 bp longer than those of S. japonicum samples from Japan and China. This indel provides a unique genetic marker for S. japonicum samples from the Philippines. Phylogenetic analyses based on the concatenated amino acids of 12 protein-coding genes showed that samples of S. japonicum clustered according to their geographical origins. The identified mitochondrial indel marker will be useful for tracing the source of S. japonicum infection in humans and animals in Southeast Asia.

  17. Mitochondrial Dynamics in Mitochondrial Diseases

    Directory of Open Access Journals (Sweden)

    Juan M. Suárez-Rivero

    2016-12-01

    Full Text Available Mitochondria are very versatile organelles in continuous fusion and fission processes in response to various cellular signals. Mitochondrial dynamics, including mitochondrial fission/fusion, movements and turnover, are essential for the mitochondrial network quality control. Alterations in mitochondrial dynamics can cause neuropathies such as Charcot-Marie-Tooth disease in which mitochondrial fusion and transport are impaired, or dominant optic atrophy which is caused by a reduced mitochondrial fusion. On the other hand, mitochondrial dysfunction in primary mitochondrial diseases promotes reactive oxygen species production that impairs its own function and dynamics, causing a continuous vicious cycle that aggravates the pathological phenotype. Mitochondrial dynamics provides a new way to understand the pathophysiology of mitochondrial disorders and other diseases related to mitochondria dysfunction such as diabetes, heart failure, or Hungtinton’s disease. The knowledge about mitochondrial dynamics also offers new therapeutics targets in mitochondrial diseases.

  18. Comparative analysis of mitochondrial genomes between a wheat K-type cytoplasmic male sterility (CMS line and its maintainer line

    Directory of Open Access Journals (Sweden)

    Liu Dongcheng

    2011-03-01

    Full Text Available Abstract Background Plant mitochondria, semiautonomous organelles that function as manufacturers of cellular ATP, have their own genome that has a slow rate of evolution and rapid rearrangement. Cytoplasmic male sterility (CMS, a common phenotype in higher plants, is closely associated with rearrangements in mitochondrial DNA (mtDNA, and is widely used to produce F1 hybrid seeds in a variety of valuable crop species. Novel chimeric genes deduced from mtDNA rearrangements causing CMS have been identified in several plants, such as rice, sunflower, pepper, and rapeseed, but there are very few reports about mtDNA rearrangements in wheat. In the present work, we describe the mitochondrial genome of a wheat K-type CMS line and compare it with its maintainer line. Results The complete mtDNA sequence of a wheat K-type (with cytoplasm of Aegilops kotschyi CMS line, Ks3, was assembled into a master circle (MC molecule of 647,559 bp and found to harbor 34 known protein-coding genes, three rRNAs (18 S, 26 S, and 5 S rRNAs, and 16 different tRNAs. Compared to our previously published sequence of a K-type maintainer line, Km3, we detected Ks3-specific mtDNA (> 100 bp, 11.38% and repeats (> 100 bp, 29 units as well as genes that are unique to each line: rpl5 was missing in Ks3 and trnH was absent from Km3. We also defined 32 single nucleotide polymorphisms (SNPs in 13 protein-coding, albeit functionally irrelevant, genes, and predicted 22 unique ORFs in Ks3, representing potential candidates for K-type CMS. All these sequence variations are candidates for involvement in CMS. A comparative analysis of the mtDNA of several angiosperms, including those from Ks3, Km3, rice, maize, Arabidopsis thaliana, and rapeseed, showed that non-coding sequences of higher plants had mostly divergent multiple reorganizations during the mtDNA evolution of higher plants. Conclusion The complete mitochondrial genome of the wheat K-type CMS line Ks3 is very different from that of

  19. Mitochondrial DNA analysis of eneolithic trypillians from Ukraine reveals neolithic farming genetic roots.

    Directory of Open Access Journals (Sweden)

    Alexey G Nikitin

    Full Text Available The agricultural revolution in Eastern Europe began in the Eneolithic with the Cucuteni-Trypillia culture complex. In Ukraine, the Trypillian culture (TC existed for over two millennia (ca. 5,400-2,700 BCE and left a wealth of artifacts. Yet, their burial rituals remain a mystery and to date almost nothing is known about the genetic composition of the TC population. One of the very few TC sites where human remains can be found is a cave called Verteba in western Ukraine. This report presents four partial and four complete mitochondrial genomes from nine TC individuals uncovered in the cave. The results of this analysis, combined with the data from previous reports, indicate that the Trypillian population at Verteba carried, for the most part, a typical Neolithic farmer package of mitochondrial DNA (mtDNA lineages traced to Anatolian farmers and Neolithic farming groups of central Europe. At the same time, the find of two specimens belonging to haplogroup U8b1 at Verteba can be viewed as a connection of TC with the Upper Paleolithic European populations. At the level of mtDNA haplogroup frequencies, the TC population from Verteba demonstrates a close genetic relationship with population groups of the Funnel Beaker/ Trichterbecker cultural complex from central and northern Europe (ca. 3,950-2,500 BCE.

  20. Discrimination of Anemonefish Species by PCR-RFLP Analysis of Mitochondrial Gene Fragments

    Directory of Open Access Journals (Sweden)

    Chuta Boonphakdee

    2008-01-01

    Full Text Available A means of discriminating among species of clown anemonefishes, based on restriction enzyme analysis of partial mitochondrial DNA sequences, was investigated. Mitochondrial 16S rRNA and cytochrome b genes from 6 species (7 strains of anemonefish (Premnas biculeatus, Amphiprion polymnus, A. sandaracinos, A. perideraion, A. ocellaris, A. ocellaris var. and A. percula were PCR-amplified. A 623-bp portion of 16S rRNA gene was obtained from different fishes using the same pair of primers. Further investigation of this 16S rRNA fragment, by restriction endonuclease digestion with BfuCI and RsaI, was not able to distinguish all fishes studied, but did yield 3 different digestion patterns. The first was specific to P. biculaetus, the sole member of the genus Premnas, while the remaining two separated the Amphiprion species into 2 groups: 1 A. polymnas, A. sandaracinos and A. perideraion, and 2 A. ocellaris, A. ocellaris var. and A. percula. In contrast to this, restriction endonuclease digestion of a 786-bp fragment of the cytochrome b gene with HinfI and RsaI, was able to differentiate different 7 anemonefishes. This utility marker is valuable for unambiguous species/strain identification of juvenile anemonefishes.

  1. Genetic association analysis of 13 nuclear-encoded mitochondrial candidate genes with type II diabetes mellitus: The DAMAGE study

    DEFF Research Database (Denmark)

    Reiling, Erwin; van Vliet-Ostaptchouk, Jana V; van 't Riet, Esther

    2009-01-01

    Mitochondria play an important role in many processes, like glucose metabolism, fatty acid oxidation and ATP synthesis. In this study, we aimed to identify association of common polymorphisms in nuclear-encoded genes involved in mitochondrial protein synthesis and biogenesis with type II diabetes...

  2. Identifying Functional Cysteine Residues in the Mitochondria.

    Science.gov (United States)

    Bak, Daniel W; Pizzagalli, Mattia D; Weerapana, Eranthie

    2017-04-21

    The mitochondria are dynamic organelles that regulate oxidative metabolism and mediate cellular redox homeostasis. Proteins within the mitochondria are exposed to large fluxes in the surrounding redox environment. In particular, cysteine residues within mitochondrial proteins sense and respond to these redox changes through oxidative modifications of the cysteine thiol group. These oxidative modifications result in a loss in cysteine reactivity, which can be monitored using cysteine-reactive chemical probes and quantitative mass spectrometry (MS). Analysis of cell lysates treated with cysteine-reactive probes enable the identification of hundreds of cysteine residues, however, the mitochondrial proteome is poorly represented (proteins and suppression of mitochondrial peptide MS signals by highly abundant cytosolic peptides. Here, we apply a mitochondrial isolation and purification protocol to substantially increase coverage of the mitochondrial cysteine proteome. Over 1500 cysteine residues from ∼450 mitochondrial proteins were identified, thereby enabling interrogation of an unprecedented number of mitochondrial cysteines. Specifically, these mitochondrial cysteines were ranked by reactivity to identify hyper-reactive cysteines with potential catalytic and regulatory functional roles. Furthermore, analyses of mitochondria exposed to nitrosative stress revealed previously uncharacterized sites of protein S-nitrosation on mitochondrial proteins. Together, the mitochondrial cysteine enrichment strategy presented herein enables detailed characterization of protein modifications that occur within the mitochondria during (patho)physiological fluxes in the redox environment.

  3. The complete mitochondrial genome of the threatened Neotropical catfish Lophiosilurus alexandri (Silurifomes: Pseudopimelodidae and phylogenomic analysis indicate monophyly of Pimelodoidea

    Directory of Open Access Journals (Sweden)

    Daniel Cardoso Carvalho

    Full Text Available Abstract Lophiosilurus alexandri is an endemic catfish from the São Francisco River Basin (Brazil popularly known as pacamã, which has economic potential for aquaculture farming. The mitochondrial genome was sequenced for the threatened Neotropical catfish L. alexandri. Assembly into scaffolds using MIRA and MITObim software produced the whole, circularized mitochondrial genome, which comprises 16,445 bp and presents the typical gene arrangement of Teleostei mitochondria. A phylogenomic analysis was performed after the concatenation of all proteins obtained from whole mitogenomes of 20 Siluriformes and two outgroups. The results confirmed the monophyly of nine families of catfishes and also clustered L. alexandri as a sister group to the family Pimelodidae, thus confirming the monophyly of the superfamily Pimelodoidea. This is the first mitochondrial phylogenomics study for Pimelodoidea and the first mitogenome described for the Pseudopimelodidae family, representing an important resource for phylogeography, evolutionary biology, and conservation genetics studies in Neotropical fishes.

  4. Sequencing, description and phylogenetic analysis of the mitochondrial genome of Sarcocheilichthys sinensis sinensis (Cypriniformes: Cyprinidae).

    Science.gov (United States)

    Li, Chen; He, Liping; Chen, Chong; Cai, Lingchao; Chen, Pingping; Yang, Shoubao

    2016-01-01

    Sarcocheilichthys sinensis sinensis (Bleeker, 1871), is a small benthopelagic freshwater species with high nutritional and ornamental value. In this study, the complete mitochondrial genome of S. sinensis sinensis was determined; the phylogenetic analysis with another individual and closely related species of Sarcocheilichthys fishes was carried out. The complete mitogenome of S. sinensis sinensis was 16683 bp in length, consist of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and 2 non-coding regions: (D-loop and OL). It indicated that D-loop, ND2, and CytB may be appropriate molecular markers for studying population genetics and conservation biology of Sarcocheilichthys fishes.

  5. Restriction endonuclease analysis of mitochondrial DNA as an aid in the taxonomy of Naegleria and Vahlkampfia.

    Science.gov (United States)

    Milligan, S M; Band, R N

    1988-05-01

    Using restriction enzyme analysis, mitochondrial DNA fragment patterns from seven strains of pathogenic and nonpathogenic Naegleria and one strain of Vahlkampfia were compared to estimate nucleotide sequence divergence. Significantly high levels of estimated genetic variation between strains of N. gruberi, N. fowleri, and N. jadini support the current taxonomic level of the individual Naegleria species and suggest a distinct phylogeny for each group. Naegleria lovaniensis, strain TS, was shown to have significant nucleotide sequence homology with N. gruberi, strain EGs, suggesting that the two groups share a close taxonomic relationship. The pathogenic strain MB-41 of N. fowleri exhibited distinct genetic divergence from the highly homologous, pathogenic strain Nf66 and the drug-cured strain 6088. Morphologically distinct strains EGs and 1518/la of N. gruberi exhibited significantly large sequence divergence consistent with a more distant taxonomic relationship. Amoebae from the genus Vahlkampfia expressed genetic similarity with strains of N. gruberi.

  6. Brain imaging analysis can identify participants under regular mental training.

    Science.gov (United States)

    Sato, João R; Kozasa, Elisa H; Russell, Tamara A; Radvany, João; Mello, Luiz E A M; Lacerda, Shirley S; Amaro, Edson

    2012-01-01

    Multivariate pattern recognition approaches have become a prominent tool in neuroimaging data analysis. These methods enable the classification of groups of participants (e.g. controls and patients) on the basis of subtly different patterns across the whole brain. This study demonstrates that these methods can be used, in combination with automated morphometric analysis of structural MRI, to determine with great accuracy whether a single subject has been engaged in regular mental training or not. The proposed approach allowed us to identify with 94.87% accuracy (pimaging applications, in which participants could be identified based on their mental experience.

  7. Mitochondrial genome of Abraxas suspecta (Lepidoptera: Geometridae) and comparative analysis with other Lepidopterans.

    Science.gov (United States)

    Sun, Y U; Zhang, Jiawei; Li, Qingqing; Liang, Dan; Abbas, Muhammad Nadeem; Qian, Cen; Wang, Lei; Wei, Guoqing; Zhu, Bao-Jian; Liu, Chao-Liang

    2017-04-20

    In this study, a complete mitochondrial genome (mitogenome) sequence of Abraxas suspecta (Lepidoptera: Geometridae) is isolated and characterized. The complete DNA is 15,547 bp length and contains 2 ribosomal RNA genes, 23 putative transfer RNA (tRNA) genes including an extra tRNAAsn (AUU), 13 protein-coding genes and an adenine (A) + thymine (T)-rich region. The nucleotide composition and gene organization are identical to those of other lepidopteran, except for the presence of an extra copy of trnN (AUU). Of the 38 genes, twenty-five genes (9 PCGs and 16 tRNAs) are encoded by heavy strand (H-strand), while thirteen are encoded by light strand (L-strand). Among the 13 PCGs, 12 PCGs employ ATN as initiation codon, while cytochrome c oxidase subunit 1 (cox1) utilizes CGA as initiation codon. Four of the 13 PCGs have the incomplete termination codon T, while the remainder terminated with the canonical stop codon. All tRNA genes are folded into the typical clover-leaf structure of mitochondrial tRNAs, except for the tRNASer (AGN) gene, in which the DHU arm fails to form a stable stem-loop structure. The A+T-rich region is 532 bp long, and contains some conserved regions, including 'ATAGA' motif followed by a 17bp poly-T stretch, a microsatellite-like element (AT)8(AAT)3 and also a poly-A element. A short Phylogenetic analysis based on 13 PCGs using maximum likelihood (ML) and Bayesian inference (BI) revealed that A. suspecta resides in the Geometridae family. We present the method and approach to use moths as model organisms for further genetic and evolutionary biology studies.

  8. Codon usage bias and phylogenetic analysis of mitochondrial ND1 gene in pisces, aves, and mammals.

    Science.gov (United States)

    Uddin, Arif; Choudhury, Monisha Nath; Chakraborty, Supriyo

    2018-01-01

    The mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1 (MT-ND1) gene is a subunit of the respiratory chain complex I and involved in the first step of the electron transport chain of oxidative phosphorylation (OXPHOS). To understand the pattern of compositional properties, codon usage and expression level of mitochondrial ND1 genes in pisces, aves, and mammals, we used bioinformatic approaches as no work was reported earlier. In this study, a perl script was used for calculating nucleotide contents and different codon usage bias parameters. The codon usage bias of MT-ND1 was low but the expression level was high as revealed from high ENC and CAI value. Correspondence analysis (COA) suggests that the pattern of codon usage for MT-ND1 gene is not same across species and that compositional constraint played an important role in codon usage pattern of this gene among pisces, aves, and mammals. From the regression equation of GC12 on GC3, it can be inferred that the natural selection might have played a dominant role while mutation pressure played a minor role in influencing the codon usage patterns. Further, ND1 gene has a discrepancy with cytochrome B (CYB) gene in preference of codons as evident from COA. The codon usage bias was low. It is influenced by nucleotide composition, natural selection, mutation pressure, length (number) of amino acids, and relative dinucleotide composition. This study helps in understanding the molecular biology, genetics, evolution of MT-ND1 gene, and also for designing a synthetic gene.

  9. Quantitative analysis of mitochondrial RNA in goat-sheep cloned embryos.

    Science.gov (United States)

    Ma, Li-Bing; Yang, Li; Zhang, Yong; Cao, Jun-Wei; Hua, Song; Li, Ji-Xia

    2008-01-01

    Mitochondria are the key generators of cellular ATP, and contain extranuclear genome-mitochondrial DNA (mtDNA). In the process of nuclear transfer (NT), heteroplasmic sources of mtDNA from a donor cell and a recipient oocyte are mixed in the cytoplasm of the reconstituted embryo. Previous studies showed inconsistent patterns of mtDNA inheritance in offspring and early fetuses generated through interspecies NT. The quantitative analysis of mitochondrial RNA (mtRNA) in interspecies cloned embryos is useful for better understanding the fate of two types of mitochondria. The components of nicotinamide adenine dinucleotide (NADH) dehydrogenase were coded by both nuclear DNA (nDNA) and mtDNA. The Subunit 1 (ND-1) is one of seven NADH dehydrogenase subunits coded by mtDNA. In present study, using real-time and reverse-transcription PCR, the copy number of species-specific ND-1 mRNA was examined in goat-sheep cloned embryos of various developmental stages, and was applied to evaluate the expression pattern of species-specific mtDNA. The results of showed that (1) the expression of mtDNA derived from goat fetal fibroblast (GFF) decreased from 1-cell stage (immediately after fused) to 2-cell stage, and could not be detected from 4-cell stage onward to blastocyst stage; (2) the expression of mtDNA derived from sheep oocyte was roughly constant from 1-cell stage to the 8-cell stage, increased gradually from 16-cell stage, and sharply at morula and blastocyst stage. Moreover, we strongly argued a mechanism, that is GFF-derived mitochondria were degraded for the depression of bioenergetic functions, and then selectively eliminated during the embryogenesis of goat-sheep cloned embryos. (c) 2007 Wiley-Liss, Inc.

  10. Identifying Importance-Performance Matrix Analysis (IPMA) of ...

    African Journals Online (AJOL)

    The results of the study revealed that human capital, organizational capital, technological capital and Islamic work ethics significantly influenced business performance. Then, this study explored the use of the Importance-Performance matrix analysis to identify priority factors that can be enhanced to increase business ...

  11. Identifying Students’ Misconceptions on Basic Algorithmic Concepts Through Flowchart Analysis

    NARCIS (Netherlands)

    Rahimi, E.; Barendsen, E.; Henze, I.; Dagienė, V.; Hellas, A.

    2017-01-01

    In this paper, a flowchart-based approach to identifying secondary school students’ misconceptions (in a broad sense) on basic algorithm concepts is introduced. This approach uses student-generated flowcharts as the units of analysis and examines them against plan composition and construct-based

  12. BIOELECTRICAL IMPEDANCE VECTOR ANALYSIS IDENTIFIES SARCOPENIA IN NURSING HOME RESIDENTS

    Science.gov (United States)

    Loss of muscle mass and water shifts between body compartments are contributing factors to frailty in the elderly. The body composition changes are especially pronounced in institutionalized elderly. We investigated the ability of single-frequency bioelectrical impedance analysis (BIA) to identify b...

  13. Identifying subgroups of patients using latent class analysis

    DEFF Research Database (Denmark)

    Nielsen, Anne Mølgaard; Kent, Peter; Hestbæk, Lise

    2017-01-01

    BACKGROUND: Heterogeneity in patients with low back pain (LBP) is well recognised and different approaches to subgrouping have been proposed. Latent Class Analysis (LCA) is a statistical technique that is increasingly being used to identify subgroups based on patient characteristics. However...

  14. The determination and analysis of site-specific rates of mitochondrial reactive oxygen species production

    DEFF Research Database (Denmark)

    Quinlan, Casey L; Perevoschikova, Irina V; Goncalves, Renata L S

    2013-01-01

    Mitochondrial reactive oxygen species (ROS) are widely implicated in physiological and pathological pathways. We propose that it is critical to understand the specific sites of mitochondrial ROS production and their mechanisms of action. Mitochondria possess at least eight distinct sites of ROS...

  15. Identifying clinical course patterns in SMS data using cluster analysis.

    Science.gov (United States)

    Kent, Peter; Kongsted, Alice

    2012-07-02

    Recently, there has been interest in using the short message service (SMS or text messaging), to gather frequent information on the clinical course of individual patients. One possible role for identifying clinical course patterns is to assist in exploring clinically important subgroups in the outcomes of research studies. Two previous studies have investigated detailed clinical course patterns in SMS data obtained from people seeking care for low back pain. One used a visual analysis approach and the other performed a cluster analysis of SMS data that had first been transformed by spline analysis. However, cluster analysis of SMS data in its original untransformed form may be simpler and offer other advantages. Therefore, the aim of this study was to determine whether cluster analysis could be used for identifying clinical course patterns distinct from the pattern of the whole group, by including all SMS time points in their original form. It was a 'proof of concept' study to explore the potential, clinical relevance, strengths and weakness of such an approach. This was a secondary analysis of longitudinal SMS data collected in two randomised controlled trials conducted simultaneously from a single clinical population (n = 322). Fortnightly SMS data collected over a year on 'days of problematic low back pain' and on 'days of sick leave' were analysed using Two-Step (probabilistic) Cluster Analysis. Clinical course patterns were identified that were clinically interpretable and different from those of the whole group. Similar patterns were obtained when the number of SMS time points was reduced to monthly. The advantages and disadvantages of this method were contrasted to that of first transforming SMS data by spline analysis. This study showed that clinical course patterns can be identified by cluster analysis using all SMS time points as cluster variables. This method is simple, intuitive and does not require a high level of statistical skill. However, there

  16. Practical identifiability analysis of a minimal cardiovascular system model.

    Science.gov (United States)

    Pironet, Antoine; Docherty, Paul D; Dauby, Pierre C; Chase, J Geoffrey; Desaive, Thomas

    2017-01-17

    Parameters of mathematical models of the cardiovascular system can be used to monitor cardiovascular state, such as total stressed blood volume status, vessel elastance and resistance. To do so, the model parameters have to be estimated from data collected at the patient's bedside. This work considers a seven-parameter model of the cardiovascular system and investigates whether these parameters can be uniquely determined using indices derived from measurements of arterial and venous pressures, and stroke volume. An error vector defined the residuals between the simulated and reference values of the seven clinically available haemodynamic indices. The sensitivity of this error vector to each model parameter was analysed, as well as the collinearity between parameters. To assess practical identifiability of the model parameters, profile-likelihood curves were constructed for each parameter. Four of the seven model parameters were found to be practically identifiable from the selected data. The remaining three parameters were practically non-identifiable. Among these non-identifiable parameters, one could be decreased as much as possible. The other two non-identifiable parameters were inversely correlated, which prevented their precise estimation. This work presented the practical identifiability analysis of a seven-parameter cardiovascular system model, from limited clinical data. The analysis showed that three of the seven parameters were practically non-identifiable, thus limiting the use of the model as a monitoring tool. Slight changes in the time-varying function modeling cardiac contraction and use of larger values for the reference range of venous pressure made the model fully practically identifiable. Copyright © 2017. Published by Elsevier B.V.

  17. Identification and evolutionary analysis of tissue-specific isoforms of mitochondrial complex I subunit NDUFV3.

    Science.gov (United States)

    Guerrero-Castillo, Sergio; Cabrera-Orefice, Alfredo; Huynen, Martijn A; Arnold, Susanne

    2017-03-01

    Mitochondrial complex I is the largest respiratory chain complex. Despite the enormous progress made studying its structure and function in recent years, potential regulatory roles of its accessory subunits remained largely unresolved. Complex I gene NDUFV3, which occurs in metazoa, contains an extra exon that is only present in vertebrates and thereby evolutionary even younger than the rest of the gene. Alternative splicing of this extra exon gives rise to a short NDUFV3-S and a long NDUFV3-L protein isoform. Complexome profiling revealed that the two NDUFV3 isoforms are constituents of the multi-subunit complex I. Further mass spectrometric analyses of complex I from different murine and bovine tissues showed a tissue-specific expression pattern of NDUFV3-S and NDUFV3-L. Hence, NDUFV3-S was identified as the only isoform in heart and skeletal muscle, whereas in liver, brain, and lung NDUFV3-L was expressed as the dominant isoform, together with NDUFV3-S present in all tissues analyzed. Thus, we identified NDUFV3 as the first out of 30 accessory subunits of complex I present in vertebrate- and tissue-specific isoforms. Interestingly, the tissue-specific expression pattern of NDUFV3-S and NDUFV3-L isoforms was paralleled by changes in kinetic parameters, especially the substrate affinity of complex I. This may indicate a regulatory role of the NDUFV3 isoforms in different vertebrate tissues. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Clinical pathological and genetic analysis of 2 cases of mitochondrial myopathy presented as acute motor axonal neuropathy

    Directory of Open Access Journals (Sweden)

    Hou-min YIN

    2014-06-01

    Full Text Available Background The main clinical manifestations of mitochondrial myopathy are chronic limb weakness and muscular soreness. Subclinical peripheral nerve injury is also reported, but acute axonal neuropathy.like syndrome concurrent with lactic acidosis is rare. In this paper the clinical features of 2 patients presenting as acute lactic acidosis and sudden muscle weakness were analyzed. Pathological changes and genetic mutations were detected.  Methods Electromyography (EMG and muscle biopsy were performed. Modified Gomori trichrome (MGT and succinodehydrogenase (SDH staining were used to identify pathological changes. Changes of ultra microstructure of muscular tissue were observed under electron microscope. Mitochondrial DNA (mtDNA full length sequencing was performed using 24 pairs of partially overlapping primers.  Results EMG showed a coexistence of neurogenic and myogenic changes. Dramatic decrease of motor nerve amplitude and moderately reduced sensory nerve amplitude were observed but nerve conduction velocity was normal in both patients. Impressive ragged red fibers were seen on MGT staining. Electron microscope showed dramatic mitochondrial abnormalities in Case 1 and paracrystaline inclusions in Case 2. mtDNA sequencing showed 3243A > G mutation in Case 1 and 8344A > G mutation in Case 2. Conclusions Mitochondrial myopathy can present as metabolic crisis like acute lactic acidosis, dyspnea and acute motor axonal neuropathy.like syndrome. It is a life.threatening phenotype that needs more attention. doi: 10.3969/j.issn.1672-6731.2014.06.007

  19. Mitochondrial Diseases

    Science.gov (United States)

    ... disorder, something goes wrong with this process. Mitochondrial diseases are a group of metabolic disorders. Mitochondria are ... cells and cause damage. The symptoms of mitochondrial disease can vary. It depends on how many mitochondria ...

  20. Latent cluster analysis of ALS phenotypes identifies prognostically differing groups.

    Directory of Open Access Journals (Sweden)

    Jeban Ganesalingam

    2009-09-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a degenerative disease predominantly affecting motor neurons and manifesting as several different phenotypes. Whether these phenotypes correspond to different underlying disease processes is unknown. We used latent cluster analysis to identify groupings of clinical variables in an objective and unbiased way to improve phenotyping for clinical and research purposes.Latent class cluster analysis was applied to a large database consisting of 1467 records of people with ALS, using discrete variables which can be readily determined at the first clinic appointment. The model was tested for clinical relevance by survival analysis of the phenotypic groupings using the Kaplan-Meier method.The best model generated five distinct phenotypic classes that strongly predicted survival (p<0.0001. Eight variables were used for the latent class analysis, but a good estimate of the classification could be obtained using just two variables: site of first symptoms (bulbar or limb and time from symptom onset to diagnosis (p<0.00001.The five phenotypic classes identified using latent cluster analysis can predict prognosis. They could be used to stratify patients recruited into clinical trials and generating more homogeneous disease groups for genetic, proteomic and risk factor research.

  1. Label-Free Quantitative Analysis of Mitochondrial Proteomes Using the Multienzyme Digestion-Filter Aided Sample Preparation (MED-FASP) and "Total Protein Approach".

    Science.gov (United States)

    Wiśniewski, Jacek R

    2017-01-01

    Determination of proteome composition and measuring of changes in protein titers provide important information with a substantial value for studying mitochondria.This chapter describes a workflow for the quantitative analysis of mitochondrial proteome with a focus on sample preparation and quantitative analysis of the data. The workflow involves the multienzyme digestion-filter aided sample preparation (MED-FASP) protocol enabling efficient extraction of proteins and high rate of protein-to-peptide conversion. Consecutive protein digestion with Lys C and trypsin enables generation of peptide fractions with minimal overlap, largely increases the number of identified proteins, and extends their sequence coverage. Abundances of proteins identified by multiple peptides can be assessed by the "Total Protein Approach."

  2. Analysis of the complete mitochondrial genome sequences of the soybean rust pathogens phakopsora pachyrhizi and p. meibomiae.

    Science.gov (United States)

    Stone, Christine L; Buitrago, Martha Lucia Posada; Boore, Jeffrey L; Frederick, Reid D

    2010-01-01

    The mitochondrial (mt) genomes of two soybean rust pathogens, Phakopsora pachyrhizi and P. meibomiae, have been sequenced. The mt genome of P. pachyrhizi is a circular 31 825-bp molecule with a mean GC content of 34.6%, while P. meibomiae possesses a 32 520-bp circular molecule with a mean GC content of 34.9%. Both mt genomes contain the genes encoding ATP synthase subunits 6, 8 and 9 (atp6, atp8 and atp9), cytochrome oxidase subunits I, II and III (cox1, cox2 and cox3), apocytochrome b (cob), reduced nicotinamide adenine dinucleotide ubiquinone oxidoreductase subunits (nad1, nad2, nad3, nad4, nad4L, nad5 and nad6), the large and small mt ribosomal RNA genes, one ORF coding for a ribosomal protein (rps3), and a set of 24 tRNA genes that recognize codons for all amino acids. The order of the protein-coding genes and tRNA is identical in the two Phakopsora species, and all genes are transcribed from the same DNA strand clockwise. Introns were identified in the cox1, cob and mnl genes of both species, with three of the introns having ORFs with motifs similar to the LAGLIDADG endonucleases of other fungi. Phylogenetic analysis of the 14 shared protein-coding genes agrees with commonly accepted fungal taxonomy.

  3. Three-dimensional analysis of somatic mitochondrial dynamics in fission-deficient injured motor neurons using FIB/SEM.

    Science.gov (United States)

    Tamada, Hiromi; Kiryu-Seo, Sumiko; Hosokawa, Hiroki; Ohta, Keisuke; Ishihara, Naotada; Nomura, Masatoshi; Mihara, Katsuyoshi; Nakamura, Kei-Ichiro; Kiyama, Hiroshi

    2017-08-01

    Mitochondria undergo morphological changes through fusion and fission for their quality control, which are vital for neuronal function. In this study, we examined three-dimensional morphologies of mitochondria in motor neurons under normal, nerve injured, and nerve injured plus fission-impaired conditions using the focused ion beam/scanning electron microscopy (FIB/SEM), because the FIB/SEM technology is a powerful tool to demonstrate both 3D images of whole organelle and the intra-organellar structure simultaneously. Crossing of dynamin-related protein 1 (Drp1) gene-floxed mice with neuronal injury-specific Cre driver mice, Atf3:BAC Tg mice, allowed for Drp1 ablation specifically in injured neurons. FIB/SEM analysis demonstrated that somatic mitochondrial morphologies in motor neurons were not altered before or after nerve injury. However, the fission impairment resulted in prominent somatic mitochondrial enlargement, which initially induced complex morphologies with round regions and long tubular processes, subsequently causing a decrease in the number of processes and further enlargement of the round regions, which eventually resulted in big spheroidal mitochondria without processes. The abnormal mitochondria exhibited several degradative morphologies: local or total cristae collapse, vacuolization, and mitophagy. These suggest that mitochondrial fission is crucial for maintaining mitochondrial integrity in injured motor neurons, and multiple forms of mitochondria degradation may accelerate neuronal degradation. © 2017 Wiley Periodicals, Inc.

  4. Comparative phylogeography of the two pink salmon broodlines: an analysis based on a mitochondrial DNA genealogy.

    Science.gov (United States)

    Churikov, D; Gharrett, A J

    2002-06-01

    Over most of their natural northern Pacific Ocean range, pink salmon (Oncorhynchus gorbuscha) spawn in a habitat that was repeatedly and profoundly affected by Pleistocene glacial advances. A strictly two-year life cycle of pink salmon has resulted in two reproductively isolated broodlines, which spawn in alternating years and evolved as temporal replicates of the same species. To study the influence of historical events on phylogeographical and population genetic structure of the two broodlines, we first reconstructed a fine-scale mtDNA haplotype genealogy from a sample of 80 individuals and then determined the geographical distribution of the major genealogical assemblages for 718 individuals sampled from nine Alaskan and eastern Asian even- and nine odd-year pink salmon populations. Analysis of restriction site states in seven polymerase chain reaction (PCR)-amplified mtDNA regions (comprising 97% of the mitochondrial genome) using 13 endonucleases resolved 38 haplotypes, which clustered into five genealogical lineages that differed from 0.065 to 0.225% in net sequence divergence. The lineage sorting between broodlines was incomplete, which suggests a recent common ancestry. Within each lineage, haplotypes exhibited star-like genealogies indicating recent population growth. The depth of the haplotype genealogy is shallow ( approximately 0.5% of nucleotide sequence divergence) and probably reflects repeated decreases in population size due to Pleistocene glacial advances. Nested clade analysis (NCA) of geographical distances showed that the geographical distribution observed for mitochondrial DNA (mtDNA) haplotypes resulted from alternating influences of historical range expansions and episodes of restricted dispersal. Analyses of molecular variance showed weak geographical structuring of mtDNA variation, except for the strong subdivision between Asian and Alaskan populations within the even-year broodline. The genetic similarities observed among and within

  5. Identifying Organizational Inefficiencies with Pictorial Process Analysis (PPA

    Directory of Open Access Journals (Sweden)

    David John Patrishkoff

    2013-11-01

    Full Text Available Pictorial Process Analysis (PPA was created by the author in 2004. PPA is a unique methodology which offers ten layers of additional analysis when compared to standard process mapping techniques.  The goal of PPA is to identify and eliminate waste, inefficiencies and risk in manufacturing or transactional business processes at 5 levels in an organization. The highest level being assessed is the process management, followed by the process work environment, detailed work habits, process performance metrics and general attitudes towards the process. This detailed process assessment and analysis is carried out during process improvement brainstorming efforts and Kaizen events. PPA creates a detailed visual efficiency rating for each step of the process under review.  A selection of 54 pictorial Inefficiency Icons (cards are available for use to highlight major inefficiencies and risks that are present in the business process under review. These inefficiency icons were identified during the author's independent research on the topic of why things go wrong in business. This paper will highlight how PPA was developed and show the steps required to conduct Pictorial Process Analysis on a sample manufacturing process. The author has successfully used PPA to dramatically improve business processes in over 55 different industries since 2004.  

  6. Comparative analysis of complete mitochondrial genome sequences confirms independent origins of plant-parasitic nematodes

    Directory of Open Access Journals (Sweden)

    Sultana Tahera

    2013-01-01

    Full Text Available Abstract Background The nematode infraorder Tylenchomorpha (Class Chromadorea includes plant parasites that are of agricultural and economic importance, as well as insect-associates and fungal feeding species. Among tylenchomorph plant parasites, members of the superfamily Tylenchoidea, such as root-knot nematodes, have great impact on agriculture. Of the five superfamilies within Tylenchomorpha, one (Aphelenchoidea includes mainly fungal-feeding species, but also some damaging plant pathogens, including certain Bursaphelenchus spp. The evolutionary relationships of tylenchoid and aphelenchoid nematodes have been disputed based on classical morphological features and molecular data. For example, similarities in the structure of the stomatostylet suggested a common evolutionary origin. In contrast, phylogenetic hypotheses based on nuclear SSU ribosomal DNA sequences have revealed paraphyly of Aphelenchoidea, with, for example, fungal-feeding Aphelenchus spp. within Tylenchomorpha, but Bursaphelenchus and Aphelenchoides spp. more closely related to infraorder Panagrolaimomorpha. We investigated phylogenetic relationships of plant-parasitic tylenchoid and aphelenchoid species in the context of other chromadorean nematodes based on comparative analysis of complete mitochondrial genome data, including two newly sequenced genomes from Bursaphelenchus xylophilus (Aphelenchoidea and Pratylenchus vulnus (Tylenchoidea. Results The complete mitochondrial genomes of B. xylophilus and P. vulnus are 14,778 bp and 21,656 bp, respectively, and identical to all other chromadorean nematode mtDNAs in that they contain 36 genes (lacking atp8 encoded in the same direction. Their mitochondrial protein-coding genes are biased toward use of amino acids encoded by T-rich codons, resulting in high A+T richness. Phylogenetic analyses of both nucleotide and amino acid sequence datasets using maximum likelihood and Bayesian methods did not support B. xylophilus as most

  7. Assembly and comparative analysis of complete mitochondrial genome sequence of an economic plant Salix suchowensis

    Directory of Open Access Journals (Sweden)

    Ning Ye

    2017-03-01

    Full Text Available Willow is a widely used dioecious woody plant of Salicaceae family in China. Due to their high biomass yields, willows are promising sources for bioenergy crops. In this study, we assembled the complete mitochondrial (mt genome sequence of S. suchowensis with the length of 644,437 bp using Roche-454 GS FLX Titanium sequencing technologies. Base composition of the S. suchowensis mt genome is A (27.43%, T (27.59%, C (22.34%, and G (22.64%, which shows a prevalent GC content with that of other angiosperms. This long circular mt genome encodes 58 unique genes (32 protein-coding genes, 23 tRNA genes and 3 rRNA genes, and 9 of the 32 protein-coding genes contain 17 introns. Through the phylogenetic analysis of 35 species based on 23 protein-coding genes, it is supported that Salix as a sister to Populus. With the detailed phylogenetic information and the identification of phylogenetic position, some ribosomal protein genes and succinate dehydrogenase genes are found usually lost during evolution. As a native shrub willow species, this worthwhile research of S. suchowensis mt genome will provide more desirable information for better understanding the genomic breeding and missing pieces of sex determination evolution in the future.

  8. Rice Transcriptome Analysis to Identify Possible Herbicide Quinclorac Detoxification Genes

    Directory of Open Access Journals (Sweden)

    Wenying eXu

    2015-09-01

    Full Text Available Quinclorac is a highly selective auxin-type herbicide, and is widely used in the effective control of barnyard grass in paddy rice fields, improving the world’s rice yield. The herbicide mode of action of quinclorac has been proposed and hormone interactions affect quinclorac signaling. Because of widespread use, quinclorac may be transported outside rice fields with the drainage waters, leading to soil and water pollution and environmental health problems.In this study, we used 57K Affymetrix rice whole-genome array to identify quinclorac signaling response genes to study the molecular mechanisms of action and detoxification of quinclorac in rice plants. Overall, 637 probe sets were identified with differential expression levels under either 6 or 24 h of quinclorac treatment. Auxin-related genes such as GH3 and OsIAAs responded to quinclorac treatment. Gene Ontology analysis showed that genes of detoxification-related family genes were significantly enriched, including cytochrome P450, GST, UGT, and ABC and drug transporter genes. Moreover, real-time RT-PCR analysis showed that top candidate P450 families such as CYP81, CYP709C and CYP72A genes were universally induced by different herbicides. Some Arabidopsis genes for the same P450 family were up-regulated under quinclorac treatment.We conduct rice whole-genome GeneChip analysis and the first global identification of quinclorac response genes. This work may provide potential markers for detoxification of quinclorac and biomonitors of environmental chemical pollution.

  9. Delaunay algorithm and principal component analysis for 3D visualization of mitochondrial DNA nucleoids by Biplane FPALM/dSTORM

    Czech Academy of Sciences Publication Activity Database

    Alán, Lukáš; Špaček, Tomáš; Ježek, Petr

    2016-01-01

    Roč. 45, č. 5 (2016), s. 443-461 ISSN 0175-7571 R&D Projects: GA ČR(CZ) GA13-02033S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : 3D object segmentation * Delaunay algorithm * principal component analysis * 3D super-resolution microscopy * nucleoids * mitochondrial DNA replication Subject RIV: BO - Biophysics Impact factor: 1.472, year: 2016

  10. Proteogenomic Analysis Identifies a Novel Human SHANK3 Isoform

    Directory of Open Access Journals (Sweden)

    Fahad Benthani

    2015-05-01

    Full Text Available Mutations of the SHANK3 gene have been associated with autism spectrum disorder. Individuals harboring different SHANK3 mutations display considerable heterogeneity in their cognitive impairment, likely due to the high SHANK3 transcriptional diversity. In this study, we report a novel interaction between the Mutated in colorectal cancer (MCC protein and a newly identified SHANK3 protein isoform in human colon cancer cells and mouse brain tissue. Hence, our proteogenomic analysis identifies a new human long isoform of the key synaptic protein SHANK3 that was not predicted by the human reference genome. Taken together, our findings describe a potential new role for MCC in neurons, a new human SHANK3 long isoform and, importantly, highlight the use of proteomic data towards the re-annotation of GC-rich genomic regions.

  11. Parameter trajectory analysis to identify treatment effects of pharmacological interventions.

    Directory of Open Access Journals (Sweden)

    Christian A Tiemann

    Full Text Available The field of medical systems biology aims to advance understanding of molecular mechanisms that drive disease progression and to translate this knowledge into therapies to effectively treat diseases. A challenging task is the investigation of long-term effects of a (pharmacological treatment, to establish its applicability and to identify potential side effects. We present a new modeling approach, called Analysis of Dynamic Adaptations in Parameter Trajectories (ADAPT, to analyze the long-term effects of a pharmacological intervention. A concept of time-dependent evolution of model parameters is introduced to study the dynamics of molecular adaptations. The progression of these adaptations is predicted by identifying necessary dynamic changes in the model parameters to describe the transition between experimental data obtained during different stages of the treatment. The trajectories provide insight in the affected underlying biological systems and identify the molecular events that should be studied in more detail to unravel the mechanistic basis of treatment outcome. Modulating effects caused by interactions with the proteome and transcriptome levels, which are often less well understood, can be captured by the time-dependent descriptions of the parameters. ADAPT was employed to identify metabolic adaptations induced upon pharmacological activation of the liver X receptor (LXR, a potential drug target to treat or prevent atherosclerosis. The trajectories were investigated to study the cascade of adaptations. This provided a counter-intuitive insight concerning the function of scavenger receptor class B1 (SR-B1, a receptor that facilitates the hepatic uptake of cholesterol. Although activation of LXR promotes cholesterol efflux and -excretion, our computational analysis showed that the hepatic capacity to clear cholesterol was reduced upon prolonged treatment. This prediction was confirmed experimentally by immunoblotting measurements of SR-B1

  12. Complete mitochondrial genome of Cuora trifasciata (Chinese three-striped box turtle), and a comparative analysis with other box turtles.

    Science.gov (United States)

    Li, Wei; Zhang, Xin-Cheng; Zhao, Jian; Shi, Yan; Zhu, Xin-Ping

    2015-01-25

    Cuora trifasciata has become one of the most critically endangered species in the world. The complete mitochondrial genome of C. trifasciata (Chinese three-striped box turtle) was determined in this study. Its mitochondrial genome is a 16,575-bp-long circular molecule that consists of 37 genes that are typically found in other vertebrates. And the basic characteristics of the C. trifasciata mitochondrial genome were also determined. Moreover, a comparison of C. trifasciata with Cuora cyclornata, Cuora pani and Cuora aurocapitata indicated that the four mitogenomics differed in length, codons, overlaps, 13 protein-coding genes (PCGs), ND3, rRNA genes, control region, and other aspects. Phylogenetic analysis with Bayesian inference and maximum likelihood based on 12 protein-coding genes of the genus Cuora indicated the phylogenetic position of C. trifasciata within Cuora. The phylogenetic analysis also showed that C. trifasciata from Vietnam and China formed separate monophyletic clades with different Cuora species. The results of nucleotide base compositions, protein-coding genes and phylogenetic analysis showed that C. trifasciata from these two countries may represent different Cuora species. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Lidar point density analysis: implications for identifying water bodies

    Science.gov (United States)

    Worstell, Bruce B.; Poppenga, Sandra K.; Evans, Gayla A.; Prince, Sandra

    2014-01-01

    Most airborne topographic light detection and ranging (lidar) systems operate within the near-infrared spectrum. Laser pulses from these systems frequently are absorbed by water and therefore do not generate reflected returns on water bodies in the resulting void regions within the lidar point cloud. Thus, an analysis of lidar voids has implications for identifying water bodies. Data analysis techniques to detect reduced lidar return densities were evaluated for test sites in Blackhawk County, Iowa, and Beltrami County, Minnesota, to delineate contiguous areas that have few or no lidar returns. Results from this study indicated a 5-meter radius moving window with fewer than 23 returns (28 percent of the moving window) was sufficient for delineating void regions. Techniques to provide elevation values for void regions to flatten water features and to force channel flow in the downstream direction also are presented.

  14. Identifying radiotherapy target volumes in brain cancer by image analysis.

    Science.gov (United States)

    Cheng, Kun; Montgomery, Dean; Feng, Yang; Steel, Robin; Liao, Hanqing; McLaren, Duncan B; Erridge, Sara C; McLaughlin, Stephen; Nailon, William H

    2015-10-01

    To establish the optimal radiotherapy fields for treating brain cancer patients, the tumour volume is often outlined on magnetic resonance (MR) images, where the tumour is clearly visible, and mapped onto computerised tomography images used for radiotherapy planning. This process requires considerable clinical experience and is time consuming, which will continue to increase as more complex image sequences are used in this process. Here, the potential of image analysis techniques for automatically identifying the radiation target volume on MR images, and thereby assisting clinicians with this difficult task, was investigated. A gradient-based level set approach was applied on the MR images of five patients with grades II, III and IV malignant cerebral glioma. The relationship between the target volumes produced by image analysis and those produced by a radiation oncologist was also investigated. The contours produced by image analysis were compared with the contours produced by an oncologist and used for treatment. In 93% of cases, the Dice similarity coefficient was found to be between 60 and 80%. This feasibility study demonstrates that image analysis has the potential for automatic outlining in the management of brain cancer patients, however, more testing and validation on a much larger patient cohort is required.

  15. Using lexical analysis to identify emotional distress in psychometric schizotypy.

    Science.gov (United States)

    Abplanalp, Samuel J; Buck, Benjamin; Gonzenbach, Virgilio; Janela, Carlos; Lysaker, Paul H; Minor, Kyle S

    2017-09-01

    Through the use of lexical analysis software, researchers have demonstrated a greater frequency of negative affect word use in those with schizophrenia and schizotypy compared to the general population. In addition, those with schizotypy endorse greater emotional distress than healthy controls. In this study, our aim was to expand on previous findings in schizotypy to determine whether negative affect word use could be linked to emotional distress. Schizotypy (n=33) and non-schizotypy groups (n=33) completed an open-ended, semi-structured interview and negative affect word use was analyzed using a validated lexical analysis instrument. Emotional distress was assessed using subjective questionnaires of depression and psychological quality of life (QOL). When groups were compared, those with schizotypy used significantly more negative affect words; endorsed greater depression; and reported lower QOL. Within schizotypy, a trend level association between depression and negative affect word use was observed; QOL and negative affect word use showed a significant inverse association. Our findings offer preliminary evidence of the potential effectiveness of lexical analysis as an objective, behavior-based method for identifying emotional distress throughout the schizophrenia-spectrum. Utilizing lexical analysis in schizotypy offers promise for providing researchers with an assessment capable of objectively detecting emotional distress. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  16. Use of discriminant analysis to identify propensity for purchasing properties

    Directory of Open Access Journals (Sweden)

    Ricardo Floriani

    2015-03-01

    Full Text Available Properties usually represent a milestone for people and families due to the high added-value when compared with family income. The objective of this study is the proposition of a discrimination model, by a discriminant analysis of people with characteristics (according to independent variables classified as potential buyers of properties, as well as to identify the interest in the use of such property, if it will be assigned to housing or leisure activities such as a cottage or beach house, and/or for investment. Thus, the following research question is proposed: What are the characteristics that better describe the profile of people which intend to acquire properties? The study justifies itself by its economic relevance in the real estate industry, as well as to the players of the real estate Market that may develop products based on the profile of potential customers. As a statistical technique, discriminant analysis was applied to the data gathered by questionnaire, which was sent via e-mail. Three hundred and thirty four responses were gathered. Based on this study, it was observed that it is possible to identify the intention for acquired properties, as well the purpose for acquiring it, for housing or investments.

  17. Cluster analysis of clinical data identifies fibromyalgia subgroups.

    Directory of Open Access Journals (Sweden)

    Elisa Docampo

    Full Text Available INTRODUCTION: Fibromyalgia (FM is mainly characterized by widespread pain and multiple accompanying symptoms, which hinder FM assessment and management. In order to reduce FM heterogeneity we classified clinical data into simplified dimensions that were used to define FM subgroups. MATERIAL AND METHODS: 48 variables were evaluated in 1,446 Spanish FM cases fulfilling 1990 ACR FM criteria. A partitioning analysis was performed to find groups of variables similar to each other. Similarities between variables were identified and the variables were grouped into dimensions. This was performed in a subset of 559 patients, and cross-validated in the remaining 887 patients. For each sample and dimension, a composite index was obtained based on the weights of the variables included in the dimension. Finally, a clustering procedure was applied to the indexes, resulting in FM subgroups. RESULTS: VARIABLES CLUSTERED INTO THREE INDEPENDENT DIMENSIONS: "symptomatology", "comorbidities" and "clinical scales". Only the two first dimensions were considered for the construction of FM subgroups. Resulting scores classified FM samples into three subgroups: low symptomatology and comorbidities (Cluster 1, high symptomatology and comorbidities (Cluster 2, and high symptomatology but low comorbidities (Cluster 3, showing differences in measures of disease severity. CONCLUSIONS: We have identified three subgroups of FM samples in a large cohort of FM by clustering clinical data. Our analysis stresses the importance of family and personal history of FM comorbidities. Also, the resulting patient clusters could indicate different forms of the disease, relevant to future research, and might have an impact on clinical assessment.

  18. Phylogenetic analysis of the allometry of metabolic rate and mitochondrial basal proton leak.

    Science.gov (United States)

    Polymeropoulos, Elias T; Oelkrug, R; White, C R; Jastroch, M

    2017-08-01

    The mitochondrial basal proton leak (MBPL) significantly contributes to high body temperatures (T b ) and basal metabolic rates (BMR) in endotherms. In endotherms at a given body mass (M), liver MBPL is higher than in ectotherms, supporting the notion that MBPL may partly explain the evolutionary increase in metabolic rate (MR), fostering endothermy. Here, we re-addressed this assumption by performing a phylogenetic analysis comparing all available liver MBPL data for ecto- and endotherms. While MBPL within endotherms negatively scales with M and BMR as shown previously, MBPL of ectotherms does not scale allometrically with M. Phylogenetic analysis reveals that this result is confounded by a positive scaling coefficient for MBPL with M for reptiles. Strikingly, the reptilian MBPL reaches endothermic levels above a body mass of 6.6kg. Thus, phylogenetic scaling of MBPL supports previous claims of endotherm-like physiological characteristics in large reptiles. It appears that diversification of ancestral ectothermic tetrapods to a body mass of at least 6kg may have been required to reach a MBPL that is beneficial for sustained high body temperatures. Novel MBPL data for the lesser hedgehog tenrec, a protoendothermic eutherian that displays reptile-like thermoregulatory patterns, fall within the endo- and ectothermic allometric regressions. Finally, we add additional evidence that within endotherms, phylogenetic differences in MR do not correlate with MBPL. Collectively, these data suggest that MBPL does not universally scale with metabolic rate in ecto- or endotherms and that an increasing MBPL with M may have played an important physiological role in the evolutionary history of reptilian thermoregulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Sequence and analysis of the mitochondrial DNA control region in the sugarcane borer Diatraea saccharalis (Lepidoptera: Crambidae

    Directory of Open Access Journals (Sweden)

    Juliana Pereira Bravo

    2008-08-01

    Full Text Available This study aimed at the sequence and analysis of the mtDNA control region (CR of the Diatraea saccharalis. The genome PCR amplification was performed using the complementary primers to the flanking regions of Bombyx mori CR mitochondrial segment. The sequencing revealed that the amplified product was 568 bp long, which was smaller than that observed for B. mori (725 bp. Within the amplified segment, a sequence with 338 nucleotides was identified as the control region, which displayed a high AT content (93.5%. The D. saccharalis mtDNA CR multiple sequence alignment analysis showed that this region had high similarity with the Lepidoptera Cydia pomonella.A broca da cana, Diatraea saccharalis pertence à família dos lepidópteros. A presença da larva pode ser extremamente destrutiva, chegando a inviabilizar a atividade canavieira, causando prejuízos consideráveis à agroindústria sucro-alcooleira. Atualmente a broca da cana vem sendo extinta da plantação por métodos de controle biológico, entretanto a evolução desses programas depende de maiores conhecimentos básicos da biologia molecular deste inseto. O estudo do segmento do genoma mitocondrial denominado região controle é amplamente utilizado em análises genéticas e filogenéticas em insetos. O objetivo desse trabalho foi sequenciar e analisar a região controle do genoma mitocondrial de Diatraea saccharalis. Esse segmento apresentou 338 nucleotídeos, menor que o observado em Bombyx mori, com conteúdo de 93,5% de A/T. As analises realizadas mostraram que Diatraea saccharalis apresenta 76% de similaridade com Cydia pomonella.

  20. Detection of phosphorylated subunits by combined LA-ICP-MS and MALDI-FTICR-MS analysis in yeast mitochondrial membrane complexes separated by blue native/SDS-PAGE

    Science.gov (United States)

    Krause-Buchholz, Udo; Becker, J. Susanne; Zoriy, Miroslav; Pickhardt, Carola; Przybylski, Michael; Rödel, Gerhard; Becker, J. Sabine

    2006-01-01

    We report on the identification of phosphorylated subunits of yeast mitochondrial ATPase using a novel screening technique in combination with BN/SDS-PAGE. Protein complexes present in yeast mitochondrial membranes were separated in their native state in the first dimension and their subunit composition was resolved by SDS-PAGE in the second dimension. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to rapidly screen for the presence of phosphorus in the subunits. The detection limits of elements investigated in selected protein spots are in the low [mu]g g-1 concentration range. Sulfur was used as the internal standard element for quantification. Phosphorus was detected in two of the proteins, that were identified by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS) as subunits Atp1p and Atp2p of the ATPase. These results were confirmed by Western blot analysis using antibodies directed against phosphorylated amino acids. The combination of LA-ICP-MS and MALDI-FTICR-MS with BN/SDS-PAGE provides a fast and sensitive tool for structure analysis of phosphorus and metal-containing subunits of membrane protein complexes.

  1. Experimental mitochondria-targeted DNA methylation identifies GpC methylation, not CpG methylation, as potential regulator of mitochondrial gene expression

    NARCIS (Netherlands)

    van der Wijst, Monique G. P.; van Tilburg, Amanda Y.; Ruiters, Marcel H. J.; Rots, Marianne G.

    2017-01-01

    Like the nucleus, mitochondria contain their own DNA and recent reports provide accumulating evidence that also the mitochondrial DNA (mtDNA) is subjective to DNA methylation. This evidence includes the demonstration of mitochondria-localised DNA methyltransferases and demethylases, and the

  2. Proteomic Analysis of the Soybean Symbiosome Identifies New Symbiotic Proteins*

    Science.gov (United States)

    Clarke, Victoria C.; Loughlin, Patrick C.; Gavrin, Aleksandr; Chen, Chi; Brear, Ella M.; Day, David A.; Smith, Penelope M.C.

    2015-01-01

    Legumes form a symbiosis with rhizobia in which the plant provides an energy source to the rhizobia bacteria that it uses to fix atmospheric nitrogen. This nitrogen is provided to the legume plant, allowing it to grow without the addition of nitrogen fertilizer. As part of the symbiosis, the bacteria in the infected cells of a new root organ, the nodule, are surrounded by a plant-derived membrane, the symbiosome membrane, which becomes the interface between the symbionts. Fractions containing the symbiosome membrane (SM) and material from the lumen of the symbiosome (peribacteroid space or PBS) were isolated from soybean root nodules and analyzed using nongel proteomic techniques. Bicarbonate stripping and chloroform-methanol extraction of isolated SM were used to reduce complexity of the samples and enrich for hydrophobic integral membrane proteins. One hundred and ninety-seven proteins were identified as components of the SM, with an additional fifteen proteins identified from peripheral membrane and PBS protein fractions. Proteins involved in a range of cellular processes such as metabolism, protein folding and degradation, membrane trafficking, and solute transport were identified. These included a number of proteins previously localized to the SM, such as aquaglyceroporin nodulin 26, sulfate transporters, remorin, and Rab7 homologs. Among the proteome were a number of putative transporters for compounds such as sulfate, calcium, hydrogen ions, peptide/dicarboxylate, and nitrate, as well as transporters for which the substrate is not easy to predict. Analysis of the promoter activity for six genes encoding putative SM proteins showed nodule specific expression, with five showing expression only in infected cells. Localization of two proteins was confirmed using GFP-fusion experiments. The data have been deposited to the ProteomeXchange with identifier PXD001132. This proteome will provide a rich resource for the study of the legume-rhizobium symbiosis. PMID

  3. The mitochondrial ROMK channel is a molecular component of Mitokatp

    Science.gov (United States)

    Foster, D. Brian; Ho, Alice S.; Rucker, Jasma; Garlid, Anders O.; Chen, Ling; Sidor, Agnieszka; Garlid, Keith D.; O’Rourke, Brian

    2013-01-01

    Rationale Activation of the mitochondrial ATP-sensitive potassium channel (mitoKATP) has been implicated in the mechanism of cardiac ischemic preconditioning, yet its molecular composition is unknown. Objective To use an unbiased proteomic analysis of the mitochondrial inner membrane to identify the mitochondrial K+ channel underlying mitoKATP. Methods and Results Mass spectrometric analysis was used to identify KCNJ1(ROMK) in purified bovine heart mitochondrial inner membrane and confirmed that ROMK mRNA is present in neonatal rat ventricular myocytes and adult hearts. ROMK2, a short form of the channel, is shown to contain an N-terminal mitochondrial targeting signal and a full length epitope-tagged ROMK2 colocalizes with mitochondrial ATP synthase β. The high-affinity ROMK toxin, tertiapin Q, inhibits mitoKATP activity in isolated mitochondria and in digitonin-permeabilized cells. Moreover, shRNA-mediated knockdown of ROMK inhibits the ATP-sensitive, diazoxide activated, component of mitochondrial thallium uptake. Finally, the heart-derived cell line, H9C2, is protected from cell death stimuli by stable ROMK2 overexpression, while knockdown of the native ROMK exacerbates cell death. Conclusions The findings support ROMK as the pore-forming subunit of the cytoprotective mitoKATP channel. PMID:22811560

  4. Myocardial iron content and mitochondrial function in human heart failure: a direct tissue analysis.

    Science.gov (United States)

    Melenovsky, Vojtech; Petrak, Jiri; Mracek, Tomas; Benes, Jan; Borlaug, Barry A; Nuskova, Hana; Pluhacek, Tomas; Spatenka, Jaroslav; Kovalcikova, Jana; Drahota, Zdenek; Kautzner, Josef; Pirk, Jan; Houstek, Josef

    2017-04-01

    Iron replacement improves clinical status in iron-deficient patients with heart failure (HF), but the pathophysiology is poorly understood. Iron is essential not only for erythropoiesis, but also for cellular bioenergetics. The impact of myocardial iron deficiency (MID) on mitochondrial function, measured directly in the failing human heart, is unknown. Left ventricular samples were obtained from 91 consecutive HF patients undergoing transplantation and 38 HF-free organ donors (controls). Total myocardial iron content, mitochondrial respiration, citric acid cycle and respiratory chain enzyme activities, respiratory chain components (complex I-V), and protein content of reactive oxygen species (ROS)-protective enzymes were measured in tissue homogenates to quantify mitochondrial function. Myocardial iron content was lower in HF compared with controls (156 ± 41 vs. 200 ± 38 µg·g -1 dry weight, P Heart Failure © 2016 European Society of Cardiology.

  5. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    Science.gov (United States)

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  6. Mutational analysis of the mitochondrial 12S rRNA and tRNASer(UCN) genes in Tunisian patients with nonsyndromic hearing loss

    International Nuclear Information System (INIS)

    Mkaouar-Rebai, Emna; Tlili, Abdelaziz; Masmoudi, Saber; Louhichi, Nacim; Charfeddine, Ilhem; Amor, Mohamed Ben; Lahmar, Imed; Driss, Nabil; Drira, Mohamed; Ayadi, Hammadi; Fakhfakh, Faiza

    2006-01-01

    We explored the mitochondrial 12S rRNA and the tRNA Ser(UCN) genes in 100 Tunisian families affected with NSHL and in 100 control individuals. We identified the mitochondrial A1555G mutation in one out of these 100 families and not in the 100 control individuals. Members of this family harbouring the A1555G mutation showed phenotypic heterogeneity which could be explained by an eventual nuclear-mitochondrial interaction. So, we have screened three nuclear genes: GJB2, GJB3, and GJB6 but we have not found correlation between the phenotypic heterogeneity and variants detected in these genes. We explored also the entire mitochondrial 12S rRNA and the tRNA Ser(UCN) genes. We detected five novel polymorphisms: T742C, T794A, A813G, C868T, and C954T, and 12 known polymorphisms in the mitochondrial 12S rRNA gene. None of the 100 families or the 100 controls were found to carry mutations in the tRNA Ser(UCN) gene. We report here First mutational screening of the mitochondrial 12S rRNA and the tRNA Ser(UCN) genes in the Tunisian population which describes the second family harbouring the A1555G mutation in Africa and reveals novel polymorphisms in the mitochondrial 12S rRNA gene

  7. Spatial analysis to identify disparities in Philippine public school facilities

    Directory of Open Access Journals (Sweden)

    Ligaya Leah Figueroa

    2016-01-01

    Full Text Available This paper addresses the issues that affect school building conditions as a case study of the Philippines. Geographic information systems were utilized to investigate the allocation of public school resources and the extent of disparity in education facilities among 75 Philippine provinces. Four clusters of the provinces were identified by applying spatial statistics and regionalization techniques to the public school data. Overall, the building conditions are of high quality in the northern provinces. The greater region of the capital is overcrowded but well maintained. The eastern seaboard region and the southern provinces have poor conditions due to frequent natural calamities and the prolonged civil unrest, respectively. Since the spatial analysis result shows that the school building requirements are largely unmet, some recommendations are proposed so that they can be implemented by the government in order to improve the school facilities and mitigate the existing disparities among the four clusters of the Philippines.

  8. Cryopreservation with dimethyl sulfoxide prevents accurate analysis of skinned skeletal muscle fibers mitochondrial respiration.

    Science.gov (United States)

    Meyer, Alain; Charles, Anne-Laure; Zoll, Joffrey; Guillot, Max; Lejay, Anne; Singh, François; Schlagowski, Anna-Isabel; Isner-Horobeti, Marie-Eve; Pistea, Cristina; Charloux, Anne; Geny, Bernard

    2014-05-01

    Impact of cryopreservation protocols on skeletal muscle mitochondrial respiration remains controversial. We showed that oxygen consumption with main mitochondrial substrates in rat skeletal muscles was higher in fresh samples than in cryopreserved samples and that this difference was not fixed but grow significantly with respiration rates with wide fluctuations around the mean difference. Very close results were observed whatever the muscle type and the substrate used. Importantly, the deleterious effects of ischemia-reperfusion observed on fresh samples vanished when cryopreserved samples were studied. These data demonstrate that this technic should probably be performed only extemporaneously. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  9. Importance of mitochondrial PO2in maximal O2 transport and utilization: A theoretical analysis

    OpenAIRE

    Cano Franco, Isaac; Mickael, M.; Gomez Cabrero, David; Tegnér, Jesper; Roca Torrent, Josep; Wagner, P. D. (Peter D.)

    2013-01-01

    In previous calculations of how the O2 transport system limits .VO2(max), it was reasonably assumed that mitochondrial P(O2) (Pm(O2)) could be neglected (set to zero). However, in reality, Pm(O2) must exceed zero and the red cell to mitochondrion diffusion gradient may therefore be reduced, impairing diffusive transport of O2 and .VO2(max). Accordingly, we investigated the influence of Pm(O2) on these calculations by coupling previously used equations for O2 transport to one for mitochondrial...

  10. Mitochondrial DNA genomes organization and phylogenetic relationships analysis of eight anemonefishes (pomacentridae: amphiprioninae.

    Directory of Open Access Journals (Sweden)

    Jianlong Li

    Full Text Available Anemonefishes (Pomacentridae Amphiprioninae are a group of 30 valid coral reef fish species with their phylogenetic relationships still under debate. The eight available mitogenomes of anemonefishes were used to reconstruct the molecular phylogenetic tree; six were obtained from this study (Amphiprion clarkii, A. frenatus, A. percula, A. perideraion, A. polymnus and Premnas biaculeatus and two from GenBank (A. bicinctus and A. ocellaris. The seven Amphiprion species represent all four subgenera and P. biaculeatus is the only species from Premnas. The eight mitogenomes of anemonefishes encoded 13 protein-coding genes, two rRNA genes, 22 tRNA genes and two main non-coding regions, with the gene arrangement and translation direction basically identical to other typical vertebrate mitogenomes. Among the 13 protein-coding genes, A. ocellaris (AP006017 and A. percula (KJ174497 had the same length in ND5 with 1,866 bp, which were three nucleotides less than the other six anemonefishes. Both structures of ND5, however, could translate to amino acid successfully. Only four mitogenomes had the tandem repeats in D-loop; the tandem repeats were located in downstream after Conserved Sequence Block rather than the upstream and repeated in a simply way. The phylogenetic utility was tested with Bayesian and Maximum Likelihood methods using all 13 protein-coding genes. The results strongly supported that the subfamily Amphiprioninae was monophyletic and P. biaculeatus should be assigned to the genus Amphiprion. Premnas biaculeatus with the percula complex were revealed to be the ancient anemonefish species. The tree forms of ND1, COIII, ND4, Cytb, Cytb+12S rRNA, Cytb+COI and Cytb+COI+12S rRNA were similar to that 13 protein-coding genes, therefore, we suggested that the suitable single mitochondrial gene for phylogenetic analysis of anemonefishes maybe Cytb. Additional mitogenomes of anemonefishes with a combination of nuclear markers will be useful to

  11. Cluster Analysis of Clinical Data Identifies Fibromyalgia Subgroups

    Science.gov (United States)

    Docampo, Elisa; Collado, Antonio; Escaramís, Geòrgia; Carbonell, Jordi; Rivera, Javier; Vidal, Javier; Alegre, José

    2013-01-01

    Introduction Fibromyalgia (FM) is mainly characterized by widespread pain and multiple accompanying symptoms, which hinder FM assessment and management. In order to reduce FM heterogeneity we classified clinical data into simplified dimensions that were used to define FM subgroups. Material and Methods 48 variables were evaluated in 1,446 Spanish FM cases fulfilling 1990 ACR FM criteria. A partitioning analysis was performed to find groups of variables similar to each other. Similarities between variables were identified and the variables were grouped into dimensions. This was performed in a subset of 559 patients, and cross-validated in the remaining 887 patients. For each sample and dimension, a composite index was obtained based on the weights of the variables included in the dimension. Finally, a clustering procedure was applied to the indexes, resulting in FM subgroups. Results Variables clustered into three independent dimensions: “symptomatology”, “comorbidities” and “clinical scales”. Only the two first dimensions were considered for the construction of FM subgroups. Resulting scores classified FM samples into three subgroups: low symptomatology and comorbidities (Cluster 1), high symptomatology and comorbidities (Cluster 2), and high symptomatology but low comorbidities (Cluster 3), showing differences in measures of disease severity. Conclusions We have identified three subgroups of FM samples in a large cohort of FM by clustering clinical data. Our analysis stresses the importance of family and personal history of FM comorbidities. Also, the resulting patient clusters could indicate different forms of the disease, relevant to future research, and might have an impact on clinical assessment. PMID:24098674

  12. Automated network analysis identifies core pathways in glioblastoma.

    Directory of Open Access Journals (Sweden)

    Ethan Cerami

    2010-02-01

    Full Text Available Glioblastoma multiforme (GBM is the most common and aggressive type of brain tumor in humans and the first cancer with comprehensive genomic profiles mapped by The Cancer Genome Atlas (TCGA project. A central challenge in large-scale genome projects, such as the TCGA GBM project, is the ability to distinguish cancer-causing "driver" mutations from passively selected "passenger" mutations.In contrast to a purely frequency based approach to identifying driver mutations in cancer, we propose an automated network-based approach for identifying candidate oncogenic processes and driver genes. The approach is based on the hypothesis that cellular networks contain functional modules, and that tumors target specific modules critical to their growth. Key elements in the approach include combined analysis of sequence mutations and DNA copy number alterations; use of a unified molecular interaction network consisting of both protein-protein interactions and signaling pathways; and identification and statistical assessment of network modules, i.e. cohesive groups of genes of interest with a higher density of interactions within groups than between groups.We confirm and extend the observation that GBM alterations tend to occur within specific functional modules, in spite of considerable patient-to-patient variation, and that two of the largest modules involve signaling via p53, Rb, PI3K and receptor protein kinases. We also identify new candidate drivers in GBM, including AGAP2/CENTG1, a putative oncogene and an activator of the PI3K pathway; and, three additional significantly altered modules, including one involved in microtubule organization. To facilitate the application of our network-based approach to additional cancer types, we make the method freely available as part of a software tool called NetBox.

  13. Social Network Analysis Identifies Key Participants in Conservation Development.

    Science.gov (United States)

    Farr, Cooper M; Reed, Sarah E; Pejchar, Liba

    2018-03-03

    Understanding patterns of participation in private lands conservation, which is often implemented voluntarily by individual citizens and private organizations, could improve its effectiveness at combating biodiversity loss. We used social network analysis (SNA) to examine participation in conservation development (CD), a private land conservation strategy that clusters houses in a small portion of a property while preserving the remaining land as protected open space. Using data from public records for six counties in Colorado, USA, we compared CD participation patterns among counties and identified actors that most often work with others to implement CDs. We found that social network characteristics differed among counties. The network density, or proportion of connections in the network, varied from fewer than 2 to nearly 15%, and was higher in counties with smaller populations and fewer CDs. Centralization, or the degree to which connections are held disproportionately by a few key actors, was not correlated strongly with any county characteristics. Network characteristics were not correlated with the prevalence of wildlife-friendly design features in CDs. The most highly connected actors were biological and geological consultants, surveyors, and engineers. Our work demonstrates a new application of SNA to land-use planning, in which CD network patterns are examined and key actors are identified. For better conservation outcomes of CD, we recommend using network patterns to guide strategies for outreach and information dissemination, and engaging with highly connected actor types to encourage widespread adoption of best practices for CD design and stewardship.

  14. Network Analysis Identifies Disease-Specific Pathways for Parkinson's Disease.

    Science.gov (United States)

    Monti, Chiara; Colugnat, Ilaria; Lopiano, Leonardo; Chiò, Adriano; Alberio, Tiziana

    2018-01-01

    Neurodegenerative diseases are characterized by the progressive loss of specific neurons in selected regions of the central nervous system. The main clinical manifestation (movement disorders, cognitive impairment, and/or psychiatric disturbances) depends on the neuron population being primarily affected. Parkinson's disease is a common movement disorder, whose etiology remains mostly unknown. Progressive loss of dopaminergic neurons in the substantia nigra causes an impairment of the motor control. Some of the pathogenetic mechanisms causing the progressive deterioration of these neurons are not specific for Parkinson's disease but are shared by other neurodegenerative diseases, like Alzheimer's disease and amyotrophic lateral sclerosis. Here, we performed a meta-analysis of the literature of all the quantitative proteomic investigations of neuronal alterations in different models of Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis to distinguish between general and Parkinson's disease-specific pattern of neurodegeneration. Then, we merged proteomics data with genetics information from the DisGeNET database. The comparison of gene and protein information allowed us to identify 25 proteins involved uniquely in Parkinson's disease and we verified the alteration of one of them, i.e., transaldolase 1 (TALDO1), in the substantia nigra of 5 patients. By using open-source bioinformatics tools, we identified the biological processes specifically affected in Parkinson's disease, i.e., proteolysis, mitochondrion organization, and mitophagy. Eventually, we highlighted four cellular component complexes mostly involved in the pathogenesis: the proteasome complex, the protein phosphatase 2A, the chaperonins CCT complex, and the complex III of the respiratory chain.

  15. Phylogenetic analysis of mitochondrial DNA in a patient with Kearns-Sayre syndrome containing a novel 7629-bp deletion.

    Science.gov (United States)

    Montiel-Sosa, Jose Francisco; Herrero, María Dolores; Munoz, Maria de Lourdes; Aguirre-Campa, Luis Enrique; Pérez-Ramírez, Gerardo; García-Ramírez, Rubén; Ruiz-Pesini, Eduardo; Montoya, Julio

    2013-08-01

    Mitochondrial DNA mutations have been associated with different illnesses in humans, such as Kearns-Sayre syndrome (KSS), which is related to deletions of different sizes and positions among patients. Here, we report a Mexican patient with typical features of KSS containing a novel deletion of 7629 bp in size with 85% heteroplasmy, which has not been previously reported. Sequence analysis revealed 3-bp perfect short direct repeats flanking the deletion region, in addition to 7-bp imperfect direct repeats within 9-10 bp. Furthermore, sequencing, alignment and phylogenetic analysis of the hypervariable region revealed that the patient may belong to a founder Native American haplogroup C4c.

  16. Analysis of genetic variation and phylogeny of the predatory bug, Pilophorus typicus, in Japan using mitochondrial gene sequences.

    Science.gov (United States)

    Ito, Katsura; Nishikawa, Hiroshi; Shimada, Takuji; Ogawa, Kohei; Minamiya, Yukio; Tomoda, Masafumi; Nakahira, Kengo; Kodama, Rika; Fukuda, Tatsuya; Arakawa, Ryo

    2011-01-01

    Pilophorus typicus (Distant) (Heteroptera: Miridae) is a predatory bug occurring in East, Southeast, and South Asia. Because the active stages of P. typicus prey on various agricultural pest insects and mites, this species is a candidate insect as an indigenous natural enemy for use in biological control programs. However, the mass releasing of introduced natural enemies into agricultural fields may incur the risk of affecting the genetic integrity of species through hybridization with a local population. To clarify the genetic characteristics of the Japanese populations of P. typicus two portions of the mitochondrial DNA, the cytochrome oxidase subunit I (COI) (534 bp) and the cytochrome B (cytB) (217 bp) genes, were sequenced for 64 individuals collected from 55 localities in a wide range of Japan. Totals of 18 and 10 haplotypes were identified for the COI and cytB sequences, respectively (25 haplotypes over regions). Phylogenetic analysis using the maximum likelihood method revealed the existence of two genetically distinct groups in P. typicus in Japan. These groups were distributed in different geographic ranges: one occurred mainly from the Pacific coastal areas of the Kii Peninsula, the Shikoku Island, and the Ryukyu Islands; whereas the other occurred from the northern Kyushu district to the Kanto and Hokuriku districts of mainland Japan. However, both haplotypes were found in a single locality of the southern coast of the Shikoku Island. COI phylogeny incorporating other Pilophorus species revealed that these groups were only recently differentiated. Therefore, use of a certain population of P. typicus across its distribution range should be done with caution because genetic hybridization may occur.

  17. The mitochondrial genome of the brown alga Laminaria digitata : a comparative analysis

    NARCIS (Netherlands)

    Oudot-le Secq, MP; Kloareg, B; Loiseaux-de Goer, S

    We report here the complete sequence of the mitochondrial genome of the brown alga Laminaria digitata (Hudson) J.V. Lamouroux. L. digitata mtDNA is a circular molecule of 38,007 bp (64.9 % A+ T), encoding 63 genes and 3 ORFs and with only 6-7 % of non-coding sequences. Based on gene content and

  18. Detailed analysis of the human mitochondrial contact site complex indicate a hierarchy of subunits.

    Directory of Open Access Journals (Sweden)

    Christine Ott

    Full Text Available Mitochondrial inner membrane folds into cristae, which significantly increase its surface and are important for mitochondrial function. The stability of cristae depends on the mitochondrial contact site (MICOS complex. In human mitochondria, the inner membrane MICOS complex interacts with the outer membrane sorting and assembly machinery (SAM complex, to form the mitochondrial intermembrane space bridging complex (MIB. We have created knockdown cell lines of most of the MICOS and MIB components and have used them to study the importance of the individual subunits for the cristae formation and complex stability. We show that the most important subunits of the MIB complex in human mitochondria are Mic60/Mitofilin, Mic19/CHCHD3 and an outer membrane component Sam50. We provide additional proof that ApoO indeed is a subunit of the MICOS and MIB complexes and propose the name Mic23 for this protein. According to our results, Mic25/CHCHD6, Mic27/ApoOL and Mic23/ApoO appear to be periphery subunits of the MICOS complex, because their depletion does not affect cristae morphology or stability of other components.

  19. Detailed analysis of the human mitochondrial contact site complex indicate a hierarchy of subunits.

    Science.gov (United States)

    Ott, Christine; Dorsch, Eva; Fraunholz, Martin; Straub, Sebastian; Kozjak-Pavlovic, Vera

    2015-01-01

    Mitochondrial inner membrane folds into cristae, which significantly increase its surface and are important for mitochondrial function. The stability of cristae depends on the mitochondrial contact site (MICOS) complex. In human mitochondria, the inner membrane MICOS complex interacts with the outer membrane sorting and assembly machinery (SAM) complex, to form the mitochondrial intermembrane space bridging complex (MIB). We have created knockdown cell lines of most of the MICOS and MIB components and have used them to study the importance of the individual subunits for the cristae formation and complex stability. We show that the most important subunits of the MIB complex in human mitochondria are Mic60/Mitofilin, Mic19/CHCHD3 and an outer membrane component Sam50. We provide additional proof that ApoO indeed is a subunit of the MICOS and MIB complexes and propose the name Mic23 for this protein. According to our results, Mic25/CHCHD6, Mic27/ApoOL and Mic23/ApoO appear to be periphery subunits of the MICOS complex, because their depletion does not affect cristae morphology or stability of other components.

  20. Analysis of the mitochondrial maxicircle of Trypanosoma lewisi, a neglected human pathogen

    Czech Academy of Sciences Publication Activity Database

    Lin, R.-H.; Lai, D.-H.; Zheng, L.-L.; Wu, J.; Lukeš, Julius; Hide, G.; Lun, Z.-R.

    2015-01-01

    Roč. 8, 30 December 2015 (2015), s. 665 ISSN 1756-3305 Institutional support: RVO:60077344 Keywords : Trypanosoma lewisi * Kinetoplast maxicircle * Mitochondrial DNA * RNA editing * Palindrome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.234, year: 2015

  1. Transcriptional profile analysis of RPGRORF15 frameshift mutation identifies novel genes associated with retinal degeneration.

    Science.gov (United States)

    Genini, Sem; Zangerl, Barbara; Slavik, Julianna; Acland, Gregory M; Beltran, William A; Aguirre, Gustavo D

    2010-11-01

    To identify genes and molecular mechanisms associated with photoreceptor degeneration in a canine model of XLRP caused by an RPGR exon ORF15 microdeletion. Methods. Expression profiles of mutant and normal retinas were compared by using canine retinal custom cDNA microarrays. qRT-PCR, Western blot analysis, and immunohistochemistry (IHC) were applied to selected genes, to confirm and expand the microarray results. At 7 and 16 weeks, respectively, 56 and 18 transcripts were downregulated in the mutant retinas, but none were differentially expressed (DE) at both ages, suggesting the involvement of temporally distinct pathways. Downregulated genes included the known retina-relevant genes PAX6, CHML, and RDH11 at 7 weeks and CRX and SAG at 16 weeks. Genes directly or indirectly active in apoptotic processes were altered at 7 weeks (CAMK2G, NTRK2, PRKCB, RALA, RBBP6, RNF41, SMYD3, SPP1, and TUBB2C) and 16 weeks (SLC25A5 and NKAP). Furthermore, the DE genes at 7 weeks (ELOVL6, GLOD4, NDUFS4, and REEP1) and 16 weeks (SLC25A5 and TARS2) are related to mitochondrial functions. qRT-PCR of 18 genes confirmed the microarray results and showed DE of additional genes not on the array. Only GFAP was DE at 3 weeks of age. Western blot and IHC analyses also confirmed the high reliability of the transcriptomic data. Several DE genes were identified in mutant retinas. At 7 weeks, a combination of nonclassic anti- and proapoptosis genes appear to be involved in photoreceptor degeneration, whereas at both 7 and 16 weeks, the expression of mitochondria-related genes indicates that they may play a relevant role in the disease process.

  2. Comparative Analysis of Putative Orthologues of Mitochondrial Import Motor Subunit: Pam18 and Pam16 in Plants

    OpenAIRE

    Chen, Xuejin; Ghazanfar, Bushra; Khan, Abdul Rehman; Hayat, Sikandar; Cheng, Zhihui

    2013-01-01

    Pam18/Tim14 and Pam16/Tim16, highly conserved proteins among eukaryotes, are two essential subunits of protein import motors localized in the inner mitochondrial membrane. The heterodimer formed by Pam18 and Pam16 via their J-type domains serves a regulatory function in protein translocation. Here, we report that thirty-one Pam18 and twenty-six Pam16 putative orthologues in twelve plant species were identified and analyzed through bioinformatics strategy. Results data revealed that Pam18 and ...

  3. Performance Analysis: Work Control Events Identified January - August 2010

    Energy Technology Data Exchange (ETDEWEB)

    De Grange, C E; Freeman, J W; Kerr, C E; Holman, G; Marsh, K; Beach, R

    2011-01-14

    This performance analysis evaluated 24 events that occurred at LLNL from January through August 2010. The analysis identified areas of potential work control process and/or implementation weaknesses and several common underlying causes. Human performance improvement and safety culture factors were part of the causal analysis of each event and were analyzed. The collective significance of all events in 2010, as measured by the occurrence reporting significance category and by the proportion of events that have been reported to the DOE ORPS under the ''management concerns'' reporting criteria, does not appear to have increased in 2010. The frequency of reporting in each of the significance categories has not changed in 2010 compared to the previous four years. There is no change indicating a trend in the significance category and there has been no increase in the proportion of occurrences reported in the higher significance category. Also, the frequency of events, 42 events reported through August 2010, is not greater than in previous years and is below the average of 63 occurrences per year at LLNL since 2006. Over the previous four years, an average of 43% of the LLNL's reported occurrences have been reported as either ''management concerns'' or ''near misses.'' In 2010, 29% of the occurrences have been reported as ''management concerns'' or ''near misses.'' This rate indicates that LLNL is now reporting fewer ''management concern'' and ''near miss'' occurrences compared to the previous four years. From 2008 to the present, LLNL senior management has undertaken a series of initiatives to strengthen the work planning and control system with the primary objective to improve worker safety. In 2008, the LLNL Deputy Director established the Work Control Integrated Project Team to develop the core requirements and graded

  4. A Comprehensive Description and Evolutionary Analysis of 22 Grouper (Perciformes, Epinephelidae) Mitochondrial Genomes with Emphasis on Two Novel Genome Organizations

    Science.gov (United States)

    Zhang, Xiang; Ding, Shaoxiong

    2013-01-01

    Groupers of the family Epinephelidae are a diverse and economically valuable group of reef fishes. To investigate the evolution of their mitochondrial genomes we characterized and compared these genomes among 22 species, 17 newly sequenced. Among these fishes we identified three distinct genome organizations, two of them never previously reported in vertebrates. In 19 of these species, mitochondrial genomes followed the typical vertebrate canonical organization with 13 protein-coding genes, 22 tRNAs, two rRNAs, and a non-coding control region. Differing from this, members of genus Variola have an extra tRNA-Ile between tRNA-Val and 16S rRNA. Evidence suggests that this evolved from tRNA-Val via a duplication event due to slipped strand mispairing during replication. Additionally, Cephalopholis argus has an extra tRNA-Asp in the midst of the control region, likely resulting from long-range duplication of the canonical tRNA-Asp through illicit priming of mitochondrial replication by tRNAs. Along with their gene contents, we characterized the regulatory elements of these mitochondrial genomes’ control regions, including putative termination-associated sequences and conserved sequence blocks. Looking at the mitochondrial genomic constituents, rRNA and tRNA are the most conserved, followed by protein-coding genes, and non-coding regions are the most divergent. Divergence rates vary among the protein-coding genes, and the three cytochrome oxidase subunits (COI, II, III) are the most conserved, while NADH dehydrogenase subunit 6 (ND6) and the ATP synthase subunit 8 (ATP8) are the most divergent. We then tested the phylogenetic utility of this new mt genome data using 12 protein-coding genes of 48 species from the suborder Percoidei. From this, we provide further support for the elevation of the subfamily Epinephelinae to family Epinephelidae, the resurrection of the genus Hyporthodus, and the combination of the monotypic genera Anyperodon and Cromileptes to genus

  5. Integrated genome-wide association, coexpression network, and expression single nucleotide polymorphism analysis identifies novel pathway in allergic rhinitis

    Science.gov (United States)

    2014-01-01

    Background Allergic rhinitis is a common disease whose genetic basis is incompletely explained. We report an integrated genomic analysis of allergic rhinitis. Methods We performed genome wide association studies (GWAS) of allergic rhinitis in 5633 ethnically diverse North American subjects. Next, we profiled gene expression in disease-relevant tissue (peripheral blood CD4+ lymphocytes) collected from subjects who had been genotyped. We then integrated the GWAS and gene expression data using expression single nucleotide (eSNP), coexpression network, and pathway approaches to identify the biologic relevance of our GWAS. Results GWAS revealed ethnicity-specific findings, with 4 genome-wide significant loci among Latinos and 1 genome-wide significant locus in the GWAS meta-analysis across ethnic groups. To identify biologic context for these results, we constructed a coexpression network to define modules of genes with similar patterns of CD4+ gene expression (coexpression modules) that could serve as constructs of broader gene expression. 6 of the 22 GWAS loci with P-value ≤ 1x10−6 tagged one particular coexpression module (4.0-fold enrichment, P-value 0.0029), and this module also had the greatest enrichment (3.4-fold enrichment, P-value 2.6 × 10−24) for allergic rhinitis-associated eSNPs (genetic variants associated with both gene expression and allergic rhinitis). The integrated GWAS, coexpression network, and eSNP results therefore supported this coexpression module as an allergic rhinitis module. Pathway analysis revealed that the module was enriched for mitochondrial pathways (8.6-fold enrichment, P-value 4.5 × 10−72). Conclusions Our results highlight mitochondrial pathways as a target for further investigation of allergic rhinitis mechanism and treatment. Our integrated approach can be applied to provide biologic context for GWAS of other diseases. PMID:25085501

  6. Mitochondrial cardiomyopathies

    Directory of Open Access Journals (Sweden)

    Ayman W. El-Hattab

    2016-07-01

    Full Text Available Mitochondria are found in all nucleated human cells and perform a variety of essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA while more than 99% of them are encoded by nuclear DNA (nDNA. Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs of various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20-40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular noncompaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain (ETC complexes subunits and their assembly factors, mitochondrial tRNAs, rRNAs, ribosomal proteins, and translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia.

  7. Behavioral metabolomics analysis identifies novel neurochemical signatures in methamphetamine sensitization

    Science.gov (United States)

    Adkins, Daniel E.; McClay, Joseph L.; Vunck, Sarah A.; Batman, Angela M.; Vann, Robert E.; Clark, Shaunna L.; Souza, Renan P.; Crowley, James J.; Sullivan, Patrick F.; van den Oord, Edwin J.C.G.; Beardsley, Patrick M.

    2014-01-01

    Behavioral sensitization has been widely studied in animal models and is theorized to reflect neural modifications associated with human psychostimulant addiction. While the mesolimbic dopaminergic pathway is known to play a role, the neurochemical mechanisms underlying behavioral sensitization remain incompletely understood. In the present study, we conducted the first metabolomics analysis to globally characterize neurochemical differences associated with behavioral sensitization. Methamphetamine-induced sensitization measures were generated by statistically modeling longitudinal activity data for eight inbred strains of mice. Subsequent to behavioral testing, nontargeted liquid and gas chromatography-mass spectrometry profiling was performed on 48 brain samples, yielding 301 metabolite levels per sample after quality control. Association testing between metabolite levels and three primary dimensions of behavioral sensitization (total distance, stereotypy and margin time) showed four robust, significant associations at a stringent metabolome-wide significance threshold (false discovery rate < 0.05). Results implicated homocarnosine, a dipeptide of GABA and histidine, in total distance sensitization, GABA metabolite 4-guanidinobutanoate and pantothenate in stereotypy sensitization, and myo-inositol in margin time sensitization. Secondary analyses indicated that these associations were independent of concurrent methamphetamine levels and, with the exception of the myo-inositol association, suggest a mechanism whereby strain-based genetic variation produces specific baseline neurochemical differences that substantially influence the magnitude of MA-induced sensitization. These findings demonstrate the utility of mouse metabolomics for identifying novel biomarkers, and developing more comprehensive neurochemical models, of psychostimulant sensitization. PMID:24034544

  8. A Sensitivity Analysis Approach to Identify Key Environmental Performance Factors

    Directory of Open Access Journals (Sweden)

    Xi Yu

    2014-01-01

    Full Text Available Life cycle assessment (LCA is widely used in design phase to reduce the product’s environmental impacts through the whole product life cycle (PLC during the last two decades. The traditional LCA is restricted to assessing the environmental impacts of a product and the results cannot reflect the effects of changes within the life cycle. In order to improve the quality of ecodesign, it is a growing need to develop an approach which can reflect the changes between the design parameters and product’s environmental impacts. A sensitivity analysis approach based on LCA and ecodesign is proposed in this paper. The key environmental performance factors which have significant influence on the products’ environmental impacts can be identified by analyzing the relationship between environmental impacts and the design parameters. Users without much environmental knowledge can use this approach to determine which design parameter should be first considered when (redesigning a product. A printed circuit board (PCB case study is conducted; eight design parameters are chosen to be analyzed by our approach. The result shows that the carbon dioxide emission during the PCB manufacture is highly sensitive to the area of PCB panel.

  9. Clinical evaluation and mitochondrial DNA sequence analysis in three Chinese families with Leber's hereditary optic neuropathy

    International Nuclear Information System (INIS)

    Qian Yaping; Zhou Xiangtian; Hu Yongwu; Tong Yi; Li Ronghua; Lu Fan; Yang Huanming; Mo Junqin; Qu Jia; Guan Minxin

    2005-01-01

    We report here the clinical, genetic, and molecular characterization of three Chinese families (WZ4, WZ5, and WZ6) with Leber's hereditary optic neuropathy (LHON). Clinical and genetic evaluations revealed the variable severity and age-of-onset in visual impairment in these families. Penetrances of visual impairment in these Chinese families were 33.3%, 35.7%, and 35.5%, respectively, with an average 34.8%. Furthermore, the average age-at-onset in those Chinese families was 17, 20, and 18 years. In addition, the ratios between affected male and female matrilineal relatives in these Chinese families were 3:0, 1:1, and 1.2:1, respectively. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the distinct sets of mtDNA polymorphism, in addition to the identical G11778A mutation associated with LHON in many families. The fact that mtDNA of those pedigrees belonged to different haplogroups F1, D4, and M10 suggested that the G11778A mutation occurred sporadically and multiplied through evolution of the mtDNA in China. However, there was the absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in these Chinese families. The I187T mutation in the ND1, the S99A mutation in the A6, the V254I in CO3, and I58V in ND6 mutation, showing high evolutional conservation, may contribute to the phenotypic expression of the G11778A mutation in the WZ6 pedigree. By contrast, none of mtDNA variants are evolutionarily conserved and implicated to have significantly functional consequence in WZ4 and WZ5 pedigrees. Apparently, these variants do not have a potential modifying role in the development of visual impairment associated with G11778A mutation in those two families. Thus, nuclear modifier gene(s) or environmental factor(s) seem to account for the penetrance and expressivity of LHON in these three Chinese families carrying the G11778A mutation

  10. Analysis of Replicating Mitochondrial DNA by In Organello Labeling and Two-Dimensional Agarose Gel Electrophoresis.

    Science.gov (United States)

    Holt, Ian J; Kazak, Lawrence; Reyes, Aurelio; Wood, Stuart R

    2016-01-01

    Our understanding of the mechanisms of DNA replication in a broad range of organisms and viruses has benefited from the application of two-dimensional agarose gel electrophoresis (2D-AGE). The method resolves DNA molecules on the basis of size and shape and is technically straightforward. 2D-AGE sparked controversy in the field of mitochondria when it revealed replicating molecules with lengthy tracts of RNA, a phenomenon never before reported in nature. More recently, radioisotope labeling of the DNA in the mitochondria has been coupled with 2D-AGE. In its first application, this procedure helped to delineate the "bootlace mechanism of mitochondrial DNA replication," in which processed mitochondrial transcripts are hybridized to the lagging strand template at the replication fork as the leading DNA strand is synthesized. This chapter provides details of the method, how it has been applied to date and concludes with some potential future applications of the technique.

  11. Complete mitochondrial genome of the Indian peafowl (Pavo cristatus), with phylogenetic analysis in phasianidae.

    Science.gov (United States)

    Zhou, Tai-Cheng; Sha, Tao; Irwin, David M; Zhang, Ya-Ping

    2015-01-01

    Pavo cristatus, known as the Indian peafowl, is endemic to India and Sri Lanka and has been domesticated for its ornamental and food value. However, its phylogenetic status is still debated. Here, to clarify the phylogenetic status of P. cristatus within Phasianidae, we analyzed its mitochondrial genome (mtDNA). The complete mitochondrial DNA (mtDNA) genome was determined using 34 pairs of primers. Our data show that the mtDNA genome of P. cristatus is 16,686 bp in length. Molecular phylogenetic analyses of P. cristatus was performed along with 22 complete mtDNA genomes belonging to other species in Phasianidae using Bayesian and maximum likelihood methods, where Aythya americana and Anas platyrhynchos were used as outgroups. Our results show that P. critatus has its closest genetic affinity with Pavo muticus and belongs to clade that contains Gallus, Bambusicola and Francolinus.

  12. An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Blein, Sophie; Bardel, Claire; Danjean, Vincent

    2015-01-01

    INTRODUCTION: Individuals carrying pathogenic mutations in BRCA1/2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria...... species production, leading to cancer risk. Here we test the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. METHODS: We genotyped 22214 (11421 affected, 10793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2...

  13. Mutations in the SPG7 gene cause chronic progressive external ophthalmoplegia through disordered mitochondrial DNA maintenance.

    Science.gov (United States)

    Pfeffer, Gerald; Gorman, Gráinne S; Griffin, Helen; Kurzawa-Akanbi, Marzena; Blakely, Emma L; Wilson, Ian; Sitarz, Kamil; Moore, David; Murphy, Julie L; Alston, Charlotte L; Pyle, Angela; Coxhead, Jon; Payne, Brendan; Gorrie, George H; Longman, Cheryl; Hadjivassiliou, Marios; McConville, John; Dick, David; Imam, Ibrahim; Hilton, David; Norwood, Fiona; Baker, Mark R; Jaiser, Stephan R; Yu-Wai-Man, Patrick; Farrell, Michael; McCarthy, Allan; Lynch, Timothy; McFarland, Robert; Schaefer, Andrew M; Turnbull, Douglass M; Horvath, Rita; Taylor, Robert W; Chinnery, Patrick F

    2014-05-01

    Despite being a canonical presenting feature of mitochondrial disease, the genetic basis of progressive external ophthalmoplegia remains unknown in a large proportion of patients. Here we show that mutations in SPG7 are a novel cause of progressive external ophthalmoplegia associated with multiple mitochondrial DNA deletions. After excluding known causes, whole exome sequencing, targeted Sanger sequencing and multiplex ligation-dependent probe amplification analysis were used to study 68 adult patients with progressive external ophthalmoplegia either with or without multiple mitochondrial DNA deletions in skeletal muscle. Nine patients (eight probands) were found to carry compound heterozygous SPG7 mutations, including three novel mutations: two missense mutations c.2221G>A; p.(Glu741Lys), c.2224G>A; p.(Asp742Asn), a truncating mutation c.861dupT; p.Asn288*, and seven previously reported mutations. We identified a further six patients with single heterozygous mutations in SPG7, including two further novel mutations: c.184-3C>T (predicted to remove a splice site before exon 2) and c.1067C>T; p.(Thr356Met). The clinical phenotype typically developed in mid-adult life with either progressive external ophthalmoplegia/ptosis and spastic ataxia, or a progressive ataxic disorder. Dysphagia and proximal myopathy were common, but urinary symptoms were rare, despite the spasticity. Functional studies included transcript analysis, proteomics, mitochondrial network analysis, single fibre mitochondrial DNA analysis and deep re-sequencing of mitochondrial DNA. SPG7 mutations caused increased mitochondrial biogenesis in patient muscle, and mitochondrial fusion in patient fibroblasts associated with the clonal expansion of mitochondrial DNA mutations. In conclusion, the SPG7 gene should be screened in patients in whom a disorder of mitochondrial DNA maintenance is suspected when spastic ataxia is prominent. The complex neurological phenotype is likely a result of the clonal

  14. Analysis of complete mitochondrial genomes from extinct and extant rhinoceroses reveals lack of phylogenetic resolution

    Science.gov (United States)

    Willerslev, Eske; Gilbert, M Thomas P; Binladen, Jonas; Ho, Simon YW; Campos, Paula F; Ratan, Aakrosh; Tomsho, Lynn P; da Fonseca, Rute R; Sher, Andrei; Kuznetsova, Tatanya V; Nowak-Kemp, Malgosia; Roth, Terri L; Miller, Webb; Schuster, Stephan C

    2009-01-01

    Background The scientific literature contains many examples where DNA sequence analyses have been used to provide definitive answers to phylogenetic problems that traditional (non-DNA based) approaches alone have failed to resolve. One notable example concerns the rhinoceroses, a group for which several contradictory phylogenies were proposed on the basis of morphology, then apparently resolved using mitochondrial DNA fragments. Results In this study we report the first complete mitochondrial genome sequences of the extinct ice-age woolly rhinoceros (Coelodonta antiquitatis), and the threatened Javan (Rhinoceros sondaicus), Sumatran (Dicerorhinus sumatrensis), and black (Diceros bicornis) rhinoceroses. In combination with the previously published mitochondrial genomes of the white (Ceratotherium simum) and Indian (Rhinoceros unicornis) rhinoceroses, this data set putatively enables reconstruction of the rhinoceros phylogeny. While the six species cluster into three strongly supported sister-pairings: (i) The black/white, (ii) the woolly/Sumatran, and (iii) the Javan/Indian, resolution of the higher-level relationships has no statistical support. The phylogenetic signal from individual genes is highly diffuse, with mixed topological support from different genes. Furthermore, the choice of outgroup (horse vs tapir) has considerable effect on reconstruction of the phylogeny. The lack of resolution is suggestive of a hard polytomy at the base of crown-group Rhinocerotidae, and this is supported by an investigation of the relative branch lengths. Conclusion Satisfactory resolution of the rhinoceros phylogeny may not be achievable without additional analyses of substantial amounts of nuclear DNA. This study provides a compelling demonstration that, in spite of substantial sequence length, there are significant limitations with single-locus phylogenetics. We expect further examples of this to appear as next-generation, large-scale sequencing of complete mitochondrial

  15. Analysis of complete mitochondrial genomes from extinct and extant rhinoceroses reveals lack of phylogenetic resolution

    Directory of Open Access Journals (Sweden)

    Nowak-Kemp Malgosia

    2009-05-01

    Full Text Available Abstract Background The scientific literature contains many examples where DNA sequence analyses have been used to provide definitive answers to phylogenetic problems that traditional (non-DNA based approaches alone have failed to resolve. One notable example concerns the rhinoceroses, a group for which several contradictory phylogenies were proposed on the basis of morphology, then apparently resolved using mitochondrial DNA fragments. Results In this study we report the first complete mitochondrial genome sequences of the extinct ice-age woolly rhinoceros (Coelodonta antiquitatis, and the threatened Javan (Rhinoceros sondaicus, Sumatran (Dicerorhinus sumatrensis, and black (Diceros bicornis rhinoceroses. In combination with the previously published mitochondrial genomes of the white (Ceratotherium simum and Indian (Rhinoceros unicornis rhinoceroses, this data set putatively enables reconstruction of the rhinoceros phylogeny. While the six species cluster into three strongly supported sister-pairings: (i The black/white, (ii the woolly/Sumatran, and (iii the Javan/Indian, resolution of the higher-level relationships has no statistical support. The phylogenetic signal from individual genes is highly diffuse, with mixed topological support from different genes. Furthermore, the choice of outgroup (horse vs tapir has considerable effect on reconstruction of the phylogeny. The lack of resolution is suggestive of a hard polytomy at the base of crown-group Rhinocerotidae, and this is supported by an investigation of the relative branch lengths. Conclusion Satisfactory resolution of the rhinoceros phylogeny may not be achievable without additional analyses of substantial amounts of nuclear DNA. This study provides a compelling demonstration that, in spite of substantial sequence length, there are significant limitations with single-locus phylogenetics. We expect further examples of this to appear as next-generation, large-scale sequencing of complete

  16. Analysis of complete mitochondrial genomes from extinct and extant rhinoceroses reveals lack of phylogenetic resolution

    OpenAIRE

    Willerslev, Eske; Gilbert, M Thomas P; Binladen, Jonas; Ho, Simon YW; Campos, Paula F; Ratan, Aakrosh; Tomsho, Lynn P; da Fonseca, Rute R; Sher, Andrei; Kuznetsova, Tatanya V; Nowak-Kemp, Malgosia; Roth, Terri L; Miller, Webb; Schuster, Stephan C

    2009-01-01

    Abstract Background The scientific literature contains many examples where DNA sequence analyses have been used to provide definitive answers to phylogenetic problems that traditional (non-DNA based) approaches alone have failed to resolve. One notable example concerns the rhinoceroses, a group for which several contradictory phylogenies were proposed on the basis of morphology, then apparently resolved using mitochondrial DNA fragments. Results In this study we report the first complete mito...

  17. Analysis of mitochondrial mechanical dynamics using a confocal fluorescence microscope with a bent optical fibre.

    Science.gov (United States)

    Li, Yongbo; Honda, Satoshi; Iwami, Kentaro; Ohta, Yoshihiro; Umeda, Norihiro

    2015-11-01

    The cells in the cardiovascular system are constantly subjected to mechanical forces created by blood flow and the beating heart. The effect of forces on cells has been extensively investigated, but their effect on cellular organelles such as mitochondria remains unclear. We examined the impact of nano-Newton forces on mitochondria using a bent optical fibre (BOF) with a flat-ended tip (diameter exceeding 2 μm) and a confocal fluorescence microscope. By indenting a single mitochondrion with the BOF tip, we found that the mitochondrial elastic modulus was proportional to the (-1/2) power of the mitochondrial radius in the 9.6-115 kPa range. We stained the mitochondria with a potential-metric dye (TMRE) and measured the changes in TMRE fluorescence intensity. We confirmed that more active mitochondria exhibit a higher frequency of repetitive transient depolarization. The same trend was observed at forces lower than 50 nN. We further showed that the depolarization frequency of mitochondria decreases under an extremely large force (nearly 100 nN). We conclude that mitochondrial function is affected by physical environmental factors, such as external forces at the nano-Newton level. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  18. Quantitative PCR analysis of diepoxybutane and epihalohydrin damage to nuclear versus mitochondrial DNA

    International Nuclear Information System (INIS)

    LaRiviere, Frederick J.; Newman, Adam G.; Watts, Megan L.; Bradley, Sharonda Q.; Juskewitch, Justin E.; Greenwood, Paul G.; Millard, Julie T.

    2009-01-01

    The bifunctional alkylating agents diepoxybutane (DEB) and epichlorohydrin (ECH) are linked to the elevated incidence of certain cancers among workers in the synthetic polymer industry. Both compounds form interstrand cross-links within duplex DNA, an activity suggested to contribute to their cytotoxicity. To assess the DNA targeting of these compounds in vivo, we assayed for damage within chicken erythro-progenitor cells at three different sites: one within mitochondrial DNA, one within expressed nuclear DNA, and one within unexpressed nuclear DNA. We determined the degree of damage at each site via a quantitative polymerase chain reaction, which compares amplification of control, untreated DNA to that from cells exposed to the agent in question. We found that ECH and the related compound epibromohydrin preferentially target nuclear DNA relative to mitochondrial DNA, whereas DEB reacts similarly with the two genomes. Decreased reactivity of the mitochondrial genome could contribute to the reduced apoptotic potential of ECH relative to DEB. Additionally, formation of lesions by all agents occurred at comparable levels for unexpressed and expressed nuclear loci, suggesting that alkylation is unaffected by the degree of chromatin condensation.

  19. Biochemical diagnosis of mitochondrial disorders

    NARCIS (Netherlands)

    Rodenburg, R.J.T.

    2011-01-01

    Establishing a diagnosis in patients with a suspected mitochondrial disorder is often a challenge. Both knowledge of the clinical spectrum of mitochondrial disorders and the number of identified disease-causing molecular genetic defects are continuously expanding. The diagnostic examination of

  20. DNA Sequences Proximal to Human Mitochondrial DNA Deletion Breakpoints Prevalent in Human Disease Form G-quadruplexes, a Class of DNA Structures Inefficiently Unwound by the Mitochondrial Replicative Twinkle Helicase*

    Science.gov (United States)

    Bharti, Sanjay Kumar; Sommers, Joshua A.; Zhou, Jun; Kaplan, Daniel L.; Spelbrink, Johannes N.; Mergny, Jean-Louis; Brosh, Robert M.

    2014-01-01

    Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective mitochondrial replication are not well understood. In this work, we performed a computational analysis of the human mitochondrial genome using the “Pattern Finder” G-quadruplex (G4) predictor algorithm to assess whether G4-forming sequences reside in close proximity (within 20 base pairs) to known mitochondrial DNA deletion breakpoints. We then used this information to map G4P sequences with deletions characteristic of representative mitochondrial genetic disorders and also those identified in various cancers and aging. Circular dichroism and UV spectral analysis demonstrated that mitochondrial G-rich sequences near deletion breakpoints prevalent in human disease form G-quadruplex DNA structures. A biochemical analysis of purified recombinant human Twinkle protein (gene product of c10orf2) showed that the mitochondrial replicative helicase inefficiently unwinds well characterized intermolecular and intramolecular G-quadruplex DNA substrates, as well as a unimolecular G4 substrate derived from a mitochondrial sequence that nests a deletion breakpoint described in human renal cell carcinoma. Although G4 has been implicated in the initiation of mitochondrial DNA replication, our current findings suggest that mitochondrial G-quadruplexes are also likely to be a source of instability for the mitochondrial genome by perturbing the normal progression of the mitochondrial replication machinery, including DNA unwinding by Twinkle helicase. PMID:25193669

  1. Method of identifying hairpin DNA probes by partial fold analysis

    Science.gov (United States)

    Miller, Benjamin L [Penfield, NY; Strohsahl, Christopher M [Saugerties, NY

    2009-10-06

    Method of identifying molecular beacons in which a secondary structure prediction algorithm is employed to identify oligonucleotide sequences within a target gene having the requisite hairpin structure. Isolated oligonucleotides, molecular beacons prepared from those oligonucleotides, and their use are also disclosed.

  2. Complete Sequence and Analysis of the Mitochondrial Genome of Hemiselmis andersenii CCMP644 (Cryptophyceae

    Directory of Open Access Journals (Sweden)

    Bowman Sharen

    2008-05-01

    Full Text Available Abstract Background Cryptophytes are an enigmatic group of unicellular eukaryotes with plastids derived by secondary (i.e., eukaryote-eukaryote endosymbiosis. Cryptophytes are unusual in that they possess four genomes–a host cell-derived nuclear and mitochondrial genome and an endosymbiont-derived plastid and 'nucleomorph' genome. The evolutionary origins of the host and endosymbiont components of cryptophyte algae are at present poorly understood. Thus far, a single complete mitochondrial genome sequence has been determined for the cryptophyte Rhodomonas salina. Here, the second complete mitochondrial genome of the cryptophyte alga Hemiselmis andersenii CCMP644 is presented. Results The H. andersenii mtDNA is 60,553 bp in size and encodes 30 structural RNAs and 36 protein-coding genes, all located on the same strand. A prominent feature of the genome is the presence of a ~20 Kbp long intergenic region comprised of numerous tandem and dispersed repeat units of between 22–336 bp. Adjacent to these repeats are 27 copies of palindromic sequences predicted to form stable DNA stem-loop structures. One such stem-loop is located near a GC-rich and GC-poor region and may have a regulatory function in replication or transcription. The H. andersenii mtDNA shares a number of features in common with the genome of the cryptophyte Rhodomonas salina, including general architecture, gene content, and the presence of a large repeat region. However, the H. andersenii mtDNA is devoid of inverted repeats and introns, which are present in R. salina. Comparative analyses of the suite of tRNAs encoded in the two genomes reveal that the H. andersenii mtDNA has lost or converted its original trnK(uuu gene and possesses a trnS-derived 'trnK(uuu', which appears unable to produce a functional tRNA. Mitochondrial protein coding gene phylogenies strongly support a variety of previously established eukaryotic groups, but fail to resolve the relationships among higher

  3. Mitochondrial DNA.

    Science.gov (United States)

    Wright, Russell G.; Bottino, Paul J.

    1986-01-01

    Provides background information for teachers on mitochondrial DNA, pointing out that it may have once been a free-living organism. Includes a ready-to-duplicate exercise titled "Using Microchondrial DNA to Measure Evolutionary Distance." (JN)

  4. Mitochondrial Myopathy

    Science.gov (United States)

    ... fact, many cases of mitochondrial disease are sporadic, meaning that they occur without any family history. To ... temporary vision loss, difficulty speaking, or difficulty understanding speech) and lead to progressive brain injury. The cause ...

  5. Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae, a mammalian family that experienced rapid speciation

    Directory of Open Access Journals (Sweden)

    Ryder Oliver A

    2007-10-01

    Full Text Available Abstract Background Despite the small number of ursid species, bear phylogeny has long been a focus of study due to their conservation value, as all bear genera have been classified as endangered at either the species or subspecies level. The Ursidae family represents a typical example of rapid evolutionary radiation. Previous analyses with a single mitochondrial (mt gene or a small number of mt genes either provide weak support or a large unresolved polytomy for ursids. We revisit the contentious relationships within Ursidae by analyzing complete mt genome sequences and evaluating the performance of both entire mt genomes and constituent mtDNA genes in recovering a phylogeny of extremely recent speciation events. Results This mitochondrial genome-based phylogeny provides strong evidence that the spectacled bear diverged first, while within the genus Ursus, the sloth bear is the sister taxon of all the other five ursines. The latter group is divided into the brown bear/polar bear and the two black bears/sun bear assemblages. These findings resolve the previous conflicts between trees using partial mt genes. The ability of different categories of mt protein coding genes to recover the correct phylogeny is concordant with previous analyses for taxa with deep divergence times. This study provides a robust Ursidae phylogenetic framework for future validation by additional independent evidence, and also has significant implications for assisting in the resolution of other similarly difficult phylogenetic investigations. Conclusion Identification of base composition bias and utilization of the combined data of whole mitochondrial genome sequences has allowed recovery of a strongly supported phylogeny that is upheld when using multiple alternative outgroups for the Ursidae, a mammalian family that underwent a rapid radiation since the mid- to late Pliocene. It remains to be seen if the reliability of mt genome analysis will hold up in studies of other

  6. Mitochondrial DNA variation in chinook salmon and chum salmon detected by restriction enzyme analysis of polymerase chain reaction products

    Science.gov (United States)

    Cronin, M.; Spearman, R.; Wilmot, R.; Patton, J.; Bickman, J.

    1993-01-01

    We analyze intraspecific mitochondrial DNA variation in chinook salmon from drainages in the Yukon River, the Kenai River, and Oregon and California rivers; and chum salmon from the Yukon River and vancouver Island, and Washington rivers. For each species, three different portions of the mtDNA molecule were amplified seperately using the polymerase chain reaction and then digested with at least 19 restrictions enzymes. Intraspecific sequence divergences between haplotypes were less than 0.01 base subsitution per nucleotide. Nine chum salmon haplotypes were identified. Yukon River chum salmon stocks displayed more haplotypes (8) occurred in all areas. Seven chinook salmon haplotypes were identified. Four haplotypes occurred in the Yukon and Kenai rviers and four occured in the Oregon/California, with only one haplotype shared between the regions. Sample sizes were too small to quantify the degree of stock seperation among drainages, but the patterns of variation that we observed suggest utility of the technique in genetic stock identification.

  7. Proteomic analysis of mitochondrial-associated ER membranes (MAM) during RNA virus infection reveals dynamic changes in protein and organelle trafficking.

    Science.gov (United States)

    Horner, Stacy M; Wilkins, Courtney; Badil, Samantha; Iskarpatyoti, Jason; Gale, Michael

    2015-01-01

    RIG-I pathway signaling of innate immunity against RNA virus infection is organized between the ER and mitochondria on a subdomain of the ER called the mitochondrial-associated ER membrane (MAM). The RIG-I adaptor protein MAVS transmits downstream signaling of antiviral immunity, with signaling complexes assembling on the MAM in association with mitochondria and peroxisomes. To identify components that regulate MAVS signalosome assembly on the MAM, we characterized the proteome of MAM, ER, and cytosol from cells infected with either chronic (hepatitis C) or acute (Sendai) RNA virus infections, as well as mock-infected cells. Comparative analysis of protein trafficking dynamics during both chronic and acute viral infection reveals differential protein profiles in the MAM during RIG-I pathway activation. We identified proteins and biochemical pathways recruited into and out of the MAM in both chronic and acute RNA viral infections, representing proteins that drive immunity and/or regulate viral replication. In addition, by using this comparative proteomics approach, we identified 3 new MAVS-interacting proteins, RAB1B, VTN, and LONP1, and defined LONP1 as a positive regulator of the RIG-I pathway. Our proteomic analysis also reveals a dynamic cross-talk between subcellular compartments during both acute and chronic RNA virus infection, and demonstrates the importance of the MAM as a central platform that coordinates innate immune signaling to initiate immunity against RNA virus infection.

  8. Complete mitochondrial genome of the giant croaker Nibea japonica (Perciformes, Sciaenidae) and phylogenetic analysis of the Sciaenidae.

    Science.gov (United States)

    Hu, Zehui; Chai, Xuejun; Wang, Yuebin; Zhu, Yunhai; Zhu, Dongfa

    2016-09-01

    The giant croaker Nibea japonica (Perciformes, Sciaenidae) is an important economic fish distributing in the East China Sea, South China Sea, and Japan southern coast. In this study, the complete mitochondrial genome of N. japonica was firstly determined. It is 16 496 bp-length and consists of 22 tRNA genes, 13 protein-coding genes, two rRNA genes, and a control region. Except for eight tRNA and ND6 genes, all other mitochondrial genes are encoded on the heavy strand. Phylogenetic analysis revealed that N. japonica, A. amoyensis, and other seven fish first clustered into the Argyrosominae clade. It is consistent with the taxonomic status. Then, the Argyrosominae, Pseudosciaeninae, and Sciaeniae formed the sister group, while the Johniinae became a separate clade, which is inconsistent with the previous phenotypic report. It is suggested that the researches of single gene and taxionomic might lose some significant evolutionary characters. This study will contribute to phyogenetic analysis of the Sciaenidae and the natural resources conservation.

  9. Integrating subpathway analysis to identify candidate agents for hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Wang J

    2016-03-01

    Full Text Available Jiye Wang,1 Mi Li,2 Yun Wang,3 Xiaoping Liu4 1The Criminal Science and Technology Department, Zhejiang Police College, Hangzhou, Zhejiang Province, 2Department of Nursing, Shandong College of Traditional Chinese Medicine College, Yantai, Shandong Province, 3Office Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, Shanxi Province, 4Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Shanghai, People’s Republic of China Abstract: Hepatocellular carcinoma (HCC is the second most common cause of cancer-associated death worldwide, characterized by a high invasiveness and resistance to normal anticancer treatments. The need to develop new therapeutic agents for HCC is urgent. Here, we developed a bioinformatics method to identify potential novel drugs for HCC by integrating HCC-related and drug-affected subpathways. By using the RNA-seq data from the TCGA (The Cancer Genome Atlas database, we first identified 1,763 differentially expressed genes between HCC and normal samples. Next, we identified 104 significant HCC-related subpathways. We also identified the subpathways associated with small molecular drugs in the CMap database. Finally, by integrating HCC-related and drug-affected subpathways, we identified 40 novel small molecular drugs capable of targeting these HCC-involved subpathways. In addition to previously reported agents (ie, calmidazolium, our method also identified potentially novel agents for targeting HCC. We experimentally verified that one of these novel agents, prenylamine, induced HCC cell apoptosis using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide, an acridine orange/ethidium bromide stain, and electron microscopy. In addition, we found that prenylamine not only affected several classic apoptosis-related proteins, including Bax, Bcl-2, and cytochrome c, but also increased caspase-3 activity. These candidate small molecular drugs

  10. Amla Enhances Mitochondrial Spare Respiratory Capacity by Increasing Mitochondrial Biogenesis and Antioxidant Systems in a Murine Skeletal Muscle Cell Line

    Directory of Open Access Journals (Sweden)

    Hirotaka Yamamoto

    2016-01-01

    Full Text Available Amla is one of the most important plants in Indian traditional medicine and has been shown to improve various age-related disorders while decreasing oxidative stress. Mitochondrial dysfunction is a proposed cause of aging through elevated oxidative stress. In this study, we investigated the effects of Amla on mitochondrial function in C2C12 myotubes, a murine skeletal muscle cell model with abundant mitochondria. Based on cell flux analysis, treatment with an extract of Amla fruit enhanced mitochondrial spare respiratory capacity, which enables cells to overcome various stresses. To further explore the mechanisms underlying these effects on mitochondrial function, we analyzed mitochondrial biogenesis and antioxidant systems, both proposed regulators of mitochondrial spare respiratory capacity. We found that Amla treatment stimulated both systems accompanied by AMPK and Nrf2 activation. Furthermore, we found that Amla treatment exhibited cytoprotective effects and lowered reactive oxygen species (ROS levels in cells subjected to t-BHP-induced oxidative stress. These effects were accompanied by increased oxygen consumption, suggesting that Amla protected cells against oxidative stress by using enhanced spare respiratory capacity to produce more energy. Thus we identified protective effects of Amla, involving activation of mitochondrial function, which potentially explain its various effects on age-related disorders.

  11. Structural identifiability analysis of a cardiovascular system model.

    Science.gov (United States)

    Pironet, Antoine; Dauby, Pierre C; Chase, J Geoffrey; Docherty, Paul D; Revie, James A; Desaive, Thomas

    2016-05-01

    The six-chamber cardiovascular system model of Burkhoff and Tyberg has been used in several theoretical and experimental studies. However, this cardiovascular system model (and others derived from it) are not identifiable from any output set. In this work, two such cases of structural non-identifiability are first presented. These cases occur when the model output set only contains a single type of information (pressure or volume). A specific output set is thus chosen, mixing pressure and volume information and containing only a limited number of clinically available measurements. Then, by manipulating the model equations involving these outputs, it is demonstrated that the six-chamber cardiovascular system model is structurally globally identifiable. A further simplification is made, assuming known cardiac valve resistances. Because of the poor practical identifiability of these four parameters, this assumption is usual. Under this hypothesis, the six-chamber cardiovascular system model is structurally identifiable from an even smaller dataset. As a consequence, parameter values computed from limited but well-chosen datasets are theoretically unique. This means that the parameter identification procedure can safely be performed on the model from such a well-chosen dataset. Thus, the model may be considered suitable for use in diagnosis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Analysis of Africanized honey bee mitochondrial DNA reveals further diversity of origin

    Directory of Open Access Journals (Sweden)

    Walter S. Sheppard

    1999-03-01

    Full Text Available Within the past 40 years, Africanized honey bees spread from Brazil and now occupy most areas habitable by the species Apis mellifera, from Argentina to the southwestern United States. The primary genetic source for Africanized honey bees is believed to be the sub-Saharan honey bee subspecies A. m. scutellata. Mitochondrial markers common in A. m. scutellata have been used to classify Africanized honey bees in population genetic and physiological studies. Assessment of composite mitochondrial haplotypes from Africanized honey bees, using 4 base recognizing restriction enzymes and COI-COII intergenic spacer length polymorphism, provided evidence for a more diverse mitochondrial heritage. Over 25% of the "African" mtDNA found in Africanized populations in Argentina are derived from non-A. m. scutellata sources.Nos últimos 40 anos, abelhas africanizadas se espalharam a partir do Brasil e agora ocupam a maioria das áreas habitáveis pela espécie Apis mellifera, da Argentina ao sudoeste dos Estados Unidos. Acredita-se que a fonte genética primária das abelhas africanizadas seja a subespécie subsaariana de abelha A. m. scutellata. Marcadores mitocondriais comuns em A. m. scutellata têm sido usados para classificar abelhas africanizadas em estudos de fisiologia e genética de população. A avaliação de haplótipos mitocondriais compostos em abelhas africanizadas, usando 3 enzimas de restrição e um polimorfismo de comprimento no espaçador intergênico "COI-COII", evidenciou uma herança mitocondrial mais diversa. Mais de 25% do mtDNA "africano" encontrado em populações africanizadas na Argentina são derivados de fontes não relacionadas a A. m. scutellata.

  13. Complete mitochondrial DNA sequence and phylogenic analysis of Oxyeleotris lineolatus (Perciformes, Eleotridae).

    Science.gov (United States)

    Zang, Xue; Yin, Danqing; Wang, Ruoran; Yin, Shaowu; Tao, Panfeng; Chen, Jiawei; Zhang, Guosong

    2016-07-01

    In this study, the mitochondrial genome of Oxyeleotris lineolatus was first determined. The length of entire mtDNA sequence was 16,522 bp with (A + T) content of 53.81%, and it contained 13 protein-coding genes, two rRNAs, 22 tRNAs, and a control region. The gene order and the orientation are similar to some typical fish species. The data will provide useful molecular information for phylogenetic studies concerning O. lineolatus and its related species.

  14. From the comparative analysis of fungal mitochondrial genes to the development of taxonomic and phylogenetic tools

    OpenAIRE

    Barroso, Gérard; Ferandon, Cyril; Callac, Philippe

    2011-01-01

    The complete sequence of the mitochondrial cox1 gene, encoding the largest subunit of the cytochrome oxidase of the Basidiomycota Agaricus bisporus has been achieved. It has the longest cox1 gene (29,902 nt) with the largest number of group I introns (18 group I introns) reported to date in any eukaryote. The group I introns in the A. bisporus cox1 gene are similar to those reported in other Basidiomycetes includeing: 3 of the 4 introns in Agrocybe aegerita, 7 of the 9 introns in Pleu...

  15. PCR primers for metazoan mitochondrial 12S ribosomal DNA sequences.

    Directory of Open Access Journals (Sweden)

    Ryuji J Machida

    Full Text Available BACKGROUND: Assessment of the biodiversity of communities of small organisms is most readily done using PCR-based analysis of environmental samples consisting of mixtures of individuals. Known as metagenetics, this approach has transformed understanding of microbial communities and is beginning to be applied to metazoans as well. Unlike microbial studies, where analysis of the 16S ribosomal DNA sequence is standard, the best gene for metazoan metagenetics is less clear. In this study we designed a set of PCR primers for the mitochondrial 12S ribosomal DNA sequence based on 64 complete mitochondrial genomes and then tested their efficacy. METHODOLOGY/PRINCIPAL FINDINGS: A total of the 64 complete mitochondrial genome sequences representing all metazoan classes available in GenBank were downloaded using the NCBI Taxonomy Browser. Alignment of sequences was performed for the excised mitochondrial 12S ribosomal DNA sequences, and conserved regions were identified for all 64 mitochondrial genomes. These regions were used to design a primer pair that flanks a more variable region in the gene. Then all of the complete metazoan mitochondrial genomes available in NCBI's Organelle Genome Resources database were used to determine the percentage of taxa that would likely be amplified using these primers. Results suggest that these primers will amplify target sequences for many metazoans. CONCLUSIONS/SIGNIFICANCE: Newly designed 12S ribosomal DNA primers have considerable potential for metazoan metagenetic analysis because of their ability to amplify sequences from many metazoans.

  16. Use of Photogrammetry and Biomechanical Gait analysis to Identify Individuals

    DEFF Research Database (Denmark)

    Larsen, Peter Kastmand; Simonsen, Erik Bruun; Lynnerup, Niels

    Photogrammetry and recognition of gait patterns are valuable tools to help identify perpetrators based on surveillance recordings. We have found that stature but only few other measures have a satisfying reproducibility for use in forensics. Several gait variables with high recognition rates were...

  17. Gene expression analysis identifies global gene dosage sensitivity in cancer

    DEFF Research Database (Denmark)

    Fehrmann, Rudolf S. N.; Karjalainen, Juha M.; Krajewska, Malgorzata

    2015-01-01

    Many cancer-associated somatic copy number alterations (SCNAs) are known. Currently, one of the challenges is to identify the molecular downstream effects of these variants. Although several SCNAs are known to change gene expression levels, it is not clear whether each individual SCNA affects gen...

  18. Identifying clinical course patterns in SMS data using cluster analysis

    DEFF Research Database (Denmark)

    Kent, Peter; Kongsted, Alice

    2012-01-01

    ABSTRACT: BACKGROUND: Recently, there has been interest in using the short message service (SMS or text messaging), to gather frequent information on the clinical course of individual patients. One possible role for identifying clinical course patterns is to assist in exploring clinically importa...

  19. Mitochondrial variability in the D-loop of four equine breeds shown by PCR-SSCP analysis

    Directory of Open Access Journals (Sweden)

    Mirol Patricia M.

    2002-01-01

    Full Text Available A fragment of 466 base pairs from a highly variable peripheral region of the mitochondrial D-loop of horses was amplified and analyzed by single stranded conformational polymorphism (SSCP. Fourteen distinct SSCP variants were detected in 100 horses belonging to four breeds (Arabian, ARB; Thoroughbred, TB; Argentinian Creole, ARC; and Peruvian Paso from Argentina, PPA. Each breed showed four to eight SSCP variants, many of which were shared between two or three of the studied breeds. Arabian horses were the most variable (eigth variants, with three variants unique to the breed. PPA and ARC showed two and one characteristic SSCP variants, respectively, while TB shared all its variants with at least one of the other breeds. An analysis based on the presence/absence of the variants revealed a closer relationship between PPA and TB, which was not completely unexpected considering the mixed ancestry of the PPA mares. The results also confirm the efficiency of SSCP to detect variability in horse mitochondrial DNA.

  20. QPCR: a tool for analysis of mitochondrial and nuclear DNA damage in ecotoxicology.

    Science.gov (United States)

    Meyer, Joel N

    2010-04-01

    The quantitative PCR (QPCR) assay for DNA damage and repair has been used extensively in laboratory species. More recently, it has been adapted to ecological settings. The purpose of this article is to provide a detailed methodological guide that will facilitate its adaptation to additional species, highlight its potential for ecotoxicological and biomonitoring work, and critically review the strengths and limitations of this assay. Major strengths of the assay include very low (nanogram to picogram) amounts of input DNA; direct comparison of damage and repair in the nuclear and mitochondrial genomes, and different parts of the nuclear genome; detection of a wide range of types of DNA damage; very good reproducibility and quantification; applicability to properly preserved frozen samples; simultaneous monitoring of relative mitochondrial genome copy number; and easy adaptation to most species. Potential limitations include the limit of detection (approximately 1 lesion per 10(5) bases); the inability to distinguish different types of DNA damage; and the need to base quantification of damage on a control or reference sample. I suggest that the QPCR assay is particularly powerful for some ecotoxicological studies.

  1. Complete Mitochondrial Genome of the Red Fox (Vuples vuples) and Phylogenetic Analysis with Other Canid Species.

    Science.gov (United States)

    Zhong, Hua-Ming; Zhang, Hong-Hai; Sha, Wei-Lai; Zhang, Cheng-De; Chen, Yu-Cai

    2010-04-01

    The whole mitochondrial genome sequence of red fox (Vuples vuples) was determined. It had a total length of 16 723 bp. As in most mammal mitochondrial genome, it contained 13 protein coding genes, two ribosome RNA genes, 22 transfer RNA genes and one control region. The base composition was 31.3% A, 26.1% C, 14.8% G and 27.8% T, respectively. The codon usage of red fox, arctic fox, gray wolf, domestic dog and coyote followed the same pattern except for an unusual ATT start codon, which initiates the NADH dehydrogenase subunit 3 gene in the red fox. A long tandem repeat rich in AC was found between conserved sequence block 1 and 2 in the control region. In order to confirm the phylogenetic relationships of red fox to other canids, phylogenetic trees were reconstructed by neighbor-joining and maximum parsimony methods using 12 concatenated heavy-strand protein-coding genes. The result indicated that arctic fox was the sister group of red fox and they both belong to the red fox-like clade in family Canidae, while gray wolf, domestic dog and coyote belong to wolf-like clade. The result was in accordance with existing phylogenetic results.

  2. Analysis of variable sites between two complete South China tiger (Panthera tigris amoyensis) mitochondrial genomes.

    Science.gov (United States)

    Zhang, Wenping; Yue, Bisong; Wang, Xiaofang; Zhang, Xiuyue; Xie, Zhong; Liu, Nonglin; Fu, Wenyuan; Yuan, Yaohua; Chen, Daqing; Fu, Danghua; Zhao, Bo; Yin, Yuzhong; Yan, Xiahui; Wang, Xinjing; Zhang, Rongying; Liu, Jie; Li, Maoping; Tang, Yao; Hou, Rong; Zhang, Zhihe

    2011-10-01

    In order to investigate the mitochondrial genome of Panthera tigris amoyensis, two South China tigers (P25 and P27) were analyzed following 15 cymt-specific primer sets. The entire mtDNA sequence was found to be 16,957 bp and 17,001 bp long for P25 and P27 respectively, and this difference in length between P25 and P27 occurred in the number of tandem repeats in the RS-3 segment of the control region. The structural characteristics of complete P. t. amoyensis mitochondrial genomes were also highly similar to those of P. uncia. Additionally, the rate of point mutation was only 0.3% and a total of 59 variable sites between P25 and P27 were found. Out of the 59 variable sites, 6 were located in 6 different tRNA genes, 6 in the 2 rRNA genes, 7 in non-coding regions (one located between tRNA-Asn and tRNA-Tyr and six in the D-loop), and 40 in 10 protein-coding genes. COI held the largest amount of variable sites (9 sites) and Cytb contained the highest variable rate (0.7%) in the complete sequences. Moreover, out of the 40 variable sites located in 10 protein-coding genes, 12 sites were nonsynonymous.

  3. [Sequencing and analysis of the complete mitochondrial genome of Podoces hendersoni (Ave, Corvidae)].

    Science.gov (United States)

    Ke, Yang; Huang, Yuan; Lei, Fu-Min

    2010-09-01

    The complete mitochondrial genome of a China endemic bird, Podoces hendersoni, was sequenced using La-PCR and conserved primer walking approaches. The mtDNA seqnence is 16 867 bp in length and deposited in GenBank with accession number GU592504. The mitochondrial genomic organization of P. hendersoni is the same with that in chicken, which contains 13 protein coding genes (PCGs), 22 tRNA, 2 rRNA, and a control region. Except for COI gene, which uses GTG as the initiation codon, all other 12 PCGs of the P. hendersoni mtDNA start with the typical ATG codon. Codons TAA, AGG, and AGA were used in 11 PCGs as usual termination codons; however, the COIII and ND4 had incomplete termination codon T. The secondary structures of 20 tRNAs formed typical cloverleaf, except for tRNASer (AGY) that had an absence of the DHU arm and tRNALeu (CUN) in which anticodon-loop consisted of 9 bases, rather than the standard 7 bases. The secondary structures of rRNA were predicted. There are 4 domains, 43 helices structures in 12S rRNA, and 6 domains, 55 helices structures in 16S rRNA. Besides, F-box, D-box, C-box, B-box, Bird similarity-box and CSB1-box, which were found in the control region of other birds, also existed in the P. hendersoni.

  4. Comparative analysis of genetic diversity and population structure of Sipunculus nudus as revealed by mitochondrial COI sequences.

    Science.gov (United States)

    Du, Xiaodong; Chen, Zian; Deng, Yuewen; Wang, Qingheng

    2009-12-01

    Genetic diversity and population structure of Sipunculus nudus were evaluated using a 652 base pair fragment of the mitochondrial cytochrome oxidase I gene. The populations were collected from Beihai, Sanya, and Xiamen. A total of 71 polymorphic sites defined 16 distinct haplotypes. The mean haplotype diversity and nucleotide diversity of the three populations were 0.9354 ± 0.0168 and 0.0035 ± 0.0018, respectively. Analysis at the intrapopulation level showed that the Beihai population had the greatest haplotype and nucleotide diversity, followed by the Xiamen and Sanya populations. Analysis of molecular variance showed significant genetic differentiation among the three populations (Fst = 0.0796, P nudus populations had a high level of genetic diversity and distinct population structures.

  5. Integrated Analysis Identifies Interaction Patterns between Small Molecules and Pathways

    Science.gov (United States)

    Li, Yan; Li, Weiguo; Chen, Xin; Sun, Jiatong; Chen, Huan; Lv, Sali

    2014-01-01

    Previous studies have indicated that the downstream proteins in a key pathway can be potential drug targets and that the pathway can play an important role in the action of drugs. So pathways could be considered as targets of small molecules. A link map between small molecules and pathways was constructed using gene expression profile, pathways, and gene expression of cancer cell line intervened by small molecules and then we analysed the topological characteristics of the link map. Three link patterns were identified based on different drug discovery implications for breast, liver, and lung cancer. Furthermore, molecules that significantly targeted the same pathways tended to treat the same diseases. These results can provide a valuable reference for identifying drug candidates and targets in molecularly targeted therapy. PMID:25114931

  6. Association analysis identifies ZNF750 regulatory variants in psoriasis

    Directory of Open Access Journals (Sweden)

    Birnbaum Ramon Y

    2011-12-01

    Full Text Available Abstract Background Mutations in the ZNF750 promoter and coding regions have been previously associated with Mendelian forms of psoriasis and psoriasiform dermatitis. ZNF750 encodes a putative zinc finger transcription factor that is highly expressed in keratinocytes and represents a candidate psoriasis gene. Methods We examined whether ZNF750 variants were associated with psoriasis in a large case-control population. We sequenced the promoter and exon regions of ZNF750 in 716 Caucasian psoriasis cases and 397 Caucasian controls. Results We identified a total of 47 variants, including 38 rare variants of which 35 were novel. Association testing identified two ZNF750 haplotypes associated with psoriasis (p ZNF750 promoter and 5' UTR variants displayed a 35-55% reduction of ZNF750 promoter activity, consistent with the promoter activity reduction seen in a Mendelian psoriasis family with a ZNF750 promoter variant. However, the rare promoter and 5' UTR variants identified in this study did not strictly segregate with the psoriasis phenotype within families. Conclusions Two haplotypes of ZNF750 and rare 5' regulatory variants of ZNF750 were found to be associated with psoriasis. These rare 5' regulatory variants, though not causal, might serve as a genetic modifier of psoriasis.

  7. Using Factor Analysis to Identify Topic Preferences Within MBA Courses

    Directory of Open Access Journals (Sweden)

    Earl Chrysler

    2003-02-01

    Full Text Available This study demonstrates the role of a principal components factor analysis in conducting a gap analysis as to the desired characteristics of business alumni. Typically, gap analyses merely compare the emphases that should be given to areas of inquiry with perceptions of actual emphases. As a result, the focus is upon depth of coverage. A neglected area in need of investigation is the breadth of topic dimensions and their differences between the normative (should offer and the descriptive (actually offer. The implications of factor structures, as well as traditional gap analyses, are developed and discussed in the context of outcomes assessment.

  8. Using Linguistic Analysis to Identify High Performing Teams

    Science.gov (United States)

    2006-06-01

    used in two studies. Specifically, participants were told: Many people have made an extensive analysis into the effects of overpopulation , chemical... pollution , and air and water pollution . A frequent conclusion is that the next 5 to 10 years are critical because if significant changes in our society

  9. Evaluation of energy system analysis techniques for identifying underground facilities

    Energy Technology Data Exchange (ETDEWEB)

    VanKuiken, J.C.; Kavicky, J.A.; Portante, E.C. [and others

    1996-03-01

    This report describes the results of a study to determine the feasibility and potential usefulness of applying energy system analysis techniques to help detect and characterize underground facilities that could be used for clandestine activities. Four off-the-shelf energy system modeling tools were considered: (1) ENPEP (Energy and Power Evaluation Program) - a total energy system supply/demand model, (2) ICARUS (Investigation of Costs and Reliability in Utility Systems) - an electric utility system dispatching (or production cost and reliability) model, (3) SMN (Spot Market Network) - an aggregate electric power transmission network model, and (4) PECO/LF (Philadelphia Electric Company/Load Flow) - a detailed electricity load flow model. For the purposes of most of this work, underground facilities were assumed to consume about 500 kW to 3 MW of electricity. For some of the work, facilities as large as 10-20 MW were considered. The analysis of each model was conducted in three stages: data evaluation, base-case analysis, and comparative case analysis. For ENPEP and ICARUS, open source data from Pakistan were used for the evaluations. For SMN and PECO/LF, the country data were not readily available, so data for the state of Arizona were used to test the general concept.

  10. Comparison of base composition analysis and Sanger sequencing of mitochondrial DNA for four U.S. population groups.

    Science.gov (United States)

    Kiesler, Kevin M; Coble, Michael D; Hall, Thomas A; Vallone, Peter M

    2014-01-01

    A set of 711 samples from four U.S. population groups was analyzed using a novel mass spectrometry based method for mitochondrial DNA (mtDNA) base composition profiling. Comparison of the mass spectrometry results with Sanger sequencing derived data yielded a concordance rate of 99.97%. Length heteroplasmy was identified in 46% of samples and point heteroplasmy was observed in 6.6% of samples in the combined mass spectral and Sanger data set. Using discrimination capacity as a metric, Sanger sequencing of the full control region had the highest discriminatory power, followed by the mass spectrometry base composition method, which was more discriminating than Sanger sequencing of just the hypervariable regions. This trend is in agreement with the number of nucleotides covered by each of the three assays. Published by Elsevier Ireland Ltd.

  11. Compartmental analysis of dynamic nuclear medicine data: models and identifiability

    Science.gov (United States)

    Delbary, Fabrice; Garbarino, Sara; Vivaldi, Valentina

    2016-12-01

    Compartmental models based on tracer mass balance are extensively used in clinical and pre-clinical nuclear medicine in order to obtain quantitative information on tracer metabolism in the biological tissue. This paper is the first of a series of two that deal with the problem of tracer coefficient estimation via compartmental modelling in an inverse problem framework. Specifically, here we discuss the identifiability problem for a general n-dimension compartmental system and provide uniqueness results in the case of two-compartment and three-compartment compartmental models. The second paper will utilize this framework in order to show how nonlinear regularization schemes can be applied to obtain numerical estimates of the tracer coefficients in the case of nuclear medicine data corresponding to brain, liver and kidney physiology.

  12. Chemical analysis of a new kinematically identified stellar group .

    Science.gov (United States)

    Ženovienė, R.; Tautvaišienė, G.; Nordström, B.; Stonkutė, E.

    We have started a study of chemical composition of a new kinematically identified group of stars in the Galactic disc. Based on dynamical properties those stars were suspected to belong to a disrupted satellite. The main atmospheric parameters and chemical composition were determined for thirty-two stars from high resolution spectra obtained at the Nordic Optical Telescope with the spectrograph FIES. In this contribution the preliminary results of chemical composition study are presented. The metallicity of the investigated stars lie in the interval -0.2 < [Fe/H] < -0.6, their abundances of oxygen and alpha-elements are overabundant in comparison to the Galactic thin disc dwarfs at this metallicity range. This provides further evidences of their common and possibly extragalactic origin.

  13. Association analysis identifies 65 new breast cancer risk loci

    DEFF Research Database (Denmark)

    Michailidou, Kyriaki; Lindström, Sara; Dennis, Joe

    2017-01-01

    cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer risk at P risk single-nucleotide polymorphisms in these loci fall......Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast......-nucleotide polymorphisms in regulatory features was 2-5-fold enriched relative to the genome-wide average, with strong enrichment for particular transcription factor binding sites. These results provide further insight into genetic susceptibility to breast cancer and will improve the use of genetic risk scores...

  14. Monoallelic mutation analysis (MAMA) for identifying germline mutations.

    Science.gov (United States)

    Papadopoulos, N; Leach, F S; Kinzler, K W; Vogelstein, B

    1995-09-01

    Dissection of germline mutations in a sensitive and specific manner presents a continuing challenge. In dominantly inherited diseases, mutations occur in only one allele and are often masked by the normal allele. Here we report the development of a sensitive and specific diagnostic strategy based on somatic cell hybridization termed MAMA (monoallelic mutation analysis). We have demonstrated the utility of this strategy in two different hereditary colorectal cancer syndromes, one caused by a defective tumour suppressor gene on chromosome 5 (familial adenomatous polyposis, FAP) and the other caused by a defective mismatch repair gene on chromosome 2 (hereditary non-polyposis colorectal cancer, HNPCC).

  15. Genetic diversity analysis of mitochondrial DNA control region in artificially propagated Chinese sucker Myxocyprinus asiaticus.

    Science.gov (United States)

    Wan, Yuan; Zhou, Chun-Hua; Ouyang, Shan; Huang, Xiao-Chen; Zhan, Yang; Zhou, Ping; Rong, Jun; Wu, Xiao-Ping

    2015-08-01

    The genetic diversity of the three major artificially propagated populations of Chinese sucker, an endangered freshwater fish species, was investigated using the sequences of mitochondrial DNA (mtDNA) control regions. Among the 89 individuals tested, 66 variable sites (7.26%) and 10 haplotypes were detected (Haplotype diversity Hd = 0.805, Nucleotide diversity π = 0.0287). In general, genetic diversity was lower in artificially propagated populations than in wild populations. This reduction in genetic diversity may be due to population bottlenecks, genetic drift and human selection. A stepping-stone pattern of gene flow was detected in the populations studied, showing much higher gene flow between neighbouring populations. To increase the genetic diversity, wild lineages should be introduced, and more lineages should be shared among artificially propagated populations.

  16. Sequencing and analysis of the complete mitochondrial genome of Elaphe anomala (Squamata Colubridae).

    Science.gov (United States)

    Liu, Peng; Zhao, Wen-Ge

    2016-07-01

    In this study, the complete mitogenome sequence of Elaphe anomala (Squamata: Colubridae) is first determined using long PCR. It is a circular molecule of 17,164 bp in length and contains 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes and 2 control regions (CRI and CRII). The gene order and nucleotide composition of E. anomala are very similar with E. schrenckii. Mitochondrial genomes analyses based on the NJ method yield phylogenetic tree of 17 species snakes of Colubridae. Species E. anomala, E. schrenckii, E. bimaculata and E. davidi seemed to have formed a monophyletic group with the high bootstrap value (100%) except E. poryphyracea. Oligodon ningshaanensis and Thermophis zhaoermii are special species. The molecular data presented here provide a useful tool for setting the stage for further studies.

  17. Sequencing and analysis of the complete mitochondrial genome of Hyla ussuriensis (Anura: Hylidae).

    Science.gov (United States)

    Sun, Qinglin; Xie, Yuhui; Zhao, Wenge; Liu, Peng

    2017-05-01

    In this study, the complete mitogenome sequence of Hyla ussuriensis (Anura: Hylidae) is first determined using long PCR. It is a circular molecule of 18 023 bp in length (GenBank accession no. KT964710). Similar to the typical mtDNA of amphibians, the complete mtDNA sequence of Hyla ussuriensis contained two rRNA genes (12S rRNA and 16S rRNA), 22 tRNA genes, 13 protein-coding genes (PCGs), and a control region (D-loop). The nucleotide composition was 29.9% A, 25.4% C, 14.5% G, and 30.2% T. Mitochondrial genomes analyses based on NJ method yield phylogenetic trees, indicating 13 reported Anura frogs belonging to five families (Hylidae, Bufonidae, Microhylidae, Ranidae, and Rhacophoridae). These molecular data presented here provide a useful tool for systematic analyses of genus Hyla and family Hylidae.

  18. Comparative analysis of mitochondrial genomes in Diplura (hexapoda, arthropoda): taxon sampling is crucial for phylogenetic inferences.

    Science.gov (United States)

    Chen, Wan-Jun; Koch, Markus; Mallatt, Jon M; Luan, Yun-Xia

    2014-01-01

    Two-pronged bristletails (Diplura) are traditionally classified into three major superfamilies: Campodeoidea, Projapygoidea, and Japygoidea. The interrelationships of these three superfamilies and the monophyly of Diplura have been much debated. Few previous studies included Projapygoidea in their phylogenetic considerations, and its position within Diplura still is a puzzle from both morphological and molecular points of view. Until now, no mitochondrial genome has been sequenced for any projapygoid species. To fill in this gap, we determined and annotated the complete mitochondrial genome of Octostigma sinensis (Octostigmatidae, Projapygoidea), and of three more dipluran species, one each from the Campodeidae, Parajapygidae, and Japygidae. All four newly sequenced dipluran mtDNAs encode the same set of genes in the same gene order as shared by most crustaceans and hexapods. Secondary structure truncations have occurred in trnR, trnC, trnS1, and trnS2, and the reduction of transfer RNA D-arms was found to be taxonomically correlated, with Campodeoidea having experienced the most reduction. Partitioned phylogenetic analyses, based on both amino acids and nucleotides of the protein-coding genes plus the ribosomal RNA genes, retrieve significant support for a monophyletic Diplura within Pancrustacea, with Projapygoidea more closely related to Campodeoidea than to Japygoidea. Another key finding is that monophyly of Diplura cannot be recovered unless Projapygoidea is included in the phylogenetic analyses; this explains the dipluran polyphyly found by past mitogenomic studies. Including Projapygoidea increased the sampling density within Diplura and probably helped by breaking up a long-branch-attraction artifact. This finding provides an example of how proper sampling is significant for phylogenetic inference.

  19. Common missense mutation G1528C in long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Characterization and expression of the mutant protein, mutation analysis on genomic DNA and chromosomal localization of the mitochondrial trifunctional protein alpha subunit gene

    NARCIS (Netherlands)

    IJlst, L.; Ruiter, J. P.; Hoovers, J. M.; Jakobs, M. E.; Wanders, R. J.

    1996-01-01

    Mitochondrial trifunctional protein (MTP) is a recently identified enzyme involved in mitochondrial beta-oxidation, harboring long-chain enoyl-CoA hydratase, long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and long-chain 3-ketothiolase activity. A deficiency of this protein is associated with

  20. Genetic analysis of CHARGE syndrome identifies overlapping molecular biology.

    Science.gov (United States)

    Moccia, Amanda; Srivastava, Anshika; Skidmore, Jennifer M; Bernat, John A; Wheeler, Marsha; Chong, Jessica X; Nickerson, Deborah; Bamshad, Michael; Hefner, Margaret A; Martin, Donna M; Bielas, Stephanie L

    2018-01-04

    PurposeCHARGE syndrome is an autosomal-dominant, multiple congenital anomaly condition characterized by vision and hearing loss, congenital heart disease, and malformations of craniofacial and other structures. Pathogenic variants in CHD7, encoding adenosine triphosphate-dependent chromodomain helicase DNA binding protein 7, are present in the majority of affected individuals. However, no causal variant can be found in 5-30% (depending on the cohort) of individuals with a clinical diagnosis of CHARGE syndrome.MethodsWe performed whole-exome sequencing (WES) on 28 families from which at least one individual presented with features highly suggestive of CHARGE syndrome.ResultsPathogenic variants in CHD7 were present in 15 of 28 individuals (53.6%), whereas 4 (14.3%) individuals had pathogenic variants in other genes (RERE, KMT2D, EP300, or PUF60). A variant of uncertain clinical significance in KDM6A was identified in one (3.5%) individual. The remaining eight (28.6%) individuals were not found to have pathogenic variants by WES.ConclusionThese results demonstrate that the phenotypic features of CHARGE syndrome overlap with multiple other rare single-gene syndromes. Additionally, they implicate a shared molecular pathology that disrupts epigenetic regulation of multiple-organ development.GENETICS in MEDICINE advance online publication, 4 January 2018; doi:10.1038/gim.2017.233.

  1. Immunogenicity of novel Dengue virus epitopes identified by bioinformatic analysis.

    Science.gov (United States)

    Sánchez-Burgos, Gilma; Ramos-Castañeda, José; Cedillo-Rivera, Roberto; Dumonteil, Eric

    2010-10-01

    We used T cell epitope prediction tools to identify epitopes from Dengue virus polyprotein sequences, and evaluated in vivo and in vitro the immunogenicity and antigenicity of the corresponding synthetic vaccine candidates. Twenty-two epitopes were predicted to have a high affinity for MHC class I (H-2Kd, H-2Dd, H-2Ld alleles) or class II (IAd alleles). These epitopes were conserved between the four virus serotypes, but with no similarity to human and mouse sequences. Thirteen synthetic peptides induced specific antibodies production with or without T cells activation in mice. Three synthetic peptides induced mostly IgG antibodies, and one of these from the E gene induced a neutralizing response. Ten peptides induced a combination of humoral and cellular responses by CD4+ and CD8+ T cells. Twelve peptides were novel B and T cell epitopes. These results indicate that our bioinformatics strategy is a powerful tool for the identification of novel antigens and its application to human HLA may lead to a potent epitope-based vaccine against Dengue virus and many other pathogens. (c) 2010 Elsevier B.V. All rights reserved.

  2. Genetic variation within and among Danish brown trout ( Salmo trutta L) hatchery strains, assessed by PCR-RFLP analysis of mitochondrial DNA segments

    DEFF Research Database (Denmark)

    Hansen, Michael Møller; Mensberg, Karen-Lise Dons; Rasmussen, Gorm

    1997-01-01

    Eleven Danish brown trout hatchery strains were studied by PCR- RFLP analysis of the ND-I and ND-5/6 segments of the mitochondrial genome. For comparison, data from wild trout representing three Danish river systems also were included. Reduced variability in terms of nucleon diversity and number...

  3. Identifying a preservation zone using multicriteria decision analysis

    Energy Technology Data Exchange (ETDEWEB)

    Farashi, A.; Naderi, M.; Parvian, N.

    2016-07-01

    Zoning of a protected area is an approach to partition landscape into various land use units. The management of these landscape units can reduce conflicts caused by human activities. Tandoreh National Park is one of the most biologically diverse, protected areas in Iran. Although the area is generally designed to protect biodiversity, there are many conflicts between biodiversity conservation and human activities. For instance, the area is highly controversial and has been considered as an impediment to local economic development, such as tourism, grazing, road construction, and cultivation. In order to reduce human conflicts with biodiversity conservation in Tandoreh National Park, safe zones need to be established and human activities need to be moved out of the zones. In this study we used a systematic methodology to integrate a participatory process with Geographic Information Systems (GIS) using a multi–criteria decision analysis (MCDA) technique to guide a zoning scheme for the Tandoreh National Park, Iran. Our results show that the northern and eastern parts of the Tandoreh National Park that were close to rural areas and farmlands returned less desirability for selection as a preservation area. Rocky Mountains were the most important and most destructed areas and abandoned plains were the least important criteria for preservation in the area. Furthermore, the results reveal that the land properties were considered to be important for protection based on the obtaine. (Author)

  4. Identifying a preservation zone using multi–criteria decision analysis

    Directory of Open Access Journals (Sweden)

    Farashi, A.

    2016-03-01

    Full Text Available Zoning of a protected area is an approach to partition landscape into various land use units. The management of these landscape units can reduce conflicts caused by human activities. Tandoreh National Park is one of the most biologically diverse, protected areas in Iran. Although the area is generally designed to protect biodiversity, there are many conflicts between biodiversity conservation and human activities. For instance, the area is highly controversial and has been considered as an impediment to local economic development, such as tourism, grazing, road construction, and cultivation. In order to reduce human conflicts with biodiversity conservation in Tandoreh National Park, safe zones need to be established and human activities need to be moved out of the zones. In this study we used a systematic methodology to integrate a participatory process with Geographic Information Systems (GIS using a multi–criteria decision analysis (MCDA technique to guide a zoning scheme for the Tandoreh National Park, Iran. Our results show that the northern and eastern parts of the Tandoreh National Park that were close to rural areas and farmlands returned less desirability for selection as a preservation area. Rocky Mountains were the most important and most destructed areas and abandoned plains were the least important criteria for preservation in the area. Furthermore, the results reveal that the land properties were considered to be important for protection based on the obtaine

  5. Meconium microbiome analysis identifies bacteria correlated with premature birth.

    Directory of Open Access Journals (Sweden)

    Alexandria N Ardissone

    Full Text Available Preterm birth is the second leading cause of death in children under the age of five years worldwide, but the etiology of many cases remains enigmatic. The dogma that the fetus resides in a sterile environment is being challenged by recent findings and the question has arisen whether microbes that colonize the fetus may be related to preterm birth. It has been posited that meconium reflects the in-utero microbial environment. In this study, correlations between fetal intestinal bacteria from meconium and gestational age were examined in order to suggest underlying mechanisms that may contribute to preterm birth.Meconium from 52 infants ranging in gestational age from 23 to 41 weeks was collected, the DNA extracted, and 16S rRNA analysis performed. Resulting taxa of microbes were correlated to clinical variables and also compared to previous studies of amniotic fluid and other human microbiome niches.Increased detection of bacterial 16S rRNA in meconium of infants of <33 weeks gestational age was observed. Approximately 61·1% of reads sequenced were classified to genera that have been reported in amniotic fluid. Gestational age had the largest influence on microbial community structure (R = 0·161; p = 0·029, while mode of delivery (C-section versus vaginal delivery had an effect as well (R = 0·100; p = 0·044. Enterobacter, Enterococcus, Lactobacillus, Photorhabdus, and Tannerella, were negatively correlated with gestational age and have been reported to incite inflammatory responses, suggesting a causative role in premature birth.This provides the first evidence to support the hypothesis that the fetal intestinal microbiome derived from swallowed amniotic fluid may be involved in the inflammatory response that leads to premature birth.

  6. Comparative genomic analysis reveals a novel mitochondrial isoform of human rTS protein and unusual phylogenetic distribution of the rTS gene

    Directory of Open Access Journals (Sweden)

    McGuire John J

    2005-09-01

    Full Text Available Abstract Background The rTS gene (ENOSF1, first identified in Homo sapiens as a gene complementary to the thymidylate synthase (TYMS mRNA, is known to encode two protein isoforms, rTSα and rTSβ. The rTSβ isoform appears to be an enzyme responsible for the synthesis of signaling molecules involved in the down-regulation of thymidylate synthase, but the exact cellular functions of rTS genes are largely unknown. Results Through comparative genomic sequence analysis, we predicted the existence of a novel protein isoform, rTS, which has a 27 residue longer N-terminus by virtue of utilizing an alternative start codon located upstream of the start codon in rTSβ. We observed that a similar extended N-terminus could be predicted in all rTS genes for which genomic sequences are available and the extended regions are conserved from bacteria to human. Therefore, we reasoned that the protein with the extended N-terminus might represent an ancestral form of the rTS protein. Sequence analysis strongly predicts a mitochondrial signal sequence in the extended N-terminal of human rTSγ, which is absent in rTSβ. We confirmed the existence of rTS in human mitochondria experimentally by demonstrating the presence of both rTSγ and rTSβ proteins in mitochondria isolated by subcellular fractionation. In addition, our comprehensive analysis of rTS orthologous sequences reveals an unusual phylogenetic distribution of this gene, which suggests the occurrence of one or more horizontal gene transfer events. Conclusion The presence of two rTS isoforms in mitochondria suggests that the rTS signaling pathway may be active within mitochondria. Our report also presents an example of identifying novel protein isoforms and for improving gene annotation through comparative genomic analysis.

  7. Mitochondrial genomes of the jungle crow Corvus macrorhynchos (Passeriformes: Corvidae) from shed feathers and a phylogenetic analysis of genus Corvus using mitochondrial protein-coding genes.

    Science.gov (United States)

    Krzeminska, Urszula; Wilson, Robyn; Rahman, Sadequr; Song, Beng Kah; Seneviratne, Sampath; Gan, Han Ming; Austin, Christopher M

    2016-07-01

    The complete mitochondrial genomes of two jungle crows (Corvus macrorhynchos) were sequenced. DNA was extracted from tissue samples obtained from shed feathers collected in the field in Sri Lanka and sequenced using the Illumina MiSeq Personal Sequencer. Jungle crow mitogenomes have a structural organization typical of the genus Corvus and are 16,927 bp and 17,066 bp in length, both comprising 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal subunit genes, and a non-coding control region. In addition, we complement already available house crow (Corvus spelendens) mitogenome resources by sequencing an individual from Singapore. A phylogenetic tree constructed from Corvidae family mitogenome sequences available on GenBank is presented. We confirm the monophyly of the genus Corvus and propose to use complete mitogenome resources for further intra- and interspecies genetic studies.

  8. Analysis of mitochondrial control region nucleotide sequences from Baffin Bay beluga, (Delphinapterus leucas: detecting pods or sub-populations?

    Directory of Open Access Journals (Sweden)

    Per Jakob Palsbøll

    2002-07-01

    Full Text Available We report the results of an analysis of the variation in the nucleotide sequence of the mitochondrial control region obtained in 218 samples collected from belugas, Delphinapterus leucas, around the Baffin Bay. We detected multiple instances of significant heterogeneity in the distribution of genetic variation among the analyzed mitochondrial control region sequences on a spatial as well as temporal scale indicating a high degree of maternal population structure. The detection of significant levels of heterogeneity between samples collected in different years but within the same area and season was unexpected. Re-examination of earlier results presented by Brown Gladden and coworkers also revealed temporal genetic heterogeneity within the one area where sufficient (n>15 samples were collected in multiple years. These findings suggest that non-random breeding and maternally directed site-fidelity are not the sole causes of genetic heterogeneity among belugas but that a matrilineal pod structure might cause significant levels of genetic heterogeneity as well, even within the same area. We propose that a maternal pod structure, which has been shown to be the cause of significant genetic heterogeneity in other odontocetes, may add to the overall level of heterogeneity in the maternally inherited DNA and hence that much of the spatial heterogeneity observed in this and previous studies might be attributed to pod rather than population structure. Our findings suggest that it is important to estimate the contribution of pod structure to overall heterogeneity before defining populations or management units in order to avoid interpreting heterogeneity due to sampling of different pods as different populations/management units.

  9. A comparative analysis of mitochondrial genomes in Orthoptera (Arthropoda: Insecta) and genome descriptions of three grasshopper species.

    Science.gov (United States)

    Zhao, Ling; Zheng, Zhe-Min; Huang, Yuan; Sun, Hui-Min

    2010-08-01

    The complete sequences of mitochondrial DNA (mtDNA) from the three new grasshopper species, Euchorthippus fusigeniculatus, Mekongiana xiangchengensis and Mekongiella xizangensis, consisting of 15772 bp, 15567 bp, and 15885 bp, respectively, were analyzed and compared to mtDNAs from other 19 Orthoptera species obtained from GenBank. The three mitochondrial genomes contain a standard set of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes. and an A+T-rich region in the same order as those of the other analyzed caeliferan species, but different from those of the ensiferan species by the rearrangement of trnD and trnK. The putative initiation codon for the cox1 gene is ATC in E. fusigeniculatus, CTG in M. xiangchengensis and CCG in M. xizangensis. All secondary structures of tRNA-Ser((AGN)) in the three species lack a DHU arm. In this study, we stressed the comparative analysis of the stem-loop secondary structure in A+T-rich region of all Orthoptera species available to date, and report new findings which may facilitate further investigation and better understanding of this secondary structure. Finally, we undertook a phylogenetic study of all Orthoptera species available from GenBank to date based on three different datasets using parsimony, maximum likelihood, and Bayesian inference. Our result showed that protein-coding genes (PCG) and amino acid sequences (PCG_PROT) provided good resolution of higher-level relationships within the Orthoptera, whereas ribosomal RNA genes (RIBO) perform poorly under different optimality criteria.

  10. Assessment of nuclear and mitochondrial genes in precise identification and analysis of genetic polymorphisms for the evaluation of Leishmania parasites.

    Science.gov (United States)

    Fotouhi-Ardakani, Reza; Dabiri, Shahriar; Ajdari, Soheila; Alimohammadian, Mohammad Hossein; AlaeeNovin, Elnaz; Taleshi, Neda; Parvizi, Parviz

    2016-12-01

    The polymorphism and genetic diversity of Leishmania genus has status under discussion depending on many items such as nuclear and/or mitochondrial genes, molecular tools, Leishmania species, geographical origin, condition of micro-environment of Leishmania parasites and isolation of Leishmania from clinical samples, reservoir host and vectors. The genetic variation of Leishmania species (L. major, L. tropica, L. tarentolae, L. mexicana, L. infantum) were analyzed and compared using mitochondrial (COII and Cyt b) and nuclear (nagt, ITS-rDNA and HSP70) genes. The role of each enzymatic (COII, Cyt b and nagt) or housekeeping (ITS-rDNA, HSP70) gene was employed for accurate identification of Leishmania parasites. After DNA extractions and amplifying of native, natural and reference strains of Leishmania parasites, polymerase chain reaction (PCR) products were sequenced and evaluation of genetic proximity and phylogenetic analysis were performed using MEGA6 and DnaSP5 software. Among the 72 sequences of the five genes, the number of polymorphic sites was significantly lower as compared to the monomorphic sites. Of the 72 sequences, 54 new haplotypes (five genes) of Leishmania species were submitted in GenBank (Access number: KU680818 - KU680871). Four genes had a remarkable number of informative sites (P=0.00), except HSP70 maybe because of its microsatellite regions. The non-synonymous (dN) variants of nagt gene were more than that of other expression genes (47.4%). The synonymous (dS)/dN ratio in three expression genes showed a significant variation between five Leishmania species (P=0.001). The highest and lowest levels of haplotype diversity were observed in L. tropica (81.35%) and L. major (28.38%) populations, respectively. Tajima's D index analyses showed that Cyt b gene in L. tropica species was significantly negative (Tajima's D=-2.2, PLeishmania parasites. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Analysis of selective constraints on mitochondrial DNA, flight ability and physiological index on avian.

    Science.gov (United States)

    Zhang, Shanxin; Han, Jiuqiang; Zhong, Dexing; Wang, Tuo

    2013-01-01

    For most of the birds in the word, they can be divided into two main groups, i.e. resident birds and migratory ones. Most of the energy required for long-distance migration is supplied by mitochondria via oxidative phosphorylation. Therefore, the evolutionary constraints acted on the mitochondria DNA (mtDNA) are considered to vary with the locomotive abilities and flight speed. The flight speed is assumed to increase with mass and wing loading according to the fundamental aerodynamic theories, which is common between aves and aircrafts. We compared 148 avian mitochondrial genomes and main physiological parameters. More nonsynonymous nucleotide substitutions than synonymous ones are accumulated in low-speed and flightless birds rather than high-speed flying birds. No matter how the speed is obtained, directly measured or estimated through physiological index. Our results demonstrated that, besides artificial and environmental factors, selective constraints relevant to flight ability play an essential role in the evolution of mtDNA, even it might cause the extinction of avian species.

  12. Species Authentication of Common Meat Based on PCR Analysis of the Mitochondrial COI Gene.

    Science.gov (United States)

    Dai, Zhenyu; Qiao, Jiao; Yang, Siran; Hu, Shen; Zuo, Jingjing; Zhu, Weifeng; Huang, Chunhong

    2015-07-01

    Adulteration of meat products and costly animal-derived commodities with their inferior/cheaper counterparts is a grievous global problem. Species authentication is still technical challenging, especially to those deep processed products. The present study described the design of seven sets of species-specific primer based on a high heterozygous region of mitochondrial cytochrome c oxidase subunit I (COI) gene. These primers were proven to have high species specificity and no cross-reactions and unexpected products to different DNA source. Multiplex PCR assay was achieved for rapid and economical identification of four commonly consumed meats (pork, beef, chicken, and mutton). The conventional PCR assay was sensitive down to 0.001 ng of DNA template in the reactant. The developed method was also powerful in detecting as low as 0.1-mg adulterated pork (0.05 % in wt/wt) in an artificial counterfeited mutton. Validation test showed that the assay is specific, reproducible, and robust in commercial deep processed meats, leatherware, and feather commodities. This proposed method will be greatly beneficial to the consumers, food industry, leather, and feather commodity manufacture.

  13. Reconstructing the colonization history of lost wolf lineages by the analysis of the mitochondrial genome.

    Science.gov (United States)

    Matsumura, Shuichi; Inoshima, Yasuo; Ishiguro, Naotaka

    2014-11-01

    The grey wolves (Canis lupus) originally inhabited major parts of the Northern hemisphere, but many local populations became extinct. Two lineages of wolves in Japan, namely, Japanese or Honshu (C. l. hodophilax) and Ezo or Hokkaido (C. l. hattai) wolves, rapidly went extinct between 100 and 120years ago. Here we analyse the complete mitochondrial genome sequences from ancient specimens and reconstruct the colonization history of the two extinct subspecies. We show a unique status of Japanese wolves in wolf phylogeny, suggesting their long time separation from other grey wolf populations. Japanese wolves appeared to have colonized the Japanese archipelago in the Late Pleistocene (ca. 25,000-125,000years ago). By contrast, Ezo wolves, which are clearly separated from Japanese wolves in phylogeny, are likely to have arrived at Japan relatively recently (wolf populations in Europe and America during the last several millennia. Our analyses suggest that at least several thousands of wolves once inhabited in the Japanese archipelago. Our analyses also show that an enigmatic clade of domestic dogs is likely to have originated from rare admixture events between male dogs and female Japanese wolves. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Genetic Analysis of Mitochondrial Ribosomal Proteins and Cognitive Aging in Postmenopausal Women.

    Science.gov (United States)

    Mozhui, Khyobeni; Snively, Beverly M; Rapp, Stephen R; Wallace, Robert B; Williams, Robert W; Johnson, Karen C

    2017-01-01

    Genes encoding mitochondrial ribosomal proteins ( MRPs ) have been linked to aging and longevity in model organisms (i.e., mice, Caenorhabditis elegans ). Here we evaluated if the MRPs have conserved effects on aging traits in humans. We utilized data from 4,504 participants of the Women's Health Initiative Memory Study (WHIMS) who had both longitudinal cognitive data and genetic data. Two aging phenotypes were considered: (1) gross lifespan (time to all-cause mortality), and (2) cognitive aging (longitudinal rate of change in modified mini-mental state scores). We tested genetic association with variants in 78 members of the MRP gene family. Genetic association tests were done at the single nucleotide polymorphism (SNP) level, and at gene-set level using two distinct procedures (GATES and MAGMA). We included SNPs in APOE and adjusted the tests for the APOE -ε4 allele, a known risk factor for dementia. The strongest association signal is for the known cognitive aging SNP, rs429358, in APOE ( p -value = 5 × 10 -28 for cognitive aging; p -value = 0.03 for survival). We found no significant association between the MRPs and survival time. For cognitive aging, we detected SNP level association for rs189661478 in MRPL23 ( p -value cognitive aging. In conclusion, our results indicate a potential pathway-level association between the MRPs and cognitive aging that is independent of the APOE locus. We however did not detect association between the MRP s and lifespan.

  15. The complete mitochondrial genome of rabbit pinworm Passalurus ambiguus: genome characterization and phylogenetic analysis.

    Science.gov (United States)

    Liu, Guo-Hua; Li, Sheng; Zou, Feng-Cai; Wang, Chun-Ren; Zhu, Xing-Quan

    2016-01-01

    Passalurus ambiguus (Nematda: Oxyuridae) is a common pinworm which parasitizes in the caecum and colon of rabbits. Despite its significance as a pathogen, the epidemiology, genetics, systematics, and biology of this pinworm remain poorly understood. In the present study, we sequenced the complete mitochondrial (mt) genome of P. ambiguus. The circular mt genome is 14,023 bp in size and encodes of 36 genes, including 12 protein-coding, two ribosomal RNA, and 22 transfer RNA genes. The mt gene order of P. ambiguus is the same as that of Wellcomia siamensis, but distinct from that of Enterobius vermicularis. Phylogenetic analyses based on concatenated amino acid sequences of 12 protein-coding genes by Bayesian inference (BI) showed that P. ambiguus was more closely related to W. siamensis than to E. vermicularis. This mt genome provides novel genetic markers for studying the molecular epidemiology, population genetics, systematics of pinworm of animals and humans, and should have implications for the diagnosis, prevention, and control of passaluriasis in rabbits and other animals.

  16. Sequence Analysis of Mitochondrial Genome ofToxascaris leoninafrom a South China Tiger.

    Science.gov (United States)

    Li, Kangxin; Yang, Fang; Abdullahi, A Y; Song, Meiran; Shi, Xianli; Wang, Minwei; Fu, Yeqi; Pan, Weida; Shan, Fang; Chen, Wu; Li, Guoqing

    2016-12-01

    Toxascaris leonina is a common parasitic nematode of wild mammals and has significant impacts on the protection of rare wild animals. To analyze population genetic characteristics of T. leonina from South China tiger, its mitochondrial (mt) genome was sequenced. Its complete circular mt genome was 14,277 bp in length, including 12 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 2 non-coding regions. The nucleotide composition was biased toward A and T. The most common start codon and stop codon were TTG and TAG, and 4 genes ended with an incomplete stop codon. There were 13 intergenic regions ranging 1 to 10 bp in size. Phylogenetically, T. leonina from a South China tiger was close to canine T. leonina . This study reports for the first time a complete mt genome sequence of T. leonina from the South China tiger, and provides a scientific basis for studying the genetic diversity of nematodes between different hosts.

  17. Automated Measurement of Fast Mitochondrial Transport in Neurons

    Directory of Open Access Journals (Sweden)

    Kyle eMiller

    2015-11-01

    Full Text Available There is a growing recognition that fast mitochondrial transport in neurons is disrupted in multiple neurological diseases and psychiatric disorders. However a major constraint in identifying novel therapeutics based on mitochondrial transport is that the large-scale analysis of fast transport is time consuming. Here we describe methodologies for the automated analysis of fast mitochondrial transport from data acquired using a robotic microscope. We focused on addressing questions of measurement precision, speed, reliably, workflow ease, statistical processing and presentation. We used optical flow and particle tracking algorithms, implemented in ImageJ, to measure mitochondrial movement in primary cultured cortical and hippocampal neurons. With it, we are able to generate complete descriptions of movement profiles in an automated fashion of hundred of thousands of mitochondria with a processing time of approximately one hour. We describe the calibration of the parameters of the tracking algorithms and demonstrate that they are capable of measuring the fast transport of a single mitochondrion. We then show that the methods are capable of reliably measuring the inhibition of fast mitochondria transport induced by the disruption of microtubules with the drug nocodazole in both hippocampal and cortical neurons. This work lays the foundation for future large-scale screens designed to identify compounds that modulate mitochondrial motility.

  18. Complete Mitochondrial Genome of the Medicinal Mushroom Ganoderma lucidum

    Science.gov (United States)

    Chen, Haimei; Chen, Xiangdong; Lan, Jin; Liu, Chang

    2013-01-01

    Ganoderma lucidum is one of the well-known medicinal basidiomycetes worldwide. The mitochondrion, referred to as the second genome, is an organelle found in most eukaryotic cells and participates in critical cellular functions. Elucidating the structure and function of this genome is important to understand completely the genetic contents of G. lucidum. In this study, we assembled the mitochondrial genome of G. lucidum and analyzed the differential expressions of its encoded genes across three developmental stages. The mitochondrial genome is a typical circular DNA molecule of 60,630 bp with a GC content of 26.67%. Genome annotation identified genes that encode 15 conserved proteins, 27 tRNAs, small and large rRNAs, four homing endonucleases, and two hypothetical proteins. Except for genes encoding trnW and two hypothetical proteins, all genes were located on the positive strand. For the repeat structure analysis, eight forward, two inverted, and three tandem repeats were detected. A pair of fragments with a total length around 5.5 kb was found in both the nuclear and mitochondrial genomes, which suggests the possible transfer of DNA sequences between two genomes. RNA-Seq data for samples derived from three stages, namely, mycelia, primordia, and fruiting bodies, were mapped to the mitochondrial genome and qualified. The protein-coding genes were expressed higher in mycelia or primordial stages compared with those in the fruiting bodies. The rRNA abundances were significantly higher in all three stages. Two regions were transcribed but did not contain any identified protein or tRNA genes. Furthermore, three RNA-editing sites were detected. Genome synteny analysis showed that significant genome rearrangements occurred in the mitochondrial genomes. This study provides valuable information on the gene contents of the mitochondrial genome and their differential expressions at various developmental stages of G. lucidum. The results contribute to the understanding of the

  19. Complete mitochondrial genome of the medicinal mushroom Ganoderma lucidum.

    Directory of Open Access Journals (Sweden)

    Jianqin Li

    Full Text Available Ganoderma lucidum is one of the well-known medicinal basidiomycetes worldwide. The mitochondrion, referred to as the second genome, is an organelle found in most eukaryotic cells and participates in critical cellular functions. Elucidating the structure and function of this genome is important to understand completely the genetic contents of G. lucidum. In this study, we assembled the mitochondrial genome of G. lucidum and analyzed the differential expressions of its encoded genes across three developmental stages. The mitochondrial genome is a typical circular DNA molecule of 60,630 bp with a GC content of 26.67%. Genome annotation identified genes that encode 15 conserved proteins, 27 tRNAs, small and large rRNAs, four homing endonucleases, and two hypothetical proteins. Except for genes encoding trnW and two hypothetical proteins, all genes were located on the positive strand. For the repeat structure analysis, eight forward, two inverted, and three tandem repeats were detected. A pair of fragments with a total length around 5.5 kb was found in both the nuclear and mitochondrial genomes, which suggests the possible transfer of DNA sequences between two genomes. RNA-Seq data for samples derived from three stages, namely, mycelia, primordia, and fruiting bodies, were mapped to the mitochondrial genome and qualified. The protein-coding genes were expressed higher in mycelia or primordial stages compared with those in the fruiting bodies. The rRNA abundances were significantly higher in all three stages. Two regions were transcribed but did not contain any identified protein or tRNA genes. Furthermore, three RNA-editing sites were detected. Genome synteny analysis showed that significant genome rearrangements occurred in the mitochondrial genomes. This study provides valuable information on the gene contents of the mitochondrial genome and their differential expressions at various developmental stages of G. lucidum. The results contribute to the

  20. Permeabilized myocardial fibers as model to detect mitochondrial dysfunction during sepsis and melatonin effects without disruption of mitochondrial network.

    Science.gov (United States)

    Doerrier, Carolina; García, José A; Volt, Huayqui; Díaz-Casado, María E; Luna-Sánchez, Marta; Fernández-Gil, Beatriz; Escames, Germaine; López, Luis C; Acuña-Castroviejo, Darío

    2016-03-01

    Analysis of mitochondrial function is crucial to understand their involvement in a given disease. High-resolution respirometry of permeabilized myocardial fibers in septic mice allows the evaluation of the bioenergetic system, maintaining mitochondrial ultrastructure and intracellular interactions, which are critical for an adequate functionality. OXPHOS and electron transport system (ETS) capacities were assessed using different substrate combinations. Our findings show a severe septic-dependent impairment in OXPHOS and ETS capacities with mitochondrial uncoupling at early and late phases of sepsis. Moreover, sepsis triggers complex III (CIII)-linked alterations in supercomplexes structure, and loss of mitochondrial density. In these conditions, melatonin administration to septic mice prevented sepsis-dependent mitochondrial injury in mitochondrial respiration. Likewise, melatonin improved cytochrome b content and ameliorated the assembly of CIII in supercomplexes. These results support the use of permeabilized fibers to identify properly the respiratory deficits and specific melatonin effects in sepsis. Copyright © 2015 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  1. Genetic origin of goat populations in Oman revealed by mitochondrial DNA analysis.

    Directory of Open Access Journals (Sweden)

    Nasser Ali Al-Araimi

    Full Text Available The Sultanate of Oman has a complex mosaic of livestock species and production systems, but the genetic diversity, demographic history or origins of these Omani animals has not been expensively studied. Goats might constitute one of the most abundant and important domestic livestock species since the Neolithic transition. Here, we examined the genetic diversity, origin, population structure and demographic history of Omani goats. Specifically, we analyzed a 525-bp fragment of the first hypervariable region of the mitochondrial DNA (mtDNA control region from 69 Omani individuals and compared this fragment with 17 mtDNA sequences from Somalia and Yemen as well as 18 wild goat species and 1,198 previously published goat sequences from neighboring countries. The studied goat breeds show substantial diversity. The haplotype and nucleotide diversities of Omani goats were found equal to 0.983 ± 0.006 and 0.0284 ± 0.014, respectively. The phylogenetic analyses allowed us to classify Omani goats into three mtDNA haplogroups (A, B and G: haplogroup A was found to be predominant and widely distributed and accounted for 80% of all samples, and haplogroups B and G exhibited low frequencies. Phylogenetic comparisons with wild goats revealed that five of the native Omani goat populations originate from Capra aegagrus. Furthermore, most comparisons of pairwise population FST values within and between these five Omani goat breeds as well as between Omani goats and nine populations from nearby countries were not significant. These results suggest strong gene flow among goat populations caused by the extensive transport of goats and the frequent movements of human populations in ancient Arabia. The findings improve our understanding of the migration routes of modern goats from their region of domestication into southeastern Arabia and thereby shed light on human migratory and commercial networks during historical times.

  2. Different Evolutionary History for Basque Diaspora Populations in USA and Argentina Unveiled by Mitochondrial DNA Analysis.

    Science.gov (United States)

    Baeta, Miriam; Núñez, Carolina; Cardoso, Sergio; Palencia-Madrid, Leire; Piñeiro-Hermida, Sergio; Arriba-Barredo, Miren; Villanueva-Millán, María Jesús; M de Pancorbo, Marian

    2015-01-01

    The Basque Diaspora in Western USA and Argentina represents two populations which have maintained strong Basque cultural and social roots in a completely different geographic context. Hence, they provide an exceptional opportunity to study the maternal genetic legacy from the ancestral Basque population and assess the degree of genetic introgression from the host populations in two of the largest Basque communities outside the Basque Country. For this purpose, we analyzed the complete mitochondrial DNA control region of Basque descendants living in Western USA (n = 175) and in Argentina (n = 194). The Diaspora populations studied here displayed a genetic diversity in their European maternal input which was similar to that of the Basque source populations, indicating that not important founder effects would have occurred. Actually, the genetic legacy of the Basque population still prevailed in their present-day maternal pools, by means of a haplogroup distribution similar to the source population characterized by the presence of autochthonous Basque lineages, such as U5b1f1a and J1c5c1. However, introgression of non-Basque lineages, mostly Native American, has been observed in the Diaspora populations, particularly in Argentina, where the quick assimilation of the newcomers would have favored a wider admixture with host populations. In contrast, a longer isolation of the Diaspora groups in USA, because of language and cultural differences, would have limited the introgression of local lineages. This study reveals important differences in the maternal evolutionary histories of these Basque Diaspora populations, which have to be taken into consideration in forensic and medical genetic studies.

  3. Phosphine resistance in Australian Cryptolestes species (Coleoptera: Laemophloeidae): perspectives from mitochondrial DNA cytochrome oxidase I analysis.

    Science.gov (United States)

    Tay, Wee Tek; Beckett, Stephen J; De Barro, Paul J

    2016-06-01

    The flat grain beetle (FGB) species Cryptolestes ferrugineus, C. pusillus, C. pusilloides and C. turcicus are major stored-product pests worldwide, of which the first three are present in Australia. C. ferrugineus is also a species with high phosphine resistance status in various countries. Morphological identification of Cryptolestes species is difficult and represents an additional barrier to effective management of phosphine resistance in FGBs. Mitochondrial DNA cytochrome oxidase I (mtDNA COI) gene characterisation enabled differentiation of the four major FGB pest species through direct sequence comparison, and enabled the development of a PCR-RFLP method for rapid species differentiation. We detected two mtDNA haplotypes (Cunk-01, 02) present at low frequencies with an average nucleotide divergence rate of 0.079 ± 0.011 (SE) from C. pusillus. This nucleotide divergence rate is similar to that between C. ferrugineus and C. pusilloides (0.088 ± 0.012). Male and female genitalia morphologies of the Cunk-02 individuals indicated they were consistent with C. pusillus, yet DNA sequence analyses suggested species-level divergence. The mtDNA COI gene of phosphine-bioassayed, lab-reared F1 generation survivors supported the presence of strong phosphine resistance in C. ferrugineus, but unexpectedly also in C. pusilloides and C. pusillus F1 survivors. We demonstrated the utility of molecular DNA techniques for differentiating closely related insect species, and its usefulness in assisting the management of pest insect species. The likely presence of a cryptic C. pusillus species in Australia and the possible development of strong phosphine resistance in Australian FGB pest species require further investigation. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.

  4. Frequency of mitochondrial defects in patients with chronic intestinal pseudo-obstruction.

    Science.gov (United States)

    Amiot, Aurélien; Tchikviladzé, Maya; Joly, Francisca; Slama, Abdelhamid; Hatem, Dominique Cazals; Jardel, Claude; Messing, Bernard; Lombès, Anne

    2009-07-01

    Chronic intestinal pseudo-obstruction (CIPO) is a rare disorder caused by intestinal dysmotility and characterized by chronic symptoms suggesting bowel obstruction in the absence of fixed, occluding lesions. CIPO has been associated with primary defects of the mitochondrial oxidative phosphorylation pathway, although the frequency of mitochondrial disorders in patients with CIPO is unknown. This study evaluates mitochondrial function in patients with CIPO. A retrospective study was performed of data collected from 80 CIPO patients at a tertiary centre over a 25-year period. Mitochondrial disorders were detected by analysis of serum lactate and thymidine phosphorylase activities, brain magnetic resonance images, and muscle biopsies. Genes encoding thymidine phosphorylase, mitochondrial DNA tRNA(leu(UUR)) or tRNA(lys), and DNA polymerase-gamma were analyzed for mutations. Mitochondrial defects were identified in 15 patients (10 women; median age at diagnosis 32 years), representing 19% of the study cohort. All 15 patients had extra-digestive symptoms, 5 had mutations in the thymidine phosphorylase gene, 2 had mutations in tRNA(leu(UUR)), and 5 had mutations in the DNA polymerase-gamma gene. No genetic defect was detected in 3 of the patients with mitochondrial disorders. Patients with mitochondrial CIPO differed from patients without mitochondrial defects in their very severe nutritional status (frequent and long-term requirement for parenteral nutrition) and poor prognosis (frequent digestive and neurologic complications that led to a high incidence of premature death). Mitochondrial disorders seem to be an important cause of CIPO. Patients with CIPO, especially severe cases with associated neurologic symptoms, should be tested for mitochondrial defects.

  5. Mitochondrial ROMK channel is a molecular component of mitoK(ATP).

    Science.gov (United States)

    Foster, D Brian; Ho, Alice S; Rucker, Jasma; Garlid, Anders O; Chen, Ling; Sidor, Agnieszka; Garlid, Keith D; O'Rourke, Brian

    2012-08-03

    Activation of the mitochondrial ATP-sensitive potassium channel (mitoK(ATP)) has been implicated in the mechanism of cardiac ischemic preconditioning, yet its molecular composition is unknown. To use an unbiased proteomic analysis of the mitochondrial inner membrane to identify the mitochondrial K(+) channel underlying mitoK(ATP). Mass spectrometric analysis was used to identify KCNJ1(ROMK) in purified bovine heart mitochondrial inner membrane and ROMK mRNA was confirmed to be present in neonatal rat ventricular myocytes and adult hearts. ROMK2, a short form of the channel, is shown to contain an N-terminal mitochondrial targeting signal, and a full-length epitope-tagged ROMK2 colocalizes with mitochondrial ATP synthase β. The high-affinity ROMK toxin, tertiapin Q, inhibits mitoK(ATP) activity in isolated mitochondria and in digitonin-permeabilized cells. Moreover, short hairpin RNA-mediated knockdown of ROMK inhibits the ATP-sensitive, diazoxide-activated component of mitochondrial thallium uptake. Finally, the heart-derived cell line, H9C2, is protected from cell death stimuli by stable ROMK2 overexpression, whereas knockdown of the native ROMK exacerbates cell death. The findings support ROMK as the pore-forming subunit of the cytoprotective mitoK(ATP) channel.

  6. Mitochondrial DNA plasticity is an essential inducer of tumorigenesis.

    Science.gov (United States)

    Lee, W T Y; Cain, J E; Cuddihy, A; Johnson, J; Dickinson, A; Yeung, K-Y; Kumar, B; Johns, T G; Watkins, D N; Spencer, A; St John, J C

    2016-01-01

    Although mitochondrial DNA has been implicated in diseases such as cancer, its role remains to be defined. Using three models of tumorigenesis, namely glioblastoma multiforme, multiple myeloma and osteosarcoma, we show that mitochondrial DNA plays defining roles at early and late tumour progression. Specifically, tumour cells partially or completely depleted of mitochondrial DNA either restored their mitochondrial DNA content or actively recruited mitochondrial DNA, which affected the rate of tumorigenesis. Nevertheless, non-depleted tumour cells modulated mitochondrial DNA copy number at early and late progression in a mitochondrial DNA genotype-specific manner. In glioblastoma multiforme and osteosarcoma, this was coupled with loss and gain of mitochondrial DNA variants. Changes in mitochondrial DNA genotype affected tumour morphology and gene expression patterns at early and late progression. Importantly, this identified a subset of genes that are essential to early progression. Consequently, mitochondrial DNA and commonly expressed early tumour-specific genes provide novel targets against tumorigenesis.

  7. Genetic status of the wood stork (Mycteria americana) from the southeastern United States and the Brazilian Pantanal as revealed by mitochondrial DNA analysis.

    Science.gov (United States)

    Lopes, I F; Tomasulo-Seccomandi, A M; Bryan, A L; Brisbin, I L; Glenn, T C; Del Lama, S N

    2011-08-30

    The wood stork (Mycteria americana) is a colonial wading bird that inhabits the Neotropical region from the southeastern United States (US) to northern Argentina. The species is considered to be endangered in the US due to degradation of its foraging and breeding habitat. In other parts of its range, such as in the Brazilian Pantanal region, breeding populations of this species appear to be stable. We compared the levels of genetic variability and population structuring of the US and the Pantanal breeding populations using mitochondrial DNA (mtDNA) control region sequences. Twenty-seven haplotypes were identified among 88 wood stork samples collected from eight breeding colonies in the US and eight in the Pantanal. Patterns indicative of heteroplasmy were observed in 35.3% of the mtDNA sequences that were examined. Significantly higher levels of haplotype diversity were observed in the Pantanal samples compared to those from the US, suggesting that during the last century, demographic declines or a recent evolutionary bottleneck reduced the levels of mtDNA variability of the US population. Analyses of genetic structuring revealed non-significant genetic differentiation between these regions, indicating that either the populations were only recently separated or that gene flow continues to occur at low levels. Haplotype network analysis indicated low current levels of gene flow between populations that were closely related in the past.

  8. Tracing the genetic history of the Chinese people: mitochondrial DNA analysis of aneolithic population from the Lajia site.

    Science.gov (United States)

    Gao, Shi-Zhu; Yang, Yi-Dai; Xu, Yue; Zhang, Quan-Chao; Zhu, Hong; Zhou, Hui

    2007-08-01

    Ancient DNA analysis was conducted on the dental remains of specimens from the Lajia site, dating back 3,800-4,000 years. The Lajia site is located in Minhe county, Qinghai province, in northwestern China. Archaeological studies link Lajia to the late period of the Qijia culture, one of the most important Neolithic civilizations of the upper Yellow River region, the cradle of Chinese civilization. Excavations at the site revealed that the inhabitants died in their houses as the result of a sudden flood. The Lajia site provides a rare chance to study the putative families, all of whom died at the same instant. Possible maternal familial relationships were investigated through mitochondrial DNA (mtDNA) sequence analysis. Twelve sequences from individuals found in one house were assigned to only five haplotypes, consistent with a possible close kinship. Results from analyses of RFLP typing and HVI motifs suggest that the Lajia people belonged to the haplogroups B, C, D, M*, and M10. This study, combined with archaeological and anthropological investigations, provides a better understanding of the genetic history of the Chinese people. (c) 2007 Wiley-Liss, Inc.

  9. The mitochondrial genome of the multicolored Asian lady beetle Harmonia axyridis (Pallas) and a phylogenetic analysis of the Polyphaga (Insecta: Coleoptera).

    Science.gov (United States)

    Niu, Fang-Fang; Zhu, Liang; Wang, Su; Wei, Shu-Jun

    2016-07-01

    Here, we report the mitochondrial genome sequence of the multicolored Asian lady beetle Harmonia axyridis (Pallas, 1773) (Coleoptera: Coccinellidae) (GenBank accession No. KR108208). This is the first species with sequenced mitochondrial genome from the genus Harmonia. The current length with partitial A + T-rich region of this mitochondrial genome is 16,387 bp. All the typical genes were sequenced except the trnI and trnQ. As in most other sequenced mitochondrial genomes of Coleoptera, there is no re-arrangement in the sequenced region compared with the pupative ancestral arrangement of insects. All protein-coding genes start with ATN codons. Five, five and three protein-coding genes stop with termination codon TAA, TA and T, respectively. Phylogenetic analysis using Bayesian method based on the first and second codon positions of the protein-coding genes supported that the Scirtidae is a basal lineage of Polyphaga. The Harmonia and the Coccinella form a sister lineage. The monophyly of Staphyliniformia, Scarabaeiformia and Cucujiformia was supported. The Buprestidae was found to be a sister group to the Bostrichiformia.

  10. Analysis of Canis mitochondrial DNA demonstrates high concordance between the control region and ATPase genes

    Directory of Open Access Journals (Sweden)

    White Bradley N

    2010-07-01

    Full Text Available Abstract Background Phylogenetic studies of wild Canis species have relied heavily on the mitochondrial DNA control region (mtDNA CR to infer species relationships and evolutionary lineages. Previous analyses of the CR provided evidence for a North American evolved eastern wolf (C. lycaon, that is more closely related to red wolves (C. rufus and coyotes (C. latrans than grey wolves (C. lupus. Eastern wolf origins, however, continue to be questioned. Therefore, we analyzed mtDNA from 89 wolves and coyotes across North America and Eurasia at 347 base pairs (bp of the CR and 1067 bp that included the ATPase6 and ATPase8 genes. Phylogenies and divergence estimates were used to clarify the evolutionary history of eastern wolves, and regional comparisons of nonsynonomous to synonomous substitutions (dN/dS at the ATPase6 and ATPase8 genes were used to elucidate the potential role of selection in shaping mtDNA geographic distribution. Results We found high concordance across analyses between the mtDNA regions studied. Both had a high percentage of variable sites (CR = 14.6%; ATP = 9.7% and both phylogenies clustered eastern wolf haplotypes monophyletically within a North American evolved lineage apart from coyotes. Divergence estimates suggest the putative red wolf sequence is more closely related to coyotes (DxyCR = 0.01982 ± 0.00494 SD; DxyATP = 0.00332 ± 0.00097 SD than the eastern wolf sequences (DxyCR = 0.03047 ± 0.00664 SD; DxyATP = 0.00931 ± 0.00205 SD. Neutrality tests on both genes were indicative of the population expansion of coyotes across eastern North America, and dN/dS ratios suggest a possible role for purifying selection in the evolution of North American lineages. dN/dS ratios were higher in European evolved lineages from northern climates compared to North American evolved lineages from temperate regions, but these differences were not statistically significant. Conclusions These results demonstrate high concordance between coding

  11. Toward a DNA taxonomy of Alpine Rhithrogena (Ephemeroptera: Heptageniidae using a mixed Yule-coalescent analysis of mitochondrial and nuclear DNA.

    Directory of Open Access Journals (Sweden)

    Laurent Vuataz

    Full Text Available Aquatic larvae of many Rhithrogena mayflies (Ephemeroptera inhabit sensitive Alpine environments. A number of species are on the IUCN Red List and many recognized species have restricted distributions and are of conservation interest. Despite their ecological and conservation importance, ambiguous morphological differences among closely related species suggest that the current taxonomy may not accurately reflect the evolutionary diversity of the group. Here we examined the species status of nearly 50% of European Rhithrogena diversity using a widespread sampling scheme of Alpine species that included 22 type localities, general mixed Yule-coalescent (GMYC model analysis of one standard mtDNA marker and one newly developed nDNA marker, and morphological identification where possible. Using sequences from 533 individuals from 144 sampling localities, we observed significant clustering of the mitochondrial (cox1 marker into 31 GMYC species. Twenty-one of these could be identified based on the presence of topotypes (expertly identified specimens from the species' type locality or unambiguous morphology. These results strongly suggest the presence of both cryptic diversity and taxonomic oversplitting in Rhithrogena. Significant clustering was not detected with protein-coding nuclear PEPCK, although nine GMYC species were congruent with well supported terminal clusters of nDNA. Lack of greater congruence in the two data sets may be the result of incomplete sorting of ancestral polymorphism. Bayesian phylogenetic analyses of both gene regions recovered four of the six recognized Rhithrogena species groups in our samples as monophyletic. Future development of more nuclear markers would facilitate multi-locus analysis of unresolved, closely related species pairs. The DNA taxonomy developed here lays the groundwork for a future revision of the important but cryptic Rhithrogena genus in Europe.

  12. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  13. Molecular characterization of Fasciola hepatica from Sardinia based on sequence analysis of genomic and mitochondrial gene markers.

    Science.gov (United States)

    Farjallah, Sarra; Ben Slimane, Badreddine; Piras, Cristina Maria; Amor, Nabil; Garippa, Giovanni; Merella, Paolo

    2013-11-01

    The aim of the present study is to investigate for the first time the genetic diversity of samples identified morphologically as Fasciola hepatica (Platyhelminthes: Trematoda: Digenea) (n=66) from sheep and cattle from two localities of Sardinia and to compare them with available data from other localities by partial sequences of the first (ITS-1), the 5.8S, and second (ITS-2) Internal Transcribed Spacers (ITS) of nuclear ribosomal DNA (rDNA) genes, the mitochondrial cytochrome c oxidase subunit I (COI), and nicotinamide adenine dinucleotide dehydrogenase subunit I (ND1) genes. Comparison of the sequences from Sardinia with sequences of Fasciola spp. from GenBank confirmed that all samples belong to the species F. hepatica. The nucleotide sequencing of ITS rDNA showed no nucleotide variation in the ITS-1, 5.8S and ITS-2 rDNA sequences among all Sardinian samples, comparing with two ITS-2 haplotypes in standard F. hepatica, showing a substitution C/T in 20 position 859, reported previously from Tunisia, Algeria, Australia, Uruguay and Spain. The present study shows that in Sardinian sheep and cattle there is the most frequent haplotype (FhITS-H1) of F. hepatica species from South Europe. Considering NDI sequences, the phylogenetic trees showed reliable grouping among the haplotypes of F. hepatica from Sardinia and the mitochondrial lineage I, including the main N1 haplotype, observed previously from Europe (Russia, Belarus, Ukraine and Bulgaria), Armenia, West Africa (Nigeria), America (Uruguay and USA), Asia (Turkey, Japan, and China), Georgia, Turkmenistan, Azerbaijan and Australia. Furthermore, common haplotypes FhCOI-H1 and FhCOI-H2 of F. hepatica from Sardinia also corresponded mostly to the first lineage including the main C1 haplotype reported previously from Eastern European and Western Asian populations, they belonged just to a phylogenically distinguishable clade, as F. hepatica from Australia, France, Turkey, Uruguay, Russia, Armenia, Ukraine, Belarus

  14. Bioinformatics analysis and characteristics of VP23 encoded by the newly identified UL18 gene of duck enteritis virus

    Science.gov (United States)

    Chen, Xiwen; Cheng, Anchun; Wang, Mingshu; Xiang, Jun

    2011-10-01

    In this study, the predicted information about structures and functions of VP23 encoded by the newly identified DEV UL18 gene through bioinformatics softwares and tools. The DEV UL18 was predicted to encode a polypeptide with 322 amino acids, termed VP23, with a putative molecular mass of 35.250 kDa and a predicted isoelectric point (PI) of 8.37, no signal peptide and transmembrane domain in the polypeptide. The prediction of subcellular localization showed that the DEV-VP23 located at endoplasmic reticulum with 33.3%, mitochondrial with 22.2%, extracellular, including cell wall with 11.1%, vesicles of secretory system with 11.1%, Golgi with 11.1%, and plasma membrane with 11.1%. The acid sequence of analysis showed that the potential antigenic epitopes are situated in 45-47, 53-60, 102-105, 173-180, 185-189, 260-265, 267-271, and 292-299 amino acids. All the consequences inevitably provide some insights for further research about the DEV-VP23 and also provide a fundament for further study on the the new type clinical diagnosis of DEV and can be used for the development of new DEV vaccine.

  15. Analysis of human mitochondrial DNA sequences from fecally polluted environmental waters as a tool to study population diversity

    Science.gov (United States)

    Mitochondrial signature sequences have frequently been used to study the demographics of many different populations around the world. Traditionally, this requires obtaining samples directly from individuals which is cumbersome, time consuming and limited to the number of individu...

  16. Assessing Reliability of Cellulose Hydrolysis Models to Support Biofuel Process Design – Identifiability and Uncertainty Analysis

    DEFF Research Database (Denmark)

    Sin, Gürkan; Meyer, Anne S.; Gernaey, Krist

    2010-01-01

    The reliability of cellulose hydrolysis models is studied using the NREL model. An identifiability analysis revealed that only 6 out of 26 parameters are identifiable from the available data (typical hydrolysis experiments). Attempting to identify a higher number of parameters (as done in the ori......The reliability of cellulose hydrolysis models is studied using the NREL model. An identifiability analysis revealed that only 6 out of 26 parameters are identifiable from the available data (typical hydrolysis experiments). Attempting to identify a higher number of parameters (as done...

  17. Ancient human mitochondrial DNA and radiocarbon analysis of archived quids from the Mule Spring Rockshelter, Nevada, USA

    Science.gov (United States)

    Hristova, Lidia T.; Edwards, Susan R.; Wedding, Jeffrey R.; Snow, Meradeth; Kruger, Brittany R.; Moser, Duane P.

    2018-01-01

    Chewed and expectorated quids, indigestible stringy fibers from the roasted inner pulp of agave or yucca root, have proven resilient over long periods of time in dry cave environments and correspondingly, although little studied, are common in archaeological archives. In the late 1960s, thousands of quids were recovered from Mule Spring Rockshelter (Nevada, USA) deposits and stored without consideration to DNA preservation in a museum collection, remaining unstudied for over fifty years. To assess the utility of these materials as repositories for genetic information about past inhabitants of the region and their movements, twenty-one quids were selected from arbitrary excavation depths for detailed analysis. Human mitochondrial DNA sequences from the quids were amplified by PCR and screened for diagnostic single nucleotide polymorphisms. Most detected single nucleotide polymorphisms were consistent with recognized Native American haplogroup subclades B2a5, B2i1, C1, C1c, C1c2, and D1; with the majority of the sample set consistent with subclades C1, C1c, and C1c2. In parallel with the DNA analysis, each quid was radiocarbon dated, revealing a time-resolved pattern of occupancy from 347 to 977 calibrated years before present. In particular, this dataset reveals strong evidence for the presence of haplogroup C1/C1c at the Southwestern edge of the US Great Basin from ~670 to 980 cal YBP, which may temporally correspond with the beginnings of the so-called Numic Spread into the region. The research described here demonstrates an approach which combines targeted DNA analysis with radiocarbon age dating; thus enabling the genetic analysis of archaeological materials of uncertain stratigraphic context. Here we present a survey of the maternal genetic profiles from people who used the Mule Spring Rockshelter and the historic timing of their utilization of a key natural resource. PMID:29522562

  18. The mitochondrial genomes of Culex tritaeniorhynchus and Culex pipiens pallens (Diptera: Culicidae) and comparison analysis with two other Culex species.

    Science.gov (United States)

    Luo, Qian-Chun; Hao, You-Jin; Meng, Fengxia; Li, Ting-Jing; Ding, Yi-Ran; Hua, Ya-Qiong; Chen, Bin

    2016-07-21

    Culex tritaeniorhynchus and Culex pipiens pallens are the major vectors of the Japanese encephalitis virus and Wuchereria bancrofti, the causative agent of filariasis. The knowledge of mitochondrial genomes has been widely useful for the studies on molecular evolution, phylogenetics and population genetics. In this study, we sequenced and annotated the mitochondrial (mt) genomes of Cx. tritaeniorhynchus and Cx. p. pallens, and performed a comparative analysis including four known mt genomes of species of the subgenus Culex (Culex). The phylogenetic relationships of Cx. tritaeniorhynchus, Cx. p. pallens and four known Culex mt genome sequences were reconstructed by maximum likelihood based on concatenated protein-coding gene sequences. Culex tritaeniorhynchus and Cx. p. pallens mt genomes are 14,844 bp and 15,617 bp long, both consists of 13 PCGs, 22 tRNAs, 2 rRNAs and 1 CR (not sequenced for Cx. tritaeniorhynchus). The initiation and termination codons of PCGs are ATN and TAA, respectively, except for COI starting with TCG, and COI and COII terminated with T. tRNAs have the typical clover-leaf secondary structures except for trnS ((AGN)) that is lacking the DHU stem. 16S rRNA and 12S rRNA secondary structures were drawn for the first time for mosquito mt genomes. The control region of Cx. p. pallens mt genome is 747 bp long and with four tandem repeat structures. Phylogenetic analyses demonstrated that the mt genome of Cx. tritaeniorhynchus was significantly separated from the remaining five mt genomes of Culex spp. Culex p. pipiens, Cx. p. pallens and Cx. p. quinquefasciatus formed a monophyletic clade with Cx. p. quinquefasciatus linked in the middle of the clade, and Cx. p. pallens should have the same taxonomic level as Culex p. pipiens and Cx. p. quinquefasciatus. The mt genomes of Cx. tritaeniorhynchus and Cx. p. pallens share the same gene composition and order with those of two other Culex species. Culex p. pallens of the Pipiens complex should have the

  19. Nuclear and mitochondrial DNA analysis reveals that hybridization between Fasciola hepatica and Fasciola gigantica occurred in China.

    Science.gov (United States)

    Ichikawa-Seki, Madoka; Peng, Mao; Hayashi, Kei; Shoriki, Takuya; Mohanta, Uday Kumar; Shibahara, Toshiyuki; Itagaki, Tadashi

    2017-02-01

    The well-known pathogens of fasciolosis, Fasciola hepatica (Fh) and Fasciola Gigantica (Fg), possess abundant mature sperms in their seminal vesicles, and thus, they reproduce bisexually. On the other hand, aspermic Fasciola flukes reported from Asian countries, which have no sperm in their seminal vesicles, probably reproduce parthenogenetically. The aim of this study was to reveal the origin of aspermic Fasciola flukes. The nuclear single copy markers, phosphoenolpyruvate carboxykinase and DNA polymerase delta, were employed for analysis of Fasciola species from China. The hybrid origin of aspermic Fasciola flukes was strongly suggested by the presence of the Fh/Fg type, which includes DNA fragments of both F. hepatica and F. gigantica. China can be regarded as the cradle of the interspecific hybridization because F. hepatica and F. gigantica were detected in the northern and southern parts of China, respectively, and hybrids flukes were distributed between the habitats of the two species. The Chinese origin was supported by the fact that a larger number of mitochondrial NADH dehydrogenase subunit 1 (nad1) haplotypes was detected in Chinese aspermic Fasciola populations than in aspermic populations from the neighbouring countries. Hereafter, 'aspermic' Fasciola flukes should be termed as 'hybrid' Fasciola flukes.

  20. Intraspecific differentiation of Paramecium novaurelia strains (Ciliophora, Protozoa) inferred from phylogenetic analysis of ribosomal and mitochondrial DNA variation.

    Science.gov (United States)

    Tarcz, Sebastian

    2013-01-01

    Paramecium novaurelia Beale and Schneller, 1954, was first found in Scotland and is known to occur mainly in Europe, where it is the most common species of the P. aurelia complex. In recent years, two non-European localities have been described: Turkey and the United States of America. This article presents the analysis of intraspecific variability among 25 strains of P. novaurelia with the application of ribosomal and mitochondrial loci (ITS1-5.8S-ITS2, 5' large subunit rDNA (5'LSU rDNA) and cytochrome c oxidase subunit 1 (COI) mtDNA). The mean distance observed for all of the studied P. novaurelia sequence pairs was p=0.008/0.016/0.092 (ITS1-5.8S-ITS2/5'LSU rDNA/COI). Phylogenetic trees (NJ/MP/BI) based on a comparison of all of the analysed sequences show that the studied strains of P. novaurelia form a distinct clade, separate from the P. caudatum outgroup, and are divided into two clusters (A and B) and two branches (C and D). The occurrence of substantial genetic differentiation within P. novaurelia, confirmed by the analysed DNA fragments, indicates a rapid evolution of particular species within the Paramecium genus. Copyright © 2012 Elsevier GmbH. All rights reserved.

  1. mtDNA-Server: next-generation sequencing data analysis of human mitochondrial DNA in the cloud.

    Science.gov (United States)

    Weissensteiner, Hansi; Forer, Lukas; Fuchsberger, Christian; Schöpf, Bernd; Kloss-Brandstätter, Anita; Specht, Günther; Kronenberg, Florian; Schönherr, Sebastian

    2016-07-08

    Next generation sequencing (NGS) allows investigating mitochondrial DNA (mtDNA) characteristics such as heteroplasmy (i.e. intra-individual sequence variation) to a higher level of detail. While several pipelines for analyzing heteroplasmies exist, issues in usability, accuracy of results and interpreting final data limit their usage. Here we present mtDNA-Server, a scalable web server for the analysis of mtDNA studies of any size with a special focus on usability as well as reliable identification and quantification of heteroplasmic variants. The mtDNA-Server workflow includes parallel read alignment, heteroplasmy detection, artefact or contamination identification, variant annotation as well as several quality control metrics, often neglected in current mtDNA NGS studies. All computational steps are parallelized with Hadoop MapReduce and executed graphically with Cloudgene. We validated the underlying heteroplasmy and contamination detection model by generating four artificial sample mix-ups on two different NGS devices. Our evaluation data shows that mtDNA-Server detects heteroplasmies and artificial recombinations down to the 1% level with perfect specificity and outperforms existing approaches regarding sensitivity. mtDNA-Server is currently able to analyze the 1000G Phase 3 data (n = 2,504) in less than 5 h and is freely accessible at https://mtdna-server.uibk.ac.at. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. DNA analysis of ancient dogs of the Americas: identifying possible founding haplotypes and reconstructing population histories.

    Science.gov (United States)

    Witt, Kelsey E; Judd, Kathleen; Kitchen, Andrew; Grier, Colin; Kohler, Timothy A; Ortman, Scott G; Kemp, Brian M; Malhi, Ripan S

    2015-02-01

    As dogs have traveled with humans to every continent, they can potentially serve as an excellent proxy when studying human migration history. Past genetic studies into the origins of Native American dogs have used portions of the hypervariable region (HVR) of mitochondrial DNA (mtDNA) to indicate that prior to European contact the dogs of Native Americans originated in Eurasia. In this study, we summarize past DNA studies of both humans and dogs to discuss their population histories in the Americas. We then sequenced a portion of the mtDNA HVR of 42 pre-Columbian dogs from three sites located in Illinois, coastal British Columbia, and Colorado, and identify four novel dog mtDNA haplotypes. Next, we analyzed a dataset comprised of all available ancient dog sequences from the Americas to infer the pre-Columbian population history of dogs in the Americas. Interestingly, we found low levels of genetic diversity for some populations consistent with the possibility of deliberate breeding practices. Furthermore, we identified multiple putative founding haplotypes in addition to dog haplotypes that closely resemble those of wolves, suggesting admixture with North American wolves or perhaps a second domestication of canids in the Americas. Notably, initial effective population size estimates suggest at least 1000 female dogs likely existed in the Americas at the time of the first known canid burial, and that population size increased gradually over time before stabilizing roughly 1200 years before present. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Mitochondrial DNA analysis reveals three stocks of yellowfin tuna Thunnus albacares (Bonnaterre, 1788) in Indian waters

    Digital Repository Service at National Institute of Oceanography (India)

    Kunal, S.P.; GirishKumar; Menezes, M.R.; Meena, R.M.

    DNA has proved to be useful in determining population stock of fish species due to its simple mode of transmission avoiding recombination, high mutation rate and predominantly maternal inheritance (Graves et al. 1984; Hoolihan et al. 2004). Most... homing of three YFT populations to identify potential spawning sites in the Indian Ocean. The genetic marker used in the present study is mtDNA which is maternally inherited. The genetic effect of male dispersal cannot be addressed by mtDNA. In addition...

  4. Comparative insect mitochondrial genomes: Differences despite ...

    African Journals Online (AJOL)

    We present a comparative analysis of select insect mitochondrial DNA (mtDNA) representing four insect orders (Diptera, Hymenoptera, Orthoptera and Coleoptera) consisting of 12 different species in an effort to study a common set of genes and to understand the evolution of mitochondrial genome. A functional analysis of ...

  5. Glucose-regulated protein 78 regulates the expression of mitochondrial genesis proteins in HBV-related hepatocellular carcinoma: a clinical analysis

    Directory of Open Access Journals (Sweden)

    LI Yaping

    2017-10-01

    Full Text Available ObjectiveTo investigate the expression of glucose-regulated protein 78 (GRP78 in HBV-related hepatocellular carcinoma (HBV-HCC and its association with clinicopathological features, as well as its regulatory effect on mitochondrial genesis proteins in hepatoma cells, and to provide a basis for new strategies for the prevention and treatment of HCC. MethodsTissue samples were collected from 54 patients with HBV-HCC, and immunohistochemistry and Western blot were used to measure the expression of GRP78, Lon, TFAM, and cytochrome C oxidase Ⅳ (COXⅣ. The expression of GRP78 in hepatoma cells was interfered by siRNA, and then the expression of GRP78, Lon, mitochondrial transcription factor A (TFAM, and COX Ⅳ was measured. Quantitative real-time PCR was used to measure the level of mitochondrial DNA (mtDNA in clinical specimens and HCC cells after GRP78 expression was interfered with. A statistical analysis was performed for clinical and experimental data. The t-test was used for comparison of continuous data between groups, the Fisher′s exact test was used for comparison of categorical data between groups, and the Kaplan-Meier method was used for survival analysis. Results Compared with the adjacent tissues, HBV-HCC tissues had significantly higher expression of GRP78 and Lon (t=9.135 and 5523, both P<0.0001 and significantly lower expression of the mitochondrial genesis proteins TFAM and COX Ⅳ and mtDNA level (t=2.765, 4260, and 12.280, P=0.011, <0.001, and <0.001. There were significant increases in the expression of the mitochondrial genesis proteins TFAM and COX Ⅳ and mtDNA level after the interference with GRP78 expression in hepatoma cells (all P<0.05. There were significant differences in the expression of GRP78 between patients with different numbers of tumors, patients with and without portal vein tumor thrombus, and patients with different tumor stages (P=0.016, 0.003, and 0.045. The patients with low GRP78

  6. MitoAge: a database for comparative analysis of mitochondrial DNA, with a special focus on animal longevity.

    Science.gov (United States)

    Toren, Dmitri; Barzilay, Thomer; Tacutu, Robi; Lehmann, Gilad; Muradian, Khachik K; Fraifeld, Vadim E

    2016-01-04

    Mitochondria are the only organelles in the animal cells that have their own genome. Due to a key role in energy production, generation of damaging factors (ROS, heat), and apoptosis, mitochondria and mtDNA in particular have long been considered one of the major players in the mechanisms of aging, longevity and age-related diseases. The rapidly increasing number of species with fully sequenced mtDNA, together with accumulated data on longevity records, provides a new fascinating basis for comparative analysis of the links between mtDNA features and animal longevity. To facilitate such analyses and to support the scientific community in carrying these out, we developed the MitoAge database containing calculated mtDNA compositional features of the entire mitochondrial genome, mtDNA coding (tRNA, rRNA, protein-coding genes) and non-coding (D-loop) regions, and codon usage/amino acids frequency for each protein-coding gene. MitoAge includes 922 species with fully sequenced mtDNA and maximum lifespan records. The database is available through the MitoAge website (www.mitoage.org or www.mitoage.info), which provides the necessary tools for searching, browsing, comparing and downloading the data sets of interest for selected taxonomic groups across the Kingdom Animalia. The MitoAge website assists in statistical analysis of different features of the mtDNA and their correlative links to longevity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Analysis of 953 human proteins from a mitochondrial HEK293 fraction by complexome profiling

    NARCIS (Netherlands)

    Wessels, H.J.; Vogel, R.O.; Lightowlers, R.N.; Spelbrink, J.N.; Rodenburg, R.J.T.; Heuvel, L.P.W.J. van den; Gool, A.J. van; Gloerich, J.; Smeitink, J.A.M.; Nijtmans, L.G.J.

    2013-01-01

    Complexome profiling is a novel technique which uses shotgun proteomics to establish protein migration profiles from fractionated blue native electrophoresis gels. Here we present a dataset of blue native electrophoresis migration profiles for 953 proteins by complexome profiling. By analysis of

  8. Mitochondrial PKA mediates sperm motility.

    Science.gov (United States)

    Mizrahi, Rashel; Breitbart, Haim

    2014-12-01

    Mitochondria are the major source of ATP to power sperm motility. Phosphorylation of mitochondrial proteins has been proposed as a major regulatory mechanism for mitochondrial bioenergetics. Sperm motility was measured by a computer-assisted analyzer, protein detection by western blotting, membrane potential by tetramethylrhodamine, cellular ATP by luciferase assay and localization of PKA by immuno-electron microscopy. Bicarbonate is essential for the creation of mitochondrial electro-chemical gradient, ATP synthesis and sperm motility. Bicarbonate stimulates PKA-dependent phosphorylation of two 60kDa proteins identified as Tektin and glucose-6-phosphate isomerase. This phosphorylation was inhibited by respiration inhibition and phosphorylation could be restored by glucose in the presence of bicarbonate. However, this effect of glucose cannot be seen when the mitochondrial ATP/ADP exchanger was inhibited indicating that glycolytic-produced ATP is transported into the mitochondria and allows PKA-dependent protein phosphorylation inside the mitochondria. Bicarbonate activates mitochondrial soluble adenylyl cyclase (sAC) which catalyzes cAMP production leading to the activation of mitochondrial PKA. Glucose can overcome the lack of ATP in the absence of bicarbonate but it cannot affect the mitochondrial sAC/PKA system, therefore the PKA-dependent phosphorylation of the 60kDa proteins does not occur in the absence of bicarbonate. Production of CO2 in Krebs cycle, which is converted to bicarbonate is essential for sAC/PKA activation leading to mitochondrial membrane potential creation and ATP synthesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Listeria monocytogenes transiently alters mitochondrial dynamics during infection.

    Science.gov (United States)

    Stavru, Fabrizia; Bouillaud, Frédéric; Sartori, Anna; Ricquier, Daniel; Cossart, Pascale

    2011-03-01

    Mitochondria are essential and highly dynamic organelles, constantly undergoing fusion and fission. We analyzed mitochondrial dynamics during infection with the human bacterial pathogen Listeria monocytogenes and show that this infection profoundly alters mitochondrial dynamics by causing transient mitochondrial network fragmentation. Mitochondrial fragmentation is specific to pathogenic Listeria monocytogenes, and it is not observed with the nonpathogenic Listeria innocua species or several other intracellular pathogens. Strikingly, the efficiency of Listeria infection is affected in cells where either mitochondrial fusion or fission has been altered by siRNA treatment, highlighting the relevance of mitochondrial dynamics for Listeria infection. We identified the secreted pore-forming toxin listeriolysin O as the bacterial factor mainly responsible for mitochondrial network disruption and mitochondrial function modulation. Together, our results suggest that the transient shutdown of mitochondrial function and dynamics represents a strategy used by Listeria at the onset of infection to interfere with cellular physiology.

  10. Analysis of human mitochondrial DNA sequences from fecally polluted environmental waters as a tool to study population diversity

    Directory of Open Access Journals (Sweden)

    Vikram Kapoor

    2017-05-01

    Full Text Available Mitochondrial signature sequences have frequently been used to study human population diversity around the world. Traditionally, this requires obtaining samples directly from individuals which is cumbersome, time consuming and limited to the number of individuals that participated in these types of surveys. Here, we used environmental DNA extracts to determine the presence and sequence variability of human mitochondrial sequences as a means to study the diversity of populations inhabiting in areas nearby a tropical watershed impacted with human fecal pollution. We used high-throughput sequencing (Illumina and barcoding to obtain thousands of sequences from the mitochondrial hypervariable region 2 (HVR2 and determined the different haplotypes present in 10 different water samples. Sequence analyses indicated a total of 19 distinct variants with frequency greater than 5%. The HVR2 sequences were associated with haplogroups of West Eurasian (57.6%, Sub-Saharan African (23.9%, and American Indian (11% ancestry. This was in relative accordance with population census data from the watershed sites. The results from this study demonstrates the potential value of mitochondrial sequence data retrieved from fecally impacted environmental waters to study the population diversity of local municipalities. This environmental DNA approach may also have other public health implications such as tracking background levels of human mitochondrial genes associated with diseases. It may be possible to expand this approach to other animal species inhabiting or using natural water systems.

  11. A comprehensive characterization of rare mitochondrial DNA variants in neuroblastoma.

    Science.gov (United States)

    Calabrese, Francesco Maria; Clima, Rosanna; Pignataro, Piero; Lasorsa, Vito Alessandro; Hogarty, Michael D; Castellano, Aurora; Conte, Massimo; Tonini, Gian Paolo; Iolascon, Achille; Gasparre, Giuseppe; Capasso, Mario

    2016-08-02

    Neuroblastoma, a tumor of the developing sympathetic nervous system, is a common childhood neoplasm that is often lethal. Mitochondrial DNA (mtDNA) mutations have been found in most tumors including neuroblastoma. We extracted mtDNA data from a cohort of neuroblastoma samples that had undergone Whole Exome Sequencing (WES) and also used snap-frozen samples in which mtDNA was entirely sequenced by Sanger technology. We next undertook the challenge of determining those mutations that are relevant to, or arisen during tumor development. The bioinformatics pipeline used to extract mitochondrial variants from matched tumor/blood samples was enriched by a set of filters inclusive of heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. Our in silico multistep workflow applied both on WES and Sanger-sequenced neuroblastoma samples, allowed us to identify a limited burden of somatic and germline mitochondrial mutations with a potential pathogenic impact. The few singleton germline and somatic mitochondrial mutations emerged, according to our in silico analysis, do not appear to impact on the development of neuroblastoma. Our findings are consistent with the hypothesis that most mitochondrial somatic mutations can be considered as 'passengers' and consequently have no discernible effect in this type of cancer.

  12. Mitochondrial DNA as a potential tool for early cancer detection

    Directory of Open Access Journals (Sweden)

    Parr Ryan L

    2006-01-01

    Full Text Available Abstract The recent surge in mitochondrial research has been driven by the identification of mitochondria-associated diseases and the role of mitochondria in apoptosis. Both of these aspects have identified mitochondrial analysis as a vital component of medical research. Moreover, mitochondria have been implicated in the process of carcinogenesis because of their vital role in energy production, nuclear-cytoplasmic signal integration and control of metabolic pathways. Interestingly, at some point during neoplastic transformation, there is an increase in reactive oxygen species, which damage the mitochondrial genome. This accelerates the somatic mutation rate of mitochondrial DNA. It has been proposed that these mutations may serve as an early indication of potential cancer development and may represent a means for tracking tumour progression. The purpose of this review is to explore the potential utility that these mutations may afford for the identification and monitoring of neoplasia and malignant transformation where appropriate body fluids or non-invasive tissue access is available for mitochondrial DNA recovery. Specifically, prostate, breast, colorectal, skin and lung cancers are discussed.

  13. Chloramphenicol-sensitive mitochondrial translation in Trypanosoma brucei

    NARCIS (Netherlands)

    Nabholz, C. E.; Speijer, D.; Schneider, A.

    1999-01-01

    We developed an in organello system to label newly synthesized mitochondrially encoded proteins of Trypanosoma brucei. Highly purified mitochondria, prepared under isotonic conditions, were incubated with radioactive methionine and cysteine in a suitable translation buffer. Analysis of mitochondrial

  14. Mitochondrial DNA differentiation in the Japanese brown frog Rana japonica as revealed by restriction endonuclease analysis.

    Science.gov (United States)

    Sumida, M

    1997-04-01

    To elucidate mtDNA differentiation in the Japanese brown frog Rana japonica, and compare it with results from allozyme analysis and crossing experiments, RFLP analysis was conducted on 78 frogs from 16 populations in Honshu. Purified mtDNA was digested with eight six-base recognizing restriction enzymes and analyzed by 1% agarose-slab gel electrophoresis. Cleavage patterns of the mtDNA showed three distinct genome size classes: small (18.5 kb), middle (20.0 kb) and large (21.5 kb). Ten haplotypes (I approximately X) were observed among the 16 populations. The expected nucleotide divergences within populations ranged from 0 to 0.47% with a mean of 0.08%. The net nucleotide divergences among 16 populations ranged from 0 to 7.74% with a mean of 3.49%. The UPGMA dendrogram and NJ tree, which were constructed based on the net nucleotide divergences, showed that R. japonica diverged first into the eastern and western groups. The eastern group subsequently differentiated into a subgroup containing six populations and the Akita population, and the western group divided into several subgroups. These results, as well as the results of allozyme analysis and crossing experiments, suggest the the eastern and western groups have experienced secondary contact, and introgression has occurred in the Akita population.

  15. Evidence for Amino Acid Snorkeling from a High-Resolution, In Vivo Analysis of Fis1 Tail-Anchor Insertion at the Mitochondrial Outer Membrane.

    Science.gov (United States)

    Keskin, Abdurrahman; Akdoğan, Emel; Dunn, Cory D

    2017-02-01

    Proteins localized to mitochondria by a carboxyl-terminal tail anchor (TA) play roles in apoptosis, mitochondrial dynamics, and mitochondrial protein import. To reveal characteristics of TAs that may be important for mitochondrial targeting, we focused our attention upon the TA of the Saccharomyces cerevisiae Fis1 protein. Specifically, we generated a library of Fis1p TA variants fused to the Gal4 transcription factor, then, using next-generation sequencing, revealed which Fis1p TA mutations inhibited membrane insertion and allowed Gal4p activity in the nucleus. Prompted by our global analysis, we subsequently analyzed the ability of individual Fis1p TA mutants to localize to mitochondria. Our findings suggest that the membrane-associated domain of the Fis1p TA may be bipartite in nature, and we encountered evidence that the positively charged patch at the carboxyl terminus of Fis1p is required for both membrane insertion and organelle specificity. Furthermore, lengthening or shortening of the Fis1p TA by up to three amino acids did not inhibit mitochondrial targeting, arguing against a model in which TA length directs insertion of TAs to distinct organelles. Most importantly, positively charged residues were more acceptable at several positions within the membrane-associated domain of the Fis1p TA than negatively charged residues. These findings, emerging from the first high-resolution analysis of an organelle targeting sequence by deep mutational scanning, provide strong, in vivo evidence that lysine and arginine can "snorkel," or become stably incorporated within a lipid bilayer by placing terminal charges of their side chains at the membrane interface. Copyright © 2017 by the Genetics Society of America.

  16. Response of the mitochondrial proteome of rat renal proximal convoluted tubules to chronic metabolic acidosis.

    Science.gov (United States)

    Freund, Dana M; Prenni, Jessica E; Curthoys, Norman P

    2013-01-15

    Metabolic acidosis is a common clinical condition that is caused by a decrease in blood pH and bicarbonate concentration. Increased extraction and mitochondrial catabolism of plasma glutamine within the renal proximal convoluted tubule generates ammonium and bicarbonate ions that facilitate the excretion of acid and partially restore acid-base balance. Previous studies identified only a few mitochondrial proteins, including two key enzymes of glutamine metabolism, which are increased during chronic acidosis. A workflow was developed to characterize the mitochondrial proteome of the proximal convoluted tubule. Based upon the increase in specific activity of cytochrome c oxidase, the isolated mitochondria were enriched eightfold. Two-dimensional liquid chromatography coupled with mass spectrometry was utilized to compare mitochondrial-enriched samples from control and chronic acidotic rats. Proteomic analysis identified 901 proteins in the control and acidotic samples. Further analysis identified 37 peptides that contain an N-ε-acetyl-lysine; of these, 22 are novel sites. Spectral counting analysis revealed 33 proteins that are significantly altered in abundance in response to chronic metabolic acidosis. Western blot analysis was performed to validate the calculated changes in abundance. Thus the current study represents the first comprehensive analysis of the mitochondrial proteome of the rat renal proximal convoluted tubule and its response to metabolic acidosis.

  17. Increased intrinsic mitochondrial function in humans with mitochondrial haplogroup H

    DEFF Research Database (Denmark)

    Larsen, Steen; Díez-Sánchez, Carmen; Rabøl, Rasmus

    2014-01-01

    and determined their mitochondrial haplogroup, mitochondrial oxidative phosphorylation capacity (OXPHOS), mitochondrial content (citrate synthase (CS)) and VO2max. Intrinsic mitochondrial function is calculated as mitochondrial OXPHOS capacity divided by mitochondrial content (CS). Haplogroup H showed a 30......% higher intrinsic mitochondrial function compared with the other haplo group U. There was no relationship between haplogroups and VO2max. In skeletal muscle from men with mitochondrial haplogroup H, an increased intrinsic mitochondrial function is present....

  18. Restriction endonuclease analysis of mitochondrial DNA of Acanthamoeba sp. YM-4 (Korean isolate).

    Science.gov (United States)

    Shin, H J; Im, K; Jeon, K W

    1997-06-01

    Acanthamoeba sp. YM-4 is similar to A. culbertsoni based upon morphological characteristics of trophozoites and cysts. However, based on other characteristics, pathogenicity to mice, in vitro cytotoxicity and isoenzyme patterns. Acanthamoeba sp. YM-4 was quite different from A. culbertsoni. Restriction fragment length polymorphism (RFLP) analysis of mtDNA is useful in the classification of members belonging to the genus Acanthamoeba. Therefore, in this study, RFLP analysis of Acanthamoeba mtDNAs was accomplished using five restriction enzymes: HaeIII, HindIII, ClaI, PvuII and SalI. Each restriction enzyme produced approximately 3-15 fragments (range: from 0.6 kbp to 34.4 kbp). The mtDNA genome size, calculated by the summation of restriction fragments, averaged 46.4 kbp in Acanthamoeba sp. YM-4, 48.3 kbp in A. culbertsoni and 48.8 kbp in A. polyphaga, respectively. Digested mtDNA fragments of Acanthamoeba sp. YM-4 contained nine and seven same size fragments, respectively, from a total of 67 and 69 fragments observed in A. culbertsoni and A. polyphaga. An estimate of the genetic divergence was 10.1% between Acanthamoeba sp. YM-4 and A. culbertsoni, and 9.9% between Acanthamoeba sp. YM-4 and A. polyphaga.

  19. Ancient DNA analysis identifies marine mollusc shells as new metagenomic archives of the past.

    Science.gov (United States)

    Der Sarkissian, Clio; Pichereau, Vianney; Dupont, Catherine; Ilsøe, Peter C; Perrigault, Mickael; Butler, Paul; Chauvaud, Laurent; Eiríksson, Jón; Scourse, James; Paillard, Christine; Orlando, Ludovic

    2017-09-01

    Marine mollusc shells enclose a wealth of information on coastal organisms and their environment. Their life history traits as well as (palaeo-) environmental conditions, including temperature, food availability, salinity and pollution, can be traced through the analysis of their shell (micro-) structure and biogeochemical composition. Adding to this list, the DNA entrapped in shell carbonate biominerals potentially offers a novel and complementary proxy both for reconstructing palaeoenvironments and tracking mollusc evolutionary trajectories. Here, we assess this potential by applying DNA extraction, high-throughput shotgun DNA sequencing and metagenomic analyses to marine mollusc shells spanning the last ~7,000 years. We report successful DNA extraction from shells, including a variety of ancient specimens, and find that DNA recovery is highly dependent on their biomineral structure, carbonate layer preservation and disease state. We demonstrate positive taxonomic identification of mollusc species using a combination of mitochondrial DNA genomes, barcodes, genome-scale data and metagenomic approaches. We also find shell biominerals to contain a diversity of microbial DNA from the marine environment. Finally, we reconstruct genomic sequences of organisms closely related to the Vibrio tapetis bacteria from Manila clam shells previously diagnosed with Brown Ring Disease. Our results reveal marine mollusc shells as novel genetic archives of the past, which opens new perspectives in ancient DNA research, with the potential to reconstruct the evolutionary history of molluscs, microbial communities and pathogens in the face of environmental changes. Other future applications include conservation of endangered mollusc species and aquaculture management. © 2017 John Wiley & Sons Ltd.

  20. Analysis of the effects of polyphenols on human spermatozoa reveals unexpected impacts on mitochondrial membrane potential, oxidative stress and DNA integrity; implications for assisted reproductive technology.

    Science.gov (United States)

    Aitken, R J; Muscio, L; Whiting, S; Connaughton, H S; Fraser, B A; Nixon, B; Smith, N D; De Iuliis, G N

    2016-12-01

    The need to protect human spermatozoa from oxidative stress during assisted reproductive technology, has prompted a detailed analysis of the impacts of phenolic compounds on the functional integrity of these cells. Investigation of 16 individual compounds revealed a surprising variety of negative effects including: (i) a loss of mitochondrial membrane potential (Δψm) via mechanisms that were not related to opening of the permeability transition pore but associated with a reduction in thiol expression, (ii) a decline in intracellular reduced glutathione, (iii) the stimulation of pro-oxidant activity including the induction of ROS generation from mitochondrial and non-mitochondrial sources, (iv) stimulation of lipid peroxidation, (v) the generation of oxidative DNA damage, and (vi) impaired sperm motility. For most of the polyphenolic compounds examined, the loss of motility was gradual and highly correlated with the induction of lipid peroxidation (r=0.889). The exception was gossypol, which induced a rapid loss of motility due to its inherent alkylating activity; one consequence of which was a marked reduction in carboxymethyl lysine expression on the sperm tail; a post-translational modification that is known to play a key role in the regulation of sperm movement. The only polyphenols that did not appear to have adverse effects on spermatozoa were resveratrol, genistein and THP at doses below 100μM. These compounds could, therefore, have some therapeutic potential in a clinical setting. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Phylogenetic analysis of Thai oyster (Ostreidae) based on partial sequences of the mitochondrial 16S rDNA gene

    DEFF Research Database (Denmark)

    Bussarawit, Somchai; Gravlund, Peter; Glenner, Henrik

    2006-01-01

    Ten oyster species of the family Ostreidae (Subfamilies Crassostreinae and Lophinae) from Thailand were studied using morphological data and mitochondrial 16S rDNA gene sequences. Additional sequence data from five specimens of Ostreidae and one specimen of Tridacna gigas were downloaded from GenBank...

  2. FUNCTIONAL-ANALYSIS OF THE N-TERMINAL PREPEPTIDES OF WATERMELON MITOCHONDRIAL AND GLYOXYSOMAL MALATE-DEHYDROGENASES

    NARCIS (Netherlands)

    LEHNERER, M; KEIZERGUNNIK, [No Value; VEENHUIS, M; GIETL, C

    1994-01-01

    Mitochondrial and glyoxysomal malate dehydrogenase (mMDH; gMDH; L-malate : NAD(+) oxidoreductase; EC 1.1.1.37) of watermelon (Citrullus vulgaris) cotyledons are synthesized with N-terminal cleavable presequences which are shown to specify sorting of the two proteins. The two presequences differ in

  3. Identifying Students at Risk: An Examination of Computer-Adaptive Measures and Latent Class Growth Analysis

    Science.gov (United States)

    Keller-Margulis, Milena; McQuillin, Samuel D.; Castañeda, Juan Javier; Ochs, Sarah; Jones, John H.

    2018-01-01

    Multitiered systems of support depend on screening technology to identify students at risk. The purpose of this study was to examine the use of a computer-adaptive test and latent class growth analysis (LCGA) to identify students at risk in reading with focus on the use of this methodology to characterize student performance in screening.…

  4. Identifying At-Risk Students in General Chemistry via Cluster Analysis of Affective Characteristics

    Science.gov (United States)

    Chan, Julia Y. K.; Bauer, Christopher F.

    2014-01-01

    The purpose of this study is to identify academically at-risk students in first-semester general chemistry using affective characteristics via cluster analysis. Through the clustering of six preselected affective variables, three distinct affective groups were identified: low (at-risk), medium, and high. Students in the low affective group…

  5. Cytochrome b pseudogene originated from a highly divergent mitochondrial lineage in genus Rupicapra.

    Science.gov (United States)

    Rodríguez, Fernando; Albornoz, Jesús; Domínguez, Ana

    2007-01-01

    We have identified a nuclear pseudogene (numt) of cytochrome b (cytb) in chamois. The comparison of a fragment of 402 nucleotides of cytb and the pseudogene between the 2 species Rupicapra rupicapra and Rupicapra pyrenaica allowed direct measurement of relative rates and patterns of evolution. Mitochondrial genes evolved 7 to 12 times faster than their nuclear counterparts. Substitutions in the nucleus include a frameshift and a stop codon. Phylogenetic analysis of nuclear and mitochondrial lineages on Rupicapra and related species showed that the nuclear branch evolved as a functional mitochondrial gene until the split of the 2 species of chamois and as a typical pseudogene later on. We propose that the pseudogene originated from a highly divergent mitochondrial lineage that did not persist in the mitochondrion and transposed to the nucleus in a time close to speciation. The concurrence of highly differentiated lineages at speciation points to hybridization between highly divergent populations.

  6. Characterization and phylogenetic analysis of the mitochondrial genome of Shiraia bambusicola reveals special features in the order of pleosporales.

    Directory of Open Access Journals (Sweden)

    Xiao-Ye Shen

    Full Text Available Shiraia bambusicola P. Henn. is a pathogenic fungus of bamboo, and its fruiting bodies are regarded as folk medicine. We determined and analyzed its complete mitochondrial DNA sequence (circular DNA molecule of 39,030 bp, G + C content of 25.19%. It contains the typical genes encoding proteins involved in electron transport and coupled oxidative phosphorylation (nad1-6 and nad4L, cob and cox1-3, one ATP synthase subunit (atp6, 4 hypothetical proteins, and two genes for large and small rRNAs (rnl and rns. There is a set of 32 tRNA genes comprising all 20 amino acids, and these genes are evenly distributed on the two strands. Phylogenetic analyses based on concatenated mitochondrial proteins indicated that S. bambusicola clustered with members of the order Pleosporales, which is in agreement with previous results. The gene arrangements of Dothideomycetes species contained three regions of gene orders partitioned in their mitochondrial genomes, including block 1 (nad6-atp6, block 2 (nad1-cox3 and block 3 (genes around rns. S. bambusicola displayed unique special features that differed from the other Pleosporales species, especially in the coding regions around rns (trnR-trnY. Moreover, a comparison of gene orders in mitochondrial genomes from Pezizomycotina revealed that although all encoded regions are located on the same strand in most Pezizomycotina mtDNAs, genes from Dothideomycetes species had different orientations, as well as diverse positions and colocalization of genes (such as cox3, cox1-cox2 and nad2-nad3; these distinctions were regarded as class-specific features. Interestingly, two incomplete copies of the atp6 gene were found on different strands of the mitogenomic DNA, a finding that has not been observed in the other analyzed fungal species. In our study, mitochondrial genomes from Dothideomycetes species were comprehensively analyzed for the first time, including many species that have not appeared in previous reports.

  7. Complete sequence of the mitochondrial genome of ...

    Indian Academy of Sciences (India)

    Supplementary data: Complete sequence of the mitochondrial genome of Odontamblyopus rubicundus (Perciformes: Gobiidae): genome characterization and phylogenetic analysis. Tianxing Liu, Xiaoxiao Jin, Rixin Wang and Tianjun Xu. J. Genet. 92, 423–432. Figure 1. Gene map of O. rubicundus mitochondrial genome.

  8. Mitochondrial DNA Damage and its Consequences for Mitochondrial Gene Expression

    Science.gov (United States)

    Cline, Susan D.

    2012-01-01

    How mitochondria process DNA damage and whether a change in the steady-state level of mitochondrial DNA damage (mtDNA) contributes to mitochondrial dysfunction are questions that fuel burgeoning areas of research into aging and disease pathogenesis. Over the past decade, researchers have identified and measured various forms of endogenous and environmental mtDNA damage and have elucidated mtDNA repair pathways. Interestingly, mitochondria do not appear to contain the full range of DNA repair mechanisms that operate in the nucleus, although mtDNA contains types of damage that are targets of each nuclear DNA repair pathway. The reduced repair capacity may, in part, explain the high mutation frequency of the mitochondrial chromosome. Since mtDNA replication is dependent on transcription, mtDNA damage may alter mitochondrial gene expression at three levels: by causing DNA polymerase γ nucleotide incorporation errors leading to mutations, by interfering with the priming of mtDNA replication by the mitochondrial RNA polymerase, or by inducing transcriptional mutagenesis or premature transcript termination. This review summarizes our current knowledge of mtDNA damage, its repair, and its effects on mtDNA integrity and gene expression. PMID:22728831

  9. Mitochondrial and Nuclear Genes of Mitochondrial Components in Cancer

    Science.gov (United States)

    Kirches, E

    2009-01-01

    Although the observation of aerobic glycolysis of tumor cells by Otto v. Warburg had demonstrated abnormalities of mitochondrial energy metabolism in cancer decades ago, there was no clear evidence for a functional role of mutant mitochondrial proteins in cancer development until the early years of the 21st century. In the year 2000, a major breakthrough was achieved by the observation, that several genes coding for subunits of the respiratory chain (ETC) complex II, succinate dehydrogenase (SDH) are tumor suppressor genes in heritable paragangliomas, fulfilling Knudson’s classical two-hit hypothesis. A functional inactivation of both alleles by germline mutations and chromosomal losses in the tumor tissue was found in the patients. Later, SDH mutations were also identified in sporadic paragangliomas and pheochromocytomas. Genes of the mitochondrial ATP-synthase and of mitochondrial iron homeostasis have been implicated in cancer development at the level of cell culture and mouse experiments. In contrast to the well established role of some nuclear SDH genes, a functional impact of the mitochondrial genome itself (mtDNA) in cancer development remains unclear. Nevertheless, the extremely high frequency of mtDNA mutations in solid tumors raises the question, whether this small circular genome might be applicable to early cancer detection. This is a meaningful approach, especially in cancers, which tend to spread tumor cells early into bodily fluids or faeces, which can be screened by non-invasive methods. PMID:19949549

  10. The mitochondrial contact site complex, a determinant of mitochondrial architecture.

    Science.gov (United States)

    Harner, Max; Körner, Christian; Walther, Dirk; Mokranjac, Dejana; Kaesmacher, Johannes; Welsch, Ulrich; Griffith, Janice; Mann, Matthias; Reggiori, Fulvio; Neupert, Walter

    2011-10-18

    Mitochondria are organelles with a complex architecture. They are bounded by an envelope consisting of the outer membrane and the inner boundary membrane (IBM). Narrow crista junctions (CJs) link the IBM to the cristae. OMs and IBMs are firmly connected by contact sites (CS). The molecular nature of the CS remained unknown. Using quantitative high-resolution mass spectrometry we identified a novel complex, the mitochondrial contact site (MICOS) complex, formed by a set of mitochondrial membrane proteins that is essential for the formation of CS. MICOS is preferentially located at the CJs. Upon loss of one of the MICOS subunits, CJs disappear completely or are impaired, showing that CJs require the presence of CS to form a superstructure that links the IBM to the cristae. Loss of MICOS subunits results in loss of respiratory competence and altered inheritance of mitochondrial DNA.

  11. Data showing the compositional complexity of the mitochondrial proteome of a unicellular eukaryote (Acanthamoeba castellanii, supergroup Amoebozoa

    Directory of Open Access Journals (Sweden)

    Ryan M.R. Gawryluk

    2014-12-01

    Full Text Available This article describes and directly links to 1033 Acanthamoeba castellanii mitochondrial protein sequences. Of these, 709 are supported by Mass Spectrometry (MS data (676 nucleus-encoded and 33 mitochondrion-encoded. Two of these entries are previously unannotated mtDNA-encoded proteins, which we identify as highly divergent mitochondrial ribosomal proteins. Our analysis corrects many A. castellanii protein sequences that were incorrectly inferred previously from genomic data deposited in NCBI.

  12. Stomatin-like protein 2 is required for in vivo mitochondrial respiratory chain supercomplex formation and optimal cell function.

    Science.gov (United States)

    Mitsopoulos, Panagiotis; Chang, Yu-Han; Wai, Timothy; König, Tim; Dunn, Stanley D; Langer, Thomas; Madrenas, Joaquín

    2015-05-01

    Stomatin-like protein 2 (SLP-2) is a mainly mitochondrial protein that is widely expressed and is highly conserved across evolution. We have previously shown that SLP-2 binds the mitochondrial lipid cardiolipin and interacts with prohibitin-1 and -2 to form specialized membrane microdomains in the mitochondrial inner membrane, which are associated with optimal mitochondrial respiration. To determine how SLP-2 functions, we performed bioenergetic analysis of primary T cells from T cell-selective Slp-2 knockout mice under conditions that forced energy production to come almost exclusively from oxidative phosphorylation. These cells had a phenotype characterized by increased uncoupled mitochondrial respiration and decreased mitochondrial membrane potential. Since formation of mitochondrial respiratory chain supercomplexes (RCS) may correlate with more efficient electron transfer during oxidative phosphorylation, we hypothesized that the defect in mitochondrial respiration in SLP-2-deficient T cells was due to deficient RCS formation. We found that in the absence of SLP-2, T cells had decreased levels and activities of complex I-III2 and I-III2-IV(1-3) RCS but no defects in assembly of individual respiratory complexes. Impaired RCS formation in SLP-2-deficient T cells correlated with significantly delayed T cell proliferation in response to activation under conditions of limiting glycolysis. Altogether, our findings identify SLP-2 as a key regulator of the formation of RCS in vivo and show that these supercomplexes are required for optimal cell function. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease

    NARCIS (Netherlands)

    Schunkert, Heribert; König, Inke R.; Kathiresan, Sekar; Reilly, Muredach P.; Assimes, Themistocles L.; Holm, Hilma; Preuss, Michael; Stewart, Alexandre F. R.; Barbalic, Maja; Gieger, Christian; Absher, Devin; Aherrahrou, Zouhair; Allayee, Hooman; Altshuler, David; Anand, Sonia S.; Andersen, Karl; Anderson, Jeffrey L.; Ardissino, Diego; Ball, Stephen G.; Balmforth, Anthony J.; Barnes, Timothy A.; Becker, Diane M.; Becker, Lewis C.; Berger, Klaus; Bis, Joshua C.; Boekholdt, S. Matthijs; Boerwinkle, Eric; Braund, Peter S.; Brown, Morris J.; Burnett, Mary Susan; Buysschaert, Ian; Carlquist, John F.; Chen, Li; Cichon, Sven; Codd, Veryan; Davies, Robert W.; Dedoussis, George; Dehghan, Abbas; Demissie, Serkalem; Devaney, Joseph M.; Diemert, Patrick; Do, Ron; Doering, Angela; Eifert, Sandra; Mokhtari, Nour Eddine El; Ellis, Stephen G.; Elosua, Roberto; Engert, James C.; Epstein, Stephen E.; de Faire, Ulf; Fischer, Marcus; Folsom, Aaron R.; Freyer, Jennifer; Gigante, Bruna; Girelli, Domenico; Gretarsdottir, Solveig; Gudnason, Vilmundur; Gulcher, Jeffrey R.; Halperin, Eran; Hammond, Naomi; Hazen, Stanley L.; Hofman, Albert; Horne, Benjamin D.; Illig, Thomas; Iribarren, Carlos; Jones, Gregory T.; Jukema, J. Wouter; Kaiser, Michael A.; Kaplan, Lee M.; Kastelein, John J. P.; Khaw, Kay-Tee; Knowles, Joshua W.; Kolovou, Genovefa; Kong, Augustine; Laaksonen, Reijo; Lambrechts, Diether; Leander, Karin; Lettre, Guillaume; Li, Mingyao; Lieb, Wolfgang; Loley, Christina; Lotery, Andrew J.; Mannucci, Pier M.; Maouche, Seraya; Martinelli, Nicola; McKeown, Pascal P.; Meisinger, Christa; Meitinger, Thomas; Melander, Olle; Merlini, Pier Angelica; Mooser, Vincent; Morgan, Thomas; Mühleisen, Thomas W.; Muhlestein, Joseph B.; Münzel, Thomas; Musunuru, Kiran; Nahrstaedt, Janja; Nelson, Christopher P.; Nöthen, Markus M.; Olivieri, Oliviero; Patel, Riyaz S.; Patterson, Chris C.; Peters, Annette; Peyvandi, Flora; Qu, Liming; Quyyumi, Arshed A.; Rader, Daniel J.; Rallidis, Loukianos S.; Rice, Catherine; Rosendaal, Frits R.; Rubin, Diana; Salomaa, Veikko; Sampietro, M. Lourdes; Sandhu, Manj S.; Schadt, Eric; Schäfer, Arne; Schillert, Arne; Schreiber, Stefan; Schrezenmeir, Jürgen; Schwartz, Stephen M.; Siscovick, David S.; Sivananthan, Mohan; Sivapalaratnam, Suthesh; Smith, Albert; Smith, Tamara B.; Snoep, Jaapjan D.; Soranzo, Nicole; Spertus, John A.; Stark, Klaus; Stirrups, Kathy; Stoll, Monika; Tang, W. H. Wilson; Tennstedt, Stephanie; Thorgeirsson, Gudmundur; Thorleifsson, Gudmar; Tomaszewski, Maciej; Uitterlinden, Andre G.; van Rij, Andre M.; Voight, Benjamin F.; Wareham, Nick J.; Wells, George A.; Wichmann, H.-Erich; Wild, Philipp S.; Willenborg, Christina; Witteman, Jaqueline C. M.; Wright, Benjamin J.; Ye, Shu; Zeller, Tanja; Ziegler, Andreas; Cambien, Francois; Goodall, Alison H.; Cupples, L. Adrienne; Quertermous, Thomas; März, Winfried; Hengstenberg, Christian; Blankenberg, Stefan; Ouwehand, Willem H.; Hall, Alistair S.; Deloukas, Panos; Thompson, John R.; Stefansson, Kari; Roberts, Robert; Thorsteinsdottir, Unnur; O'Donnell, Christopher J.; McPherson, Ruth; Erdmann, Jeanette; Samani, Nilesh J.

    2011-01-01

    We performed a meta-analysis of 14 genome-wide association studies of coronary artery disease (CAD) comprising 22,233 individuals with CAD (cases) and 64,762 controls of European descent followed by genotyping of top association signals in 56,682 additional individuals. This analysis identified 13

  14. Complete nucleotide sequence of the Coturnix chinensis (blue-breasted quail) mitochondrial genome and a phylogenetic analysis with related species.

    Science.gov (United States)

    Nishibori, M; Tsudzuki, M; Hayashi, T; Yamamoto, Y; Yasue, H

    2002-01-01

    Coturnix chinensis (blue-breasted quail) has been classically grouped in Galliformes Phasianidae Coturnix, based on morphologic features and biochemical evidence. Since the blue-breasted quail has the smallest body size among the species of Galliformes, in addition to a short generation time and an excellent reproductive performance, it is a possible model fowl for breeding and physiological studies of the Coturnix japonica (Japanese quail) and Gallus gallus domesticus (chicken), which are classified in the same family as blue-breasted quail. However, since its phylogenetic position in the family Phasianidae has not been determined conclusively, the sequence of the entire blue-breasted quail mitochondria (mt) genome was obtained to provide genetic information for phylogenetic analysis in the present study. The blue-breasted quail mtDNA was found to be a circular DNA of 16,687 base pairs (bp) with the same genomic structure as the mtDNAs of Japanese quail and chicken, though it is smaller than Japanese quail and chicken mtDNAs by 10 bp and 88 bp, respectively. The sequence identity of all mitochondrial genes, including those for 12S and 16S ribosomal RNAs, between blue-breasted quail and Japanese quail ranged from 84.5% to 93.5%; between blue-breasted quail and chicken, sequence identity ranged from 78.0% to 89.6%. In order to obtain information on the phylogenetic position of blue-breasted quail in Galliformes Phasianidae, the 2,184 bp sequence comprising NADH dehydrogenase subunit 2 and cytochrome b genes available for eight species in Galliformes [Japanese quail, chicken, Gallus varius (green junglefowl), Bambusicola thoracica (Chinese bamboo partridge), Pavo cristatus (Indian peafowl), Perdix perdix (gray partridge), Phasianus colchicus (ring-neck pheasant), and Tympanchus phasianellus (sharp-tailed grouse)] together with that of Aythya americana (redhead) were examined using a maximum likelihood (ML) method. The ML analyses on the first/second codon positions

  15. Identifying influential individuals on intensive care units: using cluster analysis to explore culture.

    Science.gov (United States)

    Fong, Allan; Clark, Lindsey; Cheng, Tianyi; Franklin, Ella; Fernandez, Nicole; Ratwani, Raj; Parker, Sarah Henrickson

    2017-07-01

    The objective of this paper is to identify attribute patterns of influential individuals in intensive care units using unsupervised cluster analysis. Despite the acknowledgement that culture of an organisation is critical to improving patient safety, specific methods to shift culture have not been explicitly identified. A social network analysis survey was conducted and an unsupervised cluster analysis was used. A total of 100 surveys were gathered. Unsupervised cluster analysis was used to group individuals with similar dimensions highlighting three general genres of influencers: well-rounded, knowledge and relational. Culture is created locally by individual influencers. Cluster analysis is an effective way to identify common characteristics among members of an intensive care unit team that are noted as highly influential by their peers. To change culture, identifying and then integrating the influencers in intervention development and dissemination may create more sustainable and effective culture change. Additional studies are ongoing to test the effectiveness of utilising these influencers to disseminate patient safety interventions. This study offers an approach that can be helpful in both identifying and understanding influential team members and may be an important aspect of developing methods to change organisational culture. © 2017 John Wiley & Sons Ltd.

  16. Mitogenomic Meta-Analysis Identifies Two Phases of Migration in the History of Eastern Eurasian Sheep

    Science.gov (United States)

    Lv, Feng-Hua; Peng, Wei-Feng; Yang, Ji; Zhao, Yong-Xin; Li, Wen-Rong; Liu, Ming-Jun; Ma, Yue-Hui; Zhao, Qian-Jun; Yang, Guang-Li; Wang, Feng; Li, Jin-Quan; Liu, Yong-Gang; Shen, Zhi-Qiang; Zhao, Sheng-Guo; Hehua, EEr; Gorkhali, Neena A.; Farhad Vahidi, S. M.; Muladno, Muhammad; Naqvi, Arifa N.; Tabell, Jonna; Iso-Touru, Terhi; Bruford, Michael W.; Kantanen, Juha; Han, Jian-Lin; Li, Meng-Hua

    2015-01-01

    Despite much attention, history of sheep (Ovis aries) evolution, including its dating, demographic trajectory and geographic spread, remains controversial. To address these questions, we generated 45 complete and 875 partial mitogenomic sequences, and performed a meta-analysis of these and published ovine mitochondrial DNA sequences (n = 3,229) across Eurasia. We inferred that O. orientalis and O. musimon share the most recent female ancestor with O. aries at approximately 0.790 Ma (95% CI: 0.637–0.934 Ma) during the Middle Pleistocene, substantially predating the domestication event (∼8–11 ka). By reconstructing historical variations in effective population size, we found evidence of a rapid population increase approximately 20–60 ka, immediately before the Last Glacial Maximum. Analyses of lineage expansions showed two sheep migratory waves at approximately 4.5–6.8 ka (lineages A and B: ∼6.4–6.8 ka; C: ∼4.5 ka) across eastern Eurasia, which could have been influenced by prehistoric West–East commercial trade and deliberate mating of domestic and wild sheep, respectively. A continent-scale examination of lineage diversity and approximate Bayesian computation analyses indicated that the Mongolian Plateau region was a secondary center of dispersal, acting as a “transportation hub” in eastern Eurasia: Sheep from the Middle Eastern domestication center were inferred to have migrated through the Caucasus and Central Asia, and arrived in North and Southwest China (lineages A, B, and C) and the Indian subcontinent (lineages B and C) through this region. Our results provide new insights into sheep domestication, particularly with respect to origins and migrations to and from eastern Eurasia. PMID:26085518

  17. Complete mitochondrial DNA sequences of the Victoria tilapia (Oreochromis variabilis) and Redbelly Tilapia (Tilapia zilli): genome characterization and phylogeny analysis.

    Science.gov (United States)

    Kinaro, Zachary Omambia; Xue, Liangyi; Volatiana, Josies Ancella

    2015-08-19

    The Cichlid fishes have played an important role in evolutionary biology, population studies and aquaculture industry with East African species representing a model suited for studying adaptive radiation and speciation for cichlid genome projects in which closely related genomes are fast emerging presenting questions on phenotype-genotype relations. The complete mitochondrial genomes presented here are for two closely related but eco-morphologically distinct Lake Victoria basin cichlids, Oreochromis variabilis, an endangered native species and Tilapia zilli, an invasive species, both of which are important economic fishes in local areas. The complete mitochondrial genomes determined for O. variabilis and T. zilli are 16 626 and 16,619 bp, respectively. Both the mitogenomes contain 13 protein-coding genes, 22 tRNAs, 2 rRNAs and a non-coding control region, which are typical of vertebrate mitogenomes. Phylogenetic analyses of the two species revealed that though both lie within family Cichlidae, they are remotely related.

  18. Complete mitochondrial DNA sequences of the Victoria tilapia (Oreochromis variabilis) and Redbelly Tilapia (Tilapia zilli): genome characterization and phylogeny analysis.

    Science.gov (United States)

    Kinaro, Zachary Omambia; Xue, Liangyi; Volatiana, Josies Ancella

    2016-07-01

    The Cichlid fishes have played an important role in evolutionary biology, population studies and aquaculture industry with East African species representing a model suited for studying adaptive radiation and speciation for cichlid genome projects in which closely related genomes are fast emerging presenting questions on phenotype-genotype relations. The complete mitochondrial genomes presented here are for two closely related but eco-morphologically distinct Lake Victoria basin cichlids, Oreochromis variabilis, an endangered native species and Tilapia zilli, an invasive species, both of which are important economic fishes in local areas. The complete mitochondrial genomes determined for O. variabilis and T. zilli are 16 626 and 16,619 bp, respectively. Both the mitogenomes contain 13 protein-coding genes, 22 tRNAs, 2 rRNAs and a non-coding control region, which are typical of vertebrate mitogenomes. Phylogenetic analyses of the two species revealed that though both lie within family Cichlidae, they are remotely related.

  19. Mechanisms of Mitochondrial Damage in Keratinocytes by Pemphigus Vulgaris Antibodies*

    Science.gov (United States)

    Kalantari-Dehaghi, Mina; Chen, Yumay; Deng, Wu; Chernyavsky, Alex; Marchenko, Steve; Wang, Ping H.; Grando, Sergei A.

    2013-01-01

    The development of nonhormonal treatment of pemphigus vulgaris (PV) has been hampered by a lack of clear understanding of the mechanisms leading to keratinocyte (KC) detachment and death in pemphigus. In this study, we sought to identify changes in the vital mitochondrial functions in KCs treated with the sera from PV patients and healthy donors. PV sera significantly increased proton leakage from KCs, suggesting that PV IgGs increase production of reactive oxygen species. Indeed, measurement of intracellular reactive oxygen species production showed a drastic increase of cell staining in response to treatment by PV sera, which was confirmed by FACS analysis. Exposure of KCs to PV sera also caused dramatic changes in the mitochondrial membrane potential detected with the JC-1 dye. These changes can trigger the mitochondria-mediated intrinsic apoptosis. Although sera from different PV patients elicited unique patterns of mitochondrial damage, the mitochondria-protecting drugs nicotinamide (also called niacinamide), minocycline, and cyclosporine A exhibited a uniform protective effect. Their therapeutic activity was validated in the passive transfer model of PV in neonatal BALB/c mice. The highest efficacy of mitochondrial protection of the combination of these drugs found in mitochondrial assay was consistent with the ability of the same drug combination to abolish acantholysis in mouse skin. These findings provide a theoretical background for clinical reports of the efficacy of mitochondria-protecting drugs in PV patients. Pharmacological protection of mitochondria and/or compensation of an altered mitochondrial function may therefore become a novel approach to development of personalized nonhormonal therapies of patients with this potentially lethal autoimmune blistering disease. PMID:23599429

  20. Analysis of mitochondrial 3D-deformation in cardiomyocytes during active contraction reveals passive structural anisotropy of orthogonal short axes.

    Directory of Open Access Journals (Sweden)

    Yael Yaniv

    Full Text Available The cardiomyocyte cytoskeleton, composed of rigid and elastic elements, maintains the isolated cell in an elongated cylindrical shape with an elliptical cross-section, even during contraction-relaxation cycles. Cardiomyocyte mitochondria are micron-sized, fluid-filled passive spheres distributed throughout the cell in a crystal-like lattice, arranged in pairs sandwiched between the sarcomere contractile machinery, both longitudinally and radially. Their shape represents the extant 3-dimensional (3D force-balance. We developed a novel method to examine mitochondrial 3D-deformation in response to contraction and relaxation to understand how dynamic forces are balanced inside cardiomyocytes. The variation in transmitted light intensity induced by the periodic lattice of myofilaments alternating with mitochondrial rows can be analyzed by Fourier transformation along a given cardiomyocyte axis to measure mitochondrial deformation along that axis. This technique enables precise detection of changes in dimension of ∼1% in ∼1 µm (long-axis structures with 8 ms time-resolution. During active contraction (1 Hz stimulation, mitochondria deform along the length- and width-axes of the cell with similar deformation kinetics in both sarcomere and mitochondrial structures. However, significant deformation anisotropy (without hysteresis was observed between the orthogonal short-axes (i.e., width and depth of mitochondria during electrical stimulation. The same degree of deformation anisotropy was also found between the myocyte orthogonal short-axes during electrical stimulation. Therefore, the deformation of the mitochondria reflects the overall deformation of the cell, and the apparent stiffness and stress/strain characteristics of the cytoskeleton differ appreciably between the two cardiomyocyte orthogonal short-axes. This method may be applied to obtaining a better understanding of the dynamic force-balance inside cardiomyocytes and of changes in the

  1. Identifying Effective Spelling Interventions Using a Brief Experimental Analysis and Extended Analysis

    Science.gov (United States)

    McCurdy, Merilee; Clure, Lynne F.; Bleck, Amanda A.; Schmitz, Stephanie L.

    2016-01-01

    Spelling is an important skill that is crucial to effective written communication. In this study, brief experimental analysis procedures were used to examine spelling instruction strategies (e.g., whole word correction; word study strategy; positive practice; and cover, copy, and compare) for four students. In addition, an extended analysis was…

  2. Molecular characteristics of mitochondrial DNA and phylogenetic analysis of the loach (Misgurnus anguillicaudatus) from the Poyang Lake.

    Science.gov (United States)

    Zeng, Liugen; Wang, Junhua; Sheng, Junqing; Gu, Qing; Hong, Yijiang

    2012-06-01

    The goal of our study was to investigate the molecular characteristics of mitochondrial DNA (mtDNA) and phylogenetic construction of the weather loach (Misgurnus anguillicaudatus) in Poyang Lake. The complete mitochondrial genome was 16,634 bp, and the gene order was identical to that of teleost fishes. Compared with the previous reported weather loach in China, there were numerous nucleotide substitutions and length polymorphisms on the structural genes of mitochondrial DNA in the loach from the Poyang Lake. The Phylogenetic tree indicated that the loach had its own molecular characteristics and was somewhat different from those in other regions of China. Fourteen unique haplotypes of the cytochrome b (cyt b) gene were obtained from 300 weather loaches. The Phylogenetic tree based on the cyt b gene showed that the loaches were substructured into two different populations in The Poyang Lake. Results indicated that the loaches in Poyang Lake not only showed the same phylogeny as the loaches in other areas of China, but also generated its own unique phylogenetic relationships.

  3. Identification and characterization of a highly variable region in mitochondrial genomes of fusarium species and analysis of power generation from microbial fuel cells

    Science.gov (United States)

    Hamzah, Haider Mousa

    In the microbial fuel cell (MFC) project, power generation from Shewanella oneidensis MR-1 was analyzed looking for a novel system for both energy generation and sustainability. The results suggest the possibility of generating electricity from different organic substances, which include agricultural and industrial by-products. Shewanella oneidensis MR-1 generates usable electrons at 30°C using both submerged and solid state cultures. In the MFC biocathode experiment, most of the CO2 generated at the anodic chamber was converted into bicarbonate due the activity of carbonic anhydrase (CA) of the Gluconobacter sp.33 strain. These findings demonstrate the possibility of generation of electricity while at the same time allowing the biomimetic sequestration of CO2 using bacterial CA. In the mitochondrial genomes project, the filamentous fungal species Fusarium oxysporum was used as a model. This species causes wilt of several important agricultural crops. A previous study revealed that a highly variable region (HVR) in the mitochondrial DNA (mtDNA) of three species of Fusarium contained a large, variable unidentified open reading frame (LV-uORF). Using specific primers for two regions of the LV-uORF, six strains were found to contain the ORF by PCR and database searches identified 18 other strains outside of the Fusarium oxysporum species complex. The LV-uORF was also identified in three isolates of the F. oxysporum species complex. Interestingly, several F. oxysporum isolates lack the LV-uORF and instead contain 13 ORFs in the HVR, nine of which are unidentified. The high GC content and codon usage of the LV-uORF indicate that it did not co-evolve with other mt genes and was horizontally acquired and was introduced to the Fusarium lineage prior to speciation. The nonsynonymous/synonymous (dN/dS) ratio of the LV-uORFs (0.43) suggests it is under purifying selection and the putative polypeptide is predicted to be located in the mitochondrial membrane. Growth assays

  4. The contributions of anthropology and mitochondrial DNA analysis to the identification of the human skeletal remains of the Australian outlaw Edward 'Ned' Kelly.

    Science.gov (United States)

    Blau, S; Catelli, L; Garrone, F; Hartman, D; Romanini, C; Romero, M; Vullo, C

    2014-07-01

    This paper details the anthropological and genetic analyses that contributed to the identification of the notorious Australian outlaw ('bushranger') Edward ('Ned') Kelly. In 1880 at the age of 25, Kelly was hanged and buried at the former Melbourne Gaol in Victoria, Australia. In 1929, the remains of executed prisoners (including those of Kelly) were haphazardly disinterred following the demolition of parts of the Melbourne Gaol and haphazardly reinterred in three distinct "pits" at the Pentridge Prison. In 1999 the Pentridge Prison was sold for commercial development and subsequently in 2008 and 2009 the human remains of prisoners were recovered. A total of 41 cases of unidentified human skeletal remains from Pentridge were examined using traditional anthropological techniques. At least one representative sample from each of the remains (mostly clavicles) from all three pits was selected for DNA analysis. Comparative ante-mortem reference samples were also located. Given the antiquity and condition of remains recovered from Pentridge, and the 130 years that had passed since Kelly's execution, mitochondrial DNA analysis was chosen as a suitable DNA analysis tool to examine the Pentridge cases to assist in the inclusion or exclusion of remains as being those of Ned Kelly. Only one of the Pentridge cases (Pen14) matched the HV1/HV2 mitochondrial DNA haplotype of the reference sample. Additional anthropological analyses indicated a number of pathological features that provided support that the remains of Pen14 are those of Edward ("Ned") Kelly. Crown Copyright © 2014. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Mitochondrial D-loop analysis for uncovering the population structure and genetic diversity among the indigenous duck (Anas platyrhynchos) populations of India.

    Science.gov (United States)

    Gaur, Uma; Tantia, Madhu Sudan; Mishra, Bina; Bharani Kumar, Settypalli Tirumala; Vijh, Ramesh Kumar; Chaudhury, Ashok

    2018-03-01

    The indigenous domestic duck (Anas platyrhynchos domestica) which is domesticated from Mallard (Anas platyrhynchos) contributes significantly to poor farming community in coastal and North Eastern regions of India. For conservation and maintenance of indigenous duck populations it is very important to know the existing genetic diversity and population structure. To unravel the population structure and genetic diversity among the five indigenous duck populations of India, the mitochondrial D-loop sequences of 120 ducks were analyzed. The sequence analysis by comparison of mtDNA D-loop region (470 bp) of five Indian duck populations revealed 25 mitochondrial haplotypes. Pairwise F ST value among populations was 0.4243 (p < .01) and the range of nucleotide substitution per site (Dxy) between the five Indian duck populations was 0.00034-0.00555, and the net divergence (Da) was 0-0.00355. The phylogenetic analysis in the present study unveiled three clades. The analysis revealed genetic continuity among ducks of coastal region of the country which formed a separate group from the ducks of the inland area. Both coastal as well as the land birds revealed introgression of the out group breed Khaki Campbell, which is used for breed improvement programs in India. The observations revealed very less selection and a single matrilineal lineage of indigenous domestic ducks.

  6. Mitochondrial myopathy and myoclonic epilepsy

    Directory of Open Access Journals (Sweden)

    Walter O. Arruda

    1990-03-01

    Full Text Available The authors describe a family (mother, son and two daughters with mitochondrial myopathy. The mother was asymptomatic. Two daughters had lactic acidosis and myoclonic epilepsy, mild dementia, ataxia, weakness and sensory neuropathy. The son suffered one acute hemiplegic episode due to an ischemic infarct in the right temporal region. All the patients studied had hypertension. EEG disclosed photomyoclonic response in the proband patient. Muscle biopsy disclosed ragged-red fibers and abnormal mitochondria by electron microscopy. Biochemical analysis showed a defect of cytochrome C oxidase in mitochondria isolated from skeletal muscle. Several clinical and genetic aspects of the mitochondrial encephalomyopathies are discussed.

  7. Comparative analysis of Salmonella genomes identifies a metabolic network for escalating growth in the inflamed gut.

    Science.gov (United States)

    Nuccio, Sean-Paul; Bäumler, Andreas J

    2014-03-18

    The Salmonella genus comprises a group of pathogens associated with illnesses ranging from gastroenteritis to typhoid fever. We performed an in silico analysis of comparatively reannotated Salmonella genomes to identify genomic signatures indicative of disease potential. By removing numerous annotation inconsistencies and inaccuracies, the process of reannotation identified a network of 469 genes involved in central anaerobic metabolism, which was intact in genomes of gastrointestinal pathogens but degrading in genomes of extraintestinal pathogens. This large network contained pathways that enable gastrointestinal pathogens to utilize inflammation-derived nutrients as well as many of the biochemical reactions used for the enrichment and biochemical discrimination of Salmonella serovars. Thus, comparative genome analysis identifies a metabolic network that provides clues about the strategies for nutrient acquisition and utilization that are characteristic of gastrointestinal pathogens. IMPORTANCE While some Salmonella serovars cause infections that remain localized to the gut, others disseminate throughout the body. Here, we compared Salmonella genomes to identify characteristics that distinguish gastrointestinal from extraintestinal pathogens. We identified a large metabolic network that is functional in gastrointestinal pathogens but decaying in extraintestinal pathogens. While taxonomists have used traits from this network empirically for many decades for the enrichment and biochemical discrimination of Salmonella serovars, our findings suggest that it is part of a "business plan" for growth in the inflamed gastrointestinal tract. By identifying a large metabolic network characteristic of Salmonella serovars associated with gastroenteritis, our in silico analysis provides a blueprint for potential strategies to utilize inflammation-derived nutrients and edge out competing gut microbes.

  8. A parameter estimation and identifiability analysis methodology applied to a street canyon air pollution model

    DEFF Research Database (Denmark)

    Ottosen, T. B.; Ketzel, Matthias; Skov, H.

    2016-01-01

    Mathematical models are increasingly used in environmental science thus increasing the importance of uncertainty and sensitivity analyses. In the present study, an iterative parameter estimation and identifiability analysis methodology is applied to an atmospheric model – the Operational Street...... of the identifiability analysis, showed that some model parameters were significantly more sensitive than others. The application of the determined optimal parameter values was shown to successfully equilibrate the model biases among the individual streets and species. It was as well shown that the frequentist approach...

  9. Mitochondrial tRNA cleavage by tRNA-targeting ribonuclease causes mitochondrial dysfunction observed in mitochondrial disease

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Tetsuhiro, E-mail: atetsu@mail.ecc.u-tokyo.ac.jp; Shimizu, Ayano; Takahashi, Kazutoshi; Hidaka, Makoto; Masaki, Haruhiko, E-mail: amasaki@mail.ecc.u-tokyo.ac.jp

    2014-08-15

    Highlights: • MTS-tagged ribonuclease was translocated successfully to the mitochondrial matrix. • MTS-tagged ribonuclease cleaved mt tRNA and reduced COX activity. • Easy and reproducible method of inducing mt tRNA dysfunction. - Abstract: Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrial dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ{sup 0} cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.

  10. Identifying Subgroups of Tinnitus Using Novel Resting State fMRI Biomarkers and Cluster Analysis

    Science.gov (United States)

    2017-10-13

    applied to the resting-state data to identify tinnitus subgroups within the patient population and pair them with specific behavioral ...and behavioral data  Specific Aim 2: Determine tinnitus subgroups using automated cluster analysis of resting state data and associate the subgroups...data analysis and clustering method previously developed to apply to current tinnitus data set o Percentage of completion at end of Year 2 (24 months

  11. Analysis of promoter regions of co-expressed genes identified by microarray analysis

    Directory of Open Access Journals (Sweden)

    Höglund Mattias

    2006-08-01

    Full Text Available Abstract Background The use of global gene expression profiling to identify sets of genes with similar expression patterns is rapidly becoming a widespread approach for understanding biological processes. A logical and systematic approach to study co-expressed genes is to analyze their promoter sequences to identify transcription factors that may be involved in establishing specific profiles and that may be experimentally investigated. Results We introduce promoter clustering i.e. grouping of promoters with respect to their high scoring motif content, and show that this approach greatly enhances the identification of common and significant transcription factor binding sites (TFBS in co-expressed genes. We apply this method to two different dataset, one consisting of micro array data from 108 leukemias (AMLs and a second from a time series experiment, and show that biologically relevant promoter patterns may be obtained using phylogenetic foot-printing methodology. In addition, we also found that 15% of the analyzed promoter regions contained transcription factors start sites for additional genes transcribed in the opposite direction. Conclusion Promoter clustering based on global promoter features greatly improve the identification of shared TFBS in co-expressed genes. We believe that the outlined approach may be a useful first step to identify transcription factors that contribute to specific features of gene expression profiles.

  12. Fatal hepatic short-chain L-3-hydroxyacyl-coenzyme A dehydrogenase deficiency: clinical, biochemical, and pathological studies on three subjects with this recently identified disorder of mitochondrial beta-oxidation

    NARCIS (Netherlands)

    Bennett, M. J.; Spotswood, S. D.; Ross, K. F.; Comfort, S.; Koonce, R.; Boriack, R. L.; IJlst, L.; Wanders, R. J.

    1999-01-01

    This report describes the clinical, biochemical, and pathological findings in three infants with hepatic short-chain L-3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD) deficiency, a recently recognized disorder of the mitochondrial oxidation of straight-chain fatty acids. Candidate subjects were

  13. Adipose tissue gene expression analysis reveals changes in inflammatory, mitochondrial respiratory and lipid metabolic pathways in obese insulin-resistant subjects

    Directory of Open Access Journals (Sweden)

    Soronen Jarkko

    2012-04-01

    Full Text Available Abstract Background To get insight into molecular mechanisms underlying insulin resistance, we compared acute in vivo effects of insulin on adipose tissue transcriptional profiles between obese insulin-resistant and lean insulin-sensitive women. Methods Subcutaneous adipose tissue biopsies were obtained before and after 3 and 6 hours of intravenously maintained euglycemic hyperinsulinemia from 9 insulin-resistant and 11 insulin-sensitive females. Gene expression was measured using Affymetrix HG U133 Plus 2 microarrays and qRT-PCR. Microarray data and pathway analyses were performed with Chipster v1.4.2 and by using in-house developed nonparametric pathway analysis software. Results The most prominent difference in gene expression of the insulin-resistant group during hyperinsulinemia was reduced transcription of nuclear genes involved in mitochondrial respiration (mitochondrial respiratory chain, GO:0001934. Inflammatory pathways with complement components (inflammatory response, GO:0006954 and cytokines (chemotaxis, GO:0042330 were strongly up-regulated in insulin-resistant as compared to insulin-sensitive subjects both before and during hyperinsulinemia. Furthermore, differences were observed in genes contributing to fatty acid, cholesterol and triglyceride metabolism (FATP2, ELOVL6, PNPLA3, SREBF1 and in genes involved in regulating lipolysis (ANGPTL4 between the insulin-resistant and -sensitive subjects especially during hyperinsulinemia. Conclusions The major finding of this study was lower expression of mitochondrial respiratory pathway and defective induction of lipid metabolism pathways by insulin in insulin-resistant subjects. Moreover, the study reveals several novel genes whose aberrant regulation is associated with the obese insulin-resistant phenotype.

  14. Sparse canonical correlation analysis for identifying, connecting and completing gene-expression networks

    Directory of Open Access Journals (Sweden)

    Zwinderman Aeilko H

    2009-09-01

    Full Text Available Abstract Background We generalized penalized canonical correlation analysis for analyzing microarray gene-expression measurements for checking completeness of known metabolic pathways and identifying candidate genes for incorporation in the pathway. We used Wold's method for calculation of the canonical variates, and we applied ridge penalization to the regression of pathway genes on canonical variates of the non-pathway genes, and the elastic net to the regression of non-pathway genes on the canonical variates of the pathway genes. Results We performed a small simulation to illustrate the model's capability to identify new candidate genes to incorporate in the pathway: in our simulations it appeared that a gene was correctly identified if the correlation with the pathway genes was 0.3 or more. We applied the methods to a gene-expression microarray data set of 12, 209 genes measured in 45 patients with glioblastoma, and we considered genes to incorporate in the glioma-pathway: we identified more than 25 genes that correlated > 0.9 with canonical variates of the pathway genes. Conclusion We concluded that penalized canonical correlation analysis is a powerful tool to identify candidate genes in pathway analysis.

  15. Systematic In Vivo RNAi Analysis Identifies IAPs as NEDD8-E3 Ligases

    DEFF Research Database (Denmark)

    Broemer, Meike; Tenev, Tencho; Rigbolt, Kristoffer T G

    2010-01-01

    -like proteins (UBLs), and deconjugating enzymes that remove the Ub or UBL adduct. Systematic in vivo RNAi analysis identified three NEDD8-specific isopeptidases that, when knocked down, suppress apoptosis. Consistent with the notion that attachment of NEDD8 prevents cell death, genetic ablation of deneddylase 1...

  16. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis

    NARCIS (Netherlands)

    Voight, Benjamin F.; Scott, Laura J.; Steinthorsdottir, Valgerdur; Morris, Andrew P.; Dina, Christian; Welch, Ryan P.; Zeggini, Eleftheria; Huth, Cornelia; Aulchenko, Yurii S.; Thorleifsson, Gudmar; McCulloch, Laura J.; Ferreira, Teresa; Grallert, Harald; Amin, Najaf; Wu, Guanming; Willer, Cristen J.; Raychaudhuri, Soumya; McCarroll, Steve A.; Langenberg, Claudia; Hofmann, Oliver M.; Dupuis, Josee; Qi, Lu; Segre, Ayellet V.; van Hoek, Mandy; Navarro, Pau; Ardlie, Kristin; Balkau, Beverley; Benediktsson, Rafn; Bennett, Amanda J.; Blagieva, Roza; Boerwinkle, Eric; Bonnycastle, Lori L.; Bostrom, Kristina Bengtsson; Bravenboer, Bert; Bumpstead, Suzannah; Burtt, Noisel P.; Charpentier, Guillaume; Chines, Peter S.; Cornelis, Marilyn; Couper, David J.; Crawford, Gabe; Doney, Alex S. F.; Elliott, Katherine S.; Elliott, Amanda L.; Erdos, Michael R.; Fox, Caroline S.; Franklin, Christopher S.; Ganser, Martha; Gieger, Christian; Grarup, Niels; Green, Todd; Griffin, Simon; Groves, Christopher J.; Guiducci, Candace; Hadjadj, Samy; Hassanali, Neelam; Herder, Christian; Isomaa, Bo; Jackson, Anne U.; Johnson, Paul R. V.; Jorgensen, Torben; Kao, Wen H. L.; Klopp, Norman; Kong, Augustine; Kraft, Peter; Kuusisto, Johanna; Lauritzen, Torsten; Li, Man; Lieverse, Aloysius; Lindgren, Cecilia M.; Lyssenko, Valeriya; Marre, Michel; Meitinger, Thomas; Midthjell, Kristian; Morken, Mario A.; Narisu, Narisu; Nilsson, Peter; Owen, Katharine R.; Payne, Felicity; Perry, John R. B.; Petersen, Ann-Kristin; Platou, Carl; Proenca, Christine; Prokopenko, Inga; Rathmann, Wolfgang; Rayner, N. William; Robertson, Neil R.; Rocheleau, Ghislain; Roden, Michael; Sampson, Michael J.; Saxena, Richa; Shields, Beverley M.; Shrader, Peter; Sigurdsson, Gunnar; Sparso, Thomas; Strassburger, Klaus; Stringham, Heather M.; Sun, Qi; Swift, Amy J.; Thorand, Barbara; Tichet, Jean; Tuomi, Tiinamaija; van Dam, Rob M.; van Haeften, Timon W.; van Herpt, Thijs; van Vliet-Ostaptchouk, Jana V.; Walters, G. Bragi; Weedon, Michael N.; Wijmenga, Cisca; Witteman, Jacqueline; Bergman, Richard N.; Cauchi, Stephane; Collins, Francis S.; Gloyn, Anna L.; Gyllensten, Ulf; Hansen, Torben; Hide, Winston A.; Hitman, Graham A.; Hofman, Albert; Hunter, David J.; Hveem, Kristian; Laakso, Markku; Mohlke, Karen L.; Morris, Andrew D.; Palmer, Colin N. A.; Pramstaller, Peter P.; Rudan, Igor; Sijbrands, Eric; Stein, Lincoln D.; Tuomilehto, Jaakko; Uitterlinden, Andre; Walker, Mark; Wareham, Nicholas J.; Watanabe, Richard M.; Abecasis, Goncalo R.; Boehm, Bernhard O.; Campbell, Harry; Daly, Mark J.; Hattersley, Andrew T.; Hu, Frank B.; Meigs, James B.; Pankow, James S.; Pedersen, Oluf; Wichmann, H-Erich; Barroso, Ines; Florez, Jose C.; Frayling, Timothy M.; Groop, Leif; Sladek, Rob; Thorsteinsdottir, Unnur; Wilson, James F.; Illig, Thomas; Froguel, Philippe; van Duijn, Cornelia M.; Stefansson, Kari; Altshuler, David; Boehnke, Michael; McCarthy, Mark I.

    By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combined

  17. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis

    NARCIS (Netherlands)

    B.F. Voight (Benjamin); L.J. Scott (Laura); V. Steinthorsdottir (Valgerdur); A.D. Morris (Andrew); C. Dina (Christian); R.P. Welch (Ryan); E. Zeggini (Eleftheria); C. Huth (Cornelia); Y.S. Aulchenko (Yurii); G. Thorleifsson (Gudmar); L.J. McCulloch (Laura); T. Ferreira (Teresa); H. Grallert (Harald); N. Amin (Najaf); G. Wu (Guanming); C.J. Willer (Cristen); S. Raychaudhuri (Soumya); S.A. McCarroll (Steven); C. Langenberg (Claudia); O.M. Hofmann (Oliver); J. Dupuis (Josée); L. Qi (Lu); A.V. Segrè (Ayellet); M. van Hoek (Mandy); P. Navarro (Pau); K.G. Ardlie (Kristin); B. Balkau (Beverley); R. Benediktsson (Rafn); A.J. Bennett (Amanda); R. Blagieva (Roza); E.A. Boerwinkle (Eric); L.L. Bonnycastle (Lori); K.B. Boström (Kristina Bengtsson); B. Bravenboer (Bert); S. Bumpstead (Suzannah); N.P. Burtt (Noël); G. Charpentier (Guillaume); P.S. Chines (Peter); M. Cornelis (Marilyn); D.J. Couper (David); G. Crawford (Gabe); A.S.F. Doney (Alex); K.S. Elliott (Katherine); M.R. Erdos (Michael); C.S. Fox (Caroline); C.S. Franklin (Christopher); M. Ganser (Martha); C. Gieger (Christian); N. Grarup (Niels); T. Green (Todd); S. Griffin (Simon); C.J. Groves (Christopher); C. Guiducci (Candace); S. Hadjadj (Samy); N. Hassanali (Neelam); C. Herder (Christian); B. Isomaa (Bo); A.U. Jackson (Anne); P.R.V. Johnson (Paul); T. Jørgensen (Torben); W.H.L. Kao (Wen); N. Klopp (Norman); A. Kong (Augustine); P. Kraft (Peter); J. Kuusisto (Johanna); T. Lauritzen (Torsten); M. Li (Man); A. Lieverse (Aloysius); C.M. Lindgren (Cecilia); V. Lyssenko (Valeriya); M. Marre (Michel); T. Meitinger (Thomas); K. Midthjell (Kristian); M.A. Morken (Mario); N. Narisu (Narisu); P. Nilsson (Peter); K.R. Owen (Katharine); F. Payne (Felicity); J.R.B. Perry (John); A.K. Petersen; C. Platou (Carl); C. Proença (Christine); I. Prokopenko (Inga); W. Rathmann (Wolfgang); N.W. Rayner (Nigel William); N.R. Robertson (Neil); G. Rocheleau (Ghislain); M. Roden (Michael); M.J. Sampson (Michael); R. Saxena (Richa); B.M. Shields (Beverley); P. Shrader (Peter); G. Sigurdsson (Gunnar); T. Sparsø (Thomas); K. Strassburger (Klaus); H.M. Stringham (Heather); Q. Sun (Qi); A.J. Swift (Amy); B. Thorand (Barbara); J. Tichet (Jean); T. Tuomi (Tiinamaija); R.M. van Dam (Rob); T.W. van Haeften (Timon); T.W. van Herpt (Thijs); J.V. van Vliet-Ostaptchouk (Jana); G.B. Walters (Bragi); M.N. Weedon (Michael); C. Wijmenga (Cisca); J.C.M. Witteman (Jacqueline); R.N. Bergman (Richard); S. Cauchi (Stephane); F.S. Collins (Francis); A.L. Gloyn (Anna); U. Gyllensten (Ulf); T. Hansen (Torben); W.A. Hide (Winston); G.A. Hitman (Graham); A. Hofman (Albert); D. Hunter (David); K. Hveem (Kristian); M. Laakso (Markku); K.L. Mohlke (Karen); C.N.A. Palmer (Colin); P.P. Pramstaller (Peter Paul); I. Rudan (Igor); E.J.G. Sijbrands (Eric); L.D. Stein (Lincoln); J. Tuomilehto (Jaakko); A.G. Uitterlinden (André); M. Walker (Mark); N.J. Wareham (Nick); G.R. Abecasis (Gonçalo); B.O. Boehm (Bernhard); H. Campbell (Harry); M.J. Daly (Mark); A.T. Hattersley (Andrew); F.B. Hu (Frank); J.B. Meigs (James); J.S. Pankow (James); O. Pedersen (Oluf); H.E. Wichmann (Erich); I. Barroso (Inês); J.C. Florez (Jose); T.M. Frayling (Timothy); L. Groop (Leif); R. Sladek (Rob); U. Thorsteinsdottir (Unnur); J.F. Wilson (James); T. Illig (Thomas); P. Froguel (Philippe); P. Tikka-Kleemola (Päivi); J-A. Zwart (John-Anker); D. Altshuler (David); M. Boehnke (Michael); M.I. McCarthy (Mark); R.M. Watanabe (Richard)

    2010-01-01

    textabstractBy combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals

  18. Identifying Skill Requirements for GIS Positions: A Content Analysis of Job Advertisements

    Science.gov (United States)

    Hong, Jung Eun

    2016-01-01

    This study identifies the skill requirements for geographic information system (GIS) positions, including GIS analysts, programmers/developers/engineers, specialists, and technicians, through a content analysis of 946 GIS job advertisements from 2007-2014. The results indicated that GIS job applicants need to possess high levels of GIS analysis…

  19. Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS

    NARCIS (Netherlands)

    Smith, Bradley N.; Ticozzi, Nicola; Fallini, Claudia; Gkazi, Athina Soragia; Topp, Simon; Kenna, Kevin P.; Scotter, Emma L.; Kost, Jason; Keagle, Pamela; Miller, Jack W.; Calini, Daniela; Vance, Caroline; Danielson, Eric W.; Troakes, Claire; Tiloca, Cinzia; Al-Sarraj, Safa; Lewis, Elizabeth A.; King, Andrew; Colombrita, Claudia; Pensato, Viviana; Castellotti, Barbara; de Belleroche, Jacqueline; Baas, Frank; ten Asbroek, Anneloor L. M. A.; Sapp, Peter C.; McKenna-Yasek, Diane; McLaughlin, Russell L.; Polak, Meraida; Asress, Seneshaw; Esteban-Pérez, Jesús; Muñoz-Blanco, José Luis; Simpson, Michael; van Rheenen, Wouter; Diekstra, Frank P.; Lauria, Giuseppe; Duga, Stefano; Corti, Stefania; Cereda, Cristina; Corrado, Lucia; Sorarù, Gianni; Morrison, Karen E.; Williams, Kelly L.; Nicholson, Garth A.; Blair, Ian P.; Dion, Patrick A.; Leblond, Claire S.; Rouleau, Guy A.; Hardiman, Orla; Veldink, Jan H.; van den Berg, Leonard H.; Al-Chalabi, Ammar; Pall, Hardev; Shaw, Pamela J.; Turner, Martin R.; Talbot, Kevin; Taroni, Franco; García-Redondo, Alberto; Wu, Zheyang; Glass, Jonathan D.; Gellera, Cinzia; Ratti, Antonia; Brown, Robert H.; Silani, Vincenzo; Shaw, Christopher E.; Landers, John E.; D'alfonso, Sandra; Mazzini, Letizia; Comi, Giacomo P.; del Bo, Roberto; Ceroni, Mauro; Gagliardi, Stella; Querin, Giorgia; Bertolin, Cinzia

    2014-01-01

    Exome sequencing is an effective strategy for identifying human disease genes. However, this methodology is difficult in late-onset diseases where limited availability of DNA from informative family members prohibits comprehensive segregation analysis. To overcome this limitation, we performed an

  20. Social Network Analysis: A Simple but Powerful Tool for Identifying Teacher Leaders

    Science.gov (United States)

    Smith, P. Sean; Trygstad, Peggy J.; Hayes, Meredith L.

    2018-01-01

    Instructional teacher leadership is central to a vision of distributed leadership. However, identifying instructional teacher leaders can be a daunting task, particularly for administrators who find themselves either newly appointed or faced with high staff turnover. This article describes the use of social network analysis (SNA), a simple but…

  1. Genome-based exome sequencing analysis identifies GYG1, DIS3L ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 96; Issue 6. Genome-based exome sequencing analysis identifies GYG1, DIS3L and DDRGK1 are associated with myocardial infarction in Koreans. JI-YOUNG LEE SANGHOON MOON YUN KYOUNG KIM SANG-HAK LEE BOK-SOO LEE MIN-YOUNG PARK JEONG EUY PARK ...

  2. Are Young Dual Language Learners Homogeneous? Identifying Subgroups Using Latent Class Analysis

    Science.gov (United States)

    Kim, Do-Hong; Lambert, Richard G.; Burts, Diane C.

    2018-01-01

    Although dual language learners (DLLs) are linguistically, culturally, and socially diverse, researchers usually study them in aggregate and compare them to non-DLLs. The authors' purpose was to identify subgroups of preschool DLLs using latent class analysis. There were 7,361 DLLs and 69,457 non-DLLs. Results revealed three distinct classes.…

  3. Using Latent Class Analysis to Identify Academic and Behavioral Risk Status in Elementary Students

    Science.gov (United States)

    King, Kathleen R.; Lembke, Erica S.; Reinke, Wendy M.

    2016-01-01

    Identifying classes of children on the basis of academic and behavior risk may have important implications for the allocation of intervention resources within Response to Intervention (RTI) and Multi-Tiered System of Support (MTSS) models. Latent class analysis (LCA) was conducted with a sample of 517 third grade students. Fall screening scores in…

  4. Genome-wide association scan meta-analysis identifies three loci influencing adiposity and fat distribution

    NARCIS (Netherlands)

    C.M. Lindgren (Cecilia); I.M. Heid (Iris); J.C. Randall (Joshua); C. Lamina (Claudia); V. Steinthorsdottir (Valgerdur); L. Qi (Lu); E.K. Speliotes (Elizabeth); G. Thorleifsson (Gudmar); C.J. Willer (Cristen); B.M. Herrera (Blanca); A.U. Jackson (Anne); N. Lim (Noha); P. Scheet (Paul); N. Soranzo (Nicole); N. Amin (Najaf); Y.S. Aulchenko (Yurii); J.C. Chambers (John); A. Drong (Alexander); J. Luan; H.N. Lyon (Helen); F. Rivadeneira Ramirez (Fernando); S. Sanna (Serena); N.J. Timpson (Nicholas); M.C. Zillikens (Carola); H.Z. Jing; P. Almgren (Peter); S. Bandinelli (Stefania); A.J. Bennett (Amanda); R.N. Bergman (Richard); L.L. Bonnycastle (Lori); S. Bumpstead (Suzannah); S.J. Chanock (Stephen); L. Cherkas (Lynn); P.S. Chines (Peter); L. Coin (Lachlan); C. Cooper (Charles); G. Crawford (Gabe); A. Doering (Angela); A. Dominiczak (Anna); A.S.F. Doney (Alex); S. Ebrahim (Shanil); P. Elliott (Paul); M.R. Erdos (Michael); K. Estrada Gil (Karol); L. Ferrucci (Luigi); G. Fischer (Guido); N.G. Forouhi (Nita); C. Gieger (Christian); H. Grallert (Harald); C.J. Groves (Christopher); S.M. Grundy (Scott); C. Guiducci (Candace); D. Hadley (David); A. Hamsten (Anders); A.S. Havulinna (Aki); A. Hofman (Albert); R. Holle (Rolf); J.W. Holloway (John); T. Illig (Thomas); B. Isomaa (Bo); L.C. Jacobs (Leonie); K. Jameson (Karen); P. Jousilahti (Pekka); F. Karpe (Fredrik); J. Kuusisto (Johanna); J. Laitinen (Jaana); G.M. Lathrop (Mark); D.A. Lawlor (Debbie); M. Mangino (Massimo); W.L. McArdle (Wendy); T. Meitinger (Thomas); M.A. Morken (Mario); A.P. Morris (Andrew); P. Munroe (Patricia); N. Narisu (Narisu); A. Nordström (Anna); B.A. Oostra (Ben); C.N.A. Palmer (Colin); F. Payne (Felicity); J. Peden (John); I. Prokopenko (Inga); F. Renström (Frida); A. Ruokonen (Aimo); V. Salomaa (Veikko); M.S. Sandhu (Manjinder); L.J. Scott (Laura); A. Scuteri (Angelo); K. Silander (Kaisa); K. Song (Kijoung); X. Yuan (Xin); H.M. Stringham (Heather); A.J. Swift (Amy); T. Tuomi (Tiinamaija); M. Uda (Manuela); P. Vollenweider (Peter); G. Waeber (Gérard); C. Wallace (Chris); G.B. Walters (Bragi); M.N. Weedon (Michael); J.C.M. Witteman (Jacqueline); C. Zhang (Cuilin); M. Caulfield (Mark); F.S. Collins (Francis); G.D. Smith; I.N.M. Day (Ian); P.W. Franks (Paul); A.T. Hattersley (Andrew); F.B. Hu (Frank); M.-R. Jarvelin (Marjo-Riitta); A. Kong (Augustine); J.S. Kooner (Jaspal); M. Laakso (Markku); E. Lakatta (Edward); V. Mooser (Vincent); L. Peltonen (Leena Johanna); N.J. Samani (Nilesh); T.D. Spector (Timothy); D.P. Strachan (David); T. Tanaka (Toshiko); J. Tuomilehto (Jaakko); A.G. Uitterlinden (André); P. Tikka-Kleemola (Päivi); N.J. Wareham (Nick); H. Watkins (Hugh); D. Waterworth (Dawn); M. Boehnke (Michael); P. Deloukas (Panagiotis); L. Groop (Leif); D.J. Hunter (David); U. Thorsteinsdottir (Unnur); D. Schlessinger (David); H.E. Wichmann (Erich); T.M. Frayling (Timothy); G.R. Abecasis (Gonçalo); J.N. Hirschhorn (Joel); R.J.F. Loos (Ruth); J-A. Zwart (John-Anker); K.L. Mohlke (Karen); I. Barroso (Inês); M.I. McCarthy (Mark)

    2009-01-01

    textabstractTo identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the

  5. AcuI identifies water buffalo CSN3 genotypes by RFLP analysis

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 93; Online resources. AcuI identifies water buffalo CSN3 genotypes by RFLP analysis. Soheir M. El Nahas Ahlam A. Abou Mossallam. Volume 93 Online resources 2014 pp e94-e96. Fulltext. Click here to view fulltext PDF. Permanent link:

  6. Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases

    DEFF Research Database (Denmark)

    Boomsma, Wouter Krogh; Nielsen, Sofie Vincents; Lindorff-Larsen, Kresten

    2016-01-01

    conduct a bioinformatics analysis to examine >600 human and S. cerevisiae E3 ligases to identify enzymes that are similar to San1 in terms of function and/or mechanism of substrate recognition. An initial sequence-based database search was found to detect candidates primarily based on the homology...

  7. Genetic analysis to identify good combiners for ToLCV resistance ...

    Indian Academy of Sciences (India)

    2014-11-10

    Nov 10, 2014 ... RESEARCH ARTICLE. Genetic analysis to identify good combiners for ToLCV resistance and yield components in tomato using interspecific hybridization. RAMESH K. SINGH1,2,3, N. RAI1∗, MAJOR SINGH1, S. N. SINGH2 and K. SRIVASTAVA4. 1Crop Improvement Division, Indian Institute of Vegetable ...

  8. Identifying Subgroups of Tinnitus Using Novel Resting State fMRI Biomarkers and Cluster Analysis

    Science.gov (United States)

    2016-10-01

    project activities, for the purpose of enhancing public understanding and increasing interest in learning and careers in science, technology, and the... Unsupervised hierarchical clustering of resting state functional connectivity data to identify patients with mild tinnitus. Poster session presented...including drafting of IRB behavioral and scanning protocols, advising on recruiting and initial data collection. She also supervised analysis of data and

  9. Large-scale association analysis identifies new risk loci for coronary artery disease

    NARCIS (Netherlands)

    Deloukas, Panos; Kanoni, Stavroula; Willenborg, Christina; Farrall, Martin; Assimes, Themistocles L.; Thompson, John R.; Ingelsson, Erik; Saleheen, Danish; Erdmann, Jeanette; Goldstein, Benjamin A.; Stirrups, Kathleen; König, Inke R.; Cazier, Jean-Baptiste; Johansson, Asa; Hall, Alistair S.; Lee, Jong-Young; Willer, Cristen J.; Chambers, John C.; Esko, Tõnu; Folkersen, Lasse; Goel, Anuj; Grundberg, Elin; Havulinna, Aki S.; Ho, Weang K.; Hopewell, Jemma C.; Eriksson, Niclas; Kleber, Marcus E.; Kristiansson, Kati; Lundmark, Per; Lyytikäinen, Leo-Pekka; Rafelt, Suzanne; Shungin, Dmitry; Strawbridge, Rona J.; Thorleifsson, Gudmar; Tikkanen, Emmi; van Zuydam, Natalie; Voight, Benjamin F.; Waite, Lindsay L.; Zhang, Weihua; Ziegler, Andreas; Absher, Devin; Altshuler, David; Balmforth, Anthony J.; Barroso, Inês; Braund, Peter S.; Burgdorf, Christof; Claudi-Boehm, Simone; Cox, David; Dimitriou, Maria; Do, Ron; Doney, Alex S. F.; El Mokhtari, NourEddine; Eriksson, Per; Fischer, Krista; Fontanillas, Pierre; Franco-Cereceda, Anders; Gigante, Bruna; Groop, Leif; Gustafsson, Stefan; Hager, Jörg; Hallmans, Göran; Han, Bok-Ghee; Hunt, Sarah E.; Kang, Hyun M.; Illig, Thomas; Kessler, Thorsten; Knowles, Joshua W.; Kolovou, Genovefa; Kuusisto, Johanna; Langenberg, Claudia; Langford, Cordelia; Leander, Karin; Lokki, Marja-Liisa; Lundmark, Anders; McCarthy, Mark I.; Meisinger, Christa; Melander, Olle; Mihailov, Evelin; Maouche, Seraya; Morris, Andrew D.; Müller-Nurasyid, Martina; Nikus, Kjell; Peden, John F.; Rayner, N. William; Rasheed, Asif; Rosinger, Silke; Rubin, Diana; Rumpf, Moritz P.; Schäfer, Arne; Sivananthan, Mohan; Song, Ci; Stewart, Alexandre F. R.; Tan, Sian-Tsung; Thorgeirsson, Gudmundur; van der Schoot, C. Ellen; Wagner, Peter J.; Wells, George A.; Wild, Philipp S.; Yang, Tsun-Po; Amouyel, Philippe; Arveiler, Dominique; Basart, Hanneke; Boehnke, Michael; Boerwinkle, Eric; Brambilla, Paolo; Cambien, Francois; Cupples, Adrienne L.; de Faire, Ulf; Dehghan, Abbas; Diemert, Patrick; Epstein, Stephen E.; Evans, Alun; Ferrario, Marco M.; Ferrières, Jean; Gauguier, Dominique; Go, Alan S.; Goodall, Alison H.; Gudnason, Villi; Hazen, Stanley L.; Holm, Hilma; Iribarren, Carlos; Jang, Yangsoo; Kähönen, Mika; Kee, Frank; Kim, Hyo-Soo; Klopp, Norman; Koenig, Wolfgang; Kratzer, Wolfgang; Kuulasmaa, Kari; Laakso, Markku; Laaksonen, Reijo; Lee, Ji-Young; Lind, Lars; Ouwehand, Willem H.; Parish, Sarah; Park, Jeong E.; Pedersen, Nancy L.; Peters, Annette; Quertermous, Thomas; Rader, Daniel J.; Salomaa, Veikko; Schadt, Eric; Shah, Svati H.; Sinisalo, Juha; Stark, Klaus; Stefansson, Kari; Trégouët, David-Alexandre; Virtamo, Jarmo; Wallentin, Lars; Wareham, Nicholas; Zimmermann, Martina E.; Nieminen, Markku S.; Hengstenberg, Christian; Sandhu, Manjinder S.; Pastinen, Tomi; Syvänen, Ann-Christine; Hovingh, G. Kees; Dedoussis, George; Franks, Paul W.; Lehtimäki, Terho; Metspalu, Andres; Zalloua, Pierre A.; Siegbahn, Agneta; Schreiber, Stefan; Ripatti, Samuli; Blankenberg, Stefan S.; Perola, Markus; Clarke, Robert; Boehm, Bernhard O.; O'Donnell, Christopher; Reilly, Muredach P.; März, Winfried; Collins, Rory; Kathiresan, Sekar; Hamsten, Anders; Kooner, Jaspal S.; Thorsteinsdottir, Unnur; Danesh, John; Palmer, Colin N. A.; Roberts, Robert; Watkins, Hugh; Schunkert, Heribert; Samani, Nilesh J.

    2013-01-01

    Coronary artery disease (CAD) is the commonest cause of death. Here, we report an association analysis in 63,746 CAD cases and 130,681 controls identifying 15 loci reaching genome-wide significance, taking the number of susceptibility loci for CAD to 46, and a further 104 independent variants (r(2)

  10. Identifying sustainability issues using participatory SWOT analysis - A case study of egg production in the Netherlands

    NARCIS (Netherlands)

    Mollenhorst, H.; Boer, de I.J.M.

    2004-01-01

    The aim of this paper was to demonstrate how participatory strengths, weaknesses, opportunities and threats (SWOT) analysis can be used to identify relevant economic, ecological and societal (EES) issues for the assessment of sustainable development. This is illustrated by the case of egg production

  11. Identifying the "Right Stuff": An Exploration-Focused Astronaut Job Analysis

    Science.gov (United States)

    Barrett, J. D.; Holland, A. W.; Vessey, W. B.

    2015-01-01

    Industrial and organizational (I/O) psychologists play a key role in NASA astronaut candidate selection through the identification of the competencies necessary to successfully engage in the astronaut job. A set of psychosocial competencies, developed by I/O psychologists during a prior job analysis conducted in 1996 and updated in 2003, were identified as necessary for individuals working and living in the space shuttle and on the International Space Station (ISS). This set of competencies applied to the space shuttle and applies to current ISS missions, but may not apply to longer-duration or long-distance exploration missions. With the 2015 launch of the first 12- month ISS mission and the shift in the 2020s to missions beyond low earth orbit, the type of missions that astronauts will conduct and the environment in which they do their work will change dramatically, leading to new challenges for these crews. To support future astronaut selection, training, and research, I/O psychologists in NASA's Behavioral Health and Performance (BHP) Operations and Research groups engaged in a joint effort to conduct an updated analysis of the astronaut job for current and future operations. This project will result in the identification of behavioral competencies critical to performing the astronaut job, along with relative weights for each of the identified competencies, through the application of job analysis techniques. While this job analysis is being conducted according to job analysis best practices, the project poses a number of novel challenges. These challenges include the need to identify competencies for multiple mission types simultaneously, to evaluate jobs that have no incumbents as they have never before been conducted, and working with a very limited population of subject matter experts. Given these challenges, under the guidance of job analysis experts, we used the following methods to conduct the job analysis and identify the key competencies for current and

  12. Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis

    Science.gov (United States)

    Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.

    1995-01-01

    A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.

  13. Phylogenetic analysis of widely cultivated Ganoderma in China based on the mitochondrial V4-V6 region of SSU rDNA.

    Science.gov (United States)

    Zhou, X W; Su, K Q; Zhang, Y M

    2015-02-02

    Ganoderma mushroom is one of the most prescribed traditional medicines and has been used for centuries, particularly in China, Japan, Korea, and other Asian countries. In this study, different strains of Ganoderma spp and the genetic relationships of the closely related strains were identified and investigated based on the V4-V6 region of mitochondrial small subunit ribosomal DNA of the Ganoderma species. The sizes of the mitochondrial ribosomal DNA regions from different Ganoderma species showed 2 types of sequences, 2.0 or 0.5 kb. A phylogenetic tree was constructed, which revealed a high level of genetic diversity in Ganoderma species. Ganoderma lucidum G05 and G. eupense G09 strains were clustered into a G. resinaceum group. Ganoderma spp G29 and G22 strains were clustered into a G. lucidum group. However, Ganoderma spp G19, G20, and G21 strains were clustered into a single group, the G. lucidum AF214475, G. sinense, G. strum G17, G. strum G36, and G. sinense G10 strains contained an intron and were clustered into other groups.

  14. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer

    International Nuclear Information System (INIS)

    Thomassen, Mads; Tan, Qihua; Kruse, Torben A

    2008-01-01

    Metastasis is believed to progress in several steps including different pathways but the determination and understanding of these mechanisms is still fragmentary. Microarray analysis of gene expression patterns in breast tumors has been used to predict outcome in recent studies. Besides classification of outcome, these global expression patterns may reflect biological mechanisms involved in metastasis of breast cancer. Our purpose has been to investigate pathways and transcription factors involved in metastasis by use of gene expression data sets. We have analyzed 8 publicly available gene expression data sets. A global approach, 'gene set enrichment analysis' as well as an approach focusing on a subset of significantly differently regulated genes, GenMAPP, has been applied to rank pathway gene sets according to differential regulation in metastasizing tumors compared to non-metastasizing tumors. Meta-analysis has been used to determine overrepresentation of pathways and transcription factors targets, concordant deregulated in metastasizing breast tumors, in several data sets. The major findings are up-regulation of cell cycle pathways and a metabolic shift towards glucose metabolism reflected in several pathways in metastasizing tumors. Growth factor pathways seem to play dual roles; EGF and PDGF pathways are decreased, while VEGF and sex-hormone pathways are increased in tumors that metastasize. Furthermore, migration, proteasome, immune system, angiogenesis, DNA repair and several signal transduction pathways are associated to metastasis. Finally several transcription factors e.g. E2F, NFY, and YY1 are identified as being involved in metastasis. By pathway meta-analysis many biological mechanisms beyond major characteristics such as proliferation are identified. Transcription factor analysis identifies a number of key factors that support central pathways. Several previously proposed treatment targets are identified and several new pathways that may

  15. Identifying and Characterizing Discrepancies Between Test and Analysis Results of Compression-Loaded Panels

    Science.gov (United States)

    Thornburgh, Robert P.; Hilburger, Mark W.

    2005-01-01

    Results from a study to identify and characterize discrepancies between validation tests and high-fidelity analyses of compression-loaded panels are presented. First, potential sources of the discrepancies in both the experimental method and corresponding high-fidelity analysis models were identified. Then, a series of laboratory tests and numerical simulations were conducted to quantify the discrepancies and develop test and analysis methods to account for the discrepancies. The results indicate that the discrepancies between the validation tests and high-fidelity analyses can be attributed to imperfections in the test fixture and specimen geometry; test-fixture-induced changes in specimen geometry; and test-fixture-induced friction on the loaded edges of the test specimen. The results also show that accurate predictions of the panel response can be obtained when these specimen imperfections and edge conditions are accounted for in the analysis. The errors in the tests and analyses, and the methods used to characterize these errors are presented.

  16. A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder

    Directory of Open Access Journals (Sweden)

    David G Ashbrook

    2015-07-01

    Full Text Available Bipolar disorder (BD is a significant neuropsychiatric disorder with a lifetime prevalence of ~1%. To identify genetic variants underlying BD genome-wide association studies (GWAS have been carried out. While many variants of small effect associated with BD have been identified few have yet been confirmed, partly because of the low power of GWAS due to multiple comparisons being made. Complementary mapping studies using murine models have identified genetic variants for behavioral traits linked to BD, often with high power, but these identified regions often contain too many genes for clear identification of candidate genes. In the current study we have aligned human BD GWAS results and mouse linkage studies to help define and evaluate candidate genes linked to BD, seeking to use the power of the mouse mapping with the precision of GWAS. We use quantitative trait mapping for open field test and elevated zero maze data in the largest mammalian model system, the BXD recombinant inbred mouse population, to identify genomic regions associated with these BD-like phenotypes. We then investigate these regions in whole genome data from the Psychiatric Genomics Consortium’s bipolar disorder GWAS to identify candidate genes associated with BD. Finally we establish the biological relevance and pathways of these genes in a comprehensive systems genetics analysis.We identify four genes associated with both mouse anxiety and human BD. While TNR is a novel candidate for BD, we can confirm previously suggested associations with CMYA5, MCTP1 and RXRG. A cross-species, systems genetics analysis shows that MCTP1, RXRG and TNR coexpress with genes linked to psychiatric disorders and identify the striatum as a potential site of action. CMYA5, MCTP1, RXRG and TNR are associated with mouse anxiety and human BD. We hypothesize that MCTP1, RXRG and TNR influence intercellular signaling in the striatum.

  17. The fragmented mitochondrial ribosomal RNAs of Plasmodium falciparum.

    Science.gov (United States)

    Feagin, Jean E; Harrell, Maria Isabel; Lee, Jung C; Coe, Kevin J; Sands, Bryan H; Cannone, Jamie J; Tami, Germaine; Schnare, Murray N; Gutell, Robin R

    2012-01-01

    The mitochondrial genome in the human malaria parasite Plasmodium falciparum is most unusual. Over half the genome is composed of the genes for three classic mitochondrial proteins: cytochrome oxidase subunits I and III and apocytochrome b. The remainder encodes numerous small RNAs, ranging in size from 23 to 190 nt. Previous analysis revealed that some of these transcripts have significant sequence identity with highly conserved regions of large and small subunit rRNAs, and can form the expected secondary structures. However, these rRNA fragments are not encoded in linear order; instead, they are intermixed with one another and the protein coding genes, and are coded on both strands of the genome. This unorthodox arrangement hindered the identification of transcripts corresponding to other regions of rRNA that are highly conserved and/or are known to participate directly in protein synthesis. The identification of 14 additional small mitochondrial transcripts from P. falciparum and the assignment of 27 small RNAs (12 SSU RNAs totaling 804 nt, 15 LSU RNAs totaling 1233 nt) to specific regions of rRNA are supported by multiple lines of evidence. The regions now represented are highly similar to those of the small but contiguous mitochondrial rRNAs of Caenorhabditis elegans. The P. falciparum rRNA fragments cluster on the interfaces of the two ribosomal subunits in the three-dimensional structure of the ribosome. All of the rRNA fragments are now presumed to have been identified with experimental methods, and nearly all of these have been mapped onto the SSU and LSU rRNAs. Conversely, all regions of the rRNAs that are known to be directly associated with protein synthesis have been identified in the P. falciparum mitochondrial genome and RNA transcripts. The fragmentation of the rRNA in the P. falciparum mitochondrion is the most extreme example of any rRNA fragmentation discovered.

  18. Screening of mitochondrial mutations in Tunisian patients with mitochondrial disorders: an overview study.

    Science.gov (United States)

    Mkaouar-Rebai, Emna; Chamkha, Imen; Mezghani, Najla; Ben Ayed, Imen; Fakhfakh, Faiza

    2013-06-01

    To investigate the spectrum of common mitochondrial mutations in Tunisia during the years of 2002-2012, 226 patients with mitochondrial disorders were clinically diagnosed with hearing loss, Leigh syndrome (LS), diabetes, cardiomyopathy, Kearns-Sayre syndrome (KSS), Pearson syndrome (PS), myopathy, mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes syndrome (MELAS) and Wolfram syndrome. Restriction fragment length polymorphism (PCR-RFLP), radioactive PCR, single specific primer-PCR (SSP-PCR) analysis and PCR-sequencing methods were used to identify the mutations. Two cases with m.1555A>G mutation and two families with the novel 12S rRNA m.735A>G transition were detected in patients with hearing loss. Three cases with m.8993T>G mutation, two patients with the novel m.5523T>G and m.5559A>G mutations in the tRNA(Trp) gene, and two individuals with the undescribed m.9478T>C mutation in the cytochrome c oxidase subunit III (COXIII) gene were found with LS. In addition, one case with hypertrophic cardiomyopathy and deafness presented the ND1 m.3395A>G mutation and the tRNA(Ile) m.4316A>G variation. Besides, multiple mitochondrial deletions were detected in patients with KSS, PS, and Wolfram syndrome. The m.14709T>C mutation in the tRNA(Glu) was reported in four maternally inherited diabetes and deafness patients and a novel tRNA(Val) m.1640A>G mutation was detected in a MELAS patient.

  19. Nuclear genomic control of naturally occurring variation in mitochondrial function in Drosophila melanogaster

    Science.gov (United States)

    2012-01-01

    Background Mitochondria are organelles found in nearly all eukaryotic cells that play a crucial role in cellular survival and function. Mitochondrial function is under the control of nuclear and mitochondrial genomes. While the latter has been the focus of most genetic research, we remain largely ignorant about the nuclear-encoded genomic control of inter-individual variability in mitochondrial function. Here, we used Drosophila melanogaster as our model organism to address this question. Results We quantified mitochondrial state 3 and state 4 respiration rates and P:O ratio in mitochondria isolated from the thoraces of 40 sequenced inbred lines of the Drosophila Genetic Reference Panel. We found significant within-population genetic variability for all mitochondrial traits. Hence, we performed genome-wide association mapping and identified 141 single nucleotide polymorphisms (SNPs) associated with differences in mitochondrial respiration and efficiency (P ≤1 × 10-5). Gene-centered regression models showed that 2–3 SNPs can explain 31, 13, and 18% of the phenotypic variation in state 3, state 4, and P:O ratio, respectively. Most of the genes tagged by the SNPs are involved in organ development, second messenger-mediated signaling pathways, and cytoskeleton remodeling. One of these genes, sallimus (sls), encodes a component of the muscle sarcomere. We confirmed the direct effect of sls on mitochondrial respiration using two viable mutants and their coisogenic wild-type strain. Furthermore, correlation network analysis revealed that sls functions as a transcriptional hub in a co-regulated module associated with mitochondrial respiration and is connected to CG7834, which is predicted to encode a protein with mitochondrial electron transfer flavoprotein activity. This latter finding was also verified in the sls mutants. Conclusions Our results provide novel insights into the genetic factors regulating natural variation in mitochondrial function in D

  20. Quantitative evaluation of the mitochondrial proteomes of Drosophila melanogaster adapted to extreme oxygen conditions.

    Directory of Open Access Journals (Sweden)

    Songyue Yin

    Full Text Available Mitochondria are the primary organelles that consume oxygen and provide energy for cellular activities. To investigate the mitochondrial mechanisms underlying adaptation to extreme oxygen conditions, we generated Drosophila strains that could survive in low- or high-oxygen environments (LOF or HOF, respectively, examined their mitochondria at the ultrastructural level via transmission electron microscopy, studied the activity of their respiratory chain complexes, and quantitatively analyzed the protein abundance responses of the mitochondrial proteomes using Isobaric tag for relative and absolute quantitation (iTRAQ. A total of 718 proteins were identified with high confidence, and 55 and 75 mitochondrial proteins displayed significant differences in abundance in LOF and HOF, respectively, compared with the control flies. Importantly, these differentially expressed mitochondrial proteins are primarily involved in respiration, calcium regulation, the oxidative response, and mitochondrial protein translation. A correlation analysis of the changes in the levels of the mRNAs corresponding to differentially regulated mitochondrial proteins revealed two sets of proteins with different modes of regulation (transcriptional vs. post-transcriptional in both LOF and HOF. We believe that these findings will not only enhance our understanding of the mechanisms underlying adaptation to extreme oxygen conditions in Drosophila but also provide a clue in studying human disease induced by altered oxygen tension in tissues and cells.

  1. Mitochondrial Sirtuin Network Reveals Dynamic SIRT3-Dependent Deacetylation in Response to Membrane Depolarization.

    Science.gov (United States)

    Yang, Wen; Nagasawa, Koji; Münch, Christian; Xu, Yingjie; Satterstrom, Kyle; Jeong, Seungmin; Hayes, Sebastian D; Jedrychowski, Mark P; Vyas, F Sejal; Zaganjor, Elma; Guarani, Virginia; Ringel, Alison E; Gygi, Steven P; Harper, J Wade; Haigis, Marcia C

    2016-11-03

    Mitochondrial sirtuins, SIRT3-5, are NAD + -dependent deacylases and ADP-ribosyltransferases that are critical for stress responses. However, a comprehensive understanding of sirtuin targets, regulation of sirtuin activity, and the relationships between sirtuins remains a key challenge in mitochondrial physiology. Here, we employ systematic interaction proteomics to elucidate the mitochondrial sirtuin protein interaction landscape. This work reveals sirtuin interactions with numerous functional modules within mitochondria, identifies candidate sirtuin substrates, and uncovers a fundamental role for sequestration of SIRT3 by ATP synthase in mitochondrial homeostasis. In healthy mitochondria, a pool of SIRT3 binds ATP synthase, but upon matrix pH reduction with concomitant loss of mitochondrial membrane potential, SIRT3 dissociates. This release correlates with rapid deacetylation of matrix proteins, and SIRT3 is required for recovery of membrane potential. In vitro reconstitution experiments, as well as analysis of CRISPR/Cas9-engineered cells, indicate that pH-dependent SIRT3 release requires H135 in the ATP5O subunit of ATP synthase. Our SIRT3-5 interaction network provides a framework for discovering novel biological functions regulated by mitochondrial sirtuins. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Morphological, molecular and cross-breeding analysis of geographic populations of coconut-mite associated predatory mites identified as Neoseiulus baraki: evidence for cryptic species?

    Science.gov (United States)

    Famah Sourassou, Nazer; Hanna, Rachid; Zannou, Ignace; Breeuwer, Johannes A J; de Moraes, Gilberto; Sabelis, Maurice W

    2012-05-01

    Surveys were conducted in Brazil, Benin and Tanzania to collect predatory mites as candidates for control of the coconut mite Aceria guerreronis Keifer, a serious pest of coconut fruits. At all locations surveyed, one of the most dominant predators on infested coconut fruits was identified as Neoseiulus baraki Athias-Henriot, based on morphological similarity with regard to taxonomically relevant characters. However, scrutiny of our own and published descriptions suggests that consistent morphological differences may exist between the Benin population and those from the other geographic origins. In this study, we combined three methods to assess whether these populations belong to one species or a few distinct, yet closely related species. First, multivariate analysis of 32 morphological characters showed that the Benin population differed from the other three populations. Second, DNA sequence analysis based on the mitochondrial cytochrome oxidase subunit I (COI) showed the same difference between these populations. Third, cross-breeding between populations was unsuccessful in all combinations. These data provide evidence for the existence of cryptic species. Subsequent morphological research showed that the Benin population can be distinguished from the others by a new character (not included in the multivariate analysis), viz. the number of teeth on the fixed digit of the female chelicera.

  3. Clinical evaluation and mitochondrial DNA sequence analysis in two Chinese families with aminoglycoside-induced and non-syndromic hearing loss

    International Nuclear Information System (INIS)

    Zhao Lidong; Wang Qiuju; Qian Yaping; Li Ronghua; Cao Juayng; Hart, Laura Christine; Zhai Suoqiang; Han Dongyi; Young Wieyen; Guan Minxin

    2005-01-01

    We report here the clinical, genetic, and molecular characterization of two Chinese pedigrees with aminoglycoside-induced and non-syndromic hearing impairment. Clinical evaluation revealed the variable phenotype of hearing impairment including audiometric configuration in these subjects. Penetrances of hearing loss in BJ105 and BJ106 pedigrees are 67% and 33%, respectively. In particular, three of 10 affected matrilineal relatives of BJ105 pedigree had aminoglycoside-induced hearing loss, while seven affected matrilineal relatives in BJ105 pedigree and six affected matrilineal relatives in BJ106 pedigree did not have a history of exposure to aminoglycosides. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the identical homoplasmic A1555G mutation and distinct sets of mtDNA variants belonging to haplogroups F3 and M7b. These variants showed no evolutionary conservation, implying that mitochondrial haplotype may not play a significant role in the phenotypic expression of the A1555G mutation in these Chinese pedigrees. However, aminoglycosides and nuclear backgrounds appear to be major modifier factors for the phenotypic manifestation of the A1555G mutation in these Chinese families

  4. The historical biogeography of Pteroglossus aracaris (Aves, Piciformes, Ramphastidae based on Bayesian analysis of mitochondrial DNA sequences

    Directory of Open Access Journals (Sweden)

    Sérgio L. Pereira

    2008-01-01

    Full Text Available Most Neotropical birds, including Pteroglossus aracaris, do not have an adequate fossil record to be used as time constraints in molecular dating. Hence, the evolutionary timeframe of the avian biota can only be inferred using alternative time constraints. We applied a Bayesian relaxed clock approach to propose an alternative interpretation for the historical biogeography of Pteroglossus based on mitochondrial DNA sequences, using different combinations of outgroups and time constraints obtained from outgroup fossils, vicariant barriers and molecular time estimates. The results indicated that outgroup choice has little effect on the Bayesian posterior distribution of divergence times within Pteroglossus , that geological and molecular time constraints seem equally suitable to estimate the Bayesian posterior distribution of divergence times for Pteroglossus , and that the fossil record alone overestimates divergence times within the fossil-lacking ingroup. The Bayesian estimates of divergence times suggest that the radiation of Pteroglossus occurred from the Late Miocene to the Pliocene (three times older than estimated by the “standard” mitochondrial rate of 2% sequence divergence per million years, likely triggered by Andean uplift, multiple episodes of marine transgressions in South America, and formation of present-day river basins. The time estimates are in agreement with other Neotropical taxa with similar geographic distributions.

  5. Using Latent Semantic Analysis to Identify Research Trends in OpenStreetMap

    Directory of Open Access Journals (Sweden)

    Sukhjit Singh Sehra

    2017-07-01

    Full Text Available OpenStreetMap (OSM, based on collaborative mapping, has become a subject of great interest to the academic community, resulting in a considerable body of literature produced by many researchers. In this paper, we use Latent Semantic Analysis (LSA to help identify the emerging research trends in OSM. An extensive corpus of 485 academic abstracts of papers published during the period 2007–2016 was used. Five core research areas and fifty research trends were identified in this study. In addition, potential future research directions have been provided to aid geospatial information scientists, technologists and researchers in undertaking future OSM research.

  6. Single-cell analysis of dihydroartemisinin-induced apoptosis through reactive oxygen species-mediated caspase-8 activation and mitochondrial pathway in ASTC-a-1 cells using fluorescence imaging techniques

    Science.gov (United States)

    Lu, Ying-Ying; Chen, Tong-Sheng; Wang, Xiao-Ping; Li, Li

    2010-07-01

    Dihydroartemisinin (DHA), a front-line antimalarial herbal compound, has been shown to possess promising anticancer activity with low toxicity. We have previously reported that DHA induced caspase-3-dependent apoptosis in human lung adenocarcinoma cells. However, the cellular target and molecular mechanism of DHA-induced apoptosis is still poorly defined. We use confocal fluorescence microscopy imaging, fluorescence resonance energy transfer, and fluorescence recovery after photobleaching techniques to explore the roles of DHA-elicited reactive oxygen species (ROS) in the DHA-induced Bcl-2 family proteins activation, mitochondrial dysfunction, caspase cascade, and cell death. Cell Counting Kit-8 assay and flow cytometry analysis showed that DHA induced ROS-mediated apoptosis. Confocal imaging analysis in a single living cell and Western blot assay showed that DHA triggered ROS-dependent Bax translocation, mitochondrial membrane depolarization, alteration of mitochondrial morphology, cytochrome c release, caspase-9, caspase-8, and caspase-3 activation, indicating the coexistence of ROS-mediated mitochondrial and death receptor pathway. Collectively, our findings demonstrate for the first time that DHA induces cell apoptosis by triggering ROS-mediated caspase-8/Bid activation and the mitochondrial pathway, which provides some novel insights into the application of DHA as a potential anticancer drug and a new therapeutic strategy by targeting ROS signaling in lung adenocarcinoma therapy in the future.

  7. Complete mitochondrial genome sequencing reveals novel haplotypes in a Polynesian population.

    Directory of Open Access Journals (Sweden)

    Miles Benton

    Full Text Available The high risk of metabolic disease traits in Polynesians may be partly explained by elevated prevalence of genetic variants involved in energy metabolism. The genetics of Polynesian populations has been shaped by island hoping migration events which have possibly favoured thrifty genes. The aim of this study was to sequence the mitochondrial genome in a group of Maoris in an effort to characterise genome variation in this Polynesian population for use in future disease association studies. We sequenced the complete mitochondrial genomes of 20 non-admixed Maori subjects using Affymetrix technology. DNA diversity analyses showed the Maori group exhibited reduced mitochondrial genome diversity compared to other worldwide populations, which is consistent with historical bottleneck and founder effects. Global phylogenetic analysis positioned these Maori subjects specifically within mitochondrial haplogroup--B4a1a1. Interestingly, we identified several novel variants that collectively form new and unique Maori motifs--B4a1a1c, B4a1a1a3 and B4a1a1a5. Compared to ancestral populations we observed an increased frequency of non-synonymous coding variants of several mitochondrial genes in the Maori group, which may be a result of positive selection and/or genetic drift effects. In conclusion, this study reports the first complete mitochondrial genome sequence data for a Maori population. Overall, these new data reveal novel mitochondrial genome signatures in this Polynesian population and enhance the phylogenetic picture of maternal ancestry in Oceania. The increased frequency of several mitochondrial coding variants makes them good candidates for future studies aimed at assessment of metabolic disease risk in Polynesian populations.

  8. Distinct patterns of mitochondrial genome diversity in bonobos (Pan paniscus and humans

    Directory of Open Access Journals (Sweden)

    Zsurka Gábor

    2010-09-01

    Full Text Available Abstract Background We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee individuals to assess the detailed mitochondrial DNA (mtDNA phylogeny of this close relative of Homo sapiens. Results We identified three major clades among bonobos that separated approximately 540,000 years ago, as suggested by Bayesian analysis. Incidentally, we discovered that the current reference sequence for bonobo likely is a hybrid of the mitochondrial genomes of two distant individuals. When comparing spectra of polymorphic mtDNA sites in bonobos and humans, we observed two major differences: (i Of all 31 bonobo mtDNA homoplasies, i.e. nucleotide changes that occurred independently on separate branches of the phylogenetic tree, 13 were not homoplasic in humans. This indicates that at least a part of the unstable sites of the mitochondrial genome is species-specific and difficult to be explained on the basis of a mutational hotspot concept. (ii A comparison of the ratios of non-synonymous to synonymous changes (dN/dS among polymorphic positions in bonobos and in 4902 Homo sapiens mitochondrial genomes revealed a remarkable difference in the strength of purifying selection in the mitochondrial genes of the F0F1-ATPase complex. While in bonobos this complex showed a similar low value as complexes I and IV, human haplogroups displayed 2.2 to 7.6 times increased dN/dS ratios when compared to bonobos. Conclusions Some variants of mitochondrially encoded subunits of the ATPase complex in humans very likely decrease the efficiency of energy conversion leading to production of extra heat. Thus, we hypothesize that the species-specific release of evolutionary constraints for the mitochondrial genes of the proton-translocating ATPase is a consequence of altered heat homeostasis in modern humans.

  9. Research citation analysis of nursing academics in Canada: identifying success indicators.

    Science.gov (United States)

    Hack, Thomas F; Crooks, Dauna; Plohman, James; Kepron, Emma

    2010-11-01

    This article is a report of a citation analysis of research publications by Canadian nursing academics. Citation analysis can yield objective criteria for assessing the value of published research and is becoming increasingly popular as an academic evaluation tool in universities around the world. Citation analysis is useful for examining the research performance of academic researchers and identifying leaders among them. The journal publication records of 737 nursing academics at 33 Canadian universities and schools of nursing were subject to citation analysis using the Scopus database. Three primary types of analysis were performed for each individual: number of citations for each journal publication, summative citation count of all published papers and the Scopus h-index. Preliminary citation analysis was conducted from June to July 2009, with the final analysis performed on 2 October 2009 following e-mail verification of publication lists. The top 20 nursing academics for each of five citation categories are presented: the number of career citations for all publications, number of career citations for first-authored publications, most highly cited first-authored publications, the Scopus h-index for all publications and the Scopus h-index for first-authored publications. Citation analysis metrics are useful for evaluating the research performance of academic researchers in nursing. Institutions are encouraged to protect the research time of successful and promising nursing academics, and to dedicate funds to enhance the research programmes of underperforming academic nursing groups. © 2010 The Authors. Journal of Advanced Nursing © 2010 Blackwell Publishing Ltd.

  10. Renal disease and mitochondrial genetics.

    Science.gov (United States)

    Rötig, Agnès

    2003-01-01

    Respiratory chain (RC) deficiencies have long been regarded as neuromuscular diseases mainly originating from mutations in the mitochondrial DNA. Oxidative phosphorylation, i.e. adenosine triphosphate (ATP) synthesis-coupled electron transfer from substrate to oxygen through the RC, does not occur only in the neuromuscular system. Therefore, a RC deficiency can theoretically give rise to any symptom, in any organ or tissue, at any age and with any mode of inheritance, owing to the dual genetic origin of RC enzymes (nuclear DNA and mitochondrial DNA). Mitochondrial diseases can give rise to various syndromes or association, namely, neurologic and neuromuscular diseases, cardiac, renal, hepatic, hematological and endocrin or dermatological presentations. The most frequent renal symptom is proximal tubular dysfunction with a more or less complete de Toni-Debre-Fanconi Syndrome. A few patients have been reported with tubular acidosis, Bartter Syndrome, chronic tubulointerstitial nephritis or nephrotic syndrome. The diagnosis of a RC deficiency is difficult when only renal symptoms are present, but should be easier when another, seemingly unrelated symptom is observed. Metabolic screening for abnormal oxidoreduction status in plasma, including lactate/pyruvate and ketone body molar ratios, can help to identify patients for further investigations. These include the measurement of oxygen consumption by mitochondria and the assessment of mitochondrial respiratory enzyme activities by spectrophotometric studies. Any mode of inheritance can be observed: sporadic, autosomal dominant or recessive, or maternal inheritance.

  11. Towards a functional definition of the mitochondrial human proteome

    Directory of Open Access Journals (Sweden)

    Mauro Fasano

    2016-03-01

    Full Text Available The mitochondrial human proteome project (mt-HPP was initiated by the Italian HPP group as a part of both the chromosome-centric initiative (C-HPP and the “biology and disease driven” initiative (B/D-HPP. In recent years several reports highlighted how mitochondrial biology and disease are regulated by specific interactions with non-mitochondrial proteins. Thus, it is of great relevance to extend our present view of the mitochondrial proteome not only to those proteins that are encoded by or transported to mitochondria, but also to their interactors that take part in mitochondria functionality. Here, we propose a graphical representation of the functional mitochondrial proteome by retrieving mitochondrial proteins from the NeXtProt database and adding to the network their interactors as annotated in the IntAct database. Notably, the network may represent a reference to map all the proteins that are currently being identified in mitochondrial proteomics studies.

  12. Comparative analysis of methods for identifying multimorbidity patterns: a study of 'real-world' data.

    Science.gov (United States)

    Roso-Llorach, Albert; Violán, Concepción; Foguet-Boreu, Quintí; Rodriguez-Blanco, Teresa; Pons-Vigués, Mariona; Pujol-Ribera, Enriqueta; Valderas, Jose Maria

    2018-03-22

    The aim was to compare multimorbidity patterns identified with the two most commonly used methods: hierarchical cluster analysis (HCA) and exploratory factor analysis (EFA) in a large primary care database. Specific objectives were: (1) to determine whether choice of method affects the composition of these patterns and (2) to consider the potential application of each method in the clinical setting. Cross-sectional study. Diagnoses were based on the 263 corresponding blocks of the International Classification of Diseases version 10. Multimorbidity patterns were identified using HCA and EFA. Analysis was stratified by sex, and results compared for each method. Electronic health records for 408 994 patients with multimorbidity aged 45-64 years in 274 primary health care teams from 2010 in Catalonia, Spain. HCA identified 53 clusters for women, with just 12 clusters including at least 2 diagnoses, and 15 clusters for men, all of them including at least two diagnoses. EFA showed 9 factors for women and 10 factors for men. We observed differences by sex and method of analysis, although some patterns were consistent. Three combinations of diseases were observed consistently across sex groups and across both methods: hypertension and obesity, spondylopathies and deforming dorsopathies, and dermatitis eczema and mycosis. This study showed that multimorbidity patterns vary depending on the method of analysis used (HCA vs EFA) and provided new evidence about the known limitations of attempts to compare multimorbidity patterns in real-world data studies. We found that EFA was useful in describing comorbidity relationships and HCA could be useful for in-depth study of multimorbidity. Our results suggest possible applications for each of these methods in clinical and research settings, and add information about some aspects that must be considered in standardisation of future studies: spectrum of diseases, data usage and methods of analysis. © Article author(s) (or their

  13. Patent Network Analysis and Quadratic Assignment Procedures to Identify the Convergence of Robot Technologies.

    Directory of Open Access Journals (Sweden)

    Woo Jin Lee

    Full Text Available Because of the remarkable developments in robotics in recent years, technological convergence has been active in this area. We focused on finding patterns of convergence within robot technology using network analysis of patents in both the USPTO and KIPO. To identify the variables that affect convergence, we used quadratic assignment procedures (QAP. From our analysis, we observed the patent network ecology related to convergence and found technologies that have great potential to converge with other robotics technologies. The results of our study are expected to contribute to setting up convergence based R&D policies for robotics, which can lead new innovation.

  14. Parameter estimation for multistage clonal expansion models from cancer incidence data: A practical identifiability analysis.

    Science.gov (United States)

    Brouwer, Andrew F; Meza, Rafael; Eisenberg, Marisa C

    2017-03-01

    Many cancers are understood to be the product of multiple somatic mutations or other rate-limiting events. Multistage clonal expansion (MSCE) models are a class of continuous-time Markov chain models that capture the multi-hit initiation-promotion-malignant-conversion hypothesis of carcinogenesis. These models have been used broadly to investigate the epidemiology of many cancers, assess the impact of carcinogen exposures on cancer risk, and evaluate the potential impact of cancer prevention and control strategies on cancer rates. Structural identifiability (the analysis of the maximum parametric information available for a model given perfectly measured data) of certain MSCE models has been previously investigated. However, structural identifiability is a theoretical property and does not address the limitations of real data. In this study, we use pancreatic cancer as a case study to examine the practical identifiability of the two-, three-, and four-stage clonal expansion models given age-specific cancer incidence data using a numerical profile-likelihood approach. We demonstrate that, in the case of the three- and four-stage models, several parameters that are theoretically structurally identifiable, are, in practice, unidentifiable. This result means that key parameters such as the intermediate cell mutation rates are not individually identifiable from the data and that estimation of those parameters, even if structurally identifiable, will not be stable. We also show that products of these practically unidentifiable parameters are practically identifiable, and, based on this, we propose new reparameterizations of the model hazards that resolve the parameter estimation problems. Our results highlight the importance of identifiability to the interpretation of model parameter estimates.

  15. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis

    DEFF Research Database (Denmark)

    Voight, Benjamin F; Scott, Laura J; Steinthorsdottir, Valgerdur

    2010-01-01

    By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combi......By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals...

  16. A method for identifying compromised clients based on DNS traffic analysis

    DEFF Research Database (Denmark)

    Stevanovic, Matija; Pedersen, Jens Myrup; D’Alconzo, Alessandro

    2017-01-01

    based on DNS traffic analysis. The proposed method identifies suspicious agile DNS mappings, i.e., mappings characterized by fast changing domain names or/and IP addresses, often used by malicious services. The approach discovers clients that have queried domains contained within identified suspicious...... domain-to-IP mappings, thus assisting in pinpointing potentially compromised clients within the network. The proposed approach targets compromised clients in large-scale operational networks. We have evaluated the proposed approach using an extensive set of DNS traffic traces from different operational...... ISP networks. The evaluation illustrates a great potential of accurately identifying suspicious domain-to-IP mappings and potentially compromised clients. Furthermore, the achieved performance indicate that the novel detection approach is promising in view of the adoption in operational ISP networks...

  17. A Numerical Procedure for Model Identifiability Analysis Applied to Enzyme Kinetics

    DEFF Research Database (Denmark)

    Daele, Timothy, Van; Van Hoey, Stijn; Gernaey, Krist

    2015-01-01

    The proper calibration of models describing enzyme kinetics can be quite challenging. In the literature, different procedures are available to calibrate these enzymatic models in an efficient way. However, in most cases the model structure is already decided on prior to the actual calibration...... and Pronzato (1997) and which can be easily set up for any type of model. In this paper the proposed approach is applied to the forward reaction rate of the enzyme kinetics proposed by Shin and Kim(1998). Structural identifiability analysis showed that no local structural model problems were occurring......) identifiability problems. By using the presented approach it is possible to detect potential identifiability problems and avoid pointless calibration (and experimental!) effort....

  18. Clinical Characteristics of Exacerbation-Prone Adult Asthmatics Identified by Cluster Analysis.

    Science.gov (United States)

    Kim, Mi Ae; Shin, Seung Woo; Park, Jong Sook; Uh, Soo Taek; Chang, Hun Soo; Bae, Da Jeong; Cho, You Sook; Park, Hae Sim; Yoon, Ho Joo; Choi, Byoung Whui; Kim, Yong Hoon; Park, Choon Sik

    2017-11-01

    Asthma is a heterogeneous disease characterized by various types of airway inflammation and obstruction. Therefore, it is classified into several subphenotypes, such as early-onset atopic, obese non-eosinophilic, benign, and eosinophilic asthma, using cluster analysis. A number of asthmatics frequently experience exacerbation over a long-term follow-up period, but the exacerbation-prone subphenotype has rarely been evaluated by cluster analysis. This prompted us to identify clusters reflecting asthma exacerbation. A uniform cluster analysis method was applied to 259 adult asthmatics who were regularly followed-up for over 1 year using 12 variables, selected on the basis of their contribution to asthma phenotypes. After clustering, clinical profiles and exacerbation rates during follow-up were compared among the clusters. Four subphenotypes were identified: cluster 1 was comprised of patients with early-onset atopic asthma with preserved lung function, cluster 2 late-onset non-atopic asthma with impaired lung function, cluster 3 early-onset atopic asthma with severely impaired lung function, and cluster 4 late-onset non-atopic asthma with well-preserved lung function. The patients in clusters 2 and 3 were identified as exacerbation-prone asthmatics, showing a higher risk of asthma exacerbation. Two different phenotypes of exacerbation-prone asthma were identified among Korean asthmatics using cluster analysis; both were characterized by impaired lung function, but the age at asthma onset and atopic status were different between the two. Copyright © 2017 The Korean Academy of Asthma, Allergy and Clinical Immunology · The Korean Academy of Pediatric Allergy and Respiratory Disease

  19. RUSSIAN PATENT LANDSCAPE, CREATED BY THE RESIDENTS OF THE COUNTRY: ANALYSIS OF THE IDENTIFIED ISSUES

    OpenAIRE

    N. G. Kurakova; L. A. Tsvetkova; V. G. Zinov

    2016-01-01

    It is suggested to reach the goal for channeling limited funds into the most productive research groups inRussiaby identifying so –called leading organisations among the scientific centres. As one of the criteria for selecting organisations with potential for creating the technological breakthrough on global markets will be an indicator of their patent activity. There are presented results of patent analysis, allowing to form a rating of owners of most extensive portfolios of Russian patents,...

  20. A meta-analysis of 120 246 individuals identifies 18 new loci for fibrinogen concentration

    OpenAIRE

    Vries, Paul; Chasman, Daniel; Sabater-Lleal, Maria; Chen, Ming-Huei; Huffman, Jennifer E.; Steri, Maristella; Tang, Weihong; Teumer, Alexander; Marioni, Riccardo; Grossmann, Vera; Hottenga, Jouke Jan; Trompet, Stella; Müller-Nurasyid, Martina; Zhao, Jing Hua; Brody, Jennifer

    2016-01-01

    textabstractGenome-wide association studies have previously identified 23 genetic loci associated with circulating fibrinogen concentration. These studies used HapMap imputation and did not examine the X-chromosome. 1000 Genomes imputation provides better coverage of uncommon variants, and includes indels.We conducted a genome-wide association analysis of 34 studies imputed to the 1000 Genomes Project reference panel and including ~120 000 participants of European ancestry (95 806 participant...

  1. Hot spot analysis applied to identify ecosystem services potential in Lithuania

    Science.gov (United States)

    Pereira, Paulo; Depellegrin, Daniel; Misiune, Ieva

    2016-04-01

    Hot spot analysis are very useful to identify areas with similar characteristics. This is important for a sustainable use of the territory, since we can identify areas that need to be protected, or restored. This is a great advantage in terms of land use planning and management, since we can allocate resources, reduce the economical costs and do a better intervention in the landscape. Ecosystem services (ES) are different according land use. Since landscape is very heterogeneous, it is of major importance understand their spatial pattern and where are located the areas that provide better ES and the others that provide less services. The objective of this work is to use hot-spot analysis to identify areas with the most valuable ES in Lithuania. CORINE land-cover (CLC) of 2006 was used as the main spatial information. This classification uses a grid of 100 m resolution and extracted a total of 31 land use types. ES ranking was carried out based on expert knowledge. They were asked to evaluate the ES potential of each different CLC from 0 (no potential) to 5 (very high potential). Hot spot analysis were evaluated using the Getis-ord test, which identifies cluster analysis available in ArcGIS toolbox. This tool identifies areas with significantly high low values and significant high values at a p level of 0.05. In this work we used hot spot analysis to assess the distribution of providing, regulating cultural and total (sum of the previous 3) ES. The Z value calculated from Getis-ord was used to statistical analysis to access the clusters of providing, regulating cultural and total ES. ES with high Z value show that they have a high number of cluster areas with high potential of ES. The results showed that the Z-score was significantly different among services (Kruskal Wallis ANOVA =834. 607, pcultural (0.080±1.979) and regulating (0.076±1.961). These results suggested that providing services are more clustered than the remaining. Ecosystem Services Z score were

  2. Parallel analysis of tagged deletion mutants efficiently identifies genes involved in endoplasmic reticulum biogenesis.

    Science.gov (United States)

    Wright, Robin; Parrish, Mark L; Cadera, Emily; Larson, Lynnelle; Matson, Clinton K; Garrett-Engele, Philip; Armour, Chris; Lum, Pek Yee; Shoemaker, Daniel D

    2003-07-30

    Increased levels of HMG-CoA reductase induce cell type- and isozyme-specific proliferation of the endoplasmic reticulum. In yeast, the ER proliferations induced by Hmg1p consist of nuclear-associated stacks of smooth ER membranes known as karmellae. To identify genes required for karmellae assembly, we compared the composition of populations of homozygous diploid S. cerevisiae deletion mutants following 20 generations of growth with and without karmellae. Using an initial population of 1,557 deletion mutants, 120 potential mutants were identified as a result of three independent experiments. Each experiment produced a largely non-overlapping set of potential mutants, suggesting that differences in specific growth conditions could be used to maximize the comprehensiveness of similar parallel analysis screens. Only two genes, UBC7 and YAL011W, were identified in all three experiments. Subsequent analysis of individual mutant strains confirmed that each experiment was identifying valid mutations, based on the mutant's sensitivity to elevated HMG-CoA reductase and inability to assemble normal karmellae. The largest class of HMG-CoA reductase-sensitive mutations was a subset of genes that are involved in chromatin structure and transcriptional regulation, suggesting that karmellae assembly requires changes in transcription or that the presence of karmellae may interfere with normal transcriptional regulation. Copyright 2003 John Wiley & Sons, Ltd.

  3. System reliability analysis using dominant failure modes identified by selective searching technique

    International Nuclear Information System (INIS)

    Kim, Dong-Seok; Ok, Seung-Yong; Song, Junho; Koh, Hyun-Moo

    2013-01-01

    The failure of a redundant structural system is often described by innumerable system failure modes such as combinations or sequences of local failures. An efficient approach is proposed to identify dominant failure modes in the space of random variables, and then perform system reliability analysis to compute the system failure probability. To identify dominant failure modes in the decreasing order of their contributions to the system failure probability, a new simulation-based selective searching technique is developed using a genetic algorithm. The system failure probability is computed by a multi-scale matrix-based system reliability (MSR) method. Lower-scale MSR analyses evaluate the probabilities of the identified failure modes and their statistical dependence. A higher-scale MSR analysis evaluates the system failure probability based on the results of the lower-scale analyses. Three illustrative examples demonstrate the efficiency and accuracy of the approach through comparison with existing methods and Monte Carlo simulations. The results show that the proposed method skillfully identifies the dominant failure modes, including those neglected by existing approaches. The multi-scale MSR method accurately evaluates the system failure probability with statistical dependence fully considered. The decoupling between the failure mode identification and the system reliability evaluation allows for effective applications to larger structural systems

  4. Identifying Innovative Interventions to Promote Healthy Eating Using Consumption-Oriented Food Supply Chain Analysis.

    Science.gov (United States)

    Hawkes, Corinna

    2009-07-01

    The mapping and analysis of supply chains is a technique increasingly used to address problems in the food system. Yet such supply chain management has not yet been applied as a means of encouraging healthier diets. Moreover, most policies recommended to promote healthy eating focus on the consumer end of the chain. This article proposes a consumption-oriented food supply chain analysis to identify the changes needed in the food supply chain to create a healthier food environment, measured in terms of food availability, prices, and marketing. Along with established forms of supply chain analysis, the method is informed by a historical overview of how food supply chains have changed over time. The method posits that the actors and actions in the chain are affected by organizational, financial, technological, and policy incentives and disincentives, which can in turn be levered for change. It presents a preliminary example of the supply of Coca-Cola beverages into school vending machines and identifies further potential applications. These include fruit and vegetable supply chains, local food chains, supply chains for health-promoting versions of food products, and identifying financial incentives in supply chains for healthier eating.

  5. Using a Systematic Approach to Identifying Organizational Factors in Root Cause Analysis

    International Nuclear Information System (INIS)

    Gallogly, Kay Wilde

    2011-01-01

    This presentation set the scene for the second discussion session. In her presentation, the author observed that: - Investigators do not see the connection between the analysis tools available and the identification of HOF. Most investigators use the tools in a cursory manner and so do not derive the full benefits of the tools. Some tools are used for presentation purposes as opposed to being used for analytical purposes e.g. event and causal factors charts. In some cases, the report will indicate that specific analytical tools were used in the investigation but the analysis is not in the body of the report. - Some investigators are documenting HOF causes but do not recognize them as such. This indicates a lack of understanding of HOF. - Others investigators focus on technical issues because of their own comfort level. - The culture of the Organisation will affect the depth of the investigation and therefore the use of the analytical tools to pursue HOF issues. - The author contends that if analysis tools are applied systematically to gather factually based data, then HOF issues can be identified. The use of factual information (without judgement and subjectivity) is important to maintain the credibility of the investigation especially when HOF issues are identified. - Systematic use of tools assists in better communication of the issues to foster greater understanding and acceptance by senior management. - Barrier Analysis, Change Analysis, and TWIN (Task Demands, Work Environment, Individual Capabilities, and Human Nature) all offer the opportunity to identify HOF issues if the analyst pursues this line of investigation. It was illustrated that many elements of the TWIN Error Precursors are themselves Organisational in nature. - The TWIN model applied to the Anatomy of an Event will help to distinguish those which are Organisational issues (Latent Organisational Weaknesses, Error Precursors and Flawed Defences) and those which are human factors (Active Errors

  6. PINK1 regulates mitochondrial trafficking in dendrites of cortical neurons through mitochondrial PKA.

    Science.gov (United States)

    Das Banerjee, Tania; Dagda, Raul Y; Dagda, Marisela; Chu, Charleen T; Rice, Monica; Vazquez-Mayorga, Emmanuel; Dagda, Ruben K

    2017-08-01

    Mitochondrial Protein Kinase A (PKA) and PTEN-induced kinase 1 (PINK1), which is linked to Parkinson's disease, are two neuroprotective serine/threonine kinases that regulate dendrite remodeling and mitochondrial function. We have previously shown that PINK1 regulates dendrite morphology by enhancing PKA activity. Here, we show the molecular mechanisms by which PINK1 and PKA in the mitochondrion interact to regulate dendrite remodeling, mitochondrial morphology, content, and trafficking in dendrites. PINK1-deficient cortical neurons exhibit impaired mitochondrial trafficking, reduced mitochondrial content, fragmented mitochondria, and a reduction in dendrite outgrowth compared to wild-type neurons. Transient expression of wild-type, but not a PKA-binding-deficient mutant of the PKA-mitochondrial scaffold dual-specificity A Kinase Anchoring Protein 1 (D-AKAP1), restores mitochondrial trafficking, morphology, and content in dendrites of PINK1-deficient cortical neurons suggesting that recruiting PKA to the mitochondrion reverses mitochondrial pathology in dendrites induced by loss of PINK1. Mechanistically, full-length and cleaved forms of PINK1 increase the binding of the regulatory subunit β of PKA (PKA/RIIβ) to D-AKAP1 to enhance the autocatalytic-mediated phosphorylation of PKA/RIIβ and PKA activity. D-AKAP1/PKA governs mitochondrial trafficking in dendrites via the Miro-2/TRAK2 complex and by increasing the phosphorylation of Miro-2. Our study identifies a new role of D-AKAP1 in regulating mitochondrial trafficking through Miro-2, and supports a model in which PINK1 and mitochondrial PKA participate in a similar neuroprotective signaling pathway to maintain dendrite connectivity. © 2017 International Society for Neurochemistry.

  7. IDENTIFICATION OF PARAMECIUM BURSARIA SYNGENS THROUGH MOLECULAR MARKERS – COMPARATIVE ANALYSIS OF MITOCHONDRIAL CYTOCHROME C OXIDASE SUBUNIT I (COI

    Directory of Open Access Journals (Sweden)

    Patrycja Zagata

    2014-08-01

    Full Text Available The aim of this study is an identification of Paramecium bursaria syngens originating from different geographical locations and proving the correlation between distributions and belonging to any of five syngens. Ten strains of Paramecium bursaria belonging to five different syngens and strain of Paramecium multimicronucleatum were investigated using molecular marker — mitochondrial cytochrome c oxidase subunit I (COI. According to results, obtained in this study, using phylogenetic methods like Neighbor Joining (NJ and Maximum Likelihood (ML, relationship between analyzing strains through their clustering in clusters and correlation between strains belonging to any syngen and syngen’s distribution was confirmed. Phylograms constructed using NJ and ML methods revealed strains’ grouping in five clusters. Results which were obtained revealed usefulness of COI as a biomarker, which is important in identification of Paramecium bursaria syngens. This reports to a great potential of COI as a molecular marker and obtaining dependable results through combination of molecular methods with classical ones.

  8. Complete mitochondrial genome phylogeographic analysis of killer whales (Orcinus orca) indicates multiple species

    DEFF Research Database (Denmark)

    Morin, Phillip A; Archer, Frederick I.; Foote, Andrew David

    2010-01-01

    Killer whales (Orcinus orca) currently comprise a single, cosmopolitan species with a diverse diet. However, studies over the last 30 yr have revealed populations of sympatric "ecotypes" with discrete prey preferences, morphology, and behaviors. Although these ecotypes avoid social interactions...... as a case study, we have developed a method to readily sequence, assemble, and analyze complete mitochondrial genomes from large numbers of samples to more accurately assess phylogeography and estimate divergence times. This represents an important tool for wildlife management, not only for killer whales...... impacts and conservation needs of these important marine predators. We predict that phylogeographic mitogenomics will become an important tool for improved statistical phylogeography and more precise estimates of divergence times....

  9. Mitochondrial DNA analysis on remains of a putative son of Louis XVI, King of France and Marie-Antoinette.

    Science.gov (United States)

    Jehaes, E; Decorte, R; Peneau, A; Petrie, J H; Boiry, P A; Gilissen, A; Moisan, J P; Van den Berghe, H; Pascal, O; Cassiman, J J

    1998-01-01

    Carl Wilhelm Naundorff was buried in 1845 in Delft as Louis Charles, Duc de Normandie, 'Louis XVII'. However, the son of Louis XVI and Marie-Antoinette-Louis XVII--officially died in the Temple of Paris in 1795. In order to resolve the identity of Naundorff, mitochondrial DNA (mtDNA) D-loop sequences of his remains were compared with the sequences obtained from the hairs of two sisters of Marie-Antoinette, Marie-Antoinette herself, and with the sequences obtained from DNA samples of two living maternal relatives. The mtDNA sequence of a bone sample from Naundorff showed two nucleotide differences from the sequences of the three sisters and four differences from the sequences of living maternal relatives. Based on this evidence it becomes very unlikely that Naundroff is the son of Marie-Antoinette.

  10. Analysis of replication intermediates indicates that Drosophila melanogaster mitochondrial DNA replicates by a strand-coupled theta mechanism.

    Directory of Open Access Journals (Sweden)

    Priit Jõers

    Full Text Available Mitochondrial DNA synthesis is necessary for the normal function of the organelle and for the eukaryotic organism as a whole. Here we demonstrate, using two-dimensional agarose gel electrophoresis to analyse replication intermediates, that unidirectional, strand-coupled DNA synthesis is the prevalent mode of mtDNA replication in Drosophila melanogaster. Commencing within the single, extended non-coding region (NCR, replication proceeds around the circular genome, manifesting an irregular rate of elongation, and pausing frequently in specific regions. Evidence for a limited contribution of strand-asynchronous DNA synthesis was found in a subset of mtDNA molecules, but confined to the ribosomal RNA gene region, just downstream of the NCR. Our findings imply that strand-coupled replication is widespread amongst metazoans, and should inform future research on mtDNA metabolism in D. melanogaster.

  11. Complete mitochondrial genome of Concholepas concholepas inferred by 454 pyrosequencing and mtDNA expression in two mollusc populations.

    Science.gov (United States)

    Núñez-Acuña, Gustavo; Aguilar-Espinoza, Andrea; Gallardo-Escárate, Cristian

    2013-03-01

    Despite the great relevance of mitochondrial genome analysis in evolutionary studies, there is scarce information on how the transcripts associated with the mitogenome are expressed and their role in the genetic structuring of populations. This work reports the complete mitochondrial genome of the marine gastropod Concholepas concholepas, obtained by 454 pryosequencing, and an analysis of mitochondrial transcripts of two populations 1000 km apart along the Chilean coast. The mitochondrion of C. concholepas is 15,495 base pairs (bp) in size and contains the 37 subunits characteristic of metazoans, as well as a non-coding region of 330 bp. In silico analysis of mitochondrial gene variability showed significant differences among populations. In terms of levels of relative abundance of transcripts associated with mitochondrion in the two populations (assessed by qPCR), the genes associated with complexes III and IV of the mitochondrial genome had the highest levels of expression in the northern population while transcripts associated with the ATP synthase complex had the highest levels of expression in the southern population. Moreover, fifteen polymorphic SNPs were identified in silico between the mitogenomes of the two populations. Four of these markers implied different amino acid substitutions (non-synonymous SNPs). This work contributes novel information regarding the mitochondrial genome structure and mRNA expression levels of C. concholepas. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. High-resolution mitochondrial DNA analysis sheds light on human diversity, cultural interactions, and population mobility in Northwestern Amazonia.

    Science.gov (United States)

    Arias, Leonardo; Barbieri, Chiara; Barreto, Guillermo; Stoneking, Mark; Pakendorf, Brigitte

    2018-02-01

    Northwestern Amazonia (NWA) is a center of high linguistic and cultural diversity. Several language families and linguistic isolates occur in this region, as well as different subsistence patterns, with some groups being foragers and others agriculturalists. In addition, speakers of Eastern Tukanoan languages are known for practicing linguistic exogamy, a marriage system in which partners are taken from different language groups. In this study, we use high-resolution mitochondrial DNA sequencing to investigate the impact of this linguistic and cultural diversity on the genetic relationships and population structure of NWA groups. We collected saliva samples from individuals representing 40 different NWA ethnolinguistic groups and sequenced 439 complete mitochondrial genomes to an average coverage of 1,030×. The mtDNA data revealed that NWA populations have high genetic diversity with extensive sharing of haplotypes among groups. Moreover, groups who practice linguistic exogamy have higher genetic diversity, while the foraging Nukak have lower genetic diversity. We also find that rivers play a more important role than either geography or language affiliation in structuring the genetic relationships of populations. Contrary to the view of NWA as a pristine area inhabited by small human populations living in isolation, our data support a view of high diversity and contact among different ethnolinguistic groups, with movement along rivers probably facilitating this contact. Additionally, we provide evidence for the impact of cultural practices, such as linguistic exogamy, on patterns of genetic variation. Overall, this study provides new data and insights into a remote and little-studied region of the world. © 2017 Wiley Periodicals, Inc.

  13. Microarray analysis of Drosophila dicer-2 mutants reveals potential regulation of mitochondrial metabolism by endogenous siRNAs.

    Science.gov (United States)

    Lim, Do-Hwan; Lee, Langho; Oh, Chun-Taek; Kim, Nam-Hoon; Hwang, Seungwoo; Han, Sung-Jun; Lee, Young Sik

    2013-02-01

    RNA interference is a eukaryotic regulatory mechanism by which small non-coding RNAs typically mediate specific silencing of their cognate genes. In Drosophila, the RNase III enzyme Dicer-2 (Dcr-2) is essential for biogenesis of endogenous small interfering RNAs (endo-siRNAs), which have been implicated in regulation of endogenous protein-coding genes. Although much is known about microRNA-based regulatory networks, the biological functions of endo-siRNAs in animals remain poorly understood. We performed gene expression profiling on Drosophila dcr-2 null mutant pupae to investigate transcriptional effects caused by a severe defect in endo-siRNA production, and found 306 up-regulated and 357 down-regulated genes with at least a twofold change in expression compared with the wild type. Most of these up-regulated and down-regulated genes were associated with energy metabolism and development, respectively. Importantly, mRNA sequences of 39% of the up-regulated genes were perfectly complementary to the sequences of previously reported endo-siRNAs, suggesting they may be direct targets of endo-siRNAs. We confirmed up-regulation of five selected genes matching endo-siRNAs and concomitant down-regulation of the corresponding endo-siRNAs in dcr-2 mutant pupae. Most of the potential endo-siRNA target genes were associated with energy metabolism, including the citric acid cycle and oxidative phosphorylation in mitochondria, implying that these are major metabolic processes directly affected by endo-siRNAs in Drosophila. Consistent with this finding, dcr-2 null mutant pupae had lower ATP content compared with controls, indicating that mitochondrial energy production is impaired in these mutants. Our data support a potential role for the endo-siRNA pathway in energy homeostasis through regulation of mitochondrial metabolism. Copyright © 2012 Wiley Periodicals, Inc.

  14. Enhanced meta-analysis and replication studies identify five new psoriasis susceptibility loci

    Science.gov (United States)

    Tsoi, Lam C; Spain, Sarah L; Ellinghaus, Eva; Stuart, Philip E; Capon, Francesca; Knight, Jo; Tejasvi, Trilokraj; Kang, Hyun M; Allen, Michael H; Lambert, Sylviane; Stoll, Stefan; Weidinger, Stephan; Gudjonsson, Johann E; Koks, Sulev; Kingo, Külli; Esko, Tonu; Das, Sayantan; Metspalu, Andres; Weichenthal, Michael; Enerback, Charlotta; Krueger, Gerald G.; Voorhees, John J; Chandran, Vinod; Rosen, Cheryl F; Rahman, Proton; Gladman, Dafna D; Reis, Andre; Nair, Rajan P; Franke, Andre; Barker, Jonathan NWN; Abecasis, Goncalo R; Trembath, Richard C; Elder, James T

    2015-01-01

    Psoriasis is a chronic autoimmune disease with complex genetic architecture. Previous genomewide association studies (GWAS) and a recent meta-analysis using Immunochip data have uncovered 36 susceptibility loci. Here, we extend our previous meta-analysis of European ancestry by refined genotype calling and imputation and by the addition of 5,033 cases and 5,707 controls. The combined analysis, consisting of over 15,000 cases and 27,000 controls, identifies five new psoriasis susceptibility loci at genomewide significance (p < 5 × 10−8). The newly identified signals include two that reside in intergenic regions (1q31.1 and 5p13.1) and three residing near PLCL2 (3p24.3), NFKBIZ (3q12.3), and CAMK2G (10q22.2). We further demonstrate that NFKBIZ is a TRAF3IP2–dependent target of IL-17 signaling in human skin keratinocytes, thereby functionally linking two strong candidate genes. These results further integrate the genetics and immunology of psoriasis, suggesting new avenues for functional analysis and improved therapies. PMID:25939698

  15. Efficient behavior of photosynthetic organelles via Pareto optimality, identifiability, and sensitivity analysis.

    Science.gov (United States)

    Carapezza, Giovanni; Umeton, Renato; Costanza, Jole; Angione, Claudio; Stracquadanio, Giovanni; Papini, Alessio; Lió, Pietro; Nicosia, Giuseppe

    2013-05-17

    In this work, we develop methodologies for analyzing and cross comparing metabolic models. We investigate three important metabolic networks to discuss the complexity of biological organization of organisms, modeling, and system properties. In particular, we analyze these metabolic networks because of their biotechnological and basic science importance: the photosynthetic carbon metabolism in a general leaf, the Rhodobacter spheroides bacterium, and the Chlamydomonas reinhardtii alga. We adopt single- and multi-objective optimization algorithms to maximize the CO 2 uptake rate and the production of metabolites of industrial interest or for ecological purposes. We focus both on the level of genes (e.g., finding genetic manipulations to increase the production of one or more metabolites) and on finding concentration enzymes for improving the CO 2 consumption. We find that R. spheroides is able to absorb an amount of CO 2 until 57.452 mmol h (-1) gDW (-1) , while C. reinhardtii obtains a maximum of 6.7331. We report that the Pareto front analysis proves extremely useful to compare different organisms, as well as providing the possibility to investigate them with the same framework. By using the sensitivity and robustness analysis, our framework identifies the most sensitive and fragile components of the biological systems we take into account, allowing us to compare their models. We adopt the identifiability analysis to detect functional relations among enzymes; we observe that RuBisCO, GAPDH, and FBPase belong to the same functional group, as suggested also by the sensitivity analysis.

  16. Structural brain change in Attention Deficit Hyperactivity Disorder identified by meta-analysis.

    Science.gov (United States)

    Ellison-Wright, Ian; Ellison-Wright, Zoë; Bullmore, Ed

    2008-06-30

    The authors sought to map gray matter changes in Attention Deficit Hyperactivity Disorder (ADHD) using a novel technique incorporating neuro-imaging and genetic meta-analysis methods. A systematic search was conducted for voxel-based structural magnetic resonance imaging studies of patients with ADHD (or with related disorders) in relation to comparison groups. The authors carried out meta-analyses of the co-ordinates of gray matter differences. For the meta-analyses they hybridised the standard method of Activation Likelihood Estimation (ALE) with the rank approach used in Genome Scan Meta-Analysis (GSMA). This system detects three-dimensional conjunctions of co-ordinates from multiple studies and permits the weighting of studies in relation to sample size. For gray matter decreases, there were 7 studies including a total of 114 patients with ADHD (or related disorders) and 143 comparison subjects. Meta-analysis of these studies identified a significant regional gray matter reduction in ADHD in the right putamen/globus pallidus region. Four studies reported gray matter increases in ADHD but no regional increase was identified by meta-analysis. In ADHD there is gray matter reduction in the right putamen/globus pallidus region. This may be an anatomical marker for dysfunction in frontostriatal circuits mediating cognitive control. Right putamen lesions have been specifically associated with ADHD symptoms after closed head injuries in children.

  17. Structural brain change in Attention Deficit Hyperactivity Disorder identified by meta-analysis

    Directory of Open Access Journals (Sweden)

    Ellison-Wright Zoë

    2008-06-01

    Full Text Available Abstract Background The authors sought to map gray matter changes in Attention Deficit Hyperactivity Disorder (ADHD using a novel technique incorporating neuro-imaging and genetic meta-analysis methods. Methods A systematic search was conducted for voxel-based structural magnetic resonance imaging studies of patients with ADHD (or with related disorders in relation to comparison groups. The authors carried out meta-analyses of the co-ordinates of gray matter differences. For the meta-analyses they hybridised the standard method of Activation Likelihood Estimation (ALE with the rank approach used in Genome Scan Meta-Analysis (GSMA. This system detects three-dimensional conjunctions of co-ordinates from multiple studies and permits the weighting of studies in relation to sample size. Results For gray matter decreases, there were 7 studies including a total of 114 patients with ADHD (or related disorders and 143 comparison subjects. Meta-analysis of these studies identified a significant regional gray matter reduction in ADHD in the right putamen/globus pallidus region. Four studies reported gray matter increases in ADHD but no regional increase was identified by meta-analysis. Conclusion In ADHD there is gray matter reduction in the right putamen/globus pallidus region. This may be an anatomical marker for dysfunction in frontostriatal circuits mediating cognitive control. Right putamen lesions have been specifically associated with ADHD symptoms after closed head injuries in children.

  18. Gene Expression Signature Analysis Identifies Vorinostat as a Candidate Therapy for Gastric Cancer

    Science.gov (United States)

    Choi, Woonyoung; Park, Yun-Yong; Kim, KyoungHyun; Kim, Sang-Bae; Lee, Ju-Seog; Mills, Gordon B.; Cho, Jae Yong

    2011-01-01

    Background Gastric cancer continues to be one of the deadliest cancers in the world and therefore identification of new drugs targeting this type of cancer is thus of significant importance. The purpose of this study was to identify and validate a therapeutic agent which might improve the outcomes for gastric cancer patients in the future. Methodology/Principal Findings Using microarray technology, we generated a gene expression profile of human gastric cancer–specific genes from human gastric cancer tissue samples. We used this profile in the Broad Institute's Connectivity Map analysis to identify candidate therapeutic compounds for gastric cancer. We found the histone deacetylase inhibitor vorinostat as the lead compound and thus a potential therapeutic drug for gastric cancer. Vorinostat induced both apoptosis and autophagy in gastric cancer cell lines. Pharmacological and genetic inhibition of autophagy however, increased the therapeutic efficacy of vorinostat, indicating that a combination of vorinostat with autophagy inhibitors may therapeutically be more beneficial. Moreover, gene expression analysis of gastric cancer identified a collection of genes (ITGB5, TYMS, MYB, APOC1, CBX5, PLA2G2A, and KIF20A) whose expression was elevated in gastric tumor tissue and downregulated more than 2-fold by vorinostat treatment in gastric cancer cell lines. In contrast, SCGB2A1, TCN1, CFD, APLP1, and NQO1 manifested a reversed pattern. Conclusions/Significance We showed that analysis of gene expression signature may represent an emerging approach to discover therapeutic agents for gastric cancer, such as vorinostat. The observation of altered gene expression after vorinostat treatment may provide the clue to identify the molecular mechanism of vorinostat and those patients likely to benefit from vorinostat treatment. PMID:21931799

  19. Gene expression signature analysis identifies vorinostat as a candidate therapy for gastric cancer.

    Directory of Open Access Journals (Sweden)

    Sofie Claerhout

    Full Text Available Gastric cancer continues to be one of the deadliest cancers in the world and therefore identification of new drugs targeting this type of cancer is thus of significant importance. The purpose of this study was to identify and validate a therapeutic agent which might improve the outcomes for gastric cancer patients in the future.Using microarray technology, we generated a gene expression profile of human gastric cancer-specific genes from human gastric cancer tissue samples. We used this profile in the Broad Institute's Connectivity Map analysis to identify candidate therapeutic compounds for gastric cancer. We found the histone deacetylase inhibitor vorinostat as the lead compound and thus a potential therapeutic drug for gastric cancer. Vorinostat induced both apoptosis and autophagy in gastric cancer cell lines. Pharmacological and genetic inhibition of autophagy however, increased the therapeutic efficacy of vorinostat, indicating that a combination of vorinostat with autophagy inhibitors may therapeutically be more beneficial. Moreover, gene expression analysis of gastric cancer identified a collection of genes (ITGB5, TYMS, MYB, APOC1, CBX5, PLA2G2A, and KIF20A whose expression was elevated in gastric tumor tissue and downregulated more than 2-fold by vorinostat treatment in gastric cancer cell lines. In contrast, SCGB2A1, TCN1, CFD, APLP1, and NQO1 manifested a reversed pattern.We showed that analysis of gene expression signature may represent an emerging approach to discover therapeutic agents for gastric cancer, such as vorinostat. The observation of altered gene expression after vorinostat treatment may provide the clue to identify the molecular mechanism of vorinostat and those patients likely to benefit from vorinostat treatment.

  20. Identifying items to assess methodological quality in physical therapy trials: a factor analysis.

    Science.gov (United States)

    Armijo-Olivo, Susan; Cummings, Greta G; Fuentes, Jorge; Saltaji, Humam; Ha, Christine; Chisholm, Annabritt; Pasichnyk, Dion; Rogers, Todd

    2014-09-01

    Numerous tools and individual items have been proposed to assess the methodological quality of randomized controlled trials (RCTs). The frequency of use of these items varies according to health area, which suggests a lack of agreement regarding their relevance to trial quality or risk of bias. The objectives of this study were: (1) to identify the underlying component structure of items and (2) to determine relevant items to evaluate the quality and risk of bias of trials in physical therapy by using an exploratory factor analysis (EFA). A methodological research design was used, and an EFA was performed. Randomized controlled trials used for this study were randomly selected from searches of the Cochrane Database of Systematic Reviews. Two reviewers used 45 items gathered from 7 different quality tools to assess the methodological quality of the RCTs. An exploratory factor analysis was conducted using the principal axis factoring (PAF) method followed by varimax rotation. Principal axis factoring identified 34 items loaded on 9 common factors: (1) selection bias; (2) performance and detection bias; (3) eligibility, intervention details, and description of outcome measures; (4) psychometric properties of the main outcome; (5) contamination and adherence to treatment; (6) attrition bias; (7) data analysis; (8) sample size; and (9) control and placebo adequacy. Because of the exploratory nature of the results, a confirmatory factor analysis is needed to validate this model. To the authors' knowledge, this is the first factor analysis to explore the underlying component items used to evaluate the methodological quality or risk of bias of RCTs in physical therapy. The items and factors represent a starting point for evaluating the methodological quality and risk of bias in physical therapy trials. Empirical evidence of the association among these items with treatment effects and a confirmatory factor analysis of these results are needed to validate these items.

  1. Important mitochondrial proteins in human omental adipose tissue show reduced expression in obesity

    Directory of Open Access Journals (Sweden)

    Peter W. Lindinger

    2015-09-01

    Full Text Available Obesity is associated with impaired mitochondrial function. This study compares mitochondrial protein expression in omental fat in obese and non-obese humans. Omental adipose tissue was obtained by surgical biopsy, adipocytes were purified and mitochondria isolated. Using anion-exchange chromatography, SDS-PAGE and mass-spectrometry, 128 proteins with potentially different abundances in patient groups were identified, 62 of the 128 proteins are mainly localized in the mitochondria. Further quantification of 12 of these 62 proteins by immune dot blot analysis revealed four proteins citrate synthase, HADHA, LETM1 and mitofilin being inversely associated with BMI, and mitofilin being inversely correlated with gender.

  2. Important mitochondrial proteins in human omental adipose tissue show reduced expression in obesity.

    Science.gov (United States)

    Lindinger, Peter W; Christe, Martine; Eberle, Alex N; Kern, Beatrice; Peterli, Ralph; Peters, Thomas; Jayawardene, Kamburapola J I; Fearnley, Ian M; Walker, John E

    2015-09-01

    Obesity is associated with impaired mitochondrial function. This study compares mitochondrial protein expression in omental fat in obese and non-obese humans. Omental adipose tissue was obtained by surgical biopsy, adipocytes were purified and mitochondria isolated. Using anion-exchange chromatography, SDS-PAGE and mass-spectrometry, 128 proteins with potentially different abundances in patient groups were identified, 62 of the 128 proteins are mainly localized in the mitochondria. Further quantification of 12 of these 62 proteins by immune dot blot analysis revealed four proteins citrate synthase, HADHA, LETM1 and mitofilin being inversely associated with BMI, and mitofilin being inversely correlated with gender.

  3. Long non-coding RNA expression profiles in gallbladder carcinoma identified using microarray analysis.

    Science.gov (United States)

    Wang, Jiwen; Liu, Han; Shen, Xiaokun; Wang, Yueqi; Zhang, Dexiang; Shen, Sheng; Suo, Tao; Pan, Hongtao; Ming, Yue; Ding, Kan; Liu, Houbao

    2017-05-01

    Gallbladder carcinoma (GBC) is the most common biliary tract cancer and exhibits poor patient prognosis. Previous studies have identified that long non-coding RNAs (lncRNAs) serve important regulatory roles in cancer biology. Alterations in lncRNAs are associated with several types of cancer. However, the contribution of lncRNAs to GBC remains unclear. To investigate the lncRNAs that are potentially involved in GBC, lncRNA profiles were identified in three pairs of human GBC and corresponding peri-carcinomatous tissue samples using microarray analysis. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to validate the microarray data. In order to elucidate potential functions, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes analysis, and network analysis were used to determine relevant signaling pathways. Abundant RNA probes were used, and 1,758 lncRNAs and 1,254 mRNAs were detected to be differentially expressed by the microarray. Compared with para-carcinoma tissue, numerous lncRNAs were markedly upregulated or downregulated in GBC. The results demonstrated that the lncRNAs that were downregulated in GBC were more numerous compared with the lncRNAs that were upregulated. Among them, RP11-152P17.2-006 was the most upregulated, whereas CTA-941F9.9 was the most downregulated. The RT-qPCR results were consistent with the microarray data. Pathway analysis indicated that five pathways corresponded to the differentially expressed transcripts. It was demonstrated that lncRNA expression in GBC was markedly altered, and a series of novel lncRNAs associated with GBC were identified. The results of the present study suggest that the functions of lncRNAs are important in GBC development and progression.

  4. Cluster analysis identifies three urodynamic patterns in patients with orthotopic neobladder reconstruction.

    Directory of Open Access Journals (Sweden)

    Kwang Hyun Kim

    Full Text Available To classify patients with orthotopic neobladder based on urodynamic parameters using cluster analysis and to characterize the voiding function of each group.From January 2012 to November 2015, 142 patients with bladder cancer underwent radical cystectomy and Studer neobladder reconstruction at our institute. Of the 142 patients, 103 with complete urodynamic data and information on urinary functional outcomes were included in this study. K-means clustering was performed with urodynamic parameters which included maximal cystometric capacity, residual volume, maximal flow rate, compliance, and detrusor pressure at maximum flow rate. Three groups emerged by cluster analysis. Urodynamic parameters and urinary function outcomes were compared between three groups.Group 1 (n = 44 had ideal urodynamic parameters with a mean maximal bladder capacity of 513.3 ml and mean residual urine volume of 33.1 ml. Group 2 (n = 42 was characterized by small bladder capacity with low compliance. Patients in group 2 had higher rates of daytime incontinence and nighttime incontinence than patients in group 1. Group 3 (n = 17 was characterized by large residual urine volume with high compliance. When we examined gender differences in urodynamics and functional outcomes, residual urine volume and the rate of daytime incontinence were only marginally significant. However, females were significantly more likely to belong to group 2 or 3 (P = 0.003. In multivariate analysis to identify factors associated with group 1 which has the most ideal urodynamic pattern, age (OR 0.95, P = 0.017 and male gender (OR 7.57, P = 0.003 were identified as significant factors.While patients with ileal neobladder present with various voiding symptoms, three urodynamic patterns were identified by cluster analysis. Approximately half of patients had ideal urodynamic parameters. The other two groups were characterized by large residual urine and small capacity bladder with low compliance. Young

  5. Population genetics analysis of Phlebotomus papatasi sand flies from Egypt and Jordan based on mitochondrial cytochrome b haplotypes.

    Science.gov (United States)

    Flanley, Catherine M; Ramalho-Ortigao, Marcelo; Coutinho-Abreu, Iliano V; Mukbel, Rami; Hanafi, Hanafi A; El-Hossary, Shabaan S; Fawaz, Emad El-Din Y; Hoel, David F; Bray, Alexander W; Stayback, Gwen; Shoue, Douglas A; Kamhawi, Shaden; Karakuş, Mehmet; Jaouadi, Kaouther; Yaghoobie-Ershadi, Mohammad Reza; Krüger, Andreas; Amro, Ahmad; Kenawy, Mohamed Amin; Dokhan, Mostafa Ramadhan; Warburg, Alon; Hamarsheh, Omar; McDowell, Mary Ann

    2018-03-27

    Phlebotomus papatasi sand flies are major vectors of Leishmania major and phlebovirus infection in North Africa and across the Middle East to the Indian subcontinent. Population genetics is a valuable tool in understanding the level of genetic variability present in vector populations, vector competence, and the development of novel control strategies. This study investigated the genetic differentiation between P. papatasi populations in Egypt and Jordan that inhabit distinct ecotopes and compared this structure to P. papatasi populations from a broader geographical range. A 461 base pair (bp) fragment from the mtDNA cytochrome b (cyt b) gene was PCR amplified and sequenced from 116 individual female sand flies from Aswan and North Sinai, Egypt, as well as Swaimeh and Malka, Jordan. Haplotypes were identified and used to generate a median-joining network, F ST values and isolation-by-distance were also evaluated. Additional sand fly individuals from Afghanistan, Iran, Israel, Jordan, Libya, Tunisia and Turkey were included as well as previously published haplotypes to provide a geographically broad genetic variation analysis. Thirteen haplotypes displaying nine variant sites were identified from P. papatasi collected in Egypt and Jordan. No private haplotypes were identified from samples in North Sinai, Egypt, two were observed in Aswan, Egypt, four from Swaimeh, Jordan and two in Malka, Jordan. The Jordan populations clustered separately from the Egypt populations and produced more private haplotypes than those from Egypt. Pairwise F ST values fall in the range 0.024-0.648. The clustering patterns and pairwise F ST values indicate a strong differentiation between Egyptian and Jordanian populations, although this population structure is not due to isolation-by-distance. Other factors, such as environmental influences and the genetic variability in the circulating Le. major parasites, could possibly contribute to this heterogeneity. The present study aligns with

  6. Shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity.

    Directory of Open Access Journals (Sweden)

    J R Managbanag

    Full Text Available BACKGROUND: Identification of genes that modulate longevity is a major focus of aging-related research and an area of intense public interest. In addition to facilitating an improved understanding of the basic mechanisms of aging, such genes represent potential targets for therapeutic intervention in multiple age-associated diseases, including cancer, heart disease, diabetes, and neurodegenerative disorders. To date, however, targeted efforts at identifying longevity-associated genes have been limited by a lack of predictive power, and useful algorithms for candidate gene-identification have also been lacking. METHODOLOGY/PRINCIPAL FINDINGS: We have utilized a shortest-path network analysis to identify novel genes that modulate longevity in Saccharomyces cerevisiae. Based on a set of previously reported genes associated with increased life span, we applied a shortest-path network algorithm to a pre-existing protein-protein interaction dataset in order to construct a shortest-path longevity network. To validate this network, the replicative aging potential of 88 single-gene deletion strains corresponding to predicted components of the shortest-path longevity network was determined. Here we report that the single-gene deletion strains identified by our shortest-path longevity analysis are significantly enriched for mutations conferring either increased or decreased replicative life span, relative to a randomly selected set of 564 single-gene deletion strains or to the current data set available for the entire haploid deletion collection. Further, we report the identification of previously unknown longevity genes, several of which function in a conserved longevity pathway believed to mediate life span extension in response to dietary restriction. CONCLUSIONS/SIGNIFICANCE: This work demonstrates that shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity and represents the first application of

  7. Mitochondrial sequence analysis of Salamandra taxa suggests old splits of major lineages and postglacial recolonizations of central Europe from distinct source populations of Salamandra salamandra.

    Science.gov (United States)

    Steinfartz, S; Veith, M; Tautz, D

    2000-04-01

    Representatives of the genus Salamandra occur in Europe, Northern Africa and the Near East. Many local variants are known but species and subspecies status of these is still a matter of dispute. We have analysed samples from locations covering the whole expansion range of Salamandra by sequence analysis of mitochondrial D-loop regions. In addition, we have calibrated the rate of divergence of the D-loop on the basis of geologically dated splits of the closely related genus Euproctus. Phylogenetic analysis of the sequences suggests that six major monophyletic groups exist (S. salamandra, S. algira, S. infraimmaculata, S. corsica, S. atra and S. lanzai) which have split between 5 and 13 million years ago (Ma). We find that each of the Salamandra species occupies a distinct geographical area, with the exception of S. salamandra. This species occurs all over Europe from Spain to Greece, suggesting that it was the only species that has recolonized Central Europe after the last glaciation. The occurrence of specific east and west European haplotypes, as well as allozyme alleles in the S. salamandra populations suggests that this recolonization has started from at least two source populations, possibly originating in the Iberian peninsula and the Balkans. Two subpopulations of S. salamandra were found that are genetically very distinct from the other populations. One lives in northern Spain (S. s. bernardezi) and one in southern Italy (S. s. gigliolii). Surprisingly, the mitochondrial lineages of these subpopulations group closer together than the remainder S. salamandra lineages. We suggest that these populations are remnants of a large homogeneous population that had colonized Central Europe in a previous interglacial period, approximately 500 000 years ago. Animals from these populations were apparently not successful in later recolonizations. Still, they have maintained their separate genetic identity in their areas, although they are not separated by geographical

  8. Space-Time Analysis to Identify Areas at Risk of Mortality from Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Poliany C. O. Rodrigues

    2015-01-01

    Full Text Available This study aimed at identifying areas that were at risk of mortality due to cardiovascular disease in residents aged 45 years or older of the cities of Cuiabá and Várzea Grande between 2009 and 2011. We conducted an ecological study of mortality rates related to cardiovascular disease. Mortality rates were calculated for each census tract by the Local Empirical Bayes estimator. High- and low-risk clusters were identified by retrospective space-time scans for each year using the Poisson probability model. We defined the year and month as the temporal analysis unit and the census tracts as the spatial analysis units adjusted by age and sex. The Mann-Whitney U test was used to compare the socioeconomic and environmental variables by risk classification. High-risk clusters showed higher income ratios than low-risk clusters, as did temperature range and atmospheric particulate matter. Low-risk clusters showed higher humidity than high-risk clusters. The Eastern region of Várzea Grande and the central region of Cuiabá were identified as areas at risk of mortality due to cardiovascular disease in individuals aged 45 years or older. High mortality risk was associated with socioeconomic and environmental factors. More high-risk clusters were observed at the end of the dry season.

  9. Messina: a novel analysis tool to identify biologically relevant molecules in disease.

    Directory of Open Access Journals (Sweden)

    Mark Pinese

    Full Text Available BACKGROUND: Morphologically similar cancers display heterogeneous patterns of molecular aberrations and follow substantially different clinical courses. This diversity has become the basis for the definition of molecular phenotypes, with significant implications for therapy. Microarray or proteomic expression profiling is conventionally employed to identify disease-associated genes, however, traditional approaches for the analysis of profiling experiments may miss molecular aberrations which define biologically relevant subtypes. METHODOLOGY/PRINCIPAL FINDINGS: Here we present Messina, a method that can identify those genes that only sometimes show aberrant expression in cancer. We demonstrate with simulated data that Messina is highly sensitive and specific when used to identify genes which are aberrantly expressed in only a proportion of cancers, and compare Messina to contemporary analysis techniques. We illustrate Messina by using it to detect the aberrant expression of a gene that may play an important role in pancreatic cancer. CONCLUSIONS/SIGNIFICANCE: Messina allows the detection of genes with profiles typical of markers of molecular subtype, and complements existing methods to assist the identification of such markers. Messina is applicable to any global expression profiling data, and to allow its easy application has been packaged into a freely-available stand-alone software package.

  10. The complete sequence of the mitochondrial genome of the African Penguin (Spheniscus demersus).

    Science.gov (United States)

    Labuschagne, Christiaan; Kotzé, Antoinette; Grobler, J Paul; Dalton, Desiré L

    2014-01-15

    The complete mitochondrial genome of the African Penguin (Spheniscus demersus) was sequenced. The molecule was sequenced via next generation sequencing and primer walking. The size of the genome is 17,346 bp in length. Comparison with the mitochondrial DNA of two other penguin genomes that have so far been reported was conducted namely; Little blue penguin (Eudyptula minor) and the Rockhopper penguin (Eudyptes chrysocome). This analysis made it possible to identify common penguin mitochondrial DNA characteristics. The S. demersus mtDNA genome is very similar, both in composition and length to both the E. chrysocome and E. minor genomes. The gene content of the African penguin mitochondrial genome is typical of vertebrates and all three penguin species have the standard gene order originally identified in the chicken. The control region for S. demersus is located between tRNA-Glu and tRNA-Phe and all three species of penguins contain two sets of similar repeats with varying copy numbers towards the 3' end of the control region, accounting for the size variance. This is the first report of the complete nucleotide sequence for the mitochondrial genome of the African penguin, S. demersus. These results can be subsequently used to provide information for penguin phylogenetic studies and insights into the evolution of genomes. © 2013 Elsevier B.V. All rights reserved.

  11. Mutations in the mitochondrial cysteinyl-tRNA synthase gene, CARS2, lead to a severe epileptic encephalopathy and complex movement disorder.

    Science.gov (United States)

    Coughlin, Curtis R; Scharer, Gunter H; Friederich, Marisa W; Yu, Hung-Chun; Geiger, Elizabeth A; Creadon-Swindell, Geralyn; Collins, Abigail E; Vanlander, Arnaud V; Coster, Rudy Van; Powell, Christopher A; Swanson, Michael A; Minczuk, Michal; Van Hove, Johan L K; Shaikh, Tamim H

    2015-08-01

    Mitochondrial disease is often suspected in cases of severe epileptic encephalopathy especially when a complex movement disorder, liver involvement and progressive developmental regression are present. Although mutations in either mitochondrial DNA or POLG are often present, other nuclear defects in mitochondrial DNA replication and protein translation have been associated with a severe epileptic encephalopathy. We identified a proband with an epileptic encephalopathy, complex movement disorder and a combined mitochondrial respiratory chain enzyme deficiency. The child presented with neurological regression, complex movement disorder and intractable seizures. A combined deficiency of mitochondrial complexes I, III and IV was noted in liver tissue, along with increased mitochondrial DNA content in skeletal muscle. Incomplete assembly of complex V, using blue native polyacrylamide gel electrophoretic analysis and complex I, using western blotting, suggested a disorder of mitochondrial transcription or translation. Exome sequencing identified compound heterozygous mutations in CARS2, a mitochondrial aminoacyl-tRNA synthetase. Both mutations affect highly conserved amino acids located within the functional ligase domain of the cysteinyl-tRNA synthase. A specific decrease in the amount of charged mt-tRNA(Cys) was detected in patient fibroblasts compared with controls. Retroviral transfection of the wild-type CARS2 into patient skin fibroblasts led to the correction of the incomplete assembly of complex V, providing functional evidence for the role of CARS2 mutations in disease aetiology. Our findings indicate that mutations in CARS2 result in a mitochondrial translational defect as seen in individuals with mitochondrial epileptic encephalopathy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. Identifying fine sediment sources to alleviate flood risk caused by fine sediments through catchment connectivity analysis

    Science.gov (United States)

    Twohig, Sarah; Pattison, Ian; Sander, Graham

    2017-04-01

    Fine sediment poses a significant threat to UK river systems in terms of vegetation, aquatic habitats and morphology. Deposition of fine sediment onto the river bed reduces channel capacity resulting in decreased volume to contain high flow events. Once the in channel problem has been identified managers are under pressure to sustainably mitigate flood risk. With climate change and land use adaptations increasing future pressures on river catchments it is important to consider the connectivity of fine sediment throughout the river catchment and its influence on channel capacity, particularly in systems experiencing long term aggradation. Fine sediment erosion is a continuing concern in the River Eye, Leicestershire. The predominately rural catchment has a history of flooding within the town of Melton Mowbray. Fine sediment from agricultural fields has been identified as a major contributor of sediment delivery into the channel. Current mitigation measures are not sustainable or successful in preventing the continuum of sediment throughout the catchment. Identifying the potential sources and connections of fine sediment would provide insight into targeted catchment management. 'Sensitive Catchment Integrated Modelling Analysis Platforms' (SCIMAP) is a tool often used by UK catchment managers to identify potential sources and routes of sediment within a catchment. SCIMAP is a risk based model that combines hydrological (rainfall) and geomorphic controls (slope, land cover) to identify the risk of fine sediment being transported from source into the channel. A desktop version of SCIMAP was run for the River Eye at a catchment scale using 5m terrain, rainfall and land cover data. A series of SCIMAP model runs were conducted changing individual parameters to determine the sensitivity of the model. Climate Change prediction data for the catchment was used to identify potential areas of future connectivity and erosion risk for catchment managers. The results have been

  13. A meta-analysis of 120 246 individuals identifies 18 new loci for fibrinogen concentration.

    Science.gov (United States)

    de Vries, Paul S; Chasman, Daniel I; Sabater-Lleal, Maria; Chen, Ming-Huei; Huffman, Jennifer E; Steri, Maristella; Tang, Weihong; Teumer, Alexander; Marioni, Riccardo E; Grossmann, Vera; Hottenga, Jouke J; Trompet, Stella; Müller-Nurasyid, Martina; Zhao, Jing Hua; Brody, Jennifer A; Kleber, Marcus E; Guo, Xiuqing; Wang, Jie Jin; Auer, Paul L; Attia, John R; Yanek, Lisa R; Ahluwalia, Tarunveer S; Lahti, Jari; Venturini, Cristina; Tanaka, Toshiko; Bielak, Lawrence F; Joshi, Peter K; Rocanin-Arjo, Ares; Kolcic, Ivana; Navarro, Pau; Rose, Lynda M; Oldmeadow, Christopher; Riess, Helene; Mazur, Johanna; Basu, Saonli; Goel, Anuj; Yang, Qiong; Ghanbari, Mohsen; Willemsen, Gonneke; Rumley, Ann; Fiorillo, Edoardo; de Craen, Anton J M; Grotevendt, Anne; Scott, Robert; Taylor, Kent D; Delgado, Graciela E; Yao, Jie; Kifley, Annette; Kooperberg, Charles; Qayyum, Rehan; Lopez, Lorna M; Berentzen, Tina L; Räikkönen, Katri; Mangino, Massimo; Bandinelli, Stefania; Peyser, Patricia A; Wild, Sarah; Trégouët, David-Alexandre; Wright, Alan F; Marten, Jonathan; Zemunik, Tatijana; Morrison, Alanna C; Sennblad, Bengt; Tofler, Geoffrey; de Maat, Moniek P M; de Geus, Eco J C; Lowe, Gordon D; Zoledziewska, Magdalena; Sattar, Naveed; Binder, Harald; Völker, Uwe; Waldenberger, Melanie; Khaw, Kay-Tee; Mcknight, Barbara; Huang, Jie; Jenny, Nancy S; Holliday, Elizabeth G; Qi, Lihong; Mcevoy, Mark G; Becker, Diane M; Starr, John M; Sarin, Antti-Pekka; Hysi, Pirro G; Hernandez, Dena G; Jhun, Min A; Campbell, Harry; Hamsten, Anders; Rivadeneira, Fernando; Mcardle, Wendy L; Slagboom, P Eline; Zeller, Tanja; Koenig, Wolfgang; Psaty, Bruce M; Haritunians, Talin; Liu, Jingmin; Palotie, Aarno; Uitterlinden, André G; Stott, David J; Hofman, Albert; Franco, Oscar H; Polasek, Ozren; Rudan, Igor; Morange, Pierre-Emmanuel; Wilson, James F; Kardia, Sharon L R; Ferrucci, Luigi; Spector, Tim D; Eriksson, Johan G; Hansen, Torben; Deary, Ian J; Becker, Lewis C; Scott, Rodney J; Mitchell, Paul; März, Winfried; Wareham, Nick J; Peters, Annette; Greinacher, Andreas; Wild, Philipp S; Jukema, J Wouter; Boomsma, Dorret I; Hayward, Caroline; Cucca, Francesco; Tracy, Russell; Watkins, Hugh; Reiner, Alex P; Folsom, Aaron R; Ridker, Paul M; O'Donnell, Christopher J; Smith, Nicholas L; Strachan, David P; Dehghan, Abbas

    2016-01-15

    Genome-wide association studies have previously identified 23 genetic loci associated with circulating fibrinogen concentration. These studies used HapMap imputation and did not examine the X-chromosome. 1000 Genomes imputation provides better coverage of uncommon variants, and includes indels. We conducted a genome-wide association analysis of 34 studies imputed to the 1000 Genomes Project reference panel and including ∼120 000 participants of European ancestry (95 806 participants with data on the X-chromosome). Approximately 10.7 million single-nucleotide polymorphisms and 1.2 million indels were examined. We identified 41 genome-wide significant fibrinogen loci; of which, 18 were newly identified. There were no genome-wide significant signals on the X-chromosome. The lead variants of five significant loci were indels. We further identified six additional independent signals, including three rare variants, at two previously characterized loci: FGB and IRF1. Together the 41 loci explain 3% of the variance in plasma fibrinogen concentration. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Integrating Stakeholder Preferences and GIS-Based Multicriteria Analysis to Identify Forest Landscape Restoration Priorities

    Directory of Open Access Journals (Sweden)

    David Uribe

    2014-02-01

    Full Text Available A pressing question that arises during the planning of an ecological restoration process is: where to restore first? Answering this question is a complex task; it requires a multidimensional approach to consider economic constrains and the preferences of stakeholders. Being the problem of spatial nature, it may be explored effectively through Multicriteria Decision Analysis (MCDA performed in a Geographical Information System (GIS environment. The proposed approach is based on the definition and weighting of multiple criteria for evaluating land suitability. An MCDA-based methodology was used to identify priority areas for Forest Landscape Restoration in the Upper Mixtec region, Oaxaca (Mexico, one of the most degraded areas of Latin America. Socioeconomic and environmental criteria were selected and evaluated. The opinions of four different stakeholder groups were considered: general public, academic, Non-governmental organizations (NGOs and governmental officers. The preferences of these groups were spatially modeled to identify their priorities. The final result was a map that identifies the most preferable sites for restoration, where resources and efforts should be concentrated. MCDA proved to be a very useful tool in collective planning, when alternative sites have to be identified and prioritized to guide the restoration work.

  15. The systematic functional analysis of plasmodium protein kinases identifies essential regulators of mosquito transmission

    KAUST Repository

    Tewari, Rita

    2010-10-21

    Although eukaryotic protein kinases (ePKs) contribute to many cellular processes, only three Plasmodium falciparum ePKs have thus far been identified as essential for parasite asexual blood stage development. To identify pathways essential for parasite transmission between their mammalian host and mosquito vector, we undertook a systematic functional analysis of ePKs in the genetically tractable rodent parasite Plasmodium berghei. Modeling domain signatures of conventional ePKs identified 66 putative Plasmodium ePKs. Kinomes are highly conserved between Plasmodium species. Using reverse genetics, we show that 23 ePKs are redundant for asexual erythrocytic parasite development in mice. Phenotyping mutants at four life cycle stages in Anopheles stephensi mosquitoes revealed functional clusters of kinases required for sexual development and sporogony. Roles for a putative SR protein kinase (SRPK) in microgamete formation, a conserved regulator of clathrin uncoating (GAK) in ookinete formation, and a likely regulator of energy metabolism (SNF1/KIN) in sporozoite development were identified. 2010 Elsevier Inc.

  16. Genetic analysis of atherosclerosis identifies a major susceptibility locus in the major histocompatibility complex of mice.

    Science.gov (United States)

    Grainger, Andrew T; Jones, Michael B; Li, Jing; Chen, Mei-Hua; Manichaikul, Ani; Shi, Weibin

    2016-11-01

    Recent genome-wide association studies (GWAS) have identified over 50 significant loci containing common variants associated with coronary artery disease. However, these variants explain only 26% of the genetic heritability of the disease, suggesting that many more variants remain to be discovered. Here, we examined the genetic basis underlying the marked difference between SM/J-Apoe -/- and BALB/cJ-Apoe -/- mice in atherosclerotic lesion formation. 206 female F 2 mice generated from an intercross between the two Apoe -/- strains were fed 12 weeks of western diet. Atherosclerotic lesion sizes in the aortic root were measured and 149 genetic markers genotyped across the entire genome. A significant locus, named Ath49 (LOD score: 4.18), for atherosclerosis was mapped to the H2 complex [mouse major histocompatibility complex (MHC)] on chromosome 17. Bioinformatic analysis identified 12 probable candidate genes, including Tnfrsf21, Adgrf1, Adgrf5, Mep1a, and Pla2g7. Corresponding human genomic regions of Ath49 showed significant association with coronary heart disease. Five suggestive loci on chromosomes 1, 4, 5, and 8 for atherosclerosis were also identified. Atherosclerotic lesion sizes were significantly correlated with HDL but not with non-HDL cholesterol, triglyceride or glucose levels in the F 2 cohort. We have identified the MHC as a major genetic determinant of atherosclerosis, highlighting the importance of inflammation in atherogenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Pathway cross-talk network analysis identifies critical pathways in neonatal sepsis.

    Science.gov (United States)

    Meng, Yu-Xiu; Liu, Quan-Hong; Chen, Deng-Hong; Meng, Ying

    2017-06-01

    Despite advances in neonatal care, sepsis remains a major cause of morbidity and mortality in neonates worldwide. Pathway cross-talk analysis might contribute to the inference of the driving forces in bacterial sepsis and facilitate a better understanding of underlying pathogenesis of neonatal sepsis. This study aimed to explore the critical pathways associated with the progression of neonatal sepsis by the pathway cross-talk analysis. By integrating neonatal transcriptome data with known pathway data and protein-protein interaction data, we systematically uncovered the disease pathway cross-talks and constructed a disease pathway cross-talk network for neonatal sepsis. Then, attract method was employed to explore the dysregulated pathways associated with neonatal sepsis. To determine the critical pathways in neonatal sepsis, rank product (RP) algorithm, centrality analysis and impact factor (IF) were introduced sequentially, which synthetically considered the differential expression of genes and pathways, pathways cross-talks and pathway parameters in the network. The dysregulated pathways with the highest IF values as well as RPpathways in neonatal sepsis. By integrating three kinds of data, only 6919 common genes were included to perform the pathway cross-talk analysis. By statistic analysis, a total of 1249 significant pathway cross-talks were selected to construct the pathway cross-talk network. Moreover, 47 dys-regulated pathways were identified via attract method, 20 pathways were identified under RPpathways with the highest IF were also screened from the pathway cross-talk network. Among them, we selected 8 common pathways, i.e. critical pathways. In this study, we systematically tracked 8 critical pathways involved in neonatal sepsis by integrating attract method and pathway cross-talk network. These pathways might be responsible for the host response in infection, and of great value for advancing diagnosis and therapy of neonatal sepsis. Copyright © 2017

  18. BAYESIAN ANALYSIS TO IDENTIFY NEW STAR CANDIDATES IN NEARBY YOUNG STELLAR KINEMATIC GROUPS

    International Nuclear Information System (INIS)

    Malo, Lison; Doyon, René; Lafrenière, David; Artigau, Étienne; Gagné, Jonathan; Baron, Frédérique; Riedel, Adric

    2013-01-01

    We present a new method based on a Bayesian analysis to identify new members of nearby young kinematic groups. The analysis minimally takes into account the position, proper motion, magnitude, and color of a star, but other observables can be readily added (e.g., radial velocity, distance). We use this method to find new young low-mass stars in the β Pictoris and AB Doradus moving groups and in the TW Hydrae, Tucana-Horologium, Columba, Carina, and Argus associations. Starting from a sample of 758 mid-K to mid-M (K5V-M5V) stars showing youth indicators such as Hα and X-ray emission, our analysis yields 214 new highly probable low-mass members of the kinematic groups analyzed. One is in TW Hydrae, 37 in β Pictoris, 17 in Tucana-Horologium, 20 in Columba, 6 in Carina, 50 in Argus, 32 in AB Doradus, and the remaining 51 candidates are likely young but have an ambiguous membership to more than one association. The false alarm rate for new candidates is estimated to be 5% for β Pictoris and TW Hydrae, 10% for Tucana-Horologium, Columba, Carina, and Argus, and 14% for AB Doradus. Our analysis confirms the membership of 58 stars proposed in the literature. Firm membership confirmation of our new candidates will require measurement of their radial velocity (predicted by our analysis), parallax, and lithium 6708 Å equivalent width. We have initiated these follow-up observations for a number of candidates, and we have identified two stars (2MASSJ01112542+1526214, 2MASSJ05241914-1601153) as very strong candidate members of the β Pictoris moving group and one strong candidate member (2MASSJ05332558-5117131) of the Tucana-Horologium association; these three stars have radial velocity measurements confirming their membership and lithium detections consistent with young age.

  19. Practical In-Depth Analysis of IDS Alerts for Tracing and Identifying Potential Attackers on Darknet

    Directory of Open Access Journals (Sweden)

    Jungsuk Song

    2017-02-01

    Full Text Available The darknet (i.e., a set of unused IP addresses is a very useful solution for observing the global trends of cyber threats and analyzing attack activities on the Internet. Since the darknet is not connected with real systems, in most cases, the incoming packets on the darknet (‘the darknet traffic’ do not contain a payload. This means that we are unable to get real malware from the darknet traffic. This situation makes it difficult for security experts (e.g., academic researchers, engineers, operators, etc. to identify whether the source hosts of the darknet traffic are infected by real malware or not. In this paper, we present the overall procedure of the in-depth analysis between the darknet traffic and IDS alerts using real data collected at the Science and Technology Cyber Security Center (S&T CSC in Korea and provide the detailed in-depth analysis results. The ultimate goal of this paper is to provide practical experience, insight and know-how to security experts so that they are able to identify and trace the root cause of the darknet traffic. The experimental results show that correlation analysis between the darknet traffic and IDS alerts is very useful to discover potential attack hosts, especially internal hosts, and to find out what kinds of malware infected them.

  20. Integrated in vivo multiomics analysis identifies p21-activated kinase signaling as a driver of colitis.

    Science.gov (United States)

    Lyons, Jesse; Brubaker, Douglas K; Ghazi, Phaedra C; Baldwin, Katherine R; Edwards, Amanda; Boukhali, Myriam; Strasser, Samantha Dale; Suarez-Lopez, Lucia; Lin, Yi-Jang; Yajnik, Vijay; Kissil, Joseph L; Haas, Wilhelm; Lauffenburger, Douglas A; Haigis, Kevin M

    2018-02-27

    Inflammatory bowel disease (IBD) is a chronic disorder of the gastrointestinal tract that has limited treatment options. To gain insight into the pathogenesis of chronic colonic inflammation (colitis), we performed a multiomics analysis that integrated RNA microarray, total protein mass spectrometry (MS), and phosphoprotein MS measurements from a mouse model of the disease. Because we collected all three types of data from individual samples, we tracked information flow from RNA to protein to phosphoprotein and identified signaling molecules that were coordinately or discordantly regulated and pathways that had complex regulation in vivo. For example, the genes encoding acute-phase proteins were expressed in the liver, but the proteins were detected by MS in the colon during inflammation. We also ascertained the types of data that best described particular facets of chronic inflammation. Using gene set enrichment analysis and trans-omics coexpression network analysis, we found that each data set provided a distinct viewpoint on the molecular pathogenesis of colitis. Combining human transcriptomic data with the mouse multiomics data implicated increased p21-activated kinase (Pak) signaling as a driver of colitis. Chemical inhibition of Pak1 and Pak2 with FRAX597 suppressed active colitis in mice. These studies provide translational insights into the mechanisms contributing to colitis and identify Pak as a potential therapeutic target in IBD. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  1. Hypoxia as a therapy for mitochondrial disease.

    Science.gov (United States)

    Jain, Isha H; Zazzeron, Luca; Goli, Rahul; Alexa, Kristen; Schatzman-Bone, Stephanie; Dhillon, Harveen; Goldberger, Olga; Peng, Jun; Shalem, Ophir; Sanjana, Neville E; Zhang, Feng; Goessling, Wolfram; Zapol, Warren M; Mootha, Vamsi K

    2016-04-01

    Defects in the mitochondrial respiratory chain (RC) underlie a spectrum of human conditions, ranging from devastating inborn errors of metabolism to aging. We performed a genome-wide Cas9-mediated screen to identify factors that are protective during RC inhibition. Our results highlight the hypoxia response, an endogenous program evolved to adapt to limited oxygen availability. Genetic or small-molecule activation of the hypoxia response is protective against mitochondrial toxicity in cultured cells and zebrafish models. Chronic hypoxia leads to a marked improvement in survival, body weight, body temperature, behavior, neuropathology, and disease biomarkers in a genetic mouse model of Leigh syndrome, the most common pediatric manifestation of mitochondrial disease. Further preclinical studies are required to assess whether hypoxic exposure can be developed into a safe and effective treatment for human diseases associated with mitochondrial dysfunction. Copyright © 2016, American Association for the Advancement of Science.

  2. Comparative mitochondrial proteomics: perspective in human diseases

    Directory of Open Access Journals (Sweden)

    Jiang Yujie

    2012-03-01

    Full Text Available Abstract Mitochondria are the most complex and the most important organelles of eukaryotic cells, which are involved in many cellular processes, including energy metabolism, apoptosis, and aging. And mitochondria have been identified as the "hot spot" by researchers for exploring relevant associated dysfunctions in many fields. The emergence of comparative proteomics enables us to have a close look at the mitochondrial proteome in a comprehensive and effective manner under various conditions and cellular circumstances. Two-dimensional electrophoresis combined with mass spectrometry is still the most popular techniques to study comparative mitochondrial proteomics. Furthermore, many new techniques, such as ICAT, MudPIT, and SILAC, equip researchers with more flexibilities inselecting proper methods. This article also reviews the recent development of comparative mitochondrial proteomics on diverse human diseases. And the results of mitochondrial proteomics enhance a better understanding of the pathogenesis associated with mitochondria and provide promising therapeutic targets.

  3. Small RNA-seq analysis of circulating miRNAs to identify phenotypic variability in Friedreich's ataxia patients

    Science.gov (United States)

    Seco-Cervera, Marta; González-Rodríguez, Dayme; Ibáñez-Cabellos, José Santiago; Peiró-Chova, Lorena; Pallardó, Federico V.; García-Giménez, José Luis

    2018-03-01

    Friedreich's ataxia (FRDA; OMIM 229300), an autosomal recessive neurodegenerative mitochondrial disease, is the most prevalent hereditary ataxia. In addition, FRDA patients have shown additional non-neurological features such as scoliosis, diabetes, and cardiac complications. Hypertrophic cardiomyopathy, which is found in two thirds of patients at the time of diagnosis, is the primary cause of death in these patients. Here, we used small RNA-seq of microRNAs (miRNAs) purified from plasma samples of FRDA patients and controls. Furthermore, we present the rationale, experimental methodology, and analytical procedures for dataset analysis. This dataset will facilitate the identification of miRNA signatures and provide new molecular explanation for pathological mechanisms occurring during the natural history of FRDA. Since miRNA levels change with disease progression and pharmacological interventions, miRNAs will contribute to the design of new therapeutic strategies and will improve clinical decisions.

  4. Using sensitivity analysis to identify key factors for the propagation of a plant epidemic.

    Science.gov (United States)

    Rimbaud, Loup; Bruchou, Claude; Dallot, Sylvie; Pleydell, David R J; Jacquot, Emmanuel; Soubeyrand, Samuel; Thébaud, Gaël

    2018-01-01

    Identifying the key factors underlying the spread of a disease is an essential but challenging prerequisite to design management strategies. To tackle this issue, we propose an approach based on sensitivity analyses of a spatiotemporal stochastic model simulating the spread of a plant epidemic. This work is motivated by the spread of sharka, caused by plum pox virus , in a real landscape. We first carried out a broad-range sensitivity analysis, ignoring any prior information on six epidemiological parameters, to assess their intrinsic influence on model behaviour. A second analysis benefited from the available knowledge on sharka epidemiology and was thus restricted to more realistic values. The broad-range analysis revealed that the mean duration of the latent period is the most influential parameter of the model, whereas the sharka-specific analysis uncovered the strong impact of the connectivity of the first infected orchard. In addition to demonstrating the interest of sensitivity analyses for a stochastic model, this study highlights the impact of variation ranges of target parameters on the outcome of a sensitivity analysis. With regard to sharka management, our results suggest that sharka surveillance may benefit from paying closer attention to highly connected patches whose infection could trigger serious epidemics.

  5. Mitochondrial Alterations and Oxidative Stress in an Acute Transient Mouse Model of Muscle Degeneration

    Science.gov (United States)

    Ramadasan-Nair, Renjini; Gayathri, Narayanappa; Mishra, Sudha; Sunitha, Balaraju; Mythri, Rajeswara Babu; Nalini, Atchayaram; Subbannayya, Yashwanth; Harsha, Hindalahalli Chandregowda; Kolthur-Seetharam, Ullas; Bharath, Muchukunte Mukunda Srinivas

    2014-01-01

    Muscular dystrophies (MDs) and inflammatory myopathies (IMs) are debilitating skeletal muscle disorders characterized by common pathological events including myodegeneration and inflammation. However, an experimental model representing both muscle pathologies and displaying most of the distinctive markers has not been characterized. We investigated the cardiotoxin (CTX)-mediated transient acute mouse model of muscle degeneration and compared the cardinal features with human MDs and IMs. The CTX model displayed degeneration, apoptosis, inflammation, loss of sarcolemmal complexes, sarcolemmal disruption, and ultrastructural changes characteristic of human MDs and IMs. Cell death caused by CTX involved calcium influx and mitochondrial damage both in murine C2C12 muscle cells and in mice. Mitochondrial proteomic analysis at the initial phase of degeneration in the model detected lowered expression of 80 mitochondrial proteins including subunits of respiratory complexes, ATP machinery, fatty acid metabolism, and Krebs cycle, which further decreased in expression during the peak degenerative phase. The mass spectrometry (MS) data were supported by enzyme assays, Western blot, and histochemistry. The CTX model also displayed markers of oxidative stress and a lowered glutathione reduced/oxidized ratio (GSH/GSSG) similar to MDs, human myopathies, and neurogenic atrophies. MS analysis identified 6 unique oxidized proteins from Duchenne muscular dystrophy samples (n = 6) (versus controls; n = 6), including two mitochondrial proteins. Interestingly, these mitochondrial proteins were down-regulated in the CTX model thereby linking oxidative stress and mitochondrial dysfunction. We conclude that mitochondrial alterations and oxidative damage significantly contribute to CTX-mediated muscle pathology with implications for human muscle diseases. PMID:24220031

  6. Identifying the new Influencers in the Internet Era: Social Media and Social Network Analysis

    Directory of Open Access Journals (Sweden)

    MIGUEL DEL FRESNO GARCÍA

    2016-01-01

    Full Text Available Social media influencers (SMIs can be defined as a new type of independent actor who are able to shape audience attitudes through the use of social media channels in competition and coexistence with professional media. Being able to accurately identify SMIs is critical no matter what is being transmitted in a social system. Social Network Analysis (SNA has been recognized as a powerful tool for representing social network structures and information dissemination. SMIs can be identifi ed by their high-ranking position in a network as the most important or central nodes. The results reveal the existence of three different typologies of SMIs: disseminator, engager and leader. This methodology permits the optimization of resources to create effective online communication strategies.

  7. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes

    DEFF Research Database (Denmark)

    Parker, Brian John; Moltke, Ida; Roth, Adam

    2011-01-01

    a comparative method, EvoFam, for genome-wide identification of families of regulatory RNA structures, based on primary sequence and secondary structure similarity. We apply EvoFam to a 41-way genomic vertebrate alignment. Genome-wide, we identify 220 human, high-confidence families outside protein...... identify tens of new families supported by strong evolutionary evidence and other statistical evidence, such as GO term enrichments. For some of these, detailed analysis has led to the formulation of specific functional hypotheses. Examples include two hypothesized auto-regulatory feedback mechanisms: one...... involving six long hairpins in the 3'-UTR of MAT2A, a key metabolic gene that produces the primary human methyl donor S-adenosylmethionine; the other involving a tRNA-like structure in the intron of the tRNA maturation gene POP1. We experimentally validate the predicted MAT2A structures. Finally, we...

  8. Identifying patients with therapy-resistant depression by using factor analysis

    DEFF Research Database (Denmark)

    Andreasson, K; Liest, V; Lunde, M

    2010-01-01

    INTRODUCTION: Attempts to identify the factor structure in patients with treatment-resistant depression have been very limited. METHODS: Principal component analysis was performed using the baseline datasets from 3 add-on studies [2 with repetitive transcranial magnetic stimulation and one...... with transcranial pulsed electromagnetic fields (T-PEMF)], in which the relative effect as percentage of improvement during the treatment period was analysed. RESULTS: We identified 2 major factors, the first of which was a general factor. The second was a dual factor consisting of a depression subscale comprising...... the negatively loaded items (covering the pure depression items) and a treatment resistant subscale comprising the positively loaded items (covering lassitude, concentration difficulties and sleep problems). These 2 dual subscales were used as outcome measures. Improvement on the treatment resistant subscale...

  9. Mitochondrial hepatopathies in the newborn period.

    Science.gov (United States)

    Fellman, Vineta; Kotarsky, Heike

    2011-08-01

    Mitochondrial disorders recognized in the neonatal period usually present as a metabolic crisis combined with one or several organ manifestations. Liver disorder in association with a respiratory chain deficiency may be overlooked since liver dysfunction is common in severely sick newborn infants. Lactacidosis, hypoglycemia, elevated serum transaminases and conjugated bilirubin are common signs of mitochondrial hepatopathy. Hepatosplenomegaly may occur in severe cases. A clinical picture with fetal growth restriction, postnatal lactacidosis, hypoglycemia, coagulopathy, and cholestasis, especially in combination with neurological symptoms or renal tubulopathy, should alert the neonatologist to direct investigations on mitochondrial disorder. A normal lactate level does not exclude respiratory chain defects. The most common liver manifestation caused by mutated mitochondrial DNA (deletion) is Pearson syndrome. Recently, mutations in several nuclear DNA genes have been identified that lead to mitochondrial hepatopathy, e.g. mitochondrial depletion syndrome caused by DGUOK, MPV17, SUCLG1, POLG1, or C10ORF2 mutations. A combination of lactacidosis, liver involvement, and Fanconi type renal tubulopathy is common when the complex III assembly factor BCS1L harbors mutations, the most severe disease with consistent genotype-phenotype correlation being the GRACILE syndrome. Mutations in nuclear translation factor genes (TRMU, EFG1, and EFTu) of the respiratory chain enzyme complexes have recently been identified. Diagnostic work-up of neonatal liver disorder should include assessment of function and structure of the complexes as well as mutation screening for known genes. So far, treatment is mainly symptomatic. Copyright © 2011. Published by Elsevier Ltd.

  10. A cross-study gene set enrichment analysis identifies critical pathways in endometriosis

    Directory of Open Access Journals (Sweden)

    Bai Chunyan

    2009-09-01

    Full Text Available Abstract Background Endometriosis is an enigmatic disease. Gene expression profiling of endometriosis has been used in several studies, but few studies went further to classify subtypes of endometriosis based on expression patterns and to identify possible pathways involved in endometriosis. Some of the observed pathways are more inconsistent between the studies, and these candidate pathways presumably only represent a fraction of the pathways involved in endometriosis. Methods We applied a standardised microarray preprocessing and gene set enrichment analysis to six independent studies, and demonstrated increased concordance between these gene datasets. Results We find 16 up-regulated and 19 down-regulated pathways common in ovarian endometriosis data sets, 22 up-regulated and one down-regulated pathway common in peritoneal endometriosis data sets. Among them, 12 up-regulated and 1 down-regulated were found consistent between ovarian and peritoneal endometriosis. The main canonical pathways identified are related to immunological and inflammatory disease. Early secretory phase has the most over-represented pathways in the three uterine cycle phases. There are no overlapping significant pathways between the dataset from human endometrial endothelial cells and the datasets from ovarian endometriosis which used whole tissues. Conclusion The study of complex diseases through pathway analysis is able to highlight genes weakly connected to the phenotype which may be difficult to detect by using classical univariate statistics. By standardised microarray preprocessing and GSEA, we have increased the concordance in identifying many biological mechanisms involved in endometriosis. The identified gene pathways will shed light on the understanding of endometriosis and promote the development of novel therapies.

  11. Gene-network analysis identifies susceptibility genes related to glycobiology in autism.

    Directory of Open Access Journals (Sweden)

    Bert van der Zwaag

    Full Text Available The recent identification of copy-number variation in the human genome has opened up new avenues for the discovery of positional candidate genes underlying complex genetic disorders, especially in the field of psychiatric disease. One major challenge that remains is pinpointing the susceptibility genes in the multitude of disease-associated loci. This challenge may be tackled by reconstruction of functional gene-networks from the genes residing in these loci. We applied this approach to autism spectrum disorder (ASD, and identified the copy-number changes in the DNA of 105 ASD patients and 267 healthy individuals with Illumina Humanhap300 Beadchips. Subsequently, we used a human reconstructed gene-network, Prioritizer, to rank candidate genes in the segmental gains and losses in our autism cohort. This analysis highlighted several candidate genes already known to be mutated in cognitive and neuropsychiatric disorders, including RAI1, BRD1, and LARGE. In addition, the LARGE gene was part of a sub-network of seven genes functioning in glycobiology, present in seven copy-number changes specifically identified in autism patients with limited co-morbidity. Three of these seven copy-number changes were de novo in the patients. In autism patients with a complex phenotype and healthy controls no such sub-network was identified. An independent systematic analysis of 13 published autism susceptibility loci supports the involvement of genes related to glycobiology as we also identified the same or similar genes from those loci. Our findings suggest that the occurrence of genomic gains and losses of genes associated with glycobiology are important contributors to the development of ASD.

  12. Quantitative Proteomics of Synaptic and Nonsynaptic Mitochondria: Insights for Synaptic Mitochondrial Vulnerability

    Science.gov (United States)

    2015-01-01

    Synaptic mitochondria are essential for maintaining calcium homeostasis and producing ATP, processes vital for neuronal integrity and synaptic transmission. Synaptic mitochondria exhibit increased oxidative damage during aging and are more vulnerable to calcium insult than nonsynaptic mitochondria. Why synaptic mitochondria are specifically more susceptible to cumulative damage remains to be determined. In this study, the generation of a super-SILAC mix that served as an appropriate internal standard for mouse brain mitochondria mass spectrometry based analysis allowed for the quantification of the proteomic differences between synaptic and nonsynaptic mitochondria isolated from 10-month-old mice. We identified a total of 2260 common proteins between synaptic and nonsynaptic mitochondria of which 1629 were annotated as mitochondrial. Quantitative proteomic analysis of the proteins common between synaptic and nonsynaptic mitochondria revealed significant differential expression of 522 proteins involved in several pathways including oxidative phosphorylation, mitochondrial fission/fusion, calcium transport, and mitochondrial DNA replication and maintenance. In comparison to nonsynaptic mitochondria, synaptic mitochondria exhibited increased age-associated mitochondrial DNA deletions and decreased bioenergetic function. These findings provide insights into synaptic mitochondrial susceptibility to damage. PMID:24708184

  13. QIL1 is a novel mitochondrial protein required for MICOS complex stability and cristae morphology.

    Science.gov (United States)

    Guarani, Virginia; McNeill, Elizabeth M; Paulo, Joao A; Huttlin, Edward L; Fröhlich, Florian; Gygi, Steven P; Van Vactor, David; Harper, J Wade

    2015-05-21

    The mitochondrial contact site and cristae junction (CJ) organizing system (MICOS) dynamically regulate mitochondrial membrane architecture. Through systematic proteomic analysis of human MICOS, we identified QIL1 (C19orf70) as a novel conserved MICOS subunit. QIL1 depletion disrupted CJ structure in cultured human cells and in Drosophila muscle and neuronal cells in vivo. In human cells, mitochondrial disruption correlated with impaired respiration. Moreover, increased mitochondrial fragmentation was observed upon QIL1 depletion in flies. Using quantitative proteomics, we show that loss of QIL1 resulted in MICOS disassembly with the accumulation of a MIC60-MIC19-MIC25 sub-complex and degradation of MIC10, MIC26, and MIC27. Additionally, we demonstrated that in QIL1-depleted cells, overexpressed MIC10 fails to significantly restore its interaction with other MICOS subunits and SAMM50. Collectively, our work uncovers a previously unrecognized subunit of the MICOS complex, necessary for CJ integrity, cristae morphology, and mitochondrial function and provides a resource for further analysis of MICOS architecture.

  14. Systematic enrichment analysis of gene expression profiling studies identifies consensus pathways implicated in colorectal cancer development

    Directory of Open Access Journals (Sweden)

    Jesús Lascorz

    2011-01-01

    Full Text Available Background: A large number of gene expression profiling (GEP studies on colorectal carcinogenesis have been performed but no reliable gene signature has been identified so far due to the lack of reproducibility in the reported genes. There is growing evidence that functionally related genes, rather than individual genes, contribute to the etiology of complex traits. We used, as a novel approach, pathway enrichment tools to define functionally related genes that are consistently up- or down-regulated in colorectal carcinogenesis. Materials and Methods: We started the analysis with 242 unique annotated genes that had been reported by any of three recent meta-analyses covering GEP studies on genes differentially expressed in carcinoma vs normal mucosa. Most of these genes (218, 91.9% had been reported in at least three GEP studies. These 242 genes were submitted to bioinformatic analysis using a total of nine tools to detect enrichment of Gene Ontology (GO categories or Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. As a final consistency criterion the pathway categories had to be enriched by several tools to be taken into consideration. Results: Our pathway-based enrichment analysis identified the categories of ribosomal protein constituents, extracellular matrix receptor interaction, carbonic anhydrase isozymes, and a general category related to inflammation and cellular response as significantly and consistently overrepresented entities. Conclusions: We triaged the genes covered by the published GEP literature on colorectal carcinogenesis and subjected them to multiple enrichment tools in order to identify the consistently enriched gene categories. These turned out to have known functional relationships to cancer development and thus deserve further investigation.

  15. Towards a typology of business process management professionals: identifying patterns of competences through latent semantic analysis

    DEFF Research Database (Denmark)

    Müller, Oliver; Schmiedel, Theresa; Gorbacheva, Elena

    2014-01-01

    -related job advertisements in order to develop a typology of BPM professionals. This empirical analysis reveals distinct ideal types and profiles of BPM professionals on several levels of abstraction. A closer look at these ideal types and profiles confirms that BPM is a boundary-spanning field that requires...... interdisciplinary sets of competence that range from technical competences to business and systems competences. Based on the study’s findings, it is posited that individual and organisational alignment with the identified ideal types and profiles is likely to result in high employability and organisational BPM...

  16. Comparing chemical analysis with literature studies to identify micropollutants in a catchment of Copenhagen (DK)

    DEFF Research Database (Denmark)

    Lützhøft, Hans-Christian Holten; Birch, Heidi; Eriksson, Eva

    2011-01-01

    on urban surface runoff originating from a well defined catchment of Copenhagen (Denmark) with an inventory of potential pollution sources for the same catchment. The selected catchment covers an area with roads, a shopping centre, a parking lot, office buildings, a gymnasium and some restaurants....... The literature approach is limited to the range of included PSs and to how and which information is compiled, whereas the analytical chemical approach is limited to the selection of analyzed substances, sensitivity and precision. Comparing the two approaches of chemical analysis with literature study to identify...

  17. Towards a typology of business process management professionals: identifying patterns of competences through latent semantic analysis

    Science.gov (United States)

    Müller, Oliver; Schmiedel, Theresa; Gorbacheva, Elena; vom Brocke, Jan

    2016-01-01

    While researchers have analysed the organisational competences that are required for successful Business Process Management (BPM) initiatives, individual BPM competences have not yet been studied in detail. In this study, latent semantic analysis is used to examine a collection of 1507 BPM-related job advertisements in order to develop a typology of BPM professionals. This empirical analysis reveals distinct ideal types and profiles of BPM professionals on several levels of abstraction. A closer look at these ideal types and profiles confirms that BPM is a boundary-spanning field that requires interdisciplinary sets of competence that range from technical competences to business and systems competences. Based on the study's findings, it is posited that individual and organisational alignment with the identified ideal types and profiles is likely to result in high employability and organisational BPM success.

  18. Independent component analysis of high-resolution imaging data identifies distinct functional domains

    DEFF Research Database (Denmark)

    Reidl, Juergen; Starke, Jens; Omer, David

    2007-01-01

    . Here we demonstrate that principal component analysis (PCA) followed by spatial independent component analysis (sICA), can be exploited to reduce the dimensionality of data sets recorded in the olfactory bulb and the somatosensory cortex of mice as well as the visual cortex of monkeys, without loosing...... latencies can be identified. This is shown for recordings of olfactory receptor neuron input measured with a calcium sensitive axon tracer and for network dynamics measured with the voltage sensitive dye RH 1838. In the somatosensory cortex, barrels responding to the stimulation of single whiskers can...... be automatically detected. In the visual cortex orientation columns can be extracted. In all cases artifacts due to movement, heartbeat or respiration were separated from the functional signal by sICA and could be removed from the data set. sICA is therefore a powerful technique for data compression, unbiased...

  19. Polygenic analysis of genome-wide SNP data identifies common variants on allergic rhinitis

    DEFF Research Database (Denmark)

    Mohammadnejad, Afsaneh; Brasch-Andersen, Charlotte; Haagerup, Annette

    Background: Allergic Rhinitis (AR) is a complex disorder that affects many people around the world. There is a high genetic contribution to the development of the AR, as twins and family studies have estimated heritability of more than 33%. Due to the complex nature of the disease, single SNP...... analysis has limited power in identifying the genetic variations for AR. We combined genome-wide association analysis (GWAS) with polygenic risk score (PRS) in exploring the genetic basis underlying the disease. Methods: We collected clinical data on 631 Danish subjects with AR cases consisting of 434...... sibling pairs and unrelated individuals and control subjects of 197 unrelated individuals. SNP genotyping was done by Affymetrix Genome-Wide Human SNP Array 5.0. SNP imputation was performed using "IMPUTE2". Using additive effect model, GWAS was conducted in discovery sample, the genotypes...

  20. Whole Genome Analysis of Injectional Anthrax Identifies Two Disease Clusters Spanning More Than 13 Years

    Directory of Open Access Journals (Sweden)

    Paul Keim

    2015-11-01

    Lay Person Interpretation: Injectional anthrax has been plaguing heroin drug users across Europe for more than 10 years. In order to better understand this outbreak, we assessed genomic relationships of all available injectional anthrax strains from four countries spanning a >12 year period. Very few differences were identified using genome-based analysis, but these differentiated the isolates into two distinct clusters. This strongly supports a hypothesis of at least two separate anthrax spore contamination events perhaps during the drug production processes. Identification of two events would not have been possible from standard epidemiological analysis. These comprehensive data will be invaluable for classifying future injectional anthrax isolates and for future geographic attribution.

  1. Identifying changes in the support networks of end-of-life carers using social network analysis.

    Science.gov (United States)

    Leonard, Rosemary; Horsfall, Debbie; Noonan, Kerrie

    2015-06-01

    End-of-life caring is often associated with reduced social networks for both the dying person and for the carer. However, those adopting a community participation and development approach, see the potential for the expansion and strengthening of networks. This paper uses Knox, Savage and Harvey's definitions of three generations social network analysis to analyse the caring networks of people with a terminal illness who are being cared for at home and identifies changes in these caring networks that occurred over the period of caring. Participatory network mapping of initial and current networks was used in nine focus groups. The analysis used key concepts from social network analysis (size, density, transitivity, betweenness and local clustering) together with qualitative analyses of the group's reflections on the maps. The results showed an increase in the size of the networks and that ties between the original members of the network strengthened. The qualitative data revealed the importance between core and peripheral network members and the diverse contributions of the network members. The research supports the value of third generation social network analysis and the potential for end-of-life caring to build social capital. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Distinct Phenotypes of Smokers with Fixed Airflow Limitation Identified by Cluster Analysis of Severe Asthma.

    Science.gov (United States)

    Konno, Satoshi; Taniguchi, Natsuko; Makita, Hironi; Nakamaru, Yuji; Shimizu, Kaoruko; Shijubo, Noriharu; Fuke, Satoshi; Takeyabu, Kimihiro; Oguri, Mitsuru; Kimura, Hirokazu; Maeda, Yukiko; Suzuki, Masaru; Nagai, Katsura; Ito, Yoichi M; Wenzel, Sally E; Nishimura, Masaharu

    2018-01-01

    Smoking may have multifactorial effects on asthma phenotypes, particularly in severe asthma. Cluster analysis has been applied to explore novel phenotypes, which are not based on any a priori hypotheses. To explore novel severe asthma phenotypes by cluster analysis when including smoking patients with asthma. We recruited a total of 127 subjects with severe asthma, including 59 current or ex-smokers, from our university hospital and its 29 affiliated hospitals/pulmonary clinics. Clinical variables obtained during a 2-day hospital stay were used for cluster analysis. After clustering using clinical variables, the sputum levels of 14 molecules were measured to biologically characterize the clinical clusters. Five clinical clusters, including two characterized by low forced expiratory volume in 1 second/forced vital capacity, were identified. When characteristics of smoking subjects in these two clusters were compared, there were marked differences between the two groups: one had high levels of circulating eosinophils, high immunoglobulin E levels, and a high sinus score, and the other was characterized by low levels of the same parameters. Sputum analysis revealed intriguing differences of cytokine/chemokine pattern in these two groups. The other three clusters were similar to those previously reported: young onset/atopic, nonsmoker/less eosinophilic, and female/obese. Key clinical variables were confirmed to be stable and consistent 3 years later. This study reveals two distinct phenotypes with potentially different biological pathways contributing to fixed airflow limitation in cigarette smokers with severe asthma.

  3. Ubiquitination of specific mitochondrial matrix proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, Gilad [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ziv, Tamar [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Braten, Ori [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Admon, Arie [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Udasin, Ronald G. [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ciechanover, Aaron, E-mail: aaroncie@tx.technion.ac.il [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel)

    2016-06-17

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.

  4. Application of cluster analysis to geochemical compositional data for identifying ore-related geochemical anomalies

    Science.gov (United States)

    Zhou, Shuguang; Zhou, Kefa; Wang, Jinlin; Yang, Genfang; Wang, Shanshan

    2017-12-01

    Cluster analysis is a well-known technique that is used to analyze various types of data. In this study, cluster analysis is applied to geochemical data that describe 1444 stream sediment samples collected in northwestern Xinjiang with a sample spacing of approximately 2 km. Three algorithms (the hierarchical, k-means, and fuzzy c-means algorithms) and six data transformation methods (the z-score standardization, ZST; the logarithmic transformation, LT; the additive log-ratio transformation, ALT; the centered log-ratio transformation, CLT; the isometric log-ratio transformation, ILT; and no transformation, NT) are compared in terms of their effects on the cluster analysis of the geochemical compositional data. The study shows that, on the one hand, the ZST does not affect the results of column- or variable-based (R-type) cluster analysis, whereas the other methods, including the LT, the ALT, and the CLT, have substantial effects on the results. On the other hand, the results of the row- or observation-based (Q-type) cluster analysis obtained from the geochemical data after applying NT and the ZST are relatively poor. However, we derive some improved results from the geochemical data after applying the CLT, the ILT, the LT, and the ALT. Moreover, the k-means and fuzzy c-means clustering algorithms are more reliable than the hierarchical algorithm when they are used to cluster the geochemical data. We apply cluster analysis to the geochemical data to explore for Au deposits within the study area, and we obtain a good correlation between the results retrieved by combining the CLT or the ILT with the k-means or fuzzy c-means algorithms and the potential zones of Au mineralization. Therefore, we suggest that the combination of the CLT or the ILT with the k-means or fuzzy c-means algorithms is an effective tool to identify potential zones of mineralization from geochemical data.

  5. Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis.

    Directory of Open Access Journals (Sweden)

    Kevin Till

    Full Text Available Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional. Players were blindly and randomly divided into an exploratory (n = 165 and validation dataset (n = 92. The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; p<0.001, although it could not distinguish between future professional and academy players. The validation dataset model was able to distinguish future professionals from the rest with reasonable accuracy (sensitivity = 83.3%, specificity = 63.8%; p = 0.003. Through the use of SVD analysis it was possible to objectively identify criteria to distinguish future career attainment with a sensitivity over 80% using anthropometric and fitness data alone. As such, this suggests that SVD analysis may be a useful analysis tool for research and practice within talent identification.

  6. Study of the genetic origin of the Mexican creole donkey (Equus asinus) by means of the analysis of the D-loop region of mitochondrial DNA.

    Science.gov (United States)

    Lopez Lopez, C; Alonso, R; de Aluja, A S

    2005-11-01

    The aim of this work was to analyse the genetic origin of the Mexican Creole donkey, as well as its genetic diversity, by comparison with Spanish and African donkey populations by means of the D-loop region of mitochondrial DNA. To this end, the genomic DNA of 68 Mexican Creole donkeys from eight geographical regions in six States of the Republic of Mexico and from a Sicilian donkey was obtained. By the polymerase chain-reaction technique (PCR) a fragment of 541 bp was amplified, corresponding to the most informative region of the mitochondrial DNA, the D-loop. The fragments were subsequently sequenced. The analysed sequences revealed 10 new Mexican haplotypes that were different from those of the Spanish and African breeds with which they were compared, showing high levels of genetic diversity. Analysis of the phylogenetic relationships in the different Creole varieties showed a tendency of origin towards Spanish breeds, mainly the Andaluza, Zamorano-Leonesa and Majorera from the Canary Islands; these in turn showed an African origin, seven Mexican haplotypes and three haplotypes similar to those analysed by Aranguren and colleagues (2004) of Spanish and African breeds being obtained. This work allows us to reach the preliminary conclusion that the origin of Mexican Creole donkey populations in the different states of the Republic of Mexico is clearly of Iberian origin, the Spanish donkey breed Andaluza being the main one contributing to the populations of the Mexican Creole donkeys, followed by the Spanish breeds Zamorano-Leonesa and Majorera from the Canary Islands, and that the populations possess high levels of genetic diversity.

  7. Analysis of ancient human mitochondrial DNA from the Xiaohe cemetery: insights into prehistoric population movements in the Tarim Basin, China.

    Science.gov (United States)

    Li, Chunxiang; Ning, Chao; Hagelberg, Erika; Li, Hongjie; Zhao, Yongbin; Li, Wenying; Abuduresule, Idelisi; Zhu, Hong; Zhou, Hui

    2015-07-08

    The Tarim Basin in western China, known for its amazingly well-preserved mummies, has been for thousands of years an important crossroad between the eastern and western parts of Eurasia. Despite its key position in communications and migration, and highly diverse peoples, languages and cultures, its prehistory is poorly understood. To shed light on the origin of the populations of the Tarim Basin, we analysed mitochondrial DNA polymorphisms in human skeletal remains excavated from the Xiaohe cemetery, used by the local community between 4000 and 3500 years before present, and possibly representing some of the earliest settlers. Xiaohe people carried a wide variety of maternal lineages, including West Eurasian lineages H, K, U5, U7, U2e, T, R*, East Eurasian lineages B, C4, C5, D, G2a and Indian lineage M5. Our results indicate that the people of the Tarim Basin had a diverse maternal ancestry, with origins in Europe, central/eastern Siberia and southern/western Asia. These findings, together with information on the cultural context of the Xiaohe cemetery, can be used to test contrasting hypotheses of route of settlement into the Tarim Basin.

  8. Possible Source Populations of the White-backed Planthopper in the Greater Mekong Subregion Revealed by Mitochondrial DNA Analysis

    Science.gov (United States)

    Li, Xiang-Yong; Chu, Dong; Yin, Yan-Qiong; Zhao, Xue-Qing; Chen, Ai-Dong; Khay, Sathya; Douangboupha, Bounneuang; Kyaw, Mu Mu; Kongchuensin, Manita; Ngo, Vien Vinh; Nguyen, Chung Huy

    2016-12-01

    The white-backed planthopper, Sogatella furcifera (Horváth) (Hemiptera: Delphacidae), is a serious pest of rice in Asia. However, little is known regarding the migration of this pest insect from the Greater Mekong Subregion (GMS) including Cambodia, Laos, Myanmar (Burma), Thailand, and Vietnam, into China’s Yunnan Province. To determine the migration patterns of S. furcifera in the GMS and putative secondary immigration inside China’s Yunnan Province, we investigated the population genetic diversity, genetic structure, and gene flow of 42 S. furcifera populations across the six countries in the GMS by intensive sampling using mitochondrial genes. Our study revealed the potential emigration of S. furcifera from the GMS consists primarily of three major sources: 1) the S. furcifera from Laos and Vietnam migrate into south and southeast Yunnan, where they proceed to further migrate into northeast and central Yunnan; 2) the S. furcifera from Myanmar migrate into west Yunnan, and/or central Yunnan, and/or northeast Yunnan; 3) the S. furcifera from Cambodia migrate into southwest Yunnan, where the populations can migrate further into central Yunnan. The new data will not only be helpful in predicting population dynamics of the planthopper, but will also aid in regional control programs for this economically important pest insect.

  9. Genetic diversity analysis of Asian clam Corbicula fluminea in the Hongze Lake based on mitochondrial cytochrome b gene.

    Science.gov (United States)

    Zhu, Chuankun; Li, Jin; Xie, Songguang; Ding, Huaiyu; Pan, Zhengjun; Wang, Hui; Chang, Guoliang

    2017-03-24

    The Asian clam Corbicula fluminea is a small bivalve with high nutritional and medical values. However, natural resources of C. fluminea have declined in many areas of China including the Hongze Lake. In this study, 119 individuals from 10 sites of this lake and 2 outgroups were analyzed using a 456 bp mitochondrial cytochrome b (cytb) gene segment. Totally, 19 polymorphic sites were detected, which defined 16 haplotypes. Polymorphism varied among the 10 populations with those at the water inlet being more polymorphic. Most F ST values among these populations were below 0.15 with the overall value of 0.060 (p < .05), meanwhile, the overall gene flow was 7.67, both of which indicated the low level of population differentiation in this lake. Neutrality test and mismatch analyses indicated that population explosion may have occurred in this lake. The results obtained in this study will provide useful information for artificial breeding and resource protection of this species in the Hongze Lake.

  10. Identification of Paramecium bursaria syngens through molecular markers--comparative analysis of three loci in the nuclear and mitochondrial DNA.

    Science.gov (United States)

    Greczek-Stachura, Magdalena; Potekhin, Alexey; Przyboś, Ewa; Rautian, Maria; Skoblo, Inna; Tarcz, Sebastian

    2012-09-01

    This is the first attempt to resolve the phylogenetic relationship between different syngens of Paramecium bursaria and to investigate at a molecular level the intraspecific differentiation of strains originating from very distant geographical locations. Herein we introduce a new collection of five P. bursaria syngens maintained at St Petersburg State University, as the international collection of syngens was lost in the 1960s. To analyze the degree of speciation within Paramecium bursaria, we examined 26 strains belonging to five different syngens from distant and geographically isolated localities using rDNA (ITS1-5.8S-ITS2-5'LSU) fragments, mitochondrial cytochrome c oxidase subunit I (COI), and H4 gene fragments. It was shown that P. bursaria strains of the same syngens cluster together in all three inferred molecular phylogenies. The genetic diversity among the studied P. bursaria strains based on rDNA sequences was rather low. The COI divergence of Paramecium bursaria was also definitely lower than that observed in the Paramecium aurelia complex. The nucleotide sequences of the H4 gene analyzed in the present study indicate the extent of genetic differences between the syngens of Paramecium bursaria. Our study demonstrates the diagnostic value of molecular markers, which are important tools in the identification of Paramecium bursaria syngens. Copyright © 2011 Elsevier GmbH. All rights reserved.

  11. Single Molecule Cluster Analysis Identifies Signature Dynamic Conformations along the Splicing Pathway

    Science.gov (United States)

    Blanco, Mario R.; Martin, Joshua S.; Kahlscheuer, Matthew L.; Krishnan, Ramya; Abelson, John; Laederach, Alain; Walter, Nils G.

    2016-01-01

    The spliceosome is the dynamic RNA-protein machine responsible for faithfully splicing introns from precursor messenger RNAs (pre-mRNAs). Many of the dynamic processes required for the proper assembly, catalytic activation, and disassembly of the spliceosome as it acts on its pre-mRNA substrate remain poorly understood, a challenge that persists for many biomolecular machines. Here, we developed a fluorescence-based Single Molecule Cluster Analysis (SiMCAn) tool to dissect the manifold conformational dynamics of a pre-mRNA through the splicing cycle. By clustering common dynamic behaviors derived from selectively blocked splicing reactions, SiMCAn was able to identify signature conformations and dynamic behaviors of multiple ATP-dependent intermediates. In addition, it identified a conformation adopted late in splicing by a 3′ splice site mutant, invoking a mechanism for substrate proofreading. SiMCAn presents a novel framework for interpreting complex single molecule behaviors that should prove widely useful for the comprehensive analysis of a plethora of dynamic cellular machines. PMID:26414013

  12. Integrating text mining, data mining, and network analysis for identifying genetic breast cancer trends.

    Science.gov (United States)

    Jurca, Gabriela; Addam, Omar; Aksac, Alper; Gao, Shang; Özyer, Tansel; Demetrick, Douglas; Alhajj, Reda

    2016-04-26

    Breast cancer is a serious disease which affects many women and may lead to death. It has received considerable attention from the research community. Thus, biomedical researchers aim to find genetic biomarkers indicative of the disease. Novel biomarkers can be elucidated from the existing literature. However, the vast amount of scientific publications on breast cancer make this a daunting task. This paper presents a framework which investigates existing literature data for informative discoveries. It integrates text mining and social network analysis in order to identify new potential biomarkers for breast cancer. We utilized PubMed for the testing. We investigated gene-gene interactions, as well as novel interactions such as gene-year, gene-country, and abstract-country to find out how the discoveries varied over time and how overlapping/diverse are the discoveries and the interest of various research groups in different countries. Interesting trends have been identified and discussed, e.g., different genes are highlighted in relationship to different countries though the various genes were found to share functionality. Some text analysis based results have been validated against results from other tools that predict gene-gene relations and gene functions.

  13. Mini-DIAL system measurements coupled with multivariate data analysis to identify TIC and TIM simulants: preliminary absorption database analysis.

    Science.gov (United States)

    Gaudio, P.; Malizia, A.; Gelfusa, M.; Martinelli, E.; Di Natale, C.; Poggi, L. A.; Bellecci, C.

    2017-01-01

    Nowadays Toxic Industrial Components (TICs) and Toxic Industrial Materials (TIMs) are one of the most dangerous and diffuse vehicle of contamination in urban and industrial areas. The academic world together with the industrial and military one are working on innovative solutions to monitor the diffusion in atmosphere of such pollutants. In this phase the most common commercial sensors are based on “point detection” technology but it is clear that such instruments cannot satisfy the needs of the smart cities. The new challenge is developing stand-off systems to continuously monitor the atmosphere. Quantum Electronics and Plasma Physics (QEP) research group has a long experience in laser system development and has built two demonstrators based on DIAL (Differential Absorption of Light) technology could be able to identify chemical agents in atmosphere. In this work the authors will present one of those DIAL system, the miniaturized one, together with the preliminary results of an experimental campaign conducted on TICs and TIMs simulants in cell with aim of use the absorption database for the further atmospheric an analysis using the same DIAL system. The experimental results are analysed with standard multivariate data analysis technique as Principal Component Analysis (PCA) to develop a classification model aimed at identifying organic chemical compound in atmosphere. The preliminary results of absorption coefficients of some chemical compound are shown together pre PCA analysis.

  14. Mini-DIAL system measurements coupled with multivariate data analysis to identify TIC and TIM simulants: preliminary absorption database analysis

    International Nuclear Information System (INIS)

    Gaudio, P; Malizia, A; Gelfusa, M; Poggi, L.A.; Martinelli, E.; Di Natale, C.; Bellecci, C.

    2017-01-01

    Nowadays Toxic Industrial Components (TICs) and Toxic Industrial Materials (TIMs) are one of the most dangerous and diffuse vehicle of contamination in urban and industrial areas. The academic world together with the industrial and military one are working on innovative solutions to monitor the diffusion in atmosphere of such pollutants. In this phase the most common commercial sensors are based on “point detection” technology but it is clear that such instruments cannot satisfy the needs of the smart cities. The new challenge is developing stand-off systems to continuously monitor the atmosphere. Quantum Electronics and Plasma Physics (QEP) research group has a long experience in laser system development and has built two demonstrators based on DIAL (Differential Absorption of Light) technology could be able to identify chemical agents in atmosphere. In this work the authors will present one of those DIAL system, the miniaturized one, together with the preliminary results of an experimental campaign conducted on TICs and TIMs simulants in cell with aim of use the absorption database for the further atmospheric an analysis using the same DIAL system. The experimental results are analysed with standard multivariate data analysis technique as Principal Component Analysis (PCA) to develop a classification model aimed at identifying organic chemical compound in atmosphere. The preliminary results of absorption coefficients of some chemical compound are shown together pre PCA analysis. (paper)

  15. A new approach to hazardous materials transportation risk analysis: decision modeling to identify critical variables.

    Science.gov (United States)

    Clark, Renee M; Besterfield-Sacre, Mary E

    2009-03-01

    We take a novel approach to analyzing hazardous materials transportation risk in this research. Previous studies analyzed this risk from an operations research (OR) or quantitative risk assessment (QRA) perspective by minimizing or calculating risk along a transport route. Further, even though the majority of incidents occur when containers are unloaded, the research has not focused on transportation-related activities, including container loading and unloading. In this work, we developed a decision model of a hazardous materials release during unloading using actual data and an exploratory data modeling approach. Previous studies have had a theoretical perspective in terms of identifying and advancing the key variables related to this risk, and there has not been a focus on probability and statistics-based approaches for doing this. Our decision model empirically identifies the critical variables using an exploratory methodology for a large, highly categorical database involving latent class analysis (LCA), loglinear modeling, and Bayesian networking. Our model identified the most influential variables and countermeasures for two consequences of a hazmat incident, dollar loss and release quantity, and is one of the first models to do this. The most influential variables were found to be related to the failure of the container. In addition to analyzing hazmat risk, our methodology can be used to develop data-driven models for strategic decision making in other domains involving risk.

  16. Comparative Transcriptome Analysis Identifies Putative Genes Involved in the Biosynthesis of Xanthanolides in Xanthium strumarium L.

    Directory of Open Access Journals (Sweden)

    Yuanjun Li

    2016-08-01

    Full Text Available Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones, which include the xanthanolides. To date, the biogenesis of xanthanolides, especiallytheir downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identify putative gene candidates involved in the biosynthesis of xanthanolides, three X. strumarium transcriptomes, which were derived from the young leaves of two different cultivars and the purified glandular trichomes from one of the cultivars, were constructed in this study. In total, 157 million clean reads were generated and assembled into 91,861 unigenes, of which 59,858 unigenes were successfully annotated. All the genes coding for known enzymes in the upstream pathway to the biosynthesis of xanthanolides were present in the X. strumarium transcriptomes. From a comparative analysis of the X. strumarium transcriptomes, this study identified a number of gene candidates that are putatively involved in the downstream pathway to the synthesis of xanthanolides, such as four unigenes encoding CYP71 P450s, 50 unigenes for dehydrogenases, and 27 genes for acetyltransferases. The possible functions of these four CYP71 candidates are extensively discussed. In addition, 116 transcription factors that were highly expressed in X. strumarium glandular trichomes were also identified. Their possible regulatory roles in the biosynthesis of sesquiterpene lactones are discussed. The global transcriptomic data for X. strumarium should provide a valuable resource for further research into the biosynthesis of xanthanolides.

  17. Analysis combining correlated glaucoma traits identifies five new risk loci for open-angle glaucoma.

    Science.gov (United States)

    Gharahkhani, Puya; Burdon, Kathryn P; Cooke Bailey, Jessica N; Hewitt, Alex W; Law, Matthew H; Pasquale, Louis R; Kang, Jae H; Haines, Jonathan L; Souzeau, Emmanuelle; Zhou, Tiger; Siggs, Owen M; Landers, John; Awadalla, Mona; Sharma, Shiwani; Mills, Richard A; Ridge, Bronwyn; Lynn, David; Casson, Robert; Graham, Stuart L; Goldberg, Ivan; White, Andrew; Healey, Paul R; Grigg, John; Lawlor, Mitchell; Mitchell, Paul; Ruddle, Jonathan; Coote, Michael; Walland, Mark; Best, Stephen; Vincent, Andrea; Gale, Jesse; RadfordSmith, Graham; Whiteman, David C; Montgomery, Grant W; Martin, Nicholas G; Mackey, David A; Wiggs, Janey L; MacGregor, Stuart; Craig, Jamie E

    2018-02-15

    Open-angle glaucoma (OAG) is a major cause of blindness worldwide. To identify new risk loci for OAG, we performed a genome-wide association study in 3,071 OAG cases and 6,750 unscreened controls, and meta-analysed the results with GWAS data for intraocular pressure (IOP) and optic disc parameters (the overall meta-analysis sample size varying between 32,000 to 48,000 participants), which are glaucoma-related traits. We identified and independently validated four novel genome-wide significant associations within or near MYOF and CYP26A1, LINC02052 and CRYGS, LMX1B, and LMO7 using single variant tests, one additional locus (C9) using gene-based tests, and two genetic pathways - "response to fluid shear stress" and "abnormal retina morphology" - in pathway-based tests. Interestingly, some of the new risk loci contribute to risk of other genetically-correlated eye diseases including myopia and age-related macular degeneration. To our knowledge, this study is the first integrative study to combine genetic data from OAG and its correlated traits to identify new risk variants and genetic pathways, highlighting the future potential of combining genetic data from genetically-correlated eye traits for the purpose of gene discovery and mapping.

  18. Latent class analysis identifies distinct phenotypes of primary graft dysfunction after lung transplantation.

    Science.gov (United States)

    Shah, Rupal J; Diamond, Joshua M; Cantu, Edward; Lee, James C; Lederer, David J; Lama, Vibha N; Orens, Jonathan; Weinacker, Ann; Wilkes, David S; Bhorade, Sangeeta; Wille, Keith M; Ware, Lorraine B; Palmer, Scott M; Crespo, Maria; Localio, A Russell; Demissie, Ejigayehu; Kawut, Steven M; Bellamy, Scarlett L; Christie, Jason D

    2013-08-01

    There is significant heterogeneity within the primary graft dysfunction (PGD) syndrome. We aimed to identify distinct grade 3 PGD phenotypes based on severity of lung dysfunction and patterns of resolution. Subjects from the Lung Transplant Outcomes Group (LTOG) cohort study with grade 3 PGD within 72 h after transplantation were included. Latent class analysis (LCA) was used to statistically identify classes based on changes in PGD International Society for Heart & Lung Transplantation grade over time. Construct validity of the classes was assessed by testing for divergence of recipient, donor, and operative characteristics between classes. Predictive validity was assessed using time to death. Of 1,255 subjects, 361 had grade 3 PGD within the first 72 h after transplantation. LCA identified three distinct phenotypes: (1) severe persistent dysfunction (class 1), (2) complete resolution of dysfunction within 72 h (class 2), and (3) attenuation, without complete resolution within 72 h (class 3). Increased use of cardiopulmonary bypass, greater RBC transfusion, and higher mean pulmonary artery pressure were associated with persistent PGD (class 1). Subjects in class 1 also had the greatest risk of death (hazard ratio, 2.39; 95% CI, 1.57-3.63; P < .001). There are distinct phenotypes of resolution of dysfunction within the severe PGD syndrome. Subjects with early resolution may represent a different mechanism of lung pathology, such as resolving pulmonary edema, whereas those with persistent PGD may represent a more severe phenotype. Future studies aimed at PGD mechanism or treatment may focus on phenotypes based on resolution of graft dysfunction.

  19. Clustering analysis of water distribution systems: identifying critical components and community impacts.

    Science.gov (United States)

    Diao, K; Farmani, R; Fu, G; Astaraie-Imani, M; Ward, S; Butler, D

    2014-01-01

    Large water distribution systems (WDSs) are networks with both topological and behavioural complexity. Thereby, it is usually difficult to identify the key features of the properties of the system, and subsequently all the critical components within the system for a given purpose of design or control. One way is, however, to more explicitly visualize the network structure and interactions between components by dividing a WDS into a number of clusters (subsystems). Accordingly, this paper introduces a clustering strategy that decomposes WDSs into clusters with stronger internal connections than external connections. The detected cluster layout is very similar to the community structure of the served urban area. As WDSs may expand along with urban development in a community-by-community manner, the correspondingly formed distribution clusters may reveal some crucial configurations of WDSs. For verification, the method is applied to identify all the critical links during firefighting for the vulnerability analysis of a real-world WDS. Moreover, both the most critical pipes and clusters are addressed, given the consequences of pipe failure. Compared with the enumeration method, the method used in this study identifies the same group of the most critical components, and provides similar criticality prioritizations of them in a more computationally efficient time.

  20. Identifying the oil price-macroeconomy relationship. An empirical mode decomposition analysis of US data

    International Nuclear Information System (INIS)

    Oladosu, Gbadebo

    2009-01-01

    This paper employs the empirical mode decomposition (EMD) method to filter cyclical components of US quarterly gross domestic product (GDP) and quarterly average oil price (West Texas Intermediate - WTI). The method is adaptive and applicable to non-linear and non-stationary data. A correlation analysis of the resulting components is performed and examined for insights into the relationship between oil and the economy. Several components of this relationship are identified. However, the principal one is that the medium-run component of the oil price has a negative relationship with the main cyclical component of the GDP. In addition, weak correlations suggesting a lagging, demand-driven component and a long-run component of the relationship were also identified. Comparisons of these findings with significant oil supply disruption and recession dates were supportive. The study identifies a number of lessons applicable to recent oil market events, including the eventuality of persistent oil price and economic decline following a long oil price run-up. In addition, it was found that oil market related exogenous events are associated with short- to medium-run price implications regardless of whether they lead to actual supply losses. (author)

  1. Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution.

    Directory of Open Access Journals (Sweden)

    Cecilia M Lindgren

    2009-06-01

    Full Text Available To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580 informative for adult waist circumference (WC and waist-hip ratio (WHR. We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9x10(-11 and MSRA (WC, P = 8.9x10(-9. A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6x10(-8. The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity.

  2. Genome-Wide Association Scan Meta-Analysis Identifies Three Loci Influencing Adiposity and Fat Distribution

    Science.gov (United States)

    Qi, Lu; Speliotes, Elizabeth K.; Thorleifsson, Gudmar; Willer, Cristen J.; Herrera, Blanca M.; Jackson, Anne U.; Lim, Noha; Scheet, Paul; Soranzo, Nicole; Amin, Najaf; Aulchenko, Yurii S.; Chambers, John C.; Drong, Alexander; Luan, Jian'an; Lyon, Helen N.; Rivadeneira, Fernando; Sanna, Serena; Timpson, Nicholas J.; Zillikens, M. Carola; Zhao, Jing Hua; Almgren, Peter; Bandinelli, Stefania; Bennett, Amanda J.; Bergman, Richard N.; Bonnycastle, Lori L.; Bumpstead, Suzannah J.; Chanock, Stephen J.; Cherkas, Lynn; Chines, Peter; Coin, Lachlan; Cooper, Cyrus; Crawford, Gabriel; Doering, Angela; Dominiczak, Anna; Doney, Alex S. F.; Ebrahim, Shah; Elliott, Paul; Erdos, Michael R.; Estrada, Karol; Ferrucci, Luigi; Fischer, Guido; Forouhi, Nita G.; Gieger, Christian; Grallert, Harald; Groves, Christopher J.; Grundy, Scott; Guiducci, Candace; Hadley, David; Hamsten, Anders; Havulinna, Aki S.; Hofman, Albert; Holle, Rolf; Holloway, John W.; Illig, Thomas; Isomaa, Bo; Jacobs, Leonie C.; Jameson, Karen; Jousilahti, Pekka; Karpe, Fredrik; Kuusisto, Johanna; Laitinen, Jaana; Lathrop, G. Mark; Lawlor, Debbie A.; Mangino, Massimo; McArdle, Wendy L.; Meitinger, Thomas; Morken, Mario A.; Morris, Andrew P.; Munroe, Patricia; Narisu, Narisu; Nordström, Anna; Nordström, Peter; Oostra, Ben A.; Palmer, Colin N. A.; Payne, Felicity; Peden, John F.; Prokopenko, Inga; Renström, Frida; Ruokonen, Aimo; Salomaa, Veikko; Sandhu, Manjinder S.; Scott, Laura J.; Scuteri, Angelo; Silander, Kaisa; Song, Kijoung; Yuan, Xin; Stringham, Heather M.; Swift, Amy J.; Tuomi, Tiinamaija; Uda, Manuela; Vollenweider, Peter; Waeber, Gerard; Wallace, Chris; Walters, G. Bragi; Weedon, Michael N.; Witteman, Jacqueline C. M.; Zhang, Cuilin; Zhang, Weihua; Caulfield, Mark J.; Collins, Francis S.; Davey Smith, George; Day, Ian N. M.; Franks, Paul W.; Hattersley, Andrew T.; Hu, Frank B.; Jarvelin, Marjo-Riitta; Kong, Augustine; Kooner, Jaspal S.; Laakso, Markku; Lakatta, Edward; Mooser, Vincent; Morris, Andrew D.; Peltonen, Leena; Samani, Nilesh J.; Spector, Timothy D.; Strachan, David P.; Tanaka, Toshiko; Tuomilehto, Jaakko; Uitterlinden, André G.; van Duijn, Cornelia M.; Wareham, Nicholas J.; Watkins for the PROCARDIS consortia, Hugh; Waterworth, Dawn M.; Boehnke, Michael; Deloukas, Panos; Groop, Leif; Hunter, David J.; Thorsteinsdottir, Unnur; Schlessinger, David; Wichmann, H.-Erich; Frayling, Timothy M.; Abecasis, Gonçalo R.; Hirschhorn, Joel N.; Loos, Ruth J. F.; Stefansson, Kari; Mohlke, Karen L.; Barroso, Inês; McCarthy for the GIANT consortium, Mark I.

    2009-01-01

    To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist–hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9×10−11) and MSRA (WC, P = 8.9×10−9). A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6×10−8). The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity. PMID:19557161

  3. Root Source Analysis/ValuStream[Trade Mark] - A Methodology for Identifying and Managing Risks

    Science.gov (United States)

    Brown, Richard Lee

    2008-01-01

    Root Source Analysis (RoSA) is a systems engineering methodology that has been developed at NASA over the past five years. It is designed to reduce costs, schedule, and technical risks by systematically examining critical assumptions and the state of the knowledge needed to bring to fruition the products that satisfy mission-driven requirements, as defined for each element of the Work (or Product) Breakdown Structure (WBS or PBS). This methodology is sometimes referred to as the ValuStream method, as inherent in the process is the linking and prioritizing of uncertainties arising from knowledge shortfalls directly to the customer's mission driven requirements. RoSA and ValuStream are synonymous terms. RoSA is not simply an alternate or improved method for identifying risks. It represents a paradigm shift. The emphasis is placed on identifying very specific knowledge shortfalls and assumptions that are the root sources of the risk (the why), rather than on assessing the WBS product(s) themselves (the what). In so doing RoSA looks forward to anticipate, identify, and prioritize knowledge shortfalls and assumptions that are likely to create significant uncertainties/ risks (as compared to Root Cause Analysis, which is most often used to look back to discover what was not known, or was assumed, that caused the failure). Experience indicates that RoSA, with its primary focus on assumptions and the state of the underlying knowledge needed to define, design, build, verify, and operate the products, can identify critical risks that historically have been missed by the usual approaches (i.e., design review process and classical risk identification methods). Further, the methodology answers four critical questions for decision makers and risk managers: 1. What s been included? 2. What's been left out? 3. How has it been validated? 4. Has the real source of the uncertainty/ risk been identified, i.e., is the perceived problem the real problem? Users of the RoSA methodology

  4. Defects of mitochondrial DNA replication.

    Science.gov (United States)

    Copeland, William C

    2014-09-01

    Mitochondrial DNA is replicated by DNA polymerase γ in concert with accessory proteins such as the mitochondrial DNA helicase, single-stranded DNA binding protein, topoisomerase, and initiating factors. Defects in mitochondrial DNA replication or nucleotide metabolism can cause mitochondrial genetic diseases due to mitochondrial DNA deletions, point mutations, or depletion, which ultimately cause loss of oxidative phosphorylation. These genetic diseases include mitochondrial DNA depletion syndromes such as Alpers or early infantile hepatocerebral syndromes, and mitochondrial DNA deletion disorders, such as progressive external ophthalmoplegia, ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy. This review focuses on our current knowledge of genetic defects of mitochondrial DNA replication (POLG, POLG2, C10orf2, and MGME1) that cause instability of mitochondrial DNA and mitochondrial disease. © The Author(s) 2014.

  5. Dynamics of mitochondrial transport in axons

    Directory of Open Access Journals (Sweden)

    Robert Francis Niescier

    2016-05-01

    Full Text Available The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons.

  6. Using EMMA and MIX analysis to assess mixing ratios and to identify hydrochemical reactions in groundwater.

    Science.gov (United States)

    Tubau, Isabel; Vàzquez-Suñé, Enric; Jurado, Anna; Carrera, Jesús

    2014-02-01

    This study presents a methodology using an end-member mixing analysis (EMMA) and MIX to compute mixing ratios and to identify hydrochemical reactions in groundwater. The methodology consists of (1) identifying the potential sources of recharge, (2) characterising recharge sources and mixed water samples using hydrogeochemistry, (3) selecting chemical species to be used in the analysis and (4) calculating mixing ratios and identification of hydrochemical reactions in groundwater. This approach has been applied in the Besòs River Delta area, where we have collected 51 groundwater samples and a long data register of the hydrogeochemistry of the Besòs River created by the Catalan Water Agency is also available. The EMMA performed in the Besòs River suggests that 3 end-members are required to explain its temporal variability, accounting for the species chloride, sulphate, sodium, bicarbonate, calcium, magnesium, potassium, ammonium, total nitrogen, and electrical conductivity. One river end-member is from the wet periods (W1), and two are from dry periods (D1 and D2). These end-members have been used to compute mixing ratios in groundwater samples because the Besòs River is considered the main recharge source for the aquifer. Overall, dry season end-members dominated over the wet season end-member, in a proportion of 4:1. Moreover, when departures from the mixing line exist, geochemical processes might be identified. Redox processes, carbonate dissolution/precipitation and ion exchange processes may occur in Besòs Delta aquifer. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Feature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genes

    Directory of Open Access Journals (Sweden)

    Aitken Stuart

    2005-06-01

    Full Text Available Abstract Background In the clinical context, samples assayed by microarray are often classified by cell line or tumour type and it is of interest to discover a set of genes that can be used as class predictors. The leukemia dataset of Golub et al. 1 and the NCI60 dataset of Ross et al. 2 present multiclass classification problems where three tumour types and nine cell lines respectively must be identified. We apply an evolutionary algorithm to identify the near-optimal set of predictive genes that classify the data. We also examine the initial gene selection step whereby the most informative genes are selected from the genes assayed. Results In the absence of feature selection, classification accuracy on the training data is typically good, but not replicated on the testing data. Gene selection using the RankGene software 3 is shown to significantly improve performance on the testing data. Further, we show that the choice of feature selection criteria can have a significant effect on accuracy. The evolutionary algorithm