WorldWideScience

Sample records for analysing tidally induced

  1. Tidally-induced warps in protostellar discs

    OpenAIRE

    Terquem, C.; Papaloizou, J.; Nelson, R.(University of California, Davis, Davis, USA)

    1998-01-01

    We review results on the dynamics of warped gaseous discs. We consider tidal perturbation of a Keplerian disc by a companion star orbiting in a plane inclined to the disc. The perturbation induces the precession of the disc, and thus of any jet it could drive. In some conditions the precession rate is uniform, and as a result the disc settles into a warp mode. The tidal torque also leads to the truncation of the disc, to the evolution of the inclination angle (not necessarily towards alignmen...

  2. Tidally Induced Bars of Galaxies in Clusters

    Science.gov (United States)

    Łokas, Ewa L.; Ebrová, Ivana; del Pino, Andrés; Sybilska, Agnieszka; Athanassoula, E.; Semczuk, Marcin; Gajda, Grzegorz; Fouquet, Sylvain

    2016-08-01

    Using N-body simulations, we study the formation and evolution of tidally induced bars in disky galaxies in clusters. Our progenitor is a massive, late-type galaxy similar to the Milky Way, composed of an exponential disk and a Navarro-Frenk-White dark matter halo. We place the galaxy on four different orbits in a Virgo-like cluster and evolve it for 10 Gyr. As a reference case, we also evolve the same model in isolation. Tidally induced bars form on all orbits soon after the first pericenter passage and survive until the end of the evolution. They appear earlier, are stronger and longer, and have lower pattern speeds for tighter orbits. Only for the tightest orbit are the properties of the bar controlled by the orientation of the tidal torque from the cluster at pericenter. The mechanism behind the formation of the bars is the angular momentum transfer from the galaxy stellar component to its halo. All of the bars undergo extended periods of buckling instability that occur earlier and lead to more pronounced boxy/peanut shapes when the tidal forces are stronger. Using all simulation outputs of galaxies at different evolutionary stages, we construct a toy model of the galaxy population in the cluster and measure the average bar strength and bar fraction as a function of clustercentric radius. Both are found to be mildly decreasing functions of radius. We conclude that tidal forces can trigger bar formation in cluster cores, but not in the outskirts, and thus can cause larger concentrations of barred galaxies toward the cluster center.

  3. Tidally induced bars of galaxies in clusters

    CERN Document Server

    Lokas, Ewa L; del Pino, Andres; Sybilska, Agnieszka; Athanassoula, E; Semczuk, Marcin; Gajda, Grzegorz; Fouquet, Sylvain

    2016-01-01

    Using N-body simulations we study the formation and evolution of tidally induced bars in disky galaxies in clusters. Our progenitor is a massive, late-type galaxy similar to the Milky Way, composed of an exponential disk and an NFW dark matter halo. We place the galaxy on four different orbits in a Virgo-like cluster and evolve it for 10 Gyr. As a reference case we also evolve the same model in isolation. Tidally induced bars form on all orbits soon after the first pericenter passage and survive until the end of the evolution. They appear earlier, are stronger, longer and have lower pattern speeds for tighter orbits. Only for the tightest orbit the properties of the bar are controlled by the orientation of the tidal torque from the cluster at pericenters. The mechanism behind the formation of the bars is the angular momentum transfer from the galaxy stellar component to its halo. All bars undergo extended periods of buckling instability that occur earlier and lead to more pronounced boxy/peanut shapes when th...

  4. Simulations of tidally induced spiral arms

    CERN Document Server

    Semczuk, Marcin

    2015-01-01

    The origin of grand design spiral structure in galaxies is still under debate but one of promising scenarios involves tidal interactions. We use N-body simulations to study the evolution of a Milky Way-size galaxy in a Virgo-like cluster. The galaxy is placed on a typical eccentric orbit and evolved for 10 Gyr. We find that grand design spiral arms are triggered by pericenter passages and later on they wind up and dissipate. The arms formed in the simulations are approximately logarithmic, but are also dynamic, transient and recurrent.

  5. Tidally induced lateral dispersion of the Storfjorden overflow plume

    Directory of Open Access Journals (Sweden)

    F. Wobus

    2013-10-01

    Full Text Available We investigate the flow of brine-enriched shelf water from Storfjorden (Svalbard into Fram Strait and onto the western Svalbard Shelf using a regional set-up of NEMO-SHELF, a 3-D numerical ocean circulation model. The model is set up with realistic bathymetry, atmospheric forcing, open boundary conditions and tides. The model has 3 km horizontal resolution and 50 vertical levels in the sh-coordinate system which is specially designed to resolve bottom boundary layer processes. In a series of modelling experiments we focus on the influence of tides on the propagation of the dense water plume by comparing results from tidal and non-tidal model runs. Comparisons of non-tidal to tidal simulations reveal a hotspot of tidally induced horizontal diffusion leading to the lateral dispersion of the plume at the southernmost headland of Spitsbergen which is in close proximity to the plume path. As a result the lighter fractions in the diluted upper layer of the plume are drawn into the shallow coastal current that carries Storfjorden water onto the western Svalbard Shelf, while the dense bottom layer continues to sink down the slope. This bifurcation of the plume into a diluted shelf branch and a dense downslope branch is enhanced by tidally induced shear dispersion at the headland. Tidal effects at the headland are shown to cause a net reduction in the downslope flux of Storfjorden water into the deep Fram Strait. This finding contrasts previous results from observations of a dense plume on a different shelf without abrupt topography.

  6. Constraints on deep moonquake focal mechanisms through analyses of tidal stress

    Science.gov (United States)

    Weber, R.C.; Bills, B.G.; Johnson, C.L.

    2009-01-01

    [1] A relationship between deep moonquake occurrence and tidal forcing is suggested by the monthly periodicities observed in the occurrence times of events recorded by the Apollo Passive Seismic Experiment. In addition, the typically large S wave to P wave arrival amplitude ratios observed on deep moonquake seismograms are indicative of shear failure. Tidal stress, induced in the lunar interior by the gravitational influence of the Earth, may influence moonquake activity. We investigate the relationship between tidal stress and deep moonquake occurrence by searching for a linear combination of the normal and shear components of tidal stress that best approximates a constant value when evaluated at the times of moonquakes from 39 different moonquake clusters. We perform a grid search at each cluster location, computing the stresses resolved onto a suite of possible failure planes, to obtain the best fitting fault orientation at each location. We find that while linear combinations of stresses (and in some cases stress rates) can fit moonquake occurrence at many clusters quite well; for other clusters, the fit is not strongly dependent on plane orientation. This suggests that deep moonquakes may occur in response to factors other than, or in addition to, tidal stress. Several of our inferences support the hypothesis that deep moonquakes might be related to transformational faulting, in which shear failure is induced by mineral phase changes at depth. The occurrence of this process would have important implications for the lunar interior. Copyright 2009 by the American Geophysical Union.

  7. Critical role of wind-wave induced erosion on the morphodynamic evolution of shallow tidal basins

    Science.gov (United States)

    D'Alpaos, Andrea; Carniello, Luca; Rinaldo, Andrea

    2014-05-01

    Wind-wave induced erosion processes are among the chief processes which govern the morphodynamic evolution of shallow tidal basins, both in the vertical and in the horizontal plane. Wind-wave induced bottom shear stresses can promote the disruption of the polymeric microphytobenthic biofilm and lead to the erosion of tidal-flat surfaces and to the increase in suspended sediment concentration which affects the stability of intertidal ecosystems. Moreover, the impact of wind-waves on salt-marsh margins can lead to the lateral erosion of marsh boundaries thus promoting the disappearance of salt-marsh ecosystems. Towards the goal of developing a synthetic theoretical framework to represent wind wave-induced resuspension events and account for their erosional effects on the long-term biomorphodynamic evolution of tidal systems, we have employed a complete, coupled finite element model accounting for the role of wind waves and tidal currents on the hydrodynamic circulation in shallow basins. Our analyses of the characteristics of combined current and wave-induced exceedances in bottom shear stress over a given threshold for erosion, suggest that wind wave-induced resuspension events can be modeled as a marked Poisson process. The interarrival time of wave-induced erosion events is, in fact, an exponentially distributed random variable, as well as the duration and intensity of overthreshold events. Moreover, the analysis of wind-wave induced resuspension events for different historical configurations of the Venice Lagoon from the 19th to the 21st century, shows that the interarrival times of erosion events have dramatically decreased through the last two centuries, whereas the intensities of erosion events have experienced a surprisingly high increase. This allows us to characterize the threatening erosion and degradation processes that the Venice Lagoon has been experiencing since the beginning of the last century.

  8. The orbital structure of a tidally induced bar

    CERN Document Server

    Gajda, Grzegorz; Athanassoula, E

    2016-01-01

    Orbits are the key building blocks of any density distribution and their study helps us understand the kinematical structure and the evolution of galaxies. Here we investigate orbits in a tidally induced bar of a dwarf galaxy, using an $N$-body simulation of an initially disky dwarf galaxy orbiting a Milky Way-like host. After the first pericenter passage, a tidally induced bar forms in the stellar component of the dwarf. The bar evolution is different than in isolated galaxies and our analysis focuses on the period before it buckles. We study the orbits in terms of their fundamental frequencies, which we calculate in a Cartesian coordinate frame rotating with the bar. Apart from the well-known x$_1$ orbits we find many other types, mostly with boxy shapes of various degree of elongation. Some of them are also near-periodic, admitting frequency ratios of 4/3, 3/2 and 5/3. The box orbits have various degrees of vertical thickness but only a relatively small fraction of those have banana (i.e. smile/frown) or i...

  9. Tidal torque induced by orbital decay in compact object binaries

    CERN Document Server

    Dall'Osso, Simone

    2012-01-01

    As we observe in the moon-earth system, tidal interactions in binaries can lead to angular momentum exchange. The presence of viscosity is generally regarded as the condition for such transfer to happen. In this paper, we how a dynamical mechanism can cause a persistent torque between the binary components, even for inviscid bodies. This preferentially occurs at the final stage of coalescence of compact binaries, when the orbit shrinks by gravitational waves on a timescale shorter than the viscous timescale. The total orbital energy transferred to the secondary is a few 10^(-3) of its binding energy. We further show that this persistent torque induces a differentially rotating quadrupolar perturbation. Specializing to the case of a neutron star, we find that the free energy associated with this non-equilibrium state can be at least ~ 5 \\times 10^(46) erg just prior to coalescence. This energy is likely stored in internal fluid motions, with a sizable amount of differential rotation. Thus, a preexisting magnet...

  10. TIDALLY INDUCED THERMAL RUNAWAYS ON EXTRASOLAR EARTHS: IMPACT ON HABITABILITY

    International Nuclear Information System (INIS)

    We study the susceptibility of extrasolar Earth-like planets to tidal dissipation by varying orbital, rheological, and heat transfer parameters. We employ a three-dimensional numerical method solving the coupled problem of mantle convection and tidal dissipation. A reference model mimicking a plate tectonic regime and reproducing Earth's present-day heat output is considered. Four other models representing less efficient heat transfer regimes are also investigated. For these five initial models, we determine the orbital configurations under which a positive feedback between tidal dissipation and temperature evolution leads to a thermal runaway. In order to describe the occurrence of thermal runaways, we develop a scaling that relates the global dissipated power to a characteristic temperature and to the orbital parameters. For all numerical experiments sharing the same initial temperature conditions, we show that the reciprocal value of the runaway timescale depends linearly on the global dissipated power at the beginning of the simulation. In the plate tectonic-like regime, Earth-like planets in the habitable zone (HZ) of 0.1 Msun stars experience thermal runaways for 1:1 spin-orbit resonance if the eccentricity is sufficiently high (e>0.02 at a 4 day period, e>0.2 at a 10 day period). For less efficient convective regimes, runaways are obtained for eccentricities as low as ∼0.004 at the inner limit of the HZ. In the case of 3:2 spin-orbit resonance, the occurrence of thermal runaways is independent of eccentricity and is predicted for orbital periods lower than 12 days. For less efficient convective regimes, runaways may occur at larger orbital periods potentially affecting the HZ of stars with a mass up to 0.4 Msun. Whatever the convective regime and spin-orbit resonance, tidal heating within Earth-like planets orbiting in the HZ of stars more massive than 0.5 Msun is not significant.

  11. Tidally Induced Pulsations in Kepler Eclipsing Binary KIC 3230227

    CERN Document Server

    Guo, Zhao; Fuller, Jim

    2016-01-01

    KIC 3230227 is a short period ($P\\approx 7.0$ days) eclipsing binary with a very eccentric orbit ($e=0.6$). From combined analysis of radial velocities and {\\it Kepler} light curves, this system is found to be composed of two A-type stars, with masses of $M_1=1.84\\pm 0.18M_{\\odot}$, $M_2=1.73\\pm 0.17M_{\\odot}$ and radii of $R_1=2.01\\pm 0.09R_{\\odot}$, $R_2=1.68\\pm 0.08 R_{\\odot}$ for the primary and secondary, respectively. In addition to an eclipse, the binary light curve shows a brightening and dimming near periastron, making this a somewhat rare eclipsing heartbeat star system. After removing the binary light curve model, more than ten pulsational frequencies are present in the Fourier spectrum of the residuals, and most of them are integer multiples of the orbital frequency. These pulsations are tidally driven, and both the amplitudes and phases are in agreement with predictions from linear tidal theory for $l=2, m=-2$ prograde modes.

  12. Tidally induced upwelling off Yangtze River estuary and in Zhejiang coastal waters in summer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    MASNUM wave-tide-circulation coupled numerical model (MASNUM coupled model, hereinafter) is de-veloped based on the Princeton Ocean Model (POM). Both POM and MASNUM coupled model are ap-plied in the numerical simulation of the upwelling off Yangtze River estuary and in Zhejiang coastal waters in summer. The upwelling mechanisms are analyzed from the viewpoint of tide, and a new mechanism is proposed. The study suggests that the tidally inducing mechanism of the upwelling in-cludes two dynamic aspects: the barotropic and the baroclinic process. On the one hand, the residual currents induced by barotropic tides converge near the seabed, and upwelling is generated to maintain mass conservation. The climbing of the residual currents along the sea bottom slope also contributes to the upwelling. On the other hand, tidal mixing plays a very important role in inducing the upwelling in the baroclinic sea circumstances. Strong tidal mixing leads to conspicuous front in the coastal waters. The considerable horizontal density gradient across the front elicits a secondary circulation clinging to the tidal front, and the upwelling branch appears near the frontal zone. Numerical experiments are de-signed to determine the importance of tide in inducing the upwelling. The results indicate that tide is a key and dominant inducement of the upwelling. Experiments also show that coupling calculation of the four main tidal constituents (M2, S2, K1, and O1), rather than dealing with the single M2 constituent, im-proves the modeling precision of the barotropic tide-induced upwelling.

  13. Tidally induced upwelling off Yangtze River estuary and in Zhejiang coastal waters in summer

    Institute of Scientific and Technical Information of China (English)

    L(ü) XinGang; QIAO FangLi; XIA ChangShui; YUAN YeLi

    2007-01-01

    MASNUM wave-tide-circulation coupled numerical model(MASNUM coupled model,hereinafter)is developed based on the Princeton Ocean Model (POM).Both POM and MASNUM coupled model are applied in the numerical simulation of the upwelling off Yangtze River estuary and in Zhejiang coastal waters in summer.The upwelling mechanisms are analyzed from the viewpoint of tide,and a new mechanism is proposed.The study suggests that the tidally inducing mechanism of the upwelling includes two dynamic aspects:the barotropic and the baroclinic process.On the one hand,the residual currents induced by barotropic tides converge near the seabed,and upwelling is generated to maintain mass conservation.The climbing of the residual currents along the sea bottom slope also contributes to the upwelling.On the other hand,tidal mixing plays a very important role in inducing the upwelling in the baroclinic sea circumstances.Strong tidal mixing leads to conspicuous front in the coastal waters.The considerable horizontal density gradient across the front elicits a secondary circulation clinging to the tidal front,and the upwelling branch appears near the frontal zone.Numerical experiments are designed to determine the importance of tide in inducing the upwelling.The results indicate that tide is a key and dominant inducement of the upwelling.Experiments also show that coupling calculation of the four main tidal constituents (M2,S2,K1,and O1),rather than dealing with the single M2 constituent,improves the modeling precision of the barotropic tide-induced upwelling.

  14. Tidal current-induced formation——storm-induced change——tidal current-induced recovery——Interpretation of depositional dynamics of formation and evolution of radial sand ridges on the Yellow Sea seafloor

    Institute of Scientific and Technical Information of China (English)

    张长宽; 张东生; 张君伦; 王震

    1999-01-01

    The results of simulated tidal current field, wave field and storm-induced current field are employed to interpret the depositional dynamic mechanism of formation and evolution of the radial sand ridges on the Yellow Sea seafloor. The anticlockwise rotary tidal wave to the south of Shandong Peninsula meets the following progressive tidal wave from the South Yellow Sea, forming a radial current field outside Jianggang. This current field provides a necessary dynamic condition for the formation and existence of the radial sand ridges on the Yellow Sea seafloor. The results of simulated "old current field (holocene)" show that there existed a convergent-divergent tidal zone just outside the palaeo-Yangtze River estuary where a palaeo-underwater accumulation was developed. The calculated results from wave models indicate that the wave impact on the topography, under the condition of high water level and strong winds, is significant. The storm current induced by typhoons landing in the Yangtze River estuary

  15. Are neutron stars crushed? Gravitomagnetic tidal fields as a mechanism for binary-induced collapse

    CERN Document Server

    Favata, M

    2005-01-01

    (abridged) Numerical simulations of binary neutron stars by Wilson, Mathews, and Marronetti indicated that neutron stars that are stable in isolation can be made to collapse to black holes when placed in a binary. This claim was surprising as it ran counter to the Newtonian expectation that a neutron star in a binary should be more stable, not less. After correcting an error found by Flanagan, Wilson and Mathews found that the compression of the neutron stars was significantly reduced but not eliminated. This has motivated us to ask the following general question: Under what circumstances can general relativistic tidal interactions cause an otherwise stable neutron star to be compressed? We have found that if a non-rotating neutron star possess a current quadrupole moment, interactions with a gravitomagnetic tidal field can lead to a compressive force on the star. If this current quadrupole is induced by the gravitomagnetic tidal field, it is related to the tidal field by an equation-of-state-dependent consta...

  16. Slowly Breaking Waves: The Longevity of Tidally Induced Spiral Structure

    CERN Document Server

    Struck, Curtis; Hwang, Jeong-Sun

    2011-01-01

    We have discovered surprisingly long-lived waves in two sets of numerical models of fast (marginally bound or unbound) flyby galaxy collisions, carried out independently with two different codes. In neither simulation set are the spirals the result of a collision-induced bar formation. Although there is variation in the appearance of the waves with time, they do not disappear and reform recurrently, as seen in other cases described in the literature. We also present an analytic theory that can account for the wave structure, not as propagating transients, nor as a fixed pattern propagating through the disc. While these waves propagate through the disc, they are continuously regenerated as a result of the coherent oscillations initiated by the impulsive disturbance. Specifically, the analytic theory suggests that they are caustic waves in ensembles of stars pursuing correlated epicyclic orbits after the disturbance. This theory is an extension of that developed by Struck and collaborators for colliding ring ga...

  17. Experimental study of acute lung injury induced by different tidal volume ventilation in rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-ri; DU Yong-cheng; JIANG Hong-ying; XU Jian-ying; XU Yong-jian

    2005-01-01

    @@ Mechanical ventilation (MV) is a dual blade sward which if misused could lead to lung injury, called ventilator induced lung injury (VILI). Pathogenesis of VILI is very complex with various manifestations, which is the focus in MV field in recent years.1 In our research, the rats were ventilated with different tidal volume, then the pathological changes of the lungs were observed under macroscopy, light and electronic microscope, and various laboratory tests in blood and bronchoalveolar lavage fluid (BALF) were also carried out in order to probe further the pathologic characteristics and the pathogenesis of VILI.

  18. Direct estimation of tidally induced Earth rotation variations observed by VLBI

    Science.gov (United States)

    Englich, S.; Heinkelmann, R.; BOHM, J.; Schuh, H.

    2009-09-01

    The subject of our study is the investigation of periodical variations induced by solid Earth tides and ocean tides in Earth rotation parameters (ERP: polar motion, UT1)observed by VLBI. There are two strategies to determine the amplitudes and phases of Earth rotation variations from observations of space geodetic techniques. The common way is to derive time series of Earth rotation parameters first and to estimate amplitudes and phases in a second step. Results obtained by this means were shown in previous studies for zonal tidal variations (Englich et al.; 2008a) and variations caused by ocean tides (Englich et al.; 2008b). The alternative method is to estimate the tidal parameters directly within the VLBI data analysis procedure together with other parameters such as station coordinates, tropospheric delays, clocks etc. The purpose of this work was the application of this direct method to a combined VLBI data analysis using the software packages OCCAM (Version 6.1, Gauss-Markov-Model) and DOGSCS (Gerstl et al.; 2001). The theoretical basis and the preparatory steps for the implementation of this approach are presented here.

  19. Analysis of tidal expiratory flow pattern in the assessment of histamine-induced bronchoconstriction.

    OpenAIRE

    Morris, M. J.; Madgwick, R. G.; Lane, D. J.

    1995-01-01

    BACKGROUND--There are times in clinical practice when it would be useful to be able to assess the severity of airways obstruction from tidal breathing. Three indices of airways obstruction derived from analysis of resting tidal expiratory flow have previously been described: (1) Tme/TE = time to reach maximum expiratory flow/expiratory time; (2) Krs = decay constant of exponential fitted to tidal expiratory flow versus time curve; and (3) EV = extrapolated volume--that is, area under the curv...

  20. Rainfall Induced Seepage and Slope Stability Analyses

    Science.gov (United States)

    Ko, S. Y.; Juang, S. R.; Chang, K. T.

    2015-12-01

    This study investigates the rainfall induced seepage behaviors and slope stability of an unsaturated natural slope of colluviums along the A-A' profile of Lu-Shan landslide using two-dimensional finite element method. At first, a steady/transient seepage analysis was carried out using 42 days rainfall records from Mat-Sa typhoon in 2005. Through the inspection of the coincidence of the groundwater variation between simulation and measurement, a set of best fit unsaturated hydraulic conductivity function kr(ψ)~(ψ) and horizontal and vertical saturated conductivities kx and ky for colluviums can be determined. Where, the variable ψ denotes the matrix suction of soil stratum. The function, kr(ψ)~(ψ), considers the seepage behaviors of unsaturated colluviums gradual transition from unsaturated to saturated state. For a 48-hrs design rainfall with different return periods 5, 25 and 50 years, the range of the transient saturated zone formed in the slope during rainfall will expand with the increase of rainfall intensity. The self-weight of soil mass increases due to the rainwater absorption and which alternately introduces a higher down sliding force to the slope and leads to a large extent reduction of factor safety FS of the unsaturated natural slope (A-A'profile). When the matrix suction, ψ, in the function kr(ψ)~(ψ) was adjusted to a higher value (ψ→10ψ), physically it represents a soil stratum with finer particle, the infiltration and pore-water pressure variation becomes not observable in the rainfall induced seepage analysis. Conclusively, an unsaturated natural slope with higher matrix suction (ψ→10ψ) always possesses a higher FS value than that with lower matrix suction (ψ→0.10ψ). For the slope with anisotropic hydraulic conductivity ratio (ky/kx =0.01), due to the downward infiltration rate of rainwater is lower than that with isotropic hydraulic conductivity (kx/ky =1), the occurrence time for a FS value starting to downgrade may lag behind

  1. Effect of positive end-expiratory pressure and tidal volume on lung injury induced by alveolar instability

    OpenAIRE

    Halter, Jeffrey M; Steinberg, Jay M; Gatto, Louis A; DiRocco, Joseph D; Pavone, Lucio A; Schiller, Henry J.; Albert, Scott; Lee, Hsi-Ming; Carney, David; Nieman, Gary F.

    2007-01-01

    Introduction One potential mechanism of ventilator-induced lung injury (VILI) is due to shear stresses associated with alveolar instability (recruitment/derecruitment). It has been postulated that the optimal combination of tidal volume (Vt) and positive end-expiratory pressure (PEEP) stabilizes alveoli, thus diminishing recruitment/derecruitment and reducing VILI. In this study we directly visualized the effect of Vt and PEEP on alveolar mechanics and correlated alveolar stability with lung ...

  2. Tidal switch on metabolic activity: Salinity induced responses on bacterioplankton metabolic capabilities in a tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Thottathil, S.D.; Balachandran, K.K.; Jayalakshmy, K.V.; Gupta, G.V.M.; Nair, S.

    Biolog plates were used to study the changes in the metabolic capabilities of bacterioplankton over a complete tidal cycle in a tropical ecosystem (Cochin Estuary, Kerala, India) along southwest coast of India. The pattern of utilization of carbon...

  3. Natural and human-induced driving factors in the evolution of tidal channels: case studies in the Venice Lagoon (Italy).

    Science.gov (United States)

    Rizzetto, Federica

    2013-04-01

    Coastal wetlands are largely affected by a complex variety of both natural and anthropogenic factors, which induce evident, often irreversible, geomorphological transformations. In particular, this research focuses on the main processes that influence the evolution of tidal channels in salt marshes and shows the results derived from the analysis of some case studies in the Venice Lagoon (northwestern Adriatic Sea, Italy). Here tidal network has been recognized as significantly sensitive to sea-level rise and tide oscillations (Rizzetto and Tosi, 2011; Rizzetto and Tosi, 2012), but it is also vulnerable to human impact. The sites were selected in areas characterized by low anthropogenic pressure to prevent strong human interferences from completely masking the effects of natural forces. The interpretation of a large number of high-resolution aerial photographs, taken since the mid 1930s, allowed identifying in detail tidal channel evolution, both in the long- and in the short-term. The observation of historical and recent topographic maps completed the study and provided other important data to define the modifications occurred in the past two centuries. The channel planform changes were determined through the morphometric analysis of the tidal network, carried out using a Geographic Information System software. These modifications were interpreted in the light of sea-level oscillations (i.e. relative sea-level rise and strength/frequency of high tides, which are increasing owing to climate changes), variations of sediment supply, and human activities occurred in the past century. The joint analysis of all the data allowed distinguishing the changes induced by both relative sea-level rise and high tides on planform pattern and evolution of tidal channels, and identifying the effects of human interferences, which magnified the impact of natural factors (e.g. groundwater exploitation responsible for high subsidence rates between 1950 and 1970 and, consequently, for an

  4. Environmental change on tidal flat induced by anthropogenic effect around west coast of Korean Peninsula

    Science.gov (United States)

    Lee, Yoon-Kyung; Choi, Jong-Kuk; Ryu, Joo-Hyung; Eom, Jinah

    2014-05-01

    Tidal flats are valuable ecosystem by a productive flora and fauna which support large populations of birds, form nursery and feeding areas for coastal fisheries, provide intrinsic values such as aesthetics and education (Costanza et al., 1997; Goodwin et al., 2001). The half of the world's coastal wetlands will submerge during this century in response to sea level rise although salt marsh has a capacity to adjust to sea level rise change. However, tidal flats have been changed because of several coastal construction projects that had not been considered sustainable over the last 30 years in Korean Peninsula. The total area of tidal flats decreased from approximately 2,800 km2 in 1990 to 2,393 km2 in 2005 due to the land reclamations and dredging in South Korea. Many researchers investigated topography, sedimentation changes and local hydrodynamics for this area in the early 1990s. However, they are limited to the temporal and spatial scale because field surveys in the tidal flats are restricted due to the difficulties in accessing. The aim of this study was to examine environmental change in tidal flat in a large scale for long-term based on the remotely sensed data as well as in situ measurements. This study focused on the tidal flat that not only had been affected by reclamations on a large scale such as Ganghwa and Saemangeum but also had been indirectly affected by reclamations such as Hwang-do and Gomso-bay. In this study, changes in morphology and sedimentary facies in tidal flats were estimated. Digital elevation models (DEMs) in early 2000 and 2010 were generated based on the Landsat TM/ETM+ images using a waterline method. Morphological change was estimated based on the differences of DEMs and sedimentary facies was investigated based on the calculation of image-derived PCA coefficient. Results of the morphological change in tidal flats interestingly showed that large amount of areas had been deposited whereas the other areas were eroded. Area with

  5. Feedback between tidal hydrodynamics and morphological changes induced by natural process and human interventions in a wave-dominated tidal inlet: Xiaohai, Hainan, China

    Institute of Scientific and Technical Information of China (English)

    GONG Wenping; SHEN Jian; JIA Jianjun

    2009-01-01

    The feedback between morphological evolution and tidal hydrodynamics in a wave-dominated tidal inlet, Xiaohai, China is investigated through data analysis and numerical model experiments. His-torically, Xiaohai Inlet had two openings, located at the north and south of Neizhi Island (a rocky outcrop), respectively. The evolution of Xiaohai Inlet was dominated by the natural process be-fore 1972. In addition to the natural process, human interventions, including the closure of the north opening, 50% of freshwater reduction, and increase of land reclamation, have altered tidal hydrodynamics and morphological evolution since 1972. A series of numerical model simulations were conducted to investigate the influence of morphological changes on the hydrodynamics and the influence of human activities on the inlet evolution. The natural process has caused narrowing and shoaling of the inlet throat, development of the flood-tidal delta, and shoaling of the tidal channel inside the lagoon. Human interventions have accelerated these changes. Consequently, the tidal propagation from the offshore into the lagoon has been impeded and the tidal energy has been dissipated substantially. Tidal current has changed from ebb-dominant to flood-dominant in most parts of the inlet system whereas the inlet throat has remained as ebb-dominant, the tidal prism has decreased consistently, and sediment has continued to deposit inside the inlet. As a result, the changes of morphology, hydrodynamics, and sediment transport show a positive feedback. The human interventions have had both advantageous and adverse influences on the stability of the inlet. The closure of the North Opening has decreased the longshore sediment input to the inlet, and increased the tidal prism, ebb velocity, and sediment transport in the south opening, thus enhancing the inlet's stability. However, reducing the river discharge and landfill of the tidal flats has resulted in a decrease of the tidal prism, the ebb velocity

  6. Vorticity and mixing induced by the barotropic M 2 tidal current and zooplankton biomass distribution in the Gulf of California

    Science.gov (United States)

    Salas-de-León, David Alberto; Carbajal, Noel; Monreal-Gómez, Maria Adela; Gil-Zurita, Antonio

    2011-08-01

    Vertical mixing and biological processes in the Gulf of California were analyzed using calculated relative vorticity fields induced by the barotropic M 2 tide and zooplankton biomass distribution. M 2 tidal currents contribute significantly to the general circulation observed in the upper gulf. The results revealed zones with high vertical and horizontal values of relative vorticity in regions where temperature anomalies and water exchange take place. The horizontal component of the vorticity vector is considerable in areas of the upper gulf, where high vertical shear of the velocity was estimated. Patterns of the horizontal component of the vorticity, the Simpson-Hunter criterion and the chlorophyll concentration showed similarities. The interaction of tidal flow with the complex bathymetry is the main source of vorticity and mixing in the gulf. The vertical component of the relative vorticity reaches positive values in regions where cyclonic circulation has been reported. A total of 35 groups of zooplankton were identified in the gulf; Copepoda, Chaetognatha, and Euphausiacea were the three major groups. High zooplankton biomasses in the archipelago region of the gulf were associated with topographic effect, which induces strong shear velocities, creating vertical mixing and increasing the supply of nutrients to the surface layers, which in turn induces high chlorophyll concentration or phytoplankton and thereby supports the zooplankton biomass. The zooplankton biomass was closely related to high values of the horizontal component of relative vorticity.

  7. Storm and tsunami induced sediment transport and morphology changes in vicinity of tidal inlets

    Digital Repository Service at National Institute of Oceanography (India)

    Jayakumar, S.; ManiMurali, R.

    was used in estimation of the sediment transport using the three non-cohesive sediment transport (ST) equations used in MIKE21. Of the three different formulations used in MIKE21 sediment transport model, the 79 INDO-JAPAN Workshop on River mouths..., Tidal Flats and Lagoons 15-16 September 2014, IIT Madras, INDIA Engelund and Hansen (1972) (hereinafter referred as EH formulation) which is based on total-load transport theory is considered. The dimensionless total...

  8. Tidal Venuses: Triggering a Climate Catastrophe via Tidal Heating

    CERN Document Server

    Barnes, Rory; Goldblatt, Colin; Meadows, Victoria S; Kasting, James F; Heller, Rene

    2012-01-01

    Traditionally stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high enough levels to induce a runaway greenhouse for a long enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets "Tidal Venuses," and the phenomenon a "tidal greenhouse." Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits in the habitable zone (HZ). However, these planets are not habitable as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. We simulate the evolution of hypothetical planetary systems in a quasi-continuous ...

  9. Modelling tidal current turbine wakes using a coupled RANS-BEMT approach as a tool for analysing power capture of arrays of turbines

    OpenAIRE

    Turnock, S.R.; Phillips, A.B.; Banks, Joe; Nicholls-Lee, R.F.

    2011-01-01

    The downstream evolution of the wake generated by a rotating tidal energy conversion device influences the performance of the device itself as well as the performance of any downstream device. An improved method is proposed for coupling a blade element momentum theory inner solution for a horizontal axis tidal turbine with an outer domain flow solved using a commercial finite volume computational Fluid Dynamics solver. A mesh sensitivity study is carried out and shows that for wake evolution ...

  10. Earth Inner Core Periodic Motion due to Pressure Difference Induced by Tidal Acceleration

    CERN Document Server

    Wolf, M

    2013-01-01

    The inner structure of the earth is still a topic of discussion. Seismic measurements showed a structure of solid, liquid, solid which describes the mantle, outer core and inner core with the inner core in the center. The analysis of waveform doublets suggests now that the inner core is out of center and even of faster rotation than the mantel and crust. From the sum of Buoyancy and Gravity on the earth inner core, the position energy is plotted and together with the tangential tidal acceleration, it is derived that Earth Inner Core cannot be in a center position without additional force. The Earth Core System is explained as Hydrodynamic Bearing. The Eccentricities out of nutation due to the effects from the sun and moon are calculated as an approximation.

  11. Temporal variations in the flow of a large Antarctic ice-stream controlled by tidally induced changes in the subglacial water system

    Directory of Open Access Journals (Sweden)

    S. H. R. Rosier

    2015-04-01

    7 × 109 m2d-1, with sliding law exponents m = 3 and q =10. Coupled model results show the presence of tides result in a ~ 12% increase in mean surface velocity. Observations of tidally-induced variations in flow of ice-streams provide stronger constraints on basal sliding processes than provided by any other set of measurements.

  12. Influences of the surface wave-induced mixing and tidal mixing on the vertical temperature structure of the Yellow and East China Seas in summer

    Institute of Scientific and Technical Information of China (English)

    QIAO Fangli; MA Jian; XIA Changshui; YANG Yongzeng; YUAN Yeli

    2006-01-01

    After a classification of the physical processes which affect the vertical mixing, diffusivity induced by the surface wave momentum and tidal currents and its influence on the vertical temperature structure are discussed. Based on three mixing schemes, the vertical temperature structure of the Yellow and East China Seas (YECS) is simulated. Results show that in summer, the surface waveinduced mixing plays a key role in forming the upper mixed layer in the YECS. The tidal mixing controls the lower layers within 30 m above the bottom, which is the main factor in forming the platform-shaped temperature structure in the southern Yellow Sea (YS). Together with the strong surface wave-induced mixing, the tidal mixing makes the thermocline ventilate near the east coast of the southern YS. The double cold cores in the deeper layers of the East China Sea have different causes. The western one is the maintenance of the winter cold water, while the eastern one is configured by circulation. The simulated vertical temperature structure of the YECS with the surface wave-induced mixing and tidal mixing has similar features to the observations, which indicates that these mixing processes are key factors in simulating the thermocline and pycnocline of the coastal oceans.

  13. Effects of Sediment-induced Stratification on Floc Breakup in an Idealized Tidal Estuary:A Numerical Modelling Study

    Institute of Scientific and Technical Information of China (English)

    X.H.Wang

    2004-01-01

    Floc breakup dynamics are studied by a sediment transport numerical model in an idealized tidal estuary that has a constant water depth and rapid flocculation of cohesive sediments. The focus is placed on the effects of boundary layer stratification induced by a bottom nepheloid layer on floc breakup and size distribution in the water column. In a neutrally stratified estuary, the floc size distribution follows a parabolic function with maximum values at the surface and bottom. The sediment-induced stratification in the bottom boundary layer increases the median floc sizes. Furthermore, sediment-voided convection caused by the settling lutocline generates significant turbulent kinetic energy dissipation and reduces floc size at the depth where the convective mixing happens. Below that depth, a weak local maxima in the floc size is predicted due to presence of the lutocline. The effect of sediment-stratified bottom boundary layer on the floc breakup can be consistently approximated by a linear regression between the maximal floc size and flux Richardson number.

  14. Quantifying the roles of tidal volume and PEEP in the pathogenesis of ventilator-induced lung injury.

    Science.gov (United States)

    Seah, Adrian S; Grant, Kara A; Aliyeva, Minara; Allen, Gilman B; Bates, Jason H T

    2011-05-01

    Management of patients with acute lung injury (ALI) rests on achieving a balance between the gas exchanging benefits of mechanical ventilation and the exacerbation of tissue damage in the form of ventilator-induced lung injury (VILI). Optimizing this balance requires an injury cost function relating injury progression to the measurable pressures, flows, and volumes delivered during mechanical ventilation. With this in mind, we mechanically ventilated naive, anesthetized, paralyzed mice for 4 h using either a low or high tidal volume (Vt) with either moderate or zero positive end-expiratory pressure (PEEP). The derecruitability of the lung was assessed every 15 min in terms of the degree of increase in lung elastance occurring over 3 min following a recruitment maneuver. Mice could be safely ventilated for 4 h with either a high Vt or zero PEEP, but when both conditions were applied simultaneously the lung became increasingly unstable, demonstrating worsening injury. We were able to mimic these data using a computational model of dynamic recruitment and derecruitment that simulates the effects of progressively increasing surface tension at the air-liquid interface, suggesting that the VILI in our animal model progressed via a vicious cycle of alveolar leak, degradation of surfactant function, and increasing tissue stress. We thus propose that the task of ventilating the injured lung is usefully understood in terms of the Vt-PEEP plane. Within this plane, non-injurious combinations of Vt and PEEP lie within a "safe region", the boundaries of which shrink as VILI develops. PMID:21203845

  15. DTP: a Tidal Power Revolution

    Science.gov (United States)

    Steijn, Robbert; Hulsbergen, Kees; van Banning, Gijs

    2013-04-01

    Tidal power can significantly contribute to the global mix of sustainable energy resources. It is climate-independent, fully predictable, and if designed properly it is environmentally friendly and socio-economically feasible. The two traditional methods of exploiting tidal power are Tidal Barrage and Tidal Stream. This study deals with an alternative Third Method, named Dynamic Tidal Power (DTP), which contrary to the other methods, utilises the oscillating character of tides, or more precisely: the acceleration inherent to unsteady flow. DTP uses a long dam (order of tens of km's), attached and perpendicular to a coast with shore-parallel tidal currents, to generate a local hydraulic head. This time-varying head is used to generate electricity in a more or less standard way with turbines and generators placed in (many) dam openings. For a first impression only: typical installed power for one DTP is more than 10 GW with electricity output > 2.1010 kWh/y and construction costs of ca. 1 EUR/W. The physical mechanism behind the creation of the head has been described by Hulsbergen e.a., (2012). Following a heuristic approach based on analytical work done by Kolkman (unpubl.), and output from numerical tidal models, Hulsbergen (2012) concluded that the maximum head (near the coast), is: hmax = 6,8*?*D*Vmax/(g*T), with Vmax the maximum alongshore flow velocity during the tidal cycle, T the tidal period and D the length of dam. Such simple relationship was also found by Mei (2012) who made a rigorous analysis of a process-based model. After a thorough reflection on DTP, this study will first check the above formula for hmax , by comparing its predictions with the output from various numerical tidal models. Any differences will be analysed in the study through an evaluation of the dominant physical processes and the schematisations inherent to both the analytical and the numerical models. The study will also address the effect of the openings in the dam, as well as the

  16. Potpourri of proton induced x-ray emission analyses

    International Nuclear Information System (INIS)

    A proton-induced x-ray emission analysis (PIXE) system using 2-MeV protons was developed. Measurements are being made in connection with several research projects. A study is being conducted to provide ecological baseline information in the region of the Navajo and the proposed Kaiparowits coal-fired electric generating stations. Trace-element measurements in this study are reported on air-particulate samples, small rodent tissues, soils, and plants. In another study air particulates collected near a source of SO2 are extracted from the collection filter with an HCl solution and sulfate and sulfite ions are determined by calorimetric methods. The extraction solution is also analyzed by PIXE to determine the elemental composition. The latter information is necessary for an understanding of possible interferences with the calorimetric method and also indicates the heavy metals emitted by the source. Studies on human autopsy tissues, archeological artifacts, and in regular graduate and undergraduate laboratory classes are mentioned briefly

  17. Increasing compliance with low tidal volume ventilation in the ICU with two nudge-based interventions: evaluation through intervention time-series analyses

    Science.gov (United States)

    Bourdeaux, Christopher P; Thomas, Matthew JC; Gould, Timothy H; Malhotra, Gaurav; Jarvstad, Andreas; Jones, Timothy; Gilchrist, Iain D

    2016-01-01

    Objectives Low tidal volume (TVe) ventilation improves outcomes for ventilated patients, and the majority of clinicians state they implement it. Unfortunately, most patients never receive low TVes. ‘Nudges’ influence decision-making with subtle cognitive mechanisms and are effective in many contexts. There have been few studies examining their impact on clinical decision-making. We investigated the impact of 2 interventions designed using principles from behavioural science on the deployment of low TVe ventilation in the intensive care unit (ICU). Setting University Hospitals Bristol, a tertiary, mixed medical and surgical ICU with 20 beds, admitting over 1300 patients per year. Participants Data were collected from 2144 consecutive patients receiving controlled mechanical ventilation for more than 1 hour between October 2010 and September 2014. Patients on controlled mechanical ventilation for more than 20 hours were included in the final analysis. Interventions (1) Default ventilator settings were adjusted to comply with low TVe targets from the initiation of ventilation unless actively changed by a clinician. (2) A large dashboard was deployed displaying TVes in the format mL/kg ideal body weight (IBW) with alerts when TVes were excessive. Primary outcome measure TVe in mL/kg IBW. Findings TVe was significantly lower in the defaults group. In the dashboard intervention, TVe fell more quickly and by a greater amount after a TVe of 8 mL/kg IBW was breached when compared with controls. This effect improved in each subsequent year for 3 years. Conclusions This study has demonstrated that adjustment of default ventilator settings and a dashboard with alerts for excessive TVe can significantly influence clinical decision-making. This offers a promising strategy to improve compliance with low TVe ventilation, and suggests that using insights from behavioural science has potential to improve the translation of evidence into practice. PMID:27230998

  18. Tidal deformations of a spinning compact object

    CERN Document Server

    Pani, Paolo; Maselli, Andrea; Ferrari, Valeria

    2015-01-01

    The deformability of a compact object induced by a perturbing tidal field is encoded in the tidal Love numbers, which depend sensibly on the object's internal structure. These numbers are known only for static, spherically-symmetric objects. As a first step to compute the tidal Love numbers of a spinning compact star, here we extend powerful perturbative techniques to compute the exterior geometry of a spinning object distorted by an axisymmetric tidal field to second order in the angular momentum. The spin of the object introduces couplings between electric and magnetic deformations and new classes of induced Love numbers emerge. For example, a spinning object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second order in the spin. The deformations are encoded in a set of inhomogeneous differential equations which, remarkably, can be solved analytically in vacuum. We discuss certain subtleties in defining the multipole mom...

  19. Tidal deformations of a spinning compact object

    Science.gov (United States)

    Pani, Paolo; Gualtieri, Leonardo; Maselli, Andrea; Ferrari, Valeria

    2015-07-01

    The deformability of a compact object induced by a perturbing tidal field is encoded in the tidal Love numbers, which depend sensibly on the object's internal structure. These numbers are known only for static, spherically-symmetric objects. As a first step to compute the tidal Love numbers of a spinning compact star, here we extend powerful perturbative techniques to compute the exterior geometry of a spinning object distorted by an axisymmetric tidal field to second order in the angular momentum. The spin of the object introduces couplings between electric and magnetic deformations and new classes of induced Love numbers emerge. For example, a spinning object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second order in the spin. The deformations are encoded in a set of inhomogeneous differential equations which, remarkably, can be solved analytically in vacuum. We discuss certain subtleties in defining the tidal Love numbers in general relativity, which are due to the difficulty in separating the tidal field from the linear response of the object in the solution, even in the static case. By extending the standard procedure to identify the linear response in the static case, we prove analytically that the Love numbers of a Kerr black hole remain zero to second order in the spin. As a by-product, we provide the explicit form for a slowly-rotating, tidally-deformed Kerr black hole to quadratic order in the spin, and discuss its geodesic and geometrical properties.

  20. High tidal volume mechanical ventilation-induced lung injury in rats is greater after acid instillation than after sepsis-induced acute lung injury, but does not increase systemic inflammation: an experimental study

    OpenAIRE

    Kuiper Jan; Plötz Frans B; Groeneveld AB Johan; Haitsma Jack J; Jothy Serge; Vaschetto Rosanna; Zhang Haibo; Slutsky Arthur S

    2011-01-01

    Abstract Background To examine whether acute lung injury from direct and indirect origins differ in susceptibility to ventilator-induced lung injury (VILI) and resultant systemic inflammatory responses. Methods Rats were challenged by acid instillation or 24 h of sepsis induced by cecal ligation and puncture, followed by mechanical ventilation (MV) with either a low tidal volume (Vt) of 6 mL/kg and 5 cm H2O positive end-expiratory pressure (PEEP; LVt acid, LVt sepsis) or with a high Vt of 15 ...

  1. Mechanical ventilation with high tidal volumes attenuates myocardial dysfunction by decreasing cardiac edema in a rat model of LPS-induced peritonitis

    Directory of Open Access Journals (Sweden)

    Smeding Lonneke

    2012-03-01

    Full Text Available Abstract Background Injurious mechanical ventilation (MV may augment organ injury remote from the lungs. During sepsis, myocardial dysfunction is common and increased endothelial activation and permeability can cause myocardial edema, which may, among other factors, hamper myocardial function. We investigated the effects of MV with injuriously high tidal volumes on the myocardium in an animal model of sepsis. Methods Normal rats and intraperitoneal (i.p. lipopolysaccharide (LPS-treated rats were ventilated with low (6 ml/kg and high (19 ml/kg tidal volumes (Vt under general anesthesia. Non-ventilated animals served as controls. Mean arterial pressure (MAP, central venous pressure (CVP, cardiac output (CO and pulmonary plateau pressure (Pplat were measured. Ex vivo myocardial function was measured in isolated Langendorff-perfused hearts. Cardiac expression of endothelial vascular cell adhesion molecule (VCAM-1 and edema were measured to evaluate endothelial inflammation and leakage. Results MAP decreased after LPS-treatment and Vt-dependently, both independent of each other and with interaction. MV Vt-dependently increased CVP and Pplat and decreased CO. LPS-induced peritonitis decreased myocardial function ex vivo but MV attenuated systolic dysfunction Vt-dependently. Cardiac endothelial VCAM-1 expression was increased by LPS treatment independent of MV. Cardiac edema was lowered Vt-dependently by MV, particularly after LPS, and correlated inversely with systolic myocardial function parameters ex vivo. Conclusion MV attenuated LPS-induced systolic myocardial dysfunction in a Vt-dependent manner. This was associated with a reduction in cardiac edema following a lower transmural coronary venous outflow pressure during LPS-induced coronary inflammation.

  2. Seasonal variability of tidal and non-tidal currents off Beypore, SW coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    DineshKumar, P.K.; Srinivas, K.; AnilKumar, N.

    Analyses of current meter records generated in the coastal waters off Beypore (11 degrees 10 minutes S; 75 degrees 48 minutes E) on the southwest coast of India have been made to understand the tidal and non-tidal variability during premonsoon...

  3. Flocculation and floc break-up related to tidally induced turbulent shear in a low-turbidity, microtidal estuary

    DEFF Research Database (Denmark)

    Markussen, Thor Nygaard; Andersen, Thorbjørn Joest

    2014-01-01

    Flocculation and floc break-up dynamics were studied in two field campaigns with calm winds in the northernmost part of the Danish Wadden Sea. The studies were carried out using a LISST-100C together with CTD-instruments and a current meter. A quasi-Lagrangian profiling method was used to assess...... flocculation and floc break-up dynamics in the lower part of the water column in the period around slack water. These dynamics were confirmed in the Eulerian deployments and were reoccurring in every tidal cycle. The dynamics were mostly governed by changes in turbulent shear. Strong microflocs with a lower...... mean threshold diameter of 50–60 μm present at high turbulent shear flocculated to form fragile macroflocs with sizes of several hundred microns and mean diameters above 80 μm around slack water periods. A hysteresis in floc break-up and flocculation was found at high water slack (HWS), as flocs formed...

  4. Molecular and structural analyses of a novel temperature stress-induced lipocalin from wheat and Arabidopsis.

    Science.gov (United States)

    Frenette Charron, Jean Benoit; Breton, Ghislain; Badawi, Mohamed; Sarhan, Fathey

    2002-04-24

    Two cDNAs corresponding to a novel lipocalin were identified from wheat and Arabidopsis. The two cDNAs designated Tatil for Triticum aestivum L. temperature-induced lipocalin and Attil for Arabidopsis thaliana temperature-induced lipocalin encode polypeptides of 190 and 186 amino acids respectively. Structure analyses indicated the presence of the three structurally conserved regions that characterize lipocalins. Sequence analyses revealed that this novel class of plant lipocalin shares homology with three evolutionarily related lipocalins: the mammalian apolipoprotein D (ApoD), the bacterial lipocalin and the insect Lazarillo. The comparison of the putative tertiary structures of both the human ApoD and the wheat TaTIL suggest that the two proteins differ in membrane attachment and ligand interaction. Northern analyses demonstrated that Tatil and Attil transcripts are upregulated during cold acclimation and heat-shock treatment. The putative functions of this novel class of plant lipocalins during temperature stresses are discussed.

  5. Tidal Evolution of Asteroidal Binaries. Ruled by Viscosity. Ignorant of Rigidity

    CERN Document Server

    Efroimsky, Michael

    2015-01-01

    The rate of tidal evolution of asteroidal binaries is defined by the dynamical Love numbers divided by quality factors. Common is the (often illegitimate) approximation of the dynamical Love numbers with their static counterparts. As the static Love numbers are, approximately, proportional to the inverse rigidity, this renders a popular fallacy that the tidal evolution rate is determined by the product of the rigidity by the quality factor: $\\,k_l/Q\\propto 1/(\\mu Q)\\,$. In reality, the dynamical Love numbers depend on the tidal frequency and all rheological parameters of the tidally perturbed body (not just rigidity). We demonstrate that in asteroidal binaries the rigidity of their components plays virtually no role in tidal friction and tidal lagging, and thereby has almost no influence on the intensity of tidal interactions (tidal torques, tidal dissipation, tidally induced changes of the orbit). A key quantity that determines the tidal evolution is a product of the effective viscosity $\\,\\eta\\,$ by the tid...

  6. Tidal triggering of earthquakes

    OpenAIRE

    Heaton, Thomas H.

    1982-01-01

    Analysis of the tidal stress tensor at the time of moderate to large earthquakes strongly suggests that shallow (< 30 km) larger magnitude oblique-slip and dip-slip earthquakes are triggered by tidal stresses. No corresponding triggering effect is seen for shallow strike-slip earthquakes or for any type of intermediate or deep focus earthquakes which have been studied. Tidal triggering is also discussed from the viewpoint of the ‘dilatancy-diffusion’ model. Specifically, the model as usually ...

  7. Analysis of 19-year tidal data

    Institute of Scientific and Technical Information of China (English)

    黄祖珂; 陈宗镛; 司鸿业; 叶琳

    1997-01-01

    19-year tidal data of the 3 stations, Huludao, Qinhuangdao and Kanmen, have totally been analysed, and the amplitudes and phases of 472 tidal constituents have been calculated with a resolution of Δ≥ 0.002 2 /h. Based on the draconitic tide, the anomalistic tide and pole tide obtained, the ultra-long-period variations of the mean sea level have been predicted. The annual tidal analysis of 19-year data at the above-mentioned stations and at Tanggu, Longkou has been carried out. The stability of the annual tidal analysis has been investigated with regard to the astronomical factors, the nonlinear effects and the variations of sea-bottom topography.

  8. The origin of type-I profiles in cluster lenticulars: An interplay between ram pressure stripping and tidally-induced spiral migration

    CERN Document Server

    Clarke, Adam J; Roškar, Rok; Quinn, and Tom

    2016-01-01

    Using $N$-body+SPH simulations of galaxies falling into a cluster, we study the evolution of their radial density profiles. When evolved in isolation, galaxies develop a type~II (down-bending) profile. In the cluster, the evolution of the profile depends on the minimum cluster-centric radius the galaxy reaches, which controls the degree of ram pressure stripping. If the galaxy falls to $\\sim 50\\%$ of the virial radius, then the profile remains type~II, but if the galaxy reaches down to $\\sim 20\\%$ of the virial radius the break weakens and the profile becomes more type~I like. The velocity dispersions are only slightly increased in the cluster simulations compared with the isolated galaxy; random motion therefore cannot be responsible for redistributing material sufficiently to cause the change in the profile type. Instead we find that the joint action of radial migration driven by tidally-induced spirals and the outside-in quenching of star formation due to ram pressure stripping alters the density profile. ...

  9. Microarray analyses reveal novel targets of exercise-induced stress resistance in the dorsal raphe nucleus

    Directory of Open Access Journals (Sweden)

    Alice B. Loughridge

    2013-05-01

    Full Text Available Serotonin (5-HT is implicated in the development of stress-related mood disorders in humans. Physical activity reduces the risk of developing stress-related mood disorders, such as depression and anxiety. In rats, 6 weeks of wheel running protects against stress-induced behaviors thought to resemble symptoms of human anxiety and depression. The mechanisms by which exercise confers protection against stress-induced behaviors, however, remain unknown. One way by which exercise could generate stress resistance is by producing plastic changes in gene expression in the dorsal raphe nucleus (DRN. The DRN has a high concentration of 5-HT neurons and is implicated in stress-related mood disorders. The goal of the current experiment was to identify changes in the expression of genes that could be novel targets of exercise-induced stress resistance in the DRN. Adult, male F344 rats were allowed voluntary access to running wheels for 6 weeks; exposed to inescapable stress or no stress; and sacrificed immediately and 2 hours after stressor termination. Laser capture microdissection selectively sampled the DRN. mRNA expression was measured using the whole genome Affymetrix microarray. Comprehensive data analyses of gene expression included differential gene expression, log fold change (LFC contrast analyses with False Discovery Rate correction, KEGG and Wiki Web Gestalt pathway enrichment analyses, and Weighted Gene Correlational Network Analysis (WGCNA. Our results suggest that physically active rats exposed to stress modulate expression of twice the number of genes, and display a more rapid and strongly coordinated response, than sedentary rats. Bioinformatics analyses revealed several potential targets of stress resistance including genes that are related to immune processes, tryptophan metabolism, and circadian/diurnal rhythms.

  10. Biogeomorphology of tidal landforms: physical and biological processes shaping the tidal landscape

    Science.gov (United States)

    Marani, M.; D'Alpaos, A.; Da Lio, C.

    2011-12-01

    The equilibrium states and transient dynamics of tidal landforms are the result of many concurring physical and biological forcings, such as tidal range, wind climate, sediment supply, vegetation and microphytobenthos development, and rates of relative sea level rise (RSLR). A 0D model of the coupled elevation-vegetation dynamics is used to explore the relative role of the physical and biological factors shaping these systems. We find that salt marshes exposed to large tidal ranges are more stable, and therefore more resilient to increasing rates of RSLR, than marshes subjected to low tidal ranges and that subtidal platforms in macrotidal systems are less exposed to wind-induced erosion processes than their counterparts in systems with smaller tidal fluctuations. Notably, we find that vegetation crucially affects both the equilibrium marsh elevation, through dissipation of wind waves and organic accumulation, and marsh resilience to accelerations in RSLR rates, important differences being associated with different vegetation types. Furthermore, our results show that the existence and stability of equilibrium states fundamentally depend on the local wind and tidal regime, even within the same tidal system. Finally, we propose a modelling framework to study how biological evolution lead to the emergence of tidal landforms as we know them.

  11. Non-linear motions of Australian geodetic stations induced by non-tidal ocean loading and the passage of tropical cyclones

    Science.gov (United States)

    Mémin, A.; Watson, C.; Haigh, I. D.; MacPherson, L.; Tregoning, P.

    2014-10-01

    We investigate daily and sub-daily non-tidal oceanic and atmospheric loading (NTOAL) in the Australian region and put an upper bound on potential site motion examining the effects of tropical cyclone Yasi that crossed the Australian coast in January/February 2011. The dynamic nature of the ocean is important, particularly for northern Australia where the long-term scatter due to daily and sub-daily oceanic changes increases by 20-55 % compared to that estimated using the inverted barometer (IB) assumption. Correcting the daily Global Positioning System (GPS) time series for NTOAL employing either a dynamic ocean model or the IB assumption leads to a reduction of up to 52 % in the weighted scatter of daily coordinate estimates. Differences between the approaches are obscured by seasonal variations in the GPS precision along the northern coast. Two compensating signals during the cyclone require modelling at high spatial and temporal resolution: uplift induced by the atmospheric depression, and subsidence induced by storm surge. The latter dominates (135 %) the combined net effect that reaches a maximum of 14 mm, and 10 mm near the closest GPS site TOW2. Here, 96 % of the displacement is reached within 15 h due to the rapid transit of cyclones and the quasi-linear nature of the coastline. Consequently, estimating sub-daily NTOAL is necessary to properly account for such a signal that can be 3.5 times larger than its daily-averaged value. We were unable to detect the deformation signal in 2-hourly GPS processing and show that seasonal noise in the Austral summer dominates and precludes GPS detection of the cyclone-related subsidence.

  12. Tidal river dynamics

    NARCIS (Netherlands)

    Hoitink, A.J.F.; Jay, D.A.

    2016-01-01

    Tidal rivers are a vital and little studied nexus between physical oceanography and hydrology. It is only in the last few decades that substantial research efforts have been focused on the interactions of river discharge with tidal waves and storm surges into regions beyond the limit of salinity

  13. Cosmic Tidal Reconstruction

    CERN Document Server

    Zhu, Hong-Ming; Yu, Yu; Er, Xinzhong; Chen, Xuelei

    2015-01-01

    The gravitational coupling of a long wavelength tidal field with small scale density fluctuations leads to anisotropic distortions of the locally measured small scale matter correlation function. Since the local correlation function is statistically isotropic in the absence of such tidal interactions, the tidal distortions can be used to reconstruct the long wavelength tidal field and large scale density field in analogy with the cosmic microwave background lensing reconstruction. In this paper we present in detail a formalism for the cosmic tidal reconstruction and test the reconstruction in numerical simulations. We find that the density field on large scales can be reconstructed with good accuracy and the cross correlation coefficient between the reconstructed density field and the original density field is greater than 0.9 on large scales ($k\\lesssim0.1h/\\mathrm{Mpc}$). This is useful in the 21cm intensity mapping survey, where the long wavelength radial modes are lost due to foreground subtraction proces...

  14. Low-Order Modelling of Blade-Induced Turbulence for RANS Actuator Disk Computations of Wind and Tidal Turbines

    CERN Document Server

    Nishino, Takafumi

    2012-01-01

    Modelling of turbine blade-induced turbulence (BIT) is discussed within the framework of three-dimensional Reynolds-averaged Navier-Stokes (RANS) actuator disk computations. We first propose a generic (baseline) BIT model, which is applied only to the actuator disk surface, does not include any model coefficients (other than those used in the original RANS turbulence model) and is expected to be valid in the limiting case where BIT is fully isotropic and in energy equilibrium. The baseline model is then combined with correction functions applied to the region behind the disk to account for the effect of rotor tip vortices causing a mismatch of Reynolds shear stress between short- and long-time averaged flow fields. Results are compared with wake measurements of a two-bladed wind turbine model of Medici and Alfredsson [Wind Energy, Vol. 9, 2006, pp. 219-236] to demonstrate the capability of the new model.

  15. Underwater sediment analyses by laser induced breakdown spectroscopy and calibration procedure for fluctuating plasma parameters

    Science.gov (United States)

    Lazic, V.; Colao, F.; Fantoni, R.; Spizzichino, V.; Jovićević, S.

    2007-01-01

    Laser Induced Breakdown Spectroscopy (LIBS) was applied on sediments directly under water. The aim of the research was to develop a method for measuring the sediment elemental composition, including minor elements, which could be implemented in-situ. The plasma was generated by a double-pulse, Q-Switched Nd:YAG laser operated at 1064 nm. For signal detection, both ICCD and non-gated, compact detectors were used. The major difficulties in underwater sediment analyses are related to the natural and laser induced surface roughness, and to the sample softness. The latter is responsible for the formation of particle clouds above the surface, which scatter both the laser and plasma radiation, and often results in breakdown formation above the analyzed surface. In such cases, a broad sonoluminescence emission from water, formed during the gas bubble collapse was sometimes registered. Under optimized experimental conditions, even by using a non-gated detector and single shot acquisition, it was possible to detect several minor sediment constituents, such as titanium, barium, manganese and others. A crude estimation of the Limit of Detection (LODs) for these elements was performed by underwater measurements on certified soils/sediments. Due to strong shot-to-shot fluctuations in the plasma temperature, well correlated calibration curves, aimed for quantitative analyses, could only be obtained after applying an appropriate data processing procedure. The latter selects automatically only the spectra characterized by similar plasma parameters, which are related to their continuum spectral distribution. Application of such a procedure improves the measurement accuracy also in other surroundings and on samples different from the ones analyzed here.

  16. Investigation on Tidal Components in GPS Coordinates

    Science.gov (United States)

    Araszkiewicz, Andrzej; Bogusz, Janusz; Figurski, Mariusz

    2009-01-01

    This paper presents analyses on the GPS coordinates from sub-diurnal solutions of EPN data provided by Warsaw Military University of Technology. The aim of this research is to investigate the way the tidal models used in Bernese software (solid Earth and ocean tides as well) fit to the individual conditions of EPN stations. The 1-hour solution technique of GPS data processing was utilized to obtain coordinates of above 70 EPN stations. Additionally several Polish permanent sites with clearly seen oscillations were examined. This processing technique allowed us to recognize diurnal and sub-diurnal residual oscillations which could be next utilized for validation of the tidal models.

  17. Turbidity maximum formation in a well-mixed macrotidal estuary: The role of tidal pumping

    NARCIS (Netherlands)

    Yu, Q.; Wang, Y.; Gao, J.; Gao, S.; Flemming, B.

    2014-01-01

    Traditionally, vertical circulation (induced by gravity circulation and tidal straining), tidal pumping, and resuspension are suggested as the major processes for the formation and maintenance of the estuarine turbidity maximum (ETM). Due to strong mixing, tidal pumping is considered as the dominati

  18. Limits to Tidal Power

    Science.gov (United States)

    Garrett, C.

    2008-12-01

    Ocean tides have been proposed as a source of renewable energy, though the maximum available power may be shown to be only a fraction of the present dissipation rate of 3.5 TW, which is small compared with global insolation (nearly 105 TW), wind dissipation (103 TW), and even human power usage of 15 TW. Nonetheless, tidal power could be a useful contributor in some locations. Traditional use of tidal power, involving the trapping of water behind a barrage at high tide, can produce an average power proportional to the area of the headpond and the square of the tidal range; the power density is approximately 6 W per square meter for a tidal range of 10 m. Capital costs and fears of environmental damage have put barrage schemes in disfavor, with interest turning to the exploitation of strong tidal currents, using turbines in a manner similar to wind turbines. There is a limit to the available power, however, as adding turbines reduces the flow, ultimately reducing the power. For sinusoidal forcing of flow in a channel connecting two large open basins, the maximum available power may be shown to be given approximately by 0.2ρ g a Q_max, where ρ is the water density, g gravity, a the amplitude of the tidal sea level difference along the channel, and Q_max is the maximum volume flux in the natural state. The same formula applies if the channel is the entrance to a semi-enclosed basin, with a now the amplitude of the external tide. A flow reduction of approximately 40% is typically associated with the maximum power extraction. The power would be reduced if only smaller environmental changes are acceptable, and reduced further by drag on supporting structures, dissipation in turbine wakes, and internal inefficiencies. It can be suggested that the best use of strong, cold, tidal currents is to provide cooling water for nuclear reactors.

  19. Turbidity maximum formation in a well-mixed macrotidal estuary: The role of tidal pumping

    OpenAIRE

    Yu, Q; Wang, Y.; Gao, J.; Gao, S; Flemming, B.

    2014-01-01

    Traditionally, vertical circulation (induced by gravity circulation and tidal straining), tidal pumping, and resuspension are suggested as the major processes for the formation and maintenance of the estuarine turbidity maximum (ETM). Due to strong mixing, tidal pumping is considered as the dominating process in macrotidal estuaries. To analyze field observation data, the classical empirical decomposition method is commonly suggested, but the tidal pumping flux (TPF) based on this method may ...

  20. Cosmic tidal reconstruction

    Science.gov (United States)

    Zhu, Hong-Ming; Pen, Ue-Li; Yu, Yu; Er, Xinzhong; Chen, Xuelei

    2016-05-01

    The gravitational coupling of a long-wavelength tidal field with small-scale density fluctuations leads to anisotropic distortions of the locally measured small-scale matter correlation function. Since the local correlation function is known to be statistically isotropic in the absence of such tidal interactions, the tidal distortions can be used to reconstruct the long-wavelength tidal field and large-scale density field in analogy with the cosmic microwave background lensing reconstruction. In this paper we present the theoretical framework of cosmic tidal reconstruction and test the reconstruction in numerical simulations. We find that the density field on large scales can be reconstructed with good accuracy and the cross-correlation coefficient between the reconstructed density field and the original density field is greater than 0.9 on large scales (k ≲0.1 h /Mpc ), with the filter scale ˜1.25 Mpc /h . This is useful in the 21 cm intensity mapping survey, where the long-wavelength radial modes are lost due to a foreground subtraction process.

  1. Tidal alignment of galaxies

    CERN Document Server

    Blazek, Jonathan; Seljak, Uroš

    2015-01-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between ...

  2. Platelets Enhance Endothelial Adhesiveness in High Tidal Volume Ventilation

    OpenAIRE

    Yiming, Maimaiti T.; Lederer, David J.; Sun, Li; Huertas, Alice; Issekutz, Andrew C.; Bhattacharya, Sunita

    2008-01-01

    Although platelets induce lung inflammation, leading to acute lung injury (ALI), the extent of platelet–endothelial cell (EC) interactions remains poorly understood. Here, in a ventilation-stress model of lung inflammation, we show that platelet–EC interactions are important. We obtained freshly isolated lung endothelial cells (FLECs) from isolated, blood-perfused rat lungs exposed to ventilation at low tidal volume (LV) or stress-inducing high tidal volume (HV). Immunofluorescence and immuno...

  3. Analyses of susceptibility to radiation-induced tumors: Prkdc, a candidate modifier of lymphomas

    International Nuclear Information System (INIS)

    BALB/cHeA (BALB/c) mice are susceptible to radiation-induced lymphomas, while STS/A (STS) mice are resistant. To analyze the difference in susceptibility between these two strains of mice, we have performed 3 independent studies: 1) mapping of apoptosis susceptibility gene Rapopl (chromosome 16) and identification of Prkdc as a candidate modifier of apoptosis as well as lymphomas, 2) analysis of congenic lines for Lyr, a gene responsible for the lymphoma resistance of STS mice on chromosome 4, 3) genetic analyses of lymphoma susceptibility using a backcross [(BALB/c x STS)F1 x STS]. Analysis of Rapopl congenic lines indicated a minor contribution of the STS allele at the Rapopl (Prkdc) locus to the lymphoma resistance of STS mice. On the other hand, homozygous STS alleles at Lyr had a substantial, but less potent, effect on radiation lymphomagenesis. Furthermore, there was no single marker where the potent resistance of the STS mice was achieved with the homozygous STS alleles. These results suggest potential involvement of another loci in the resistance of STS mice. (author)

  4. Laser Induced Breakdown Spectroscopy machine for online ash analyses in coal

    International Nuclear Information System (INIS)

    Presently, online coal ash content monitoring is performed by PGNAA (Prompt Gamma Neutron Activation Analyses) machines. Laser Detect Systems has developed an online mineral analysis system using Laser Induced Breakdown Spectroscopy (LIBS). The main advantages of the system are that it is without a radioactive source, compact (1.5 m x 0.8 m x 1.3 m), comparatively light (250 kg) and easy to install. The main disadvantage is that a LIBS system analyzes surface chemistry of the mineral exclusively and not the volume. To prove the LIBS machine analytical ability for coal ash content evaluation, a trial was arranged at Optimum Colliery (South Africa). The LIBS machine was installed in line with a PGNAA machine and laboratory data served as a referee in the final assessment for analytical accuracy. The trial was carried out over a four month period. This paper presents the successful trial results achieved for accurate (at least +/- 0.5% mean absolute error) online coal ash content monitoring

  5. A numerical study of local variations in tidal regime of Tagus estuary, Portugal.

    Directory of Open Access Journals (Sweden)

    João Miguel Dias

    Full Text Available Tidal dynamics of shallow estuaries and lagoons is a complex matter that has attracted the attention of a large number of researchers over the last few decades. The main purpose of the present work is to study the intricate tidal dynamics of the Tagus estuary, which states as the largest estuary of the Iberian Peninsula and one of the most important wetlands in Portugal and Europe. Tagus has large areas of low depth and a remarkable geomorphology, both determining the complex propagation of tidal waves along the estuary of unknown manner. A non-linear two-dimensional vertically integrated hydrodynamic model was considered to be adequate to simulate its hydrodynamics and an application developed from the SIMSYS2D model was applied to study the tidal propagation along the estuary. The implementation and calibration of this model revealed its accuracy to predict tidal properties along the entire system. Several model runs enabled the analysis of the local variations in tidal dynamics, through the interpretation of amplitude and phase patterns of the main tidal constituents, tidal asymmetry, tidal ellipses, form factor and tidal dissipation. Results show that Tagus estuary tidal dynamics is extremely dependent on an estuarine resonance mode for the semi-diurnal constituents that induce important tidal characteristics. Besides, the estuarine coastline features and topography determines the changes in tidal propagation along the estuary, which therefore result essentially from a balance between convergence/divergence and friction and advection effects, besides the resonance effects.

  6. Coastal inlets and tidal basins

    NARCIS (Netherlands)

    De Vriend, H.J.; Dronkers, J.; Stive, M.J.F.; Van Dongeren, A.; Wang, J.H.

    2002-01-01

    lecture note: Tidal inlets and their associated basins (lagoons) are a common feature of lowland coasts all around the world. A significant part ofthe world's coastlines is formed by barrier island coasts, and most other tidal coasts are interrupted by estuaries and lagoon inlets. These tidal system

  7. High tidal volume mechanical ventilation-induced lung injury in rats is greater after acid instillation than after sepsis-induced acute lung injury, but does not increase systemic inflammation: an experimental study

    Directory of Open Access Journals (Sweden)

    Kuiper Jan

    2011-12-01

    Full Text Available Abstract Background To examine whether acute lung injury from direct and indirect origins differ in susceptibility to ventilator-induced lung injury (VILI and resultant systemic inflammatory responses. Methods Rats were challenged by acid instillation or 24 h of sepsis induced by cecal ligation and puncture, followed by mechanical ventilation (MV with either a low tidal volume (Vt of 6 mL/kg and 5 cm H2O positive end-expiratory pressure (PEEP; LVt acid, LVt sepsis or with a high Vt of 15 mL/kg and no PEEP (HVt acid, HVt sepsis. Rats sacrificed immediately after acid instillation and non-ventilated septic animals served as controls. Hemodynamic and respiratory variables were monitored. After 4 h, lung wet to dry (W/D weight ratios, histological lung injury and plasma mediator concentrations were measured. Results Oxygenation and lung compliance decreased after acid instillation as compared to sepsis. Additionally, W/D weight ratios and histological lung injury scores increased after acid instillation as compared to sepsis. MV increased W/D weight ratio and lung injury score, however this effect was mainly attributable to HVt ventilation after acid instillation. Similarly, effects of HVt on oxygenation were only observed after acid instillation. HVt during sepsis did not further affect oxygenation, compliance, W/D weight ratio or lung injury score. Plasma interleukin-6 and tumour necrosis factor-α concentrations were increased after acid instillation as compared to sepsis, but plasma intercellular adhesion molecule-1 concentration increased during sepsis only. In contrast to lung injury parameters, no additional effects of HVt MV after acid instillation on plasma mediator concentrations were observed. Conclusions During MV more severe lung injury develops after acid instillation as compared to sepsis. HVt causes VILI after acid instillation, but not during sepsis. However, this differential effect was not observed in the systemic release of

  8. Mean water level setup/setdown in the inlet-lagoon system induced by tidal action-a case study of Xincun Inlet, Hainan Island in China

    Institute of Scientific and Technical Information of China (English)

    GONG Wenping; SHEN Jian; WANG Daoru

    2008-01-01

    With the tides propagating from the open sea to the lagoon, the mean water level (MWL) in the inlet and lagoon becomes different from that at the open sea, and a setup/setdown is generated. The change of MWL (setup/setdown) in the system imposes a great impact on regulating the development of tidal marshes, on determining the long-term water level for harbor maintenance, on the planning for the water front development with the flood control for the possible inundation, and on the interpretation of the historical sea level change when using tidal marsh peat deposits in the lagoon as the indicator for open sea' s sea level. In this ease study on the mechanisms which control the setup/setdown in Xincun Inlet, Hainan in China, the 2-D barotropic mode of Eulerian - Lagrangian CIRCulation (ELCIRC) model was utilized. After model calibration and verification, a series of numerical experiments were conducted to examine the effects of bottom friction and advection terms, wetting and drying of intertidal areas, bathymetry and boundary conditions on the setup/setdown in the system. The modeling results show that setup occurs over the inlet and lagoon areas with an order of one tenth of the tide range at the entrance. The larger the bottom friction is, a larger setup is generated.Without the advection term, the setup is reduced due to a decrease of water level gradient to compensate for the disappearance of the advection term. Even without overtides, a setup can still be developed in the system. Sea level rise and dredging in the inlet and tidal channel can cause a decrease of setup in the system, whereas shoaling of the system can increase the setup. The uniqueness of the Xincun Inlet with respect to MWL change is that there is no evident setdown in the inlet, which can be attributed to the complex geometry and bathymetry associated with the inlet system.

  9. Analysing chemical-induced changes in macroinvertebrate communities in aquatic mesocosm experiments: a comparison of methods

    NARCIS (Netherlands)

    Szöcs, E.; Brink, van den P.J.; Lagadic, L.; Caquet, T.; Roucaute, M.; Auber, A.; Bayona, Y.; Liess, M.; Ebke, P.; Ippolito, A.; Braak, ter C.J.F.; Brock, T.C.M.; Schäfer, R.B.

    2015-01-01

    Mesocosm experiments that study the ecological impact of chemicals are often analysed using the multivariate method ‘Principal Response Curves’ (PRCs). Recently, the extension of generalised linear models (GLMs) to multivariate data was introduced as a tool to analyse community data in ecology. More

  10. Relativistic tidal disruption events

    Directory of Open Access Journals (Sweden)

    Levan A.

    2012-12-01

    Full Text Available In March 2011 Swift detected an extremely luminous and long-lived outburst from the nucleus of an otherwise quiescent, low luminosity (LMC-like galaxy. Named Swift J1644+57, its combination of high-energy luminosity (1048 ergs s−1 at peak, rapid X-ray variability (factors of >100 on timescales of 100 seconds and luminous, rising radio emission suggested that we were witnessing the birth of a moderately relativistic jet (Γ ∼ 2 − 5, created when a star is tidally disrupted by the supermassive black hole in the centre of the galaxy. A second event, Swift J2058+0516, detected two months later, with broadly similar properties lends further weight to this interpretation. Taken together this suggests that a fraction of tidal disruption events do indeed create relativistic outflows, demonstrates their detectability, and also implies that low mass galaxies can host massive black holes. Here, I briefly outline the observational properties of these relativistic tidal flares observed last year, and their evolution over the first year since their discovery.

  11. Constraining neutron star tidal Love numbers with gravitational wave detectors

    OpenAIRE

    Flanagan, Eanna E.; Hinderer, Tanja

    2007-01-01

    Ground-based gravitational wave detectors may be able to constrain the nuclear equation of state using the early, low frequency portion of the signal of detected neutron star - neutron star inspirals. In this early adiabatic regime, the influence of a neutron star's internal structure on the phase of the waveform depends only on a single parameter lambda of the star related to its tidal Love number, namely the ratio of the induced quadrupole moment to the perturbing tidal gravitational field....

  12. Real-time images of tidal recruitment using lung ultrasound

    OpenAIRE

    Tusman, Gerardo; Acosta, Cecilia M.; Nicola, Marco; Esperatti, Mariano; Bohm, Stephan H.; Suarez-Sipmann, Fernando

    2015-01-01

    Background Ventilator-induced lung injury is a form of mechanical damage leading to a pulmonary inflammatory response related to the use of mechanical ventilation enhanced by the presence of atelectasis. One proposed mechanism of this injury is the repetitive opening and closing of collapsed alveoli and small airways within these atelectatic areas—a phenomenon called tidal recruitment. The presence of tidal recruitment is difficult to detect, even with high-resolution images of the lungs like...

  13. ANALYSES OF CHROMOSOME ABERRATIONS IN LYMPHOCYTES AND BONE MARROW CELLS INDUCED BY RADIATION OR BENZENE

    Institute of Scientific and Technical Information of China (English)

    张鸿源; 王兰金; 等

    1995-01-01

    The chromosomoe and chromatid type aberration can be induced by benzene and the dicentric and ring ones were not observed in vitro experiment but observed in vivo one.In vitro experiment a good linear reression can be given between benzene concentrations and total aberration cells while power regression for radiation dose.The chromosome aberrations induced by benzene combined with radiation in rabbit blood lymphocytes are higher than in bone marryow cells.

  14. Tidal deformability of dark matter clumps

    CERN Document Server

    Mendes, Raissa F P

    2016-01-01

    We analyze the tidal deformability of a clump of dark matter particles, modelled by the collisionless Boltzmann equation. We adopt a wave-mechanical approach to the problem, in which the dynamical equations are approximated by a set of Schr\\"{o}dinger-Poisson equations, within the limit that the effective de Broglie wavelength is comparable to the spatial variation scale of the particle distribution. We argue that such a treatment allows for a smaller number of coupled differential equations and more accessible perturbative analyses, while keeping the description within the dynamical timescale relatively accurate. Moreover, it provides an approximate mapping between perturbed boson star configurations and dynamical dark matter clumps. We present an analysis of the tidal deformability of a minimally-coupled boson star to illustrate this (approximate) correspondence.

  15. Tidal Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    Stelzenmuller, Nickolas [Univ of Washington; Aliseda, Alberto [Univ of Washington; Palodichuk, Michael [Univ of Washington; Polagye, Brian [Univ of Washington; Thomson, James [Univ of Washington; Chime, Arshiya [Univ of Washington; Malte, Philip [Univ of washington

    2014-03-31

    This technical report contains results on the following topics: 1) Testing and analysis of sub-scale hydro-kinetic turbines in a flume, including the design and fabrication of the instrumented turbines. 2) Field measurements and analysis of the tidal energy resource and at a site in northern Puget Sound, that is being examined for turbine installation. 3) Conceptual design and performance analysis of hydro-kinetic turbines operating at high blockage ratio, for use for power generation and flow control in open channel flows.

  16. Tidal Friction and Tidal Lagging. Applicability Limitations of a Popular Formula for the Tidal Torque

    OpenAIRE

    Efroimsky, Michael; Makarov, Valeri V.

    2012-01-01

    Tidal torques play a key role in rotational dynamics of celestial bodies. They govern these bodies' tidal despinning, and also participate in the subtle process of entrapment of these bodies into spin-orbit resonances. This makes tidal torques directly relevant to the studies of habitability of planets and their moons. Our work begins with an explanation of how friction and lagging should be built into the theory of bodily tides. Although much of this material can be found in various publicat...

  17. Pion-Induced Fission of 209Bi and 119Sn:. Measurements, Calculations, Analyses and Comparison

    Science.gov (United States)

    Rana, Mukhtar Ahmed; Sher, Gul; Manzoor, Shahid; Shehzad, M. I.

    Cross-sections for the π--induced fission of 209Bi and 119Sn have been measured using the most sensitive CR-39 solid-state nuclear track detector. In experiments, target-detector stacks were exposed to negative pions of energy 500, 672, 1068, and 1665 MeV at the Brookhaven National Laboratory, USA. An important aspect of the present paper is the comparison of pion-induced fission fragment spectra of above mentioned nuclei with the spontaneous fission fragment spectra of 252Cf. This comparison is made in terms of fission fragment track lengths in the CR-39 detectors. Measurement results are compared with calculations of Monte Carlo and statistical weight functions methods using the computer code CEM95. Agreement between measurements and calculations is fairly good for 209Bi target nuclei whereas it is indigent for the case of 119Sn. The possibilities of the trustworthy calculations, using the computer code CEM95, comparable with measurements of pion-induced fission in intermediate and heavy nuclei are explored by employing various systematics available in the code. Energy dependence of pion-induced fission in 119Sn and 209Bi is analyzed employing a newly defined parameter geometric-size-normalized fission cross-section (χfg). It is found that the collective nuclear excitations, which may lead to fission, become more probable for both 209Bi and 119Sn nuclei with increasing energy of negative pions from 500 to 1665 MeV.

  18. Analyses on Radiation Effects in Solid Amino Acids Induced by Low Energy Fe~+ Ion Beams

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Radiation effects in Solid samples of L(+)-cysteine and L(+)-cysteine hydroehloride monohydrate induced by 110 keV Fe~+ion implantation were characterized with FTIR, ESR,HPLC and ESI-FTMS.It was validated that solid samples of the irradiated amino acids were damaged to a certain extent,and some new groups or molecular products formed.

  19. Gene expression array analyses predict increased proto-oncogene expression in MMTV induced mammary tumors.

    Science.gov (United States)

    Popken-Harris, Pamela; Kirchhof, Nicole; Harrison, Ben; Harris, Lester F

    2006-08-01

    Exogenous infection by milk-borne mouse mammary tumor viruses (MMTV) typically induce mouse mammary tumors in genetically susceptible mice at a rate of 90-95% by 1 year of age. In contrast to other transforming retroviruses, MMTV acts as an insertional mutagen and under the influence of steroid hormones induces oncogenic transformation after insertion into the host genome. As these events correspond with increases in adjacent proto-oncogene transcription, we used expression array profiling to determine which commonly associated MMTV insertion site proto-oncogenes were transcriptionally active in MMTV induced mouse mammary tumors. To verify our gene expression array results we developed real-time quantitative RT-PCR assays for the common MMTV insertion site genes found in RIII/Sa mice (int-1/wnt-1, int-2/fgf-3, int-3/Notch 4, and fgf8/AIGF) as well as two genes that were consistently up regulated (CCND1, and MAT-8) and two genes that were consistently down regulated (FN1 and MAT-8) in the MMTV induced tumors as compared to normal mammary gland. Finally, each tumor was also examined histopathologically. Our expression array findings support a model whereby just one or a few common MMTV insertions into the host genome sets up a dominant cascade of events that leave a characteristic molecular signature.

  20. Silting in the Lower Courses of Tidal Sluices in China

    Institute of Scientific and Technical Information of China (English)

    张金善; 黄建维; 杨红

    2004-01-01

    Serious sediment deposition often occurs after the construction of tidal sluices in small or medium-sized tidal muddy estuaries, so desilting or dredging is needed to meet the demands of flood discharge, saltwater retaining, and navigation in those areas. In this paper, the problem of sedimeut deposition induced by construction of tidal sluices is analyzed.Different problems of silting near tidal sluices for different types of estuaries are summed up, at the same time, corresponding methods are given to solve these problems, and a few successful examples are also given. The idea of comprehensive regulation and utilization of estuaries is put forward, and some proposals for solution of sediment deposition in this kind of estuaries are made.

  1. Melphalan-induced DNA damage in p53+/- and wild type mice analysed by the comet assay

    International Nuclear Information System (INIS)

    Melphalan is an alkylating substance used as a therapeutic agent; its mutagenicity is related to its ability to produce monoadducts and to form DNA cross-links. The alkaline comet assay is a useful test for the detection of DNA lesions. However, cross-links are not easily detected under standard conditions. Recently, modifications to the test have been introduced to measure cross-links by evaluating the reduction in induced DNA migration. In this work, the standard comet assay and an assay modified by prolonging the electrophoresis time have been applied to evaluate DNA lesions induced by single, 4 or 26 weekly oral administrations of melphalan to p53+/- knockout and to isotype parental mice. Cells were analysed from the liver, bone marrow, peripheral blood and the distal intestine. Moreover, a further protocol in which the presence of cross-links was inferred by the reduction in X-ray-induced DNA migration was applied to bone marrow cells and the sensitivity of the different methods was compared. The majority of groups examined by the standard protocol showed no difference compared to controls, while the modified protocol (prolonged electrophoresis time) could detect a retarded DNA migration in cells from all the organs analysed with the exception of bone marrow cells. Only the protocol based on X-ray in vitro irradiation showed the presence of melphalan-induced cross-links in bone marrow cells exposed to 2 mg/kg for 4 weeks, demonstrating that this was the most sensitive approach for detecting this type of lesion. DNA lesions were evident in all the organs analysed. However, results suggest that the kinetics of cross-link repair could be different in bone marrow cells compared to other organs tested. After comparison between genotype-matched treated and control groups, a significant effect was shown more frequently in p53+/- than in wild type groups

  2. Numerical analyses of pressure fluctuations induced by interblade vortices in a model Francis turbine

    Institute of Scientific and Technical Information of China (English)

    左志钢; 刘树红; 刘德民; 覃大清; 吴玉林

    2015-01-01

    Interblade vortices can greatly influence the stable operations of Francis turbines. As visible interblade vortices are essentially cavitating flows, i.e., the ones to cause interblade vortex cavitations, an unsteady simulation with a method using the RNG k-εturbulence model and the Zwart-Gerber-Belamri (ZGB) cavitation model is carried out to predict the pressure fluctuations induced. Modifications of the turbulence viscosity are made to improve the resolutions. The interblade vortices of two different appearances are observed from the numerical results, namely, the columnar and streamwise vortices, as is consistent with the experimental results. The pressure fluctuations of different frequencies are found to be induced by the interblade vortices on incipient and developed interblade vortex lines, respectively, on the Hill diagram of the model runner’s parameters. From the centrifugal Rayleigh instability criterion, it follows that the columnar interblade vortices are stable and the streamwise interblade vortices are unstable in the model Francis turbine.

  3. Three-dimensional numerical simulation for tide and tidal current in the Beibu Gulf

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By means of three-dimensional POM model, which computes the eddy viscosity coefficient based on two-order turbulent closed model, the tide and tidal current in the Beibu Gulf are simulated with fine grid. In the computed region, six islands are considered and the bottom friction coefficients are taken to be various values from the difference of sea region. Acquired tidal harmonic constants are compared with that of 81 tidal observatories. The absolute mean error of K1 constituent amplitude is 4.6cm and of the lag is 9°. The absolute mean error of O1 constituent amplitude is 5.6 cm and of the lag is 7°. The absolute mean error of M2 constituent amplitude is 6.2 cm and of the lag is 15°. The tide,tidalcurrent, residual water level and tide-induced residual current, as well as the vertial distribution of horizontal velocity in this sea region are analysed by the simulated results.

  4. Ocean tidal signals in observatory and satellite magnetic measurements

    DEFF Research Database (Denmark)

    Maus, S.; Kuvshinov, A.

    2004-01-01

    Ocean flow moves sea water through the Earth's magnetic field, inducing electric fields, currents and secondary magnetic fields. These motionally induced magnetic fields have a potential for the remote sensing of ocean flow variability. A first goal must be to gain a better understanding...... of magnetic field generation by tidal ocean flow. We predict the motionally induced magnetic fields for the six major tidal constituents and compare their amplitudes with the spectra of night time observatory and satellite magnetic measurements for the Indian Ocean. The magnetic variations at the solar S2, K1......, and P1 periods turn out to be dominated by unrelated external fields. In contrast, observed lunar M2 and N2 tidal signals are in fair agreement with predictions from motional induction. The lunar diurnal O1 signal, visible at some observatories, could be caused by ocean flow but disagrees in amplitude...

  5. Numerical analyses of a water pool under loadings caused by a condensation induced water hammer

    Energy Technology Data Exchange (ETDEWEB)

    Timperi, A.; Paettikangas, T.; Calonius, K.; Tuunanen, J.; Poikolainen, J.; Saarenheimo, A. [VTT Industrial Systems (Finland)

    2004-03-01

    Three-dimensional simulations of a rapidly condensing steam bubble in a water pool have been performed by using the commercial computational fluid dynamics (CFD) code Star-CD. The condensing bubble was modelled by using a mass sink in a single-phase calculation. The pressure load on the wall of the pool was determined and transferred to the structural analyses code ABAQUS. The analyses were done for a test pool at Lappeenranta University of Technology. The structural integrity of the pool during steam experiments was investigated by assuming as a test load the rapid condensation of a steam bubble with a diameter of 20 cm. The mass sink for modelling the collapse of the bubble was deter-mined from the potential theory of incompressible fluid. The rapid condensation of the bubble within 25 ms initiated a strong condensation water hammer. The maximum amplitude of the pressure load on the pool wall was approximately 300 kPa. The loads caused by the high compression waves lasted only about 0.4 ms. The loadings caused by larger bubbles or more rapid collapse could not be calculated with the present method. (au)

  6. On the Development of a Model for Flood-Tidal Deltas and the Hydraulic Efficiency of Associated Tidal Inlets

    Science.gov (United States)

    Borrelli, M.; Smith, T. L.; Giese, G. S.

    2014-12-01

    A highly energetic, rapidly changing system provides the opportunity to study the potential for linking flood-tidal deltas and tidal inlets in order to predict possible future inlet scenarios. These subtidal and intertidal sedimentary deposits are formed by flood-tidal currents and modified by ebb-tidal currents and as such can elucidate past and present hydraulic conditions. Further, within the proposed conceptual model the evolution of these features can lend insight into future system and inlet development. An ongoing study documented a feedback mechanism linking the primary flood-tidal delta with the migration of the tidal inlet in the study area on Cape Cod, Massachusetts USA. This was based on field surveys (n = 10) of intertidal bedforms, a tidal current velocity survey, and 2 dimensional analyses of aerial photographs from 1938 to the present (n = 32). Three-dimensional analysis of the flood-tidal delta and inlet was conducted using bathymetry from a 2014 vessel-based survey using Phase-Measuring Sidescan Sonar, coupled with bathymetric Lidar from 2007 and 2010. A conceptual model for this and similar systems is being developed. As seen in the study area material entrained in the longshore sediment transport system becomes incorporated into the swash platform. As a result more sediment is introduced into the harbor during flood tides increasing the size of the flood-tidal delta. If the increase in size reduces the hydraulic efficiency of the ebb-tidal flow a feedback mechanism can result. Ebb-tidal flow is restricted, channels become narrower and deeper, and this channelization leads to an increase in shallower areas in the harbor, which further increases sediment transport during flood-tidal flow. If the cycle continues the system becomes too hydraulically inefficient and a correction occurs, that can be gradual or rapid, either of which has implications for system evolution and/or management. This preliminary model was developed from field observations in

  7. Compositional and micro-scratch analyses of laser induced colored surface of titanium

    Science.gov (United States)

    Akman, Erhan; Cerkezoglu, Ecem

    2016-09-01

    Laser marking of metallic surface is a very important application for industry. It is revealed that controlled oxide layer generation above the treated surface leads to colored appearance of metals with interference effect. The oxide layer control is provided with laser and process parameters. In this study, different colors of the Grade 2 titanium samples have been obtained by varying the laser scanning speed. Chromaticity coordinates of the different color surface have been calculated from the reflectance spectrum of the samples. Compositional analyses have been performed using X-ray photoelectron spectroscopy and X-ray diffraction methods. To examine the mechanical properties of the surface, micro-scratch test has been applied to all the colored surfaces. Although delamination has been observed between two laser scanning speed as 950 mm/s and 450 mm/s, it can be said that the adhesion between the titanium substrate and the oxide coating is good.

  8. Facies architecture of heterolithic tidal deposits : The Holocene Holland Tidal Basin

    OpenAIRE

    Donselaar, M.E.; Geel, C.R.

    2007-01-01

    The size, shape and spatial position of lithofacies types (or facies architecture) in a tidal estuarine basin are complex and therefore difficult to model. The tidal currents in the basin concentrate sand-sized sediment in a branching pattern of tidal channels and fringing tidal flats. Away from the sandy tidal flats the sediment gradually changes to mud-dominated heterolithic deposits and clay. In this paper the facies analysis of a tidal estuarine basin, the Holocene Holland Tidal Basin (HH...

  9. Transcriptomic analyses of space-induced rice mutants with enhanced susceptibility to rice blast

    Science.gov (United States)

    Cheng, Zhenlong; Liu, Ming; Zhang, Meng; Hang, Xiaoming; Lei, Cailin; Sun, Yeqing

    Mutagenic factors of the space environment influence organisms in different aspects. To elucidate the transcriptomic effects of space flight, a space flight-induced rice mutant, 972-4, and its on-ground control, 972ck, were inoculated with rice blast pathogens. Compared to the control, the mutant exhibited reduced resistance to the rice blast pathogen CH45. Microarray technique was employed to analyze affected genes and revealed that 481 genes were expressed at higher levels in the mutant strain and 188 genes were expressed at higher levels in the control strain under normal growth conditions, indicating that transcriptomic changes of rice seeds are induced by the space environment. After inoculation with the rice blast pathogen CH45, however, 2680 genes were differentially expressed in 972ck and 1863 genes were differentially expressed in 972-4. In addition, disease evaluation indicated that the control strain 972ck is more resistant to the rice blast pathogen CH45 than mutant strain 972-4. In addition, genes in both strains that were co-regulated after blast inoculation account for only 36.8% and 53.3% of the genes expressed in 972ck and 972-4, respectively. A large percentage of blast-regulated genes were not consistently expressed in 972-4 and 972ck, and the mutant and control strains exhibit different gene expression patterns after blast inoculation. Interestingly, 84 genes constitutively expressed higher in 972ck were up-regulated by blast inoculation, and 105 genes that were expressed at constitutively higher levels in 972-4 were down-regulated by blast inoculation. Of the differentially expressed, 7 encoded genes associated with pathogen resistance. Taken together, our results suggest that gene expression patterns are different between a space flight-induced rice mutant and its on-ground control, and the differential expression of resistance genes may be a potential mechanism that modulates the resistance of 972-4 to rice blast. Our results also suggest

  10. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis.

    Science.gov (United States)

    Dubin, Krista; Callahan, Margaret K; Ren, Boyu; Khanin, Raya; Viale, Agnes; Ling, Lilan; No, Daniel; Gobourne, Asia; Littmann, Eric; Huttenhower, Curtis; Pamer, Eric G; Wolchok, Jedd D

    2016-01-01

    The composition of the intestinal microbiota influences the development of inflammatory disorders. However, associating inflammatory diseases with specific microbial members of the microbiota is challenging, because clinically detectable inflammation and its treatment can alter the microbiota's composition. Immunologic checkpoint blockade with ipilimumab, a monoclonal antibody that blocks cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) signalling, is associated with new-onset, immune-mediated colitis. Here we conduct a prospective study of patients with metastatic melanoma undergoing ipilimumab treatment and correlate the pre-inflammation faecal microbiota and microbiome composition with subsequent colitis development. We demonstrate that increased representation of bacteria belonging to the Bacteroidetes phylum is correlated with resistance to the development of checkpoint-blockade-induced colitis. Furthermore, a paucity of genetic pathways involved in polyamine transport and B vitamin biosynthesis is associated with an increased risk of colitis. Identification of these biomarkers may enable interventions to reduce the risk of inflammatory complications following cancer immunotherapy. PMID:26837003

  11. Application of proton-induced X-ray emission technique to gunshot residue analyses

    Energy Technology Data Exchange (ETDEWEB)

    Sen, P.; Panigrahi, N.; Rao, M.S.; Varier, K.M.; Sen, S.; Mehta, G.K.

    1982-04-01

    The proton-induced X-ray emission (PIXE) technique was applied to the identification and analysis of gunshot residues. Studies were made of the type of bullet and bullet hole identification, firearm discharge element profiles, the effect of various target backings, and hand swabbings. The discussion of the results reviews the sensitivity of the PIXE technique, its nondestructive nature, and its role in determining the distance from the gun to the victim and identifying the type of bullet used and whether a wound was made by a bullet or not. The high sensitivity of the PIXE technique, which is able to analyze samples as small as 0.1 to 1 ng, and its usefulness for detecting a variety of elements should make it particularly useful in firearms residue investigations.

  12. Application of proton-induced X-ray emission technique to gunshot residue analyses

    International Nuclear Information System (INIS)

    The proton-induced X-ray emission (PIXE) technique was applied to the identification and analysis of gunshot residues. Studies were made of the type of bullet and bullet hole identification, firearm discharge element profiles, the effect of various target backings, and hand swabbings. The discussion of the results reviews the sensitivity of the PIXE technique, its nondestructive nature, and its role in determining the distance from the gun to the victim and identifying the type of bullet used and whether a wound was made by a bullet or not. The high sensitivity of the PIXE technique, which is able to analyze samples as small as 0.1 to 1 ng, and its usefulness for detecting a variety of elements should make it particularly useful in firearms residue investigations

  13. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill

    Directory of Open Access Journals (Sweden)

    Ren Peng

    2016-01-01

    Full Text Available In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability.

  14. Field measurements and analyses of environmental vibrations induced by high-speed Maglev.

    Science.gov (United States)

    Li, Guo-Qiang; Wang, Zhi-Lu; Chen, Suwen; Xu, You-Lin

    2016-10-15

    Maglev, offers competitive journey-times compared to the railway and subway systems in markets for which distance between the stations is 100-1600km owing to its high acceleration and speed; however, such systems may have excessive vibration. Field measurements of Maglev train-induced vibrations were therefore performed on the world's first commercial Maglev line in Shanghai, China. Seven test sections along the line were selected according to the operating conditions, covering speeds from 150 to 430km/h. Acceleration responses of bridge pier and nearby ground were measured in three directions and analyzed in both the time and frequency domain. The effects of Maglev train speed on vibrations of the bridge pier and ground were studied in terms of their peak accelerations. Attenuation of ground vibration was investigated up to 30m from the track centerline. Effects of guideway configuration were also analyzed based on the measurements through two different test sections with same train speed of 300km/h. The results showed that peak accelerations exhibited a strong correlation with both train speed and distance off the track. Guideway configuration had a significant effect on transverse vibration, but a weak impact on vertical and longitudinal vibrations of both bridge pier and ground. Statistics indicated that, contrary to the commonly accepted theory and experience, vertical vibration is not always dominant: transverse and longitudinal vibrations should also be considered, particularly near turns in the track. Moreover, measurements of ground vibration induced by traditional high-speed railway train were carried out with the same testing devices in Bengbu in the Anhui Province. Results showed that the Maglev train generates significantly different vibration signatures as compared to the traditional high-speed train. The results obtained from this paper can provide good insights on the impact of Maglev system on the urban environment and the quality of human life

  15. Field measurements and analyses of environmental vibrations induced by high-speed Maglev.

    Science.gov (United States)

    Li, Guo-Qiang; Wang, Zhi-Lu; Chen, Suwen; Xu, You-Lin

    2016-10-15

    Maglev, offers competitive journey-times compared to the railway and subway systems in markets for which distance between the stations is 100-1600km owing to its high acceleration and speed; however, such systems may have excessive vibration. Field measurements of Maglev train-induced vibrations were therefore performed on the world's first commercial Maglev line in Shanghai, China. Seven test sections along the line were selected according to the operating conditions, covering speeds from 150 to 430km/h. Acceleration responses of bridge pier and nearby ground were measured in three directions and analyzed in both the time and frequency domain. The effects of Maglev train speed on vibrations of the bridge pier and ground were studied in terms of their peak accelerations. Attenuation of ground vibration was investigated up to 30m from the track centerline. Effects of guideway configuration were also analyzed based on the measurements through two different test sections with same train speed of 300km/h. The results showed that peak accelerations exhibited a strong correlation with both train speed and distance off the track. Guideway configuration had a significant effect on transverse vibration, but a weak impact on vertical and longitudinal vibrations of both bridge pier and ground. Statistics indicated that, contrary to the commonly accepted theory and experience, vertical vibration is not always dominant: transverse and longitudinal vibrations should also be considered, particularly near turns in the track. Moreover, measurements of ground vibration induced by traditional high-speed railway train were carried out with the same testing devices in Bengbu in the Anhui Province. Results showed that the Maglev train generates significantly different vibration signatures as compared to the traditional high-speed train. The results obtained from this paper can provide good insights on the impact of Maglev system on the urban environment and the quality of human life

  16. Consideration of tidal influences in determining measurement periods when monitoring built-environment radon levels

    Energy Technology Data Exchange (ETDEWEB)

    Crockett, R.G.M.; Phillips, P.S. [Northampton Univ., School of Applied Sciences (United Kingdom); Gillmore, G.K. [Bradford Univ., School of Archaeological, Geographical and Environmental Sciences (United Kingdom); Denman, A.R.; Groves-Kirkby, C.J. [Northampton General Hospital, Medical Physics Dept. (United Kingdom)

    2006-07-01

    Using three hourly-sampling continuous radon monitors, deployed at separate locations in and around the town of Northampton, UK, during the period May 2002 to September 2005, evidence has been identified of tidal influences on built environment radon levels. The data-sets from these deployments, together with additional data-sets collected from a house in Devon, UK, over the period May 1994 to October 1996, and made available by the UK Building Research Establishment, have been analysed using a number of analytical techniques, including a novel cortion technique developed during the investigation. Radon concentration levels in all of the investigated sites exhibit cyclic variation with a period of approximately 14-15 days, equivalent to the spring-tide interval, and lag the corresponding new and full moons by varying periods. The tide/radon lag interval for the two public-sector buildings changes abruptly in September/October, indicating that a significant characteristic of these buildings changes at this time. For domestic properties, the lag is relatively unchanged during the year, but is greater in Devon, in the South-West of England, than in Northampton, in the English East Midlands. These differences are attributed to location relative to coastlines (the South-West experiences greater tidal-loading than the Midlands), underlying geology and rock/soil hydration. Depending on its position within the local 14 to 15-day tidally-induced radon cycle, an individual 7-day radon measurement may yield an erroneous estimate of longer term average levels, up to 46% higher or lower than the average level for one of the reported data-sets. Thus a building with a mean radon concentration below the local Action Level could appear to be unsafe if measured around a tidal-cyclic radon maximum: conversely, a building with a mean radon concentration above the Action Level could appear to be safe when measured around a tidal-cyclic radon minimum. A minimum radon-measurement period

  17. Consideration of tidal influences in determining measurement periods when monitoring built-environment radon levels

    International Nuclear Information System (INIS)

    Using three hourly-sampling continuous radon monitors, deployed at separate locations in and around the town of Northampton, UK, during the period May 2002 to September 2005, evidence has been identified of tidal influences on built environment radon levels. The data-sets from these deployments, together with additional data-sets collected from a house in Devon, UK, over the period May 1994 to October 1996, and made available by the UK Building Research Establishment, have been analysed using a number of analytical techniques, including a novel correlation technique developed during the investigation. Radon concentration levels in all of the investigated sites exhibit cyclic variation with a period of approximately 14-15 days, equivalent to the spring-tide interval, and lag the corresponding new and full moons by varying periods. The tide/radon lag interval for the two public-sector buildings changes abruptly in September/October, indicating that a significant characteristic of these buildings changes at this time. For domestic properties, the lag is relatively unchanged during the year, but is greater in Devon, in the South-West of England, than in Northampton, in the English East Midlands. These differences are attributed to location relative to coastlines (the South-West experiences greater tidal-loading than the Midlands), underlying geology and rock/soil hydration. Depending on its position within the local 14 to 15-day tidally-induced radon cycle, an individual 7-day radon measurement may yield an erroneous estimate of longer term average levels, up to 46% higher or lower than the average level for one of the reported data-sets. Thus a building with a mean radon concentration below the local Action Level could appear to be unsafe if measured around a tidal-cyclic radon maximum: conversely, a building with a mean radon concentration above the Action Level could appear to be safe when measured around a tidal-cyclic radon minimum. A minimum radon

  18. Tidal pumping facilitates dissimilatory nitrate reduction in intertidal marshes

    Science.gov (United States)

    Zheng, Yanling; Hou, Lijun; Liu, Min; Liu, Zhanfei; Li, Xiaofei; Lin, Xianbiao; Yin, Guoyu; Gao, Juan; Yu, Chendi; Wang, Rong; Jiang, Xiaofen

    2016-02-01

    Intertidal marshes are alternately exposed and submerged due to periodic ebb and flood tides. The tidal cycle is important in controlling the biogeochemical processes of these ecosystems. Intertidal sediments are important hotspots of dissimilatory nitrate reduction and interacting nitrogen cycling microorganisms, but the effect of tides on dissimilatory nitrate reduction, including denitrification, anaerobic ammonium oxidation and dissimilatory nitrate reduction to ammonium, remains unexplored in these habitats. Here, we use isotope-tracing and molecular approaches simultaneously to show that both nitrate-reduction activities and associated functional bacterial abundances are enhanced at the sediment-tidal water interface and at the tide-induced groundwater fluctuating layer. This pattern suggests that tidal pumping may sustain dissimilatory nitrate reduction in intertidal zones. The tidal effect is supported further by nutrient profiles, fluctuations in nitrogen components over flood-ebb tidal cycles, and tidal simulation experiments. This study demonstrates the importance of tides in regulating the dynamics of dissimilatory nitrate-reducing pathways and thus provides new insights into the biogeochemical cycles of nitrogen and other elements in intertidal marshes.

  19. LES of Langmuir supercells under constant crosswind tidal forcing

    Science.gov (United States)

    Walker, Rachel; Zhang, Jie; Juha, Mario; Gosch, Chester; Tejada-Martinez, Andres

    2015-11-01

    We report on the impact of a crosswind tidal current on Langmuir supercells (LSCs) in shallow water computed via LES. LSCs consist of parallel counter rotating vortices engulfing the water column in unstratified conditions. These cells have been observed in shallow continental shelf regions of ~15 meters depth during the passage of storms. The cells are aligned roughly in the wind direction and are generated by the interaction of the wind-driven shear current with the Stokes drift velocity induced by surface gravity waves. Without tides, LES reveals that the typical crosswind width of a LSC is ~4 times the water column depth (H). Under a relatively weak crosswind tidal current (weaker than the downwind current), the constant crosswind tidal forcing applied causes a merging of cells leading to cells of width ~8H. The opposite occurs under a crosswind tidal current stronger than the downwind current as the constant crosswind tidal force is able to break up the LSCs giving rise to smaller scale cells with different turbulent structure than that associated with LSC. Statistics of the turbulence during strong and weak crosswind tides will be contrasted and implications of an oscillating crosswind tidal force will be discussed. Support from the US National Science Foundation and the Gulf of Mexico Research Initiative is gratefully acknowledged.

  20. Tidal energy site - Tidal energy site mammal/bird survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A vessel-based line visual transect survey was conducted for birds and marine mammals near the proposed Snohomish County PUD Admiralty Inlet tidal energy site...

  1. Tidal Power Plant Energy Estimation

    OpenAIRE

    Silva–Casarín R.; Hiriart–Le Bert G.; López–González J.

    2010-01-01

    In this paper a methodology is presented which allows a quick and simple means of estimating the potential energy that can be obtained from a tidal power plant. The evaluation is made using a normalised nomograph, which is a function of the area of the tidal basin against the electricity installed capacity to thus obtain the potential energy for any location. The results describe two means of operation, one of "flow tide" and the other "flow–ebb tides", with two tidal basin systems operating:...

  2. The tidal signal in inverted echo-sounder records

    Science.gov (United States)

    Cartwright, D. E.

    1982-06-01

    Four IES records of several months duration from the western equatorial Atlantic are analysed with principal interest in their tidal content. Spectral noise level in the tidal bands is some two orders of magnitude higher than in comparable sea-level records, but the main constituents of both diurnal and semi-diurnal tides stand out with usable coherence with the tidal potential. A mid-ocean record, FLAVIA, gives amplitudes and phases that correspond closely with the surface tide, but three other records in a region of disturbed bathymetry near the continental shelf give amplitudes and phases which differ from the expected surface effect, indicating relatively strong coherent internal tides in the region as well as an evident incoherent tidal signal. Two of the latter records also show second-harmonic distortion, which is characteristic of internal tides, in the present case corresponding to a steeppened forward face of the internal wave. Theory, following the analysis of LONG (1972 Tellus, 24, 88-89), suggests that this form of wave steepening is due to the steady shear in the surface layer. The physical theory of acoustic time-delay in vertical transmission through long internal waves with and without surface elevation is analysed quantitatively. In the region studied a pure internal tide of amplitude 10 m at 200-m depth would produce the observed changes in tidal signal. Wave amplitudes resulting from tidal flow over a 2.4-km high ridge, computed from the linear theory of ZEILON (1912 Kungliga Svenska Vetenskapsakademiens Handligar, 47, 1-45), are only about 1.2 m maximum, but the theory does suggest a likely mechanism for producing coherent internal tidal motion, possibly by invoking the shelf edge.

  3. Exploring the impacts of multiple tidal constituents and varying river flow on long-term, large-scale estuarine morphodynamics by means of a 1-D model

    Science.gov (United States)

    Guo, Leicheng; Wegen, Mick; Wang, Zheng Bing; Roelvink, Dano; He, Qing

    2016-05-01

    Tidal asymmetry is an important mechanism generating tidal residual sediment transport (TRST) in tidal environments. So far, it is known that a number of tidal interactions (e.g., M2-M4 and M2-O1-K1) can induce tidal asymmetry and associated TRST; however, their variability and morphodynamic impacts are insufficiently explored. Inspired by the river and tidal forcing conditions in the Yangtze River Estuary, we explore the morphodynamic development of a 560 km long estuary under the boundary forcing conditions of varyingly combined tidal constituents and river discharges using a schematized 1-D morphodynamic model for long-term (millennial) simulations. We then employ an analytical scheme which integrates sediment transport as a function of flow velocities to decompose the contribution of different tidal interactions on TRST and to explain how the river and tidal interactions control TRST and associated morphodynamics. Model results display varying equilibrium bed profiles. Analytical results suggest that (1) a series of tidal interactions creates multiple tidal asymmetries and associated TRST, (2) river flow modulates tidal asymmetry nonlinearly in space, and (3) more tidal constituents at the sea boundary persistently enhance the seaward TRST through river-tide interactions. It is the combined effects of multiple tidal asymmetries and river-tide interactions that determine the net TRST and consequent morphodynamic development. It thus suggests that tidal harmonics of significant amplitudes need to be considered properly as boundary conditions for long-term, large-scale morphodynamic modeling.

  4. Methods for the Analyses of Inhibitor-Induced Aberrant Multimerization of HIV-1 Integrase

    Science.gov (United States)

    Kessl, Jacques J.; Sharma, Amit; Kvaratskhelia, Mamuka

    2016-01-01

    HIV-1 integrase (IN) is an important therapeutic target as its function is essential for the viral lifecycle. The discovery of multifunctional allosteric IN inhibitors or ALLINIs, which potently impair viral replication by promoting aberrant, higher order IN multimerization as well as inhibit IN interactions with its cellular cofactor, LEDGF/p75, has opened new venues to exploit IN multimerization as a therapeutic target. Furthermore, the recent discovery of multimerization selective IN inhibitors or MINIs, has provided new investigational probes to study the direct effects of aberrant IN multimerization in vitro and in infected cells. Here we describe three complementary methods designed to detect and quantify the effects of these new classes of inhibitors on IN multimerization. These methods include a homogenous time-resolved fluorescence-based assay which allows for measuring EC50 values for the inhibitor-induced aberrant IN multimerization, a dynamic light scattering-based assay which allows for monitoring the formation and sizes of oligomeric IN particles in a time-dependent manner, and a chemical cross-linking-based assay of interacting IN subunits which allows for the determination of IN oligomers in viral particles. PMID:26714710

  5. [Joint Analyses of Na2SO4 Solution by Laser Induced Breakdown Spectroscopy and Raman Spectroscopy].

    Science.gov (United States)

    Guo, Jin-jia; Lu, Yuan; Liu, Chun-hao; Zheng, Rong-er

    2016-01-01

    Spectroscopic sensor is becoming an important issue for the deep-sea exploration due to the advantages of multi-specie, multi-phases and stand-off detection. Different approach have been developing in recent years based on LIBS (Laser Induced Breakdown Spectroscopy) and Raman spectroscopy since Raman-LIBS are complementary techniques with the similar components and the capability of molecular and elementary analysis. In this work, we built a LIBS-Raman system and detected Na2SO4 in aqueous solution to evaluate the potential ocean application. With the same laser, spectrometer and detector, a hybrid of Raman and LIBS system was developed to realize the detection of anions and cations in the seawater. The optics was composed by two parts. Raman channel and LIBS channel, and the signal was collected by a Y type optical fiber bundle. The signal from two channels was separated by imaging on different arrays of the CCD detector. The Raman spectra of SO4(2-) and LIBS spectra of Na was successfully detected simultaneously when the pulse energy was above 3.6 mJ. However, due to the strong bremsstrahlung radiation of LIBS, the signal to noise ratio of Raman was significantly decreased as the laser energy increasing. The results manifested the great potential of Raman-LIBS combination for the underwater detection. PMID:27228778

  6. On luminescence bleaching of tidal channel sediments

    DEFF Research Database (Denmark)

    Fruergaard, Mikkel; Pejrup, Morten; Murray, Andrew S.;

    2015-01-01

    We investigate the processes responsible for bleaching of the quartz OSL signal from tidal channel sediment. Tidal dynamics are expected to play an important role for complete bleaching of tidal sediments. However, no studies have examined the amount of reworking occurring in tidal channels and o...

  7. Paleoecological Perspectives on Tidal Marsh Degradation at Elkhorn Slough, California

    Science.gov (United States)

    Watson, E. B.; Wasson, K.; Woolfolk, A.; van Dyke, E.

    2007-05-01

    Elkhorn Slough is the second largest area of estuarine tidal wetlands in California, and one of the first U.S. estuarine sanctuaries. Region-wide, 90% of historic tidal wetlands have been lost or restricted from tidal flow due to diking for agricultural use, salt pond construction, and development. However, wetland loss at Elkhorn Slough is currently being driven largely by tidal erosion, and the subsequent expansion of tidal channels and shoreline recession. This study reports on the use of paleoecological analyses to support and inform current restoration and conservation activities at Elkhorn Slough. Analyses of three sediment cores for fossil pollen, organic content, accretion rates, and the removal and stratigraphic description of twelve additional cores have established the timing of marsh establishment, current and prehistoric estuarine salinity, wetland plant abundance and distributions, and the relative contributions of mineral and organic sediment to wetland sediment accumulation. By understanding prehistoric processes and conditions and past variability more thoroughly, managers will be able to evaluate conservation, restoration, and management alternatives in a more informed fashion.

  8. MACROSCOPIC ANALYSES OF THE EFFECTS OF HYALURONATES AND CORTICOSTEROIDS ON INDUCED OSTEOARTHRITIS IN RABBITS’ KNEES

    Science.gov (United States)

    Albano, Mauro Batista; Vidigal, Leandro; de Oliveira, Marcello Zaia; Namba, Mario Massatomo; da Silva, João Luiz Vieira; de Assis Pereira Filho, Francisco; Barbosa, Marcio Alves; da Silva, Elias Marcelo Batista

    2015-01-01

    Objective: To evaluate the effects of intra-articular injections of corticosteroids, native hyaluronic acid and branched-chain hyaluronic acid in experimentally-induced osteoarthrosis. Methods: 44 rabbits underwent anterior cruciate ligament resection and were then divided into four groups of eleven. Group 1: one intra-articular injection of saline solution per week, for three weeks; Group 2: three injections (one per week) of native hyaluronic acid; Group 3: three injections (one per week) of branched-chain hyaluronic acid; Group 4: two injections of betamethasone with an interval of three weeks. The cartilage of the tibial plateaus was evaluated macroscopically twelve weeks after surgery. Changes to the joint surface were graded as follows: Grade 0: smooth joint surface without relief changes; Grade 1: rough surface without any depressions; Grade 2: similar to grade 1, but with depressions on the joint surface; and Grade 3: subchondral bone exposure. The statistical analysis consisted of the use of Student's t test, chi-square test and analysis of variance (ANOVA). The significance level used was 5%. Results: A statistical difference was found between the control group and the three study groups 2, 3, 4 in relation to the development and severity of arthrosis. However, there was no difference between the groups regarding the drugs studied. Conclusion: A similar degree of attenuation of the osteoarthrosis process in the rabbits’ knees was found with the use of intra-articular injections of low-molecular-weight and high-molecular-weight glycosaminoglycans, and the corticosteroid betamethasone, compared with placebo. PMID:27022552

  9. On the determination of net bedload transport patters in a natural tidal inlet system (Knudedyb in the Danish Wadden Sea)

    Science.gov (United States)

    Ernstsen, V. B.; Lefebvre, A.; Bartholdy, J.; Bartholomä, A.; Winter, C.

    2012-04-01

    An airborne swath topography survey using a LIDAR (Laser Induced Detection And Ranging or Light Detection And Ranging) system and a ship borne swath bathymetry survey using a multibeam echosounder (MBES) system were carried out within a 100 km2 quadratic section of the natural tidal inlet system Knudedyb in the Danish Wadden Sea. On the basis of the LIDAR data a detailed (0.5 m grid cell size) digital elevation model (DEM) of the dry-lying areas around low water (with the intertidal flats being of primary concern) was generated; whereas the MBES data were used to generate a detailed (also 0.5 m grid cell size) DEM of the tidal inlet main channel. The spatial distribution and characteristics of bedforms in a coastal system potentially yield information on the net bedload transport patterns in the system. The sandy main channel and intertidal flats of the Knudedyb tidal inlet are covered by bedforms. Bedform characterisation using a random field statistical approach (2D spectral analysis, cf. Lefebvre et al. 2011) as well as a discrete approach, in which the geometric variables of individual bedforms are determined (cf. Ernstsen et al. 2010), will be applied to the high-resolution DEMs. Based on these analyses net bedload transport patterns in the Knudedyb tidal inlet system will be determined. The findings will be used to investigate a potential exchange of sand between the main tidal channel and the adjacent intertidal flats. Acknowledgements This work is funded by the Danish Council for Independent Research | Natural Sciences (grant 10-081102) and the German Research Foundation DFG-Research Center / Excellence Cluster "The Ocean in the Earth System".

  10. Enceladus' tidal dissipation revisited

    Science.gov (United States)

    Tobie, Gabriel; Behounkova, Marie; Choblet, Gael; Cadek, Ondrej; Soucek, Ondrej

    2016-10-01

    A series of chemical and physical evidence indicates that the intense activity at Enceladus' South Pole is related to a subsurface salty water reservoir underneath the tectonically active ice shell. The detection of a significant libration implies that this water reservoir is global and that the average ice shell thickness is about 20-25km (Thomas et al. 2016). The interpretation of gravity and topography data further predicts large variations in ice shell thickness, resulting in a shell potentially thinner than 5 km in the South Polar Terrain (SPT) (Cadek et al. 2016). Such an ice shell structure requires a very strong heat source in the interior, with a focusing mechanism at the SPT. Thermal diffusion through the ice shell implies that at least 25-30 GW is lost into space by passive diffusion, implying a very efficient dissipation mechanism in Enceladus' interior to maintain such an ocean/ice configuration thermally stable.In order to determine in which conditions such a large dissipation power may be generated, we model the tidal response of Enceladus including variable ice shell thickness. For the rock core, we consider a wide range of rheological parameters representative of water-saturated porous rock materials. We demonstrate that the thinning toward the South Pole leads to a strong increase in heat production in the ice shell, with a optimal thickness obtained between 1.5 and 3 km, depending on the assumed ice viscosity. Our results imply that the heat production in the ice shell within the SPT may be sufficient to counterbalance the heat loss by diffusion and to power eruption activity. However, outside the SPT, a strong dissipation in the porous core is required to counterbalance the diffusive heat loss. We show that about 20 GW can be generated in the core, for an effective viscosity of 1012 Pa.s, which is comparable to the effective viscosity estimated in water-saturated glacial tills on Earth. We will discuss the implications of this revisited tidal

  11. Tidal Creek Sentinel Habitat Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ecological Research, Assessment and Prediction's Tidal Creeks: Sentinel Habitat Database was developed to support the National Oceanic and Atmospheric...

  12. Sensitivity of growth characteristics of tidal sand ridges and long bed waves to formulations of bed shear stress, sand transport and tidal forcing: A numerical model study

    Science.gov (United States)

    Yuan, Bing; de Swart, Huib E.; Panadès, Carles

    2016-09-01

    Tidal sand ridges and long bed waves are large-scale bedforms that are observed on continental shelves. They differ in their wavelength and in their orientation with respect to the principal direction of tidal currents. Previous studies indicate that tidal sand ridges appear in areas where tidal currents are above 0.5 m s-1, while long bed waves occur in regions where the maximum tidal current velocity is slightly above the critical velocity for sand erosion and the current is elliptical. An idealized nonlinear numerical model was developed to improve the understanding of the initial formation of these bedforms. The model governs the feedbacks between tidally forced depth-averaged currents and the sandy bed on the outer shelf. The effects of different formulations of bed shear stress and sand transport, tidal ellipticity and different tidal constituents on the characteristics of these bedforms (growth rate, wavelength, orientation of the preferred bedforms) during their initial formation were examined systematically. The results show that the formulations for bed shear stress and slope-induced sand transport are not critical for the initial formation of these bedforms. For tidal sand ridges, under rectilinear tidal currents, increasing the critical bed shear stress for sand erosion decreases the growth rate and the wavelength of the preferred bedforms significantly, while the orientation angle slightly decreases. The dependence of the growth rate, wavelength and the orientation of the preferred bedforms on the tidal ellipticity is non-monotonic. A decrease in tidal frequency results in preferred bedforms with larger wavelength and smaller orientation angle, while their growth rate hardly changes. In the case of joint diurnal and semidiurnal tides, or spring-neap tides, the characteristics of the bedforms are determined by the dominant tidal constituent. For long bed waves, the number of anticyclonically/cyclonically oriented bedforms with respect to the principal

  13. Energy extraction from shallow tidal flows

    OpenAIRE

    Giles, J.W.

    2013-01-01

    Over the past decade within the renewable energy sector a strong research and development focus has resulted in the growth of an embryonic tidal stream energy industry. Previous assessments of the tidal stream resource appear to have neglected shallow tidal flows. This resource located in water depths of 10-30m is significant because it is generally more accessible for energy extraction than deeper offshore tidal sites and hence a good location for first generation tidal stream arrays or fenc...

  14. The distribution and tapping tidal energy

    OpenAIRE

    Zygmunt Kowalik

    2004-01-01

    Tidal power along tidal shores has been used for centuries to run small tidal mills. Generating electricity by tapping tidal power proved to be very successful only in the last century through the tidal power plant constructed in 1967 in La Rance, France. This used a large barrier to generate the sea level head necessary for driving turbines. Construction of such plants evolved very slowly because of prohibitive costs and concerns about the environmental impact. Developments in the...

  15. Genetic and molecular analyses of UV radiation-induced mutations in the fem-3 gene of Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, P.S.; De Wilde, D.; Dwarakanath, V.N. [Texas Christian Univ., Fort Worth, TX (United States). Dept. of Biology

    1995-06-01

    The utility of a new target gene (fem-3) is described for investigating the molecular nature of mutagenesis in the nematode Caenorhabditis elegans. As a principal attribute, this system allows for the selection, maintenance and molecular analysis of any type of mutation that disrupts the gene, including deletions. In this study, 86 mutant strains were isolated, of which 79 proved to have mutations in fem-3. Twenty of these originally tested as homozygous inviable. Homozygous inviability was expected, as Stewart and coworkers had previously observed that, unlike in other organisms, most UV radiation-induced mutations in C. elegans are chromosomal rearrangements of deficiencies (Mutat. Res 249, 37-54, 1991). However, additional data, including Southern blot analyses on 49 of the strains, indicated that most of the UV radiation-induced fem-3 mutations were not deficiencies, as originally inferred from their homozygous inviability. Instead, the lethals were most likely ``coincident mutations`` in linked, essential genes that were concomitantly induced. As such, they were lost owing to genetic recombination during stock maintenance. As in mammalian cells, yeast and bacteria, the frequency of coincident mutations was much higher than would be predicted by chance. (Author).

  16. Tidal Power Plant Energy Estimation

    Directory of Open Access Journals (Sweden)

    Silva–Casarín R.

    2010-04-01

    Full Text Available In this paper a methodology is presented which allows a quick and simple means of estimating the potential energy that can be obtained from a tidal power plant. The evaluation is made using a normalised nomograph, which is a function of the area of the tidal basin against the electricity installed capacity to thus obtain the potential energy for any location. The results describe two means of operation, one of "flow tide" and the other "flow–ebb tides", with two tidal basin systems operating: single and double reservoir systems. To obtain the normalised nomograph the numerical results for simulations of several tidal power plants under differing operational conditions over a period of one year. These conditions were established by varying the electricity installed capacity, the hydraulic conditions in "flow tide", "ebb tides" or both and with single or double reservoir systems and using sea level information taken every 15 minutes. To validate the model information from the tidal power plant at Rance, France, was used, which includes data concerning production, electricity installed capacity, turbine characteristics and tidal ranges. A very good correlation was found between the results of the numerical model and those reported in various technical reports.

  17. Harnessing Tidal Energy Using Vertical Axis Tidal Turbine

    Directory of Open Access Journals (Sweden)

    Syed Shah Khalid

    2013-01-01

    Full Text Available An overview of the current design practices in the field of Renewable Energy (RE is presented; also paper delineates the background to the development of unique and novel techniques for power generation using the kinetic energy of tidal streams and other marine currents. Also this study focuses only on vertical axis tidal turbine. Tidal stream devices have been developed as an alternative method of extracting the energy from the tides. This form of tidal power technology poses less threat to the environment and does not face the same limiting factors associated with tidal barrage schemes, therefore making it a more feasible method of electricity production. Large companies are taking interest in this new source of power. There is a rush to research and work with this new energy source. Marine scientists are looking into how much these will affect the environment, while engineers are developing turbines that are harmless for the environment. In addition, the progression of technological advancements tracing several decades of R & D efforts on vertical axis turbines is highlighted.

  18. Quantification of tidal inlet morphodynamics using high-resolution MBES and LiDAR

    DEFF Research Database (Denmark)

    Ernstsen, Verner Brandbyge; Lefebvre, Alice; Fraccascia, Serena;

    -bathymetric surveys using high-resolution red and green Light Detection And Ranging (LiDAR). Detailed digital elevation models with a grid cell size of 1 m x 1 m were generated and analysed geomorphometrically. The analyses reveal a main ebb-directed net sand transport in the main channel; however, due......-order sand transport pathways, transporting sand from the inter-tidal flat to the inlet channel during falling tide due to drainage of the inter-tidal areas. As opposed to this, the orientation and migration direction of isolated swash bars on the inter-tidal flat indicate that during storm events, sand...

  19. Virus-induced gene silencing as a tool for functional analyses in the emerging model plant Aquilegia (columbine, Ranunculaceae

    Directory of Open Access Journals (Sweden)

    Kramer Elena M

    2007-04-01

    Full Text Available Abstract Background The lower eudicot genus Aquilegia, commonly known as columbine, is currently the subject of extensive genetic and genomic research aimed at developing this taxon as a new model for the study of ecology and evolution. The ability to perform functional genetic analyses is a critical component of this development process and ultimately has the potential to provide insight into the genetic basis for the evolution of a wide array of traits that differentiate flowering plants. Aquilegia is of particular interest due to both its recent evolutionary history, which involves a rapid adaptive radiation, and its intermediate phylogenetic position between core eudicot (e.g., Arabidopsis and grass (e.g., Oryza model species. Results Here we demonstrate the effective use of a reverse genetic technique, virus-induced gene silencing (VIGS, to study gene function in this emerging model plant. Using Agrobacterium mediated transfer of tobacco rattle virus (TRV based vectors, we induce silencing of PHYTOENE DESATURASE (AqPDS in Aquilegia vulgaris seedlings, and ANTHOCYANIDIN SYNTHASE (AqANS and the B-class floral organ identity gene PISTILLATA in A. vulgaris flowers. For all of these genes, silencing phenotypes are associated with consistent reduction in endogenous transcript levels. In addition, we show that silencing of AqANS has no effect on overall floral morphology and is therefore a suitable marker for the identification of silenced flowers in dual-locus silencing experiments. Conclusion Our results show that TRV-VIGS in Aquilegia vulgaris allows data to be rapidly obtained and can be reproduced with effective survival and silencing rates. Furthermore, this method can successfully be used to evaluate the function of early-acting developmental genes. In the future, data derived from VIGS analyses will be combined with large-scale sequencing and microarray experiments already underway in order to address both recent and ancient evolutionary

  20. Tidal disruption event demographics

    Science.gov (United States)

    Kochanek, C. S.

    2016-09-01

    We survey the properties of stars destroyed in tidal disruption events (TDEs) as a function of black hole (BH) mass, stellar mass and evolutionary state, star formation history and redshift. For M_{BH} ≲ 10^7 M_{⊙}, the typical TDE is due to a M* ˜ 0.3 M⊙ M-dwarf, although the mass function is relatively flat for M_{ast } ≲ M_{⊙}. The contribution from older main-sequence stars and sub-giants is small but not negligible. From MBH ≃ 107.5-108.5 M⊙, the balance rapidly shifts to higher mass stars and a larger contribution from evolved stars, and is ultimately dominated by evolved stars at higher BH masses. The star formation history has little effect until the rates are dominated by evolved stars. TDE rates should decline very rapidly towards higher redshifts. The volumetric rate of TDEs is very high because the BH mass function diverges for low masses. However, any emission mechanism which is largely Eddington-limited for low BH masses suppresses this divergence in any observed sample and leads to TDE samples dominated by MBH ≃ 106.0-107.5 M⊙ BHs with roughly Eddington peak accretion rates. The typical fall-back time is relatively long, with 16 per cent having tfb plausible if tfb has any relation to the transient rise time. For almost any BH mass function, systematic searches for fainter, faster time-scale TDEs in smaller galaxies, and longer time-scale TDEs in more massive galaxies are likely to be rewarded.

  1. Diurnal tidal variability in the upper mesosphere and lower thermosphere

    Directory of Open Access Journals (Sweden)

    M. E. Hagan

    Full Text Available We explore tropospheric latent heat release as a source of variability of the diurnal tide in the mesosphere and lower thermosphere (MLT in two ways. First, we present analyses of the UARS WINDII horizontal wind data, which reveal signatures of nonmigrating tidal effects as large as 25 m/s during both vernal equinox and boreal winter. These effects are of greater relative importance during the latter season. Complementary global-scale wave model (GSWM results which account for a tropospheric latent heat source generally underestimate the observed nonmigrating tidal effects but capture the seasonal variability that is observed. Second, we pursue a new parameterization scheme to investigate seasonal variability of the migrating diurnal tidal component of the latent heat source with GSWM. These results confirm previously reported seasonal trends, but suggest that the MLT effects may be as much as an order of magnitude larger than earlier predictions.

  2. Measuring tidal breathing parameters using a volumetric vest in neonates with and without lung disease.

    Science.gov (United States)

    Olden, C; Symes, E; Seddon, P

    2010-11-01

    Lung function measurement is difficult in unsedated infants; tidal breathing parameters are a useful non-invasive surrogate, but even these measurements cause disturbance from applying a facemask. We investigated a novel volumetric vest system (FloRight), which measures volume changes of the respiratory system from changes in the magnetic fields induced by current-carrying coils around the entire chest and abdomen. Using a facemask and ultrasonic flowmeter as comparator, we assessed the validity and repeatability of tidal breathing parameters measured by FloRight in 10 healthy newborn infants during natural sleep. We also assessed the effect of a facemask on tidal volume and tidal expiratory flow parameters. To assess the ability of the FloRight system to detect disease, we compared the healthy infants with 11 infants suffering from bronchopulmonary dysplasia. Tidal parameters with the FloRight vest corresponded closely with facemask measurements. Mean difference, mask minus vest, for tidal volume was 0.096 ml (P < 0.05), with limits of agreement +4.5 to -4.3 ml. Coefficient of repeatability was similar for mask and vest measurements. Tidal volume measured by FloRight with mask in place (20.6 ml) was significantly higher than without mask (16.1 ml), but tidal expiratory flow parameters were not altered. FloRight measurements of tidal parameters were markedly different between the two groups of infants, with tidal volume per Kg significantly higher and tidal expiratory flow parameters significantly lower. Our findings suggest that the FloRight system is able to measure tidal breathing parameters accurately, in healthy newborn infants, without prior calibration on the infant. It appears to have at least sufficient sensitivity to detect severe respiratory disease. PMID:20872815

  3. TIDAL LIMITS TO PLANETARY HABITABILITY

    International Nuclear Information System (INIS)

    The habitable zones (HZs) of main-sequence stars have traditionally been defined as the range of orbits that intercept the appropriate amount of stellar flux to permit surface water on a planet. Terrestrial exoplanets discovered to orbit M stars in these zones, which are close-in due to decreased stellar luminosity, may also undergo significant tidal heating. Tidal heating may span a wide range for terrestrial exoplanets and may significantly affect conditions near the surface. For example, if heating rates on an exoplanet are near or greater than that on Io (where tides drive volcanism that resurfaces the planet at least every 1 Myr) and produce similar surface conditions, then the development of life seems unlikely. On the other hand, if the tidal heating rate is less than the minimum to initiate plate tectonics, then CO2 may not be recycled through subduction, leading to a runaway greenhouse that sterilizes the planet. These two cases represent potential boundaries to habitability and are presented along with the range of the traditional HZ for main-sequence, low-mass stars. We propose a revised HZ that incorporates both stellar insolation and tidal heating. We apply these criteria to GJ 581 d and find that it is in the traditional HZ, but its tidal heating alone may be insufficient for plate tectonics.

  4. Tidal dynamics of transiting exoplanets

    Science.gov (United States)

    Fabrycky, Daniel C.

    2011-11-01

    Transits give us the mass, radius, and orbital properties of the planet, all of which inform dynamical theories. Two properties of the hot Jupiters suggest they had a dramatic origin via tidal damping from high eccentricity. First, the tidally circularized planets (in the 1-4 day pile-up) lie along a relation or boundary in the mass-period plane. This observation may implicate a tidal damping process regulated by planetary radius inflation and Roche lobe overflow, early in the planets' lives. Second, the host stars of many planets have spins misaligned from the planets' orbits. This observation was not expected a priori from the conventional disk migration theory, and it was a boon for the alternative theories of planet-planet scattering and Kozai cycles, accompanied by tidal friction, which predicted it. Now we are faced with a curious observation that the misalignment angle depends on the stellar temperature. It may mean that the tide raised on the stars realigns them, the final result being the tidal consumption of hot Jupiters.

  5. Stable states and catastrophic shifts in tidal eco-morphodynamics

    Science.gov (United States)

    Marani, M.; D'Alpaos, A.; Lanzoni, S.; Carniello, L.; Rinaldo, A.

    2007-12-01

    Changes in relative sea level, nutrient and sediment loading, and ecological characteristics expose tidal landforms and ecosystems to responses which may or may not be reversible. On this basis alone predicting the response of tidal geomorphology is important in view of the ecological, cultural and socio-economic importance of endangered tidal environments worldwide. Here we present a point model of the joint evolution of tidal landforms and biota including the dynamics of intertidal vegetation, benthic microbial assemblages, erosional and depositional processes, local and general hydrodynamics, and relative sea-level change. Alternative stable states and punctuated-equilibrium dynamics emerge, characterized by possible sudden transitions of the system, governed by marine transgressions or regressions, vegetation type, disturbances of the benthic biofilm and sediment availability. Multiple equilibria are the result of the interplay of erosion, deposition and biostabilization, highlighting the importance of the coupling between biological and sediment transport processes in determining the evolution of a tidal system as a whole. Hysteretic switches between stable states may arise because of differences in the threshold values of relative sea level rise inducing transitions from vegetated to unvegetated equilibria and viceversa. A similar hysteretic mechanism is also found to link successive periods of increased and decreased sediment availability.

  6. Dynamical modeling of tidal streams

    CERN Document Server

    Bovy, Jo

    2014-01-01

    I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the progenitor orbit, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its 'track') in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of str...

  7. Sediment Dynamics in Shallow Tidal Landscapes: The Role of Wind Waves and Tidal Currents

    Science.gov (United States)

    Carniello, L.; D'Alpaos, A.

    2014-12-01

    A precise description of sediment dynamics (resuspension and re-distribution of sediments) is crucial when investigating the long term evolution of the different morphological entities characterizing tidal landscapes. It has been demonstrated that wind waves are the main responsible for sediment resuspension in shallow micro-tidal lagoons where tidal currents, which produce shear stresses large enough to carry sediments into suspension only within the main channels, are mainly responsible for sediment redistribution. A mathematical model has been developed to describe sediment entrainment, transport and deposition due to the combined effect of tidal currents and wind waves in shallow lagoons considering both cohesive and non-cohesive sediments. The model was calibrated and tested using both in situ point observations and turbidity maps obtained analyzing satellite images. Once calibrated the model can integrate the high temporal resolution of point observations with the high spatial resolution of remote sensing, overcoming the intrinsic limitation of these two types of observations. The model was applied to the specific test case of the Venice lagoon simulating an entire year (2005) which was shown to be a "representative" year for wind and tide characteristics. The time evolution of the computed total bottom shear stresses (BSS) and suspended sediment concentration (SSC) was analyzed on the basis of a "Peaks Over Threshold" method once a critical value for shear stress and turbidity were chosen. The analyses of the numerical results enabled us to demonstrate that resuspension events can be modeled as marked Poisson processes: interarrival time, intensity of peak excesses and duration being exponentially distributed random variable. The probability distributions of the interarrival time of overthreshold exceedances in both BSS and SSC as well as their intensity and duration can be used in long-term morphodynamic studies to generate synthetic series statistically

  8. Tidal asymmetry in a tidal creek with mixed mainly semidiurnal tide, Bushehr Port, Persian Gulf

    Science.gov (United States)

    Hosseini, Seyed Taleb; Chegini, Vahid; Sadrinasab, Masoud; Siadatmousavi, Seyed Mostafa; Yari, Sadegh

    2016-03-01

    This study investigated the tidal asymmetry imposed by both the interaction of principal tides and the higher harmonics generated by distortions within a tidal creek network with mixed mainly semidiurnal tide in the Bushehr Port, Persian Gulf. Since velocity and water-level imposed by principal triad tides K1-O1-M2 are in quadrature, duration asymmetries during a tidal period in this short, shallow inverse estuary should be manifest as skewed velocities. The principal tides produce periodic asymmetries including a strong ebb-dominance and a weak flood-dominance condition during spring and neap tides respectively. The higher harmonics induced by nonlinearities engender a flood-dominance condition where the convergence effects are higher than frictional effects, and an ebbdominance condition where intertidal storage are extended. Since the triad K1-O1-M2 driven asymmetry is not overcome by higher harmonics close to the mouth, the periodic asymmetry dominates within the creek in which higher harmonics reinforce the weak flood-dominance (strong ebb-dominance) condition in the convergent channel (divergent area). Also, the maximum flood and the maximum ebb from all harmonic constituents occurred close to high water slack time during both spring and neap tides in this short creek. Since occational wetting of intertidal areas happened close to the high water (HW) time during spring tide, the water level flooded slowly close to the HW time of the spring tide.

  9. High Concentration Suspensions Under Strong Tidal Flows

    Science.gov (United States)

    Kineke, G. C.; Milligan, T. G.; Heath, K. M.; Law, B. A.

    2006-12-01

    An experiment investigating the influence of high-concentration suspensions of fine sediments (fluid muds) on a quasi-steady flow was carried out in the Petitcodiac River, Moncton, New Brunswick, Canada in August 2006. Concurrent measurements of fluid properties (salinity, temperature, density), suspended-sediment concentration, current velocity and shear were made throughout the water column over portions of several tidal cycles. The Petitcodiac was chosen because of consistently high suspended-sediment concentrations (0.5- >200 g/L) and large tidal range (>4 m) producing strong current velocities (> 1.5 m/s). Thus the Peticodiac serves as an ideal natural flume for examining the behavior of muddy suspensions under both accelerating and decelerating flows. Instrumentation included a profiling package with paired electromagnetic current meters mounted 0.6 m apart, a CTD, and an Optical Backscatterance Sensor with a pump system for in situ calibrations. Approximately 1.5 hours after the passage of the tidal bore and a fully mixed turbulent flow, the water column begins to stratify and a high concentration bottom layer forms persisting through the ensuing ebb. Measured suspended-sediment concentrations reached 286 g/L at the bottom and low shear rates of 0.13 s-1 in the upper water column increased to ~0.5 s-1 through the lutocline 1 m above the bed, and decreased to approximately 0 within the fluid mud. Analysis is in progress and the data set provides an excellent means to test threshold conditions regarding suppression of turbulence by sediment-induced stratification and the carrying capacity of turbulent flows.

  10. A Review on Tidal Triggering of Earthquakes

    Institute of Scientific and Technical Information of China (English)

    Li Jin; Jiang Haikun

    2012-01-01

    Research of tidal triggering of earthquakes in recent years is systematically reviewed, focusing on the relationship between the phases of the moon and seismic activity, earthquakes triggered by tidal forces and its components, based on the large sample statistics to discuss the tidal triggering of an earthquake. The relationship between the phase of the moon and seismic activity is a preliminary study of tidal triggering of earthquakes, and the modulation ratio is a quantitative description of it. Using the resolution of tidal stress to study seismic activity is a way to reveal the relationship between the tides and earthquakes from the mechanics point of view. Large sample statistics is another way to study the relationship between the tidal and earthquake from the view of statistics. In many statistical methods, Schuster's test is used more widely, which takes many factors into account, such as focal mechanism, tidal stress, and statistical tests to quantitatively analyze the tidal triggering effect on earthquakes.

  11. The distribution and tapping tidal energy

    Directory of Open Access Journals (Sweden)

    Zygmunt Kowalik

    2004-09-01

    Full Text Available Tidal power along tidal shores has been used for centuries to run small tidal mills. Generating electricity by tapping tidal power proved to be very successful only in the last century through the tidal power plant constructed in 1967 in La Rance, France. This used a large barrier to generate the sea level head necessary for driving turbines. Construction of such plants evolved very slowly because of prohibitive costs and concerns about the environmental impact. Developments in the construction of small, efficient and inexpensive underwater turbines admit the possibility of small scale operations that will use local tidal currents to bring electricity to remote locations. Since the generation of such electricity is concerned with the tidal energy in local water bodies, it is important to understand the site-specific energy balance, i.e., the energy flowing in through open boundaries, and the energy generated and dissipated within the local domain. The question is how to tap the tidal energy while keeping possible changes in the present tidal regimes to a minimum. The older approach of constructing barrages may still be quite useful in some locations. The basics of such tidal power plants constructed in a small bay are analyzed in order to understand the principal parameter for tidal plant evaluation, i.e., the power produced.     The new approach is to place turbines - devices similar to windmills - in the pathway of tidal currents. Theoretically, the amount of power available by such turbines for electricity generation is proportional to the water density and velocity cubed of the tidal flow. The naturally dissipated tidal power due to bottom friction forces is also proportional to the cube of the velocity. Because of this similarity, the exploitation of tidal energy can be directed to reinvesting the naturally dissipated power into tidal power for the generation of electricity. This approach to tidal power exploitation is better tuned

  12. Tidal acceleration of black holes and superradiance

    OpenAIRE

    Cardoso, Vitor; Pani, Paolo

    2012-01-01

    Tidal effects have long ago locked the Moon in synchronous rotation with the Earth and progressively increase the Earth-Moon distance. This "tidal acceleration" hinges on dissipation. Binaries containing black holes may also be tidally accelerated, dissipation being caused by the event horizon - a flexible, viscous one-way membrane. In fact, this process is known for many years under a different guise: superradiance. In General Relativity, tidal acceleration is obscured by gravitational-wave ...

  13. Viscoelastic Models of Tidally Heated Exomoons

    OpenAIRE

    Dobos, Vera; TURNER, Edwin L

    2015-01-01

    Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life is intensely studied on Solar System moons such as Europa or Enceladus, where the surface ice layer covers tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. For studying the tidally heated surface temperature of ...

  14. Relativistic theory of tidal Love numbers

    OpenAIRE

    Binnington, Taylor; Poisson, Eric

    2009-01-01

    In Newtonian gravitational theory, a tidal Love number relates the mass multipole moment created by tidal forces on a spherical body to the applied tidal field. The Love number is dimensionless, and it encodes information about the body's internal structure. We present a relativistic theory of Love numbers, which applies to compact bodies with strong internal gravities; the theory extends and completes a recent work by Flanagan and Hinderer, which revealed that the tidal Love number of a neut...

  15. Tidal Level Response to Sea-Level Rise in the Yangtze Estuary

    Institute of Scientific and Technical Information of China (English)

    GONG Zheng; ZHANG Chang-kuan; WAN Li-ming; ZUO Jun-cheng

    2012-01-01

    The rise of tidal level in tidal reaches induced by sea-level rise has a large impact on flood control and water supply for the regions around the estuary.This paper focuses on the variations of tidal level response along the tidal reaches in the Yangtze Estuary,as well as the impacts of upstream discharge on tidal level response,due to the sea-level rise of the East China Sea.Based on the Topex/Poseidon altimeter data obtained during the period 1993~2005,a stochastic dynamic analysis was performed and a forecast model was run to predict the sea-level rise of the East China Sea.Two-dimensional hydrodynamic numerical models downscaling from the East China Sea to estuarine areas were implemented to analyze the rise of tidal level along the tidal reaches.In response to the sea-level rise,the tidal wave characteristics change slightly in nearshore areas outside the estuaries,involving the tidal range and the duration of flood and ebb tide.The results show that the rise of tidal level in the tidal reaches due to the sea-level rise has upstream decreasing trends.The step between the stations of Zhangjiagang and Shiyiwei divides the tidal reaches into two parts,in which the tidal level response declines slightly.The rise of tidal level is 1~2.5 mm/a in the upper part,and 4~6 mm/a in the lower part.The stations of Jiangyin and Yanglin,as an example of the upper part and the lower part respectively,are extracted to analyze the impacts of upstream discharge on tidal level response to the sea-level rise.The relation between the rise of tidal level and the upstream discharge can be fitted well with a quadratic function in the upper part.However,the relation is too complicated to be fitted in the lower part because of the tide dominance.For comparison purposes,hourly tidal level observations at the stations of Xuliujing and Yanglin during the period 1993~2009 are adopted.In order to uniform the influence of upstream discharge on tidal level for a certain day each year

  16. Dissecting the calcium-induced differentiation of human primary keratinocytes stem cells by integrative and structural network analyses.

    Directory of Open Access Journals (Sweden)

    Kiana Toufighi

    2015-05-01

    Full Text Available The molecular details underlying the time-dependent assembly of protein complexes in cellular networks, such as those that occur during differentiation, are largely unexplored. Focusing on the calcium-induced differentiation of primary human keratinocytes as a model system for a major cellular reorganization process, we look at the expression of genes whose products are involved in manually-annotated protein complexes. Clustering analyses revealed only moderate co-expression of functionally related proteins during differentiation. However, when we looked at protein complexes, we found that the majority (55% are composed of non-dynamic and dynamic gene products ('di-chromatic', 19% are non-dynamic, and 26% only dynamic. Considering three-dimensional protein structures to predict steric interactions, we found that proteins encoded by dynamic genes frequently interact with a common non-dynamic protein in a mutually exclusive fashion. This suggests that during differentiation, complex assemblies may also change through variation in the abundance of proteins that compete for binding to common proteins as found in some cases for paralogous proteins. Considering the example of the TNF-α/NFκB signaling complex, we suggest that the same core complex can guide signals into diverse context-specific outputs by addition of time specific expressed subunits, while keeping other cellular functions constant. Thus, our analysis provides evidence that complex assembly with stable core components and competition could contribute to cell differentiation.

  17. Dissecting the Calcium-Induced Differentiation of Human Primary Keratinocytes Stem Cells by Integrative and Structural Network Analyses

    Science.gov (United States)

    Toufighi, Kiana; Yang, Jae-Seong; Luis, Nuno Miguel; Aznar Benitah, Salvador; Lehner, Ben; Serrano, Luis; Kiel, Christina

    2015-01-01

    The molecular details underlying the time-dependent assembly of protein complexes in cellular networks, such as those that occur during differentiation, are largely unexplored. Focusing on the calcium-induced differentiation of primary human keratinocytes as a model system for a major cellular reorganization process, we look at the expression of genes whose products are involved in manually-annotated protein complexes. Clustering analyses revealed only moderate co-expression of functionally related proteins during differentiation. However, when we looked at protein complexes, we found that the majority (55%) are composed of non-dynamic and dynamic gene products (‘di-chromatic’), 19% are non-dynamic, and 26% only dynamic. Considering three-dimensional protein structures to predict steric interactions, we found that proteins encoded by dynamic genes frequently interact with a common non-dynamic protein in a mutually exclusive fashion. This suggests that during differentiation, complex assemblies may also change through variation in the abundance of proteins that compete for binding to common proteins as found in some cases for paralogous proteins. Considering the example of the TNF-α/NFκB signaling complex, we suggest that the same core complex can guide signals into diverse context-specific outputs by addition of time specific expressed subunits, while keeping other cellular functions constant. Thus, our analysis provides evidence that complex assembly with stable core components and competition could contribute to cell differentiation. PMID:25946651

  18. Naturally induced secondary radiation in interplanetary space: Preliminary analyses for gamma radiation and radioisotope production from thermal neutron activation

    Science.gov (United States)

    Plaza-Rosado, Heriberto

    1991-01-01

    Thermal neutron activation analyses were carried out for various space systems components to determine gamma radiation dose rates and food radiation contamination levels. The space systems components selected were those for which previous radiation studies existed. These include manned space vehicle radiation shielding, liquid hydrogen propellant tanks for a Mars mission, and a food supply used as space vehicle radiation shielding. The computational method used is based on the fast neutron distribution generated by the BRYNTRN and HZETRN transport codes for Galactic Cosmic Rays (GCR) at solar minimum conditions and intense solar flares in space systems components. The gamma dose rates for soft tissue are calculated for water and aluminum space vehicle slab shields considering volumetric source self-attenuation and exponential buildup factors. In the case of the lunar habitat with regolith shielding, a completely exposed spherical habitat was assumed for mathematical convenience and conservative calculations. Activation analysis of the food supply used as radiation shielding is presented for four selected nutrients: potassium, calcium, sodium, and phosphorus. Radioactive isotopes that could represent a health hazard if ingested are identified and their concentrations are identified. For nutrients soluble in water, it was found that all induced radioactivity was below the accepted maximum permissible concentrations.

  19. Wind-induced Resuspension Events in the Venice Lagoon: evidence from the Past and Trends for the Future.

    Science.gov (United States)

    D'Alpaos, A.; Carniello, L.; D'Alpaos, L.; Rinaldo, A.

    2015-12-01

    Wind waves promote the erosion and degradation of ubiquitous geomorphic features of tidal landscapes, such as subtidal platforms, tidal flats and salt marshes. Both in the vertical and in the horizontal planes, wind-wave induced erosion is one of the chief processes controlling the morphodynamic evolution of shallow tidal basins. Wind-wave induced bottom shear stresses can promote the disruption of the polymeric microphytobenthic biofilm and lead to the erosion of tidal-flat surfaces and to the increase in suspended sediment concentration which in turn affects the stability of intertidal ecosystems. As an example, the Venice Lagoon has experienced strong erosion processes in the last two centuries, which progressively deepened the lagoonal bottoms, promoted the loss of fine cohesive sediments through the inlets after storms, and lead to the loss of extensive salt-marsh areas. Towards the goal of developing a synthetic theoretical framework to represent wind wave-induced resuspension events and account for their erosional effects on the long-term biomorphodynamic evolution of tidal systems, we employed a full-fledged finite element model accounting for the role of wind waves and tidal currents on the hydrodynamic circulation in shallow basins. Our analyses of the spatial and temporal characteristics of wind-induced erosion events for the actual configuration of the Venice Lagoon and for a few configurations of the last two centuries, allow us to reconstruct erosive trends typical of past Venice Lagoon configurations and to provide predictions on future scenarios for the Venice Lagoon.

  20. Heartbeat Stars and the Ringing of Tidal Pulsations

    Directory of Open Access Journals (Sweden)

    Hambleton Kelly

    2015-01-01

    Full Text Available With the advent of high precision photometry from satellites such as Kepler and CoRoT, a whole new layer of interesting and astounding astronomical objects has been revealed: heartbeat stars are an example of such objects. Heartbeat stars are eccentric ellipsoidal variables that undergo strong tidal interactions when the stars are almost in contact at the time of closest approach. These interactions deform of the stars and cause a notable light curve variation in the form of a tidal pulse. A subset of these objects (~20% show prominent tidally induced pulsations: pulsations forced by the binary orbit. We now have a fully functional code that models binary star features (using PHOEBE and stellar pulsations simultaneously, enabling a complete and accurate heartbeat star model to be determined. In this paper we show the results of our new code, which uses emcee, a variant of mcmc, to generate a full set of stellar parameters. We further highlight the interesting features of KIC 8164262, including its tidally induced pulsations and resonantly locked pulsations.

  1. General relativistic tidal heating for Moller pseudotensor

    CERN Document Server

    So, Lau Loi

    2015-01-01

    Thorne elucidated that the relativistic tidal heating is the same as the Newtonian theory. Moreover, Thorne also claimed that the tidal heating is independent of how one localizes gravitational energy and is unambiguously given by a certain formula. Purdue and Favata calculated the tidal heating for different classical pseudotensors including Moller and obtained the results all matched with the Newtonian perspective. After re-examined this Moller pseudotensor, we find that there does not exist any tidal heating value. Thus we claim that the relativistic tidal heating is pseudotensor independent under the condition that if the peusdotensor is a Freud typed superpotential.

  2. Maine Tidal Power Initiative: Environmental Impact Protocols For Tidal Power

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Michael Leroy [Univ. of Maine, Orono, ME; Zydlewski, Gayle Barbin [Univ. of Maine, Orono, ME; Xue, Huijie [Univ. of Maine, Orono, ME; Johnson, Teresa R. [Univ. of Maine, Orono, ME

    2014-02-02

    The Maine Tidal Power Initiative (MTPI), an interdisciplinary group of engineers, biologists, oceanographers, and social scientists, has been conducting research to evaluate tidal energy resources and better understand the potential effects and impacts of marine hydro-kinetic (MHK) development on the environment and local community. Project efforts include: 1) resource assessment, 2) development of initial device design parameters using scale model tests, 3) baseline environmental studies and monitoring, and 4) human and community responses. This work included in-situ measurement of the environmental and social response to the pre-commercial Turbine Generator Unit (TGU®) developed by Ocean Renewable Power Company (ORPC) as well as considering the path forward for smaller community scale projects.

  3. Tidal power generation. A sustainable energy source?

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, A.A. [Department of Electrical and Computer Engineering, Dalhousie University, Halifax, Nova Scotia (Canada)

    2004-07-01

    The Annapolis Tidal Generating Station is the first and only active tidal generating station in North America. Located in Eastern Canada on the Bay of Fundy, the station takes advantage of the world's highest tides (up to 9 m) to generate 32 GWh of electricity per year. Structures used to direct tidal water flows for electricity generation influence biological activity and alter water levels in tidal basins. Economic and ecological sustainability factors are discussed for three tidal power stations: Annapolis, La Rance, and Kislaya Guba. At Annapolis, improvements in construction and operation have reduced ecological disruption compared to previous tidal power plants. Annapolis has been in continuous operation for 17 years, producing clean, emission-free electricity. The station demonstrates that tidal generation is both feasible and sustainable.

  4. Spatially resolved synchrotron-induced X-ray fluorescence analyses of metal point drawings and their mysterious inscriptions

    Energy Technology Data Exchange (ETDEWEB)

    Reiche, Ina [Staatliche Museen zu Berlin (Germany)]. E-mail: ina.reiche@culture.gouv.fr; Radtke, Martin [Bundesanstalt fuer Materialforschung und-pruefung (BAM), Berlin (Germany); Berger, Achim [Bundesanstalt fuer Materialforschung und-pruefung (BAM), Berlin (Germany); Goerner, Wolf [Bundesanstalt fuer Materialforschung und-pruefung (BAM), Berlin (Germany); Ketelsen, Thomas [Staatliche Kunstsammlungen Dresden, Kupferstich-Kabinett, Dresden (Germany); Merchel, Silke [Bundesanstalt fuer Materialforschung und-pruefung (BAM), Berlin (Germany); Riederer, Josef [Staatliche Museen zu Berlin (Germany); Riesemeier, Heinrich [Bundesanstalt fuer Materialforschung und-pruefung (BAM), Berlin (Germany); Roth, Michael [Staatliche Museen zu Berlin (Germany)

    2004-10-08

    Synchrotron-induced X-ray fluorescence (Sy-XRF) analysis was used to study the chemical composition of precious Renaissance silverpoint drawings. Drawings by famous artists such as Albrecht Duerer (1471-1528) and Jan van Eyck (approximately 1395-1441) must be investigated non-destructively. Moreover, extremely sensitive synchrotron- or accelerator-based techniques are needed since only small quantities of silver are deposited on the paper. New criteria for attributing these works to a particular artist could be established based on the analysis of the chemical composition of the metal points used. We illustrate how analysis can give new art historical information by means of two case studies. Two particular drawings, one of Albrecht Duerer, showing a profile portrait of his closest friend, 'Willibald Pirckheimer' (1503), and a second one attributed to Jan van Eyck, showing a 'Portrait of an elderly man', often named 'Niccolo Albergati', are the object of intense art historical controversy. Both drawings show inscriptions next to the figures. Analyses by Sy-XRF could reveal the same kind of silverpoint for the Pirckheimer portrait and its mysterious Greek inscription, contrary to the drawing by Van Eyck where at least three different metal points were applied. Two different types of silver marks were found in this portrait. Silver containing gold marks were detected in the inscriptions and over-subscriptions. This is the first evidence of the use of gold points for metal point drawings in the Middle Ages.

  5. NUMERICAL SIMULATION OF THE TIDAL MOTION AND SUSPENDED SEDIMENT TRANSPORT IN THE RADIAL SANDBANK AREA OF THE SOUTHERN YELLOW SEA

    Institute of Scientific and Technical Information of China (English)

    SHI Jiu-xin; LE Ken-tang; YIN Bao-shu; ZHANG Ren-shun; WU De-an

    2004-01-01

    A coupled 2-D numerical model for hydrodynamic-sediment transport was established and applied to simulate the tides,tidal currents and sediment movement in the submarine Radial Sandbank area of the southern Yellow Sea.With a high-resolution topography dataset used in the model,the simulation reproduced a fine-structured current field and erosion-siltation distribution.The modeled results show that,in the area of Radial Sandbanks,reversing tidal current and seabed erosion occurs within troughs while tidal current with more rotary feature and deposition occurs above sandbanks,which indicates the tidal-induced formation of the Radial Sandbanks.During a tidal period,associating with the variation of current speed,erosion alternates with siltation.The seabed deformation depends on the relative strength of erosion and siltation in a tidal period.

  6. Survey of Morphological Changes on Tidal Flats in Estuaries

    Science.gov (United States)

    Albers, Thorsten; von Lieberman, Nicole

    2010-05-01

    Tidal flat areas in estuaries are affected by strong morphodynamics. Changes of sedimentation and erosion occur on very different time and spatial scales. These changes challenge the responsible authorities due to the high importance of sufficient navigation channel depths and the ecological importance of those unique zones. The Hamburg University of Technology in cooperation with the Hamburg Port Authority runs broad field measurements on different tidal flat areas in the Elbe estuary. The results provide a fundamental data set, which improves the knowledge about morphodynamic processes and verifies mathematical descriptions. The field measurements focus on two investigation areas: One area is located in the mouth of the estuary and represents a marine tidal flat. The other one is located near the city of Hamburg and typifies a limnic tidal flat area. For more than 3 years water levels, waves, current parameters and suspended sediment concentrations are being recorded continuously and in a high resolution at different positions. Altogether, three measuring positions are operated at any time. To observe the consequences of the morphodynamic processes, the bathymetry of the investigation areas is determined with a multi-beam echo sounder (MBES) in frequent intervals. The main goal of the research project is to improve the knowledge about morphodynamic processes on tidal flats. Derived from the field data certain patterns of erosion, sediment transport and sedimentation could be observed depending on tidal currents, waves and large scale weather conditions. Seasonal effects are analysed as well as the influence of extreme events. A comparison of the processes observed on marine and limnic areas is done, whereas the latter additionally is affected by upstream water discharge. For example, on the marine tidal flats the sediment transport capacity was analysed: Extreme events cause a short peak, which does not result in significant bathymetric changes. Larger

  7. Effects of Magnetic Braking and Tidal Friction on Hot Jupiters

    CERN Document Server

    Barker, A J

    2009-01-01

    Tidal friction is thought to be important in determining the long-term spin-orbit evolution of short-period extrasolar planetary systems. Using a simple model of the orbit-averaged effects of tidal friction Eggleton, Kiseleva & Hut (1998), we analyse the effects of the inclusion of stellar magnetic braking on the evolution of such systems. A phase-plane analysis of a simplified system of equations, including only the stellar tide together with a model of the braking torque proposed by Verbunt & Zwaan (1981), is presented. The inclusion of stellar magnetic braking is found to be extremely important in determining the secular evolution of such systems, and its neglect results in a very different orbital history. We then show the results of numerical integrations of the full tidal evolution equations, using the misaligned spin and orbit of the XO-3 system as an example, to study the accuracy of simple timescale estimates of tidal evolution. We find that it is essential to consider coupled evolution of th...

  8. Dynamical modeling of tidal streams

    Energy Technology Data Exchange (ETDEWEB)

    Bovy, Jo, E-mail: bovy@ias.edu [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)

    2014-11-01

    I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its 'track') in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of 'orphan' streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.

  9. Numerical calculation of tidal current with UTOPIA scheme for advection and application to Osaka Bay

    Science.gov (United States)

    Komoda, Jun; Matsuyama, Masaji

    UTOPIA scheme was applied to advection term for the numerical calculation of tide and tidal current to reproduce the strong tidal current realistically. Numerical model is constructed by boundary-fitted coordinate method vertically using Arakawa A grid in space. The new method is designed to suppress a numerical oscillation usually induced by Arakawa A grid. UTOPIA scheme was confirmed to be suitable to express a strong current around complicated topography. This model was applied to the tidal calculation for M2 constituent in Osaka Bay with two narrow straits, i.e., Akashi and Tomogashima straits. The tidal currents obtained in this model agree with them observed at monitoring stations, and the four eddies in the bay were also reproduced as the residual currents, i.e., tide induced transient eddy (TITE). The generation, growth and lifetime of the eddies also were investigated.

  10. ARRAY OPTIMIZATION FOR TIDAL ENERGY EXTRACTION IN A TIDAL CHANNEL – A NUMERICAL MODELING ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea

    2014-04-18

    This paper presents an application of a hydrodynamic model to simulate tidal energy extraction in a tidal dominated estuary in the Pacific Northwest coast. A series of numerical experiments were carried out to simulate tidal energy extraction with different turbine array configurations, including location, spacing and array size. Preliminary model results suggest that array optimization for tidal energy extraction in a real-world site is a very complex process that requires consideration of multiple factors. Numerical models can be used effectively to assist turbine siting and array arrangement in a tidal turbine farm for tidal energy extraction.

  11. North American tidal power prospects

    Science.gov (United States)

    Wayne, W. W., Jr.

    1981-07-01

    Prospects for North American tidal power electrical generation are reviewed. Studies by the US Army Corps of Engineers of 90 possible generation schemes in Cobscook Bay, ME, indicated that maximum power generation rather than dependable capacity was the most economic method. Construction cost estimates for 15 MW bulb units in a single effect mode from basin to the sea are provided; five projects were considered ranging from 110-160 MW. Additional tidal power installations are examined for: Half-Moon Cove, ME (12 MW, 18 ft tide); Cook Inlet, AK, which is shown to pose severe environmental and engineering problems due to fish migration, earthquake hazards, and 300 ft deep silt deposits; and the Bay of Fundy, Canada. This last has a 17.8 MW plant under construction in a 29 ft maximum tide area. Other tidal projects of the Maritime Provinces are reviewed, and it is noted that previous economic evaluations based on an oil price of $16/barrel are in need of revision.

  12. Tidal Limits to Planetary Habitability

    CERN Document Server

    Barnes, Rory; Greenberg, Richard; Raymond, Sean N

    2009-01-01

    The habitable zones of main sequence stars have traditionally been defined as the range of orbits that intercept the appropriate amount of stellar flux to permit surface water on a planet. Terrestrial exoplanets discovered to orbit M stars in these zones, which are close-in due to decreased stellar luminosity, may also undergo significant tidal heating. Tidal heating may span a wide range for terrestrial exoplanets and may significantly affect conditions near the surface. For example, if heating rates on an exoplanet are near or greater than that on Io (where tides drive volcanism that resurface the planet at least every 1 Myr) and produce similar surface conditions, then the development of life seems unlikely. On the other hand, if the tidal heating rate is less than the minimum to initiate plate tectonics, then CO_2 may not be recycled through subduction, leading to a runaway greenhouse that sterilizes the planet. These two cases represent potential boundaries to habitability and are presented along with th...

  13. ARE TIDAL EFFECTS RESPONSIBLE FOR EXOPLANETARY SPIN–ORBIT ALIGNMENT?

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gongjie [Harvard-Smithsonian Center for Astrophysics, The Institute for Theory and Computation, 60 Garden Street, Cambridge, MA 02138 (United States); Winn, Joshua N., E-mail: gli@cfa.harvard.edu [Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2016-02-10

    The obliquities of planet-hosting stars are clues about the formation of planetary systems. Previous observations led to the hypothesis that for close-in giant planets, spin–orbit alignment is enforced by tidal interactions. Here, we examine two problems with this hypothesis. First, Mazeh and coworkers recently used a new technique—based on the amplitude of starspot-induced photometric variability—to conclude that spin–orbit alignment is common even for relatively long-period planets, which would not be expected if tides were responsible. We re-examine the data and find a statistically significant correlation between photometric variability and planetary orbital period that is qualitatively consistent with tidal interactions. However it is still difficult to explain quantitatively, as it would require tides to be effective for periods as long as tens of days. Second, Rogers and Lin argued against a particular theory for tidal re-alignment by showing that initially retrograde systems would fail to be re-aligned, in contradiction with the observed prevalence of prograde systems. We investigate a simple model that overcomes this problem by taking into account the dissipation of inertial waves and the equilibrium tide, as well as magnetic braking. We identify a region of parameter space where re-alignment can be achieved, but it only works for close-in giant planets, and requires some fine tuning. Thus, while we find both problems to be more nuanced than they first appeared, the tidal model still has serious shortcomings.

  14. Tracking Down the Causes of Recent Induced and Natural Intraplate Earthquakes with 3D Seismological Analyses in Northwest Germany

    Science.gov (United States)

    Uta, P.; Brandes, C.; Boennemann, C.; Plenefisch, T.; Winsemann, J.

    2015-12-01

    Northwest Germany is a typical low strain intraplate region with a low seismic activity. Nevertheless, 58 well documented earthquakes with magnitudes of 0.5 - 4.3 affected the area in the last 40 years. Most of the epicenters were located in the vicinity of active natural gas fields and some inside. Accordingly, the earthquakes were interpreted as a consequence of hydrocarbon recovery (e.g. Dahm et al. 2007, Bischoff et al. 2013) and classified as induced events in the bulletins of the Federal Institute for Geosciences and Natural Resources (BGR). The two major ones have magnitudes of 4.3 and 4.0. They are the strongest earthquakes ever recorded in Northern Germany. Consequently, these events raise the question whether the ongoing extraction itself can cause them or if other natural tectonic processes like glacial isostatic adjustment may considerably contribute to their initiation. Recent studies of Brandes et al. (2012) imply that lithospheric stress changes due to post glacial isostatic adjustment might be also a potential natural cause for earthquakes in Central Europe. In order to better analyse the earthquakes and to test this latter hypothesis we performed a relocalization of the events with the NonLinLoc (Lomax et al. 2000) program package and two differently scaled 3D P-wave velocity models. Depending on the station coverage for a distinct event, either a fine gridded local model (88 x 73 x 15 km, WEG-model, made available by the industry) or a coarse regional model (1600 x 1600 x 45 km, data from CRUST1.0, Laske et al. 2013) and for some cases a combination of both models was used for the relocalization. The results confirm the trend of the older routine analysis: The majority of the events are located at the margins of the natural gas fields, some of them are now located closer to them. Focal depths mostly vary between 3.5 km and 10 km. However, for some of the events, especially for the older events with relatively bad station coverage, the error bars

  15. Protection against T1DM-Induced Bone Loss by Zinc Supplementation: Biomechanical, Histomorphometric, and Molecular Analyses in STZ-Induced Diabetic Rats.

    Directory of Open Access Journals (Sweden)

    Raul Hernandes Bortolin

    Full Text Available Several studies have established an association between diabetes and alterations in bone metabolism; however, the underlying mechanism is not well established. Although zinc is recognized as a potential preventive agent against diabetes-induced bone loss, there is no evidence demonstrating its effect in chronic diabetic conditions. This study evaluated the effects of zinc supplementation in a chronic (90 days type 1 diabetes-induced bone-loss model. Male Wistar rats were distributed in three groups: control, type 1 diabetes mellitus (T1DM, and T1DM plus zinc supplementation (T1DMS. Serum biochemical analysis; tibia histomorphometric, biomechanical, and collagen-content analyses; and femur mRNA expression were evaluated. Relative to T1DM, the zinc-supplemented group showed increased histomorphometric parameters such as TbWi and BAr and decreased TbSp, increased biomechanical parameters (maximum load, stiffness, ultimate strain, and Young's modulus, and increased type I collagen content. Interestingly, similar values for these parameters were observed between the T1DMS and control groups. These results demonstrate the protective effect of zinc on the maintenance of bone strength and flexibility. In addition, downregulation of OPG, COL1A, and MMP-9 genes was observed in T1DMS, and the anabolic effects of zinc were evidenced by increased OC expression and serum ALP activity, both related to osteoblastogenesis, demonstrating a positive effect on bone formation. In contrast, T1DM showed excessive bone loss, observed through reduced histomorphometric and biomechanical parameters, characterizing diabetes-associated bone loss. The bone loss was also observed through upregulation of OPG, COL1A, and MMP-9 genes. In conclusion, zinc showed a positive effect on the maintenance of bone architecture and biomechanical parameters. Indeed, OC upregulation and control of expression of OPG, COL1A, and MMP-9 mRNAs, even in chronic hyperglycemia, support an anabolic

  16. Protection against T1DM-Induced Bone Loss by Zinc Supplementation: Biomechanical, Histomorphometric, and Molecular Analyses in STZ-Induced Diabetic Rats

    Science.gov (United States)

    Bortolin, Raul Hernandes; da Graça Azevedo Abreu, Bento João; Abbott Galvão Ururahy, Marcela; Costa de Souza, Karla Simone; Bezerra, João Felipe; Bezerra Loureiro, Melina; da Silva, Flávio Santos; Marques, Dáfiny Emanuele da Silva; Batista, Angélica Amanda de Sousa; Oliveira, Gisele; Luchessi, André Ducati; Lima, Valéria Morgiana Gualberto Duarte Moreira; Miranda, Carlos Eduardo Saraiva; Lia Fook, Marcus Vinicius; Almeida, Maria das Graças; de Rezende, Luciana Augusto; de Rezende, Adriana Augusto

    2015-01-01

    Several studies have established an association between diabetes and alterations in bone metabolism; however, the underlying mechanism is not well established. Although zinc is recognized as a potential preventive agent against diabetes-induced bone loss, there is no evidence demonstrating its effect in chronic diabetic conditions. This study evaluated the effects of zinc supplementation in a chronic (90 days) type 1 diabetes-induced bone-loss model. Male Wistar rats were distributed in three groups: control, type 1 diabetes mellitus (T1DM), and T1DM plus zinc supplementation (T1DMS). Serum biochemical analysis; tibia histomorphometric, biomechanical, and collagen-content analyses; and femur mRNA expression were evaluated. Relative to T1DM, the zinc-supplemented group showed increased histomorphometric parameters such as TbWi and BAr and decreased TbSp, increased biomechanical parameters (maximum load, stiffness, ultimate strain, and Young’s modulus), and increased type I collagen content. Interestingly, similar values for these parameters were observed between the T1DMS and control groups. These results demonstrate the protective effect of zinc on the maintenance of bone strength and flexibility. In addition, downregulation of OPG, COL1A, and MMP-9 genes was observed in T1DMS, and the anabolic effects of zinc were evidenced by increased OC expression and serum ALP activity, both related to osteoblastogenesis, demonstrating a positive effect on bone formation. In contrast, T1DM showed excessive bone loss, observed through reduced histomorphometric and biomechanical parameters, characterizing diabetes-associated bone loss. The bone loss was also observed through upregulation of OPG, COL1A, and MMP-9 genes. In conclusion, zinc showed a positive effect on the maintenance of bone architecture and biomechanical parameters. Indeed, OC upregulation and control of expression of OPG, COL1A, and MMP-9 mRNAs, even in chronic hyperglycemia, support an anabolic and protective

  17. Tidal dynamics in a changing lagoon: Flooding or not flooding the marginal regions

    Science.gov (United States)

    Lopes, Carina L.; Dias, João M.

    2015-12-01

    Coastal lagoons are low-lying systems under permanent changes motivated by natural and anthropogenic factors. Ria de Aveiro is such an example with its margins currently threatened by the advance of the lagoonal waters recorded during the last decades. This work aims to study the tidal modifications found between 1987 and 2012 in this lagoon, motivated by the main channels deepening which induce higher inland tidal levels. Additionally it aims to study the impact that protective walls designed to protect the margins against flooding may have in those modifications under sea level rise predictions. The hydrodynamic model ELCIRC previously calibrated for Ria de Aveiro was used and tidal asymmetry, tidal ellipses and residual currents were analyzed for different scenarios, considering the mean sea level rise predicted for 2100 and the implementation of probable flood protection walls. Results evidenced that lagoon dominance remained unchanged between 1987 and 2012, but distortion decreased/increased in the deeper/shallower channels. The same trend was found under mean sea level rise conditions. Tidal currents increased over this period inducing an amplification of the water properties exchange within the lagoon, which will be stronger under mean sea level rise conditions. The deviations between scenarios with or without flood protection walls can achieve 60% for the tidal distortion and residual currents and 20% for the tidal currents, highlighting that tidal properties are extremely sensitive to the lagoon geometry. In summary, the development of numerical modelling applications dedicated to study the influence of mean sea level rise on coastal low-lying systems subjected to human influence should include structural measures designed for flood defence in order to accurately predict changes in the local tidal properties.

  18. On deriving transport pathways and morphodynamics in a tidal inlet from high-resolution MBES and LiDAR surveys: the Knudedyb tidal inlet in the Danish Wadden Sea

    DEFF Research Database (Denmark)

    Ernstsen, Verner Brandbyge; Lefebvre, Alice; Fraccascia, Serena;

    and topobathymetric surveys using high-resolution red and green Light Detection And Ranging (LiDAR), respectively. Detailed digital elevation models with a grid cell size of 1 m x 1 m were generated and analysed geomorphometrically. The analyses reveal a main ebb-directed net sand transport in the main channel...... the existence of oblique second-order sand transport pathways, transporting sand from the inter-tidal flat to the inlet channel during falling tide due to drainage of the inter-tidal areas. As opposed to this, the orientation and migration direction of isolated swash bars on the inter-tidal flat indicate...

  19. Development of multiple tidal tails around globular clusters and dwarf satellite galaxies

    CERN Document Server

    Hozumi, Shunsuke

    2014-01-01

    The formation and evolution of tidal tails like those observed around some globular clusters and dwarf satellite galaxies is examined with an N-body simulation. In particular, we analyse in detail the evolving tidal features of a one-component satellite that is moving on a highly eccentric orbit in the external field of a host galaxy potential like our own. The results show that every time the satellite approaches apogalacticon, a fresh pair of tidal tails becomes notably prominent, and that eventually, the satellite possesses multiple tidal tails via repeating apocentre passages. Accordingly, the number of observed tidal arms can be used as a tracer of the number of orbital periods that such a system has completed around the centre of its host galaxy. By identifying the arm particles included in each of the first three consecutively formed pairs of tidal tails, we find that each pair of tidal tails is practically identical to one another regarding the energy and angular-momentum distributions. In addition, w...

  20. TIDAL FRICTION AND TIDAL LAGGING. APPLICABILITY LIMITATIONS OF A POPULAR FORMULA FOR THE TIDAL TORQUE

    Energy Technology Data Exchange (ETDEWEB)

    Efroimsky, Michael; Makarov, Valeri V., E-mail: michael.efroimsky@usno.navy.mil, E-mail: vvm@usno.navy.mil [US Naval Observatory, Washington, DC 20392 (United States)

    2013-02-10

    Tidal torques play a key role in rotational dynamics of celestial bodies. They govern these bodies' tidal despinning and also participate in the subtle process of entrapment of these bodies into spin-orbit resonances. This makes tidal torques directly relevant to the studies of habitability of planets and their moons. Our work begins with an explanation of how friction and lagging should be built into the theory of bodily tides. Although much of this material can be found in various publications, a short but self-consistent summary on the topic has been lacking in the hitherto literature, and we are filling the gap. After these preparations, we address a popular concise formula for the tidal torque, which is often used in the literature, for planets or stars. We explain why the derivation of this expression, offered in the paper by Goldreich and in the books by Kaula (Equation (4.5.29)) and Murray and Dermott (Equation (4.159)), implicitly sets the time lag to be frequency independent. Accordingly, the ensuing expression for the torque can be applied only to bodies having a very special (and very hypothetical) rheology which makes the time lag frequency independent, i.e., the same for all Fourier modes in the spectrum of tide. This expression for the torque should not be used for bodies of other rheologies. Specifically, the expression cannot be combined with an extra assertion of the geometric lag being constant, because at finite eccentricities the said assumption is incompatible with the constant-time-lag condition.

  1. Tidal Friction and Tidal Lagging. Applicability Limitations of a Popular Formula for the Tidal Torque

    Science.gov (United States)

    Efroimsky, Michael; Makarov, Valeri V.

    2013-02-01

    Tidal torques play a key role in rotational dynamics of celestial bodies. They govern these bodies' tidal despinning and also participate in the subtle process of entrapment of these bodies into spin-orbit resonances. This makes tidal torques directly relevant to the studies of habitability of planets and their moons. Our work begins with an explanation of how friction and lagging should be built into the theory of bodily tides. Although much of this material can be found in various publications, a short but self-consistent summary on the topic has been lacking in the hitherto literature, and we are filling the gap. After these preparations, we address a popular concise formula for the tidal torque, which is often used in the literature, for planets or stars. We explain why the derivation of this expression, offered in the paper by Goldreich and in the books by Kaula (Equation (4.5.29)) and Murray & Dermott (Equation (4.159)), implicitly sets the time lag to be frequency independent. Accordingly, the ensuing expression for the torque can be applied only to bodies having a very special (and very hypothetical) rheology which makes the time lag frequency independent, i.e., the same for all Fourier modes in the spectrum of tide. This expression for the torque should not be used for bodies of other rheologies. Specifically, the expression cannot be combined with an extra assertion of the geometric lag being constant, because at finite eccentricities the said assumption is incompatible with the constant-time-lag condition.

  2. TIDAL FRICTION AND TIDAL LAGGING. APPLICABILITY LIMITATIONS OF A POPULAR FORMULA FOR THE TIDAL TORQUE

    International Nuclear Information System (INIS)

    Tidal torques play a key role in rotational dynamics of celestial bodies. They govern these bodies' tidal despinning and also participate in the subtle process of entrapment of these bodies into spin-orbit resonances. This makes tidal torques directly relevant to the studies of habitability of planets and their moons. Our work begins with an explanation of how friction and lagging should be built into the theory of bodily tides. Although much of this material can be found in various publications, a short but self-consistent summary on the topic has been lacking in the hitherto literature, and we are filling the gap. After these preparations, we address a popular concise formula for the tidal torque, which is often used in the literature, for planets or stars. We explain why the derivation of this expression, offered in the paper by Goldreich and in the books by Kaula (Equation (4.5.29)) and Murray and Dermott (Equation (4.159)), implicitly sets the time lag to be frequency independent. Accordingly, the ensuing expression for the torque can be applied only to bodies having a very special (and very hypothetical) rheology which makes the time lag frequency independent, i.e., the same for all Fourier modes in the spectrum of tide. This expression for the torque should not be used for bodies of other rheologies. Specifically, the expression cannot be combined with an extra assertion of the geometric lag being constant, because at finite eccentricities the said assumption is incompatible with the constant-time-lag condition.

  3. Some principles of mixing in tidal lagoons

    OpenAIRE

    Dronkers, J.; Zimmerman, Jtf

    1982-01-01

    Some fundamental notions related to the flushing of tidal lagoons are reviewed and some important mixing mechanisms are discussed. It is shown that the characteristics of mixing and flushing in tidal lagoons can be described in various but connected ways, introducing the concepts of time scales and dispersion coefficients. For some simple geometrical configurations formulas for the computation of time scales and dispersion coefficients are given. For complex-shaped tidal lagoons field data ar...

  4. Array Optimization for Tidal Energy Extraction in a Tidal Channel – A Numerical Modeling Analysis

    OpenAIRE

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea

    2014-01-01

    This paper presents an application of a hydrodynamic model to simulate tidal energy extraction in a tidal dominated estuary in the Pacific Northwest coast. A series of numerical experiments were carried out to simulate tidal energy extraction with different turbine array configurations, including location, spacing and array size. Preliminary model results suggest that array optimization for tidal energy extraction in a real-world site is a very complex process that requires consideration of m...

  5. Tidal friction in close-in planets

    Science.gov (United States)

    Rodríguez, Adrián; Ferraz-Mello, Sylvio; Hussmann, Hauke

    2008-05-01

    We use Darwin's theory (Darwin, 1880) to derive the main results on the orbital and rotational evolution of a close-in companion (exoplanet or planetary satellite) due to tidal friction. The given results do not depend on any assumption linking the tidal lags to the frequencies of the corresponding tide harmonics (except that equal frequency harmonics are assumed to span equal lags). Emphasis is given to the study of the synchronization of the planetary rotation in the two possible final states for a non-zero eccentricity : (1) the super-synchronous stationary rotation resulting from the vanishing of the average tidal torque; (2) the capture into a 1:1 spin-orbit resonance (true synchronization), which is only possible if an additional torque exists acting in opposition to the tidal torque. Results are given under the assumption that this additional torque is produced by a non-tidal permanent equatorial asymmetry of the planet. The indirect tidal effects and some non-tidal effects due to that asymmetry are considered. For sake of comparison with other works, the results obtained when tidal lags are assumed proportional to the corresponding tidal wave frequencies are also given.

  6. Tidal Evolution of Asteroidal Binaries. Ruled by Viscosity. Ignorant of Rigidity.

    Science.gov (United States)

    Efroimsky, Michael

    2015-10-01

    This is a pilot paper serving as a launching pad for study of orbital and spin evolution of binary asteroids. The rate of tidal evolution of asteroidal binaries is defined by the dynamical Love numbers kl divided by quality factors Q. Common in the literature is the (oftentimes illegitimate) approximation of the dynamical Love numbers with their static counterparts. Since the static Love numbers are, approximately, proportional to the inverse rigidity, this renders a popular fallacy that the tidal evolution rate is determined by the product of the rigidity by the quality factor: {k}l/Q\\propto 1/(μ Q). In reality, the dynamical Love numbers depend on the tidal frequency and all rheological parameters of the tidally perturbed body (not just rigidity). We demonstrate that in asteroidal binaries the rigidity of their components plays virtually no role in tidal friction and tidal lagging, and thereby has almost no influence on the intensity of tidal interactions (tidal torques, tidal dissipation, tidally induced changes of the orbit). A key quantity that overwhelmingly determines the tidal evolution is a product of the effective viscosity η by the tidal frequency χ . The functional form of the torque’s dependence on this product depends on who wins in the competition between viscosity and self-gravitation. Hence a quantitative criterion, to distinguish between two regimes. For higher values of η χ , we get {k}l/Q\\propto 1/(η χ ), {while} for lower values we obtain {k}l/Q\\propto η χ . Our study rests on an assumption that asteroids can be treated as Maxwell bodies. Applicable to rigid rocks at low frequencies, this approximation is used here also for rubble piles, due to the lack of a better model. In the future, as we learn more about mechanics of granular mixtures in a weak gravity field, we may have to amend the tidal theory with other rheological parameters, ones that do not show up in the description of viscoelastic bodies. This line of study provides

  7. Evaluation of the durability of composite tidal turbine blades.

    Science.gov (United States)

    Davies, Peter; Germain, Grégory; Gaurier, Benoît; Boisseau, Amélie; Perreux, Dominique

    2013-02-28

    The long-term reliability of tidal turbines is critical if these structures are to be cost effective. Optimized design requires a combination of material durability models and structural analyses. Composites are a natural choice for turbine blades, but there are few data available to predict material behaviour under coupled environmental and cycling loading. The present study addresses this problem, by introducing a multi-level framework for turbine blade qualification. At the material scale, static and cyclic tests have been performed, both in air and in sea water. The influence of ageing in sea water on fatigue performance is then quantified, and much lower fatigue lives are measured after ageing. At a higher level, flume tank tests have been performed on three-blade tidal turbines. Strain gauging of blades has provided data to compare with numerical models. PMID:23319705

  8. The Evolution of Tidal Debris

    CERN Document Server

    Mihos, C

    2004-01-01

    Galaxy interactions expel a significant amount of stars and gas into the surrounding environment. I review the formation and evolution of the tidal debris spawned during these collisions, and describe how this evolution depends on the large scale environment in which the galaxies live. In addition to acting as a long-lived tracer of the interaction history of galaxies, the evolution of this material -- on both large scales and small -- has important ramifications for galactic recycling processes, the feeding of the intracluster light and intracluster medium within galaxy clusters, and the delayed formation of galactic disks and dwarf galaxies.

  9. Large-Scale Structure and Gravitational Waves III: Tidal Effects

    CERN Document Server

    Schmidt, Fabian; Zaldarriaga, Matias

    2013-01-01

    The leading locally observable effect of a long-wavelength metric perturbation corresponds to a tidal field. We derive the tidal field induced by scalar, vector, and tensor perturbations, and use second order perturbation theory to calculate the effect on the locally measured small-scale density fluctuations. For sub-horizon scalar perturbations, we recover the standard perturbation theory result ($F_2$ kernel). For tensor modes of wavenumber $k_L$, we find that effects persist for $k_L\\tau \\gg 1$, i.e. even long after the gravitational wave has entered the horizon and redshifted away, i.e. it is a "fossil" effect. We then use these results, combined with the "ruler perturbations" of arXiv:1204.3625, to predict the observed distortion of the small-scale matter correlation function induced by a long-wavelength tensor mode. We also estimate the observed signal in the B mode of the cosmic shear from a gravitational wave background, including both tidal (intrinsic alignment) and projection (lensing) effects. The ...

  10. Observation of a tidal effect on the Polar Jet Stream

    Directory of Open Access Journals (Sweden)

    C. H. Best

    2015-08-01

    Full Text Available Variations in the Polar Jet Stream directly affect weather across Europe and North America (Francis et al., 2012. Jet Stream dynamics are governed by the development of planetary Rossby waves (Dickinson, 1978 driven by variation of the Coriolis force with latitude. Here we show that increasing atmospheric tides induce the development of Rossby waves, especially during winter months. This changes the flow and direction of the Jet Stream, as measured by the Arctic Oscillation (AO. Although horizontal tidal forces are tiny (107 smaller than gravity, they act over huge areas dragging the Jet Stream flow southwards in regular pulses as the earth rotates. This induces a changing Coriolis torque, which then distorts the Jet Stream flow. The data from eight recent winters are studied indicating that the AO is anti-correlated to the horizontal "tractional" component of tides acting between latitude 45 and 60° N. The observed 28 day cycle in Jet Stream flow and extent has a statistical significance > 99 %. A cross-correlation between all daily AO data since 1950 and the tractional tidal strength shows a significant anti-correlation with a lag time of ~ 5 days. The strongest correlation and largest excursions of the AO are observed during winter 2005/2006 – a maximum lunar standstill year. This declination dependence of tidal forces at high latitudes is the proposed cause of many previous reports of an 18.6 year dependence of continental rainfall and drought.

  11. Tidal disruption events from supermassive black hole binaries

    CERN Document Server

    Coughlin, Eric R; Nixon, Chris; Begelman, Mitchell C

    2016-01-01

    We investigate the pre-disruption gravitational dynamics and post-disruption hydrodynamics of the tidal disruption of stars by supermassive black hole (SMBH) binaries. We focus on binaries with relatively low mass primaries ($10^6M_{\\odot}$), moderate mass ratios, and separations with reasonably long gravitational wave inspiral times (tens of Myr). First, we generate a large ensemble (between 1 and 10 million) of restricted three-body integrations to quantify the statistical properties of tidal disruptions by circular SMBH binaries of initially-unbound stars. Compared to the reference case of a disruption by a single SMBH, the binary potential induces significant variance into the specific energy and angular momentum of the star at the point of disruption. Second, we use Newtonian numerical hydrodynamics to study the detailed evolution of the fallback debris from 120 disruptions randomly selected from the three-body ensemble (excluding only the most deeply penetrating encounters). We find that the overall mor...

  12. Frequency interpretation of tidal peak in intracranial pressure wave.

    Science.gov (United States)

    Shahsavari, Sima; McKelvey, Tomas

    2008-01-01

    A new approach to locate different components of ICP signal for each cardiac induced ICP beat is presented. In this method an initial timing map is used to define the appropriate part of the ICP wave which should be searched for the specific component. In parallel a recently proposed method was used to decompose the ICP wave to its different frequency harmonics. This algorithm, which is based on tracking the amplitude of the harmonic components using Kalman filtering, brings both heart rate variability and cardiorespiratory interaction into account and provides good time and frequency resolution. Comparing the results of two methods for seventeen ICP records, each one hour long, it has been observed that the fundamental cardiac component has the most significant contribution in the construction of the tidal peak in ICP and therefore tracking of this harmonic could be informative of the tidal peak evolution over the time.

  13. Tenants at-risk-of-poverty induced by housing expenditure – exploratory analyses with EU-SILC

    NARCIS (Netherlands)

    Haffner, M.E.A.; Dol, C.P.; Heylen, K.

    2014-01-01

    Combating poverty and social exclusion is a core policy issue in the European Union (EU). The Statis-tics on Income and Living Conditions (EU-SILC) database facilitates analyses of the extent of poverty and social exclusion. One of the indicators built from the database is the at-risk-of-poverty ind

  14. Organic matter processing in tidal estuaries

    NARCIS (Netherlands)

    Middelburg, J.J.; Herman, P.M.J.

    2007-01-01

    Processing of organic matter in tidal estuaries modifies its transfer from the river to the sea. We examined the distribution and the elemental and isotopic composition of organic matter in nine tidal estuaries along the Atlantic coast of Europe (Elbe, Ems, Thames, Rhine, Scheldt, Loire, Gironde, Do

  15. Simple theory for designing tidal power schemes

    Science.gov (United States)

    Prandle, D.

    Basic parameters governing the design of tidal power schemes are identified and converted to dimensionless form by reference to (i) the mean tidal range and (ii) the surface area of the enclosed basin. Optimum values for these dimensionless parameters are derived and comparison made with actual engineering designs. A theoretical framework is thus established which can be used (i) to make a rudimentary design at any specific location or (ii) to compare and evaluate designs for various locations. Both one-way (flood or ebb) and two-way (flood and ebb) schemes are examined and, theoretically, the two-way scheme is shown to be more efficient. However, in practice, two-way schemes suffer disadvantages arising from (i) two-way flow through both turbines and sluices and (ii) lower average turbine heads. An important dimensional aspect of tidal power schemes is that, while energy extracted is proportional to the tidal amplitude squared, the requisite sluicing area is proportional to the square root of the tidal amplitude. In consequence, sites with large tidal amplitudes are best suited to tidal power development whereas for sites with low tidal amplitudes sluicing costs may be prohibitive.

  16. Tidal Freshwater Wetlands: Variation and Changes

    NARCIS (Netherlands)

    Barendregt, A.; Swarth, C.W.

    2013-01-01

    Tidal freshwater wetlands (TFW) are situated in the upper estuary in a zone bordered upstream by the nontidal river and downstream by the oligohaline region. Here, discharge of freshwater from the river and the daily tidal pulse from the sea combine to create conditions where TFW develop. TFW are of

  17. Tidal Tales of Minor Mergers: Star Formation in the Tidal Debris of Minor Mergers

    CERN Document Server

    Knierman, Karen A

    2009-01-01

    How does the tidal debris of minor galaxy mergers contribute to structures in spiral galaxies or in the intergalactic medium? While major mergers are known to create structures such as tidal dwarf galaxies and star clusters within their tidal debris, less is known about minor mergers (mass ratios between a dwarf galaxy and disk galaxy of less than one-third) and their tidal debris. This work surveys 6 nearby minor mergers using optical broad-band and H-alpha narrow-band imaging to characterize star formation in their tidal debris. Young star clusters with ages less than the dynamical age of the tidal tails are found in all 6 mergers, indicating that the star clusters formed in situ. Even if minor mergers contribute less tidal debris per interaction than major mergers, they are more common and possibly contribute structure to all types of galaxies and to the intergalactic medium throughout the history of the universe.

  18. Diffuser Augmented Horizontal Axis Tidal Current Turbines

    Directory of Open Access Journals (Sweden)

    Nasir Mehmood

    2012-09-01

    Full Text Available The renewal energy technologies are increasingly popular to ensure future energy sustenance and address environmental issues. The tides are enormous and consistent untapped resource of renewable energy. The growing interest in exploring tidal energy has compelling reasons such as security and diversity of supply, intermittent but predictable and limited social and environmental impacts. The tidal energy industry is undergoing an increasing shift towards diffuser augmented turbines. The reason is the higher power output of diffuser augmented turbines compared to conventional open turbines. The purpose of this study is to present a comprehensive review of diffuser augmented horizontal axis tidal current turbines. The components, relative advantages, limitations and design parameters of diffuser augmented horizontal axis tidal current turbines are presented in detail. CFD simulation of NACA 0016 airfoil is carried out to explore its potential for designing a diffuser. The core issues associated with diffuser augmented horizontal axis tidal current turbines are also discussed.

  19. Eicosapentaenoic acid prevents high fat diet-induced metabolic disorders: Genomic and metabolomic analyses of underlying mechanism

    Science.gov (United States)

    Previously our lab demonstrated eicosapenaenoic acid (EPA)'s ability to prevent high-fat (HF) diet-induced obesity by decreasing insulin resistance, glucose intolerance and inflammation. In the current study, we used genomic and metabolomic approaches to further investigate the molecular basis for t...

  20. Estimating Coastal Lagoon Tidal Flooding and Repletion with Multidate ASTER Thermal Imagery

    Directory of Open Access Journals (Sweden)

    Thomas R. Allen

    2012-10-01

    Full Text Available Coastal lagoons mix inflowing freshwater and tidal marine waters in complex spatial patterns. This project sought to detect and measure temperature and spatial variability of flood tides for a constricted coastal lagoon using multitemporal remote sensing. Advanced Spaceborne Thermal Emission Radiometer (ASTER thermal infrared data provided estimates of surface temperature for delineation of repletion zones in portions of Chincoteague Bay, Virginia. ASTER high spatial resolution sea-surface temperature imagery in conjunction with in situ observations and tidal predictions helped determine the optimal seasonal data for analyses. The selected time series ASTER satellite data sets were analyzed at different tidal phases and seasons in 2004–2006. Skin surface temperatures of ocean and estuarine waters were differentiated by flood tidal penetration and ebb flows. Spatially variable tidal flood penetration was evaluated using discrete seed-pixel area analysis and time series Principal Components Analysis. Results from these techniques provide spatial extent and variability dynamics of tidal repletion, flushing, and mixing, important factors in eutrophication assessment, water quality and resource monitoring, and application of hydrodynamic modeling for coastal estuary science and management.

  1. Evaluation of a Model for Predicting the Tidal Velocity in Fjord Entrances

    Directory of Open Access Journals (Sweden)

    Paul Thomassen

    2013-04-01

    Full Text Available Sufficiently accurate and low-cost estimation of tidal velocities is of importance when evaluating a potential site for a tidal energy farm. Here we suggest and evaluate a model to calculate the tidal velocity in fjord entrances. The model is compared with tidal velocities from Acoustic Doppler Current Profiler (ADCP measurements in the tidal channel Skarpsundet in Norway. The calculated velocity value from the model corresponded well with the measured cross-sectional average velocity, but was shown to underestimate the velocity in the centre of the channel. The effect of this was quantified by calculating the kinetic energy of the flow for a 14-day period. A numerical simulation using TELEMAC-2D was performed and validated with ADCP measurements. Velocity data from the simulation was used as input for calculating the kinetic energy at various locations in the channel. It was concluded that the model presented here is not accurate enough for assessing the tidal energy resource. However, the simplicity of the model was considered promising in the use of finding sites where further analyses can be made.

  2. Evaluation of a Model for Predicting the Tidal Velocity in Fjord Entrances

    Energy Technology Data Exchange (ETDEWEB)

    Lalander, Emilia [The Swedish Centre for Renewable Electric Energy Conversion, Division of Electricity, Uppsala Univ. (Sweden); Thomassen, Paul [Team Ashes, Trondheim (Norway); Leijon, Mats [The Swedish Centre for Renewable Electric Energy Conversion, Division of Electricity, Uppsala Univ. (Sweden)

    2013-04-15

    Sufficiently accurate and low-cost estimation of tidal velocities is of importance when evaluating a potential site for a tidal energy farm. Here we suggest and evaluate a model to calculate the tidal velocity in fjord entrances. The model is compared with tidal velocities from Acoustic Doppler Current Profiler (ADCP) measurements in the tidal channel Skarpsundet in Norway. The calculated velocity value from the model corresponded well with the measured cross-sectional average velocity, but was shown to underestimate the velocity in the centre of the channel. The effect of this was quantified by calculating the kinetic energy of the flow for a 14-day period. A numerical simulation using TELEMAC-2D was performed and validated with ADCP measurements. Velocity data from the simulation was used as input for calculating the kinetic energy at various locations in the channel. It was concluded that the model presented here is not accurate enough for assessing the tidal energy resource. However, the simplicity of the model was considered promising in the use of finding sites where further analyses can be made.

  3. Ibrutinib-induced lymphocytosis in patients with chronic lymphocytic leukemia: correlative analyses from a phase II study

    OpenAIRE

    Herman, Sarah E. M.; Niemann, Carsten U.; Farooqui, Mohammed; Jones, Jade; Mustafa, Rashida Z.; Lipsky, Andrew; Saba, Nakhle; Martyr, Sabrina; Soto, Susan; Valdez, Janet; Gyamfi, Jennifer A.; Maric, Irina; Calvo, Katherine R.; Pedersen, Lone B; Geisler, Christian H.

    2014-01-01

    Ibrutinib and other targeted inhibitors of B-cell receptor signaling achieve impressive clinical results for patients with chronic lymphocytic leukemia (CLL). A treatment-induced rise in absolute lymphocyte count (ALC) has emerged as a class effect of kinase inhibitors in CLL and warrants further investigation. We here report correlative studies in 64 patients with CLL treated with ibrutinib. We quantified tumor burden in blood, lymph nodes, spleen, and bone marrow, assessed phenotypic change...

  4. Numerical simulations of ocean induced variations of Earth's rotation.

    OpenAIRE

    Maik Thomas; Sündermann, J.;  

    2000-01-01

    To investigate non-linear interactions of circulation and tides, an OGCM is additionally forced with the complete astronomical tidal potential. Three model runs with different forcing conditions are analysed to assess the role of the oceans with respect to excitation of polar motion. Secondary effects turn out to influence the Earth's orientation significantly. Hence, a linear superimposition of circulation and tides only partly describes ocean induced variations of Earth's rotation.

  5. Titan's interior constrained from its obliquity and tidal Love number

    Science.gov (United States)

    Baland, Rose-Marie; Coyette, Alexis; Yseboodt, Marie; Beuthe, Mikael; Van Hoolst, Tim

    2016-04-01

    In the last few years, the Cassini-Huygens mission to the Saturn system has measured the shape, the obliquity, the static gravity field, and the tidally induced gravity field of Titan. The large values of the obliquity and of the k2 Love number both point to the existence of a global internal ocean below the icy crust. In order to constrain interior models of Titan, we combine the above-mentioned data as follows: (1) we build four-layer density profiles consistent with Titan's bulk properties; (2) we determine the corresponding internal flattening compatible with the observed gravity and topography; (3) we compute the obliquity and tidal Love number for each interior model; (4) we compare these predictions with the observations. Previously, we found that Titan is more differentiated than expected (assuming hydrostatic equilibrium), and that its ocean is dense and less than 100 km thick. Here, we revisit these conclusions using a more complete Cassini state model, including: (1) gravitational and pressure torques due to internal tidal deformations; (2) atmosphere/lakes-surface exchange of angular momentum; (3) inertial torque due to Poincaré flow. We also adopt faster methods to evaluate Love numbers (i.e. the membrane approach) in order to explore a larger parameter space.

  6. Are Tidal Effects Responsible for Exoplanetary Spin-Orbit Alignment?

    CERN Document Server

    Li, Gongjie

    2015-01-01

    The obliquities of planet-hosting stars are clues about the formation of planetary systems. Previous observations led to the hypothesis that for close-in giant planets, spin-orbit alignment is enforced by tidal interactions. Here, we examine two problems with this hypothesis. First, Mazeh and coworkers recently used a new technique -- based on the amplitude of starspot-induced photometric variability -- to conclude that spin-orbit alignment is common even for relatively long-period planets, which would not be expected if tides were responsible. We re-examine the data and find a statistically significant correlation between photometric variability and planetary orbital period that is qualitatively consistent with tidal interactions. However it is still difficult to explain quantitatively, as it would require tides to be effective for periods as long as tens of days. Second, Rogers and Lin argued against a particular theory for tidal re-alignment by showing that initially retrograde systems would fail to be re-...

  7. Counter rotating type hydroelectric unit suitable for tidal power station

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, T [Faculty of Engineering, Kyushu Institute of Technology, Sensui 1-1, Tobata, Kitakyushu 804-8550 (Japan); Suzuki, T, E-mail: turbo@tobata.isc.kyutech.ac.j [Graduate School of Engineering, Kyushu Institute of Technology, Sensui 1-1, Tobata, Kitakyushu 804-8550 (Japan)

    2010-08-15

    The counter rotating type hydroelectric unit, which is composed of the axial flow type tandem runners and the peculiar generator with double rotational armatures,was proposed to utilize effectively the tidal power. In the unit, the front and the rear runners counter drive the inner and the outer armatures of the generator, respectively. Besides, the flow direction at the rear runner outlet must coincide with the flow direction at the front runner inlet, because the angular momentum through the rear runner must coincides with that through the front runner. That is, the flow runs in the axial direction at the rear runner outlet while the axial inflow at the front runner inlet. Such operations are suitable for working at the seashore with rising and falling tidal flows, and the unit may be able to take place of the traditional bulb type turbines. The tandem runners were operated at the on-cam conditions, in keeping the induced frequency constant. The output and the hydraulic efficiency are affected by the adjustment of the front and the blade setting angles. The both optimum angles giving the maximum output and/or efficiency were presented at the various discharges/heads. To promote more the tidal power generation by this type unit, the runners were also modified so as to be suitable for both rising and falling flows. The hydraulic performances are acceptable while the output is determined mainly by the trailing edge profiles of the runner blades.

  8. Counter rotating type hydroelectric unit suitable for tidal power station

    Science.gov (United States)

    Kanemoto, T.; Suzuki, T.

    2010-08-01

    The counter rotating type hydroelectric unit, which is composed of the axial flow type tandem runners and the peculiar generator with double rotational armatures,was proposed to utilize effectively the tidal power. In the unit, the front and the rear runners counter drive the inner and the outer armatures of the generator, respectively. Besides, the flow direction at the rear runner outlet must coincide with the flow direction at the front runner inlet, because the angular momentum through the rear runner must coincides with that through the front runner. That is, the flow runs in the axial direction at the rear runner outlet while the axial inflow at the front runner inlet. Such operations are suitable for working at the seashore with rising and falling tidal flows, and the unit may be able to take place of the traditional bulb type turbines. The tandem runners were operated at the on-cam conditions, in keeping the induced frequency constant. The output and the hydraulic efficiency are affected by the adjustment of the front and the blade setting angles. The both optimum angles giving the maximum output and/or efficiency were presented at the various discharges/heads. To promote more the tidal power generation by this type unit, the runners were also modified so as to be suitable for both rising and falling flows. The hydraulic performances are acceptable while the output is determined mainly by the trailing edge profiles of the runner blades.

  9. Tidal river dynamics: Implications for deltas

    Science.gov (United States)

    Hoitink, A. J. F.; Jay, D. A.

    2016-03-01

    Tidal rivers are a vital and little studied nexus between physical oceanography and hydrology. It is only in the last few decades that substantial research efforts have been focused on the interactions of river discharge with tidal waves and storm surges into regions beyond the limit of salinity intrusion, a realm that can extend inland hundreds of kilometers. One key phenomenon resulting from this interaction is the emergence of large fortnightly tides, which are forced long waves with amplitudes that may increase beyond the point where astronomical tides have become extinct. These can be larger than the linear tide itself at more landward locations, and they greatly influence tidal river water levels and wetland inundation. Exploration of the spectral redistribution and attenuation of tidal energy in rivers has led to new appreciation of a wide range of consequences for fluvial and coastal sedimentology, delta evolution, wetland conservation, and salinity intrusion under the influence of sea level rise and delta subsidence. Modern research aims at unifying traditional harmonic tidal analysis, nonparametric regression techniques, and the existing understanding of tidal hydrodynamics to better predict and model tidal river dynamics both in single-thread channels and in branching channel networks. In this context, this review summarizes results from field observations and modeling studies set in tidal river environments as diverse as the Amazon in Brazil, the Columbia, Fraser and Saint Lawrence in North America, the Yangtze and Pearl in China, and the Berau and Mahakam in Indonesia. A description of state-of-the-art methods for a comprehensive analysis of water levels, wave propagation, discharges, and inundation extent in tidal rivers is provided. Implications for lowland river deltas are also discussed in terms of sedimentary deposits, channel bifurcation, avulsion, and salinity intrusion, addressing contemporary research challenges.

  10. Physical Properties of Tidal Features of Interacting Disk Galaxies: Three-dimensional Self-consistent Simulations

    Science.gov (United States)

    Oh, Sang Hoon; Kim, Woong-Tae; Lee, Hyung Mok

    2015-08-01

    We investigate the physical properties of non-axisymmetric features in a disk of a Milky-Way type galaxy created by a tidal interaction with its companion using self-consistent three-dimensional N-body simulations. By varying the companion mass and the pericenter distance, we explore various situations with different tidal strength parameterized by the relative tidal force P or the relative imparted momentum S. A stronger interaction results in a stronger but less wound tail that forms earlier. We find that formation of a stellar tidal tail in the outer part of the disk requires P ≳ 0.05 or S ≳ 0.07. Similarly, a strong tidal forcing produces stronger, more loosely wound spiral arms in the inner parts. The arms are approximately logarithmic in shape, with their amplitude and pitch angle decaying with time. The pattern speed of the arms decreases with radius and is close to the Ω-κ/2 curve, with Ω and κ denoting the angular and epicyclic frequencies, respectively, suggesting that the tidally-induced spiral arms are most likely kinematic density waves weakly modified by self-gravity. The three-dimensional density structure of the arms in non-linear regime is well described by the concentrated model while the arms in linear regime the sinusoidal model fits well. We also demonstrate that dynamical friction between interacting galaxies transfers the orbital angular momentum of one galaxy to the spin angular momentum of the companion’s halo.

  11. The importance of being coupled: Stable states and catastrophic shifts in tidal eco-morphodynamics

    Science.gov (United States)

    Marani, M.; D'Alpaos, A.; Lanzoni, S.; Carniello, L.; Rinaldo, A.

    2009-04-01

    Tidal landforms and ecosystems exist in a delicate balance between rates of sea level changes, sediment availability, driving erosion and deposition processes, and local subsidence. Predicting the response of tidal geomorphologies is thus important in view of the ecological, cultural and socio-economic importance of endangered tidal environments worldwide. Here we illustrate a point model of the coupled evolution of tidal landforms, halophytic vegetation and benthic microbial assemblages, forced by tides, sediment availability, wind regime, and relative sea-level change. Wind climate and tidal amplitude variations, which are likely to affect intertidal erosion and deposition processes, are also accounted for and the extent of their influence is explored. The model represents a significant improvement over previous similar formulations because it incorporates more realistic consolidation processes and tidal forcings and allows the explicit simulation of observed conditions. The model is applied to the significant case study of the Venice Lagoon and the conditions under which alternative stable states and punctuated equilibrium dynamics may emerge are examined. Hysteretic switches between stable states may arise because of differences in the threshold values of relative sea level rise inducing transitions from vegetated to unvegetated equilibria and viceversa.

  12. Distribution of iron- and sulfate-reducing bacteria across a coastal acid sulfate soil (CASS environment: implications for passive bioremediation by tidal inundation

    Directory of Open Access Journals (Sweden)

    Yu-Chen eLing

    2015-07-01

    Full Text Available Coastal acid sulfate soils (CASS constitute a serious and global environmental problem. Oxidation of iron sulfide minerals exposed to air generates sulfuric acid with consequently negative impacts on coastal and estuarine ecosystems. Tidal inundation represents one current treatment strategy for CASS, with the aim of neutralizing acidity by triggering microbial iron- and sulfate-reduction and inducing the precipitation of iron-sulfides. Although well-known functional guilds of bacteria drive these processes, their distributions within CASS environments, as well as their relationships to tidal cycling and the availability of nutrients and electron acceptors, are poorly understood. These factors will determine the long-term efficacy of passive CASS remediation strategies. Here we studied microbial community structure and functional guild distribution in sediment cores obtained from ten depths ranging from 0-20 cm in three sites located in the supra-, inter- and sub-tidal segments, respectively, of a CASS-affected salt marsh (East Trinity, Cairns, Australia. Whole community 16S rRNA gene diversity within each site was assessed by 454 pyrotag sequencing and bioinformatic analyses in the context of local hydrological, geochemical and lithological factors. The results illustrate spatial overlap, or close association, of iron- and sulfate-reducing bacteria in an environment rich in organic matter and controlled by parameters such as acidity, redox potential, degree of water saturation, and mineralization. The observed spatial distribution implies the need for empirical understanding of the timing, relative to tidal cycling, of various terminal electron-accepting processes that control acid generation and biogeochemical iron and sulfur cycling.

  13. The Metamorphosis of Tidally Stirred Dwarf Galaxies

    CERN Document Server

    Mayer, L; Colpi, M; Moore, B; Quinn, T; Wadsley, J; Lake, J S G; Mayer, Lucio; Governato, Fabio; Colpi, Monica; Moore, Ben; Quinn, Thomas; Wadsley, James; Lake, Joachim Stadel & George

    2001-01-01

    We present results from high-resolution N-Body/SPH simulations of rotationally supported dwarf irregular galaxies moving on bound orbits in the massive dark matter halo of the Milky Way.The dwarf models span a range in disk surface density and the masses and sizes of their dark halos are consistent with the predictions of cold dark matter cosmogonies. We show that the strong tidal field of the Milky Way determines severe mass loss in their halos and disks and induces bar and bending instabilities that transform low surface brightness dwarfs (LSBs) into dwarf spheroidals (dSphs) and high surface brightness dwarfs (HSBs) into dwarf ellipticals (dEs) in less than 10 Gyr. The final central velocity dispersions of the remnants are in the range 8-30 km/s and their final $v/\\sigma$ falls to values $< 0.5$, matching well the kinematics of early-type dwarfs. The transformation requires the orbital time of the dwarf to be $\\simlt 3-4$ Gyr, which implies a halo as massive and extended as predicted by hierarchical mod...

  14. Complete Tidal Evolution of Pluto-Charon

    OpenAIRE

    Cheng, W. H.; Lee, Man Hoi; Peale, S. J.

    2014-01-01

    Both Pluto and its satellite Charon have rotation rates synchronous with their orbital mean motion. This is the theoretical end point of tidal evolution where transfer of angular momentum has ceased. Here we follow Pluto's tidal evolution from an initial state having the current total angular momentum of the system but with Charon in an eccentric orbit with semimajor axis $a \\approx 4R_P$ (where $R_P$ is the radius of Pluto), consistent with its impact origin. Two tidal models are used, where...

  15. An integrated approach for analysing earthquake-induced surface effects: A case study from the Northern Apennines, Italy

    Science.gov (United States)

    Castaldini, D.; Genevois, R.; Panizza, M.; Puccinelli, A.; Berti, M.; Simoni, A.

    This paper illustrates research addressing the subject of the earthquake-induced surface effects by means of a multidisciplinary approach: tectonics, neotectonics, seismology, geology, hydrogeology, geomorphology, soil/rock mechanics have been considered. The research is aimed to verify in areas affected by earthquake-triggered landslides a methodology for the identification of potentially unstable areas. The research was organized according to regional and local scale studies. In order to better emphasise the complexity of the relationships between all the parameters affecting the stability conditions of rock slopes in static and dynamic conditions a new integrated approach, Rock Engineering Systems (RES), was applied in the Northern Apennines. In the paper, the different phases of the research are described in detail and an example of the application of RES method in a sample area is reported. A significant aspect of the study can be seen in its attempt to overcome the exclusively qualitative aspects of research into the relationship between earthquakes and induced surface effects, and to advance the idea of beginning a process by which this interaction can be quantified.

  16. Goldtraces on wedge-shaped artefacts from late neolithic of south Scandinavia analysed by proton induced x-ray emission spectroscopy

    International Nuclear Information System (INIS)

    Visible coloured traces on the surface of two selected wedge-shaped artefacts (pendants) of slate from the late Neolithic of South Scandinavia was analysed by means of proton-induced x-ray emission spectroscopy (PIXE). PIXE is shown to be a feasible tool in investigating surface layers of archeological significance. Three different gold-silver alloys was found on the two pendants. The results indicate that we shall have to reconsider the general accepted theories on the economic basis of the early Bronze Age in the area. (author)

  17. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment.

    Directory of Open Access Journals (Sweden)

    Lara Bull-Otterson

    Full Text Available Enteric dysbiosis plays an essential role in the pathogenesis of alcoholic liver disease (ALD. Detailed characterization of the alterations in the gut microbiome is needed for understanding their pathogenic role in ALD and developing effective therapeutic approaches using probiotic supplementation. Mice were fed liquid Lieber-DeCarli diet without or with alcohol (5% v/v for 6 weeks. A subset of mice were administered the probiotic Lactobacillus rhamnosus GG (LGG from 6 to 8 weeks. Indicators of intestinal permeability, hepatic steatosis, inflammation and injury were evaluated. Metagenomic analysis of the gut microbiome was performed by analyzing the fecal DNA by amplification of the V3-V5 regions of the 16S rRNA gene and large-scale parallel pyrosequencing on the 454 FLX Titanium platform. Chronic ethanol feeding caused a decline in the abundance of both Bacteriodetes and Firmicutes phyla, with a proportional increase in the gram negative Proteobacteria and gram positive Actinobacteria phyla; the bacterial genera that showed the biggest expansion were the gram negative alkaline tolerant Alcaligenes and gram positive Corynebacterium. Commensurate with the qualitative and quantitative alterations in the microbiome, ethanol caused an increase in plasma endotoxin, fecal pH, hepatic inflammation and injury. Notably, the ethanol-induced pathogenic changes in the microbiome and the liver were prevented by LGG supplementation. Overall, significant alterations in the gut microbiome over time occur in response to chronic alcohol exposure and correspond to increases in intestinal barrier dysfunction and development of ALD. Moreover, the altered bacterial communities of the gut may serve as significant therapeutic target for the prevention/treatment of chronic alcohol intake induced intestinal barrier dysfunction and liver disease.

  18. Cytological and comparative proteomic analyses on male sterility in Brassica napus L. induced by the chemical hybridization agent monosulphuron ester sodium.

    Directory of Open Access Journals (Sweden)

    Yufeng Cheng

    Full Text Available Male sterility induced by a chemical hybridization agent (CHA is an important tool for utilizing crop heterosis. Monosulphuron ester sodium (MES, a new acetolactate synthase-inhibitor herbicide belonging to the sulphonylurea family, has been developed as an effective CHA to induce male sterility in rapeseed (Brassica napus L.. To understand MES-induced male sterility in rapeseed better, comparative cytological and proteomic analyses were conducted in this study. Cytological analysis indicated that defective tapetal cells and abnormal microspores were gradually generated in the developing anthers of MES-treated plants at various development stages, resulting in unviable microspores and male sterility. A total of 141 differentially expressed proteins between the MES-treated and control plants were revealed, and 131 of them were further identified by MALDI-TOF/TOF MS. Most of these proteins decreased in abundance in tissues of MES-treated rapeseed plants, and only a few increased. Notably, some proteins were absent or induced in developing anthers after MES treatment. These proteins were involved in several processes that may be crucial for tapetum and microspore development. Down-regulation of these proteins may disrupt the coordination of developmental and metabolic processes, resulting in defective tapetum and abnormal microspores that lead to male sterility in MES-treated plants. Accordingly, a simple model of CHA-MES-induced male sterility in rapeseed was established. This study is the first cytological and dynamic proteomic investigation on CHA-MES-induced male sterility in rapeseed, and the results provide new insights into the molecular events of male sterility.

  19. FEM modeling and histological analyses on thermal damage induced in facial skin resurfacing procedure with different CO2 laser pulse duration

    Science.gov (United States)

    Rossi, Francesca; Zingoni, Tiziano; Di Cicco, Emiliano; Manetti, Leonardo; Pini, Roberto; Fortuna, Damiano

    2011-07-01

    Laser light is nowadays routinely used in the aesthetic treatments of facial skin, such as in laser rejuvenation, scar removal etc. The induced thermal damage may be varied by setting different laser parameters, in order to obtain a particular aesthetic result. In this work, it is proposed a theoretical study on the induced thermal damage in the deep tissue, by considering different laser pulse duration. The study is based on the Finite Element Method (FEM): a bidimensional model of the facial skin is depicted in axial symmetry, considering the different skin structures and their different optical and thermal parameters; the conversion of laser light into thermal energy is modeled by the bio-heat equation. The light source is a CO2 laser, with different pulse durations. The model enabled to study the thermal damage induced into the skin, by calculating the Arrhenius integral. The post-processing results enabled to study in space and time the temperature dynamics induced in the facial skin, to study the eventual cumulative effects of subsequent laser pulses and to optimize the procedure for applications in dermatological surgery. The calculated data where then validated in an experimental measurement session, performed in a sheep animal model. Histological analyses were performed on the treated tissues, evidencing the spatial distribution and the entity of the thermal damage in the collageneous tissue. Modeling and experimental results were in good agreement, and they were used to design a new optimized laser based skin resurfacing procedure.

  20. Half Moon Cove Tidal Project. Feasibility report

    Science.gov (United States)

    1980-11-01

    The project would be located in a small cove in the northern part of Cobscook Bay in the vicinity of Eastport, Maine. The basin impounded by the barrier when full will approximate 1.2 square miles. The average tidal range at Eastport is 18.2 feet. The maximum spring tidal range will be 26.2 feet and the neap tidal range 12.8 feet. The project will be of the single pool-type single effect in which generation takes place on the ebb tide only. Utilizing an average mean tidal range of 18.2 feet the mode of operation enables generation for approximately ten and one-half (10-1/2) hours per day or slightly in excess of five (5) hours per tide. The installed capacity will be 12 MW utilizing 2 to 6 MW units. An axial flow, or Bulb type of turbine was selected for this study.

  1. Assessment of Soil Quality of Tidal Marshes in Shanghai City

    Institute of Scientific and Technical Information of China (English)

    Qing; WANG; Juan; TAN; Jianqiang; WU; Chenyan; SHA; Junjie; RUAN; Min; WANG; Shenfa; HUANG

    2013-01-01

    We take three types of tidal marshes in Shanghai City as the study object:tidal marshes in mainland,tidal marshes in the rim of islands,and shoal in Yangtze estuary.On the basis of assessing nutrient quality and environmental quality,respectively,we use soil quality index(SQI)to assess the soil quality of tidal flats,meanwhile formulate the quality grading standards,and analyze the current situation and characteristics of it.The results show that except the north of Hangzhou Bay,Nanhui and Jiuduansha with low soil nutrient quality,there are not obvious differences in soil nutrient quality between other regions;the heavy metal pollution of tidal marshes in mainland is more serious than that of tidal marshes in the rim of islands;in terms of the comprehensive soil quality index,the regions are sequenced as follows:Jiuduansha wetland>Chongming Dongtan wetland>Nanhui tidal flat>tidal flat on the periphery of Chongming Island>tidal flat on the periphery of Hengsha Island>Pudong tidal flat>Baoshan tidal flat>tidal flat on the periphery of Changxing Island>tidal flat in the north of Hangzhou Bay.Among them,Jiuduansha wetland and Chongming Dongtan wetland have the best soil quality,belonging to class III,followed by Nanhui tidal flat,tidal flat on the periphery of Chongming Island and tidal flat on the periphery of Hengsha Island,belonging to class IV;tidal flat on the periphery of Changxing Island,Pudong tidal flat,Baoshan tidal flat and tidal flat in the north of Hangzhou Bay belong to class V.

  2. Ocean renewable energy : Tidal power in the Yellow Sea

    OpenAIRE

    LEE, Han Soo

    2011-01-01

    Ocean renewable energy sources are briefly introduced in this review article. Special focus on tidal energy from ocean renewable energy in the Yellow Sea and its practical utilization in South Korea are illustrated with several examples. Among them, the Sihwa Lake tidal power plant, the Garolim Bay tidal power project, the Incheon tidal power project, and the Uldolmok tidal current power station were introduced with more details. A numerical modelling system, Regional Ocean Tide Simulator, is...

  3. Global gene expression analyses of hematopoietic stem cell-like cell lines with inducible Lhx2 expression

    Directory of Open Access Journals (Sweden)

    Lundeberg Joakim

    2006-04-01

    Full Text Available Abstract Background Expression of the LIM-homeobox gene Lhx2 in murine hematopoietic cells allows for the generation of hematopoietic stem cell (HSC-like cell lines. To address the molecular basis of Lhx2 function, we generated HSC-like cell lines where Lhx2 expression is regulated by a tet-on system and hence dependent on the presence of doxycyclin (dox. These cell lines efficiently down-regulate Lhx2 expression upon dox withdrawal leading to a rapid differentiation into various myeloid cell types. Results Global gene expression of these cell lines cultured in dox was compared to different time points after dox withdrawal using microarray technology. We identified 267 differentially expressed genes. The majority of the genes overlapping with HSC-specific databases were those down-regulated after turning off Lhx2 expression and a majority of the genes overlapping with those defined as late progenitor-specific genes were the up-regulated genes, suggesting that these cell lines represent a relevant model system for normal HSCs also at the level of global gene expression. Moreover, in situ hybridisations of several genes down-regulated after dox withdrawal showed overlapping expression patterns with Lhx2 in various tissues during embryonic development. Conclusion Global gene expression analysis of HSC-like cell lines with inducible Lhx2 expression has identified genes putatively linked to self-renewal / differentiation of HSCs, and function of Lhx2 in organ development and stem / progenitor cells of non-hematopoietic origin.

  4. Quantitative Analyses of Force-Induced Amyloid Formation in Candida albicans Als5p: Activation by Standard Laboratory Procedures.

    Directory of Open Access Journals (Sweden)

    Cho X J Chan

    Full Text Available Candida albicans adhesins have amyloid-forming sequences. In Als5p, these amyloid sequences cluster cell surface adhesins to create high avidity surface adhesion nanodomains. Such nanodomains form after force is applied to the cell surface by atomic force microscopy or laminar flow. Here we report centrifuging and resuspending S. cerevisiae cells expressing Als5p led to 1.7-fold increase in initial rate of adhesion to ligand coated beads. Furthermore, mechanical stress from vortex-mixing of Als5p cells or C. albicans cells also induced additional formation of amyloid nanodomains and consequent activation of adhesion. Vortex-mixing for 60 seconds increased the initial rate of adhesion 1.6-fold. The effects of vortex-mixing were replicated in heat-killed cells as well. Activation was accompanied by increases in thioflavin T cell surface fluorescence measured by flow cytometry or by confocal microscopy. There was no adhesion activation in cells expressing amyloid-impaired Als5pV326N or in cells incubated with inhibitory concentrations of anti-amyloid dyes. Together these results demonstrated the activation of cell surface amyloid nanodomains in yeast expressing Als adhesins, and further delineate the forces that can activate adhesion in vivo. Consequently there is quantitative support for the hypothesis that amyloid forming adhesins act as both force sensors and effectors.

  5. Mitochondrial physiology and gene expression analyses reveal metabolic and translational dysregulation in oocyte-induced somatic nuclear reprogramming.

    Directory of Open Access Journals (Sweden)

    Telma C Esteves

    Full Text Available While reprogramming a foreign nucleus after somatic cell nuclear transfer (SCNT, the enucleated oocyte (ooplasm must signal that biomass and cellular requirements changed compared to the nucleus donor cell. Using cells expressing nuclear-encoded but mitochondria-targeted EGFP, a strategy was developed to directly distinguish maternal and embryonic products, testing ooplasm demands on transcriptional and post-transcriptional activity during reprogramming. Specifically, we compared transcript and protein levels for EGFP and other products in pre-implantation SCNT embryos, side-by-side to fertilized controls (embryos produced from the same oocyte pool, by intracytoplasmic injection of sperm containing the EGFP transgene. We observed that while EGFP transcript abundance is not different, protein levels are significantly lower in SCNT compared to fertilized blastocysts. This was not observed for Gapdh and Actb, whose protein reflected mRNA. This transcript-protein relationship indicates that the somatic nucleus can keep up with ooplasm transcript demands, whilst transcription and translation mismatch occurs after SCNT for certain mRNAs. We further detected metabolic disturbances after SCNT, suggesting a place among forces regulating post-transcriptional changes during reprogramming. Our observations ascribe oocyte-induced reprogramming with previously unsuspected regulatory dimensions, in that presence of functional proteins may no longer be inferred from mRNA, but rather depend on post-transcriptional regulation possibly modulated through metabolism.

  6. Half Moon Cove Tidal Project. Feasibility report

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    The proposed Half Moon Cove Tidal Power Project would be located in a small cove in the northern part of Cobscook Bay in the vicinity of Eastport, Maine. The project would be the first tidal electric power generating plant in the United States of America. The basin impounded by the barrier when full will approximate 1.2 square miles. The average tidal range at Eastport is 18.2 feet. The maximum spring tidal range will be 26.2 feet and the neap tidal range 12.8 feet. The project will be of the single pool-type single effect in which generation takes place on the ebb tide only. Utilizing an average mean tidal range of 18.2 feet the mode of operation enables generation for approximately ten and one-half (10-1/2) hours per day or slightly in excess of five (5) hours per tide. The installed capacity will be 12 MW utilizing 2 to 6 MW units. An axial flow, or Bulb type of turbine was selected for this study.

  7. Viscoelastic Models of Tidally Heated Exomoons

    CERN Document Server

    Dobos, Vera

    2015-01-01

    Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life is intensely studied on Solar System moons such as Europa or Enceladus, where the surface ice layer covers tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. For studying the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models, because it takes into account the temperature dependency of the tidal heat flux, and the melting of the inner material. With the use of this model we introduced the circumplanetary Tidal Temperate Zone (TTZ), that strongly depends on the orbital period of the moon, and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ usi...

  8. Can Tidal Current Energy Provide Base Load?

    Directory of Open Access Journals (Sweden)

    Simone Giorgi

    2013-06-01

    Full Text Available Tidal energy belongs to the class of intermittent but predictable renewable energy sources. In this paper, we consider a compact set of geographically diverse locations, which have been assessed to have significant tidal stream energy, and attempt to find the degree to which the resource in each location should be exploited so that the aggregate power from all locations has a low variance. An important characteristic of the locations chosen is that there is a good spread in the peak tidal flow times, though the geographical spread is relatively small. We assume that the locations, all on the island of Ireland, can be connected together and also assume a modular set of tidal turbines. We employ multi-objective optimisation to simultaneously minimise variance, maximise mean power and maximise minimum power. A Pareto front of optimal solutions in the form of a set of coefficients determining the degree of tidal energy penetration in each location is generated using a genetic algorithm. While for the example chosen the total mean power generated is not great (circa 100 MW, the case study demonstrated a methodology that can be applied to other location sets that exhibit similar delays between peak tidal flow times.

  9. Histological and MS spectrometric analyses of the modified tissue of bulgy form tadpoles induced by salamander predation

    Directory of Open Access Journals (Sweden)

    Tsukasa Mori

    2012-02-01

    The rapid induction of a defensive morphology by a prey species in face of a predation risk is an intriguing in ecological context; however, the physiological mechanisms that underlie this phenotypic plasticity remain uncertain. Here we investigated the phenotypic changes shown by Rana pirica tadpoles in response to a predation threat by larvae of the salamander Hynobius retardatus. One such response is the bulgy morph phenotype, a relatively rapid swelling in size by the tadpoles that begins within 4 days and reaches a maximum at 8 to 10 days. We found that although the total volume of bodily fluid increased significantly (P<0.01 in bulgy morph tadpoles, osmotic pressure was maintained at the same level as control tadpoles by a significant increase (P<0.01 in Na and Cl ion concentrations. In our previous report, we identified a novel frog gene named pirica that affects the waterproofing of the skin membrane in tadpoles. Our results support the hypothesis that predator-induced expression of pirica on the skin membrane causes retention of absorbed water. Midline sections of bulgy morph tadpoles showed the presence of swollen connective tissue beneath the skin that was sparsely composed of cells containing hyaluronic acid. Mass spectrographic (LC-MS/MS analysis identified histone H3 and 14-3-3 zeta as the most abundant constituents in the liquid aspirated from the connective tissue of bulgy tadpoles. Immunohistochemistry using antibodies against these proteins showed the presence of non-chromatin associated histone H3 in the swollen connective tissue. Histones and 14-3-3 proteins are also involved in antimicrobial activity and secretion of antibacterial proteins, respectively. Bulgy tadpoles have a larger surface area than controls, and their skin often has bite wounds inflicted by the larval salamanders. Thus, formation of the bulgy morph may also require and be supported by activation of innate immune systems.

  10. Evaluation of the Pseudostatic Analyses of Earth Dams Using FE Simulation and Observed Earthquake-Induced Deformations: Case Studies of Upper San Fernando and Kitayama Dams

    Science.gov (United States)

    Akhlaghi, Tohid

    2014-01-01

    Evaluation of the accuracy of the pseudostatic approach is governed by the accuracy with which the simple pseudostatic inertial forces represent the complex dynamic inertial forces that actually exist in an earthquake. In this study, the Upper San Fernando and Kitayama earth dams, which have been designed using the pseudostatic approach and damaged during the 1971 San Fernando and 1995 Kobe earthquakes, were investigated and analyzed. The finite element models of the dams were prepared based on the detailed available data and results of in situ and laboratory material tests. Dynamic analyses were conducted to simulate the earthquake-induced deformations of the dams using the computer program Plaxis code. Then the pseudostatic seismic coefficient used in the design and analyses of the dams were compared with the seismic coefficients obtained from dynamic analyses of the simulated model as well as the other available proposed pseudostatic correlations. Based on the comparisons made, the accuracy and reliability of the pseudostatic seismic coefficients are evaluated and discussed. PMID:24616636

  11. Evolution and stability of tidal river bifurcations

    Science.gov (United States)

    Kleinhans, M. G.

    2011-12-01

    At bifurcations, water and sediment are partitioned, so that long-term evolution of fluvial and deltaic channels is determined by the bifurcation stability. Recent work in fluvial environments showed that bifurcations are commonly unstable so that avulsion results. For tidal rivers it could be argued that the discharge fluctuation enhances transport so that it simply closes of faster than in steady flow, but it could also be argued that tidal phase differences between the bifurcates cause a residual flow that counteracts the closing trend and keeps both bifurcates open. A physics-based numerical model (Delft3D) was used to model fixed-bank fork-shaped bifurcations with and without tides, and with short and long length relative to tidal wavelength. In all cases the bifurcations remained as unstable as without tides and ended invariably in avulsion. Tidal bifurcations unbalanced more rapidly than fluvial bifurcations, because of the increased ebb current and nonlinearity of sediment transport. On the other hand, discharge partitioning at the final bifurcation was much less asymmetrical with tides than without. Tidal wave deformation and production of higher harmonics in the longer channels affected sediment partitioning in the unstable phase but seems to have no effect on equilibrium morphology. Significant phase differences between the bifurcates caused a tidal floss effect, which scoured the bifurcation. In conclusion, symmetrical bifurcations affected by tides are unstable, but their final equilibrium is more symmetrical than without tides unless bifurcates have significant tidal phase differences. Furthermore I modelled growing deltas with self-formed distributary channels with and without cohesive sediment and with and without tides. Here, tides cause the flow to be more focussed in fewer and larger channels, whilst the few bifurcations are relatively stable. Combined fluvial discharge and tidal ebb flow in the channels transports more sediment than in fluvial

  12. Three-dimensional semi-idealized model for tidal motion in tidal estuaries

    NARCIS (Netherlands)

    Kumar, M.; Schuttelaars, H.M.; Roos, P.C.; Möller, M.

    2015-01-01

    In this paper, a three-dimensional semi-idealized model for tidal motion in a tidal estuary of arbitrary shape and bathymetry is presented. This model aims at bridging the gap between idealized and complex models. The vertical profiles of the velocities are obtained analytically in terms of the firs

  13. Plant distributions along salinity and tidal gradients in Oregon tidal marshes

    Science.gov (United States)

    Accurately modeling climate change effects on tidal marshes in the Pacific Northwest requires understanding how plant assemblages and species are presently distributed along gradients of salinity and tidal inundation. We outline on-going field efforts by the EPA and USGS to dete...

  14. Dynamics of tidal and non-tidal currents along the southwest continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Aruna, C.; Ravichandran, C.; Srinivas, K.; Rasheed, P.A.A.; Lekshmi, S.

    the observed time-series of water level collected during November- December 2005, from four tide gauge stations distributed along the southwest shelf of India. The tidal amplitudes showed a general decrease from north to south. Harmonic analysis of the tidal...

  15. 3-D modelling the electric field due to ocean tidal flow and comparison with observations

    DEFF Research Database (Denmark)

    Kuvshinov, A.; Junge, A.; Utada, H.

    2006-01-01

    The tidal motion of the ocean water through the ambient magnetic field, generates secondary electric field. This motionally induced electric field can be detected in the sea or inland and has a potential for electrical soundings of the Earth. A first goal of the paper is to gain an understanding...

  16. On M2 tidal amplitude enhancement in the Taiwan Strait and its asymmetry in the cross-strait direction

    Science.gov (United States)

    Yu, Haiqing; Yu, Huaming; Ding, Yang; Wang, Lu; Kuang, Liang

    2015-10-01

    Enhanced M2 tidal amplitude in the Taiwan Strait (TS) and asymmetric M2 tidal amplitude in the cross-strait direction have been found and reproduced in numerical simulations. In this study, Finite Volume Coastal Ocean Model (FVCOM) is applied to investigate the mechanisms behind these features. Model results show that the linear interaction of waves from the East China Sea (ECS) and the Luzon Strait (LS) can explain the formation of the co-amplitude and co-phase lines of the M2 tide in the nodal point area, while the waves from the ECS dominate the tidal motion in the TS according to a basic linear wave superposition. Model simulation also show that wave reflection and transition occur when the M2 tidal waves from the ECS propagate through the TS and encounter an sharply deepened topography. The interaction of these induced reflection waves and the incident waves from the ECS is the main cause for the enhanced M2 tidal amplitude in the TS. The distribution of the sharply deepened topography, rather than the Coriolis effect, is the main reason for the asymmetry of the M2 tidal amplitude in the cross-strait direction in the TS. These findings provide some references for tidal dynamics in other areas, especially where long waves propagate through the shallow water to the deep sea.

  17. Behaviour of a floc population during a tidal cycle: laboratory experiments and numerical modelling

    OpenAIRE

    Verney, Romaric; Lafite, Robert; Brun-cottan, Jean Claude; Le Hir, Pierre

    2011-01-01

    An approach combining laboratory experiments and numerical modelling was used to investigate the behaviour of a floc population during an idealized tidal cycle. The experiment was conducted on suspended sediments at a concentration of 93 mg l−1 collected in the field. It was based on a jar test device to reproduce tidal-induced turbulence and coupled with a CCD camera system and image post-processing software to monitor floc size distribution. At the same time, a 0D size-class based aggregati...

  18. Tidal stream energy impacts on estuarine circulation

    International Nuclear Information System (INIS)

    Highlights: • The impact of a tidal stream plant on the estuarine hydrodynamic was analyzed. • A 3D model was used to determine the hydrodynamics on the ria. • The model was successfully validated with field measurements. • The momentum sink approach is used to simulate the tidal farm. • The 3D alteration on the transient and residual circulation is presented. - Abstract: Among the impacts on the marine environment associated with the operation of a tidal farm, the alteration of the transient and residual flow velocities must be assessed in detail, for they constitute the driving force of important environmental processes such as sediment and pollutant transport, and nutrient dispersion. The objective of this study is to assess the impacts caused by the operation of a tidal farm on the transient and residual flow by means of a case study: a tidal stream farm in Ria de Ribadeo, an estuary in NW Spain. For this purpose a 3D numerical model of the estuary is implemented and successfully validated based on field data of tidal levels and flow velocities. The energy extracted by the tidal stream farm from the flow is accounted for by adding a momentum sink term in the equations of the model. Two scenarios representative of typical winter and summer conditions are considered. The results show that the disturbances to the transient flow patterns are concentrated in the proximity of the farm, with a weakening of the flow upstream and, especially, downstream of the farm (up to 0.25 ms−1) and an intensification on both sides (up to 0.10 ms−1). As for the residual flow, we find that the operation of the tidal farm does not disrupt the complex 3D residual circulation of the ria, but it does lead to modifications of the residual flow of up to 0.025 ms−1, or approximately 10% of the baseline residual flow, which affect a much larger area than in the case of the transient flow (up to approximately 2 km from the farm). The repercussions of these alterations of the

  19. Tidally Heated Terrestrial Exoplanets: Viscoelastic Response Models

    CERN Document Server

    Henning, Wade G; Sasselov, Dimitar D; 10.1088/0004-637X/707/2/1000

    2009-01-01

    Tidal friction in exoplanet systems, driven by orbits that allow for durable nonzero eccentricities at short heliocentric periods, can generate internal heating far in excess of the conditions observed in our own solar system. Secular perturbations or a notional 2:1 resonance between a Hot Earth and Hot Jupiter can be used as a baseline to consider the thermal evolution of convecting bodies subject to strong viscoelastic tidal heating. We compare results first from simple models using a fixed Quality factor and Love number, and then for three different viscoelastic rheologies: the Maxwell body, the Standard Anelastic Solid, and the Burgers body. The SAS and Burgers models are shown to alter the potential for extreme tidal heating by introducing the possibility of new equilibria and multiple response peaks. We find that tidal heating tends to exceed radionuclide heating at periods below 10-30 days, and exceed insolation only below 1-2 days. Extreme cases produce enough tidal heat to initiate global-scale parti...

  20. Harnessing Ocean Energy by Tidal Current Technologies

    Directory of Open Access Journals (Sweden)

    Nasir Mehmood

    2012-09-01

    Full Text Available The world is heavily dependent on fossil fuels since most of its energy requirements are fulfilled by conventional methods of burning these fuels. The energy demand is increasing by day with growing population. The energy production by fossil fuels is devastating the environment and survival of life on globe is endangered. The renewal energy technologies are vital to ensure future energy sustenance and environmental issues. Ocean is a vast resource of renewable energy. The technology today makes it possible to extract energy from tides. The growing interest in exploring tidal current technologies has compelling reasons such as security and diversity of supply, intermittent but predictable and limited social and environmental impacts. The purpose of this study is to present a comprehensive review of tidal current technologies to harness ocean energy. The ocean energy resources are presented. The author discusses tidal energy technologies. The tidal current turbines are discussed in detail. The author reviews today’s popular tidal current technologies. The present status of ocean energy development is also reported.

  1. Analyses of cosmic ray induced-neutron based on spectrometers operated simultaneously at mid-latitude and Antarctica high-altitude stations during quiet solar activity

    Science.gov (United States)

    Hubert, G.

    2016-10-01

    In this paper are described a new neutron spectrometer which operate in the Concordia station (Antarctica, Dome C) since December 2015. This instrument complements a network including neutron spectrometers operating in the Pic-du-Midi and the Pico dos Dias. Thus, this work present an analysis of cosmic ray induced-neutron based on spectrometers operated simultaneously in the Pic-du-Midi and the Concordia stations during a quiet solar activity. The both high station platforms allow for investigating the long period dynamics to analyze the spectral variation and effects of local and seasonal changes, but also the short term dynamics during solar flare events. A first part is devoted to analyze the count rates, the spectrum and the neutron fluxes, implying cross-comparisons between data obtained in the both stations. In a second part, measurements analyses were reinforced by modeling based on simulations of atmospheric cascades according to primary spectra which only depend on the solar modulation potential.

  2. The dependence of estuarine turbidity on tidal intrusion length, tidal range and residence time

    Science.gov (United States)

    Uncles, R.J.; Stephens, J.A.; Smith, R.E.

    2002-01-01

    It is shown that there is a marked tendency for long, strongly tidal estuaries to have greater suspended particulate matter (SPM) concentrations within their high-turbidity regions than shorter estuaries with comparable tidal ranges at their mouths, or weakly tidal estuaries. Using consistently derived data from 44 estuaries in Europe and the Americas, contours of the logarithm of maximum estuarine SPM concentration are shown to be reasonably smooth when plotted against the logarithm of mean spring tidal range (at the estuary mouth) and the logarithm of estuarine tidal length. Predictions from the plot are compared with published observations made in the Delaware, Scheldt, Rio de la Plata, Gironde, Bay of Fundy, Changjiang (Yangtze), Amazon, Paros Lagoon and the Hawkesbury Estuary and it is shown that, qualitatively, there are no serious discrepancies. Short, weakly tidal estuaries are predicted to have very low 'intrinsic' SPM concentrations. High SPM concentrations in these estuaries would most likely be the result of either locally generated wave resuspension, high freshwater sediment loads due to freshets, or intruding seawater carrying suspended sediments derived from wave activity in the coastal zone. Application of a generic tidal model demonstrates that longer estuaries possess faster tidal currents for a given tidal range at their mouth and, in the presence of a supply of erodable fine sediment, therefore (by implication) produce greater concentrations of SPM that can be accumulated within a turbidity maximum. The same is true if the tidal range is increased for estuaries of a given length. These features are illustrated by comparing surveys of SPM data from two large estuaries possessing greatly different tidal ranges (the microtidal, medium turbidity Potomac and the macrotidal, highly turbid Humber-Ouse) and a third, much smaller but strongly tidal estuary (the low-turbidity Tweed). It is demonstrated that longer estuaries tend to have longer flushing

  3. The puzzling chemical composition of GJ 436b's atmosphere: influence of tidal heating on the chemistry

    CERN Document Server

    Agundez, M; Selsis, F; Iro, N

    2013-01-01

    The dissipation of the tidal energy deposited on eccentric planets may induce a heating of the planet that affects its atmospheric thermal structure. Here we study the influence of tidal heating on the atmospheric composition of the eccentric (e = 0.16) "hot Neptune" GJ 436b, for which inconclusive chemical abundances are retrieved from multiwavelength photometric observations carried out during primary transit and secondary eclipse. We build up a one-dimensional model of GJ 436b's atmosphere in the vertical direction and compute the pressure-temperature and molecular abundances profiles for various plausible internal temperatures of the planet (up to 560 K) and metallicities (from solar to 100 times solar), using a radiative-convective model and a chemical model which includes thermochemical kinetics, vertical mixing, and photochemistry. We find that the CO/CH4 abundance ratio increases with metallicity and tidal heating, and ranges from 1/20 to 1000 within the ranges of metallicity and internal temperature ...

  4. Analysis and comparison of the tidal gravity observations obtained with LCR-ET20 spring gravimeter

    Institute of Scientific and Technical Information of China (English)

    孙和平; 陈晓东; 刘明; 周百力

    2002-01-01

    Based on the tidal gravity observations recorded with LCR-ET20 spring gravimeter at Wuhan international fundamental tidal gravity station, the characteristics of the ET20 and the atmospheric and oceanic gravity signals are studied systematically by using international standard data pre-processing and analysis methods, and by comparing the results with those obtained using superconducting gravimeter (SG) at same station. The numerical results indicate that the identical tidal gravity parameters same as those with the SG are obtained, the instrument can be used effectively to record temporal change of the gravity field, though the accuracy of the ET20 is one order lower than that of the SG, and has also the large drift induced by the spring creep character.

  5. Tidal frequencies in the spectral analysis of time series muon flux measurements

    Science.gov (United States)

    Feldman, Catherine; Takai, Helio

    2016-03-01

    Tidal frequencies are observed in the spectral analysis of time series muon flux measurements performed by the MARIACHI experiment over a period of seven years. The prominent peaks from the frequency spectrum correspond to tidal frequencies S1,S2,S3,K1,P1 and Ψ1 . We will present these results and compare them to the regular density oscillations from balloon sounding data. We interpret the observed data as being the effect of regular atmospheric density oscillations induced by the thermal heating of layers in Earth's atmosphere. As the density of the atmosphere varies, the altitude where particles are produced varies accordingly. As a consequence, the muon decay path elongates or contracts, modulating the number of muons detected at ground level. The role of other tidal effects, including geomagnetic tides, will also be discussed.

  6. Crustal Failure on Icy Moons and Satellites from a Strong Tidal Encounter

    CERN Document Server

    Quillen, Alice C; Shaw, John G; Ebinger, Cindy

    2015-01-01

    Close tidal encounters among large planetesimals and satellites should have been more common than grazing or normal impacts. Using a mass spring model within an N-body simulation, we simulate the deformation of the surface of an elastic spherical body caused by a close parabolic tidal encounter with a body that has similar mass as that of the primary body. Such an encounter can induce sufficient stress on the surface to cause brittle failure of an icy crust and simulated fractures can extend a large fraction of the radius of body. Strong tidal encounters may be responsible for the formation of long graben complexes and chasmata in ancient terrain of icy moons and satellites such as Dione, Tethys, Ariel and Charon.

  7. A 2D Mathematical Model for Sediment Transport by Waves and Tidal Currents

    Institute of Scientific and Technical Information of China (English)

    LU Yong-jun; ZUO Li-qin; SHAO Xue-jun; WANG Hong-chuan; LI Hao-lin

    2005-01-01

    In this study, the combined actions of waves and tidal currents in estuarine and coastal areas are considered and a 2D mathematical model for sediment transport by waves and tidal currents has been established in orthogonal curvilinear coordinates. Non-equilibrium transport equations of suspended load and bed load are used in the model. The concept of background concentration is introduced, and the formula of sediment transport capacity of tidal currents for the Oujiang River estuary is obtained. The Dou Guoren formula is employed for the sediment transport capacity of waves. Sediment transport capacity in the form of mud and the intensity of back silting are calculated by use of Luo Zaosen's formula. The calculated tidal stages are in good agreement with the field data, and the calculated velocities and flow directions of 46 vertical lines for 8 cross sections are also in good agreement with the measured data. On such a basis, simulations of back silting after excavation of the waterway with a sand bar under complicated boundary conditions in the navigation channel induced by suspended load, bed load and mud by waves and tidal currents are discussed.

  8. Joule Heating, Particle Precipitation and Dynamical Heating as Possible Tidal Sources in the Antarctic Winter Lower Thermosphere

    Science.gov (United States)

    Fong, W.; Chu, X.; Lu, X.; Chen, C.; Yu, Z.; Fuller-Rowell, T. J.; Richmond, A. D.; Codrescu, M.

    2014-12-01

    Winter temperature tides observed by lidar at McMurdo (77.8°S, 166.7°E), Antarctica, show less than 3 K diurnal and semidiurnal tidal amplitude below 100 km. However, above 100 km, the diurnal and semidiurnal tidal amplitudes grow super-exponentially and can reach at least 15 K near 110 km, which are exceeding that of the freely propagating tides originating from the lower atmosphere. Such fast growth exists for all Kp index cases and diurnal amplitude increases to 15-30 K at 110 km with larger Kp indices corresponding to larger tidal amplitudes and faster growth rates. Combining with the slopes of diurnal tidal phases being steeper above 100 km, and the tidal phases barely changing with altitude from 100 to 106 km, it indicates that in-situ tidal sources may exist near or above 100 km. In this paper, we utilize the coupled thermosphere ionosphere plasmasphere electrodynamics (CTIPe) model to investigate possible sources/mechanisms that lead to the fast amplitude growth of tides in the polar winter region. Joule heating, particle precipitation, and dynamical heating are likely to be the dominant thermospheric tidal sources, according to CTIPe model. Interestingly, the CTIPe tidal amplitudes induced by these sources form a concentric pattern with its center located at the geomagnetic pole, implying that the geomagnetic activity may play an important role. Furthermore, dynamical heating, which includes adiabatic heating/cooling and vertical advection, is likely to be the explanation of the fast growth of diurnal tidal amplitudes even under quiet condition of geomagnetic activity as observed by lidar. We also found that the tides propagating from the lower atmosphere is a minor factor for the fast increase of thermospheric diurnal tides in Antarctica.

  9. HI Recycling Formation of Tidal Dwarf Galaxies

    CERN Document Server

    Duc, P A; Duc, Pierre-Alain; Brinks, Elias

    2000-01-01

    Galactic collisions trigger a number of phenomena, such as transportation inward of gas from distances of up to kiloparsecs from the center of a galaxy to the nuclear region, fuelling a central starburst or nuclear activity. The inverse process, the ejection of material into the intergalactic medium by tidal forces, is another important aspect and can be studied especially well through detailed HI observations of interacting systems which have shown that a large fraction of the gaseous component of colliding galaxies can be expelled. Part of this tidal debris might fall back, be dispersed throughout the intergalactic medium or recondense to form a new generation of galaxies: the so-called tidal dwarf galaxies. The latter are nearby examples of galaxies in formation. The properties of these recycled objects are reviewed here and different ways to identify them are reviewed.

  10. Tidal Forces in Naked Singularity Backgrounds

    CERN Document Server

    Goel, Akash; Roy, Pratim; Sarkar, Tapobrata

    2015-01-01

    The end stage of a gravitational collapse process can generically result in a black hole or a naked singularity. Here we undertake a comparative analysis of the nature of tidal forces in these backgrounds. The effect of such forces is generically exemplified by the Roche limit, which predicts the distance within which a celestial object disintegrates due to the tidal effects of a second more massive object. In this paper, using Fermi normal coordinates, we numerically compute the Roche limit for a class of non-rotating naked singularity backgrounds, and compare them with known results for Schwarzschild black holes. Our analysis indicates that there might be substantially large deviations in the magnitudes of tidal forces in naked singularity backgrounds, compared to the black hole cases. If observationally established, these can prove to be an effective indicator of the nature of the singularity at a galactic centre.

  11. Double tidal disruptions in galactic nuclei

    CERN Document Server

    Mandel, Ilya

    2015-01-01

    A star on a nearly radial trajectory approaching a massive black hole (MBH) gets tidally disrupted if it comes sufficiently close to the MBH. Here we explore what happens to binary stars whose centers of mass approach the MBH on nearly radial orbits. The interaction with the MBH often leads to both stars being disrupted in sequence. We argue that such events could produce light curves that are substantially different from those of the single disruptions, with possible features such as two local maxima. Tidal forces from the MBH can also lead the binary components to collide; these merger products can form highly magnetized stars, whose subsequent tidal disruption may enable prompt jet formation.

  12. Tidal Response of Preliminary Jupiter Model

    CERN Document Server

    Wahl, Sean M; Militzer, Burkhard

    2016-01-01

    In anticipation of improved observational data for Jupiter's gravitational field from the Juno spacecraft, we predict the static tidal response for a variety of Jupiter interior models based on ab initio computer simulations of hydrogen-helium mixtures. We calculate hydrostatic-equilibrium gravity terms using the non-perturbative concentric Maclaurin Spheroid (CMS) method that eliminates lengthy expansions used in the theory of figures. Our method captures terms arising from the coupled tidal and rotational perturbations, which we find to be important for a rapidly-rotating planet like Jupiter. Our predicted static tidal Love number $k_2 = 0.5900$ is $\\sim$10\\% larger than previous estimates. The value is, as expected, highly correlated with the zonal harmonic coefficient $J_2$, and is thus nearly constant when plausible changes are made to interior structure while holding $J_2$ fixed at the observed value. We note that the predicted static $k_2$ might change due to Jupiter's dynamical response to the Galilea...

  13. TIDAL TURBULENCE SPECTRA FROM A COMPLIANT MOORING

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Jim; Kilcher, Levi; Richmond, Marshall C.; Talbert, Joe; deKlerk, Alex; Polagye, Brian; Guerra, Maricarmen; Cienfuegos, Rodrigo

    2013-06-13

    A compliant mooring to collect high frequency turbulence data at a tidal energy site is evaluated in a series of short demon- stration deployments. The Tidal Turbulence Mooring (TTM) improves upon recent bottom-mounted approaches by suspend- ing Acoustic Doppler Velocimeters (ADVs) at mid-water depths (which are more relevant to tidal turbines). The ADV turbulence data are superior to Acoustic Doppler Current Profiler (ADCP) data, but are subject to motion contamination when suspended on a mooring in strong currents. In this demonstration, passive stabilization is shown to be sufficient for acquiring bulk statistics of the turbulence, without motion correction. With motion cor- rection (post-processing), data quality is further improved; the relative merits of direct and spectral motion correction are dis- cussed.

  14. Tidal response of Europa's subsurface ocean

    Science.gov (United States)

    Karatekin, Özgür; Comblen, Richard; Toubeau, Jonathan; Deleersnijder, Eric; van Hoolst, Tim; Dehant, Veronique

    2010-05-01

    Observations of Cassini and Galileo spacecrafts suggest the presence of subsurface global water oceans under the icy shells of several satellites of Jupiter and Saturn. Previous studies have shown that in the presence of subsurface oceans, time-variable tides cause large periodic surface displacements and that tidal dissipation in the icy shell becomes a major energy source that can affect long-term orbital evolution. However, in most studies so far, the dynamics of these satellite oceans have been neglected. In the present study, we investigate the tidal response of the subsurface ocean of Europa to a time-varying potential. Two-dimensional nonlinear shallow water equations are solved on a sphere by means of a finite element code. The resulting ocean tidal flow velocities and surface displacements will be presented.

  15. The assessment of extactable tidal energy and the effect of tidal energy turbine deployment on the hydrodynamics in Zhoushan

    Institute of Scientific and Technical Information of China (English)

    HOU Fang; BAO Xianwen; LI Benxia; LIU Qianqian

    2015-01-01

    In this study, we construct one 2–dimensional tidal simulation, using an unstructured Finite Volume Coastal Ocean Model (FVCOM). In the 2–D model, we simulated the tidal turbines through adding additional bottom drag in the element where the tidal turbines reside. The additional bottom drag was calculated from the relationship of the bottom friction dissipation and the rated rotor efficiency of the tidal energy turbine. This study analyzed the effect of the tidal energy turbine to the hydrodynamic environment, and calculated the amount of the extractable tidal energy resource at the Guishan Hangmen Channel, considering the rotor wake effect.

  16. Tidal disruption of stars by SMBHs

    Science.gov (United States)

    Komossa, S.

    2016-06-01

    The tidal disruption and subsequent accretion of stars by supermassive black holes produces spectacular flares in the X-ray sky. First found with ROSAT, ongoing and upcoming sky surveys will find these events in the 1000s. In X-rays, tidal disruption events (TDEs) provide us with powerful new probes of accretion physics under extreme conditions, of the formation of disk winds, of relativistic effects near the SMBH, and of the presence of supermassive binary black holes. This talk reviews the status of observations, and discusses future prospects. XMM-Newton will continue to play an important role in identifying new events and carry out spectroscopic follow-ups.

  17. Tidal forces in Reissner-Nordstroem spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Crispino, Luis C.B.; Oliveira, Ednilton S. de [Universidade Federal do Para, Faculdade de Fisica, Belem, Para (Brazil); Higuchi, Atsushi; Oliveira, Leandro A. [University of York, Department of Mathematics, York (United Kingdom)

    2016-03-15

    We analyze the tidal forces produced in the spacetime of Reissner-Nordstroem black holes. We point out that the radial component of the tidal force changes sign just outside the event horizon if the charge-to-mass ratio is close to 1, unlike in Schwarzschild spacetime of uncharged black holes, and that the angular component changes sign between the outer and inner horizons. We solve the geodesic deviation equations for radially falling bodies toward the charged black hole. We find, for example, that the radial component of the geodesic deviation vector starts decreasing inside the event horizon unlike in the Schwarzschild case. (orig.)

  18. Tidal forces in Reissner-Nordstroem spacetimes

    International Nuclear Information System (INIS)

    We analyze the tidal forces produced in the spacetime of Reissner-Nordstroem black holes. We point out that the radial component of the tidal force changes sign just outside the event horizon if the charge-to-mass ratio is close to 1, unlike in Schwarzschild spacetime of uncharged black holes, and that the angular component changes sign between the outer and inner horizons. We solve the geodesic deviation equations for radially falling bodies toward the charged black hole. We find, for example, that the radial component of the geodesic deviation vector starts decreasing inside the event horizon unlike in the Schwarzschild case. (orig.)

  19. CFD for wind and tidal offshore turbines

    CERN Document Server

    Montlaur, Adeline

    2015-01-01

    The book encompasses novel CFD techniques to compute offshore wind and tidal applications. Computational fluid dynamics (CFD) techniques are regarded as the main design tool to explore the new engineering challenges presented by offshore wind and tidal turbines for energy generation. The difficulty and costs of undertaking experimental tests in offshore environments have increased the interest in the field of CFD which is used to design appropriate turbines and blades, understand fluid flow physical phenomena associated with offshore environments, predict power production or characterise offshore environments, amongst other topics.

  20. Cycloidal tidal power generation - Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report summarises the findings of a project investigating the economic and technical viability of a cycloidal tidal stream generator and developing a performance prediction model to assess the applicability of cycloidal turbines to power generation. The concept of cycloidal power generation is described along with the use of the model to examine the performance of six designs in the tidal flow off the west coast of Scotland. Details are given of the estimated power generated and cost reductions using optimised designs. Areas to be examined for design optimisation are listed.

  1. NOAA Tidal Current Data for the Coastal United States

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Knowledge of the timing and strength of tidal currents is extremely important for safe navigation in coastal waters. Tidal currents are almost always the strongest...

  2. NOAA Historical Tidal Current Data for the Coastal United States

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Knowledge of the timing and strength of tidal currents is extremely important for safe navigation in coastal waters. Tidal currents are almost always the strongest...

  3. Adelie penguin foraging location predicted by tidal regime switching.

    Directory of Open Access Journals (Sweden)

    Matthew J Oliver

    Full Text Available Penguin foraging and breeding success depend on broad-scale environmental and local-scale hydrographic features of their habitat. We investigated the effect of local tidal currents on a population of Adélie penguins on Humble Is., Antarctica. We used satellite-tagged penguins, an autonomous underwater vehicle, and historical tidal records to model of penguin foraging locations over ten seasons. The bearing of tidal currents did not oscillate daily, but rather between diurnal and semidiurnal tidal regimes. Adélie penguins foraging locations changed in response to tidal regime switching, and not to daily tidal patterns. The hydrography and foraging patterns of Adélie penguins during these switching tidal regimes suggest that they are responding to changing prey availability, as they are concentrated and dispersed in nearby Palmer Deep by variable tidal forcing on weekly timescales, providing a link between local currents and the ecology of this predator.

  4. Don't Cross the (Tidal) Streams

    Science.gov (United States)

    Kohler, Susanna

    2015-09-01

    In a tidal disruption event (TDE), an unfortunate star passes too close to a dormant supermassive black hole (BH) and gets torn apart by tidal forces, feeding the BH for a short time. Oddly, were not finding nearly as many TDEs typically detected due to their distinctive observational signatures as theory says we should. A recent study suggests that we might be missing many of these events, due to the way the streams of shredded stars fall onto the BHs.Signatures of ShreddingWhen a BH tears a star apart, the stars material is stretched out into whats known as a tidal stream. That stream continues on a trajectory around the BH, with roughly half the material eventually falling back on the BH, whipping around it in a series of orbits. Where those orbits intersect each other, the material smashes together and circularizes, forming a disk that then accretes onto the BH.What does a TDE look like? We dont observe anything until after the tidal streams collide and the material begins to accrete onto the BH. At that point we observe a sudden peak in luminosity, which then gradually decreases (scaling roughly as time-5/3) as the tail end of whats left of the star accretes and the BHs food source eventually runs out.So why have we only been observing about a tenth as many TDEs as theory predicts we should see? By studying the structure of tidal streams in TDEs, James Guillochon (Harvard-Smithsonian Center for Astrophysics) and Enrico Ramirez-Ruiz (UC Santa Cruz) have found a potential reason and the culprit is general relativity.Dark YearsThe authors run a series of simulations of TDEs around black holes of varying masses and spins to see what form the resulting tidal streams take over time. They find that precession of the tidal stream due to the BHs gravitational effects changes how the stream interacts with itself, and therefore what we observe. Some cases behave like what we expect for whats currently considered a typical TDE but some dont.Example from simulations of a

  5. Wind, Wave, and Tidal Energy Without Power Conditioning

    Science.gov (United States)

    Jones, Jack A.

    2013-01-01

    Most present wind, wave, and tidal energy systems require expensive power conditioning systems that reduce overall efficiency. This new design eliminates power conditioning all, or nearly all, of the time. Wind, wave, and tidal energy systems can transmit their energy to pumps that send high-pressure fluid to a central power production area. The central power production area can consist of a series of hydraulic generators. The hydraulic generators can be variable displacement generators such that the RPM, and thus the voltage, remains constant, eliminating the need for further power conditioning. A series of wind blades is attached to a series of radial piston pumps, which pump fluid to a series of axial piston motors attached to generators. As the wind is reduced, the amount of energy is reduced, and the number of active hydraulic generators can be reduced to maintain a nearly constant RPM. If the axial piston motors have variable displacement, an exact RPM can be maintained for all, or nearly all, wind speeds. Analyses have been performed that show over 20% performance improvements with this technique over conventional wind turbines

  6. Field Measurements of a Full Scale Tidal Device

    OpenAIRE

    Jeffcoate, Penny; Starzmann, Ralf; Elsaesser, Bjoern; Scholl, Stefan; Bischoff, Sarah

    2015-01-01

    Field testing studies are required for tidal turbine device developers to determine the performance of their turbines in tidal flows. Full-scale testing of the SCHOTTEL tidal turbine has been conducted at Queen’s University Belfast’s tidal site at Strangford Lough, NI. The device was mounted on a floating barge. Testing was conducted over 48 days, for 288 h, during flood tides in daylight hours. Several instruments were deployed, resulting in an expansive data set. The performance results fro...

  7. An integrated study of natural hydroxyapatite-induced osteogenic differentiation of mesenchymal stem cells using transcriptomics, proteomics and microRNA analyses

    International Nuclear Information System (INIS)

    This work combined transcriptomics, proteomics, and microRNA (miRNA) analyses to elucidate the mechanism of natural hydroxyapatite (NHA)-induced osteogenic differentiation of mesenchymal stem cells (MSCs). First, NHA powder was obtained from pig bones and fabricated into disc-shaped samples. Subsequently, the proliferation and osteogenic differentiation of MSCs cultured on NHA were investigated. Then, proteomics was employed to detect the protein expression profiles of MSCs cultured on NHA, and the effect of NHA on MSCs was analyzed through an integrated pathway analysis (including proteomics and previous transcriptomics data) in which specific NHA-induced differentiation pathways were analyzed. The pathway nodes with expression data at both the mRNA and protein levels (mRNA–protein pairs) were filtered in differentiation-related pathways. miRNAs corresponding to these target mRNA–protein pairs were predicted, screened and tested, and the regulatory effects of miRNAs on mRNA–protein pairs were analyzed. Finally, the NHA-induced osteogenic pathways were verified. The results of an MTT assay and alkaline phosphatase (ALP) staining showed that the cell proliferation rate decreased and the osteogenic performance improved in the presence of NHA. By integrating transcriptomics and proteomics, the genes and proteins involved in 89 pathways were shown to be differentially expressed. Among them, 5 differentiation-associated pathways, in which 9 miRNAs and 8 regulated-target mRNA–protein zby inhibiting the target mRNA–protein pair HSPA8 in the MAPK signaling pathway, and miR-26a and miR-26b might inhibit adipogenic differentiation by repressing the target mRNA–protein pair HMGA1 in the adipogenesis pathway. A verification experiment for the osteogenic pathway indicated that the ERK1/2 or JNK MAPK pathways might play an important role in NHA-induced osteogenic differentiation. In conclusion, NHA affected MSCs at both the transcriptional and translational levels

  8. Tidal freshwater wetlands, the fresh dimension of the estuary

    NARCIS (Netherlands)

    Barendregt, A.

    2016-01-01

    Upstream in the estuary, where the river ends, the tidal energy is still present but the constant input from the river creates permanent fresh water conditions. The physical, chemical and biological conditions differ from the brackish part of the tidal area, but by processes from the tidal wave also

  9. Development of Tidal areas: some principles and issues towards systainability

    NARCIS (Netherlands)

    Sang Hyun, P.; Simm, J.; Ritzema, H.P.

    2009-01-01

    The coastal zone comprises only 3% of the earth's surface, but contains a disproportionately high amount of its assets. Tidal areas include all those coastal areas where the tidal processes are capable of affecting man's activity or of being influenced by man. Tidal areas differ greatly depending on

  10. Ecological consequences of diurnal flooding in tidal freshwater wetlands

    NARCIS (Netherlands)

    Barendregt, A.; Wassen, M.J.

    2010-01-01

    Diurnal flooding can be observed in the upper end of tidal estuaries, where flooding water originating from the river is constantly fresh. Here, the input from the river is confronted with a tidal wave, so that the sand banks, mud flats, low and high marshes and tidal forests are flooded mostly twic

  11. Salmon habitat use, tidal-fluvial estuary - Columbia River Estuary Tidal Habitats

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of the tidal-fluvial estuary study is to determine the estuary's contribution to the spatial structure and life history diversity of Columbia River salmon...

  12. Modelling the far field hydro-environmental impacts of tidal farms - A focus on tidal regime, inter-tidal zones and flushing

    Science.gov (United States)

    Nash, S.; O'Brien, N.; Olbert, A.; Hartnett, M.

    2014-10-01

    The introduction of tidal stream turbines into water bodies can have an impact on the environment due to changes in the hydrodynamic flow fields resulting from the extraction of energy by the tidal turbines. Water levels, tidal currents and flushing characteristics could potentially be significantly altered with the introduction of tidal turbine farms, which could lead to possible loss of habitat and a change in the tidal regime. Therefore, planning of tidal turbines field deployments must take into account possible hydro-environmental impacts. This paper describes research undertaken by the authors in the Shannon Estuary to predict changes in the tidal regime and flushing characteristics, with the introduction of tidal turbine farms of different array configurations. The model was simulated using a 2D hydrodynamic model that was modified to incorporate the effects of tidal turbine fields. Water levels are shown to have been affected with the inclusion of turbines, especially in areas upstream of the turbine farm where inter-tidal zones could become predominately inundated resulting in loss of habitat in the estuary. Flushing parameters were also shown to be altered with the inclusion of turbines, with residence time shown to be increased, which could change pollutant transport in the region.

  13. Tidal asymmetry in a funnel-shaped estuary with mixed semidiurnal tides

    Science.gov (United States)

    Gong, Wenping; Schuttelaars, Henk; Zhang, Heng

    2016-05-01

    results show that the FDA exhibits a predominant tendency of shorter duration of low water slack, favoring the landward transport of fine sediment. The FVA demonstrates prevailing ebb dominance in the study period, favoring the seaward transport of coarse sediment. This ebb dominance is primarily induced by the interaction among the residual flow and the tidal constituents. The external TDA in the ocean experiences distinct cyclic variations with positive asymmetry when semidiurnal tides dominate and negative asymmetry during the periods when diurnal tides dominate. The funnel shape of the HE is advantageous for the development of positive tidal asymmetry as the semidiurnal tides are more amplified than the diurnal tides. The effect of river flow can enhance the ebb dominance, while the baroclinic effect is more complex. The existence of channel and shoals favors the development of residual pattern with seaward flow (ebb dominance) in the channel and landward flow (flood dominance) at the shoal when the tides are strong (semidiurnal tides dominate) and the residual pattern with landward flow (flood dominance) in the channel and seaward flow (ebb dominance) at the shoal when the baroclinic effect is dominant (diurnal tides dominate).

  14. Unravelling tidal dissipation in gaseous giant planets

    CERN Document Server

    Guenel, Mathieu; Remus, Françoise

    2014-01-01

    Tidal dissipation in planetary interiors is one of the key physical mechanisms that drive the evolution of star-planet and planet-moon systems. New constraints are now obtained both in the Solar and exoplanetary systems. Tidal dissipation in planets is intrinsically related to their internal structure. In particular, fluid and solid layers behave differently under tidal forcing. Therefore, their respective dissipation reservoirs have to be compared. In this letter, we compute separately the contributions of the potential dense rocky/icy core and the convective fluid envelope of gaseous giant planets, as a function of core size and mass. We then compare the associated dissipation reservoirs, by evaluating the frequency-average of the imaginary part of the Love numbers $k^2_2$ in each region. In the case of Jupiter and Saturn-like planets, we show that the viscoelastic dissipation in the core could dominate the turbulent friction acting on tidal inertial waves in the envelope. However, the fluid dissipation wou...

  15. On the superradiance-tidal friction correspondence

    CERN Document Server

    Glampedakis, K; Kennefick, D

    2013-01-01

    Since the work of Hartle in the 1970s, and the subsequent development of the the Membrane Paradigm approach to black hole physics it has been widely accepted that superradiant scattering of gravitational waves bears strong similarities with the phenomenon of ``tidal friction'' (well-known from Newtonian gravity) operating in binary systems of viscous material bodies. In this paper we revisit the superradiance-tidal friction analogy within the context of ultracompact relativistic bodies. We advocate that as long as these bodies have non-zero viscosity they should undergo tidal friction that can be construed as a kind of superradiant scattering from the point of view of the dynamics of an orbiting test-body. In addition we consider the presence of anisotropic matter, which is required for at least some ultracompact bodies, if they are to sustain a radius very close to the gravitational radius. We find that the tidal friction/superradiance output is enhanced with increasing anisotropy and that strongly anisotrop...

  16. Tidal Embayments: Modelling and understanding their morphodynamics

    NARCIS (Netherlands)

    Ter Brake, M.C.

    2011-01-01

    Tidal basins are observed all over the world's coastline, for example along the north coast of The Netherlands. These basins are important both from an economic and ecological point of view. Complex channel and shoal patterns can be found in these inlets, as they develop due to the interaction of th

  17. Analysis of Jiangsu Tidal Flats Reclamation from 1974 to 2012 Using Remote Sensing

    Institute of Scientific and Technical Information of China (English)

    赵赛帅; 刘永学; 李满春; 孙超; 周旻曦; 张荷霞

    2015-01-01

    Jiangsu has the most abundant tidal flat resources among China’s coastal provinces. To ease the conflict between the growing population and shrinking usable land and to promote regional sustainable development, large-scale coastal reclamation development activities have been performed in Jiangsu Province since 1949. The present study has integrated multi-source remote sensing images during 1974 to 2012 by using a Multi-point Fast Marching Method (MFMM) to extract the Jiangsu coastal reclamation areas for different time periods. The temporal and spatial patterns of the extent and elevation of the reclamation areas were analysed in order to determine the unused potential for future reclamation. It will provide information necessary to support the development and construction of tidal flats in Jiangsu. Results show that: (1) the reclaimed tidal flats along the Jiangsu coast cover more than 19.86×104 hm2, of which 13.97×104 hm2 is located in Yancheng, 4.84×104 hm2 in Nantong, and 1.05×104 hm2 in Lianyungang; (2) the average elevation of the reclaimed Jiangsu tidal flats has gradually decreased over the last 40 years, while those in Dongtai and Rudong have showed particularly accelerated decrease since the 1990s; and (3) in 2012, very few unused tidal flats two meters above the sea level are left along the Jiangsu coast, and mainly concentrated in Yancheng. As there are still reserving some coastal land resources between 0−2 m, providing us with a potential for future development. All of these findings may be useful for researchers and local authorities for the development and utilization of tidal flat resources in Jiangsu.

  18. The temperature minimum at tidal fronts

    Directory of Open Access Journals (Sweden)

    D. G. Bowers

    Full Text Available This paper presents a mechanism to explain the observed formation of a surface temperature minimum at tidal fronts in shelf seas. Tidal fronts mark the boundary between water which is kept vertically mixed by fast tidal currents and water which stratifies in summer. The fronts are associated with strong horizontal surface gradients of several water properties, including temperature. In the early studies of tidal fronts, a minimum in surface temperature was occasionally observed between the cool surface waters on the mixed side of the front and the warm surface waters on the stratified side. It was suggested that this was caused by upwelling of deep water at the front. In this paper we describe an alternative and simpler explanation based on the local balance of heating and stirring. The net heat flux into the sea in spring and early summer is greater on the mixed side of the front than on the stratified side. This happens because the heat loss mechanism is dependent on sea surface temperature and stratified waters, having a higher surface temperature, lose more heat. The stratified water near the front therefore has lower heat content (and lower depth-mean temperature than the mixed water. If some of the stratified water becomes mixed, for example with increased tidal stirring at spring tides, a zone of minimum surface temperature will be formed at the front. A numerical model for the study of this mechanism shows that the temperature minimum at tidal fronts can be explained by the process described above. The minimum appears most clearly at spring tides, but can still be present in a weaker form at neap tides. A further prediction of the model is an increase of the horizontal temperature gradient at spring tides, which is in agreement with observations. An unexpected outcome of the modelling is the prediction of the formation of a marked sea surface temperature minimum, not yet observed, occurring in the autumn and located at the summer

  19. A Class of Eccentric Binaries with Dynamic Tidal Distortions Discovered with Kepler

    CERN Document Server

    Thompson, Susan E; Mullally, Fergal; Barclay, Thomas; Howell, Steve B; Still, Martin; Rowe, Jason; Christiansen, Jessie L; Kurtz, Donald W; Hambleton, Kelly; Twicken, Joseph D; Ibrahim, Khadeejah A; Clarke, Bruce D

    2012-01-01

    We have discovered a class of eccentric binary systems within the Kepler data archive that have dynamic tidal distortions and tidally-induced pulsations. Each has a uniquely shaped light curve that is characterized by periodic brightening or variability at time scales of 4-20 days, frequently accompanied by shorter period oscillations. We can explain the dominant features of the entire class with orbitally-varying tidal forces that occur in close, eccentric binary systems. The large variety of light curve shapes arises from viewing systems at different angles. This hypothesis is supported by spectroscopic radial velocity measurements for five systems, each showing evidence of being in an eccentric binary system. Prior to the discovery of these 17 new systems, only four stars, where KOI-54 is the best example, were known to have evidence of these dynamic tides and tidally-induced oscillations. We perform preliminary fits to the light curves and radial velocity data, present the overall properties of this class...

  20. Which Tidal Tails Give The Best Constraints On The Graininess Of DarkMatter?

    Science.gov (United States)

    Quillen, Alice C.

    2011-04-01

    The timescale for a tidal tail in a galaxy to diverge from its original orbit due to perturbations from dark subhalos depends on a Coulomb logarithm and so is sensitive to distant dark sub-halos. However the timescale for clumps or kinks to form in the tail depends on the compression or sheer induced by encounters and these are strongly dependent on the impact parameter, giving a diffusion coefficient for thickening that is independent of the Coulomb log and strongly dependent on close encounters. The induced sheer or compression gives a timescale for clump or kink formation of approximately 1 Gyr for a 10^7 solar mass subhalo coming within a kpc of a tail (or having a core radius of a kpc). Because they sample more halo volume faster we find that the structure of wide tidal tails from disrupting dwarf galaxies give stronger constraints on the number of bound dark subhalos than either diffuse tidal features in the outer parts of galaxies or colder tidal tails from evaporating globular clusters.

  1. Tidal Tales of Minor Mergers: Star Formation in Minor Merger Tidal Tails

    Science.gov (United States)

    Knierman, Karen; Scowen, P.; Groppi, C.; Veach, T.; Knezek, P. M.; Mullan, B.; Konstanopoulos, I. S.; Charlton, J. C.; Jansen, R.; Wehner, E.

    2014-07-01

    While major mergers and their tidal debris are well studied, they are less common than minor mergers and likely played a role in forming most large galaxies, including the Milky Way. Tidal debris regions have large amounts of neutral gas but a lower gas density and may have higher turbulence.Star formation tracers such as young star cluster populations and Halpha, CO, and CII emission were studied to determine the different factors that may influence star formation in tidal debris. These tracers were compared to the reservoirs of gas available for star formation to estimate the star formation efficiency (SFE). The SFR of tidal debris can reach up to 50% of the total star formation in the system. The SFE of tidal tails in minor mergers can range over orders of magnitude on both local and global scales. From the tidal debris environments in this study, this variance appears to stem from the formation conditions of the debris. A large survey with TMT as well as the continuing programs of ALMA and the EVLA can provide a larger sample of environments to study the threshold for star formation and can inform star formation models, particularly at low densities.

  2. Tidal Tales: Comparison of Star Formation in Tidal Tails of Minor Mergers

    Science.gov (United States)

    Knierman, Karen A.; Scowen, Paul A.; Groppi, Christopher E.

    2016-01-01

    While major mergers and their tidal debris are well studied, they are less common than minor mergers (mass ratios <0.3) and likely played a role in forming most large galaxies, including the Milky Way. Tidal debris regions have large reservoirs of neutral gas but a lower gas density and may have higher turbulence. Star formation tracers such as young star cluster populations, star cluster complexes, and H-alpha, CO, molecular hydrogen, and CII emission were studied to determine the different factors that may influence star formation in tidal debris. These tracers were compared to the reservoirs of gas available for star formation to estimate the star formation efficiency (SFE). In our pilot study using two of the sample of 15 minor mergers, we find that the star formation rate (SFR) of minor merger tidal debris can reach up to 50% of the total star formation in the system which is comparable to prior simulations of star formation in major mergers. The SFE of tidal tails in minor mergers can range over orders of magnitude on both local and global scales. From the tidal debris environments in this study, this variance appears to stem from the formation conditions of the debris. Further work on the 13 additional minor mergers in this sample will shed more light on the factors influencing star formation in low density environments.

  3. Physical Properties of Tidal Features of Interacting Disk Galaxies: Three-dimensional Self-consistent Models

    Science.gov (United States)

    Oh, Sang Hoon; Kim, Woong-Tae; Lee, Hyung Mok

    2015-07-01

    Using self-consistent three-dimensional (3D) N-body simulations, we investigate the physical properties of nonaxisymmetric features in a disk galaxy created by a tidal interaction with its companion. The primary galaxy consists of a stellar disk, a bulge, and a live halo, corresponding to Milky-Way-type galaxies, while the companion is represented by a halo alone. We vary the companion mass and the pericenter distance to explore situations with differing tidal strength parameterized by either the relative tidal force P or the relative imparted momentum S. We find that the formation of a tidal tail in the outer parts requires P≳ 0.05 or S≳ 0.07. A stronger interaction results in a stronger, less wound tail that forms earlier. Similarly, a stronger tidal forcing produces stronger, more loosely wound spiral arms in the inner parts. The arms are approximately logarithmic in shape, with both amplitude and pitch angle decaying with time. The derived pattern speed decreases with radius and is close to the {{Ω }}-κ /2 curve at late time, with Ω and κ denoting the angular and epicycle frequencies, respectively. This suggests that the tidally induced spiral arms are most likely kinematic density waves weakly modified by self-gravity. Compared to the razor-thin counterparts, arms in the 3D models are weaker, have a smaller pitch angle, and wind and decay more rapidly. The 3D density structure of the arms is well described by the concentrated and sinusoidal models when the arms are in the nonlinear and linear regimes, respectively. We demonstrate that dynamical friction between interacting galaxies transfers the orbital angular momentum of one galaxy to the spin angular momentum of the companion halo.

  4. Biogenic silica in tidal freshwater marsh sediments and vegetation (Schelde estuary, Belgium)

    OpenAIRE

    E. Struyf; S. Van Damme; Gribsholt, B.; Middelburg, J. J.; P. Meire

    2005-01-01

    To date, estuarine ecosystem research has mostly neglected silica cycling in freshwater intertidal marshes. However, tidal marshes can store large amounts of biogenic silica (BSi) in vegetation and sediment. BSi content of the typical freshwater marsh plants Phragmites australis, Impatiens glandulifera, Urtica dioica, Epilobium hirsutum and Salix sp. was analysed year-round. All herbaceous species accumulated silica in their tissue during their life cycle. Of the live plants, P. australis con...

  5. XMMSL1J063045.9-603110: a tidal disruption event fallen into the back burner

    CERN Document Server

    Mainetti, Deborah; Colpi, Monica

    2016-01-01

    Black holes at the centre of quiescent galaxies can be switched on when they accrete gas gained from stellar tidal disruptions. A star approaching a black hole on a low angular momentum orbit may be ripped apart by tidal forces, raining a fraction of stellar debris onto the compact object through an accretion disc and powering a bright flare. In this paper we discuss XMMSL1J063045.9-603110 as a candidate object for a tidal disruption event. The source has been recently detected bright in the soft X-rays during an XMM-Newton slew, showing later on an X-ray flux decay by a factor of about 10 in twenty days. We analyse XMM-Newton and Swift data. XMMSL1J063045.9-603110 shows several features typical of tidal disruption events: the X-ray spectrum is consistent to arise from a thermal accretion disc, the flux decay follows a t^-5/3 law and the flux variation is > 350. Optical observations testify that XMMSL1J063045.9-603110 is likely to be associated with an extremely small galaxy or even a globular cluster, sugges...

  6. The response of subsurface oceans in icy satellites to tidally driven forcing

    Science.gov (United States)

    Chen, E. M.; Glatzmaier, G. A.; Nimmo, F.

    2009-12-01

    Observations from the Galileo and Cassini spacecraft suggest that subsurface global water oceans are likely present on multiple icy satellites of Jupiter and Saturn. However, the dynamics of these oceans, under the influence of a time-varying tidal potential and buoyancy and coriolis forces, have not been investigated in detail. We have investigated the large scale ocean flow in two ways. First, we simulate the 3-D global circulation of the subsurface oceans on Europa and Titan driven primarily by a time-varying tidal potential and secondarily by heating at the base of the ocean. Second, we analyze the behavior of tidally-forced subsurface oceans in two-dimensions using quasi-nonlinear shallow water theory. These approaches allow us to predict potentially observable effects, in particular non-synchronous rotation of the ice shell driven by ocean torques and spatial variations in the heat flow supplied to the base of the ice shell, and magnetic induction effects due to the ocean circulation. Time-series analyses suggest that the ocean responds primarily at the tidal frequency; however, there are responses at lower frequencies as well. Preliminary results of full 3-D simulations will be presented, and comparisons will be made to the forced shallow water model.

  7. XMMSL1J063045.9-603110: a tidal disruption event fallen into the back burner

    Science.gov (United States)

    Mainetti, Deborah; Campana, Sergio; Colpi, Monica

    2016-07-01

    Black holes at the centre of quiescent galaxies can be switched on when they accrete gas that is gained from stellar tidal disruptions. A star approaching a black hole on a low angular momentum orbit may be ripped apart by tidal forces, which triggers raining down of a fraction of stellar debris onto the compact object through an accretion disc and powers a bright flare. In this paper we discuss XMMSL1J063045.9-603110 as a candidate object for a tidal disruption event. The source has recently been detected to be bright in the soft X-rays during an XMM-Newton slew and later showed an X-ray flux decay by a factor of about 10 in twenty days. We analyse XMM-Newton and Swift data. XMMSL1J063045.9-603110 shows several features typical of tidal disruption events: the X-ray spectrum shows the characteristics of a spectrum arising from a thermal accretion disc, the flux decay follows a t-5/3 law, and the flux variation is >350. Optical observations testify that XMMSL1J063045.9-603110 is probably associated with an extremely small galaxy or even a globular cluster, which suggests that intermediate-mass black holes are located in the cores of (at least) some of them.

  8. Tidal flat erosion of the Huanghe River Delta due to local changes in hydrodynamic conditions

    Institute of Scientific and Technical Information of China (English)

    JIA Yonggang; ZHENG Jiewen; YUE Zhongqi; LIU Xiaolei; SHAN Hongxian

    2014-01-01

    An ideal nature system for the study of post-depositional submarine mass changing under wave loading was selected in the inter-tidal platform of the subaqueous Huanghe River Delta, a delta formed during pe-riod from 1964 to 1976 as the Huanghe River discharged into the Bohai Gulf by Diaokou distributary. A road embankment constructed for petroleum recovery on the inter-tidal platform in 1995 induced the essential varieties of hydrodynamic conditions on the both sides of the road. With both sides sharing similarities in (1) initial sedimentary environment, (2) energetic wave loading, (3) differential hydrodynamic conditions in later stages, (4) enough long-range action, and (5) extreme shallow water inter-tidal platforms;the study is representative and feasible as well. Two study sites were selected on each side of the road, and a series of measurements, samplings, laboratory experiments have been carried out, including morphometry, hydro-dynamic conditions, sediment properties, granularity composition, and fractal dimension calculation of the topography in the two adjacent areas. It was observed that in the outer zone, where wave loading with high magnitude prevailed, the tidal flat was bumpy and exhibited a high erosion rate and high fractal dimension. Further, the fractal dimension diminished quickly, keeping with the enlarging of calculative square size. However in the inner zone, where the hydrodynamic condition was weak, the tidal flat was flat and exhibited a low erosion rate and low fractal dimensions;the fractal dimension diminished with the enlarging of calcu-lative square size. The fractal dimensions in the different hydrodynamic areas equalized increasingly as the calculative square size accreted to threshold, indicating that the hydrodynamic condition plays a significant role in topography construction and submarine delta erosion process. Additionally, the later differentiation of sediment properties, granularity composition, microstructure

  9. Power Generation for River and Tidal Generators

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wright, Alan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Donegan, James [Ocean Renewable Power Company (ORPC), Portland, ME (United States); Marnagh, Cian [Ocean Renewable Power Company (ORPC), Portland, ME (United States); McEntee, Jarlath [Ocean Renewable Power Company (ORPC), Portland, ME (United States)

    2016-06-01

    Renewable energy sources are the second largest contributor to global electricity production, after fossil fuels. The integration of renewable energy continued to grow in 2014 against a backdrop of increasing global energy consumption and a dramatic decline in oil prices during the second half of the year. As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded from primarily wind and solar to include new types with promising future applications, such as hydropower generation, including river and tidal generation. Today, hydropower is considered one of the most important renewable energy sources. In river and tidal generation, the input resource flow is slower but also steadier than it is in wind or solar generation, yet the level of water turbulent flow may vary from one place to another. This report focuses on hydrokinetic power conversion.

  10. Climate instability on tidally locked exoplanets

    CERN Document Server

    Kite, Edwin S; Manga, Michael

    2011-01-01

    Feedbacks that can destabilize the climates of synchronously-rotating rocky planets may arise on planets with strong day-night surface temperature contrasts. Earth-like habitable-zone (HZ) planets maintain stable surface liquid water over geological time. This requires equilibrium between the temperature-dependent rate of greenhouse-gas consumption by weathering,and greenhouse-gas resupply by other processes. Detected small-radius exoplanets, and anticipated M-dwarf HZ rocky planets, are expected to be tidally locked. We investigate two feedbacks that can destabilize climate on tidally-locked planets. (1) If small changes in pressure alter the temperature distribution across a planet's surface such that the weathering rate increases when the pressure decreases, a positive feedback occurs involving increasing weathering rate near the substellar point, decreasing pressure, and increasing substellar surface temperature. (2) When decreases in pressure increase the surface area above the melting point (through red...

  11. TIDAL POWER: Economic and Technological Assessment

    OpenAIRE

    Montllonch Araquistain, Tatiana

    2010-01-01

    At present time there is concern over global climate change, as well as a growing awareness on worldwide population about the need on reducing greenhouse gas emissions. This in fact, has led to an increase in power generation from renewable sources. Tidal energy has the potential to play a valuable role in a sustainable energy future. Its main advantage over other renewable sources is its predictability; tides can be predicted years in advanced. The energy extracted from the tides can come fr...

  12. Tidal power from the River Mersey

    International Nuclear Information System (INIS)

    The studies described in this report relate to work carried out since those reported upon in the stage I Mersey Barrage Report on the possible construction of a tidal power barrage on the Mersey Estuary. The objectives of the work were to review basic engineering, re-assess cost and energy output, improve engineering configuration, quantify social, industrial and regional effects, determine preferred alignment, review the main environmental impacts, assess economic viability and financing and identify further study requirements. (UK)

  13. Tidal deformability of dark matter clumps

    OpenAIRE

    Mendes, Raissa F. P.; Yang, Huan

    2016-01-01

    We analyze the tidal deformability of a clump of dark matter particles, modelled by the collisionless Boltzmann equation. We adopt a wave-mechanical approach to the problem, in which the dynamical equations are approximated by a set of Schr\\"{o}dinger-Poisson equations, within the limit that the effective de Broglie wavelength is comparable to the spatial variation scale of the particle distribution. We argue that such a treatment allows for a smaller number of coupled differential equations ...

  14. DIRECTLY IMAGING TIDALLY POWERED MIGRATING JUPITERS

    Energy Technology Data Exchange (ETDEWEB)

    Dong Subo; Katz, Boaz; Socrates, Aristotle [Institute for Advanced Study, Princeton, NJ 08540 (United States)

    2013-01-10

    Upcoming direct-imaging experiments may detect a new class of long-period, highly luminous, tidally powered extrasolar gas giants. Even though they are hosted by {approx} Gyr-'old' main-sequence stars, they can be as 'hot' as young Jupiters at {approx}100 Myr, the prime targets of direct-imaging surveys. They are on years-long orbits and presently migrating to 'feed' the 'hot Jupiters'. They are expected from 'high-e' migration mechanisms, in which Jupiters are excited to highly eccentric orbits and then shrink semimajor axis by a factor of {approx}10-100 due to tidal dissipation at close periastron passages. The dissipated orbital energy is converted to heat, and if it is deposited deep enough into the atmosphere, the planet likely radiates steadily at luminosity L {approx} 100-1000 L{sub Jup}(2 Multiplication-Sign 10{sup -7}-2 Multiplication-Sign 10{sup -6} L{sub Sun }) during a typical {approx} Gyr migration timescale. Their large orbital separations and expected high planet-to-star flux ratios in IR make them potentially accessible to high-contrast imaging instruments on 10 m class telescopes. {approx}10 such planets are expected to exist around FGK dwarfs within {approx}50 pc. Long-period radial velocity planets are viable candidates, and the highly eccentric planet HD 20782b at maximum angular separation {approx}0.''08 is a promising candidate. Directly imaging these tidally powered Jupiters would enable a direct test of high-e migration mechanisms. Once detected, the luminosity would provide a direct measurement of the migration rate, and together with mass (and possibly radius) estimate, they would serve as a laboratory to study planetary spectral formation and tidal physics.

  15. Tidal Response of Titan's Lakes and Seas

    Science.gov (United States)

    Karatekin, O.; Demain, C.; Deleersnijder, E.

    2011-12-01

    The Cassini spacecraft has revealed a vast set of lakes/seas filled or partially filled with liquid hydrocarbons and empty lake basins in the high latitudes of Titan. The seas and lakes of Titan provide an opportunity to explore an exciting aqueous environment whose characteristics are very different from what we know on Earth. The lakes appear in various shapes and sizes and are filled with liquid hydrocarbons, primarily methane and ethane. Recently, the Cassini spacecraft provided observations suggesting for the first time temporal variations in lake surfaces. The variation in the shorelines can be explained by different hypothesis including evaporation and tides. During Titan's 16 day orbital period around Saturn, the time-dependent tidal response of the lakes may affect the shorelines. Although the estimated tidal amplitudes by theoretical consideration yield smaller than the observed depth changes on Ontario Lacus, tides can have more significant effects of other lakes/seas with tidal amplitudes up to several meters. In the present study, besides Ontario Lacus we also consider Ligeia Mare, one of three large methane seas discovered by Cassini in the northern hemisphere of Titan and the target for the discovery mission of Titan Mare Explorer (TiME). The tidal response of Titan's lakes an seas are investigated by means of two- dimensional nonlinear shallow water equations The governing partial differential equations on the sphere are solved using SLIM (Second-generation Louvain- la- Neuve Ice-Ocean Model - http://www.climate.be/SLIM). SLIM is a hydrodynamical model based on finite element method. As all general circulation models, it uses primitive variables as prognostic quantities. Partial differential equations are discretized on curved surfaces using triangular meshes. The mesh is generated from recursive subdivisions of the faces of an icosahedron using GMSH software.. The code has a wetting-drying algorithm. The simulations can take into account several

  16. Extensive temporal transcriptome and microRNA analyses identify molecular mechanisms underlying mitochondrial dysfunction induced by multi-walled carbon nanotubes in human lung cells.

    Science.gov (United States)

    Nymark, Penny; Wijshoff, Peter; Cavill, Rachel; van Herwijnen, Marcel; Coonen, Maarten L J; Claessen, Sandra; Catalán, Julia; Norppa, Hannu; Kleinjans, Jos C S; Briedé, Jacob J

    2015-01-01

    Understanding toxicity pathways of engineered nanomaterials (ENM) has recently been brought forward as a key step in twenty-first century ENM risk assessment. Molecular mechanisms linked to phenotypic end points is a step towards the development of toxicity tests based on key events, which may allow for grouping of ENM according to their modes of action. This study identified molecular mechanisms underlying mitochondrial dysfunction in human bronchial epithelial BEAS 2B cells following exposure to one of the most studied multi-walled carbon nanotubes (Mitsui MWCNT-7). Asbestos was used as a positive control and a non-carcinogenic glass wool material was included as a negative fibre control. Decreased mitochondrial membrane potential (MMP↓) was observed for MWCNTs at a biologically relevant dose (0.25 μg/cm(2)) and for asbestos at 2 μg/cm(2), but not for glass wool. Extensive temporal transcriptomic and microRNA expression analyses identified a 330-gene signature (including 26 genes with known mitochondrial function) related to MWCNT- and asbestos-induced MMP↓. Forty-nine of the MMP↓-associated genes showed highly similar expression patterns over time (six time points) and the majority was found to be regulated by two transcription factors strongly involved in mitochondrial homeostasis, APP and NRF1. In addition, four miRNAs were correlated with MMP↓ and one of them, miR-1275, was found to negatively correlate with a large part of the MMP↓-associated genes. Cellular processes such as gluconeogenesis, mitochondrial LC-fatty acid β-oxidation and spindle microtubule function were enriched among the MMP↓-associated genes and miRNAs. These results are expected to be useful in the identification of key events in ENM-related toxicity pathways for the development of molecular screening techniques.

  17. Signatures of LCDM substructure in tidal debris

    CERN Document Server

    Siegal-Gaskins, Jennifer M

    2007-01-01

    In the past decade, surveys of the stellar component of the Galaxy such as SDSS and 2MASS have revealed a number of stellar streams. Current and future observations are rapidly increasing the precision and quantity of data available, raising the possibility of using tidal streams to constrain the distribution of dark matter in the halo. Simulations of hierarchical structure formation in LCDM cosmologies predict that the dark matter halo of a galaxy like the Milky Way contains a smooth component as well as hundreds of subhalos with masses of ~10^8 solar masses and greater, and it has been suggested that the existence of coherent tidal streams is incompatible with the expected abundance of substructure. We investigate the properties of tidal streams arising from the disruption of satellites in a variety of dark matter halo models. In general, we find that the halo shape and the specific orbital path more strongly determine the degree of disruption of the satellite than does the presence or absence of substructu...

  18. The tidal filament of NGC 4660

    CERN Document Server

    Kemp, S N; Marquez-Lugo, R A; Zepeda-Garcia, D; Franco-Hernandez, R; Nigoche-Netro, A; Ramos-Larios, G; Navarro, S G; Corral, L J

    2016-01-01

    NGC 4660, in the Virgo cluster, is a well-studied elliptical galaxy which has a strong disk component (D/T about 0.2-0.3). The central regions including the disk component have stellar populations with ages about 12-13 Gyr from SAURON studies. However we report the discovery of a long narrow tidal filament associated with the galaxy in deep co-added Schmidt plate images and deep CCD frames, implying that the galaxy has undergone a tidal interaction and merger within the last few Gyr. The relative narrowness of the filament implies a wet merger with at least one spiral galaxy involved, but the current state of the system has little evidence for this. However a 2-component photometric fit using GALFIT shows much bluer B-V colours for the disk component than for the elliptical component, which may represent a residual trace of enhanced star formation in the disk caused by the interaction 1-2 Gyr ago. There are brighter concentrations within the filament which resemble Tidal Dwarf Galaxies, although they are at l...

  19. The tidal regimes of three indian ocean atolls and some ecological implications

    Science.gov (United States)

    Pugh, D. T.; Rayner, R. F.

    1981-10-01

    Coral atolls are areas of high biological productivity, supporting diverse and largely closed ecosystems. Cycling of nutrients within such systems and the input of additional nutrients from ocean waters are strongly influenced by wave and tidally induced water exchange. Tidal water exchange exerts a stabilizing effect on the physical and chemical characteristics of a lagoon. Tides affect the residence time of lagoon water, and the amount by which lagoon temperatures exceed ocean surface water temperatures, typically 2°C in cloud-free windless weather. Lagoon excess temperatures are independent of depth but vary inversely with the tidal range, with significant spring-neap modulations, but harmonic variations of lagoon temperatures at diurnal and semidiurnal periods are small except in very shallow lagoons. The effects on lagoon winds are also small, implying that measured winds are representative of open ocean conditions. The growth and zonation of corals and other organisms inhabiting shallow reef flats may be affected by the phase of the solar semidiurnal tide (S 2), which determines the time of day at which extremely low tidal levels occur. Measurements at three Indian Ocean atolls are used to illustrate these effects.

  20. Tidal and diel influence on zooplankton occurrence in the Mandovi estuary, Goa

    OpenAIRE

    Selvakumar, R.A.; Goswami, S.C.; Goswami, U.

    1986-01-01

    Distribution and abundance of zooplankton over the tidal cycle were studied in the Mandovi estuary, Goa, during August and December 1971 and May 1972. Tide induced salinity fluctuations were obvious with high values during spring tides. Salinity was low during August, apparently due to precipitation and land run off but increased subsequently. The mean biomass values for the day and night collections were 13.6 and 19.8 ml/100 m super(3) respectively. Occurrence of most of the zooplankton taxa...

  1. Measuring tidal breathing parameters using a volumetric vest in neonates with and without lung disease

    OpenAIRE

    Olden, Catherine; Symes, Elizabeth; Seddon, Paul Christopher

    2010-01-01

    Abstract Lung function measurement is difficult in unsedated infants; tidal breathing parameters are a useful non-invasive surrogate, but even these measurements cause disturbance from applying a facemask. We investigated a novel volumetric vest system (FloRight), which measures volume changes of the respiratory system from changes in the magnetic fields induced by current-carrying coils around the entire chest and abdomen. Using a facemask and ultrasonic flowmeter as comparato...

  2. Sedimentary history of the eastern Bohai Sea, China since the deglacial and implications for paleo-tidal current

    Science.gov (United States)

    Yao, Zhengquan; Shi, Xuefa

    2016-04-01

    Numerical simulation suggests that the Holocene sediments re-suspension and distribution in the Bohai Sea was mainly controlled by tidal current regime, which was closely related with sea-level change. Study on sediments in the Bohai Sea thus can provide insights into the evolution of tidal-influenced sedimentary environment and its links with sea-level change. Our understanding of this issue remains incomplete, however, owing to the lack of comprehensive study on sediment core with high-resolution proxies to test such inference. In this study, analyses of sedimentary facies, proxies (grain size, total organic carbon and total nitrogen, X-ray fluorescence scanning Sulfur and Chlorine ratio) and accelerator mass spectrometry 14C dates of a sediment core recovered from the eastern Bohai Sea were carried out to clarify the Holocene sedimentary environment, tidal current change and its relation to the sea-level. The results indicate that the eastern Bohai Sea was dominated by fluvial-coastal environment prior to 12400 cal. a BP due to the sea-level lowstand and changed to tidal-influenced environment from 12400 to 6700 cal. a BP following the rapid sea-level rising. Thereafter shelf environment with minor tidal influence dominated the eastern Bohai Sea under the condition of a deceleration of sea-level rise. The significant change at ~6700 cal. a BP both in sedimentary environment and sediment proxies, indicating an environmental transition from strong tidal-influenced to less tidal-influenced setting. With the sea-level rising from the early Holocene to the mid-Holocene, tidal-current was much strong due to the low sea-level stand and became weak after the maximum transgression at ~6700 cal. a BP. These results are consistent with the numerical simulation, which suggested that less strong tidal current were the consequence of the most highstand sea-level since the mid-Holocene. Our study thus provides a sedimentary record to support the interpretation of numerical

  3. Estimating effects of tidal power projects and climate change on threatened and endangered marine species and their food web.

    Science.gov (United States)

    Busch, D Shallin; Greene, Correigh M; Good, Thomas P

    2013-12-01

    Marine hydrokinetic power projects will operate as marine environments change in response to increased atmospheric carbon dioxide concentrations. We considered how tidal power development and stressors resulting from climate change may affect Puget Sound species listed under the U.S. Endangered Species Act (ESA) and their food web. We used risk tables to assess the singular and combined effects of tidal power development and climate change. Tidal power development and climate change posed risks to ESA-listed species, and risk increased with incorporation of the effects of these stressors on predators and prey of ESA-listed species. In contrast, results of a model of strikes on ESA-listed species from turbine blades suggested that few ESA-listed species are likely to be killed by a commercial-scale tidal turbine array. We applied scenarios to a food web model of Puget Sound to explore the effects of tidal power and climate change on ESA-listed species using more quantitative analytical techniques. To simulate development of tidal power, we applied results of the blade strike model. To simulate environmental changes over the next 50 years, we applied scenarios of change in primary production, plankton community structure, dissolved oxygen, ocean acidification, and freshwater flooding events. No effects of tidal power development on ESA-listed species were detected from the food web model output, but the effects of climate change on them and other members of the food web were large. Our analyses exemplify how natural resource managers might assess environmental effects of marine technologies in ways that explicitly incorporate climate change and consider multiple ESA-listed species in the context of their ecological community. Estimación de los Efectos de Proyectos de Energía de las Mareas y el Cambio Climático sobre Especies Marinas Amenazadas y en Peligro y su Red Alimentaria. PMID:24299085

  4. A gravito-electromagnetic analogy based on tidal tensors

    CERN Document Server

    Costa, L F; Herdeiro, Carlos A. R.

    2006-01-01

    We propose a new approach to a physical analogy between General Relativity and Electromagnetism, based on comparing tidal tensors of both theories. Using this approach we write a covariant form for the gravitational analogues of the Maxwell equations, from which the regime of validity of the analogy becomes manifest. Two explicit realisations of the analogy are given. The first one matches linearised gravitational tidal tensors to exact electromagnetic tidal tensors in Minkwoski spacetime. The second one matches exact magnetic gravitational tidal tensors for ultra-stationary metrics to exact magnetic tidal tensors of electromagnetism in curved spaces. We then establish a new proof for a class of tensor identities that define invariants of the type $\\vec{E}^2-\\vec{B}^2$ and $\\vec{E}\\cdot\\vec{B}$, and we exhibit the invariants built from tidal tensors in both gravity and electromagnetism. We contrast our approach with the two gravito-electromagnetic analogies commonly found in the literature, which are reviewed...

  5. International tidal gravity reference values at Wuhan station

    Institute of Scientific and Technical Information of China (English)

    许厚泽; 孙和平; 徐建桥; 陶国祥

    2000-01-01

    The international tidal gravity reference values at Wuhan station are determined accurately based on the comprehensive analysis of the tidal gravity observations obtained from 8 instruments. By comparing these with those in the tidal models given by Dehant (1997) while considering simultaneously (i) the global satellite altimeters tidal data, and (ii) the Schwiderski global tidal data and the local ones along the coast of China, it is found that the average discrepancy of the amplitude factors and of the phase differences for four main waves are given as 5.2% and 3.6% and as 0.16?and 0.08?respectively. They are improved evidently compared to those determined in early stage, indicating the important procedures in improving the Wuhan international tidal gravity reference values when including the long-series observations obtained with a superconducting gravimeter, and when considering the influence of the ocean loading and of the nearly daily free wobble of the Earth’s core.

  6. Power generation from tidal energy. Chosekiter dot choryu hatsuden

    Energy Technology Data Exchange (ETDEWEB)

    Kiho, S. (Nihon University, Tokyo (Japan). College of Science and Technology)

    1992-05-20

    Both the tidal height difference and current power generations are generally explained to make the tide as an energy source. Because of lowness in density of tidal energy, what has been put to practical use is only one 240000kW power station in France and all the others are still at the stage of demonstration. The tidal height difference power generation is a system to generate the power through rotating the water wheel by the difference in seawater level at the entrance to a bay, large in difference between the tidal rise and fall. In Japan, there is no place where such a tidal height difference may be considerably good for the power generation. Judging for the economical performance from an example in the tidal power station in Rance, France, the tidal power generation, as high in embankment construction cost for the dam, is about twice as costly as the hydraulic power generation in general. As utilizing the phenomenon for the tidal current velocity to be high at a narrow entrance to the bay, the tidal current power generation is to generate the power from the current as natural without embankment and other constructions. Japan{prime}s tidal current energy in total is estimated to be 60TWh in annually generated quantity of power. The highest tidal current velocity is about 4m/sec in Japan, which estimates 6.4 to 12.8kW. In the tidal current power generation, the efficiency of water wheel is an important element. 5 refs., 16 figs., 3 tabs.

  7. MHD tidal waves on a spinning magnetic compact star

    OpenAIRE

    Lou, Yu-Qing

    2004-01-01

    In an X-ray binary system, the companion star feeds the compact neutron star with plasma materials via accretions. The spinning neutron star is likely covered with a thin "magnetized ocean" and may support {\\it magnetohydrodynamic (MHD) tidal waves}. While modulating the thermal properties of the ocean, MHD tidal waves periodically shake the base of the stellar magnetosphere that traps energetic particles, including radiating relativistic electrons. For a radio pulsar, MHD tidal waves in the ...

  8. EXPERIMENTAL INVESTIGATIONS ON LONGITUDINAL DISPERSION CHARACTERISTICS OF TIDAL RIVERS

    Institute of Scientific and Technical Information of China (English)

    Fan Jing-yu; Wang Dao-zeng; Zhong Bao-chang

    2003-01-01

    The longitudinal dispersion characteristics of tidal rivers are experimentally investigated in a water channel. The longitudinal dispersion features and influential factors on pollutant in various stages of a tidal period in natural rivers are studied, the value ranges and variation trends of the longitudinal dispersion coefficient are obtained by means of concentration measurement. The results can provide important parameters for establishing the water quality mathematical models in tidal rivers.

  9. Confusion around the tidal force and the centrifugal force

    OpenAIRE

    Matsuda, Takuya; Isaka, Hiromu; Boffin, Henri M. J.

    2015-01-01

    We discuss the tidal force, whose notion is sometimes misunderstood in the public domain literature. We discuss the tidal force exerted by a secondary point mass on an extended primary body such as the Earth. The tidal force arises because the gravitational force exerted on the extended body by the secondary mass is not uniform across the primary. In the derivation of the tidal force, the non-uniformity of the gravity is essential, and inertial forces such as the centrifugal force are not nee...

  10. Mercury-T: A new code to study tidally evolving multi-planet systems. Applications to Kepler-62

    OpenAIRE

    Bolmont, Emeline; Raymond, Sean N.; Leconte, Jeremy; Hersant, Franck; Correia, Alexandre C. M.

    2015-01-01

    A large proportion of observed planetary systems contain several planets in a compact orbital configuration, and often harbor at least one close-in object. These systems are then most likely tidally evolving. We investigate how the effects of planet-planet interactions influence the tidal evolution of planets. We introduce for that purpose a new open-source addition to the Mercury N-body code, Mercury-T, which takes into account tides, general relativity and the effect of rotation-induced fla...

  11. Tidal analysis of surface currents in the Porsanger fjord in northern Norway

    Science.gov (United States)

    Stramska, Malgorzata; Jankowski, Andrzej; Cieszyńska, Agata

    2016-04-01

    In this presentation we describe surface currents in the Porsanger fjord (Porsangerfjorden) located in the European Arctic in the vicinity of the Barents Sea. Our analysis is based on data collected in the summer of 2014 using High Frequency radar system. Our interest in this fjord comes from the fact that this is a region of high climatic sensitivity. One of our long-term goals is to develop an improved understanding of the undergoing changes and interactions between this fjord and the large-scale atmospheric and oceanic conditions. In order to derive a better understanding of the ongoing changes one must first improve the knowledge about the physical processes that create the environment of the fjord. The present study is the first step in this direction. Our main objective in this presentation is to evaluate the importance of tidal forcing. Tides in the Porsanger fjord are substantial, with tidal range on the order of about 3 meters. Tidal analysis attributes to tides about 99% of variance in sea level time series recorded in Honningsvåg. The most important tidal component based on sea level data is the M2 component (amplitude of ~90 cm). The S2 and N2 components (amplitude of ~ 20 cm) also play a significant role in the semidiurnal sea level oscillations. The most important diurnal component is K1 with amplitude of about 8 cm. Tidal analysis lead us to the conclusion that the most important tidal component in observed surface currents is also the M2 component. The second most important component is the S2 component. Our results indicate that in contrast to sea level, only about 10 - 20% of variance in surface currents can be attributed to tidal currents. This means that about 80-90% of variance can be credited to wind-induced and geostrophic currents. This work was funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support for MS comes from the Institute of Oceanology (IO PAN).

  12. Metabolomic Analyses of Brain Tissue in Sepsis Induced by Cecal Ligation Reveal Specific Redox Alterations-Protective Effects of the Oxygen Radical Scavenger Edaravone

    DEFF Research Database (Denmark)

    Hara, Naomi; Chijiiwa, Miyuki; Yara, Miki;

    2015-01-01

    at analyzing the preventive effect of the free radical scavenger edaravone on sepsis-induced brain alterations. Sepsis was induced by cecal ligation and puncture (CLP) and the mice were divided into three groups-CLP vehicle (CLPV), CLP and edaravone (MCI-186, 3-methyl-1-phenyl-2-pyrazolin-5-one) (CLPE...... (Bcl-2 and Bax) were analyzed in selected brain regions. CLPE showed significant improvement in survival compared with CLPV 18 h postinduction of sepsis (P ... induced by cecal ligation alters cerebral redox status and supports a proapoptotic phenotype. The free radical scavenger edavarone reduces mortality of septic mice and protects against sepsis-induced neuronal cell death....

  13. Steel fiber composites for tidal turbine blades

    OpenAIRE

    Kucera, Marko

    2011-01-01

    The last decade has seen a drastic increase in focus on several types of renewable energy, including a still increasing interest in tidal power. This method of harnessing energy and the technology required to do so are relatively new, and even though a number of prototypes have been built during the last years, none have yet emerged as a standard or definite solution. As of today, all the prototypes have based their turbine blade technology on that of wind turbines, thus producing the blades ...

  14. Abundance Anomalies In Tidal Disruption Events

    OpenAIRE

    Kochanek, C. S.

    2015-01-01

    The ~10% of tidal disruption events (TDEs) due to stars more massive than the Sun should show abundance anomalies due to stellar evolution in helium, carbon and nitrogen, but not oxygen. Helium is always enhanced, but only by up to ~25% on average because it becomes inaccessible once it is sequestered in the high density core as the star leaves the main sequence. However, portions of the debris associated with the disrupted core of a main sequence star can be enhanced in helium by factors of ...

  15. Cycloidal tidal power generation - phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report describes the second phase of a study aimed at addressing the technical and economic viability of cycloidal tidal power generation with the objective of examining design optimisation, the building and testing a scale model, and the use of an enhanced model to estimated the overall system economic performance. Details are given of the analytical and physical modelling studies, the use of Computational Fluid Dynamics (CDF) analysis to understand the fluid flow through the cycloidal unit, the optimisation of the turbine blades, and performance predictions.

  16. Modelling Galaxy Merger Timescales and Tidal Destruction

    CERN Document Server

    Simha, Vimal

    2016-01-01

    We present a model for the dynamical evolution of subhaloes based on an approach combining numerical and analytical methods. Our method is based on tracking subhaloes in an N-body simulation up to the last point that it can be resolved, and applying an analytic prescription for its merger timescale that takes dynamical friction and tidal disruption into account. When applied to cosmological N-body simulations with mass resolutions that differ by two orders of magnitude, the technique produces halo occupation distributions that agree to within 3%.

  17. The role of biotic and abiotic processes in determining equilibrium states and transient dynamics in tidal bio-geomorphic systems

    Science.gov (United States)

    da Lio, C.; D'Alpaos, A.; Marani, M.

    2010-12-01

    A point model of the joint evolution of tidal landforms and biota is described and applied to explore the equilibrium states and the transient behaviour of tidal bio-geomorphic systems under varying physical and biological forcings. The model incorporates the dynamics of intertidal vegetation, benthic microbial assemblages, erosional, depositional, and sediment exchange processes, and wind-wave dynamics. Alternative stable states and punctuated equilibria emerge, characterized by possible sudden transitions of the system state, governed by vegetation type, disturbances of the benthic biofilm, sediment availability and marine transgressions or regressions. Multiple stable states are suggested to result from the interplay of erosion, deposition and biostabilization, providing a simple explanation for the ubiquitous presence of the typical landforms observed in tidal environments worldwide. The explicit and dynamically-coupled description of biotic and abiotic processes thus emerges as a key requirement for realistic and predictive models of the evolution of a tidal system as a whole. The analysis of such coupled processes indicates that hysteretic switches between stable states arise because of differences in the threshold values of relative sea level rise inducing transitions from vegetated to unvegetated equilibria and viceversa, with implications for the preservation of tidal environments under a climate change. Finally, we explore the transient behaviour of the system forced by synthetic and observed sea-level rise forcings and identify the effects of the characteristic response time of vegetation to environmental changes on the overall system dynamics.

  18. Conditions for tidal bore formation in convergent alluvial estuaries

    Science.gov (United States)

    Bonneton, Philippe; Filippini, Andrea Gilberto; Arpaia, Luca; Bonneton, Natalie; Ricchiuto, Mario

    2016-04-01

    Over the last decade there has been an increasing interest in tidal bore dynamics. However most studies have been focused on small-scale bore processes. The present paper describes the first quantitative study, at the estuary scale, of the conditions for tidal bore formation in convergent alluvial estuaries. When freshwater discharge and large-scale spatial variations of the estuary water depth can be neglected, tide propagation in such estuaries is controlled by three main dimensionless parameters: the nonlinearity parameter ε0 , the convergence ratio δ0 and the friction parameter ϕ0. In this paper we explore this dimensionless parameter space, in terms of tidal bore occurrence, from a database of 21 estuaries (8 tidal-bore estuaries and 13 non tidal-bore estuaries). The field data point out that tidal bores occur for convergence ratios close to the critical convergence δc. A new proposed definition of the friction parameter highlights a clear separation on the parameter plane (ϕ0,ε0) between tidal-bore estuaries and non tidal-bore estuaries. More specifically, we have established that tidal bores occur in convergent estuaries when the nonlinearity parameter is greater than a critical value, εc , which is an increasing function of the friction parameter ϕ0. This result has been confirmed by numerical simulations of the two-dimensional Saint Venant equations. The real-estuary observations and the numerical simulations also show that, contrary to what is generally assumed, tide amplification is not a necessary condition for tidal bore formation. The effect of freshwater discharge on tidal bore occurrence has been analyzed from the database acquired during three long-term campaigns carried out on the Gironde/Garonne estuary. We have shown that in the upper estuary the tidal bore intensity is mainly governed by the local dimensionless tide amplitude ε. The bore intensity is an increasing function of ε and this relationship does not depend on freshwater

  19. Tidal Evolution of Exomoons using a Self-Consistent Tidal and Dynamical Model

    Science.gov (United States)

    Zollinger, Rhett; Armstrong, J. C.; Bromley, B. C.

    2014-01-01

    The recent success of Kepler and other planet hunting missions has helped motivate new interest in planet habitability. Now that the detection of massive satellites that orbit extrasolar planets has become feasible, interest in the habitability of exomoons has also emerged. Stellar insulation is commonly used as the main constraint on potential habitability. Exomoon habitability models have also considered additional energy sources such as stellar eclipses by the planet, the planet’s thermal emission and its stellar reflected light, as well as tidal heating of the moon. Tidal processes between a moon and its parent planet will determine the orbit and spin evolution of the moon. Gravitational perturbations will also have an effect on the evolution of a moon in a closely packed system with many massive bodies. Such examples include a large moon orbiting a giant planet in the habitable zone of a low mass star or a giant planet with multiple large moons. For resonant systems the evolution equations must be integrated directly to test for instability and to allow for variation of the semimajor axes. Therefore, to further constrain exomoon habitability it is necessary to simulate the orbital evolution of a satellite with a model that considers both gravitational scattering and tidal evolution. We have developed a simulation that uses an efficient method for calculating self-consistently the tidal, spin, and dynamical evolution of a many-body system. The method is based on formulations by Heggie and Eggleton (1998) as well as work by Mardling and Lin (2002). A planet and moon are given extended structure while other bodies are treated as point masses. The tidal evolution as well as the evolution of spin rates and obliquities are calculated for the extended bodies using arbitrary initial conditions. Our results will be presented for theoretical low mass stellar systems as well as hypothetical moons around some recently discovered exoplanets.

  20. Catalog of worldwide tidal bore occurrences and characteristics

    Science.gov (United States)

    Bartsch-Winkler, S.; Lynch, David K.

    1988-01-01

    Documentation of tidal bore phenomena occurring throughout the world aids in defining the typical geographical setting of tidal bores and enables prediction of their occurrence in remote areas. Tidal bores are naturally occurring, tidally generated, solitary, moving water waves up to 6 meters in height that form upstream in estuaries with semidiurnal or nearly semidiurnal tide ranges exceeding 4 meters. Estuarine settings that have tidal bores typically include meandering fluvial systems with shallow gradients. Bores are well defined, having amplitudes greater than wind- or turbulence-caused waves, and may be undular or breaking. Formation of a bore is dependent on depth and velocity of the incoming tide and river outflow. Bores may occur in series (in several channels) or in succession (marking each tidal pulse). Tidal bores propagate up tidal estuaries a greater distance than the width of the estuary and most occur within 100 kilometers upstream of the estuary mouth. Because they are dynamic, bores cause difficulties in some shipping ports and are targets for eradication. Tidal bores are known to occur, or to have occurred in the recent past, in at least 67 localities in 16 countries at all latitudes, including every continent except Antarctica. Parts of Argentina, Canada, Central America, China, Mozambique, Madagascar, Northern Europe, North and South Korea, the United Kingdom, and the U.S.S.R. probably have additional undiscovered or unreported tidal bores. In Turnagain Arm estuary in Alaska, bores cause an abrupt increase in salinity, suspended sediment, surface character, and bottom pressure, a decrease in illumination of the water column, and a change in water temperature. Tidal bores occurring in Turnagain Arm, Alaska, have the

  1. Dissipation in rocky planets for strong tidal forcing

    Science.gov (United States)

    Clausen, N.; Tilgner, A.

    2015-12-01

    Aims: We plan to reproduce a previously published calculation for the tidal dissipation in Io and extend the employed model to investigate the heat transport mechanism in Io and the thickness of Io's asthenosphere. Additionally, we apply this model to an exoplanet and obtain insights into the dependencies of the modified tidal quality factor (Q') on the size of the planet and its orbital eccentricity. Methods: Tidal dissipation depends on the heat transport mechanism. For strong tidal forcing an equilibrium between heat transport by convection and heat production by tidal dissipation can be obtained that determines the tidal dissipation. By this means, we checked whether convection is the dominant heat transport mechanism in Io. The tidal dissipation also depends on the interior model of Io. We considered various asthenosphere thicknesses and determined which of these gives results compatible with observations. We determined the modified tidal quality factors (Q') for Corot 7 b for various orbital parameters, but in a way that tidal forcing is strong. We used convection and melt migration as possible heat transport mechanism. We repeated this for a hypothetical planet with the size and density of Io on the orbit of Corot 7 b. Results: We find that a heat transport dominated by convection in Io is possible, but the grain sizes need to be smaller than 2.2 mm. For larger grain sizes melt migration is the dominant heat transport mechanism. Moreover, Io's asthenosphere needs to be thicker than 100 km. The computation of the modified tidal quality factors (Q') for Corot 7 b and a planet with the size and density of Io on the orbit of Corot 7 b show that Q' is scattered over several orders of magnitude, but a value of 100 for Q' is an acceptable estimate for a rocky planet under strong tidal forcing.

  2. Creation Of Constructed Tidal Flats Using Ocean Dredged Sediment

    Science.gov (United States)

    Park, S.; Yi, B.; Lee, I.; Sung, K.

    2007-12-01

    The enforcement of London dumping convention (1972) and protocols (1996) which are comprehensive assessment system for ocean dumping wastes needs environmentally sound treatment and/or reuse of dredged sediment. Creation of constructed tidal flats using dredged sediments could be one of the useful alternatives among other dredged sediment treatments. In this study, the pilot-scale constructed tidal flats with 4 different mixing ratio of ocean dredged sediment were constructed in Nakdong river estuary, Korea. The reed was transplanted from the adjacent reed community after construction, and then the survival and growth rate of the planted reed was measured. Also the changes of Chemical Oxygen Demand (COD), Ignition loss (IL), and the heterotrophic microbial numbers were monitored. The survival rate of the planted reed decreased as the mixing ratio of dredged sediment increased. The survival rate of reed in the constructed tidal flat with 100% dredged sediment was 54% while that in the tidal flat with 0% dredged sediment (original soil of Nakdong river estuary) was 90%. There was little difference of length and diameter of the reed shoot among the 4 different constructed tidal flats. 30% of COD and 9% of IL in the tidal flat with 100% dredged sediment decreased after 202 day, however, the consistent tendency in the change of COD and IL in the other tidal flats was not found possibly due to the open system. It was suggested that the construction of tidal flats using ocean dredged sediment can be possible considering the growth rate of transplanted reeds and the contaminated ocean dredged sediment might be biologically remediated considering the results of decrease of organic matter and increased heterotrophic microbial number in the tidal flat with 100% dredged sediment. However, the continuous monitoring on the vegetation and various environmental factors in the constructed tidal flats should be necessary to evaluate the success of creation of constructed flats using

  3. Effects of serum of the rats ventilated with high tidal volume on endothelial cell permeability and therapeutic effects of ulinastatin

    Institute of Scientific and Technical Information of China (English)

    HUO Guo-dong; CAI Shao-xi; CHEN Bo; CHEN Ying-hua

    2006-01-01

    Background With the widespread use of ventilators in treating critically ill patients, the morbidity of ventilator-induced lung injury (VILI) is increasing accordingly. VILI is characterized by a considerable increase in microvascular leakiness and activation of inflammatory processes. In this study we investigated the effects of inflammatory mediators in VILI rat serum on endothelial cytoskeleton and monolayer cellular permeability, as well as the therapeutic effect of ulinastatin, to explore the pathogenesis and the relationship between biotrauma and lung oedema induced by VILI.Methods Thirty healthy male Sprague-Dawley rats were randomly divided into three groups: group A (normal tidal volume ventilation), group B (high tidal volume ventilation) and group C (high tidal volume ventilation plus ulinastatin). The serum of each rat after ventilation was added to endothelial cell line ECV-304 medium for two hours to observe the effects of serum and/or ulinastatin on endothelial fibrous actin and permeability. Results Compared to rats ventilated with normal tidal volume, serum of rats ventilated with high tidal volume caused a striking reorganization of actin cytoskeleton with a weakening of fluorescent intensity at the peripheral filament bands and formation of the long and thick stress fibres in the centre resulting in endothelial contraction and higher permeability. Prior treatment with ulinastatin lessened the above changes significantly. The changes of permeability coefficient of endothelial permeability after group A, B or C rats serum stimulation were (6.95 ±1.66)%, (27.50±7.77)% and (17.71±4.66)% respectively with statistically significant differences (P<0.05)among the three groups.Conclusions The proinflammatory mediators in the serum of the rats given high tidal volume ventilation increases endothelial permeability by reorganizing actin cytoskeleton, and pretreatment with ulinastatin lessens the permeability by inhibiting of proinflammatory mediators.

  4. Tidal Friction: Darwin's Theory Re-Visited

    Science.gov (United States)

    Ferraz-Mello, Sylvio

    2009-05-01

    Our knowledge of tidal friction is even today directly founded on Darwin's theory. Many progresses from studies done in the past century deserve mention. To quote just a few, we may mention Love's theory on the elastic response of one body submitted to an external potential and the understanding of the role played by tides in generating heat in synchronous planetary satellites. We may also mention the many applications that leaded to the understanding of the evolution of systems with close-in satellites, the Earth-Moon system in the first place, and those concerning systems formed by close binary stars. However, notwithstanding the existence of some high-order formal theories, the essential of our knowledge is yet nowadays the one established by Darwin and crucial questions on the action of viscosity, for instance, remains unanswered. We still are strongly tied to Darwin's assumption that the tidal waves lag proportionally to frequency or, in some favorable cases (e.g. the Earth), that the lags are constants. We intend to critically review our current understanding of Darwin's theory and some of its limitations.

  5. Tidal obliquity evolution of potentially habitable planets

    CERN Document Server

    Heller, René; Barnes, Rory

    2011-01-01

    Stellar insolation has been used as the main constraint on a planet's habitability. However, as more Earth-like planets are discovered around low-mass stars (LMSs), a re-examination of the role of tides on the habitability of exoplanets has begun. Those studies have yet to consider the misalignment between a planet's rotational axis and the orbital plane normal, i.e. the planetary obliquity. We apply two equilibrium tide theories to compute the obliquity evolution of terrestrial planets orbiting in the habitable zones around LMSs. The time for the obliquity to decrease from an Earth-like obliquity of 23.5 deg to 5 deg, the 'tilt erosion time', is compared to the traditional insolation habitable zone (IHZ) as a function of semi-major axis, eccentricity, and stellar mass. We also compute tidal heating and equilibrium rotation caused by obliquity tides. The Super-Earth Gl581d and the planet candidate Gl581g are studied as examples for tidal processes. Earth-like obliquities of terrestrial planets in the IHZ arou...

  6. Relativistic tidal effects in nonstandard Kerr spacetime

    Science.gov (United States)

    Maselli, Andrea; Kokkotas, Kostas; Laguna, Pablo

    2016-03-01

    Astrophysical phenomena involving massive black holes (BHs) in close binaries are expected to leave detectable signatures in the electromagnetic and gravitational-wave spectrum. Such imprints may provide precious information to probe the space-time around rotating BHs and to reveal new insights on the nature of gravity in the strong-field regime. To support this observational window, it is crucial to develop suitable tests to verify the predictions of General Relativity. In this framework, the metric recently proposed by Johannsen and Psaltis parametrizes strong-field deviations from a Kerr space-time in a theory-independent way. In the following, we make use of this approach to describe the tidal field produced by spinning BHs. We compute the gravito-magnetic and gravito-electric tidal tensors for particles moving on equatorial circular geodesics, comparing our results with those obtained in the standard General Relativity scenario. Our calculations show significant differences even for distances far form the last stable orbit, which may affect the evolution of the binary and leave detectable signatures. We test our framework computing quasiequilibrium sequences of BH-white dwarf systems by means of the affine model, for different binary configurations.

  7. Tidal instability in exoplanetary systems evolution

    Directory of Open Access Journals (Sweden)

    Le Gal P.

    2011-02-01

    Full Text Available A new element is proposed to play a role in the evolution of extrasolar planetary systems: the tidal (or elliptical instability. It comes from a parametric resonance and takes place in any rotating fluid whose streamlines are (even slightly elliptically deformed. Based on theoretical, experimental and numerical works, we estimate the growth rate of the instability for hot-jupiter systems, when the rotation period of the star is known. We present the physical process, its application to stars, and preliminary results obtained on a few dozen systems, summarized in the form of a stability diagram. Most of the systems are trapped in the so-called "forbidden zone", where the instability cannot grow. In some systems, the tidal instability is able to grow, at short timescales compared to the system evolution. Implications are discussed in the framework of misaligned transiting systems, as the rotational axis of the star would be unstable in systems where this elliptical instability grows.

  8. Optimal design of a tidal turbine

    Science.gov (United States)

    Kueny, J. L.; Lalande, T.; Herou, J. J.; Terme, L.

    2012-11-01

    An optimal design procedure has been applied to improve the design of an open-center tidal turbine. A specific software developed in C++ enables to generate the geometry adapted to the specific constraints imposed to this machine. Automatic scripts based on the AUTOGRID, IGG, FINE/TURBO and CFView software of the NUMECA CFD suite are used to evaluate all the candidate geometries. This package is coupled with the optimization software EASY, which is based on an evolutionary strategy completed by an artificial neural network. A new technique is proposed to guarantee the robustness of the mesh in the whole range of the design parameters. An important improvement of the initial geometry has been obtained. To limit the whole CPU time necessary for this optimization process, the geometry of the tidal turbine has been considered as axisymmetric, with a uniform upstream velocity. A more complete model (12 M nodes) has been built in order to analyze the effects related to the sea bed boundary layer, the proximity of the sea surface, the presence of an important triangular basement supporting the turbine and a possible incidence of the upstream velocity.

  9. Directly Imaging Tidally Powered Migrating Jupiters

    CERN Document Server

    Dong, Subo; Socrates, Aristotle

    2012-01-01

    We show that ongoing direct imaging experiments may detect a new class of long-period, highly luminous, tidally powered extrasolar gas giants. Even though they are hosted by Gyr-"old" main-sequence stars, they can be as "hot" as young Jupiters at ~100 Myr, the prime targets of direct imaging surveys. These planets, with years-long orbits, are presently migrating to "feed" the "hot Jupiters" in steady state. Their existence is expected from a class of "high-e" migration mechanisms, in which gas giants are excited to highly eccentric orbits and then shrink their semi-major axis by factor of ~ 10-100 due to tidal dissipation at successive close periastron passages. The dissipated orbital energy is converted to heat, and if it is deposited deep enough into the planet atmosphere, the planet likely radiates steadily at luminosity ~2-3 orders of magnitude larger than that of our Jupiter during a typical Gyr migration time scale. Their large orbital separations and expected high planet-to-star flux ratios in IR make ...

  10. Tidal Dwarf Galaxies and Missing Baryons

    Directory of Open Access Journals (Sweden)

    Frederic Bournaud

    2010-01-01

    Full Text Available Tidal dwarf galaxies form during the interaction, collision, or merger of massive spiral galaxies. They can resemble “normal” dwarf galaxies in terms of mass, size, and become dwarf satellites orbiting around their massive progenitor. They nevertheless keep some signatures from their origin, making them interesting targets for cosmological studies. In particular, they should be free from dark matter from a spheroidal halo. Flat rotation curves and high dynamical masses may then indicate the presence of an unseen component, and constrain the properties of the “missing baryons,” known to exist but not directly observed. The number of dwarf galaxies in the Universe is another cosmological problem for which it is important to ascertain if tidal dwarf galaxies formed frequently at high redshift, when the merger rate was high, and many of them survived until today. In this paper, “dark matter” is used to refer to the nonbaryonic matter, mostly located in large dark halos, that is, CDM in the standard paradigm, and “missing baryons” or “dark baryons” is used to refer to the baryons known to exist but hardly observed at redshift zero, and are a baryonic dark component that is additional to “dark matter”.

  11. Tidal Debris as a Dark Matter Probe

    CERN Document Server

    Johnston, Kathryn V

    2016-01-01

    Tidal debris streams from galaxy satellites can provide insight into the dark matter distribution in halos. This is because we have more information about stars in a debris structure than about a purely random population of stars: we know that in the past they were all bound to the same dwarf galaxy; and we know that they form a dynamically cold population moving on similar orbits. They also probe a different region of the matter distribution in a galaxy than many other methods of mass determination, as their orbits take them far beyond the typical extent of those for the bulk of stars. Although conclusive results from this information have yet to be obtained, significant progress has been made in developing the methodologies for determining both the global mass distribution of the Milky Way's dark matter halo and the amount of dark matter substructure within it. Methods for measuring the halo shape are divided into "predictive methods," which predict the tidal debris properties from the progenitor satellite'...

  12. Tidally driven dynamos in a rotating sphere

    CERN Document Server

    Cébron, David

    2014-01-01

    Large-scale planetary or stellar magnetic fields generated by a dynamo effect are mostly attributed to flows forced by buoyancy forces in electrically conducting fluid layers. However, these large-scale fields may also be controlled by tides, as previously suggested for the star $\\tau$-boo, Mars or the Early Moon. By simulating a small local patch of a rotating fluid, \\cite{Barker2014} have recently shown that tides can drive small-scale dynamos by exciting a hydrodynamic instability, the so-called elliptical (or tidal) instability. By performing global magnetohydrodynamic simulations of a rotating spherical fluid body, we investigate if this instability can also drive the observed large-scale magnetic fields. We are thus interested by the dynamo threshold and the generated magnetic field in order to test if such a mechanism is relevant for planets and stars. Rather than solving the problem in a geometry deformed by tides, we consider a spherical fluid body and add a body force to mimic the tidal deformation ...

  13. Tidal Disruption Events Prefer Unusual Host Galaxies

    CERN Document Server

    French, K Decker; Zabludoff, Ann

    2016-01-01

    Tidal Disruption Events (TDEs) are transient events observed when a star passes close enough to a supermassive black hole to be tidally destroyed. Many TDE candidates have been discovered in host galaxies whose spectra have weak or no line emission yet strong Balmer line absorption, indicating a period of intense star formation that has recently ended. As such, TDE host galaxies fall into the rare class of quiescent Balmer-strong galaxies. Here, we quantify the fraction of galaxies in the Sloan Digital Sky Survey (SDSS) with spectral properties like those of TDE hosts, determining the extent to which TDEs are over-represented in such galaxies. Galaxies whose spectra have Balmer absorption H$\\delta_{\\rm A}$ $-$ $\\sigma$(H$\\delta_{\\rm A}$) $>$ 4 \\AA\\ (where $\\sigma$(H$\\delta_{\\rm A}$) is the error in the Lick H$\\delta_{\\rm A}$ index) and H$\\alpha$ emission EW $$ 1.31 \\AA\\ and H$\\alpha$ EW $80\\times$ enhancement in such hosts and providing an observational link between the $\\gamma$/X-ray-bright and optical/UV-br...

  14. Pond fractals in a tidal flat.

    Science.gov (United States)

    Cael, B B; Lambert, Bennett; Bisson, Kelsey

    2015-11-01

    Studies over the past decade have reported power-law distributions for the areas of terrestrial lakes and Arctic melt ponds, as well as fractal relationships between their areas and coastlines. Here we report similar fractal structure of ponds in a tidal flat, thereby extending the spatial and temporal scales on which such phenomena have been observed in geophysical systems. Images taken during low tide of a tidal flat in Damariscotta, Maine, reveal a well-resolved power-law distribution of pond sizes over three orders of magnitude with a consistent fractal area-perimeter relationship. The data are consistent with the predictions of percolation theory for unscreened perimeters and scale-free cluster size distributions and are robust to alterations of the image processing procedure. The small spatial and temporal scales of these data suggest this easily observable system may serve as a useful model for investigating the evolution of pond geometries, while emphasizing the generality of fractal behavior in geophysical surfaces. PMID:26651668

  15. The time evolution of gaps in tidal streams

    CERN Document Server

    Helmi, Amina

    2016-01-01

    We model the time evolution of gaps in tidal streams caused by the impact of a dark matter subhalo, while both orbit a spherical gravitational potential. To this end, we make use of the simple behaviour of orbits in action-angle space. A gap effectively results from the divergence of two nearby orbits whose initial phase-space separation is, for very cold thin streams, largely given by the impulse induced by the subhalo. We find that in a spherical potential the size of a gap increases linearly with time, while its density decreases as 1/t^2 for sufficiently long timescales. We have derived an analytic expression that shows how the growth rate depends on the mass of the perturbing subhalo, its scale and its relative velocity with respect to the stream. We have verified these scalings using N-body simulations and find excellent agreement. For example, a subhalo of mass 10^8 Msun directly impacting a very cold thin stream on an inclined orbit can induce a gap that may reach a size of several tens of kpc after a...

  16. The Time Evolution of Gaps in Tidal Streams

    Science.gov (United States)

    Helmi, Amina; Koppelman, Helmer H.

    2016-09-01

    We model the time evolution of gaps in tidal streams that are caused by the impact of a dark matter subhalo, while these orbit a spherical gravitational potential. To this end, we make use of the simple behavior of orbits in action-angle space. A gap effectively results from the divergence of two nearby orbits whose initial phase-space separation is, for very cold thin streams, largely given by the impulse induced by the subhalo. We find that in a spherical potential, the size of a gap increases linearly with time for sufficiently long timescales. We have derived an analytic expression that shows how the growth rate depends on the mass of the perturbing subhalo, its scale, and its relative velocity with respect to the stream. We have verified these scalings using N-body simulations and find excellent agreement. For example, a subhalo of mass {10}8 {M}ȯ directly impacting a very cold thin stream on an inclined orbit can induce a gap that may reach a size of several tens of kiloparsecs after a few gigayears. The gap size fluctuates importantly with phase on the orbit, and it is largest close to pericenter. This indicates that it may not be fully straightforward to invert the spectrum of gaps present in a stream to recover the mass spectrum of the subhalos.

  17. Flow and sediment transport in an Indonesian tidal network

    NARCIS (Netherlands)

    Buschman, F.A.

    2011-01-01

    The Berau river, situated in east Kalimantan (Indonesia), drains a relatively small catchment area and splits into several interconnected tidal channels. This tidal network connects to the sea. The sea is host to extremely diverse coral reef communities. Also the land side of the region is relativel

  18. Modeling of channel patterns in short tidal basins

    NARCIS (Netherlands)

    Marciano, R.; Wang, Z.B.; Hibma, A.; De Vriend, H.J.; Defina, A.

    2005-01-01

    We model branching channel patterns in short tidal basins with two methods. A theoretical stability analysis leads to a relationship between the number of channels and physical parameters of the tidal system. The analysis reveals that width and spacing of the channels should decrease as the slope of

  19. Are Wave and Tidal Energy Plants New Green Technologies?

    Science.gov (United States)

    Douziech, Mélanie; Hellweg, Stefanie; Verones, Francesca

    2016-07-19

    Wave and tidal energy plants are upcoming, potentially green technologies. This study aims at quantifying their various potential environmental impacts. Three tidal stream devices, one tidal range plant and one wave energy harnessing device are analyzed over their entire life cycles, using the ReCiPe 2008 methodology at midpoint level. The impacts of the tidal range plant were on average 1.6 times higher than the ones of hydro-power plants (without considering natural land transformation). A similar ratio was found when comparing the results of the three tidal stream devices to offshore wind power plants (without considering water depletion). The wave energy harnessing device had on average 3.5 times higher impacts than offshore wind power. On the contrary, the considered plants have on average 8 (wave energy) to 20 (tidal stream), or even 115 times (tidal range) lower impact than electricity generated from coal power. Further, testing the sensitivity of the results highlighted the advantage of long lifetimes and small material requirements. Overall, this study supports the potential of wave and tidal energy plants as alternative green technologies. However, potential unknown effects, such as the impact of turbulence or noise on marine ecosystems, should be further explored in future research. PMID:27294983

  20. Carbon dioxide uptake by a temperate tidal sea

    NARCIS (Netherlands)

    Klaassen, Wim

    2007-01-01

    Carbon dioxide (CO2) exchange between the atmosphere and the Wadden Sea, a shallow coastal region along the northern Netherlands, has been measured from April 2006 onwards on a tidal flat and over open water. Tidal flat measurements were done using a flux chamber, and ship borne measurements using a

  1. Are Wave and Tidal Energy Plants New Green Technologies?

    Science.gov (United States)

    Douziech, Mélanie; Hellweg, Stefanie; Verones, Francesca

    2016-07-19

    Wave and tidal energy plants are upcoming, potentially green technologies. This study aims at quantifying their various potential environmental impacts. Three tidal stream devices, one tidal range plant and one wave energy harnessing device are analyzed over their entire life cycles, using the ReCiPe 2008 methodology at midpoint level. The impacts of the tidal range plant were on average 1.6 times higher than the ones of hydro-power plants (without considering natural land transformation). A similar ratio was found when comparing the results of the three tidal stream devices to offshore wind power plants (without considering water depletion). The wave energy harnessing device had on average 3.5 times higher impacts than offshore wind power. On the contrary, the considered plants have on average 8 (wave energy) to 20 (tidal stream), or even 115 times (tidal range) lower impact than electricity generated from coal power. Further, testing the sensitivity of the results highlighted the advantage of long lifetimes and small material requirements. Overall, this study supports the potential of wave and tidal energy plants as alternative green technologies. However, potential unknown effects, such as the impact of turbulence or noise on marine ecosystems, should be further explored in future research.

  2. Hydrodynamics and morphodynamics of a seasonally forced tidal inlet system

    NARCIS (Netherlands)

    Lam, N.T.; Stive, M.J.F.; Wang, Z.B.; Verhagen, H.J.; Thuy, V.T.T.

    2008-01-01

    Hydrodynamics and morphodynamics of a seasonally forced tidal inlet system are investigated using numerical models. The ocean forcing including tidal and wave actions and sediment transport is simulated using Delft3D model. Fluvial processes in Delft3D are taken into account as results from SOBEK RU

  3. Land use in Korean tidal wetlands: impacts and management strategies.

    Science.gov (United States)

    Hong, Sun-Kee; Koh, Chul-Hwan; Harris, Richard R; Kim, Jae-Eun; Lee, Jeom-Sook; Ihm, Byung-Sun

    2010-05-01

    The coastal landscapes in southwestern Korea include a diverse array of tidal wetlands and salt marshes. These coastal zones link the ecological functions of marine tidal wetlands and freshwater ecosystems with terrestrial ecosystems. They are rich in biological diversity and play important roles in sustaining ecological health and processing environmental pollutants. Korean tidal wetlands are particularly important as nurseries for economically important fishes and habitats for migratory birds. Diking, draining, tourism, and conversion to agricultural and urban uses have adversely affected Korean tidal wetlands. Recent large development projects have contributed to further losses. Environmental impact assessments conducted for projects affecting tidal wetlands and their surrounding landscapes should be customized for application to these special settings. Adequate environmental impact assessments will include classification of hydrogeomorphic units and consideration of their responses to biological and environmental stressors. As is true worldwide, Korean laws and regulations are changing to be more favorable to the conservation and protection of tidal wetlands. More public education needs to be done at the local level to build support for tidal wetland conservation. Some key public education points include the role of tidal wetlands in maintaining healthy fish populations and reducing impacts of nonpoint source pollution. There is also a need to develop procedures for integrating economic and environmental objectives within the overall context of sustainable management and land uses.

  4. Land Use in Korean Tidal Wetlands: Impacts and Management Strategies

    Science.gov (United States)

    Hong, Sun-Kee; Koh, Chul-Hwan; Harris, Richard R.; Kim, Jae-Eun; Lee, Jeom-Sook; Ihm, Byung-Sun

    2010-05-01

    The coastal landscapes in southwestern Korea include a diverse array of tidal wetlands and salt marshes. These coastal zones link the ecological functions of marine tidal wetlands and freshwater ecosystems with terrestrial ecosystems. They are rich in biological diversity and play important roles in sustaining ecological health and processing environmental pollutants. Korean tidal wetlands are particularly important as nurseries for economically important fishes and habitats for migratory birds. Diking, draining, tourism, and conversion to agricultural and urban uses have adversely affected Korean tidal wetlands. Recent large development projects have contributed to further losses. Environmental impact assessments conducted for projects affecting tidal wetlands and their surrounding landscapes should be customized for application to these special settings. Adequate environmental impact assessments will include classification of hydrogeomorphic units and consideration of their responses to biological and environmental stressors. As is true worldwide, Korean laws and regulations are changing to be more favorable to the conservation and protection of tidal wetlands. More public education needs to be done at the local level to build support for tidal wetland conservation. Some key public education points include the role of tidal wetlands in maintaining healthy fish populations and reducing impacts of nonpoint source pollution. There is also a need to develop procedures for integrating economic and environmental objectives within the overall context of sustainable management and land uses.

  5. Morphodynamics of tidal inlets in a tropical monsoon area

    NARCIS (Netherlands)

    Lam, N.T.; Stive, M.J.F.; Verhagen, H.J.; Wang, Z.B.

    2007-01-01

    Morphodynamics of a tidal inlet system on a micro-tidal coast in a tropical monsoon influenced region is modelled and discussed. Influences of river flow and wave climate on the inlet morphology are investigated with the aid of process-based state-of-the-art numerical models. Seasonal and episodic b

  6. Orbital Phase Dependence of Globular Cluster's Tidal Radii

    Institute of Scientific and Technical Information of China (English)

    WU Zhen-Yu; ZHOU Xu; MA Jun

    2004-01-01

    @@ The orbits for a sample of 45 galactic globular clusters are calculated using positions and spatial velocities based on recent compilations as well as new measurements of their absolute proper motions. The perigalactic positions of each cluster are used to determine their theoretical tidal radii in the given galactic model. The orbital phase dependence between the theoretical and observed tidal radii is evidenced.

  7. Ice-volcanism due to tidal stress on Europa

    Institute of Scientific and Technical Information of China (English)

    LI Li; CHEN Chuxin

    2003-01-01

    Tectonism would be driven by tidal heat on Europa, and there may be ice-volcano on the surface of active Europa. We assume that ice-volcano would spurt out due to tidal stress, and calculate the velocity and height of the spurt inscale. We also find out the approximate distribution of the active volcanoes on Europa.

  8. Energy. The tidal power; Energie. L`energie maremotrice

    Energy Technology Data Exchange (ETDEWEB)

    Banal, M. [Societe Hydrotechnique (France)

    1997-09-01

    This paper is a general presentation of the physical phenomena and means used for the exploitation of tidal power energy source, one of the less used renewable energy: the tidal cycle and the power recoverable, and the means to catch tides energy (sea levels and currents). (J.S.)

  9. Tidal Inlet Systems: bottom pattern formation and outer delta development

    NARCIS (Netherlands)

    Leeuwen, Sonja Maria van

    2002-01-01

    Tidal inlet systems are found around the world’s coastline. They consist of a backbarrier lagoon or basin which is connected to the adjacent sea by means of a narrow strait. The basin is bounded by land and/or tidal watersheds. The motion in these systems is predominantly driven by tides (compared t

  10. The generation of offshore tidal sand banks and sand waves

    NARCIS (Netherlands)

    Hulscher, Susanne J.M.H.; Swart, de Huib E.; Vriend, de Huib J.

    1993-01-01

    A simple morphological model is considered which describes the interaction between a tidal flow and an erodible bed in a shallow sea. The basic state of this model describes a spatially uniform tide over a flat bottom where the flow vector is represented as a tidal ellipse. The linear stability of t

  11. Temporal bed level variations in the Yangtze tidal flats (abstract)

    NARCIS (Netherlands)

    Yan, H.; Van Prooijen, B.C.

    2013-01-01

    The Yangtze River is one of the largest rivers in the world and the longest one in Asia. Its estuary forms an important entrance for shipping, but is also a key ecological system. Especially the inter-tidal flats are valuable habitats. The health and integrity of the estuarine tidal flat are however

  12. Water rules all processes in tidal freshwater wetlands

    NARCIS (Netherlands)

    Barendregt, A.

    2012-01-01

    Three essential factors cause the presence of tidal freshwater wetlands (TFW). First, it is a freshwater ecosystem located in the upper part of the estuary, where permanent input of river water creates fresh conditions constantly. Second, there is a tidal pulse that causes very dynamic conditions in

  13. Tidal Stirring of Satellites with Shallow Density Profiles Prevents Them from Being Too Big to Fail

    Science.gov (United States)

    Tomozeiu, Mihai; Mayer, Lucio; Quinn, Thomas

    2016-08-01

    The “too big to fail” problem is revisited by studying the tidal evolution of populations of dwarf satellites with different density profiles. The high-resolution cosmological ΛCDM “ErisMod” set of simulations is used. These simulations can model both the stellar and dark matter components of the satellites, and their evolution under the action of the tides of a Milky Way (MW)-sized host halo at a force resolution better than 10 pc. The stronger tidal mass loss and re-shaping of the mass distribution induced in satellites with γ = 0.6 dark matter density distributions, as those resulting from the effect of feedback in hydrodynamical simulations of dwarf galaxy formation, are sufficient to bring the circular velocity profiles in agreement with the kinematics of MW’s dSphs. In contrast, in simulations in which the satellites retain cusps at z = 0 there are several “massive failures” with circular velocities in excess of the observational constraints. Various sources of deviations in the conventionally adopted relation between the circular velocity at the half-light radius and the one-dimensional line of sight velocity dispersions are found. Such deviations are caused by the response of circular velocity profiles to tidal effects, which also varies depending on the initially assumed inner density profile and by the complexity of the stellar kinematics, which include residual rotation and anisotropy. In addition, tidal effects naturally induce large deviations in the stellar mass–halo mass relation for halo masses below 109 M ⊙, preventing any reliable application of the abundance matching technique to dwarf galaxy satellites.

  14. Quantification of tidal parameters from Solar system data

    CERN Document Server

    Lainey, Valéry

    2016-01-01

    Tidal dissipation is the main driver of orbital evolution of natural satellites and a key point to understand the exoplanetary system configurations. Despite its importance, its quantification from observations still remains difficult for most objects of our own Solar system. In this work, we overview the method that has been used to determine, directly from observations, the tidal parameters, with emphasis on the Love number k2 and the tidal quality factor Q. Up-to-date values of these tidal parameters are summarized. Last, an assessment on the possible determination of the tidal ratio k2/Q of Uranus and Neptune is done. This may be particularly relevant for coming astrometric campaigns and future space missions focused on these systems.

  15. Confusion around the tidal force and the centrifugal force

    CERN Document Server

    Matsuda, Takuya; Boffin, Henri M J

    2015-01-01

    We discuss the tidal force, whose notion is sometimes misunderstood in the public domain literature. We discuss the tidal force exerted by a secondary point mass on an extended primary body such as the Earth. The tidal force arises because the gravitational force exerted on the extended body by the secondary mass is not uniform across the primary. In the derivation of the tidal force, the non-uniformity of the gravity is essential, and inertial forces such as the centrifugal force are not needed. Nevertheless, it is often asserted that the tidal force can be explained by the centrifugal force. If we literally take into account the centrifugal force, it would mislead us. We therefore also discuss the proper treatment of the centrifugal force.

  16. Observer-dependent tidal indicators in the Kerr spacetime

    CERN Document Server

    Bini, Donato

    2014-01-01

    The observer-dependent tidal effects associated with the electric and magnetic parts of the Riemann tensor with respect to an arbitrary family of observers are discussed in a general spacetime in terms of certain "tidal indicators." The features of such indicators are then explored by specializing our considerations to the family of stationary circularly rotating observers in the equatorial plane of the Kerr spacetime. There exist a number of observer families which are special for several reasons and for each of them such indicators are evaluated. The transformation laws of tidal indicators when passing from one observer to another are also discussed, clarifying the interplay among them. Our analysis shows that no equatorial plane circularly rotating observer in the Kerr spacetime can ever measure a vanishing tidal electric indicator, whereas the family of Carter's observers measures zero tidal magnetic indicator.

  17. Quantification of tidal parameters from Solar System data

    Science.gov (United States)

    Lainey, Valéry

    2016-05-01

    Tidal dissipation is the main driver of orbital evolution of natural satellites and a key point to understand the exoplanetary system configurations. Despite its importance, its quantification from observations still remains difficult for most objects of our own Solar System. In this work, we overview the method that has been used to determine, directly from observations, the tidal parameters, with emphasis on the Love number k_2 and the tidal quality factor Q. Up-to-date values of these tidal parameters are summarized. Last, an assessment on the possible determination of the tidal ratio k_2/Q of Uranus and Neptune is done. This may be particularly relevant for coming astrometric campaigns and future space missions focused on these systems.

  18. Admiralty Inlet Pilot Tidal Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Collar, Craig [Public Utility District No. 1 of Snohomish County, Everett, WA (United States)

    2015-09-14

    This document represents the final report for the Admiralty Inlet Pilot Tidal Project, located in Puget Sound, Washington, United States. The Project purpose was to license, permit, and install a grid-connected deep-water tidal turbine array (two turbines) to be used as a platform to gather operational and environmental data on tidal energy generation. The data could then be used to better inform the viability of commercial tidal energy generation from technical, economic, social, and environmental standpoints. This data would serve as a critical step towards the responsible advancement of commercial scale tidal energy in the United States and around the world. In late 2014, Project activities were discontinued due to escalating costs, and the DOE award was terminated in early 2015. Permitting, licensing, and engineering design activities were completed under this award. Final design, deployment, operation, and monitoring were not completed. This report discusses the results and accomplishments achieved under the subject award.

  19. Anelastic tidal dissipation in multi-layer planets

    CERN Document Server

    Remus, F; Zahn, J -P; Lainey, V

    2012-01-01

    Earth-like planets have viscoelastic mantles, whereas giant planets may have viscoelastic cores. The tidal dissipation of such solid regions, gravitationally perturbed by a companion body, highly depends on their rheology and on the tidal frequency. Therefore, modelling tidal interactions presents a high interest to provide constraints on planets' properties and to understand their history and their evolution, in our Solar System or in exoplanetary systems. We examine the equilibrium tide in the anelastic parts of a planet whatever the rheology, taking into account the presence of a fluid envelope of constant density. We show how to obtain the different Love numbers that describe its tidal deformation. Thus, we discuss how the tidal dissipation in solid parts depends on the planet's internal structure and rheology. Finally, we show how the results may be implemented to describe the dynamical evolution of planetary systems. The first manifestation of the tide is to distort the shape of the planet adiabatically...

  20. Impact of Tidal-Stream Turbines on the Generation of the Higher Tidal Harmonics

    Science.gov (United States)

    Potter, Daniel; Ilic, Suzana; Folkard, Andrew

    2016-04-01

    The higher tidal harmonics result from the interaction of the astronomic tides with both themselves and each other through non-linear processes. In shallower waters such as those near the coast these non-linear processes become more significant and thus, so too do the higher tidal harmonics become more significant. The interaction of the tide with tidal-stream turbines (TSTs), through thrust and drag processes will be non-linear and as such will contribute to the generation of higher tidal harmonics, thus changing the nature of the tide downstream of the turbines. The change to the tide may potentially impact on the downstream energy resource (Robins et al. 2015) and sediment transport processes (Pingree & Griffiths 1979). This paper will present analytical results, which suggest that TSTs will impact on the generation of all higher harmonics but with odd overtides being impacted more than even overtides, the most important examples of which are the M6 and M4 tides respectively, which are the first odd and even overtides of the M2 tide. Change in phase and amplitude of the M6 tide by TSTs will distort the tide but will not cause an asymmetry between the flood and ebb of the tide. Change in the phase and amplitude of the M4 can not only distort the tide but also cause asymmetry. Hence any change to the M4 tide by the turbines is more significant, despite the magnitude of change to the M6 being greater. In order to gain a fuller understanding of the way in which TSTs change the tide downstream and the significance of any change for transport processes or energy resource, a numerical modelling study will be carried out, which will be presented in a future paper. Robins, P.E., Neill, S.P., Lewis, M. & Ward, S.L., 2015. Characterising the spatial and temporal variability of the tidal-stream energy resource over the northwest European shelf seas. Applied Energy, 147: 510-522. Pingree, R.D. & Griffiths, D.K., 1979. Sand transport paths around the British Isles resulting

  1. Linking channel hydrology with riparian wetland accretion in tidal rivers

    Science.gov (United States)

    Ensign, Scott H.; Noe, Gregory B.; Hupp, Cliff R.

    2014-01-01

    The hydrologic processes by which tide affects river channel and riparian morphology within the tidal freshwater zone are poorly understood, yet are fundamental to predicting the fate of coastal rivers and wetlands as sea level rises. We investigated patterns of sediment accretion in riparian wetlands along the non-tidal through oligohaline portion of two coastal plain rivers in Maryland, U.S.A., and how flow velocity, water level, and suspended sediment concentration (SSC) in the channel may have contributed to those patterns. Sediment accretion was measured over a one year period using artificial marker horizons, channel hydrology was measured over a one month period using acoustic Doppler current profilers, and SSC was predicted from acoustic backscatter. Riparian sediment accretion was lowest at the non-tidal sites (mean and standard deviation = 8 ± 8 mm yr-1), highest at the upstream tidal freshwater forested wetlands (TFFW) (33 ± 28 mm yr-1), low at the midstream TFFW (12 ± 9 mm yr-1), and high at the oligohaline (fresh-to-brackish) marshes (19 ± 8 mm yr-1). Channel maximum flood and ebb velocity was 2-fold faster at the oligohaline than tidal freshwater zone on both tidal rivers, corresponding with the differences in in-channel SSC: the oligohaline zone's SSC was more than double the tidal freshwater zone's, and was greater than historical SSC at the non-tidal gages. The tidal wave characteristics differed between rivers, leading to significantly greater in-channel SSC during floodplain inundation in the weakly convergent than the strongly convergent tidal river. Overall sediment accretion was higher in the embayed river likely due to a single storm discharge and associated sedimentation.

  2. Three-dimensional semi-idealized model for tidal motion in tidal estuaries: an application to the Ems estuary

    NARCIS (Netherlands)

    Kumar, Mohit; Schuttelaars, H.M.; Roos, P.C.; Möller, M.

    2016-01-01

    In this paper, a three-dimensional semi-idealized model for tidal motion in a tidal estuary of arbitrary shape and bathymetry is presented. This model aims at bridging the gap between idealized and complex models. The vertical profiles of the velocities are obtained analytically in terms of the firs

  3. Interior Structure and Tidal Response of Mercury

    Science.gov (United States)

    Steinke, Teresa; Sohl, Frank; Hussmann, Hauke; Knapmeyer, Martin; Wagner, Frank Walter

    2013-04-01

    Recent determinations of Mercury's mean density, polar moment of inertia factor, and the inertia of its solid outer shell provide strong constraints on the radius of its liquid core. We present an ensemble of spherically symmetric interior structure models that all satisfy the observational constraints. The models consist of a pure iron solid inner core, a liquid Fe-FeS outer core, a peridotite mantle and a crust predominantly composed of plagioclase. The sulfur content in the outer core, the iron and magnesium content of the mantle, and the crustal thickness vary throughout the ensemble. Comparison of observed and predicted moments of inertia yields admissible ranges for the outer core radius and the mantle density. From this model ensemble we derive geophysical observables that would allow further constraining the interior structure of Mercury in future experiments. The moment of inertia constraints allow for both forsterite and fayalite rich mantle compositions. Variations of mantle density trade off with crustal thickness and core composition. This non-uniqueness could be resolved using seismic travel time observations: since the P wave velocity of a fayalite mantle is significantly lower than that of the plagioclase-rich crust, a shadow zone arises as a clear discriminant between the two end-member compositions. The planet's response to solar tidal forcing strongly depends on its interior structure and rheological properties and can be parameterized in terms of the surface body tide Love numbers k2 and h2, respectively. We employ the frequency-dependent Maxwell rheology to calculate the body tide Love numbers for the main tidal period (87.97 days) using the density, rigidity and viscosity profiles of our structural models. We obtain values between 0.38 and 0.65 for k2 and between 0.70 and 1.12 for h2, respectively, thereby indicating the substantial tidal response of Mercury's interior. Furthermore we find that, via viscosity and rigidity, both k2 and h2 are

  4. Temporal variation of tidal parameters in superconducting gravimeter time-series

    Science.gov (United States)

    Meurers, Bruno; Van Camp, Michel; Francis, Olivier; Pálinkáš, Vojtech

    2016-04-01

    Analysing independent 1-yr data sets of 10 European superconducting gravimeters (SG) reveals statistically significant temporal variations of M2 tidal parameters. Both common short-term (2 yr) features are identified in all SG time-series but one. The averaged variations of the amplitude factor are about 0.2‰. The path of load vector variations equivalent to the temporal changes of tidal parameters suggests the presence of an 8.85 yr modulation (lunar perigee). The tidal waves having the potential to modulate M2 with this period belong to the 3rd degree constituents. Their amplitude factors turn out to be much closer to body tide model predictions than that of the main 2nd degree M2, which indicates ocean loading for 3rd degree waves to be less prominent than for 2nd degree waves within the M2 group. These two different responses to the loading suggest that the observed modulation is more due to insufficient frequency resolution of limited time-series rather than to time variable loading. Presently, SG gravity time-series are still too short to prove if time variable loading processes are involved too as in case of the annual M2 modulation known to appear for analysis intervals of less than 1 yr. Whatever the variations are caused by, they provide the upper accuracy limit for earth model validation and permit estimating the temporal stability of SG scale factors and assessing the quality of gravity time-series.

  5. Avian response to tidal freshwater habitat creation by controlled reduced tide system

    Science.gov (United States)

    Beauchard, Olivier; Jacobs, Sander; Ysebaert, Tom; Meire, Patrick

    2013-10-01

    Human activities have caused extensive loss of estuarine wetlands, and the restoration of functional habitats remains a challenging task given several physical constraints in strongly embanked estuaries. In the Schelde estuary (Belgium), a new tidal marsh restoration technique, Controlled Reduced Tide system (CRT), is being implemented in the freshwater zone. A polder area of 8.2 ha was equipped with a CRT to test the system functionality. Among different ecological compartments that are studied for assessing the CRT restoration success, avifauna was monitored over three years. The tidal regime generated a habitat gradient typical of tidal freshwater wetlands along which the distributions of bird and ecological groups were studied. 103 bird species were recorded over the three years. In addition to many generalist bird species, several specialist species typical of the North Sea coast were present. Thirty-nine species of local and/or international conservation interest were encountered, emphasising the importance of this habitat for certain species. Species communities and ecological groups were strongly habitat specific and non-randomly organized across habitats. Spatiotemporal analyses highlighted a rapid habitat colonization, and a subsequent stable habitat community structure across seasons in spite of strong seasonal species turnovers. Hence, these findings advocate CRT implementation as a means to effectively compensate for wetland habitat loss.

  6. Hydrographical long term measurements and high resolution transects in tidal estuaries of the Southern North Sea

    Science.gov (United States)

    Badewien, Thomas H.; Schulz, Anne-Christin; Holinde, Lars; Zielinski, Oliver

    2013-04-01

    The tidal flats of the Wadden Sea and connected estuaries such as the Ems-Dollart are highly dynamic and diverse ecosystems and are of high economic value to the neighbouring regions. The Institute for Chemistry and Biology of the Marine Environment (ICBM) at the University of Oldenburg has expertise in observing and analysing environmental data from such complex systems. A research platform located at a tidal inlet between the East Frisian Islands Spiekeroog and Langeoog has collected hydrographical, meteorological and biogeochemical time series data for more than ten years. Currently, the bilateral Dutch-German research project "Future-Ems" deals with the highly dynamic exchange processes of the river Ems and its estuary (Dollart). Here, we present hydrographical long-term data sets obtained from the research platform as well as short-term high-resolution measurements from the same location and the river Ems. We focus on exchange and mixing processes as well as water mass transport through the respective tidal channels.

  7. Assessment of Tidal Stream Energy Potential for the United States

    Science.gov (United States)

    Haas, K. A.; Defne, Z.; Jiang, L.; Fritz, H. M.

    2010-12-01

    Tidal streams are high velocity sea currents created by periodic horizontal movement of the tides, often magnified by local topographical features such as headlands, inlets to inland lagoons, and straits. Tidal stream energy extraction is derived from the kinetic energy of the moving flow; analogous to the way a wind turbine operates in air, and as such differs from tidal barrages, which relies on providing a head of water for energy extraction. With the constantly increasing effort in promoting alternative energy, tidal streams have become promising energy sources due to their continuous, predictable and concentrated characteristics. However, the present lack of a full spatial-temporal assessment of tidal currents for the U.S. coastline down to the scale of individual devices is a barrier to the comprehensive development of tidal current energy technology. A methodology for creating a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology has been developed. The tidal flows are simulated using the Regional Ocean Modeling System (ROMS). The model is calibrated and validated using observations and tidal predictions. The calibration includes adjustments to model parameters such as bottom friction coefficient, changed land/water masks, or increased grid resolutions. A systematic validation process has been developed after defining various parameters to quantify the validation results. In order to determine the total tidal stream power resource, a common method frequently proposed is to estimate it as a fraction of the total kinetic energy flux passing through a vertical section; however, this now has been shown to generally underestimate the total available resource. The total tidal energy flux includes not just the kinetic energy but also the energy flux due to the work done by the pressure force associated with the tidal motion on the water column as well

  8. Tidally Induced Offset Disks in Magellanic Spiral Galaxies

    Science.gov (United States)

    Pardy, Stephen A.; D'Onghia, Elena; Athanassoula, E.; Wilcots, Eric M.; Sheth, Kartik

    2016-08-01

    Magellanic spiral galaxies are a class of one-armed systems that often exhibit an offset stellar bar and are rarely found around massive spiral galaxies. Using a set of N-body and hydrodynamic simulations, we consider a dwarf-dwarf galaxy interaction as the driving mechanism for the formation of this peculiar class of systems. We investigate here the relation between the dynamical, stellar, and gaseous disk center and the bar. In all our simulations the bar center always coincides with the dynamical center, while the stellar disk becomes highly asymmetric during the encounter, causing the photometric center of the Magellanic galaxy disk to become mismatched with both the bar and the dynamical center. The disk asymmetries persist for almost 2 Gyr, the time that it takes for the disk to be recentered with the bar, and well after the companion has passed. This explains the nature of the offset bar found in many Magellanic-type galaxies, including the Large Magellanic Cloud (LMC) and NGC 3906. In particular, these results, once applied to the LMC, suggest that the dynamical center should reside in the bar center instead of the H i center as previously assumed, pointing to a variation in the current estimate of the north component of the LMC proper motion.

  9. Tidally-Induced Offset Disks in Magellanic Spiral Galaxies

    CERN Document Server

    Pardy, Stephen A; Athanassoula, E; Wilcots, Eric M; Sheth, Kartik

    2016-01-01

    Magellanic spiral galaxies are a class of one-armed systems that often exhibit an offset stellar bar, and are rarely found around massive spiral galaxies. Using a set of N-body and hydrodynamic simulations we consider a dwarf-dwarf galaxy interaction as the driving mechanism for the formation of this peculiar class of systems. We investigate here the relation between the dynamical, stellar and gaseous disk center and the bar. In all our simulations the bar center always coincides with the dynamical center, while the stellar disk becomes highly asymmetric during the encounter causing the photometric center of the Magellanic galaxy disk to become mismatched with both the bar and the dynamical center. The disk asymmetries persist for almost 2 Gyrs, the time that it takes for the disk to be re-centered with the bar, and well after the companion has passed. This explains the nature of the offset bar found in many Magellanic-type galaxies, including the Large Magellanic Cloud (LMC) and NGC 3906. In particular, thes...

  10. Secular and tidal evolution of circumbinary systems

    CERN Document Server

    Correia, Alexandre C M; Laskar, Jacques

    2016-01-01

    We investigate the secular dynamics of three-body circumbinary systems under the effect of tides. We use the octupolar non-restricted approximation for the orbital interactions, general relativity corrections, the quadrupolar approximation for the spins, and the viscous linear model for tides. We derive the averaged equations of motion in a simplified vectorial formalism, which is suitable to model the long-term evolution of a wide variety of circumbinary systems in very eccentric and inclined orbits. In particular, this vectorial approach can be used to derive constraints for tidal migration, capture in Cassini states, and stellar spin-orbit misalignment. We show that circumbinary planets with initial arbitrary orbital inclination can become coplanar through a secular resonance between the precession of the orbit and the precession of the spin of one of the stars. We also show that circumbinary systems for which the pericenter of the inner orbit is initially in libration present chaotic motion for the spins ...

  11. Origins and Interpretation of Tidal Debris

    CERN Document Server

    Johnston, Kathryn V

    2016-01-01

    The stellar debris structures that have been discovered around the Milky Way and other galaxies are thought to be formed from the disruption of satellite stellar systems --- dwarf galaxies or globular clusters --- by galactic tidal fields. The total stellar mass in these structures is typically tiny compared to the galaxy around which they are found, and it is hence easy to dismiss them as inconsequential. However, they are remarkably useful as probes of a galaxy's history (as described in this chapter) and mass distribution (covered in a companion chapter in this volume). This power is actually a consequence of their apparent insignificance: their low contribution to the overall mass makes the physics that describes them both elegant and simple and this means that their observed properties are relatively easy to understand and interpret.

  12. Disc formation from stellar tidal disruptions

    CERN Document Server

    Bonnerot, Clément; Lodato, Giuseppe; Price, Daniel J

    2015-01-01

    The potential of tidal disruption of stars to probe otherwise quiescent supermassive black holes cannot be exploited, if their dynamics is not fully understood. So far, the observational appearance of these events has been commonly derived from analytical extrapolations of the debris dynamical properties just after the stellar disruption. In this paper, we perform hydrodynamical simulations of stars in highly eccentric orbits, that follow the stellar debris after disruption and investigate their ultimate fate. We demonstrate that gas debris circularize on an orbital timescale because relativistic apsidal precession causes the stream to self-cross. The higher the eccentricity and/or the deeper the encounter, the faster is the circularization. If the internal energy deposited by shocks during stream self-interaction is readily radiated, the gas forms a narrow ring at the circularization radius. It will then proceed to accrete viscously at a super-Eddington rate, puffing up under radiation pressure. If instead c...

  13. Stellar Tidal Streams in External Galaxies

    CERN Document Server

    Carlin, Jeffrey L; Martinez-Delgado, David; Gabany, R Jay

    2016-01-01

    To place the highly substructured stellar halos of the Milky Way and M31 in a larger context of hierarchical galaxy formation, it is necessary to understand the prevalence and properties of tidal substructure around external galaxies. This chapter details the current state of our observational knowledge of streams in galaxies in and beyond the Local Group, which are studied both in resolved stellar populations and in integrated light. Modeling of individual streams in extragalactic systems is hampered by our inability to obtain resolved stellar kinematics in the streams, though many streams contain alternate luminous kinematic tracers, such as globular clusters or planetary nebulae. We compare the observed structures to the predictions of models of galactic halo formation, which provide insight in the number and properties of streams expected around Milky Way like galaxies. More specifically, we discuss the inferences that can be made about stream progenitors based only on observed morphologies. We expand our...

  14. Anisotropic fluid from nonlocal tidal effects

    CERN Document Server

    Culetu, Hristu

    2014-01-01

    The Shiromizu et al. \\cite{SMS} covariant decomposition formalism is used to find out the brane properties rooted from the 5-dimensional Witten bubble spacetime. The non-local tensor $E_{ab}$ generated by the 5-dimensional Weyl tensor gives rise at an anisotropic energy-momentum tensor on the brane with negative energy density and $p = \\rho/3$ as equation of state. The tidal acceleration is towards the brane and that is in accordance with the negative energy density on the brane. The anisotropic fluid has vanishing "bulk" viscosity but the shear viscosity coefficient is $r$- and $t$- dependent. The brane is endowed with an apparent horizon which is exactly the radial null geodesic.

  15. TIDALLY DRIVEN DYNAMOS IN A ROTATING SPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Cébron, D.; Hollerbach, R., E-mail: david.cebron@ujf-grenoble.fr, E-mail: r.hollerbach@leeds.ac.uk [Institut für Geophysik, Sonneggstrasse 5, ETH Zürich, Zürich CH-8092 (Switzerland)

    2014-07-01

    Large-scale planetary or stellar magnetic fields generated by a dynamo effect are mostly attributed to flows forced by buoyancy forces in electrically conducting fluid layers. However, these large-scale fields may also be controlled by tides, as previously suggested for the star τ-boo, Mars, or the early Moon. By simulating a small local patch of a rotating fluid, Barker and Lithwick have recently shown that tides can drive small-scale dynamos by exciting a hydrodynamic instability, the so-called elliptical (or tidal) instability. By performing global magnetohydrodynamic simulations of a rotating spherical fluid body, we investigate if this instability can also drive the observed large-scale magnetic fields. We are thus interested in the dynamo threshold and the generated magnetic field in order to test if such a mechanism is relevant for planets and stars. Rather than solving the problem in a geometry deformed by tides, we consider a spherical fluid body and add a body force to mimic the tidal deformation in the bulk of the fluid. This allows us to use an efficient spectral code to solve the magnetohydrodynamic problem. We first compare the hydrodynamic results with theoretical asymptotic results and numerical results obtained in a truly deformed ellipsoid, which confirms the presence of elliptical instability. We then perform magnetohydrodynamic simulations and investigate the dynamo capability of the flow. Kinematic and self-consistent dynamos are finally simulated, showing that the elliptical instability is capable of generating a dipole-dominated large-scale magnetic field in global simulations of a fluid rotating sphere.

  16. A bright year for tidal disruptions

    Science.gov (United States)

    Metzger, Brian D.; Stone, Nicholas C.

    2016-09-01

    When a star is tidally disrupted by a supermassive black hole (SMBH), roughly half of its mass falls back to the SMBH at super-Eddington rates. As this gas is tenuously gravitationally bound and unable to cool radiatively, only a small fraction fin ≪ 1 may accrete, with the majority instead becoming unbound in an outflow of velocity ˜104 km s-1. The outflow spreads laterally as it expands to large radii, encasing the SMBH and blocking the inner disc's EUV/X-ray radiation, which becomes trapped in a radiation-dominated nebula. Ionizing nebular radiation heats the inner edge of the ejecta, converting the emission to optical/near-UV wavelengths where photons more readily escape due to the lower opacity. This can explain the unexpectedly low and temporally constant effective temperatures of optically discovered tidal disruption event (TDE) flares. For high-mass SMBHs, M• ≳ 107 M⊙, the ejecta can become fully ionized at an earlier stage, or for a wider range of viewing angles, producing a TDE flare accompanied by thermal X-ray emission. The peak optical luminosity is suppressed as the result of adiabatic losses in the inner disc wind when M• ≪ 107 M⊙, possibly contributing to the unexpected dearth of optical TDEs in galaxies with low-mass SMBHs. In the classical picture, where fin ≈ 1, TDEs de-spin supermassive SMBHs and cap their maximum spins well below theoretical accretion physics limits. This cap is relaxed in our model, and existing Fe Kα spin measurements provide preliminary evidence that fin < 1.

  17. Tidally Driven Dynamos in a Rotating Sphere

    Science.gov (United States)

    Cébron, D.; Hollerbach, R.

    2014-07-01

    Large-scale planetary or stellar magnetic fields generated by a dynamo effect are mostly attributed to flows forced by buoyancy forces in electrically conducting fluid layers. However, these large-scale fields may also be controlled by tides, as previously suggested for the star τ-boo, Mars, or the early Moon. By simulating a small local patch of a rotating fluid, Barker & Lithwick have recently shown that tides can drive small-scale dynamos by exciting a hydrodynamic instability, the so-called elliptical (or tidal) instability. By performing global magnetohydrodynamic simulations of a rotating spherical fluid body, we investigate if this instability can also drive the observed large-scale magnetic fields. We are thus interested in the dynamo threshold and the generated magnetic field in order to test if such a mechanism is relevant for planets and stars. Rather than solving the problem in a geometry deformed by tides, we consider a spherical fluid body and add a body force to mimic the tidal deformation in the bulk of the fluid. This allows us to use an efficient spectral code to solve the magnetohydrodynamic problem. We first compare the hydrodynamic results with theoretical asymptotic results and numerical results obtained in a truly deformed ellipsoid, which confirms the presence of elliptical instability. We then perform magnetohydrodynamic simulations and investigate the dynamo capability of the flow. Kinematic and self-consistent dynamos are finally simulated, showing that the elliptical instability is capable of generating a dipole-dominated large-scale magnetic field in global simulations of a fluid rotating sphere.

  18. Tidal constraints on the interior of Venus

    Science.gov (United States)

    Dumoulin, Caroline; Tobie, Gabriel; Verhoeven, Olivier; Rosenblatt, Pascal; Rambaux, Nicolas

    2016-10-01

    As a prospective study for a future exploration of Venus, we propose to systematically investigate the signature of the internal structure in the gravity field and the rotation state of Venus, through the determination of the moment of inertia and the tidal Love number.We test various mantle compositions, core size and density as well as temperature profiles representative of different scenarios for formation and evolution of Venus. The mantle density ρ and seismic vP and vS wavespeeds are computed in a consistent manner from given temperature and composition using the Perple X program. This method computes phase equilibria and uses the thermodynamics of mantle minerals developped by Stixrude and Lithgow-Bertelloni (2011).The viscoelastic deformation of the planet interior under the action of periodic tidal forces are computed following the method of Tobie et al. (2005).For a variety of interior models of Venus, the Love number, k2, and the moment of inertia factor are computed following the method described above. The objective is to determine the sensitivity of these synthetic results to the internal structure. These synthetic data are then used to infer the measurement accuracies required on the time-varying gravitational field and the rotation state (precession rate, nutation and length of day variations) to provide useful constraints on the internal structure.We show that a better determination of k2, together with an estimation of the moment of inertia, the radial displacement, and of the time lag, if possible, will refine our knowledge on the present-day interior of Venus (size of the core, mantle temperature, composition and viscosity). Inferring these quantities from a future ex- ploration mission will provide essential constraints on the formation and evolution scenarios of Venus.

  19. Palomar 5 and its Tidal Tails: A Search for New Members in the Tidal Stream

    CERN Document Server

    Kuzma, Pete; Keller, Stefan; Maunder, Elizabeth

    2014-01-01

    In this paper we present the results of a search for members of the globular cluster Palomar 5 and its associated tidal tails. The analysis has been performed using intermediate and low resolution spectroscopy with the AAOmega spectrograph on the Anglo-Australian Telescope. Based on kinematics, line strength and photometric information, we identify 39 new red giant branch stars along $\\sim$20$^{\\circ}$ of the tails, a larger angular extent than has been previously studied. We also recover eight previously known tidal tail members. Within the cluster, we find seven new red giant and one blue horizontal branch members and confirm a further twelve known red giant members. In total, we provide velocity data for 67 stars in the cluster and the tidal tails. Using a maximum likelihood technique, we derive a radial velocity for Pal 5 of $-57.4 \\pm 0.3$ km s$^{-1}$ and a velocity dispersion of $1.2\\pm0.3$ km s$^{-1}$. We confirm and extend the linear velocity gradient along the tails of $1.0 \\pm 0.1$ km s$^{-1}$ deg$^...

  20. Logistic Regression Analyses for Predicting Clinically Important Differences in Motor Capacity, Motor Performance, and Functional Independence after Constraint-Induced Therapy in Children with Cerebral Palsy

    Science.gov (United States)

    Wang, Tien-ni; Wu, Ching-yi; Chen, Chia-ling; Shieh, Jeng-yi; Lu, Lu; Lin, Keh-chung

    2013-01-01

    Given the growing evidence for the effects of constraint-induced therapy (CIT) in children with cerebral palsy (CP), there is a need for investigating the characteristics of potential participants who may benefit most from this intervention. This study aimed to establish predictive models for the effects of pediatric CIT on motor and functional…

  1. Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade

    Energy Technology Data Exchange (ETDEWEB)

    Bir, G. S.; Lawson, M. J.; Li, Y.

    2011-10-01

    This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.

  2. Intrinsic alignment contamination to CMB lensing-galaxy weak lensing correlations from tidal torquing

    Science.gov (United States)

    Larsen, Patricia; Challinor, Anthony

    2016-10-01

    Correlations of galaxy ellipticities with large-scale structure, due to galactic tidal interactions, provide a potentially significant contaminant to measurements of cosmic shear. However, these intrinsic alignments are still poorly understood for galaxies at the redshifts typically used in cosmic shear analyses. For spiral galaxies, it is thought that tidal torquing is significant in determining alignments resulting in zero correlation between the intrinsic ellipticity and the gravitational potential in linear theory. Here, we calculate the leading-order correction to this result in the tidal-torque model from non-linear evolution, using second-order perturbation theory, and relate this to the contamination from intrinsic alignments to the recently measured cross-correlation between galaxy ellipticities and the cosmic microwave background (CMB) lensing potential. On the scales relevant for CMB lensing observations, the squeezed limit of the gravitational bispectrum dominates the correlation. Physically, the large-scale mode that sources CMB lensing modulates the small-scale power and hence the intrinsic ellipticity, due to non-linear evolution. We find that the angular cross-correlation from tidal torquing has a very similar scale dependence as in the linear alignment model, believed to be appropriate for elliptical galaxies. The amplitude of the cross-correlation is predicted to depend strongly on the formation redshift, being smaller for galaxies that formed at higher redshift when the bispectrum of the gravitational potential was smaller. Finally, we make simple forecasts for constraints on intrinsic alignments from the correlation of forthcoming cosmic shear measurements with current CMB lensing measurements. We note that cosmic variance can be significantly reduced in measurements of the difference in the intrinsic alignments for elliptical and spiral galaxies if these types can be separated (e.g. using colour).

  3. User-Friendly Predictive Modeling of Greenhouse Gas (GHG) Fluxes and Carbon Storage in Tidal Wetlands

    Science.gov (United States)

    Ishtiaq, K. S.; Abdul-Aziz, O. I.

    2015-12-01

    We developed user-friendly empirical models to predict instantaneous fluxes of CO2 and CH4 from coastal wetlands based on a small set of dominant hydro-climatic and environmental drivers (e.g., photosynthetically active radiation, soil temperature, water depth, and soil salinity). The dominant predictor variables were systematically identified by applying a robust data-analytics framework on a wide range of possible environmental variables driving wetland greenhouse gas (GHG) fluxes. The method comprised of a multi-layered data-analytics framework, including Pearson correlation analysis, explanatory principal component and factor analyses, and partial least squares regression modeling. The identified dominant predictors were finally utilized to develop power-law based non-linear regression models to predict CO2 and CH4 fluxes under different climatic, land use (nitrogen gradient), tidal hydrology and salinity conditions. Four different tidal wetlands of Waquoit Bay, MA were considered as the case study sites to identify the dominant drivers and evaluate model performance. The study sites were dominated by native Spartina Alterniflora and characterized by frequent flooding and high saline conditions. The model estimated the potential net ecosystem carbon balance (NECB) both in gC/m2 and metric tonC/hectare by up-scaling the instantaneous predicted fluxes to the growing season and accounting for the lateral C flux exchanges between the wetlands and estuary. The entire model was presented in a single Excel spreadsheet as a user-friendly ecological engineering tool. The model can aid the development of appropriate GHG offset protocols for setting monitoring plans for tidal wetland restoration and maintenance projects. The model can also be used to estimate wetland GHG fluxes and potential carbon storage under various IPCC climate change and sea level rise scenarios; facilitating an appropriate management of carbon stocks in tidal wetlands and their incorporation into a

  4. Tidal inlet variability in Mississippi River delta plain

    Energy Technology Data Exchange (ETDEWEB)

    Levin, D.; Nummedal, D.; Penland, S.

    1983-09-01

    Stratigraphic sequences of deltaic and shallow marine origin commonly contain sand bodies transgressively overlying lower delta-plain and delta-front deposits. Although generally ascribed to barriers formed during the destructive phase of the delta cycle, most of this sand is probably of tidal-inlet origin because of the high preservation potential for sediment deposited below the base of the retreating shoreface in deep migratory tidal channels and their associated tidal deltas. To facilitate the identification of such units, this paper reviews the temporal evolution of the inlet sand bodies found along the rapidly transgressive shoreline of the abandoned Holocene Mississippi River deltas. This study also reveals that tide dominance of a coastline is not simply a function of tide range and wave height; it depends largely on the tidal prism, an inlet parameter which, in Louisiana, changes rapidly over time. Three distinct stages can be identified in the evolutionary sequence for Louisiana tidal inlets: (1) wave-dominated inlets with flood-tidal deltas, (2) tide-dominated inlets with large ebb deltas, and (3) wide, transitional inlets with sand bodies confined to the throat section. As the inlets migrate during the transgression, they will leave behind on the continental shelf, tidal sand bodies with a landward succession of facies changing from those characteristic of wave dominance, into tide dominance, and back again to transitional or wave-dominated inlets.

  5. Tidal signatures in thermospheric and ionospheric quantities (Invited)

    Science.gov (United States)

    Luhr, H.; Rother, M.; Fejer, B. G.; Haeusler, K.; Alken, P.

    2009-12-01

    Recent years provided more and more evidence for tidal signatures in various kinds of upper atmospheric measurements. In this talk special emphasis is put on non-migrating tides. Several of these tidal modes are believed to be generated in the lower atmosphere, and to propagate from here all the way up to the exosphere. Quantities, that reflect the characteristics of the tides very well, are thermospheric temperature and wind. Based on TIMED and CHAMP measurements the complete tidal spectrum has been derived for these two quantities at both MLT and upper thermospheric (400 km) altitudes. Main features of the tides will be presented, as deduced from these observations. The dynamics of the neutrals is partly transferred to charged particles in the ionospheric E-layer. For that reason some tidal signals are also observable in ionospheric parameters. Since the coupling conditions between neutral and charged particle vary over the course of a day (a year, a solar cycle), the recovery of the tidal signal in electrodynamic quantities is, due to its non-linear distortion, much more sophisticated. Even though, tidal signatures are quite evident in the observations during certain local times. We will show the amplitude and temporal variations for some of the prominent tidal components in the equatorial electrojet, in the vertical plasma drift and in electron density.

  6. Vertical Distribution of Tidal Flow Reynolds Stress in Shallow Sea

    Institute of Scientific and Technical Information of China (English)

    SONG Zhi-yao; NI Zhi-hui; LU Guo-nian

    2009-01-01

    Based on the results of the tidal flow Reynolds stresses of the field observations,indoor experiments,and numerical models,the parabolic distribution of the tidal flow Reynolds stress is proposed and its coefficients are determined theoretically in this paper.Having been well verified with the field data and experimental data,the proposed distribution of Reynolds stress is also compared with numerical model results,and a good agreement is obtained,showing that this distribution can well reflect the basic features of Reynolds stress deviating from the linear distribution that is downward when the tidal flow is of acceleration,upward when the tidal flow is of deceleration.Its dynamics cause is also discussed preliminarily and the influence of the water depth is pointed out from the definition of Reynolds stress,turbulent generation,transmission,and so on.The established expression for the vertical distribution of the tidal flow Reynolds stress is not only simple and explicit,but can also well reflect the features of the tidal flow acceleration and deceleration for further study on the velocity profile of tidal flow.

  7. Large tidal plants may supply 1,000 TWh / year

    Energy Technology Data Exchange (ETDEWEB)

    Lemperiere, F.

    2006-10-15

    Many studies of tidal plants have been made fifty years ago: they were usually devoted to sites with average tidal head over 6 m and reduced works at sea: estuaries such as La Rance (France) or Severn (U.K.) were favoured: preferred corresponding operation was using flow from a high basin to low sea level, supplying power 4 hours from 12. Such solutions had 2 drawbacks: power supply poorly adapted to needs and modified shore tidal ecosystems. Beyond that the power cost was usually higher than from thermal plants and very few plants were built, the main one being the Rance plant in France supplying 0,5 TWh/year with 240 MW. The world theoretical tidal potential is in the same range as the traditional hydropower potential. A new approach of tidal plants based upon solutions existing now and using new operating methods substantiates the possibility of over 1,000 TWh/year of cost efficient tidal energy with limited environmental impact and power supply well adapted to requirements. Over 15 countries may be involved. Tidal plants with heads as low as 4 m may be cost efficient. (author)

  8. Evaluation of streambed scour at bridges over tidal waterways in Alaska

    Science.gov (United States)

    Conaway, Jeffrey S.; Schauer, Paul V.

    2012-01-01

    The potential for streambed scour was evaluated at 41 bridges that cross tidal waterways in Alaska. These bridges are subject to several coastal and riverine processes that have the potential, individually or in combination, to induce streambed scour or to damage the structure or adjacent channel. The proximity of a bridge to the ocean and water-surface elevation and velocity data collected over a tidal cycle were criteria used to identify the flow regime at each bridge, whether tidal, riverine, or mixed, that had the greatest potential to induce streambed scour. Water-surface elevations measured through at least one tide cycle at 32 bridges were correlated to water levels at the nearest tide station. Asymmetry of the tidal portion of the hydrograph during the outgoing tide at 12 bridges indicated that riverine flows were stored upstream of the bridge during the tidal exchange. This scenario results in greater discharges and velocities during the outgoing tide compared to those on the incoming tide. Velocity data were collected during outgoing tides at 10 bridges that experienced complete flow reversals, and measured velocities during the outgoing tide exceeded the critical velocity required to initiate sediment transport at three sites. The primary risk for streambed scour at most of the sites considered in this study is from riverine flows rather than tidal fluctuations. A scour evaluation for riverine flow was completed at 35 bridges. Scour from riverine flow was not the primary risk for six tidally-controlled bridges and therefore not evaluated at those sites. Field data including channel cross sections, a discharge measurement, and a water-surface slope were collected at the 35 bridges. Channel instability was identified at 14 bridges where measurable scour and or fill were noted in repeated surveys of channel cross sections at the bridge. Water-surface profiles for the 1-percent annual exceedance probability discharge were calculated by using the Hydrologic

  9. Tidal deformability and I-Love-Q relations for gravastars with polytropic thin shells

    CERN Document Server

    Uchikata, Nami; Pani, Paolo

    2016-01-01

    The moment of inertia, the spin-induced quadrupole moment, and the tidal Love number of neutron-star and quark-star models are related through some relations which depend only mildly on the stellar equation of state. These "I-Love-Q" relations have important implications for astrophysics and gravitational-wave astronomy. An interesting problem is whether similar relations hold for other compact objects and how they approach the black-hole limit. To answer these questions, here we investigate the deformation properties of a large class of thin-shell gravastars, which are exotic compact objects that do not possess an event horizon nor a spacetime singularity. Working in a small-spin and small-tidal field expansion, we calculate the moment of inertia, the quadrupole moment, and the (quadrupolar electric) tidal Love number of gravastars with a polytropic thin shell. The I-Love-Q relations of a thin-shell gravastar are drastically different from those of an ordinary neutron star. The Love number and quadrupole mom...

  10. Impact of vegetation die-off on spatial flow patterns over a tidal marsh

    Science.gov (United States)

    Temmerman, Stijn; Moonen, Pieter; Schoelynck, Jonas; Govers, Gerard; Bouma, Tjeerd J.

    2012-02-01

    Large-scale die-off of tidal marsh vegetation, caused by global change, is expected to change flow patterns over tidal wetlands, and hence to affect valuable wetland functions such as reduction of shoreline erosion, attenuation of storm surges, and sedimentation in response to sea level rise. This study quantified for the first time the effects of large-scale (4 ha) artificial vegetation removal, as proxy of die-off, on the spatial flow patterns through a tidal marsh channel and over the surrounding marsh platform. After vegetation removal, the flow velocities measured on the platform increased by a factor of 2 to 4, while the channel flow velocities decreased by almost a factor of 3. This was associated with a change in flow directions on the platform, from perpendicular to the channel edges when vegetation was present, to a tendency of more parallel flow to the channel edges when vegetation was absent. Comparison with hydrodynamic model simulations explains that the vegetation-induced friction causes both flow reduction on the vegetated platform and flow acceleration towards the non-vegetated channels. Our findings imply that large-scale vegetation die-off would not only result in decreased platform sedimentation rates, but also in sediment infilling of the channels, which together would lead to further worsening of plant growth conditions and a potentially runaway feedback to permanent vegetation loss.

  11. Effects of tidal interactions on the gas flows of elliptical galaxies

    CERN Document Server

    D'Ercole, A; Ciotti, L

    1999-01-01

    During a Hubble time, cluster galaxies may undergo several mutual encounters close enough to gravitationally perturb their hot, X-ray emitting gas flows. We ran several 2D, time dependent hydrodynamical models to investigate the effects of such perturbations on the gas flow inside elliptical galaxies. In particular, we studied in detail the modifications occurring in the scenario proposed by D'Ercole et al. (1989), in which the galactic interstellar medium produced by the aging galactic stellar population, is heated by SNIa at a decreasing rate. We find that, although the tidal interaction in our models lasts less than 1 Gyr, its effect extends over several Gyrs. The tidally induced turbulent flows create dense filaments which cool quickly and accrete onto the galactic center, producing large spikes in the global Lx. Once this mechanism starts, it is fed by gravity and amplified by SNIa. In cooling flow models without supernovae the amplitude of the Lx fluctuations due to the tidal interaction is substantiall...

  12. Tidal Triggering and Statistical Patterns of Microseismicity at Axial Volcano on the Juan de Fuca Ridge

    Science.gov (United States)

    Bohnenstiehl, D. R.; Dziak, R. P.; Caplan-Auerbach, J.; Haxel, J. H.; Mann, M. E.; Pennington, C.; Weis, J.; Womack, N.; Levy, S.

    2015-12-01

    Tidal stress changes are known to modulate the timing of microearthquakes within many mid-ocean ridge volcanic systems. At Axial Volcano, located on the Juan de Fuca Ridge, earthquakes occur preferentially when volumetric extension peaks near times of low ocean tide. Autonomous ocean-bottom hydrophone (OBH, 2007-2011) and cabled ocean bottom seismometer (OBS, Nov. 2014-) data are used to quantify the strength of tidal triggering in time periods before the April 2011 and April 2015 eruptions at Axial Volcano. The mean percent excess at times of low ocean-tide is ~14% (16% std) in the four years prior to the 2011 eruption and ~18% (17% std) in the five months prior to the 2015 eruption. The sensitivity of earthquakes to tidal stress does not evolve systematically prior to either eruption; however, this pattern is disturbed by much larger stress changes associated with the onset of dike intrusion. Following dike injection and eruption, seismicity rates drop sharply. As seismicity rates continue to rise in the months following the 2015 eruption, real-time data available from the cabled OBS network will be used quantify temporal patterns in microearthquake activity as dike induced stresses are relaxed and the magma chamber inflates.

  13. A summary of the San Francisco tidal wetlands restoration series

    Directory of Open Access Journals (Sweden)

    Larry R. Brown

    2003-10-01

    Full Text Available The four topical articles of the Tidal Wetlands Restoration Series summarized and synthesized much of what is known about tidal wetlands and tidal wetland restoration in the San Francisco Estuary (hereafter “Estuary”. Despite a substantial amount of available information, major uncertainties remain. A major uncertainty with regard to fishes is the net benefit of restored tidal wetlands relative to other habitats for native fishes in different regions of the Estuary given the presence of numerous invasive alien species. With regard to organic carbon, a major uncertainty is the net benefit of land use change given uncertainty about the quantity and quality of different forms of organic carbon resulting from different land uses. A major challenge is determining the flux of organic carbon from open systems like tidal wetlands. Converting present land uses to tidal wetlands will almost certainly result in increased methylation of mercury at the local scale with associated accumulation of mercury within local food webs. However, it is unclear if such local accumulation is of concern for fish, wildlife or humans at the local scale or if cumulative effects at the regional scale will emerge. Based on available information it is expected that restored tidal wetlands will remain stable once constructed; however, there is uncertainty associated with the available data regarding the balance of sediment accretion, sea-level rise, and sediment erosion. There is also uncertainty regarding the cumulative effect of many tidal restoration projects on sediment supply. The conclusions of the articles highlight the need to adopt a regional and multidisciplinary approach to tidal wetland restoration in the Estuary. The Science Program of the CALFED effort provides an appropriate venue for addressing these issues.

  14. Tidal origin of spiral arms in galaxies orbiting a cluster

    CERN Document Server

    Semczuk, Marcin; del Pino, Andres

    2016-01-01

    One of the scenarios for the formation of grand-design spiral arms in disky galaxies involves their interactions with a satellite or another galaxy. Here we consider another possibility, where the perturbation is instead due to the potential of a galaxy cluster. Using $N$-body simulations we investigate the formation and evolution of spiral arms in a Milky Way-like galaxy orbiting a Virgo-like cluster. The galaxy is placed on a few orbits of different size but similar eccentricity and its evolution is followed for 10 Gyr. The tidally induced, two-armed, approximately logarithmic spiral structure forms on each of them during the pericenter passages. The spiral arms dissipate and wind up with time, to be triggered again at the next pericenter passage. We confirm this transient and recurrent nature of the arms by analyzing the time evolution of the pitch angle and the arm strength. We find that the strongest arms are formed on the tightest orbit, however they wind up rather quickly and are disturbed by another p...

  15. Non-steady state tidal heating of Enceladus

    Science.gov (United States)

    Shoji, D.; Hussmann, H.; Sohl, F.; Kurita, K.

    2014-06-01

    Enceladus is one of the most geologically active bodies in the Solar System. The satellite's diverse surface suggests that Enceladus was subject to past episodic heating. It is largely probable that the activity of Enceladus is not in a steady state. In order to analyze the non-steady state heating, thermal and orbital coupled calculation is needed because they affect each other. We perform the coupled calculation assuming conductive ice layer and low melting temperature. Although the heating state of Enceladus strongly depends on the rheological parameters used, episodic heating is induced if the Q-value of Saturn is less than 23,000 and Enceladus' core radius is less than 161 km. The duration of one episodic heating cycle is around one hundred million years. The cyclic change in ice thickness is consistent with the origin of a partial ocean which is suggested by plume emissions and diverse surface states of Enceladus. Although the obtained tidal heating rate is smaller than the observed heat flux of a few giga watt, other heating mechanisms involving e.g., liquid water and/or specific chemical reactions may be initiated by the formation of a partial or global subsurface ocean.

  16. Dynamics of tidally captured planets in the Galactic Center

    CERN Document Server

    Trani, Alessandro Alberto; Spera, Mario; Bressan, Alessandro

    2016-01-01

    Recent observations suggest ongoing planet formation in the innermost parsec of our Galaxy. The super-massive black hole (SMBH) might strip planets or planetary embryos from their parent star, bringing them close enough to be tidally disrupted. We investigate the chance of planet tidal captures by running three-body encounters of SMBH-star-planet systems with a high-accuracy regularized code. We show that tidally captured planets have orbits close to those of their parent star. We conclude that the final periapsis distance of the captured planet from the SMBH will be much larger than 200 AU, unless its parent star was already on a highly eccentric orbit.

  17. Tidal analysis of data recorded by a superconducting gravimeter

    Directory of Open Access Journals (Sweden)

    F. Palmonari

    1995-06-01

    Full Text Available A superconducting gravimeter was used to monitor the tidal signal for a period of five months. The instrument was placed in a site (Brasimone station, Italy chat-acterized by a low noise level, and was calibrated with a precision of 0.2%. Then tidal analysis on hourly data was performed and the results presented in this paper; amplitudes, gravimetric factors, phase differences for the main tidal waves, M2, S2, N2, 01, Pl, K1, QI, were calculated together with barometric pressure admittance and long term instrumental drift.

  18. On the Tidal Evolution and Tails Formation of Disc Galaxies

    CERN Document Server

    Alavi, M

    2015-01-01

    In this paper, we want to study the tidal effect of an external perturber upon a disc galaxy based on the generalization of already used Keplerian potential. The generalization of the simple ideal Keplerian potential includes an orbital centripetal term and an overall finite range controlling correction. Considering the generalized form of the interaction potential, the velocity impulse expressions resulting from tidal forces are computed; then, using typical real values already known from modern observational data, the evolution of the disc including tidal tails formation is graphically investigated.

  19. Impacts of salt marsh plants on tidal channel initiation and inheritance

    Science.gov (United States)

    Schwarz, C.; Ye, Q. H.; Wal, D.; Zhang, L. Q.; Bouma, T.; Ysebaert, T.; Herman, P. M. J.

    2014-02-01

    At the transition between mudflat and salt marsh, vegetation is traditionally regarded as a sustaining factor for previously incised mudflat channels, able to conserve the channel network via bank stabilization following plant colonization (i.e., vegetation-stabilized channel inheritance). This is in contrast to recent studies revealing vegetation as the main driver of tidal channel emergence through vegetation-induced channel erosion. We present a coupled hydrodynamic morphodynamic plant growth model to simulate plant expansion and channel formation by our model species (Spartina alterniflora) during a mudflat-salt marsh transition with various initial bathymetries (flat, shoal dense, shoal sparse, and deep dense channels). This simulated landscape development is then compared to remote sensing images of the Yangtze estuary, China, and the Scheldt estuary in Netherlands. Our results propose the existence of a threshold in preexisting mudflat channel depth, which favors either vegetation-stabilized channel inheritance or vegetation-induced channel erosion processes. The increase in depth of preexisting mudflat channels favors flow routing through them, consequently leaving less flow and momentum remaining for vegetation-induced channel erosion processes. This threshold channel depth will be influenced by field specific parameters such as hydrodynamics (tidal range and flow), sediment characteristics, and plant species. Hence, our study shows that the balance between vegetation-stabilized channel inheritance and vegetation-induced channel erosion depends on ecosystem properties.

  20. A phase separation method for analyses of fluoroquinones in meats based on ultrasound-assisted salt-induced liquid-liquid microextraction and a new integrated device

    OpenAIRE

    Wang, H; Gao, M.; Xu, Y; W. Wang; Zheng, L; Dahlgren, RA; Wang, X.

    2015-01-01

    © 2015 Elsevier Ltd. Herein, we developed a novel integrated device to perform phase separation based on ultrasound-assisted, salt-induced, liquid-liquid microextraction for determination of five fluoroquinones in meats by HPLC analysis. The novel integrated device consisted of three simple HDPE (high density polyethylene) parts that were used to separate the solvent from the aqueous solution prior to retrieving the extractant. The extraction parameters were optimized using the response surfa...

  1. Small RNA sequencing-microarray analyses in Parkinson leukocytes reveal deep brain stimulation-induced and splicing changes that classify brain region transcriptomes

    Directory of Open Access Journals (Sweden)

    Lilach eSoreq

    2013-05-01

    Full Text Available MicroRNAs (miRNAs are key post transcriptional regulators of their multiple target genes. However, the detailed profile of miRNA expression in Parkinson's disease, the second most common neurodegenerative disease worldwide and the first motor disorder has not been charted yet. Here, we report comprehensive miRNA profiling by next-generation small-RNA sequencing, combined with targets inspection by splice-junction and exon arrays interrogating leukocyte RNA in Parkinson’s disease patients before and after deep brain stimulation (DBS treatment and of matched healthy control volunteers (HC. RNA-Seq analysis identified 254 miRNAs and 79 passenger strand forms as expressed in blood leukocytes, 16 of which were modified in patients pre treatment as compared to HC. 11 miRNAs were modified following brain stimulation, 5 of which were changed inversely to the disease induced changes. Stimulation cessation further induced changes in 11 miRNAs. Transcript isoform abundance analysis yielded 332 changed isoforms in patients compared to HC, which classified brain transcriptomes of 47 PD and control independent microarrays. Functional enrichment analysis highlighted mitochondrion organization. DBS induced 155 splice changes, enriched in ubiquitin homeostasis. Cellular composition analysis revealed immune cell activity pre and post treatment. Overall, 217 disease and 74 treatment alternative isoforms were predictably targeted by modified miRNAs within both 3’ and 5’ untranslated ends and coding sequence sites. The stimulation-induced network sustained 4 miRNAs and 7 transcripts of the disease network. We believe that the presented dynamic networks provide a novel avenue for identifying disease and treatment-related therapeutic targets. Furthermore, the identification of these networks is a major step forward in the road for understanding the molecular basis for neurological and neurodegenerative diseases and assessment of the impact of brain stimulation

  2. Department of Energy's team's analyses of Soviet designed VVERs

    Energy Technology Data Exchange (ETDEWEB)

    1989-09-01

    This document provides Appendices A thru K of this report. The topics discussed respectively are: radiation induced embrittlement and annealing of reactor pressure vessel steels; loss of coolant accident blowdown analyses; LOCA blowdown response analyses; non-seismic structural response analyses; seismic analyses; S'' seal integrity; reactor transient analyses; fire protection; aircraft impacts; and boric acid induced corrosion. (FI).

  3. Characterization of Biogeochemical Variability in a Tidal Estuary Using High Resolution Optical Measurements

    Science.gov (United States)

    Chang, G.; Jones, C.; Martin, T.

    2015-12-01

    The Berry's Creek Study Area (BCSA) is a tidal estuary located in New Jersey. Several chemicals of potential concern (COPCs) are present in the BCSA waterway and marshes, including mercury, methyl mercury, and polychlorinated biphenyls. Concentrations of COPCs and suspended solids in the BCSA vary temporally and spatially due to tidal variability, freshwater flow events, and interaction of marsh, waterway, and sediment bed materials. This system-wide variability confounds evaluation of COPC sources and transport mechanisms when using conventional laboratory-based analysis of discrete water column samples. Therefore, an optically-based biogeochemical monitoring program was conducted using near-continuous measurements of optical properties and an optical-biogeochemical partial least-squares regression model pioneered by B. Bergamaschi (USGS) and colleagues. The objective of the study was to characterize COPC concentration dynamics in the BCSA water column and relate the analysis to sediment bed processes. Optical-biogeochemical model results indicated that, in general, measured optical properties were sufficient for predicting COPC concentrations to within 10% of the accuracy of laboratory-based analytical measurements. The continuous, high temporal resolution time series of COPC concentrations determined by the optical-biogeochemical model enabled evaluation of the sediment bed dynamics and variability of COPCs in the surface water of the BCSA. Results indicate that tidally-induced resuspension of waterway sediment bed particulates is the primary mechanism for transport of COPCs to surface water. Waterway-marsh tidal exchange shows a net mass flux of particulate COPCs from waterway to marsh, indicating that particulate COPCs are retained and accumulate in the marshes with relatively little net export of dissolved COPCs from the marshes to the waterway.

  4. The importance of being coupled: Stable states and catastrophic shifts in tidal biomorphodynamics

    Science.gov (United States)

    Marani, Marco; D'Alpaos, Andrea; Lanzoni, Stefano; Carniello, Luca; Rinaldo, Andrea

    2010-10-01

    We describe and apply a point model of the joint evolution of tidal landforms and biota which incorporates the dynamics of intertidal vegetation; benthic microbial assemblages; erosional, depositional, and sediment exchange processes; wind-wave dynamics, and relative sea level change. Alternative stable states and punctuated equilibria emerge, characterized by possible sudden transitions of the system state, governed by vegetation type, disturbances of the benthic biofilm, sediment availability, and marine transgressions or regressions. Multiple stable states are suggested to result from the interplay of erosion, deposition, and biostabilization, providing a simple explanation for the ubiquitous presence of the typical landforms observed in tidal environments worldwide. The main properties of accessible equilibrium states prove robust with respect to specific modeling assumptions and are thus identified as characteristic dynamical features of tidal systems. Halophytic vegetation emerges as a key stabilizing factor through wave dissipation, rather than a major trapping agent, because the total inorganic deposition flux is found to be largely independent of standing biomass under common supply-limited conditions. The organic sediment production associated with halophytic vegetation represents a major contributor to the overall deposition flux, thus critically affecting the ability of salt marshes to keep up with high rates of relative sea level rise. The type and number of available equilibria and the possible shifts among them are jointly driven and controlled by the available suspended sediment, the rate of relative sea level change, and vegetation and microphytobenthos colonization. The explicit description of biotic and abiotic processes thus emerges as a key requirement for realistic and predictive models of the evolution of a tidal system as a whole. The analysis of such coupled processes finally indicates that hysteretic switches between stable states arise

  5. Tidal deformability and I-Love-Q relations for gravastars with polytropic thin shells

    Science.gov (United States)

    Uchikata, Nami; Yoshida, Shijun; Pani, Paolo

    2016-09-01

    The moment of inertia, the spin-induced quadrupole moment, and the tidal Love number of neutron-star and quark-star models are related through some relations which depend only mildly on the stellar equation of state. These "I-Love-Q" relations have important implications for astrophysics and gravitational-wave astronomy. An interesting problem is whether similar relations hold for other compact objects and how they approach the black hole limit. To answer these questions, here we investigate the deformation properties of a large class of thin-shell gravastars, which are exotic compact objects that do not possess an event horizon nor a spacetime singularity. Working in a small-spin and small-tidal field expansion, we calculate the moment of inertia, the quadrupole moment, and the (quadrupolar electric) tidal Love number of gravastars with a polytropic thin shell. The I-Love-Q relations of a thin-shell gravastar are drastically different from those of an ordinary neutron star. The Love number and quadrupole moment for less compact models have the opposite sign relative to those of ordinary neutron stars, and the I-Love-Q relations continuously approach the black hole limit. We consider a variety of polytropic equations of state for the matter shell and find no universality in the I-Love-Q relations. However, we cannot deny the possibility that, similarly to the neutron-star case, an approximate universality might emerge for a limited class of equations of state. Finally, we discuss how a measurement of the tidal deformability from the gravitational-wave detection of a compact-binary inspiral can be used to constrain exotic compact objects like gravastars.

  6. Metabolomic Analyses of Brain Tissue in Sepsis Induced by Cecal Ligation Reveal Specific Redox Alterations--Protective Effects of the Oxygen Radical Scavenger Edaravone.

    Science.gov (United States)

    Hara, Naomi; Chijiiwa, Miyuki; Yara, Miki; Ishida, Yusuke; Ogiwara, Yukihiko; Inazu, Masato; Kuroda, Masahiko; Karlsson, Michael; Sjovall, Fredrik; Elmér, Eskil; Uchino, Hiroyuki

    2015-12-01

    The pathophysiology of sepsis-associated encephalopathy (SAE) is complex and remains incompletely elucidated. Dysregulated reactive oxygen species (ROS) production and mitochondrial-mediated necrotic-apoptotic pathway have been proposed as part of the pathogenesis. The present study aimed at analyzing the preventive effect of the free radical scavenger edaravone on sepsis-induced brain alterations. Sepsis was induced by cecal ligation and puncture (CLP) and the mice were divided into three groups-CLP vehicle (CLPV), CLP and edaravone (MCI-186, 3-methyl-1-phenyl-2-pyrazolin-5-one) (CLPE), and sham-operated (Sham). Mice in CLPV and CLPE were injected with saline or edaravone intraperitoneally at a dose of 10 mg/kg twice daily. The treatments were initiated 4 days prior to the surgical procedure. Mortality, histological changes, electron microscopy (EM), and expression of Bcl-2 family genes (Bcl-2 and Bax) were analyzed in selected brain regions. CLPE showed significant improvement in survival compared with CLPV 18 h postinduction of sepsis (P free radical scavenger edavarone reduces mortality of septic mice and protects against sepsis-induced neuronal cell death.

  7. Development of a Multi-Site and Multi-Device Webgis-Based Tool for Tidal Current Energy Development

    Science.gov (United States)

    Ang, M. R. C. O.; Panganiban, I. K.; Mamador, C. C.; De Luna, O. D. G.; Bausas, M. D.; Cruz, J. P.

    2016-06-01

    A multi-site, multi-device and multi-criteria decision support tool designed to support the development of tidal current energy in the Philippines was developed. Its platform is based on Geographic Information Systems (GIS) which allows for the collection, storage, processing, analyses and display of geospatial data. Combining GIS tools with open source web development applications, it becomes a webGIS-based marine spatial planning tool. To date, the webGIS-based tool displays output maps and graphs of power and energy density, site suitability and site-device analysis. It enables stakeholders and the public easy access to the results of tidal current energy resource assessments and site suitability analyses. Results of the initial development showed that it is a promising decision support tool for ocean renewable energy project developments.

  8. Field Observations and Model Predictions of Wave Transformation, Setup, Runup, and Turbulence on a Macro-tidal Beach, Korea

    Science.gov (United States)

    Yoo, J.; Shin, S.; Jun, K.; Shim, J.

    2011-12-01

    Surf-zone wave dynamics are one of important driving forces in coastal morphology by inducing beach erosions and sediment transports in inter-tidal shallow water areas, due to active wave breaking, energetic turbulence and violent near-bed velocities. Morphological beach changes are also considerably associated with other surf-zone hydro-dynamics such as nearshore wave transformation, water levels, wave run-up, set-up and coastal currents. In earlier studies, the COBRAS model (a RANS model, developed by Lin and Liu of Cornell University) has been used to investigate such beach processes with reasonable success, mostly, in wave dominant micro-tidal environments. The model solves the RANS equations using VOF method and k-epsilon closure scheme. Recently, intensive field experiments were carried out at a macro-tide environment (i.e. the Mallipo sand beach located in the west coast of Korea, having a large inter-tidal range of 7 m to investigate the complicated surf zone hydro-dynamics under interactions of coastal waves, strong tidal currents, and nearshore bathymetries. The field observation data are used to evaluate the capability of the RANS model to predict the cross-shore variations of free surface, wave set-up, wave run-up, and velocities on the Mallipo Beach. Since the dataset of water surface elevations includes both waves and tides, the COBRAS model was tried to simulate waves accompanied with tidal currents. The measured water surface elevation data were divided into wave and tidal components, in order to be used as inputs of the model. Comparisons of the measurements and the predictions show (1) performance of the model for the wave transformation, wave set-up, and wave run-up on the macro-tidal beach, (2) predictive capability for the turbulence closure scheme in the surf and swash zones, and (3) overall skills to predict under-tows and tidal currents. Acknowledgement This work was supported by the KORDI (Grant PE98572, PE98573 and PM56300). This work was

  9. Feeding ecology of Liza spp. in a tidal flat: Evidence of the importance of primary production (biofilm) and associated meiofauna

    Science.gov (United States)

    Carpentier, Alexandre; Como, Serena; Dupuy, Christine; Lefrançois, Christel; Feunteun, Eric

    2014-09-01

    Grey mullets are unique among temperate-region fish species in their ability to feed on mudflat biofilm. In this study, we examined mullet feeding strategies on biofilm and associated meiofauna by using a diet study and stable isotope analysis to explore functional interactions between mullets and tidal flats. A stomach vacuity investigation showed that mullets did not import any materials from subtidal areas into the mudflat but exported mud, biofilm, and associated meiofauna. The results of mullet stomach content and fecal analyses, when compared to the availability of tidal flat resources, showed evidence of mullets' ability to ingest and assimilate biofilm and to concentrate major meiofauna grazers such as nematodes, copepods and, secondarily, foraminifers and ostracods. Isotopic ratios confirmed diet investigations, and as recently shown in salt marsh habitats, mullets exhibited an intermediate trophic position, supporting the hypothesis that they can assimilate both biofilm and major meiofauna grazers. The function of the tidal flat as a feeding habitat for gray mullets and the role of mullets as the main export pathway of biofilm from tidal flat ecosystems are discussed.

  10. Analysis and Prediction of Influence Imposed on Jiaozhou Bay Tidal Currents and Tidal Energy of M2 Tidal System by Jiaozhou Bay Reclamation

    Institute of Scientific and Technical Information of China (English)

    LOU Angang; HU Yuebo; KUANG Liang; ZHANG Xueqing; DU Peng

    2009-01-01

    The 3-D ECOMSED ocean model was applied to establish a time-dependent boundary model for Jiaozhou Bay (JZB), in which the operator-splitting technique was used and the 'dry and wet' method was introduced. The influence caused by JZB reclama-tion on the surface level, residual currents, tidal system and tidal energy of M2 tidal system were predicted and analyzed. The results show that JZB reclamation has slight impact on the M2tidal system, in which the variation of amplitude and phase is less than l%.The changes of the currents and residual currents in Qian Bay and near the reclamation areas are greater, but in other areas the changes are smaller, in which the currents have a change of around 1%, while the residual currents change ranges from 1.82%-9.61%. After reclamation, the tidal energy fluxes increase by 2.62%-5.24% inside and outside the JZB mouth, but decrease by 20.21%-87.23% near Qian Bay and the reclamation area.

  11. Turbine Control of a Tidal and River Power Generator: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan; Donegan, James; Marnagh, Cian; McEntee, Jarlath

    2016-08-01

    As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. The input variations to these types of resources are slower but also steadier than wind or solar generation. The level of water turbulent flow may vary from one place to another, however, the control algorithm can be adjusted to local environment. This paper describes the hydrokinetic aspects of river and tidal generation based on a river and tidal generator. Although the information given in this paper is not that of an exact generator deployed on site, the data used is representative of a typical river or tidal generator. In this paper, the hydrokinetic and associated electrical controller of the system were not included; however, the focus of this paper is on the hydrodynamic control.

  12. Tidal Love numbers of membrane worlds: Europa, Titan, and Co

    CERN Document Server

    Beuthe, Mikael

    2015-01-01

    Under tidal forcing, icy satellites with subsurface oceans deform as if the surface were a membrane stretched around a fluid layer. `Membrane worlds' is thus a fitting name for these bodies and membrane theory provides the perfect toolbox to predict tidal effects. I describe here a new membrane approach to tidal perturbations based on the general theory of viscoelastic-gravitational deformations of spherically symmetric bodies. The massive membrane approach leads to explicit formulas for viscoelastic tidal Love numbers which are exact in the limit of zero crust thickness. The accuracy on $k_2$ and $h_2$ is better than one percent if the crust thickness is less than five percents of the surface radius, which is probably the case for Europa and Titan. The new approach allows for density differences between crust and ocean and correctly includes crust compressibility. This last feature makes it more accurate than the propagation matrix method. Membrane formulas factorize shallow and deep interior contributions, ...

  13. Tidal Movement of Nioghalvfjerdsfjorden Glacier, Northeast Greenland: Observations and Modelling

    DEFF Research Database (Denmark)

    Reeh, Niels; Mayer, C.; Olesen, O. B.;

    2000-01-01

    , 1997 and 1998. As part of this work, tidal-movement observations were carried out by simultaneous differential global positioning system (GPS) measurements at several locations distributed on the glacier surface. The GPS observations were performed continuously over several tidal cycles. At the same...... in the flexure zone by elastic-beam theory are unsuccessful, in contrast to previous findings by other investigators. The strongest disagreement between our measurements and results derived from elastic-beam theory is a significant variation of the phase of the tidal records with distance from the grounding line...... (most clearly displayed by the tilt records). We suggest that the viscous properties of glacier ice must be taken into account, and consequently that a viscoelastic-beam model must be used to adequately describe tidal bending of floating glaciers....

  14. Experimental hydrodynamic study of the Qiantang River tidal bore

    Institute of Scientific and Technical Information of China (English)

    HUANG Jing; PAN Cun-hong; KUANG Cui-ping; ZENG Jian; CHEN Gang

    2013-01-01

    To study the hydrodynamics of tidal bore,a physical modeling study is carried out in a rectangular flume with considerations of the tidal bore heights,the propagation speeds,the tidal current velocities,the front steepness,and the bore shapes.After the validation with the field observations,the experimental results are analyzed,and it is shown that:(1) the greater initial ebb velocity or the larger initial water depth impedes the tidal bore propagation,(2) the maximum bore height appears at an initial ebb velocity in the range of 0.5 m/s-1.5 m/s,(3) when the Froude number exceeds 1.2,an undular bore appears,after it exceeds 1.3,a breaking bore occurs,and after it exceeds 1.7,the bore is broken.

  15. The application of Yangtze Estuary Tidal Wetlands Geographic Information System

    Institute of Scientific and Technical Information of China (English)

    WANGJun; CHENZhenlou; XUShiyuan; WANGDongqi; LIUJie

    2005-01-01

    Yangtze Estuary Tidal Wetlands Geographic Information System (YETWGIS) is a comprehensive software system for environmental management and decision of Yangtze estuary tidal wetlands. Based on MapObjects components technology, Data Mining technology, mathematical modeling method and Visual Basic language, this software system has many functions such as displaying, editing, querying and searching, spatial statistics and analysis, thematic map compiling, and environmental quality evaluation. This paper firstly outlined the system structure, key techniques, and achieving methods of YETWGIS, and then, described the core modules (the thematic map compiling module and environmental quality evaluation model module) in detail. In addition, based on information entropy model, it thoroughly discussed the methods of environmental quality evaluation and indicators' weight calculation. Finally, by using YETWGIS, this paper analyzed the spatial distribution characteristics of Heavy Metal and Persistent Organic Pollutants (POPs) of the Yangtze estuary tidal wetlands in 2002, and evaluated the environmental quality of the Yangtze estuary tidal wetlands in 2003.

  16. On the tidal effects in the motion of artificial satellites.

    Science.gov (United States)

    Musen, P.; Estes, R.

    1972-01-01

    The general perturbations in the elliptic and vectorial elements of a satellite as caused by the tidal deformations of the non-spherical Earth are developed into trigonometric series in the standard ecliptical arguments of Hill-Brown lunar theory and in the equatorial elements of the satellite. The integration of the differential equations for variation of elements of the satellite in this theory is easy because all arguments are linear or nearly linear in time. The trigonometrical expansion permits a judgment about the relative significance of the amplitudes and periods of different tidal 'waves' over a long period of time. Graphs are presented of the tidal perturbations in the elliptic elements of the BE-C satellite which illustrate long term periodic behavior. The tidal effects are clearly noticeable in the observations and their comparison with the theory permits improvement of the 'global' Love numbers for the Earth.

  17. Inundation Mapping Tidal Surface - Mean Higher High Water

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are a derived product of the NOAA VDatum tool and they extend the tool's Mean Higher High Water (MHHW) tidal datum conversion inland beyond its original...

  18. Numerical analyses of vortex structure induced by dimple%陷窝诱导涡结构数值模拟分析

    Institute of Scientific and Technical Information of China (English)

    刘静; 李杰; 蒋胜矩

    2015-01-01

    In order to clarify dimple induced vortex structure,the fully developed flow be-tween two plane,with a single dimple of classical depth to print diameter ratio of 0.2 placed on the below plane,is simulated with RANS in Fluent.The generation,development and break-down of vortex structure are analyzed with the Zhang Hanxin’s theory of vortex motion bifurca-tion along its axis.And the vortex induce effect after dimple is examined.It is found that the separation belong to a closed separation,in the separation line singular points distribute in spiral/saddle/spiral regularly.When the spiral separation point is generated,wall vorticity is converged to the spiral point and raised in spiral.So the tornado-like vortex is generated perpendicular to the wall.Symmetric tornado-like vortex is closed in symmetric plane,and a half vortex ring is generated.The half vortex ring experienced steady spiral rising,becoming unsteady in the vis-cous dissipation and viscous diffusion,and finally breakdown in the strong adverse pressure gra-dient.After the vortex breakdown,vorticity dispersed and weak longitudinal vortex is induced in the dimple wake which induces upwash in center and downwash in two sides.Rotating in the same direction with longitudinal vortex,induced by upwash in the dimple two sides,edge vortex assisted to enhance convection after dimple.%为了澄清陷窝诱导涡结构及其对尾流的扰动方式,针对布置深宽比0.2陷窝的两平板间充分发展流动进行了稳态数值模拟。应用张涵信的旋涡沿轴线的非线性分叉理论分析表明陷窝内涡结构为失稳破裂的半涡环,总结了陷窝对尾流的扰动方式。研究发现,陷窝诱导的旋涡分离为螺旋点/鞍点/螺旋点分离。物面的分离螺旋点形成,在空间演化为垂直物面发展的对称类龙卷风涡结构。对称类龙卷风涡在对称面闭合形成半涡环。半涡环经历了从稳定升起、沿流向随着涡粘性扩散和涡粘

  19. Flow and sediment transport in an Indonesian tidal network

    OpenAIRE

    Buschman, F.A.

    2011-01-01

    The Berau river, situated in east Kalimantan (Indonesia), drains a relatively small catchment area and splits into several interconnected tidal channels. This tidal network connects to the sea. The sea is host to extremely diverse coral reef communities. Also the land side of the region is relatively pristine and biologically rich. The Berau river basin still has a relatively high rainforest cover, which was 50 - 60 % in 2007. Currently, large-scale deforestation is taking place in the catchm...

  20. Optimal Selection of Floating Platform for Tidal Current Power Station

    OpenAIRE

    Fengmei Jing; Gang Xiao; Nasir Mehmood; Liang Zhang

    2013-01-01

    With continuous development of marine engineering, more and more new structures are used in the exploring of tidal current energy. Three are there different kinds of support structures for tidal current power station, which are sea-bed mounted/gravity based system, pile mounted system and floating moored platform. Comparison with them, the floating mooring system is suit for deep water and the application of which will be widely. In this study, catamaran and semi-submersible as floating platf...

  1. On the superposition of bedforms in a tidal channel

    DEFF Research Database (Denmark)

    Winter, C; Vittori, G.; Ernstsen, V.B.;

    2008-01-01

    High resolution bathymetric measurements reveal the super-imposition of bedforms in the Grådyb tidal inlet in the Danish Wadden Sea. Preliminary results of numerical model simulations are discussed: A linear stability model was tested to explain the large bedforms as being caused by tidal system...... instabilities. Results show comparable dimensions and migration rates. A three-dimensional morphodynamic model is shown to reproduce small scale transport rates but lacks realistic trends of morphodynamic evolution....

  2. Metric of a tidally perturbed spinning black hole

    OpenAIRE

    Yunes, Nicolas; Gonzalez, Jose

    2005-01-01

    We explicitly construct the metric of a Kerr black hole that is tidally perturbed by the external universe in the slow-motion approximation. This approximation assumes that the external universe changes slowly relative to the rotation rate of the hole, thus allowing the parameterization of the Newman-Penrose scalar $\\psi_0$ by time-dependent electric and magnetic tidal tensors. This approximation, however, does not constrain how big the spin of the background hole can be and, in principle, th...

  3. Secular tidal changes in lunar orbit and Earth rotation

    Science.gov (United States)

    Williams, James G.; Boggs, Dale H.

    2016-11-01

    Small tidal forces in the Earth-Moon system cause detectable changes in the orbit. Tidal energy dissipation causes secular rates in the lunar mean motion n, semimajor axis a, and eccentricity e. Terrestrial dissipation causes most of the tidal change in n and a, but lunar dissipation decreases eccentricity rate. Terrestrial tidal dissipation also slows the rotation of the Earth and increases obliquity. A tidal acceleration model is used for integration of the lunar orbit. Analysis of lunar laser ranging (LLR) data provides two or three terrestrial and two lunar dissipation parameters. Additional parameters come from geophysical knowledge of terrestrial tides. When those parameters are converted to secular rates for orbit elements, one obtains d n/d t = -25.97± 0.05 ''/cent2, d a/d t = 38.30 ± 0.08 mm/year, and d i/d t = -0.5 ± 0.1 μas/year. Solving for two terrestrial time delays and an extra d e/d t from unspecified causes gives ˜ 3× 10^{-12}/year for the latter; solving for three LLR tidal time delays without the extra d e/d t gives a larger phase lag of the N2 tide so that total d e/d t = (1.50 ± 0.10)× 10^{-11}/year. For total d n/d t, there is ≤ 1 % difference between geophysical models of average tidal dissipation in oceans and solid Earth and LLR results, and most of that difference comes from diurnal tides. The geophysical model predicts that tidal deceleration of Earth rotation is -1316 ''/cent2 or 87.5 s/cent2 for UT1-AT, a 2.395 ms/cent increase in the length of day, and an obliquity rate of 9 μas/year. For evolution during past times of slow recession, the eccentricity rate can be negative.

  4. A Tale of Tidal Tails in the Milky Way

    CERN Document Server

    Casey, Andrew R

    2014-01-01

    Hundreds of globular clusters and dwarf galaxies encircle the Milky Way. Many of these systems have undergone partial disruption due to tidal forces, littering the halo with stellar streams. These tidal tails are sensitive to the Galactic potential, facilitating an excellent laboratory to investigate Galaxy formation and evolution, as well as local chemical signatures of differing star formation environments. To better understand the emergence of the Milky Way, this thesis examines the dynamics and chemistry of a number of known stellar streams.

  5. Water rules all processes in tidal freshwater wetlands

    OpenAIRE

    Barendregt, A.

    2012-01-01

    Three essential factors cause the presence of tidal freshwater wetlands (TFW). First, it is a freshwater ecosystem located in the upper part of the estuary, where permanent input of river water creates fresh conditions constantly. Second, there is a tidal pulse that causes very dynamic conditions in current, flooding, redistribution of sediments and morphology. Moreover, it is a wetland with permanently reduced condition in the soil. Third, because the river is the sink of the uplands, this e...

  6. Tidal Power Generation System Appropriate for Boarding on a Floating Buoy

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, D.; Inagaki, A.; Oba, S [DMW Corporation, Mishima (Japan); Kanemoto, T. [Kyushu Institute of Technology, Kitakyushu (Japan)

    2007-07-01

    To cope with the warming global environment, the hydropower should occupy the attention of the electric power generation system as clean and cool energy sources. In such a situation, the tidal current has scarcely been utilized for the power generation. The authors have proposed and developed a new type of generator with counter-rotating rotors instead of the usual mechanism. This paper discusses the effects of the blade profiles on the hydraulic performances. As a result, the design materials for the solidity of the axial flow runners suitable for the given water circumstances are induced from above discussions.

  7. Tidal Tales of Minor Mergers II: Comparing Star Formation in the Tidal Tails of NGC 2782

    Science.gov (United States)

    Knierman, Karen A.; Scowen, P. A.; Veach, T.; Groppi, C. E.; Mullan, B. L.; Knezek, P.; Konstantopoulos, I.; Charlton, J. C.

    2013-01-01

    While major mergers and their tidal debris are well studied, they are less common than minor mergers (mass ratios <0.3). The peculiar spiral NGC 2782 is the result of a merger between two disk galaxies with a mass ratio of ~4:1 occurring 200 Myr ago. This merger produced a molecular and HI rich, optically bright Eastern tail and an HI-rich, optically faint Western tail. Non-detection of CO in the Western Tail by Braine et al. 2000 suggested that star formation had not yet begun to occur in that tidal tail. However, deep UBVR and H alpha narrowband images show evidence of recent star formation in the Western tail. Comparing the two tails, we find that Western tail lacks massive star clusters. Using Herschel PACS spectrsocopy, we discover 158 micron [CII] emission at the location of the three most luminous H-alpha sources in the Eastern tail, but not at the location of the even brighter H-alpha source in the Western tail. The Western tail is found to have a normal star formation efficiency (SFE), but the Eastern tail has a low SFE. Due to the lack of both CO and [CII] emission, the Western tail HII region may have a low carbon abundance and be undergoing its first round of star formation. The Western tail is more efficient at forming stars, but lacks massive star clusters. We propose that the low SFE in the Eastern tail may be due to its formation as a splash region in the merger where gas heating is important even though it has sufficient molecular and neutral gas to make massive star forming regions. The Western tail, which has lower gas surface density and so does not form higher mass star clusters, is a tidally formed region where gravitational compression dominates and enhances the star formation.

  8. Meiotic Analyses in the Induced Autotetraploids of Brassica rapa%芜菁的诱导同源四倍体减数分裂分析

    Institute of Scientific and Technical Information of China (English)

    Habib Ahmad; Shahida Hasnain

    2004-01-01

    细胞学上芜菁(Brassica rapa)为正常的二倍体,具有1/1的联会和1-1的染色体分离.它的花粉母细胞(PMC's)在小孢子发生过程中的减数分裂前期(M1)无"B染色体",也无任何次级缔合.用0.02%的秋水仙碱水溶液处理6 h对多倍体的诱导形成明显.诱导出的同源四倍体构型中无联会基因,而成1或2次交叉的二价体、三价体和四价体.从多倍体逆转的有趣现象中发现,46.7%的诱导多倍体后来恢复成二倍体.不平衡的染色体分离普遍存在于诱导出的同源四倍体中,这就是导致生存能力不同的异常配子体出现的主要原因.异常配子体的结合,在芸苔属(Brassica)现存种的演化中起到了重要作用.%Cytogenetically B.rapa (2n) exhibited as normal diploid with 1/1 synapsis and 1- 1 chromosomal disjunction. Its PMC's witnessed no "B chromosomes", neither any secondary associations were observed during microsporogenesis, at M1. Six hours treatment with 0.02% aqueous colchicine was effective for polyploidy induction. Meiotic configurations in the induced autotetraploids were asyndetics, one-or-two chiasmatic bivalents, trivalents and quadrivalents. Interesting phenomena of polyploid reversal is discovered, among the induced polyploids 46.7% revoked into diploids. Imbalance chromosomal disjunction was common in the induced autotetraploids, which mostly gave rise to aberrant gametes, with different viability. The union of such gametes aberrant has played an important role in the evolution of the present day Brassica species.

  9. Intrinsic geometry of a tidally deformed Kerr horizon

    Science.gov (United States)

    Poisson, Eric

    2013-04-01

    The intrinsic metric of a tidally deformed black-hole horizon can be presented in a coordinate system adapted to the horizon's null generators, with one coordinate acting as a running parameter along each generator, and two coordinates acting as constant generator labels. The metric is invariant under reparametrizations of the generators, and as such the horizon's intrinsic geometry is known to be gauge invariant. We consider a Kerr black hole deformed by a slowly-evolving external tidal field, and describe the intrinsic geometry of its event horizon in terms of the electric and magnetic tidal moments that characterize the tidal environment. When the black hole is slowly rotating, the horizon's geometry can be described in terms of a deviation from an otherwise spherical surface, and the deformation can be characterized by gauge invariant Love numbers. Some aspects of this tidal deformation have direct analogues in Newtonian physics. Some do not, and I will describe the similarities and differences between the tidal deformation of rotating black holes in general relativity and rotating fluid bodies in Newtonian physics.

  10. Tidal interaction of black holes and Newtonian viscous bodies

    CERN Document Server

    Poisson, Eric

    2009-01-01

    The tidal interaction of a (rotating or nonrotating) black hole with nearby bodies produces changes in its mass, angular momentum, and surface area. Similarly, tidal forces acting on a Newtonian, viscous body do work on the body, change its angular momentum, and part of the transferred gravitational energy is dissipated into heat. The equations that describe the rate of change of the black-hole mass, angular momentum, and surface area as a result of the tidal interaction are compared with the equations that describe how the tidal forces do work, torque, and produce heat in the Newtonian body. The equations are strikingly similar, and unexpectedly, the correspondence between the Newtonian-body and black-hole results is revealed to hold in near-quantitative detail. The correspondence involves the combination k_2 \\tau of ``Love quantities'' that incorporate the details of the body's internal structure; k_2 is the tidal Love number, and \\tau is the viscosity-produced delay between the action of the tidal forces a...

  11. Geographic variation in Puget Sound tidal channel planform geometry

    Science.gov (United States)

    Hood, W. Gregory

    2015-02-01

    Tidal channels are central elements of salt marsh hydrodynamics, sediment dynamics, and habitat. To develop allometric models predicting the number and size of tidal channels that could develop following salt marsh restoration, channels were digitized from aerial photographs of Puget Sound river delta marshes. Salt marsh area was the independent variable for all dependent channel planform metrics. Tidal channel allometry showed similar scaling exponents for channel planform metrics throughout Puget Sound, simplifying comparisons between locations. Y-intercepts of allometric relationships showed geographic variation, which multiple-regression indicated was associated with tidal range and storm significant wave height. Channel size and complexity were positively related to tidal range and negatively related to wave height. Four case studies, each with paired regions of similar tidal range and contrasting wave environments, further indicated wave environment affected channel geometry. Wave-mediated sediment delivery may be the mechanism involved, with wave-sheltered areas experiencing relative sediment deficits, such that some salt marshes in Puget Sound are already suffering sea-level rise impacts that are reflected in their channel network geometry.

  12. The prediction of the hydrodynamic performance of tidal current turbines

    International Nuclear Information System (INIS)

    Nowadays tidal current energy is considered to be one of the most promising alternative green energy resources and tidal current turbines are used for power generation. Prediction of the open water performance around tidal turbines is important for the reason that it can give some advice on installation and array of tidal current turbines. This paper presents numerical computations of tidal current turbines by using a numerical model which is constructed to simulate an isolated turbine. This paper aims at studying the installation of marine current turbine of which the hydro-environmental impacts influence by means of numerical simulation. Such impacts include free-stream velocity magnitude, seabed and inflow direction of velocity. The results of the open water performance prediction show that the power output and efficiency of marine current turbine varies from different marine environments. The velocity distribution should be clearly and the suitable unit installation depth and direction be clearly chosen, which can ensure the most effective strategy for energy capture before installing the marine current turbine. The findings of this paper are expected to be beneficial in developing tidal current turbines and array in the future

  13. Numerical study on inter-tidal transports in coastal seas

    Science.gov (United States)

    Mao, Xinyan; Jiang, Wensheng; Zhang, Ping; Feng, Shizuo

    2016-06-01

    Inter-tidal (subtidal) transport processes in coastal sea depend on the residual motion, turbulent dispersion and relevant sources/sinks. In Feng et al. (2008), an updated Lagrangian inter-tidal transport equation, as well as new concept of Lagrangian inter-tidal concentration (LIC), has been proposed for a general nonlinear shallow water system. In the present study, the LIC is numerically applied for the first time to passive tracers in idealized settings and salinity in the Bohai Sea, China. Circulation and tracer motion in the three idealized model seas with different topography or coastline, termed as `flat-bottom', `stairs' and `cape' case, respectively, are simulated. The dependence of the LIC on initial tidal phase suggests that the nonlinearities in the stairs and cape cases are stronger than that in the flat-bottom case. Therefore, the `flat-bottom' case still meets the convectively weakly nonlinear condition. For the Bohai Sea, the simulation results show that most parts of it still meet the weakly nonlinear condition. However, the dependence of the LIS (Lagrangian inter-tidal salinity) on initial tidal phase is significant around the southern headland of the Liaodong Peninsula and near the mouth of the Yellow River. The nonlinearity in the former region is mainly related to the complicated coastlines, and that in the latter region is due to the presence of the estuarine salinity front.

  14. The Conceptual Design of a Tidal Power Plant in Taiwan

    Directory of Open Access Journals (Sweden)

    Jia-Shiuan Tsai

    2014-06-01

    Full Text Available Located on the northwestern of Taiwan, the Matsu archipelago is near mainland China and comprises four islands: Nangan, Beigan, Juguang, and Dongyin. The population of Matsu totals 11,196 and is chiefly concentrated on Nangan and Beigan. From 1971 to 2000, Matsu built five oil-fired power plants with a total installed capacity of 47 MW. However, the emissions and noise generated by the oil-fired power plant has caused damage to Matsu’s environment, and the cost of fuel is high due to the long-distance shipping from Taiwan. Developing renewable energy in Matsu has therefore been a fervent topic for the Taiwan government, and tidal power is considered to be of the highest priority due to Matsu’s large tidal range (4.29 m in average and its semidiurnal tide. Moreover, the islands of Nangan and Beigan are composed of granite and have natural harbors, rendering them ideal places for coastal engineering of tidal power plants. This paper begins with a renewable energy reserves assessment in Matsu to determine the amount of tidal energy. Next, a tidal turbine type of the lowest cost is chosen, and then its dynamic characteristic, performance, and related design are analyzed. Finally, the coastal engineering condition was investigated, and a conceptual design for tidal power plant is proposed.

  15. Merging Galaxies with Tidal Tails in COSMOS to z=1

    CERN Document Server

    Wen, Z Z

    2016-01-01

    Tidal tails are created in major mergers involving disk galaxies. How the tidal tails trace the assembly history of massive galaxies remains to be explored. We identify a sample of 461 merging galaxies with long tidal tails from 35076 galaxies mass-complete at $M_\\star\\ge 10^{9.5}\\,M_{\\odot}$ and $0.2\\leq z\\leq1$ based on HST/ACS F814W imaging data and public catalogs of the COSMOS field. The long tails refer to these with length equal to or longer than the diameter of their host galaxies. The mergers with tidal tails are selected using our novel $A_{\\rm O}-D_{\\rm O}$ technique for strong asymmetric features together with visual examination. Our results show that the fraction of tidal-tailed mergers evolves mildly with redshift, as $\\sim (1+z)^{2.0\\pm0.4}$, and becomes relatively higher in less massive galaxies out to $z=1$. With a timescale of 0.5 Gyr for the tidal-tailed mergers, we obtain that the occurrence rate of such mergers follows $0.01\\pm 0.007\\,(1+z)^{2.3\\pm 1.4}$ Gyr$^{-1}$ and corresponds to $\\si...

  16. International tidal gravity reference values at Wuhan station

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The international tidal gravity reference values at Wuhan station are determined accurately based on the comprehensive analysis of the tidal gravity observations obtained from 8 instruments.By comparing these with those in the tidal models given by Dehant (1997) while considering simultaneously (i) the global satellite altimeters tidal data,and (ii) the Schwiderski global tidal data and the local ones along the coast of China,it is found that the average discrepancy of the amplitude factors and of the phase differences for four main waves are given as 5.2‰ and 3.6‰ and as 0.16°and 0.08°respectively.They are improved evidently compared to those determined in early stage,indicating the important procedures in improving the Wuhan international tidal gravity reference values when including the long-series observations obtained with a superconducting gravimeter,and when considering the influence of the ocean loading and of the nearly daily free wobble of the Earth's core.

  17. Tidal Tales of Minor Mergers: Star Formation in the Tidal Tails of Minor Mergers

    Science.gov (United States)

    Knierman, Karen A.

    This work examines star formation in the debris associated with collisions of dwarf and spiral galaxies. While the spectacular displays of major mergers are famous (e.g., NGC 4038/9, "The Antennae''), equal mass galaxy mergers are relatively rare compared to minor mergers (mass ratio <0.3) Minor mergers are less energetic than major mergers, but more common in the observable universe and, thus, likely played a pivotal role in the formation of most large galaxies. Centers of mergers host vigorous star formation from high gas density and turbulence and are surveyed over cosmological distances. However, the tidal debris resulting from these mergers have not been well studied. Such regions have large reservoirs of gaseous material that can be used as fuel for subsequent star formation but also have lower gas density. Tracers of star formation at the local and global scale have been examined for three tidal tails in two minor merger systems. These tracers include young star cluster populations, H-alpha, and [CII] emission. The rate of apparent star formation derived from these tracers is compared to the gas available to estimate the star formation efficiency (SFE). The Western tail of NGC 2782 formed isolated star clusters while massive star cluster complexes are found in the UGC 10214 ("The Tadpole'') and Eastern tail of NGC 2782. Due to the lack of both observable CO and [CII] emission, the observed star formation in the Western tail of NGC 2782 may have a low carbon abundance and represent only the first round of local star formation. While the Western tail has a normal SFE, the Eastern tail in the same galaxy has an low observed SFE. In contrast, the Tadpole tidal tail has a high observed star formation rate and a corresponding high SFE. The low SFE observed in the Eastern tail of NGC 2782 may be due to its origin as a splash region where localized gas heating is important. However, the other tails may be tidally formed regions where gravitational compression likely

  18. Patient-specific simulation of tidal breathing

    Science.gov (United States)

    Walters, M.; Wells, A. K.; Jones, I. P.; Hamill, I. S.; Veeckmans, B.; Vos, W.; Lefevre, C.; Fetitia, C.

    2016-03-01

    Patient-specific simulation of air flows in lungs is now straightforward using segmented airways trees from CT scans as the basis for Computational Fluid Dynamics (CFD) simulations. These models generally use static geometries, which do not account for the motion of the lungs and its influence on important clinical indicators, such as airway resistance. This paper is concerned with the simulation of tidal breathing, including the dynamic motion of the lungs, and the required analysis workflow. Geometries are based on CT scans obtained at the extremes of the breathing cycle, Total Lung Capacity (TLC) and Functional Residual Capacity (FRC). It describes how topologically consistent geometries are obtained at TLC and FRC, using a `skeleton' of the network of airway branches. From this a 3D computational mesh which morphs between TLC and FRC is generated. CFD results for a number of patient-specific cases, healthy and asthmatic, are presented. Finally their potential use in evaluation of the progress of the disease is discussed, focusing on an important clinical indicator, the airway resistance.

  19. Simultaneous perturbation stochastic approximation for tidal models

    KAUST Repository

    Altaf, M.U.

    2011-05-12

    The Dutch continental shelf model (DCSM) is a shallow sea model of entire continental shelf which is used operationally in the Netherlands to forecast the storm surges in the North Sea. The forecasts are necessary to support the decision of the timely closure of the moveable storm surge barriers to protect the land. In this study, an automated model calibration method, simultaneous perturbation stochastic approximation (SPSA) is implemented for tidal calibration of the DCSM. The method uses objective function evaluations to obtain the gradient approximations. The gradient approximation for the central difference method uses only two objective function evaluation independent of the number of parameters being optimized. The calibration parameter in this study is the model bathymetry. A number of calibration experiments is performed. The effectiveness of the algorithm is evaluated in terms of the accuracy of the final results as well as the computational costs required to produce these results. In doing so, comparison is made with a traditional steepest descent method and also with a newly developed proper orthogonal decompositionbased calibration method. The main findings are: (1) The SPSA method gives comparable results to steepest descent method with little computational cost. (2) The SPSA method with little computational cost can be used to estimate large number of parameters.

  20. Abundance Anomalies In Tidal Disruption Events

    CERN Document Server

    Kochanek, C S

    2015-01-01

    The ~10% of tidal disruption events (TDEs) due to stars more massive than the Sun should show abundance anomalies due to stellar evolution in helium, carbon and nitrogen, but not oxygen. Helium is always enhanced, but only by up to ~25% on average because it becomes inaccessible once it is sequestered in the high density core as the star leaves the main sequence. However, portions of the debris associated with the disrupted core of a main sequence star can be enhanced in helium by factors of 2-3 for debris at a common orbital period. These helium abundance variations may be a contributor to the observed diversity of hydrogen and helium line strengths in TDEs. A still more striking anomaly is the rapid enhancement of nitrogen and the depletion of carbon due to the CNO cycle -- stars more massive than the Sun quickly show an increase in their average N/C ratio by factors of 3-10. Because low mass stars evolve slowly and high mass stars are rare, TDEs showing high N/C will almost all be due to 1-2Msun stars disr...

  1. Stingray tidal stream energy device - phase 3

    International Nuclear Information System (INIS)

    The 150 kW Stingray demonstrator was designed, built and installed by The Engineering Business (EB) in 2002, becoming the world's first full-scale tidal stream generator. The concept and technology are described in the reports from Phases 1 and 2 of the project. This report provides an overview of Phase 3 - the re-installation of Stingray in Yell Sound in the Shetland Isles between July and September 2003 for further testing at slack water and on the flood tide to confirm basic machine characteristics, develop the control strategy and to demonstrate performance and power collection through periods of continuous operation. The overall aim was to demonstrate that electricity could be generated at a potentially commercially viable unit energy cost; cost modelling indicated a future unit energy cost of 6.7 pence/kWh when 100 MW capacity had been installed. The report describes: project objectives, targets and activities; design and production; marine operations including installation and demobilisation; environmental monitoring and impact, including pre-installation and post-decommissioning surveys; stakeholder involvement; test results on machine characteristics, sensor performance, power cycle analysis, power collection, transmission performance and efficiency, current data analysis; validation of the mathematical model; the background to the economic model; cost modelling; and compliance with targets set by the Department of Trade and Industry (DTI)

  2. Stingray tidal stream energy device - phase 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The 150 kW Stingray demonstrator was designed, built and installed by The Engineering Business (EB) in 2002, becoming the world's first full-scale tidal stream generator. The concept and technology are described in the reports from Phases 1 and 2 of the project. This report provides an overview of Phase 3 - the re-installation of Stingray in Yell Sound in the Shetland Isles between July and September 2003 for further testing at slack water and on the flood tide to confirm basic machine characteristics, develop the control strategy and to demonstrate performance and power collection through periods of continuous operation. The overall aim was to demonstrate that electricity could be generated at a potentially commercially viable unit energy cost; cost modelling indicated a future unit energy cost of 6.7 pence/kWh when 100 MW capacity had been installed. The report describes: project objectives, targets and activities; design and production; marine operations including installation and demobilisation; environmental monitoring and impact, including pre-installation and post-decommissioning surveys; stakeholder involvement; test results on machine characteristics, sensor performance, power cycle analysis, power collection, transmission performance and efficiency, current data analysis; validation of the mathematical model; the background to the economic model; cost modelling; and compliance with targets set by the Department of Trade and Industry (DTI).

  3. The importance of being coupled: Stable states, transitions and responses to changing forcings in tidal bio-morphodynamics (Invited)

    Science.gov (United States)

    Marani, M.; D'Alpaos, A.; da Lio, C.; Carniello, L.; Lanzoni, S.; Rinaldo, A.

    2009-12-01

    Changes in relative sea level, nutrient and sediment loading, and ecological characteristics expose tidal landforms and ecosystems to responses which may or may not be reversible. Predicting such responses is important in view of the ecological, cultural and socio-economic importance of endangered tidal environments worldwide. Here we develop a point model of the joint evolution of tidal landforms and biota including the dynamics of intertidal vegetation, benthic microbial assemblages, erosional and depositional processes, local and general hydrodynamics, and relative sea-level change. Alternative stable states and punctuated equilibrium dynamics emerge, characterized by possible sudden transitions of the system, governed by vegetation type, disturbances of the benthic biofilm, sediment availability and marine transgressions or regressions. Multiple equilibria are the result of the interplay of erosion, deposition and biostabilization. They highlight the importance of the coupling between biological and sediment transport processes in determining the evolution of a tidal system as a whole. Hysteretic switches between stable states may arise because of differences in the threshold values of relative sea level rise inducing transitions from vegetated to unvegetated equilibria and viceversa.

  4. Mercury-T: A new code to study tidally evolving multi-planet systems. Applications to Kepler-62

    CERN Document Server

    Bolmont, Emeline; Leconte, Jeremy; Hersant, Franck; Correia, Alexandre C M

    2015-01-01

    A large proportion of observed planetary systems contain several planets in a compact orbital configuration, and often harbor at least one close-in object. These systems are then most likely tidally evolving. We investigate how the effects of planet-planet interactions influence the tidal evolution of planets. We introduce for that purpose a new open-source addition to the Mercury N-body code, Mercury-T, which takes into account tides, general relativity and the effect of rotation-induced flattening in order to simulate the dynamical and tidal evolution of multi-planet systems. It uses a standard equilibrium tidal model, the constant time lag model. Besides, the evolution of the radius of several host bodies has been implemented (brown dwarfs, M-dwarfs of mass $0.1~M_\\odot$, Sun-like stars, Jupiter). We validate the new code by comparing its output for one-planet systems to the secular equations results. We find that this code does respect the conservation of total angular momentum. We applied this new tool t...

  5. Environmental and Biological Controls of Tidal Banding in the Common Mussel Mytilus californianus

    Science.gov (United States)

    Ford, H. L.; Schellenberg, S. A.

    2005-12-01

    . californianus growth/tidal banding based on tidal regime and intertidal position. Such model development is vital for strategic sampling of shell carbonate for stable-isotope and minor-element-ratio analyses and related seasonal reconstruction of environmental parameters such as temperature and salinity. In addition, this mussel growth model will aid in understanding the limitations of such environmental reconstructions and which intertidal height provides the most representative record.

  6. Comparative gene and protein expression analyses of a panel of cytokines in acute and chronic drug-induced liver injury in rats

    International Nuclear Information System (INIS)

    Drug-induced liver injury (DILI) is a significant safety issue associated with medication use, and is the major cause of failures in drug development and withdrawal in post marketing. Cytokines are signaling molecules produced and secreted by immune cells and play crucial roles in the progression of DILI. Although there are numerous reports of cytokine changes in several DILI models, a comprehensive analysis of cytokine expression changes in rat liver injury induced by various compounds has, to the best of our knowledge, not been performed. In the past several years, we have built a public, free, large-scale toxicogenomics database, called Open TG-GATEs, containing microarray data and toxicity data of the liver of rats treated with various hepatotoxic compounds. In this study, we measured the protein expression levels of a panel of 24 cytokines in frozen liver of rats treated with a total of 20 compounds, obtained in the original study that formed the basis of the Open TG-GATEs database and analyzed protein expression profiles combined with mRNA expression profiles to investigate the correlation between mRNA and protein expression levels. As a result, we demonstrated significant correlations between mRNA and protein expression changes for interleukin (IL)-1β, IL-1α, monocyte chemo-attractant protein (MCP)-1/CC-chemokine ligand (Ccl)2, vascular endothelial growth factor A (VEGF-A), and regulated upon activation normal T cell expressed and secreted (RANTES)/Ccl5 in several different types of DILI. We also demonstrated that IL-1β protein and MCP-1/Ccl2 mRNA were commonly up-regulated in the liver of rats treated with different classes of hepatotoxicants and exhibited the highest accuracy in the detection of hepatotoxicity. The results also demonstrate that hepatic mRNA changes do not always correlate with protein changes of cytokines in the liver. This is the first study to provide a comprehensive analysis of mRNA–protein correlations of factors involved in

  7. Incorporating future change into current conservation planning: Evaluating tidal saline wetland migration along the U.S. Gulf of Mexico coast under alternative sea-level rise and urbanization scenarios

    Science.gov (United States)

    Enwright, Nicholas M.; Griffith, Kereen T.; Osland, Michael J.

    2015-11-02

    In this study, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, quantified the potential for landward migration of tidal saline wetlands along the U.S. Gulf of Mexico coast under alternative future sea-level rise and urbanization scenarios. Our analyses focused exclusively on tidal saline wetlands (that is, mangrove forests, salt marshes, and salt flats), and we combined these diverse tidal saline wetland ecosystems into a single grouping, “tidal saline wetland.” Collectively, our approach and findings can provide useful information for scientists and environmental planners working to develop future-focused adaptation strategies for conserving coastal landscapes and the ecosystem goods and services provided by tidal saline wetlands. The primary product of this work is a public dataset that identifies locations where landward migration of tidal saline wetlands is expected to occur under alternative future sea-level rise and urbanization scenarios. In addition to identifying areas where landward migration of tidal saline wetlands is possible because of the absence of barriers, these data also identify locations where landward migration of these wetlands could be prevented by barriers associated with current urbanization, future urbanization, and levees.

  8. Incorporating future change into current conservation planning: Evaluating tidal saline wetland migration along the U.S. Gulf of Mexico coast under alternative sea-level rise and urbanization scenarios

    Science.gov (United States)

    Enwright, Nicholas M.; Griffith, Kereen T.; Osland, Michael J.

    2015-01-01

    In this study, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, quantified the potential for landward migration of tidal saline wetlands along the U.S. Gulf of Mexico coast under alternative future sea-level rise and urbanization scenarios. Our analyses focused exclusively on tidal saline wetlands (that is, mangrove forests, salt marshes, and salt flats), and we combined these diverse tidal saline wetland ecosystems into a single grouping, “tidal saline wetland.” Collectively, our approach and findings can provide useful information for scientists and environmental planners working to develop future-focused adaptation strategies for conserving coastal landscapes and the ecosystem goods and services provided by tidal saline wetlands. The primary product of this work is a public dataset that identifies locations where landward migration of tidal saline wetlands is expected to occur under alternative future sea-level rise and urbanization scenarios. In addition to identifying areas where landward migration of tidal saline wetlands is possible because of the absence of barriers, these data also identify locations where landward migration of these wetlands could be prevented by barriers associated with current urbanization, future urbanization, and levees.

  9. A phase separation method for analyses of fluoroquinones in meats based on ultrasound-assisted salt-induced liquid-liquid microextraction and a new integrated device.

    Science.gov (United States)

    Wang, Huili; Gao, Ming; Xu, Youqu; Wang, Wenwei; Zheng, Lian; Dahlgren, Randy A; Wang, Xuedong

    2015-08-01

    Herein, we developed a novel integrated device to perform phase separation based on ultrasound-assisted, salt-induced, liquid-liquid microextraction for determination of five fluoroquinones in meats by HPLC analysis. The novel integrated device consisted of three simple HDPE (high density polyethylene) parts that were used to separate the solvent from the aqueous solution prior to retrieving the extractant. The extraction parameters were optimized using the response surface method based on central composite design: 589μL of acetone solvent, pH2.1, 4.1min extraction time and 3.5g of Na2SO4. The limits of detection were 0.056-0.64 μgkg(-1) and recoveries were 87.2-110.6% for the five fluoroquinones in muscle tissue from fish, chicken, pork and beef. This method is easily constructed from inexpensive materials, extraction efficiency is high, and the approach is compatible with HPLC analysis. Thus, it has excellent prospects for sample pre-treatment and analysis of fluoroquinones in meat samples. PMID:25885797

  10. Honing in on phenotypes: comprehensive two-dimensional gas chromatography of herbivory-induced volatile emissions and novel opportunities for system-level analyses.

    Science.gov (United States)

    Gaquerel, Emmanuel; Baldwin, Ian T

    2013-01-01

    Plant volatile organic compound (VOC) production requires a complex network of biochemical pathways, which, although well mapped from a biochemical point of view, remains only partly understood with regard to its physiological and genetic regulation. Additionally, although analytical procedures for plant VOC measurement have become increasingly faster and more sensitive in recent years, pinpointing relevant shifts in VOC production from the thousands of molecular fragments that are generated by modern mass spectrometer instruments remains challenging. Here we discuss novel opportunities for system-wide analysis provided by the implementation of non-targeted data processing and multivariate statistics in VOC analysis. We illustrate the value of implementing non-targeted data processing with examples of recent findings from our group on the interactive control exerted by salivary components of a lepidopteran herbivore, Manduca sexta, on herbivory-induced VOC emissions in the wild tobacco Nicotiana attenuata. Finally, we briefly discuss the use of multi-platform data integration for probing the nature of metabolic and regulatory systems underlying VOC emissions.

  11. Tidal currents in the Yucatan Channel

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo Gonzalez, Fatima [Centro Universitario de la Costa, Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); Ochoa, Jose; Candela, Julio; Badan, Antonio; Sheinbaum; Gonzalez Navarro, Juan Ignacio [Departamento de Oceanografia Fisica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Ensenada, Baja California (Mexico)

    2007-07-15

    Currents data from a ten-month period at 197 measuring points covering all Yucatan Channel were processed by harmonic analysis to estimate tidal parameters for the O{sub 1}, K{sub 1}, M{sub 2} and S{sub 2} components. The highly detailed coverage confirms the known dominance for the O{sub 1} and K{sub 1} diurnal components, but also showed, for the first time, their intensification in the deep eastern margin of the channel where maximum amplitudes in main axis are 17 and 19 cm.s{sup -}1. The data also confirms weak semi-diurnal components, of which the most intense, M{sub 2} and S{sub 2}, have amplitudes only up to 2 cm.s{sup -}1. The tidal ellipses were elongated (i.e. with eccentricities close to one) in the NNW direction. The O{sub 1}, K{sub 1}, M{sub 2} and S{sub 2} contributions in transport variability through the channel have amplitudes of 11.7, 12.5, 1.2 and 1.0 Sv, all well determined above noise. [Spanish] Se presentan, a detalle sin precedente, las caracteristicas de las corrientes de marea O{sub 1}, K{sub 1}, M{sub 2} y S{sub 2} en el canal de Yucatan. Mapas de los parametros que definen las elipses, como son las amplitudes en los ejes principales, la orientacion, la fase y la razon-senal-ruido se obtienen, por el clasico analisis armonico en mediciones de 10 meses en duracion, en 197 puntos que cubren ampliamente un plano vertical del canal. En acuerdo con reportes anteriores, las senales diurnas O{sub 1} y K{sub 1} dominan, demostrandose aqui que sus amplitudes alcanzan, en la parte profunda y Este, 17 y 19 cm.s{sup -}1. El analisis tambien revela senales semidiurnas M{sub 2} y S{sub 2} muy debiles con amplitudes maximas de 2 y 1cm.s{sup -}1. Las elipses son muy alargadas (i.e. con excentricidad cercana a uno) y orientadas al nornoroeste. Los valores de la razon senal a ruido indican que los parametros de las dos constituyentes diurnas se encuentran bien determinados, mientras que las semidiurnas quedan muy contaminadas por el ruido. El rasgo mas

  12. Abundance anomalies in tidal disruption events

    Science.gov (United States)

    Kochanek, C. S.

    2016-05-01

    The ˜10 per cent of tidal disruption events (TDEs) due to stars more massive than M* ≳ M⊙ should show abundance anomalies due to stellar evolution in helium, carbon and nitrogen, but not oxygen. Helium is always enhanced, but only by up to ˜25 per cent on average because it becomes inaccessible once it is sequestered in the high-density core as the star leaves the main sequence. However, portions of the debris associated with the disrupted core of a main-sequence star can be enhanced in helium by factors of 2-3 for debris at a common orbital period. These helium abundance variations may be a contributor to the observed diversity of hydrogen and helium line strengths in TDEs. A still more striking anomaly is the rapid enhancement of nitrogen and the depletion of carbon due to the CNO cycle - stars with M* ≳ M⊙ quickly show an increase in their average N/C ratio by factors of 3-10. Because low-mass stars evolve slowly and high-mass stars are rare, TDEs showing high N/C will almost all be due to ˜1-2 M⊙ stars disrupted on the main sequence. Like helium, portions of the debris will show still larger changes in C and N, and the anomalies decline as the star leaves the main sequence. The enhanced [N/C] abundance ratio of these TDEs provides the first natural explanation for the rare, nitrogen-rich quasars and may also explain the strong nitrogen emission seen in ultraviolet spectra of ASASSN-14li.

  13. Linking channel hydrology with riparian wetland accretion in tidal rivers

    Science.gov (United States)

    Ensign, Scott H.; Noe, Gregory B.; Hupp, Cliff R.

    2014-01-01

    hydrologic processes by which tide affects river channel and riparian morphology within the tidal freshwater zone are poorly understood yet are fundamental to predicting the fate of coastal rivers and wetlands as sea level rises. We investigated patterns of sediment accretion in riparian wetlands along the nontidal through oligohaline portion of two coastal plain rivers in Maryland, U.S., and how flow velocity, water level, and suspended sediment concentration (SSC) in the channel may have contributed to those patterns. Sediment accretion was measured over a 1 year period using artificial marker horizons, channel hydrology was measured over a 1 month period using acoustic Doppler current profilers, and SSC was predicted from acoustic backscatter. Riparian sediment accretion was lowest at the nontidal sites (mean and standard deviation = 8 ± 8 mm yr-1), highest at the upstream tidal freshwater forested wetlands (TFFW) (33 ± 28 mm yr-1), low at the midstream TFFW (12 ± 9 mm yr-1), and high at the oligohaline (fresh-to-brackish) marshes (19 ± 8 mm yr-1). Channel maximum flood and ebb velocity was twofold faster at the oligohaline than tidal freshwater zone on both tidal rivers, corresponding with the differences in in-channel SSC: The oligohaline zone's SSC was more than double the tidal freshwater zone's and was greater than historical SSC at the nontidal gages. The tidal wave characteristics differed between rivers, leading to significantly greater in-channel SSC during floodplain inundation in the weakly convergent than the strongly convergent tidal river. High sediment accretion at the upstream TFFW was likely due to high river discharge following a hurricane.

  14. Modified Saint-Venant Equations for Flow Simulation in Tidal Rivers

    Directory of Open Access Journals (Sweden)

    Xiao-qin ZHANG

    2012-03-01

    Full Text Available Flow in tidal rivers periodically propagates upstream or downstream under tidal influence. Hydrodynamic models based on the Saint-Venant equations (the SVN model are extensively used to model tidal rivers. A force-corrected term expressed as the combination of flow velocity and the change rate of the tidal level was developed to represent tidal effects in the SVN model. A momentum equation incorporating with the corrected term was derived based on Newton’s second law. By combing the modified momentum equation with the continuity equation, an improved SVN model for tidal rivers (the ISVN model was constructed. The simulation of a tidal reach of the Qiantang River shows that the ISVN model performs better than the SVN model. It indicates that the corrected force derived for tidal effects is reasonable; the ISVN model provides an appropriate enhancement of the SVN model for flow simulation of tidal rivers.

  15. Seasonal variation of tidal prism and energy in the Changjiang River estuary: a numerical study

    Science.gov (United States)

    Zhang, Min; Townend, Ian Howard; Cai, Huayang; Zhou, Yunxuan

    2016-01-01

    Tidal rivers are intrinsically complex because tidal propagation is influenced by river discharge. This study aims to examine the seasonal variation of tidal prism and energy variance in the tidal river of the Changjiang (Yangtze) River estuary in China. In order to quantify the behaviour of river and tide, we use numerical modelling that has been validated using measured data. We conduct our analysis by quantifying the discharge and energy variance in separate components for both the river and the tide, during wet and dry seasons. We note various definitions of tidal prism and explore the difference between tidal discharge on the flood and ebb and tidal storage volume. The results show that the river discharge attenuates the tidal motion and reduces the tidal flood discharge but the tidal storage volume is approximately constant with different riverine discharge since part of the fresh water discharge is intercepted and captured in the estuary due to the backwater effect. It appears that the tidal discharge adjusts according to the variation of river discharge to keep a constant tidal storage volume. An analysis of the hydraulics shows that the transition from tidal dominance (at the mouth) to river dominance (upstream) depends on the location of tidal current reversal which varies from wet season to dry season. Duringthe wet season, the Changjiang River estuary is totally dominated by energy from fresh water discharge.

  16. Permeability of the Lucky Strike deep-sea hydrothermal system: Constraints from the poroelastic response to ocean tidal loading

    Science.gov (United States)

    Barreyre, Thibaut; Escartin, Javier; Sohn, Robert; Cannat, Mathilde

    2014-12-01

    We use the time delay between tidal loading and the induced subsurface flow response to constrain the poroelastic behavior and permeability of the Lucky Strike hydrothermal field on the Mid-Atlantic Ridge. We demonstrate that high-temperature (T > 200 °C) exit-fluid discharge records from four hydrothermal sites across the field are highly coherent with contemporaneously acquired bottom pressure records at tidal periods, with the thermal response lagging pressure by ˜155° (5.3 h) on average across all sites for the semi-diurnal (M2) frequency over a three-year observation period. In a one-dimensional poroelastic model of ocean tidal loading this phase lag corresponds to a high-permeability system where pore pressure perturbations at the seafloor rapidly propagate downward from the seafloor interface until they encounter a permeability boundary. Our results suggest that at the Lucky Strike field this tidal pumping is largely restricted to the ˜600 m thick extrusive layer (i.e., seismic layer 2A). Under a plausible set of matrix elastic parameters, the ˜5.3 h lag between pressure and exit-fluid temperature is consistent with an effective matrix permeability of ˜10-10 m2 and an average vertical flow velocity of ˜0.02 m/s within the extrusive layer. Our results argue against tidal pumping of the entire crustal section between the seafloor and the axial magma chamber (at ˜3.4 kmbsf) because this scenario requires unrealistically high effective permeabilities (˜10-9 m2) and average vertical flow velocities (˜0.15 m/s) over this depth range. Our effective permeability estimate for the extrusive layer is broadly consistent with previous results, and indicates that flow must be channeled in discrete permeable pathways (e.g., faults, fissures) that cut through the extrusive volcanic layer.

  17. Critical tidal level for forestation with hypocotyl of Rhizophora stylosa Griff along the Guangxi coast of China

    Institute of Scientific and Technical Information of China (English)

    Binyuan HE; Tinghe LAI

    2009-01-01

    From August 2004 to August 2005, three replicate experimental platforms were constructed in a section of the tidal flats in Yingluo Bay, Guangxi Province to study the growth and physiological responses of Rhizophora stylosa Griff seedlings to tidal waterlogging stress in a diurnal tidal zone. A total of eight tidal flat elevation (TFE) treatments, i.e., 320, 330, 340, 350, 360,370, 380 and 390 cm above Yellow Sea Datum (YSD),were created on each platform. The results showed that lower TFEs (320-330cm YSD) slightly increased the seedling stem height of 1-year old seedlings, while higher TFEs (> 340 cm YSD) increased the seedling growth significantly. Moderate TFEs (350-370 cm YSD) favored the development of knots. Number of leaves, leaf conservation rate and leaf area per seedling all decreased dramatically with decreasing TFE. Lower TFEs caused large damage to Chl a, but Chl b was less affected. The Chl a/b ratio decreased with decreasing TFE. Prolonged waterlogging induced higher SOD activity in roots, while moderate TFE inhibited the SOD activity in leaves. The POD activity in roots and leaves increased with decreasing TFE. Waterlogging stress decreased the biomass of individual organs and entire seedlings. With increasing waterlogging, the biomass partitioning in 1-year old seedlings increased from leaf to stem. The survival rate decreased sharply from 88.9% to 40.0% as TFE decreased,while more than 80% of the seedlings were able to survive at the TFE level of 370 cm YSD and above. We propose that the local mean sea level should be adopted as the critical tidal level for forestation with hypocotyls of R.stylosa along the Guangxi coast.

  18. Relationships between diatoms and tidal environments in Oregon and Washington, USA

    Science.gov (United States)

    Sawai, Yuki; Horton, Benjamin P.; Kemp, Andrew C.; Hawkes, Andrea D.; Nagumo, Tamostsu; Nelson, Alan R.

    2016-01-01

    A new regional dataset comprising 425 intertidal diatom taxa from 175 samples from 11 ecologically diverse Oregon and Washington estuaries illustrates the importance of compiling a large modern dataset from a range of sites. Cluster analyses and detrended correspondence analysis of the diatom assemblages identify distinct vertical zones within supratidal, intertidal and subtidal environments at six of the 11 study sites, but the abundance of some of the most common species varies widely among and within sites. Canonical correspondence analysis of the regional dataset shows relationships between diatom species and tidal exposure, salinity and substratum (grain size and organic content). Correspondence analyses of local datasets show higher values of explained variation than the analysis of the combined regional dataset. Our results emphasize that studies of the autecology of diatom species require many samples from a range of modern environments to adequately characterize species–environment relationships.

  19. Displacement and dissipation under the rotating tidal potential, in contrast to Love's geostationary potential

    Science.gov (United States)

    Bostrom, R. C.

    The Earth rotates relative to the solunar gravity field. In consequence the M2, S2 tides are represented by permanent bulges, travelling westward around the Earth as distortion waves. The associated tidal stress ellipsoid progresses perpetually by rotation, without reversal. It is shown that under imperfect elasticity, in lieu of the body forces induced by Love's geostationary time-variant potential a rotating potential induces internal body couples, equally pervasive. Displacement is cumulative, and in the vortical mode formulated by Helmholtz (1858). Whereas in the geostationary formulation of Love cumulative distortion is nil, in actuality this motion is primary, and dimensionally capable of coupling with extant mantle convection. Unlike the marine tides, the bodily wave-tides proceed unhindered around the Earth unhindered by continental margins. Corrected for oceanic effects the complex Love numbers measure dissipation, as commonly supposed. However dissipation is the result of unmapped cumulative vortical displacement (a circulation component), rather than oscillatory forces having the form of a geographically stationary spheroidal eigenvibration. The characteristic period of the loss factor 1/Q is infinity rather than the period pertinent to seismicity or wobble, to which it is dimensionally unrelated. Although primary vorticity-induction is required by the existence of the rotating tidal potential, its tectonic consequences are a matter of speculation, treated elsewhere [1]. --- [1] Bostrom, R.C., 1998. Tectonic Consequences of the Earth's Rotation. Oxfo rd University Press.

  20. Bar morphodynamics in the tidally-influenced fluvial zone

    Science.gov (United States)

    Parsons, Daniel; Ashworth, Philip; Best, James; Nicholas, Andrew; Prokocki, Eric; Sambrook-Smith, Greg; Keevil, Claire; Sandbach, Steve

    2015-04-01

    The hydrodynamics and deposits of the Tidally-Influenced Fluvial Zone (TIFZ) are complex because it experiences competing fluvial and tidal flows and spatially and temporally variable rates of sediment transport and deposition. This paper presents a new integrated field dataset from the Columbia River Estuary, USA, that quantifies the morphodynamic response the bed morphology and bar stratigraphy to fluvial-tidal flows. A 3-year, field and modelling program that started in 2011, has been monitoring the dynamics and deposits of a 40 km-reach of the Columbia River Estuary. Data obtained so far throughout the TIFZ include: bathymetry using MBES, flow using ADCP, subsurface sedimentology using GPR and shallow coring to 5 m. Initial results from the programme suggest there is a complex spatial and temporal lag in the response of the bed morphology and deposits to the fluvial-tidal flows. Zones of strong ebb and flood flow do not necessarily produce channel beds dominated by bi-directional bedforms. Many mid-channel bars are stable over decadal time periods. This paper will illustrate the variety in bar morphologies and channel change throughout the fluvial-tidal zone and contrast these bar dynamics with examples from purely fluvial environments.

  1. Bar morphodynamics in the fluvial-tidal zone

    Science.gov (United States)

    Ashworth, P. J.; Best, J. L.; Nicholas, A.; Parsons, D. R.; Prokocki, E.; Sambrook Smith, G.; Simpson, C.

    2012-12-01

    The hydrodynamics and deposits of the Tidally-Influenced Fluvial Zone (TIFZ) are complex because it experiences competing fluvial and tidal flows, sometimes moderated by waves, and spatially and temporally variable rates of sediment transport and deposition. This paper presents a new integrated field dataset from the Columbia River Estuary, USA, that quantifies the response of the flow structure, bed morphology and bar stratigraphy to fluvial-tidal flows. A new 3-year, field and modelling program that started in 2011, has been monitoring the dynamics and deposits of a 40 km-reach of the Columbia River Estuary. Data obtained so far throughout the TIFZ include: bathymetry using MBES, flow using ADCP, subsurface sedimentology using GPR and shallow coring to 5 m. First results suggest there is a complex spatial and temporal lag in the response of the bed morphology and deposits to the fluvial-tidal flows. Zones of strong ebb and flood flow do not necessarily produce channel beds dominated by bi-directional bedforms. Many mid-channel bars are stable over decadal time periods. This paper will illustrate the variety in bar morphologies and channel change throughout the fluvial-tidal zone and contrast these bar dynamics with examples from purely fluvial environments.

  2. Recovering the Tidal Field in the Projected Galaxy Distribution

    CERN Document Server

    Alonso, David; Strauss, Michael A

    2015-01-01

    We present a method to recover and study the projected gravitational tidal forces from a galaxy survey containing little or no redshift information. The method and the physical interpretation of the recovered tidal maps as a tracer of the cosmic web are described in detail. We first apply the method to a simulated galaxy survey and study the accuracy with which the cosmic web can be recovered in the presence of different observational effects, showing that the projected tidal field can be estimated with reasonable precision over large regions of the sky. We then apply our method to the 2MASS survey and present a publicly available full-sky map of the projected tidal forces in the local Universe. As an example of an application of these data we further study the distribution of galaxy luminosities across the different elements of the cosmic web, finding that, while more luminous objects are found preferentially in the most dense environments, there is no further segregation by tidal environment.

  3. Geometro-thermodynamics of tidal charged black holes

    Energy Technology Data Exchange (ETDEWEB)

    Gergely, Laszlo Arpad [University of Szeged, Department of Theoretical Physics, Szeged (Hungary); University of Szeged, Department of Experimental Physics, Szeged (Hungary); Pidokrajt, Narit [Stockholm University, Department of Physics, Stockholm (Sweden); Winitzki, Sergei [Ludwig-Maximilians University, Arnold Sommerfeld Center for Theoretical Physics, Department of Physics, Munich (Germany)

    2011-03-15

    Tidal charged spherically symmetric vacuum brane black holes are characterized by their mass m and tidal charge q, an imprint of the five-dimensional Weyl curvature. For q>0 they are formally identical to the Reissner-Nordstroem black hole of general relativity. We study the thermodynamics and thermodynamic geometries of tidal charged black holes and discuss similarities and differences as compared to the Reissner-Nordstroe m black hole. As a similarity, we show that (for q>0) the heat capacity of the tidal charged black hole diverges on a set of measure zero of the parameter space, nevertheless both the regularity of the Ruppeiner metric and a Poincare stability analysis show no phase transition at those points. The thermodynamic state spaces being different indicates that the underlying statistical models could be different. We find that the q<0 parameter range, which enhances the localization of gravity on the brane, is thermodynamically preferred. Finally we constrain for the first time the possible range of the tidal charge from the thermodynamic limit on gravitational radiation efficiency at black hole mergers. (orig.)

  4. Long-Term Morphological Modeling of Barrier Island Tidal Inlets

    Directory of Open Access Journals (Sweden)

    Richard Styles

    2016-09-01

    Full Text Available The primary focus of this study is to apply a two-dimensional (2-D coupled flow-wave-sediment modeling system to simulate the development and growth of idealized barrier island tidal inlets. The idealized systems are drawn from nine U.S. coastal inlets representing Pacific Coast, Gulf Coast and Atlantic Coast geographical and climatological environments. A morphological factor is used to effectively model 100 years of inlet evolution and the resulting morphological state is gauged in terms of the driving hydrodynamic processes. Overall, the model performs within the range of established theoretically predicted inlet cross-sectional area. The model compares favorably to theoretical models of maximum inlet currents, which serve as a measure of inlet stability. Major morphological differences are linked to inlet geometry and tidal forcing. Narrower inlets develop channels that are more aligned with the inlet axis while wider inlets develop channels that appear as immature braided channel networks similar to tidal flats in regions with abundant sediment supply. Ebb shoals with strong tidal forcing extend further from shore and spread laterally, promoting multi-lobe development bisected by ebb shoal channels. Ebb shoals with moderate tidal forcing form crescent bars bracketing a single shore-normal channel. Longshore transport contributes to ebb shoal asymmetry and provides bed material to help maintain the sediment balance in the bay.

  5. Multiple tidal disruption flares in the active galaxy IC 3599

    CERN Document Server

    Campana, S; Colpi, M; Lodato, G; D'Avanzo, P; Evans, P A; Moretti, A

    2015-01-01

    Tidal disruption events occur when a star passes too close to a massive black hole and it is totally ripped apart by tidal forces. Alternatively, if the star does not get close enough to the black hole to be totally disrupted, a less dramatic event might happen with the star surviving the encounter and loosing only a small fraction of its mass. In this situation if the stellar orbit is bound and highly eccentric, just like some stars in the centre of our own Galaxy, repeated flares should occur. When the star approaches the black hole tidal radius at periastron, matter might be stripped resulting in lower intensity outbursts recurring once every orbital period. We report on Swift observations of a recent bright flare from the galaxy IC 3599 hosting a middle-weight black hole, where a possible tidal disruption event was observed in the early 1990s. By light curve modelling and spectral fitting we can consistently account for the events as the non-disruptive tidal stripping of a star into a highly eccentric orb...

  6. A Tale of Tidal Tales in the Milky Way

    Science.gov (United States)

    Casey, Andrew R.

    2014-05-01

    Hundreds of globular clusters and dwarf galaxies encircle the Milky Way. Many of these systems have undergone partial disruption due to tidal forces, littering the halo with stellar streams. These tidal tails are sensitive to the Galactic potential, facilitating an excellent laboratory to investigate galaxy formation and evolution. To better understand the emergence of the Milky Way, this thesis examines the dynamics and chemistry of a number of known stellar streams. In particular the Sagittarius, Orphan and Aquarius streams are investigated. Low-resolution spectra for hundreds of stars in the direction of the Virgo Over-Density and the Sagittarius northern leading arms have been obtained. Multiple significant kinematic groups are recovered in this accretion-dominated region, confirming detections by previous studies. A metal-poor population ([Fe/H] = -1.7) in the Sagittarius stream is discovered due to a photometric selection that was inadvertently biased towards more metal-poor stars. Positions and kinematics of Sagittarius stream members are compared with existing best-fitting dark matter models, and a triaxial dark matter halo distribution is favoured. The Orphan stream is appropriately named, as no parent system has yet been identified. The stream has an extremely low surface brightness, which makes distinguishing stream members from field stars particularly challenging. From low-resolution spectra obtained for hundreds of stars, we identify likely Orphan stream red giant branch stars on the basis of velocity, metallicity, surface gravity, and proper motions. A negligible intrinsic velocity dispersion is found, and a wide spread in metallicities is observed, which suggests the undiscovered parent is similar to the present-day dwarf galaxies in the Milky Way. High-resolution spectra were obtained for five Orphan stream candidates, and the intrinsic chemical dispersion found from low-resolution spectra is confirmed from these data. Detailed chemical abundances

  7. CLIMATE INSTABILITY ON TIDALLY LOCKED EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Kite, Edwin S.; Manga, Michael [Department of Earth and Planetary Science, University of California at Berkeley, CA 94720 (United States); Gaidos, Eric, E-mail: edwin.kite@gmail.com [Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2011-12-10

    Feedbacks that can destabilize the climates of synchronously rotating rocky planets may arise on planets with strong day-night surface temperature contrasts. Earth-like habitable planets maintain stable surface liquid water over geologic time. This requires equilibrium between the temperature-dependent rate of greenhouse-gas consumption by weathering, and greenhouse-gas resupply by other processes. Detected small-radius exoplanets, and anticipated M-dwarf habitable-zone rocky planets, are expected to be in synchronous rotation (tidally locked). In this paper, we investigate two hypothetical feedbacks that can destabilize climate on planets in synchronous rotation. (1) If small changes in pressure alter the temperature distribution across a planet's surface such that the weathering rate goes up when the pressure goes down, a runaway positive feedback occurs involving increasing weathering rate near the substellar point, decreasing pressure, and increasing substellar surface temperature. We call this feedback enhanced substellar weathering instability (ESWI). (2) When decreases in pressure increase the fraction of surface area above the melting point (through reduced advective cooling of the substellar point), and the corresponding increase in volume of liquid causes net dissolution of the atmosphere, a further decrease in pressure will occur. This substellar dissolution feedback can also cause a runaway climate shift. We use an idealized energy balance model to map out the conditions under which these instabilities may occur. In this simplified model, the weathering runaway can shrink the habitable zone and cause geologically rapid 10{sup 3}-fold atmospheric pressure shifts within the habitable zone. Mars may have undergone a weathering runaway in the past. Substellar dissolution is usually a negative feedback or weak positive feedback on changes in atmospheric pressure. It can only cause runaway changes for small, deep oceans and highly soluble atmospheric

  8. Tidal resuspension and transport processes of fine sediment within the river plume in the partially-mixed Changjiang River estuary, China: A personal perspective

    Science.gov (United States)

    Shi, John Z.

    2010-09-01

    This paper summarizes process-oriented field and numerical studies undertaken on the river plume in the partially-mixed Changjiang River estuary. Both estuarine circulation and tidal asymmetry are of great importance to the fine sediment processes. Mean suspended sediment concentration (C¯) and bottom shear stress are the dominant physical parameters controlling the flocculation and settling velocities ( ws) of mud flocs in suspension. Two important physical processes are revealed by acoustic imaging, i.e. (i) the near-bed impulsive resuspension and (ii) the transport processes driven by fine sediment-induced plumes during a spring tide. A turbidity maximum, associated with a suspended sediment front, is observed. Its formation is caused mainly by tidal asymmetry, near-bed periodic tidal resuspension and turbulence suppression by suspension/salinity stratifications. A conceptual sketch of the turbidity maximum is cautiously proposed for the Changjiang River estuary. Four different settling velocity equations, taking flocculation into account, have different effects on the modeled concentration profiles of fine sediment: apparently, Cao and Wang (1994, pp. 252-253) would be the best for spring tide and Thorn (1982, Fig. 3/page 66) for neap tide. Both tidal acceleration and tidal deceleration have strong effects on the concentration profiles of fine sediment within the Changjiang River estuary.

  9. On feathers, bifurcations and shells: the dynamics of tidal streams across the mass scale

    Science.gov (United States)

    Amorisco, N. C.

    2015-06-01

    I present an organic description of the spectrum of regimes of collisionless tidal streams and define the orderings between the relevant physical quantities that shape their morphology. Three fundamental dichotomies are identified and described in the form of dimensionless inequalities. These govern (i) the speed of the stream's growth, (ii) the internal coherence of the stream and (iii) its thickness or opening angle, within and outside the orbital plane. The mechanisms through which such main qualitative properties are regulated and the relevant limiting cases are analysed. For example, the slope of the host's density profile strongly influences the speed of the stream's growth, in both length and width, as steeper density profiles enhance differential streaming. Internal coherence is the natural requirement for the appearance of substructure and overdensities in tidal debris, and I concentrate on the characteristic `feathering' typical of streams of star clusters. Overdensities and substructures are associated with minima in the relative streaming velocity of the stream members. For streams with high circularity, these are caused by the epicyclic oscillations of stars; however, for highly non-circular progenitor's orbits, internal substructure is caused by the oscillating differences in energy and actions with which material is shed at different orbital phases of the progenitor. This modulation results in different streaming speeds along the tidal arm: the streakline of material shed between two successive apocentric passages is folded along its length, pulled at its centre by the faster differential streaming of particles released near pericentre, which are therefore more widely scattered. When the stream is coherent enough, the same mechanism is potentially capable of generating a bimodal profile in the density distributions of the longer wraps of more massive progenitors, which I dub `bifurcations'. The conditions that allow streams to be internally coherent

  10. Fidelity of life and death molluscan assemblages from carbonate tidal flats in the Persian (Arabian) Gulf

    Science.gov (United States)

    García-Ramos, Diego A.; Albano, Paolo G.; Harzhauser, Mathias; Piller, Werner E.; Zuschin, Martin

    2016-04-01

    Live-dead (LD) studies aim to help understand how faithfully fossil assemblages can be used to quantitatively infer the structure of the original living communities that generated them. To this purpose, LD comparisons have been conducted in different terrestrial and aquatic environments to assess how environment-specific differences in quality and intensity of taphonomic factors affect LD fidelity. In sub-tropical and tropical settings, most LD studies have focused on hard substrates or seagrass bottoms. Here we present results on molluscan assemblages from soft carbonate sediments in tidal flats of the Persian (Arabian) Gulf (Indo-West Pacific biogeographic province). We analyzed a total of 7193 mollusks collected from six sites comprising time-averaged death assemblages (DAs) and snapshot living assemblages (LAs). All analyses were performed at site and at habitat scales after correcting for sample-size differences. We found a good match in proportional abundance and a notable mismatch in species composition. In fact, species richness in DAs is 6 times larger than in LAs at site scale, and 4 times at habitat scale. Additionally, we found a good fidelity of evenness, and rank abundance of feeding guilds. Other studies have shown that molluscan DAs from subtidal carbonate environments can display lower time-averaging than those from siliciclastic environments due to high rates of shell loss to bioerosion and dissolution. For our case study of tidal flat carbonate settings, we interpret that despite temporal autocorrelation (good fidelity of proportional abundance), substantial differences in species richness and composition can be explained by early cementation, lateral mixing, intense bioturbation and moderate sedimentation rates. Our results suggest that tidal flat carbonate environments can potentially lead to a wider window of time-averaging in comparison with subtidal carbonate settings.

  11. Tidal bedform characteristics in the Jade and Weser tidal inlet channels, German North Sea coast

    Science.gov (United States)

    Feng, H. S.; Winter, C.; Svenson, C.; Maushake, C.

    2009-12-01

    Compound bedforms are ubiquitous in marine environments with sandy beds and sufficient hydrodynamic forcing. In tidal channels, these features can build up to several meters in height and hundreds of meters in length. Recent high-resolution bathymetric mapping has revealed the complex morphology and morphodynamics of superimposed bedforms of different sizes and geometries. In this study, high-resolution multibeam echo sounder bathymetry and parametric sediment echo sounder (SES) sub-bottom data were compiled and visualized in Fledermaus 7 to identify typical bedform geometries and internal structures along 40 km of the Jade tidal channel and 50 km of the tide-dominated Weser estuary at the German North Sea coast. These extensive bathymetric datasets show the confined occurrence and the diversity of shapes and dimensions of the bedforms, ranging from simple geometries to compound superpositions of large subsidiary dunes, from small bedforms with lengths of the order of 20 m and heights of 1 m to large features 200 m in length and 10 m in height, and from symmetrical shapes to ebb- or flood-dominated geometries. The parametric echo sounder imaged sub-bottom profiles up to 4 m deep, showing relatively simple foreset bedding in simple dunes and complex internal structures in compound bedforms. Cross-bedding signatures indicating an ebb orientation were recognized within symmetric and flood-directed bedforms, suggesting a temporal re-orientation of the whole structure. Locally small buried bedforms, overgrown by recent larger bedforms, were detected. These indicate changes in the local hydrodynamic conditions or variations in the sediment supply.

  12. TIDAL SHEAR AND THE V1309 SCO MERGER

    Directory of Open Access Journals (Sweden)

    Gloria Koenigsberger

    2016-01-01

    Full Text Available We show that the observed decline in the orbital period of the merger candidate V1309 Sco could have been driven by tidal shear energy dissipation, E˙ S. This mechanism becomes relevant once the expanding layers of an evolving star rotate asynchronously. For a 1 M⊙ + 0 . 8 M⊙ system with orbital period P=1.44 d, we find that E˙ S can power a growth in stellar radius from 1 .50 R ⊙ to 1 .85 R ⊙ in the primary over the course of ≃ 5 years, during which the rate of period change goes from ≃ 1000 yr to ≃ 170 yr, in agreement with the observations. The kinematical viscosity used for these calculations is estimated from the maximum tidal flow speed and from the extension of the the tidal bulge, and is thus a function of the stellar and orbital parameters.

  13. Approximate Universal Relations among Tidal Parameters for Neutron Star Binaries

    CERN Document Server

    Yagi, Kent

    2016-01-01

    One of largest uncertainties in nuclear physics is the relation between the pressure and density of supranuclear matter: the equation of state. Some of this uncertainty may be removed through future gravitational wave observations of neutron star binaries by extracting the tidal deformabilities (or Love numbers) of neutron stars. Previous studies showed that only a certain combination of the individual deformabilities of each body (chirp tidal deformability) can be measured with second-generation gravitational wave interferometers, such as Adv. LIGO, due to correlations between the individual deformabilities. To overcome this, we search for approximately universal (or equation-of-state independent) relations between two combinations of the individual tidal deformabilities, such that once one of them has been measured, the other can be automatically obtained and the individual ones decoupled through these relations. We find an approximately universal relation between the symmetric and the anti-symmetric combin...

  14. Tidal evolution and the Pluto-Charon system

    International Nuclear Information System (INIS)

    The authors analyze the system formed by Pluto and its satellite Charon from the point of view of the theory of tidal evolution. The singular feature of the system, i.e. the configuration of complete synchronism which has been suggested by the avaiblbe data, is found to represent the stable endproduct of the evolution. The time needed for the synchronization is shown to be less than the age of the solar system, provided that Pluto's tidal dissipation function is smaller than 104-105. Moreover, the initial orbital radius of the system could not be larger than two or three times the present radius, so that Charon has been always a close satellite. They discuss Lyttleton's hypothesis that Pluto is an escaped satellite of Neptune, suggesting that a possible mechanism of Pluto's ejection could be connected with a retrograde capture of Triton by Neptune or with the subsequent tidal evolution of Triton's orbit. (Auth.)

  15. Bedload transport in an inlet channel during a tidal cycle

    DEFF Research Database (Denmark)

    Ernstsen, V. B.; Becker, M.; Winter, C.;

    2007-01-01

      Based on high-resolution swath bathymetry measurements at centimetre-scale precision conducted during a tidal cycle in a dune field in the Grådyb tidal inlet channel in the DanishWadden Sea, a simple tool to calculate bedload transport is presented. Bedload transport was related to simultaneous...... dunes being active during the ebb tide, but negligible during the flood tide. Bedload transport was also predicted using five classical and widely used formulae. These predictors were all unable to depict the temporal variation in bedload transport during the tidal cycle. It is suggested that temporal...... variations in grain-size composition of the mobilised sediment should be taken into account by sediment transport formulae....

  16. Tidal and residual currents in the Bransfield Strait, Antarctica

    Directory of Open Access Journals (Sweden)

    O. López

    Full Text Available During the 1992-1993 oceanographic cruise of the Spanish R/V Hespérides, recording equipment was deployed in the Bransfield Strait. Six Aanderaa RCM7 current meters and three Aanderaa WLR7 tide gauges were successfully recovered after an operation period of 2.5 months. Relevant features of the time series obtained are presented and discussed in this paper. The emphasis is placed on the tidal character of the currents and the relative importance of tidal flow in the general hydrodynamics of the strait. For these purposes a dense grid of hydrographic stations, completed during the BIOANTAR 93 cruise, is used. Preliminary geostrophic calculations relative to a 400 m depth, yield current velocities of around 0.20 m s-1 in the study area, whereas the magnitude of tidal currents is seen to be 0.30-0.40 m s-1.

  17. On the structure of tidally disrupted stellar debris streams

    Science.gov (United States)

    Coughlin, Eric R.; Nixon, Chris; Begelman, Mitchell C.; Armitage, Philip J.

    2016-07-01

    A tidal disruption event (TDE) - when a star is destroyed by the immense gravitational field of a supermassive black hole - transforms a star into a stream of tidally shredded debris. The properties of this debris ultimately determine the observable signatures of tidal disruption events (TDEs). Here we derive a simple, self-similar solution for the velocity profile of the debris streams produced from TDEs, and show that this solution agrees extremely well with numerical results. Using this self-similar solution, we calculate an analytic, approximate expression for the radial density profile of the stream. We show that there is a critical adiabatic index that varies as a function of position along the stream above (below) which the stream is unstable (stable) to gravitational fragmentation. We also calculate the impact of heating and cooling on this stability criterion.

  18. Geometric properties of hydraulic-relevant tidal bedforms

    DEFF Research Database (Denmark)

    Winter, Christian; Ferret, Yann; Lefebvre, Alice;

    2013-01-01

    Large compound tidal bedforms (also termed dunes, sandwaves, megaripples by different authors) constitute prominent roughness elements in tidal channels and estuaries. Quantitative knowledge on their geometry, dynamics and hydraulic effect is crucial for coastal system understanding and process...... based numerical modelling. The ubiquitous large bed elements (lengths 10-1000m, heights 1-10m, celerity 10-100m/year) are often asymmetric (with steep slopes facing in the dominant tidal direction) and display super-imposed highly mobile secondary smaller bedforms. As a deterministic prediction...... that common relationships describe independent datasets to some extent (approximately 40% of all bedforms in our case). If the hydraulic effect of bedforms needs to be considered in the analysis or the development, setup and application of numerical models, the mentioned formulations underestimate the height...

  19. The Observational Effects and Signatures of Tidally Distorted Solid Exoplanets

    CERN Document Server

    Saxena, Prabal; Summers, Michael

    2014-01-01

    Our work examines the detectability of tidally distorted solid exoplanets in synchronous rotation. Previous work has shown that tidally distorted shapes of close-in gas giants can give rise to radius underestimates and subsequently density overestimates for those planets. We examine the assumption that such an effect is too minimal for rocky exoplanets and find that for smaller M Class stars there may be an observationally significant tidal distortion effect at very close-in orbits. We quantify the effect for different stellar types and planetary properties using some basic assumptions. Finally, we develop a simple analytic expression to test if there are detectable bulge signatures in the photometry of a system. We find that close in for smaller M Class stars there may be an observationally significant signature that may manifest itself in both in-transit bulge signatures and ellipsoidal variations.

  20. Tidal dissipation in rotating fluid bodies: a simplified model

    CERN Document Server

    Ogilvie, Gordon I

    2009-01-01

    We study the tidal forcing, propagation and dissipation of linear inertial waves in a rotating fluid body. The intentionally simplified model involves a perfectly rigid core surrounded by a deep ocean consisting of a homogeneous incompressible fluid. Centrifugal effects are neglected, but the Coriolis force is considered in full, and dissipation occurs through viscous or frictional forces. The dissipation rate exhibits a complicated dependence on the tidal frequency and generally increases with the size of the core. In certain intervals of frequency, efficient dissipation is found to occur even for very small values of the coefficient of viscosity or friction. We discuss the results with reference to wave attractors, critical latitudes and other features of the propagation of inertial waves within the fluid, and comment on their relevance for tidal dissipation in planets and stars.

  1. Tidal Dissipation and Obliquity Evolution in Hot Jupiter Systems

    CERN Document Server

    Valsecchi, Francesca

    2014-01-01

    Two formation scenarios have been proposed to explain the tight orbits of hot Jupiters. These giant planets could be formed in low-obliquity orbits via disk migration or in high-obliquity orbits via high-eccentricity migration, where gravitational interactions with a companion are at play, together with tidal dissipation. Here we target the observed misaligned hot Jupiter systems to investigate whether their current properties are consistent with high-eccentricity migration. Specifically, we study whether tidal dissipation in the star can be responsible for the observed distribution of misalignments and orbital separations. Improving on previous studies, we use detailed models for the stellar component, thus accounting for how convection (and thus tidal dissipation) depends on the host star properties. We find that the currently observed degree of misalignment increases as the amount of surface convection in the host star decreases. This trend supports the hypothesis that tides are the mechanism shaping the o...

  2. Simulations of Magnetic Fields in Tidally-Disrupted Stars

    CERN Document Server

    Guillochon, James

    2016-01-01

    We perform the first magnetohydrodynamical simulations of tidal disruptions of stars by supermassive black holes. We consider stars with both tangled and ordered magnetic fields, for both grazing and deeply disruptive encounters. When the star survives disruption, we find its magnetic field amplifies by a factor of up to twenty, but see no evidence for the a self-sustaining dynamo that would yield arbitrary field growth. For stars that do not survive, and within the tidal debris streams produced in partial disruptions, we find that the component of the magnetic field parallel to the direction of stretching along the debris stream only decreases slightly with time, eventually resulting in a stream where the magnetic pressure is in equipartition with the gas. Our results suggest that the returning gas in most (if not all) stellar tidal disruptions is already highly magnetized by the time it returns to the black hole.

  3. Three-dimensional semi-idealized model for tidal motion in tidal estuaries. An application to the Ems estuary

    Science.gov (United States)

    Kumar, Mohit; Schuttelaars, Henk M.; Roos, Pieter C.; Möller, Matthias

    2016-01-01

    In this paper, a three-dimensional semi-idealized model for tidal motion in a tidal estuary of arbitrary shape and bathymetry is presented. This model aims at bridging the gap between idealized and complex models. The vertical profiles of the velocities are obtained analytically in terms of the first-order and the second-order partial derivatives of surface elevation, which itself follows from an elliptic partial differential equation. The surface elevation is computed numerically using the finite element method and its partial derivatives are obtained using various methods. The newly developed semi-idealized model allows for a systematic investigation of the influence of geometry and bathymetry on the tidal motion which was not possible in previously developed idealized models. The new model also retains the flexibility and computational efficiency of previous idealized models, essential for sensitivity analysis. As a first step, the accuracy of the semi-idealized model is investigated. To this end, an extensive comparison is made between the model results of the semi-idealized model and two other idealized models: a width-averaged model and a three-dimensional idealized model. Finally, the semi-idealized model is used to understand the influence of local geometrical effects on the tidal motion in the Ems estuary. The model shows that local convergence and meandering effects can have a significant influence on the tidal motion. Finally, the model is applied to the Ems estuary. The model results agree well with observations and results from a complex numerical model.

  4. 呼气末二氧化碳分压的变化对感染性休克机械通气患者容量反应性的预测价值%The value of changes in end-tidal carbon dioxide pressure induced by passive leg raising test in predicting fluid responsiveness in mechanically ventilated patients with septic shock

    Institute of Scientific and Technical Information of China (English)

    臧芝栋; 严洁; 许红阳; 梁锋鸣; 杨挺; 王大鹏; 高飞

    2013-01-01

    Objective To test whether the changes of partial end-tidal carbon dioxide pressure (PETCO2) during passive leg raising (PLR) predict fluid responsiveness in mechanically ventilated patients with septic shock.Methods Forty-two mechanically ventilated patients with septic shock admitted from January 2012 to November 2012 were prospectively recruited.Hemodynamic parameters monitored by a pulse indicator continuous cardiac output(PiCCO) device and PETCO2 monitored by an expiratory-CO2 device were studied at baseline,after PLR,and after volume expansion.Fluid responsiveness was defined as an increase in cardiac index (CI) of 15% or greater after volume expansion.The correlation between PLR-induced CI change (△CIPLR) and PETCO2 (△PETCO2-PLR) was analyzed.The value of △PETCO2-PLR to predict fluid responsiveness was evaluated by receiver operating characteristic (ROC) curves.Results A total of 42 patients were enrolled in this study,of whom,24 had a CI increase of ≥ 15% after volume expansion (responders).After PLR,CI and PETCO2 were both significantly increased in the response group compared with baseline [(21.4 ± 12.9) % of CI and (9.6 ± 4.7) % of PETCO2,P < 0.05],while no significant changes were observed (P > 0.05) in the non-response group.Both △CIPLR and △PETCO2-PLR were significantly higher in responder group than in the non-responder group (both P < 0.05).△CI and △PETCO2 after PLR were strongly correlated (r =0.64,P < 0.05).In responders after PLR,the area under ROC curve of △PETCO2-PLR was 0.900 ± 0.056 (95% CI 0.775-1.000,P < 0.05).An increase of ≥ 5% in △PETCO2-PLR predicted fluid responsiveness with a sensitivity of 88.0% and specificity of 88.2%.Conclusions The change of PETCO2 induced by passive leg raising is a non-invasive and easy way to predict fluid responsiveness in mechanically ventilated patients with septic shock.%目的 探讨呼气末二氧化碳分压(PETCO2)在被动抬腿试验中的变化及

  5. A functional and morphological approach to evaluate the vertical migration of estuarine intertidal nematodes during a tidal cycle

    Science.gov (United States)

    Brustolin, M. C.; Thomas, M. C.; Lana, P. C.

    2013-03-01

    We tested herein the hypothesis that exposure time significantly contributes to the vertical distribution profile of nematodes during a tidal cycle as a function of distinct feeding and locomotion behaviors, conditioned by body morphology. We showed that the vertical distribution profile of the slender with filiform tail, numerically dominant Terschellingia longicaudata is in fact significantly correlated with sediment changes induced by tidal variation. Conversely, none of the other nematode species showed unequivocal evidence of vertical migration. Horizontal spatial heterogeneity also influenced the vertical distribution of nematode associations, probably as a response to varying temperature and desiccation levels at the sediment surface. The resulting vertical profiles for individual or species groups are a trade-off among locomotory and feeding strategies and concordant morphological adaptations.

  6. Laser-Induced Breakdown Spectroscopy to high-resolution analysis of ion distribution in cement-bound solid; Laser-induzierte Breakdown Spektroskopie (LIBS) zur hochaufloesenden Analyse der Ionenverteilung in zementgebundenen Feststoffen

    Energy Technology Data Exchange (ETDEWEB)

    Molkenthin, Andre

    2009-06-03

    The Laser-Induced Breakdown Spectroscopy allows imaging and quantitative analysis of the ion distribution of all relevant elements on the surface of mineral building materials. The measuring system has been characterised by investigations on specimens of hardened cement paste, mortar and concrete. Transport and accumulation processes are visualised. Besides, results are introduced for the peripheral zone close to the surface and the extraction is shown. (orig.) [German] Die Laser-induzierte Breakdown Spektroskopie ermoeglicht eine bildgebende und quantitative Analyse der Ionenverteilung aller massgeblichen Elemente auf mineralischen Baustoffoberflaechen. Das Messsystem wurde durch verfahrenspezifische Untersuchungen an Proben aus Zementstein, -moerteln und Betonen charakterisiert, Transport- und Anlagerungsprozesse wurden visuell dargestellt. Zudem werden Ergebnisse fuer den Ionenhaushalt in der ungestoerten oberflaechenahen Randzone sowie bei deren Auslaugung bzw. Anreicherung vorgestellt.

  7. New Model for Europa's Tidal Response Based after Laboratory Measurements

    Science.gov (United States)

    Castillo, J. C.; McCarthy, C.; Choukroun, M.; Rambaux, N.

    2009-12-01

    We explore the application of the Andrade model to the modeling of Europa’s tidal response at the orbital period and for different librations. Previous models have generally assumed that the satellite behaves as a Maxwell body. However, at the frequencies exciting Europa’s tides and librations, material anelasticity tends to dominate the satellite’s response for a wide range of temperatures, a feature that is not accounted for by the Maxwell model. Many experimental studies on the anelasticity of rocks, ice, and hydrates, suggest that the Andrade model usually provides a good fit to the dissipation spectra obtained for a wide range of frequencies, encompassing the tidal frequencies of most icy satellites. These data indicate that, at Europa’s orbital frequency, the Maxwell model overestimates water ice attenuation at temperature warmer than ~240 K, while it tends to significantly underestimate it at lower temperatures. Based on the available data we suggest an educated extrapolation of available data to Europa’s conditions. We compute the tidal response of a model of Europa differentiated in a rocky core and a water-rich shell. We assume various degrees of stratification of the core involving hydrated and anhydrous silicates, as well as an iron core. The water-rich shell of Europa is assumed to be fully frozen, or to have preserved a deep liquid layer. In both cases we consider a range of thermal structures, based on existing models. These structures take into account the presence of non-ice materials, especially hydrated salts. This new approach yields a greater tidal response (amplitude and phase lag) than previously expected. This is due to the fact that a greater volume of material dissipates tidal energy in comparison to models assuming a Maxwell body. Another feature of interest is that the tidal stress expected in Europa is at about the threshold between a linear and non-linear mechanical response of water ice as a function of stress. Increased

  8. Relativistic tidal heating of Hamiltonian quasi-local boundary expressions

    CERN Document Server

    So, Lau Loi

    2015-01-01

    Purdue and Favata calculate the tidal heating used certain classical pseudotensors. Booth and Creighton employed the quasi-local mass formalism of Brown and York to demonstrate the same subject. All of them give the result matched with the Newtonian theory. Here we present another Hamiltonian quasi-local boundary expressions and all give the same desired value. This indicates that the tidal heating is unique as Thorne predicted. Moreover, we discovered that the pseudo-tensor method and quasi-local method are fundamentally different.

  9. End-tidal carbon dioxide monitoring in pediatrics - clinical applications.

    Directory of Open Access Journals (Sweden)

    Bhende M

    2001-07-01

    Full Text Available End-tidal CO2 monitoring is an exciting non-invasive technology that is more commonly used in the emergency department, intensive care unit and in the prehospital setting. Its main use has been in verifying endotracheal tube position, during mechanical ventilation and cardiopulmonary resuscitation, but it is being studied and used for other purposes as well. The new American Heart Association guidelines require secondary confirmation of proper tube placement in all patients by exhaled CO2 immediately after intubation and during transport. This article covers the clinical applications of end-tidal CO2 monitoring with special reference to the paediatric patient.

  10. PUMPING THE ECCENTRICITY OF EXOPLANETS BY TIDAL EFFECT

    Energy Technology Data Exchange (ETDEWEB)

    Correia, Alexandre C. M. [Department of Physics, I3N, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Boue, Gwenaeel; Laskar, Jacques, E-mail: correia@ua.pt [Astronomie et Systemes Dynamiques, IMCCE-CNRS UMR8028, 77 Av. Denfert-Rochereau, 75014 Paris (France)

    2012-01-10

    Planets close to their host stars are believed to undergo significant tidal interactions, leading to a progressive damping of the orbital eccentricity. Here we show that when the orbit of the planet is excited by an outer companion, tidal effects combined with gravitational interactions may give rise to a secular increasing drift on the eccentricity. As long as this secular drift counterbalances the damping effect, the eccentricity can increase to high values. This mechanism may explain why some of the moderate close-in exoplanets are observed with substantial eccentricity values.

  11. Pumping the eccentricity of exoplanets by tidal effect

    CERN Document Server

    Correia, Alexandre C M; Laskar, Jacques

    2011-01-01

    Planets close to their host stars are believed to undergo significant tidal interactions, leading to a progressive damping of the orbital eccentricity. Here we show that, when the orbit of the planet is excited by an outer companion, tidal effects combined with gravitational interactions may give rise to a secular increasing drift on the eccentricity. As long as this secular drift counterbalances the damping effect, the eccentricity can increase to high values. This mechanism may explain why some of the moderate close-in exoplanets are observed with substantial eccentricity values.

  12. Identification of the Opportunities for Future Development of Tidal Energy

    Directory of Open Access Journals (Sweden)

    Navid Bozorgan

    2015-09-01

    Full Text Available An overview of status of development of tidal energy is given in this article. To reduce the dependance on fossil fuel and imported energy resources, the need for ocean energy is a global demand in developing countries. The ability to directly extract from the world’s oceans may be in the form of mechanical energy from waves, tides, or currents, or in the form of thermal energy from the sun’s heat. This paper identifies the opportunities for future development of tidal energy.

  13. Extreme Value Analysis of Tidal Stream Velocity Perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Harding, Samuel; Thomson, Jim; Polagye, Brian; Richmond, Marshall C.; Durgesh, Vibhav; Bryden, Ian

    2011-04-26

    This paper presents a statistical extreme value analysis of maximum velocity perturbations from the mean flow speed in a tidal stream. This study was performed using tidal velocity data measured using both an Acoustic Doppler Velocimeter (ADV) and an Acoustic Doppler Current Profiler (ADCP) at the same location which allows for direct comparison of predictions. The extreme value analysis implements of a Peak-Over-Threshold method to explore the effect of perturbation length and time scale on the magnitude of a 50-year perturbation.

  14. Tidal Forces in Reissner-Nordstr\\"om Spacetimes

    CERN Document Server

    Crispino, Luís C B; Oliveira, Leandro A; de Oliveira, Ednilton S

    2016-01-01

    We analyze the tidal forces produced in the spacetime of Reissner-Nordstr\\"om black holes. We point out that the radial component of the tidal force changes sign just outside the event horizon if the charge-to-mass ratio is close to $1$ unlike in Schwarzschild spacetime of uncharged black holes, and that the angular component changes sign between the outer and inner horizons. We solve the geodesic deviation equations for radially falling bodies towards the charged black hole. We find, for example, that the radial component of the geodesic deviation vector starts decreasing inside the event horizon unlike in the Schwarzschild case.

  15. Effect of high tidal volume ventilation and lipopolysaccharide on mitogen-activated protein kinase in rat lung tissue

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Mechanical ventilation, a crucial therapy to acute respiratory distress syndrome (ARDS), could exacerbate lung injury, and even result in ventilator-induced lung injury (VILI) if misused in some condition1. Over-activating inflammatory cells and expanding inflammatory responses, which are induced by infection, are fundamental reasons for ARDS. Among them, mitogen-activated protein kinase (MAPK) intracellular signal transduction pathways are key processes. This study aimed to investigate the time course of MAPK activation in rat lung tissue after high tidal volume (VT) ventilation and the role of lipopolysaccharide (LPS) in high-sensitivity, and to elucidate the effect of the pathway on VILI.

  16. Balance of assimilative and dissimilative nitrogen processes in a diatom-rich tidal flat sediment

    Directory of Open Access Journals (Sweden)

    K. Dähnke

    2012-10-01

    Full Text Available Tidal flat sediments are subject to repetitive mixing and resuspension events. In a short-term (24 h 15N-labelling experiment, we investigated reactive nitrogen cycling in a tidal flat sediment following an experimentally induced resuspension event. We focused on (a the relative importance of assimilatory versus dissimilatory processes and (b the role of benthic microalgae therein. 15N-labelled substrate was added to homogenized sediment, and 15N was subsequently traced into sediment and dissolved inorganic nitrogen (DIN pools. Integration of results in a N-cycle model allowed us to quantify the proportion of major assimilatory and dissimilatory processes in the sediment.

    Upon sediment disturbance, rates of dissimilatory processes like nitrification and denitrification were very high, but declined rapidly towards a steady state. Once this was reached, the balance between assimilation and dissimilation in this tidal mudflat was mainly dependent on the nitrogen source: nitrate was utilized almost exclusively dissimilatory via denitrification, whereas ammonium was rapidly assimilated, with about a quarter of this assimilation due to benthic microalgae (BMA. Benthic microalgae significantly affected the nitrogen recycling balance in sediments, because in the absence of BMA activity the recovering sediment turned from a net ammonium sink to a net source.

    The driving mechanisms for assimilation or dissimilation accordingly appear to be ruled to a large extent by external physical forcing, with the entire system being capable of rapid shifts following environmental changes. Assimilatory pathways gain importance under stable conditions, with a substantial contribution of BMA to total assimilation.

  17. Constraints on dissipation in the deep interiors of Ganymede and Europa from tidal phase-lags

    Science.gov (United States)

    Hussmann, Hauke; Shoji, Daigo; Steinbrügge, Gregor; Stark, Alexander; Sohl, Frank

    2016-08-01

    Jupiter's satellites are subject to strong tidal forces which result in variations of the gravitational potential and deformations of the satellites' surfaces on the diurnal tidal cycle. Such variations are described by the Love numbers k_2 and h_2 for the tide-induced potential variation due to internal mass redistribution and the radial surface displacement, respectively. The phase-lags φ _{k_2} and φ _{h_2} of these complex numbers contain information about the rheological and dissipative states of the satellites. Starting from interior structure models and assuming a Maxwell rheology to compute the tidal deformation, we calculate the phase-lags in application to Ganymede and Europa. For both satellites we assume a decoupling of the outer ice-shell from the deep interior by a liquid subsurface water ocean. We show that, in this case, the phase-lag difference Δ φ = φ _{k_2}- φ _{h_2} can provide information on the rheological and thermal state of the deep interiors if the viscosities of the deeper layers are small. In case of Ganymede, phase-lag differences can reach values of a few degrees for high-pressure ice viscosities {indicate a highly dissipative state of the deep interior. In this case Δ φ is dominated by dissipation in the high-pressure ice layer rather than dissipation within the ice-I shell. These phase lags would be detectable from spacecraft in orbit around the satellite. For Europa Δ φ could reach values exceeding 20° and phase-lag measurements could help distinguish between (1) a hot dissipative silicate mantle which would in thermal equilibrium correspond to a very thin outer ice-I shell and (2) a cold deep interior implying that dissipation would mainly occur in a thick (several tens of km) outer ice-I shell. These measurements are highly relevant for ESA's Jupiter Icy Moons Explorer (JUICE) and NASA's Europa Multiple Flyby Mission, both targeted for the Jupiter system.

  18. Quantitative estimation of sediment erosion and accretion processes in a micro-tidal coast.

    Digital Repository Service at National Institute of Oceanography (India)

    Dora, G.U.; SanilKumar, V.; Vinayaraj, P.; Philip, C.S.; Johnson, G.

    Spatio-temporal cross-shore profiles and textural characteristics are the key parameters for understanding dynamics of the inter-tidal sedimentary environment. This study describes short-term dynamics of the inter-tidal sedimentary environment...

  19. Assessment of Energy Production Potential from Tidal Streams in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Kevin A. [Georgia Inst. of Technology, Savannah, GA (United States); Fritz, Hermann M. [Georgia Inst. of Technology, Savannah, GA (United States); French, Steven P. [Georgia Inst. of Technology, Atlanta, GA (United States); Smith, Brennan T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Neary, Vincent [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2011-06-29

    The project documented in this report created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology.

  20. Impact of the frequency dependence of tidal Q on the evolution of planetary systems

    CERN Document Server

    Auclair-Desrotour, P; Mathis, S

    2013-01-01

    Context. Tidal dissipation in planets and in stars is one of the key physical mechanisms that drive the evolution of planetary systems. Aims. Tidal dissipation properties are intrisically linked to the internal structure and the rheology of studied celestial bodies. The resulting dependence of the dissipation upon the tidal frequency is strongly different in the cases of solids and fluids. Methods. We compute the tidal evolution of a two-body coplanar system, using the tidal quality factor's frequency-dependencies appropriate to rocks and to convective fluids. Results. The ensuing orbital dynamics comes out smooth or strongly erratic, dependent on how the tidal dissipation depends upon frequency. Conclusions. We demonstrate the strong impact of the internal structure and of the rheology of the central body on the orbital evolution of the tidal perturber. A smooth frequency-dependence of the tidal dissipation renders a smooth orbital evolution while a peaked dissipation can furnish erratic orbital behaviour.

  1. Constraining the equation of state of nuclear matter with gravitational wave observations: tidal deformability and tidal disruption

    CERN Document Server

    Maselli, Andrea; Ferrari, Valeria

    2013-01-01

    We study how to extract information on the neutron star equation of state from the gravitational wave signal emitted during the coalescence of a binary system composed by two neutron stars or a neutron star and a black hole. We use Post-Newtonian templates which include the tidal deformability parameter and, when tidal disruption occurs before merger, a frequency cut-off. Assuming that this signal is detected by Advanced LIGO/Virgo or ET, we evaluate the uncertainties on these parameters using different data analysis strategies based on the Fisher matrix approach, and on recently obtained analytical fits of the relevant quantities. We find that the tidal deformability is more effective than the stellar compactness to discriminate among different possible equations of state.

  2. Tidal-Fluvial and Estuarine Processes in the Lower Columbia River: I. Along-channel Water Level Variations, Pacific Ocean to Bonneville Dam

    Energy Technology Data Exchange (ETDEWEB)

    Jay, D. A.; Leffler, K.; Diefenderfer, Heida L.; Borde, Amy B.

    2015-03-01

    This two-part paper provides comprehensive time and frequency domain analyses and models of along-channel water level variations in the 234km-long Lower Columbia River and Estuary (LCRE) and documents the response of floodplain wetlands thereto. In Part I, power spectra, continuous wavelet transforms, and harmonic analyses are used to understand the influences of tides, river flow, upwelling and downwelling, and hydropower operations ("power-peaking") on the water level regime. Estuarine water levels are influenced primarily by astronomical tides and coastal processes, and secondarily by river flow. The importance of coastal and tidal influences decreases in the landward direction, and water levels are increasingly controlled by river flow variations at periods from ≤1 day to years. Water level records are only slightly non-stationary near the ocean, but become increasingly irregular upriver. Although astronomically forced tidal constituents decrease above the estuary, tidal fortnightly and overtide variations increase for 80-200km landward, both relative to major tidal constituents and in absolute terms.

  3. Tidal and sub-tidal sea level variability at the northern shelf of the Brazilian Northeast Region

    Directory of Open Access Journals (Sweden)

    FELIPE F. FROTA

    2016-01-01

    Full Text Available ABSTRACT A characterization of the sea level variability at tidal and sub-tidal frequencies at the northern shore of the Brazilian Northeast shelf for the period 2009-2011 is presented. The sea level data used was obtained from the Permanent Geodetic Tide Network from the Brazilian Institute of Geography and Statistics for the Fortaleza gauge station. Local wind data was also used to assess its effects on the low-frequency sea level variability. The variability of the sea level was investigated by classical harmonic analysis and by morphology assessment over the tidal signal. The low frequencies were obtained by low-pass filtering. The tidal range oscillated with the highest value of 3.3 m during the equinox and the lowest value of 0.7 m during the solstice. Differences between the spring and neap tides were as high as 1 m. A total of 59 tidal constituents were obtained from harmonic analysis, and the regional tide was classified as semi-diurnal pure with a form number of 0.11. An assessment of the monthly variability of the main tidal constituents (M2, S2, N2, O1, and K1 indicated that the main semi-diurnal solar S2 presented the highest variability, ranging from 0.21 to 0.41 m; it was the main element altering the form number through the years. The low frequency sea-level variability is negligible, although there is a persistent signal with an energy peak in the 10-15 day period, and it cannot be explained by the effects of local winds.

  4. SNL-EFDC Simulations of Tidal Turbine-Related Changes to Hydrodynamics and Flushing

    Science.gov (United States)

    Roberts, J. D.; Johnson, E.; James, S. C.; Barco, J.; Jones, C.

    2012-12-01

    The marine and hydrokinetic (MHK) industry in the United States faces challenges associated with siting, permitting, construction, and operation of pilot- and full-scale facilities that must be addressed to accelerate environmentally sound deployment of these renewable energy technologies. Little is known about the potential effects of MHK device operation in coastal areas, estuaries, or rivers, or of the cumulative impacts of these devices on aquatic ecosystems. This lack of knowledge affects the actions of regulatory agencies, the opinions of stakeholder groups, and the commitment of energy project developers and investors. Two particularly important factors that can be used as a precursor for MHK-driven environmental changes in estuaries are the effect of decreased tidal range and flushing. For example, tidal-range changes could affect wetland systems that are only wetted under the highest of tides. Significant changes in tidal range could completely change the character of the wetlands through long-term drying. Changes to flushing must also be understood, especially when municipal wastewater and other pollutant sources are discharged into a bay. When MHK operation alters flow rates, decreased flushing of an embayment could yield increased residence times, decreased nutrient and contaminant dispersion, and even the possibility of algal blooms. Small changes to the flow could manifest as noticeable changes to sediment transport and water quality. This work provides example assessments of changes to the physical environment (i.e. currents, tidal ranges, water age, and e-folding time) potentially imposed by the operation of MHK turbine arrays in marine estuary environments using the modeling platform SNL-EFDC. Comparing model results with and without an MHK array facilitates an understanding of how an array of turbines might alter the environment. By using models to simulate water circulation, commensurate changes in water quality, benthic habitat quality, and

  5. Strategies for the Use of Tidal Stream Currents for Power Generation

    Science.gov (United States)

    Orhan, Kadir; Mayerle, Roberto

    2015-04-01

    Indonesia is one of the priority countries in Southeast Asia for the development of ocean renewable energy facilities and The National Energy Council intends to increase the role of ocean energy significantly in the energy mix for 2010-2050. To this end, the joint German-Indonesian project "Ocean Renewable Energy ORE-12" aims at the identification of marine environments in the Indonesian Archipelago, which are suitable for the efficient generation of electric power by converter facilities. This study, within the ORE-12 project, is focused on the tidal stream currents on the straits between the Indian Ocean and Flores Sea to estimate the energy potentials and to develop strategies for producing renewable energy. FLOW module of Delft3D has been used to run hydrodynamic models for site assessment and design development. In site assessment phase, 2D models have been operated for a-month long periods and with a resolution of 500 m. Later on, in design development phase, detailed 3D models have been developed and operated for three-month long periods and with a resolution of 50 m. Bathymetric data for models have been obtained from the GEBCO_08 Grid and wind data from the Global Forecast System of NOAA's National Climatic Data Center. To set the boundary conditions of models, tidal forcing with 11 harmonic constituents was supplied from TPXO Indian Ocean Atlas (1/12° regional model) and data from HYCOM+NCODA Global 1/12° Analysis have been used to determine salinity and temperature on open boundaries. After the field survey is complete, water level time-series supplied from a tidal gauge located in the domain of interest (8° 20΄ 9.7" S, 122° 54΄ 51.9" E) have been used to verify the models and then energy potentials of the straits have been estimated. As a next step, correspondence between model outputs and measurements taken by the radar system of TerraSAR-X satellite (DLR) will be analysed. Also for the assessment of environmental impacts caused by tidal stream

  6. Predictions for the detection of Tidal Streams with Gaia using Great Circle Methods

    CERN Document Server

    Mateu, Cecilia; Font, Andreea S; Aguilar, Luis; Frenk, Carlos; Cole, Shaun; Wang, Wenting; McCarthy, Ian G

    2016-01-01

    The Gaia astrometric mission may offer an unprecedented opportunity to discover new tidal streams in the Galactic halo. To test this, we apply nGC3, a great-circle-cell count method that combines position and proper motion data to identify streams, to eleven mock Gaia catalogues of K giants and RR Lyrae stars constructed from cosmological simulations of Milky Way analogues. We analyse two sets of simulations, one using a combination of N-body and semi-analytical methods which has extremely high resolution, the other using hydro-dynamical methods, which captures the dynamics of baryons, including the formation of an in situ halo. These eleven realizations of plausible Galactic merger histories allow us to assess the potential for the recovery of tidal streams in different Milky Way formation scenarios. We include the Gaia selection function and observational errors in these mock catalogues. We find that the nGC3 method has a well-defined detection boundary in the space of stream width and projected overdensity...

  7. Tidal Influence on Nutrients Status and Phytoplankton Population of Okpoka Creek, Upper Bonny Estuary, Nigeria

    Directory of Open Access Journals (Sweden)

    O. A. Davies

    2013-01-01

    Full Text Available Okpoka Creek of the Upper Bonny Estuary in the Niger Delta is a tidal creek receiving organic anthropogenic effluents from its environs. The study investigated the influence of tides (low and high on the species composition, diversity, abundance, and distribution of phytoplankton. The surface water and phytoplankton samples were collected monthly from May 2004 to April 2006 at both tides from ten stations according to standard methods. Phytoplankton was identified microscopically. Species diversity was calculated using standard indices. Data analyses were done using analysis of variance, Duncan multiple range, and descriptive statistics. Phosphate and ammonia exceeded international acceptable levels of 0.10 mg/L for natural water bodies indicating high nutrient status, organic matter, and potential pollutants. A total of 158 species of phytoplankton were identified. Diatoms dominated the phytoplankton (62.9%. Diversity indices of diatoms were 1.5±0.03 (Margalef and 0.8±0.01 (Shannon. Pollution-indicator species such as Navicula microcephala, Nitzschia sigma, Synedra ulna (diatoms, Cladophora glomerata (green alga, Euglena acus (euglenoid, Anabeana spiroides (blue-green alga, and Ceratium furca (dinoflagellate were recorded at either only low, high or both tides. Concerted environmental surveillance on Upper Bonny Estuary is advocated to reduce the inflow of pollutants from the Bonny Estuary into this Creek caused by tidal influence.

  8. Tidal streams in newly discovered M32 analogues: evidence for the stripping scenario

    CERN Document Server

    Huxor, Avon; Price, James; Harniman, Rob

    2011-01-01

    We present two newly-discovered compact elliptical (cE) galaxies, exhibiting clear evidence of tidal steams, and found during a search of SDSS DR7 for cE candidates. The structural parameters of the cEs are derived using GALFIT, giving effective radii, Re, of 388 and 263 parsecs, and B-band mean surface brightnesses within Re of 19.4 and 19.2 magnitudes per arcsec squared. We have re-analysed the SDSS spectra, which indicate that they possess young to intermediate-age stellar populations. These two cEs provide direct evidence, a "smoking gun", for the process of tidal stripping that is believed to be the origin of M32-type galaxies. Both are in small groups with a large spiral fraction, suggesting that we may be seeing the formation of such cE galaxies in dynamically young environments. The more compact of the galaxies is found in a small group not unlike the Local Group, and thus provides an additional model for understanding M32.

  9. Tidal modulation of temperature oscillations monitored in borehole Yaxcopoil-1 (Yucatán, Mexico)

    Science.gov (United States)

    Cermak, Vladimir; Bodri, Louise; Safanda, Jan

    2009-05-01

    For better understanding of temperature state in the subsurface, temperature-depth logs can be suitably completed by high-resolution long-run temperature-time monitoring at selected depths. The results of temperature monitoring at three depth levels in borehole Yaxcopoil-1, Chicxulub impact structure, Mexico (April/May 2006) proved that even when a borehole is in "fully" stabilized conditions, temperature may exhibit certain unrest resembling irregular oscillations in the order of hundredths or (in the extreme case) even first tenths of degree. Two novel methods for detection of the weak fingerprints of stable periodic components in long noisy records, namely the RQI (Recurrence Quantification Interval) analysis and the HiCum (Histograms Cumulation) were used to isolate the constituents with tidal periodicities from temperature oscillations measured in borehole Yaxcopoil-1. Both analyses revealed that temperature series contain perceptible tidal component. The field data were correlated with the simulated synthetic tides. The comparison of staked HiCum records for the theoretical gravity tide and monitored temperature shows significant positive linear correlation between both variables. There is a small lag between two signals corresponding to ~ 25 min phase difference.

  10. Assessment of the climate change impacts on fecal coliform contamination in a tidal estuarine system.

    Science.gov (United States)

    Liu, Wen-Cheng; Chan, Wen-Ting

    2015-12-01

    Climate change is one of the key factors affecting the future microbiological water quality in rivers and tidal estuaries. A coupled 3D hydrodynamic and fecal coliform transport model was developed and applied to the Danshuei River estuarine system for predicting the influences of climate change on microbiological water quality. The hydrodynamic and fecal coliform model was validated using observational salinity and fecal coliform distributions. According to the analyses of the statistical error, predictions of the salinity and the fecal coliform concentration from the model simulation quantitatively agreed with the observed data. The validated model was then applied to predict the fecal coliform contamination as a result of climate change, including the change of freshwater discharge and the sea level rise. We found that the reduction of freshwater discharge under climate change scenarios resulted in an increase in the fecal coliform concentration. The sea level rise would decrease fecal coliform distributions because both the water level and the water volume increased. A reduction in freshwater discharge has a negative impact on the fecal coliform concentration, whereas a rising sea level has a positive influence on the fecal coliform contamination. An appropriate strategy for the effective microbiological management in tidal estuaries is required to reveal the persistent trends of climate in the future.

  11. Tidal deformation of Ganymede: Sensitivity of Love numbers on the interior structure

    Science.gov (United States)

    Kamata, Shunichi; Kimura, Jun; Matsumoto, Koji; Nimmo, Francis; Kuramoto, Kiyoshi; Namiki, Noriyuki

    2016-07-01

    Tidal deformation of icy satellites provides crucial information on their subsurface structures. In this study, we investigate the parameter dependence of the tidal displacement and potential Love numbers (i.e., h2 and k2, respectively) of Ganymede. Our results indicate that Love numbers for Ganymede models without a subsurface ocean are not necessarily smaller than those with a subsurface ocean. The phase lag, however, depends primarily on the presence/absence of a subsurface ocean. Thus, the determination of the phase lag would be of importance to infer whether Ganymede possesses a subsurface ocean or not based only on geodetic measurements. Our results also indicate that the major control on Love numbers is the thickness of the ice shell if Ganymede possesses a subsurface ocean. This result, however, does not necessarily indicate that measurement of either of h2 or k2 alone is sufficient to estimate the shell thickness; while a thin shell leads to large h2 and k2 independent of parameters, a thick shell does not necessarily lead to small h2 and k2. We found that to reduce the uncertainty in the shell thickness, constraining k2 in addition to h2 is necessary, highlighting the importance of collaborative analyses of topography and gravity field data.

  12. Tidal volume estimation using the blanket fractal dimension of the tracheal sounds acquired by smartphone.

    Science.gov (United States)

    Reljin, Natasa; Reyes, Bersain A; Chon, Ki H

    2015-01-01

    In this paper, we propose the use of blanket fractal dimension (BFD) to estimate the tidal volume from smartphone-acquired tracheal sounds. We collected tracheal sounds with a Samsung Galaxy S4 smartphone, from five (N = 5) healthy volunteers. Each volunteer performed the experiment six times; first to obtain linear and exponential fitting models, and then to fit new data onto the existing models. Thus, the total number of recordings was 30. The estimated volumes were compared to the true values, obtained with a Respitrace system, which was considered as a reference. Since Shannon entropy (SE) is frequently used as a feature in tracheal sound analyses, we estimated the tidal volume from the same sounds by using SE as well. The evaluation of the performed estimation, using BFD and SE methods, was quantified by the normalized root-mean-squared error (NRMSE). The results show that the BFD outperformed the SE (at least twice smaller NRMSE was obtained). The smallest NRMSE error of 15.877% ± 9.246% (mean ± standard deviation) was obtained with the BFD and exponential model. In addition, it was shown that the fitting curves calculated during the first day of experiments could be successfully used for at least the five following days. PMID:25923929

  13. Tidal Volume Estimation Using the Blanket Fractal Dimension of the Tracheal Sounds Acquired by Smartphone

    Directory of Open Access Journals (Sweden)

    Natasa Reljin

    2015-04-01

    Full Text Available In this paper, we propose the use of blanket fractal dimension (BFD to estimate the tidal volume from smartphone-acquired tracheal sounds. We collected tracheal sounds with a Samsung Galaxy S4 smartphone, from five (N = 5 healthy volunteers. Each volunteer performed the experiment six times; first to obtain linear and exponential fitting models, and then to fit new data onto the existing models. Thus, the total number of recordings was 30. The estimated volumes were compared to the true values, obtained with a Respitrace system, which was considered as a reference. Since Shannon entropy (SE is frequently used as a feature in tracheal sound analyses, we estimated the tidal volume from the same sounds by using SE as well. The evaluation of the performed estimation, using BFD and SE methods, was quantified by the normalized root-mean-squared error (NRMSE. The results show that the BFD outperformed the SE (at least twice smaller NRMSE was obtained. The smallest NRMSE error of 15.877% ± 9.246% (mean ± standard deviation was obtained with the BFD and exponential model. In addition, it was shown that the fitting curves calculated during the first day of experiments could be successfully used for at least the five following days.

  14. Site Characterization at a Tidal Energy Site in the East River, NY (usa)

    Science.gov (United States)

    Gunawan, B.; Neary, V. S.; Colby, J.

    2012-12-01

    A comprehensive tidal energy site characterization is performed using ADV measurements of instantaneous horizontal current magnitude and direction at the planned hub centerline of a tidal turbine over a two month period, and contributes to the growing data base of tidal energy site hydrodynamic conditions. The temporal variation, mean current statistics, and turbulence of the key tidal hydrodynamic parameters are examined in detail, and compared to estimates from two tidal energy sites in Puget Sound. Tidal hydrodynamic conditions, including mean annual current (at hub height), the speed of extreme gusts (instantaneous horizontal currents acting normal to the rotor plane), and turbulence intensity (as proposed here, relative to a mean current of 2 m s-1) can vary greatly among tidal energy sites. Comparison of hydrodynamic conditions measured in the East River tidal straight in New York City with those reported for two tidal energy sites in Puget Sound indicate differences of mean annual current speeds, difference in the instantaneous current speeds of extreme gusts, and differences in turbulence intensities. Significant differences in these parameters among the tidal energy sites, and with the tidal resource assessment map, highlight the importance of conducting site resource characterization with ADV measurements at the machine scale. As with the wind industry, which adopted an International Electrotechnical Commission (IEC) wind class standard to aid in the selection of wind turbines for a particular site, it is recommended that the tidal energy industry adopt an appropriate standard for tidal current classes. Such a standard requires a comprehensive field campaign at multiple tidal energy sites that can identify the key hydrodynamic parameters for tidal current site classification, select a list of tidal energy sites that exhibit the range of hydrodynamic conditions that will be encountered, and adopt consistent measurement practices (standards) for site

  15. Role of tidal flat in material cycling in the coastal sea

    OpenAIRE

    Yara, Yumiko; Yanagi, Tetsuo; Montani, Shigeru; Kuninao, Tada

    2007-01-01

    A simple tidal flat model with pelagic and benthic ecosystems was developed in order to analyze the nitrogen cycling in an inter-tidal flat of the Seto Inland Sea, Japan. After the verification of calculation results with the observed results in water quality and benthic biomasses, the role of this tidal flat in nitrogen cycling was evaluated from the viewpoint of water quality purification capability. When there is no suspension feeder in the tidal flat, the water quality purification capab...

  16. Tidal Marsh Outwelling of Dissolved Organic Matter and Resulting Temporal Variability in Coastal Water Optical and Biogeochemical Properties

    Science.gov (United States)

    Tzortziou, Maria; Neale, Patrick J.; Megonigal, J. Patrick; Butterworth, Megan; Jaffe, Rudolf; Yamashita, Youhei

    2010-01-01

    Coastal wetlands are highly dynamic environments at the land-ocean interface where human activities, short-term physical forcings and intense episodic events result in high biological and chemical variability. Long being recognized as among the most productive ecosystems in the world, tidally-influenced coastal marshes are hot spots of biogeochemical transformation and exchange. High temporal resolution observations that we performed in several marsh-estuarine systems of the Chesapeake Bay revealed significant variability in water optical and biogeochemical characteristics at hourly time scales, associated with tidally-driven hydrology. Water in the tidal creek draining each marsh was sampled every hour during several semi-diurnal tidal cycles using ISCO automated samplers. Measurements showed that water leaving the marsh during ebbing tide was consistently enriched in dissolved organic carbon (DOC), frequently by more than a factor of two, compared to water entering the marsh during flooding tide. Estimates of DOC fluxes showed a net DOC export from the marsh to the estuary during seasons of both low and high biomass of marsh vegetation. Chlorophyll amounts were typically lower in the water draining the marsh, compared to that entering the marsh during flooding tide, suggesting that marshes act as transformers of particulate to dissolved organic matter. Moreover, detailed optical and compositional analyses demonstrated that marshes are important sources of optically and chemically distinctive, relatively complex, high molecular weight, aromatic-rich and highly colored dissolved organic compounds. Compared to adjacent estuarine waters, marsh-exported colored dissolved organic matter (CDOM) was characterized by considerably stronger absorption (more than a factor of three in some cases), larger DOC-specific absorption, lower exponential spectral slope, larger fluorescence signal, lower fluorescence per unit absorbance, and higher fluorescence at visible wavelengths

  17. Tidal residual current and its role in the mean flow on the Changjiang Bank

    Energy Technology Data Exchange (ETDEWEB)

    Xuan, Jiliang; Yang, Zhaoqing; Huang, Daji; Wang, Taiping; Zhou, Feng

    2016-02-01

    Tidal residual current may play an important role in the mean flow in the Changjiang Bank region, in addition to other residual currents, such as the Taiwan Warm Current, the Yellow Sea Coastal Current, and the Yellow Sea Warm Current. In this paper, a detailed structure of the tidal residual current, in particular the meso-scale eddies, in the Changjiang Bank region is observed from model simulations, and its role in the mean flow is quantified using the well-validated Finite Volume Coastal Ocean Model). The tidal residual current in the Changjiang Bank region consists of two components: an anticyclonic regional-scale tidal residual circulation around the edge of the Changjiang Bank and some cyclonic meso-scale tidal residual eddies across the Changjiang Bank. The meso-scale tidal residual eddies occur across the Changjiang Bank and contribute to the regional-scale tidal residual circulation offshore at the northwest boundary and at the northeast edge of the Changjiang Bank, southeastward along the 50 m isobath. Tidal rectification is the major mechanism causing the tidal residual current to flow along the isobaths. Both components of the tidal residual current have significant effects on the mean flow. A comparison between the tidal residual current and the mean flow indicates that the contribution of the tidal residual current to the mean flow is greater than 50%.

  18. Observations of estuarine circulation and solitary internal waves in a highly energetic tidal channel

    NARCIS (Netherlands)

    Groeskamp, S.; Nauw, J.J.; Maas, L.

    2011-01-01

    Despite vigorous tidal and wind mixing, observations in an estuarine tidal inlet in the Wadden Sea show that during part of the tidal cycle, vertical stratification and internal waves may still develop. Acoustic Doppler current profiler (ADCP) and conductivity, temperature, depth observations, colle

  19. Diurnal and semi-diurnal tidal currents in the deep mid-Arabian sea

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.; Gouveia, A.D.; Shetye, S.R.

    Current meter records from two depths, approximately 1000 m, at three mooring in the deep mid-Arabian Sea were used to study tidal components. Tidal ellipses for the semi-diurnal (M2, S2 and K2) and the diurnal (K1 and P1) tidal constituents have...

  20. A combined field and modeling study of groundwater flow in a tidal marsh

    Directory of Open Access Journals (Sweden)

    Y. Q. Xia

    2012-03-01

    near the high intertidal zone, and discharged from the tidal river bank in the vicinity of the low tide line. These processes thereby formed a tide-induced seawater-groundwater circulation, which likely provided considerable contribution to the total submarine groundwater discharge (SGD. Finally, implications and uncertainties behind this study were summarized for future examinations.