WorldWideScience

Sample records for analysis charged-particle activation

  1. Charged particle activation analysis

    International Nuclear Information System (INIS)

    Peisach, M.

    1977-01-01

    The techniques of prompt and delayed activation analysis are outlined. Methods using cyclotron beams are suitable for delayed A.A., but prompt methods with relatively low energy beams serve a useful purpose for analysis of thin layers and surfaces. Multi-element analyses with prompt X-rays, generally applicable analysis by backscattering and specific analyses by nuclaer reactions are described [af

  2. Charged-particle activation analysis

    International Nuclear Information System (INIS)

    Schweikert, E.A.

    1978-01-01

    The paper discusses the methodology and application of nuclear activation with ion beams (1 9 via 16 O( 3 He,p) 18 F, 12 C( 3 He,α) 11 C and 14 N(p,α) 11 C respectively. Recently, triton activation has been shown to be inherently still superior to 3 He activation for the determination of oxygen [ 16 O( 3 H,n) 18 F]. Lithium, boron, carbon and sulphur can be detected rapidly, nondestructively and with high sensitivity (approximately 0.25ppm for Li and B) via ''quasi-prompt'' activation based on the detection of short-lived, high-energy beta emitters (10ms 1 H( 7 Li,n) 7 Be for example. Nondestructive multielement analysis: Proton activation has the inherent potential for meeting requirements of broad elemental coverage, sensitivity (ppm and sub-ppm range) and selectivity. Up to 30 elements have been determined in Al, Co, Ag, Nb, Rh, Ta and biological samples, using 12-MeV proton activation followed by gamma-ray spectrometry. These capabilities are further enhanced with the counting of X-ray emitters, 28 elements (26 9 ) and accuracy using proton activation. 204 Pb/ 206 Pb ratios can also be determined with a relative precision of a few per cent. Although charged-particle activation analysis is a well-established trace analysis technique, broad potential capabilities remain to be explored, e.g. those arising from ultrashort-lived nuclides, heavy ion interactions and the combination of delayed and prompt methods. (author)

  3. Methods of charged-particle activation analysis

    International Nuclear Information System (INIS)

    Chaudhri, M. Anwar; Chaudhri, M. Nasir; Jabbar, Q.; Nadeem, Q.

    2006-01-01

    The accuracy of Chaudhri's method for charged-particle activation analysis published in J. Radioanal. Chem. (1977) v. 37 p. 243 has been further demonstrated by extensive calculations. The nuclear reactions 12 C(d,n) 13 N, 63 Cu( 3 He,p) 65 Zn, 107 Ag(α,n) 110 In and 208 Pb(d,p) 209 Pb, the cross sections of which were easily available, have been examined for the detection of 12 C, 63 Cu, 107 Ag and 208 Pb, respectively, in matrices of Cu, Zr and Pb, at the bombarding energies of 4 - 22 MeV. The 'standard' is assumed to be in a carbon matrix. It has been clearly demonstrated that Chaudhri's method, which makes the charged particle activation analysis as simple as neutron activation analysis, provides results which are almost identical to, or only about 1-2 % different, from the results obtained using the full 'Activity Equation' involving solving complex integrals. It is valid even when the difference in the average atomic weights of matrices of the standard and the sample is large. (author)

  4. Activation analysis by gamma photons and charged particles

    International Nuclear Information System (INIS)

    Fedoroff, M.

    1985-01-01

    Neutron irradiation is generally used for activation analysis, however there are two cases where gamma radiation or charged particle activation are required: determination of elements when radioactivity produced is too low (case of light elements: O, C, N, B...) and determination of elements highly radioactive when irradiated by neutrons. Accuracy, sensitivity, calibration, sample preparation, applications and performance are reviewed [fr

  5. Charged particle activation analysis: present status and future perspectives

    International Nuclear Information System (INIS)

    Chowdhury, D.P.

    2006-01-01

    Charged particle activation analysis is a highly sensitive nuclear analytical technique for the determination of elements at trace and ultra trace levels. CPAA involves the irradiation of samples with high energy charged particles, both light ions and heavy ions, from an accelerator in the energy range of 10 to 100 MeV. CPAA has been developed and standardized for the determination of several elements at trace levels in various types of materials using high energy ion beams from VEC machine at Kolkata. A brief review on CPAA is presented here based on our present works and its applications in future. (author)

  6. Charged particle activation analysis at RIKEN. Past, present and future

    International Nuclear Information System (INIS)

    Nozaki, T.

    2008-01-01

    From 1960s to 1980s many groups in the world actively studied and utilized charged particle activation analysis (CPAA) mainly for absolute determination of B, C, N, and O in high-purity substances, particularly semiconductor materials. Here, after a short historical note on CPAA, works of the author's group mainly at RIKEN are outlined and then his opinion is shown about how to anticipate on the present shrinking of CPAA. (author)

  7. Charged particle activation analysis of phosphorus in biological materials

    International Nuclear Information System (INIS)

    Masumoto, K.; Yagi, M.

    1983-01-01

    Charged particle activation analysis of phosphorus in biological materials using the 31 P(α,n) sup(34m)Cl reaction has been studied. Since sup(34m)Cl is also produced by the 32 S(α,pn) and the 35 Cl(α,α'n) reactions, the thick-target yield curves on phosphorus, sulfur and chlorine were determined in order to choose the optimum irradiation conditions. As a result, it was found that the activation analysis for phosphorus without interferences from sulfur and chlorine is possible by bombarding with less than 17 MeV alphas. The applicability of this method to biological samples was then examined by irradiating several standard reference materials. It was confirmed that phosphorus can readily be determined at the detection limit of 1μg free from interferences due to the matrix elements. (author)

  8. Some problems of calibration technique in charged particle activation analysis

    International Nuclear Information System (INIS)

    Krasnov, N.N.; Zatolokin, B.V.; Konstantinov, I.O.

    1977-01-01

    It is shown that three different approaches to calibration technique based on the use of average cross-section, equivalent target thickness and thick target yield are adequate. Using the concept of thick target yield, a convenient charged particle activation equation is obtained. The possibility of simultaneous determination of two impurities, from which the same isotope is formed, is pointed out. The use of the concept of thick target yield facilitates the derivation of a simple formula for an absolute and comparative methods of analysis. The methodical error does not exceed 10%. Calibration technique and determination of expected sensitivity based on the thick target yield concept is also very convenient because experimental determination of thick target yield values is a much simpler procedure than getting activation curve or excitation function. (T.G.)

  9. Study of coal oxidation by charged particle activation analysis

    International Nuclear Information System (INIS)

    Schlyer, D.J.; Wolf, A.P.

    1980-01-01

    It has been possible, using the technique of changed particle activation analysis, to follow the time course of the oxidation of coal exposed to air. The kinetics have been studied and seem to be consistent with a rapid initial uptake of oxygen containing molecules followed by slow diffusion into the surface of the coal particles. In this latter regard a study has been undertaken to study the depth profile of the oxygen into the coal particle surface. The depth of penetration of the activating particle is determined by the incident energy and therefore, by comparison to the appropriate standards, the depth profile may be determined either by varying the incident energy or by varying the particle size. Both approaches have been used and give consistent results. The depth to which a significant amount of oxygen penetrates varies from about 3 μm for very high rank coals to about 20 μm for low rank coals. This diffusion depth seems to be related to the porosity of the coals. A model for the low temperature air oxidation of coal has been developed to explain the results from the above mentioned experiments

  10. Accurate determination of light elements by charged particle activation analysis

    International Nuclear Information System (INIS)

    Shikano, K.; Shigematsu, T.

    1989-01-01

    To develop accurate determination of light elements by CPAA, accurate and practical standardization methods and uniform chemical etching are studied based on determination of carbon in gallium arsenide using the 12 C(d,n) 13 N reaction and the following results are obtained: (1)Average stopping power method with thick target yield is useful as an accurate and practical standardization method. (2)Front surface of sample has to be etched for accurate estimate of incident energy. (3)CPAA is utilized for calibration of light element analysis by physical method. (4)Calibration factor of carbon analysis in gallium arsenide using the IR method is determined to be (9.2±0.3) x 10 15 cm -1 . (author)

  11. On the determination of phosphorus via charged particle activation analysis Pt. 2

    International Nuclear Information System (INIS)

    Kormali, S.M.; James, W.D.; Poland, J.E.; Schweikert, E.A.

    1985-01-01

    The application of charged particle activation analysis to the determination of phosphorus in a variety of sample materials is discussed. The activity produced via the sup(31)P(α,n)sup(34m)Cl reaction is quantitated either nondestructively or using postirradiation radiochemical separations depending on the characteristics of the sample matrices. Corrections which are necessary for the determination of phosphorus in pure tantalum metal due to spectral interferences are discussed. (author)

  12. Determination of chlorine in high purity materials by charged particle activation analysis using deuteron beam from VEC accelerator

    International Nuclear Information System (INIS)

    Dasgupta, S.; Datta, J.; Chowdhury, D.P.; Verma, R.

    2015-01-01

    The quantitative determination of chlorine by conventional methods viz., AAS, ICP-OES is difficult and erroneous at times due to gaseous nature of elemental chlorine. It is possible to determine chlorine by NAA and charged particle activation analysis (CPAA) producing activation product 38 Cl (t 1/2 = 37.2 min, 1642 (32.8 %), 2168 keV (44 %)). Fast INAA method has been applied to determine Cl in concentration ranges 10 mgkg -1 in some suitable matrices in PCF of DHRUVA reactor with a neutron flux of 10 13 cm -2 s -1 with a detection limit of Cl of ∼1 mgkg -1

  13. Depth Distribution Studies of Carbon in Steel Surfaces by Means of Charged Particle Activation Analysis with an Account of Heat and Diffusion Effects in the Sample

    International Nuclear Information System (INIS)

    Brune, D.; Lorenzen, J.; Witalis, E.

    1972-05-01

    Depth distribution studies of carbon in steel and iron were carried out in the concentration range 0.05-1 %, using proton activation analysis. Surface content studies were performed in the concentration range 0.01-1 % using deuteron activation analysis. The following reactions were utilized: 12 C(p,γ) 13 N and 12 C(d,n) 13 N Evaluations of depth distribution were based on resonances in the excitation function. The carbon content was determined with the aid of the positron emitter, 13 N, using either single-peak or coincidence measurements. The heat dissipation in the irradiated region of the samples was calculated, and the temperature rise was measured using thermocouples. The temperature distribution within the hot zone subjected to irradiation by charged particles, together with the temperature distribution around this zone, was studied in order to estimate any effect this might have on the carbon diffusion. A device for automatic sample exchange which is remotely controlled is described

  14. Detection of charged particles through a photodiode: design and analysis

    International Nuclear Information System (INIS)

    Angoli, A.; Quirino, L.L.; Hernandez, V.M.; Lopez del R, H.; Mireles, F.; Davila, J.I.; Rios, C.; Pinedo, J.L.

    2006-01-01

    This project develops and construct an charge particle detector mean a pin photodiode array, design and analysis using a silicon pin Fotodiodo that generally is used to detect visible light, its good efficiency, size compact and reduced cost specifically allows to its use in the radiation monitoring and alpha particle detection. Here, so much, appears the design of the system of detection like its characterization for alpha particles where one is reported as alpha energy resolution and detection efficiency. The equipment used in the development of work consists of alpha particle a triple source composed of Am-241, Pu-239 and Cm-244 with 5,55 KBq as total activity, Maestro 32 software made by ORTEC, a multi-channel card Triumph from ORTEC and one low activity electroplated uranium sample. (Author)

  15. Charged particle trajectories and multidimensional analysis

    International Nuclear Information System (INIS)

    Benayoun, M.; Leruste, P.

    1980-03-01

    We examine here the simplified physical problem of straight line trajectories of particles through three wire chambers. Working out the covariance matrix of the data, we compare the physical model to the one deduced from multidimensional analysis. We also examine stability of the results, and espacially the stability of the constraints with respect to errors in the metrics induced by the error matrix of the measures. The results obtained look general and can be applied especially to elementary particle beam [fr

  16. Magnetic analysis of charged particles in nuclear physics

    International Nuclear Information System (INIS)

    Tarantin, N.I.

    1980-01-01

    The article discusses the development of charged-particle magnetic analyzers used in nuclear physics--alpha and beta spectrometers, mass spectrometers and mass separators, spectrometers of elastically and inelastically scattered particles, and monochromators of accelerated particles. The discussion is carried out in terms of the linear theory of magnetic analysis of charged particles and on the basis of the general laws of particle optics. The review describes a new approach to discussion of linear transformations of particle beams in dipole and quadrupole magnets which permits a unique and simplified representation of all linear-transformation coefficients. Graphical procedures are given for determination of the particle-optics action of dipole and quadrupole magnets. The approach and the procedures are extended to analyzers with crossed magnetic and electric fields

  17. Determination of elemental concentrations at trace levels in alumina by charged particle activation analysis using proton beam from VEC accelerator

    International Nuclear Information System (INIS)

    Datta, J.; Dasgupta, S.; Chowdhury, D.P.; Verma, R.

    2015-01-01

    The elemental impurities have been determined in high purity alumina material used in nuclear reactors at ppb (μg kg -1 ) to ppm (mg kg -1 ) levels by CPAA using proton beam from VEC machine. Proton beam has the advantage of high cross section for (p, n) reaction to produce suitable nuclide for activation analysis by instrumental approach. The cross sections of higher reaction channels like (p, 2n), (p, pn) are found to be less than 1 mb below 13 MeV proton by theoretical calculation using ALICE 91 computer code. Therefore, 13 MeV proton beam was used to irradiate the alumina samples along with standards, Lake (IAEA-SL -1 ) and Marine (PACS-2) sediments, both in pellet and powder forms. The irradiation was carried out with 50 nA to 1μA beam current for 10 min to 10 h depending on types of samples and standards. The beam current was measured by Faraday cup and also checked by putting Ti monitoring foil before the target. Ni is determined by (p, pn) reaction using 18 MeV proton as there is no suitable product from (p, n) reaction. The counting measurements of irradiated samples were performed with a high resolution γ-spectrometer using HPGe detector (relative efficiency - 40%, resolution - 2.0 keV at 1332 keV) coupled to a PC based 8 k MCA. The validation of the CPAA results has been carried out by INAA with the same alumina samples, carried out in Dhruva reactor with neutron flux 10 14 cm 2 s -1 using standards IAEA-SL-1 and PACS-2

  18. Application of charged particle activation for testing machine part wear

    International Nuclear Information System (INIS)

    Kosimova, M.; Tendera, P.

    1985-01-01

    The results of application of the charge particle activation method to investigate machine part wear are presented. Study of radionuclide activity and yield has been carried out at the U-120M isochronous cyclotron by means of the method of iron foil piles from 20 to 100 μm in thick. Protons and deuterons have been used. Wear measurement is based on determination of wear particle activity in a butyric medium. An example of the results of a bench test of activated piston rings and cylinder liner of the engine for trucks is given. The method of surface activation is shown to be acceptable for studying machine part wear under the regular service conditions, especially on the stage of the primary investigations and development, when sampling structural materials and estimating different lubricating oil applicability

  19. Analysis of shielding charged particle beams by thin conductors

    Directory of Open Access Journals (Sweden)

    Robert Gluckstern

    2001-02-01

    Full Text Available We present an analysis of shielding of electromagnetic fields excited by beams of charged particles surrounded by thin conducting layers or metal stripes inside an external structure of finite length. The ability of shielding by a layer thinner than the skin depth is explained and expressions for the impedance are derived. A previous result showing preferential penetration through the shielding layer at the resonant frequencies of the surrounding structure is verified and extended to include finite resistivity of the outer structure. Integration over the spectrum of the beam bunch shows that penetration is (nearly independent of the quality factors of the resonances. The transition of these results to those for a geometry of infinite length requires numerical evaluation.

  20. Charged particle induced energy dispersive X-ray analysis

    International Nuclear Information System (INIS)

    Johansson, S.A.E.

    1979-01-01

    This review article deals with the X-ray emission induced by heavy, charged particles and the use of this process as an analytical method (PIXE). The physical processes involved, X-ray emission and the various reactions contributing to the background, are described in some detail. The sensitivity is calculated theoretically and the results compared with practical experience. A discussion is given on how the sensitivity can be optimized. The experimental arrangements are described and the various technical problems discussed. The analytical procedure, especially the sample preparation, is described in considerable detail. A number of typical practical applications are discussed. (author)

  1. Analysis of charged particle induced reactions for beam monitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Surendra Babu, K. [IOP, Academia Sinica, Taipe, Taiwan (China); Lee, Young-Ouk [Nuclear Data Evaluation Laboratory, Korea Atomic Energy Research Institute (Korea, Republic of); Mukherjee, S., E-mail: smukherjee_msuphy@yahoo.co.in [Department of Physics, Faculty of Science, M.S. University of Baroda, Vadodara 390 002 (India)

    2012-07-15

    The reaction cross sections for different residual nuclides produced in the charged particle (p, d, {sup 3}He and {alpha}) induced reactions were calculated and compared with the existing experimental data which are important for beam monitoring and medical diagnostic applications. A detailed literature compilation and comparison were made on the available data sets for the above reactions. These calculations were carried out using the statistical model code TALYS up to 100 MeV, which contains Kalbach's latest systematic for the emission of complex particles and complex particle-induced reactions. All optical model calculations were performed by ECIS-03, which is built into TALYS. The level density, optical model potential parameters were adjusted to get the better description of experimental data. Various pre-equilibrium models were used in the present calculations with default parameters.

  2. Trace analysis for characterization of the special metals V, Mo, Ta, W, by means of activation analysis using neutrons and charged particles

    International Nuclear Information System (INIS)

    Krivan, V.; Caletka, R.; Hausbeck, R.; Schmid, W.

    1984-01-01

    Anion exchange techniques in HF containing media, or HF-NH 4 F solutions, respectively, have been determined, as well as techniques using polyurethane foams with or without impregnation, extraction techniques using crown ether in HF containing media, and a special separation method for beta-ray emitting silicon from HF solutions. A multi-element analysis by NAA in high-purity tantalum subsequent to pre-separation of the tantalum matrix is described, along with a trace analysis method by NAA in high-purity tungsten. Another new achievement is a method for determining tantalum in metals and geological materials, applying substoichiometric extraction, and the last one a method of determining silicon in vanadium and niobium. (RB) [de

  3. A CMOS Active Pixel Sensor for Charged Particle Detection

    Energy Technology Data Exchange (ETDEWEB)

    Matis, Howard S.; Bieser, Fred; Kleinfelder, Stuart; Rai, Gulshan; Retiere, Fabrice; Ritter, Hans George; Singh, Kunal; Wurzel, Samuel E.; Wieman, Howard; Yamamoto, Eugene

    2002-12-02

    Active Pixel Sensor (APS) technology has shown promise for next-generation vertex detectors. This paper discusses the design and testing of two generations of APS chips. Both are arrays of 128 by 128 pixels, each 20 by 20 {micro}m. Each array is divided into sub-arrays in which different sensor structures (4 in the first version and 16 in the second) and/or readout circuits are employed. Measurements of several of these structures under Fe{sup 55} exposure are reported. The sensors have also been irradiated by 55 MeV protons to test for radiation damage. The radiation increased the noise and reduced the signal. The noise can be explained by shot noise from the increased leakage current and the reduction in signal is due to charge being trapped in the epi layer. Nevertheless, the radiation effect is small for the expected exposures at RHIC and RHIC II. Finally, we describe our concept for mechanically supporting a thin silicon wafer in an actual detector.

  4. The connection between solar wind charged particles and tornadoes: Case analysis

    Directory of Open Access Journals (Sweden)

    Radovanović Milan M.

    2013-01-01

    Full Text Available The temperature of charged particles coming from the Sun ranges from several hundred thousands to several millions °C, in extreme cases. Theoretical possibilities of the hydrodynamic air mass seizing by charged particles, i. e. solar wind, are discussed in this paper. On one hand, they are characterized by extremely high temperatures, on the other, by the compression of cold air at an approximate altitude of 90 km towards the top of the cloud of the cyclone, they influence the phenomenon of extremely low temperatures. By using the Mann-Whitney U test we have tried to determine the potential link between certain indicators of solar activity and resulting disturbances in the atmosphere. Analyzed data refer to global daily values for the 2004-2010 period. Our results confirm the possibility of coupling between the charged particles and the vortex air mass movements, based on which a more detailed study of the appearance of a tornado near Sombor on May 12th, 2010, was carried out. It has also been proven that there are grounds for a causality between the sudden arrival of the solar wind charged particles, i. e. protons, and the appearance of a tornado. Based on the presented approach, elements for an entirely novel prediction model are given. [Projekat Ministarstva nauke Republike Srbije, br. III47007 i br. 176008

  5. Electrostatic mirrors with two-plate electrodes in instruments for charged particle mass and energy analysis

    International Nuclear Information System (INIS)

    Karetskaya, S.P.; Kel'man, V.M.; Sajchenko, N.Yu.

    1985-01-01

    A possibility is being discussed of using mirrors with twoiplate electrodes for analysis of charged particle energy in electrostatical spectrometers or for attaining double focusing in mass-spectrometers. It is shown that application of such mirrors permits to simplify the design, to reduce the sizes, simplify adjustment and improve performances of analytical instruments. Corpuscular-optical parameters are presented for a three-electrode mirror with an assigned intermediate electrode width and angle ofthe axial trajectory inlet to the electric field. Examples of using mirrors of such a design are considered

  6. Two reactions method for accurate analysis by irradiation with charged particles

    International Nuclear Information System (INIS)

    Ishii, K.; Sastri, C.S.; Valladon, M.; Borderie, B.; Debrun, J.L.

    1978-01-01

    In the average stopping power method the formula error itself was negligible but systematic errors could be introduced by the stopping power data used in this formula. A method directly derived from the average stopping power method, but based on the use of two nuclear reactions, is described here. This method has a negligible formula error and does not require the use of any stopping power or range data: accurate and 'self-consistent' analysis by irradiation with charged particles is then possible. (Auth.)

  7. Charged Particle Radiation Therapy for Uveal Melanoma: A Systematic Review and Meta-Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen, E-mail: Wang.Zhen@mayo.edu [Mayo Clinic, Rochester, Minnesota (United States); Nabhan, Mohammed [Mayo Clinic, Rochester, Minnesota (United States); Schild, Steven E. [Mayo Clinic, Scottsdale, Arizona (United States); Stafford, Scott L.; Petersen, Ivy A.; Foote, Robert L.; Murad, M. Hassan [Mayo Clinic, Rochester, Minnesota (United States)

    2013-05-01

    Charged particle therapy (CPT) delivered with either protons, helium ions, or carbon ions, has been used to treat uveal melanoma. The present analysis was performed to systematically evaluate the efficacy and adverse effects of CPT for uveal melanoma. We searched EMBASE, MEDLINE, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and SciVerse Scopus and cross-referenced recent systematic reviews through January 2012. Two independent reviewers identified clinical trials and observational studies of CPT (protons, helium ions, and carbon ions). These reviewers extracted data and assessed study quality. Twenty-seven studies enrolling 8809 uveal melanoma patients met inclusion criteria. The rate of local recurrence was significantly less with CPT than with brachytherapy (odds ratio [OR] = 0.22, 95% confidence interval [CI], 0.21-0.23). There were no significant differences in mortality or enucleation rates. Results were robust in multiple sensitivity analyses. CPT was also associated with lower retinopathy and cataract formation rates. Data suggest better outcomes may be possible with charged particle therapy with respect to local recurrence, retinopathy, and cataract formation rates. The overall quality of the evidence is low, and higher quality comparative effectiveness studies are needed to provide better evidence.

  8. Charged Particle Radiation Therapy for Uveal Melanoma: A Systematic Review and Meta-Analysis

    International Nuclear Information System (INIS)

    Wang, Zhen; Nabhan, Mohammed; Schild, Steven E.; Stafford, Scott L.; Petersen, Ivy A.; Foote, Robert L.; Murad, M. Hassan

    2013-01-01

    Charged particle therapy (CPT) delivered with either protons, helium ions, or carbon ions, has been used to treat uveal melanoma. The present analysis was performed to systematically evaluate the efficacy and adverse effects of CPT for uveal melanoma. We searched EMBASE, MEDLINE, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and SciVerse Scopus and cross-referenced recent systematic reviews through January 2012. Two independent reviewers identified clinical trials and observational studies of CPT (protons, helium ions, and carbon ions). These reviewers extracted data and assessed study quality. Twenty-seven studies enrolling 8809 uveal melanoma patients met inclusion criteria. The rate of local recurrence was significantly less with CPT than with brachytherapy (odds ratio [OR] = 0.22, 95% confidence interval [CI], 0.21-0.23). There were no significant differences in mortality or enucleation rates. Results were robust in multiple sensitivity analyses. CPT was also associated with lower retinopathy and cataract formation rates. Data suggest better outcomes may be possible with charged particle therapy with respect to local recurrence, retinopathy, and cataract formation rates. The overall quality of the evidence is low, and higher quality comparative effectiveness studies are needed to provide better evidence

  9. Design and testing of monolithic active pixel sensors for charged particle tracking, pt. 1

    CERN Document Server

    Deptuch, G; Claus, G; Colledani, C; Dulinski, W; Goerlach, U; Gomoushkin, Yu; Hu, Y; Husson, D; Orazi, G; Turchetta, R; Riester, J L; Winter, M

    2000-01-01

    A Monolithic Active Pixel Sensor (MAPS) for charged particle tracking based on a novel detector structure was proposed, simulated, fabricated and tested. The detector designed accordingly to this idea is inseparable from the readout electronics, since both of them are integrated onto the same, standard for a CMOS process, low- resistivity silicon wafer. The individual pixel is comprised of only 3 MOS transistors and a photodiode collecting the charge created in a thin undepleted epitaxial layer. This approach provides the whole detector surface sensitive to radiation (100% fill factor) with reduced pixel pitch (very high spatial resolution). This yields a low cost, high resolution and thin detecting device. The detailed device simulations using ISE-TCAD package have been carried out in order to study a charge collection mechanism and to validate the proposed idea. Consequently, two prototype chips have been fabricated using 0.6 mu m and 0.35 mu m CMOS processes. Special radiation tolerant layout techniques we...

  10. Analysis of ABCD-like law for charged-particle beam transport with transversal divergence

    International Nuclear Information System (INIS)

    Chen Baoxin; Zhang Aiju; Sun Biehe

    2004-01-01

    It is shown that the propagation of charged-particle beam can be made in complete analogy with the transmission of ellipse-Gaussian light beam in paraxial approximation. Based on this similarity, the ABCD-like law for charged-particle beam transport with transversal divergence is developed by means of the complex curvature radius of charged-particle beam in which its real part shows the beam characteristics of convergent and divergent and its imaginary part shows the beam radius. From this, charged-particle beam as a whole is thought of as a single ellipse Gaussian light-like beam whose emittance plays the role of wave-length. In particular, this analogy gives an insight that it is hopeful to attain possible coherent charged-particle beam in favorable accelerator environment. (authors)

  11. Two-stream instability analysis for propagating charged particle beams with a velocity tilt

    Directory of Open Access Journals (Sweden)

    D. V. Rose

    2007-03-01

    Full Text Available The linear growth of the two-stream instability for a charged-particle beam that is longitudinally compressing as it propagates through a background plasma (due to an applied velocity tilt is examined. Detailed, 1D particle-in-cell (PIC simulations are carried out to examine the growth of the wave packet produced by a small amplitude density perturbation in the background plasma. Recent analytic and numerical work by Startsev and Davidson [Phys. Plasmas 13, 062108 (2006PHPAEN1070-664X10.1063/1.2212807] predicted reduced linear growth rates, which are indeed observed in the PIC simulations. Here, small-signal asymptotic gain factors are determined in a semianalytic analysis and compared with the simulation results in the appropriate limits. Nonlinear effects in the PIC simulations, including wave breaking and particle trapping, are found to limit the linear growth phase of the instability for both compressing and noncompressing beams.

  12. Detection of charged particles through a photodiode: design and analysis; Deteccion de particulas cargadas mediante un fotodiodo: diseno y analisis

    Energy Technology Data Exchange (ETDEWEB)

    Angoli, A.; Quirino, L.L.; Hernandez, V.M.; Lopez del R, H.; Mireles, F.; Davila, J.I.; Rios, C.; Pinedo, J.L. [UAEN, UAZ, 98000 Zacatecas (Mexico)]. e-mail: toono4@hotmail.com

    2006-07-01

    This project develops and construct an charge particle detector mean a pin photodiode array, design and analysis using a silicon pin Fotodiodo that generally is used to detect visible light, its good efficiency, size compact and reduced cost specifically allows to its use in the radiation monitoring and alpha particle detection. Here, so much, appears the design of the system of detection like its characterization for alpha particles where one is reported as alpha energy resolution and detection efficiency. The equipment used in the development of work consists of alpha particle a triple source composed of Am-241, Pu-239 and Cm-244 with 5,55 KBq as total activity, Maestro 32 software made by ORTEC, a multi-channel card Triumph from ORTEC and one low activity electroplated uranium sample. (Author)

  13. Design and testing of monolithic active pixel sensors for charged particle tracking

    CERN Document Server

    Deptuch, G; Claus, G; Colledani, C; Dulinski, W; Gornushkin, Y; Husson, D; Riester, J L; Winter, M

    2002-01-01

    A monolithic active pixel sensor (MAPS) for charged particle tracking based on a novel detector structure has been proposed, simulated, fabricated and tested. This detector is inseparable from the readout electronics, since both of them are integrated on the same, low- resistivity silicon wafer standard for a CMOS process. The individual pixel is comprised of only three MOS transistors and a photodiode collecting the charge created in the thin undepleted epitaxial layer. This approach provides a low cost, high resolution and thin device with the whole detector area sensitive to radiation (100% fill factor). Detailed device simulations using the ISE-TCAD package have been carried out in order to study the charge. collection mechanism and to validate the proposed idea. In order to demonstrate viability of the technique, two prototype chips were successively fabricated using 0.6 mu m and 0.35 mu m CMOS processes. Both chips have been fully characterized. The pixel conversion gain has been calibrated using a /sup...

  14. β-delayed γ-proton decay in 56Zn: Analysis of the charged-particle spectrum

    International Nuclear Information System (INIS)

    Orrigo, S. E.A.; Ascher, P.; Cakirli, R. B.; Kozer, H. C.; Popescu, L.; Rogers, A. M.; Susoy, G.; Suzuki, T.

    2015-01-01

    A study of the β decay of the proton-rich T z = –2 nucleus 56 Zn has been reported in a recent publication. A rare and exotic decay mode, β-delayed γ-proton decay, has been observed there for the first time in the fp shell. Here, we expand on some of the details of the data analysis, focusing on the charged particle spectrum

  15. Determination of oxygen content in high T/sub c/ superconductors by a charged particle activation method

    International Nuclear Information System (INIS)

    Tao, Z.; Alburger, D.E.; Jones, K.W.; Yao, Y.D.; Kao, Y.H.

    1988-01-01

    A new method for determining the oxygen content in high T/sub c/ superconductors has been demonstrated using a charged particle activation technique. This method allows a measurement of the concentration of 16 O atoms in the superconducting material by detection of the 17 F produced with the 16 O(d,n) 17 F nuclear reaction. By way of example, this technique is applied to the determination of oxygen content in a series of high T/sub c/ Y-Ba-Cu-O samples in which the stoichiometry is varied by reducing the copper concentration. The stabilized oxygen content shows a nonlinear dependence on the copper deficiency in these specimens

  16. Sequential charged-particle and neutron activation of Flibe in the HYLIFE-II inertial fusion energy power plant design

    International Nuclear Information System (INIS)

    Latkowski, J.F.; Tobin, M.T.; Vujic, J.L.; Sanz, J.

    1996-01-01

    Most radionuclide generation/depletion codes consider only neutron reactions and assume that charged particles, which may be generated in these reactions, deposit their energy locally without undergoing further nuclear interactions. Neglect of sequential charged-particle (x,n) reactions can lead to large underestimation in the inventories of radionuclides. PCROSS code was adopted for use with the ACAB activation code to enable calculation of the effects of (x,n) reactions upon radionuclide inventories and inventory-related indices. Activation calculations were made for Flibe (2LiF + BeF 2 ) coolant in the HYLIFE-II inertial fusion energy (IFE) power plant design. For pure Flibe coolant, it was found that (x,n) reactions dominate the residual contact dose rate at times of interest for maintenance and decommissioning. For impure Flibe, however, radionuclides produced directly in neutron reaction dominate the contact dose rate and (x,n) reactions do not make a significant contribution. Results demonstrate potential importance of (x,n) reactions and that the relative importance of (x,n) reactions varies strongly with the composition of the material considered. Future activation calculations should consider (x,n) reactions until a method for pre-determining their importance is established

  17. Charged particle mobility refrigerant analyzer

    Science.gov (United States)

    Allman, S.L.; Chunghsuan Chen; Chen, F.C.

    1993-02-02

    A method for analyzing a gaseous electronegative species comprises the steps of providing an analysis chamber; providing an electric field of known potential within the analysis chamber; admitting into the analysis chamber a gaseous sample containing the gaseous electronegative species; providing a pulse of free electrons within the electric field so that the pulse of free electrons interacts with the gaseous electronegative species so that a swarm of electrically charged particles is produced within the electric field; and, measuring the mobility of the electrically charged particles within the electric field.

  18. Sequential charged particle reaction

    International Nuclear Information System (INIS)

    Hori, Jun-ichi; Ochiai, Kentaro; Sato, Satoshi; Yamauchi, Michinori; Nishitani, Takeo

    2004-01-01

    The effective cross sections for producing the sequential reaction products in F82H, pure vanadium and LiF with respect to the 14.9-MeV neutron were obtained and compared with the estimation ones. Since the sequential reactions depend on the secondary charged particles behavior, the effective cross sections are corresponding to the target nuclei and the material composition. The effective cross sections were also estimated by using the EAF-libraries and compared with the experimental ones. There were large discrepancies between estimated and experimental values. Additionally, we showed the contribution of the sequential reaction on the induced activity and dose rate in the boundary region with water. From the present study, it has been clarified that the sequential reactions are of great importance to evaluate the dose rates around the surface of cooling pipe and the activated corrosion products. (author)

  19. Stochastic analysis of pitch angle scattering of charged particles by transverse magnetic waves

    International Nuclear Information System (INIS)

    Lemons, Don S.; Liu Kaijun; Winske, Dan; Gary, S. Peter

    2009-01-01

    This paper describes a theory of the velocity space scattering of charged particles in a static magnetic field composed of a uniform background field and a sum of transverse, circularly polarized, magnetic waves. When that sum has many terms the autocorrelation time required for particle orbits to become effectively randomized is small compared with the time required for the particle velocity distribution to change significantly. In this regime the deterministic equations of motion can be transformed into stochastic differential equations of motion. The resulting stochastic velocity space scattering is described, in part, by a pitch angle diffusion rate that is a function of initial pitch angle and properties of the wave spectrum. Numerical solutions of the deterministic equations of motion agree with the theory at all pitch angles, for wave energy densities up to and above the energy density of the uniform field, and for different wave spectral shapes.

  20. Analysis of the field-assisted permanent assembly of oppositely charged particles.

    Science.gov (United States)

    Bharti, Bhuvnesh; Findenegg, Gerhard H; Velev, Orlin D

    2014-06-10

    We characterize experimentally and analyze analytically a novel electric-field-assisted process for the assembly of permanent chains of oppositely charged microparticles in an aqueous environment. Long chains of oppositely charged particles are rapidly formed when an external electric field is applied and break up into permanent linear fragments upon switching off the field. The resulting secondary chains are stabilized by attractive electrostatic and van der Waals interactions between the particles. We find that the length of the permanent chains is strongly dependent on the relative size (microsphere diameter D) of small and large particles and can be tuned by varying the particle size ratio s = Dsm/Dlg and particle number ratio r = Nsm/Nlg. Three latex microsphere systems of different particle size ratio, s = 0.9, 0.45, and 0.225, were characterized at different particle number ratios r by determining experimentally the length distribution of the permanent chains. The results are compared with statistical models based on a one-step or two-step process of forming the primary chains. We find that the one-step model is applicable to the system of similarly sized particles (s = 0.9) and the two-step chaining model is applicable to the system of dissimilarly sized particles (s = 0.225), where the large particles form chains first and the small ones serve as binders, which are later drawn in the junctions. Long permanent chains are formed only from particles of dissimilar size for which our model predicts a linear increase in the mean chain length with increasing r. On the basis of these results, we formulate a set of assembly rules for permanent colloidal chain formation by oppositely charged particles. The results make possible the precise large-scale formation of particle chains of any length, which can serve as components in new gels, biomaterials, and fluids with controlled rheology.

  1. Measurement of the underlying event activity using charged-particle jets in proton-proton collisions at $\\sqrt{s}=$ 2.76 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Knünz, Valentin; König, Axel; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Van Parijs, Isis; Barria, Patrizia; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Dobur, Didar; Fasanella, Giuseppe; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Lenzi, Thomas; Léonard, Alexandre; Maerschalk, Thierry; Mohammadi, Abdollah; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Crucy, Shannon; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bondu, Olivier; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Mertens, Alexandre; Nuttens, Claude; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Beliy, Nikita; Caebergs, Thierry; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Hensel, Carsten; Mora Herrera, Clemencia; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; De Souza Santos, Angelo; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Genchev, Vladimir; Hadjiiska, Roumyana; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Shaheen, Sarmad Masood; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Zou, Wei; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Aly, Reham

    2015-09-21

    A measurement of the underlying event (UE) activity in proton-proton collisions is performed using events with charged-particle jets produced in the central pseudorapidity region ($ |{\\eta^{\\text{jet}}} |$ < 2) and with transverse momentum 1 $\\le p_{\\mathrm{T}}^\\text{jet} \\lt$ 100 GeV. The analysis uses a data sample collected at a centre-of-mass energy of 2.76 TeV with the CMS experiment at the LHC. The UE activity is measured as a function of $p_{\\mathrm{T}}^\\text{jet}$ in terms of the average multiplicity and scalar sum of transverse momenta ($p_{\\mathrm{T}}$) of charged particles, with $|{\\eta}| \\lt 2$ and $p_{\\mathrm{T}} \\gt 0.5$ GeV, in the azimuthal region transverse to the highest $p_{\\mathrm{T}}$ jet direction. By further dividing the transverse region into two regions of smaller and larger activity, various components of the UE activity are separated. The measurements are compared to previous results at 0.9 and 7 TeV, and to predictions of several Monte Carlo event generators, providing constrain...

  2. Charged particle detector

    International Nuclear Information System (INIS)

    Hagen, R.D.

    1975-01-01

    A device for detecting the emission of charged particles from a specimen is described. The specimen is placed within an accumulator means which statically accumulates any charged particles emitted from the specimen. The accumulator means is pivotally positioned between a first capacitor plate having a positive electrical charge and a second capacitor plate having a negative electrical charge. The accumulator means is attracted to one capacitor plate and repelled from the other capacitor plate by an amount proportional to the amount and intensity of charged particles emitted by the specimen. (auth)

  3. Fluorescent nuclear track images of Ag-activated phosphate glass irradiated with photons and heavy charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Kurobori, Toshio, E-mail: kurobori@staff.kanazawa-u.ac.jp [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Yanagida, Yuka [Oarai Research Center, Chiyoda Technol Corporation, Oarai-machi, Ibaraki 311-1313 (Japan); Kodaira, Satoshi [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Shirao, Taichi [Nikon Instech Co., Ltd., Tanakanishi, Sakyo-ku, Kyoto 606-8221 (Japan)

    2017-05-21

    In this paper we report about the demonstration of the nuclear track imaging capabilities of Ag-activated phosphate glass. A 375 nm laser and confocal laser scanning microscopy (CLSM) were respectively used for track excitation and detection. Specifically, the blue and orange radiophotoluminescent (RPL) tracks and dose distributions observed after irradiation with soft X-rays, gamma rays and heavy charged particles (HCPs) are examined. In addition, the origins of the reductions in RPL efficiency for high-dose X-ray irradiation and for irradiation with HCPs with high linear energy transfer (LET) values are investigated via a CLSM and a conventional fluorescent reader and discussed. - Highlights: • 3D track images are demonstrated using a confocal laser microscopy. • Fluorescent track detectors are based on RPL Ag-doped phosphate glass. • The dose distributions are examined for X-ray, gamma ray and HCP irradiations. • The origins of the reduction in RPL efficiency are investigated and discussed.

  4. Sources for charged particles

    International Nuclear Information System (INIS)

    Arianer, J.

    1997-01-01

    This document is a basic course on charged particle sources for post-graduate students and thematic schools on large facilities and accelerator physics. A simple but precise description of the creation and the emission of charged particles is presented. This course relies on every year upgraded reference documents. Following relevant topics are considered: electronic emission processes, technological and practical considerations on electron guns, positron sources, production of neutral atoms, ionization, plasma and discharge, different types of positive and negative ion sources, polarized particle sources, materials for the construction of ion sources, low energy beam production and transport. (N.T.)

  5. Charged Particle Optics Theory

    Czech Academy of Sciences Publication Activity Database

    Hawkes, P. W.; Lencová, Bohumila

    -, č. 6 (2006), s. 6-8 Grant - others:EC 5RP(XE) G5RD-CT-2000-00344 Institutional research plan: CEZ:AV0Z20650511 Keywords : optics of charged particles * design of ion lithography system * spot profile * the finite element method Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering www.phantomsnet.net

  6. Charged particle beams

    CERN Document Server

    Humphries, Stanley

    2013-01-01

    Detailed enough for a text and sufficiently comprehensive for a reference, this volume addresses topics vital to understanding high-power accelerators and high-brightness-charged particle beams. Subjects include stochastic cooling, high-brightness injectors, and the free electron laser. Humphries provides students with the critical skills necessary for the problem-solving insights unique to collective physics problems. 1990 edition.

  7. New generation of monolithic active pixel sensors for charged particle detection

    International Nuclear Information System (INIS)

    Deptuch, G.

    2002-09-01

    Vertex detectors are of great importance in particle physics experiments, as the knowledge of the event flavour is becoming an issue for the physics programme at Future Linear Colliders. Monolithic Active Pixel Sensors (MAPS) based on a novel detector structure have been proposed. Their fabrication is compatible with a standard CMOS process. The sensor is inseparable from the readout electronics, since both of them are integrated on the same, low-resistivity silicon wafer. The basic pixel configuration comprises only three MOS transistors and a diode collecting the charge through thermal diffusion. The charge is generated in the thin non-depleted epitaxial layer underneath the readout electronics. This approach provides, at low cost, a high resolution and thin device with the whole area sensitive to radiation. Device simulations using the ISE-TCAD package have been carried out to study the charge collection mechanism. In order to demonstrate the viability of the technique, four prototype chips have been fabricated using different submicrometer CMOS processes. The pixel gain has been calibrated using a 55 Fe source and the Poisson sequence method. The prototypes have been exposed to high-energy particle beams at CERN. The tests proved excellent detection performances expressed in a single-track spatial resolution of 1.5 μm and detection efficiency close to 100%, resulting from a SNR ratio of more than 30. Irradiation tests showed immunity of MAPS to a level of a few times 10 12 n/cm 2 and a few hundred kRad of ionising radiation. The ideas for future work, including on-pixel signal amplification, double sampling operation and current mode pixel design are present as well. (author)

  8. Applications of charged particle induced x-ray analysis to forensic and biological studies

    International Nuclear Information System (INIS)

    Barnes, B.K.; Beghian, L.E.; Kegel, G.H.R.; Mathur, S.C.; Mittler, A.; Quinn, P.W.

    1974-01-01

    X-ray emission analysis was applied to the analysis of firearm discharge residues on hands for trace elements. It was also applied to the determination of trace element concentrations in the blood of malaria-infected and healthy mice

  9. Charged particle analyzer PLAZMAG

    International Nuclear Information System (INIS)

    Apathy, Istvan; Endroeczy, Gabor; Szemerey, Istvan; Szendroe, Sandor

    1985-01-01

    The scientific task of the charged particle analyzer PLAZMAG, a part of the VEGA space probe, and the physical background of the measurements are described. The sensor of the device face the Sun and the comet Halley measuring the energy and mass spectrum of ion and electron components of energies lower than 25 keV. The tasks of the individual electronic parts, the design aspects and the modes of operation in different phases of the flight are dealt with. (author)

  10. Use of charged particle beams for analysis of biological tissues and fluids

    International Nuclear Information System (INIS)

    Campbell, J.L.

    1983-01-01

    PIXE has passed through its demonstration stage and matured into a viable tool supported by a reliable physics data base; the main problem to be solved at the outset of any new project is the preparation of a representative specimen of uniform thickness (or thinness) rather than any aspect of X-ray or accelerator physics or technology. The authors repeats the caution that minimum detection limits are strongly influenced by the nuclear reaction gamma-ray background from trace elements in the specimen. Thus experiment on a new target type is preferable to use of MDL calculations based on the background due to atomic processes (bremsstrahlung) in the known matrix. One hopes to see a more adventurous mood eg a move from routine blood serum analysis towards analyses of different blood fractions that concentrate specific trace elements. PIGE, while promising, must be regarded as developmental until the data-base of elemental gamma-ray yields is extended and made more accurate; work on fluorine in teeth clearly stands to profit from this technique. Finally, RBS, although scarcely used to date in any biological context, is clearly a powerful way of measuring major elemental ratios in mineralized tissues; however, RBS lacks the resolving power of PIXE and so is not a candidate for multi-trace element analysis

  11. Charged-particle track analysis, thermoluminescence and microcratering studies of lunar samples

    International Nuclear Information System (INIS)

    Durrani, S.A.

    1977-01-01

    Studies of lunar samples (from both Apollo and Luna missions) have been carried out, using track analysis and thermoluminescence (t.l.) techniques, with a view to shedding light on the radiation and temperature histories of the Moon. In addition, microcraters in lunar glasses have been studied in order to elucidate the cosmic-dust impact history of the lunar regolith. In tracks studies, the topics discussed include the stabilizing effect of the thermal annealing of fossil tracks due to the lunar temperature cycle; the 'radiation annealing' of fresh heavy-ion tracks by large doses of protons (to simulate the effect of lunar radiation-damage on track registration); and correction factors for the anisotropic etching of crystals which are required in reconstructing the exposure history of lunar grains. An abundance ratio of ca. (1.1 + 0.3) x 10 -3 has been obtained, by the differential annealing technique, for the nuclei beyond the iron group to those within that group in the cosmic rays incident on the Moon. The natural t.l. of lunar samples has been used to estimate their effective storage temperature and mean depth below the surface. The results of the study of natural and artificially produced microcraters have been studied. (author)

  12. Analysis of ultra-relativistic charged particle beam and stretched wire measurement interactions with cylindrically symmetric structures

    International Nuclear Information System (INIS)

    Deibele, C.E.

    1996-01-01

    The beam impedance and wakefield are quantities which describe the stability of charged particles in their trajectory within an accelerator. The stretched wire measurement technique is a method which estimates the beam impedance and wakefield. Definitions for the beam impedance, the wakefield, and the stretched wire measurement are presented. A pillbox resonator with circular beampipes is studied for its relatively simple profile and mode structure. Theoretical predictions and measurement data are presented for the interaction of various charged particle beams and center conductor geometries between the cavity and beampipe. Time domain predictions for the stretched wire measurement and wakefield are presented and are shown to be a linear interaction

  13. Measuring momentum for charged particle tomography

    Science.gov (United States)

    Morris, Christopher; Fraser, Andrew Mcleod; Schultz, Larry Joe; Borozdin, Konstantin N.; Klimenko, Alexei Vasilievich; Sossong, Michael James; Blanpied, Gary

    2010-11-23

    Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.

  14. Method and apparatus for simultaneous detection and measurement of charged particles at one or more levels of particle flux for analysis of same

    Science.gov (United States)

    Denton, M Bonner [Tucson, AZ; Sperline, Roger , Koppenaal, David W. , Barinaga, Charles J. , Hieftje, Gary , Barnes, IV, James H.; Atlas, Eugene [Irvine, CA

    2009-03-03

    A charged particle detector and method are disclosed providing for simultaneous detection and measurement of charged particles at one or more levels of particle flux in a measurement cycle. The detector provides multiple and independently selectable levels of integration and/or gain in a fully addressable readout manner.

  15. Studying charged particle optics: an undergraduate course

    Energy Technology Data Exchange (ETDEWEB)

    Ovalle, V [Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n0. Gragoata, Niteroi, 24210-346 Rio de Janeiro (Brazil); Otomar, D R [Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n0. Gragoata, Niteroi, 24210-346 Rio de Janeiro (Brazil); Pereira, J M [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro (Brazil); Ferreira, N [Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n0. Gragoata, Niteroi, 24210-346 Rio de Janeiro (Brazil); Pinho, R R [Departamento de Fisica-ICE, Universidade Federal de Juiz de Fora, Campus Universitario, 36036-900, Juiz de Fora, MG (Brazil); Santos, A C F [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro (Brazil)

    2008-03-12

    This paper describes some computer-based activities to bring the study of charged particle optics to undergraduate students, to be performed as a part of a one-semester accelerator-based experimental course. The computational simulations were carried out using the commercially available SIMION program. The performance parameters, such as the focal length and P-Q curves are obtained. The three-electrode einzel lens is exemplified here as a study case.

  16. Integrated X-ray and charged particle active pixel CMOS sensor arrays using an epitaxial silicon sensitive region

    Energy Technology Data Exchange (ETDEWEB)

    Kleinfelder, Stuart; Bichsel, Hans; Bieser, Fred; Matis, Howard S.; Rai, Gulshan; Retiere, Fabrice; Weiman, Howard; Yamamoto, Eugene

    2002-07-01

    Integrated CMOS Active Pixel Sensor (APS) arrays have been fabricated and tested using X-ray and electron sources. The 128 by 128 pixel arrays, designed in a standard 0.25 micron process, use a {approx}10 micron epitaxial silicon layer as a deep detection region. The epitaxial layer has a much greater thickness than the surface features used by standard CMOS APS, leading to stronger signals and potentially better signal-to-noise ratio (SNR). On the other hand, minority carriers confined within the epitaxial region may diffuse to neighboring pixels, blur images and reduce peak signal intensity. But for low-rate, sparse-event images, centroid analysis of this diffusion may be used to increase position resolution. Careful trade-offs involving pixel size and sense-node area verses capacitance must be made to optimize overall performance. The prototype sensor arrays, therefore, include a range of different pixel designs, including different APS circuits and a range of different epitaxial layer contact structures. The fabricated arrays were tested with 1.5 GeV electrons and Fe-55 X-ray sources, yielding a measured noise of 13 electrons RMS and an SNR for single Fe-55 X-rays of greater than 38.

  17. High-LET charged particle radiotherapy

    International Nuclear Information System (INIS)

    Castro, J.R.; California Univ., San Francisco, CA

    1991-07-01

    The Department of Radiation Oncology at UCSF Medical Center and the Radiation Oncology Department at UC Lawrence Berkeley Laboratory have been evaluating the use of high LET charged particle radiotherapy in a Phase 1--2 research trial ongoing since 1979. In this clinical trail, 239 patients have received at least 10 Gy (physical) minimum tumor dose with neon ions, meaning that at least one-half of their total treatment was given with high-LET charged particle therapy. Ninety-one patients received all of their therapy with neon ions. Of the 239 patients irradiated, target sites included lesions in the skin, subcutaneous tissues, head and neck such as paranasal sinuses, nasopharynx and salivary glands (major and minor), skull base and juxtaspinal area, GI tract including esophagus, pancreas and biliary tract, prostate, lung, soft tissue and bone. Analysis of these patients has been carried out with a minimum followup period of 2 years

  18. A novel position and time sensing active pixel sensor with field-assisted electron collection for charged particle tracking and electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    De Geronimo, G. [Brookhaven National Laboratory, Instrumentation Division, Upton, NY 11973-5000 (United States); Deptuch, G. [Brookhaven National Laboratory, Instrumentation Division, Upton, NY 11973-5000 (United States); Dragone, A. [Brookhaven National Laboratory, Instrumentation Division, Upton, NY 11973-5000 (United States); Radeka, V. [Brookhaven National Laboratory, Instrumentation Division, Upton, NY 11973-5000 (United States); Rehak, P. [Brookhaven National Laboratory, Instrumentation Division, Upton, NY 11973-5000 (United States)]. E-mail: rehak@bnl.gov; Castoldi, A. [Politecnico di Milano, Dip. Ingegneria Nucleare, 20133 Milan (Italy); INFN Sez. Milano, 20133 Milan (Italy); Fazzi, A. [Politecnico di Milano, Dip. Ingegneria Nucleare, 20133 Milan (Italy); INFN Sez. Milano, 20133 Milan (Italy); Gatti, E. [Politecnico di Milano, Dip. Elettronica e Informazione, 20133 Milan (Italy); INFN Sez. Milano, 20133 Milan (Italy); Guazzoni, C. [Politecnico di Milano, Dip. Elettronica e Informazione, 20133 Milan (Italy); INFN Sez. Milano, 20133 Milan (Italy); Rijssenbeek, M. [Physics Department of State University of New York at Stony Brook, NY 11790 (United States); Dulinski, W. [Institut de Recherches Subatomiques, 23 rue du Loess BP 28, 67037 Strasbourg cedex (France); Besson, A. [Institut de Recherches Subatomiques, 23 rue du Loess BP 28, 67037 Strasbourg cedex (France); Deveaux, M. [Institut de Recherches Subatomiques, 23 rue du Loess BP 28, 67037 Strasbourg cedex (France); Winter, M. [Institut de Recherches Subatomiques, 23 rue du Loess BP 28, 67037 Strasbourg cedex (France)

    2006-11-30

    A new type of active pixel sensors (APSs) to track charged particles for particle physics experiments or to count number of electrons that cross any pixel at the focal plane of electron microscopes is described. The electric field of desirable shape is created inside the active volume of the pixel introducing the drift component in the movement of the signal electrons towards charge collecting electrodes. The electric field results from the flow of {approx}100 mA/cm{sup 2} hole currents within individual pixels of the sensor. The proposed sensor is produced using a standard industrially available complementary metal oxide silicon (CMOS) process. There are two main advantages of the proposed detectors when compared to the present (February 2005) state-of-the-art, i.e. field-free APS sensors. The first advantage of a field-assisted transport mechanism is the reduction of the charge collection time and of the sharing of the signal electrons between adjacent pixels by diffusion. The second advantage is the freedom to use both kinds of MOS transistors within each pixel of the sensor. Thus, the full functional power of CMOS circuits can be embedded in situ. As an example, 16-bit scalers will be implemented in each pixel of the sensor for electron microscopy. The reduced collection time combined with the state-of-the-art electronics within each pixel provides the most complete information about the position and the timing of incident charged particles for particle physics experiments. Position resolution of new sensors was computationally simulated to be a few microns, that is, the same as the resolution of standard APSs. Moreover, the active depth of the sensor and the associate electronics is less than about 20 {mu}m and a thinned down sensor together with its beryllium backing can have a total thickness of less than 0.1% of one radiation length. The reduction of the thickness of the detector reduces the amount of multiple scattering within the detector. The

  19. A novel position and time sensing active pixel sensor with field-assisted electron collection for charged particle tracking and electron microscopy

    Science.gov (United States)

    De Geronimo, G.; Deptuch, G.; Dragone, A.; Radeka, V.; Rehak, P.; Castoldi, A.; Fazzi, A.; Gatti, E.; Guazzoni, C.; Rijssenbeek, M.; Dulinski, W.; Besson, A.; Deveaux, M.; Winter, M.

    2006-11-01

    A new type of active pixel sensors (APSs) to track charged particles for particle physics experiments or to count number of electrons that cross any pixel at the focal plane of electron microscopes is described. The electric field of desirable shape is created inside the active volume of the pixel introducing the drift component in the movement of the signal electrons towards charge collecting electrodes. The electric field results from the flow of ˜100 mA/cm 2 hole currents within individual pixels of the sensor. The proposed sensor is produced using a standard industrially available complementary metal oxide silicon (CMOS) process. There are two main advantages of the proposed detectors when compared to the present (February 2005) state-of-the-art, i.e. field-free APS sensors. The first advantage of a field-assisted transport mechanism is the reduction of the charge collection time and of the sharing of the signal electrons between adjacent pixels by diffusion. The second advantage is the freedom to use both kinds of MOS transistors within each pixel of the sensor. Thus, the full functional power of CMOS circuits can be embedded in situ. As an example, 16-bit scalers will be implemented in each pixel of the sensor for electron microscopy. The reduced collection time combined with the state-of-the-art electronics within each pixel provides the most complete information about the position and the timing of incident charged particles for particle physics experiments. Position resolution of new sensors was computationally simulated to be a few microns, that is, the same as the resolution of standard APSs. Moreover, the active depth of the sensor and the associate electronics is less than about 20 μm and a thinned down sensor together with its beryllium backing can have a total thickness of less than 0.1% of one radiation length. The reduction of the thickness of the detector reduces the amount of multiple scattering within the detector. The determination of the

  20. Geometrical charged-particle optics

    CERN Document Server

    Rose, Harald

    2012-01-01

    This second edition is an extended version of the first edition of Geometrical Charged-Particle Optics. The updated reference monograph is intended as a guide for researchers and graduate students who are seeking a comprehensive treatment of the design of instruments and beam-guiding systems of charged particles and their propagation in electromagnetic fields. Wave aspects are included in this edition for explaining electron holography, the Aharanov-Bohm effect and the resolution of electron microscopes limited by diffraction. Several methods for calculating the electromagnetic field are presented and procedures are outlined for calculating the properties of systems with arbitrarily curved axis. Detailed methods are presented for designing and optimizing special components such as aberration correctors, spectrometers, energy filters monochromators, ion traps, electron mirrors and cathode lenses. In particular, the optics of rotationally symmetric lenses, quadrupoles, and systems composed of these elements are...

  1. Geometrical charged-particle optics

    CERN Document Server

    Rose, Harald H

    2009-01-01

    This reference monograph covers all theoretical aspects of modern geometrical charged-particle optics. It is intended as a guide for researchers, who are involved in the design of electron optical instruments and beam-guiding systems for charged particles, and as a tutorial for graduate students seeking a comprehensive treatment. Procedures for calculating the properties of systems with arbitrarily curved axes are outlined in detail and methods are discussed for designing and optimizing special components such as aberration correctors, spectrometers, energy filters, monochromators, ion traps, electron mirrors and cathode lenses. Also addressed is the design of novel electron optical components enabling sub-Angstroem spatial resolution and sub-0.1eV energy resolution. Relativistic motion and spin precession of the electron is treated in a concise way by employing a covariant five-dimensional procedure.

  2. Charged particle acceleration with plasmas

    International Nuclear Information System (INIS)

    Bravo O, A.

    1989-01-01

    Under certain conditions it is possible to create spatial charge waves (OCE) in a plasma (ionized gas) through some disturbance mechanism, the phenomenon produces electric fields of high intensity that are propagated at velocities near to a c. When charged particles are connected to such OCE they may be accelerated to very high energies in short distances. At present electric fields of approximately 10 7 V/cm have been observed. (Author). 4 refs

  3. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    Science.gov (United States)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-10-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/μm to 975 KeV/gmm with particle energy (on the cells) between 94 - 603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/μm. The inactivation cross-section (αi) and the action-section for mutant induction (αm) ranged from 2.2 to 92.0 μm2 and 0.09 to 5.56 × 10-3 μm2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/μm. The mutagenicity (αm/αi) ranged from 2.05 to 7.99 × 10-5 with the maximum value at 150 keV/μm. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  4. Activation analysis. Detection limits

    International Nuclear Information System (INIS)

    Revel, G.

    1999-01-01

    Numerical data and limits of detection related to the four irradiation modes, often used in activation analysis (reactor neutrons, 14 MeV neutrons, photon gamma and charged particles) are presented here. The technical presentation of the activation analysis is detailed in the paper P 2565 of Techniques de l'Ingenieur. (A.L.B.)

  5. a Search for Fractionally Charged Particles.

    Science.gov (United States)

    Milner, Richard Gerard

    An ion-source and a charge spectrometer have been built which make it possible to search in solid stable matter for particles with non-integral charge. The ion -source uses a beam of magnetically analyzed 30 keV Ar('+) ions to sputter the sample in an ultra high vacuum environment. The charge spectrometer comprises a 3 MV Pelletron tandem accelerator followed by a 0.2% resolution electrostatic analysis system and a (DELTA)E-E detector system. The entire apparatus has been constructed to be independent of mass over a mass range of 0.2 GeV/c('2) to 250 GeV/c('2). It is assumed that the fractionally charged particle is able to bind an electron. A search has been carried out in samples of niobium and tungsten for fractionally charged particles (FCP) with fractional charge modulo 1/3. In particular, we have looked for Z = N + 1/3 ; N = 0,1... and Z = N + 2/3; N = 0,1. Upper limits have been obtained for the FCP concentration per target atom. These upper limits vary between 1 x 10(' -16) and 3 x 10('--9) depending on the material searched and the charge state examined. Some interesting events have been seen. These are FCP candidates, but they can also be explained as improbable integrally charged events.

  6. Search milli-charged particles at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Langeveld, W.G.J. [Stanford Univ., CA (United States)

    1997-01-01

    Particles with electric charge q {triple_bond} Qe {le} 10{sup -3} e and masses in the range 1-1000 MeV/c{sup 2} are not excluded by present experiments or by astrophysical or cosmological arguments. A beam dump experiment uniquely suited to the detection of such {open_quotes}milli-charged{close_quotes} particles has been carried out at SLAC, utilizing the short-duration pulses of the SLC electron beam to establish a tight coincidence window for the signal. The detector, a large scintillation counter sensitive to very small energy depositions, provided much greater sensitivity than previous searches. Analysis of the data leads to the exclusion of a substantial portion of the charge-mass plane. In this report, a preliminary mass-dependent upper limit is presented for the charge of milli-charged particles, ranging from Q = 1.7 x 10{sup -5} at milli-charged particle mass 0.1 MeV/c{sup 2} to Q = 9.5 x 10{sup -4} at 100 MeV/c{sup 2}.

  7. Charged particle discrimination with silicon surface barrier detectors

    International Nuclear Information System (INIS)

    Coote, G.E.; Pithie, J.; Vickridge, I.C.

    1996-01-01

    The application for materials analysis of nuclear reactions that give rise to charged particles is a powerful surface analytical and concentration depth profiling technique. Spectra of charged particles, with energies in the range 0.1 to 15 MeV, emitted from materials irradiated with beams of light nuclei such as deuterons are measured with silicon surface barrier detectors. The spectra from multi-elemental materials typically encountered in materials research are usually composed of an overlapping superposition of proton, alpha, and other charged particle spectra. Interpretation of such complex spectra would be simplified if a means were available to electronically discriminate between the detector response to the different kinds of charged particle. We have investigated two methods of discriminating between different types of charged particles. The fast charge pulses from a surface barrier detector have different shapes, depending on the spatial distribution of energy deposition of the incident particle. Fast digitisation of the pulses, followed by digital signal processing provides one avenue for discrimination. A second approach is to use a thin transmission detector in front of a thick detector as a detector telescope. For a given incident energy, different types of charged particles will lose different amounts of energy in the thin detector, providing an alternative means of discrimination. We show that both approaches can provide significant simplification in the interpretation of charged particle spectra in practical situations, and suggest that silicon surface barrier detectors having graded electronic properties could provide improved discrimination compared to the current generation of detectors having homogeneous electronic properties. (author).12 refs., 2 tabs., 28 figs

  8. Electrophysical Systems Based On Charged Particle Accelerators

    CERN Document Server

    Vorogushin, M F

    2004-01-01

    The advancement of the charged particle accelerator engineering affects appreciably the modern tendencies of the scientific and technological progress in the world. In a number of advanced countries, this trend is one of the most dynamically progressing in the field of applied science and high-technology production. Such internationally known firms as VARIAN, SIEMENS, PHILIPS, ELECTA, IBA, HITACHI, etc., with an annual budget of milliards of dollars and growth rate of tens of percent may serve as an example. Although nowadays the projects of new large-scale accelerators for physical research are not implemented so quickly and frequently as desired, accelerating facilities are finding ever-widening application in various fields of human activities. The contribution made by Russian scientists into high-energy beams physics is generally known. High scientific and technical potential in this field, qualified personnel with a high creative potential, modern production and test facilities and state-of-the-art techn...

  9. Charged particles detection: the draft-and-dye method

    International Nuclear Information System (INIS)

    Gourcy, J.; Monnin, M.; Fain, J.

    1976-01-01

    Charged particles travelling through an organic medium leave a trail of highly concentrated active, stable chemical radicals. These functions are able to initiate copolymerization reactions of unsaturated molecules. Such a reagent is made to reach the trail; polymerization occurs. If the new polymer formed either absorbs or emits light the track of the charged particle is made visible. This technique and results are discussed: the efficiency of those detectors has been increased, they do not exhibit any critical dip angle for the registration of particle tracks, they may offer a way to reveal tracks originating in the detector itself. (orig.) [de

  10. Measurement of double differential charged-particle emission cross sections for reactions induced by 26 MeV protons and FKK model analysis

    International Nuclear Information System (INIS)

    Watanabe, Y.; Aoto, A.; Kashimoto, H.

    1994-01-01

    Double differential charged-particle emission cross sections of proton-induced reactions have been measured for nat C, 27 Al, nat Si, 98 Mo, 106 Pd, 159 Tb and 181 Ta at energies around 26 MeV. Several (p,p') and (p,n) data for 98 Mo and 106 Pd in the incident energy range from 12 to 26 MeV are analysed in terms of the Feshbach-Kerman-Koonin model, in order to study preequilibrium nucleon emission from nucleon-induced reactions

  11. Quantum mechanics of charged particle beam optics

    CERN Document Server

    Khan, Sameen Ahmed

    2018-01-01

    Theory of charged particle beam optics is basic to the design and working of charged particle beam devices from electron microscopes to accelerator machines. Traditionally, the optical elements of the devices are designed and operated based on classical mechanics and classical electromagnetism, and only certain specific quantum mechanical aspects are dealt with separately using quantum theory. This book provides a systematic approach to quantum theory of charged particle beam optics, particularly in the high energy cases such as accelerators or high energy electron microscopy.

  12. Robust statistical reconstruction for charged particle tomography

    Science.gov (United States)

    Schultz, Larry Joe; Klimenko, Alexei Vasilievich; Fraser, Andrew Mcleod; Morris, Christopher; Orum, John Christopher; Borozdin, Konstantin N; Sossong, Michael James; Hengartner, Nicolas W

    2013-10-08

    Systems and methods for charged particle detection including statistical reconstruction of object volume scattering density profiles from charged particle tomographic data to determine the probability distribution of charged particle scattering using a statistical multiple scattering model and determine a substantially maximum likelihood estimate of object volume scattering density using expectation maximization (ML/EM) algorithm to reconstruct the object volume scattering density. The presence of and/or type of object occupying the volume of interest can be identified from the reconstructed volume scattering density profile. The charged particle tomographic data can be cosmic ray muon tomographic data from a muon tracker for scanning packages, containers, vehicles or cargo. The method can be implemented using a computer program which is executable on a computer.

  13. Mechanism of stimulated radiation by charged particles

    International Nuclear Information System (INIS)

    Zachary, W.W.

    1979-01-01

    We have studied the mechanism for radiation by charged particles called stimulated electromagnetic shock radiation (SESR) by Schneider and Spitzer caused by the interaction between a relativistic charged particle and an externally applied electromagnetic plane wave in a dielectric. The present theory predicts that the SESR effect is large when the frequency of the plane wave lies in the microwave region but is small at higher frequencies for plane-wave field strengths smaller than the breakdown field of the dielectric

  14. Heavy charged-particle beam dosimetry

    International Nuclear Information System (INIS)

    Lyman, J.T.

    1982-06-01

    A computational description of the physical properties and the beam composition of a heavy charged-particle beam is presented. The results with this beam model has been compared with numerous sets of experimental data and it appears to provide an adequate representation of the major features of a heavy charged-particle beam. Knowledge of the beam composition aids in the identification of regions of the beam where special dosimetry problems may be encountered

  15. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical charged-particle radiation therapy system...-particle radiation therapy system. (a) Identification. A medical charged-particle radiation therapy system...) intended for use in radiation therapy. This generic type of device may include signal analysis and display...

  16. Charged-particle beam: a safety mandate

    International Nuclear Information System (INIS)

    Young, K.C.

    1983-01-01

    The Advanced Test Accelerator (ATA) is a recent development in the field of charged particle beam research at Lawrence Livermore National Laboratory. With this experimental apparatus, researchers will characterize intense pulses of electron beams propagated through air. Inherent with the ATA concept was the potential for exposure to hazards, such as high radiation levels and hostile breathing atmospheres. The need for a comprehensive safety program was mandated; a formal system safety program was implemented during the project's conceptual phase. A project staff position was created for a safety analyst who would act as a liaison between the project staff and the safety department. Additionally, the safety analyst would be responsible for compiling various hazards analyses reports, which formed the basis of th project's Safety Analysis Report. Recommendations for safety features from the hazards analysis reports were incorporated as necessary at appropriate phases in project development rather than adding features afterwards. The safety program established for the ATA project faciliated in controlling losses and in achieving a low-level of acceptable risk

  17. Scintillation Detectors for Charged Particles and Photons

    CERN Document Server

    Lecoq, P

    2011-01-01

    Scintillation Detectors for Charged Particles and Photons in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.1 Scintillation Detectors for Charged Particles and Photons' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.1 Scintillation Detectors for Charged Particles and Photons 3.1.1.1 Basic detector principles and scintillator requirements 3.1.1.1.1 Interaction of ionizing radiation with scintillator material 3.1.1.1.2 Important scint...

  18. Physics of new methods of charged particle acceleration collective effects in dense charged particle ensembles

    CERN Document Server

    Bonch-Osmolovsky, A G

    1994-01-01

    This volume discusses the theory of new methods of charged particle acceleration and its physical and mathematical descriptions. It examines some collective effects in dense charged particle ensembles, and traces the history of the development of the field of accelerator physics.

  19. DNA fragmentation by charged particle tracks

    Science.gov (United States)

    Stenerlöw, B.; Höglund, E.; Carlsson, J.

    High-LET (linear energy transfer) charged particles induce DNA double-strand breaks (DSB) in a non-random fashion in mammalian cells. The clustering of DSB, probably determined by track structure as well as chromatin conformation, results in an excess of small- and intermediate-sized DNA fragments. DNA fragmentation in normal human fibroblasts (GM5758) was analyzed by pulsed-field gel electrophoresis after irradiation with photons ( 60Co) or 125 keV/μm nitrogen ions. Compared to conventional DSB analysis, i.e. assays only measuring the fraction of DNA smaller than a single threshold, the relative biological effectiveness (RBE) for DSB induction increased with 100%. Further, the size distribution of DNA fragments showed a significant dependence on radiation quality, with an excess of fragments up to 1 Mbp. Irradiation of naked genomic DNA without histone proteins increased the DSB yields 25 and 13 times for photons and nitrogen ions, respectively. The results suggest possible roles of both track structure and chromatin organization in the distribution of DNA double-strand breaks along the chromosome.

  20. Relativistic charged particle ejection from optical lattice

    Science.gov (United States)

    Frolov, E. N.; Dik, A. V.; Dabagov, S. B.

    2018-03-01

    We have analyzed relativistic (~ MeV) electron ejection from potential channels of standing laser wave taking into account both rapid and averaged oscillations within the region of declining field of standing wave. We show that only a few last rapid oscillations can define transverse speed and, therefore, angle at which a particle leaves standing wave. This conclusion might drastically simplify numerical simulations of charged particles channeling and accompanying radiation in crossed lasers field. Moreover, it might provide a valuable information for estimation of charged particle beams parameters after their interaction with finite standing wave.

  1. Charged particles as Kaluza-Klein monopoles

    International Nuclear Information System (INIS)

    Chan, H.-M.; Tsou, S.T.

    1984-05-01

    The authors describe some explorations into the possibility of treating charged particles as monopoles in a Kaluza-Klein world. Such considerations may be useful in the future for constructing model theories in which both matter and gauge structure emerge as consequences of space-time geometry. (author)

  2. The charged particle accelerators subsystems modeling

    Science.gov (United States)

    Averyanov, G. P.; Kobylyatskiy, A. V.

    2017-01-01

    Presented web-based resource for information support the engineering, science and education in Electrophysics, containing web-based tools for simulation subsystems charged particle accelerators. Formulated the development motivation of Web-Environment for Virtual Electrophysical Laboratories. Analyzes the trends of designs the dynamic web-environments for supporting of scientific research and E-learning, within the framework of Open Education concept.

  3. New spectrometer for charged particles

    International Nuclear Information System (INIS)

    Wajsfelner, Rene

    1970-02-01

    This thesis is devoted to the study and development of an electrostatic spectrometer which is not only more accurate for the determination of size distributions of electrically charged radio-active atmospheric aerosols, but which can also be used for measuring the grain-size distribution of any cloud of particles which will previously have been charged according to a known, reproducible law. An experimental study has been made of the development of this precipitator and also of its calibration. The electrical charge on spherical polystyrene latex particles suspended in air by atomization has been studied; a theoretical explanation of these results is put forward. (author) [fr

  4. High gradient lens for charged particle beam

    Science.gov (United States)

    Chen, Yu-Jiuan

    2014-04-29

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  5. Charged particle dynamics in axisymmetric nonconservative beams

    International Nuclear Information System (INIS)

    Radchenko, V.I.; Nikonov, O.I.

    1998-01-01

    Many of ion-beam technologies lead to the requirement of cross-section minimization of a particle beam in the object region acted upon, or to the problem of minimization of charged particle beam emittance (the growth rate of emittance) for a specified segment of the beam formation. In this paper we study the above problem for axisymmetric beams representing a nonconservative system of charged particles. It is shown that under certain assumptions the beam in question can be described by appropriate equations that possess an explicit solution. The latter allows one to study the influence of particle density distribution at the starting point on the future beam evolution. The results are based on approaches developed in J.D. Lawson (1977); V.I. Radchenko, G.D. Ved'manov (1995); O.I. Nikonov (1994). (orig.)

  6. Method and apparatus for charged particle propagation

    Science.gov (United States)

    Hershcovitch, A.

    1996-11-26

    A method and apparatus are provided for propagating charged particles from a vacuum to a higher pressure region. A generator includes an evacuated chamber having a gun for discharging a beam of charged particles such as an electron beam or ion beam. The beam is discharged through a beam exit in the chamber into a higher pressure region. A plasma interface is disposed at the beam exit and includes a plasma channel for bounding a plasma maintainable between a cathode and an anode disposed at opposite ends thereof. The plasma channel is coaxially aligned with the beam exit for propagating the beam from the chamber, through the plasma, and into the higher pressure region. The plasma is effective for pumping down the beam exit for preventing pressure increase in the chamber and provides magnetic focusing of the beam discharged into the higher pressure region 24. 7 figs.

  7. Charged particle confinement in magnetic mirror

    International Nuclear Information System (INIS)

    Bora, D.; John, P.I.; Saxena, Y.C.; Varma, R.K.

    1982-01-01

    The behaviour of single charged particle trapped in a magnetic mirror has been investigated experimentally. The particle injected off axis and trapped in a magnetic mirror, leak out of the mirror with the leakage characterized by multiple decay times. The observed decay times are in good agreement with predictions of a ''wave mechanical like'' model by Varma, over a large range of relevant parameters. (author)

  8. The charged particle accelerators subsystems modeling

    International Nuclear Information System (INIS)

    Averyanov, G P; Kobylyatskiy, A V

    2017-01-01

    Presented web-based resource for information support the engineering, science and education in Electrophysics, containing web-based tools for simulation subsystems charged particle accelerators. Formulated the development motivation of Web-Environment for Virtual Electrophysical Laboratories. Analyzes the trends of designs the dynamic web-environments for supporting of scientific research and E-learning, within the framework of Open Education concept. (paper)

  9. Detector magnets for charged particle momentum measurement

    CERN Document Server

    Arduini, Gianluigi

    1995-01-01

    Basic formulae related to the momentum measurement of charged particles by tracking devices in magnetic fields and typical detector magnet geometries are briefly revised. From these, guidelines are worked out for the determination of the basic specifications (yoke size, excitation current, conductor type and size, cooling) both for normal and superconducting magnets. The problem of magnetic shielding of components placed near big detector magnets is also considered.

  10. Charged particle beam current monitoring tutorial

    International Nuclear Information System (INIS)

    Webber, R.C.

    1994-10-01

    A tutorial presentation is made on topics related to the measurement of charged particle beam currents. The fundamental physics of electricity and magnetism pertinent to the problem is reviewed. The physics is presented with a stress on its interpretation from an electrical circuit theory point of view. The operation of devices including video pulse current transformers, direct current transformers, and gigahertz bandwidth wall current style transformers is described. Design examples are given for each of these types of devices. Sensitivity, frequency response, and physical environment are typical parameters which influence the design of these instruments in any particular application. Practical engineering considerations, potential pitfalls, and performance limitations are discussed

  11. Born expansions for charged particle scattering

    International Nuclear Information System (INIS)

    Macek, J.H.; Barrachina, R.O.

    1989-01-01

    High-order terms in Born expansions of scattering amplitudes in powers of charge are frequently divergent when long-range Coulomb interactions are present asymptotically. Expansions which are free from these logarithmic divergences have been constructed recently. We illustrate these expansions with the simplest example, namely the non-relativistic Rutherford scattering of two charged particles. This approach represents an adequate framework for the calculation of transition amplitudes and a comprehensive starting point for the development of consistent perturbation approximations in multi-channel descriptions of strongly interacting atomic systems. 17 refs

  12. Treatment of cancer with heavy charged particles

    International Nuclear Information System (INIS)

    Castro, J.R.

    1981-01-01

    The clinical radiotherapy trial has accured 243 patients irradiated with particles and 13 patients irradiated as controls in randomized studies. Of the 243 particle patients, 194 have been treated with helium ions, either solely or in combination with photon irradiation, and 49 have received all or part of their irradiation with one of the heavier particles, either carbon, neon, or argon ions. The project thus can be divided into two general phases: (1) evaluation of improved dose distribution without significant biologic advantage by use of helium ion irradiation; and (2) evaluation of improved dose distribution and enhanced biologic effect by irradiation with heavy charged particles such as carbon, neon, and argon ions

  13. Bmad: A relativistic charged particle simulation library

    International Nuclear Information System (INIS)

    Sagan, D.

    2006-01-01

    Bmad is a subroutine library for simulating relativistic charged particle beams in high-energy accelerators and storage rings. Bmad can be used to study both single and multi-particle beam dynamics using routines to track both particles and macroparticles. Bmad has various tracking algorithms including Runge-Kutta and symplectic (Lie algebraic) integration. Various effects such as wakefields, and radiation excitation and damping can be simulated. Bmad has been developed in a modular, object-oriented fashion to maximize flexibility. Interface routines allow Bmad to be called from C/C++ as well as Fortran programs. Bmad is well documented. Every routine is individually annotated, and there is an extensive manual

  14. Charged particle traps physics and techniques of charged particle field confinement

    CERN Document Server

    Major, Fouad G; Werth, Günther

    2005-01-01

    This book provides an introduction and guide to modern advances in charged particle (and antiparticle) confinement by electromagnetic fields. Confinement in different trap geometries, the influence of trap imperfections, classical and quantum mechanical description of the trapped particle motion, different methods of ion cooling to low temperatures, and non-neutral plasma properties (including Coulomb crystals) are the main subjects. They form the basis of such applications of charged particle traps as high-resolution optical and microwave spectroscopy, mass spectrometry, atomic clocks, and, potentially, quantum computing

  15. New generation of monolithic active pixel sensors for charged particle detection; Developpement d'un capteur de nouvelle generation et son electronique integree pour les collisionneurs futurs

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, G

    2002-09-01

    Vertex detectors are of great importance in particle physics experiments, as the knowledge of the event flavour is becoming an issue for the physics programme at Future Linear Colliders. Monolithic Active Pixel Sensors (MAPS) based on a novel detector structure have been proposed. Their fabrication is compatible with a standard CMOS process. The sensor is inseparable from the readout electronics, since both of them are integrated on the same, low-resistivity silicon wafer. The basic pixel configuration comprises only three MOS transistors and a diode collecting the charge through thermal diffusion. The charge is generated in the thin non-depleted epitaxial layer underneath the readout electronics. This approach provides, at low cost, a high resolution and thin device with the whole area sensitive to radiation. Device simulations using the ISE-TCAD package have been carried out to study the charge collection mechanism. In order to demonstrate the viability of the technique, four prototype chips have been fabricated using different submicrometer CMOS processes. The pixel gain has been calibrated using a {sup 55}Fe source and the Poisson sequence method. The prototypes have been exposed to high-energy particle beams at CERN. The tests proved excellent detection performances expressed in a single-track spatial resolution of 1.5 {mu}m and detection efficiency close to 100%, resulting from a SNR ratio of more than 30. Irradiation tests showed immunity of MAPS to a level of a few times 10{sup 12} n/cm{sup 2} and a few hundred kRad of ionising radiation. The ideas for future work, including on-pixel signal amplification, double sampling operation and current mode pixel design are present as well. (author)

  16. Sound from charged particles in liquids

    International Nuclear Information System (INIS)

    Askar'yan, G.A.

    1980-01-01

    Two directions of sound application appearing during the charged particles passing through liquid - in biology and for charged particles registration are considered. Application of this sound in radiology is determined by a contribution of its hypersound component (approximately 10 9 Hz) to radiology effect of ionizing radiation on micro-organisms and cells. Large amplitudes and pressure gradients in a hypersound wave have a pronounced destructive breaking effect on various microobjects (cells, bacteria, viruses). An essential peculiarity of these processes is the possibility of control by choosing conditions changing hypersound generation, propagation and effect. This fact may lead not only to the control by radiaiton effects but also may explain and complete the analogy of ionizing radiation and ultrasound effect on bioobjects. The second direction is acoustic registration of passing ionizing particles. It is based on the possibility of guaranteed signal reception from a shower with 10 15 -10 16 eV energy in water at distances of hundreds of meters. Usage of acoustic technique for neutrino registration in the DUMAND project permits to use a detecting volume of water with a mass of 10 9 t and higher

  17. CVD diamond sensors for charged particle detection

    CERN Document Server

    Krammer, Manfred; Berdermann, E; Bergonzo, P; Bertuccio, G; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Dencuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Hallewell, G D; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Koeth, T W; Lo Giudice, A; Lü, R; MacLynne, L; Manfredotti, C; Meier, D; Mishina, M; Moroni, L; Oh, A; Pan, L S; Pernicka, Manfred; Peitz, A; Perera, L P; Pirollo, S; Procario, M; Riester, J L; Roe, S; Rousseau, L; Rudge, A; Russ, J; Sala, S; Sampietro, M; Schnetzer, S; Sciortino, S; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R; Trischuk, W; Tromson, D; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; Wetstein, M; White, C; Zeuner, W; Zöller, M

    2001-01-01

    CVD diamond material was used to build position-sensitive detectors for single-charged particles to be employed in high-intensity physics experiments. To obtain position information, metal contacts shaped as strips or pixels are applied to the detector surface for one- or two- dimensional coordinate measurement. Strip detectors 2*4 cm/sup 2/ in size with a strip distance of 50 mu m were tested. Pixel detectors of various pixel sizes were bump bonded to electronics chips and investigated. A key issue for the use of these sensors in high intensity experiments is the radiation hardness. Several irradiation experiments were carried out with pions, protons and neutrons exceeding a fluence of 10/sup 15/ particles/cm/sup 2/. The paper presents an overview of the results obtained with strip and pixel detectors in high-energy test beams and summarises the irradiation studies. (8 refs).

  18. Coagulation of charged particles in dust plasma

    International Nuclear Information System (INIS)

    Belov, I.A.; Ivanov, A.S.; Ivanov, D.A.; Pal', A.F.; Starostin, A.N.; Filippov, A.V.; Dem'yanov, A.V.; Petrushevich, Yu.V.

    2000-01-01

    One studied peculiarities of behaviour of small particles in dust plasma resulted on the one hand, from suppression of coagulation due to monopolar charging within the range of particle dimensions under the Debye radius of shielding and, on the other hand, from leveling of this case for particles of large dimensions. On the basis of similarity ratios one determined the range of parameters making linear approximation of particle charge dependence on their dimension true. In terms of the modified classical theory of coagulation in diffusion approximation one studied certain anomalies of behavior of dimension distribution of particles. It is determined that in contrast to the ordinary aerosol in dust plasma as time passes one may reduce dispersion of distribution and average dimensions of particles. For the first time one demonstrates the possibility to realize long-lived quasiliquid state of dust plasma associated with the anomalous behaviour of distribution function of coagulating charged particles according to dimensions [ru

  19. Charged particle detection in organic semiconductors

    CERN Document Server

    Beckerle, P

    2000-01-01

    Polyacetylene is an organic semiconductor in which charges can be set free by a traversing charged particle, transported by an electric field to read-out electrodes and, subsequently, amplified and recorded in a way similar to what happens in a silicon-drift detector. In an experimental investigation of the features of this charge transport in thin foils we find drift velocities of the order of 40 cm/s. Stretching of the foils by a factor of three to four increases the drift velocity by a factor of ten and introduces a strong directionality of the charge transport. The detection efficiency of 5 MeV alpha particles in a few micron thin stretched foil is around 70%.

  20. Plasma based charged-particle accelerators

    International Nuclear Information System (INIS)

    Bingham, R; Mendonca, J T; Shukla, P K

    2004-01-01

    Studies of charged-particle acceleration processes remain one of the most important areas of research in laboratory, space and astrophysical plasmas. In this paper, we present the underlying physics and the present status of high gradient and high energy plasma accelerators. We will focus on the acceleration of charged particles to relativistic energies by plasma waves that are created by intense laser and particle beams. The generation of relativistic plasma waves by intense lasers or electron beams in plasmas is important in the quest for producing ultra-high acceleration gradients for accelerators. With the development of compact short pulse high brightness lasers and electron positron beams, new areas of studies for laser/particle beam-matter interactions is opening up. A number of methods are being pursued vigorously to achieve ultra-high acceleration gradients. These include the plasma beat wave accelerator mechanism, which uses conventional long pulse (∼100 ps) modest intensity lasers (I ∼ 10 14 -10 16 W cm -2 ), the laser wakefield accelerator (LWFA), which uses the new breed of compact high brightness lasers ( 10 18 W cm -2 , the self-modulated LWFA concept, which combines elements of stimulated Raman forward scattering, and electron acceleration by nonlinear plasma waves excited by relativistic electron and positron bunches. In the ultra-high intensity regime, laser/particle beam-plasma interactions are highly nonlinear and relativistic, leading to new phenomena such as the plasma wakefield excitation for particle acceleration, relativistic self-focusing and guiding of laser beams, high-harmonic generation, acceleration of electrons, positrons, protons and photons. Fields greater than 1 GV cm -1 have been generated with particles being accelerated to 200 MeV over a distance of millimetre. Plasma wakefields driven by positron beams at the Stanford Linear Accelerator Center facility have accelerated the tail of the positron beam. In the near future

  1. Effects of charged particles on human tumor cells

    Directory of Open Access Journals (Sweden)

    Kathryn D Held

    2016-02-01

    Full Text Available The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of Relative Biological Effectiveness (RBE for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions and importance of fractionation, including use of hypofractionation, with charged particles.

  2. Bibliography of integral charged particle nuclear data. Archival edition

    International Nuclear Information System (INIS)

    Burrows, T.W.; Dempsey, P.

    1980-03-01

    This is the fourth annual edition of the National Nuclear Data Center charged-particle bibliography. This edition is cumulative and supersedes the previous editions. The bibliography's primary aims are to satisfy the need for a concise and comprehensive index of integral charged-particle cross section data and to provide an index of charged-particle data compiled in the international exchange format. References in this Part are by target for the various incident charged particles (in order of increasing A). The present publication is an archival volume; future publications will be cumulative supplements to this edition

  3. Charged Particle Monitor on the AstroSat Mission

    Indian Academy of Sciences (India)

    Charged Particle Monitor (CPM) on-board the Astrosat satellite is an instrument designed to detect the flux of charged particles at the satellite location. A Cesium Iodide Thallium (CsI(Tl)) crystal is used with a Kapton window to detect protons with energies greater than 1 MeV. The ground calibration of CPM was done using ...

  4. The path of charged particles is affected when

    Indian Academy of Sciences (India)

    The path of charged particles is affected when they enter a magnetic field. This change of path largely depends on the angle between the applied magnetic field and the direction of motion of the charged particle (and its velocity) entering the magnetic field. This is demonstrated by means of a simple, low-cost experiment.

  5. Interaction of free charged particles with a chirped electromagnetic pulse

    NARCIS (Netherlands)

    Khachatryan, A.G.; van Goor, F.A.; Boller, Klaus J.

    2004-01-01

    We study the effect of chirp on electromagnetic (EM) pulse interaction with a charged particle. Both the one-dimensional (1D) and 3D cases are considered. It is found that, in contrast to the case of a nonchirped pulse, the charged particle energy can be changed after the interaction with a 1D EM

  6. The 1st symposium of Research Center for Charged Particle Therapy on fundamental development of the charged particle therapy

    International Nuclear Information System (INIS)

    Soga, Fuminori

    2002-06-01

    This issue is the collection of the paper presented at the 1st Symposium of Research Center for Charged Particle Therapy on fundamental development of the charged particle therapy. The 31 of the presented papers are indexed individually. (J.P.N.)

  7. Large space system: Charged particle environment interaction technology

    Science.gov (United States)

    Stevens, N. J.; Roche, J. C.; Grier, N. T.

    1979-01-01

    Large, high voltage space power systems are proposed for future space missions. These systems must operate in the charged-particle environment of space and interactions between this environment and the high voltage surfaces are possible. Ground simulation testing indicated that dielectric surfaces that usually surround biased conductors can influence these interactions. For positive voltages greater than 100 volts, it has been found that the dielectrics contribute to the current collection area. For negative voltages greater than-500 volts, the data indicates that the dielectrics contribute to discharges. A large, high-voltage power system operating in geosynchronous orbit was analyzed. Results of this analysis indicate that very strong electric fields exist in these power systems.

  8. Development of Si (Li) detectors for charged particles spectrometer

    CERN Document Server

    Onabe, H; Obinata, M; Kashiwagi, T

    2002-01-01

    Lithium drifted silicon (Si (Li)) detectors with high-quality large area for charged particles spectrometer abroad artificial satellite have been developed. Surface stability can be obtained by thin p-n junction fabricated with the applied photo engraving process (PEP) instead of surface barrier. The region compensated with Lithium can be improved by the adequate heat treatment, and this improvement can be monitored by means of a combination of copper plating and subsequent micro-XRF analysis. The detectors fabricated from the thermal treated wafers were found to have better energy resolution both for alpha-particles from sup 2 sup 4 sup 1 Am and conversion electrons from sup 2 sup 0 sup 7 Bi. (author)

  9. Rainbows in channeling of charged particles in crystals and nanotubes

    CERN Document Server

    Nešković, Nebojša; Ćosić, Marko

    2017-01-01

    This book discusses the effects, modeling, latest results, and nanotechnology applications of rainbows that appear during channeling of charged particles in crystals and nanotubes. The authors begin with a brief review of the optical and particle rainbow effects followed by a detailed description of crystal rainbows, which appear in ion channeling in crystals, and their modeling using catastrophe theory. The effects of spatial and angular focusing of channeled ions are described, with special attention given to the applications of the former effect to subatomic microscopy. The results of a thorough study of the recent high-resolution channeling experiments performed with protons of energies between 2.0 and 0.7 MeV and a 55 nm thick silicon crystal are also provided. This study opens up the potential for accurate analysis of very thin crystals. Also presented are recent results related to rainbows occurring in proton transmission through carbon nanotubes, and a detailed quantum consideration of the transmissio...

  10. Fractional dynamics of charged particles in magnetic fields

    Science.gov (United States)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Méndez, E.; Guerrero-Ramírez, G. V.; Escobar-Jiménez, R. F.

    2016-02-01

    In many physical applications the electrons play a relevant role. For example, when a beam of electrons accelerated to relativistic velocities is used as an active medium to generate Free Electron Lasers (FEL), the electrons are bound to atoms, but move freely in a magnetic field. The relaxation time, longitudinal effects and transverse variations of the optical field are parameters that play an important role in the efficiency of this laser. The electron dynamics in a magnetic field is a means of radiation source for coupling to the electric field. The transverse motion of the electrons leads to either gain or loss energy from or to the field, depending on the position of the particle regarding the phase of the external radiation field. Due to the importance to know with great certainty the displacement of charged particles in a magnetic field, in this work we study the fractional dynamics of charged particles in magnetic fields. Newton’s second law is considered and the order of the fractional differential equation is (0;1]. Based on the Grünwald-Letnikov (GL) definition, the discretization of fractional differential equations is reported to get numerical simulations. Comparison between the numerical solutions obtained on Euler’s numerical method for the classical case and the GL definition in the fractional approach proves the good performance of the numerical scheme applied. Three application examples are shown: constant magnetic field, ramp magnetic field and harmonic magnetic field. In the first example the results obtained show bistability. Dissipative effects are observed in the system and the standard dynamic is recovered when the order of the fractional derivative is 1.

  11. Bibliography of integral charged particle nuclear data. Archival edition

    International Nuclear Information System (INIS)

    Burrows, T.W.; Dempsey, P.

    1980-03-01

    This is the fourth annual edition of the National Nuclear Data Center charged-particle bibliography. This edition is cumulative and supersedes the previous editions. The bibliography's primary aims are to satisfy the need for a concise and comprehensive index of integral charged-particle cross section data and to provide an index of charged-particle data compiled in the international exchange format, EXFOR. This part of the publication deals with isotope production; references are ordered by mass of the nuclide produced. The present publication is an archival volume; future publications will be cumulative supplements to this edition

  12. Interaction of free charged particles with a chirped electromagnetic pulse

    International Nuclear Information System (INIS)

    Khachatryan, A.G.; Goor, F.A. van; Boller, K.-J.

    2004-01-01

    We study the effect of chirp on electromagnetic (EM) pulse interaction with a charged particle. Both the one-dimensional (1D) and 3D cases are considered. It is found that, in contrast to the case of a nonchirped pulse, the charged particle energy can be changed after the interaction with a 1D EM chirped pulse. Different types of chirp and pulse envelopes are considered. In the case of small chirp, an analytical expression is found for arbitrary temporal profiles of the chirp and the pulse envelope. In the 3D case, the interaction with a chirped pulse results in a polarization-dependent scattering of charged particles

  13. PROPERTIES AND COMPUTER SIMULATION OF ELECTROMAGNETIC FIELD UNIFORM TRAFFIC CHARGED PARTICLE.

    Directory of Open Access Journals (Sweden)

    O.A. Konoval

    2010-11-01

    Full Text Available In the article described the method of teaching electrodynamics, which is based on considerably fewer independent source principles (Coulomb's law, the principle of relativity and the principle of superposition. Based on a description and analysis of the interaction of moving charged particles.

  14. Evidence of self-affine multiplicity scaling of charged-particle ...

    Indian Academy of Sciences (India)

    A self-affine analysis of charged-particle multiplicity distribution (protons ... In the past few years many workers reported on large density fluctuations in different interacting systems [6–12]. Several theoretical interpretations of the origin of large .... The intermittent behaviour of multiplicity distribution manifests itself as a power-.

  15. Charged Particle Dynamics in the Magnetic Field of a Long Straight Current-Carrying Wire

    Science.gov (United States)

    Prentice, A.; Fatuzzo, M.; Toepker, T.

    2015-01-01

    By describing the motion of a charged particle in the well-known nonuniform field of a current-carrying long straight wire, a variety of teaching/learning opportunities are described: 1) Brief review of a standard problem; 2) Vector analysis; 3) Dimensionless variables; 4) Coupled differential equations; 5) Numerical solutions.

  16. Charged particle beam scanning using deformed high gradient insulator

    Science.gov (United States)

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  17. Radiobiology with heavy charged particles: a historical review

    Energy Technology Data Exchange (ETDEWEB)

    Skarsgard, L.D. [Dept. of Medical Biophysics, B.C. Cancer Research Centre and TRIUMF, Vancouver (Canada)

    1997-09-01

    The presentation will attempt to briefly review some of radiobiological data on the effects of heavy charged particles and to discuss the influence of those studies on the clinical application which followed. (orig./MG)

  18. VOYAGER 1 JUP LOW ENERGY CHARGED PARTICLE CALIB. 15MIN

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS DATA SET CONSISTS OF RESAMPLED DATA FROM THE LOW ENERGY CHARGED PARTICLE (LECP) EXPERIMENT ON VOYAGER 1 WHILE THE SPACECRAFT WAS IN THE VICINITY OF JUPITER....

  19. VOYAGER 1 SAT LOW ENERGY CHARGED PARTICLE CALIB. 15MIN

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS DATA SET CONSISTS OF RESAMPLED DATA FROM THE LOW ENERGY CHARGED PARTICLE (LECP) EXPERIMENT ON VOYAGER 1 WHILE THE SPACECRAFT WAS IN THE VICINITY OF SATURN. THIS...

  20. VOYAGER 2 SAT LOW ENERGY CHARGED PARTICLE CALIB. 15MIN

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS DATA SET CONSISTS OF RESAMPLED DATA FROM THE LOW ENERGY CHARGED PARTICLE (LECP) EXPERIMENT ON VOYAGER 2 WHILE THE SPACECRAFT WAS IN THE VICINITY OF SATURN. THIS...

  1. VOYAGER 2 JUP LOW ENERGY CHARGED PARTICLE CALIB. 15MIN

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS DATA SET CONSISTS OF RESAMPLED DATA FROM THE LOW ENERGY CHARGED PARTICLE (LECP) EXPERIMENT ON VOYAGER 2 WHILE THE SPACECRAFT WAS IN THE VICINITY OF JUPITER....

  2. Charged particle interaction with a chirped electromagnetic pulse

    NARCIS (Netherlands)

    Khachatryan, A.G.; Boller, Klaus J.; van Goor, F.A.

    2003-01-01

    It is found that a charged particle can get a net energy gain from the interaction with an electromagnetic chirped pulse. Theoretically, the energy gain increases with the pulse amplitude and with the relative frequency variation in the pulse.

  3. Parton energy loss in heavy-ion collisions via direct-photon and charged-particle Azimuthal Correlations

    NARCIS (Netherlands)

    Abelev, B.I.; Benedosso, F.; Braidot, E|info:eu-repo/dai/nl/304840874; Mischke, A.|info:eu-repo/dai/nl/325781435; Peitzmann, T.|info:eu-repo/dai/nl/304833959; Russcher, M.J.|info:eu-repo/dai/nl/304847844

    2010-01-01

    Charged-particle spectra associated with direct photon (γdir ) and π0 are measured in p+p and Au+Au collisions at center-of-mass energy √sNN=200 GeV with the STAR detector at RHIC. A hower-shape analysis is used to partially discriminate between γdir and π0. Assuming no associated charged particles

  4. Nuclear data needs in nuclear astrophysics: Charged-particle reactions

    International Nuclear Information System (INIS)

    Smith, Michael S.

    2001-01-01

    Progress in understanding a diverse range of astrophysical phenomena - such as the Big Bang, the Sun, the evolution of stars, and stellar explosions - can be significantly aided by improved compilation, evaluation, and dissemination of charged-particle nuclear reaction data. A summary of the charged-particle reaction data needs in these and other astrophysical scenarios is presented, along with recommended future nuclear data projects. (author)

  5. Interactive design environment transportation channel of relativistic charged particle beams

    Science.gov (United States)

    Osadchuk, I. O.; Averyanov, G. P.; Budkin, V. A.

    2017-01-01

    Considered a modern implementation of a computer environment for the design of channels of transportation of high-energy charged particle beams. The environment includes a software package for the simulation of the dynamics of charged particles in the channel, operating means for changing parameters of the channel, the elements channel optimization and processing of the output characteristics of the beam with the graphical output the main output parameters.

  6. Light charged particle emission in 19F+12C reaction

    International Nuclear Information System (INIS)

    Bandyopadhyay, D.; Bhattacharya, C.; Krishan, K.; Bhattacharya, S.; Basu, S.K.; Chatterjee, A.; Kailas, S.; Singh, P.; Navin, A.; Shrivastava, A.; Samant, A.M.

    1997-01-01

    The light charged particle emission in the inverse kinematical reaction with 96 MeV 19 F beam on 12 C target have been studied experimentally. Light charged particles were detected in coincidence with the IMFs and ERs in three solid state telescopes in the angular range 10 deg-70 deg. The data of alpha particles in coincidence with the IMFs as well as with the ERs is reported

  7. Review of neutron and charged particle intercorrelation programs

    International Nuclear Information System (INIS)

    Garner, F.A.; Laidler, J.J.

    1977-01-01

    The U.S. LMFBR programs have sponsored a number of intercorrelation experiments which seek to provide a basis for predicting neutron-induced property changes from a large variety of charged particle simulation data. The results of these and other programs are reviewed and lead to the conclusion that simulation experiments are quite valuable in meeting the goal of providing guidance for design of fission or fusion energy generation devices. Numerous examples are given of simulation experiments which have been influenced or dominated by the presence of unrecognized atypical variables. All major U.S. intercorrelation activities have been concerned primarily with void growth experiments to simulate fast reactor conditions. This reflects not only the early program emphasis on this important radiation-induced phenomenon but also the fact that void swelling is the only high fluence property change which leaves a cumulative microstructural record in the small material volumes characteristic of simulation experiments. Based on past experiences, guidance is provided for application of intercorrelation results to environments other than those found in fast breeder reactors, and to property changes other than swelling

  8. Medical radiation dosimetry theory of charged particle collision energy loss

    CERN Document Server

    McParland, Brian J

    2014-01-01

    Accurate radiation dosimetry is a requirement of radiation oncology, diagnostic radiology and nuclear medicine. It is necessary so as to satisfy the needs of patient safety, therapeutic and diagnostic optimisation, and retrospective epidemiological studies of the biological effects resulting from low absorbed doses of ionising radiation. The radiation absorbed dose received by the patient is the ultimate consequence of the transfer of kinetic energy through collisions between energetic charged particles and atoms of the tissue being traversed. Thus, the ability of the medical physicist to both measure and calculate accurately patient dosimetry demands a deep understanding of the physics of charged particle interactions with matter. Interestingly, the physics of charged particle energy loss has an almost exclusively theoretical basis, thus necessitating an advanced theoretical understanding of the subject in order to apply it appropriately to the clinical regime. ​ Each year, about one-third of the worl...

  9. Late time CMB anisotropies constrain mini-charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, C.; Redondo, J.; Ringwald, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Jaeckel, J. [Univ. of Durham, Inst. for Particle Physics Phenomenology (United Kingdom)

    2009-09-15

    Observations of the temperature anisotropies induced as light from the CMB passes through large scale structures in the late universe are a sensitive probe of the interactions of photons in such environments. In extensions of the Standard Model which give rise to mini-charged particles, photons propagating through transverse magnetic fields can be lost to pair production of such particles. Such a decrement in the photon flux would occur as photons from the CMB traverse the magnetic fields of galaxy clusters. Therefore late time CMB anisotropies can be used to constrain the properties of mini- charged particles. We outline how this test is constructed, and present new constraints on mini-charged particles from observations of the Sunyaev-Zel'dovich effect in the Coma cluster. (orig.)

  10. Studies of charged particle multiplicity in b quark events

    Energy Technology Data Exchange (ETDEWEB)

    Akers, R.; Alexander, G.; Allison, J.; Anderson, K.J.; Arcelli, S.; Astbury, A.; Axen, D.; Azuelos, G.; Baines, J.T.M.; Ball, A.H.; Banks, J.; Barlow, R.J.; Barnett, S.; Bartoldus, R.; Batley, J.R.; Beaudoin, G.; Beck, A.; Beck, G.A.; Becker, J.; Beeston, C.; Behnke, T.; Bell, K.W.; Bella, G.; Bentkowski, P.; Berlich, P.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Bock, P.; Boden, B.; Bosch, H.M.; Boutemeur, M.; Breuker, H.; Bright-Thomas, P.; Brown, R.M.; Buijs, A.; Burckhart, H.J.; Burgard, C.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Chu, S.L.; Clarke, P.E.L.; Clayton, J.C.; Cohen, I.; Conboy, J.E.; Cooper, M.; Coupland, M.; Cuffiani, M.; Dado, S.; Dallavalle, G.M.; De Jong, S.; Del Pozo, L.A.; Deng, H.; Dieckmann, A.; Dittmar, M.; Dixit, M.S.; Do Couto e Silva, E.; Duboscq, J.E.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Dumas, D.J.P.; Elcombe, P.A.; Estabrooks, P.G.; Etzion, E.; Evans, H.G.; Fabbri, F.; Fabbro, B.; Fierro, M.; Fincke-; OPAL Collaboration

    1994-02-01

    Using the distance from the average primary vertex to reconstructed secondary vertices in jets, samples of events with b purity varying from about 13% to 89% have been selected. The charged particle multiplicity in the hemispheres opposite those containing these jets has been studied as a function of the b purity of the events. Extrapolating to 0% and 100% b purity, values of the hemisphere charged particle multiplicity in Z[sup 0] [yields] b anti b events and in non-b anti b events have been measured to be anti n[sub b] = 11.71 [+-] 0.03 [+-] 0.18 [+-] 0.21, anti n[sub udsc] = 10.32 [+-] 0.01 [+-] 0.07 [+-] 0.19. The first error is statistical, the second systematic and the third is a common systematic error. The difference in charged particle multiplicity between b quark events and light (u, d, s) quark events has been measured and found to be [delta][sub bl] = 3.02 [+-] 0.05 [+-] 0.79. The result is compared to the predictions of MLLA QCD calculations. By studying the impact parameter distributions of charged particles in the hemispheres opposite these jets, the charged particle decay multiplicity of B hadrons from Z[sup 0] decay, including particles from K[sub s][sup 0] and [Lambda] decay, has been measured to be anti n[sup B] = 5.51 [+-] 0.05 [+-] 0.51. From the mean momentum of these decay products and separately from the number of primary charged particles per b event, the average x[sub E] of b flavoured hadrons has been measured to be left angle x[sub E] right angle [sub b] = 0.693 [+-] 0.003 [+-] 0.030. (orig.)

  11. Multistage charged particle accelerator, with high-vacuum insulation

    International Nuclear Information System (INIS)

    Holl, P.

    1976-01-01

    A multistage charged-particle accelerator for operating with accelerating voltages higher than 150 kV is described. The device consists essentially of a high-voltage insulator, a source for producing charged particles, a Wehnelt cylinder, an anode, and a post-accelerating tube containing stack-wise positioned post-accelerating electrodes. A high vacuum is used for insulating the parts carrying the high voltages, and at least one cylindrical screen surrounding these parts is interposed between them and the vacuum vessel, which can itself also function as a cylindrical screen

  12. Sources for charged particles; Les sources de particules chargees

    Energy Technology Data Exchange (ETDEWEB)

    Arianer, J.

    1997-09-01

    This document is a basic course on charged particle sources for post-graduate students and thematic schools on large facilities and accelerator physics. A simple but precise description of the creation and the emission of charged particles is presented. This course relies on every year upgraded reference documents. Following relevant topics are considered: electronic emission processes, technological and practical considerations on electron guns, positron sources, production of neutral atoms, ionization, plasma and discharge, different types of positive and negative ion sources, polarized particle sources, materials for the construction of ion sources, low energy beam production and transport. (N.T.).

  13. A facility for low energy charged particle induced reaction studies

    International Nuclear Information System (INIS)

    Vilaithong, T.; Singkarat, S.; Yu, L.D.; Intarasiri, S.; Tippawan, U.

    2000-01-01

    In Chiang Mai, a highly stable low energy ion accelerator (0 - 350 kV) facility is being established. A subnano-second pulsing system will be incorporated into the beam transport line. The detecting system will consist of a time-of-flight charged particle spectrometer and a high resolution gamma-ray system. The new facility will be used in the studies of low energy heavy ion backscattering and charged particle induced cross section measurement in the interests of material characterization and nucleosynthesis. (author)

  14. Charged-particle inclusive distributions from hadronic Z0 decays

    International Nuclear Information System (INIS)

    O'Shaughnessy, K.

    1990-05-01

    We have measured inclusive distributions for charged particles in hadronic decays of the Z boson. The variables chosen for study were the mean charged-particle multiplicity (left-angle n ch right-angle), scaled momentum (x), and momenta transverse to the sphericity axes (p perpendicular in and p perpendicular out ). The distributions have been corrected for detector effects and are compared with data from e + e - annihilation at lower energies and with the predictions of several QCD-based models. The data are in reasonable agreement with expectations. 12 refs., 2 figs

  15. Charged particles in external electromagnetic fields

    International Nuclear Information System (INIS)

    Giovannini, N.P.D.

    1976-01-01

    The present study contains a general theoretical group analysis of the problem of a charged massive particle moving in an (arbitrary) classical external electromagnetic field. This analysis is essentially based on the space-time symmetry properties of e.m. fields and e.m. field equations, as well as the fact that the considered equations of motion depend on the field via a potential

  16. Acceleration of low energy charged particles by gravitational waves

    OpenAIRE

    Voyatzis, G.; Vlahos, L.; Ichtiaroglou, S.; Papadopoulos, D.

    2005-01-01

    The acceleration of charged particles in the presence of a magnetic field and gravitational waves is under consideration. It is shown that the weak gravitational waves can cause the acceleration of low energy particles under appropriate conditions. Such conditions may be satisfied close to the source of the gravitational waves if the magnetized plasma is in a turbulent state.

  17. Silicon PIN diode array hybrids for charged particle detection

    International Nuclear Information System (INIS)

    Shapiro, S.L.; Dunwoodie, W.M.; Arens, J.F.; Jernigan, J.G.; Gaalema, S.

    1988-09-01

    We report on the design of silicon PIN diode array hybrids for use as charged particle detectors. A brief summary of the need for vertex detectors is presented. Circuitry, block diagrams and device specifications are included. 8 refs., 7 figs., 1 tab

  18. Charged particle density distributions in Au+ Au collisions at ...

    Indian Academy of Sciences (India)

    Charged particle pseudorapidity distributions have been measured in Au + Au collisions using the BRAHMS detector at RHIC. The results are presented as a function of the collision centrality and the center of mass energy. They are compared to the predictions of different parton scattering models and the important role of ...

  19. Single-sheet identification method of heavy charged particles using ...

    Indian Academy of Sciences (India)

    The theoretical and experimental investigations of the penetration of charged particles in matter played a very important role in the development of modern physics. Solid state nuclear track detectors have become one of the most important tools for many branches of science and technology. An attempt has been made to ...

  20. Comprehensive decay law for emission of charged particles and ...

    Indian Academy of Sciences (India)

    2014-04-07

    Apr 7, 2014 ... the case of alpha, cluster and proton decays are presented together. It is seen that, all of them fall in a single straight line with a common value for slope and intercept. This shows how the decays of charged particles of any Z values from heavy nuclei are governed by a single rule of law, namely, the linear ...

  1. Single-sheet identification method of heavy charged particles using ...

    Indian Academy of Sciences (India)

    of the single-sheet particle identification technique in CR-39 and CN-85 polycarbonate by plotting track cone length ... in neutron dosimetry, gamma and cosmic rays detection, heavy ion and nuclear physics and corpuscular ..... [13] R P Henke and E V Benton, Charged particle tracks in polymers: No. 5-A com- puter code for ...

  2. Light charged particle multiplicities in fusion and quasifission reactions

    Science.gov (United States)

    Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.; Lacroix, D.; Wieleczko, J. P.

    2018-01-01

    The light charged particle evaporation from the compound nucleus and from the complex fragments in the reactions 32S+100Mo, 121Sb+27Al, 40Ar+164Dy, and 40Ar+ nat Ag is studied within the dinuclear system model. The possibility to distinguish the reaction products from different reaction mechanisms is discussed.

  3. Charged particle-induced nuclear fission reactions – Progress and ...

    Indian Academy of Sciences (India)

    progress made in recent years and the prospects in the area of nuclear fission research will be the focus of this review. Keywords. Nuclear fission; charged particle-induced fission; heavy ions; fission angular distribu- tions; mass distributions; fission barrier; moment of inertia; shell effect in fission. PACS Nos 25.70.Jj; 25.85.

  4. Motion of Charged Particles in Electromagnetic Fields and Special ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 7. Motion of Charged Particles in Electromagnetic Fields and Special Theory of Relativity. P Chaitanya Das G Srinivasa Murthy P C Deshmukh K Satish Kumar T A Venkatesh. Classroom Volume 9 Issue 7 July 2004 pp 77-85 ...

  5. Quantum aspects of charged-particle beam optics

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sameen Ahmed, E-mail: rohelakhan@yahoo.com [Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, Sultanate of Oman (Oman)

    2016-06-10

    The classical treatments have been successful in designing numerous charged-particle devices. It is natural to develop a quantum prescription, since all systems are fundamentally quantum mechanical in nature. The quantum theory leads to new insights accompanied with wavelength-dependent contributions. The action of a magnetic quadrupole is derived from the Dirac equation.

  6. Simulations for the charged particle detector array at VECC

    International Nuclear Information System (INIS)

    Gupta, D. . dhruba@bosemain.boseinst.ac.in; Bhattacharya, S.; Mukherjee, G.; Bhattacharya, C.; Banerjee, K.; Ghosh, T.K.; Kundu, S.; Meena, J.K.; Rana, T.K.; Dey, A.

    2008-01-01

    The present work reports the simulations to study the response of the charged particle detector array (CPDA) at VECC. Here the simulations for 40 Ca + 40 Ca reaction at 50 MeV/A for one million events have been reported

  7. Indirect Charged Particle Detection: Concepts and a Classroom Demonstration

    Science.gov (United States)

    Childs, Nicholas B.; Horányi, Mihály; Collette, Andrew

    2013-01-01

    We describe the principles of macroscopic charged particle detection in the laboratory and their connections to concepts taught in the physics classroom. Electrostatic dust accelerator systems, capable of launching charged dust grains at hypervelocities (1-100 km/s), are a critical tool for space exploration. Dust grains in space typically have…

  8. Charged particle density distributions in Au + Au collisions at ...

    Indian Academy of Sciences (India)

    Charged particle pseudorapidity distributions have been measured in Au + Au collisions using the BRAHMS detector at RHIC. The results are presented as a function of the collision centrality and the center of mass energy. They are compared to the predictions of different parton scattering models and the important role of ...

  9. Measurement of Charged Particle Spectra in Deep-Inelastic ep Scattering at HERA

    CERN Document Server

    Alexa, C.; Baghdasaryan, A.; Baghdasaryan, S.; Bartel, W.; Begzsuren, K.; Belousov, A.; Belov, P.; Boudry, V.; Bozovic-Jelisavcic, I.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Buniatyan, A.; Bylinkin, A.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Ceccopieri, F.; Cerny, K.; Chekelian, V.; Contreras, J.G.; Cvach, J.; Dainton, J.B.; Daum, K.; De Wolf, E.A.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dossanov, A.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Habib, S.; Haidt, D.; Henderson, R.C.W.; Hennekemper, E.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hladky, J.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jonsson, L.; Jung, H.; Kapichine, M.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kogler, R.; Kostka, P.; Kramer, M.; Kretzschmar, J.; Kruger, K.; Landon, M.P.J.; Lange, W.; Laycock, P.; Lebedev, A.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Lopez-Fernandez, R.; Lubimov, V.; Malinovski, E.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Morozov, A.; Morris, J.V.; Muller, K.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikitin, D.; Nowak, G.; Nowak, K.; Olsson, J.E.; Ozerov, D.; Pahl, P.; Palichik, V.; Pandurovic, M.; Pascaud, C.; Patel, G.D.; Perez, E.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shushkevich, S.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sykora, T.; Thompson, P.D.; Traynor, D.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; Wegener, D.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zlebcik, R.; Zohrabyan, H.; Zomer, F.

    2013-04-20

    Charged particle production in deep-inelastic ep scattering is measured with the H1 detector at HERA. The kinematic range of the analysis covers low photon virtualities, 5 < Q^2 < 100 GeV^2, and small values of Bjorken-x, 10^{-4} < x < 10^{-2}. The analysis is performed in the hadronic centre-of-mass system. The charged particle densities are measured as a function of pseudorapidity (eta^*) and transverse momentum (p_T^*) in the range 0< \\eta^* < 5 and 0< p_T^* < 10$ GeV differentially in x and Q^2. The data are compared to predictions from different Monte Carlo generators implementing various options for hadronisation and parton evolutions.

  10. Measurement of charged particle spectra in deep-inelastic ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (Russian Federation); Baghdasaryan, A. [Yerevan Physics Institute (Armenia)] [and others; Collaboration: H1 Collaboration

    2013-01-15

    Charged particle production in deep-inelastic ep scattering is measured with the H1 detector at HERA. The kinematic range of the analysis covers low photon virtualities, 5analysis is performed in the hadronic centre-of-mass system. The charged particle densities are measured as a function of pseudorapidity ({eta}{sup *}) and transverse momentum (p{sub T}{sup *}) in the range 0<{eta}{sup *}<5 and 0

  11. Measurement of charged particle spectra in deep-inelastic ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Alexa, C.; Dobre, M.; Rotaru, M.; Stoicea, G. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V.; Belousov, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Rusakov, S.; Vazdik, Y. [Lebedev Physical Institute, Moscow (Russian Federation); Baghdasaryan, A.; Baghdasaryan, S.; Zohrabyan, H. [Yerevan Physics Institute, Yerevan (Armenia); Bartel, W.; Belov, P.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Habib, S.; Haidt, D.; Kleinwort, C.; Kraemer, M.; Krueger, K.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Olsson, J.E.; Ozerov, D.; Pahl, P.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Radescu, V.; Schmitt, S.; Sefkow, F.; Shushkevich, S.; South, D.; Steder, M.; Wuensch, E. [DESY, Hamburg (Germany); Begzsuren, K.; Ravdandorj, T. [Institute of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Boudry, V.; Specka, A. [Ecole Polytechnique, CNRS/IN2P3, LLR, Palaiseau (France); Bozovic-Jelisavcic, I.; Pandurovic, M. [University of Belgrade, Vinca Institute of Nuclear Sciences, Belgrade (Serbia); Brandt, G. [Oxford University, Department of Physics, Oxford (United Kingdom); Brisson, V.; Jacquet, M.; Pascaud, C.; Zhang, Z.; Zomer, F. [Universite Paris-Sud, CNRS/IN2P3, LAL, Orsay (France); Buniatyan, A.; Huber, F.; Pirumov, H.; Sauter, M.; Schoening, A. [Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); Bylinkin, A.; Bystritskaya, L.; Fedotov, A.; Lubimov, V.; Rostovtsev, A.; Tseepeldorj, B. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E. [CINVESTAV, Departamento de Fisica Aplicada, Merida, Yucatan (Mexico); Ceccopieri, F.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Roosen, R.; Staykova, Z.; Mechelen, P.Van [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerpen (Belgium); Cerny, K.; Pokorny, B.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Zlebcik, R. [Charles University, Faculty of Mathematics and Physics, Praha (Czech Republic); Chekelian, V.; Grindhammer, G.; Kiesling, C. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Cvach, J.; Hladky and grave, J.; Reimer, P.; Zalesak, J. [Academy of Sciences of the Czech Republic, Institute of Physics, Praha (Czech Republic); Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D. [University of Liverpool, Department of Physics, Liverpool (United Kingdom); Daum, K.; Meyer, H. [Universitaet Wuppertal, Fachbereich C, Wuppertal (Germany); Diaconu, C.; Hoffmann, D.; Sauvan, E.; Vallee, C. [Aix-Marseille Univ, CNRS/IN2P3, CPPM, Marseille (France); Dodonov, V. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Dossanov, A. [Universitaet Hamburg, Institut fuer Experimentalphysik, Hamburg (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany); Egli, S.; Hildebrandt, M.; Horisberger, R. [Paul Scherrer Institut, Villigen (Switzerland); Feltesse, J.; Perez, E.; Schoeffel, L. [CE-Saclay, CEA, DSM/Irfu, Gif-sur-Yvette (France); Ferencei, J. [Slovak Academy of Sciences, Institute of Experimental Physics, Kosice (Slovakia); Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J. [Institute for Nuclear Physics, Cracow (Poland); Grab, C. [ETH, Institut fuer Teilchenphysik, Zuerich (Switzerland); Henderson, R.C.W. [University of Lancaster, Department of Physics, Lancaster (United Kingdom); Hennekemper, E.; Herbst, M.; Schultz-Coulon, H.C. [Universitaet Heidelberg, Kirchhoff-Institut fuer Physik, Heidelberg (Germany); Herrera, G.; Lopez-Fernandez, R. [CINVESTAV IPN, Departamento de Fisica, Mexico City (Mexico); Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T. [DESY, Zeuthen (Germany); Joensson, L. [University of Lund, Physics Department, Lund (Sweden); Jung, H. [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerpen (Belgium); DESY, Hamburg (Germany); Kapichine, M.; Morozov, A.; Nikitin, D.; Palichik, V.; Spaskov, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kogler, R.; Nowak, K. [Universitaet Hamburg, Institut fuer Experimentalphysik, Hamburg (Germany); Landon, M.P.J.; Rizvi, E.; Traynor, D. [Queen Mary, University of London, School of Physics and Astronomy, London (United Kingdom); Martyn, H.U. [I. Physikalisches Institut der RWTH, Aachen (Germany); Morris, J.V.; Sankey, D.P.C. [STFC, Rutherford Appleton Laboratory, Didcot, Oxfordshire (United Kingdom); Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P. [Physik-Institut der Universitaet Zuerich, Zuerich (Switzerland); Newman, P.R.; Thompson, P.D. [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Picuric, I.; Raicevic, N. [University of Montenegro, Faculty of Science, Podgorica (Montenegro); Soloviev, Y. [DESY, Hamburg (Germany); Lebedev Physical Institute, Moscow (Russian Federation); Stella, B. [Dipartimento di Fisica Universita di Roma Tre (Italy); INFN Roma 3, Roma (Italy); Sykora, T. [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerpen (Belgium); Charles University, Faculty of Mathematics and Physics, Praha (Czech Republic); Tsakov, I. [Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Wegener, D. [TU Dortmund, Institut fuer Physik, Dortmund (Germany); Collaboration: The H1 Collaboration

    2013-04-15

    Charged particle production in deep-inelastic ep scattering is measured with the H1 detector at HERA. The kinematic range of the analysis covers low photon virtualities, 5 < Q{sup 2} < 100 GeV{sup 2}, and small values of Bjorken-x, 10{sup -4} < x < 10{sup -2}. The analysis is performed in the hadronic centre-of-mass system. The charged particle densities are measured as a function of pseudorapidity ({eta}{sup *}) and transverse momentum (p{sub T}{sup *}) in the range 0<{eta}{sup *} < 5 and 0

  12. Charged-particle multiplicity at LHC energies

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    The talk presents the measurement of the pseudorapidity density and the multiplicity distribution with ALICE at the achieved LHC energies of 0.9 and 2.36 TeV.An overview about multiplicity measurements prior to LHC is given and the related theoretical concepts are briefly discussed.The analysis procedure is presented and the systematic uncertainties are detailed. The applied acceptance corrections and the treatment of diffraction are discussed.The results are compared with model predictions. The validity of KNO scaling in restricted phase space regions is revisited. 

  13. Exploratory study of nuclear reaction data utility framework of Japan charged particle reaction data group (JCPRG)

    Energy Technology Data Exchange (ETDEWEB)

    Masui, Hiroshi; Ohnishi, Akira; Kato, Kiyoshi [Hokkaido Univ., Graduate School of Science, Sapporo, Hokkaido (Japan); Ohbayasi, Yosihide [Hokkaido Univ., Meme Media Lab., Sapporo, Hokkaido (Japan); Aoyama, Shigeyoshi [Kitami Institute of Technology, Information Processing Center, Kitami, Hokkaido (Japan); Chiba, Masaki [Sapporo Gakuin Univ., Faculty of Social Information, Ebetsu, Hokkaido (Japan)

    2002-08-01

    Compilation, evaluation and dissemination are essential pieces of work for the nuclear data activities. We, Japan charged particle data group, have researched the utility framework for the nuclear reaction data on the basis of recent progress of computer and network technologies. These technologies will be not only for the data dissemination but for the compilation and evaluation assistance among the many corresponding researchers of all over the world. In this paper, current progress of our research and development is shown. (author)

  14. Exploratory study of nuclear reaction data utility framework of Japan charged particle reaction data group (JCPRG)

    International Nuclear Information System (INIS)

    Masui, Hiroshi; Ohnishi, Akira; Kato, Kiyoshi; Ohbayasi, Yosihide; Aoyama, Shigeyoshi; Chiba, Masaki

    2002-01-01

    Compilation, evaluation and dissemination are essential pieces of work for the nuclear data activities. We, Japan charged particle data group, have researched the utility framework for the nuclear reaction data on the basis of recent progress of computer and network technologies. These technologies will be not only for the data dissemination but for the compilation and evaluation assistance among the many corresponding researchers of all over the world. In this paper, current progress of our research and development is shown. (author)

  15. Charged Particle Optics in Circular Higgs Factory

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-02-26

    Similar to a super B-factory, a circular Higgs factory will require strong focusing systems near the interaction points and a low-emittance lattice in arcs to achieve a factory luminosity. At electron beam energy of 120 GeV, beamstrahlung effects during the collision pose an additional challenge to the collider design. In particular, a large momentum acceptance at 2 percent level is necessary to retain an adequate beam lifetime. This turns out to be the most challenging aspect in the design of circular Higgs factory. In this paper, an example will be provided to illustrate the beam dynamics in circular Higgs factory, emphasizing on the chromatic optics. Basic optical modules and advanced analysis will be presented. Most important, we will show that 2% momentum aperture is achievable

  16. Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation

    Energy Technology Data Exchange (ETDEWEB)

    Akhter, T.; Fedele, R. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Nicola, S. De [CNR-SPIN and INFN Sezione di Napoli, Napoli (Italy); Tanjia, F. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Jovanović, D. [Institute of Physics, University of Belgrade, Belgrade (Serbia); Mannan, A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2016-09-01

    The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.

  17. Charged Particle Identification for Prefragmentation Studies

    Science.gov (United States)

    Hu, Jonathan; MoNA Collaboration

    2017-09-01

    Projectile fragmentation refers to high energy (>50 MeV/u) heavy ion beams on production targets to generate intermediate mass and target fragments at facilities like the NSCL, FRIB, GSI, GANIL and RIKEN. The resulting secondary beams can then be isolated by fragment separators like the NCSL's A1900 and that secondary beam then used on reaction targets for a variety of experiments. Predictions of beam intensities for experiment planning depend on models and data. The MoNA Collaboration performed an experiment at the NSCL in which a 48Ca primary beam was used with a 9Be target to produce a 32Mg secondary beam with energy 86 MeV/u that was incident on a second target of 9Be. By characterizing the energy distributions of final fragments of neon, sodium, and fluorine in coincidence with neutrons created both by prefragmentation processes and reaction mechanisms, we are able to extract information about prefragmentation dynamics. The identification of charged fragments is a multi-step process crucial to this analysis. This work is supported by the National Science Foundation under Grant No. PHY-1613429.

  18. High-energy charged particle bursts in the near-Earth space as earthquake precursors

    Directory of Open Access Journals (Sweden)

    S. Yu. Aleksandrin

    Full Text Available The experimental data on high-energy charged particle fluxes, obtained in various near-Earth space experiments (MIR orbital station, METEOR-3, GAMMA and SAMPEX satellites were processed and analyzed with the goal to search for particle bursts. Particle bursts have been selected in every experiment considered. It was shown that the significant part of high-energy charged particle bursts correlates with seismic activity. Moreover, the particle bursts are observed several hours before strong earthquakes; L-shells of particle bursts and corresponding earthquakes are practically the same. Some features of a seismo-magnetosphere connection model, based on the interaction of electromagnetic emission of seismic origin and radiation belt particles, were considered.

    Key words. Ionospheric physics (energetic particles, trapped; energetic particles, precipitating; magnetosphere-ionosphere interactions

  19. High-energy charged particle bursts in the near-Earth space as earthquake precursors

    Directory of Open Access Journals (Sweden)

    S. Yu. Aleksandrin

    2003-02-01

    Full Text Available The experimental data on high-energy charged particle fluxes, obtained in various near-Earth space experiments (MIR orbital station, METEOR-3, GAMMA and SAMPEX satellites were processed and analyzed with the goal to search for particle bursts. Particle bursts have been selected in every experiment considered. It was shown that the significant part of high-energy charged particle bursts correlates with seismic activity. Moreover, the particle bursts are observed several hours before strong earthquakes; L-shells of particle bursts and corresponding earthquakes are practically the same. Some features of a seismo-magnetosphere connection model, based on the interaction of electromagnetic emission of seismic origin and radiation belt particles, were considered. Key words. Ionospheric physics (energetic particles, trapped; energetic particles, precipitating; magnetosphere-ionosphere interactions

  20. Preliminary study of the charged particle radiaton for th satellite power system

    International Nuclear Information System (INIS)

    Stassinopoulos, E.G.

    1978-01-01

    A preliminary radiation study was performed for the SPS project in order to determine the energetic charged particle environment for the three major phases of an SPS mission: the low earth orbit (LEO), the transfer ellipse (TE), and the synchronous geostationary trajectory (GEO). For that purpose, extensive calculations were performed and a large data base was generated, processeed, and analyzed. The external (surface incident) charged particle intensities, predicted for the SPS in each mission phase, were determined by orbital flux integration from the latest environment models. Magnetic field definitions for the three trajectories were obtained from a current field model. Spatial and temporal variations or conditions were considered and accounted for, where possible. Limited shielding and dose evaluations were performed for a simple geometry. The results of this analysis are presented in tabular and graphical form

  1. Detection of charged particles with a methylammonium lead tribromide perovskite single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qiang [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Wei, Haotong; Wei, Wei [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States); Chuirazzi, William; DeSantis, Dylan [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Huang, Jinsong, E-mail: jhuang2@unl.edu [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States); Cao, Lei, E-mail: cao.152@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)

    2017-03-11

    Methylammonium lead tribromide (MAPbBr{sub 3}) perovskite crystals have attracted significant attention due to their attractive performance in various optoelectronic applications such as solar cells, light-emitting devices, photodetectors, and recently in X-ray detectors. In this study, we demonstrate a possible use of perovskite-based devices for detection of charged particles (which can be applied in basic scientific research, health physics, and environmental analysis) and investigate the mechanism of fundamental charge transport inside perovskite crystals. It was found that inexpensive MAPbBr{sub 3} single crystals could be used for measuring the energy spectrum of charged particles through direct collection of the produced charge. After fitting the plot of the centroid peak position versus voltage with the Hecht equation for single-polarity charge transport, the obtained hole mobility-lifetime product was in the range of (0.4–1.6)×10{sup −3} cm{sup 2}/V.

  2. Effective-range function methods for charged particle collisions

    Science.gov (United States)

    Gaspard, David; Sparenberg, Jean-Marc

    2018-04-01

    Different versions of the effective-range function method for charged particle collisions are studied and compared. In addition, a novel derivation of the standard effective-range function is presented from the analysis of Coulomb wave functions in the complex plane of the energy. The recently proposed effective-range function denoted as Δℓ [Ramírez Suárez and Sparenberg, Phys. Rev. C 96, 034601 (2017), 10.1103/PhysRevC.96.034601] and an earlier variant [Hamilton et al., Nucl. Phys. B 60, 443 (1973), 10.1016/0550-3213(73)90193-4] are related to the standard function. The potential interest of Δℓ for the study of low-energy cross sections and weakly bound states is discussed in the framework of the proton-proton S10 collision. The resonant state of the proton-proton collision is successfully computed from the extrapolation of Δℓ instead of the standard function. It is shown that interpolating Δℓ can lead to useful extrapolation to negative energies, provided scattering data are known below one nuclear Rydberg energy (12.5 keV for the proton-proton system). This property is due to the connection between Δℓ and the effective-range function by Hamilton et al. that is discussed in detail. Nevertheless, such extrapolations to negative energies should be used with caution because Δℓ is not analytic at zero energy. The expected analytic properties of the main functions are verified in the complex energy plane by graphical color-based representations.

  3. Microstructure evolution of recrystallized Zircaloy-4 under charged particles irradiation

    Science.gov (United States)

    Gaumé, M.; Onimus, F.; Dupuy, L.; Tissot, O.; Bachelet, C.; Mompiou, F.

    2017-11-01

    Recrystallized zirconium alloys are used as nuclear fuel cladding tubes of Pressurized Water Reactors. During operation, these alloys are submitted to fast neutron irradiation which leads to their in-reactor deformation and to a change of their mechanical properties. These phenomena are directly related to the microstructure evolution under irradiation and especially to the formation of -type dislocation loops. In the present work, the radiation damage evolution in recrystallized Zircaloy-4 has been studied using charged particles irradiation. The loop nucleation and growth kinetics, and also the helical climb of linear dislocations, were observed in-situ using a High Voltage Electron Microscope (HVEM) under 1 MeV electron irradiation at 673 and 723 K. In addition, 600 keV Zr+ ion irradiations were conducted at the same temperature. Transmission Electron Microscopy (TEM) characterizations have been performed after both types of irradiations, and show dislocation loops with a Burgers vector belonging to planes close to { 10 1 bar 0 } first order prismatic planes. The nature of the loops has been characterized. Only interstitial dislocation loops have been observed after ion irradiation at 723 K. However, after electron irradiation conducted at 673 and 723 K, both interstitial and vacancy loops were observed, the proportion of interstitial loops increasing as the temperature is increased. The loop growth kinetics analysis shows that as the temperature increases, the loop number density decreases and the loop growth rate tends to increase. An increase of the flux leads to an increase of the loop number density and a decrease of the loop growth rate. The results are compared to previous works and discussed in the light of point defects diffusion.

  4. Measurement of the charged-particle multiplicity in proton-proton collisions with the ALICE detector

    Energy Technology Data Exchange (ETDEWEB)

    Grosse-Oetringhaus, Jan Fiete

    2009-04-17

    This thesis has introduced the theoretical framework to describe multiple-particle production. The functioning of two event generators, Pythia and Phojet, as well as theoretical descriptions of the charged-particle multiplicity have been discussed. A summary of pseudorapidity-density (dN{sub ch}/d{eta}) and multiplicity-distribution measurements of charged particles has been presented. Existing results have been shown in an energy range of {radical}(s) = 6GeV to 1.8TeV from bubble chamber experiments and detectors at the ISR, Sp anti pS, and Tevatron. The validity of the introduced models was reviewed and the behavior as function of {radical}(s) was discussed. Analysis procedures for two basic measurements with ALICE, the pseudorapidity density and the multiplicity distribution of charged particles, have been developed. The former allows corrections on a bin-by-bin basis, while the latter requires unfolding of the measured distribution. The procedures have been developed for two independent subdetectors of ALICE, the Silicon Pixel Detector (SPD) and the Time-Projection Chamber (TPC). This allows the comparison of the analysis result in the overlapping regions as an independent cross-check of the measured distribution. Their implementation successfully reproduces different assumed spectra. The procedures have been extensively tested on simulated data using two different event generators, Pythia and Phojet. A comprehensive list of systematic uncertainties was evaluated. Some of these uncertainties still require measured data to verify or extract their magnitude. (orig.)

  5. Measurement of the charged-particle multiplicity in proton-proton collisions with the ALICE detector

    International Nuclear Information System (INIS)

    Grosse-Oetringhaus, Jan Fiete

    2009-01-01

    This thesis has introduced the theoretical framework to describe multiple-particle production. The functioning of two event generators, Pythia and Phojet, as well as theoretical descriptions of the charged-particle multiplicity have been discussed. A summary of pseudorapidity-density (dN ch /dη) and multiplicity-distribution measurements of charged particles has been presented. Existing results have been shown in an energy range of √(s) = 6GeV to 1.8TeV from bubble chamber experiments and detectors at the ISR, Sp anti pS, and Tevatron. The validity of the introduced models was reviewed and the behavior as function of √(s) was discussed. Analysis procedures for two basic measurements with ALICE, the pseudorapidity density and the multiplicity distribution of charged particles, have been developed. The former allows corrections on a bin-by-bin basis, while the latter requires unfolding of the measured distribution. The procedures have been developed for two independent subdetectors of ALICE, the Silicon Pixel Detector (SPD) and the Time-Projection Chamber (TPC). This allows the comparison of the analysis result in the overlapping regions as an independent cross-check of the measured distribution. Their implementation successfully reproduces different assumed spectra. The procedures have been extensively tested on simulated data using two different event generators, Pythia and Phojet. A comprehensive list of systematic uncertainties was evaluated. Some of these uncertainties still require measured data to verify or extract their magnitude. (orig.)

  6. Test results of modified electrical charged particle generator for application to fog dispersal

    Science.gov (United States)

    Frost, W.; Huang, K. H.

    1983-01-01

    Modifications to a charged particle generator for use in fog dispersal applications were made and additional testing carried out. The modified nozzle, however, did not work as planned, and reported results are the unmodified nozzle. The addition of a positive displacement pump to supply the liquid water was highly successful. Measurements of the generator output current were made with a cylindrical collector system as well as with the needle probe used in previous studies. Measurements with the cylindrical collector and the needle probe showed identical agreement within the variability of the experiment. A high-voltage prove was purchased, and measurements of the corona voltage as well as the voltage variation in the charged particle jet were made. Electric fields in the vertical direction on the order of 1,000,000 v/m were measured. The voltage distribution along the centerline of the jet was compared with the numerical solutions of the Poisson equation and showed very good agreement. Velocity measurements using a pitot tube were made. The resulting measurements were compared with theoretical and other reported experimental results. The measured data showed the appropriate trends and agreed well with reported results. Based on the measured current-to-mass ratio from the charged particle generator, a calculation of the average droplet size was made. Droplet sizes were estimated to range between 0.8 and 0.4 microns. Using measured data, an analysis of the height to which the droplet can be dispersed by the charged particle generator was made. Although the mathematical model is highly simplified, the results indicated that particles would achieve heights on the order of 80 m.

  7. Measurement of Reconstructed Charged Particle Multiplicities of Neutrino Interactions in MicroBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Aleena [Kansas State Univ., Manhattan, KS (United States)

    2017-09-25

    Here, we compare the observed charged particle multiplicity distributions in the MicroBooNE liquid argon time projection chamber from neutrino interactions in a restricted final state phase space to predictions of this distribution from several GENIE models. The measurement uses a data sample consisting of neutrino interactions with a final state muon candidate fully contained within the MicroBooNE detector. These data were collected in 2015-2016 with the Fermilab Booster Neutrino Beam (BNB), which has an average neutrino energy of 800 MeV, using an exposure corresponding to 5e19 protons-on-target. The analysis employs fully automatic event selection and charged particle track reconstruction and uses a data-driven technique to determine the contribution to each multiplicity bin from neutrino interactions and cosmic-induced backgrounds. The restricted phase space employed makes the measurement most sensitive to the higher-energy charged particles expected from primary neutrino-argon collisions and less sensitive to lower energy protons expected to be produced in final state interactions of collision products with the target argon nucleus.

  8. Introduction of Electrostatically Charged Particles into Metal Melts

    Science.gov (United States)

    Kudryashova, Olga; Vorozhtsov, Sergey; Stepkina, Maria; Khrustalev, Anton

    2017-12-01

    One of the possible methods to produce composite alloys with improved mechanical characteristics is the modification of metal melts using submicron- or nanosized particles. Different methods, like ultrasonic or vibration processing, have been used to introduce these particles into the metal melt. The introduction of particles into a metal melt is prevented by the poor wettability of the liquid metal. The present study explores the use of electrostatic charge for increasing the wettability of the particles and preventing their agglomeration. The wettability of electrostatically charged particles by the metal melt under the impact of ultrasound has been studied. The relationships between the impact time and the physical and chemical properties of the particles and the melt along with the characteristics of the acoustic radiation have been studied. It was experimentally demonstrated that the introduction of electrostatically charged particles into the metal melt reduces the porosity and the crystal grain size.

  9. Trapped charged particles a graduate textbook with problems and solutions

    CERN Document Server

    Madsen, Niels; Thompson, Richard C

    2016-01-01

    At Les Houches in January 2015, experts in the field of particle trapping came together to discuss the fundamental physics of traps and the different types of applications. This textbook collates the lectures delivered there; the Second Winter School on Physics with Trapped Charged Particles. Taken as a whole, the book gives an overview of why traps for charged particles are important, how they work, their special features and limitations, and their application in areas such as precision measurements, mass spectrometry, optical clocks, plasma physics, antihydrogen creation, quantum simulation and quantum information processing. Chapters from various world experts include those on the basic properties of Penning traps, RF traps and particle accelerators, as well as those covering important practical aspects such as vacuum systems, detection techniques, and different types of particle cooling including laser cooling. Finally, individual chapters deal with the different areas of application listed above. Each ...

  10. First- and second-order charged particle optics

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.L.; Servranckx, R.V.

    1984-07-01

    Since the invention of the alternating gradient principle there has been a rapid evolution of the mathematics and physics techniques applicable to charged particle optics. In this publication we derive a differential equation and a matrix algebra formalism valid to second-order to present the basic principles governing the design of charged particle beam transport systems. A notation first introduced by John Streib is used to convey the essential principles dictating the design of such beam transport systems. For example the momentum dispersion, the momentum resolution, and all second-order aberrations are expressed as simple integrals of the first-order trajectories (matrix elements) and of the magnetic field parameters (multipole components) characterizing the system. 16 references, 30 figures.

  11. Scattering and attenuation of electromagnetic waves by partly charged particles

    Science.gov (United States)

    Zhou, Jùn; Dou, X.; Xie, Li

    2018-02-01

    The scattering of electromagnetic waves (EMWs) by partly charged particles is investigated by Mie theory. For particles much smaller than the wavelength of EMW, the scattering properties are significantly affected by the net surface charges but are not affected by the location of charged area, and the extinction cross section and scattering cross section, as well as the signal attenuation due to charged particles, monotonously increase with the size of charged area and reach maximum when the particle is overall charged, as the surface charge densities is within several hundred μC/m2. Moreover, given the distribution of particle sizes a closer agreement between the theory and measurement of signal attenuation due to charged sand/dust storms can be achieved by taking the charges into consideration and assuming all particles have the same size of charged area and surface charge density in theory calculations.

  12. Charged Particle Diffusion in Isotropic Random Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, P.; Matthaeus, W. H.; Chuychai, P.; Parashar, T. N.; Chhiber, R. [Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Sonsrettee, W. [Faculty of Engineering and Technology, Panyapiwat Institute of Management, Nonthaburi 11120 (Thailand); Blasi, P. [INAF/Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5—I-50125 Firenze (Italy); Ruffolo, D. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Montgomery, D. [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Dmitruk, P. [Departamento de Física Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, 1428 Buenos Aires (Argentina); Wan, M. [Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055 (China)

    2017-03-10

    The investigation of the diffusive transport of charged particles in a turbulent magnetic field remains a subject of considerable interest. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here we consider the diffusion of charged particles in fully three-dimensional isotropic turbulent magnetic fields with no mean field, which may be pertinent to many astrophysical situations. We identify different ranges of particle energy depending upon the ratio of Larmor radius to the characteristic outer length scale of turbulence. Two different theoretical models are proposed to calculate the diffusion coefficient, each applicable to a distinct range of particle energies. The theoretical results are compared to those from computer simulations, showing good agreement.

  13. Arnold Diffusion of Charged Particles in ABC Magnetic Fields

    Science.gov (United States)

    Luque, Alejandro; Peralta-Salas, Daniel

    2017-06-01

    We prove the existence of diffusing solutions in the motion of a charged particle in the presence of ABC magnetic fields. The equations of motion are modeled by a 3DOF Hamiltonian system depending on two parameters. For small values of these parameters, we obtain a normally hyperbolic invariant manifold and we apply the so-called geometric methods for a priori unstable systems developed by A. Delshams, R. de la Llave and T.M. Seara. We characterize explicitly sufficient conditions for the existence of a transition chain of invariant tori having heteroclinic connections, thus obtaining global instability (Arnold diffusion). We also check the obtained conditions in a computer-assisted proof. ABC magnetic fields are the simplest force-free-type solutions of the magnetohydrodynamics equations with periodic boundary conditions, and can be considered as an elementary model for the motion of plasma-charged particles in a tokamak.

  14. Searches for Fractionally Charged Particles: What Should Be Done Next?

    Energy Technology Data Exchange (ETDEWEB)

    Perl, Martin L.; /SLAC

    2009-01-15

    Since the initial measurements of the electron charge a century ago, experimenters have faced the persistent question as to whether elementary particles exist that have charges that are fractional multiples of the electron charge. I concisely review the results of the last 50 years of searching for fractional charge particles with no confirmed positive results. I discuss the question of whether more searching is worthwhile?

  15. Transport of Charged Particles in Turbulent Magnetic Fields

    Science.gov (United States)

    Parashar, T.; Subedi, P.; Sonsrettee, W.; Blasi, P.; Ruffolo, D. J.; Matthaeus, W. H.; Montgomery, D.; Chuychai, P.; Dmitruk, P.; Wan, M.; Chhiber, R.

    2017-12-01

    Magnetic fields permeate the Universe. They are found in planets, stars, galaxies, and the intergalactic medium. The magnetic field found in these astrophysical systems are usually chaotic, disordered, and turbulent. The investigation of the transport of cosmic rays in magnetic turbulence is a subject of considerable interest. One of the important aspects of cosmic ray transport is to understand their diffusive behavior and to calculate the diffusion coefficient in the presence of these turbulent fields. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here, we will particularly focus on calculating diffusion coefficients of charged particles and magnetic field lines in a fully three-dimensional isotropic turbulent magnetic field with no mean field, which may be pertinent to many astrophysical situations. For charged particles in isotropic turbulence we identify different ranges of particle energy depending upon the ratio of the Larmor radius of the charged particle to the characteristic outer length scale of the turbulence. Different theoretical models are proposed to calculate the diffusion coefficient, each applicable to a distinct range of particle energies. The theoretical ideas are tested against results of detailed numerical experiments using Monte-Carlo simulations of particle propagation in stochastic magnetic fields. We also discuss two different methods of generating random magnetic field to study charged particle propagation using numerical simulation. One method is the usual way of generating random fields with a specified power law in wavenumber space, using Gaussian random variables. Turbulence, however, is non-Gaussian, with variability that comes in bursts called intermittency. We therefore devise a way to generate synthetic intermittent fields which have many properties of realistic turbulence. Possible applications of such synthetically generated intermittent fields are

  16. Behavior of charged particles in lower ionosphere with acoustical effects

    International Nuclear Information System (INIS)

    Devyaterikov, I.A.; Ivanov, Y.A.; Koslov, S.I.; Kudryavtsev, V.P.

    1984-10-01

    The behavior of charged particles (electrons and positive and negative ions) in the D-region during the passage of weak shock and acoustic waves was studied. It is shown that under such conditions the photochemical equilibrium can be disrupted in the lower part of the D-region, which results in a condition under which the electron density does not follow the variations of neutral gas density

  17. Laser focusing of high-energy charged-particle beams

    International Nuclear Information System (INIS)

    Channell, P.J.

    1986-01-01

    It is shown that laser focusing of high-energy charged-particle beams using the inverse Cherenkov effect is well suited for applications with large linear colliders. Very high gradient (>0.5 MG/cm) lenses result that can be added sequentially without AG cancellation. These lenses are swell understood, have small geometric aberrations, and offer the possibility of correlating phase and energy aberrations to produce an achromatic final focus

  18. Electromagnetic energy and momentum from a charged particle

    International Nuclear Information System (INIS)

    Marx, E.

    1975-01-01

    The flux of the stress-energy tensor across a tube surrounding the world line of a charged particle is computed. By slight modifications of the definition of the Coulomb energy-momentum, the resulting expression contains the radiation reaction term (proportional to the square of the four-acceleration) but not the Schott term (proportional to the derivative of the acceleration). The equation of motion for the particle derived from this expression implies a variable rest mass. (author)

  19. Sausage mode of a pinched charged particle beam

    International Nuclear Information System (INIS)

    Lee, E.P.

    1981-01-01

    The axisymmetric oscillations of a self-pinched charged particle beam are analyzed using a dispersion relation derived from a 3/2 dimensional model. This calculation includes the effects of rounded profiles, finite conductivity, a steady return current, and phase mix damping among particle orbits. However, only the lowest order radial mode of distortion is treated, and this is done in an approximate fashion

  20. Canonical algorithms for numerical integration of charged particle motion equations

    Science.gov (United States)

    Efimov, I. N.; Morozov, E. A.; Morozova, A. R.

    2017-02-01

    A technique for numerically integrating the equation of charged particle motion in a magnetic field is considered. It is based on the canonical transformations of the phase space in Hamiltonian mechanics. The canonical transformations make the integration process stable against counting error accumulation. The integration algorithms contain a minimum possible amount of arithmetics and can be used to design accelerators and devices of electron and ion optics.

  1. Physical properties of charged particle beams for use in radiotherapy

    International Nuclear Information System (INIS)

    Knapp, E.A.

    1975-01-01

    The physical properties of the possible charged particle beams used for cancer radiotherapy are reviewed. Each property is discussed for all interesting particles (π, p, α, Ne ion) and the differences are emphasized. This is followed by a short discussion of the several beam delivery systems used in particle therapy today, emphasizing the differences in the problems for the several different radiations, particularly the differences between the accelerated particle beams and those of a secondary nature. Dose calculation techniques are described

  2. Motions of charged particles in Goedel-type spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, Bartolomeu D.B. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1996-10-01

    Goedel-type spacetimes in Hehl`s non propagating torsion theory are reconsidered by supposing that the curvature source is a Weyssenhoff-Raab fluid and an electromagnetic field. The electromagnetic field implies space time homogeneity and admits a dual interpretation. From the trajectories of the test particles, it is shown that there is a class of such spacetimes for which charged particles can reach regions inaccessible to neutral particles or even photons. (author). 21 refs., 1 fig.

  3. Bibliography of integral charged-particle nuclear data

    International Nuclear Information System (INIS)

    Burrows, T.W.; Wyant, G.

    1981-03-01

    This publication is the first supplement to the archival edition of the National Nuclear Data Center's charged-particle bibliography. This supplement contains citations to all references scanned since March 15, 1980, and all corrections and additions to previous citations, and indexes all data received in the international exchanged format (EXFOR). The primary goal of the bibliography has been to satisfy the need expressed by the Nuclear Reaction Data Center Network for a concise and comprehensive bibliography of integral charged-particle cross section data and to provide an index of data exchanged among the members. As a result of a recommendation by the recent Workshop on Intense High Energy Neutron Source and Their Characteristics, we have also undertaken to expand the coverage of charged-particle-induced neutron-source reactions to include differential data. This supplement is divided into two sections, References and Isotope Production. The References section contains all references satisfying the criteria noted. The Isotope Production section contains an abbreviated reference line for all entries which contain information on a definite residual nucleus, on particle production, or on mass, charge, or isotopic distributions. Entries in the References section are sequentially numbered. These sequence numbers serve as a link between the two sections

  4. Experimental central nervous system injury after charged-particle irradiation

    International Nuclear Information System (INIS)

    Rodriguez, A.; Levy, R.P.; Fabrikant, J.I.

    1991-01-01

    This paper reports on the development of definite paralytic signs, used as an endpoint for the determination of latent periods, which reflect the presence of damage but do not reveal its pathologic characteristics. Paralysis was a nonstochastic effect for which both the probability and severity vary with dose and for which a threshold of dose-response existed. Histologically the primary lesion induced by both charged-particle irradiation and X- or γ-radiation was demyelination and necrosis of the white matter. This has been attributed generally to damage to the oligodendrocytes. The spinal cord tolerance toward fractionated helium radiation was similar to X- or γ-radiation, but the spinal cord was much more sensitive to heavier charged-particle radiation. There was much less sparing and decreased tissue tolerance in the high-LET spread Bragg peak regions of carbon- and neon-ion beams that in the plateau regions. A radiologic model for effects in CNS after charged-particle radiation indicated that the α/β values, a measure of tissue repair capacity, increased with LET as predicted. The α/β values for spinal cord injury with neon range from 2.52 to 12.0 depending on the LET; for helium, the α/β value was 1.52, similar to values for X rays

  5. Spatial distributions of charged particles in EAS with E0 = 1017 - 5 x 1019 eV

    International Nuclear Information System (INIS)

    Glushkov, A.V.; Pravdin, M.I.; Sleptsov, I.E.

    1997-01-01

    The spatial distribution functions (SDF) of charged particles in EAS detected at the Yakutsk array in 1974-1995 are presented. The most reliable data are used for analysis. A method is developed for determination the densities near the detector operation threshold. The method more than two times to increase the range of measurements of the mean SDF with energies ≤ 10 18 eV. It is shown that at E 0 ≥ 5 x 10 18 eV the charged particle SDF become essentially other than in the range of EAS less energies

  6. Activation analysis in Greece

    International Nuclear Information System (INIS)

    Grimanis, A.P.

    1985-01-01

    A review of research and development on NAA as well as examples of applications of this method are presented, taken from work carried out over the last 21 years at the Radioanalytical Laboratory of the Department of Chemistry in the Greek Nuclear Research Center ''Demokritos''. Improved and faster radiochemical NAA methods have been developed for the determination of Au, Ni, Cl, As, Cu, U, Cr, Eu, Hg and Mo in several materials, for the simultaneous determination of Br and I; Mg, Sr and Ni; As and Cu; As, Sb and Hg; Mn, Sr and Ba; Cd and Zn; Se and As; Mo and Cr in biological materials. Instrumental NAA methods have also been developed for the determination of Ag, Cl and Na in lake waters, Al, Ca, Mg and V in wines, 7 trace elements in biological materials, 17 trace elements in sediments and 20 minor and trace elements in ceramics. A comprehensive computer program for routine activation analysis using Ge(Li) detectors have been worked out. A rather extended charged-particle activation analysis program is carried out for the last 10 years, including particle induced X-ray emission (PIXE) analysis, particle induced prompt gamma-ray emission analysis (PIGE), other nuclear reactions and proton activation analysis. A special neutron activation method, the delayed fission neutron counting method is used for the analysis of fissionable elements, as U, Th, Pu, in samples of the whole nuclear fuel cycle including geological, enriched and nuclear safeguards samples

  7. Charged particle beam monitoring by means of synchrotron radiation

    International Nuclear Information System (INIS)

    Panasyuk, V.S.; Anevskij, S.I.

    1984-01-01

    Optical methods for monitoring the number of accelerated electrons and electron energy by means of beam synchrotron radiation (SR) as well as peculiarities of SR characteristics of beams with a small radius of the orbit are considered. Optical methods for charged particle beam monitoring are shown to ensure operative and precise monitoring the number of particles and particle energy. SR sources with large axial dimensions of an electron beam have specific spectral angular and polarization characteristics. If electron angular distribution at deflection from the median plane is noticeably wider than angular distribution of SR of a certain electron, relative SR characteristics of these soUrces are calculated with high accuracy

  8. Inclusive photoproduction of single charged particles at high p T

    Science.gov (United States)

    Apsimon, R. J.; Atkinson, M.; Baake, M.; Bagdasarian, L. S.; Barberis, D.; Brodbeck, T. J.; Brook, N.; Charity, T.; Clegg, A. B.; Coyle, P.; Danaher, S.; Danagulian, S.; Davenport, M.; Dickinson, B.; Diekmann, B.; Donnachie, A.; Doyle, A. T.; Eades, J.; Ellison, R. J.; Flower, P. S.; Foster, J. M.; Galbraith, W.; Galumian, P. I.; Gapp, C.; Gebert, F.; Hallewell, G.; Heinloth, K.; Henderson, R. C. W.; Hickman, M. T.; Hoeger, C.; Holzkamp, S.; Hughes-Jones, R. E.; Ibbotson, M.; Jakob, H. P.; Joseph, D.; Keemer, N. R.; Kingler, J.; Koersgen, G.; Kolya, S. D.; Lafferty, G. D.; McCann, H.; McClatchey, R.; McManus, C.; Mercer, D.; Morris, J. A. G.; Morris, J. V.; Newton, D.; O'Connor, A.; Oedingen, R.; Oganesian, A. G.; Ottewell, P. J.; Paterson, C. N.; Paul, E.; Reid, D.; Rotscheidt, H.; Sharp, P. H.; Soeldner-Rembold, S.; Thacker, N. A.; Thompson, L.; Thompson, R. J.; Voigtlaender-Tetzner, A.; Waterhouse, J.; Weigend, A. S.; Wilson, G. W.

    1989-03-01

    Single charged-particle inclusive cross sections for photon, pion and kaon beams on hydrogen at the CERN-SPS are presented as functions of p T and x F . Data cover the range 0.01.6 GeV/c for the photon-induced data. Using the hadron-induced data to estimate the hadronic behaviour of the photon, the difference distributions and ratios of cross sections are a measure of the contribution of the point-like photon interactions. The data are compared with QCD calculations and show broadly similar features.

  9. Explicit K-symplectic algorithms for charged particle dynamics

    International Nuclear Information System (INIS)

    He, Yang; Zhou, Zhaoqi; Sun, Yajuan; Liu, Jian; Qin, Hong

    2017-01-01

    We study the Lorentz force equation of charged particle dynamics by considering its K-symplectic structure. As the Hamiltonian of the system can be decomposed as four parts, we are able to construct the numerical methods that preserve the K-symplectic structure based on Hamiltonian splitting technique. The newly derived numerical methods are explicit, and are shown in numerical experiments to be stable over long-term simulation. The error convergency as well as the long term energy conservation of the numerical solutions is also analyzed by means of the Darboux transformation.

  10. Perturbative approach to the mode dispersion in charged particle bilayers

    CERN Document Server

    Ballester, D; Tkachenko, I M; Zhang, H

    2003-01-01

    Earlier theoretical and computer studies on the dynamics of strongly coupled charged particle bilayers have revealed the existence of an energy gap (omega(k = 0) not = 0, optical behaviour) for the out-of-phase plasmon. This is in contrast to the correlationless RPA prediction of acoustic (omega approx k) behaviour. We have studied the question whether a classical perturbation calculation for weak coupling shows the onset of the energy gap, and whether there is a minimal coupling threshold for the formation of the gap. A formally exact lowest order expansion technique due to Zhang and Kalman (1992 Phys. Rev. A 45 5935) has been used.

  11. Scattering of Non-Relativistic Charged Particles by Electromagnetic Radiation

    Science.gov (United States)

    Apostol, M.

    2017-11-01

    The cross-section is computed for non-relativistic charged particles (like electrons and ions) scattered by electromagnetic radiation confined to a finite region (like the focal region of optical laser beams). The cross-section exhibits maxima at scattering angles given by the energy and momentum conservation in multi-photon absorption or emission processes. For convenience, a potential scattering is included and a comparison is made with the well-known Kroll-Watson scattering formula. The scattering process addressed in this paper is distinct from the process dealt with in previous studies, where the scattering is immersed in the radiation field.

  12. Motion of charged particles in a knotted electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Arrayas, M; Trueba, J L, E-mail: joseluis.trueba@urjc.e [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain)

    2010-06-11

    In this paper we consider the classical relativistic motion of charged particles in a knotted electromagnetic field. After reviewing how to construct electromagnetic knots from maps between the three-sphere and the two-sphere, we introduce a mean quadratic radius of the energy density distribution in order to study some properties of this field. We study the classical relativistic motion of electrons in the electromagnetic field of the Hopf map, and compute their trajectories. It is observed that these electrons initially at rest are strongly accelerated by the electromagnetic force, becoming ultrarelativistic in a period of time that depends on the knot energy and size.

  13. On asymptotics of transient motions of charged particles gas

    International Nuclear Information System (INIS)

    Naumov, N.D.

    1999-01-01

    Problem on extended of inhomogeneous bunch of rotating charged particles under the effect of space discharge is being solved. Two variants of particle rotation within spherical bunch are studied. In case of the first variant the ordered motion of particles occurs along the meridional direction only. Self-simulation approach of gas dynamics equation is obtained for this model. The second variant corresponds to the disordered rotation of particles within spherical bunch. In this case, the Vlasov equation should be solved. It is shown that in the course of the time the bunch is extended at the self-modeling mode [ru

  14. DART: a simulation code for charged particle beams

    International Nuclear Information System (INIS)

    White, R.C.; Barr, W.L.; Moir, R.W.

    1988-01-01

    This paper presents a recently modified verion of the 2-D DART code designed to simulate the behavior of a beam of charged particles whose paths are affected by electric and magnetic fields. This code was originally used to design laboratory-scale and full-scale beam direct converters. Since then, its utility has been expanded to allow more general applications. The simulation technique includes space charge, secondary electron effects, and neutral gas ionization. Calculations of electrode placement and energy conversion efficiency are described. Basic operation procedures are given including sample input files and output. 7 refs., 18 figs

  15. Energy loss of charged particles to molecular gas targets

    International Nuclear Information System (INIS)

    Sigmund, P.

    1976-01-01

    The energy loss spectrum of fast charged particles penetrating a dilute molecular gas target has been analysed theoretically, with a homogeneous gas mixture in the state of complete dissociation as a reference standard. It is shown that the geometrical structure of molecules causes the energy-loss straggling and higher moments over the energy-loss spectrum to be greater than the corresponding quantities for a completely dissociated gas of equal composition. Such deviations from additivity are shown to be most pronounced at energies around the stopping-power maximum. There is found supporting evidence in the experimental literature. (Auth.)

  16. 'DIAMANT': A 4 π light charged particle detector array

    International Nuclear Information System (INIS)

    Scheurer, J.N.; Aleonard, M.M.; Barreau, G.; Bourgine, F.; Chemin, J.F.; Doan, T.P.; Sellam, D.

    1993-01-01

    4π γ-spectrometers allow precise determination of weak transitions. A 4π light charged particle detector array of 54 detectors called DIAMANT is described as applied for triggering γ-spectrometers. The multidetector system allows channel selection, increases the sensitivity of the spectrometer, and can give additional information on the exit channel and the path leading to the final nucleus studied by its γ emission. The characteristics and first measured performance of the DIAMANT multidetector array are presented. (R.P.) 2 refs

  17. Electrostatic plasma lens for focusing negatively charged particle beams.

    Science.gov (United States)

    Goncharov, A A; Dobrovolskiy, A M; Dunets, S M; Litovko, I V; Gushenets, V I; Oks, E M

    2012-02-01

    We describe the current status of ongoing research and development of the electrostatic plasma lens for focusing and manipulating intense negatively charged particle beams, electrons, and negative ions. The physical principle of this kind of plasma lens is based on magnetic isolation electrons providing creation of a dynamical positive space charge cloud in shortly restricted volume propagating beam. Here, the new results of experimental investigations and computer simulations of wide-aperture, intense electron beam focusing by plasma lens with positive space charge cloud produced due to the cylindrical anode layer accelerator creating a positive ion stream towards an axis system is presented.

  18. 14. conference on accelerators of charged particles. Annotations of reports

    International Nuclear Information System (INIS)

    1994-01-01

    Annotations of reports made at the 14 Conference on accelerators of charged particles are presented. The Conference took place 25 - 27 October, 1994 in IHEP, Protvino. Modern trends of development of cyclic and linear accelerators, as well as heavy ion accelerators and colliders have been discussed. Problems of developing accelerators on superhigh energy have been considered. Considerable attention has been paid to accelerating structures, power SHF equipment, beam monitoring systems as well as magnetic and vacuum systems of accelerators. Beam dynamics in accelerators and storage has been considered and new acceleration technique have been proposed. Utilization of accelerators for medicine and other applied purposes has been discussed

  19. Charged particles transport in one-dimensional finite systems

    International Nuclear Information System (INIS)

    Muthukrishnan, G.; Santhanam, K.; Gopinath, D.V.

    1977-01-01

    A semi-analytical technique for the charged particle transport in one-dimensional finite media is developed which can be applied to multi-energy multi-region systems with arbitrary degree of anisotropy in scattering. For this purpose the transport equation is cast in the form of coupled integral equations separating spatial and energy-angle transmission. The spatial transmission is evaluated using discrete ordinate representation in space, energy and direction cosine for the particle source and flux. The collision integral is evaluated using discrete ordinate representation in energy and legendre polynomial approximation in the direction cosine. A computer code based on the above formulation is described

  20. Cataractogenic effects of heavy charged particles in mice

    International Nuclear Information System (INIS)

    Ainsworth, E.J.; Jose, J.G.; Yang, V.V.; Barker, M.E.

    1980-01-01

    The effects of heavy charged particles on the crystalline lens of the eye of mice are important because this tissue has proven susceptible to other forms of high-LET radiation. This report summarizes the results currently available from a prospectively designed study to explore the LET dependence of the cataractogenic process. The present results are consistent with a high cataractogenic effect at 100 keV/μm, because plateau argon 40 ions, with an LET in this range, produce higher average cataracts scores at 9, 11 and 13 months than do carbon 12 or neon 20 ions. In the electron micrographs, significant changes were observed from the controls

  1. Electromagnetic radiation of charged particles in stochastic motion

    Science.gov (United States)

    Harko, Tiberiu; Mocanu, Gabriela

    2016-03-01

    The study of the Brownian motion of a charged particle in electric and magnetic fields has many important applications in plasma and heavy ions physics, as well as in astrophysics. In the present paper we consider the electromagnetic radiation properties of a charged non-relativistic particle in the presence of electric and magnetic fields, of an exterior non-electromagnetic potential, and of a friction and stochastic force, respectively. We describe the motion of the charged particle by a Langevin and generalized Langevin type stochastic differential equation. We investigate in detail the cases of the Brownian motion with or without memory in a constant electric field, in the presence of an external harmonic potential, and of a constant magnetic field. In all cases the corresponding Langevin equations are solved numerically, and a full description of the spectrum of the emitted radiation and of the physical properties of the motion is obtained. The power spectral density of the emitted power is also obtained for each case, and, for all considered oscillating systems, it shows the presence of peaks, corresponding to certain intervals of the frequency.

  2. Nonadiabatic interaction between a charged particle and an MHD pulse

    Directory of Open Access Journals (Sweden)

    Y. Kuramitsu

    2008-03-01

    Full Text Available Interaction between a magnetohydrodynamic~(MHD pulse and a charged particle is discussed both numerically and theoretically. Charged particles can be accelerated efficiently in the presence of spatially correlated MHD waves, such as short large amplitude magnetic structures, by successive mirror reflection (Fermi process. In order to understand this process, we study the reflection probability of particles by the MHD pulses, focusing on the adiabaticity on the particle motion. When the particle velocity is small (adiabatic regime, the probability that the particle is reflected by the MHD pulse is essentially determined only by the pitch angle, independent from the velocity. On the other hand, in the non-adiabatic regime, the reflection probability is inversely proportional to the square root of the normalized velocity. We discuss our numerical as well as analytical results of the interaction process with various pulse amplitude, pulse shape, and the pulse winding number. The reflection probability is universally represented as a power law function independent from above pulse properties.

  3. Reference Cross Sections for Charged-particle Monitor Reactions

    Science.gov (United States)

    Hermanne, A.; Ignatyuk, A. V.; Capote, R.; Carlson, B. V.; Engle, J. W.; Kellett, M. A.; Kibédi, T.; Kim, G.; Kondev, F. G.; Hussain, M.; Lebeda, O.; Luca, A.; Nagai, Y.; Naik, H.; Nichols, A. L.; Nortier, F. M.; Suryanarayana, S. V.; Takács, S.; Tárkányi, F. T.; Verpelli, M.

    2018-02-01

    Evaluated cross sections of beam-monitor reactions are expected to become the de-facto standard for cross-section measurements that are performed over a very broad energy range in accelerators in order to produce particular radionuclides for industrial and medical applications. The requirements for such data need to be addressed in a timely manner, and therefore an IAEA coordinated research project was launched in December 2012 to establish or improve the nuclear data required to characterise charged-particle monitor reactions. An international team was assembled to recommend more accurate cross-section data over a wide range of targets and projectiles, undertaken in conjunction with a limited number of measurements and more extensive evaluations of the decay data of specific radionuclides. Least-square evaluations of monitor-reaction cross sections including uncertainty quantification have been undertaken for charged-particle beams of protons, deuterons, 3He- and 4He-particles. Recommended beam monitor reaction data with their uncertainties are available at the IAEA-NDS medical portal http://www-nds.iaea.org/medical/monitor_reactions.html.

  4. Charged Particle Dynamics in a Magnetodisc-Field Structure

    Science.gov (United States)

    Guio, P.; O'Brien, W.; Achilleos, N. A.; Arridge, C. S.

    2016-12-01

    The Earth's internal magnetic field is to a good approximation dipolar, and charged particles from the magnetosphere, depending on their kinetic energy, pitch angle and distance can remain trapped in this field. The motion of such trapped particles is characterised by their bounce, drift and cyclotron (gyration) periods. High-energy electron and proton populations in the two radiation (van Allen) belts are such examples.At the gas giants, Jupiter and Saturn, the total magnetic field deviates from a dipolar configuration due to internal sources of plasma provided by the moons Io and Enceladus respectively. In addition, the rapid rotation of these planets (period of order 10h) plays a role in the development of a disk-like field structure near the equator where centrifugal force is dominant - a configuration referred to as a magnetodisc.We present results of numerical simulations of charged particle motion in such a magnetodisc field structure using particle tracing and the UCL Magnetodisc Model, and we use these simulations to characterise and quantify the differences between particle motion in magnetodisc and dipole fields.

  5. Measurement of neutron and charged particle fluxes toward earthquake prediction

    Science.gov (United States)

    Maksudov, Asatulla U.; Zufarov, Mars A.

    2017-12-01

    In this paper, we describe a possible method for predicting the earthquakes, which is based on simultaneous recording of the intensity of fluxes of neutrons and charged particles by detectors, commonly used in nuclear physics. These low-energy particles originate from radioactive nuclear processes in the Earth's crust. The variations in the particle flux intensity can be the precursor of the earthquake. A description is given of an electronic installation that records the fluxes of charged particles in the radial direction, which are a possible response to the accumulated tectonic stresses in the Earth's crust. The obtained results showed an increase in the intensity of the fluxes for 10 or more hours before the occurrence of the earthquake. The previous version of the installation was able to indicate for the possibility of an earthquake (Maksudov et al. in Instrum Exp Tech 58:130-131, 2015), but did not give information about the direction of the epicenter location. In this regard, the installation was modified by adding eight directional detectors. With the upgraded setup, we have received both the predictive signals, and signals determining the directions of the location of the forthcoming earthquake, starting 2-3 days before its origin.

  6. Charged-particle transport in one-dimensional systems

    International Nuclear Information System (INIS)

    Muthukrishnan, G.; Gopinath, D.V.

    1983-01-01

    A semianalytical technique to study the charged-particle transport in one-dimensional finite media is developed. For this purpose, the transport equation is written in the form of coupled integral equations, separating the spatial and energy-angle transmissions. Legendre polynomial representations for the source, flux, and scattering kernel are used to solve the equations. For evaluation of the spatial transmission, discrete ordinate representation in space, energy, and direction cosine is used for the particle and source flux. The integral equations are then solved by the fast iteration technique. The computer code CHASFIT, written on the basis of the above formulation, is described. The fast convergence of the iteration process which is characteristic of charged-particle transport is demonstrated. Convergence studies are carried out with a number of mesh points and polynomial approximations. The method is applied to study the depth-dose distributions due to 140-, 200-, 300-, 400-, 600-, and 740-MeV protons incident normally on a 30-cm-thick tissue slab. The values of the quality factor at the surface and at 5 cm depth, as well as the total average quality factor, are calculated. The results thus obtained are compared with those predicted by the Monte Carlo method. This method can also be applied to multienergy, multiregion systems with arbitrary degree of anisotropy

  7. Charged particle therapy--optimization, challenges and future directions.

    Science.gov (United States)

    Loeffler, Jay S; Durante, Marco

    2013-07-01

    The use of charged particle therapy to control tumours non-invasively offers advantages over conventional radiotherapy. Protons and heavy ions deposit energy far more selectively than X-rays, allowing a higher local control of the tumour, a lower probability of damage to healthy tissue, low risk of complications and the chance for a rapid recovery after therapy. Charged particles are also useful for treating tumours located in areas that surround tissues that are radiosensitive and in anatomical sites where surgical access is limited. Current trial outcomes indicate that accelerated ions can potentially replace surgery for radical cancer treatments, which might be beneficial as the success of surgical cancer treatments are largely dependent on the expertise and experience of the surgeon and the location of the tumour. However, to date, only a small number of controlled randomized clinical trials have made comparisons between particle therapy and X-rays. Therefore, although the potential advantages are clear and supported by data, the cost:benefit ratio remains controversial. Research in medical physics and radiobiology is focusing on reducing the costs and increasing the benefits of this treatment.

  8. Electromagnetic Weible Instability in Intense Charged Particle Beams with Large Energy Anisotropy

    International Nuclear Information System (INIS)

    Startsev, Edward A.; Davidson, Ronald C.

    2003-01-01

    In plasmas with strongly anisotropic distribution functions, collective instabilities may develop if there is sufficient coupling between the transverse and longitudinal degrees of freedom. Our previous numerical and theoretical studies of intense charged particle beams with large temperature anisotropy [E. A. Startsev, R. C. Davidson and H. Qin, PRSTAB, 6, 084401 (2003); Phys. Plasmas 9, 3138 (2002)] demonstrated that a fast, electrostatic, Harris-like instability develops, and saturates nonlinearly, for sufficiently large temperature anisotropy (T perpendi c ular b /T parallelb >> 1). The total distribution function after saturation, however, is still far from equipartitioned. In this paper the linearized Vlasov-Maxwell equations are used to investigate detailed properties of the transverse electromagnetic Weibel-type instability for a long charge bunch propagating through a cylindrical pipe of radius r w . The kinetic stability analysis is carried out for azimuthally symmetric perturbations about a two-temperature thermal equilibrium distribution in the smooth-focusing approximation. The most unstable modes are identified, and their eigenfrequencies, radial mode structure and instability thresholds are determined. The stability analysis shows that, although there is free energy available to drive the electromagnetic Weibel instability, the finite transverse geometry of the charged particle beam introduces a large threshold value for the temperature anisotropy ((T perpendi c ularb /T parallelb ) Weibel >> (T perpendi c ularb /T parallelb ) Harris ) below which the instability is absent. Hence, unlike the case of an electrically neutral plasma, the Weibel instability is not expected to play as significant a role in the process of energy isotropization of intense unneutralized charged particle beams as the electrostatic Harris-type instability

  9. Developing Antimatter Containment Technology: Modeling Charged Particle Oscillations in a Penning-Malmberg Trap

    Science.gov (United States)

    Chakrabarti, S.; Martin, J. J.; Pearson, J. B.; Lewis, R. A.

    2003-01-01

    The NASA MSFC Propulsion Research Center (PRC) is conducting a research activity examining the storage of low energy antiprotons. The High Performance Antiproton Trap (HiPAT) is an electromagnetic system (Penning-Malmberg design) consisting of a 4 Tesla superconductor, a high voltage confinement electrode system, and an ultra high vacuum test section; designed with an ultimate goal of maintaining charged particles with a half-life of 18 days. Currently, this system is being experimentally evaluated using normal matter ions which are cheap to produce and relatively easy to handle and provide a good indication of overall trap behavior, with the exception of assessing annihilation losses. Computational particle-in-cell plasma modeling using the XOOPIC code is supplementing the experiments. Differing electrode voltage configurations are employed to contain charged particles, typically using flat, modified flat and harmonic potential wells. Ion cloud oscillation frequencies are obtained experimentally by amplification of signals induced on the electrodes by the particle motions. XOOPIC simulations show that for given electrode voltage configurations, the calculated charged particle oscillation frequencies are close to experimental measurements. As a two-dimensional axisymmetric code, XOOPIC cannot model azimuthal plasma variations, such as those induced by radio-frequency (RF) modulation of the central quadrupole electrode in experiments designed to enhance ion cloud containment. However, XOOPIC can model analytically varying electric potential boundary conditions and particle velocity initial conditions. Application of these conditions produces ion cloud axial and radial oscillation frequency modes of interest in achieving the goal of optimizing HiPAT for reliable containment of antiprotons.

  10. A study of charged particle multiplicities in hadronic decays of the Z sup 0

    Energy Technology Data Exchange (ETDEWEB)

    Acton, P.D.; Alexander, G.; Allison, J.; Allport, P.P.; Anderson, K.J.; Arcelli, S.; Ashton, P.; Astbury, A.; Axen, D.; Azuelos, G.; Bahan, G.A.; Baines, J.T.M.; Ball, A.H.; Banks, J.; Barker, G.J.; Barlow, R.J.; Batley, J.R.; Beaudoin, G.; Beck, A.; Becker, J.; Behnke, T.; Bell, K.W.; Bella, G.; Berlich, P.; Bethke, S.; Biebel, O.; Binder, U.; Bloodworth, I.J.; Bock, P.; Boden, B.; Bosch, H.M.; Bougerolle, S.; Brabson, B.B.; Breuker, H.; Brown, R.M.; Brun, R.; Buijs, A.; Burckhart, H.J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Clarke, P.E.L.; Cohen, I.; Collins, W.J.; Conboy, J.E.; Cooper, M.; Couch, M.; Coupland, M.; Cuffiani, M.; Dado, S.; Dallavalle, G.M.; Jong, S. de; Debu, P.; Del Pozo, L.A.; Deninno, M.M.; Dieckmann, A.; Dittmar, M.; Dixit, M.S.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Dumas, D.J.P.; Eckerlin, G.; Elcombe, P.A.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fincke-Keeler, M.; Fischer, H.M.; Fong, D.G.; Fukunaga, C.; OPAL Collaboration

    1992-03-01

    We present an analysis of multiplicity distributions of charged particles produced in Z{sup 0} hadronic decays. The results are based on the analysis of 82941 events collected within 100 MeV of the Z{sup 0} peak energy with the OPAL detector at LEP. The charged particle multiplicity distribution, corrected for initial-state radiation and for detector acceptance and resolution, was found to have a mean =21.40{+-}0.02(stat.){+-}0.43(syst.) and a dispersion D=6.49{+-}0.02(stat.){+-}0.20(syst.). The shape is well described by the Lognormal and Gamma distributions. A negative binomial parameterisation was found to describe the shape of the multiplicity distribution less well. A comparison with results obtained at lower energies confirms the validity of KNO(-G) scaling up to LEP energies. A separate analysis of events with low sphericity, typically associated with two-jet final states, shows the presence of features expected for models based on a stochastic production mechanism for particles. In all cases, the features observed in the data are well described by the Lund parton shower model JETSET. (orig.).

  11. Using Charged Particle Imaging to Study Ultracold Plasma Expansion

    Science.gov (United States)

    Zhang, X. L.; Fletcher, R. S.; Rolston, S. L.

    2009-03-01

    We develop a projection imaging technique to study ultracold plasma dynamics. We image the charged particle spatial distributions by extraction with a high-voltage pulse onto a position-sensitive detector. Measuring the 2D width of the ion image at later times (the ion image size in the first 20 μs is dominated by the Coulomb explosion of the dense ion cloud), we extract the plasma expansion velocity. These velocities at different initial electron temperatures match earlier results obtained by measuring the plasma oscillation frequency. The electron image size slowly decreases during the plasma lifetime because of the strong Coulomb force of the ion cloud on the electrons, electron loss and Coulomb explosion effects.

  12. Charged-particle acceleration in braking plasma jets.

    Science.gov (United States)

    Artemyev, A V

    2014-03-01

    In this paper we describe the mechanism of the charged particle acceleration in space plasma systems. We consider the interaction of nonrelativistic particles with a sub-Alfvenic plasma jet originated from the magnetic reconnection. The sharp front with increased magnetic field amplitude forms in the jet leading edge. Propagation of the jet in the inhomogeneous background plasma results in front braking. We show that particles can interact with this front in a resonance manner. Synchronization of particle reflections from the front and the front braking provides the stable trapping of particles in the vicinity of the front. This trapping supports the effective particle acceleration along the front. The mechanism of acceleration is potentially important due to the prevalence of the magnetic reconnection in space and astrophysical plasmas.

  13. Thermodynamics with pressure and volume under charged particle absorption

    Science.gov (United States)

    Gwak, Bogeun

    2017-11-01

    We investigate the variation of the charged anti-de Sitter black hole under charged particle absorption by considering thermodynamic volume. When the energy of the particle is considered to contribute to the internal energy of the black hole, the variation exactly corresponds to the prediction of the first law of thermodynamics. Nevertheless, we find the decrease of the Bekenstein-Hawking entropy for extremal and near-extremal black holes under the absorption, which is an irreversible process. This violation of the second law of thermodynamics is only found when considering thermodynamic volume. We test the weak cosmic censorship conjecture affected by the violation. Fortunately, the conjecture is still valid, but extremal and near-extremal black holes do not change their configurations when any particle enters the black hole. This result is quite different from the case in which thermodynamic volume is not considered.

  14. Fast transmission avalanche counter for charged particle detection

    International Nuclear Information System (INIS)

    Nojbert, V.; Dubbers, F.

    1979-01-01

    A new type of detectors, an avalanche transmission-type counter has been developed to record charged particles. It consists of two very thin tightened films between which high voltage is applied. Structurally the avalanche counter is made in the form of round small polyamide frames on which a FORMAVAR film of 15-30 μgxcm -2 thick is tightened. The latter is then covered with gold (approximately 40 μgxcm -2 ). As a working gas the avalanche counter uses vapours of acetone or n-heptane at a pressure ranging from 2 to 10 mm Hg. The basic circuits of detector-preamplifier connection is given, and the dependence of the detector signal amplitude on the counter anode-cathode voltage is presented. When recording α-particles the proper time resolution of the developed counter constitutes 475 ps

  15. Systems and methods of varying charged particle beam spot size

    Science.gov (United States)

    Chen, Yu-Jiuan

    2014-09-02

    Methods and devices enable shaping of a charged particle beam. A modified dielectric wall accelerator includes a high gradient lens section and a main section. The high gradient lens section can be dynamically adjusted to establish the desired electric fields to minimize undesirable transverse defocusing fields at the entrance to the dielectric wall accelerator. Once a baseline setting with desirable output beam characteristic is established, the output beam can be dynamically modified to vary the output beam characteristics. The output beam can be modified by slightly adjusting the electric fields established across different sections of the modified dielectric wall accelerator. Additional control over the shape of the output beam can be excreted by introducing intentional timing de-synchronization offsets and producing an injected beam that is not fully matched to the entrance of the modified dielectric accelerator.

  16. Resistive cooling circuits for charged particle traps using crystal resonators

    CERN Document Server

    Kaltenbacher, T; Doser, M; Kellerbauer, A; Pribyl, W

    2011-01-01

    The paper addresses a novel method to couple a signal from charged particles in a Penning trap to a high Q resonant circuit using a crystal resonator. Traditionally the trap capacity is converted into a resonator by means of an inductance. When normal conducting wires (e.g. copper) are applied to build up a coil, the unloaded Q value is limited to a value in the order of 1000. The tuned circuit’s Q factor is directly linked to the input impedance “seen” by the trapped particles at resonance frequency. This parallel resonance impedance is a measure of the efficiency of resistive cooling and thus it should be optimized. We propose here a commercially available crystal resonator since it exhibits a very high Q value and a parallel resonance impedance of several MOhm. The possibility to tune the parallel resonance frequency of the quartz results in filter behavior that allows covering a broad range of frequencies.

  17. Charged-particle cross section data for fusion plasma applications

    International Nuclear Information System (INIS)

    Miley, G.H.

    1980-01-01

    Cross-section data for fusion plasma calculations are reviewed for three categories: fusion reactions, nuclear elastic and inelastic scattering. While the data base for the basic D-T fuel cycle seems adequate for present purposes, continued refinement appears warranted. Further, increasing emphasis on advanced-fuel fusion introduces requirements for new reaction rate and charged-particle scattering data over a wider range of reacting species (light elements through 11 B) and over a larger energy range (to several MeV). These new needs are discussed along with suggestions for increased emphasis on providing the user with more convenient compilations. In particular, the extension of reactivities (< sigma V) to non-Maxwellian distributions, scattering matrix data, and development of computer based files are noted

  18. Physical sputtering of metallic systems by charged-particle impact

    Energy Technology Data Exchange (ETDEWEB)

    Lam, N.Q.

    1989-12-01

    The present paper provides a brief overview of our current understanding of physical sputtering by charged-particle impact, with the emphasis on sputtering of metals and alloys under bombardment with particles that produce knock-on collisions. Fundamental aspects of ion-solid interactions, and recent developments in the study of sputtering of elemental targets and preferential sputtering in multicomponent materials are reviewed. We concentrate only on a few specific topics of sputter emission, including the various properties of the sputtered flux and depth of origin, and on connections between sputtering and other radiation-induced and -enhanced phenomena that modify the near-surface composition of the target. The synergistic effects of these diverse processes in changing the composition of the integrated sputtered-atom flux is described in simple physical terms, using selected examples of recent important progress. 325 refs., 27 figs.

  19. Physical sputtering of metallic systems by charged-particle impact

    International Nuclear Information System (INIS)

    Lam, N.Q.

    1989-12-01

    The present paper provides a brief overview of our current understanding of physical sputtering by charged-particle impact, with the emphasis on sputtering of metals and alloys under bombardment with particles that produce knock-on collisions. Fundamental aspects of ion-solid interactions, and recent developments in the study of sputtering of elemental targets and preferential sputtering in multicomponent materials are reviewed. We concentrate only on a few specific topics of sputter emission, including the various properties of the sputtered flux and depth of origin, and on connections between sputtering and other radiation-induced and -enhanced phenomena that modify the near-surface composition of the target. The synergistic effects of these diverse processes in changing the composition of the integrated sputtered-atom flux is described in simple physical terms, using selected examples of recent important progress. 325 refs., 27 figs

  20. Lorentz covariant canonical symplectic algorithms for dynamics of charged particles

    Science.gov (United States)

    Wang, Yulei; Liu, Jian; Qin, Hong

    2016-12-01

    In this paper, the Lorentz covariance of algorithms is introduced. Under Lorentz transformation, both the form and performance of a Lorentz covariant algorithm are invariant. To acquire the advantages of symplectic algorithms and Lorentz covariance, a general procedure for constructing Lorentz covariant canonical symplectic algorithms (LCCSAs) is provided, based on which an explicit LCCSA for dynamics of relativistic charged particles is built. LCCSA possesses Lorentz invariance as well as long-term numerical accuracy and stability, due to the preservation of a discrete symplectic structure and the Lorentz symmetry of the system. For situations with time-dependent electromagnetic fields, which are difficult to handle in traditional construction procedures of symplectic algorithms, LCCSA provides a perfect explicit canonical symplectic solution by implementing the discretization in 4-spacetime. We also show that LCCSA has built-in energy-based adaptive time steps, which can optimize the computation performance when the Lorentz factor varies.

  1. Model for diffusion of a narrow beam of charged particles

    International Nuclear Information System (INIS)

    Eisenhauer, C.

    1980-01-01

    A simple analytic expression is presented to describe the three-dimensioned spatial distribution of flux or energy deposition by a narrow beam of charged particles. In this expression distances are expressed in terms of a scaling parameter that is proportional to the mean square scattering angle in a single collision. Finite ranges are expressed in terms of the continuous-slowing-down range. Track-length distributions for one-velocity particles and energy deposition for electrons are discussed. Comparisons with rigorous Monte Carlo calculations show that departures from the analytic expression can be expressed as a slowly varying function of order unity. This function can be used as a basis for interpolation over a wide range of source energies and materials

  2. Uniformly accelerating charged particles. A threat to the equivalence principle

    International Nuclear Information System (INIS)

    Lyle, Stephen N.

    2008-01-01

    There has been a long debate about whether uniformly accelerated charges should radiate electromagnetic energy and how one should describe their worldline through a flat spacetime, i.e., whether the Lorentz-Dirac equation is right. There are related questions in curved spacetimes, e.g., do different varieties of equivalence principle apply to charged particles, and can a static charge in a static spacetime radiate electromagnetic energy? The problems with the LD equation in flat spacetime are spelt out in some detail here, and its extension to curved spacetime is discussed. Different equivalence principles are compared and some vindicated. The key papers are discussed in detail and many of their conclusions are significantly revised by the present solution. (orig.)

  3. Minimum size of charged particles in general relativity

    International Nuclear Information System (INIS)

    Sardelis, D.A.

    1975-01-01

    Spherical charged matter distributions are examined in a coordinate-free manner within the framework of general relativity. Irrespective of models chosen to describe the interior structure of a charged particle, it is found that the latter's total gravitational mass is positive definite, being finite only when there exists a lower bound for its invariant extension. For a simple choice of matter and charge distributions it is then shown that there is a minimum invarient size for the particle, below which no solution of the field equation exists, the matter density becoming negative and the space-tome devloping an intrinsic singularity in the exterior of the particle for radii less than this minimum. A mass renormalization is derived, valid at the moment of time symmetry, which relates the particle's total mass to its charge, bare mass and invariant extension. (author)

  4. DART: A simulation code for charged particle beams

    International Nuclear Information System (INIS)

    White, R.C.; Barr, W.L.; Moir, R.W.

    1989-01-01

    This paper presents a recently modified version of the 2-D code, DART, which can simulate the behavior of a beam of charged particles whose trajectories are determined by electric and magnetic fields. This code was originally used to design laboratory-scale and full-scale beam direct converters. Since then, its utility has been expanded to allow more general applications. The simulation includes space charge, secondary electrons, and the ionization of neutral gas. A beam can contain up to nine superimposed beamlets of different energy and species. The calculation of energy conversion efficiency and the method of specifying the electrode geometry are described. Basic procedures for using the code are given, and sample input and output fields are shown. 7 refs., 18 figs

  5. Fundamentals of charged particle transport in gases and condensed matter

    CERN Document Server

    Robson, Robert E; Hildebrandt, Malte

    2018-01-01

    This book offers a comprehensive and cohesive overview of transport processes associated with all kinds of charged particles, including electrons, ions, positrons, and muons, in both gases and condensed matter. The emphasis is on fundamental physics, linking experiment, theory and applications. In particular, the authors discuss: The kinetic theory of gases, from the traditional Boltzmann equation to modern generalizations A complementary approach: Maxwell’s equations of change and fluid modeling Calculation of ion-atom scattering cross sections Extension to soft condensed matter, amorphous materials Applications: drift tube experiments, including the Franck-Hertz experiment, modeling plasma processing devices, muon catalysed fusion, positron emission tomography, gaseous radiation detectors Straightforward, physically-based arguments are used wherever possible to complement mathematical rigor.

  6. Doubly-charged particles at the Large Hadron Collider

    CERN Document Server

    Alloul, Adam; Fuks, Benjamin; de Traubenberg, Michel Rausch

    2013-01-01

    In this work we investigate the production and signatures of doubly-charged particles at the Large Hadron Collider. We start with the Standard Model particle content and representations and add generic doubly-charged exotic particles. We classify these doubly-charged states according to their spin, considering scalar, fermionic and vectorial fields, and according to their SU(2)L representation, being chosen to be either trivial, fundamental, or adjoint. We write the most general interactions between them and the Standard Model sector and study their production modes and possible decay channels. We then probe how they can most likely be observed and how particles with different spin and SU(2)L representations could be possibly distinguished.

  7. Charged particle spectra in p+Pb collisions

    CERN Document Server

    Shulga, Evgeny; The ATLAS collaboration

    2016-01-01

    Per-event charged particle spectra and nuclear modification factors are measured with the ATLAS detector at the LHC in p+Pbinteractions at sqrt(s_NN)=5.02 TeV. Results are presented as a function of transverse momentum, rapidity, and in different intervals of collision centrality, which is characterised in p+Pb collisions by the total transverse energy measured over the pseudorapidity interval -3.2

  8. Charged particle induced thermonuclear reaction rates: a compilation for astrophysics

    International Nuclear Information System (INIS)

    Grama, C.

    1999-01-01

    We report on the results of the European network NACRE (Nuclear Astrophysics Compilation of REaction rates). The principal reason for setting up the NACRE network has been the necessity of building up a well-documented and detailed compilation of rates for charged-particle induced reactions on stable targets up to Si and on unstable nuclei of special significance in astrophysics. This work is meant to supersede the only existing compilation of reaction rates issued by Fowler and collaborators. The main goal of NACRE network was the transparency in the procedure of calculating the rates. More specifically this compilation aims at: 1. updating the experimental and theoretical data; 2. distinctly identifying the sources of the data used in rate calculation; 3. evaluating the uncertainties and errors; 4. providing numerically integrated reaction rates; 5. providing reverse reaction rates and analytical approximations of the adopted rates. The cross section data and/or resonance parameters for a total of 86 charged-particle induced reactions are given and the corresponding reaction rates are calculated and given in tabular form. Uncertainties are analyzed and realistic upper and lower bounds of the rates are determined. The compilation is concerned with the reaction rates that are large enough for the target lifetimes shorter than the age of the Universe, taken equal to 15 x 10 9 y. The reaction rates are provided for temperatures lower than T = 10 10 K. In parallel with the rate compilation a cross section data base has been created and located at the site http://pntpm.ulb.ac.be/nacre..htm. (authors)

  9. Activation analysis in Europe: present and future perspectives

    International Nuclear Information System (INIS)

    De Corte, F.; Hoste, J.

    1984-01-01

    A survey is given of the present-day European contribution to activation analysis, covering neutron activation analysis (NAA), charged particle activation analysis (CPAA) and photon activation analysis (PAA). Attention is paid to the available irradiation facilities, in particular nuclear reactors, cyclotrons and Van de Graaff accelerators, and linear electron accelerators. Mention is made of progress in fundamental fields, but the attention is especially focussed on practical applications: environmental, geochemical/cosmochemical, biological/medical, and high-purity materials. Eventually, the role of activation analysis in research projects of the Commission of the European Communities (CEC) and in the Reference Materials program of the Community Bureau of Reference (BCR) is emphasized

  10. A triple GEM detector with pad readout for high rate charged particle triggering

    Energy Technology Data Exchange (ETDEWEB)

    Bencivenni, G.; Felici, G.; Murtas, F.; Valente, P.; Bonivento, W. E-mail: walter.bonivento@cern.ch; Cardini, A.; Lai, A.; Pinci, D.; Saitta, B.; Bosio, C

    2002-08-11

    In this paper, results of a time performance study of triple gas electron multiplier (GEM) detectors are discussed. This study was driven by an R and D activity on detectors for the Level 0 LHCb muon trigger. However, the results presented in this paper are of more general interest, i.e. for experiments with high rate charged particle triggering. Little interest was given so far to time performance of GEM detectors. Only one group measured double GEM detector time resolution with the Ar/CO{sub 2} (70/30) gas mixture. Our study aimed at triple GEM detector optimisation for good time performance through a detailed investigation of the role played by detector geometry, electric fields and gas mixture. The results reported here, in particular when using the gas mixture Ar/CO{sub 2}/CF{sub 4} (60/20/20), considerably improve the time performance discussed in the above-mentioned paper and make the triple GEM detector a promising option for high rate charged particle triggering.

  11. Transverse momentum of charged particles in low-Q{sup 2} DIS at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Grebenyuk, Anastasia

    2012-04-15

    In this thesis, measurement of the transverse momentum and pseudorapidity distributions of charged particles in deep-inelastic ep scattering at a centre of mass energy of {radical}(s)=319 GeV are presented. The analysis is based on data collected by the H1 detector in 2006, corresponding to an integrated luminosity of 88.64 pb{sup -1}. The phase space of the measurement is defined by 5charged particles are measured in the virtual photon-proton centre of mass frame (hadronic centre of mass frame) in different regions of x and Q{sup 2}. The measured distributions are compared to predictions from different Monte Carlo generators using different approaches to simulate the parton cascade. The measurement shows the importance of parton emissions unordered in transverse momentum. A QCD model, exhibiting this feature, such as the BFKL-like colour dipole model is best in the description of the data, whereas a model generating emissions according to the DGLAP approach undershoots the data at low Bjorken-x. It is shown that the region of small transverse momenta is primarily affected by the hadronisation process, whereas the region of large transverse momenta is mainly driven by perturbative parton radiation. (orig.)

  12. Finding the bearings of a source of high-energy charged particles

    International Nuclear Information System (INIS)

    Lotyshev, E.V.; Suprunov, V.I.

    1993-01-01

    Different methods are now used to find the direction of a radiation source. One method is based on the analysis information provided by the detection block that includes a system of six two-dimensional coordinate-sensitive semiconductor detectors (CSSDs) forming a cube filled with a special absorber. The CSSD numbers, the coordinates measured by them, and the order of crossing the cube edges bear all the information necessary to find the bearings of a radiation source. However, in this method the efficiency of detection depends on the relative orientation of the detection block and the radiation flux. In addition, the size of the detection block is limited by the condition of direct passage which, in combination with the demand of an unchanging shape, make it impossible to mount it with other devices. In this work the authors address the problem of finding the bearings of a source of charged particles that is fast and allows the detection block to be mounted with the components of other devices. It is shown that the bearings of a source of charged particles can be found by analyzing signals from NN s detector elements located on N s symmetric surfaces inserted into each other and separated by an absorber. The method is fast and makes it possible structurally to combine the detector block with other components. 5 refs., 2 figs

  13. Kinetic phenomena in charged particle transport in gases, swarm parameters and cross section data

    International Nuclear Information System (INIS)

    Petrovic, Z Lj; Suvakov, M; Nikitovic, Z; Dujko, S; Sasic, O; Jovanovic, J; Malovic, G; Stojanovic, V

    2007-01-01

    In this review we discuss the current status of the physics of charged particle swarms, mainly electrons. The whole field is analysed mainly through its relationship to plasma modelling and illustrated by some recent examples developed mainly by our group. The measurements of the swarm coefficients and the availability of the data are briefly discussed. More time is devoted to the development of complete electron-molecule cross section sets along with recent examples such as NO, CF 4 and HBr. We extend the discussion to the availability of ion and fast neutral data and how swarm experiments may serve to provide new data. As a point where new insight into the kinetics of charge particle transport is provided, the role of kinetic phenomena is discussed and recent examples are listed. We focus here on giving two examples on how non-conservative processes make dramatic effects in transport, the negative absolute mobility and the negative differential conductivity for positrons in argon. Finally we discuss the applicability of swarm data in plasma modelling and the relationship to other fields where swarm experiments and analysis make significant contributions. (topical review)

  14. Detector systems for imaging neutron activation analysis

    International Nuclear Information System (INIS)

    Dewaraja, Y.K.; Fleming, R.F.

    1994-01-01

    This paper compares the performance of two imaging detector systems for the new technique of Imaging Neutron Activation Analysis (Imaging NAA). The first system is based on secondary electron imaging, and the second employs a position sensitive charged particle detector for direct localization of beta particles. The secondary electron imaging system has demonstrated a position resolution of 20 μm. The position sensitive beta detector has the potential for higher efficiencies with resolution being a trade off. Results presented show the feasibility of the two imaging methods for different applications of Imaging NAA

  15. Chaos and the continuum limit in charged particle beams

    Directory of Open Access Journals (Sweden)

    Henry E. Kandrup

    2004-01-01

    Full Text Available We investigate the validity of the Vlasov-Poisson equations for calculating properties of systems of N charged particles governed by time-independent Hamiltonians. Through numerical experiments we verify that there is a smooth convergence toward a continuum limit as N→∞ and the particle charge q→0 such that the system charge Q=qN remains fixed. However, in real systems N and q are always finite, and the assumption of the continuum limit must be questioned. We demonstrate that Langevin simulations can be used to assess the importance of discreteness effects, i.e., granularity, in systems for which the physical particle number N is too large to enable orbit integrations based on direct summation of interparticle forces. We then consider a beam bunch in thermal equilibrium and apply Langevin techniques to assess whether the continuum limit can be safely applied to this system. In the process we show, especially for systems supporting a sizable population of chaotic orbits that roam globally through phase space, that for the continuum limit to be valid, N must sometimes be surprisingly large. Otherwise the influence of granularity on particle orbits cannot be ignored.

  16. Superconducting quantum interference monitor of charged particle beam current

    International Nuclear Information System (INIS)

    Gertsev, K.F.; Mikheev, M.S.

    1981-01-01

    Description and test results of the monitor of charged particle beam current on the base of the high-frequency superconducting quantum interference detector with lead slotted shield are presented. The toroidal superconducting coil, which covers the measured beam has 16 turns wound by the lead belt of 7 mm width with 0.5 mm gaps between the turns. A superconducting low-coupling monitor having two holes and point oxidated niobium contact has been used in the mode of quanta counting of magnetic flux. The lead point shield was 2 mm thick and it had 30 mm aperture. The coefficient of background shielding within 0-200 Hz frequency range constituted more than 10 8 . The threshold current resolution of the monitor had the value less than 01 μA √Hz. The suggested monitor requires helium cooling. The proposed design of the monitor is applicable for mounting on the vacuum chamber when it is surrounded by helium conductor. In other cases mounting of low-powerful autonomic system or cryostat of helium storage up to several weeks is possible [ru

  17. Dynamics of Charged Particles and their Radiation Field

    International Nuclear Information System (INIS)

    Poisson, E

    2006-01-01

    The motion of a charged particle interacting with its own electromagnetic field is an area of research that has a long history. On the one hand the theory ought to be straightforward to formulate: one has Maxwell's equations that tell the field how to behave and one has the Lorentz-force law that tells the particle how to move (given the field). On the other hand the theory is fundamentally ambiguous because of the field singularities that necessarily come with a point particle. While each separate sub-problem can easily be solved, to couple the field to the particle in a self-consistent treatment turns out to be tricky. I believe it is this dilemma that has been the main source of the endless fascination. For them it is also rooted in the fact that the electromagnetic self-force problem is deeply analogous to the gravitational self-force problem, which is of direct relevance to future gravitational wave observations. The motion of point particles in curved spacetime has been the topic of a recent Topical Review, and it was the focus of a recent Special Issue. Exceptions are Rohrlich's excellent text, which makes a very useful introduction to radiation reaction, and the Landau and Lifshitz classic, which contains what is probably the most perfect summary of the foundational ideas. It is therefore with some trepidation that I received Herbert Spohn's book, which covers both the classical and quantum theories of a charged particle coupled to its own field (the presentation is limited to flat spacetime). Is this the text that graduate students and researchers should turn to in order to get a complete and accessible education in radiation reaction? My answer is that while the book does indeed contain a lot of useful material, it is not a very accessible source of information, and it is certainly not a student-friendly textbook. Instead, the book presents a technical account of the author's personal take on the theory, and represents a culminating summary of the author

  18. Stochastic effects in real and simulated charged particle beams

    Directory of Open Access Journals (Sweden)

    Jürgen Struckmeier

    2000-03-01

    Full Text Available The Vlasov equation embodies the smooth field approximation of the self-consistent equation of motion for charged particle beams. This framework is fundamentally altered if we include the fluctuating forces that originate from the actual charge granularity. We thereby perform the transition from a reversible description to a statistical mechanics description covering also the irreversible aspects of beam dynamics. Taking into account contributions from fluctuating forces is mandatory if we want to describe effects such as intrabeam scattering or temperature balancing within beams. Furthermore, the appearance of “discreteness errors” in computer simulations of beams can be modeled as “exact” beam dynamics that are being modified by fluctuating “error forces.” It will be shown that the related emittance increase depends on two distinct quantities: the magnitude of the fluctuating forces embodied in a friction coefficient, γ, and the correlation time dependent average temperature anisotropy. These analytical results are verified by various computer simulations.

  19. A scintillation detector set measuring the charge particle energy

    International Nuclear Information System (INIS)

    Dore, Chantal.

    1979-01-01

    The S143 experiment, at CERN in 1976, needed both the measurement and the identification of light nuclei, and especially the separation between 3 H and 3 He, over a large energy range. In the chosen solution, in addition to semiconductor detectors, some scintillation counters are used. The non-linearity of light versus energy of charged particles was complicated by the fact there was two different linear laws according to the charge of particles. To obtain good analogic signals over a dynamic range nearly equal to 200, the signals from several dynodes were used simultaneously. In the experimental setting up, each scintillator was put directly in contact with the corresponding photocathode. In spite of a special shielding, some perturbations due to the magnet placed close by required to bring important corrections to linear laws. Thanks to complementary informations from semiconductor counters, a full separation between charge 1 and charge 2 particles was possible. A suitable identification as guaranted among charge 1 particles, but only kinematic constraints gave the possibility to extract 4 He corresponding to the elastic scattering [fr

  20. Charged Particle Tracking and Vertex Detection Group summary report

    International Nuclear Information System (INIS)

    Hanson, G.; Meyer, D.

    1984-09-01

    Charged particle tracking is essential in order to investigate the new physics expected at the SSC. The Tracking Group studied radiation damage and rate limitations to tracking devices, vertex detectors, and central tracking. The Group concluded that silicon strips and large wire tracking chambers with small cells can probably survive at the design luminosity of 10 33 cm -2 sec -1 ; however, the presently designed electronics for silicon strip vertex detectors can withstand a luminosity of only 10 31 cm -2 sec -1 . Wire chambers at a radius of less than about 25 cm can withstand a luminosity of less than or equal to 10 32 cm -2 sec -1 only. Actual tracking and pattern recognition in central tracking chambers at a luminosity of 10 33 cm -2 sec -1 will be very difficult because of multiple interactions within the resolving time of the chambers; detailed simulations are needed in order to decide whether tracking is indeed possible at this luminosity. Scintillating glass fibers are an interesting possibility both for vertex detectors and for central trackers, but much research and development is still needed both on the fibers themselves and on the readout

  1. Physical principle for optimizing electrophoretic separation of charged particles

    Science.gov (United States)

    Araki, Takeaki; Tanaka, Hajime

    2008-04-01

    Electrophoresis is one of the most important methods for separating colloidal particles, carbohydrates, pharmaceuticals, and biological molecules such as DNA, RNA, proteins, in terms of their charge (or size). This method relies on the correlation between the particle drift velocity and the charge (or size). For a high-resolution separation, we need to minimize fluctuations of the drift velocity of particles or molecules. For a high throughput, on the other hand, we need a concentrated solution, in which many-body electrostatic and hydrodynamic interactions may increase velocity fluctuations. Thus, it is crucial to reveal what physical factors destabilize the coherent electrophoretic motion of charged particles. However, this is not an easy task due to complex dynamic couplings between particle motion, hydrodynamic flow, and motion of ion clouds. Here we study this fundamental problem using numerical simulations. We reveal that addition of salt screens both electrostatic and hydrodynamic interactions, but in a different manner. This allows us to minimize the fluctuations of the particle drift velocity for a particular salt concentration. This may have an impact not only on the basic physical understanding of dynamics of driven charged colloids, but also on the optimization of electrophoretic separation.

  2. Beam generations of three kinds of charged particles

    International Nuclear Information System (INIS)

    Niu, K.; Mulser, P.; Drska, L.

    1991-01-01

    Analyses are given for beam generations of three kinds of charged particles: electrons, light ions, and heavy ions. The electron beam oscillates in a dense plasma irradiated by a strong laser light. When the frequency of laser light is high and its intensity ia large, the acceleration of oscillating electrons becomes large and the electrons radiate electromagnetic waves. As the reaction, the electrons feel a damping force, whose effect on oscillating electron motion is investigated first. Second, the electron beam induces the strong electromagnetic field by its self-induced electric current density when the electron number density is high. The induced electric field reduces the oscillation motion and deforms the beam. In the case of a light ion beam, the electrostatic field, induced by the beam charge, as well as the electromagnetic field, induced by the beam current, affects the beam motion. The total energy of the magnetic field surrounding the beam is rather small in comparison with its kinetic energy. In the case of heavy ion beams the beam charge at the leading edge is much smaller in comparison with the case of light ion beams when the heavy ion beam propagates in the background plasma. Thus, the induced electrostatic and electromagnetic fields do not much affect the beam propagation. (author)

  3. Pore size determination from charged particle energy loss measurement

    International Nuclear Information System (INIS)

    Brady, F.P.; Armitage, B.H.

    1977-01-01

    A new method aimed at measuring porosity and mean pore size in materials has been developed at Harwell. The energy width or variance of a transmitted or backscattered charged particle beam is measured and related to the mean pore size via the assumption that the variance in total path length in the porous material is given by (Δx 2 )=na 2 , where n is the mean number of pores and a the mean pore size. It is shown on the basis of a general and rigorous theory of total path length distribution that this approximation can give rise to large errors in the mean pore size determination particularly in the case of large porosities (epsilon>0.5). In practice it is found that it is not easy to utilize fully the general theory because accurate measurements of the first four moments are required to determine the means and variances of the pore and inter-pore length distributions. Several models for these distributions are proposed. When these are incorporated in the general theory the determinations of mean pore size from experimental measurements on powder samples are in good agreement with values determined by other methods. (Auth.)

  4. Low energy charged particles interacting with amorphous solid water layers.

    Science.gov (United States)

    Horowitz, Yonatan; Asscher, Micha

    2012-04-07

    The interaction of charged particles with condensed water films has been studied extensively in recent years due to its importance in biological systems, ecology as well as interstellar processes. We have studied low energy electrons (3-25 eV) and positive argon ions (55 eV) charging effects on amorphous solid water (ASW) and ice films, 120-1080 ML thick, deposited on ruthenium single crystal under ultrahigh vacuum conditions. Charging the ASW films by both electrons and positive argon ions has been measured using a Kelvin probe for contact potential difference (CPD) detection and found to obey plate capacitor physics. The incoming electrons kinetic energy has defined the maximum measurable CPD values by retarding further impinging electrons. L-defects (shallow traps) are suggested to be populated by the penetrating electrons and stabilize them. Low energy electron transmission measurements (currents of 0.4-1.5 μA) have shown that the maximal and stable CPD values were obtained only after a relatively slow change has been completed within the ASW structure. Once the film has been stabilized, the spontaneous discharge was measured over a period of several hours at 103 ± 2 K. Finally, UV laser photo-emission study of the charged films has suggested that the negative charges tend to reside primarily at the ASW-vacuum interface, in good agreement with the known behavior of charged water clusters.

  5. Guiding of charged particles through capillaries in insulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Stolterfoht, Nikolaus, E-mail: nico@stolterfoht.com [Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin (Germany); Yamazaki, Yasunori [Atomic Physics Laboratory, RIKEN, Wako, Saitama 351-0198 (Japan)

    2016-04-29

    Studies of charged particle guiding through capillaries in insulating materials, performed during the last decade, are reviewed in a comprehensive manner. First, the principles of capillary guiding of slow highly charged ions are introduced describing the self-organized formation of charge patches. Basic quantities are defined, such as the guiding power characterizing a capillary. Challenges of the guiding experiments are pointed out. Then, experiments are described with emphasis on the guiding of highly charged ions in the keV energy range. Samples with an array of nanocapillaries as well as single macrocapillaries are treated. Emission profiles of transmitted ions are analyzed to establish scaling laws for the guiding angle, which quantifies the guiding power. Oscillations of the mean ion emission angle reveal the temporal dynamics of the charge patch formation. Next, experiments with ions of high (MeV) energies are focused on single tapered capillaries allowing for the production of a microbeam for various applications. Experiments concerning electrons are presented showing that apart from being elastically scattered these negative particles may enter into the capillary surface where they suffer energy losses. Finally, theoretical concepts of the capillary guiding are discussed. Simulations based on different charge transport methods clearly support the understanding of the guiding mechanisms. Altogether, capillary guiding involves several novel phenomena for which understanding have progressed far beyond their infancy.

  6. Cataract production in mice by heavy charged particles

    International Nuclear Information System (INIS)

    Ainsworth, E.H.; Jose, J.; Yang, V.V.; Barker, M.E.

    1981-03-01

    The cataractogenic effects of heavy charged particles have been evaluated in mice in relation to dose and ionization density (LET/sub infinity/). The study was undertaken due to the high potential for eye exposures to HZE particles among SPS personnel working in outer space. This has made it imperative that the relative biological effectiveness (RBE) in relation to LET/sub infinity/ for various particles be defined so that appropriate quality factors (Q) could be assigned for estimation of risk. Although mice and men differ in susceptibility to radiation-induced cataracts, the results from this project should assist in defining appropriate quality factors in relation to LET/sub infinity/, particle mass, charge, or velocity. Evaluation of results indicated that : (1) low single doses (5 to 20 rad) of iron ( 56 Fe) or argon ( 40 Ar) particles are cataractogenic at 11 to 18 months after irradiation; (2) onset and density of the opacification are dose related; (3) cataract density (grade) at 9, 11, 13, and 16 months after irradiation shows partial LET/sub infinity/-dependence; and (4) the severity of cataracts is reduced significantly when 417 rad of 60 Co gamma radiation is given in 24 weekly 17 rad fractions compared to giving this radiation as a single dose, but cataract severity is not reduced by fractionation of 12 C doses over 24 weeks

  7. Infinite stochastic acceleration of charged particles from non-relativistic initial energies

    International Nuclear Information System (INIS)

    Buts, V.A.; Manujlenko, O.V.; Turkin, Yu.A.

    1997-01-01

    Stochastic charged particle acceleration by electro-magnetic field due to overlapping of non-linear cyclotron resonances is considered. It was shown that non-relativistic charged particles are involved in infinitive stochastic acceleration regime. This effect can be used for stochastic acceleration or for plasma heating by regular electro-magnetic fields

  8. Light charged particle emission in heavy-ion reactions–What have ...

    Indian Academy of Sciences (India)

    Light charged particle emission in heavy-ion reactions – What have we learnt? S Kailas ... Keywords. Light charged particles; heavy-ion induced reactions; particle spectra and angular distributions; reaction mechanisms. ... S Kailas1. Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India ...

  9. Discrimination of Charged Particles in a Neutral Beam Line by Using a Solid Scintillation Detector

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Jong-Kwan; Ko, Jewou; Liu, Dong [Jeju National University, Jeju (Korea, Republic of)

    2017-01-15

    In the past several decades, many studies have been conducted to search for non-baryonic dark matter, such as weakly interactive massive particles (WIMPs). In the search for WIMPs, charged particles incident on the detector are background particles because WIMPs are neutral. Charged particles originate from various sources, such as cosmic rays and laboratory materials surrounding the main detector. Therefore, a veto that discriminates charged particles can improve the particle detection efficiency of the entire experiment for detecting WIMPs. Here, we investigate in the thickness range of 1 mm to 5 mm, the optimal thickness of a polystyrene scintillator as a charged particle veto detector. We found that 3-mm-thick polystyrene provides the best performance to veto charged particles and the charged-particle background in the search for the WIMP signal. Furthermore, we fabricated 3-mm-thick and 5-mm-thick polystyrene charged particle veto detectors that will be used in an underground laboratory in the search for WIMP dark matter. After exposing those detectors are the actual beam line, we compared the rate of charged particles measured using those detectors and the rate simulated through a Monte Carlo simulation.

  10. CPM : A Deformable Model for Shape Recovery and Segmentation Based on Charged Particles

    NARCIS (Netherlands)

    Jalba, Andrei C.; Wilkinson, Michael H.F.; Roerdink, Jos B.T.M.

    2004-01-01

    A novel, physically motivated deformable model for shape recovery and segmentation is presented. The model, referred to as the charged-particle model (CPM), is inspired by classical electrodynamics and is based on a simulation of charged particles moving in an electrostatic field. The charges are

  11. Channeling and electromagnetic radiation of relativistic charged particles in metal-organic frameworks

    Science.gov (United States)

    Zhevago, N. K.; Glebov, V. I.

    2017-06-01

    We have developed the theory of electromagnetic interaction of relativistic charged particles with metal-organic frameworks (MOFs). The electrostatic potential and electron number density distribution in MOFs were calculated using the most accurate data for the atomic form factors. Peculiarities of axial channeling of fast charged particles and various types of electromagnetic radiation from relativistic particles has been discussed.

  12. Summary report on first research coordination meeting on heavy charged-particle interaction data for radiotherapy

    International Nuclear Information System (INIS)

    Palmans, H.; Noy, R.C.

    2008-04-01

    A summary is given of the First Research Coordination Meeting on Heavy Charged-Particle Interaction Data for Radiotherapy. A programme to compile and evaluate charged-particle nuclear data for therapeutic applications was proposed. Detailed coordinated research proposals were also agreed. Technical discussions and the resulting work plan of the Coordinated Research Project are summarized, along with actions and deadlines. (author)

  13. Light charged particle emission in heavy-ion reactions – What have ...

    Indian Academy of Sciences (India)

    Light charged particles; heavy-ion induced reactions; particle spectra and angular distri- butions; reaction mechanisms. ... 6–8 MeV/A. A typical light charged particle spectrum clearly reveals several aspects: the evaporation peak at low .... will alter the shapes of the particle spectra and the effect being more for the alphas.

  14. Small scale density variations of electrons and charged particles in the vicinity of polar mesosphere summer echoes

    Directory of Open Access Journals (Sweden)

    M. Rapp

    2003-01-01

    Full Text Available We present small scale variations of electron number densities and particle charge number densities measured in situ in the presence of polar mesosphere summer echoes. It turns out that the small scale fluctuations of electrons and negatively charged particles show a strong anticorrelation down to the smallest scales observed. Comparing these small scale structures with the simultaneously measured radar signal to noise profile, we find that the radar profile is well described by the power spectral density of both electrons and charged particles at the radar half wavelength (=the Bragg scale. Finally, we consider the shape of the power spectra of the observed plasma fluctuations and find that both charged particles and electrons show spectra that can be explained in terms of either neutral air turbulence acting on the distribution of a low diffusivity tracer or the fossil remnants of a formerly active turbulent region. All these results are consistent with the theoretical ideas by Rapp and Lübken (2003 suggesting that PMSE can be explained by a combination of active and fossil neutral air turbulence acting on the large and heavy charged aerosol particles which are subsequently mirrored in the electron number density distribution that becomes visible to a VHF radar when small scale fluctuations are present.

  15. A review of rotating gantries for heavy charged particle therapy

    International Nuclear Information System (INIS)

    Takada, Yoshihisa

    2002-01-01

    Although advantages of rotating gantries for heavy charged particle therapy are clear to anyone, a first proton rotating gantry was firstly installed and used at Loma Linda University Medical Center (LLUMC), USA, in 1991. This is due to large magnetic rigidity required to bend such an energetic beam having enough range in patient. Up to now, only proton rotating gantries have been manufactured and used since proton has a relatively small magnetic rigidity due to Z/A=1. However, even such proton gantries have a diameter of about 10-11 m and weigh about 100-200 tons. There are a number of types of proton rotating gantries. The one is an isocentric gantry. The other is an eccentric gantry in which the irradiation point moves with the gantry rotation. The example of such an eccentric gantry is the compact gantry installed at Paul Sherrer Institute in Switzerland. The isocentric gantries can be classified into two categories. The one is a standard large-throw gantry which has only one bending plane. The other is a cork-screw gantry which has two orthogonal bending planes. The standard long-throw gantries are installed and used at University of Tsukuba, National Cancer Center Hospital East, Hyogo Ion Beam Medical Center in Japan and at Massachusetts General Hospital (MGH)/Northeast Proton Therapy Center (NPTC). The cork-screw gantries have been used at LLUMC. Gantry design is affected by the beam delivery method. In present double scattering systems or beam wobbling systems, the beam is spread out and shaped in the straight section after the last bending magnet of the gantry beam optical system. The required length of the straight section is about 3.0 m. If a beam-scanning magnet is integrated in the gantry optical system and placed before the last bending magnet as in the case at Paul Scherrer Institute (PSI), shortening of the straight section is possible. Now researchers at Gesellschaft Schwerionenforschung (GSI) in Germany are designing a heavy ion gantry for the

  16. The "Puck" energetic charged particle detector: Design, heritage, and advancements

    Science.gov (United States)

    Clark, G.; Cohen, I.; Westlake, J. H.; Andrews, G. B.; Brandt, P.; Gold, R. E.; Gkioulidou, M. A.; Hacala, R.; Haggerty, D.; Hill, M. E.; Ho, G. C.; Jaskulek, S. E.; Kollmann, P.; Mauk, B. H.; McNutt, R. L.; Mitchell, D. G.; Nelson, K. S.; Paranicas, C.; Paschalidis, N.; Schlemm, C. E.

    2016-08-01

    Energetic charged particle detectors characterize a portion of the plasma distribution function that plays critical roles in some physical processes, from carrying the currents in planetary ring currents to weathering the surfaces of planetary objects. For several low-resource missions in the past, the need was recognized for a low-resource but highly capable, mass-species-discriminating energetic particle sensor that could also obtain angular distributions without motors or mechanical articulation. This need led to the development of a compact Energetic Particle Detector (EPD), known as the "Puck" EPD (short for hockey puck), that is capable of determining the flux, angular distribution, and composition of incident ions between an energy range of ~10 keV to several MeV. This sensor makes simultaneous angular measurements of electron fluxes from the tens of keV to about 1 MeV. The same measurements can be extended down to approximately 1 keV/nucleon, with some composition ambiguity. These sensors have a proven flight heritage record that includes missions such as MErcury Surface, Space ENvironment, GEochemistry, and Ranging and New Horizons, with multiple sensors on each of Juno, Van Allen Probes, and Magnetospheric Multiscale. In this review paper we discuss the Puck EPD design, its heritage, unexpected results from these past missions and future advancements. We also discuss high-voltage anomalies that are thought to be associated with the use of curved foils, which is a new foil manufacturing processes utilized on recent Puck EPD designs. Finally, we discuss the important role Puck EPDs can potentially play in upcoming missions.

  17. Commissioning of the DIAMANT ``Chessboard'' Light- Charged-Particle CsI Detector Array with AFRODITE

    Science.gov (United States)

    Komati, F. S.; Bark, R. A.; Gál, J.; Gueorguieva, E.; Juhász, K.; Kalinka, G.; Krasznahorkay, A.; Lawrie, J. J.; Lipoglavšek, M.; Maliage, M.; Molnár, J.; Mullins, S. M.; Murray, S. H. T.; Nyakó, B. M.; Ramashidza, M.; Sharpey-Schafer, J. F.; Scheurer, J. N.; Timár, J.; Vymers, P.; Zolnai, L.

    2005-11-01

    In a commissioning measurement, the "Chessboard" section of the DIAMANT charged-particle array has been coupled with the AFRODITE γ-ray spectrometer at the iThemba Laboratory for Accelerator Based Sciences. Two data-sets were obtained following the bombardment of a 170Er target with a 13C beam at energies of 80 and 70 MeV, respectively. Offline analysis has thus far enabled the extension of a number of rotational bands associated with high-K intrinsic states in 176Hf. Also, the A = 172, 173 and 174 stable isotopes of ytterbium were populated via 2αxn channels with strengths of ˜30-to-40% of the αxn yields. This, together with the comparative weakness of the pxn channels, is consistent with incomplete fusion as the dominant reaction mechanism responsible for the α-particle emission.

  18. Phase space of positron trajectories exiting a charged particle source through a magnetic field point cusp

    International Nuclear Information System (INIS)

    Kiester, A.S.; Pacheco, J.L.; Ordonez, C.A.; Weathers, D.L.

    2014-01-01

    A configuration of magnetic fields using properties of cylindrically symmetric permanent magnets is presented as a candidate to produce a high purity charged particle source or trap. Cylindrically symmetric hollow permanent magnets produce magnetic field point cusps on the axis of symmetry. A magnetic field point cusp reflects all particles that lie outside a narrow region of phase space, a region dependent on particle kinetic energies and on the magnetic field intensity. An analysis of the phase space of positron trajectories entering and exiting a magnetic field point cusp is presented and quantified with respect to magnetic field intensity and particle kinetic energy. Preliminary experimental results support the use of point cusps for ion source applications

  19. Charged particle tracking through electrostatic wire meshes using the finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, L. J.; Karamyshev, O.; Welsch, C. P., E-mail: carsten.welsch@cockcroft.ac.uk [The Cockcroft Institute, Daresbury Laboratory, Warrington (United Kingdom); Department of Physics, University of Liverpool, Liverpool (United Kingdom)

    2016-06-15

    Wire meshes are used across many disciplines to accelerate and focus charged particles, however, analytical solutions are non-exact and few codes exist which simulate the exact fields around a mesh with physical sizes. A tracking code based in Matlab-Simulink using field maps generated using finite element software has been developed which tracks electrons or ions through electrostatic wire meshes. The fields around such a geometry are presented as an analytical expression using several basic assumptions, however, it is apparent that computational calculations are required to obtain realistic values of electric potential and fields, particularly when multiple wire meshes are deployed. The tracking code is flexible in that any quantitatively describable particle distribution can be used for both electrons and ions as well as other benefits such as ease of export to other programs for analysis. The code is made freely available and physical examples are highlighted where this code could be beneficial for different applications.

  20. Charged particle multiplicity and correlations in heavy ion collisions in the ATLAS experiment

    CERN Document Server

    "Zabinski, B; The ATLAS collaboration

    2013-01-01

    Since the start of LHC the ATLAS experiment has collected data from pp, PbPb and recently pPb collisions. In this talk two topics from the heavy ion programme are presented. The first of them is the multiplicity of charged particles in PbPb collisions studied as a function centrality. In such collisions very high pseudorapidity particle density is obtained, reaching 1738 $pm$ 76 at $eta sim 0$. For the pPb collisions the latest analysis of two-particle correlations is presented. The "ridge" observed in pp events with large multiplicities is present also in central pPb collisions selected by large $Sigma E_{T}$ at the Pb fragmentation side. In the azimuthal correlation for $2 < Deltaeta < 5$ two components can be extracted. Assuming that in the peripheral collisions only the correlation due to momentum conservation effects are present, in the central collisions additional quadruple modulation component can be identified.

  1. Standardizing Activation Analysis: New Software for Photon Activation Analysis

    International Nuclear Information System (INIS)

    Sun, Z. J.; Wells, D.; Green, J.; Segebade, C.

    2011-01-01

    Photon Activation Analysis (PAA) of environmental, archaeological and industrial samples requires extensive data analysis that is susceptible to error. For the purpose of saving time, manpower and minimizing error, a computer program was designed, built and implemented using SQL, Access 2007 and asp.net technology to automate this process. Based on the peak information of the spectrum and assisted by its PAA library, the program automatically identifies elements in the samples and calculates their concentrations and respective uncertainties. The software also could be operated in browser/server mode, which gives the possibility to use it anywhere the internet is accessible. By switching the nuclide library and the related formula behind, the new software can be easily expanded to neutron activation analysis (NAA), charged particle activation analysis (CPAA) or proton-induced X-ray emission (PIXE). Implementation of this would standardize the analysis of nuclear activation data. Results from this software were compared to standard PAA analysis with excellent agreement. With minimum input from the user, the software has proven to be fast, user-friendly and reliable.

  2. 3D Silicon Coincidence Avalanche Detector (3D-SiCAD) for charged particle detection

    Science.gov (United States)

    Vignetti, M. M.; Calmon, F.; Pittet, P.; Pares, G.; Cellier, R.; Quiquerez, L.; Chaves de Albuquerque, T.; Bechetoille, E.; Testa, E.; Lopez, J.-P.; Dauvergne, D.; Savoy-Navarro, A.

    2018-02-01

    Single-Photon Avalanche Diodes (SPADs) are p-n junctions operated in Geiger Mode by applying a reverse bias above the breakdown voltage. SPADs have the advantage of featuring single photon sensitivity with timing resolution in the picoseconds range. Nevertheless, their relatively high Dark Count Rate (DCR) is a major issue for charged particle detection, especially when it is much higher than the incoming particle rate. To tackle this issue, we have developed a 3D Silicon Coincidence Avalanche Detector (3D-SiCAD). This novel device implements two vertically aligned SPADs featuring on-chip electronics for the detection of coincident avalanche events occurring on both SPADs. Such a coincidence detection mode allows an efficient discrimination of events related to an incoming charged particle (producing a quasi-simultaneous activation of both SPADs) from dark counts occurring independently on each SPAD. A 3D-SiCAD detector prototype has been fabricated in CMOS technology adopting a 3D flip-chip integration technique, and the main results of its characterization are reported in this work. The particle detection efficiency and noise rejection capability for this novel device have been evaluated by means of a β- strontium-90 radioactive source. Moreover the impact of the main operating parameters (i.e. the hold-off time, the coincidence window duration, the SPAD excess bias voltage) over the particle detection efficiency has been studied. Measurements have been performed with different β- particles rates and show that a 3D-SiCAD device outperforms single SPAD detectors: the former is indeed capable to detect particle rates much lower than the individual DCR observed in a single SPAD-based detectors (i.e. 2 to 3 orders of magnitudes lower).

  3. Neutron activation analysis in Romania

    International Nuclear Information System (INIS)

    Apostolescu, St.

    1985-01-01

    The following basic nuclear facilities are used for neutron activation analysis: a 2000 KW VVR-S Nuclear Reactor, a U-200 Cyclotron, a 30 MeV Betatron, several 14 MeV neutron generators and a king size High Voltage tandem Van de'Graaff accelerator. The main domains of application of the thermal neutron activation analysis are: geology and mining, processing of materials, environment and biology, achaeology. Epithermal neutron activation analysis has been used for determination of uranium and thorium in ores with high Th/U ratios or high rare earth contents. One low energy accelerator, used as 14.1 Mev neutron source, is provided with special equipmen for oxigen and low mass elements determination. An useful alternating way to support fast neutron activation analysis is an accurate theoretical description of the fast neutron induced reactions based on the statistical model (Hauser-Feubach STAPRE code) and the preequilibrium decay geometry dependent model. A gravitational sample changer has been installed at the end of a beam line of the Cyclotron, which enables to perform charged particles activation analysis for protein determination in grains

  4. ZZ RECOIL/B, Heavy Charged Particle Recoil Spectra Library for Radiation Damage Calculation

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Amburgey, J.D.; Greene, N.M.

    1983-01-01

    1 - Description of problem or function: Format: GAM-II group structure; Number of groups: 104 neutron and Recoil-energy groups; Nuclides: Elements Included in Charged-Particle Recoil Data Base: Al, W, Ti, Pb, V, Mg, Cr, Be, Mn, C, Fe, Au, Co, Si, Ni, B-10, Cu, B-11, Zr, N, Nb, Li-6, Mo, Li-7, Ta (Data for Ta-181,Ta-182), O, Origin: ENDF/B-IV cross-section data. A heavy charged-particle recoil data base (primary knock-on atom (PKA) spectra) and an analysis program have been created to assist experimentalists in studying, evaluating, and correlating radiation-damage effects in different neutron environments. Since experimentally obtained controlled thermo-nuclear-reactor-type neutron spectra are not presently available, the data base can be extremely useful in relating currently obtainable radiation damage to that which is anticipated in future fusion devices. However, the usefulness of the data base is not restricted to just CTR needs. Most of the elements of interest to the radiation-damage community and all neutron reactions of any significance for these elements have been processed, using available ENDF/B-IV cross-section data, and are included in the data base. Calculated data such as primary recoil spectra, displacement rates, and gas-production rates, obtained with the data base, for different radiation environments are presented and compared with previous calculations. Primary neutrons with energies up to 20 MeV have been considered. The elements included in the data base are listed in Table I. All neutron reactions of significance for these elements (i.e., elastic, inelastic, (n,2n), (n,3n), (n,p), (n,sigma), (n,gamma), etc.,) which have cross sections available from ENDF/B-IV have been processed and placed in the data base. Table I - Elements Included in Charged-Particle Recoil Data Base: Al, W, Ti, Pb, V, Mg, Cr, Be, Mn, C, Fe, Au, Co, Si, Ni, 10 B, Cu, 11 B, Zr, N, Nb, 6 Li, Mo, 7 Li, Ta (Data for Ta 181 ,Ta 182 ), O. 2 - Method of solution: The neutron

  5. Charged particle therapy with mini-segmented beams

    Directory of Open Access Journals (Sweden)

    F. Avraham eDilmanian

    2015-12-01

    Full Text Available One of the fundamental attributes of proton therapy and carbon ion therapy is the ability of these charged particles to spare tissue distal to the targeted tumor. This significantly reduces normal tissue toxicity and has the potential to translate to a wider therapeutic index. Although, in general, particle therapy also reduces dose to the proximal tissues, particularly in the vicinity of the target, dose to the skin and to other very superficial tissues tends to be higher than that of megavoltage x-rays. The methods presented here, namely Interleaved carbon minibeams and Radiosurgery with arrays of proton and light ion minibeams, both utilize beams segmented into arrays of parallel minibeams of about 0.3 mm incident beam size. These minibeam arrays spare tissues, as demonstrated by synchrotron x-ray experiments. An additional feature of particle minibeams is their gradual broadening due to multiple Coulomb scattering as they penetrate tissues. In the case of interleaved carbon minibeams, which do not broaden much, two arrays of planar carbon minibeams that remain parallel at target depth, are aimed at the target from 90º angles and made to interleave at the target to produce a solid radiation field within the target. As a result the surrounding tissues are exposed only to individual carbon minibeam arrays and are therefore spared. The method was used in four-directional geometry at the NASA Space Radiation Laboratory to ablate a 6.5-mm target in a rabbit brain at a single exposure with 40 Gy physical absorbed dose. Contrast-enhanced magnetic resonance imaging and histology six month later showed very focal target necrosis with nearly no damage to the surrounding brain. As for minibeams of protons and light ions, for which the minibeam broadening is substantial, measurements at MD Anderson Cancer Center in Houston, Texas, and Monte Carlo simulations showed that the broadening minibeams will merge with their neighbors at a certain tissue depth

  6. Quantitative Measures of Chaotic Charged Particle Dynamics in the Magnetotail

    Science.gov (United States)

    Holland, D. L.; Martin, R. F., Jr.; Burris, C.

    2017-12-01

    It has long been noted that the motion of charged particles in magnetotail-like magnetic fields is chaotic, however, efforts to quantify the degree of chaos have had conflicting conclusions. In this paper we re-examine the question by focusing on quantitative measures of chaos. We first examine the percentage of orbits that enter the chaotic region of phase space and the average trapping time of those particles. We then examine the average exponential divergence rate (AEDR) of the chaotic particles between their first and last crossing of the mid-plane. We show that at resonant energies where the underlying phase space has a high degree of symmetry, only a small number of particle enter the chaotic region, but they are trapped for long periods of time and the time asymptotic value of the AEDR is very close to the average value of the AEDR. At the off-resonant energies where the phase space is highly asymmetric, the majority of the particle enter the chaotic region for fairly short periods of time and the time asymptotic value of the AEDR is much smaller than the average value. The root cause is that in the resonant case, the longest-lived orbits tend interact with the current many times and sample the entire chaotic region, whereas in the non-resonant case the longest-lived orbits only interact with the current sheet a small number of times but have very long mirrorings where the motion is nearly regular. Additionally we use an ad-hoc model where we model the current sheet as a Lorentz scattering system with each interaction with the current sheet being considered as a "collision". We find that the average kick per collision is greatest at off-resonant energies. Finally, we propose a chaos parameter as the product of the AEDR times the average chaotic particle trapping time times the percentage of orbits that are chaotic. We find that this takes on peak values at the resonant energies.

  7. Equilibrium distributions of free charged particles and molecules in systems with non-plane boundaries

    International Nuclear Information System (INIS)

    Usenko, A.S.

    1995-01-01

    The equilibrium space-inhomogeneous distributions of free and pair bound charged particles are calculated in the dipole approximation for the plasma-molecular cylinder and sphere. It is shown that the space and orientational distributions of charged particles and molecules in these systems are similar to those in the cases of plasma-molecular system restricted by one or two parallel planes. The influence of the parameters of outer medium and a plasma-molecular system on the space and orientational distributions of charged particles and molecules is studied in detail

  8. Entrance channel dependent light-charged particle emission of the 156Er compound

    International Nuclear Information System (INIS)

    Liang, J.F.; Bierman, J.D.; Kelly, M.P.; Sonzogni, A.A.; Vandenbosch, R.; van Schagen, J.P.S.

    1996-01-01

    Light-charged particle decay from the 156 Er compound nucleus, populated by 12 C+ 144 Sm and 60 Ni+ 96 Zr at the same excitation energy, were measured in coincidence with the evaporation residues. The high energy slope of charged particle spectra for the 60 Ni-induced reaction is steeper than for the 12 C-induced reaction. Model calculations including particle evaporation during compound nucleus formation result in good agreement with the data. This suggests that the difference in the charged particle spectra between the two entrance channels is due to a longer formation time in the 60 Ni-induced reaction. 14 refs., 3 figs

  9. Review of heavy charged particle transport in MCNP6.2

    Science.gov (United States)

    Zieb, K.; Hughes, H. G.; James, M. R.; Xu, X. G.

    2018-04-01

    The release of version 6.2 of the MCNP6 radiation transport code is imminent. To complement the newest release, a summary of the heavy charged particle physics models used in the 1 MeV to 1 GeV energy regime is presented. Several changes have been introduced into the charged particle physics models since the merger of the MCNP5 and MCNPX codes into MCNP6. This paper discusses the default models used in MCNP6 for continuous energy loss, energy straggling, and angular scattering of heavy charged particles. Explanations of the physics models' theories are included as well.

  10. Nuclear activation analysis work at Analytical Chemistry Division: an overview

    International Nuclear Information System (INIS)

    Verma, R.; Swain, K.K.; Remya Devi, P.S.; Dalvi, Aditi A.; Ajith, Nicy; Ghosh, M.; Chowdhury, D.P.; Datta, J.; Dasgupta, S.

    2016-04-01

    Nuclear activation analysis using neutron and charged particles is used routinely for analysis and research at Analytical Chemistry Division (ACD), Bhabha Atomic Research Centre (BARC). Neutron activation analysis at ACD, BARC, Mumbai, India has been pursued since late fifties using Apsara, CIRUS, Dhruva and Critical facility Research reactors, 239 Pu-Be neutron source and neutron generator. Instrumental, Radiochemical, Chemical and Derivative neutron activation analysis approaches are adopted depending on the analyte and the matrix. Large sample neutron activation analysis as well as k 0 -based internal monostandard neutron activation analysis is also used. Charged particle activation analysis at ACD, Variable Energy Cyclotron Centre (VECC), Kolkata started in late eighties and is being used for industrial applications and research. Proton, alpha, deuteron and heavy ion beams from 224 cm room temperature Variable Energy Cyclotron are used for determination of trace elements, measurement of excitation function, thin layer activation and preparation of endohedral fullerenes encapsulated with radioactive isotopes. Analytical Chemistry Division regularly participates in Inter and Intra laboratory comparison exercises conducted by various organizations including International Atomic Energy Agency (IAEA) and the results invariably include values obtained by neutron activation analysis. (author)

  11. Heavy charged particle radiobiology: using enhanced biological effectiveness and improved beam focusing to advance cancer therapy.

    Science.gov (United States)

    Allen, Christopher; Borak, Thomas B; Tsujii, Hirohiko; Nickoloff, Jac A

    2011-06-03

    Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation. 2011 Elsevier B.V. All rights reserved.

  12. VOYAGER 2 SAT LOW ENERGY CHARGED PARTICLE CALIB. BR 15MIN

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS BROWSE DATA CONSISTS OF RESAMPLED DATA FROM THE LOW ENERGY CHARGED PARTICLE (LECP) EXPERIMENT ON VOYAGER 2 WHILE THE SPACECRAFT WAS IN THE VICINITY OF SATURN....

  13. VOYAGER 1 SAT LOW ENERGY CHARGED PARTICLE CALIB. BR 15MIN

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS BROWSE DATA CONSISTS OF RESAMPLED DATA FROM THE LOW ENERGY CHARGED PARTICLE (LECP) EXPERIMENT ON VOYAGER 1 WHILE THE SPACECRAFT WAS IN THE VICINITY OF SATURN....

  14. VOYAGER 1 JUP LOW ENERGY CHARGED PARTICLE CALIB. BR 15MIN

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS BROWSE DATA CONSISTS OF RESAMPLED DATA FROM THE LOW ENERGY CHARGED PARTICLE (LECP) EXPERIMENT ON VOYAGER 1 WHILE THE SPACECRAFT WAS IN THE VICINITY OF JUPITER....

  15. VOYAGER 2 JUP LOW ENERGY CHARGED PARTICLE CALIB. BR 15MIN

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS BROWSE DATA CONSISTS OF RESAMPLED DATA FROM THE LOW ENERGY CHARGED PARTICLE (LECP) EXPERIMENT ON VOYAGER 2 WHILE THE SPACECRAFT WAS IN THE VICINITY OF JUPITER....

  16. Method of measuring a profile of the density of charged particles in a particle beam

    International Nuclear Information System (INIS)

    Hyman, L.G.; Jankowski, D.J.

    1975-01-01

    A profile of the relative density of charged particles in a beam is obtained by disposing a number of rods parallel to each other in a plane perpendicular to the beam and shadowing the beam. A second number of rods is disposed perpendicular to the first rods in a plane perpendicular to the beam and also shadowing the beam. Irradiation of the rods by the beam of charged particles creates radioactive isotopes in a quantity proportional to the number of charged particles incident upon the rods. Measurement of the radioactivity of each of the rods provides a measure of the quantity of radioactive material generated thereby and, together with the location of the rods, provides information sufficient to identify a profile of the density of charged particles in the beam

  17. Performance of PC-based charged particle multi-channel spectrometer utilising particle identification

    International Nuclear Information System (INIS)

    Palla, G.; Sziklai, J.; Trajber, Cs.

    1993-12-01

    A collaterally expandable charged particle spectrometer based on PC control and particle identification is described. A typical system configuration consisting of two channels are used to test the system performance. (author) 7 refs.; 5 figs

  18. Correlations between large transverse momentum pi /sup 0/ mesons and charged particles at the CERN ISR

    CERN Document Server

    Büsser, F W; Camilleri, L L; Cool, R L; Di Lella, L; Lederman, Leon Max; Litt, L; Pope, B G; Segler, S L; Smith, A M; Yoh, J K

    1974-01-01

    A study of the charged particles emitted together with a large transverse momentum pi /sup 0/ was made at the CERN ISR at a centre- of-mass energy square root s=52.7 GeV. The pi /sup 0/ mesons and the charged particles were observed in two detectors, each centred at theta /sub cm/=90/sup 0/ and each covering a laboratory solid angle of 0.59 sr for pi /sup 0/'s and 1.1 sr for charged particles. The multiplicity of charged particles, observed in the same and in the opposite hemisphere as the pi /sup 0/, was found to be larger than the average multiplicity for inelastic interactions. Some rapidity and azimuthal correlations were observed. (14 refs).

  19. Nonlinear dynamics for charges particle beams with a curved axis in the matrix - recursive model

    Energy Technology Data Exchange (ETDEWEB)

    Dymnikov, A.D. [University of St Petersburg, (Russian Federation). Institute of Computational Mathematics and Control Process

    1993-12-31

    In this paper a new matrix and recursive approach has been outlined for treating nonlinear optics of charged particle beams. This approach is a new analytical and computational tool for designers of optimal beam control systems. 9 refs.

  20. Electromagnetic instability of a beam of charged particles in a dense plasma

    International Nuclear Information System (INIS)

    Gordeev, A.V.; Rudakov, L.I.

    1982-01-01

    We investigate magnetic-field generation due to filamentation of a beam of charged particles propagating in a dense plasma under conditions of strong current neutralization. The filamentation mechanism is determined by inductive or dissipative magnetic-field accumulation which leads to an inertialess restructuring of the equilibrium of the charged-particle beam. The characteristic generation times of a magnetic field that leads to a substantial increase of the angular spread of the particles are indicated for typical beam and laser experiments

  1. CHANTI: a Fast and Efficient Charged Particle Veto Detector for the NA62 Experiment at CERN

    CERN Document Server

    INSPIRE-00293636; Capussela, T.; Di Filippo, D.; Massarotti, P.; Mirra, M.; Napolitano, M.; Palladino, V.; Saracino, G.; Roscilli, L.; Vanzanella, A.; Corradi, G.; Tagnani, D.; Paglia, U.

    2016-03-29

    The design, construction and test of a charged particle detector made of scintillation counters read by Silicon Photomultipliers (SiPM) is described. The detector, which operates in vacuum and is used as a veto counter in the NA62 experiment at CERN, has a single channel time resolution of 1.14 ns, a spatial resolution of ~2.5 mm and an efficiency very close to 1 for penetrating charged particles.

  2. Development of a utility system for charged particle nuclear reaction data by using intelligentPad

    International Nuclear Information System (INIS)

    Aoyama, Shigeyoshi; Ohbayashi, Yoshihide; Masui, Hiroshi; Kato, Kiyoshi; Chiba, Masaki

    2000-01-01

    We have developed a utility system, WinNRDF2, for a nuclear charged particle reaction data of NRDF (Nuclear Reaction Data File) on the IntelligentPad architecture. By using the system, we can search the experimental data of a charged particle reaction of NRDF. Furthermore, we also see the experimental data by using graphic pads which was made through the CONTIP project. (author)

  3. Comparison of heavy charged particles and x-rays for axial tomograpic scanning

    International Nuclear Information System (INIS)

    Huesman, R.H.; Rosenfeld, A.H.; Solmitz, F.T.

    1975-09-01

    Heavy charged particles are applicable to the problem of 3- dimensional reconstruction of electron density distributions of biological samples. The transverse uncertainty in the path of a heavy charged particle due to multiple scattering can be reduced by measuring the entrance and exit positions and angles of the particle. Patient doses for He ions and 80 keV x rays are compared under conditions suitable for imaging the human head

  4. Development of a utility system for charged particle nuclear reaction data by using intelligentPad

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, Shigeyoshi; Ohbayashi, Yoshihide [Information Processing Center, Kitami Institute of Technology, Kitami, Hokkaido (Japan); Masui, Hiroshi [Meme Media Laboratory, Hokkaido University, Sapporo, Hokkaido (Japan); Kato, Kiyoshi [Hokkaido University, Graduate School of Science, Sapporo, Hokkaido (Japan); Chiba, Masaki [Faculty of Social Information, Sapporo Gakuin Univ., Ebetsu, Hokkaido (Japan)

    2000-03-01

    We have developed a utility system, WinNRDF2, for a nuclear charged particle reaction data of NRDF (Nuclear Reaction Data File) on the IntelligentPad architecture. By using the system, we can search the experimental data of a charged particle reaction of NRDF. Furthermore, we also see the experimental data by using graphic pads which was made through the CONTIP project. (author)

  5. Second Research Coordination Meeting on Heavy Charged-Particle Interaction Data for Radiotherapy. Summary Report

    International Nuclear Information System (INIS)

    Palmans, Hugo; Noy, Roberto Capote

    2010-05-01

    A summary is given of the 2nd Research Coordination Meeting (RCM) on Heavy Charged-Particle Interaction Data for Radiotherapy. The programme to compile and evaluate charged-particle nuclear data for therapeutic applications was reviewed. Technical discussions and the resulting work plan of the Coordinated Research Programme are summarized, along with planned actions and deadlines. Participants' reports at the 2nd RCM are also included in this report. (author)

  6. An upper limit on the branching ratio for $\\tau$ decays into seven charged particles

    CERN Document Server

    Ackerstaff, K; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Beeston, C; Behnke, T; Bell, A N; Bell, K W; Bella, G; Bentvelsen, Stanislaus Cornelius Maria; Berlich, P; Bethke, Siegfried; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bloomer, J E; Bobinski, M; Bock, P; Bonacorsi, D; Boutemeur, M; Bouwens, B T; Braibant, S; Brigliadori, L; Brown, R M; Burckhart, Helfried J; Burgard, C; Bürgin, R; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Clarke, P E L; Cohen, I; Conboy, J E; Cooke, O C; Cuffiani, M; Dado, S; Dallapiccola, C; Dallavalle, G M; De Jong, S; del Pozo, L A; Desch, Klaus; Dixit, M S; do Couto e Silva, E; Doucet, M; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Edwards, J E G; Estabrooks, P G; Evans, H G; Evans, M; Fabbri, Franco Luigi; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fischer, H M; Fleck, I; Folman, R; Fong, D G; Foucher, M; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Geddes, N I; Geich-Gimbel, C; Geralis, T; Giacomelli, G; Giacomelli, P; Giacomelli, R; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Goodrick, M J; Gorn, W; Grandi, C; Gross, E; Grunhaus, Jacob; Gruwé, M; Hajdu, C; Hanson, G G; Hansroul, M; Hapke, M; Hargrove, C K; Hart, P A; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hillier, S J; Hilse, T; Hobson, P R; Homer, R James; Honma, A K; Horváth, D; Howard, R; Hutchcroft, D E; Igo-Kemenes, P; Imrie, D C; Ingram, M R; Ishii, K; Jawahery, A; Jeffreys, P W; Jeremie, H; Jimack, Martin Paul; Joly, A; Jones, C R; Jones, G; Jones, M; Jost, U; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kirk, J; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kress, T; Krieger, P; Von Krogh, J; Kyberd, P; Lafferty, G D; Lahmann, R; Lai, W P; Lanske, D; Lauber, J; Lautenschlager, S R; Layter, J G; Lazic, D; Lee, A M; Lefebvre, E; Lellouch, Daniel; Letts, J; Levinson, L; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Macchiolo, A; MacPherson, A L; Mannelli, M; Marcellini, S; Markus, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mikenberg, G; Miller, D J; Mincer, A; Mir, R; Mohr, W; Montanari, A; Mori, T; Morii, M; Müller, U; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oldershaw, N J; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pearce, M J; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poffenberger, P R; Poli, B; Posthaus, A; Przysiezniak, H; Rees, D L; Rigby, D; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Rooke, A M; Ros, E; Rossi, A M; Rosvick, M; Routenburg, P; Rozen, Y; Runge, K; Runólfsson, O; Ruppel, U; Rust, D R; Rylko, R; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schenk, P; Schieck, J; Schleper, P; Schmitt, B; Schmitt, S; Schöning, A; Schröder, M; Schultz-Coulon, H C; Schulz, M; Schumacher, M; Schwick, C; Scott, W G; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skillman, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Springer, R W; Sproston, M; Stephens, K; Steuerer, J; Stockhausen, B; Stoll, K; Strom, D; Szymanski, P; Tafirout, R; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomson, M A; Von Törne, E; Towers, S; Trigger, I; Tsur, E; Turcot, A S; Turner-Watson, M F; Utzat, P; Van Kooten, R; Verzocchi, M; Vikas, P; Vokurka, E H; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilkens, B; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D

    1997-01-01

    We have searched for decays of the tau lepton into seven or more charged particles, using data collected with the OPAL detector from 1990 to 1995 in e^+e^- collisions at sqrt(s) ~ M_Z. No candidate events were found and an upper limit on the branching ratio for tau decays into seven charged particles of 1.8 x 10^-5 at the 95% confidence level was determined.

  7. Influence of the fringe field on moving of the charged particles in flat and cylindrical capacitors

    International Nuclear Information System (INIS)

    Doskeyev, G.A.; Edenova, O.A.; Spivak-Lavrov, I.F.

    2011-01-01

    This paper describes different analytic approaches to describe the fringe fields of flat and cylindrical capacitor structures. A method for the calculation of deflection of charged particles from the optical axis is developed. The behavior of a charged particle beam in a flat capacitor is approximated by using a sharp cut-off boundary for the field, which has the provision of taking fringe fields into account.

  8. Charged particles interacting with a mixed supported lipid bilayer as a biomimetic pulmonary surfactant.

    Science.gov (United States)

    Munteanu, B; Harb, F; Rieu, J P; Berthier, Y; Tinland, B; Trunfio-Sfarghiu, A-M

    2014-08-01

    This study shows the interactions of charged particles with mixed supported lipid bilayers (SLB) as biomimetic pulmonary surfactants. We tested two types of charged particles: positively charged and negatively charged particles. Two parameters were measured: adsorption density of particles on the SLB and the diffusion coefficient of lipids by FRAPP techniques as a measure of interaction strength between particles and lipids. We found that positively charged particles do not adsorb on the bilayer, probably due to the electrostatic repulsion between positively charged parts of the lipid head and the positive groups on the particle surface, therefore no variation in diffusion coefficient of lipid molecules was observed. On the contrary, the negatively charged particles, driven by electrostatic interactions are adsorbed onto the supported bilayer. The adsorption of negatively charged particles increases with the zeta-potential of the particle. Consecutively, the diffusion coefficient of lipids is reduced probably due to binding onto the lipid heads which slows down their Brownian motion. The results are directly relevant for understanding the interactions of particulate matter with pulmonary structures which could lead to pulmonary surfactant inhibition or deficiency causing severe respiratory distress or pathologies.

  9. Numerical computation of discrete differential scattering cross sections for Monte Carlo charged particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Jonathan A., E-mail: walshjon@mit.edu [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 24-107, Cambridge, MA 02139 (United States); Palmer, Todd S. [Department of Nuclear Engineering and Radiation Health Physics, Oregon State University, 116 Radiation Center, Corvallis, OR 97331 (United States); Urbatsch, Todd J. [XTD-IDA: Theoretical Design, Integrated Design and Assessment, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-12-15

    Highlights: • Generation of discrete differential scattering angle and energy loss cross sections. • Gauss–Radau quadrature utilizing numerically computed cross section moments. • Development of a charged particle transport capability in the Milagro IMC code. • Integration of cross section generation and charged particle transport capabilities. - Abstract: We investigate a method for numerically generating discrete scattering cross sections for use in charged particle transport simulations. We describe the cross section generation procedure and compare it to existing methods used to obtain discrete cross sections. The numerical approach presented here is generalized to allow greater flexibility in choosing a cross section model from which to derive discrete values. Cross section data computed with this method compare favorably with discrete data generated with an existing method. Additionally, a charged particle transport capability is demonstrated in the time-dependent Implicit Monte Carlo radiative transfer code, Milagro. We verify the implementation of charged particle transport in Milagro with analytic test problems and we compare calculated electron depth–dose profiles with another particle transport code that has a validated electron transport capability. Finally, we investigate the integration of the new discrete cross section generation method with the charged particle transport capability in Milagro.

  10. Correlations between jets and charged particles in PbPb and pp collisions at $\\sqrt{s_{\\mathrm{NN}}} =$ 2.76 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Knünz, Valentin; König, Axel; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rad, Navid; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Van Parijs, Isis; Barria, Patrizia; Brun, Hugues; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Maerschalk, Thierry; Marinov, Andrey; Perniè, Luca; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Crucy, Shannon; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; Ceard, Ludivine; Delaere, Christophe; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Mertens, Alexandre; Musich, Marco; Nuttens, Claude; Perrini, Lucia; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Beliy, Nikita; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Hamer, Matthias; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; De Souza Santos, Angelo; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Leggat, Duncan; Plestina, Roko; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Micanovic, Sasa; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Abdelalim, Ahmed Ali; Awad, Adel; Mahrous, Ayman; Radi, Amr; Calpas, Betty; Kadastik, Mario

    2016-02-23

    The quark-gluon plasma is studied via medium-induced changes to correlations between jets and charged particles in PbPb collisions compared to pp reference data. This analysis uses data sets from PbPb and pp collisions with integrated luminosities of 166 $\\mu$b$^{-1}$ and 5.3 pb$^{-1}$, respectively, collected at $\\sqrt{s_{\\mathrm{NN}}} =$ 2.76 TeV. The angular distributions of charged particles are studied as a function of relative pseudorapidity ($\\Delta\\eta$) and relative azimuthal angle ($\\Delta\\phi$) with respect to reconstructed jet directions. Charged particles are correlated with all jets with transverse momentum ($p_{\\mathrm{T}}$) above 120 GeV, and with the leading and subleading jets (the highest and second-highest in $p_{\\mathrm{T}}$, respectively) in a selection of back-to-back dijet events. Modifications in PbPb data relative to pp reference data are characterized as a function of PbPb collision centrality and charged particle $p_{\\mathrm{T}}$. A centrality-dependent excess of low-$p_{\\mathrm{T}...

  11. Impact of the track structure of heavy charged particles on cytogenetic damage in human blood lymphocytes

    Science.gov (United States)

    Lee, Ryonfa; Nasonova, Elena; Sommer, Sylwetster; Hartel, Carola; Durante, Marco; Ritter, Sylvia

    -ions). Furthermore, the aberration yield increased linearly with Fe-ion fluence. When aberrations were analyzed in first cycle G2 -PCC cells to account for the prolonged G2 arrest of damaged cells, the same trend was detected. However, the increase in the aberration yield with time and the saturation effect were less pronounced compared to metaphase samples. Altogether, these data show that the aberration analysis with multiple samplings is necessary for a reliable estimate of cytogenetic damage induced by charged particles. In particular, when damage is measured at one early time-point the effectiveness of low energy particles will be considerably underestimated. When the aberration spectrum induced by low energy C-ions and high en-ergy Fe-ions was compared, we did not find a difference. Preliminary data obtained with the high resolution mFISH-technique confirm this observation. (Work supported by BMBF, Bonn, under contract 02S8497)

  12. GaAs detectors with an ultra-thin Schottky contact for spectrometry of charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Chernykh, S.V., E-mail: chsv_84@mail.ru [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Chernykh, A.V. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Didenko, S.I.; Baryshnikov, F.M. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Burtebayev, N. [Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Institute of Nuclear Physics, Almaty (Kazakhstan); Britvich, G.I. [Institute of High Energy Physics, Protvino, Moscow region (Russian Federation); Chubenko, A.P. [Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow (Russian Federation); Guly, V.G.; Glybin, Yu.N. [LLC “SNIIP Plus”, Moscow (Russian Federation); Zholdybayev, T.K.; Burtebayeva, J.T.; Nassurlla, M. [Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Institute of Nuclear Physics, Almaty (Kazakhstan)

    2017-02-11

    For the first time, samples of particle detectors based on high-purity GaAs epilayers with an active area of 25 and 80 mm{sup 2} and an ultra-thin Pt Schottky barrier were fabricated for use in the spectrometry of charged particles and their operating characteristics were studied. The obtained FWHM of 14.2 (for 25 mm{sup 2} detector) and 15.5 keV (for 80 mm{sup 2} detector) on the 5.499 MeV line of {sup 238}Pu is at the level of silicon spectrometric detectors. It was found that the main component that determines the energy resolution of the detector is a fluctuation in the number of collected electron–hole pairs. This allows us to state that the obtained energy resolution is close to the limit for VPE GaAs. - Highlights: • VPE GaAs particle detectors with an active area of 25 and 80 mm{sup 2} were fabricated. • 120 Å ultra-thin Pt Schottky barrier was used as a rectifying contact. • The obtained FWHM of 14.2 keV ({sup 238}Pu) is at the level of Si spectrometric detectors. • Various components of the total energy resolution were analyzed. • It was shown that obtained energy resolution is close to its limit for VPE GaAs.

  13. Production of leading charged particles and leading charged-particle jets at small transverse momenta in pp collisions at $\\sqrt{s}$ = 8 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Molina, Jorge; Mora Herrera, Clemencia; Pol, Maria Elena; Rebello Teles, Patricia; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Hadjiiska, Roumyana; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Zhang, Fengwangdong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma

    2015-12-01

    The per-event yield of the highest transverse momentum charged particle and charged-particle jet, integrated above a given $p_{\\mathrm{T}}^{\\mathrm{min}}$ threshold starting at $p_{\\mathrm{T}}^{\\mathrm{min}} = $ 0.8 and 1 GeV, respectively, is studied in PbPb collisions at $\\sqrt{s} =$ 8 TeV. The particles and the jets are measured for absolute pseudorapidities lower than 2.4 and 1.9, respectively. The data are sensitive to the momentum scale at which parton densities saturate in the proton, to multiple partonic interactions, and other key aspects of the transition between the soft and hard QCD regimes in hadronic collisions.

  14. Double differential light charged particle emission cross sections for some structural fusion materials

    Directory of Open Access Journals (Sweden)

    Sarpün Ismail Hakki

    2017-01-01

    Full Text Available In fusion reactors, neutron induced radioactivity strongly depends on the irradiated material. So, a proper selection of structural materials will have been limited the radioactive inventory in a fusion reactor. First-wall and blanket components have high radioactivity concentration due to being the most flux-exposed structures. The main objective of fusion structural material research is the development and selection of materials for reactor components with good thermo-mechanical and physical properties, coupled with low-activation characteristics. Double differential light charged particle emission cross section, which is a fundamental data to determine nuclear heating and material damages in structural fusion material research, for some elements target nuclei have been calculated by the TALYS 1.8 nuclear reaction code at 14–15 MeV neutron incident energy and compared with available experimental data in EXFOR library. Direct, compound and pre-equilibrium reaction contribution have been theoretically calculated and dominant contribution have been determined for each emission of proton, deuteron and alpha particle.

  15. Modifications of poly (vinilydene fluoride) under electronic excitations produced by charged particles (heavy ions and electrons)

    International Nuclear Information System (INIS)

    Fina, A.

    1990-04-01

    Some of the physico-chemical properties of organic solids like conductivity or permeation can be improved by irradiation. The aim of this work is to characterize modifications induced in poly (vinylidene fluoride) films (PVDF) by charged particles (ions and electrons), with electronic stopping power, for doses ranging from zero to twenty G-Grays. Influence of dose, density of electronic excitations, and flux (in particles per square centimeter), and the nature of defects induced by the beam, were studied with two methods: X-ray Photoelectron Spectroscopy (or XPS) for surface analysis, and electron Spin Resonance (or ESR) to probe the bulk of the film. Three ranges of doses are revealed in view of experimental results. At lower doses, PVDF undergoes deshydrofluorination induced by desorption; it is a low modifications regime. For intermediate range doses, conjugated carbon backbones of polyene compounds are produced. At higher doses, intermolecular interactions between the resulting fragments give a crosslinked network. For the upper limit of doses used, bond breaking results in a non reversible degradation of PVDF. In this last situation, direct atomic displacement of target atoms, is not negligible [fr

  16. Simulation for Sludge Flocculation I: Brownian Dynamic Simulation for Perikinetic Flocculation of Charged Particle

    Directory of Open Access Journals (Sweden)

    Linshuang Liu

    2012-01-01

    Full Text Available To investigate sludge drying process, a numerical simulation based on Brownian dynamic for the floc with uncharged and charged particles was conducted. The Langevin equation is used as dynamical equation for tracking each particle in a floc. An initial condition and periodic boundary condition which well conformed to reality is used for calculating the floc growth process. Each cell consists of 1000 primary particles with diameter 0.1 ∼ 4 μm. Floc growth is related to the thermal force and the electrostatic force. The electrostatic force on a particle in the simulation cell is considered as the sum of electrostatic forces from other particles in the original cell and its replicate cells. It is assumed that flocs are charged with precharged primary particles in dispersion system by ionization. By the analysis of the simulation figures, on one hand, the effects of initial particle size and sludge density on floc smashing time, floc radius of gyration, and fractal dimension were discussed. On the other hand, the effects of ionization on floc smashing time and floc structure were presented. This study has important practical value in the high-turbidity water treatment, especially for sludge drying.

  17. The 2 Pi Charged Particles Analyzer: All-Sky Camera Concept and Development for Space Missions

    Science.gov (United States)

    Vaisberg, O.; Berthellier, J.-J.; Moore, T.; Avanov, L.; Leblanc, F.; Leblanc, F.; Moiseev, P.; Moiseenko, D.; Becker, J.; Collier, M.; hide

    2016-01-01

    Increasing the temporal resolution and instant coverage of velocity space of space plasma measurements is one of the key issues for experimentalists. Today, the top-hat plasma analyzer appears to be the favorite solution due to its relative simplicity and the possibility to extend its application by adding a mass-analysis section and an electrostatic angular scanner. Similarly, great success has been achieved in MMS mission using such multiple top-hat analyzers to achieve unprecedented temporal resolution. An instantaneous angular coverage of charged particles measurements is an alternative approach to pursuing the goal of high time resolution. This was done with 4-D Fast Omnidirectional Nonscanning Energy Mass Analyzer and, to a lesser extent, by DYMIO instruments for Mars-96 and with the Fast Imaging Plasma Spectrometer instrument for MErcury Surface, Space ENvironment, GEochemistry, and Ranging mission. In this paper we describe, along with precursors, a plasma analyzer with a 2 electrostatic mirror that was developed originally for the Phobos-Soil mission with a follow-up in the frame of the BepiColombo mission and is under development for future Russian missions. Different versions of instrument are discussed along with their advantages and drawbacks.

  18. Charged particle multiplicity and correlations in heavy ion collisions in the ATLAS experiment

    CERN Document Server

    Zabinski, B; The ATLAS collaboration

    2013-01-01

    Since the start of Large Hadron Collider (LHC) the ATLAS experiment has collected data from $p+p$, Pb+Pb and recently $p$+Pb collisions. In this paper two topics from the heavy ion programme are presented. The first of them is the multiplicity of charged particles in Pb+Pb collisions studied as a function of centrality. In such collisions very high pseudorapidity particle density is obtained, reaching 1738 $\\pm 76$ at $\\eta \\approx0$. For the $p$+Pb collisions the latest analysis of two-particle correlations is presented. The "ridge" observed in pp events with large multiplicities is present also in central $p$+Pb collisions selected by large $\\Sigma E_{T}$ measured at the Pb fragmentation side. In the azimuthal correlation for $2<|\\Delta \\eta|< 5$ two components can be extracted. Assuming that in the peripheral collisions only the correlation due to momentum conservation effects are present, in the central collisions additional quadruple modulation component can be identified.

  19. NEUDOSE: A CubeSat Mission for Dosimetry of Charged Particles and Neutrons in Low-Earth Orbit.

    Science.gov (United States)

    Hanu, A R; Barberiz, J; Bonneville, D; Byun, S H; Chen, L; Ciambella, C; Dao, E; Deshpande, V; Garnett, R; Hunter, S D; Jhirad, A; Johnston, E M; Kordic, M; Kurnell, M; Lopera, L; McFadden, M; Melnichuk, A; Nguyen, J; Otto, A; Scott, R; Wagner, D L; Wiendels, M

    2017-01-01

    During space missions, astronauts are exposed to a stream of energetic and highly ionizing radiation particles that can suppress immune system function, increase cancer risks and even induce acute radiation syndrome if the exposure is large enough. As human exploration goals shift from missions in low-Earth orbit (LEO) to long-duration interplanetary missions, radiation protection remains one of the key technological issues that must be resolved. In this work, we introduce the NEUtron DOSimetry & Exploration (NEUDOSE) CubeSat mission, which will provide new measurements of dose and space radiation quality factors to improve the accuracy of cancer risk projections for current and future space missions. The primary objective of the NEUDOSE CubeSat is to map the in situ lineal energy spectra produced by charged particles and neutrons in LEO where most of the preparatory activities for future interplanetary missions are currently taking place. To perform these measurements, the NEUDOSE CubeSat is equipped with the Charged & Neutral Particle Tissue Equivalent Proportional Counter (CNP-TEPC), an advanced radiation monitoring instrument that uses active coincidence techniques to separate the interactions of charged particles and neutrons in real time. The NEUDOSE CubeSat, currently under development at McMaster University, provides a modern approach to test the CNP-TEPC instrument directly in the unique environment of outer space while simultaneously collecting new georeferenced lineal energy spectra of the radiation environment in LEO.

  20. 6th International Conference on Trapped Charged Particles and Fundamental Physics

    CERN Document Server

    Schury, Peter; Ichikawa, Yuichi

    2017-01-01

    This volume presents the proceedings of the International Conference on Trapped Charged Particles and Fundamental Physics (TCP 14). It presents recent developments in the theoretical and experimental research on trapped charged particles and related fundamental physics and applications. The content has been divided topic-wise covering basic questions of Fundamental Physics, Quantum and QED Effects, Plasmas and Collective Behavior and Anti-Hydrogen. More technical issues include Storage Ring Physics, Precision Spectroscopy and Frequency Standards, Highly Charged Ions in Traps, Traps for Radioactive Isotopes and New Techniques and Facilities. An applied aspect of ion trapping is discussed in section devoted to Applications of Particle Trapping including Quantum Information and Processing. Each topic has a more general introduction, but also more detailed contributions are included. A selection of contributions exemplifies the interdisciplinary nature of the research on trapped charged particles worldwide. Repri...

  1. Charged particle and photon acceleration by wakefield plasma waves in non-uniform plasmas

    International Nuclear Information System (INIS)

    Bulanov, S.V.; Kirsanov, V.I.; Sakharov, A.S.; Pegoraro, F.

    1993-01-01

    We discuss the acceleration of charged particles and the upshift of the frequency of short wave packets of laser radiation. The acceleration and the upshift are caused by wake plasma waves excited by a strong laser pulse in a non-uniform plasma. We show that unlimited acceleration of charged particles is possible for specific spatial dependencies of the plasma density. In this unlimited acceleration regime, particles have a fixed phase relationship with respect to the plasma wave, while their energy increases with time. When the wave breaking limit is approached and surpassed, the efficiency of the acceleration of the charged particles and of the frequency upshift of the photons can be increased significantly. (author) 3 refs

  2. Magnetic Field Generation through Angular Momentum Exchange between Circularly Polarized Radiation and Charged Particles

    CERN Document Server

    Shvets, G

    2002-01-01

    The interaction between circularly polarized (CP) radiation and charged particles can lead to generation of magnetic field through an inverse Faraday effect. The spin of the circularly polarized electromagnetic wave can be converted into the angular momentum of the charged particles so long as there is dissipation. We demonstrate this by considering two mechanisms of angular momentum absorption relevant for laser-plasma interactions: electron-ion collisions and ionization. The precise dissipative mechanism, however, plays a role in determining the efficiency of the magnetic field generation.

  3. Charged Particle Identification using the Liquid Xenon Calorimeter of the CMD-3 Detector

    CERN Document Server

    Akhmetshin, R R; Anisenkov, A V; Aulchenko, V M; Banzarov, V Sh; Bashtovoy, N S; Bondar, A E; Bragin, A V; Eidelman, S I; Epifanov, D A; Epshteyn, L B; Erofeev, A L; Fedotovich, G V; Gayazov, S E; Grebenuk, A A; Gribanov, S S; Grigoriev, D N; Ignatov, F V; Ivanov, V L; Karpov, S V; Kazanin, V F; Korobov, A A; Kovalenko, O A; Kozyrev, A N; Kozyrev, E A; Krokovny, P P; Kuzmenko, A E; Kuzmin, A S; Logashenko, I B; Lukin, P A; Mikhailov, K Yu; Okhapkin, V S; Pestov, Yu N; Popov, A S; Razuvaev, G P; Ruban, A A; Ryskulov, N M; Ryzhenenkov, A E; Shebalin, V E; Shemyakin, D N; Shwartz, B A; Sibidanov, A L; Solodov, E P; Talyshev, A A; Titov, V M; Vorobiov, A I; Yudin, Yu V

    2017-01-01

    This paper describes a currently being developed procedure of the charged particle identification for CMD-3 detector, installed at the VEPP-2000 collider. The procedure is based on the application of the boosted decision trees classification method, and uses as input variables, among others, the specific energy losses of charged particle in the layers of the liquid Xenon calorimeter. The efficiency of the procedure is demonstrated by an example of the extraction of events of e+e- to K+K- process in the center of mass energy range from 1.8 to 2.0 GeV.

  4. Charged-particle multiplicities measured with the ATLAS detector at the LHC

    CERN Document Server

    Morley, Anthony Keith; The ATLAS collaboration

    2015-01-01

    Measurements are presented from proton-proton collisions at different centre-of-mass energies in the range of 0.9 to 13 TeV recorded with the ATLAS detector at the LHC. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity, and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. The results are corrected for detector effects and are presented at the particle-level. The results are compared to various Monte Carlo event generator models.

  5. arXiv NA62 Charged Particle Hodoscope. Design and performance in 2016 run

    CERN Document Server

    INSPIRE-00577742

    2017-06-27

    The NA62 experiment at CERN SPS aims to measure the branching ratio of the ultra-rare decay K(+) → π(+)νbar nu with 10% accuracy. The experiment operates with a 75 GeV/c high intensity (750 MHz) secondary beam. A new detector, named Charged Particle Hodoscope (CHOD), designed to produce an input signal to the L0 trigger processor for events with charged particles produced in kaon decays, has been assembled, installed, integrated into NA62 Data Acquisition System (DAQ) and commissioned in 2016. During the whole 2016 run the detector has been in continuous operation. Design and performance features of the detector are presented.

  6. Energy spectra and asymmetry of charged particle emission in the muon minus capture by nuclei

    International Nuclear Information System (INIS)

    Balandin, M.P.; Grebenyuk, V.M.; Sinov, V.G.; Konin, A.D.

    1978-01-01

    Energy spectra of separated-by-mass single-charged particles at the capture of 130 MeV negative muons by carbon, oxygen, magnesium and sulphur have been measured. The experimental results are compared with the theoretical calculations at the assumption of preequilibrium decay of collective states described by the hydrodynamical model. The measurement of asymmetry of charged particle emission in sulphur and megnesium was carried out by hte method of muon spin precession in a magnetic field. Theoretical curves describe correctly the exponential spectra character, but the yields obtained are 2-3 times less than the experimental results

  7. Calculation of Spectra of Neutrons and Charged Particles Produced in a Target of a Neutron Generator

    Science.gov (United States)

    Gaganov, V. V.

    2017-12-01

    An algorithm for calculating the spectra of neutrons and associated charged particles produced in the target of a neutron generator is detailed. The products of four nuclear reactions 3H( d, n)4He, 2H( d, n)3He, 2H( d, p)3H, and 3He( d, p)4He are analyzed. The results of calculations are presented in the form of neutron spectra for several emission angles and spectra of associated charged particles emitted at an angle of 180° for a deuteron initial energy of 0.13 MeV.

  8. Magnetic Field Generation through Angular Momentum Exchange between Circularly Polarized Radiation and Charged Particles

    International Nuclear Information System (INIS)

    G. Shvets; N.J. Fisch; J.-M. Rax

    2002-01-01

    The interaction between circularly polarized (CP) radiation and charged particles can lead to generation of magnetic field through an inverse Faraday effect. The spin of the circularly polarized electromagnetic wave can be converted into the angular momentum of the charged particles so long as there is dissipation. We demonstrate this by considering two mechanisms of angular momentum absorption relevant for laser-plasma interactions: electron-ion collisions and ionization. The precise dissipative mechanism, however, plays a role in determining the efficiency of the magnetic field generation

  9. Modeling and characterization of charged particle trajectories in an oscillating magnetic field

    Science.gov (United States)

    Irawan, Dani; Viridi, Sparisoma; Khotimah, Siti Nurul; Latief, Fourier Dzar Eljabbar; Novitrian

    2015-04-01

    A constant magnetic field has frequently been discussed and has been known that it can cause a charged particle to form interesting trajectories such as cycloid and helix in presence of electric field, but a changing magnetic field is rarely discussed. In this work, modeling and characterization of charged particle trajectories in oscillating magnetic field is reported. The modeling is performed using Euler method with speed corrector. The result shows that there are two types of trajectory patterns that will recur for every 180nT0 (n = 0, 1, 2, ..) in increasing of magnetic field oscillation period, where T0 is about 6.25 × 10-7 s.

  10. System of coefficients for charged-particle beam linear transformation by a magnetic dipole element

    International Nuclear Information System (INIS)

    Tarantin, N.I.

    1979-01-01

    A new technique for consideration of dipole magnet ion-optical effect has been developed to study the problems of commutation and monochromatization of a charged particle beam. In a new form obtained are systematized coefficients of linear transformation (CLT) of the charged particle beam for radial and axial motions in a magnetic dipole element (MDE) including a dipole magnet and two gaps without magnetic field. Given is a method of graphic determination of MDE parameters and main CLT. The new form of coefficients and conditions of the transformations feasibility considerably facilitates the choice and calculation of dipole elements

  11. Collisionless distribution function of charged particles ensemble in a tokamak magnetic configuration with magnetic island

    Science.gov (United States)

    Podturova, O. I.

    2017-10-01

    The collisionless distribution function of charged particle ensemble in the magnetic field of tokamak with a magnetic island is calculated. The calculation is based on the solution of the kinetic equation with source together with three-dimensional numerical calculations of charged particle trajectories. It is shown that in case of an inhomogeneous source trajectory, motion of trapped particles leads to anisotropization of the initially isotropic distribution of particle ensemble. The absence of contribution from the passing particles decreases the efficiency of spontaneous generation of a non-induction current in the magnetic island in comparison with the bootstrap effect in the system of nested magnetic surfaces.

  12. Early applications of the R-matrix SAMMY code for charged-particle induced reactions and related covariances

    Science.gov (United States)

    Pigni, Marco T.; Gauld, Ian C.; Croft, Stephen

    2017-09-01

    The SAMMY code system is mainly used in nuclear data evaluations for incident neutrons in the resolved resonance region (RRR), however, built-in capabilities also allow the code to describe the resonance structure produced by other incident particles, including charged particles. (α,n) data provide fundamental information that underpins nuclear modeling and simulation software, such as ORIGEN and SOURCES4C, used for the analysis of neutron emission and definition of source emission processes. The goal of this work is to carry out evaluations of charged-particle-induced reaction cross sections in the RRR. The SAMMY code was recently used in this regard to generate a Reich-Moore parameterization of the available 17,18O(α,n) experimental cross sections in order to estimate the uncertainty in the neutron generation rates for uranium oxide fuel types. This paper provides a brief description of the SAMMY evaluation procedure for the treatment of 17,18O(α,n) reaction cross sections. The results are used to generate neutron source rates for a plutonium oxide matrix.

  13. Peculiarity of the charged particles dynamics at the cyclotron resonances

    International Nuclear Information System (INIS)

    Buts, V.A.; Kuzmin, V.V.; Tolstoluzhsky, A.P.

    2016-01-01

    In this work the analysis was provided of the discrepancy between thresholds for appearance of the chaotic regime in the conditions of cyclotron resonances, obtained by analytical consideration of the particle dynamics, on the one hand, and by numerical investigation, on the other hand. The explanation is given for these threshold discrepancies.

  14. Charged particle-induced nuclear fission reactions – Progress and ...

    Indian Academy of Sciences (India)

    of fission process for nuclei at moderately high excitation energies with large angular momentum values. ... model analysis of these data, the fission barrier can be determined for the fissioning com- pound nucleus. .... qualitative understanding of the various features of mass division are understood in terms of scission point ...

  15. Blind intercomparison of nuclear models for predicting charged particle emission

    International Nuclear Information System (INIS)

    Shibata, K.; Cierjacks, S.

    1994-01-01

    Neutron activation data are important for dosimetry, radiation-damage and production of long-lived activities. For fusion energy applications, it is required to develop 'low-activation materials' from the viewpoints of safety, maintenance and waste disposal. Existing evaluated activation cross-section libraries are to a large extent based on nuclear-model calculations. The former Nuclear Energy Agency Nuclear Data Committee, NEANDC, (presently replaced by the NEA Nuclear Science Committee) organized the working group on activation cross sections. The first meeting of the group was held in 1989, and it was then agreed that a blind intercomparison of nuclear-model calculations should be undertaken in order to test the predictive power of the theoretical calculations. As a first stage the working group selected the reactions 60g Co(n,p) 60 Fe and 60m Co(n,p) 60 Fe, for which no experimental data were available, in the energy range from 1 to 20 MeV. The preliminary results compiled at the NEA Data Bank were sent to each participant and a meeting was held during the International Conference on Nuclear Data for Science and Technology in Julich 1991 to discuss the results. Following the outcome of the discussion in Julich, it was decided to extend this intercomparison. In the second-stage calculation, the same optical-model parameters were employed for neutrons, protons and α-particles, i.e., V = 50 MeV, W = 10 MeV, r = 1.25 fm and a = 0.6 fm with the Woods-Saxon volume-type form factors. No spin-orbit interaction was considered. Concerning the level density, the Fermi gas model with a = A/8 MeV -1 was assumed without pairing corrections. Moreover, gamma-ray competition was neglected to simplify the calculation. This report describes the final results of the blind comparison. Section 2 deals with a survey of the received contributions. The final results are graphically presented in section 3. 67 figs., 1 tab., 12 refs

  16. High-frequency asymptotics of the emission spectrum of moving charged particles in classical electrodynamics

    International Nuclear Information System (INIS)

    Abbasov, I.I.; Bolotovskij, B.M.; Davydov, V.A.

    1986-01-01

    Electromagnetic radiation appears as a result of a charged particle movement in free space and also in heterogeneous and non-stationary medium. The radiation spectrum depends on the charged particle motion law, as well as on the law of the medium property chage in space and time. The asymptotics of radiation spectrum, i.e. behaviour of spectral intensity at high frequencies, is studied. It is shown that if a charged particle moves along smooth trajectory or if the change in the medium properties takes place accordng to the law described by a smooth function, the radiation spectrum at high frequencies decreases according to exponential law. Thus, radiation spectrum of a charged particle moving along a smooth trajectory in the medium with gradual heterogeneity and (or) instability is rapidly cut, starting from a certain frequency value. The smooth trajectory means that the charge moves according to the law r = r(t), where vector-function r(t) is continuous with all its derivatives. In much the same way the medium with gradual heterogeneities (or with gradual instability) is described by the functions which are continuous with all their derivatives of any order. The method permitting to determine the upper boundary of radiation spectra is presented

  17. Winter School on Physics with Trapped Charged Particles - Abstracts and slides

    International Nuclear Information System (INIS)

    Pedersen, T.S.; Thompson, R.C.; Madsen, N.; Champenois, C.; Anderegg, F.; Fajans, J.; Knoop, M.; Scott Hangst, J.; Hilico, L.; Ulmer, S.; Blaum, K.; Drewsen, M.; Roos, C.; Schmidt, P.

    2016-01-01

    This winter school covered various topics of the physics of trapped charged particles. Lectures covered basic trap physics and recent developments in Penning traps, Paul traps..., collective behavior and non-neutral plasmas, as well as applications for fundamental physics, laser cooling, precision spectroscopy and quantum information. This document gathers a booklet of abstracts and the available slides of the presentations

  18. Distribution functions for systems of charged particles in spatially inhomogeneous medium

    Energy Technology Data Exchange (ETDEWEB)

    Petrina, D.Ya. (AN Ukrainskoj SSR, Kiev. Inst. Teoreticheskoj Fiziki)

    1984-04-01

    Equations for distribution functions of systems of charged particles in a medium with heterogeneities are investigated. In the self-consistent field approximation they are reduced to nonlinear Poisson-Boltzmann equations with boundary conditions on surfaces of the heterogeneities. An analogue of the subtraction procedure in quantun field theory is used in the proof of the existence of the solution.

  19. Coulomb Fourier transformation: A novel approach to three-body scattering with charged particles

    International Nuclear Information System (INIS)

    Alt, E.O.; Levin, S.B.; Yakovlev, S.L.

    2004-01-01

    A unitary transformation of the three-body Hamiltonian which describes a system of two charged and one neutral particles is constructed such that the Coulomb potential which acts between the charged particles is explicitly eliminated. The transformed Hamiltonian and, in particular, the transformed short-range pair interactions are worked out in detail. Thereby it is found that, after transformation, the short-range potentials acting between the neutral and either one of the charged particles become simply Fourier transformed but, in addition, multiplied by a function that represents the Coulombic three-body correlations originating from the action of the other charged particle on the considered pair. This function which is universal as it does not depend on any property of the short-range interaction is evaluated explicitly and its singularity structure is described in detail. In contrast, the short-range potential between the charged particles remains of two-body type but occurs now in the 'Coulomb representation'. Specific applications to Yukawa and Gaussian potentials are given. Since the Coulomb-Fourier-transformed Hamiltonian does no longer contain the Coulomb potential or any other effective interaction of long range, standard methods of short-range few-body scattering theory are applicable

  20. Multiplicity of charged particles in Pb-Pb collisions at SPS energies

    Czech Academy of Sciences Publication Activity Database

    Antinori, F.; Bacon, P. A.; Badala, A.; Staroba, Pavel; Závada, Petr

    2005-01-01

    Roč. 31, - (2005), s. 321-335 ISSN 0954-3899 R&D Projects: GA MŠk(CZ) ME 238 Institutional research plan: CEZ:AV0Z10100502 Keywords : multiplicity of charged particles * central rapidity region * Pb-Pb collisions * NA57 experiment Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 2.173, year: 2005

  1. An algebraic approach for a charged particle in a certain magnetic field

    International Nuclear Information System (INIS)

    Setare, Mohammad R; Olfati, Ghafar

    2007-01-01

    The properties of the charged particle in a certain varying magnetic field are outlined. A realization of the creation and annihilation operators for the wavefunctions is studied. It is shown that these operators satisfy the commutation relation of an SU(1,1) group. The closed analytical expressions for the matrix elements of different function ρ and ρ(d/dρ) are evaluated

  2. A Charged Particle Veto Wall for the Large Area Neutron Array (LANA)

    Science.gov (United States)

    Zhu, K.; Chajecki, Z.; Anderson, C.; Bromell, J.; Brown, K.; Crosby, J.; Kodali, S.; Lynch, W. G.; Morfouace, P.; Sweany, S.; Tsang, M. B.; Tsang, C.; Brett, J. J.; Swaim, J. L.

    2017-09-01

    Comparison of neutrons and protons emitted in heavy ion collisions is one of the observables to probe symmetry energy, which is related to the properties of neutron star. In general, neutrons are difficult to measure and neutron detectors are not as easy to use or as widely available as charged particle detectors. Two neutron walls (NW) called LANA exist at the National Superconducting Cyclotron Laboratory. Although the NSCL NW attains excellent discrimination of γ rays and neutron, it fails to discriminate charged particles from neutrons. To ensure near 100% rejection of charged particles, a Charged Particle Veto Wall (VW) is being jointly built by Michigan State University and Western Michigan University. It will be placed in front of one NW. To increase efficiency in detecting neutrons, the second neutron wall is stacked behind it. In this presentation, I will discuss the design, construction and testing of the VW together with the LANA in preparation of two approved NSCL experiments to probe the density and momentum dependence of the symmetry energy potentials in the equation state of the asymmetric nuclear matter. This material is based upon work supported by the National Science Foundation under Grant No. PHY 1565546.

  3. Charged particle density distributions in Au·Au collisions at ...

    Indian Academy of Sciences (India)

    Charged particle pseudorapidity distributions have been measured in Au·Au collisions using the BRAHMS ... Relativistic heavy-ion collisions; charged hadron production; pseudorapidity distribu- tions; centrality .... the predictions of two different theoretical models: (i) the high density gluon saturation model of Kharzeev and ...

  4. Charged-particle multiplicity at mid-rapidity in Au–Au collisions at ...

    Indian Academy of Sciences (India)

    The pseudorapidity densities of charged particles at mid-rapidity in Au + Au collisions at S N N = 130 and 200 GeV at RHIC (relativistic heavy ion collider) have been measured with the PHENIX detector. The measurements were performed using sets of wire-chambers with pad readout in the two central PHENIX tracking ...

  5. Light charged particle emission in heavy-ion reactions – What have ...

    Indian Academy of Sciences (India)

    Light charged particles; heavy-ion induced reactions; particle spectra and angular distri- butions; reaction mechanisms. ... ions. At very high energies, the nucleon–nucleon aspects dominate. In the intermediate energies, both the mean field and the nucleon–nucleon aspects play their roles (figure 1). These features in turn ...

  6. Momentum distribution of charged particles in jets in dijet events and ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 87; Issue 2. Momentum distribution of charged particles in jets in dijet events and comparison to perturbative QCD predictions. M E ZOMORRODIAN M HASHEMINIA S M ZABIHINPOUR A MIRJALILI. Research Article Volume 87 Issue 2 August 2016 Article ID 28 ...

  7. Lie symmetries for charged particles in the presence of a general electromagnetic field

    International Nuclear Information System (INIS)

    Medeiros Ritter, Oswaldo de.

    1991-10-01

    We discuss the Lie method and apply it to differential equations obtaining their symmetries. We also discuss methods of how to obtain first integrals from these symmetries. We apply these methods to some interesting physical problems, all of them involving charged particles in electromagnetic fields. (author). 77 refs

  8. Event reconstruction techniques for Si (strip)-CsI (Tl) telescope for VECC charged particle array

    International Nuclear Information System (INIS)

    Rana, T.K.; Banerjee, K.; Kundu, S.; Dey, A.; Bhattacharya, C.; Bhattacharya, S.; Meena, J.K.; Mukherjee, G.; Ghosh, T.K.; Gupta, D.

    2006-01-01

    A 4π charged particle detector array is being developed as a part of the nuclear physics experimental facility for the superconducting cyclotron, which is under construction at VECC, Kolkata. The energy loss in the Si-strip ΔE detector has been calculated for protons, deuterons, tritons and alphas at different energies by using the code TRIM

  9. Measurement of the charged particle multiplicity of weakly decaying B hadrons

    CERN Document Server

    Abreu, P; Adye, T; Adzic, P; Ajinenko, I; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andersson, P; Andreazza, A; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Bärring, O; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Bizouard, M A; Bloch, D; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Boyko, I; Bozovic, I; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Brown, R; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerruti, C; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Collins, P; Colomer, M; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; D'Almagne, B; Damgaard, G; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djannati, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Duperrin, A; Durand, J D; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Ellert, M; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, Michael; Ferrari, P; Ferrer, A; Fichet, S; Firestone, A; Fischer, P A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gerdyukov, L N; Ghodbane, N; Gil, I; Glege, F; Gokieli, R; Golob, B; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Grahl, J; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Haider, S; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Heising, S; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, C; Juillot, P; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Knoblauch, D; Kokkinias, P; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krstic, J; Krumshtein, Z; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Leinonen, L; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Malychev, V; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Medbo, J; Meroni, C; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Moreau, X; Morettini, P; Morton, G A; Münich, K; Mulders, M; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neufeld, N; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Nikolenko, M; Nomerotski, A; Normand, Ainsley; Nygren, A; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palacios, J

    1998-01-01

    From the $Z$ decays recorded in 1994 and 1995 by the DELPHI detector at LEP, the charged particle multiplicity of weakly decaying $B$ hadrons was measured to be: \\begin{center} $4.97 \\pm 0.03 \\pm 0.06 \\, ,$ \\end{center} \

  10. Heating of charged particles by electrostatic wave propagating perpendicularly to uniform magnetic field

    International Nuclear Information System (INIS)

    Niu, Keishiro; Shimojo, Takashi.

    1978-02-01

    Increase in kinetic energy of a charged particle, affected by an electrostatic wave propagating perpendicularly to a uniform magnetic field, is obtained for both the initial and later stages. Detrapping time of the particle from the potential dent of the electrostatic wave and energy increase during trapping of the particle is analytically derived. Numerical simulations are carried out to support theoretical results. (auth.)

  11. Description of light charged particle multiplicities in the framework of dinuclear system model

    Directory of Open Access Journals (Sweden)

    Antonenko N.V.

    2012-12-01

    Full Text Available In the framework of dinuclear system (DNS model we calculate the light charged particle (LCP multiplicities produced in fusion and quasifission reactions and their kinetic energy spectra. Calculations indicate that with increasing bombarding energy the ratio of LCP multiplicity from fragments MFF to corresponding LCP multiplicity from compound nucleus (CN MCN strongly increases.

  12. Scaled momentum distributions of charged particles in dijet photoproduction at HERA

    NARCIS (Netherlands)

    Chekanov, S.; Derrick, M.; Magill, S.; Musgrave, B.; Nicholass, D.; Ropond, J.; Yoshida, R.; Mattingly, M. C. K.; Antonioli, P.; Bari, G.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cindolo, F.; Corradi, M.; Iacobucci, G.; Margotti, A.; Nania, R.; Polini, A.; Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.; Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H. -P.; Juengst, M.; Nuncio-Quiroz, A. E.; Samson, U.; Schoenberg, V.; Shehzadi, R.; Wlasenko, M.; Brook, N. H.; Heath, G. P.; Kaur, M.; Kaur, P.; Singh, I.; Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.; Kim, J. Y.; Ibrahim, Z. A.; Idris, F. Mohamad; Kamaluddin, B.; Abdullah, W. A. T. Wan; Ning, Y.; Ren, Z.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Galas, A.; Olkiewicz, K.; Pawlik, B.; Stopa, P.; Zawiejski, L.; Adamczyk, L.; Bold, T.; Grabowska-Bold, I.; Kisielewska, D.; Lukasik, J.; Przybycien, M.; Suszycki, L.; Kotanski, A.; Slominski, W.; Behnke, O.; Behr, J.; Behrens, U.; Blohm, C.; Borras, K.; Ciesielski, R.; Coppola, N.; Geiser, A.; Goettlicher, P.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W.; Huettmann, A.; Januschek, F.; Kahle, B.; Katkov, I. I.; Klein, U.; Koetz, U.; Kowalski, H.; Lisovyi, M.; Lobodizinska, E.; Loehr, B.; Mankel, R.; Melzer-Pellmann, I. -A.; Miglioranzi, S.; Montanari, A.; Namsoo, T.; Notz, D.; Parenti, A.; Roloff, P.; Rubinsky, I.; Schneekloth, U.; Spiridonov, A.; Szuba, D.; Szuba, J.; Theedt, T.; Tomaszewska, J.; Wolf, G.; Wrona, K.; Yaguees-Molina, A. G.; Youngman, C.; Zeuner, W.; Drugakov, V.; Lohmann, W.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Pelfer, P. G.; Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N. N.; Bussey, P. J.; Doyle, A. T.; Forrest, M.; Saxon, D. H.; Skillicorn, I. O.; Gialas, I.; Papageorgiu, K.; Holm, U.; Klanner, R.; Lohrmann, E.; Perrey, H.; Schleper, P.; Schoerner-Sadenius, T.; Sztuk, J.; Stadie, H.; Turcato, M.; Foudas, C.; Fry, C.; Long, K. R.; Tapper, A. D.; Matsumoto, T.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.; Aushev, V.; Bachynska, O.; Borodin, M.; Kadenko, I.; Kuprash, O.; Libov, V.; Lontkovskyi, D.; Makarenko, I.; Sorokin, Iu.; Verbytskyi, A.; Volynets, O.; Zolko, M.; Son, D.; de Favereau, J.; Piotrzkowski, K.; Barreiro, F.; Glasman, C.; Jimenez, M.; del Peso, J.; Ron, E.; Terron, J.; Uribe-Estrada, C.; Corriveau, F.; Schwartz, J.; Tsurugai, T.; Antonov, A.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.; Dementiev, R. K.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Khein, L. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Zotkin, D. S.; Abt, I.; Caldwell, A.; Kollar, D.; Reisert, B.; Schmidke, W. B.; Grigorescu, G.; Keramidas, A.; Koffemann, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Bruemmer, N.; Bylsma, B.; Durkin, L. S.; Lee, A.; Ling, T. Y.; Allfrey, P. D.; Bell, M. A.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Foster, B.; Gwenlan, C.; Horton, K.; Oliver, K.; Robertson, A.; Walczak, R.; Bertolin, A.; Dal Corso, F.; Dusini, S.; Longhin, A.; Stanco, L.; Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.; Oh, B. Y.; Raval, A.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marimi, G.; Nigro, A.; Cole, J. E.; Hart, J. C.; Abramowicz, H.; Ingbir, R.; Kananov, S.; Stern, A.; Kuze, M.; Maeda, J.; Hori, R.; Kagawa, S.; Okazaki, N.; Tawara, T.; Hamatsu, R.; Kaji, H.; Kitamura, S.; Ota, O.; Ri, Y. D.; Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Sola, V.; Solano, A.; Arneodo, M.; Ruspa, M.; Fourletov, S.; Stewart, T. P.; Boutle, S. K.; Butterworth, J. M.; Jones, T. W.; Loizides, J. H.; Wing, M.; Brzozowska, B.; Ciborowski, J.; Grzelak, G.; Kulinski, P.; Luzniak, P.; Malka, J.; Nowak, R. J.; Pawlak, J. M.; Perlanski, W.; Zarnecki, A. F.; Adamus, M.; Plucinski, P.; Tymieniecka, T.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Brownson, E.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Wolfe, H.; Bhadra, S.; Catterall, C. D.; Hartner, G.; Menary, S.; Noor, U.; Standage, J.; Whyte, J.

    The scaled momentum distributions of charged particles in jets have been measured for dijet photoproduction with the ZEUS detector at HERA using an integrated luminosity of 359 pl(-1). The distributions are compared to predictions based on pertubative QCD carried out in the framework of the modified

  13. Classical radiation theory of charged particles moving in electromagnetic fields in nonabsorbable isotropic media

    International Nuclear Information System (INIS)

    Konstantinovich, A.V.; Melnychuk, S.V.; Konstantinovich, I.A.

    2002-01-01

    The integral expressions for spectral-angular and spectral distributions of the radiation power of heterogeneous charged particles system moving on arbitrary trajectory in nonabsorbable isotropic media media with ε≠1 , μ≠1 are obtained using the Lorentz's self-interaction method. In this method a proper electromagnetic field, acting on electron, is defined as a semi difference between retarded and advanced potentials (Dirac, 1938). The power spectrum of Cherenkov radiation for the linear uniformly moving heterogeneous system of charged particles are obtained. It is found that the expression for the radiation power of heterogeneous system of charged particles becomes simplified when a system of charged particles is homogeneous. In this case the radiation power includes the coherent factor. It is shown what the redistribution effects in energy of the radiation spectrum of the studied system are caused by the coherent factor. The radiation spectrum of the system of electrons moving in a circle in this medium is discrete. The Doppler effect causes the appearance of the new harmonics for the system of electrons moving in a spiral. These harmonics form the region of continuous radiation spectrum. (authors)

  14. The topology dependence of charged particle multiplicities in three-jet events

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Miquel, R; Mir, L M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Bazarko, A O; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rizzo, G; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Becker, U; Buchmüller, O L; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Coyle, P; Diaconu, C A; Etienne, F; Konstantinidis, N P; Leroy, O; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1997-01-01

    A study of individual jet and whole-event charged particle multiplicities in three-jet events measured in e+e- annihilation at the Z reveals a significant topology dependence. Mean jet multiplicities are inadequately described by jet energies; interjet angles must also be specified. Quantitative tests suggest that it is necessary to use transverse-momentum-like scales to describe the data.

  15. Wavefunction and energy level formula for two charged particles with magnetic interaction

    Energy Technology Data Exchange (ETDEWEB)

    Fan Hongyi [CCAST (World Laboratory), PO Box 8730, Beijing 100080 (China); Fu Liang [Special Class for the Gifted Young, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2003-07-25

    We derive the wavefunction and energy level formula for two charged particles with magnetic interaction, i.e., the Hamiltonian includes both two-body Coulomb interaction and a kinetic coupling. It is by virtue of the EPR entangled state representation we can conveniently derive the exact result.

  16. Motion of a Charged Particle in a Constant and Uniform Electromagnetic Field

    Science.gov (United States)

    Ladino, L. A.; Rondón, S. H.; Orduz, P.

    2015-01-01

    This paper focuses on the use of software developed by the authors that allows the visualization of the motion of a charged particle under the influence of magnetic and electric fields in 3D, at a level suitable for introductory physics courses. The software offers the possibility of studying a great number of physical situations that can…

  17. Neutron-Induced Charged Particle Measurements at LANSCE in the Interest of P-Process Nucleosynthesis

    Science.gov (United States)

    Lee, Hye Young; Mosby, Shea; Kawano, Toshihiko; Haight, Robert; Manning, Brett

    A capability of measuring neutron-induced charged particle reactions has been developed at Los Alamos Neutron Science Center for the interest of nuclear applications and nuclear astrophysics. In this paper, we will present the status of this devel opment and plans for measuring reactions relevant to the p-process nucleosynthesis.

  18. Annealing effects on the charged particles registration characteristic of the CR-39 traces solid detector

    International Nuclear Information System (INIS)

    Correa, M.M.

    1989-10-01

    CR-39 trace solid detectors samples, previously exposed to alpha particles and fission fragments from a Cf-252 source, were submitted to a annealing treatment to study his effects on the characteristics of charged particle traces registration. (L.C.J.A.)

  19. Inclusive charged particle cross sections in full phase space from proton proton interactions at ISR energies

    International Nuclear Information System (INIS)

    Breakstone, A.; Crawley, H.B.; Firestone, A.

    1995-01-01

    Measurements are presented of inclusive charged particle production in proton-proton collisions at √s = 31, 44 and 62 GeV at the CERN ISR. The large acceptance of the Split Field Magnet detector allows a single experimental setup to cover almost the full longitudinal phase space up to a transverse momentum of 3 GeV/c. (orig.)

  20. Physical fundamentals of the application of heavy charged particles in radiotherapy

    International Nuclear Information System (INIS)

    Bueche, G.

    1977-01-01

    In the chapter 'Medical Applications' A 'Radiotherapy' of the study, the following subjects are treated in detail by various authors: Physical fundamentals of the application of heavy charged particles in radiotherapy-radiation-biological fundamentals; clinical aspects of radiotherapy with protons and negative pions; patients and clinical dosimetry. (MG) [de

  1. Stochasticity of phase trajectory of a charged particle in a plasma wave

    International Nuclear Information System (INIS)

    Murakami, Akihiko; Nomura, Yasuyuki; Momota, Hiromu.

    1980-06-01

    Stochastic behavior of charged particles in finite amplitude plasma waves is examined by means of particle simulations under the condition that Chirikov's criterion is broken down. The process of growint the stochastic region is clarified and accordingly the width of the stochastic region is discussed. Discussions on the effects of higher order resonances are also presented. (author)

  2. Charged particle density distributions in Au·Au collisions at ...

    Indian Academy of Sciences (India)

    FOUAD RAMI, for the BRAHMS Collaboration. Institut de Recherches Subatomiques, IN2P3-CNRS, Université Louis Pasteur, Strasbourg, France. Abstract. Charged particle pseudorapidity distributions have been measured in Au·Au collisions using the BRAHMS detector at RHIC. The results are presented as a function of ...

  3. Momentum distribution of charged particles in jets in dijet events and ...

    Indian Academy of Sciences (India)

    Inclusive momentum distributions of charged particles are measured in dijet events. Events were produced at the AMY detector with a centre of mass energy of 60 G e V . Our results were compared, on the one hand to those obtained from other e + e − , e p as well as CDF data, and on the other hand to the perturbative QCD ...

  4. Momentum distribution of charged particles in jets in dijet events and ...

    Indian Academy of Sciences (India)

    2016-07-19

    Jul 19, 2016 ... Abstract. Inclusive momentum distributions of charged particles are measured in dijet events. Events were produced at the AMY detector with a centre of mass energy of 60 GeV. Our results were compared, on the one hand to those obtained from other e+ e−. , ep as well as CDF data, and on the other hand ...

  5. Soliton solutions describing charged particle propagation in a system with self-induction

    International Nuclear Information System (INIS)

    Mitropol'skij, I.A.; Shuvaev, A.G.

    1991-01-01

    Soliton solutions of the equations describing charged particle motion in an inductive feedback system are derived for quantum and classical cases. Possible existence of soliton bound states is shown. Conditions of longitudinal focusing of particles which propagate at different initial velocities in a nonlinear medium are discussed

  6. Charged-particle multiplicity at mid-rapidity in Au–Au collisions at ...

    Indian Academy of Sciences (India)

    The particle density at mid-rapidity is an essential global variable for the characterization of nuclear collisions at ultra-relativistic energies. It provides information about the initial conditions and energy density reached in these collisions. The pseudorapidity densities of charged particles at mid-rapidity in Au + Au collisions at ...

  7. Charged-particle transfer reactions and nuclear astrophysics problems

    International Nuclear Information System (INIS)

    Artemov, S.V.; Yarmukhamedov, R.; Yuldashev, B.S.; Burtebaev, N.; Duysebaev, A.; Kadyrzhanov, K.K.

    2002-01-01

    In the report a review of the recent results of calculation of the astrophysical S-factors S(E) for the D(α, γ) 6 Li, 3 He(α, γ) 7 Be, 7 Be(p, γ) 8 Be, 12,13 C(p, γ) 13, 14 N and 12 C(p,γ) 16 O* reactions at extremely low energies E, including value E=0 , performed within the framework of a new method taking into account the additional information about the nuclear vertex constant (Nc) (or the respective asymptotic normalization coefficient) are presented. The required values of Nc can be obtained from an analysis of measured differential cross-sections of proton and α-particle transfer reactions (for example A( 3 He,d)B, 6 Li(d, 6 Li)d, 6 Li(α, 6 Li)α, 12 C( 6 Li, d) 16 O* etc.). A comparative analysis between the results obtained by different authors is also done. Taking into account an important role of the NVC's values for the nuclear astrophysical A(p, γ)B and A(α, γ)B reactions, a possibility of obtaining the reliable NVC values for the virtual decay B→A+p and B→A+α from the analysis of differential cross sections both sub- and above-barrier A( 3 He, d) and A( 6,7 Li, 2,3 H)B reactions is discussed in detail. In this line the use the isochronous cyclotron U-150 M, the 'DC-60' heavy ion machine and electrostatic charge-exchanging accelerator UKP-2-1 of Institute of Nuclear Physics of National Nuclear Center of the Republic of Kazakhstan for carrying out the needed experiments is considered and the possibility of the obtained data application for the astrophysical interest is also discussed

  8. Electrostatic fields and charged particle acceleration in laser produced plasmas

    International Nuclear Information System (INIS)

    Hora, H.

    1983-01-01

    Some new aspects pioneered recently by Alfven in the theory of cosmic plasmas, indicate the possibility of a new treatment of the action of electrostatic double layers in the periphery of an expanding laser produced plasma. The thermally produced electrostatic double layer which has been re-derived for a homogeneous plasma shows that a strong upshift of ion energies is possible, in agreement with experiments. The number of accelerated ions is many orders of magnitude smaller than observed at keV and MeV energies. The nonlinear force acceleration could explain the number and energy of the observed fast ions. It is shown, however, that electrostatic double layers can be generated which should produce super-fast ions. A derivation of the spread double layers in the case of inhomogeneous plasmas is presented. It is concluded that the hydrodynamically expected multi GeV heavy ions for 10 TW laser pulses should produce super-fast ions up to the TeV range. Further conclusions are drawn from the electrostatically measured upshifted (by 300 keV) DT fusion alphas from laser compressed plasma. An analysis of alpha spectra attempts to distinguish between different models of the stopping power in the plasmas. The analysis preliminarily arrives at a preference for the collective model. (author)

  9. Nuclear track detectors for charged particles and neutrons

    International Nuclear Information System (INIS)

    Tommasino, L.

    2006-01-01

    It was with great emotion that I accepted to be a guest speaker to this memorial section dedicated to my old-time friend, Prof. Radomir Ilic. In addition to being one of the most outstanding scientists in the field of nuclear tracks, Prof. Radomir Ilic has been always highly acclaimed by the scientific community for his enthusiasm, his warm friendship, and his great vitality. Through his successful editorial activities, Prof. Ilic has proved to be very able to address the field of nuclear tracks to very wide audiences with special regards to young students. It was here in Portoroz, that Prof. Radomir Ilic was our host as the organiser of the 21st International Conference on Nuclear Tracks in Solids. All the participants have great memories of this very successful international conference. For all these reasons, the 2006 edition of the International Conference on Nuclear Energy for new Europe, with its wide audience and its venue at Portoroz, can be considered as one of the most appropriate forum for the memorial lecture of Prof. Radomir Ilic. The present paper will be dealing with the solid state nuclear track detectors-SSNTDs and their successful applications for the measurements of cosmic-ray-neutrons and terrestrial radioactivity, namely radon. (author)

  10. Spectrometry of doubly charged particles, applied to intermediate energy physics

    International Nuclear Information System (INIS)

    Oostens, Jean.

    1977-01-01

    The detection of 3 He and 4 He at GeV energies is obtained using both magnetic analysis and time-of-flight a methods, and several independent measurements of the specific ionization. This technique was applied to the extrapolation of the neutral resonance spectrum in the p + d → 3 He + X reaction and to the p- 4 He elastic scattering using incident α particles on a hydrogen target. In the first reaction, the data show the production of π 0 , eta 0 , ω 0 and eta'(957). An explanation implying a proton exchange diagram reveals the importance of the 3 He form factor. In the 4 He-p reaction, the 4 He scattered are detected in a magnetic spectrometer. It is possible to extract the elastic peaks from the continuum background corresponding to the empty target up to about 180 0 in the center of mass. The data corresponding to the backward angle reveal an increase of the cross section around 180 0 (cm). This phenomenon is qualitatively reproduced by triton exchange models. The results obtained are compared to theoretical model based on the multiple scattering phenomenon. But the interpreting of the experiments presented imply the knowledge of the wave function of both helium isotopes at momenta that have not been reached through electron scattering measurements up to now [fr

  11. Geometrized equations of nonelectrostatic and relativistic charged-particle beams

    International Nuclear Information System (INIS)

    Syrovoi, V.A.

    1982-01-01

    Geometrized equations are formulated for a dense laminar beam in a coordinate frame fixed to a priori unknown trajectories or current tubes. The metric-tensor elements g/sub i/k of the frame are to be determined, together with the hydrodynamic variables that describe the flow. The formulation of the Cauchy problem is considered for the case when all the necessary information is specified on the emitting surface. It is shown that when account is taken of its own magnetic field, a two-dimensional relativistic beam cannot be described by using geometrized concepts if the beam starts out from an equipotential surface on which the thermionic emission conditions are satisfied. A similar statement holds for all stream velocities in the three-dimensional case, if the angle between the magnetic field strength vector and the emitter differs from 0 or 90 0 . The tensor-analysis and differential-geometry results used in the paper can be found in the papers cited by Borisov and Syrovoi [Izv. AN SSSR, Mekh. Zhidk. Gaz., No. 2, 137 (1977)

  12. Accurate interpolation of 3D fields in charged particle optics.

    Science.gov (United States)

    Horák, Michal; Badin, Viktor; Zlámal, Jakub

    2018-03-29

    Standard 3D interpolation polynomials often suffer from numerical errors of the calculated field and lack of node points in the 3D solution. We introduce a novel method for accurate and smooth interpolation of arbitrary electromagnetic fields in the vicinity of the optical axis valid up to 90% of the bore radius. Our method combines Fourier analysis and Gaussian wavelet interpolation and provides the axial multipole field functions and their derivatives analytically. The results are accurate and noiseless, usually up to the 5th derivative. This is very advantageous for further applications, such as accurate particle tracing, and evaluation of aberration coefficients and other optical properties. The proposed method also enables studying the strength and orientation of all multipole field components. To illustrate the capabilities of the proposed algorithm, we present three examples: a magnetic lens with a hole in the polepiece, a saturated magnetic lens with an elliptic polepiece, and an electrostatic 8-electrode multipole. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Charged particle mutagenesis at low dose and fluence in mouse splenic T cells

    Energy Technology Data Exchange (ETDEWEB)

    Grygoryev, Dmytro [Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239 (United States); Gauny, Stacey [Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lasarev, Michael; Ohlrich, Anna [Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239 (United States); Kronenberg, Amy [Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Turker, Mitchell S., E-mail: turkerm@ohsu.edu [Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239 (United States); Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239 (United States)

    2016-06-15

    Highlights: • Densely ionizing forms of space radiation induce mutations in splenic T cells at low fluence. • Large interstitial deletions and discontinuous LOH patterns are radiation signature mutations. • Space radiation mutagenesis suggests a cancer risk from deep space travel. - Abstract: High-energy heavy charged particles (HZE ions) found in the deep space environment can significantly affect human health by inducing mutations and related cancers. To better understand the relation between HZE ion exposure and somatic mutation, we examined cell survival fraction, Aprt mutant frequencies, and the types of mutations detected for mouse splenic T cells exposed in vivo to graded doses of densely ionizing {sup 48}Ti ions (1 GeV/amu, LET = 107 keV/μm), {sup 56}Fe ions (1 GeV/amu, LET = 151 keV/μm) ions, or sparsely ionizing protons (1 GeV, LET = 0.24 keV/μm). The lowest doses for {sup 48}Ti and {sup 56}Fe ions were equivalent to a fluence of approximately 1 or 2 particle traversals per nucleus. In most cases, Aprt mutant frequencies in the irradiated mice were not significantly increased relative to the controls for any of the particles or doses tested at the pre-determined harvest time (3–5 months after irradiation). Despite the lack of increased Aprt mutant frequencies in the irradiated splenocytes, a molecular analysis centered on chromosome 8 revealed the induction of radiation signature mutations (large interstitial deletions and complex mutational patterns), with the highest levels of induction at 2 particles nucleus for the {sup 48}Ti and {sup 56}Fe ions. In total, the results show that densely ionizing HZE ions can induce characteristic mutations in splenic T cells at low fluence, and that at least a subset of radiation-induced mutant cells are stably retained despite the apparent lack of increased mutant frequencies at the time of harvest.

  14. Reirradiation for recurrent head and neck cancers using charged particle or photon radiotherapy

    International Nuclear Information System (INIS)

    Yamazaki, Hideya; Demizu, Yusuke; Okimoto, Tomoaki; Ogita, Mikio; Himei, Kengo; Nakamura, Satoaki; Suzuki, Gen; Yoshida, Ken; Kotsuma, Tadayuki; Yoshioka, Yasuo; Oh, Ryoongjin

    2017-01-01

    To examine the outcomes of reirradiation for recurrent head and neck cancers using different modalities. This retrospective study included 26 patients who received charged particle radiotherapy (CP) and 150 who received photon radiotherapy (117 CyberKnife radiotherapy [CK] and 36 intensity-modulated radiotherapy [IMRT]). Inverse probability of treatment weighting (IPTW) involving propensity scores was used to reduce background selection bias. Higher prescribed doses were used in CP than photon radiotherapy. The 1-year overall survival (OS) rates were 67.9% for CP and 54.1% for photon radiotherapy (p = 0.15; 55% for CK and 51% for IMRT). In multivariate Cox regression, the significant prognostic factors for better survival were nasopharyngeal cancer, higher prescribed dose, and lower tumor volume. IPTW showed a statistically significant difference between CP and photon radiotherapy (p = 0.04). The local control rates for patients treated with CP and photon radiotherapy at 1 year were 66.9% (range 46.3-87.5%) and 67.1% (range 58.3-75.9%), respectively. A total of 48 patients (27%) experienced toxicity grade ≥3 (24% in the photon radiotherapy group and 46% in the CP group), including 17 patients with grade 5 toxicity. Multivariate analysis revealed that younger age and a larger planning target volume (PTV) were significant risk factors for grade 3 or worse toxicity. CP provided superior survival outcome compared to photon radiotherapy. Tumor volume, primary site (nasopharyngeal), and prescribed dose were identified as survival factors. Younger patients with a larger PTV experienced toxicity grade ≥3. (orig.) [de

  15. Measurement of charged-particle distributions sensitive to the underlying event in √s=13 TeV proton-proton collisions with the ATLAS detector at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Aaboud, M. [Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda (Morocco); Aad, G. [CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille (France); Abbott, B. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America (United States); Abdallah, J. [Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America (United States); Collaboration: The ATLAS collaboration; and others

    2017-03-29

    We present charged-particle distributions sensitive to the underlying event, measured by the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV, in low-luminosity Large Hadron Collider fills corresponding to an integrated luminosity of 1.6 nb{sup −1}. The distributions were constructed using charged particles with absolute pseudorapidity less than 2.5 and with transverse momentum greater than 500 MeV, in events with at least one such charged particle with transverse momentum above 1 GeV. These distributions characterise the angular distribution of energy and particle flows with respect to the charged particle with highest transverse momentum, as a function of both that momentum and of charged-particle multiplicity. The results have been corrected for detector effects and are compared to the predictions of various Monte Carlo event generators, experimentally establishing the level of underlying-event activity at LHC Run 2 energies and providing inputs for the development of event generator modelling. The current models in use for UE modelling typically describe this data to 5% accuracy, compared with data uncertainties of less than 1%.

  16. Spatiotemporal kinetics of γ-H2AX protein on charged particles induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Niu, H., E-mail: hniu@mx.nthu.edu.tw [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan (China); Chang, H.C. [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China); Cho, I.C. [Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Chen, C.H. [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan (China); Liu, C.S. [Cancer Center of Taipei Veterans General Hospital, Taipei, Taiwan (China); Chou, W.T. [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China)

    2014-08-15

    Highlights: • Charged particles can induce more complex DNA damages, and these complex damages have higher ability to cause the cell death or cell carcinogenesis. • In this study, we used γ-H2AX protein to investigate the spatiotemporal kinetics of DNA double strand breaks in particle irradiated HeLa cells. • The HeLa cells were irradiated by 400 keV alpha-particles in four different dosages. • The result shows that a good linear relationship can be observed between foci number and radiation dose. • The data shows that the dissolution rate of γ-H2AX foci agree with the two components DNA repairing model, and it was decreasing as the radiation dose increased. • These results suggest that charged particles can induce more complex DNA damages and causing the retardation of DNA repair. - Abstract: In several researches, it has been demonstrated that charged particles can induce more complex DNA damages. These complex damages have higher ability to cause the cell death or cell carcinogenesis. For this reason, clarifying the DNA repair mechanism after charged particle irradiation plays an important role in the development of charged particle therapy and space exploration. Unfortunately, the detail spatiotemporal kinetic of DNA damage repair is still unclear. In this study, we used γ-H2AX protein to investigate the spatiotemporal kinetics of DNA double strand breaks in alpha-particle irradiated HeLa cells. The result shows that the intensity of γ-H2AX foci increased gradually, and reached to its maximum at 30 min after irradiation. A good linear relationship can be observed between foci intensity and radiation dose. After 30 min, the γ-H2AX foci intensity was decreased with time passed, but remained a large portion (∼50%) at 48 h passed. The data show that the dissolution rate of γ-H2AX foci agreed with two components DNA repairing model. These results suggest that charged particles can induce more complex DNA damages and causing the retardation of DNA

  17. The library of evaluated and experimental data on charged particles for fusion application (SaBa). Summary documentation

    International Nuclear Information System (INIS)

    Zvenigorodskij, A.G.; Zherebtsov, V.A.; Lazarev, L.M.; Dunaeva, S.A.; Generalov, L.N.; Taova, S.M.; Kamskaya, E.V.; Marshalkina, R.I.

    1999-01-01

    An electronic version of the evaluated and experimental data on charged particles for thermonuclear applications (SaBa) was prepared on the base of handbook 'Nuclear Physics Constants for Thermonuclear Fusion', INDC(CCP)-326/L+F, Vienna, 1991. Data on 100 channels for 52 reactions are presented in the Library. Program code was performed using the object-oriented programming environment Borland C ++ Builder for Microsoft Windows 95 and Windows NT operating systems. Optimal set of data processing procedures and friendly interface provide remarkable possibilities for the active use of this program for various applications in the field of thermonuclear fusion. It is available online (http:/www-nds.iaea.or.at/reports/data/saba/disk1.zip, ../disk2.zip, ../disk3.zip, on CD-ROM or on a set of PC diskettes from the IAEA Nuclear Data Section, costfree, upon request. (author)

  18. Measurement of underlying event characteristics using charged particles in $pp$ collisions at $\\sqrt{s}$ = 900 GeV and 7 TeV with the ATLAS Detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Ackers, Mario; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahmed, Hossain; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Aleppo, Mario; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Jose; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Andeen, Timothy; Anders, Christoph Falk; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonelli, Stefano; Antos, Jaroslav; Antunovic, Bijana; Anulli, Fabio; Aoun, Sahar; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Theodoros; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arms, Kregg; Armstrong, Stephen Randolph; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Arutinov, David; Asai, Shoji; Silva, José; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Atoian, Grigor; Aubert, Bernard; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Austin, Nicholas; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Badescu, Elisabeta; Bagnaia, Paolo; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Baltasar Dos Santos Pedrosa, Fernando; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Detlef; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Belhorma, Bouchra; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Giovanni; Bellomo, Massimiliano; Belloni, Alberto; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benedict, Brian Hugues; Benekos, Nektarios; Benhammou, Yan; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernardet, Karim; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bischof, Reinhard; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Boaretto, Christian; Bobbink, Gerjan; Bobrovnikov, Victor; Bocci, Andrea; Bock, Rudolf; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Böser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Booth, Peter; Booth, Richard; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boulahouache, Chaouki; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Braccini, Saverio; Bracinik, Juraj; Braem, André; Brambilla, Elena; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Brett, Nicolas; Bright-Thomas, Paul; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brubaker, Erik; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Buira-Clark, Daniel; Buis, Ernst-Jan; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byatt, Tom; Cabrera Urbán, Susana; Caccia, Massimo; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camard, Arnaud; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Cammin, Jochen; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Caprio, Mario; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carpentieri, Carmen; Carrillo Montoya, German D; Carron Montero, Sebastian; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavallari, Alvise; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Cazzato, Antonio; Ceradini, Filippo; Cerna, Cedric; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervetto, Mario; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chen, Hucheng; Chen, Li; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Tcherniatine, Valeri; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chevallier, Florent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Clark, Allan G; Clark, Philip; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Cojocaru, Claudiu; Colas, Jacques; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Coluccia, Rita; Comune, Gianluca; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Correard, Sebastien; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cuneo, Stefano; Curatolo, Maria; Curtis, Chris; Cwetanski, Peter; Czirr, Hendrik; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Rocha Gesualdi Mello, Aline; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dahlhoff, Andrea; Dai, Tiesheng; Dallapiccola, Carlo; Dallison, Steve; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dankers, Reinier; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Dauvergne, Jean-Pierre; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Merlin; Davison, Adam; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Cruz-Burelo, Eduard; De La Taille, Christophe; De Lotto, Barbara; De Mora, Lee; De Nooij, Lucie; De Oliveira Branco, Miguel; De Pedis, Daniele; de Saintignon, Paul; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dedes, George; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Deile, Mario; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delpierre, Pierre; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Dennis, Chris; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diaz Gomez, Manuel Maria; Diblen, Faruk; Diehl, Edward; Dietl, Hans; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djilkibaev, Rashid; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Dodd, Jeremy; Dogan, Ozgen Berkol; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Drohan, Janice; Dubbert, Jörg; Dubbs, Tim; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Dzahini, Daniel; Düren, Michael; Ebke, Johannes; Eckert, Simon; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Efthymiopoulos, Ilias; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Ely, Robert; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Facius, Katrine; Fakhrutdinov, Rinat; Falciano, Speranza; Falou, Alain; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fasching, Damon; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Ivan; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Felzmann, Ulrich; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferguson, Douglas; Ferland, Jonathan; Fernandes, Bruno; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Ferro, Fabrizio; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Fisher, Steve; Flammer, Joachim; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Föhlisch, Florian; Fokitis, Manolis; Fonseca Martin, Teresa; Fopma, Johan; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallas, Manuel; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galyaev, Eugene; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; Georgatos, Fotios; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghez, Philippe; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gieraltowski, Gerry; Gilbert, Laura; Gilchriese, Murdock; Gildemeister, Otto; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Goldin, Daniel; Golling, Tobias; Gollub, Nils Peter; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Gonella, Laura; Gong, Chenwei; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Gorski, Boguslaw Tomasz; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gouanère, Michel; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabowska-Bold, Iwona; Grabski, Varlen; Grafström, Per; Grah, Christian; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenfield, Debbie; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregor, Ingrid-Maria; Grenier, Philippe; Griesmayer, Erich; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grognuz, Joel; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Gruwe, Magali; Grybel, Kai; Guarino, Victor; Guicheney, Christophe; Guida, Angelo; Guillemin, Thibault; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hackenburg, Robert; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Härtel, Roland; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haller, Johannes; Hamacher, Klaus; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, Christian Johan; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harper, Devin; Harper, Robert; Harrington, Robert; Harris, Orin; Harrison, Karl; Hart, John; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Donovan; Hayakawa, Takashi; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heldmann, Michael; Heller, Mathieu; Hellman, Sten; Helsens, Clement; Henderson, Robert; Hendriks, Patrick John; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Hernández Jiménez, Yesenia; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Hidvegi, Attila; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hindson, Daniel; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Hollins, Ivan; Holmes, Alan; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homer, Jim; Homma, Yasuhiro; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Horton, Katherine; Hostachy, Jean-Yves; Hott, Thomas; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Idzik, Marek; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Imbault, Didier; Imhaeuser, Martin; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ionescu, Gelu; Irles Quiles, Adrian; Ishii, Koji; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Isobe, Tadaaki; Issever, Cigdem; Istin, Serhat; Itoh, Yuki; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Ji, Haoshuang; Ji, Weina; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Mark; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joo, Kwang; Joram, Christian; Jorge, Pedro; Jorgensen, Sigrid; Joseph, John; Ju, Xiangyang; Juranek, Vojtech; Jussel, Patrick; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Kazi, Sandor Istvan; Keates, James Robert; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kelly, Marc; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Ketterer, Christian; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kilvington, Graham; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Guillaume; Kirsch, Lawrence; Kiryunin, Andrey; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kiyamura, Hironori; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knobloch, Juergen; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Koblitz, Birger; Kocian, Martin; Kocnar, Antonin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; König, Stefan; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komaragiri, Jyothsna Rani; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Kopikov, Sergey; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Serguei; Kotov, Vladislav; Kourkoumelis, Christine; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasel, Olaf; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Krobath, Gernot; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuykendall, William; Kuze, Masahiro; Kuzhir, Polina; Kvasnicka, Ondrej; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Rémi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lambacher, Marion; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lapin, Vladimir; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Lau, Wing; Laurelli, Paolo; Lavorato, Antonia; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Lazzaro, Alfio; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Leahu, Marius; Lebedev, Alexander; Lebel, Céline; Lechowski, Matthieu; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee JR, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lehto, Mark; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lellouch, Jeremie; Leltchouk, Mikhail; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Lepidis, Johannes; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewandowska, Marta; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhihua; Liang, Zhijun; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Lilley, Joseph; Lim, Heuijin; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Lockwitz, Sarah; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Losada, Marta; Loscutoff, Peter; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Lovas, Lubomir; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lu, Jiansen; Lu, Liang; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lupi, Anna; Lutz, Gerhard; Lynn, David; Lynn, James; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maaßen, Michael; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magalhaes Martins, Paulo Jorge; Magnoni, Luca; Magradze, Erekle; Magrath, Caroline; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makouski, Mikhail; Makovec, Nikola; Mal, Prolay; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Mangin-Brinet, Mariane; Manjavidze, Ioseb; Mann, Alexander; Mann, Anthony; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchesotti, Marco; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Maß, Martin; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maxfield, Stephen; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGarvie, Scott; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McMahon, Tania; McMahon, Tom; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meinhardt, Jens; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Merkl, Doris; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meuser, Stefan; Meyer, Carsten; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Miele, Paola; Migas, Sylwia; Migliaccio, Agostino; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikulec, Bettina; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Miscetti, Stefano; Misiejuk, Andrzej; Mitra, Ankush; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohn, Bjarte; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Moneta, Lorenzo; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morais, Antonio; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morita, Youhei; Morley, Anthony Keith; Mornacchi, Giuseppe; Morone, Maria-Christina; Morris, John; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moye, Tamsin; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Muenstermann, Daniel; Muijs, Sandra; Muir, Alex; Munwes, Yonathan; Murakami, Koichi; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nairz, Armin Michael; Nakamura, Koji; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Nash, Michael; Nasteva, Irina; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Nauyock, Farah; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Nesterov, Stanislav; Neubauer, Mark; Neukermans, Lionel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nicholson, Caitriana; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nomoto, Hiroshi; Nordberg, Markus; Nordkvist, Bjoern; Norniella Francisco, Olga; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nožička, Miroslav; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Odino, Gian Andrea; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohska, Tokio Kenneth; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver, Concepcion; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Ordonez, Gustavo; Oreglia, Mark; Orellana, Frederik; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Ortega, Eduardo; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ottewell, Brian; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Simon; Oyarzun, Alejandro; Øye, Ola; Ozcan, Veysi Erkcan; Ozone, Kenji; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Paganis, Efstathios; Paige, Frank; Pajchel, Katarina; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Palmer, Matt; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Paoloni, Alessandro; Papadopoulou, Theodora; Paramonov, Alexander; Park, Su-Jung; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peeters, Simon Jan Marie; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Peric, Ivan; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Petereit, Emil; Peters, Onne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Alan; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Pickford, Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Plano, Will; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Porter, Robert; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Lawrence; Price, Michael John; Prichard, Paul; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rajagopalan, Srinivasan; Rajek, Silke; Rammensee, Michael; Rammes, Marcus; Ramstedt, Magnus; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rauter, Emanuel; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renkel, Peter; Rensch, Bertram; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rieke, Stefan; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Roa Romero, Diego Alejandro; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodier, Stephane; Rodriguez, Diego; Rodriguez Garcia, Yohany; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romanov, Victor; Romeo, Gaston; Romero Maltrana, Diego; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rossi, Lucio; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rottländer, Iris; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rulikowska-Zarebska, Elzbieta; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Runolfsson, Ogmundur; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandhu, Pawan; Sandoval, Tanya; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Takashi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Savard, Pierre; Savinov, Vladimir; Savva, Panagiota; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmidt, Michael; Schmieden, Kristof; Schmitt, Christian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schreiner, Alexander; Schroeder, Christian; Schroer, Nicolai; Schroers, Marcel; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schweiger, Dietmar; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Scott, Bill; Searcy, Jacob; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Christian; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siebel, Anca-Mirela; Siegert, Frank; Siegrist, James; Sijacki, Djordje; Silbert, Ohad; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloan, Terrence; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Sondericker, John; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sorbi, Massimo; Sosebee, Mark; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiriti, Eleuterio; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Stefanidis, Efstathios; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Kyle; Stewart, Graeme; Stockmanns, Tobias; Stockton, Mark; Stodulski, Marek; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Soh, Dart-yin; Su, Dong; Subramania, Siva; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taga, Adrian; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Taylor, Christopher; Taylor, Frank; Taylor, Gary; Taylor, Geoffrey; Taylor, Wendy; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Tennenbaum-Katan, Yaniv-David; Terada, Susumu; Terashi, Koji; Terron, Juan; Terwort, Mark; Testa, Marianna; Teuscher, Richard; Tevlin, Christopher; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tic, Tomas; Tikhomirov, Vladimir; Tikhonov, Yury; Timmermans, Charles; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Tobias, Jürgen; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonazzo, Alessandra; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Traynor, Daniel; Trefzger, Thomas; Treis, Johannes; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Tuts, Michael; Tylmad, Maja; Tyndel, Mike; Typaldos, Dimitrios; Tyrvainen, Harri; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urkovsky, Evgeny; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valderanis, Chrysostomos; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; van der Poel, Egge; van der Ster, Daniel; Van Eijk, Bob; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Ventura, Silvia; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vertogardov, Leonid; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Viret, Sébastien; Virzi, Joseph; Vitale, Antonio; Vitells, Ofer; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vovenko, Anatoly; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Jin; Wang, Joshua C; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Wastie, Roy; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Jens; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wraight, Kenneth; Wright, Catherine; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xaplanteris, Leonidas; Xella, Stefania; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yamada, Miho; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Stephanie; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Weiming; Yao, Yushu; Yasu, Yoshiji; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zalite, Youris; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zdrazil, Marian; Zeitnitz, Christian; Zeller, Michael; Zema, Pasquale Federico; Zemla, Andrzej; Zendler, Carolin; Zenin, Anton; Zenin, Oleg; Ženiš, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zilka, Branislav; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2011-01-01

    Measurements of charged particle distributions, sensitive to the underlying event, have been performed with the ATLAS detector at the LHC. The measurements are based on data collected using a minimum-bias trigger to select proton{proton collisions at center-of-mass energies of 900 GeV and 7 TeV. The "underlying event" is defined as those aspects of a hadronic interaction attributed not to the hard scattering process, but rather to the accompanying interactions of the rest of the proton. Three regions are defined in azimuthal angle with respect to the the highest-$p_T$ charged particle in the event, such that the region transverse to the dominant momentum-flow is most sensitive to the underlying event. In each of these regions, distributions of the charged particle multiplicity, $p_T$ density, and average $p_T$ are measured. The data show a higher underlying event activity than that predicted by Monte Carlo models tuned to pre-LHC data.

  19. Random ray-tracing and graphic analysing of charged particle trajectories

    International Nuclear Information System (INIS)

    Lin Xiaomei; Mao Naifeng; Chen Jingxian

    1990-01-01

    In order to describe the optical properties of a charged particle beam realistically, the random sampling of initial conditions of particles in ray-tracing is discussed. The emission surface of particles may be a plane, a cylindrical surface or a spherical surface. The distribution functions may be expressed analytically or numerically. In order to analyse the properties of the charged particle beam systematically by use of the results from ray-tracing efficiently, the graphic processing and analysing of particle trajectories are also discussed, including the spline function fitting of trajectories, the graphic drafting of trajectories and beam envelopes, the determining of image dimensions and the correspinding positions, and also the graphic drafting of particle distributions on arbitrary cross sections

  20. Charged particle identification including Pions by pulse-shape discrimination with an NE213 liquid scintillator

    International Nuclear Information System (INIS)

    Nakamoto, T.; Ishibashi, K.; Matsufuji, N.; Shigyo, N.; Maehata, K.

    1995-01-01

    Particles emitted from spallation reactions induced by protons having GeV energies were measured with an NE213 liquid scintillator, 12.7 cm in diameter and 12.7 cm thick. The pulse-shape discrimination (PSD) was carried out for charged particle identification by the two-gate integration method. Pions having energies up to 60 MeV were clearly discriminated from protons and electrons. On the contrary, pions with higher energies could not be identified since they escaped from the detector. The advantage of PSD for charged particle identification is that there is no requirement for a ΔE detector in the measurements. copyright 1995 American Institute of Physics

  1. Adaptive tree multigrids and simplified spherical harmonics approximation in deterministic neutral and charged particle transport

    International Nuclear Information System (INIS)

    Kotiluoto, P.

    2007-05-01

    A new deterministic three-dimensional neutral and charged particle transport code, MultiTrans, has been developed. In the novel approach, the adaptive tree multigrid technique is used in conjunction with simplified spherical harmonics approximation of the Boltzmann transport equation. The development of the new radiation transport code started in the framework of the Finnish boron neutron capture therapy (BNCT) project. Since the application of the MultiTrans code to BNCT dose planning problems, the testing and development of the MultiTrans code has continued in conventional radiotherapy and reactor physics applications. In this thesis, an overview of different numerical radiation transport methods is first given. Special features of the simplified spherical harmonics method and the adaptive tree multigrid technique are then reviewed. The usefulness of the new MultiTrans code has been indicated by verifying and validating the code performance for different types of neutral and charged particle transport problems, reported in separate publications. (orig.)

  2. Tables and graphs of cross sections for compound nucleus formation by charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Sugi, Teruo; Nakagawa, Tsuneo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kawasaki, Hiromitsu; Iijima, Shungo

    1999-08-01

    The cross sections for compound nucleus formation by charged particles, viz, p, {alpha}, d, t and {sup 3}He were calculated using global optical model parameters. The target nuclei are the residuals of (n,p), (n,{alpha}), (n,d), (n,t) and (n,{sup 3}He) reactions with the most abundant nuclei of elements from Z=5 to 83. The incident energy ranges from 0 to 40 MeV. The results are presented in tables and graphs. The purposes of this calculation are to get an overall view of these compound nucleus formation cross sections and to use these cross sections as basic data for calculating the neutron induced charged particle emission cross sections. (author)

  3. Coherent and Semiclassical States of a Charged Particle in Electromagnetic Fields

    Science.gov (United States)

    Pereira, A. S.

    2018-03-01

    In the present article, we extend our study (Bagrov et al., Braz. J. Phys. 45, 369, 2015) of generalized coherent states (GCS) of a one-dimensional particle considering such important physical system as a three-dimensional charged particle in electric and magnetic fields. Constructing GCS in a many-dimensional case, we meet technical complications that make the consideration nontrivial and instructive. The GCS of the system under consideration are constructed. We study the properties of this GCS such as completeness relations, minimization of uncertainty relations, and so on. We point out which family of the obtained GCS of a charged particle in a magnetic field is related to the CS constructed first by Malkin and Man'ko. We obtain conditions under which some of the GCS can be considered as semiclassical states (SS).

  4. Massless charged particles: Cosmic censorship, and the third law of black hole mechanics

    Science.gov (United States)

    Fairoos, C.; Ghosh, Avirup; Sarkar, Sudipta

    2017-10-01

    The formulation of the laws of Black hole mechanics assumes the stability of black holes under perturbations in accordance with the "cosmic censorship hypothesis" (CCH). CCH prohibits the formation of a naked singularity by a physical process from a regular black hole solution with an event horizon. Earlier studies show that naked singularities can indeed be formed leading to the violation of CCH if a near-extremal black hole is injected with massive charged particles and the backreaction effects are neglected. We investigate the validity of CCH by considering the infall of charged massless particles as well as a charged null shell. We also discuss the issue of the third law of Black hole mechanics in the presence of null charged particles by considering various possibilities.

  5. Theoretical and Computational Investigation of Periodically Focused Intense Charged-Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chiping [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center

    2013-06-26

    The purpose of this report is to summarize results of theoretical and computational investigations of periodically focused intense charged-particle beams in parameter regimes relevant to the development of advanced high-brightness, high-power accelerators for high-energy physics research. The breakthroughs and highlights in our research in the period from April 1, 2010 to March 30, 2013 were: a) Theory and simulation of adiabatic thermal Child-Langmuir flow; b) Particle-in-cell simulations of adiabatic thermal beams in periodic solenoidal focusing field; c)Dynamics of charged particles in an adiabatic thermal beam equilibrium in a periodic solenoidal focusing field; d) Training of undergraduate researchers and graduate student in accelerator and beam physics. A brief introduction and summary is presented. Detailed descriptions of research results are provided in an appendix of publications at the end of the report.

  6. Plasma current sustained by fusion charged particles in a field reversed configuration

    International Nuclear Information System (INIS)

    Berk, H.L.; Momota, H.; Tajima, T.

    1987-04-01

    The distribution of energetic charged particles generated by thermonuclear fusion reactions in a field reversed configuration (FRC) are studied analytically and numerically. A fraction of the charged fusion products escapes directly while the others are trapped to form a directed particle flow parallel to the plasma current. It is shown that the resultant current density produced by these fusion charged particles can be comparable to background plasma current density that produces the original field reversed configuration in a D- 3 He reactor. Self-consistent equilibria arising from the currents of the background plasma and proton fusion products are constructed where the Larmor radius of the fusion product is of arbitrary size. Reactor relevant parameters are examined, such as how the fusion reactivity rate varies as a result of supporting the pressure associated with the fusion products. We also model the synchrotron emission from various pressure profiles and quantitatively show how synchrotron losses vary with different pressure profiles in an FRC configuration

  7. On the adge field effect of a quadrupole mass spectrometer on a charged particle beam

    International Nuclear Information System (INIS)

    Usacheva, T.V.; Kuz'min, A.F.

    1982-01-01

    Functional parameter dependences of charged particle beam transport in the edge field of a quadrupole mass spectrometer on the parameters of the spectrometer and the potential are presented, making an assumption of linear potential change in the direction parallel to the spectrometer electrodes. Obtained are: inequality, convenient for the passage through the edge field of ion beams with point source vertex and axis of symmetry, parallel to the spectrometer electrodes; inequality, giving the upper bound of maximal ion approach to the spectrometer electrodes in the edge field; inequality, estimating the maximum value of charged particle velocity on a plane, being perpendicular to the spectrometer electrodes at the particle passage through the edge field. The inequalities obtained have been determined the relationships among the ion beam, the spectrometer and the edge field parameters

  8. Charged-particle magnetic-quadrupole spectrometer for neutron induced reactions

    International Nuclear Information System (INIS)

    Haight, R.C.; Grimes, S.M.; Tuckey, B.J.; Anderson, J.D.

    1975-01-01

    A spectrometer has been developed for measuring the charged particle production cross sections and spectra in neutron-induced reactions. The spectrometer consists of a magnetic quadrupole doublet which focuses the charged particles onto a silicon surface barrier detector telescope which is 2 meters or more from the irradiated sample. Collimators, shielding, and the large source-to-detector distance reduce the background enough to use the spectrometer with a 14-MeV neutron source producing 4 . 10 12 n/s. The spectrometer has been used in investigations of proton, deuteron, and alpha particle production by 14-MeV neutrons incident on various materials. Protons with energies as low as 1.1 MeV have been measured. The good resolution of the detectors has also made possible an improved measurement of the neutron- neutron scattering length from the 0 0 proton spectrum from deuteron breakup by 14-MeV neutrons

  9. Charged particle behavior in localized ultralow frequency waves: Theory and observations

    Science.gov (United States)

    Li, Li; Zhou, Xu-Zhi; Zong, Qiu-Gang; Rankin, Robert; Zou, Hong; Liu, Ying; Chen, Xing-Ran; Hao, Yi-Xin

    2017-06-01

    The formation and variability of the Van Allen radiation belts are highly influenced by charged particles accelerated via drift-resonant interactions with ultralow frequency (ULF) waves. In the prevailing theory of drift resonance, the ULF wave amplitude is assumed independent of magnetic longitude. This assumption is not generally valid in Earth's magnetosphere, as supported by numerous observations that point to the localized nature of ULF waves. Here we introduce a longitude dependence of the ULF wave amplitude, achieved via a von Mises function, into the theoretical framework of ULF wave-particle drift resonance. To validate the revised theory, the predicted particle signatures are compared with observational data through a best fit procedure. It is demonstrated that incorporation of nonlocal effects in drift-resonance theory provides an improved understanding of charged particle behavior in the inner magnetosphere through the intermediary of ULF waves.

  10. High-accuracy numerical integration of charged particle motion – with application to ponderomotive force

    International Nuclear Information System (INIS)

    Furukawa, Masaru; Ohkawa, Yushiro; Matsuyama, Akinobu

    2016-01-01

    A high-accuracy numerical integration algorithm for a charged particle motion is developed. The algorithm is based on the Hamiltonian mechanics and the operator decomposition. The algorithm is made to be time-reversal symmetric, and its order of accuracy can be increased to any order by using a recurrence formula. One of the advantages is that it is an explicit method. An effective way to decompose the time evolution operator is examined; the Poisson tensor is decomposed and non-canonical variables are adopted. The algorithm is extended to a time dependent fields' case by introducing the extended phase space. Numerical tests showing the performance of the algorithm are presented. One is the pure cyclotron motion for a long time period, and the other is a charged particle motion in a rapidly oscillating field. (author)

  11. Description of charged particle pseudorapidity distributions in Pb+Pb collisions with Tsallis thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Y. [Hangzhou Dianzi University, School of Information Engineering, Hangzhou (China); Zheng, H. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Zhu, L.L. [Sichuan University, College of Physical Science and Technology, Chengdu (China); Bonasera, A. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Texas A and M University, Cyclotron Institute, College Station, TX (United States)

    2017-10-15

    The centrality dependence of pseudorapidity distributions for charged particles produced in Au+Au collisions at √(s{sub NN}) = 130 GeV and 200 GeV at RHIC, and in Pb+Pb collisions at √(s{sub NN}) = 2.76 TeV at LHC are investigated in the fireball model, assuming that the rapidity axis is populated with fireballs following one distribution function. We assume that the particles in the fireball fulfill the Tsallis distribution. The theoretical results are compared with the experimental measurements and a good agreement is found. Using these results, the pseudorapidity distributions of charged particles produced in Pb+Pb central collisions at √(s{sub NN}) = 5.02 TeV and 10 TeV are predicted. (orig.)

  12. Search for fractionally charged particles in pp collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Aguilo, Ernest; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Staykova, Zlatka; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Reis, Thomas; Thomas, Laurent; Vander Marcken, Gil; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Verwilligen, Piet; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Castello, Roberto; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; De Jesus Damiao, Dilson; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Melo Da Costa, Eliza; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Soares Jorge, Luana; Sznajder, Andre; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Khalil, Shaaban; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Karjalainen, Ahti; Korpela, Arja; Tuuva, Tuure; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Millischer, Laurent; Nayak, Aruna; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dobrzynski, Ludwik; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Juillot, Pierre; Le Bihan, Anne-Catherine; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Beauceron, Stephanie; Beaupere, Nicolas; Bondu, Olivier; Boudoul, Gaelle; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sgandurra, Louis; Sordini, Viola; Tschudi, Yohann; Verdier, Patrice; Viret, Sébastien; Tsamalaidze, Zviad; Anagnostou, Georgios; Autermann, Christian; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Weber, Martin; Bontenackels, Michael; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Sauerland, Philip; Stahl, Achim; Aldaya Martin, Maria; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Castro, Elena; Costanza, Francesco; Dammann, Dirk; Diez Pardos, Carmen; Eckerlin, Guenter; Eckstein, Doris; Flucke, Gero; Geiser, Achim; Glushkov, Ivan; Gunnellini, Paolo; Habib, Shiraz; Hauk, Johannes; Hellwig, Gregor; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Novgorodova, Olga; Olzem, Jan; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Ron, Elias; Rosin, Michele; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Draeger, Jula; Enderle, Holger; Erfle, Joachim; Gebbert, Ulla; Görner, Martin; Hermanns, Thomas; Höing, Rebekka Sophie; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Nowak, Friederike; Peiffer, Thomas; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schröder, Matthias; Schum, Torben; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Vanelderen, Lukas; Barth, Christian; Berger, Joram; Böser, Christian; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hackstein, Christoph; Hartmann, Frank; Hauth, Thomas; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Husemann, Ulrich; Katkov, Igor; Komaragiri, Jyothsna Rani; Lobelle Pardo, Patricia; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Röcker, Steffen; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Zeise, Manuel; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Kaur, Manjit; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mehta, Pourus; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Ganguly, Sanmay; Guchait, Monoranjan; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Tosi, Silvano; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Dogangun, Oktay; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Taroni, Silvia; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Fanelli, Cristiano; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Sigamani, Michael; Soffi, Livia; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Cartiglia, Nicolo; Costa, Marco; Demaria, Natale; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Vilela Pereira, Antonio; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Heo, Seong Gu; Kim, Tae Yeon; Nam, Soon-Kwon; Chang, Sunghyun; Kim, Dong Hee; Kim, Gui Nyun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dong-Chul; Son, Taejin; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Choi, Minkyoo; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Cho, Yongjin; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Juodagalvis, Andrius; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Martínez-Ortega, Jorge; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Bell, Alan James; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Ansari, Muhammad Hamid; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Boimska, Bozena; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Seixas, Joao; Varela, Joao; Vischia, Pietro; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Karjavin, Vladimir; Konoplyanikov, Viktor; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Evstyukhin, Sergey; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Kossov, Mikhail; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Popov, Andrey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Piedra Gomez, Jonatan; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Graziano, Alberto; Jorda, Clara; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; D'Enterria, David; Dabrowski, Anne; De Roeck, Albert; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Georgiou, Georgios; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Govoni, Pietro; Gowdy, Stephen; Guida, Roberto; Hansen, Magnus; Harris, Philip; Hartl, Christian; Harvey, John; Hegner, Benedikt; Hinzmann, Andreas; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Kousouris, Konstantinos; Lecoq, Paul; Lee, Yen-Jie; Lenzi, Piergiulio; Lourenco, Carlos; Magini, Nicolo; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Musella, Pasquale; Nesvold, Erik; Orimoto, Toyoko; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Quertenmont, Loic; Racz, Attila; Reece, William; Rodrigues Antunes, Joao; Rolandi, Gigi; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Bäni, Lukas; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hits, Dmitry; Lecomte, Pierre; Lustermann, Werner; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Mohr, Niklas; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Hannsjoerg Artur; Wehrli, Lukas; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Snoek, Hella; Tupputi, Salvatore; Verzetti, Mauro; Chang, Yuan-Hann; Chen, Kuan-Hsin; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Singh, Anil; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wan, Xia; Wang, Minzu; Asavapibhop, Burin; Srimanobhas, Norraphat; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Karaman, Turker; Karapinar, Guler; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Yildirim, Eda; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Cankocak, Kerem; Levchuk, Leonid; Bostock, Francis; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Bainbridge, Robert; Ball, Gordon; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Stoye, Markus; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Whyntie, Tom; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Hatakeyama, Kenichi; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Gardner, Michael; Houtz, Rachel; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Mall, Orpheus; Miceli, Tia; Pellett, Dave; Ricci-Tam, Francesca; Rutherford, Britney; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Yohay, Rachel; Andreev, Valeri; Cline, David; Cousins, Robert; Duris, Joseph; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Plager, Charles; Rakness, Gregory; Schlein, Peter; Traczyk, Piotr; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Dinardo, Mauro Emanuele; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Veverka, Jan; Wilkinson, Richard; Xie, Si; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Azzolini, Virginia; Calamba, Aristotle; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Liu, Yueh-Feng; Paulini, Manfred; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Green, Dan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kilminster, Benjamin; Klima, Boaz; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Cheng, Tongguang; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Park, Myeonghun; Remington, Ronald; Rinkevicius, Aurelijus; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Hewamanage, Samantha; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Bucinskaite, Inga; Callner, Jeremy; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silkworth, Christopher; Strom, Derek; Turner, Paul; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Duru, Firdevs; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Stringer, Robert; Tinti, Gemma; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-Fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Peterman, Alison; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Apyan, Aram; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Kim, Yongsun; Klute, Markus; Krajczar, Krisztian; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wenger, Edward Allen; Wolf, Roger; Wyslouch, Bolek; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cooper, Seth; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Cremaldi, Lucien Marcus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Nash, David; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Brinkerhoff, Andrew; Chan, Kwok Ming; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Vuosalo, Carl; Williams, Grayson; Winer, Brian L; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Jindal, Pratima; Lopes Pegna, David; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Safdi, Ben; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Lopez, Angel; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Boulahouache, Chaouki; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Robles, Jorge; Rose, Keith; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Sengupta, Sinjini; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Roh, Youn; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Florez, Carlos; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sakharov, Alexandre; Anderson, Michael; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Friis, Evan; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Palmonari, Francesco; Pierro, Giuseppe Antonio; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua

    2013-05-21

    A search is presented for free heavy long-lived fractionally charged particles produced in pp collisions at $\\sqrt{s}$ = 7 TeV. The data sample was recorded by the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 inverse femtobarns. Candidate fractionally charged particles are identified by selecting tracks with associated low charge measurements in the silicon tracking detector. Observations are found to be consistent with expectations for background processes. The results of the search are used to set upper limits on the cross section for pair production of fractionally charged, massive spin-1/2 particles that are neutral under SU(3)$_C$ and SU(2)$_L$. We exclude at 95% confidence level such particles with electric charge ±2e/3 with masses below 310 GeV, and those with charge ±e/3 with masses below 140 GeV.

  13. Interplay of Classical and Quantum Mechanics in the Theory of Charged-Particle Stopping

    Science.gov (United States)

    Sigmund, Peter

    A quarter of a century ago the author stepped into Jens Oddershede's office and asked for support on a problem involving computation with atomic wave functions in connection with a new theoretical scheme to treat stopping of charged particles at intermediate speed. This visit resulted in two related publications, two joint papers and a number of follow-up studies by Jens and several others. In 1989 a Sanibel Symposium was devoted to aspects of the penetration of charged particles through matter, and since then, quite a few quantum chemists have joined the community of theoreticians dealing with particle penetration. Niels Bohr, a pioneer in both disciplines, emphasized the significance of classical vs. quantal arguments in particle penetration. Not the least in view of the complexity of ab initio computations in this area, such considerations keep being relevant. This note adds new points to an old discussion based on recent developments.

  14. Centrality dependence of charged particle production in proton–lead collisions measured by ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Shulga, Evgeny

    2014-06-15

    The ATLAS experiment at the LHC has measured the centrality dependence of charged particle pseudorapidity distributions, dN{sub ch}/dη, in p+Pb collisions at a nucleon–nucleon center-of-mass energy of √(s{sub NN})=5.02 TeV. Charged particles were reconstructed over |η|<2.7 using the ATLAS pixel detector. The proton–lead collision centrality was characterized by the total transverse energy measured over the pseudorapidity interval 3.1<η<4.9 in the direction of the lead beam. Three different calculations of the number of participants, N{sub part}, have been carried out using a standard Glauber model as well as two Glauber–Gribov extensions, providing results pointing to the importance of the fluctuating nature of nucleon–nucleon collisions in the modeling of the initial state of p+Pb collisions.

  15. Charged-particle multiplicity at mid-rapidity in Au–Au collisions at ...

    Indian Academy of Sciences (India)

    The pseudorapidity densities of charged particles at mid-rapidity in Au·Au collisions ... PHENIX; relativistic heavy-ion collisions; ultra-relativistic heavy-ion collisions; multi- plicity. PACS No. 25.75.Dw. 1. .... in a slightly too high value at 200 GeV, judging from the observed ÔsNN dependence of the scaling factor. The average ...

  16. Minkowski norm preserving integrator for ultra-relativistic radiating charged particles

    International Nuclear Information System (INIS)

    Kawaguchi, Hideki

    2002-01-01

    Symplectic integrators are known as very precise integrator for the Hamilton systems. For this, author presented a different type of integrator for charged particles, the Minkowski norm preserving integrator. And the integrator showed us very good accuracy in calculations of ultra-relativistic electron motion. However, there is no theoretical validity in calculation of particle trajectory. In this paper, an improvement of the accuracy in the particle trajectory of the integrator is presented

  17. Scaled momentum distributions of charged particles in dijet photoproduction at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Lab., Argonne, IL (US)] (and others)

    2009-04-15

    The scaled momentum distributions of charged particles in jets have been measured for dijet photoproduction with the ZEUS detector at HERA using an integrated luminosity of 359 pb{sup -1}. The distributions are compared to predictions based on perturbative QCD carried out in the framework of the modified leading-logarithmic approximation (MLLA) and assuming local parton-hadron duality (LPHD). The universal MLLA scale, {lambda}{sub eff}, and the LPHD parameter, {kappa}{sup ch}, are extracted. (orig.)

  18. Characterisation of Medipix3 Silicon Detectors in a Charged-Particle Beam

    CERN Document Server

    Akiba, K.; Aoude, R.Tourinho; van Beuzekom, M.; Buytaert, J.; Collins, P.; Dosil Suárez, A.; Dumps, R.; Gallas, A.; Hombach, C.; Hynds, D.; John, M.; Leflat, A.; Li, Y.; Pérez-Trigo, E.; Plackett, R.; Reid, M.M.; Rodríguez Pérez, P.; Schindler, H.; Tsopelas, P.; Vázquez Sierra, C.; Velthuis, J.J.; Wysokiński, M.

    2016-01-21

    While designed primarily for X-ray imaging applications, the Medipix3 ASIC can also be used for charged-particle tracking. In this work, results from a beam test at the CERN SPS with irradiated and non-irradiated sensors are presented and shown to be in agreement with simulation, demonstrating the suitability of the Medipix3 ASIC as a tool for characterising pixel sensors.

  19. Drift of the center of motion for a charged particle due to radiation effects

    International Nuclear Information System (INIS)

    Ares De Parga, G.; Mares, R.

    1999-01-01

    Through parametrization of the relativistic Larmor formula, one can find the trajectory of a charged particle in a uniform magnetic field. Simultaneously, there exists a drift of the center of curvature for the same. This effect is quantitatively compared with the predictions by other equations of motion, such as Dirac, Mo-Papas, Herrera, Bonnor and Cardirola and the one recently obtained by Hartemann and others. The paper proposes an experiment to verify the predicted effect, both qualitative and quantitative

  20. Finite Element in Angle Unit Sphere Meshing for Charged Particle Transport.

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Mario Ivan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Drumm, Clifton R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Finite element in angle formulations of the charged particle transport equation require the discretization of the unit sphere. In Sceptre, a three-dimensional surface mesh of a sphere is transformed into a two-dimensional mesh. Projection of a sphere onto a two-dimensional surface is well studied with map makers spending the last few centuries attempting to create maps that preserve proportion and area. Using these techniques, various meshing schemes for the unit sphere were investigated.

  1. Scaled momentum distributions of charged particles in dijet photoproduction at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2009-04-01

    The scaled momentum distributions of charged particles in jets have been measured for dijet photoproduction with the ZEUS detector at HERA using an integrated luminosity of 359 pb -1 . The distributions are compared to predictions based on perturbative QCD carried out in the framework of the modified leading-logarithmic approximation (MLLA) and assuming local parton-hadron duality (LPHD). The universal MLLA scale, Λ eff , and the LPHD parameter, κ ch , are extracted. (orig.)

  2. The semiclassical approximation for L- and M-shell coulomb ionization by heavy charged particles

    International Nuclear Information System (INIS)

    Kocbach, L.

    1975-08-01

    The semiclassical approximation with straight line trajectories is applied to the Coulomb ionization of K-, L- and M-shells by heavy charged particles. The calculational aspects are discussed in detail. Scaling relations for the experimentally relevant quantities are derived. The theoretical predictions are compared with experimental data. The relation of the present work to earlier SCA results and the PWBA results is discussed in detail. (auth)

  3. Reconstruction of charged particle trajectories in multiwire proportional chambers at the BM@N experiment

    International Nuclear Information System (INIS)

    Lenivenko, V.V.; Pal'chik, V.V.

    2017-01-01

    The algorithm for track reconstruction in the multiwire proportional chambers (MWPC) of the BM@N experiment is described. Beam tracks before the interaction with the target and trajectories of charged particles after the interaction are reconstructed using Nuclotron experimental data with deuteron and carbon beams colliding with the carbon and copper targets. Trajectories are extrapolated to the interaction point and to the drift chambers. Efficiencies of MWPCs have been obtained. Beam parameters (transverse dimensions, the angular spread) have been measured. [ru

  4. Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow

    Science.gov (United States)

    Pollock, G.G.

    1997-01-28

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

  5. Charged Particle Stopping Power Effects on Ignition: Some Results from an Exact Calculation

    OpenAIRE

    Singleton Jr, Robert L.

    2007-01-01

    A completely rigorous first-principles calculation of the charged particle stopping power has recently been performed by Brown, Preston, and Singleton (BPS). This calculation is exact to leading and next-to-leading order in the plasma number density, including an exact treatment of two-body quantum scattering. The BPS calculation is therefore extremely accurate in the plasma regime realized during the ignition and burn of an inertial confinement fusion capsule. For deuterium-tritium fusion, t...

  6. Method and system for automatically correcting aberrations of a beam of charged particles

    International Nuclear Information System (INIS)

    1975-01-01

    The location of a beam of charged particles within a deflection field is determined by its orthogonal deflection voltages. With the location of the beam in the field, correction currents are supplied to a focus coil and to each of a pair of stigmator coils to correct for change of focal length and astigmatism due to the beam being deflected away from the center of its deflection field

  7. Development of a charged particle detector array in Pelletron-LINAC facility

    International Nuclear Information System (INIS)

    John, Bency; Inkar, A.L.; Saxena, A.; Vind, R.P.; Gupta, Y.K.; Biswas, D.C.; Nayak, B.K.; Thomas, R.G.; Danu, L.S.; Choudhury, R.K.; Kailas, S.; Topkar, A.; Venkatramanan, S.; Kumar, Manish; Sunilkumar, S.

    2010-01-01

    A charged particle detector array consisting of 50 Si-CsI detector telescopes for study of heavy-ion reactions is under construction in BARC-TIFR Pelletron-LINAC facility. Developmental work carried out for the detector modules, front-end and pulse shape discrimination electronics, scattering chamber and other mechanical parts are summarized. Some new ideas developed during the course of work are pointed out. (author)

  8. Generalized Ohm's law for a background plasma in the presence of relativistic charged particles.

    Science.gov (United States)

    Sherlock, M

    2010-05-21

    A generalized Ohm's law is derived for a system composed of a background magnetohydrodynamic plasma and a lower density relativistic charged-particle distribution. The interpretation of Ohmic electric fields occurring due to force balance breaks down for such a system and instead an approach based on Maxwell's equations along with the particle flux equations is necessary. Three additional terms arise in Ohm's law and each is verified numerically.

  9. A S-matrix-like approximation in the charged particle scattering by the hydrogen atom

    International Nuclear Information System (INIS)

    Mignaco, J.A.; Tort, A.C.

    1979-01-01

    The Born approximation for charged particle scattering by the hydrogen atom is unfit at low energies. From a S-matrix-like consideration on the dominance of the neighbour singularities, the calculation of other contributions is suggested. The inclusion of bound states is made, following Eden's and his colaborators' ideas, which are described by their interest and likeness with procedures in the intermediate energy physics. (Author) [pt

  10. Associated average charged particle multiplicities in K+p interactions at 32GeV/c

    International Nuclear Information System (INIS)

    Ajinenko, I.V.; Chliapnikov, P.V.; Gerdyukov, L.N.; Kubic, V.M.; Manyukov, B.A.; Minaev, N.G.; Rubin, A.M.; Ryadovikov, V.N.; Beer, M. de; Loret, M.; Saudraix, J.

    1975-01-01

    The average charged particle multiplicities, in the reactions K + p→K 0 X, K + p→π - X, K + p→pX and K + p→Δ ++ (1236)X at 32GeV/c are studied as functions of the mass squared Msub(X)sup(2) of the associated system X. A comparison with the corresponding results obtained at lower incident momenta and with other incident particles is presented [fr

  11. Comments on (n, charged particle) reactions at E/sub n/ = 14 MeV

    International Nuclear Information System (INIS)

    Haight, R.C.

    1984-01-01

    The study of charged particles produced by bombarding materials with 14 MeV neutrons is important for the development of fusion reactors and for biomedical applications as well as for the basic understanding of nuclear reactions. Several experimental techniques for investigating these reactions are discussed here. The interpretation of the data requires the consideration of several possible reaction mechanisms including equilibrium and preequilibrium particle emission and, for light nuclei, sequential particle emission, final state interactions, and the effect of resonances. 17 references

  12. Large Acceptance Measurement of Photons and Charged Particles in Heavy Ion Reactions

    CERN Multimedia

    2002-01-01

    % WA98 \\\\ \\\\ The aim of the experiment is the high statistics study of photons and neutral hadrons, as well as of charged particles, and their correlations in Pb~-~Pb collisions. The photons are measured by: \\begin{enumerate}[-] \\item a 10~000 module LEADGLASS SPECTROMETER yielding high precision data on $ \\pi ^0 $ and $ \\eta $ at midrapidity (with transverse momenta 0.3 GeV/c $>$ p$ _{T} $ $>$ 4.5 GeV/c for $\\pi ^0 $ and 1.5~GeV/c~$>$~p$ _{T}~$ $>$~4.0~GeV/c for $ \\eta $ covering the $^{\\prime\\prime}$thermal$^{\\prime\\prime}$ as well as the $^{\\prime\\prime}$hard scattering$^{\\prime\\prime}$ regime beyond 3~GeV/c) and determination of the thermal and direct photon to $ \\pi ^0 $ ratio. \\item a pad preshower PHOTON MULTIPLICITY DETECTOR which, by comparing with the charged particle multiplicity measurement allows to determine the photon enrichment in an event or event class. \\end{enumerate}\\\\ \\\\The charged particle setup contains:\\\\ \\\\\\begin{enumerate}[-] \\item a 4000 element SILICON PAD DETECTOR and a 4-inch SIL...

  13. Energetic Charged-Particle Phenomena in the Jovian Magnetosphere: First Results from the Ulysses COSPIN Collaboration.

    Science.gov (United States)

    Simpson, J A; Anglin, J D; Balogh, A; Burrows, J R; Cowley, S W; Ferrando, P; Heber, B; Hynds, R J; Kunow, H; Marsden, R G; McKibben, R B; Müller-Mellin, R; Page, D E; Raviart, A; Sanderson, T R; Staines, K; Wenzel, K P; Wilson, M D; Zhang, M

    1992-09-11

    The Ulysses spacecraft made the first exploration of the region of Jupiter's magnetosphere at high Jovigraphic latitudes ( approximately 37 degrees south) on the dusk side and reached higher magnetic latitudes ( approximately 49 degrees north) on the day side than any previous mission to Jupiter. The cosmic and solar particle investigations (COSPIN) instrumentation achieved a remarkably well integrated set of observations of energetic charged particles in the energy ranges of approximately 1 to 170 megaelectron volts for electrons and 0.3 to 20 megaelectron volts for protons and heavier nuclei. The new findings include (i) an apparent polar cap region in the northern hemisphere in which energetic charged particles following Jovian magnetic field lines may have direct access to the interplanetary medium, (ii) high-energy electron bursts (rise times approximately 17 megaelectron volts) on the dusk side that are apparently associated with field-aligned currents and radio burst emissions, (iii) persistence of the global 10-hour relativistic electron "clock" phenomenon throughout Jupiter's magnetosphere, (iv) on the basis of charged-particle measurements, apparent dragging of magnetic field lines at large radii in the dusk sector toward the tail, and (v) consistent outflow of megaelectron volt electrons and large-scale departures from corotation for nucleons.

  14. Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B.S.; Ackers, M.; Adams, D.L.; Addy, T.N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Alam, M.S.; Alam, M.A.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Aleppo, M.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, J.; Alviggi, M.G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V.V.; Amorim, A.; Amoros, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Andrieux, M-L.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F.; Arik, E.; Arik, M.; Armbruster, A.J.; Arms, K.E.; Armstrong, S.R.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Silva, J.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Baccaglioni, G.; Bacci, C.; Bach, A.M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D.C.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H.S.; Barak, L.; Baranov, S.P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimaraes da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A.E.; Bartsch, D.; Bates, R.L.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H.S.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Bechtle, P.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Beddall, A.J.; Beddall, A.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, G.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M.I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J.B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bobrovnikov, V.B.; Bocci, A.; Bock, R.; Boddy, C.R.; Boehler, M.; Boek, J.; Boelaert, N.; Boser, S.; Bogaerts, J.A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boonekamp, M.; Boorman, G.; Booth, C.N.; Booth, P.; Booth, J.R.A.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I.R.; Bozhko, N.I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Brambilla, E.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N.D.; Bright-Thomas, P.G.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodbeck, T.J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P.A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N.J.; Buchholz, P.; Buckingham, R.M.; Buckley, A.G.; Buda, S.I.; Budagov, I.A.; Budick, B.; Buscher, V.; Bugge, L.; Buira-Clark, D.; Buis, E.J.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Buttinger, W.; Byatt, T.; Cabrera Urban, S.; Caccia, M.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Caloi, R.; Calvet, D.; Calvet, S.; Camard, A.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Cammin, J.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M.D.M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carpentieri, C.; Carrillo Montoya, G.D.; Carron Montero, S.; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A.M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavallari, A.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Cazzato, A.; Ceradini, F.; Cerna, C.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, L.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.V.; Choudalakis, G.; Chouridou, S.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Ciubancan, M.; Clark, A.; Clark, P.J.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Clifft, R.W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J.G.; Coggeshall, J.; Cogneras, E.; Cojocaru, C.D.; Colas, J.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Coluccia, R.; Comune, G.; Conde Muino, P.; Coniavitis, E.; Conidi, M.C.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Correard, S.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Cote, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crepe-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cuneo, S.; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Rocha Gesualdi Mello, A.; Da Silva, P.V.M.; Da Via, C.; Dabrowski, W.; Dahlhoff, A.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Dam, M.; Dameri, M.; Damiani, D.S.; Danielsson, H.O.; Dankers, R.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Daum, C.; Dauvergne, J.P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A.R.; Dawe, E.; Dawson, I.; Dawson, J.W.; Daya, R.K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Cruz-Burelo, E.; De La Taille, C.; De Lotto, B.; De Mora, L.; De Nooij, L.; De Oliveira Branco, M.; De Pedis, D.; de Saintignon, P.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J.B.; Dean, S.; Dedes, G.; Dedovich, D.V.; Degenhardt, J.; Dehchar, M.; Deile, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S.P.; Dennis, C.; Derendarz, D.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietl, H.; Dietrich, J.; Dietzsch, T.A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M.A.B.; Do Valle Wemans, A.; Doan, T.K.O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O.B.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M.T.; Dowell, J.D.; Doxiadis, A.D.; Doyle, A.T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Drohan, J.G.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Duhrssen, M.; Duerdoth, I.P.; Duflot, L.; Dufour, M-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Duren, M.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Efthymiopoulos, I.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A.I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Falou, A.C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fasching, D.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, I.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferguson, D.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M.J.; Fisher, S.M.; Flammer, J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L.R.; Flowerdew, M.J.; Fohlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D.A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J.M.; Fournier, D.; Foussat, A.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallas, M.V.; Gallo, V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gapienko, V.A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; Garcia, C.; Garcia Navarro, J.E.; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gauthier, L.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gayde, J-C.; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gieraltowski, G.F.; Gilbert, L.M.; Gilchriese, M.; Gildemeister, O.; Gilewsky, V.; Gillberg, D.; Gillman, A.R.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordano, R.; Giorgi, F.M.; Giovannini, P.; Giraud, P.F.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Gopfert, T.; Goeringer, C.; Gossling, C.; Gottfert, T.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N.P.; Golovnia, S.N.; Gomes, A.; Gomez Fajardo, L.S.; Goncalo, R.; Gonella, L.; Gong, C.; Gonidec, A.; Gonzalez, S.; Gonzalez de la Hoz, S.; Gonzalez Silva, M.L.; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gorbounov, P.A.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Gorokhov, S.A.; Gorski, B.T.; Goryachev, V.N.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gouanere, M.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafstrom, P.; Grah, C.; Grahn, K-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Grebenyuk, O.G.; Greenfield, D.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Gris, P.L.Y.; Grishkevich, Y.V.; Grivaz, J.F.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Gruwe, M.; Grybel, K.; Guarino, V.J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V.N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, C.J.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harper, D.; Harrington, R.D.; Harris, O.M.; Harrison, K.; Hart, J.C.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B.M.; Hawkes, C.M.; Hawkings, R.J.; Hawkins, D.; Hayakawa, T.; Hayden, D; Hayward, H.S.; Haywood, S.J.; Hazen, E.; He, M.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heldmann, M.; Heller, M.; Hellman, S.; Helsens, C.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques Correia, A.M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henss, T.; Hernandez Jimenez, Y.; Herrberg, R.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Hidvegi, A.; Higon-Rodriguez, E.; Hill, D.; Hill, J.C.; Hill, N.; Hiller, K.H.; Hillert, S.; Hillier, S.J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmes, A.; Holmgren, S.O.; Holy, T.; Holzbauer, J.L.; Homer, R.J.; Homma, Y.; Horazdovsky, T.; Horn, C.; Horner, S.; Horton, K.; Hostachy, J-Y.; Hott, T.; Hou, S.; Houlden, M.A.; Hoummada, A.; Howarth, J.; Howell, D.F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P.J.; Hsu, S.C.; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T.B.; Hughes, E.W.; Hughes, G.; Hughes-Jones, R.E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ionescu, G.; Irles Quiles, A.; Ishii, K.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwanski, W.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, B.; Jackson, J.N.; Jackson, P.; Jaekel, M.R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jez, P.; Jezequel, S.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M.D.; Joffe, D.; Johansen, L.G.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S.; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.W.; Jones, T.J.; Jonsson, O.; Joo, K.K.; Joram, C.; Jorge, P.M.; Joseph, J.; Ju, X.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L.V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kanno, T.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kazanin, V.A.; Kazarinov, M.Y.; Kazi, S.I.; Keates, J.R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kennedy, J.; Kenney, C.J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A.G.; Khomich, A.; Khoo, T.J.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kimura, N.; Kind, O.; King, B.T.; King, M.; King, R.S.B.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiver, A.M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E.E.; Kluge, T.; Kluit, P.; Kluth, S.; Kneringer, E.; Knobloch, J.; Knue, A.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Koneke, K.; Konig, A.C.; Koenig, S.; Konig, S.; Kopke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G.M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Kononov, A.I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S.V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kortner, S.; Kostyukhin, V.V.; Kotamaki, M.J.; Kotov, S.; Kotov, V.M.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasel, O.; Krasny, M.W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Kruger, H.; Krumshteyn, Z.V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y.A.; Kus, V.; Kuykendall, W.; Kuze, M.; Kuzhir, P.; Kvasnicka, O.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Landsman, H.; Lane, J.L.; Lange, C.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lapin, V.V.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larionov, A.V.; Larner, A.; Lasseur, C.; Lassnig, M.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Leahu, M.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lee JR, L.; Lefebvre, M.; Legendre, M.; Leger, A.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lehto, M.; Lei, X.; Leite, M.A.L.; Leitner, R.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J-R.; Lesser, J.; Lester, C.G.; Leung Fook Cheong, A.; Leveque, J.; Levin, D.; Levinson, L.J.; Levitski, M.S.; Lewandowska, M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Lilley, J.N.; Limosani, A.; Limper, M.; Lin, S.C.; Linde, F.; Linnemann, J.T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lister, A.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, S.; Liu, Y.; Livan, M.; Livermore, S.S.A.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V.P.; Long, R.E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M.J.; Lou, X.; Lounis, A.; Loureiro, K.F.; Love, J.; Love, P.A.; Lowe, A.J.; Lu, F.; Lu, J.; Lu, L.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Maass en, M.; Macana Goia, J.A.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mattig, P.; Mattig, S.; Magalhaes Martins, P.J.; Magnoni, L.; Magradze, E.; Magrath, C.A.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manjavidze, I.D.; Mann, A.; Manning, P.M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marchesotti, M.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C.P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F.K.; Marti-Garcia, S.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, Ph.; Martin, T.A.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A.C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Mass, M.; Massa, I.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J.M.; Maxfield, S.J.; May, E.N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S.P.; McCarn, A.; McCarthy, R.L.; McCarthy, T.G.; McCubbin, N.A.; McFarlane, K.W.; Mcfayden, J.A.; McGlone, H.; Mchedlidze, G.; McLaren, R.A.; Mclaughlan, T.; McMahon, S.J.; McMahon, T.R.; McMahon, T.J.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B.R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.; Metcalfe, J.; Mete, A.S.; Meuser, S.; Meyer, C.; Meyer, J-P.; Meyer, J.; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R.P.; Miele, P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikestikova, M.; Mikulec, B.; Mikuz, M.; Miller, D.W.; Miller, R.J.; Mills, W.J.; Mills, C.; Milov, A.; Milstead, D.A.; Milstein, D.; Minaenko, A.A.; Minano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L.M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitra, A.; Mitrevski, J.; Mitrofanov, G.Y.; Mitsou, V.A.; Mitsui, S.; Miyagawa, P.S.; Miyazaki, K.; Mjornmark, J.U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Monig, K.; Moser, N.; Mohapatra, S.; Mohn, B.; Mohr, W.; Mohrdieck-Mock, S.; Moisseev, A.M.; Moles-Valls, R.; Molina-Perez, J.; Moneta, L.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R.W.; Moorhead, G.F.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llacer, M.; Morettini, P.; Morii, M.; Morin, J.; Morita, Y.; Morley, A.K.; Mornacchi, G.; Morone, M-C.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Muller, T.A.; Muenstermann, D.; Muijs, A.; Muir, A.; Munwes, Y.; Murakami, K.; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakahama, Y.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nasteva, I.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, S.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Nesterov, S.Y.; Neubauer, M.S.; Neusiedl, A.; Neves, R.M.; Nevski, P.; Newman, P.R.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Norniella Francisco, O.; Norton, P.R.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A.E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Brien, B.J.; O'Neale, S.W.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G.A.; Ogren, H.; Oh, A.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohska, T.K.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olcese, M.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Ordonez, G.; Oreglia, M.J.; Orellana, F.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R.S.; Ortega, E.O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero y Garzon, G.; Ottersbach, J.P; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Oye, O.K.; Ozcan, V.E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Paoloni, A.; Papadelis, A.; Papadopoulou, Th.D.; Paramonov, A.; Park, S.J.; Park, W.; Parker, M.A.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pasztor, G.; Pataraia, S.; Patel, N.; Pater, J.R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M.I.; Peleganchuk, S.V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Perez Garcia-Estan, M.T.; Perez Reale, V.; Peric, I.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Peters, O.; Petersen, B.A.; Petersen, J.; Petersen, T.C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A.W.; Phillips, P.W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W.G.; Pleier, M.A.; Pleskach, A.V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D.M.; Pomeroy, D.; Pommes, K.; Pontecorvo, L.; Pope, B.G.; Popeneciu, G.A.; Popovic, D.S.; Poppleton, A.; Portell Bueso, X.; Porter, R.; Posch, C.; Pospelov, G.E.; Pospisil, S.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L.E.; Price, M.J.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rajagopalan, S.; Rajek, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Randrianarivony, K.; Ratoff, P.N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renaud, A.; Renkel, P.; Rensch, B.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J.E.M.; Robinson, M.; Robson, A.; Rocha de Lima, J.G.; Roda, C.; Roda Dos Santos, D.; Rodier, S.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, A.; Roe, S.; Rohne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rose, M.; Rosenbaum, G.A.; Rosenberg, E.I.; Rosendahl, P.L.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L.P.; Rossi, L.; Rotaru, M.; Roth, I.; Rothberg, J.; Rottlander, I.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Ruhr, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N.A.; Rust, D.R.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N.C.; Rzaeva, S.; Saavedra, A.F.; Sadeh, I.; Sadrozinski, H.F-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandhu, P.; Sandoval, T.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, J.B.; Savard, P.; Savinov, V.; Savva, P.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schafer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Scharf, V.; Schegelsky, V.A.; Scheirich, D.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J.L.; Schmidt, E.; Schmidt, M.P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schoning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.C.; Schulz, H.; Schumacher, J.W.; Schumacher, M.; Schumm, B.A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Short, D.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjolin, J.; Sjursen, T.B.; Skinnari, L.A.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloan, T.J.; Sloper, J.; Smakhtin, V.; Smirnov, S.Yu.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solc, J.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spano, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R.D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.A.; Stockmanns, T.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Strohmer, R.; Strom, D.M.; Strong, J.A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D.A.; Su, D.; Subramania, S.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, Y.; Sviridov, Yu.M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sanchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tani, K.; Tannoury, N.; Tappern, G.P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F.E.; Taylor, G.; Taylor, G.N.; Taylor, W.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K.K.; Ten Kate, H.; Teng, P.K.; Tennenbaum-Katan, Y.D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Tevlin, C.M.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, A.S.; Thomson, E.; Thomson, M.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Timmermans, C.J.W.P.; Tipton, P.; Tique Aires Viegas, F.J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokar, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonazzo, A.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torchiani, I.; Torrence, E.; Torro Pastor, E.; Toth, J.; Touchard, F.; Tovey, D.R.; Traynor, D.; Trefzger, T.; Treis, J.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocme, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J.W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tuggle, J.M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P.M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Typaldos, D.; Tyrvainen, H.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D.G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valderanis, C.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J.A.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; Van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vassilakopoulos, V.I.; Vazeille, F.; Vegni, G.; Veillet, J.J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Ventura, S.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vest, A.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Virchaux, M.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A.P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vovenko, A.S.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, J.; Wang, J.; Wang, J.C.; Wang, R.; Wang, S.M.; Warburton, A.; Ward, C.P.; Warsinsky, M.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Weber, J.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S.J.; Whitaker, S.P.; White, A.; White, M.J.; White, S.; Whitehead, S.R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilhelm, I.; Wilkens, H.G.; Will, J.Z.; Williams, E.; Williams, H.H.; Willis, W.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wooden, G.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wrona, B.; Wu, S.L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B.M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, W-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaets, V.G.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zalite, Yo.K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zdrazil, M.; Zeitnitz, C.; Zeller, M.; Zema, P.F.; Zemla, A.; Zendler, C.; Zenin, A.V.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zilka, B.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V.V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.

    2011-01-01

    Measurements are presented from proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase-space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared to each other and to various Monte Carlo models, including a new AMBT1 PYTHIA 6 tune. In all the kinematic regions considered, the particle multiplicities are higher than predicted by the Monte Carlo models. The central charged-particle multiplicity per event and unit of pseudorapidity, for tracks with pT >100 MeV, is...

  15. Inclusive charged particle distributions in deep inelastic scattering events at HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1995-11-01

    A measurement of inclusive charged particle distributions in deep inelastic ep scattering for γ * p centre-of-mass energies 75 2 2 from the ZEUS detector at HERA is presented. The differential charged particle rates in the γ*p centre-of-mass system as a function of the scaled longitudinal momentum, x F , and of the transverse momentum, p* t and t 2 >, as a function of x F , W and Q 2 are given. Separate distributions are shown for events with (LRG) and without (NRG) a rapidity gap with respect to the proton direction. The data are compared with results from experiments at lower beam energies, with the naive quark parton model and with parton models including perturbative QCD corrections. The comparison shows the importance of the higher order QCD processes. Significant differences of the inclusive charged particle rates between NRG and LRG events at the same W are observed. The value of t 2 > for LRG events with a hadronic mass M X , which excludes the forward produced baryonic system, is similar to the t 2 > value observed in fixed target experiments at W∼M X . (orig.)

  16. New Density Estimation Methods for Charged Particle Beams With Applications to Microbunching Instability

    Energy Technology Data Exchange (ETDEWEB)

    Balsa Terzic, Gabriele Bassi

    2011-07-01

    In this paper we discuss representations of charge particle densities in particle-in-cell (PIC) simulations, analyze the sources and profiles of the intrinsic numerical noise, and present efficient methods for their removal. We devise two alternative estimation methods for charged particle distribution which represent significant improvement over the Monte Carlo cosine expansion used in the 2d code of Bassi, designed to simulate coherent synchrotron radiation (CSR) in charged particle beams. The improvement is achieved by employing an alternative beam density estimation to the Monte Carlo cosine expansion. The representation is first binned onto a finite grid, after which two grid-based methods are employed to approximate particle distributions: (i) truncated fast cosine transform (TFCT); and (ii) thresholded wavelet transform (TWT). We demonstrate that these alternative methods represent a staggering upgrade over the original Monte Carlo cosine expansion in terms of efficiency, while the TWT approximation also provides an appreciable improvement in accuracy. The improvement in accuracy comes from a judicious removal of the numerical noise enabled by the wavelet formulation. The TWT method is then integrated into Bassi's CSR code, and benchmarked against the original version. We show that the new density estimation method provides a superior performance in terms of efficiency and spatial resolution, thus enabling high-fidelity simulations of CSR effects, including microbunching instability.

  17. The Dynamics of Charged Particle of Ultra High Energy in CMB

    Science.gov (United States)

    Musakhanyan, Viktor

    The dynamics of charged particle of ultra high-energy moving in the Cosmic Microwave Background (CMB) is considered. Since the CMB parameters, 1) the intensity and 2) the ratio of quantum's energy to the energy of charged particle are small, we handle the problem within the frameworks of Classical Electrodynamics. Solution of relativistic equation of motion results, after averaging over random phases of the waves, in a small additional acceleration, hence the well-known 'GZK cut-off' for charged Ultra High Energy Cosmic Rays (UHECR) becomes controversial. Owing to the relativistic invariance of the wave' phase, the huge increase of frequency both in the rest and in the center of mass reference frames of the ultra high-energy charged particle results in the corresponding decrease of the length of interaction. Therefore, the obtained energy gain is independent of chosen reference frames. Thus, there is no theoretical constrains for UHECR originated in far Universe during their long journey to Earth. Spectrum of UHECR is discussed and both the knee and the ankle are considered.

  18. Fog camera to visualize ionizing charged particles; Camara de niebla para visualizar particulas cargadas ionizantes

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo A, L.; Rodriguez R, N. I.; Vega C, H. R., E-mail: ingtrujilloa@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-10-15

    The human being can not perceive the different types of ionizing radiation, natural or artificial, present in the nature, for what appropriate detection systems have been developed according to the sensibility to certain radiation type and certain energy type. The objective of this work was to build a fog camera to visualize the traces, and to identify the trajectories, produced by charged particles with high energy, coming mainly of the cosmic rays. The origin of the cosmic rays comes from the solar radiation generated by solar eruptions where the protons compose most of this radiation. It also comes, of the galactic radiation which is composed mainly of charged particles and gamma rays that comes from outside of the solar system. These radiation types have energy time millions higher that those detected in the earth surface, being more important as the height on the sea level increases. These particles in their interaction produce secondary particles that are detectable by means of this cameras type. The camera operates by means of a saturated atmosphere of alcohol vapor. In the moment in that a charged particle crosses the cold area of the atmosphere, the medium is ionized and the particle acts like a condensation nucleus of the alcohol vapor, leaving a visible trace of its trajectory. The built camera was very stable, allowing the detection in continuous form and the observation of diverse events. (Author)

  19. Cell and tissue kinetics of the subependymal layer in mouse brain following heavy charged particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Manley, N.B.; Fabrikant, J.I.; Alpen, E.L.

    1988-12-01

    The following studies investigate the cellular response and cell population kinetics of the subependymal layer in the mouse brain exposed to heavy charged particle irradiation. Partial brain irradiation with helium and neon ions was confined to one cortex of the brain. Both the irradiated and the unirradiated contralateral cortex showed similar disturbances of the cell and tissue kinetics in the subependymal layers. The irradiated hemisphere exhibited histological damage, whereas the unirradiated side appeared normal histologically. This study concerns the cell population and cell cycle kinetics of the subependymal layer in the mouse brain, and the effects of charged particle irradiations on this cell population. Quantitative high resolution autoradiography was used to study the kinetic parameters in this cell layer. This study should help in understanding the effects of these high-energy heavy ions on normal mammalian brain tissue. The response of the mammalian brain exposure to charged particle ionizing radiation may be extremely variable. It varies from minimal physiological changes to overt tissue necrosis depending on a number of factors such as: the administered dose, dose-rate, the volume of the irradiated tissue, and the biological end-point being examined.

  20. Development of Large-Area Charged Particle Detector with Inorganic Scintillator Plates and Wavelength Shifting Fibers

    Directory of Open Access Journals (Sweden)

    Mizuno Takahiro

    2018-01-01

    Full Text Available A Large-area charged particle detector for highenergy physics experiments has been developed. This detector includes inorganic scintillator plates with thicknesses of 0.5 mm and wavelength-shifting fibers (WLSFs of 0.2 mm in diameters. The size of effective area is 1 m by 1 m. The WLSFs are connected to both plate surfaces optically, and on the top and the bottom, fibers are attached along to x and y-axis direction, respectively. The best WLSF to obtain large number of photoelectrons is determined, which enables us to detect charged particles with thinner scintillation crystals. This means an improvement of position resolution of this detector. The number of photoelectrons obtained from a new type scintillation crystal, which is more reasonable than the conventional ones are also measured. We also estimated its position resolution. This detector enables us to detect charged particles with higher position resolution and lower cost than conventional scintillation detectors and gas chambers.

  1. Charged Particle Multiplicity and Open Heavy Flavor Physics in Relativistic Heavy Ion Collisions at the LHC

    Science.gov (United States)

    Chen, Yujiao

    In this thesis, two independent measurements are presented: the measurements of centrality dependence and pseudo-rapidity dependence of charged particle multiplicities, and the measurements of centrality dependence of open heavy flavor suppression. These measurements are carried out with the Pb+Pb collisions data at the LHC energy sNN = 2.76 TeV with the ATLAS detector. For the charged particle measurements, charged particles are reconstructed with two algorithms (2-point "tracklet" and full tracking) from the pixel detector only. Measurements are presented of the per-event charged particle density distribution, dNch /deta and the average charged particle multiplicity in the pseudo-rapidity interval |eta| deta distribution is found to be independent of centrality within the systematic uncertainties of the measurement. For the open heavy flavor suppression measurements, muons identified by the muon spectrometer are classified as heavy flavor decays and background contributions by using a fitting procedure with templates from Monte Carlo samples. Results are presented for the per-event muon yield as a function of muon transverse momentum, p T, over the range of 4 < pT < 14 GeV. Over that momentum range single muon production results largely from heavy quark decays. The centrality dependence of the muon yields is characterized by the "central to peripheral" ratio, RCP. Using this measure, muon production from heavy quark decays is found to be suppressed by a centrality-dependent factor that increases smoothly from peripheral to central collisions. Muon production is suppressed by approximately a factor of two in central collisions relative to peripheral collisions. Within the experimental errors, the observed suppression is independent of muon pT for all centralities. Furthermore, the p T dependence of the relative muon yields in Pb+Pb collisions to p+p collisions with the same center of mass collision energy per nucleon is presented by the nuclear modification factor

  2. Comparative biology approaches for charged particle exposures and cancer development processes

    Science.gov (United States)

    Kronenberg, Amy; Gauny, Stacey; Kwoh, Ely; Sudo, Hiroko; Wiese, Claudia; Dan, Cristian; Turker, Mitchell

    Comparative biology studies can provide useful information for the extrapolation of results be-tween cells in culture and the more complex environment of the tissue. In other circumstances, they provide a method to guide the interpretation of results obtained for cells from differ-ent species. We have considered several key cancer development processes following charged particle exposures using comparative biology approaches. Our particular emphases have been mutagenesis and genomic instability. Carcinogenesis requires the accumulation of mutations and most of htese mutations occur on autosomes. Two loci provide the greatest avenue for the consideration of charged particle-induced mutation involving autosomes: the TK1 locus in human cells and the APRT locus in mouse cells. Each locus can provide information on a wide variety of mutational changes, from small intragenic mutations through multilocus dele-tions and extensive tracts of mitotic recombination. In addition, the mouse model can provide a direct measurement of chromosome loss which cannot be accomplished in the human cell system. Another feature of the mouse APRT model is the ability to examine effects for cells exposed in vitro with those obtained for cells exposed in situ. We will provide a comparison of the results obtained for the TK1 locus following 1 GeV/amu Fe ion exposures to the human lymphoid cells with those obtained for the APRT locus for mouse kidney epithelial cells (in vitro or in situ). Substantial conservation of mechanisms is found amongst these three exposure scenarios, with some differences attributable to the specific conditions of exposure. A similar approach will be applied to the consideraiton of proton-induced autosomal mutations in the three model systems. A comparison of the results obtained for Fe ions vs. protons in each case will highlight LET-specificc differences in response. Another cancer development process that is receiving considerable interest is genomic instability. We

  3. Charged-particle pseudorapidity density in proton-proton collisions at $\\mathbf{\\sqrt{\\textit s}}$ = 13 TeV

    CERN Document Server

    2015-01-01

    The pseudorapidity density of charged particles produced in proton-proton collisions at the LHC is measured at the centre-of-mass energy $\\sqrt{s} = 13$ TeV with the ALICE detector. We report on the measurement performed in the central pseudorapidity region for inelastic events (INEL) and events with at least one charged particle in $\\left|\\eta\\right| $0). The pseudorapidity density of charged particles produced in the pseudorapidity region $\\left|\\eta\\right| $0 events, respectively. The results are compared with calculations from Monte Carlo models commonly used at the LHC.

  4. Measurement of charged particle multiplicities in $pp$ collisions at $\\sqrt{s}$ = 7 TeV in the forward region

    CERN Document Server

    INSPIRE-00258707; Abellan Beteta, C.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Alkhazov, G.; Alvarez Cartelle, P.; Alves Jr, A.A.; Amato, S.; Amhis, Y.; Anderson, J.; Appleby, R.B.; Aquines Gutierrez, O.; Archilli, F.; Arrabito, L.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Bachmann, S.; Back, J.J.; Bailey, D.S.; Balagura, V.; Baldini, W.; Barlow, R.J.; Barschel, C.; Barsuk, S.; Barter, W.; Bates, A.; Bauer, C.; Bauer, Th.; Bay, A.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Benayoun, M.; Bencivenni, G.; Benson, S.; Benton, J.; Bernet, R.; Bettler, M.O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjornstad, P.M.; Blake, T.; Blanc, F.; Blanks, C.; Blouw, J.; Blusk, S.; Bobrov, A.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Bowcock, T.J.V.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brook, N.H.; Brown, H.; Buchler-Germann, A.; Burducea, I.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Callot, O.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cattaneo, M.; Cauet, Ch.; Charles, M.; Charpentier, Ph.; Chiapolini, N.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P.E.L.; Clemencic, M.; Cliff, H.V.; Closier, J.; Coca, C.; Coco, V.; Cogan, J.; Collins, P.; Comerma-Montells, A.; Constantin, F.; Conti, G.; Contu, A.; Cook, A.; Coombes, M.; Corti, G.; Cowan, G.A.; Currie, R.; D'Almagne, B.; D'Ambrosio, C.; David, P.; David, P.N.Y.; De Bonis, I.; De Capua, S.; De Cian, M.; De Lorenzi, F.; de Miranda, J.M.; De Paula, L.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Degaudenzi, H.; Deissenroth, M.; Del Buono, L.; Deplano, C.; Derkach, D.; Deschamps, O.; Dettori, F.; Dickens, J.; Dijkstra, H.; Diniz Batista, P.; Bonal, F.Domingo; Donleavy, S.; Dordei, F.; Dosil Suarez, A.; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Dzhelyadin, R.; Dziurda, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; van Eijk, D.; Eisele, F.; Eisenhardt, S.; Ekelhof, R.; Eklund, L.; Elsasser, Ch.; Elsby, D.; Esperante Pereira, D.; Esteve, L.; Falabella, A.; Fanchini, E.; Farber, C.; Fardell, G.; Farinelli, C.; Farry, S.; Fave, V.; Fernandez Albor, V.; Ferro-Luzzi, M.; Filippov, S.; Fitzpatrick, C.; Fontana, M.; Fontanelli, F.; Forty, R.; Frank, M.; Frei, C.; Frosini, M.; Furcas, S.; Gallas Torreira, A.; Galli, D.; Gandelman, M.; Gandini, P.; Gao, Y.; Garnier, J-C.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gauvin, N.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gibson, V.; Gligorov, V.V.; Gobel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Grabalosa Gandara, M.; Graciani Diaz, R.; Granado Cardoso, L.A.; Grauges, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Haefeli, G.; Haen, C.; Haines, S.C.; Hampson, T.; Hansmann-Menzemer, S.; Harji, R.; Harnew, N.; Harrison, J.; Harrison, P.F.; He, J.; Heijne, V.; Hennessy, K.; Henrard, P.; Hernando Morata, J.A.; van Herwijnen, E.; Hicks, E.; Holubyev, K.; Hopchev, P.; Hulsbergen, W.; Hunt, P.; Huse, T.; Huston, R.S.; Hutchcroft, D.; Hynds, D.; Iakovenko, V.; Ilten, P.; Imong, J.; Jacobsson, R.; Jaeger, A.; Jahjah Hussein, M.; Jans, E.; Jansen, F.; Jaton, P.; Jean-Marie, B.; Jing, F.; John, M.; Johnson, D.; Jones, C.R.; Jost, B.; Kaballo, M.; Kandybei, S.; Karacson, M.; Karbach, T.M.; Keaveney, J.; Kenyon, I.R.; Kerzel, U.; Ketel, T.; Keune, A.; Khanji, B.; Kim, Y.M.; Knecht, M.; Koppenburg, P.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kruzelecki, K.; Kucharczyk, M.; Kvaratskheliya, T.; La Thi, V.N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R.W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.P.; Lefevre, R.; Leflat, A.; Lefrancois, J.; Leroy, O.; Lesiak, T.; Li, L.; Li Gioi, L.; Lieng, M.; Liles, M.; Lindner, R.; Linn, C.; Liu, B.; Liu, G.; Lopes, J.H.; Lopez Asamar, E.; Lopez-March, N.; Lu, H.; Luisier, J.; Raighne, A.Mac; Machefert, F.; Machikhiliyan, I.V.; Maciuc, F.; Maev, O.; Magnin, J.; Malde, S.; Mamunur, R.M.D.; Manca, G.; Mancinelli, G.; Mangiafave, N.; Marconi, U.; Marki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martin, L.; Martin Sanchez, A.; Martinez Santos, D.; Massafferri, A.; Mathe, Z.; Matteuzzi, C.; Matveev, M.; Maurice, E.; Maynard, B.; Mazurov, A.; McGregor, G.; McNulty, R.; Mclean, C.; Meissner, M.; Merk, M.; Merkel, J.; Messi, R.; Miglioranzi, S.; Milanes, D.A.; Minard, M.N.; Molina Rodriguez, J.; Monteil, S.; Moran, D.; Morawski, P.; Mountain, R.; Mous, I.; Muheim, F.; Muller, K.; Muresan, R.; Muryn, B.; Muster, B.; Musy, M.; Mylroie-Smith, J.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Nedos, M.; Needham, M.; Neufeld, N.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Nikitin, N.; Nomerotski, A.; Novoselov, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Orlandea, M.; Otalora Goicochea, J.M.; Owen, P.; Pal, K.; Palacios, J.; Palano, A.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Parkes, C.; Parkinson, C.J.; Passaleva, G.; Patel, G.D.; Patel, M.; Paterson, S.K.; Patrick, G.N.; Patrignani, C.; Pavel-Nicorescu, C.; Pazos Alvarez, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perego, D.L.; Perez Trigo, E.; Perez-Calero Yzquierdo, A.; Perret, P.; Perrin-Terrin, M.; Pessina, G.; Petrella, A.; Petrolini, A.; Phan, A.; Picatoste Olloqui, E.; Pie Valls, B.; Pietrzyk, B.; Pilar, T.; Pinci, D.; Plackett, R.; Playfer, S.; Plo Casasus, M.; Polok, G.; Poluektov, A.; Polycarpo, E.; Popov, D.; Popovici, B.; Potterat, C.; Powell, A.; du Pree, T.; Prisciandaro, J.; Pugatch, V.; Puig Navarro, A.; Qian, W.; Rademacker, J.H.; Rakotomiaramanana, B.; Rangel, M.S.; Raniuk, I.; Raven, G.; Redford, S.; Reid, M.M.; dos Reis, A.C.; Ricciardi, S.; Rinnert, K.; Roa Romero, D.A.; Robbe, P.; Rodrigues, E.; Rodrigues, F.; Rodriguez Perez, P.; Rogers, G.J.; Roiser, S.; Romanovsky, V.; Rosello, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Sabatino, G.; Saborido Silva, J.J.; Sagidova, N.; Sail, P.; Saitta, B.; Salzmann, C.; Sannino, M.; Santacesaria, R.; Santamarina Rios, C.; Santinelli, R.; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schaack, P.; Schiller, M.; Schleich, S.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Senderowska, K.; Sepp, I.; Serra, N.; Serrano, J.; Seyfert, P.; Shao, B.; Shapkin, M.; Shapoval, I.; Shatalov, P.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, O.; Shevchenko, V.; Shires, A.; Coutinho, R.Silva; Skwarnicki, T.; Smith, A.C.; Smith, N.A.; Smith, E.; Sobczak, K.; Soler, F.J.P.; Solomin, A.; Soomro, F.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Stagni, F.; Stahl, S.; Steinkamp, O.; Stoica, S.; Stone, S.; Storaci, B.; Straticiuc, M.; Straumann, U.; Subbiah, V.K.; Swientek, S.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Teodorescu, E.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tran, M.T.; Tsaregorodtsev, A.; Tuning, N.; Garcia, M.Ubeda; Ukleja, A.; Urquijo, P.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; Velthuis, J.J.; Veltri, M.; Viaud, B.; Videau, I.; Vilasis-Cardona, X.; Visniakov, J.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Voss, H.; Wandernoth, S.; Wang, J.; Ward, D.R.; Watson, N.K.; Webber, A.D.; Websdale, D.; Whitehead, M.; Wiedner, D.; Wiggers, L.; Wilkinson, G.; Williams, M.P.; Williams, M.; Wilson, F.F.; Wishahi, J.; Witek, M.; Witzeling, W.; Wotton, S.A.; Wyllie, K.; Xie, Y.; Xing, F.; Xing, Z.; Yang, Z.; Young, R.; Yushchenko, O.; Zavertyaev, M.; Zhang, F.; Zhang, L.; Zhang, W.C.; Zhang, Y.; Zhelezov, A.; Zhong, L.; Zverev, E.; Zvyagin, A.

    2012-04-20

    The charged particle production in proton-proton collisions is studied with the LHCb detector at a centre-of-mass energy of ${\\sqrt{s} =7}$TeV in different intervals of pseudorapidity $\\eta$. The charged particles are reconstructed close to the interaction region in the vertex detector, which provides high reconstruction efficiency in the $\\eta$ ranges $-2.5<\\eta<-2.0$ and $2.0<\\eta<4.5$. The data were taken with a minimum bias trigger, only requiring one or more reconstructed tracks in the vertex detector. By selecting an event sample with at least one track with a transverse momentum greater than 1 GeV/c a hard QCD subsample is investigated. Several event generators are compared with the data; none are able to describe fully the multiplicity distributions or the charged particle density distribution as a function of $\\eta$. In general, the models underestimate the charged particle production.

  5. Forward-backward correlations and charged-particle azimuthal distributions in $pp$ interactions using the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ilic, Nikolina; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olcese, Marco; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Joe; Price, Lawrence; Price, Michael John; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romanov, Victor; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Rurikova, Zuzana; Rusakovich, Nikolai; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuler, Georges; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Smakhtin, Vladimir; Smart, Ben; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2012-01-01

    Using inelastic proton-proton interactions at $\\sqrt{s}$ = 900 GeV and 7 TeV, recorded by the ATLAS detector at the LHC, measurements have been made of the correlations between forward and backward charged-particle multiplicities and, for the first time, between forward and backward charged-particle summed transverse momentum. In addition, jet-like structure in the events is studied by means of azimuthal distributions of charged particles relative to the charged particle with highest transverse momentum in a selected kinematic region of the event. The results are compared with predictions from tunes of the PYTHIA and HERWIG++ Monte Carlo generators, which in most cases are found to provide a reasonable description of the data.

  6. Summaries of reports of XLIII International Tulinov conference on physics of interactions of charged particles with crystals

    International Nuclear Information System (INIS)

    Panasyuk, M.I.

    2013-01-01

    The collection contains summaries of reports of the XLIII International Tulinov conference on physics of interactions of charged particles with crystals. The problems of physics of orientation effects are considered. The recent results of investigations of electrons and positrons radiation in solids are presented. The problems of scattering, sputtering and emission of secondary particles are discussed. The particular attention is given to modification of materials surfaces by means of charged particles [ru

  7. Charged particle therapy for cancer: the inheritance of the Cavendish scientists?

    Science.gov (United States)

    Jones, Bleddyn; Dale, Roger G; Cárabe-Fernández, Alejandro

    2009-03-01

    The history of developments in atomic physics and its applications follows the decisive input provided by Maxwell and subsequent discoveries by his successors at the Cavendish Laboratory. In medicine the potential applications of particle physics (with the notable exception of the electron) were unfortunately delayed by the disappointing experiences with neutron therapy, which produced long-term scepticism. Neutrons are not appropriate for cancer therapy because not only their physical dose distributions offer no advantages over X-rays, but also their biological dose distributions are worse. The much improved dose distributions achieved with charged particles offer real prospects for better treatment outcomes because of the large reduction in the volume of unnecessarily irradiated tissue in many situations. Charged particle therapy is relatively new and can be applied with increasing confidence due to advances in radiology and computing, but at present there are insufficient numbers of treatment facilities to produce statistically powerful studies to compare treatment outcomes with those of X-rays. Considerable progress has been achieved in Japan and Germany with pilot studies of carbon ions but their efficacy compared with protons needs to be tested: in theory carbon should be better for intrinsically radio-resistant and for the most hypoxic tumours. The optimisation of proton and ion beam therapy in clinical practice remains to be achieved, but there are good scientific reasons why these modalities will be preferred by patients and their physicians in the future. Regrettably, despite hosting many of the momentous discoveries that enabled the development of charged particle therapy, the UK is slow to adopt and implement this very important form of cancer treatment.

  8. A serial 4DCT study to quantify range variations in charged particle radiotherapy of thoracic cancers

    International Nuclear Information System (INIS)

    Mori, Shinichiro; Dong, Lei; Starkschall, George; Mohan, Radhe; Chen, George T.Y.

    2014-01-01

    Weekly serial 4DCT scans were acquired under free breathing conditions to assess water-equivalent path length (WEL) variations due to both intrafractional and interfractional changes in tissue thickness and density and to calculate proton dose distributions resulting from anatomical variations observed in serial 4DCT. A template of region of interests (ROIs) was defined on the anterior-posterior (AP) beam's eye view, and WEL measurements were made over these ROIs to quantify chest wall thickness variations. Interfractional proton dose distributions were calculated to assess changes in the expected dose distributions caused by range variations. Mean intrafractional chest wall WEL changes during respiration varied by: -4.1 mm (<-10.2 mm), -3.6 mm (<-7.1 mm), -3.2 mm (<-5.6 mm) and -2.5 mm (<-5.1 mm) during respiration in the ITV, upper, middle and lower lung regions, respectively. The mean interfractional chest wall WEL variation at Week 6 decreased by -4.0 mm (<-8.6 mm), -9.1 mm (<-17.9 mm), -9.4 mm (<-25.3 mm) and -4.5 mm (<-15.6 mm) in the ITV, upper, middle and lower lung regions, respectively. The variations were decomposed into anterior and posterior chest wall thickness changes. Dose overshoot beyond the target was observed when the initial boli was applied throughout the treatment course. This overshoot is due to chest wall thickness variations and target positional variations. The radiological path length can vary significantly during respiration as well as over the course of several weeks of charged particle therapy. Intrafractional/interfractional chest wall thickness changes can be a significant source of range variation in treatment of lung tumors with charged particle beams, resulting in dose distribution perturbations from the initial plan. Consideration of these range variations should be made in choosing the therapeutic charged particle beam range. (author)

  9. Inclusive photoproduction of single charged particles at high pT

    International Nuclear Information System (INIS)

    Apsimon, R.J.; Flower, P.S.; Hallewell, G.; Morris, J.A.G.; Morris, J.V.; Paterson, C.N.; Sharp, P.H.; Atkinson, M.; Brook, N.; Coyle, P.; Dickinson, B.; Donnachie, A.; Doyle, A.T.; Ellison, R.J.; Foster, J.M.; Hughes-Jones, R.E.; Ibbotson, M.; Kolya, S.D.; Lafferty, G.D.; McCann, H.; McManus, C.; Mercer, D.; Ottewell, P.J.; Reid, D.; Thompson, R.J.; Waterhouse, J.; Barberis, D.; Davenport, M.; Eades, J.; McClatchey, R.; Brodbeck, T.J.; Charity, T.; Clegg, A.B.; Henderson, R.C.W.; Hickman, M.T.; Keemer, N.R.; Newton, D.; O'Connor, A.; Wilson, G.W.; Danaher, S.; Galbraith, W.; Thacker, N.A.; Thompson, L.

    1989-01-01

    Single charged-particle inclusive cross sections for photon, pion and kaon beams on hydrogen at the CERN-SPS are presented as functions of p T and x F . Data cover the range 0.0 T F T < 1.6 GeV/c for the photon-induced data. Using the hadron-induced data to estimate the hadronic behaviour of the photon, the difference distributions and ratios of cross sections are a measure of the contribution of the point-like photon interactions. The data are compared with QCD calculations and show broadly similar features. (orig.)

  10. A large acceptance lead-scintillator time-of-flight wall for neutral and charged particles

    CERN Document Server

    Kuznetsov, V E; Churikova, S; Girolami, B; Karapetiantz, D; Malyukin, Y; Nedorezov, V; Turinge, A; Vorobiev, Y; Abramov, V; D'Angelo, A; Moricciani, D; Nicoletti, L; Ranyuk, Y; Schärf, C

    2002-01-01

    A large acceptance lead-scintillator time-of-flight (TOF) wall has been developed to detect photons, neutrons, and charged particles produced in meson-photoproduction experiments on the proton and on the neutron. A TOF resolution of 600 ps and a position resolution of 11x18 cm sup 2 (full-width at half-maximum) have been achieved. The wall has been successfully used in eta and pi sup + photoproduction experiments as a photon and a neutron detector. This paper reports its design, calibration and performance.

  11. Simulation of neutron transport process, photons and charged particles within the Monte Carlo method

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.; Artamonov, S.N.; Bolonkina, G.V.; Lomtev, V.L.; Pupko, S.V.

    1991-01-01

    Description is given to the program system BRAND designed for the accurate solution of non-stationary transport equation of neutrons, photons and charged particles in the conditions of real three-dimensional geometry. An extensive set of local and non-local estimates provides an opportunity of calculating a great set of linear functionals normally being of interest in the calculation of reactors, radiation protection and experiment simulation. The process of particle interaction with substance is simulated on the basis of individual non-group data on each isotope of the composition. 24 refs

  12. An Electron Miniaccelerator on the Basis of Tesla Transformer for Nondestructive Testing of Charged Particle Beams

    International Nuclear Information System (INIS)

    Akimov, V.E.; Bulatov, A.V.; Logatchev, P.V.; Kazarezov, I.V.; Korepanov, A.A.; Malyutin, D.A.; Starostenko, A.A.

    2006-01-01

    An electron miniaccelerator on the basis of Tesla-transformer for nondestructive testing of charged particle beams with operating voltage 120...200 kV, half-wave duration 4 mks and diagnostic beam current within few mA is described. The primary circuit is switched by IGBT. The gun control and filament circuit power supply (impregnated cathode with 1.2 mm diameter) are realized through high frequency isolated transformer. The accelerating tube is made of sectional welded metal ceramics insulator (ceramic 22HS with diameter 95/85 mm). The accelerator test results are presented

  13. Optical method for mapping the transverse phase space of a charged particle beam

    International Nuclear Information System (INIS)

    Fiorito, R.B.; Shkvarunets, A.G.; O'Shea, P.G.

    2002-01-01

    We are developing an all optical method to map the transverse phase space map of a charged particle beam. Our technique employs OTR interferometry (OTRI) in combination with a scanning pinhole to make local orthogonal (x,y) divergence and trajectory angle measurements as function of position within the transverse profile of the beam. The localized data allows a reconstruction of the horizontal and vertical phase spaces of the beam. We have also demonstrated how single and multiple pinholes can in principle be used to make such measurements simultaneously

  14. Stopping power and scattering angle calculations of charged particle beams through thin foils

    International Nuclear Information System (INIS)

    Nassiri, A.

    1991-03-01

    It is important to understand the effects of introducing foils into the path of charged particle beams. In the APS linac system, the intention is to insert thin foils before and after the positron generating target to protect the accelerating structures immediately before and after the target. Electron beams that pass through a dense material lose energy in collisions with the atomic electrons. The scattering path of electrons is much less straight than that of heavier particles (mu, pi meson, K meson, proton, etc.). After a short distance electrons tend to diffuse into the material, rather than proceeding in a rectilinear path

  15. A study of CR-39 plastic charged-particle detector replacement by consumer imaging sensors

    Energy Technology Data Exchange (ETDEWEB)

    Plaud-Ramos, K. O.; Freeman, M. S.; Wei, W.; Guardincerri, E.; Bacon, J. D.; Cowan, J.; Durham, J. M.; Huang, D.; Gao, J.; Hoffbauer, M. A.; Morley, D. J.; Morris, C. L.; Poulson, D. C.; Wang, Zhehui, E-mail: zwang@lanl.gov [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-11-15

    Consumer imaging sensors (CIS) are examined for real-time charged-particle detection and CR-39 plastic detector replacement. Removing cover glass from CIS is hard if not impossible, in particular for the latest inexpensive webcam models. We show that $10-class CIS are sensitive to MeV and higher energy protons and α-particles by using a {sup 90}Sr β-source with its cover glass in place. Indirect, real-time, high-resolution detection is also feasible when combining CIS with a ZnS:Ag phosphor screen and optics. Noise reduction in CIS is nevertheless important for the indirect approach.

  16. A generalization of Dirac non-linear electrodynamics, and spinning charged particles

    International Nuclear Information System (INIS)

    Rodrigues Junior, W.A.; Vaz Junior, J.; Recami, E.

    1992-08-01

    The Dirac non-linear electrodynamics is generalized by introducing two potentials (namely, the vector potential a and the pseudo-vector potential γ 5 B of the electromagnetic theory with charges and magnetic monopoles), and by imposing the pseudoscalar part of the product W W * to BE zero, with W = A + γ 5 B. Also, is demonstrated that the field equations of such a theory posses a soliton-like solution which can represent a priori a charged particle. (L.C.J.A.)

  17. Description of charged particle multiplicity distribution in high energy strong interaction

    International Nuclear Information System (INIS)

    Qin Keyu

    1994-01-01

    With the assumption that the probability for n-charged particles production in hadron-hadron collision is Pn and proper choice of 1 , 2 , k and x in Pn, the true multiplicity distribution in full phase space can be described successfully at the centre of mass energy √S GeV. Using the experimental data of non singe-diffractive collisions between proton and antiproton at centre of mass energies of 200 and 900 GeV, the supposition has been examined and confirmed: it is very good to describe the facts. The theoretical bases of supposition were discussed

  18. Test of the photon detection system for the LHCb RICH Upgrade in a charged particle beam

    CERN Document Server

    Baszczyk, M.K.

    2017-01-16

    The LHCb detector will be upgraded to make more efficient use of the available luminosity at the LHC in Run III and extend its potential for discovery. The Ring Imaging Cherenkov detectors are key components of the LHCb detector for particle identification. In this paper we describe the setup and the results of tests in a charged particle beam, carried out to assess prototypes of the upgraded opto-electronic chain from the Multi-Anode PMT photosensor to the readout and data acquisition system.

  19. Combined detectors of charged particles based on zinc selenide scintillators and silicon photodiodes

    CERN Document Server

    Ryzhikov, V D; Starzhinskij, N G

    2001-01-01

    combined detectors of charged particles are described based on zinc selenide (Zn Se(Te)) crystals,silicon photodiodes and charges-sensitive amplifiers. Zn Se(Te) scintillators are characterized by high alpha to beta ratio (approx 1.0), good scintillation efficiency (up to 22%),and high radiation stability (up to 100 Mrad),together with good spectral matching with silicon PIN photodiodes. The signal coming from the photodiode in the two modes (photoreceiver and semiconductor detector) differ in the amplitude values and pulse duration, which opens new possibilities for development and application of such combined detectors.

  20. Chaos and collective relaxation in galaxies and charged-particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, Courtlandt; /Fermilab /Northern Illinois U.; Kandrup, Henry E.; /Florida U.; Kishek, Rami A.; O' Shea, Patrick G.; Reiser, Martin; /Maryland U.; Sideris, Ioannis V.; /Florida U. /Northern Illinois U.

    2003-01-01

    Both galaxies and charged particle beams can exhibit collective relaxation on surprisingly short time scales. This can be attributed to the effects of chaos, often triggered by resonances caused by time-dependences in the bulk potential, which act almost identically for attractive gravitational and repulsive electrostatic forces. These similarities suggest that many physical processes at work in galaxies, albeit not subject to direct controlled experiments, can be tested indirectly using facilities such as the University of Maryland Electron Ring (UMER) currently nearing completion.

  1. Large space system - Charged particle environment interaction technology. [effects on high voltage solar array performance

    Science.gov (United States)

    Stevens, N. J.; Roche, J. C.; Grier, N. T.

    1979-01-01

    Large high-voltage space power systems proposed for future applications in both low earth orbit and geosynchronous altitudes must operate in the space charged-particle environment with possible interactions between this environment and the high-voltage surfaces. The paper reviews the ground experimental work to provide indicators for the interactions that could exist in the space power system. A preliminary analytical model of a large space power system is constructed using the existing NASA Charging Analyzer Program, and its performance in geosynchronous orbit is evaluated. The analytical results are used to illustrate the regions where detrimental interactions could exist and to establish areas where future technology is required.

  2. Development of charged particle nuclear reaction data retrieval system on IntelligentPad

    International Nuclear Information System (INIS)

    Ohbayashi, Yosihide; Masui, Hiroshi; Aoyama, Shigeyoshi; Kato, Kiyoshi; Chiba, Masaki

    1999-01-01

    An newly designed database retrieval system of charged particle nuclear reaction database system is developed with IntelligentPad architecture. We designed the network-based (server-client) data retrieval system, and a client system constructs on Windows95, 98/NT with IntelligentPad. We set the future aim of our database system toward the 'effective' use of nuclear reaction data: I. 'Re-produce, Re-edit, Re-use', II. 'Circulation, Evolution', III. 'Knowledge discovery'. Thus, further developments are under way. (author)

  3. Design of focussing and guide structures for charged particle beams using rare earth cobalt permanent magnets

    International Nuclear Information System (INIS)

    Halbach, K.

    1981-06-01

    A number of different methods can be used to describe the magnetic properties of oriented Rare Earth Cobalt (REC) material. It will be shown how these different methods of description lead to different ways to think about, and to execute, the design of magnets that are useful for focusing and guiding charged particle beams. It will also be domonstrated that in some of these magnets, the REC material is used in a somewhat unusual way, requiring magnetics properties of the material that are usually not considered to be of great practical importance

  4. Conquer the Challenges: Study of Charged-particle-induced Reactions at Stellar Energies

    International Nuclear Information System (INIS)

    Tang Xiaodong; Cerrone, Daniel; Davies, Paul; Martin, Ed; Notani, Masahiro

    2009-01-01

    Charged-particle-induced reactions, such as the (p,γ), (α,γ), (α,p) and heavy ion fusion reactions, play important roles in stellar evolution. Due to the Coulomb barrier penetration effect, the cross sections decrease exponentially as the incident energy approaches the interesting astrophysical energy regions, which makes these experiments very challenging. In this talk, I will discuss two challenging problems in experimental nuclear astrophysics, the 12 C(α,γ) 16 O reaction and the heavy ion fusion reactions.

  5. Entropy production by Q-ball decay for diluting long-lived charged particles

    International Nuclear Information System (INIS)

    Kasuya, S.

    2007-09-01

    The cosmic abundance of a long-lived charged particle such as a stau is tightly constrained by the catalyzed big bang nucleosynthesis. One of the ways to evade the constraints is to dilute those particles by a huge entropy production. We evaluate the dilution factor in a case that non-relativistic matter dominates the energy density of the universe and decays with large entropy production. We find that large Q balls can do the job, which is naturally produced in the gauge-mediated supersymmetry breaking scenario. (orig.)

  6. Image processing of integrated video image obtained with a charged-particle imaging video monitor system

    International Nuclear Information System (INIS)

    Iida, Takao; Nakajima, Takehiro

    1988-01-01

    A new type of charged-particle imaging video monitor system was constructed for video imaging of the distributions of alpha-emitting and low-energy beta-emitting nuclides. The system can display not only the scintillation image due to radiation on the video monitor but also the integrated video image becoming gradually clearer on another video monitor. The distortion of the image is about 5% and the spatial resolution is about 2 line pairs (lp)mm -1 . The integrated image is transferred to a personal computer and image processing is performed qualitatively and quantitatively. (author)

  7. Neutron-induced charged-particle emission studies below 100 MeV at WNR

    Energy Technology Data Exchange (ETDEWEB)

    Haight, R.C.; Lee, T.M.; Sterbenz, S.M. [and others

    1994-07-01

    Charged-particles produced by neutron bombardment of selected targets with Z=5 through 53 have been studied for neutron energies from 1 MeV to about 100 MeV using the spallation neutron source at WNR/LAMPF. Particle detection with energy measurement and particle identification is accomplished by two-element {Delta}E-E counters, three-element {Delta}E{sub l}-{Delta}E{sub 2}-E counters or with pulse-shape discrimination using scintillators directly in the neutron beam. The experimental techniques for these measurements are described and comparisons made among the different approaches. This presentation introduces five papers contributed to this conference.

  8. Neutron-induced charged-particle emission studies below 100 MeV at WNR

    International Nuclear Information System (INIS)

    Haight, R.C.; Lee, T.M.; Sterbenz, S.M.

    1994-01-01

    Charged-particles produced by neutron bombardment of selected targets with Z=5 through 53 have been studied for neutron energies from 1 MeV to about 100 MeV using the spallation neutron source at WNR/LAMPF. Particle detection with energy measurement and particle identification is accomplished by two-element ΔE-E counters, three-element ΔE l -ΔE 2 -E counters or with pulse-shape discrimination using scintillators directly in the neutron beam. The experimental techniques for these measurements are described and comparisons made among the different approaches. This presentation introduces five papers contributed to this conference

  9. A main amplifier circuit and data acquisition system for charged particle detector array

    International Nuclear Information System (INIS)

    Hao Rui; Ge Yucheng

    2011-01-01

    The charged particle detector array has huge amounts of signal and needs high counting rate. To meet the requirements, a main amplifier and analog-to-digital conversion circuit based on high-speed op-amp chips and ADC chip was designed. A 51-MCU was used to control the circuit of ADC and the USB communication chip. The signals were digitized and uploaded by the MCU-ADC-USB circuit. The whole system has a compact hardware structure and a reasonable controlling software, which meet the design requirements. (authors)

  10. Measurements of the charged particle multiplicity distribution in restricted rapidity intervals

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Garrido, L; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Meinhard, H; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Settles, Ronald; Seywerd, H C J; Stierlin, U; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Duarte, H; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Rosowsky, A; Roussarie, A; Schuller, J P; Schwindling, J; Si Mohand, D; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1995-01-01

    Charged particle multiplicity distributions have been measured with the ALEPH detector in restricted rapidity intervals |Y| \\leq 0.5,1.0, 1.5,2.0\\/ along the thrust axis and also without restriction on rapidity. The distribution for the full range can be parametrized by a log-normal distribution. For smaller windows one finds a more complicated structure, which is understood to arise from perturbative effects. The negative-binomial distribution fails to describe the data both with and without the restriction on rapidity. The JETSET model is found to describe all aspects of the data while the width predicted by HERWIG is in significant disagreement.

  11. Charged particle multiplicity in e+e- interactions at $\\sqrt{s}$ = 130 GeV

    CERN Document Server

    Abreu, P; Adye, T; Agasi, E; Ajinenko, I; Aleksan, Roy; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barate, R; Barbi, M S; Bardin, Dimitri Yuri; Baroncelli, A; Bärring, O; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Belous, K S; Benvenuti, Alberto C; Berggren, M; Bertrand, D; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Blyth, S; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Borisov, G; Bosio, C; Bosworth, S; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brillault, L; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Buys, A; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerrito, L; Chabaud, V; Charpentier, P; Chaussard, L; Chauveau, J; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahl-Jensen, Erik; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Defoix, C; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Dijkstra, H; Di Ciaccio, Lucia; Djama, F; Dolbeau, J; Dönszelmann, M; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Dufour, Y; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Ershaidat, N; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Fenyuk, A; Ferrer, A; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gerdyukov, L N; Gibbs, M; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Grosdidier, G; Grzelak, K; Gumenyuk, S A; Gunnarsson, P; Günther, M; Guy, J; Hahn, F; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Karlsson, M; Karvelas, E; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klein, H; Klovning, A; Kluit, P M; Köne, B; Kokkinias, P; Koratzinos, M; Korcyl, K; Kourkoumelis, C; Kuznetsov, O; Kramer, P H; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamblot, S; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Last, I; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemoigne, Y; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lörstad, B; Lokajícek, M; Loken, J G; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Maio, A; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Maron, T; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Merk, M; Meroni, C; Meyer, S; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Petrovykh, M; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Pindo, M; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Prest, M; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rídky, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Rückstuhl, W; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sánchez, J; Sannino, M; Schimmelpfennig, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Shellard, R C; Siccama, I; Siegrist, P; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Solovyanov, O; Sosnowski, R; Souza-Santos, D; Spiriti, E; Sponholz, P; Squarcia, S; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chikilev, O G; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Waldner, F; Weierstall, M; Weilhammer, Peter; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Woschnagg, K; Yip, K; Yushchenko, O P; Zach, F; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zuberi, R; Zucchelli, G C; Zumerle, G; Charpentier, Ph; Gavillet, Ph; Jarlskog, Ch; Khohklov, Yu; Papadopoulou, Th D

    1996-01-01

    From the data collected by DELPHI at LEP in autumn 1995, the multiplicity of charged particles at a hadronic energy of 130 GeV has been measured to be = 23.84 \\pm 0.51 (stat) \\pm 0.52 (syst). When compared to lower energy data, the value measured is consistent with the evolution predicted by QCD with corrections at next-to-leading order, for a value \\alpha_s(130 {\\mathrm{GeV}}) = 0.105 \\pm 0.003 (stat) \\pm 0.008 (syst).

  12. Correlations between charged particles emitted at large angles in high-energy proton-proton collisions

    CERN Document Server

    Alpher, B; Booth, P; Carroll, L J; Damgaard, G; Duff, Brian G; Hansen, K H; Jackson, J N; Jarlskog, G; Jönsson, L B; Klovning, A; Lee Chi Kwong, L; Lee Chi, L; Leistam, L; Lillethun, E; Lynch, G; Nielsen, S O; Prentice, M; Quarrie, D; Sharrock, S; von Dardel, Guy F; Weiss, J M

    1974-01-01

    Measurements of correlations between charged particles emitted into the central region in pp collisions at the CERN ISR are presented. A wide-angle spectrometer was set to detect particles emitted at 90 degrees . The normalized associated charge multiplicity opposite to and on the same side as the spectrometer as a function of the transverse momentum of the spectrometer particle at the two c.m. energies square root s=23 GeV and square root s=63 GeV are given. (4 refs).

  13. On propagation of paraxial beam of charged particles in external electromagnetic field

    CERN Document Server

    Naumov, N D

    2001-01-01

    The task on motion of a curvilinear bunch of relativistic charged particles in the orthogonal nonhomogeneous magnetic field is considered. The above task is solved through the method of low-angle approximation for the curvilinear bunch of relativistic particles. The motion trajectory and kinetic equation are determined on the basis of solving the paraxial equation for the curvilinear bunches. It is established, that the characteristic property of the particle motion near the bunch axis, when the bunch axis represents the cycloid fragment, consists in the fact, that its trajectory does not depend on the initial energy

  14. Charged-particle spectroscopy in the microsecond range following projectile fragmentation

    CERN Document Server

    Pfützner, M; Grzywacz, R; Janas, Z; Momayezi, M; Bingham, C; Blank, B; Chartier, M; Geissel, H; Giovinazzo, J; Hellström, M; Kurcewicz, J; Lalleman, A S; Mazzocchi, C; Mukha, I; Plettner, C; Roeckl, E; Rykaczewski, K; Schmidt, K; Simon, R S; Stanoiu, M; Thomas, J C

    2002-01-01

    We present a new approach to charged-particle spectroscopy of short-lived nuclei produced by relativistic projectile fragmentation. The system based on digital DGF-4C CAMAC modules and newly developed fast-reset preamplifiers was tested at the Fragment Separator of GSI. We were able to detect low-energy (approx 1 MeV) decay signals occurring a few microseconds after a heavy-ion implantation accompanied by a release of approx 1 GeV energy. Applications for the study of one- and two-proton radioactivity are discussed.

  15. Deflection of high energy channeled charged particles by elastically bent silicon single crystals

    International Nuclear Information System (INIS)

    Gibson, W.M.; Kim, I.J.; Pisharodoy, M.; Salman, S.M.; Sun, C.R.; Wang, G.H.; Wijayawardana, R.; Forster, J.S.; Mitchell, I.V.; Baker, S.I.; Carrigan, R.A. Jr.; Toohig, T.E.; Avdeichikov, V.V.; Ellison, J.A.; Siffert, P.

    1984-01-01

    An experiment has been carried out to observe the deflection of charged particles by planar channeling in bent single crystals of silicon for protons with energy up to 180 GeV. Anomolous loss of particles from the center point of a three point bending apparatus was observed at high incident particle energy. This effect has been exploited to fashion a 'dechanneling spectrometer' to study dechanneling effects due to centripital displacement of channeled particle trajectories in a bent crystal. The bending losses generally conform to the predictions of calculations based on a classical model. (orig.)

  16. A study of CR-39 track response to charged particles from NOVA implosions

    International Nuclear Information System (INIS)

    Phillips, T.W.; Cable, M.D.; Hicks, D.G.; Li, C.K.; Petrasso, R.D.; Seguin, F.H.

    1996-01-01

    We have exposed CR-39 track recording material to a number of NOVA implosions. Radiation from the implosion passed through an array of ranging filters, which aided identification of the incident particles and their energies. The etching procedure was calibrated by including a piece of track exposed to DD protons from a small accelerator. For the same shots, we quantitatively compare the DD neutron yield with the DD proton yield determined from the track. In DT implosions, tracks produced by neutron interactions prevent observation of charged-particle tracks that are produced by the processes of knock-on, secondary or tertiary fusion

  17. Charged particle production in p+Pb collisions measured by the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00287239; The ATLAS collaboration

    2016-01-01

    Per-event charged particle spectra and nuclear modification factors are measured with the ATLAS detector at the LHC in p+Pb interactions at $\\sqrt{s_{NN}}$ = 5.02 TeV. Results are presented as a function of transverse momentum and in different intervals of collision centrality, which is characterised in p+Pb collisions by the total transverse energy measured over the pseudorapidity interval 3.2 < |η| < 4.9 in the direction of the lead beam. Three different calculations of the number of nucleons participating in p+Pb collisions have been performed, assuming the Glauber model and its Glauber-Gribov Colour Fluctuation extensions.

  18. Charged Particle Motion in a Plasma: Electron-Ion Energy Partition

    OpenAIRE

    Brown, Lowell S.; Preston, Dean L.; Singleton Jr, Robert L.

    2011-01-01

    A charged particle traversing a plasma loses its energy to both plasma electrons and ions. We compute the energy partition, the fractions $E_e/E_0$ and $E_\\smI/E_0$ of the initial energy $E_0$ of this `impurity particle' that are deposited into the electrons and ions when it has slowed down into an equilibrium distribution that we shall determine. We use a well-defined Fokker-Planck equation for the phase space distribution of the charged impurity particles in a weakly to moderately coupled p...

  19. Is activation analysis still active?

    International Nuclear Information System (INIS)

    Chai Zhifang

    2001-01-01

    This paper reviews some aspects of neutron activation analysis (NAA), covering instrumental neutron activation analysis (INAA), k 0 method, prompt gamma-ray neutron activation analysis (PGNAA), radiochemical neutron activation analysis (RNAA) and molecular activation analysis (MAA). The comparison of neutron activation analysis with other analytical techniques are also made. (author)

  20. Activation analysis

    International Nuclear Information System (INIS)

    Beeck, J. OP de

    1977-01-01

    It is shown that activation analysis is especially suited to serve as a basis for determining the chemical similarity between samples defined by their trace-element concentration patterns. The general problem of classification and identification is discussed. The nature of possible classification structures and their appropriate clustering strategies is considered. A practical computer method is suggested and its application as well as the graphical representation of classification results are given. The possibility for classification using information theory is mentioned. Classification of chemical elements is discussed and practically realized after Hadamard transformation of the concentration variation patterns in a series of samples. (Sz.N.Z.)

  1. Some fundamental aspects of fluctuations and coherence in charged-particle beams in storage rings

    International Nuclear Information System (INIS)

    Chattopadhyay, S.

    1984-01-01

    A conceptual survey and exposition is presented of some fundamental aspects of fluctuations and coherence, as well as the interplay between the two, in coasting charged-particle beams - both continuous and bunched - in storage rings. A detailed study is given of the spectral properties of the incoherent phase-space Schottky fluctuations, their propagation as waves in the beam, and the analytic complex coherent beam electromagnetic response or transfer function. The modification or distortion of these by collective interactions is examined in terms of simple regeneration mechanisms. Collective or coherent forces in the beam-storage-ring system are described by defining suitable impedance functions or propagators, and a brief discussion of the coherent collective modes and their stability is provided, including a general and rigorous description of the Nyquist stability criterion. The nature of the critical fluctuations near an instability threshold is explored. The concept of Landau damping and its connection with phase-mixing within the beam is outlined. The important connection between the incoherent fluctuations and the beam response, namely the Fluctuation-Dissipation relation, is revealed. A brief discussion is given of the information degrees of freedom, and effective temperature of the fluctuation signals. Appendices provide a short resume of some general aspects of various interactions in a charged-particle beam-environment system in a storage ring and a general introduction to kinetic theory as applied to particle beams. (orig.)

  2. Charged-particle induced thermonuclear reaction rates: a compilation for astrophysics

    International Nuclear Information System (INIS)

    Grama, Cornelia

    1999-01-01

    The rapidly growing wealth of nuclear data becomes less and less easily accessible to the astrophysics community. Mastering this volume of information and making it available in an accurate and usable form for incorporation into stellar evolution or nucleosynthesis models become urgent goals of prime necessity. We report on the results of the European network NACRE (Nuclear Astrophysics Compilation of REaction rates). The principal motivation for the setting-up of the NACRE network has been the necessity of building up a well-documented and detailed compilation of rates for charged -particle induced reactions on stable targets up to Si and on unstable nuclei of special significance in astrophysics. This work is meant to supersede the only existing compilation of reaction rates issued by Fowler and collaborators. The cross section data and/or resonance parameters for a total of 86 charged-particle induced reactions are given and the corresponding reaction rates are calculated and given in tabular form. When cross section data are not available in the whole needed range of energies the theoretical predictions obtained in the framework of the Hauser-Feshbach model are used. Uncertainties are analyzed and realistic upper and lower bounds of the rates are determined. Reverse reaction rates and analytical approximations of the adopted rates are also provided. (author)

  3. Charged-particle induced thermonuclear reaction rates: a compilation for astrophysics

    International Nuclear Information System (INIS)

    Grama, Cornelia; Angulo, C.; Arnould, M.

    2000-01-01

    The rapidly growing wealth of nuclear data becomes less and less easily accessible to the astrophysics community. Mastering this volume of information and making it available in an accurate and usable form for incorporation into stellar evolution or nucleosynthesis models become urgent goals of prime necessity. we report on the results of the European network NACRE (Nuclear Astrophysics Compilation of REaction rates). The principal motivation for the setting-up of the NACRE network has been the necessity of building up a well-documented and detailed compilation of rates for charged-particle induced reactions on stable targets up to Si and on unstable nuclei of special significance in astrophysics. This work is meant to supersede the only existing compilation of reaction rates issued by Fowler and collaborators. The cross section data and/or resonance parameters for a total of 86 charged-particle induced reactions are given and the corresponding reaction rates are calculated and given in tabular form. When cross section data are not available in the whole needed range of energies, the theoretical predictions obtained in the framework of the Hauser-Feshbach model is used. Uncertainties are analyzed and realistic upper and lower bounds of the rates are determined. Reverse reaction rates and analytical approximations of the adopted rates are also provided. (authors)

  4. DNA Damage by Ionizing Radiation: Tandem Double Lesions by Charged Particles

    Science.gov (United States)

    Huo, Winifred M.; Chaban, Galina M.; Wang, Dunyou; Dateo, Christopher E.

    2005-01-01

    Oxidative damages by ionizing radiation are the source of radiation-induced carcinogenesis, damage to the central nervous system, lowering of the immune response, as well as other radiation-induced damages to human health. Monte Carlo track simulations and kinetic modeling of radiation damages to the DNA employ available molecular and cellular data to simulate the biological effect of high and low LET radiation io the DNA. While the simulations predict single and double strand breaks and base damages, so far all complex lesions are the result of stochastic coincidence from independent processes. Tandem double lesions have not yet been taken into account. Unlike the standard double lesions that are produced by two separate attacks by charged particles or radicals, tandem double lesions are produced by one single attack. The standard double lesions dominate at the high dosage regime. On the other hand, tandem double lesions do not depend on stochastic coincidences and become important at the low dosage regime of particular interest to NASA. Tandem double lesions by hydroxyl radical attack of guanine in isolated DNA have been reported at a dosage of radiation as low as 10 Gy. The formation of two tandem base lesions was found to be linear with the applied doses, a characteristic of tandem lesions. However, tandem double lesions from attack by a charged particle have not been reported.

  5. Exploration of X-ray and charged-particle spectroscopy with CCDs and PSDs

    International Nuclear Information System (INIS)

    Simons, D.P.L.; Mutsaers, P.H.A.; Ijzendoorn, L.J. van; Voigt, M.J.A. de

    1998-01-01

    Two alternative detector types have been studied for use in the Eindhoven scanning ion microprobe set-up. First, the applicability of a charge coupled device (CCD) system for X-ray spectroscopy has been explored. Second, some properties of the SiTek type 1L30 position sensitive detector (PSD) for charged-particle spectroscopy have been studied. A literature survey shows that excellent X-ray spectroscopy with a CCD system is feasible, particularly with a deep-depletion backside-illuminated CCD and low speed read-out. If, however, high-speed CCD read-out is required, such as for scanning microprobe experiments, a CCD system cannot be used for spectroscopy due to excess read-out noise. For the PSD, noise theory calculations are presented, which result in a noise shaping time for optimal energy and position resolution. In practice, however, a much longer time is needed to obtain sufficient energy and position linearity. Characterization measurements of the PSD using our 4 MeV He + microprobe are also described. A position resolution of 0.47 mm and a position linearity of better than 0.15% detector length are found. In addition, an energy linearity better than 0.3% and an energy resolution of 36 keV are measured. The latter will have to be improved, to make the PSD suitable for charged-particle spectroscopy applications. (orig.)

  6. Hamiltonian and Lagrangian dynamics of charged particles including the effects of radiation damping

    Science.gov (United States)

    Qin, Hong; Burby, Joshua; Davidson, Ronald; Fisch, Nathaniel; Chung, Moses

    2015-11-01

    The effects of radiation damping (radiation reaction) on accelerating charged particles in modern high-intensity accelerators and high-intensity laser beams have becoming increasingly important. Especially for electron accelerators and storage rings, radiation damping is an effective mechanism and technique to achieve high beam luminosity. We develop Hamiltonian and Lagrangian descriptions of the classical dynamics of a charged particle including the effects of radiation damping in the general electromagnetic focusing channels encountered in accelerators. The direct connection between the classical Hamiltonian and Lagrangian theories and the more fundamental QED description of the synchrotron radiation process is also addressed. In addition to their theoretical importance, the classical Hamiltonian and Lagrangian theories of the radiation damping also enable us to numerically integrate the dynamics using advanced structure-preserving geometric algorithms. These theoretical developments can also be applied to runaway electrons and positrons generated during the disruption or startup of tokamak discharges. This research was supported by the U.S. Department of Energy (DE-AC02-09CH11466).

  7. Measurement of light charged particles in the decay channels of medium-mass excited compound nuclei

    International Nuclear Information System (INIS)

    Valdre, S.; Pasquali, G.; Carboni, S.; Bini, M.; Poggi, G.; Barlini, S.; Casini, G.; Piantelli, S.; Bardelli, L.; Nannini, A.; Cinausero, M.; Gramegna, F.; Degerlier, M.; Kravchuk, V.L.; Marchi, T.; Baiocco, G.; Bruno, M.; D'Agostino, M.; Morelli, L.; Vannini, G.; Benzoni, G.; Blasi, N.; Brambilla, S.; Wieland, O.; Bracco, A.; Camera, F.; Corsi, A.; Crespi, F.; Leoni, S.; Million, B.; Nicolini, R.; Montanari, D.; Bednarczyk, P.; Ciemala, M.; Fornal, B.; Kmiecik, M.; Maj, A.; Matejska-Minda, M.; Mazurek, K.; Meczynski, W.; Myalski, S.; Styczen, J.; Zieblinski, M.; Dudek, J.

    2014-01-01

    The 48 Ti on 40 Ca reactions have been studied at 300 and 600 MeV focusing on the fusion-evaporation (FE) and fusion-fission (FF) exit channels. Energy spectra and multiplicities of the emitted light charged particles have been compared to Monte Carlo simulations based on the statistical model. Proton emission in the FE channel is well reproduced by the Gemini++ statistical code run with standard input values. An excess of particles has been found at both bombarding energies also associated to a slightly different CM-energy spectrum with respect to the predicted one. Indeed, in this mass region (A ∼ 100) models predict that shape transitions can occur at high spin values and relatively scarce data exist in the literature about coincidence measurements between evaporation residues and light charged particles. Signals of shape transitions can be found in the variations of the lineshape of high energy gamma rays emitted from the de-excitation of GDR states gated on different regions of angular momenta. For this purpose it is important to keep under control the FE and FF processes, to regulate the statistical model parameters and to control the onset of possible preequilibrium emissions from 300 to 600 MeV bombarding energy

  8. Transverse energy distribution, charged particle multiplicities and spectra in 16O-nucleus collisions

    International Nuclear Information System (INIS)

    Sunier, J.W.

    1987-01-01

    The HELIOS (High Energy Lepton and Ion Spectrometer) experiment, installed at the CERN Super Proton Synchrotron, proposes to examine in details the physical properties of a state of high energy created in nuclei by ultra-relativistic nucleus-nucleus collisions. It is generally believed that, at high densities or temperatures, a phase transition to a plasma of quark and gluons will occur. The dynamic of the expansion of such a plasma and its subsequent condensation into a hadron gas should markedly affect the composition and momentum distribution of the emerging particles and photons. The HELIOS experimental setup therefore combines 4π calorimetric coverage with measurements of inclusive particle spectra, two particle correlations, low and high mass lepton pairs and photons. The emphasis is placed on transverse energy flow (E/sub T/) measurements with good energy resolution, and the ability to trigger the acquisition of data in a variety of E/sub T/ ranges, thereby selecting the impact parameter or the violence of the collisions. This short note presents HELIOS results, for the most part still preliminary, on 16 O-nucleus collisions at the incident energies of 60 and 200 GeV per nucleon. The E/sub T/ distributions from Al, Ag and W targets are discussed and compared to the associated charged particle multiplicities from W. Charged particle and (converted) photon spectra measured with the external magnetic spectrometer are compared for 16 O + W and p + W collisions at 200 GeV per nucleon. 5 refs., 7 figs

  9. External meeting: From charged-particle multiplicities to the top quark

    CERN Multimedia

    Université de Genève

    2011-01-01

    UNIVERSITE DE GENEVE Ecole de physique Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 Tél: (022) 379 62 73 Fax: (022) 379 69 92 Wednesday 9 March 2011 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium From charged-particle multiplicities to the top quark Par Dr. William Bell (DPNC), Université de Genève     A series of key experimental results from the ATLAS detector at the LHC are presented. These results include the first measurements of charged-particle multiplicities from inelastic proton-proton collisions, W boson production, and recent top cross-section results. The measurements were performed using part or most of the 2010 proton-proton data set, corresponding to a total luminosity of 45pb-1. The experimental methods involved in these measurements are discussed. Results are compared with recent theoretical predictions and possible 2011 measurements a...

  10. Proposal to Search for Magnetically Charged Particles with Magnetic Charge 1e

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Michael K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fryberger, David [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-11-02

    A model for composite elementary Standard Model (SM) particles based upon magnetically bound vorton pairs, we briefly introduce here, predicts the existence of a complete family of magnetically charged particles, as well as their neutral isotopic partners (all counterparts to the SM elementary particles), in which the lowest mass (charged) particle would be an electrically neutral stable lepton, but which carries a magnetic charge equivalent to 1e. This new particle, which we call a magneticon (a counterpart to the electron) would be pair produced at all e+e- colliders at an Ecm above twice its mass. In addition, PP and PPbar colliders should also be able to produce these new particles through the Drell-Yan process. To our knowledge, no monopole search experiment has been sensitive to such a low-charged magnetic monopole above a particle mass of about 5 GeV/c2. Hence, we propose that a search for such a stable particle of magnetic charge 1e should be undertaken. We have taken the ATLAS detector at the LHC as an example in which this search might be done. To this end, we modeled the magnetic fields and muon trigger chambers of this detector. We show results from a simple Monte Carlo simulation program to indicate how these particles might look in the detector and describe how one might search for these new particles in the ATLAS data stream.

  11. Current signal of silicon detectors facing charged particles and heavy ions

    International Nuclear Information System (INIS)

    Hamrita, H.

    2005-07-01

    This work consisted in collecting and studying for the first time the shapes of current signals obtained from charged particles or heavy ions produced by silicon detectors. The document is divided into two main parts. The first consisted in reducing the experimental data obtained with charged particles as well as with heavy ions. These experiments were performed at the Orsay Tandem and at GANIL using LISE. These two experiments enabled us to create a data base formed of current signals with various shapes and various times of collection. The second part consisted in carrying out a simulation of the current signals obtained from the various ions. To obtain this simulation we propose a new model describing the formation of the signal. We used the data base of the signals obtained in experiments in order to constrain the three parameters of our model. In this model, the charge carriers created are regarded as dipoles and their density is related to the dielectric polarization in the silicon detector. This phenomenon induces an increase in permittivity throughout the range of the incident ion and consequently the electric field between the electrodes of the detector is decreased inside the trace. We coupled with this phenomenon a dissociation and extraction mode of the charge carriers so that they can be moved in the electric field. (author)

  12. Memory effect on energy losses of charged particles moving parallel to solid surface

    International Nuclear Information System (INIS)

    Kwei, C.M.; Tu, Y.H.; Hsu, Y.H.; Tung, C.J.

    2006-01-01

    Theoretical derivations were made for the induced potential and the stopping power of a charged particle moving close and parallel to the surface of a solid. It was illustrated that the induced potential produced by the interaction of particle and solid depended not only on the velocity but also on the previous velocity of the particle before its last inelastic interaction. Another words, the particle kept a memory on its previous velocity, v , in determining the stopping power for the particle of velocity v. Based on the dielectric response theory, formulas were derived for the induced potential and the stopping power with memory effect. An extended Drude dielectric function with spatial dispersion was used in the application of these formulas for a proton moving parallel to Si surface. It was found that the induced potential with memory effect lay between induced potentials without memory effect for constant velocities v and v. The memory effect was manifest as the proton changes its velocity in the previous inelastic interaction. This memory effect also reduced the stopping power of the proton. The formulas derived in the present work can be applied to any solid surface and charged particle moving with arbitrary parallel trajectory either inside or outside the solid

  13. Theory of charged particle heating by low-frequency Alfven waves

    International Nuclear Information System (INIS)

    Guo Zehua; Crabtree, Chris; Chen, Liu

    2008-01-01

    The heating of charged particles by a linearly polarized and obliquely propagating shear Alfven wave (SAW) at frequencies a fraction