WorldWideScience

Sample records for anaerobic sludge blanket

  1. Cosmetic wastewater treatment by upflow anaerobic sludge blanket reactor

    International Nuclear Information System (INIS)

    Anaerobic treatment of pre-settled cosmetic wastewater in batch and continuous experiments has been investigated. Biodegradability tests showed high COD and solid removal efficiencies (about 70%), being the hydrolysis of solids the limiting step of the process. Continuous treatment was carried out in an upflow anaerobic sludge blanket reactor. High COD and TSS removal efficiencies (up to 95% and 85%, respectively) were achieved over a wide range of organic load rate (from 1.8 to 9.2 g TCOD L-1 day-1). Methanogenesis inhibition was observed in batch assays, which can be predicted by means of a Haldane-based inhibition model. Both COD and solid removal were modelled by Monod and pseudo-first order models, respectively.

  2. Cosmetic wastewater treatment by upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Puyol, D.; Monsalvo, V.M.; Mohedano, A.F. [Seccion de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain); Sanz, J.L. [Departamento de Biologia Molecular, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain); Rodriguez, J.J., E-mail: juanjo.rodriguez@uam.es [Seccion de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain)

    2011-01-30

    Anaerobic treatment of pre-settled cosmetic wastewater in batch and continuous experiments has been investigated. Biodegradability tests showed high COD and solid removal efficiencies (about 70%), being the hydrolysis of solids the limiting step of the process. Continuous treatment was carried out in an upflow anaerobic sludge blanket reactor. High COD and TSS removal efficiencies (up to 95% and 85%, respectively) were achieved over a wide range of organic load rate (from 1.8 to 9.2 g TCOD L{sup -1} day{sup -1}). Methanogenesis inhibition was observed in batch assays, which can be predicted by means of a Haldane-based inhibition model. Both COD and solid removal were modelled by Monod and pseudo-first order models, respectively.

  3. Upflow anaerobic sludge blanket reactor--a review.

    Science.gov (United States)

    Bal, A S; Dhagat, N N

    2001-04-01

    . Concentrated waste (usually sewage sludge) can be added continuously or periodically (semi-batch operation), where it is mixed with the contents of the reactor. Theoretically, the conventional digester is operated as a once-through, completely mixed, reactor. In this particular mode of operation the hydraulic retention time (HRT) is equal to the solids retention time (SRT). Basically, the required process efficiency is related to the sludge retention time (SRT), and hence longer SRT provided, results in satisfactory population (by reproduction) for further waste stabilization. By reducing the hydraulic retention time (HRT) in the conventional mode reactor, the quantity of biological solids within the reactor is also decreased as the solids escape with the effluent. The limiting HRT is reached when the bacteria are removed from the reactor faster than they can grow. Methanogenic bacteria are slow growers and are considered the rate-limiting component in the anaerobic digestion process. The first anaerobic process developed, which separated the SRT from the HRT was the anaerobic contact process. In 1963, Young and McCarty (1968) began work, which eventually led to the development of the anaerobic upflow filter (AF) process. The anaerobic filter represented a significant advance in anaerobic waste treatment, since the filter can trap and maintain a high concentration of biological solids. By trapping these solids, long SRT's could be obtained at large waste flows, necessary to anaerobically treat low strength wastes at nominal temperatures economically. Another anaerobic process which relies on the development of biomass on the surfaces of a media is an expanded bed upflow reactor. The primary concept of the process consists of passing wastewater up through a bed of inert sand sized particles at sufficient velocities to fluidize and partially expand the sand bed. One of the more interesting new processes is the upflow anaerobic sludge blanket process (UASB), which was developed

  4. Extracellular Polymers in Granular Sludge from Different Upflow Anaerobic Sludge Blanket (UASB) Reactors

    DEFF Research Database (Denmark)

    Schmidt, Jens Ejbye; Ahring, Birgitte Kiær

    1994-01-01

    Thermal extraction was used to quantify extracellular polymers (ECP) in granules from anaerobic upflow reactors. The optimal time for extraction was determined as the time needed before the intracellular material gives a significant contribution to the extracted extracellular material due to cell...... of an upflow anaerobic sludge blanket reactor from a sugar-containing waste-water to a synthetic waste-water containing acetate, propionate and butyrate resulted in a decrease in both the protein and polysaccharide content and an increase in the lipid content of the extracellular material. Furthermore...

  5. Upflow anaerobic sludge blanket reactor--a review.

    Science.gov (United States)

    Bal, A S; Dhagat, N N

    2001-04-01

    Biological treatment of wastewater basically reduces the pollutant concentration through microbial coagulation and removal of non-settleable organic colloidal solids. Organic matter is biologically stabilized so that no further oxygen demand is exerted by it. The biological treatment requires contact of the biomass with the substrate. Various advances and improvements in anaerobic reactors to achieve variations in contact time and method of contact have resulted in development of in suspended growth systems, attached growth or fixed film systems or combinations thereof. Although anaerobic systems for waste treatment have been used since late 19th century, they were considered to have limited treatment efficiencies and were too slow to serve the needs of a quickly expanding wastewater volume, especially in industrialized and densely populated areas. At present aerobic treatment is the most commonly used process to reduce the organic pollution level of both domestic and industrial wastewaters. Aerobic techniques, such as activated sludge process, trickling filters, oxidation ponds and aerated lagoons, with more or less intense mixing devices, have been successfully installed for domestic wastewater as well as industrial wastewater treatment. Anaerobic digestion systems have undergone modifications in the last two decades, mainly as a result of the energy crisis. Major developments have been made with regard to anaerobic metabolism, physiological interactions among different microbial species, effects of toxic compounds and biomass accumulation. Recent developments however, have demonstrated that anaerobic processes might be an economically attractive alternative for the treatment of different types of industrial wastewaters and in (semi-) tropical areas also for domestic wastewaters. The anaerobic degradation of complex, particulate organic matter has been described as a multistep process of series and parallel reactions. It involves the decomposition of organic and

  6. Anaerobic wastewater treatment of concentrated sewage using a two-stage upflow anaerobic sludge blanket- anaerobic filter system.

    Science.gov (United States)

    Halalsheh, Maha M; Abu Rumman, Zainab M; Field, Jim A

    2010-01-01

    A two-stage pilot-scale upflow anaerobic sludge blanket - anaerobic filter (UASB-AF) reactors system treating concentrated domestic sewage was operated at 23 degrees C and at hydraulic retention times (HRT) of 15 and 4 h, respectively. Excess sludge from the downstream AF stage was returned to the upstream UASB reactor. The aim was to obtain higher sludge retention time (SRT) in the UASB reactor for better methanization of suspended COD. The UASB-AF system removed 55% and 65% of the total COD (COD(tot)) and suspended COD (COD(ss)), respectively. The calculated SRT in the UASB reactor ranged from 20-35 days. The AF reactor removed the washed out sludge from the first stage reactor with average COD(ss) removal efficiency of 55%. The volatile fatty acids concentration in the effluent of the AF was 39 mg COD/L compared with 78 mg COD/L measured for the influent. The slightly higher COD(tot) removal efficiency obtained in this study compared with a single stage UASB reactor was achieved at 17% reduction in the total volume. PMID:20390881

  7. Biomethane production from vinasse in upflow anaerobic sludge blanket reactors inoculated with granular sludge.

    Science.gov (United States)

    Barros, Valciney Gomes de; Duda, Rose Maria; Oliveira, Roberto Alves de

    2016-01-01

    The main objective of this study was to evaluate the anaerobic conversion of vinasse into biomethane with gradual increase in organic loading rate (OLR) in two upflow anaerobic sludge blanket (UASB) reactors, R1 and R2, with volumes of 40.5 and 21.5L in the mesophilic temperature range. The UASB reactors were operated for 230 days with a hydraulic detection time (HDT) of 2.8d (R1) and 2.8-1.8d (R2). The OLR values applied in the reactors were 0.2-7.5gtotalCOD (Ld)(-1) in R1 and 0.2-11.5gtotalCOD (Ld)(-1) in R2. The average total chemical oxygen demand (totalCOD) removal efficiencies ranged from 49% to 82% and the average conversion efficiencies of the removed totalCOD into methane were 48-58% in R1 and 39-65% in R2. The effluent recirculation was used for an OLR above 6gtotalCOD (Ld)(-1) in R1 and 8gtotalCOD (Ld)(-1) in R2 and was able to maintain the pH of the influent in R1 and R2 in the range from 6.5 to 6.8. However, this caused a decrease for 53-39% in the conversion efficiency of the removed totalCOD into methane in R2 because of the increase in the recalcitrant COD in the influent. The largest methane yield values were 0.181 and 0.185 (L) CH4 (gtotalCOD removed)(-1) in R1 and R2, respectively. These values were attained after 140 days of operation with an OLR of 5.0-7.5gtotalCOD (Ld)(-1) and totalCOD removal efficiencies around 70 and 80%. PMID:27289246

  8. Microbial populations of an upflow anaerobic sludge blanket reactor treating wastewater from a gelatin industry.

    Science.gov (United States)

    Vieira, A M; Bergamasco, R; Gimenes, M L; Nakamura, C V; Dias Filho, B P

    2001-12-01

    The microbial populations of an upflow anaerobic sludge blanket reactor, used for treating wastewater from the gelatin industry, were studied by microbiological methods and phase-contrast and electron microscopy. Microscopy examination of the sludge showed a complex mixture of various rod-shaped and coccoid bacterial pluslong filaments and verymobile curved rods. In addition free-living anaerobic ciliates and flagellates were also observed. The trophic group population observed in decreasing order of dominance were hydrolytic and acetogenic at 10(6) and sulfate reducing and methanogenic at 10(5). The rate of methane production in anaerobic granular sludge cultivated in growth medium supplement with formate pressurized with H2:CO2 showed a significant increase in methane yield compared with theseed culture containingthe same substrate and atmosphere of N2:CO2. Similar rates of methane production were observed when the growth medium was supplemented with acetate pressurized either with H2:CO2 or N2:CO2. The number of total anaerobic bacteria at 10(7), fecal coliforms and total coliforms at 10(6), and fecal streptococci at 10(3) is based on colony counts on solid media. The four prevalent species of facultative anaerobic gram-negative bacteria that belong to the family of Enterobacteriaceae were identified as Escherichia coli, Esherichia fergusonii, Klebsiella oxytoca, and Citrobacter freundii. The species Aeromonas hydrophila, Aeromonas veronii, Acinetobacter iwoffi and Stenotrophomonas maltophila were the most frequently isolated glucose fermenting and nonfermenting gram-negative bacilli.

  9. A granulation model using diosgenin wastewater in an upflow anaerobic sludge blanket reactor

    Institute of Scientific and Technical Information of China (English)

    Jianguo BAO; Hui LIU; Yanxin WANG; Lijun ZHANG

    2009-01-01

    An enhanced start-up of an upfiow anaerobic sludge blanket (UASB) reactor for diosgenin wastewater treatment was designed and experimentally tested. Gran-ular sludge was formed on day 35 in the reactor with high concentrations of chloride (4000-7000 mg/L) and COD (5000-13000mg/L) as substrate. A new model for the granulation was proposed which divides the formation of anaerobic granules into six consecutive stages; they include semi-embryonic granule formation, embryonic granule formation, single-nucleus granule formation, multi-nuclei granule formation, granule growth and granule maturation. A model of the granule structure was also proposed based on scanning electron microscope observation. The microspores occurring on the surface and further leading into the interior of the granules were considered as the channels and the passage of the materials and the products of the microorganisms' metabolism inside the granules.

  10. Immobilization patterns and dynamics of acetate-utilizing methanogens immobilized in sterile granular sludge in upflow anaerobic sludge blanket reactors

    DEFF Research Database (Denmark)

    Schmidt, Jens Ejbye; Ahring, Birgitte Kiær

    1999-01-01

    the lowest effluent concentration of acetate was observed in the reactor where both types of methanogens were immobilized together. No changes were observed in the kinetic parameters (K-s and mu(max)) of immobilized M. concilii GP-6 or ill, mazeii S-6 compared with suspended cultures, indicating...... that immobilization does not affect the growth kinetics of these methanogens. An enzyme-linked immunosorbent assay using polyclonal antibodies against either M. concilii GP-6 or M. mazeii S-6 showed significant variations in the two methanogenic populations in the different reactors. Polyclonal antibodies were......Sterile granular sludge was inoculated with either Methanosarcina mazeii S-6, Methanosaeta concilii GP-6, or both species in acetate-fea upflow anaerobic sludge blanket (UASB) reactors to investigate the immobilization patterns and dynamics of aceticlastic methanogens in granular sludge. After...

  11. Immobilization patterns and dynamics of acetate-utilizing methanogens in sterile granular sludge from upflow anaerobic sludge blanket (UASB) reactors

    DEFF Research Database (Denmark)

    Schmidt, Jens Ejbye; Ahring, Birgitte Kiær

    1999-01-01

    the lowest effluent concentration of acetate was observed in the reactor where both types of methanogens were immobilized together. No changes were observed in the kinetic parameters (K-s and mu(max)) of immobilized M. concilii GP-6 or ill, mazeii S-6 compared with suspended cultures, indicating...... that immobilization does not affect the growth kinetics of these methanogens. An enzyme-linked immunosorbent assay using polyclonal antibodies against either M. concilii GP-6 or M. mazeii S-6 showed significant variations in the two methanogenic populations in the different reactors. Polyclonal antibodies were......Sterile granular sludge was inoculated with either Methanosarcina mazeii S-6, Methanosaeta concilii GP-6, or both species in acetate-fea upflow anaerobic sludge blanket (UASB) reactors to investigate the immobilization patterns and dynamics of aceticlastic methanogens in granular sludge. After...

  12. Treatment of domestic wastewater in an up-flow anaerobic sludge blanket reactor followed by moving bed biofilm reactor

    NARCIS (Netherlands)

    Tawfik, A.; El-Gohary, F.; Temmink, B.G.

    2010-01-01

    The performance of a laboratory-scale sewage treatment system composed of an up-flow anaerobic sludge blanket (UASB) reactor and a moving bed biofilm reactor (MBBR) at a temperature of (22-35 A degrees C) was evaluated. The entire treatment system was operated at different hydraulic retention times

  13. Energy production from distillery wastewater using single and double-phase upflow anaerobic sludge blanket (UASB) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Muyodi, F.J.; Rubindamayugi, M.S.T. [Univ. of Dar es Salaam, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    A Single-phase (SP) and Double-phase (DP) Upflow Anaerobic Sludge Blanket (UASB) reactors treating distillery wastewater were operated in parallel. The DP UASB reactor showed better performance than the SP UASB reactor in terms of maximum methane production rate, methane content and Chemical Oxygen Demand (COD) removal efficiency. (au) 20 refs.

  14. Membrane installation for enhanced up-flow anaerobic sludge blanket (UASB) performance.

    Science.gov (United States)

    Liu, Yin; Zhang, Kaisong; Bakke, Rune; Li, Chunming; Liu, Haining

    2013-09-01

    It is postulated that up-flow anaerobic sludge blanket (UASB) reactor efficiency can be enhanced by a membrane immersed in the reactor to operate it as an anaerobic membrane bioreactor (AnMBR) for low-strength wastewater treatment. This postulate was tested by comparing the performance with and without a hollow fiber microfiltration membrane module immersed in UASB reactors operated at two specific organic loading rates (SOLR). Results showed that membrane filtration enhanced process performance and stability, with over 90% total organic carbon (TOC) removal consistently achieved. More than 91% of the TOC removal was achieved by suspended biomass, while less than 6% was removed by membrane filtration and digestion in the membrane attached biofilm during stable AnMBRs operation. Although the membrane and its biofilm played an important role in initial stage of the high SOLR test, linear increased TOC removal by bulk sludge mainly accounted for the enhanced process performance, implying that membrane led to enhanced biological activity of the suspended sludge. The high retention of active fine sludge particles in suspension was the main reason for this significant improvement of performance and biological activity, which led to decreased SOLR with time to a theoretical optimal level around 2  g COD/g MLVSS·d and the establishment of a microbial community dominated by Methanothrix-like microbes. It was concluded that UASB process performance can be enhanced by transforming such to AnMBR operation when the loading rate is too high for sufficient sludge retention, and/or when the effluent water quality demands are especially stringent. PMID:23578587

  15. Hydraulics of laboratory and full-scale upflow anaerobic sludge blanket (UASB) reactors.

    Science.gov (United States)

    Batstone, D J; Hernandez, J L A; Schmidt, J E

    2005-08-01

    Laboratory-scale upflow anaerobic sludge blanket (UASB) reactors are often used as test platforms to evaluate full-scale applications. However, for a given volume specific hydraulic loading rate and geometry, the gas and liquid flows increase proportionally with the cube root of volume. In this communication, we demonstrate that a laboratory-scale reactor had plug-flow hydraulics, while a full-scale reactor had mixed flow hydraulics. The laboratory-scale reactor could be modeled using an existing biochemical model, and parameters identified, but because of computational speed with plug-flow hydraulics, mixed systems are instead recommended for parameter identification studies. Because of the scaling issues identified, operational data should not be directly projected from laboratory-scale results to the full-scale design. PMID:15977253

  16. Mathematical modeling of upflow anaerobic sludge blanket (UASB) reactor treating domestic wastewater.

    Science.gov (United States)

    Elmitwalli, Tarek

    2013-01-01

    Although the upflow anaerobic sludge blanket (UASB) reactor has been widely applied for domestic wastewater treatment in many developing countries, there is no sufficient mathematical model for proper design and operation of the reactor. An empirical model based on non-linear regression was developed to represent the physical and chemical removal of suspended solids (SS) in the reactor. Moreover, a simplified dynamic model based on ADM1 and the empirical model for SS removal was developed for anaerobic digestion of the entrapped SS and dissolved matter in the wastewater. The empirical model showed that effluent suspended chemical oxygen demand (COD(ss)) concentration is directly proportional to the influent COD(ss) concentration and inversely proportional to both the hydraulic retention time (HRT) of the reactor and wastewater temperature. For obtaining sufficient COD(ss) removal, the HRT of the UASB reactor must be higher than 4 h, and higher HRT than 12 h slightly improved COD(ss) removal. The dynamic model results showed that the required time for filling the reactor with sludge mainly depends on influent total chemical oxygen demand (COD(t)) concentration and HRT. The influent COD(t) concentration, HRT and temperature play a crucial role on the performance of the reactor. The results indicated that shorter HRT is needed for optimization of COD(t) removal, as compared with optimization of COD(t) conversion to methane. Based on the model results, the design HRT of the UASB reactor should be selected based on the optimization of wastewater conversion and minimization of biodegradable SS accumulation in the sludge bed, not only based on COD removal, to guarantee a stable reactor performance.

  17. ATP as an indicator of biomass activity in thermophilic upflow anaerobic sludge blanket reactor

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This work investigated the biomass activity in a thermophilic upflow anaerobic sludge blanket (UASB) reactor of wastewater treatment. Synthetic textile wastewater with pH 10-11, COD level of 2000-3000 mg/L was tested. Cellular adenosine triphosphate (ATP) in volatile solids (VS; mg ATP/gVS) was measured and expressed as specific ATP content to compare the biomass activity in up zone and lower zone in UASB reactor. The result shows that the specific ATP content based on total volatile solids (VS)in lower zone (0. 046 mgATP/gVS average) is much lower than that in up zone (0.62 mgATP/gVS average) due to high content of inactive biomass and high pH in lower zone. The SATP in up zone increases as HRT increases and approaches to a maximum value of 0.85 mgATP/gVS at HRT of 7h, then decreases. It shows most of the total VS in up zone represent active bacterial biomass at HRT of 7h. Rate of subtract utilization is directly related to the activity of microorganisms in the reactor. The effect of HRT on SATP in lower zone is not as significant as on SATP in up zone. The buffer capacity of the thermophilic UASB reactor is very good. It is the activity of sludge granules in lower zone that give the UASB reactor such a good buffer capacity to the inlet high pH.

  18. STARTUP OF UPELOW ANAEROBIC SLUDGE BLANKET REACTOR FOR INDUSTRIAL WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    A.R. Mesdaghinia

    1994-06-01

    Full Text Available Up flow anaerobic sludge blanket (UASB reactors have been increasingly used for industrial wastewater treatment. Because of existing problems in startup step of these reactors, in this research the startup of a UASB in pilot scale and room temperature condition was studied. The total height of UASB reactor was 270 cm and effective height was 240 cm. Diameter of the reactor in lower part was 20 cm (reaction zone and 40 cm in upper part (solid-gas-liquid separator five sampling ports with interval of 32 cm were provided and the effective volume of the reactor was 100 liters. Septic tank digested sludge and cow manure were used for the seeding of UASB reactor. In the startup step of the reactor, volumetric loading was increased step by step. After 155 days granule formation was observed and after 215 days of the study the removal rate increased to 4.62 kg COD/m/ day. More than 98% of soluble COD removal was achieved in lower 160 cm of reactor.

  19. Simultaneous degradation of cyanide and phenol in upflow anaerobic sludge blanket reactor.

    Science.gov (United States)

    Kumar, M Suresh; Mishra, Ram Sushil; Jadhav, Shilpa V; Vaidya, A N; Chakrabarti, T

    2011-07-01

    Coal coking, precious metals mining and nitrile polymer industries generate over several billion liters of cyanide-containing waste annually. Economic and environmental considerations make biological technologies attractive for treatment of wastes containing high organic content, in which the microbial cultures can remove concentrations of organics and cyanide simultaneously. For cyanide and phenol bearing waste treatment, an upflow anaerobic sludge blanket reactor has been developed, which successfully removed free cyanide 98% (with feed concentration of 20 mg 1(-1)) in presence of phenol. The effect of cyanide on phenol degradation was studied with varying concentrations of phenol as well as cyanide under anaerobic conditions. This study revealed that the methanogenic degradation of phenol can occur in the presence of cyanide concentration 30-38 mg 1(-1). Higher cyanide concentration inhibited the phenol degradation rate. The inhibition constant Ki was found to be 38 mg 1(-1) with phenol removal rate of 9.09 mg 1(-1.) x h.

  20. Performance analysis of upflow anaerobic sludge blanket reactors in the treatment of swine wastewater

    Directory of Open Access Journals (Sweden)

    Luiz A. V. Sarmento

    2007-07-01

    Full Text Available The adoption of confined systems for swine production have been increased the use of water in these installations and, consequently, an each time greater production of wastewater. Diagnostics have been showed a high level of water pollution due the waste material release on lands without criterions and in waters without previous treatment. The utilization of anaerobic process to reduce the liquid residues pollutant power has been detaching because beyond reducing the environmental pollution they allow to recover the energetic potential as fertilizer and biogas. In this work the performance of two real scale upflow anaerobic sludge blanket reactors treating swine wastewater were evaluated through operational system analysis, physical-chemical parameters of pollution and biogas production measurement. The results permitted to verify upflow rate speeds above of the value for which these reactors were designed and hydraulic residence times under of the design value. These factors affected negatively the treatment and had reflected on the law removal of the physical-chemical parameters and biogas production. The maximum removal efficiencies reached for TSS, BOD and COD were 72,5%, 34,7% and 40,0%, respectively. The mean rate of biogas liberation was 0,011 m-³ m-².h-1.

  1. Landfill Leachate Treatment Using Hybrid Up-Flow Anaerobic Sludge Blanket (HUASB Reactor

    Directory of Open Access Journals (Sweden)

    Mohd Bharudin Ridzuan

    2013-11-01

    Full Text Available Abstract: The Effect of the development process in the country would lead the increment of the solid wastes production. Malaysia as a developing country is also could not escape from the problem in its solid waste management. An important problem that associated to landfill is the production of leachate. Leachate contains dangerous substances such as organic matters, heavy metals, Nitrogen Ammonia and other materials that could pollute underground water source. The aim of the paper was to study landfill leachate treatment efficiency using Hybrid Upflow Anaerobic Sludge Blanket (HUASB reactor in lab-scale. This research was investigate the pollutant content in landfill leachate and determines the percentage of nutrient removal. Parameters used for this research, were Biochemical Oxygen Demand (BOD, Chemical Oxygen Demand (COD, Suspended Solid (SS, Total Nitrogen (TN, and Total Phosphorus (TP. The experiments were carried out in lab scaled constructed reactor,  30 days duration which samples for test had been taken each 3 days intervals. The results showed that HUASB reactor were capable in removal several parameters. It has great ability in removal of Total Phosphorus and Suspended Solid with 90.60% and 80.70% each. The result of COD removal showed an encouraging removal graph, with average percentage removal 73.70%. Average percentage removal for BOD is 64%. Total Nitrogen was less remove nutrient with average percentage removal 50.32%. From the results, it showed that HUASB reactor capable to remove organic pollutants from landfill leachate.

  2. Grey water treatment in upflow anaerobic sludge blanket (UASB) reactor at different temperatures.

    Science.gov (United States)

    Elmitwalli, Tarek; Otterpohl, Ralf

    2011-01-01

    The treatment of grey water in two upflow anaerobic sludge blanket (UASB) reactors, operated at different hydraulic retention times (HRTs) and temperatures, was investigated. The first reactor (UASB-A) was operated at ambient temperature (14-25 degrees C) and HRT of 20, 12 and 8 h, while the second reactor (UASB-30) was operated at controlled temperature of 30 degrees C and HRT of 16, 10 and 6 h. The two reactors were fed with grey water from 'Flintenbreite' settlement in Luebeck, Germany. When the grey water was treated in the UASB reactor at 30 degrees C, total chemical oxygen demand (CODt) removal of 52-64% was achieved at HRT between 6 and 16 h, while at lower temperature lower removal (31-41%) was obtained at HRT between 8 and 20 h. Total nitrogen and phosphorous removal in the UASB reactors were limited (22-36 and 10-24%, respectively) at all operational conditions. The results showed that at increasing temperature or decreasing HRT of the reactors, maximum specific methanogenic activity of the sludge in the reactors improved. As the UASB reactor showed a significantly higher COD removal (31-64%) than the septic tank (11-14%) even at low temperature, it is recommended to use UASB reactor instead of septic tank (the most common system) for grey water pre-treatment. Based on the achieved results and due to high peak flow factor, a HRT between 8 and 12 h can be considered the suitable HRT for the UASB reactor treating grey water at temperature 20-30 degrees C, while a HRT of 12-24 h can be applied at temperature lower than 20 degrees C.

  3. Grey water treatment in upflow anaerobic sludge blanket (UASB) reactor at different temperatures.

    Science.gov (United States)

    Elmitwalli, Tarek; Otterpohl, Ralf

    2011-01-01

    The treatment of grey water in two upflow anaerobic sludge blanket (UASB) reactors, operated at different hydraulic retention times (HRTs) and temperatures, was investigated. The first reactor (UASB-A) was operated at ambient temperature (14-25 degrees C) and HRT of 20, 12 and 8 h, while the second reactor (UASB-30) was operated at controlled temperature of 30 degrees C and HRT of 16, 10 and 6 h. The two reactors were fed with grey water from 'Flintenbreite' settlement in Luebeck, Germany. When the grey water was treated in the UASB reactor at 30 degrees C, total chemical oxygen demand (CODt) removal of 52-64% was achieved at HRT between 6 and 16 h, while at lower temperature lower removal (31-41%) was obtained at HRT between 8 and 20 h. Total nitrogen and phosphorous removal in the UASB reactors were limited (22-36 and 10-24%, respectively) at all operational conditions. The results showed that at increasing temperature or decreasing HRT of the reactors, maximum specific methanogenic activity of the sludge in the reactors improved. As the UASB reactor showed a significantly higher COD removal (31-64%) than the septic tank (11-14%) even at low temperature, it is recommended to use UASB reactor instead of septic tank (the most common system) for grey water pre-treatment. Based on the achieved results and due to high peak flow factor, a HRT between 8 and 12 h can be considered the suitable HRT for the UASB reactor treating grey water at temperature 20-30 degrees C, while a HRT of 12-24 h can be applied at temperature lower than 20 degrees C. PMID:22097038

  4. Extracellular Polymeric Substances (EPS) in Upflow Anaerobic Sludge Blanket (UASB) Reactors Operated under High Salinity Conditions

    NARCIS (Netherlands)

    Ismail, S.; Parra, de la C.J.; Temmink, B.G.; Lier, van J.B.

    2010-01-01

    Considering the importance of stable and well–functioning granular sludge in anaerobic high rate reactors, a series of experiments were conducted to determine the production and composition of EPS in high sodium concentrations wastewaters pertaining to anaerobic granule properties. The UASB reactors

  5. Anaerobic treatment of a chemical synthesis-based pharmaceutical wastewater in a hybrid upflow anaerobic sludge blanket reactor.

    Science.gov (United States)

    Oktem, Yalcin Askin; Ince, Orhan; Sallis, Paul; Donnelly, Tom; Ince, Bahar Kasapgil

    2008-03-01

    In this study, performance of a lab-scale hybrid up-flow anaerobic sludge blanket (UASB) reactor, treating a chemical synthesis-based pharmaceutical wastewater, was evaluated under different operating conditions. This study consisted of two experimental stages: first, acclimation to the pharmaceutical wastewater and second, determination of maximum loading capacity of the hybrid UASB reactor. Initially, the carbon source in the reactor feed came entirely from glucose, applied at an organic loading rate (OLR) 1 kg COD/m(3) d. The OLR was gradually step increased to 3 kg COD/m(3) d at which point the feed to the hybrid UASB reactor was progressively modified by introducing the pharmaceutical wastewater in blends with glucose, so that the wastewater contributed approximately 10%, 30%, 70%, and ultimately, 100% of the carbon (COD) to be treated. At the acclimation OLR of 3 kg COD/m(3) d the hydraulic retention time (HRT) was 2 days. During this period of feed modification, the COD removal efficiencies of the anaerobic reactor were 99%, 96%, 91% and 85%, and specific methanogenic activities (SMA) were measured as 240, 230, 205 and 231 ml CH(4)/g TVS d, respectively. Following the acclimation period, the hybrid UASB reactor was fed with 100% (w/v) pharmaceutical wastewater up to an OLR of 9 kg COD/m(3) d in order to determine the maximum loading capacity achievable before reactor failure. At this OLR, the COD removal efficiency was 28%, and the SMA was measured as 170 ml CH(4)/g TVS d. The hybrid UASB reactor was found to be far more effective at an OLR of 8 kg COD/m(3) d with a COD removal efficiency of 72%. At this point, SMA value was 200 ml CH(4)/g TVS d. It was concluded that the hybrid UASB reactor could be a suitable alternative for the treatment of chemical synthesis-based pharmaceutical wastewater.

  6. Treatment of domestic wastewater in an up-flow anaerobic sludge blanket reactor followed by moving bed biofilm reactor

    OpenAIRE

    Tawfik, A.; El-Gohary, F.; Temmink, B.G.

    2010-01-01

    The performance of a laboratory-scale sewage treatment system composed of an up-flow anaerobic sludge blanket (UASB) reactor and a moving bed biofilm reactor (MBBR) at a temperature of (22-35 A degrees C) was evaluated. The entire treatment system was operated at different hydraulic retention times (HRT's) of 13.3, 10 and 5.0 h. An overall reduction of 80-86% for CODtotal; 51-73% for CODcolloidal and 20-55% for CODsoluble was found at a total HRT of 5-10 h, respectively. By prolonging the HRT...

  7. Removal of steroid estrogens from municipal wastewater in a pilot scale expanded granular sludge blanket reactor and anaerobic membrane bioreactor

    Science.gov (United States)

    Ito, Ayumi; Mensah, Lawson; Cartmell, Elise; Lester, John N.

    2016-01-01

    Anaerobic treatment of municipal wastewater offers the prospect of a new paradigm by reducing aeration costs and minimizing sludge production. It has been successfully applied in warm climates, but does not always achieve the desired outcomes in temperate climates at the biochemical oxygen demand (BOD) values of municipal crude wastewater. Recently the concept of ‘fortification' has been proposed to increase organic strength and has been demonstrated at the laboratory and pilot scale treating municipal wastewater at temperatures of 10–17°C. The process treats a proportion of the flow anaerobically by combining it with primary sludge from the residual flow and then polishing it to a high effluent standard aerobically. Energy consumption is reduced as is sludge production. However, no new treatment process is viable if it only addresses the problems of traditional pollutants (suspended solids – SS, BOD, nitrogen – N and phosphorus – P); it must also treat hazardous substances. This study compared three potential municipal anaerobic treatment regimes, crude wastewater in an expanded granular sludge blanket (EGSB) reactor, fortified crude wastewater in an EGSB and crude wastewater in an anaerobic membrane bioreactor. The benefits of fortification were demonstrated for the removal of SS, BOD, N and P. These three systems were further challenged with the removal of steroid estrogens at environmental concentrations from natural indigenous sources. All three systems removed these compounds to a significant degree, confirming that estrogen removal is not restricted to highly aerobic autotrophs, or aerobic heterotrophs, but is also a faculty of anaerobic bacteria. PMID:26212345

  8. Anaerobic degradation of aircraft deicing fluid (ADF) in upflow anaerobic sludge blanket (UASB) reactors and the fate of ADF additives

    Science.gov (United States)

    Pham, Thi Tham

    2002-11-01

    A central composite design was employed to methodically investigate anaerobic treatment of aircraft deicing fluid (ADF) in bench-scale Upflow Anaerobic Sludge Blanket (UASB) reactors. A total of 23 runs at 17 different operating conditions were conducted in continuous mode. The development of four empirical models describing process responses (i.e., chemical oxygen demand (COD) removal efficiency, biomass specific acetoclastic activity, methane production rate, and methane production potential) as functions of ADF concentration, hydraulic retention time (HRT), and biomass concentration is presented. Model verification indicated that predicted responses (COD removal efficiencies, biomass specific acetoclastic activity, and methane production rates and potential) were in good agreement with experimental results. Biomass specific acetoclastic activity was improved by almost two-fold during ADF treatment in UASB reactors. For the design window, COD removal efficiencies were higher than 90%. Predicted methane production potentials were close to theoretical values, and methane production rates increased as the organic loading rate (OLR) was increased. ADF toxicity effects were evident for 1.6% ADF at medium specific organic loadings (SOLR above 0.5 g COD/g VSS/d). In contrast, good reactor stability and excellent removal efficiencies were achieved at 1.2% ADF for reactor loadings approaching that of highly loaded systems (0.73 g COD/g VSS/d). Acclimation to ADF resulted in an initial reduction in the biomass settling velocity. The fate of ADF additives was also investigated. There was minimal sorption of benzotriazole (BT), 5-methyl-1 H-benzotriazole (MeBT), and 5,6-dimethyl-1 H-benzotriazole (DiMeBT) to anaerobic granules. A higher sorption capacity was measured for NP. Active transport may be one of the mechanisms for NP sorption. Ethylene glycol degradation experiments indicated that BT, MeBT, DiMeBT, and the nonionic surfactant Tergitol NP-4 had no significant

  9. Bioaugmentation of an acetate-oxidising anaerobic consortium in up-flow sludge blanket reactor subjected to high ammonia loads

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Angelidaki, Irini

    methanogens, in syntrophic association with acetate oxidising bacteria, are more resistant to ammonia toxicity effect. The use of syntrophic acetate oxidising methanogenic consortia could provide a new approach to tackle ammonia toxicity effect in AD. The SAO culture (i.e. Clostridium ultunense spp. nov......Ammonia is the major inhibitor of anaerobic digestion (AD) process leading to suboptimal utilisation of the biogas potential of the feedstocks and causing economical losses to the biogas plants. However, ammonia is mainly inhibiting the aceticlastic methanogens, while the hydrogenotrophic....... in association with Methanoculleus spp. strain MAB1), is an acetate oxidising methanogenic consortium that can produce methane (CH4) at high ammonia levels. In the current study the bioaugmentation of the SAO culture in a mesophilic up-flow anaerobic sludge blanket (UASB) reactor subjected to high ammonia loads...

  10. Effects of phosphate addition on methane fermentation in the batch and upflow anaerobic sludge blanket (UASB) reactors.

    Science.gov (United States)

    Suzuki, Sho; Shintani, Masaki; Sanchez, Zoe Kuizon; Kimura, Kohei; Numata, Mitsuru; Yamazoe, Atsushi; Kimbara, Kazuhide

    2015-12-01

    Ammonia inhibition of methane fermentation is one of the leading causes of failure of anaerobic digestion reactors. In a batch anaerobic digestion reactor with 429 mM NH3-N/L of ammonia, the addition of 25 mM phosphate resulted in an increase in methane production rate. Similar results were obtained with the addition of disodium phosphate in continuous anaerobic digestion using an upflow anaerobic sludge blanket (UASB) reactor. While methane content and production rate decreased in the presence of more than 143 mM NH3-N/L of ammonium chloride in UASB, the addition of 5 mM disodium phosphate suppressed ammonia inhibition at 214 mM NH3-N/L of ammonium chloride. The addition prevented acetate/propionate accumulation, which might be one of the effects of the phosphate on the ammonia inhibition. The effects on the microbial community in the UASB reactor was also assessed, which was composed of Bacteria involved in hydrolysis, acidogenesis, acetogenesis, and dehydrogenation, as well as Archaea carrying out methanogenesis. The change in the microbial community was observed by ammonia inhibition and the addition of phosphate. The change indicates that the suppression of ammonia inhibition by disodium phosphate addition could stimulate the activity of methanogens, reduce shift in bacterial community, and enhance hydrogen-producing bacteria. The addition of phosphate will be an important treatment for future studies of methane fermentation.

  11. Impact of aluminum chloride on process performance and microbial community structure of granular sludge in an upflow anaerobic sludge blanket reactor for natural rubber processing wastewater treatment.

    Science.gov (United States)

    Thanh, Nguyen Thi; Watari, Takahiro; Thao, Tran Phuong; Hatamoto, Masashi; Tanikawa, Daisuke; Syutsubo, Kazuaki; Fukuda, Masao; Tan, Nguyen Minh; Anh, To Kim; Yamaguchi, Takashi; Huong, Nguyen Lan

    2016-01-01

    In this study, granular sludge formation was carried out using an aluminum chloride supplement in an upflow anaerobic sludge blanket (UASB) reactor treating natural rubber processing wastewater. Results show that during the first 75 days after the start-up of the UASB reactor with an organic loading rate (OLR) of 2.65 kg-COD·m(-3)·day(-1), it performed stably with a removal of 90% of the total chemical oxygen demand (COD) and sludge still remained in small dispersed flocs. However, after aluminum chloride was added at a concentration of 300 mg·L(-1) and the OLR range was increased up to 5.32 kg-COD·m(-3)·day(-1), the total COD removal efficiency rose to 96.5 ± 2.6%, with a methane recovery rate of 84.9 ± 13.4%, and the flocs began to form granules. Massively parallel 16S rRNA gene sequencing of the sludge retained in the UASB reactor showed that total sequence reads of Methanosaeta sp. and Methanosarcina sp., reported to be the key organisms for granulation, increased after 311 days of operation. This indicates that the microbial community structure of the retained sludge in the UASB reactor at the end of the experiment gave a good account of itself in not only COD removal, but also granule formation.

  12. Degradation of phenol in an upflow anaerobic sludge blanket(UASB) reactor at ambient temperatureKE

    Institute of Scientific and Technical Information of China (English)

    KE Shui-zhou1; SHI Zhou; ZHANG Tong; Herbert H. P. FANG

    2004-01-01

    A synthetic wastewater containing phenol as sole substrate was treated in a 2.8 L upflow anaerobic sludge blanket(UASB) reactor at ambient temperature. The operation conditions and phenol removal efficiency were discussed, microbial population in the UASB sludge was identified based on DNA cloning, and pathway of anaerobic phenol degradation was proposed. Phenol in wastewater was degraded in an UASB reactor at loading rate up to 18 gCOD/(L·d), With a 1:1 recycle ratio, at 26(1℃, pH 7.0-7.5. An UASB reactor was able to remove 99% of phenol up to 1226 mg/L in wastewater with 24 h of hydraulic retention time(HRT). For HRT below 24 h, phenol degradation efficiency decreased with HRT, from 95.4% at 16 h to 93.8% at 12 h. It further deteriorated to 88.5% when HRT reached 8 h. When the concentration of influent phenol of the reactor was 1260 mg/L(corresponding COD 3000 mg/L), with the HRT decreasing(from 40 h to 4 h, corresponding COD loading increasing), the biomass yields tended to increase from 0.265 to 3.08 g/(L·d). While at 12 h of HRT, the biomass yield was lower. When HRT was 12 h, the methane yield was 0.308 L/(gCOD removed), which was the highest. Throughout the study, phenol was the sole organic substrate. The effluent contained only residual phenol without any detectable intermediates, such as benzoate, 4-hydrobenzoate or volatile fatty acids(VFAs). Based on DNA cloning analysis, the sludge was composed of five groups of microorganisms. Desulfotomaculum and Clostridium were likely responsible for the conversion of phenol to benzoate, which was further degraded by Syntrophus to acetate and H2/CO2. Methanogens lastly converted acetate and H2/CO2 to methane. The role of epsilon-Proteobacteria was, however, unsure.

  13. The performance enhancements of upflow anaerobic sludge blanket (UASB) reactors for domestic sludge treatment--a state-of-the-art review.

    Science.gov (United States)

    Chong, Siewhui; Sen, Tushar Kanti; Kayaalp, Ahmet; Ang, Ha Ming

    2012-07-01

    Nowadays, carbon emission and therefore carbon footprint of water utilities is an important issue. In this respect, we should consider the opportunities to reduce carbon footprint for small and large wastewater treatment plants. The use of anaerobic rather than aerobic treatment processes would achieve this aim because no aeration is required and the generation of methane can be used within the plant. High-rate anaerobic digesters receive great interests due to their high loading capacity and low sludge production. Among them, the upflow anaerobic sludge blanket (UASB) reactors have been most widely used. However, there are still unresolved issues inhibiting the widespread of this technology in developing countries or countries with climate temperature fluctuations (such as subtropical regions). A large number of studies have been carried out in order to enhance the performance of UASB reactors but there is a lack of updated documentation. In face of the existing limitations and the increasing importance of this technology, the authors present an up-to-date review on the performance enhancements of UASB reactors over the last decade. The important aspects of this article are: (i) enhancing the start-up and granulation in UASB reactors, (ii) coupling with post-treatment unit to overcome the temperature constraint, and (iii) improving the removal efficiencies of the organic matter, nutrients and pathogens in the final effluent. Finally the authors have highlighted future research direction based on their critical analysis.

  14. Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor

    International Nuclear Information System (INIS)

    Textile wastewater (TW) is one of the most hazardous wastewater for the environment when discharged without proper treatment. Biological treatment technologies have shown encouraging results over the treatment of recalcitrant compounds containing wastewaters. Upflow anaerobic sludge blanket reactor (UASB) was evaluated in terms of colour and the reduction of chemical oxygen demand (COD) with different organic loads using TW containing dyes belonging to different chemical groups. The study was performed using six different dye concentrations (10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 150 mg/L, 300 mg/L) with three COD levels (∼1000 mg/L, ∼2000 mg/L, ∼3000 mg/L). Decolourization, COD removal and reactor stability were monitored. Over 85% of colour removal was observed with all dye concentrations with three organic loads. Acid Red 131 and Acid Yellow 79 were decolourized through biodegradation while Acid Blue 204 was decolourized due to adsorption onto anaerobic granules. COD removal was high in all dye concentrations, regardless of co-substrate levels. The reactor did not show any instability during the study. The activity of granules was not affected by the dyes. Methanothrix like bacteria were the dominant group in granules before introducing TW, however, they were reduced and cocci-shape microorganism increased after the treatment of textile wastewater.

  15. Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wijetunga, Somasiri, E-mail: swije2001@yahoo.com [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China); Li Xiufen [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China); Jian Chen, E-mail: jchen@sytu.edu.cn [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China)

    2010-05-15

    Textile wastewater (TW) is one of the most hazardous wastewater for the environment when discharged without proper treatment. Biological treatment technologies have shown encouraging results over the treatment of recalcitrant compounds containing wastewaters. Upflow anaerobic sludge blanket reactor (UASB) was evaluated in terms of colour and the reduction of chemical oxygen demand (COD) with different organic loads using TW containing dyes belonging to different chemical groups. The study was performed using six different dye concentrations (10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 150 mg/L, 300 mg/L) with three COD levels ({approx}1000 mg/L, {approx}2000 mg/L, {approx}3000 mg/L). Decolourization, COD removal and reactor stability were monitored. Over 85% of colour removal was observed with all dye concentrations with three organic loads. Acid Red 131 and Acid Yellow 79 were decolourized through biodegradation while Acid Blue 204 was decolourized due to adsorption onto anaerobic granules. COD removal was high in all dye concentrations, regardless of co-substrate levels. The reactor did not show any instability during the study. The activity of granules was not affected by the dyes. Methanothrix like bacteria were the dominant group in granules before introducing TW, however, they were reduced and cocci-shape microorganism increased after the treatment of textile wastewater.

  16. A new degassing membrane coupled upflow anaerobic sludge blanket (UASB) reactor to achieve in-situ biogas upgrading and recovery of dissolved CH4 from the anaerobic effluent

    DEFF Research Database (Denmark)

    Luo, Gang; Wang, Wen; Angelidaki, Irini

    2014-01-01

    in the effluent was reduced by directly pumping the reactor effluent through the DU. In this way, the dissolved CH4 concentration in the effluent decreased from higher than 0.94mM to around 0.13mM, and thus efficient recovery of CH4 from the anaerobic effluent was achieved. In the whole operational period......A new technology for in-situ biogas upgrading and recovery of CH4 from the effluent of biogas reactors was proposed and demonstrated in this study. A vacuum degassing membrane module was used to desorb CO2 from the liquid phase of a biogas reactor. The degassing membrane was submerged...... into a degassing unit (DU). The results from batch experiments showed that mixing intensity, transmembrane pressure, pH and inorganic carbon concentration affected the CO2 desorption rate in the DU. Then, the DU was directly connected to an upflow anaerobic sludge blanket (UASB) reactor. The results showed the CH4...

  17. A downflow hanging sponge (DHS) reactor for faecal coliform removal from an upflow anaerobic sludge blanket (UASB) effluent.

    Science.gov (United States)

    Yaya Beas, Rosa Elena; Kujawa-Roeleveld, Katarzyna; van Lier, Jules B; Zeeman, Grietje

    2015-01-01

    This research was conducted to study the faecal coliforms removal capacity of downflow hanging sponge (DHS) reactors as a post-treatment for an upflow anaerobic sludge blanket (UASB) reactor. Three long-term continuous laboratory-scale DHS reactors, i.e. a reactor with cube type sponges without recirculation, a similar one with recirculation and a reactor with curtain type sponges, were studied. The porosities of the applied medium were 91%, 87% and 47% respectively. The organic loading rates were 0.86 kgCOD m(-3) d(-1), 0.53 kgCOD m(-3) d(-1) and 0.24 kgCOD m(-3) d(-1) correspondingly at hydraulic loading rates of 1.92 m3 m(-2) d(-1), 2.97 m3 m(-2) d(-1) and 1.32 m3 m(-2) d(-1), respectively (COD: chemical oxygen demand). The corresponding averages for faecal coliform removal were 99.997%, 99.919% and 92.121% respectively. The 1989 WHO guidelines standards, in terms of faecal coliform content for unrestricted irrigation (category A), was achieved with the effluent of the cube type DHS (G1) without recirculation. Restricted irrigation, category B and C, is assigned to the effluent of the cube type with recirculation and the curtain type, respectively. Particularly for organic compounds, the effluent of evaluated DHS reactors complies with USEPA standards for irrigation of so called non-food crops like pasture for milking animals, fodder, fibre, and seed crops. PMID:26606098

  18. Improved dechlorinating performance of upflow anaerobic sludge blanket reactors by incorporation of Dehalospirillum multivorans into granular sludge

    DEFF Research Database (Denmark)

    Hörber, Christine; Christiansen, Nina; Arvin, Erik;

    1998-01-01

    was compared to the reference 1 (R1) reactor, where the granules were autoclaved to remove all dechlorinating abilities before inoculation, and to the reference 2 (R2) reactor, containing only living granular sludge. All three reactors were fed mineral medium containing 3 to 57 mu M PCE, 2 mM formate, and 0...... to DCE, even at HRTs much lower than the reciprocal maximum specific growth rate of D. multivorans, indicating that this bacterium was immobilized in the living and autoclaved granular sludge. In contrast, the R2 reactor, with no inoculation of D. multivorans, only converted PCE to TCE under the same...

  19. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye;

    2003-01-01

    by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change......-rate anaerobic treatment systems based on anaerobic granular sludge and biofilm are described in this chapter. Emphasis is given to a) the Up-flow Anaerobic Sludge Blanket (UASB) systems, b) the main characteristics of the anaerobic granular sludge, and c) the factors that control the granulation process...

  20. The Start-up of Hybrid, Anaerobic up-flow Sludge Blanket (HUASB under a Range of Mesophiclic and Thermophilic Temperatures

    Directory of Open Access Journals (Sweden)

    S. A. Habeeb

    2011-07-01

    Full Text Available We have examined the effect of gradual increase of the temperature on the performance of anaerobic process of palm oil mill effluent (POME, and sludge granules development. Two hybrid up-flow anaerobic sludge blanket (HUASB reactors R1 and R2 were employed to be run at 27±2 and 37±1°C, respectively. R1 was kept at room temperature for the whole experiment, where the temperature of R2 was increased up to 49ºC (3ºC after every steady-state occurrence. Maximum COD removal of 91% was obtained in R2 at optimum temperature of 46°C, while 84% was recorded in R1. Additional parameters were applied to evaluate the performance of the process, i.e. total suspended solids (TSS, Turbidity, and Color. The imaging of sludge aggregate has revealed the effect of temperature on granulation development during the experiment. Throughout the operation period, it can be seen that the microbial growth rate was significantly affected by temperature. Hence, the use of HUASB reactor could be productively implemented for POME treatment as an efficient system under the mesophilic and thermophilic temperatures.

  1. Combination of upflow anaerobic sludge blanket (UASB) reactor and partial nitritation/anammox moving bed biofilm reactor (MBBR) for municipal wastewater treatment.

    Science.gov (United States)

    Malovanyy, Andriy; Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta

    2015-03-01

    In this study the combination of an upflow anaerobic sludge blanket (UASB) reactor and a deammonification moving bed biofilm reactor (MBBR) for mainstream wastewater treatment was tested. The competition between aerobic ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) was studied during a 5months period of transition from reject water to mainstream wastewater followed by a 16months period of mainstream wastewater treatment. The decrease of influent ammonium concentration led to a wash-out of suspended biomass which had a major contribution to nitrite production. Influence of a dissolved oxygen concentration and a transient anoxia mechanism of NOB suppression were studied. It was shown that anoxic phase duration has no effect on NOB metabolism recovery and oxygen diffusion rather than affinities of AOB and NOB to oxygen determine the rate of nitrogen conversion in a biofilm system. Anammox activity remained on the level comparable to reject water treatment systems.

  2. Combination of upflow anaerobic sludge blanket (UASB) reactor and partial nitritation/anammox moving bed biofilm reactor (MBBR) for municipal wastewater treatment.

    Science.gov (United States)

    Malovanyy, Andriy; Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta

    2015-03-01

    In this study the combination of an upflow anaerobic sludge blanket (UASB) reactor and a deammonification moving bed biofilm reactor (MBBR) for mainstream wastewater treatment was tested. The competition between aerobic ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) was studied during a 5months period of transition from reject water to mainstream wastewater followed by a 16months period of mainstream wastewater treatment. The decrease of influent ammonium concentration led to a wash-out of suspended biomass which had a major contribution to nitrite production. Influence of a dissolved oxygen concentration and a transient anoxia mechanism of NOB suppression were studied. It was shown that anoxic phase duration has no effect on NOB metabolism recovery and oxygen diffusion rather than affinities of AOB and NOB to oxygen determine the rate of nitrogen conversion in a biofilm system. Anammox activity remained on the level comparable to reject water treatment systems. PMID:25600011

  3. Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors.

    Science.gov (United States)

    Zhao, Zhiqiang; Zhang, Yaobin; Holmes, Dawn E; Dang, Yan; Woodard, Trevor L; Nevin, Kelly P; Lovley, Derek R

    2016-06-01

    Promoting direct interspecies electron transfer (DIET) to enhance syntrophic metabolism may be a strategy for accelerating the conversion of organic wastes to methane, but microorganisms capable of metabolizing propionate and butyrate via DIET under methanogenic conditions have yet to be identified. In an attempt to establish methanogenic communities metabolizing propionate or butyrate with DIET, enrichments were initiated with up-flow anaerobic sludge blanket (UASB), similar to those that were previously reported to support communities that metabolized ethanol with DIET that relied on direct biological electrical connections. In the absence of any amendments, microbial communities enriched were dominated by microorganisms closely related to pure cultures that are known to metabolize propionate or butyrate to acetate with production of H2. When biochar was added to the reactors there was a substantial enrichment on the biochar surface of 16S rRNA gene sequences closely related to Geobacter and Methanosaeta species known to participate in DIET. PMID:26967338

  4. Treatment of natural rubber processing wastewater using a combination system of a two-stage up-flow anaerobic sludge blanket and down-flow hanging sponge system.

    Science.gov (United States)

    Tanikawa, D; Syutsubo, K; Hatamoto, M; Fukuda, M; Takahashi, M; Choeisai, P K; Yamaguchi, T

    2016-01-01

    A pilot-scale experiment of natural rubber processing wastewater treatment was conducted using a combination system consisting of a two-stage up-flow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) reactor for more than 10 months. The system achieved a chemical oxygen demand (COD) removal efficiency of 95.7% ± 1.3% at an organic loading rate of 0.8 kgCOD/(m(3).d). Bacterial activity measurement of retained sludge from the UASB showed that sulfate-reducing bacteria (SRB), especially hydrogen-utilizing SRB, possessed high activity compared with methane-producing bacteria (MPB). Conversely, the acetate-utilizing activity of MPB was superior to SRB in the second stage of the reactor. The two-stage UASB-DHS system can reduce power consumption by 95% and excess sludge by 98%. In addition, it is possible to prevent emissions of greenhouse gases (GHG), such as methane, using this system. Furthermore, recovered methane from the two-stage UASB can completely cover the electricity needs for the operation of the two-stage UASB-DHS system, accounting for approximately 15% of the electricity used in the natural rubber manufacturing process. PMID:27120630

  5. Effect of the temperature and of the organic load in two-stage up flow anaerobic sludge blanket reactors treating of swine wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Bichuette, Alexandre Abud; Duda, Rose Maria; Oliveira, Roberto Alves de [Universidade Estadual Paulista (UNESP), Jaboticabal, SP (Brazil). Dept. de Engenharia Rural], E-mail: oliveira@fcav.unesp.br

    2008-07-01

    In this work the acting of two-stage up flow anaerobic sludge blanket reactors (UASB) was evaluated, installed in series, in pilot scale (volumes of 908 L and 350 L, respectively) in the treatment swine wastewater, with concentrations of total solids suspended (TSS) around 10000 mg L{sup -1}. The organic loading rates (OLR) applied in first UASB were of 5,2 and of 8,6 g total COD (Ld){sup -1}. The medium efficiencies of removal of the chemical demand of total oxygen (total COD), TSS and TKN were higher than 89; 80 and 55%, respectively, for the system of anaerobic treatment composed by the reactors UASB in two apprenticeships. The rate of volumetric methane production in the system of anaerobic treatment with the reactors UASB were 0,08 and 0,16 m{sup 3}CH{sub 4} (m{sup 3} CH{sub 4} reactor d){sup -1}. The number of total coliforms was reduced to 2,6x10{sup 4} NMP/100 mL. (author)

  6. Anaerobic sludge granulation

    NARCIS (Netherlands)

    Hulshoff Pol, L.W.; Castro Lopes, de S.I.; Lettinga, G.; Lens, P.N.L.

    2004-01-01

    This paper reviews different theories on anaerobic sludge granulation in UASB-reactors that have been proposed during the past two decades
    This paper reviews different theories on anaerobic sludge granulation in UASB-reactors that have been proposed during the past two decades. The initial stage

  7. Impact of temperature on feed-flow characteristics and filtration performance of an upflow anaerobic sludge blanket coupled ultrafiltration membrane treating municipal wastewater.

    Science.gov (United States)

    Ozgun, Hale; Tao, Yu; Ersahin, Mustafa Evren; Zhou, Zhongbo; Gimenez, Juan B; Spanjers, Henri; van Lier, Jules B

    2015-10-15

    The objective of this study was to assess the operational feasibility of an anaerobic membrane bioreactor (AnMBR), consisting of an upflow anaerobic sludge blanket (UASB) reactor coupled to an ultrafiltration membrane unit, at two operational temperatures (25°C and 15°C) for the treatment of municipal wastewater. The results showed that membrane fouling at 15°C was more severe than that at 25°C. Higher chemical oxygen demand (COD) and soluble microbial products (SMP) concentrations, lower mean particle diameter, and higher turbidity in the UASB effluent at lower temperature aggravated membrane fouling compared to the 25°C operation. However, the overall AnMBR treatment performance was not significantly affected by temperature, which was attributed to the physical membrane barrier. Cake resistance was found responsible for over 40% of the total fouling in both cases. However, an increase was observed in the contribution of pore blocking resistance at 15°C related to the larger amount of fine particles in the UASB effluent compared to 25°C. Based on the overall results, it is concluded that an AnMBR, consisting of a UASB coupled membrane unit, is not found technically feasible for the treatment of municipal wastewater at 15°C, considering the rapid deterioration of the filtration performance. PMID:26141423

  8. Kinetic of carbonaceous substrate in an upflow anaerobic sludge sludge blanket (UASB) reactor treating 2,4 dichlorophenol (2,4 DCP).

    Science.gov (United States)

    Sponza, Delia Teresa; Uluköy, Ayşen

    2008-01-01

    The performance of an upflow anaerobic sludge blanket (UASB) reactor treating 2,4 dichlorophenol (2,4 DCP) was evaluated at different hydraulic retention times (HRTs) using synthetic wastewater in order to obtain the growth substrate (glucose-COD) and 2,4 DCP removal kinetics. Treatment efficiencies of the UASB reactor were investigated at different hydraulic retention times (2-20 h) corresponding to a food to mass (F/M) ratio of 1.2-1.92 g-COD g(-1) VSS day(-1). A total of 65-83% COD removal efficiencies were obtained at HRTs of 2-20 h. In all, 83% and 99% 2,4 DCP removals were achieved at the same HRTs in the UASB reactor. Conventional Monod, Grau Second-order and Modified Stover-Kincannon models were applied to determine the substrate removal kinetics of the UASB reactor. The experimental data obtained from the kinetic models showed that the Monod kinetic model is more appropriate for correlating the substrate removals compared to the other models for the UASB reactor. The maximum specific substrate utilization rate (k) (mg-COD mg(-1) SS day(-1)), half-velocity concentration (K(s)) (mg COD l(-1)), growth yield coefficient (Y) (mg mg(-1)) and bacterial decay coefficient (b) (day(-1)) were 0.954 mg-COD mg(-1) SS day(-1), 560.29 mg-COD l(-1), 0.78 mg-SS g(-1)-COD, 0.093 day(-1) in the Conventional Monod kinetic model. The second-order kinetic coefficient (k(2)) was calculated as 0.26 day(-1) in the Grau reaction kinetic model. The maximum COD removal rate constant (U(max)) and saturation value (K(B)) were calculated as 7.502 mg CODl(-1)day(-1) and 34.56 mg l(-1)day(-1) in the Modified Stover-Kincannon Model. The (k)(mg-2,4 DCP mg(-1) SS day(-1)), (K(s)) (mg 2,4 DCPl(-1)), (Y) (mg SS mg(-1) 2,4 DCP) and (k(d)) (day(-1)) were 0.0041 mg-2,4 DCP mg(-1) SS day(-1), 2.06 mg-COD l(-1), 0.0017 mg-SS mg(-1) 2,4 DCP and 3.1 x 10(-5) day(-1) in the Conventional Monod kinetic model for 2,4 DCP degradation. The second-order kinetic coefficient (k(2)) was calculated as 0.30 day

  9. Kinetic of carbonaceous substrate in an upflow anaerobic sludge sludge blanket (UASB) reactor treating 2,4 dichlorophenol (2,4 DCP).

    Science.gov (United States)

    Sponza, Delia Teresa; Uluköy, Ayşen

    2008-01-01

    The performance of an upflow anaerobic sludge blanket (UASB) reactor treating 2,4 dichlorophenol (2,4 DCP) was evaluated at different hydraulic retention times (HRTs) using synthetic wastewater in order to obtain the growth substrate (glucose-COD) and 2,4 DCP removal kinetics. Treatment efficiencies of the UASB reactor were investigated at different hydraulic retention times (2-20 h) corresponding to a food to mass (F/M) ratio of 1.2-1.92 g-COD g(-1) VSS day(-1). A total of 65-83% COD removal efficiencies were obtained at HRTs of 2-20 h. In all, 83% and 99% 2,4 DCP removals were achieved at the same HRTs in the UASB reactor. Conventional Monod, Grau Second-order and Modified Stover-Kincannon models were applied to determine the substrate removal kinetics of the UASB reactor. The experimental data obtained from the kinetic models showed that the Monod kinetic model is more appropriate for correlating the substrate removals compared to the other models for the UASB reactor. The maximum specific substrate utilization rate (k) (mg-COD mg(-1) SS day(-1)), half-velocity concentration (K(s)) (mg COD l(-1)), growth yield coefficient (Y) (mg mg(-1)) and bacterial decay coefficient (b) (day(-1)) were 0.954 mg-COD mg(-1) SS day(-1), 560.29 mg-COD l(-1), 0.78 mg-SS g(-1)-COD, 0.093 day(-1) in the Conventional Monod kinetic model. The second-order kinetic coefficient (k(2)) was calculated as 0.26 day(-1) in the Grau reaction kinetic model. The maximum COD removal rate constant (U(max)) and saturation value (K(B)) were calculated as 7.502 mg CODl(-1)day(-1) and 34.56 mg l(-1)day(-1) in the Modified Stover-Kincannon Model. The (k)(mg-2,4 DCP mg(-1) SS day(-1)), (K(s)) (mg 2,4 DCPl(-1)), (Y) (mg SS mg(-1) 2,4 DCP) and (k(d)) (day(-1)) were 0.0041 mg-2,4 DCP mg(-1) SS day(-1), 2.06 mg-COD l(-1), 0.0017 mg-SS mg(-1) 2,4 DCP and 3.1 x 10(-5) day(-1) in the Conventional Monod kinetic model for 2,4 DCP degradation. The second-order kinetic coefficient (k(2)) was calculated as 0.30 day

  10. Optimization of separate hydrogen and methane production from cassava wastewater using two-stage upflow anaerobic sludge blanket reactor (UASB) system under thermophilic operation.

    Science.gov (United States)

    Intanoo, Patcharee; Rangsanvigit, Pramoch; Malakul, Pomthong; Chavadej, Sumaeth

    2014-12-01

    The objective of this study was to investigate the separate hydrogen and methane productions from cassava wastewater by using a two-stage upflow anaerobic sludge blanket (UASB) system under thermophilic operation. Recycle ratio of the effluent from methane bioreactor-to-feed flow rate was fixed at 1:1 and pH of hydrogen UASB unit was maintained at 5.5. At optimum COD loading rate of 90 kg/m3 d based on the feed COD load and hydrogen UASB volume, the produced gas from the hydrogen UASB unit mainly contained H2 and CO2 which provided the maximum hydrogen yield (54.22 ml H2/g COD applied) and specific hydrogen production rate (197.17 ml/g MLVSSd). At the same optimum COD loading rate, the produced gas from the methane UASB unit mainly contained CH4 and CO2 without H2 which were also consistent with the maximum methane yield (164.87 ml CH4/g COD applied) and specific methane production rate (356.31 ml CH4/g MLVSSd). The recycling operation minimized the use of NaOH for pH control in hydrogen UASB unit. PMID:25306229

  11. Impact of ozone pre-treatment on the performance of upflow anaerobic sludge blanket treating pre-treated grain distillery wastewater.

    Science.gov (United States)

    Robertson, L; Britz, T J; Sigge, G O

    2014-01-01

    Two 2 L laboratory-scale upflow anaerobic sludge blanket (UASB) reactors were operated for 277 days. The substrate of the control reactor (Rc) contained grain distillery wastewater (GDWW) that had undergone coagulant pre-treatment, and the substrate of the second UASB reactor consisted of GDWW that had undergone coagulant pre-treatment and ozone pre-treatment (Ro). Both reactors treated pre-treated GDWW successfully at ca. 9 kgCOD m(-3) d(-1). Chemical oxygen demand (COD) reductions of ca. 96% for Rc and 93% for Ro were achieved. Fats, oils and grease (FOG) reductions (%) showed variations throughout the study, and reductions of ca. 88 and 92% were achieved for Rc and Ro, respectively. Rc produced more biogas, and the methane percentage was similar in both reactors. UASB granule washout in Rc suggested possible toxicity of unsaturated fatty acids present in non-ozonated substrate. The feasibility of FOG removal was demonstrated as both reactors successfully treated pre-treated GDWW. Better results were obtained for Ro effluent during post-ozonation. The ozone pre-treatment possibly led to easier degradable wastewater, and better results could potentially be obtained when other post-treatment steps are applied. Ozone pre-treatment did not, however, show an added benefit in the reactor performance results. PMID:25429461

  12. Performance of down-flow hanging sponge (DHS) reactor coupled with up-flow anaerobic sludge blanket (UASB) reactor for treatment of onion dehydration wastewater.

    Science.gov (United States)

    El-Kamah, Hala; Mahmoud, Mohamed; Tawfik, Ahmed

    2011-07-01

    In this study, a promising system consisting of up-flow anaerobic sludge blanket (UASB) reactor followed by down-flow hanging sponge (DHS) reactor was investigated for onion dehydration wastewater treatment. Laboratory experiments were conducted at two different phases, i.e., phase (1) at overall hydraulic retention time (HRT) of 11h (UASB reactor: 6h and DHS reactor: 5h) and phase (2) at overall HRT of 9.4h (UASB reactor: 5.2h and DHS reactor: 4.2h). Long-term operation results of the proposed system showed that its overall TCOD, TBOD, TSS, TKN and NH(4)-N removal efficiencies were 92 ± 5, 95 ± 2, 95 ± 2, 72 ± 6 and 99 ± 1.3%, respectively (phase 1). Corresponding values for the 2nd phase were 85.4 ± 5, 86 ± 3, 87 ± 6, 65 ± 8 and 95 ± 2.8%. Based on the available results, the proposed system could be more viable option for treatment of wastewater generated from onion dehydration industry in regions with tropical or sub-tropical climates and with stringent discharge standards.

  13. Effect of influent COD/SO4(2-) ratios on biodegradation behaviors of starch wastewater in an upflow anaerobic sludge blanket (UASB) reactor.

    Science.gov (United States)

    Lu, Xueqin; Zhen, Guangyin; Ni, Jialing; Hojo, Toshimasa; Kubota, Kengo; Li, Yu-You

    2016-08-01

    A lab-scale upflow anaerobic sludge blanket (UASB) has been run for 250days to investigate the influence of influent COD/SO4(2-) ratios on the biodegradation behavior of starch wastewater and process performance. Stepwise decreasing COD/SO4(2-) ratio enhanced sulfidogenesis, complicating starch degradation routes and improving process stability. The reactor exhibited satisfactory performance at a wide COD/SO4(2-) range ⩾2, attaining stable biogas production of 1.15-1.17LL(-1)d(-1) with efficient simultaneous removal of total COD (73.5-80.3%) and sulfate (82.6±6.4%). Adding sulfate favored sulfidogenesis process and diversified microbial community, invoking hydrolysis-acidification of starch and propionate degradation and subsequent acetoclastic methanogenesis; whereas excessively enhanced sulfidogenesis (COD/SO4(2-) ratios methane conversion. This research in-depth elucidated the role of sulfidogenesis in bioenergy recovery and sulfate removal, advancing the applications of UASB technology in water industry from basic science. PMID:27132225

  14. A case study of coupling upflow anaerobic sludge blanket (UASB) and ANITA™ Mox process to treat high-strength landfill leachate.

    Science.gov (United States)

    Lu, Ting; George, Biju; Zhao, Hong; Liu, Wenjun

    2016-01-01

    A pilot study was conducted to study the treatability of high-strength landfill leachate by a combined process including upflow anaerobic sludge blanket (UASB), carbon removal (C-stage) moving bed biofilm reactor (MBBR) and ANITA™ Mox process. The major innovation on this pilot study is the patent-pending process invented by Veolia that integrates the above three unit processes with an effluent recycle stream, which not only maintains the low hydraulic retention time to enhance the treatment performance but also reduces inhibiting effect from chemicals present in the high-strength leachate. This pilot study has demonstrated that the combined process was capable of treating high-strength leachate with efficient chemical oxygen demand (COD) and nitrogen removals. The COD removal efficiency by the UASB was 93% (from 45,000 to 3,000 mg/L) at a loading rate of 10 kg/(m(3)·d). The C-stage MBBR removed an additional 500 to 1,000 mg/L of COD at a surface removal rate (SRR) of 5 g/(m(2)·d) and precipitated 400 mg/L of calcium. The total inorganic nitrogen removal efficiency by the ANITA Mox reactor was about 70% at SRR of 1.0 g/(m(2)·d). PMID:26877051

  15. Back propagation neural network modelling of biodegradation and fermentative biohydrogen production using distillery wastewater in a hybrid upflow anaerobic sludge blanket reactor.

    Science.gov (United States)

    Sridevi, K; Sivaraman, E; Mullai, P

    2014-08-01

    In a hybrid upflow anaerobic sludge blanket (HUASB) reactor, biodegradation in association with biohydrogen production was studied using distillery wastewater as substrate. The experiments were carried out at ambient temperature (34±1°C) and acidophilic pH of 6.5 with constant hydraulic retention time (HRT) of 24h at various organic loading rates (OLRs) (1-10.2kgCODm(-3)d(-1)) in continuous mode. A maximum hydrogen production rate of 1300mLd(-1) was achieved. A back propagation neural network (BPNN) model with network topology of 4-20-1 using Levenberg-Marquardt (LM) algorithm was developed and validated. A total of 231 data points were studied to examine the performance of the HUASB reactor in acclimatisation and operation phase. The statistical qualities of BPNN models were significant due to the high correlation coefficient, R(2), and lower mean absolute error (MAE) between experimental and simulated data. From the results, it was concluded that BPNN modelling could be applied in HUASB reactor for predicting the biodegradation and biohydrogen production using distillery wastewater.

  16. Effect of pentachlorophenol and chemical oxygen demand mass concentrations in influent on operational behaviors of upflow anaerobic sludge blanket (UASB) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shen Dongsheng [Department of Environmental engineering, Zhejiang University, 268 Kaixuan Road, HangZhou 310029 (China)]. E-mail: shends@zju.edu.cn; He Ruo [Department of Environmental engineering, Zhejiang University, 268 Kaixuan Road, HangZhou 310029 (China); Liu Xinwen [Department of Environmental engineering, Zhejiang University, 268 Kaixuan Road, HangZhou 310029 (China); Department of Chemical engineering, Ningbo University of Technology, 20 Cuibai Road, NingBo 315016 (China); Long Yan [Department of Environmental engineering, Zhejiang University, 268 Kaixuan Road, HangZhou 310029 (China)

    2006-08-25

    Upflow anaerobic sludge blanket (UASB) reactor that was seeded with anaerobic sludge acclimated to chlorophenols was used to investigate the feasibility of anaerobic biotreatment of synthetic wastewater containing pentachlorophenol (PCP) with additional sucrose as carbon source. Two sets of UASB reactors were operated at one time. But the seeded sludge for the two reactors was different and Reactor I was seeded with the sludge that was acclimated to PCP completely for half a year, and Reactor II was seeded with the mixed sludge that was acclimated for half a year to PCP, 4-CP, 3-CP or 2-CP, respectively. The degradation of PCP and the operation fee treating the wastewater are affected by the concentration of MEDS (microorganism easily degradable substrate). So the confirmation of the suitable ratio of [COD] and [PCP] was the key factor of treating the wastewater containing PCP economically and efficiently. During the experiment, the synthetic wastewater with 180.0 mg L{sup -1} PCP and 1250-10000 mg L{sup -1} COD could be treated steadily in the experimental Reactor I. The removal efficiency of PCP was more than 99.5% and the removal efficiency of COD was up to 90%. [PCP] (concentration of PCP) in effluent was less than 0.5 mg L{sup -1}. [PCP] in influent could affect proper [COD] (concentration of COD) range in influent that was required for maintenance of steady running of the experimental reactor with a hydraulic retention time (HRT) from 20 to 22 h. [PCP] in influent would directly affect the necessary [COD] in influent when the UASB reactor ran normally and treated the wastewater containing PCP. When [PCP] was 100.4, 151.6 and 180.8 mg L{sup -1} in influent, respectively, [COD] in influent had to be controlled about 1250-7500, 2500-5000 and 5000 mg L{sup -1} to maintain the UASB reactor steady running normally and contemporarily ensure that [COD] and [PCP] in effluent were less than 300 and 0.5 mg L{sup -1}, respectively. With the increase of [PCP] in influent

  17. Effect of pentachlorophenol and chemical oxygen demand mass concentrations in influent on operational behaviors of upflow anaerobic sludge blanket (UASB) reactor.

    Science.gov (United States)

    Shen, Dong-Sheng; He, Ruo; Liu, Xin-Wen; Long, Yan

    2006-08-25

    Upflow anaerobic sludge blanket (UASB) reactor that was seeded with anaerobic sludge acclimated to chlorophenols was used to investigate the feasibility of anaerobic biotreatment of synthetic wastewater containing pentachlorophenol (PCP) with additional sucrose as carbon source. Two sets of UASB reactors were operated at one time. But the seeded sludge for the two reactors was different and Reactor I was seeded with the sludge that was acclimated to PCP completely for half a year, and Reactor II was seeded with the mixed sludge that was acclimated for half a year to PCP, 4-CP, 3-CP or 2-CP, respectively. The degradation of PCP and the operation fee treating the wastewater are affected by the concentration of MEDS (microorganism easily degradable substrate). So the confirmation of the suitable ratio of [COD] and [PCP] was the key factor of treating the wastewater containing PCP economically and efficiently. During the experiment, the synthetic wastewater with 180.0 mg L(-1) PCP and 1250-10000 mg L(-1) COD could be treated steadily in the experimental Reactor I. The removal efficiency of PCP was more than 99.5% and the removal efficiency of COD was up to 90%. [PCP] (concentration of PCP) in effluent was less than 0.5 mg L(-1). [PCP] in influent could affect proper [COD] (concentration of COD) range in influent that was required for maintenance of steady running of the experimental reactor with a hydraulic retention time (HRT) from 20 to 22 h. [PCP] in influent would directly affect the necessary [COD] in influent when the UASB reactor ran normally and treated the wastewater containing PCP. When [PCP] was 100.4, 151.6 and 180.8 mg L(-1) in influent, respectively, [COD] in influent had to be controlled about 1250-7500, 2500-5000 and 5000 mg L(-1) to maintain the UASB reactor steady running normally and contemporarily ensure that [COD] and [PCP] in effluent were less than 300 and 0.5 mg L(-1), respectively. With the increase of [PCP] in influent, the range of variation

  18. Performance evaluation of up-flow anaerobic sludge blanket (UASB) reactor for treatment of paper mill wastewater

    Institute of Scientific and Technical Information of China (English)

    M. Mahadevaswamy; B.M. Sadashiva Murthy; A.R. Girijamma

    2004-01-01

    The present study deals with the performance evaluation of the UASB reactor under varied organic loadingrate(OLR) for the treatment of paper mill wastewater. The sludge granulation process started after 120 days from thed) the VSS concentration was 12.86 gVSS/L, which got increased to 38.05 gVSS/L at the end of an OLR 2.1process. Many times the pH observed was between 6.5 and 7.8, which is more favorable for any anaerobicprocess. It is also found that pH within the reactor increases along with the height of reactor. The total maximumremoval at this stage was observed to be 90%.

  19. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    NARCIS (Netherlands)

    Tervahauta, T.H.; Bryant, I.M.; Hernandez Leal, L.; Buisman, C.J.N.; Zeeman, G.

    2014-01-01

    This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB) reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were co

  20. Biogas production from potato-juice, a by-product from potato-starch processing, in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors

    DEFF Research Database (Denmark)

    Fang, Cheng; Boe, Kanokwan; Angelidaki, Irini

    2011-01-01

    In this study, the utilization of potato-juice, the organic by-product from potato-starch processing, for biogas production was investigated in batch assay and in high rate anaerobic reactors. The maximum methane potential of the potato-juice determined by batch assay was 470mL-CH4/g......VS-added. Anaerobic digestion of potato-juice in an EGSB reactor could obtain a methane yield of 380mL-CH4/gVS-added at the organic loading rate of 3.2gCOD/(L-reactor.d). In a UASB reactor, higher organic loading rate of 5.1gCOD/(L-reactor.d) could be tolerated, however, it resulted in a lower methane yield of 240m......L-CH4/gVS-added. The treatment of reactor effluent was also investigated. By acidification with sulfuric acid to pH lower than 5, almost 100% of the ammonia content in the effluent could be retained during the successive up-concentration process step. The reactor effluent could be up...

  1. Comparative Study on Different Start-up of Modified Upflow Anaerobic Sludge Blanket Reactor in High Concentration Wastewater Treatment%基于MUASB不同启动方式处理高浓度废水的比较研究

    Institute of Scientific and Technical Information of China (English)

    陈金发; 胡金朝; 朱海峰; 王姗镒

    2012-01-01

    The paper was an attempt to cultivate the aerobic granular sludge with wastwater in the different start-up of Modified Upflow Anaerobic Sludge Blanket Reactor (MUASB). The treating effects of wastewater were monitored simultaneously. By dosing activated carbon and using stratified aeration of Experiments 1, aerobic granular sludge was cultivated in five days. The aerobic granular sludge particles was big and had high activity and could treat water better. The results showed that mature stage of the aerobic granular sludge with diameter about 1. 5 - 2.5 mm, and the MISS up to 15 290 g/L were observed. The aerobic granular sludge showed the high concentration of COD removal rate at 97 % ,and NH4+ -N removal rate at 70%.%本实验利用改装UASB( MUASB)装置在不同启动方式下培养好氧颗粒污泥,并对高浓度废水处理效果进行监测.通过比较研究发现,实验1中投加活性炭后采用分层曝气,实现了好氧颗粒污泥的快速培养.培养出的好氧颗粒污泥颗粒大,活性强,水质处理效果较好.实验1中成熟的好氧颗粒污泥粒径最大为1.5~2.5 mm,MLSS最高为15290 g/L.对COD负荷≥8000 mL/g的污水处理效率保持在90%以上,对NH4+ -N的处理效率稳定在70%左右.

  2. Effects of pH, acidity and alkalinity on the microbiota activity of an anaerobic sludge blanket reactor (UASB treating pigmanure effluents

    Directory of Open Access Journals (Sweden)

    Fabricio Moterani

    2009-12-01

    Full Text Available The anaerobic processes used for treating wastewater have been often applied mainly for optimizing treatment systems. Among many of these systems, the UASB is one of the most successfully used. This type of reactor presents a good condition for microorganisms development, and therefore, for organic matter degradation. As a result, the goal of this research was to evaluate the effect of parameters, such as: temperature, pH, acidity and alkalinity on the microorganisms consortia, acclimatized in an UASB reactor, and simultaneously, observing the sludge morphology through a scanning electronic microscopy (SEM, in order to identify the response of the bacteria consortia under this environmental circumstances. The biomass operated under a mesophilic temperature, varying from 190C to 210C. The maximum concentration of volatile acids was 100 mg L-1, and the volumetric organic loading rate was 59 kgCOD m-3d-1. The total alkalinity concentration values were between 2500 and 5550 mgCaCO3 L-1. The average pH value of the sludge was 7.3. Under these conditions it was observed the development of a well acclimatized granular biomass, composed mainly of filamentous bacteria.

  3. Simulation of sludge blanket height in clarifiers

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhen; WU Zhi-chao; WANG Zhi-wei; GU Guo-wei

    2009-01-01

    Sludge blanket height (SBH) is an important parameter in the clarifier design,operation and control.Based on an overview and classification of SBH algorithms,a modifed SBH algorithm is proposed by incorporating a threshold concentration limit into a relative concentration sharp change algorithm to eliminate the disturbance of compression interfaces on the correct simulation of SBH.Pilot-scale test data are adopted to compare reliability of three SBH algorithms reported in literature and the modified SBH algorithm developed in this paper.Calculated results demonstrate that the three SBH algorithms give results with large deviation (>50%) from measured SBH,especially under low solid flux conditions.The modified algorithm is computationally efficient and reliable in matching the measured data.It is incorporated into a onedimensional clarifier model for stable simulation of pilot-scale experimental clarifier data and into dynamic simulation of a full-scale wastewater treatment plant (WWTP) clarifier data.

  4. Start-up of horizontal anaerobic reactors with sludge blanket and fixed bed for wastewater treatment from coffee processing by wet method Partida de reatores anaeróbios horizontais com manta de lodo e de leito fixo para tratamento de águas residuárias do beneficiamento de frutos do cafeeiro por via úmida

    OpenAIRE

    Roberto A. de Oliveira; Natani M. N. Bruno

    2013-01-01

    In this study it was evaluated the start-up procedures of anaerobic treatment system with three horizontal anaerobic reactors (R1, R2 and R3), installed in series, with volume of 1.2 L each. R1 had sludge blanket, and R2 and R3 had half supporter of bamboo and coconut fiber, respectively. As an affluent, it was synthesized wastewater from mechanical pulping of the coffee fruit by wet method, with a mean value of total chemical oxygen demand (CODtotal) of 16,003 mg L-1. The hydraulic retention...

  5. Effects of shock 2,4-dichlorophenol (DCP) and cod loading rates on the removal of 2,4-DCP in a sequential upflow anaerobic sludge blanket/aerobic completely stirred tank reactor system.

    Science.gov (United States)

    Uluköy, A; Sponza, D T

    2008-04-01

    The treatability of 2,4-dwichlorophenol (DCP) was studied in an anaerobic/aerobic sequential reactor system. Laboratory scale upflow anaerobic sludge blanket (UASB) reactor/completely stirred tank reactors (CSTR) were operated at constant 2,4-DCP concentrations, and increasing chemical oxygen demand (COD) loading rates. The effect of shock organic loading rates on 2,4-DCP, COD removal efficiencies and methane gas production were investigated in the UASB reactor. When the organic loading rate was increased from 3.6 g l(-1) d(-1) to 30.16 g l(-1) d(-1), the COD and 2,4-DCP removal efficiencies decreased from 80 to 25% and from 99 to 60% in the UASB reactor. The optimum organic loading rates for maximum 2,4-DCP (E=99-100%) and COD (E=65-85%) removal efficiencies were 25-30 and 8-20 g-COD l(-1) d(-1), respectively. The percentage of methane of the total gas varied between 70 and 80 while the organic loadings were 18 g-COD l(-1) d(-1) and 20.36 g-COD l(-1) d(-1), respectively. During 80 days of operation, 2,4-DCP concentration was found to be below 0.5 and 0.1 mg l(-1) in aerobic reactor effluent resulting in 78 and 100% removal efficiencies. When the hydraulic retention time (HRT) was 18.72 h, the 2,4-DCP removal efficiency was 97% in the aerobic reactor. The optimum COD removal efficiency was 78.83% in anaerobic reactor effluent at an influent COD loading rate of 7.238 g-COD l(-1) d(-1) while 83.6% maximum COD removal efficiency was obtained in the aerobic reactor, resulting in a total COD removal efficiency of 96.83% in the whole system. The 2,4-DCP removal efficiency was 99% in the sequential anaerobic (UASB)/aerobic (CSTR) reactor system at COD loading rates varying between 11.46 and 30.16 g-COD l(-1) d(-1). PMID:18619146

  6. Effects of shock 2,4-dichlorophenol (DCP) and cod loading rates on the removal of 2,4-DCP in a sequential upflow anaerobic sludge blanket/aerobic completely stirred tank reactor system.

    Science.gov (United States)

    Uluköy, A; Sponza, D T

    2008-04-01

    The treatability of 2,4-dwichlorophenol (DCP) was studied in an anaerobic/aerobic sequential reactor system. Laboratory scale upflow anaerobic sludge blanket (UASB) reactor/completely stirred tank reactors (CSTR) were operated at constant 2,4-DCP concentrations, and increasing chemical oxygen demand (COD) loading rates. The effect of shock organic loading rates on 2,4-DCP, COD removal efficiencies and methane gas production were investigated in the UASB reactor. When the organic loading rate was increased from 3.6 g l(-1) d(-1) to 30.16 g l(-1) d(-1), the COD and 2,4-DCP removal efficiencies decreased from 80 to 25% and from 99 to 60% in the UASB reactor. The optimum organic loading rates for maximum 2,4-DCP (E=99-100%) and COD (E=65-85%) removal efficiencies were 25-30 and 8-20 g-COD l(-1) d(-1), respectively. The percentage of methane of the total gas varied between 70 and 80 while the organic loadings were 18 g-COD l(-1) d(-1) and 20.36 g-COD l(-1) d(-1), respectively. During 80 days of operation, 2,4-DCP concentration was found to be below 0.5 and 0.1 mg l(-1) in aerobic reactor effluent resulting in 78 and 100% removal efficiencies. When the hydraulic retention time (HRT) was 18.72 h, the 2,4-DCP removal efficiency was 97% in the aerobic reactor. The optimum COD removal efficiency was 78.83% in anaerobic reactor effluent at an influent COD loading rate of 7.238 g-COD l(-1) d(-1) while 83.6% maximum COD removal efficiency was obtained in the aerobic reactor, resulting in a total COD removal efficiency of 96.83% in the whole system. The 2,4-DCP removal efficiency was 99% in the sequential anaerobic (UASB)/aerobic (CSTR) reactor system at COD loading rates varying between 11.46 and 30.16 g-COD l(-1) d(-1).

  7. Viscosity evolution of anaerobic granular sludge

    NARCIS (Netherlands)

    Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Lens, P.N.L.; Baudu, M.

    2006-01-01

    The evolution of the apparent viscosity at steady shear rate of sieved anaerobic granular sludge (20¿315 ¿m diameter) sampled from different full-scale anaerobic reactors was recorded using rotation tests. The ¿limit viscosity¿ of sieved anaerobic granular sludge was determined from the apparent vis

  8. Equalization characteristics of an upflow sludge blanket-aerated biofilter (USB-AF) system.

    Science.gov (United States)

    Jun, H B; Park, S M; Park, J K; Lee, S H

    2005-01-01

    Equalization characteristics of the upflow sludge blanket-aerated bio-filter (USB-AF) were investigated with the fluctuated raw domestic sewage. Recycle of nitrified effluent from AF to USB triggered the equalization characteristics of the sludge blanket on both soluble and particulate organic matter. Increment of EPS in sludge blanket by nitrate recycle was detected and removal of turbidity and particulates increased at higher recycle ratios by bio-flocculation. Increased TCOD removal in the USB was due to both denitrification of recycled nitrate and entrapment of the particulate organic matter in sludge blanket. Capture of both soluble and particulate organic matter increased sludge blanket layer in the USB, which improved the reactor performances and reduced the organic load on the subsequent AF. Overall TCOD and SS removal efficiencies were about 98% and 96%, respectively in the USB-AF system. Turbidity in the USB effluent was about 44, 20 and 5.5 NTU, at recycle ratios of 0, 100 and 200%, respectively. Particle counts in the range 2-4 microm in the USB effluent were higher than those in influent without nitrate recycle, while particle counts in the range of 0.5-15 microm in the USB effluent decreased 70% at recycle ratio of 200%. The major constituent of EPS extracted from anaerobic sludge was protein and total EPS increased from 109.1 to 165.7 mg/g-VSS with nitrate recycle of 100%. Removal efficiency and concentration of T-N in the UBS-AF effluent was over 70% and below 16 mg/L, respectively.

  9. Operation performance and granule characterization of upflow anaerobic sludge blanket (UASB) reactor treating wastewater with starch as the sole carbon source.

    Science.gov (United States)

    Lu, Xueqin; Zhen, Guangyin; Estrada, Adriana Ledezma; Chen, Mo; Ni, Jialing; Hojo, Toshimasa; Kubota, Kengo; Li, Yu-You

    2015-03-01

    Long-term performance of a lab-scale UASB reactor treating starch wastewater was investigated under different hydraulic retention times (HRT). Successful start-up could be achieved after 15days' operation. The optimal HRT was 6h with organic loading rate (OLR) 4g COD/Ld at COD concentration 1000mg/L, attaining 81.1-98.7% total COD removal with methane production rate of 0.33L CH4/g CODremoved. Specific methane activity tests demonstrated that methane formation via H2-CO2 and acetate were the principal degradation pathways. Vertical characterizations revealed that main reactions including starch hydrolysis, acidification and methanogenesis occurred at the lower part of reactor ("main reaction zone"); comparatively, at the up converting acetate into methane predominated ("substrate-shortage zone"). Further reducing HRT to 3h caused volatile fatty acids accumulation, sludge floating and performance deterioration. Sludge floating was ascribed to the excess polysaccharides in extracellular polymeric substances (EPS). More efforts are required to overcome sludge floating-related issues. PMID:25617619

  10. Carbon monoxide conversion by anaerobic bioreactor sludges

    NARCIS (Netherlands)

    Sipma, J.; Stams, A.J.M.; Lens, P.N.L.; Lettinga, G.

    2003-01-01

    Seven different anaerobic sludges from wastewater treatment reactors were screened for their ability to convert carbon monoxide (CO) at 30 and 55degreesC
    Seven different anaerobic sludges from wastewater treatment reactors were screened for their ability to convert carbon monoxide (CO) at 30 and

  11. Production and the application of anaerobic granular sludge produced by landfill

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Sludge granulation is considered to be the most critical parameter governing successful operation of an upflow anaerobic sludge blanket and expanded granular sludge bed (EGSB) reactors. Pre-granulated seeding sludge could greatly reduce the required start-up time. Two lab-scale and a pilot-scale EGSB reactors were operated to treat Shaoxing Wastewater Treatment Plant containing wastewater from real engineering printing and dyeing with high pH and sulfate concentration. The microbiological structure and the particle size distribution in aerobic excess sludge, sanitary landfill sludge digested for one year, and the granular sludge of EGSB reactor after 400 d of operation were analyzed through scanning electron microscopy (SEM) and sieves. The lab-scale EGSB reactor seeded with anaerobic sludge after digestion for one year in landfill showed obviously better total chemical oxygen demand (TCOD) removal efficiency than one seeded with aerobic excess sludge after cation polyacrylamide flocculation-concentration and dehydration. The TCOD removed was 470.8 mg/L in pilot scale EGSB reactor at short hydraulic retention time of 15 h. SEM of sludge granules showed that the microbiological structure of the sludge from different sources showed some differences. SEM demonstrated that Methanobacterium sp. was present in the granules of pilot-scale EGSB and the granular sludge produced by landfill contained a mixture of anaerobic/anoxic organisms in abundance. The particle size distribution in EGSB demonstrated that using anaerobic granular sludge produced by sanitary landfill as the seeding granular sludge was feasible.

  12. Sulfate and dissolved sulfide variation under low COD/Sulfate ratio in Up-flow Anaerobic Sludge Blanket (UASB treating domestic wastewater

    Directory of Open Access Journals (Sweden)

    Sérvio Túlio Alves Cassini

    2012-04-01

    Full Text Available In this study, the dynamics of sulfate reduction and dissolved sulfide generation (S2-, HS-, H2Saq in liquid phase was evaluated in an UASB reactor treating domestic wastewater with low COD/Sulfate content. The evaluation in the UASB reactor was performed at three sludge heights (0.25, 1.25, 2.25 taps and effluent of the reactor. Sulfate reduction was verified in the reactor, with an average reduction of 24 % throughout the experiment period. However, the dissolved sulfide concentration in the reactor was not higher than 5.0 mg Sdiss/L. The kinetic model of first order showed good fit to describe the sulfate reduction under different COD/sulfate ratio, with K1app between 2.94x10-5 s-1 and 1.17x10-5 s-1 with correlation coefficients for data over 91%. The maximum rate to sulfate reduction was 18.0 mg SO42-/L.h-1 and small variation in COD/sulfate ratio promotes a significant change both in sulfate and sulfide concentrations.

  13. 用升流式厌氧污泥床处理高盐度稠油采出水研究%Study on treating high salinity wastewater from heavy oil production with up-flow anaerobic sludge blanket reactor

    Institute of Scientific and Technical Information of China (English)

    刘春爽; 赵东风; 国亚东; 蔡芸

    2012-01-01

    An up-flow anaerobic sludge blanket ( UASB) reactor was applied to treat the low nutrient and high salinity wastewater from heavy oil production process. A model was developed for the UASB reactor using the back propagation neural network (BPNN) theory. The impacts of various process parameters on UASB reactor performance were described based on three-dimensional graphs and the reactor operation control strategies were gained. The results indicate that under the COD: TN:TP ratio of 1200:10:1, high salt concentration of 1. 50% and influent COD loading rate of 0. 80 kg/(m3 . d) condition, the COD removal could reach 70% and average oil removal rate was 70% . UASB could be used to treat low nutrient and high salinity heavy oil-produced wastewater efficiently. Based on the partitioning connection weights, the (HRT is the key factor and the comparative influences on the performance are: THRT> salinity > COD>pH.%采用升流式厌氧污泥床(UASB)处理低营养盐高盐度稠油废水,采用BP神经网络建立UASB反应器处理高含盐油田废水的数学模型,以三维谱图为基础,直观表征各主要影响因子对系统运行效果的影响过程,得到反应器运行调控优化对策.结果表明:在m(COD)∶m(TN)∶m(TP)为1200∶10∶1(其中COD为化学需氧量,TN为总氮,TP为总磷)、含盐量为1.50%、进水COD负荷为0.80 kg/(m3·d)的条件下,COD去除率能够达到70%,原油平均去除率达到70%;UASB反应器能够在低营养条件下高效处理高含盐油田废水;以分离权法为依据,得出水力停留时间(tHRT)为限制因子,各影响因素相对重要性依次为tHRT、进水盐度、进水COD、进水pH值.

  14. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    Directory of Open Access Journals (Sweden)

    Taina Tervahauta

    2014-08-01

    Full Text Available This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were compared in terms of biochemical methane potential (BMP, UASB reactor performance, chemical oxygen demand (COD mass balance and methanization. Grey water sludge treatment with black water increased the energy recovery by 23% in the UASB reactor compared to black water treatment. The increase in the energy recovery can cover the increased heat demand of the UASB reactor and the electricity demand of the grey water bioflocculation system with a surplus of 0.7 kWh/cap/y electricity and 14 MJ/cap/y heat. However, grey water sludge introduced more heavy metals in the excess sludge of the UASB reactor and might therefore hinder its soil application.

  15. Improvement of anaerobic digestion of sludge

    Energy Technology Data Exchange (ETDEWEB)

    Dohanyos, Michael; Zabranska, Jana; Kutil, Josef; Jenicek, Pavel

    2003-07-01

    Anaerobic digestion improvement can be accomplished by different methods. Besides optimization of process conditions is frequently used pretreatment of input sludge and increase of process temperature. Thermophilic process brings a higher solids reduction and biogas production, the high resistance to foaming, no problems with odour, the higher effect of destroying pathogens and the improvement of the energy balance of the whole treatment plant. Disintegration of excess activated sludge in lysate centrifuge was proved in full-scale conditions causing increase of biogas production. The rapid thermal conditioning of digested sludge is acceptable method of particulate matter disintegration and solubilization. (author)

  16. Biological nutrient removal by internal circulation upflow sludge blanket reactor after landfill leachate pretreatment.

    Science.gov (United States)

    Abood, Alkhafaji R; Bao, Jianguo; Abudi, Zaidun N

    2013-10-01

    The removal of biological nutrient from mature landfill leachate with a high nitrogen load by an internal circulation upflow sludge blanket (ICUSB) reactor was studied. The reactor is a set of anaerobic-anoxic-aerobic (A2/O) bioreactors, developed on the basis of an expended granular sludge blanket (EGSB), granular sequencing batch reactor (GSBR) and intermittent cycle extended aeration system (ICEAS). Leachate was subjected to stripping by agitation process and poly ferric sulfate coagulation as a pretreatment process, in order to reduce both ammonia toxicity to microorganisms and the organic contents. The reactor was operated under three different operating systems, consisting of recycling sludge with air (A2/O), recycling sludge without air (low oxygen) and a combination of both (A2/O and low oxygen). The lowest effluent nutrient levels were realised by the combined system of A2/O and low oxygen, which resulted in effluent of chemical oxygen demand (COD), NH3-N and biological oxygen demand (BOD5) concentrations of 98.20, 13.50 and 22.50 mg/L. The optimal operating conditions for the efficient removal of biological nutrient using the ICUSB reactor were examined to evaluate the influence of the parameters on its performance. The results showed that average removal efficiencies of COD and NH3-N of 96.49% and 99.39%, respectively were achieved under the condition of a hydraulic retention time of 12 hr, including 4 hr of pumping air into the reactor, with dissolved oxygen at an rate of 4 mg/L and an upflow velocity 2 m/hr. These combined processes were successfully employed and effectively decreased pollutant loading. PMID:24494501

  17. Introduction of a De Novo Bioremediation Ability, Aryl Reductive Dechlorination, into Anaerobic Granular Sludge by Inoculation of Sludge with Desulfomonile tiedjei

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Christiansen, Nina; Mathrani, Indra Madan;

    1992-01-01

    Methanogenic upflow anaerobic granular-sludge blanket (UASB) reactors treat wastewaters at a high rate while simultaneously producing a useful product, methane; however, recalcitrant environmental pollutants may not be degraded. To impart 3-chlorobenzoate (3-CB)-dechlorinating ability to UASB rea...

  18. Nitrogen availability of anaerobic swine lagoon sludge: sludge source effects.

    Science.gov (United States)

    Moore, Amber D; Israel, Daniel W; Mikkelsen, Robert L

    2005-02-01

    Increased numbers of swine producers will be removing sludge from their anaerobic waste treatment lagoons in the next few years, due to sludge exceeding designed storage capacity. Information on availability of nitrogen (N) in the sludge is needed to improve application recommendations for crops. The objective of this study was to investigate possible effects of different companies and types of swine operations on the availability of N in sludge from their associated lagoons. A laboratory incubation study was conducted to quantify the availability of N (i.e. initial inorganic N plus the potentially mineralizable organic N) in the sludge. Nine sludge sources from lagoons of sow, nursery and finishing operations of three different swine companies were mixed with a loamy sand soil (200 mg total Kjeldahl N kg(-1) soil) and incubated at a water content of 0.19 g. water g(-1) dry soil and 25+/-2 degrees C for 12 weeks. Samples were taken at eight times over the 12-week period and analyzed for inorganic N (i.e. NH(4)-N and NO(3)-N) to determine mineralization of organic N in the sludge. Company and type of swine operation had no significant effects (P incubation. While plant N availability coefficients were not measured in this study, the lack of significant company or type of swine operation effects on sludge N mineralization suggests that use of the same plant N availability coefficient for sludge from different types of lagoons is justifiable. The validity of this interpretation depends on the assumption that variation in other components of different sludge sources such as Cu and Zn does not differentially alter N uptake by the receiver crops. PMID:15474933

  19. A Downflow Hanging Sponge (DHS) reactor for faecal coliform removal from an Upflow Anaerobic Sludge Bed (UASB) effluent

    NARCIS (Netherlands)

    Yaya Beas, R.E.; Kujawa-Roeleveld, K.; Lier, van J.B.; Zeeman, G.

    2015-01-01

    This research was conducted to study the faecal coliforms removal capacity of Downflow Hanging Sponge (DHS) reactors as a post-treatment for an Upflow Anaerobic Sludge Blanket (UASB) reactor. Three long-term continuous lab-scale DHS reactors i.e. a reactor with cube type sponges without recirculatio

  20. Formation of metabolites during biodegradation of linear alkylbenzene sulfonate in an upflow anaerobic sludge bed reactor under thermophilic conditions

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Ahring, Birgitte Kiær

    2002-01-01

    Biodegradation of linear alkylbenzene sulfonate (LAS) was shown in an upflow anaerobic sludge blanket reactor under thermophilic conditions. The reactor was inoculated with granular biomass and fed with a synthetic medium and 3 mumol/L of a mixture of LAS with alkylchain length of 10 to 13 carbon...

  1. Desenvolvimento e operação de reator anaeróbio de manta de lodo (UASB no tratamento dos efluentes da suinocultura em escala laboratorial Development and operation of an upflow anaerobic sludge blanket reactor (UASB treating liquid effluent from swine manure in laboratory scale

    Directory of Open Access Journals (Sweden)

    Cláudio Milton Montenegro Campos

    2006-02-01

    Full Text Available A atividade suinícola vem, desde meados da década de 70, sendo uma das mais poluidoras atividades agroindustriais no Estado de Minas Gerais. Sendo assim, objetivou-se desenvolver um Reator Anaeróbio de Manta de Lodo (UASB-Upflow Anaerobic Sludge Blanket visando tratar os dejetos produzidos com máxima eficiência dentro de um tempo e com custo reduzidos. Para tanto um experimento em escala laboratorial foi projetado e monitorado no Laboratório de Análise de Água do Departamento de Engenharia da Universidade Federal de Lavras (LAADEG, sendo composto por um Tanque de Acidificação e Equalização (TAE, um Reator Anaeróbio de Manta de Lodo e uma Lagoa Aerada Facultativa (LAF, o qual foi alimentado com fluxo contínuo. As análises físico-químicas realizadas foram: DQO, DBO5, Sólidos Totais (Fixos e Voláteis, Temperatura, pH, Nitrogênio, Fósforo, Acidez e Alcalinidade Total. O sistema proporcionou eficiência de remoção média de 93% de DQO, 84% de DBO5 e 85% de Sólidos Totais Voláteis, demonstrando adequada adaptação aos diversos tempos de detenção hidráulica adotados (55, 40, 30, 25, 18 e 15 horas. Os parâmetros adotados na partida do reator UASB foram: COV: 1,11kgDQO.m-3.d-1, COB: 0,019 kgDBO5.kgSVT-1.d-1 e TDH: 55h.The swine production, since 70th , is one of the most pollutant agro-industrial activities in the Minas Gerais State, Brazil. The objective of this research was to develop an Upflow Anaerobic Sludge Blanket Reactor (UASB, aiming at treating the effluent generated within a maximum efficiency and minimum time and cost. Therefore, a lab-scale reactor was built up and monitored in the laboratory of Engineering Department at the Federal University of Lavras (UFLA. The system consisted of an Acidification and Equalization Tank (AET, an Upflow Anaerobic Sludge Blanket reactor (UASB, and an Aerated Facultative Pond (AFP. The system was fed continuously. The physical-chemical analyses carried out were: COD, BOD5, Total

  2. Avaliação do desempenho do reator anaeróbio de manta de lodo (uasb em escala laboratorial na remoção da carga orgânica de águas residuárias da suinocultura Performance evaluation of a lab-scale upflow anaerobic sludge blanket reactor (UASB removing organic loading rate from swine manure

    Directory of Open Access Journals (Sweden)

    Cláudio Milton Montenegro Campos

    2005-04-01

    Full Text Available Objetivou-se com o presente trabalho avaliar o desempenho do reator anaeróbio de manta de lodo (UASB-Upflow Anaerobic Sludge Blanket construído em escala laboratorial na redução da carga orgânica poluidora dos despejos suinícolas brutos. O sistema completo foi composto de um tanque de acidificação e equalização, reator UASB e lagoa aerada facultativa. O tempo de detenção hidráulica (TDH e temperatura adotada para o reator UASB foram de 30 horas e 30 ºC, respectivamente. Os valores médios afluentes de DQO T, ST e SVT foram de 1806, 1810 e 1240 mg.L-1. As eficiências de remoção de DQO T, ST e SVT foram de 84, 58 e 73%, respectivamente. O sistema se apresentou-se estável, com boas condições de tamponamento, retenção e digestibilidade de sólidos, demonstrando que os critérios adotados foram adequados, principalmente aqueles referentes ao TDH, carga orgânica volumétrica (COV e temperatura.The present work was carried out in order to evaluate the performance of a lab scale Upflow Anaerobic Sludge Blanket reactor (UASB treating liquid effluent from swine manure without solids separation. The treatment system consisted of one acidification tank, which also equalized the substrate, an UASB reactor, and an aerated facultative pound. The hydraulic retention time (HRT and temperature adopted for the UASB reactor were 30h and 30ºC, respectively. The influent average values of Chemical Oxygen Demand (COD, Total Solids (TS and Total Volatile Solids (TVS were 1806, 1810 and 1240 mg.L-1. The removal efficiencies were 84, 58 and 73 %, respectively. The system presented good stability and buffering conditions, and also a good solids digestibility, showing that the research criteria adopted was adequate, mainly those parameters referred to the HRT, Volumetric Organic Loading Rate (VOLR and temperature.

  3. Levantamento de parâmetros cinéticos medidos em reator anaeróbio de manta de lodo (UASB em escala-piloto tratando efluentes de laticínio = Survey of kinetic parameters measured in upflow anaerobic sludge blanket (UASB in pilot-scale treatment of dairy wastewater

    Directory of Open Access Journals (Sweden)

    Bruno Botelho Saléh

    2009-01-01

    Full Text Available O objeto desta pesquisa foi à obtenção e avaliação dos parâmetros cinéticos do reator anaeróbio de manta de lodo (UASB-Upflow Anaerobic Sludge Blanket na remoção da carga orgânica poluidora dos despejos da atividade laticinista. O sistema com suas principais unidades foi composto de tratamento preliminar (caixa de areia e flotadores,tanque de contato (TC, reator UASB, filtro anaeróbio (FAB e lodo ativo em batelada (LAB. Os TDH’s (tempos de detenção hidráulicos e a temperatura adotados para o reator UASB foram de 44, 35, 30, 26 e 20h após a fase de estabilização do sistema, com temperatura média de 24,8ºC ± 1,8ºC. O volume do reator era de 394 L. A partir dos dadosDQOT (mg L-1, Sólidos Totais Fixos e Voláteis (mg L-1, Temperatura (°C, Vazão (L dia-1 e Perfil de Lodo no reator (Sólidos Voláteis Totais em mg L-1, monitorados durante todo o período de pesquisa na estação-piloto, em cada um dos tempos de detenção hidráulicos(TDH’s no reator UASB, foi conduzido o estudo para obtenção dos parâmetros cinéticos: coeficiente de crescimento ‘Y’ (mg DQO mg SVT-1 d-1, coeficiente de decaimento ‘Kd’ (d-1, taxa máxima de crescimento ‘μmáx’ (d-1 e concentração de substrato limitante ‘Ks’ (mg DQO L-1. Os parâmetros cinéticos determinados se basearam em estudos de regressão linear para determinação de Y, Kd, μmáx e Ks, respectivamente, dando, assim, respaldo técnico-científicoaos dados físico-químicos levantados durante a operacionalização do sistema.The goal of this research was to obtain and withdraw the kinetic parameters from an Upflow Anaerobic Sludge Blanket – UASB in removing the organic load from the waste by-product of a dairy activity. The treatment system was composed of a Sand Interceptor (Grit Chamber, Grease Intercept Chambers, Stirred Contact Tank (CT, a UASB reactor, Anaerobic Filter (AF, and Batch Activated Sludge System (BASS. The HRT (Hydraulic Retention Time and

  4. Parasite ova in anaerobically digested sludge

    Energy Technology Data Exchange (ETDEWEB)

    Arther, R.G.; Fitzgerald, P.R.; Fox, J.C.

    1981-08-01

    The Metropolitan Sanitary District of Greater Chicago produces anaerobically digested wastewater sludge from a 14-day continuous-flow process maintained at 35 degrees Celcius. Some of the sludge is ultimately applied to strip-mined lands in Central Illinois (Fulton County) as a soil conditioner and fertilizer. Parasitic nematode ova were isolated from freshly processed samples, as well as from samples collected from storage lagoons, using a system of continuous sucrose solution gradients. The mean number of ova per 100 g of dry sludge was 203 Ascaris spp., 173 Toxocara spp., 48 Toxascaris leonina, and 36 Trichuris spp. An assessment of the viability of these ova was determined by subjecting the ova to conditions favorable for embryonation. Recovered ova were placed in 1.5% formalin and aerated at 22 degrees Celcius for 21 to 28 days. Development of ova isolated from freshly digested sludge occurred in 64% of the Ascaris spp., 53% of the Toxocara, 63% of the Toxascaris leonina, and 20% of the Trichuris spp. Viability was also demonstrated in ova recovered from sludge samples held in storage lagoons for a period of up to 5 years; embryonation occurred in 24% of the Ascaris spp., 10% of the Toxocara spp., 43% of the Toxascaris leonina, and 6% of the Trichuris spp. (Refs. 24).

  5. Mass and energy balance: application to the sanitary sewage treatment with an upflow anaerobic sludge blanket (UASB) reactors to temperature of 20 deg C; Balanco de massa e energia: aplicacao ao tratamento de esgotos sanitarios com reatores anaerobicos de manta de lodo (UASB) a temperatura de 20 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, Katherine Ivonne Alcocer

    1992-07-01

    A feasibility study of an Upflow Anaerobic Sludge Blanket (UASB) reactor use as a sewage treatment plant component for areas with average temperature bellow 20 deg C was performed. The literature on UASB reactor indicates that a 70 % chemical oxygen demand (COD) removal al 20 and 6 to 17 hr hydraulic detention time is possible in sewage treatment plants. This study was developed for a Oruro (Bolivia) district and the plant was designed for a population of up to 10,000 inhabitants. This city presents average temperatures lower than 20 deg C being necessary to heat the sewage if is used the UASB reactor. Based on the performance simulation of mass and energy balances it was found that 84 % COD removal and 92 % total suspended solids removal are possible. The potential average energy production (61 kW due to methane combustion) is less than 10 % of the power consumption for heating, which indicates that the use of the methane may be expensive. The evaluated energy rate to be applied to the sewage for heating is 0.33 kW/m{sup 3} d{sup -1} which is significantly greater than the necessary energy to introduce oxygen in aerobic treatment systems. However total energy demand for aerobic systems must be evaluated for each particular case. (author)

  6. Electron beam/biological processing of anaerobic and aerobic sludge

    Science.gov (United States)

    Čuba, V.; Pospíšil, M.; Múčka, V.; Jeníček, P.; Dohányos, M.; Zábranská, J.

    2003-01-01

    Besides common chemical and biological methods, the radiation technology is a promising way of sludge treatment. The paper describes possibilities of combined accelerated electrons/biological processing of both anaerobic and aerobic sludge. Besides one-shot experiments, experimental reactors for the simulation of anaerobic processes have been used. Main effort has been aimed to decrease organic compounds concentration and overall volume of solids, to improve some physico-chemical parameters of sludge, to validate hygienisation effects of the ionising radiation, and in the case of anaerobic sludge, to increase the volume of the produced biogas. Positive effects of the electron beam processing have been observed on all previously named parameters.

  7. Electron beam/biological processing of anaerobic and aerobic sludge

    International Nuclear Information System (INIS)

    Besides common chemical and biological methods, the radiation technology is a promising way of sludge treatment. The paper describes possibilities of combined accelerated electrons/biological processing of both anaerobic and aerobic sludge. Besides one-shot experiments, experimental reactors for the simulation of anaerobic processes have been used. Main effort has been aimed to decrease organic compounds concentration and overall volume of solids, to improve some physico-chemical parameters of sludge, to validate hygienisation effects of the ionising radiation, and in the case of anaerobic sludge, to increase the volume of the produced biogas. Positive effects of the electron beam processing have been observed on all previously named parameters. (author)

  8. STUDY ON MAXIMUM SPECIFIC SLUDGE ACIVITY OF DIFFERENT ANAEROBIC GRANULAR SLUDGE BY BATCH TESTS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The maximum specific sludge activity of granular sludge from large-scale UASB, IC and Biobed anaerobic reactors were investigated by batch tests. The limitation factors related to maximum specific sludge activity (diffusion, substrate sort, substrate concentration and granular size) were studied. The general principle and procedure for the precise measurement of maximum specific sludge activity were suggested. The potential capacity of loading rate of the IC and Biobed anaerobic reactors were analyzed and compared by use of the batch tests results.

  9. 升流式厌氧污泥床和连续流搅拌槽式反应器的废水处理效能及产甲烷菌群组成的对比分析%Comparative Analysis of the Efficiency and the Methanogens Composition in Upflow Anaerobic Sludge Blanket and Continuous Stirred-Tank Reactor

    Institute of Scientific and Technical Information of China (English)

    张立国; 李建政; 班巧英; 许一平

    2012-01-01

    分别运行升流式厌氧污泥床(UASB)反应器和连续流搅拌槽式反应器(CSTR)并使其达到稳定运行状态,在有机负荷率(OLR)均为6.0kg·m-3·d-1的条件下,对比分析了二者在稳定期的运行特性和产甲烷菌群的组成.结果表明,UASB的化学需氧量(COD)去除率为95%,显著高于CSTR的COD去除率(84%).然而,CSTR系统中的活性污泥的比产甲烷速率(315L·kg-1·d-1)和比COD去除率(0.85kg·kg-1·d-1)则显著高于UASB的260L·kg-1·d-1和0.67kg·kg-1·d-1.采用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)指纹分析技术对系统稳定期的活性污泥进行分析的结果表明,UASB系统的优势产甲烷菌为Methanosaeta concilii 和 Methanospirillum hungatei,而CSTR系统中的优势产甲烷菌为Methanosarcina mazeii和Methanobacterium formicicum.污泥微生物群落组成及其代谢特征的不同是造成厌氧处理系统效能差异的内在原因.UASB和CSTR在COD去除效能和污泥比活性方面各有所长,在实际应用中,须根据废水水质和预期处理程度合理选用.%The efficiency and the methanogens composition in an Upflow Anaerobic Sludge Blanket (UASB) reactor and a Continuous Stirred-Tank Reactor (CSTR) are investigated after achieving steady states at the same Organic Loading Rate (OLR) of 6.0kg· m-3 · d-1. The results show that the average removal rate of COD reaches 95% in the UASB, significantly higher than 84% of the CSTR. However, the specific methane production rate and the specific COD removal rate of the activated sludge are SlSL·kg-1·d-1 and 0.85kg·kg-1·d-1, respectively, in the CSTR, notably higher than those of the UASB of 260L·kg-1·d-1 and 0.67kg· kg-1·d-1, respectively. The analysis of the methanogens composition of the activated sludge by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) indicates that Methanosaeta concilii and Methanospirillum hungatei are the dominant methanogens in the UASB, while

  10. Biogas recovery from microwave heated sludge by anaerobic digestion

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Biogas generated from sewage sludge,livestock waste,and food waste by anaerobic digestion is a valuable renewable energy resource.However,conventional anaerobic digestion is not an efficient process.A long hydraulic retention time and low biogas recovery rate hinder the applications of those resources.An effective pretreatment method to destroy sludge microbial cells has been one of the major concerns regarding improvement of the biogas production.This article focuses on the effects of microwave heating on sludge anaerobic digestion.Volatile suspended solid(VSS) and chemical organic demand solubilization of heated sludge were investigated.Microwave heating was found to be a rapid and efficient process for releasing organic substrates from sludge.The increase of organic dissolution ratio was not obvious when holding time was over 5 min with microwave heating.The effect of the VSS solubilization was primarily dependent on heating temperature.The highest value of VSS dissolving ratio,36.4%,was obtained at 170°C for 30 min.The COD dissolving ratio was about 25% at 170°C.Total organic carbon of treated sludge liquor was 1.98 and 2.73 g/L at 150°C and 170°C for 5 min,respectively.A biochemical methane potential(BMP) test of excess sludge and a mixture of primary and excess sludge demonstrated an increase in biogas production.The total biogas from microwave treated mixture sludge increased by 12.9% to 20.2% over control after 30 days of digestion.Biogas production was 11.1% to 25.9% higher for excess sludge than for untreated sludge.The VS removal ratios of mixture sludge and excess sludge were 12% and 11% higher,respectively,compared to the untreated sludge.

  11. Electrokinetic copper and iron migration in anaerobic granular sludge

    NARCIS (Netherlands)

    Virkutyte, J.; Sillanpää, M.J.; Lens, P.N.L.

    2006-01-01

    The application of low-level direct electric current (0.15 mA cm¿2) as an electrokinetic technique to treat copper-contaminated mesophilic anaerobic granular sludge was investigated. The sludge was obtained from a full scale UASB reactor treating paper-mill wastewater and was artificially contaminat

  12. Release of Extracellular Polymeric Substance and Disintegration of Anaerobic Granular Sludge under Reduced Sulfur Compounds-Rich Conditions

    Directory of Open Access Journals (Sweden)

    Takuro Kobayashi

    2015-07-01

    Full Text Available The effect of reduced form of sulfur compounds on granular sludge was investigated. Significant release of extracellular polymeric substance (EPS from the granular sludge occurred in the presence of sulfide and methanethiol according to various concentrations. Granular sludge also showed a rapid increase in turbidity and decrease in diameter in accordance with sulfide concentration during the long-term shaking, suggesting that the strength of the granules was reduced with high-concentration sulfide. A continuous experiment of up-flow anaerobic sludge blanket reactors with different concentrations of sulfide (10, 200, 500 mg-S/L influence demonstrated that the reactor fed with higher concentration of sulfide allowed more washout of small particle-suspended solid (SS content and soluble carbohydrate and protein, which were considered as EPS released from biofilm. Finally, the presence of sulfide negatively affected methane production, chemical oxygen demand removal and sludge retention in operational performance.

  13. Ultrasonic cell disruption of stabilised sludge with subsequent anaerobic digestion.

    Science.gov (United States)

    Onyeche, T I; Schläfer, O; Bormann, H; Schröder, C; Sievers, M

    2002-05-01

    The world-wide increasing environmental awareness and its subsequent regulations have led to the application of improved technologies in wastewater purification plants. This has resulted in higher wastewater and sludge productions. Sludge is the by-product of such plants and it is not only rich in organic carbon and pathogens but also in heavy metals and other environmental pollutants. In Europe, agricultural application of dried sludge (bio-solids) is confronted with negative reactions from the citizens, governmental organisations, farmers and the food industry. Ultrasonic disruption of sludge is a popular mechanical disruption process in sludge treatment. During ultrasonic treatment, high frequency acoustic signals are used to initiate the cavitation process. The applied ultrasonic field leads to a breakdown of cohesive forces of the liquid molecules resulting in the generation of cavitation bubbles. A shock wave is released by the collapse of the cavitation bubbles and propagates in the surrounding medium forming jet streams that cause the disruption of cells in sludge. Disruption of sludge cells enables the release of light organic substances into the sludge water thereby exposing them for further anaerobic digestion. This paper presents results on the disruption of conventionally stabilised sludge through the application of the ultrasonic field. In order to reduce the specific energy input (i.e. ratio of the consumed energy during ultrasonic disruption to the input sludge mass) and improve biogas production, the total solids content of the stabilised sludge was increased before disruption. The anaerobic digestion of sludge samples was carried out in a set of specially constructed laboratory anaerobic digesters. Results showed that subsequent anaerobic digestion of the ultrasonically disrupted sludge could improve biogas production with reduced sludge quantity that is vital to the economic consideration of the wastewater treatment plants. This process

  14. Production of bioenergy in anaerobic baffled reactor (ABR) and sludge blanket (UASB) in the treatment os swine waste water; Producao de bioenergia em reatores anaerobios compartimentado (RAC) e de manta de lodo (UASB) no tratamento de efluentes de suinocultura

    Energy Technology Data Exchange (ETDEWEB)

    Moterani, Fabricio; Pereira, Erlon Lopes; Campos, Claudio M.M. [Universidade Federal de Lavras (DEG/UFLA), MG (Brazil). Dept. de Engenharia], email: fabricio_moterani@yahoo.com.br

    2011-07-01

    The biogas is obtained in the processes of degradation of organic matter by the action of bacterial consortium in the environment. The aim of this study was to evaluate the biogas production in anaerobic UASB and ABR in swine wastewater treatment. For this we used the theoretical estimated and actual production of biogas measured by anaerobic gasometers installed in the units. Methane was determined by gas chromatography (GC) and its theoretical output was 66 LCH4 kgSVT d{sup -1} and 11.9 LCH4 kgSVT d{sup -1} and 24.7 m{sup 3} d{sup -1} and 5.4 m{sup 3} d{sup -1} to ABR and UASB, respectively. Regarding the actual production of biogas in the reactor provided by the gas tank, found the values of 1,166.4 m{sup 3}; 0.1 m{sup 3}; 27.4 m{sup 3} and 12,598.5 m{sup 3} of biogas for compartments 1, 2 and 3 and ABR for the UASB reactor, respectively, totaling, production of 13,792.4 m{sup 3} in the units together, with an average of 113 m{sup 3} of biogas per day. But, it concludes with this research that the use of effluent from produce energy through biogas in swine farming is effective, which can be used in rural productive system itself. (author)

  15. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization.

    Science.gov (United States)

    Tiehm, A; Nickel, K; Zellhorn, M; Neis, U

    2001-06-01

    The pretreatment of waste activated sludge by ultrasonic disintegration was studied in order to improve the anaerobic sludge stabilization. The ultrasound frequency was varied within a range from 41 to 3217 kHz. The impact of different ultrasound intensities and treatment times was examined. Sludge disintegration was most significant at low frequencies. Low-frequency ultrasound creates large cavitation bubbles which upon collapse initiate powerful jet streams exerting strong shear forces in the liquid. The decreasing sludge disintegration efficiency observed at higher frequencies was attributed to smaller cavitation bubbles which do not allow the initiation of such strong shear forces. Short sonication times resulted in sludge floc deagglomeration without the destruction of bacteria cells. Longer sonication brought about the break-up of cell walls, the sludge solids were distintegrated and dissolved organic compounds were released. The anaerobic digestion of waste activated sludge following ultrasonic pretreatment causing microbial cell lysis was significantly improved. There was an increase in the volatile solids degradation as well as an increase in the biogas production. The increase in digestion efficiency was proportional to the degree of sludge disintegration. To a lesser degree the deagglomeration of sludge flocs also augmented the anaerobic volatile solids degradation. PMID:11337847

  16. Effects of total solids content on waste activated sludge thermophilic anaerobic digestion and its sludge dewaterability.

    Science.gov (United States)

    Wang, Tianfeng; Chen, Jie; Shen, Honglang; An, Dong

    2016-10-01

    The role of total solids content on sludge thermophilic anaerobic digestion was investigated in batch reactors. A range of total solids content from 2% to 10% was evaluated with two replicates. The lowest inhibitory concentration for free ammonia and total ammonia of sludge thermophilic anaerobic digestion was 110.9-171.4mg/L and 1313.1-1806.7mg/L, respectively. The volumetric biogas production rate increased with increasing of total solids content, but the corresponding biogas yield per gram volatile solid decreased. The result of normalized capillary suction time indicated that the dewaterability of digested sludge at high total solids content was poor, while solid content of sediment obtained by centrifuging sludge at 2000g for 10min increased with increasing of total solids content of sludge. The results suggest that thickened sludge mixed with dewatered sludge at an appropriate ratio could get high organic loading rate, high biogas yield and adequate dewatering effort. PMID:26897469

  17. [Influence of nitrate on the simultaneous methanogenesis and denitrification reaction of anaerobic biofilm and granular sludge].

    Science.gov (United States)

    Zhong, Chen-Yu; Ye, Jie-Xu; Li, Ruo-Yu; Chen, Sheng; Sun, De-Zhi

    2012-12-01

    The aims of this study are to further investigate the impact mechanism of nitrate on the simultaneous methanogenesis and denitrification (SMD) process of anaerobic biofilm, and to extend the application of the biofilm process in the treatment of high nitrogen and COD concentration organic wastewater. The SMD reactions were successfully carried out in a hybrid anaerobic biofilm and sludge reactor (HABSR) and an up-flow anaerobic sludge blanket (UASB), and the influence of nitrate on the performance of simultaneous carbon and nitrogen removal in biofilm and granular sludge were investigated using batch tests. The results showed that the nitrate concentration could obviously affect the carbon and nitrogen removal in both biofilm and granular sludge, and the increase of nitrate concentration had more serious impact on the granular sludge, and the biofilm presented higher COD and nitrogen removal efficiency and stronger resistance to toxic materials than the granular sludge. As the nitrate concentration was increased from 75 to 600 mg x L(-1), the COD removal rates were reduced from 273.26 to 0.1 mg x (h x g)(-1) in granular sludge and reduced from 95 to 1.7 mg x (h x g)(-1) in biofilm. At the same time, the denitrification rate of biofilm and granular sludge were increased form 21.43 and 22.31 mg x (h x g)(-1) to 83.72 and 61.06 mg x (h x g)(-1), respectively. The biofilm recovered the COD degradation rate more quickly and easily than the granular sludge, and the maximum COD removal rate reached 712.44 mg x (h x g)(-1). The nitrite accumulation was observed to be the major cause that affected the simultaneous carbon and nitrogen removal of biofilm and granular sludge. It's found that the maximum nitrite accumulation in biofilm was only one tenth of that of the granular sludge at the same nitrate concentration. The HABSR was proved to be an important alternative for SMD reaction employed in the treatment of high nitrogen and COD concentration organic wastewater. PMID

  18. Effects of Predation by Protists on Prokaryotic Community Function, Structure, and Diversity in Anaerobic Granular Sludge

    Science.gov (United States)

    Hirakata, Yuga; Oshiki, Mamoru; Kuroda, Kyohei; Hatamoto, Masashi; Kubota, Kengo; Yamaguchi, Takashi; Harada, Hideki; Araki, Nobuo

    2016-01-01

    Predation by protists is top-down pressure that regulates prokaryotic abundance, community function, structure, and diversity in natural and artificial ecosystems. Although the effects of predation by protists have been studied in aerobic ecosystems, they are poorly understood in anoxic environments. We herein studied the influence of predation by Metopus and Caenomorpha ciliates—ciliates frequently found in anoxic ecosystems—on prokaryotic community function, structure, and diversity. Metopus and Caenomorpha ciliates were cocultivated with prokaryotic assemblages (i.e., anaerobic granular sludge) in an up-flow anaerobic sludge blanket (UASB) reactor for 171 d. Predation by these ciliates increased the methanogenic activities of granular sludge, which constituted 155% of those found in a UASB reactor without the ciliates (i.e., control reactor). Sequencing of 16S rRNA gene amplicons using Illumina MiSeq revealed that the prokaryotic community in the UASB reactor with the ciliates was more diverse than that in the control reactor; 2,885–3,190 and 2,387–2,426 operational taxonomic units (>97% sequence similarities), respectively. The effects of predation by protists in anaerobic engineered systems have mostly been overlooked, and our results show that the influence of predation by protists needs to be examined and considered in the future for a better understanding of prokaryotic community structure and function. PMID:27431197

  19. Dosing of anaerobic granular sludge bioreactors with cobalt: Impact of cobalt retention on methanogenic activity

    KAUST Repository

    Fermoso, Fernando G.

    2010-12-01

    The effect of dosing a metal limited anaerobic sludge blanket (UASB) reactor with a metal pulse on the methanogenic activity of granular sludge has thus far not been successfully modeled. The prediction of this effect is crucial in order to optimize the strategy for metal dosage and to prevent unnecessary losses of resources. This paper describes the relation between the initial immobilization of cobalt in anaerobic granular sludge cobalt dosage into the reactor and the evolution of methanogenic activity during the subsequent weeks. An operationally defined parameter (A0· B0) was found to combine the amount of cobalt immobilized instantaneously upon the pulse (B0) and the amount of cobalt immobilized within the subsequent 24. h (A0). In contrast with the individual parameters A0 and B0, the parameter A0· B0 correlated significantly with the methanogenic activity of the sludge during the subsequent 16 or 35. days. This correlation between metal retention and activity evolution is a useful tool to implement trace metal dosing strategies for biofilm-based biotechnological processes. © 2010.

  20. Enhancement of sludge granulation in anaerobic treatment of concentrated latex wastewater

    Directory of Open Access Journals (Sweden)

    Nugul Intrasungkha

    2008-04-01

    Full Text Available Recently, the upflow anaerobic sludge blanket (UASB reactor has become attractive for wastewater treatment with low energy requirement and biogas production. However, the start-up of an UASB reactor depends on the formation of granules. Therefore, this research aims to study the effect of AlCl3, CaCl2 and temperature on the granule formation process using real concentrated latex wastewater. The result shows that the optimum chemicals concentration of AlCl3 at 300 mg/l enhanced the biomass accumulation and sludge formation process. Approximately 50% of large granular size (0.5 mm 0.8 mm within 35 days, whereas the large granular sizes in reactorwithout AlCl3 supplement (R2 became visible within 63 days. Moreover, this experiment found that R1, R2 and R3 could reach steady state within 40, 55 and 45 days, respectively.

  1. Location and chemical composition of microbially induced phosphorus precipitates in anaerobic and aerobic granular sludge.

    Science.gov (United States)

    Mañas, A; Spérandio, M; Decker, F; Biscans, B

    2012-01-01

    This work focuses on combined scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX) applied to granular sludge used for biological treatment of high-strength wastewater effluents. Mineral precipitation is shown to occur in the core of microbial granules under different operating conditions. Three dairy wastewater effluents, from three different upflow anaerobic sludge blanket (UASB) reactors and two aerobic granular sequenced batch reactors (GSBR) were evaluated. The relationship between the solid phase precipitation and the chemical composition of the wastewater was investigated with PHREEQC software (calculation of saturation indexes). Results showed that pH, Ca:P ratios and biological reactions played a major role in controlling the biomineralization phenomena. Thermodynamics calculations can be used to foresee the nature of bio-precipitates, but the location of the mineral concretions will need further investigation as it is certainly due to local microbial activity. PMID:23393959

  2. Anaerobic bioleaching of metals from waste activated sludge.

    Science.gov (United States)

    Meulepas, Roel J W; Gonzalez-Gil, Graciela; Teshager, Fitfety Melese; Witharana, Ayoma; Saikaly, Pascal E; Lens, Piet N L

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g(-1) of copper, 487 μg g(-1) of lead, 793 μg g(-1) of zinc, 27 μg g(-1) of nickel and 2.3 μg g(-1) of cadmium. During the anaerobic acidification of 3 gdry weight L(-1) waste activated sludge, 80-85% of the copper, 66-69% of the lead, 87% of the zinc, 94-99% of the nickel and 73-83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead. PMID:25659306

  3. Anaerobic bioleaching of metals from waste activated sludge

    KAUST Repository

    Meulepas, Roel J W

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342μgg-1 of copper, 487μgg-1 of lead, 793μgg-1 of zinc, 27μgg-1 of nickel and 2.3μgg-1 of cadmium. During the anaerobic acidification of 3gdry weightL-1 waste activated sludge, 80-85% of the copper, 66-69% of the lead, 87% of the zinc, 94-99% of the nickel and 73-83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead.

  4. Anaerobic bioleaching of metals from waste activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Meulepas, Roel J.W., E-mail: roel.meulepas@wetsus.nl [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Gonzalez-Gil, Graciela [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal 13955-69000 (Saudi Arabia); Teshager, Fitfety Melese; Witharana, Ayoma [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Saikaly, Pascal E. [King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal 13955-69000 (Saudi Arabia); Lens, Piet N.L. [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands)

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g{sup −1} of copper, 487 μg g{sup −1} of lead, 793 μg g{sup −1} of zinc, 27 μg g{sup −1} of nickel and 2.3 μg g{sup −1} of cadmium. During the anaerobic acidification of 3 g{sub dry} {sub weight} L{sup −1} waste activated sludge, 80–85% of the copper, 66–69% of the lead, 87% of the zinc, 94–99% of the nickel and 73–83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead. - Highlights: • Heavy metals were leached during anaerobic acidification of waste activated sludge. • The process does not require the addition of chelating or oxidizing agents. • The metal leaching efficiencies (66 to 99%) were comparable to chemical leaching. • The produced leachate may be used for metal recovery and biogas production. • The produced digested sludge may be used as soil conditioner.

  5. Anaerobic bioleaching of metals from waste activated sludge

    International Nuclear Information System (INIS)

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g−1 of copper, 487 μg g−1 of lead, 793 μg g−1 of zinc, 27 μg g−1 of nickel and 2.3 μg g−1 of cadmium. During the anaerobic acidification of 3 gdry weight L−1 waste activated sludge, 80–85% of the copper, 66–69% of the lead, 87% of the zinc, 94–99% of the nickel and 73–83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead. - Highlights: • Heavy metals were leached during anaerobic acidification of waste activated sludge. • The process does not require the addition of chelating or oxidizing agents. • The metal leaching efficiencies (66 to 99%) were comparable to chemical leaching. • The produced leachate may be used for metal recovery and biogas production. • The produced digested sludge may be used as soil conditioner

  6. Dispersed plug flow model for upflow anaerobic sludge bed reactors with focus on granular sludge dynamics

    NARCIS (Netherlands)

    Kalyuzhnyi, S.V.; Fedorovich, V.V.; Lens, P.N.L.

    2006-01-01

    A new approach to model upflow anaerobic sludge bed (UASB)-reactors, referred to as a one-dimensional dispersed plug flow model, was developed. This model focusses on the granular sludge dynamics along the reactor height, based on the balance between dispersion, sedimentation and convection using on

  7. Nitrogen in the Process of Waste Activated Sludge Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Suschka Jan

    2014-07-01

    Full Text Available Primary or secondary sewage sludge in medium and large WWTP are most often processed by anaerobic digestion, as a method of conditioning, sludge quantity minimization and biogas production. With the aim to achieve the best results of sludge processing several modifications of technologies were suggested, investigated and introduced in the full technical scale. Various sludge pretreatment technologies before anaerobic treatment have been widely investigated and partially introduced. Obviously, there are always some limitations and some negative side effects. Selected aspects have been presented and discussed. The problem of nitrogen has been highlighted on the basis of the carried out investigations. The single and two step - mesophilic and thermophilic - anaerobic waste activated sludge digestion processes, preceded by preliminary hydrolysis were investigated. The aim of lab-scale experiments was pre-treatment of the sludge by means of low intensive alkaline and hydrodynamic disintegration. Depending on the pretreatment technologies and the digestion temperature large ammonia concentrations, up to 1800 mg NH4/dm3 have been measured. Return of the sludge liquor to the main sewage treatment line means additional nitrogen removal costs. Possible solutions are discussed.

  8. Maintaining granulation in a denitrifying upflow sludge-blanket reactor treating groundwater with low hardness.

    Science.gov (United States)

    Rouse, Joseph D; Nakashima, Takahiro; Furukawa, Kenji

    2003-01-01

    Maintenance of denitrifying granular sludge for treating soft groundwater (total hardness = 75 mg calcium carbonate/L) in an upflow sludge-blanket reactor was demonstrated with complete removal of applied nitrate (20 mg N/L) over extended operation and a hydraulic residence time of 34 minutes. A high pH of approximately 9.0 was shown to be important for generation of mineral precipitation needed for production of heavy granular sludge with good retention characteristics. As a method of increasing precipitation potential, pH adjustment was determined to be more economically favorable than calcium or alkalinity supplementation. In addition, temporary increases in substrate loading were shown to be effective for enhancing biomass levels in a manageable granular sludge. The significance of biomass in promoting mineral precipitation was discussed.

  9. Characteristics of granular sludge developed in an upflow anaerobic sludge fixed-film bioreactor treating palm oil mill effluent.

    Science.gov (United States)

    Zinatizadeh, A A L; Mohamed, A R; Mashitah, M D; Abdullah, A Z; Hasnain Isa, M

    2007-08-01

    In the present study, characteristics of the granular sludge (including physical characteristics under stable conditions and process shocks arising from suspended solid overload, soluble organic overload, and high temperature; biological activity; and sludge kinetic evaluation in a batch experiment) developed in an upflow anaerobic sludge blanket fixed-film reactor for palm oil mill effluent (POME) treatment was investigated. The main aim of this work was to provide suitable understanding of POME anaerobic digestion using such a granular sludge reactor, particularly with respect to granule structure at various operating conditions. The morphological changes in granular sludge resulting from various operational conditions was studied using scanning electron microscopy and transmission electron microscopy images. It was shown that the developed granules consisted of densely packed rod- (Methanosaeta-like microorganism; predominant) and cocci- (Methanosarsina) shaped microorganisms. Methanosaeta aggregates functioned as nucleation centers that initiated granule development of POME-degrading granules. Under the suspended solid overload condition, most of the granules were covered with a thin layer of fiberlike suspended solids, so that the granule color changed to brown and the sludge volume index also increased to 24.5 from 12 to 15 mL/g, which caused a large amount of sludge washout. Some of the granules were disintegrated because of an acidified environment, which originated from acidogenesis of high influent organic load (29 g chemical oxygen demand [COD]/L d). At 60 degrees C, the rate of biomass washout increased, as a result of disintegration of the outer layer of the granules. In the biological activity test, approximately 95% COD removal was achieved within 72 hours, with an initial COD removal rate of 3.5 g COD/L d. During POME digestion, 275 mg calcium carbonate/L bicarbonate alkalinity was produced per 1000 mg COD(removed)/ L. A consecutive reaction kinetic

  10. Efficient COD removal and nitrification in an upflow microaerobic sludge blanket reactor for domestic wastewater.

    Science.gov (United States)

    Zheng, Shaokui; Cui, Cancan

    2012-03-01

    The treatment performance of an upflow microaerobic sludge blanket reactor (UMSB) for synthetic domestic wastewater was investigated at two dissolved oxygen (DO) levels, 0.3-0.5 and 0.7-0.9 mg l(-1), focusing on nitrification performance. The higher DO level induced complete nitrification of ammonia nitrogen (NH(3)-N), achieving chemical oxygen demand and NH(3)-N removals of 97 and 92%, respectively. There were consistently significantly higher nitrate nitrogen (NO(3)-N) and nitrite nitrogen (NO(2)-N) levels in the effluent, with ~66% of newly-produced oxidised nitrogen as NO(2)-N. Despite the high nitrification efficiency, only about 23% of the removed NH(3)-N amount from the influent was ultimately transformed into oxidised nitrogen due to the simultaneous nitrification-denitrification. Sludge blanket development and granulation occurred simultaneously in the UMSB. PMID:22105554

  11. Anaerobic treatment of sludge: focusing on reduction of LAS concentration in sludge

    DEFF Research Database (Denmark)

    Haagensen, Frank; Mogensen, Anders Skibsted; Angelidaki, Irini;

    2002-01-01

    Anaerobic degradation of linear alkylbenzene sulfonates (LAS) was tested in continuous stirred tank reactors (CSTR). LAS12 was used as a model compound and was spiked on sewage sludge. The experiments clearly showed that transformation of LAS12 occurred under anaerobic conditions. The degree...

  12. Desempenho de reatores anaeróbios de fluxo ascendente com manta de lodo em dois estágios tratando águas residuárias de suinocultura Performance of two-stage up flow anaerobic sludge blanket reactors treating swine wastewater

    Directory of Open Access Journals (Sweden)

    Adriana M. de Santana

    2005-12-01

    Full Text Available Avaliou-se o desempenho de dois reatores anaeróbios de fluxo ascendente com manta de lodo (UASB em escala-piloto com volumes de 908 L e 188 L, instalados em série, alimentados com águas residuárias de suinocultura com concentrações médias de sólidos suspensos totais (SST variando de 2.216 mg L-1 a 7.131 mg L-1 e submetidos a tempos de detenção hidráulica (TDH de 62,3 e 31,1 h, no primeiro reator, e de 12,9 e 6,5 h, no segundo reator. As eficiências médias de remoção de DQOtotal variaram de 74,0% a 89,6% no Reator 1 e de 34,3% a 45,1% no Reator 2, resultando em valores médios de 86,6% a 93,1% para o sistema de tratamento em dois estágios com carga orgânica volumétrica (COV na faixa de 3,40 a 14,44 kg DQOtotal m-3 reator d-1 no Reator 1. As concentrações de metano no biogás foram acima de 75% para o Reator 1 e de 80% para o Reator 2. Os valores médios de pH variaram na faixa de 6,9 a 8,2 para o efluente do Reator 1 e de 7,0 a 8,3 para o efluente do Reator 2. Os ácidos voláteis totais mantiveram-se estáveis com concentrações médias abaixo de 200 mg L-1. Esses resultados indicaram que as condições de carga orgânica, em termos de DQO e SSV, impostas ao sistema de tratamento anaeróbio em dois estágios, não foram limitantes para que houvesse o desenvolvimento de lodo com microbiota adaptada e com alta atividade, propiciando altas eficiências médias de remoção de matéria orgânica (86,6 a 93,1% para DQOtotal e 85,6 a 88,2% para SSV e taxas de produção de metano de 0,156 a 0,289 m³ CH4 kg-1 de DQO removida.The objective of this work was monitoring the performance of two up flow anaerobic sludge blanket reactors (UASB in a pilot-scale testing with volumes of 908 L and 188 L, installed in series, loaded with swine wastewater with total suspended solids (TSS ranging from 2216 to 7131 mg L-1, submitted to an hydraulic detention time (HDT of 62.3 and 31.1 h, in the first reactor, and 12.9 and 6.5 h, in the second

  13. The phenomenon of granulation of anaerobic sludge.

    NARCIS (Netherlands)

    Hulshoff Pol, L.W.

    1989-01-01

    Successful high-rate anaerobic wastewater treatment can only be accomplished when the slowgrowing anaerobic biomass is efficiently held back in the anaerobic treatment system. This biomass retention can be achieved in various ways including immobilization of the organisms on fixed materials and immo

  14. Start-up of horizontal anaerobic reactors with sludge blanket and fixed bed for wastewater treatment from coffee processing by wet method Partida de reatores anaeróbios horizontais com manta de lodo e de leito fixo para tratamento de águas residuárias do beneficiamento de frutos do cafeeiro por via úmida

    Directory of Open Access Journals (Sweden)

    Roberto A. de Oliveira

    2013-04-01

    Full Text Available In this study it was evaluated the start-up procedures of anaerobic treatment system with three horizontal anaerobic reactors (R1, R2 and R3, installed in series, with volume of 1.2 L each. R1 had sludge blanket, and R2 and R3 had half supporter of bamboo and coconut fiber, respectively. As an affluent, it was synthesized wastewater from mechanical pulping of the coffee fruit by wet method, with a mean value of total chemical oxygen demand (CODtotal of 16,003 mg L-1. The hydraulic retention time (HRT in each reactor was 30 h. The volumetric organic loading (VOL applied in R1 varied from 8.9 to 25.0 g of CODtotal (L d-1. The mean removal efficiencies of CODtotal varied from 43 to 97% in the treatment system (R1+R2+R3, stabilizing above 80% after 30 days of operation. The mean content of methane in the biogas were of 70 to 76%, the mean volumetric production was 1.7 L CH4 (L reactor d-1 in the system, and the higher conversions were around at 0.20 L CH4 (g CODremoved-1 in R1 and R2. The mean values of pH in the effluents ranged from 6.8 to 8.3 and the mean values of total volatile acids remained below 200 mg L-1 in the effluent of R3. The concentrations of total phenols of the affluent ranged from 45 to 278 mg L-1, and the mean removal efficiency was of 52%. The start-up of the anaerobic treatment system occurred after 30 days of operation as a result of inoculation with anaerobic sludge with active microbiota.Foram avaliados os procedimentos de partida de sistema de tratamento com três reatores anaeróbios horizontais (R1, R2 e R3, instalados em série, com volume de 1,2 L cada. O R1 com manta de lodo e o R2 e R3 através de suporte de bambu e fibra de coco, respectivamente. Como afluente,foram sintetizadas águas residuárias do despolpamento mecânico dos frutos do cafeeiro por via úmida, com valor médio de demanda química de oxigênio total (DQOtotal de 16.003 mg L-1. O tempo de detenção hidráulica (TDH em cada reator foi de 30 h. As

  15. Limited degradation of chlorophenols by anaerobic sludge granules.

    OpenAIRE

    Mohn, W W; Kennedy, K J

    1992-01-01

    To better understand the fate of chlorophenols treated in upflow anaerobic sludge bed reactors, we examined the ability of sludge granules from such bioreactors to degrade two trichlorophenols and one dichlorophenol in batch incubations under controlled conditions. Biodegradation was primarily limited to two distinct activities, reductive dehalogenation of ortho- and of meta-chlorine substituents. Both 3- and 4-monochlorophenol were persistent degradation products, while 2-monochlorophenol wa...

  16. Tratamento de águas residuárias de suinocultura em reatores anaeróbios de fluxo ascendente com manta de lodo (uasb em dois estágios seguidos de reator operado em batelada sequencial (RBS Swine wastewater treatment in upflow anaerobic sludge blanket reactor (uasb in two-stages followed by sequencing batch reactor (SBR

    Directory of Open Access Journals (Sweden)

    Roberto A. de Oliveira

    2011-02-01

    Full Text Available Neste trabalho, avaliou-se o desempenho de dois reatores anaeróbios de fluxo ascendente com manta de lodo (UASB, em série, seguidos de um reator operado em batelada sequencial (RBS com etapa aeróbia, no tratamento de águas residuárias de suinocultura. O sistema de tratamento anaeróbio em dois estágios foi alimentado com águas residuárias de suinocultura com concentrações médias de sólidos suspensos totais (SST, de 4.427 a 16.425 mg L-1 . As cargas orgânicas volumétricas (COV aplicadas no reator UASB do primeiro estágio variaram de 14,8 a 24,4 g DQO (L d-1. Os tempos de detenção hidráulica (TDH foram de 28 e 11 h e de 14 e 6 h no primeiro e segundo reatores UASB, respectivamente. O RBS foi operado com 1 e 2 ciclos diários de alimentação e com concentrações de SST do afluente, de 1.348 a 2.036 mg L-1 . As maiores eficiências de remoção de DQOtotal ocorreram com os maiores TDH, com valores médios de 78 a 88% nos reatores UASB, em dois estágios. Com o tratamento do efluente dos reatores UASB no RBS, as eficiências médias de remoção aumentaram para 93 a 97%, 92 a 98%, 57 a 78%, 71 a 88% e 68 a 85% para a DQO total, SST, P-total, nitrogênio total Kjeldahl (NTK e nitrogênio total (NT, respectivamente. Para os coliformes termotolerantes, as remoções foram de 93,80 a 99,99%.This work aimed to evaluate the performance of two aerobic-anaerobic combination system of upflow anaerobic sludge blanket digestion reactor (UASB in line followed by an aerobic sequencing bath reactor (SBR, used in swine wastewater treatment. The UASB system was fed with swine wastewater containing from 4427 to 16425 mg L-1 of total suspended solids (TSS. The treatment system was evaluated using organic loading (OLR of 14,8 to 24,4 g total COD (L d-1 in the first UASB reactor. The hydraulic detention times (HDT were of 28 and 11 h, and 14 and 6 h, in the first and second UASB reactor, respectively. The SBR was operated with one and two cycles

  17. [Anaerobic biodegradation of phthalic acid esters (Paes) in municipal sludge].

    Science.gov (United States)

    Liang, Zhi-Feng; Zhou, Wen; Lin, Qing-Qi; Yang, Xiu-Hong; Wang, Shi-Zhong; Cai, Xin-De; Qiu, Rong-Liang

    2014-04-01

    Phthalic acid esters (PAEs), a class of organic pollutants with potent endocrine-disrupting properties, are widely present in municipal sludge. Study of PAEs biodegradation under different anaerobic biological treatment processes of sludge is, therefore, essential for a safe use of sludge in agricultural practice. In this study, we selected two major sludge PAEs, i.e. di-n-butyl phthalate (DBP) and di-(2-enthylhexyl) phthalate (DEHP), to investigate their biodegradation behaviors in an anaerobic sludge digestion system and a fermentative hydrogen production system. The possible factors influencing PAEs biodegradation in relation to changes of sludge properties were also discussed. The results showed that the biodegradation of DBP reached 99.6% within 6 days, while that of DEHP was 46.1% during a 14-day incubation period in the anaerobic digestion system. By comparison, only 19.5% of DBP was degraded within 14 days in the fermentative hydrogen production system, while no degradation was detected for DEHP. The strong inhibition of the degradation of both PAEs in the fermentative hydrogen production system was ascribed to the decreases in microbial biomass and ratios of gram-positive bacteria/gram-negative bacteria and fungi/ bacteria, and the increase of concentrations of volatile fatty acids (e. g. acetic acid, propionic acid and butyric acid) during the fermentative hydrogen-producing process.

  18. Biomass stabilization in the anaerobic digestion of wastewater sludges

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, C. [Universidad de Sevilla, Dept. de Ingenieria Quimica y Ambiental, Sevilla (Spain); Gutierrez, J.C. [Universidad Pablo de Olavide, Dept. de Ciencias Ambientales, Sevilla (Spain); Lebrato, J. [Universidad de Sevilla, Grupo Tratamiento de Aguas Residuales, Sevilla (Spain)

    2005-07-01

    Sludge stabilization processes include both volatile solid destruction and biomass stabilization. Traditionally, both processes have been considered together, in such a way that, when volatile solid destruction is achieved, the biomass is considered stabilized. In this study, volatile solids reduction and biomass stabilization in the anaerobic digestion of primary, secondary and mixed sludges from municipal wastewater treatment plants were researched in batch cultures by measurements of suspended solids and suspended lipid-phosphate. The estimated kinetic constants were higher in all sludge types tested for the biomass stabilization process, indicating that volatile solids destruction and biomass stabilization are not parallel processes, since the latter one is reached before the former. (Author)

  19. Biomass stabilization in the anaerobic digestion of wastewater sludges

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, C. [Universidad de Sevilla (Spain). Escuela Universitaria Politecnica. Departamento de Ingenieria Quimica y Ambiental; Gutierrez, J.C. [Universidad Pablo de Olavide, Sevilla (Spain). Departamento de Ciencias Ambientales; Lebrato, J. [Universidad de Sevilla (Spain). Escuela Universitaria Politecnica

    2006-07-15

    Sludge stabilization processes include both volatile solid destruction and biomass stabilization. Traditionally, both processes have been considered together, in such a way that, when volatile solid destruction is achieved, the biomass is considered stabilized. In this study, volatile solids reduction and biomass stabilization in the anaerobic digestion of primary, secondary and mixed sludges from municipal wastewater treatment plants were researched in batch cultures by measurements of suspended solids and suspended lipid-phosphate. The estimated kinetic constants were higher in all sludge types tested for the biomass stabilization process, indicating that volatile solids destruction and biomass stabilization are not parallel processes, since the latter one is reached before the former. (author)

  20. Succession of microbial community and enhanced mechanism of a ZVI-based anaerobic granular sludge process treating chloronitrobenzenes wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liang, E-mail: felix79cn@hotmail.com [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058 (China); Jin, Jie [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Lin, Haizhuan [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Wenzhou Environmental Protection Design Scientific Institute, Wenzhou 325000 (China); Gao, Kaituo [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Xu, Xiangyang, E-mail: xuxy@zju.edu.cn [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058 (China)

    2015-03-21

    Highlights: • The combined ZVI–UASB process was established for the degradation of chloronitrobenzenes. • There were the better shock resistance and buffering capacity for anaerobic acidification in the combined process. • Novel ZVI-based anaerobic granular sludge (ZVI–AGS) was successfully developed. • Adaptive shift of microbial community was significant in ZVI-based anaerobic granular sludge system. - Abstract: The combined zero-valent iron (ZVI) and upflow anaerobic sludge blanket (UASB) process is established for the treatment of chloronitrobenzenes (ClNBs) wastewater, and the succession of microbial community and its enhanced mechanism are investigated in the study. Results showed that compared with the control UASB (R1), the stable COD removal, ClNBs transformation, and dechlorination occurred in the combined system (R2) when operated at influent COD and 3,4-Dichloronitrobenzene (3,4-DClNB) loading rates of 4200–7700 g m{sup −3} d{sup −1} and 6.0–70.0 g m{sup −3} d{sup −1}, and R2 had the better shock resistance and buffering capacity for the anaerobic acidification. The dechlorination for the intermediate products of p-chloroanaline (p-ClAn) to analine (AN) occurred in R2 reactor after 45 days, whereas it did not occur in R1 after a long-term operation. The novel ZVI-based anaerobic granular sludge (ZVI–AGS) was successfully developed in the combined system, and higher microbial activities including ClNB transformation and H{sub 2}/CH{sub 4} production were achieved simultaneously. The dominant bacteria were closely related to the groups of Megasphaera, Chloroflexi, and Clostridium, and the majority of archaea were correlated with the groups of Methanosarcinalesarchaeon, Methanosaetaconcilii, and Methanothrixsoehngenii, which are capable of reductively dechlorinating PCB, HCB, and TCE in anaerobic niche and EPS secretion.

  1. Hydrodynamic behavior of a lab-scale upflow anaerobic sludge blanket reactor (UASB operated with an adopted hydraulic retention time (HRT of 12 hours Comportamento hidrodinâmico de um reator anaeróbio de manta de lodo (UASB em escala de bancada operando com tempo de detenção hidráulica (TDH de 12 horas

    Directory of Open Access Journals (Sweden)

    Aguinaldo Menegassi Pereira Lourenço

    2009-08-01

    Full Text Available The present research was carried out in the Laboratory of Water Analysis at the Engineering Department at Federal University of Lavras (LWAED-UFLA, in order to evaluate the hydrodynamic behavior of a lab-scale upflow anaerobic sludge blanket reactor (UASB that was continuously fed with liquid effluent from swine manure with solid separation over 2mm. The hydrodynamic parameters were determined by a tracer study, under hydraulic retention time (HRT of 12 hours, using Lithium Chloride (LiCl as a tracer. The system was monitored periodically through physical analysis of samples collected at UASB, during the steady-state operational conditions. The physical-chemical analyses were accomplished using a flame photometry. The operational average temperature in the UASB reactor was 23.9ºC .The UASB hydrodynamic parameters determined were: average residence time ( of 38.3 h, number of dispersion d= 0.27, and the flow type was characterized as dispersed flow of great intensity. This research is of great importance due to the fact that the scaling-up of biological reactors is based on the hydrodynamic behavior, through which the bacterial kinetic is directly influenced, as reported by Saleh (2004.A presente pesquisa foi realizada no Laboratório de Análise de Água do Departamento de Engenharia na Universidade Federal de Lavras (LAADEG-UFLA, para avaliar o comportamento hidrodinâmico de um reator anaeróbio de manta de lodo (UASB, em escala laboratorial, alimentado continuamente com água residuária do confinamento de suínos isenta de sólidos com diâmetro acima de 2 mm. Na avaliação dos parâmetros hidrodinâmicos foi utilizado o cloreto de lítio (LiCl como traçador, sob tempo de detenção hidráulica (TDH de 12 horas. O monitoramento foi realizado, quando o reator UASB apresentava condições permanentes "steady-state". As análises físico-químicas foram realizadas em fotômetro de chama, de amostras retiradas na saída da unidade de

  2. Uso de lagoa aerada facultativa como polimento do reator anaeróbio de manta de lodo UASB no tratamento de dejetos de suínos em escala laboratorial The efficiency of an aerated pond used for treating the effluent of an UASB reactor (upflow anaerobic sludge blanket reactor treating swine manure in a lab-scale system

    Directory of Open Access Journals (Sweden)

    Fernanda Ribeiro do Carmo

    2004-06-01

    Full Text Available As atividades agroindustriais têm se voltado não somente para o aumento da produtividade, mas também para a conservação do meio ambiente. A suinocultura é, sem dúvida, uma das atividades agroindustriais mais poluidoras, principalmente no Estado de Minas Gerais. Sendo assim, objetivou-se desenvolver e operar uma Lagoa Aerada Facultativa (LAF em escala de bancada (laboratorial, e como polimento de um Reator Anaeróbio de Manta de Lodo (UASB, visando a tratar os dejetos de suínos com máxima eficiência e custo mínimo. O experimento foi conduzido no Laboratório de Análise de Água do Departamento de Engenharia (LAADEG da Universidade Federal de Lavras (UFLA, sendo composto por um tanque de acidificação e equalização (TAE, um reator anaeróbio de manta de lodo (UASB e uma lagoa aerada facultativa (LAF para polimento. As análises fisico-químicas realizadas foram: pH, DBO5, DQO T, Sólidos Totais (fixos e voláteis, Temperatura, Nitrogênio, Fósforo, Alcalinidade e Acidez Total. A unidade LAF mostrou uma eficiência média de 83 e 42% de DQO T e Nitrogênio Total, respectivamente. O sistema proporcionou remoção média de 93, 84 e 85% de DQO T, DBO5 e Sólidos Totais Voláteis, respectivamente.Nowadays the agro-industry activities have not only focused its direction to the production increasing, but also, to the environmental preservation. The swine production is amo doubt, an activity, which can be considered, one of the most pollutants, mainly in the Minas Gerais State (BRAZIL. Therefore, this research aimed at developing and operating an Upflow Anaerobic Sludge Blanket Reactor (UASB, followed by an Aerobic Facultative Pound (AFP (Lab-Scale, with the objective of treating the liquid effluent originated from swine with the maximum efficiency and lower costs. The experiment was carried out in the Laboratory of Water Analysis of the Engineering Department of the Federal University of Lavras (UFLA. The system was assembled with an

  3. Structure and stability of methanogenic granular sludge.

    NARCIS (Netherlands)

    Grotenhuis, J.T.C.

    1992-01-01

    Immobilization of anaerobic bacteria was essential for the development of high rate anaerobic systems for the treatment of waste waters. The most widely applied anaerobic reactor type in which solids retention time is uncoupled from the hydraulic retention time is the Upflow Anaerobic Sludge Blanket

  4. [Distribution and removal of anaerobic antibiotic resistant bacteria during mesophilic anaerobic digestion of sewage sludge].

    Science.gov (United States)

    Tong, Juan; Wang, Yuan-Yue; Wei Yuan, Song

    2014-10-01

    Sewage sludge is one of the major sources that releasing antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARG) into the environment since it contains large amount of ARB, but there is little information about the fate of the anaerobic ARB in the anaerobic digestion of sewage sludge. Therefore, the distribution, removal and seasonal changes of tetracycline and β-lactam antibiotics resistant bacteria in the mesophilic egg-shaped digesters of a municipal wastewater treatment plant were investigated for one year in this study. Results showed that there were higher amounts of ARB and higher resistance rate of β-lactam antibiotics than that of tetracycline antibiotics in the sewage sludge. All ARB could be significantly reduced during the mesophilic anaerobic digestion process by 1.48-1.64 log unit (P < 0.05). Notably, the ampicillin and cephalothin resistance rates were significantly increased after anaerobic digestion by 12.0% and 14.3%, respectively (P < 0.05). The distribution of ARB in the sewage sludge had seasonal change characteristics. Except for chlorotetracycline resistant bacteria, there were more ARB in the sewage sludge in cold season than in warm season (P < 0.05). PMID:25693388

  5. Desempenho de processo anaeróbio em dois estágios (reator compartimentado seguido de reator UASB para tratamento de águas residuárias de suinocultura Performance of two-stage anaerobic process (baffled reactor (ABR followed by an upflow sludge blanket reactor (UASB treating swine wastewater

    Directory of Open Access Journals (Sweden)

    Gracie F. R. Fernandes

    2006-04-01

    Full Text Available Avaliou-se o efeito das águas residuárias de suinocultura com concentrações de sólidos suspensos totais em torno de 6.000 mg L-1 (DQOtotal variando de 7.557 a 11.640 mg L-1 no desempenho de processo anaeróbio em dois estágios compostos por reator compartimentado (ABR e reator de fluxo ascendente com manta de lodo (UASB, instalados em série, em escala-piloto (volumes de 530 e 120 L, respectivamente, submetidos a tempos de detenção hidráulica (TDH de 56 a 18 h no primeiro reator e de 13 a 4 h no segundo reator. As eficiências médias de remoção de DQOtotal variaram de 71,1 a 87,5% no reator ABR e de 41,5 a 50,1% no reator UASB, resultando em valores médios de 86,8 a 94,9% para o sistema de tratamento anaeróbio em dois estágios com carga orgânica volumétrica (COV, na faixa de 5,05 a 10,12 kg DQOtotal (m³ d-1, no reator ABR, e de 2,83 a 9,63 kg DQOtotal (m³ d-1, no reator UASB. As eficiências de remoção de SST e SSV foram da ordem de 95,6%. O teor de metano no biogás manteve-se acima de 70% para os dois reatores. A produção volumétrica de metano máxima de 0,755 m³ CH4 (m³ d-1 ocorreu no reator 1, com COV de 10,12 kg DQOtotal (m³ d-1 e TDH de 18 h. Os valores médios de pH variaram na faixa de 7,2 a 8,0 para os efluentes dos reatores 1 e 2. Os ácidos voláteis totais mantiveram-se estáveis com concentrações abaixo de 200 mg L-1. Com variações abruptas e acentuadas de concentrações de SST e DQOtotal do afluente, os reatores mantiveram as eficiências de remoção de DQO e sólidos suspensos, em torno de 70%, e a qualidade do biogás, com 80% de CH4.In this work it was evaluated the effect of swine wastewater with total suspended solid (TSS concentration around 6000 mg L-1 (CODtotal from 7557 to 11640 mg L-1 on the performance of two stage anaerobic process constituted of anaerobic baffled reactors (ABR and an upflow sludge blanket reactor (UASB installed in series, in pilot scale testing (volumes of 530 L and

  6. CFD simulation of anaerobic digester with variable sewage sludge rheology.

    Science.gov (United States)

    Craig, K J; Nieuwoudt, M N; Niemand, L J

    2013-09-01

    A computational fluid dynamics (CFD) model that evaluates mechanical mixing in a full-scale anaerobic digester was developed to investigate the influence of sewage sludge rheology on the steady-state digester performance. Mechanical mixing is provided through an impeller located in a draft tube. Use is made of the Multiple Reference Frame model to incorporate the rotating impeller. The non-Newtonian sludge is modeled using the Hershel-Bulkley law because of the yield stress present in the fluid. Water is also used as modeling fluid to illustrate the significant non-Newtonian effects of sewage sludge on mixing patterns. The variation of the sewage sludge rheology as a result of the digestion process is considered to determine its influence on both the required impeller torque and digester mixing patterns. It was found that when modeling the fluid with the Hershel-Bulkley law, the high slope of the sewage stress-strain curve at high shear rates causes significant viscous torque on the impeller surface. Although the overall fluid shear stress property is reduced during digestion, this slope is increased with sludge age, causing an increase in impeller torque for digested sludge due to the high strain rates caused by the pumping impeller. Consideration should be given to using the Bingham law to deal with high strain rates. The overall mixing flow patterns of the digested sludge do however improve slightly. PMID:23764598

  7. Modelling Methane Production and Sulfate Reduction in Anaerobic Granular Sludge Reactor with Ethanol as Electron Donor

    Science.gov (United States)

    Sun, Jing; Dai, Xiaohu; Wang, Qilin; Pan, Yuting; Ni, Bing-Jie

    2016-10-01

    In this work, a mathematical model based on growth kinetics of microorganisms and substrates transportation through biofilms was developed to describe methane production and sulfate reduction with ethanol being a key electron donor. The model was calibrated and validated using experimental data from two case studies conducted in granule-based Upflow Anaerobic Sludge Blanket reactors. The results suggest that the developed model could satisfactorily describe methane and sulfide productions as well as ethanol and sulfate removals in both systems. The modeling results reveal a stratified distribution of methanogenic archaea, sulfate-reducing bacteria and fermentative bacteria in the anaerobic granular sludge and the relative abundances of these microorganisms vary with substrate concentrations. It also indicates sulfate-reducing bacteria can successfully outcompete fermentative bacteria for ethanol utilization when COD/SO42‑ ratio reaches 0.5. Model simulation suggests that an optimal granule diameter for the maximum methane production efficiency can be achieved while the sulfate reduction efficiency is not significantly affected by variation in granule size. It also indicates that the methane production and sulfate reduction can be affected by ethanol and sulfate loading rates, and the microbial community development stage in the reactor, which provided comprehensive insights into the system for its practical operation.

  8. Microbial degradation of 4-monobrominated diphenyl ether with anaerobic sludge

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Yang-hsin, E-mail: yhs@ntu.edu.tw [Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan, ROC (China); Chou, Hsi-Ling [Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 407, Taiwan, ROC (China); Peng, Yu-Huei [Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan, ROC (China)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer BDE-3 was degraded with two anaerobes in different rates. Black-Right-Pointing-Pointer Glucose addition augment the debromination efficiencies. Black-Right-Pointing-Pointer Hydrogen gas was detected and relative microbes were identified. Black-Right-Pointing-Pointer Extra-carbon source enhanced degradation partial due to H{sub 2}-generation bacteria. - Abstract: Polybrominated diphenyl ethers (PBDEs) are widely used flame retardant additives for many plastic and electronic products. Owing to their ubiquitous distribution in the environment, multiple toxicity to humans, and increasing accumulation in the environment, the fate of PBDEs is of serious concern for public safety. In this study, the degradation of 4-monobrominated diphenyl ether (BDE-3) in anaerobic sludge and the effect of carbon source addition were investigated. BDE-3 can be degraded by two different anaerobic sludge samples. The by-products, diphenyl ether (DE) and bromide ions, were monitored, indicating the reaction of debromination within these anaerobic samples. Co-metabolism with glucose facilitated BDE-3 biodegradation in terms of kinetics and efficiency in the Jhongsing sludge. Through the pattern of amplified 16S rRNA gene fragments in denatured gradient gel electrophoresis (DGGE), the composition of the microbial community was analyzed. Most of the predominant microbes were novel species. The fragments enriched in BDE-3-degrading anaerobic sludge samples are presumably Clostridium sp. This enrichment coincides with the H{sub 2} gas generation and the facilitation of debromination during the degradation process. Findings of this study provide better understanding of the biodegradation of brominated DEs and can facilitate the prediction of the fate of PBDEs in the environment.

  9. Anaerobic co-digestion of sewage sludge and food waste.

    Science.gov (United States)

    Prabhu, Meghanath S; Mutnuri, Srikanth

    2016-04-01

    Anaerobic co-digestion of organic matter improves digester operating characteristics and its performance. In the present work, food waste was collected from the institute cafeteria. Two types of sludge (before centrifuge and after centrifuge) were collected from the fluidised bed reactor of the institute treating sewage wastewater. Food waste and sludge were studied for their physico-chemical characteristics, such as pH, chemical oxygen demand, total solids, volatile solids, ammoniacal nitrogen, and total nitrogen. A biomethane potential assay was carried out to find out the optimum mixing ratio of food waste and sludge for anaerobic co-digestion. Results indicated that food waste mixed with sludge in the ratio of 1:2 produced the maximum biogas of 823 ml gVS(-1)(21 days) with an average methane content of 60%. Batch studies were conducted in 5 L lab-glass reactors at a mesophilic temperature. The effect of different substrate loading rates on biogas production was investigated. The mixing ratio of food waste and sludge was 1:2. A loading rate of 1 gVS L d(-1)gave the maximum biogas production of 742 ml g(-1)VS L d(-1)with a methane content of 50%, followed by 2 gVS L d(-1)with biogas of 539 ml g(-1)VS L d(-1) Microbial diversity of the reactor during fed batch studies was investigated by terminal restriction fragment length polymorphism. A pilot-scale co-digestion of food waste and sludge (before centrifuge) indicated the process stability of anaerobic digestion. PMID:26879909

  10. Microbiological Diversity of the Anaerobic Sludge During Treatment of Venezuelan Oilfield Produced Waters

    Directory of Open Access Journals (Sweden)

    Cajacuri María Patricia

    2013-06-01

    Full Text Available In the present investigation the microbial abundances in the granular sludge of two upflow anaerobic sludge blanket reactors (UASB were compared: the first one fed with production waters of light oil (31.1-39.0° API, from the zuliana region (Venezuela (APP and the second one with glucose. To this respect, the populations of glucose fermenting bacteria (BFG, acetogenic bacteria (BAC, metanogens (MET, sulfatereducing bacteria (BSR, nitrate-reducing bacteria (BNRand heterotrophic bacteria were monitored, using selective culture media. The microbial density was correlated with physicochemical parameters: pH, total alkalinity, COD, SO4 =, NO3-, as well as with the percentages of CH4, CO2 and N2in the biogas. The results exhibit significant differences between the microbial diversity of both reactors, with a proportion of BFG > BSR > MET > BAC > BNR for the glucose reactor and of MET > BNR > BAC > BSR > BFG for the APP. The abundance of bacteria in the glucose reactor was in the order of 108, whereas in the APP reactor was of 105, which ensues from the organic and mineral composition of effluents. The results presented in this study reach evidences on the population dynamics in sludge of UASB reactors, during the treatment of oilfield produced waters.

  11. Application of Anaerobic Digestion Model No. 1 for simulating anaerobic mesophilic sludge digestion

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Carlos, E-mail: carllosmendez@gmail.com; Esquerre, Karla, E-mail: karlaesquerre@ufba.br; Matos Queiroz, Luciano, E-mail: lmqueiroz@ufba.br

    2015-01-15

    Highlights: • The behavior of a anaerobic reactor was evaluated through modeling. • Parametric sensitivity analysis was used to select most sensitive of the ADM1. • The results indicate that the ADM1 was able to predict the experimental results. • Organic load rate above of 35 kg/m{sup 3} day affects the performance of the process. - Abstract: Improving anaerobic digestion of sewage sludge by monitoring common indicators such as volatile fatty acids (VFAs), gas composition and pH is a suitable solution for better sludge management. Modeling is an important tool to assess and to predict process performance. The present study focuses on the application of the Anaerobic Digestion Model No. 1 (ADM1) to simulate the dynamic behavior of a reactor fed with sewage sludge under mesophilic conditions. Parametric sensitivity analysis is used to select the most sensitive ADM1 parameters for estimation using a numerical procedure while other parameters are applied without any modification to the original values presented in the ADM1 report. The results indicate that the ADM1 model after parameter estimation was able to predict the experimental results of effluent acetate, propionate, composites and biogas flows and pH with reasonable accuracy. The simulation of the effect of organic shock loading clearly showed that an organic shock loading rate above of 35 kg/m{sup 3} day affects the performance of the reactor. The results demonstrate that simulations can be helpful to support decisions on predicting the anaerobic digestion process of sewage sludge.

  12. Biosorption of Direct Black 38 by dried anaerobic granular sludge

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The biosorption of Direct Black 38 by dried anaerobic granular sludge in a batch system under specific temperatures and initial pH was investigated.The adsorption reaction is pH dependent with higher removal at low pH.The adsorption equilibrium data fit very well with both Langmuir and Freundlich models in the concentration range of Direct Black 38 at all chosen temperatures.The adsorption parameters show that the adsorption of Direct Black 38 is an endothermic and more effective process at high temperatures.The kinetics of adsorption was found to be second order and adsorption rate constants increased with increasing temperature.Activation energy was determined as 26.8 kJ/mol for the process.This suggests that the adsorption of Direct Black 38 by dried anaerobic granular sludge is chemically controlled.

  13. Continuous biohydrogen production from waste bread by anaerobic sludge.

    Science.gov (United States)

    Han, Wei; Huang, Jingang; Zhao, Hongting; Li, Yongfeng

    2016-07-01

    In this study, continuous biohydrogen production from waste bread by anaerobic sludge was performed. The waste bread was first hydrolyzed by the crude enzymes which were generated by Aspergillus awamori and Aspergillus oryzae via solid-state fermentation. It was observed that 49.78g/L glucose and 284.12mg/L free amino nitrogen could be produced with waste bread mass ratio of 15% (w/v). The waste bread hydrolysate was then used for biohydrogen production by anaerobic sludge in a continuous stirred tank reactor (CSTR). The optimal hydrogen production rate of 7.4L/(Ld) was achieved at chemical oxygen demand (COD) of 6000mg/L. According to the results obtained from this study, 1g waste bread could generate 0.332g glucose which could be further utilized to produce 109.5mL hydrogen. This is the first study which reports continuous biohydrogen production from waste bread by anaerobic sludge.

  14. Copper and trace element fractionation in electrokinetically treated methanogenic anaerobic granular sludge

    NARCIS (Netherlands)

    Virkutyte, J.; Hullebusch, van E.D.; Sillanpaa, M.; Lens, P.N.L.

    2005-01-01

    The effect of electrokinetic treatment (0.15 mA cm(-2)) on the metal fractionation in anaerobic granular sludge artificially contaminated with copper (initial copper concentration 1000 mg kg(-1) wet sludge) was studied. Acidification of the sludge (final pH 4.2 in the sludge bed) with the intention

  15. Biodegradability of wastewater and activated sludge organics in anaerobic digestion.

    Science.gov (United States)

    Ikumi, D S; Harding, T H; Ekama, G A

    2014-06-01

    The investigation provides experimental evidence that the unbiodegradable particulate organics fractions of primary sludge and waste activated sludge calculated from activated sludge models remain essentially unbiodegradable in anaerobic digestion. This was tested by feeding the waste activated sludge (WAS) from three different laboratory activated sludge (AS) systems to three separate anaerobic digesters (AD). Two of the AS systems were Modified Ludzack - Ettinger (MLE) nitrification-denitrification (ND) systems and the third was a membrane University of Cape Town (UCT) ND and enhanced biological P removal system. One of the MLE systems and the UCT system were fed the same real settled wastewater. The other MLE system was fed raw wastewater which was made by adding a measured constant flux (gCOD/d) of macerated primary sludge (PS) to the real settled wastewater. This PS was also fed to a fourth AD and a blend of PS and WAS from settled wastewater MLE system was fed to a fifth AD. The five ADs were each operated at five different sludge ages (10-60d). From the measured performance results of the AS systems, the unbiodegradable particulate organic (UPO) COD fractions of the raw and settled wastewaters, the PS and the WAS from the three AS systems were calculated with AS models. These AS model based UPO fractions of the PS and WAS were compared with the UPO fractions calculated from the performance results of the ADs fed these sludges. For the PS, the UPO fraction calculated from the AS and AD models matched closely, i.e. 0.30 and 0.31. Provided the UPO of heterotrophic (OHO, fE_OHO) and phosphorus accumulating (PAO, fE_PAO) biomass were accepted to be those associated with the death regeneration model of organism "decay", the UPO of the WAS calculated from the AS and AD models also matched well - if the steady state AS model fE_OHO = 0.20 and fE_PAO = 0.25 values were used, then the UPO fraction of the WAS calculated from the AS models deviated significantly

  16. High-rate anaerobic co-digestion of kraft mill fibre sludge and activated sludge by CSTRs with sludge recirculation.

    Science.gov (United States)

    Ekstrand, Eva-Maria; Karlsson, Marielle; Truong, Xu-Bin; Björn, Annika; Karlsson, Anna; Svensson, Bo H; Ejlertsson, Jörgen

    2016-10-01

    Kraft fibre sludge from the pulp and paper industry constitutes a new, widely available substrate for the biogas production industry, with high methane potential. In this study, anaerobic digestion of kraft fibre sludge was examined by applying continuously stirred tank reactors (CSTR) with sludge recirculation. Two lab-scale reactors (4L) were run for 800days, one on fibre sludge (R1), and the other on fibre sludge and activated sludge (R2). Additions of Mg, K and S stabilized reactor performance. Furthermore, the Ca:Mg ratio was important, and a stable process was achieved at a ratio below 16:1. Foaming was abated by short but frequent mixing. Co-digestion of fibre sludge and activated sludge resulted in more robust conditions, and high-rate operation at stable conditions was achieved at an organic loading rate of 4g volatile solids (VS)L(-1)day(-1), a hydraulic retention time of 4days and a methane production of 230±10NmL per g VS.

  17. High-rate anaerobic co-digestion of kraft mill fibre sludge and activated sludge by CSTRs with sludge recirculation.

    Science.gov (United States)

    Ekstrand, Eva-Maria; Karlsson, Marielle; Truong, Xu-Bin; Björn, Annika; Karlsson, Anna; Svensson, Bo H; Ejlertsson, Jörgen

    2016-10-01

    Kraft fibre sludge from the pulp and paper industry constitutes a new, widely available substrate for the biogas production industry, with high methane potential. In this study, anaerobic digestion of kraft fibre sludge was examined by applying continuously stirred tank reactors (CSTR) with sludge recirculation. Two lab-scale reactors (4L) were run for 800days, one on fibre sludge (R1), and the other on fibre sludge and activated sludge (R2). Additions of Mg, K and S stabilized reactor performance. Furthermore, the Ca:Mg ratio was important, and a stable process was achieved at a ratio below 16:1. Foaming was abated by short but frequent mixing. Co-digestion of fibre sludge and activated sludge resulted in more robust conditions, and high-rate operation at stable conditions was achieved at an organic loading rate of 4g volatile solids (VS)L(-1)day(-1), a hydraulic retention time of 4days and a methane production of 230±10NmL per g VS. PMID:27453288

  18. Assessment of the ability of sludge to degrade PCP under anaerobic conditions

    OpenAIRE

    R. M. L. Bolaños; M. H. R. Z. Damianovic; ZAIAT M.; E. Foresti

    2005-01-01

    The capacity of sludge from different sources to degrade pentachlorophenol (PCP) was evaluated. Three 2.5 liter reactors (R1, R2, and R3) were inoculated with different anaerobic sludges, semi continuously fed and maintained in orbital motion at 30±1°C. R1 was inoculated with aerobic sludge and river sediment collected downstream from a pulp and paper plant. R2 received sludge from an anaerobic reactor treating effluents from a paper recycling plant and R3 received anaerobic sludge...

  19. Volatile organic sulfur compounds in anaerobic sludge and sediments: biodegradation and toxicity

    NARCIS (Netherlands)

    Leerdam, van R.C.; Bok, de F.A.M.; Lomans, B.P.; Stams, A.J.M.; Lens, P.N.L.; Janssen, A.J.H.

    2006-01-01

    A variety of environmental samples was screened for anaerobic degradation of methanethiol, ethanethiol, propanethiol, dimethylsulfide, and dimethyldisulfide. All sludge and sediment samples degraded methanethiol, dimethylsulfide, and dimethyldisulfide anaerobically. In contrast, ethanethiol and prop

  20. Influence of magnetic field on activity of given anaerobic sludge.

    Science.gov (United States)

    Xu, Y B; Duan, X J; Yan, J N; Du, Y Y; Sun, S Y

    2009-11-01

    Two modes of magnetic fields were applied in the Cr(6+) removal sludge reactors containing two predominated strains--Bacillus sp. and Brevibacillus sp., respectively. The magnetic field mode I* of 0-4.5 or 0-14 mT between pieces was obtained by setting the magnetic pieces with the surface magnetic density of 0-6 or 0-20 mT into the reactor, and the magnetic field mode II* of 6, 20, or 40 mT on the return line was obtained by controlling the working distance of the permanent magnet outside the sludge return line. The effects of different magnetic fields on the activity of the given anaerobic sludge were studied by comparing with the control (absent of magnetic field). The results showed that the magnetic field of 0-4 mT improved the activity of given sludge most effectively, U(max) CH(4) (the peak methane-producing rate) and the methane producing volume per gCOD(Cr) reached 64.3 mlCH(4)/gVSS.d and 124 mlCH(4)/gCOD(Cr), which increased by 20.6 and 70.7%, respectively, compared with the control. And the magnetic field of 20 mT took second place. It could be concluded that the input of some magnetic field could improve the activity of anaerobic sludge by increasing the transformation efficiency of COD(Cr) matters to methane, and the total organic wastage did not increase.

  1. Anaerobic treatment of wastewater containing methanol in upflow anaerobic sludge bed (UASB) reactor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The direct conversion of methanol into methane is the main process in anaerobic treatment of methanol containing wastewater.However,acetic acid can also be produced from methanol theoretically,which may probably result in an abrupt pH drop and deteriorate the anaerobic process.Therefore,it is interesting to know what would really happen in an anaerobic reactor treating methanol wastewater.In this study,an up-flow anaerobic sludge bed (UASB) reactor treating methanol wastewater was operated.The chemical oxygen demand (COD),acetic acid and pH of the effluent were monitored at different loadings and influent alkalinity.The results showed that the anaerobic reactor could be operated steadily at as low as 119 mg/L of influent alkalinity and high organic loading rate with no obvious pH drops.Volatile fatty acids accumulation was not observed even at strong shock loadings.The microorganisms in the sludge at the end of the test became homogeneous in morphology,which were mainly spherical or spheroidal in shape.

  2. Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion

    International Nuclear Information System (INIS)

    Highlights: • Combined electrical-alkali pretreatment for improving sludge anaerobic digestion was proposed. • Combined process enhanced the cell lysis, biopolymers releases, and thus sludge disintegration. • Increased solubilization of sludge increased the anaerobic hydrolysis rate. • Increased solubilization does not always induce an improved anaerobic digestion efficiency. - Abstract: Pretreatment can be used prior to anaerobic digestion to improve the efficiency of waste activated sludge (WAS) digestion. In this study, electrolysis and a commonly used pretreatment method of alkaline (NaOH) solubilization were integrated as a pretreatment method for promoting WAS anaerobic digestion. Pretreatment effectiveness of combined process were investigated in terms of disintegration degree (DDSCOD), suspended solids (TSS and VSS) removals, the releases of protein (PN) and polysaccharide (PS), and subsequent anaerobic digestion as well as dewaterability after digestion. Electrolysis was able to crack the microbial cells trapped in sludge gels and release the biopolymers (PN and PS) due to the cooperation of alkaline solubilization, enhancing the sludge floc disintegration/solubilization, which was confirmed by scanning electron microscopy (SEM) analysis. Biochemical methane potential (BMP) assays showed the highest methane yield was achieved with 5 V plus pH 9.2 pretreatment with up to 20.3% improvement over the non-pretreated sludge after 42 days of mesophilic operation. In contrast, no discernible improvements on anaerobic degradability were observed for the rest of pretreated sludges, probably due to the overmuch leakage of refractory soluble organics, partial chemical mineralization of solubilized compounds and sodium inhibition. The statistical analysis further indicated that increased solubilization induced by electrical-alkali pretreatment increased the first-order anaerobic hydrolysis rate (khyd), but had no, or very slight enhancement on WAS ultimate

  3. Anaerobic co-digestion of coffee waste and sewage sludge

    OpenAIRE

    Neves, L.; Oliveira, Rosário; Alves, M. M.

    2006-01-01

    The feasibility of the anaerobic co-digestion of coffee solid waste and sewage sludge was assessed. Five different solid wastes with different chemical properties were studied in mesophilic batch assays, providing basic data on the methane production, reduction of total and volatile solids and hydrolysis rate constant. Most of the wastes had a methane yield of 0.24–0.28 m³CH4(STP)/kg VSinitial and 76–89% of the theoretical methane yield was achieved. Reduction of 50–73% in total solids and 75...

  4. Predicting the apparent viscosity and yield stress of mixtures of primary, secondary and anaerobically digested sewage sludge: Simulating anaerobic digesters.

    Science.gov (United States)

    Markis, Flora; Baudez, Jean-Christophe; Parthasarathy, Rajarathinam; Slatter, Paul; Eshtiaghi, Nicky

    2016-09-01

    Predicting the flow behaviour, most notably, the apparent viscosity and yield stress of sludge mixtures inside the anaerobic digester is essential because it helps optimize the mixing system in digesters. This paper investigates the rheology of sludge mixtures as a function of digested sludge volume fraction. Sludge mixtures exhibited non-Newtonian, shear thinning, yield stress behaviour. The apparent viscosity and yield stress of sludge mixtures prepared at the same total solids concentration was influenced by the interactions within the digested sludge and increased with the volume fraction of digested sludge - highlighted using shear compliance and shear modulus of sludge mixtures. However, when a thickened primary - secondary sludge mixture was mixed with dilute digested sludge, the apparent viscosity and yield stress decreased with increasing the volume fraction of digested sludge. This was caused by the dilution effect leading to a reduction in the hydrodynamic and non-hydrodynamic interactions when dilute digested sludge was added. Correlations were developed to predict the apparent viscosity and yield stress of the mixtures as a function of the digested sludge volume fraction and total solids concentration of the mixtures. The parameters of correlations can be estimated using pH of sludge. The shear and complex modulus were also modelled and they followed an exponential relationship with increasing digested sludge volume fraction. PMID:27243386

  5. Effect of Cobalt Sorption on Metal Fractionation in Anaerobic Granular Sludge

    NARCIS (Netherlands)

    Osuna, M.B.; Hullebusch, van E.D.; Zandvoort, M.H.; Iza, J.M.; Lens, P.N.L.

    2004-01-01

    A sequential extraction procedure was applied to two anaerobic methanogenic sludges (Eerbeek and Nedalco) to examine the speciation of micro- and macronutrients in the sludges after cobalt sorption by exposing the sludge to a 1 mM Co solution for 4 d at pH 7 and 30degreesC. The effect of different p

  6. Characteristics and conditioning of anaerobically digested sludge from a biological phosphorus removal plant

    OpenAIRE

    Nash, Jeffrey William

    1989-01-01

    A study of the anaerobically digested sludge form a full-scale biological phosphorus removal (BPR) plant (York River Wastewater Treatment Plant, York River, Va.) was conducted to determine the effects of BPR on sludge characteristics and conditioning requirements. Data collected from the plant indicated that both the total and soluble phosphorus (P) concentrations in the anaerobically digested sludge increased dramatically with the initiation of BPR. Accompanying this ...

  7. Biodegradation of phthalate esters during the mesophilic anaerobic digestion of sludge

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Alatriste-Mondragon, Felipe; Iranpour, R.;

    2003-01-01

    Phthalic acid esters (PAE) are commonly found in the sludge generated in the wastewater treatment plants. Anaerobic digestion followed by land application is a common treatment and disposal practice of sludge. To date, many studies exist on the anaerobic biodegradation rates of PAE, especially...... of the easily biodegradable ones, whereas the higher molecular weight PAE have reported to be non-biodegradable under methanogenic conditions. Furthermore, there is no information on the effect of the PAE on the performance of the anaerobic digesters treating sludge. In this study, the anaerobic biodegradation...... of di-n-butyl phthalate (DBP), di-ethyl phthalate (DEP) and di-ethylhexyl phthalate (DEHP) was investigated and their relative rates of anaerobic degradation were calculated. Also, the biological removal of PAE during the anaerobic digestion of sludge in bench-scale digesters was investigated using DBP...

  8. Anaerobic digestion of waste sludges from the alginate extraction process

    Energy Technology Data Exchange (ETDEWEB)

    Kerner, K.N.; Hanssen, J.F.; Pedersen, T.A. (Agricultural Univ. of Norway, Aas (NO). Dept. of Biological Sciences)

    1991-01-01

    Anaerobic digestion of waste sludges produced during the industrial extraction of alginate from the algal species Laminaria hyperborea (Gunn.) Foslie and Ascophyllum nodosum (L.) Le Jol was studied. Experiments were carried out in bench scale (8-litre) intermittently stirred digesters at 35{sup o}C. Sieve and flotation sludges were digested in batch (1 month) and semi-continuous cultures. In the semi-continuous trials, retention times of 23 days and 16 days were tested. Methane production varied from 0.10 to 0.15 litre g{sup -1} volatile solids (VS) added during batch; and from 0.07 to 0.28 litre g{sup -1} VS added during semi-continuous fermentation. Specific gas production was significantly higher at 23 days than at 16 days retention time. VS reductions were 20-40% (batch) and 40-50% (semi-continuous). A distinct improvement of the settling qualities of digester effluents was obtained during the anaerobic digestion process. (author).

  9. Fate of organic micropollutants during anaerobic digestion of sewage sludge: localization of micropollutants within sludge organic matter pools

    OpenAIRE

    Aemig, Quentin; Cheron, Claire; Delgenès, Nadine; Houot, Sabine; Patureau, Dominique

    2013-01-01

    Many organic micropolluants enter the environment through wastewaters. Some are partly degraded during wastewater treatment. For others, due to hydrophobic properties, sorption to sludge is the main removal process. Anaerobic digestion is widely used to treat sludge because it produced renewable energy in the form of methane. The digested sludge can be used as organic fertilizer. To evaluate the risk of soil contamination, it is necessary to know if organic pollutants are dissipated during th...

  10. Integrated treatment of municipal sewage sludge by deep dewatering and anaerobic fermentation for biohydrogen production.

    Science.gov (United States)

    Yu, Li; Yu, Yang; Jiang, Wentian; Wei, Huangzhao; Sun, Chenglin

    2015-02-01

    The increasing sludge generated in wastewater treatment plants poses a threat to the environment. Based on the traditional processes, sludge dewatered by usual methods was further dewatered by hydraulic compression and the filtrate released was treated by anaerobic fermentation. The difficulties in sludge dewatering were associated with the existence of sludge flocs or colloidal materials. A suitable CaO dosage of 125 mg/g dry sludge (DS) could further decrease the moisture content of sludge from 82.4 to 50.9 %. The filtrate from the dewatering procedure was a potential substrate for biohydrogen production. Adding zero-valent iron (ZVI) into the anaerobic system improved the biohydrogen yield by 20 %, and the COD removal rate was lifted by 10 % as well. Meanwhile, the sludge morphology and microbial community were altered. The novel method could greatly reduce the sludge volume and successfully treated filtrate along with the conversion of organics into biohydrogen.

  11. Start-up of a thermophilic upflow anaerobic sludge bed (UASB) reactor with mesophilic granular sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lier, J.B. van; Grolle, K.C.F.; Lettinga, G. (Wageningen Agricultural Univ. (Netherlands). Dept. of Environmental Technology); Stams, A.J.M. (Wageningen Agricultural Univ. (Netherlands). Dept. of Microbiology); Conway de Macario, E. (New York State Dept. of Health, Albany, NY (United States). Wadsworth Center for Laboratories and Research State Univ. of New York, Albany, NY (United States). School of Public Health)

    1992-04-01

    Fast start-up of thermophilic upflow anaerobic sludge bed (UASB) reactors was achieved at process temperatures of 46, 55 and 64deg C, using mesophilic granular sludge as inoculum and fatty acid mixtures as feed. The start-up was brought about by increasing the temperature of mesophilic UASB reactors in a single step, which initially led to a sharp drop in the methane-production rate. Thereafter, stable thermophilic methanogenesis was achieved within a period of 1 or 2 weeks depending on the temperature of operation. Mesophilic granules functioned initially as effective carrier material for thermophilic organisms. However, long-term operation led to disintegration of the granules, resulting in wash-out of thermophilic biomass. The temperature optima for acetotrophic methanogenic activity of the sludges cultivated at 46, 55 and 64deg C, were similar, but differed significantly from the temperature optimum of the mesophilic inoculum. All the sludges examined were dominated by Methanothrix-like rods. These could be distinguished by antigenic fingerprinting into two subpopulations, one predominant at 36deg C and the other predominant at 46deg C and above. (orig.).

  12. The Effect of Iron Salt on Anaerobic Digestion and Phosphate Release to Sludge Liquor

    Directory of Open Access Journals (Sweden)

    Svetlana Ofverstrom

    2011-12-01

    Full Text Available Iron salts are used at wastewater treatment plants (WWTPs for several reasons: for removing chemical phosphorus, preventing from struvite formation and reducing the content of hydrogen sulfide (H2S in biogas. Anaerobic digestion is a common scheme for sludge treatment due to producing biogas that could be used as biofuel. Laboratory analysis has been carried out using anaerobic digestion model W8 (Armfield Ltd, UK to investigate any possible effect of adding FeCl3 on the anaerobic digestion of primary sludge (PS and waste activated sludge (WAS mixture as well as on releasing phosphates to digested sludge liquor. The obtained results showed that FeCl3 negatively impacted the anaerobic digestion process by reducing the volume of produced biogas. Fe-dosed sludge (max produced 30% less biogas. Biogas production from un-dosed and Fe-dosed sludge (min was similar to the average of 1.20 L/gVSfed. Biogas composition was not measured during the conducted experiments. Phosphorus content in sludge liquor increased at an average of 38% when digesting sludge without ferric chloride dosing. On the contrary, phosphate content in sludge liquor from digested Fe-dosed sludge decreased by approx. 80%.

  13. Evidence for PAH Removal Coupled to the First Steps of Anaerobic Digestion in Sewage Sludge

    OpenAIRE

    Glenda Cea-Barcia; Hélène Carrère; Jean Philippe Steyer; Dominique Patureau

    2013-01-01

    Anaerobic degradation of polycyclic aromatic hydrocarbons has been brought to the fore, but information on removal kinetics and anaerobic degrading bacteria is still lacking. In order to explore the organic micropollutants removal kinetics under anaerobic conditions in regard to the methane production kinetics, the removal rate of 12 polycyclic aromatic hydrocarbons was measured in two anaerobic batch reactors series fed with a highly loaded secondary sludge as growth substrate. The results u...

  14. Use of anaerobic hydrolysis pretreatment to enhance ultrasonic disintegration of excess sludge.

    Science.gov (United States)

    Li, Xianjin; Zhu, Tong; Shen, Yang; Chai, Tianyu; Xie, Yuanhua; You, Meiyan; Wang, Youzhao

    2016-01-01

    To improve the excess sludge disintegration efficiency, reduce the sludge disintegration cost, and increase sludge biodegradability, a combined pretreatment of anaerobic hydrolysis (AH) and ultrasonic treatment (UT) was proposed for excess sludge. Results showed that AH had an advantage in dissolving flocs, modifying sludge characteristics, and reducing the difficulty of sludge disintegration, whereas UT was advantageous in damaging cell walls, releasing intracellular substances, and decomposing macromolecular material. The combined AH-UT process was an efficient method for excess sludge pretreatment. The optimized solution involved AH for 3 days, followed by UT for 10 min. After treatment, chemical oxygen demand, protein, and peptidoglycan concentrations reached 3,949.5 mg O2/L, 752.5 mg/L and 619.1 mg/L, respectively. This work has great significance for further engineering applications, namely, reducing energy consumption, increasing the sludge disintegration rate, and improving the biochemical properties of sludge. PMID:26942542

  15. Inhibitory effect of ammonia nitrogen on specific methanogenic activity of anaerobic granular sludge

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A series of batch experiments were conducted in 125 mL serum bottles to assess the toxicity of different concentrations of ammonia nitrogen to the specific methanogenic activity of anaerobic granular sludge from upflow anaerobic sludge bed(UASB) and expanded granular sludge bed(EGSB) reactors. The effects of pH value and temperature on toxicity of ammonia nitrogen to anaerobes were investigated. The results show that the specific methanogenic activity of anaerobic granular sludge suffers inhibition from ammonia nitrogen, the concentrations of ammonia nitrogen that produce 50% inhibition of specific methanogenic activity for sludge from UASB and EGSB reactor are 2.35 and 2.75 g/L, respectively. Hydrogen utilizing methanogens suffers less inhibition from ammonia nitrogen than that of acetate utilizing methanogens. Hydrogen-producing acetogens that utilize propionate and butyrate as substrates suffer serious inhibition from ammonia nitrogen. The toxicity of ammonia nitrogen to anaerobic granular sludge enhances when pH value and temperature increase. Anaerobic granular sludge can bear higher concentrations of ammonia nitrogen after being acclimated by ammonia nitrogen for 7 d.

  16. Assessment of the ability of sludge to degrade PCP under anaerobic conditions

    Directory of Open Access Journals (Sweden)

    R. M. L. Bolaños

    2005-12-01

    Full Text Available The capacity of sludge from different sources to degrade pentachlorophenol (PCP was evaluated. Three 2.5 liter reactors (R1, R2, and R3 were inoculated with different anaerobic sludges, semi continuously fed and maintained in orbital motion at 30±1°C. R1 was inoculated with aerobic sludge and river sediment collected downstream from a pulp and paper plant. R2 received sludge from an anaerobic reactor treating effluents from a paper recycling plant and R3 received anaerobic sludge from a biodigestor treating industrial and domestic effluents. The sludges were first acclimatized to a culture medium generally recommended for organochloride anaerobic degradation studies. The reactors were then subjected to increasing concentrations of PCP from 0.05 to 10.0 mg.l-1. PCP degradation and metabolite formation were monitored using gas chromatography, and the effects of PCP on the anaerobic process were verified by monitoring pH, volatile fatty acids, alkalinity, total suspended solids, and chemical oxygen demand. It was found that PCP did not affect reactor performance. All the sludges displayed the best PCP degradation capacity at a concentration of 0.2 mg.l-1, producing fewer chlorinated metabolites than when higher PCP concentrations were applied. R1 consistently produced fewer chlorinated metabolites, confirming the hypothesis that pre exposure to chlorinated compounds improves the sludge's capacity to degrade PCP.

  17. [Detection of anaerobic processes and microorganisms in immobilized activated sludge of a wastewater treatment plant with intense aeration].

    Science.gov (United States)

    Litti, Iu V; Nekrasova, V K; Kulikov, N I; Siman'kova, M V; Nozhevnikova, A N

    2013-01-01

    Attached activated sludge from the Krasnaya Polyana (Sochi) wastewater treatment plant was studied after the reconstruction by increased aeration and water recycle, as well as by the installation of a bristle carrier for activated sludge immobilization. The activated sludge biofilms developing under conditions of intense aeration were shown to contain both aerobic and anaerobic microorganisms. Activity of a strictly anaerobic methanogenic community was revealed, which degraded organic compounds to methane, further oxidized by aerobic methanotrophs. Volatile fatty acids, the intermediates of anaerobic degradation of complex organic compounds, were used by both aerobic and anaerobic microorganisms. Anaerobic oxidation of ammonium with nitrite (anammox) and the presence of obligate anammox bacteria were revealed in attached activated sludge biofilms. Simultaneous aerobic and anaerobic degradation of organic contaminants by attached activated sludge provides for high rates of water treatment, stability of the activated sludge under variable environmental conditions, and decreased excess sludge formation. PMID:25509405

  18. Pharmaceutically active compounds in sludge stabilization treatments: anaerobic and aerobic digestion, wastewater stabilization ponds and composting.

    Science.gov (United States)

    Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

    2015-01-15

    Sewage sludge disposal onto lands has been stabilized previously but still many pollutants are not efficiently removed. Special interest has been focused on pharmaceutical compounds due to their potential ecotoxicological effects. Nowadays, there is scarce information about their occurrence in different sludge stabilization treatments. In this work, the occurrence of twenty-two pharmaceutically active compounds has been studied in sludge from four sludge stabilization treatments: anaerobic digestion, aerobic digestion, composting and lagooning. The types of sludge evaluated were primary, secondary, anaerobically-digested and dehydrated, composted, mixed, aerobically-digested and dehydrated and lagoon sludge. Nineteen of the twenty-two pharmaceutically active compounds monitored were detected in sewage sludge. The most contaminated samples were primary sludge, secondary sludge and mixed sludge (the average concentrations of studied compounds in these sludges were 179, 310 and 142 μg/kg dm, respectively) while the mean concentrations found in the other types of sewage sludge were 70 μg/kg dm (aerobically-digested sludge), 63 μg/kg dm (lagoon sludge), 12 μg/kg dm (composted sludge) and 8 μg/kg dm (anaerobically-digested sludge). The antibiotics ciprofloxacin and norfloxacin were found at the highest concentration levels in most of the analyzed sludge samples (up to 2660 and 4328 μg/kg dm, respectively). Anaerobic-digestion treatment reduced more considerably the concentration of most of the studied compounds than aerobic-digestion (especially in the case of bezafibrate and fluoroquinolones) and more than anaerobic stabilization ponds (in the case of acetaminophen, atenolol, bezafibrate, carbamazepine, 17α-ethinylestradiol, naproxen and salicylic acid). Ecotoxicological risk assessment, of sludge application onto soils, has also been evaluated. Risk quotients, expressed as the ratio between the predicted environmental concentration and the predicted non

  19. Rational Basis for Designing Horizontal-Flow Anaerobic Immobilized Sludge (HAIS) Reactor for Wastewater Treatment

    OpenAIRE

    ZAIAT M.; L.G.T. Vieira; A.K.A. Cabral; I.R. de Nardi; F.J. Vela; E. Foresti

    1997-01-01

    The conception and development on a rational basis of a new configuration of anaerobic fixed-bed bioreactor for wastewater treatment, the horizontal-flow anaerobic immobilized sludge (HAIS) reactor, is presented. Such a reactor containing immobilized sludge in polyurethane foam matrices was first assayed for treating paper industry wastewater. A very short start-up period was observed and the reactor achieved stable operation by the eighth day. Afterwards, fundamental aspects of the process w...

  20. Improvement of anaerobic bio-hydrogen gas production from organic sludge waste

    International Nuclear Information System (INIS)

    Microbial hydrogen gas production from organic matters stands out as one of the most promising alternatives for sustainable green energy production. Based on the literature review, investigation of anaerobic bio-hydrogen gas production from organic sludge waste using a mixed culture has been very limited. The objective of this study was to assess the anaerobic bio-hydrogen gas production from organic sludge waste under various conditions. (Author)

  1. Use of gamma-irradiation pretreatment for enhancement of anaerobic digestibility of sewage sludge

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effects of y-irradiation pretreatment on anaerobic digestibility of sewage sludge was investigated in this paper.Parameters like solid components,soluble components,and biogas production of anaerobic digestion experiment for sewage sludge were measured.The values of these parameters were compared before and after y-irradiation pretreatment.Total solid (TS),volatile solid (VS),suspended solid (SS),volatile suspended solid (VSS),and average floc size of samples decreased after γ-irradiation treatment.Besides,floc size distribution of sewage sludge shifted from 80-100 μm to 0-40 μm after y-irradiation treatment at the doses from 0 to 30 kGy,which indicated the disintegration of sewage sludge.Moreover,microbe cells of sewage sludge were ruptured by γ-irradiation treatment,which resulted in the release of cytoplasm and increase of soluble chemical oxygen demand (SCOD).Both sludge disintegration and microbe cells rupture enhanced the subsequent anaerobic digestion process,which was demonstrated by the increase of accumulated biogas production.Compared with digesters fed with none irradiated sludge,the accumulated biogas production increased 44,98,and 178 mL for digesters fed sludge irradiated at 2.48,6.51,and 11.24 kGy,respectively.The results indicated that "/-irradiation pretreatment could effectively enhance anaerobic digestibility of sewage sludge,and correspondingly,could accelerate hydrolysis process,shorten sludge retention time of sludge anaerobic digestion process.

  2. Effect of sulfate and iron on physico-chemical characteristics of anaerobic granular sludge

    NARCIS (Netherlands)

    Hullebusch, van E.D.; Gieteling, J.; Daele, van W.; Defrancq, J.; Lens, P.N.L.

    2007-01-01

    This research investigated the effect of the substrate composition (no substrate, glucose, glucose + sulfate or glucose + sulfate + iron) on the physico-chemical characteristics of two different anaerobic granular sludges as a function of time. The sludges were fed batch wise (pH 7, 30 °C) at an org

  3. Effect of ultrasonic pretreatment on anaerobic digestion and its sludge dewaterability

    Institute of Scientific and Technical Information of China (English)

    Huacheng Xu; Pinjing He; Guanghui Yu; Liming Shao

    2011-01-01

    To investigate the effect of ultrasonic pretreatment on anaerobic digestion and sludge dewaterability and further to probe into the influencing factors on sludge dewaterability,sludge flocs were stratified into four fractions:(1) slime; (2) loosely bound extracellular polymeric substances (LB-EPS); (3) tightly bound EPS (TB-EPS); and (4) EPS-free pellets.The results showed that ultrasonic pretreatment increased the anaerobic digestion efficiency by 7%-8%.Anaerobic digestion without ultrasonic pretreatment deteriorated the sludge dewaterability,with the capillary suction time (CST) increased from 1.42 to 47.3 (sec.L)/g-TSS.The application of ultrasonic pretreatment firstly deteriorated the sludge dewaterability (normalized CST increased to 44.4 (sec.L)/g-TSS),while subsequent anaerobic digestion offset this effect and ultimately decreased the normalized CST to 23.2 (sec.L)/g-TSS.The dewaterability of unsonicated sludge correlated with protein (p = 0.003) and polysaccharide (p = 0.004) concentrations in the slime fraction,while that of sonicated sludge correlated with protein concentrations in the slime and LB-EPS fractions (p < 0.05).Fluorescent excitationemission matrix analysis showed that the fluorescence matters in the LB-EPS fraction significantly correlated with sludge dewaterability during anarobic digestion.

  4. Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment

    NARCIS (Netherlands)

    Van Lier, J.B.; Van der Zee, F.P.; Frijters, C.T.M.J.; Ersahin, M.E.

    2015-01-01

    In the last 40 years, anaerobic sludge bed reactor technology evolved from localized lab-scale trials to worldwide successful implementations at a variety of industries. High-rate sludge bed reactors are characterized by a very small foot print and high applicable volumetric loading rates. Best perf

  5. Role of nickel in high rate methanol degradation in anaerobic granular sludge bioreactors

    NARCIS (Netherlands)

    Fermoso, F.G.; Collins, G.; Bartacek, J.; O'Flaherty, V.; Lens, P.N.L.

    2008-01-01

    The effect of nickel deprivation from the influent of a mesophilic (30 degrees C) methanol fed upflow anaerobic sludge bed (UASB) reactor was investigated by coupling the reactor performance to the evolution of the Methanosarcina population of the bioreactor sludge. The reactor was operated at pH 7.

  6. Effect of Na+ and Ca2+ on the aggregation properties of sieved anaerobic granular sludge

    NARCIS (Netherlands)

    Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Boughzala, W.; Lens, P.N.L.

    2007-01-01

    Interactions between fine particles (0¿50 ¿m) of anaerobic granular sludge were investigated by studying the effect of Na+ or Ca2+ supply on the evolution of the zeta potential and viscosity of granular sludge suspensions. In the Na+ or Ca2+ concentration range investigated, the Na+ addition affecte

  7. Application of Hydrothermal Treatment to High Concentrated Sewage Sludge for Anaerobic Digestion Process

    Directory of Open Access Journals (Sweden)

    M. Orikawa

    2013-10-01

    Full Text Available Tomato and seaweed were produced by utilizing CO2 and heat discharged from power generation using biogas in Toyogawa biomass park, Japan. The biogas was obtained by anaerobic digestion with hydrothermal treatment. The hydrothermal treatment was applied to the high concentrated sewage sludge (22 % total solids (TS dewatered sludge. The purpose of this study is to clarify the effect of hydrothermal treatment on the qualities of high concentrated sewage sludge, by analyzing particulate organic carbon (POC and dissolved organic carbon (DOC. The hydrothermal treatment was investigated under 10-60 min of treatment time, 180-200 °C of temperature, 10-22 %-TS of sewage sludge concentration. The results showed that the DOC in each conditions increased through hydrothermal treatment. The highest DOC obtained was 67 % of total carbon concentration, when the temperature was 180 °C, treatment time was 60 min and sewage sludge concentration was 10 %-TS. Furthermore, the viscosity of treated sewage sludge was decreased by hydrothermal treatment. In batch anaerobic digestion test, methane gas production was confirmed. In addition, this study evaluated the energy balance of this system. Thus, the results of this study indicated that the possibility of application of hydrothermal treatment to high concentrated sewage sludge for anaerobic digestion process. Keywords: anaerobic reaction, hydrothermal treatment, sewage sludge, solubilization

  8. Mitigation of micropollutants for black water application in agriculture via composting of anaerobic sludge

    NARCIS (Netherlands)

    Butkovskyi, A.; Ni, G.; Hernandez Leal, L.; Rijnaarts, H.H.M.; Zeeman, G.

    2016-01-01

    The excess sludge from Up-flow anaerobic sludge bed (UASB) reactor operated on source separated toilet wastewater is a potential source of nutrients and organic matter. It can be further stabilized and dried by composting and applied as a soil amendment. Presence of pathogens, heavy metals and micro

  9. Start-up of anaerobic ammonia oxidation bioreactor with nitrifying activated sludge

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ping; LIN Feng-mei; HU Bao-lan; CHEN Jian-song

    2004-01-01

    The anaerobic ammonia oxidation(Anammox) bioreactor was successfully started up with the nitrifying activated sludge. After anaerobically operated for 105 d, the bioreactor reached a good performance with removal percentage of both ammonia and nitrite higher high efficiency and stability because it held a large amount of biomass in the bioreactor.

  10. Simulation of DEHP biodegradation and sorption during the anaerobic digestion of secondary sludge

    DEFF Research Database (Denmark)

    Fountoulakis, M.S.; Stamatelatou, K.; Batstone, Damien J.;

    2006-01-01

    Di-ethylhexyl phthalate (DEHP) has commonly been found in the sludge of municipal wastewater treatment plants especially during anaerobic processing. It is slowly biodegradable under anaerobic conditions. Due to its high hydrophobicity, sorption-desorption processes can be rate-limiting for the c...

  11. Microaerobic DO-induced microbial mechanisms responsible for enormous energy saving in upflow microaerobic sludge blanket reactor.

    Science.gov (United States)

    Zheng, Shaokui; Cui, Cancan; Quan, Ying; Sun, Jian

    2013-07-01

    This study experimentally examined the microaerobic dissolved oxygen (DO)-induced microbial mechanisms that are responsible for enormous energy savings in the upflow microaerobic sludge blanket reactor (UMSB) for domestic wastewater treatment. Phylogenetic and kinetic analyses (as determined by clone library analyses and sludge oxygen affinity analyses) showed that the microaerobic conditions in the UMSB led to the proliferation and dominance of microaerophilic bacteria that have higher oxygen affinities (i.e., lower sludge oxygen half-saturation constant values), which assured efficient COD and NH3-N removals and sludge granulation in the UMSB similar as those achieved in the aerobic control. However, the microaerobic DO level in the UMSB achieved significant short-cut nitrification, a 50-90% reduction in air supply, and an 18-28% reduction in alkali consumption. Furthermore, the disappearance of sludge bulking in the UMSB when it was dominated by "bulking-induced" filamentous bacteria should be attributed to its upflow column-type configuration. PMID:23693146

  12. Avaliação do potencial de produção de biogás e da eficiência de tratamento do reator anaeróbio de manta de lodo (UASB alimentado com dejetos de suínos Potential evaluation of biogas production and treatment efficiency of an upflow anaerobic sludge blanket (UASB fed with swine manure liquid effluent

    Directory of Open Access Journals (Sweden)

    Cláudio Milton Montenegro Campos

    2005-08-01

    Full Text Available Com o presente trabalho de pesquisa objetivou-se avaliar a eficiência na remoção de poluentes orgânicos e a produção de biogás de um sistema de tratamento de efluentes de dejetos de suínos em escala laboratorial (bancada. A pesquisa foi desenvolvida no Laboratório de Análise de Água do Departamento de Engenharia (LAADEG da Universidade Federal de Lavras (UFLA. O sistema de tratamento foi constituído por um Tanque de Acidificação e Equalização (TAE, Reator Anaeróbio de Manta de Lodo (UASB com medidor de biogás (gasômetro e uma Lagoa Aerada Facultativa (LAF. A alimentação foi realizada em bateladas no TAE, onde o efluente líquido era bombeado para um sistema de aquecimento sendo então introduzido no reator UASB e finalmente conduzido para polimento na LAF. O biogás acumulado na parte superior do UASB, após passar por um equalizador de pressão, era canalizado e armazenado no gasômetro. O valor médio do Tempo de Detenção Hidráulica (TDH foi de 30 horas. Os valores médios de remoção da DQO T, DBO5, ST, STF e STV, foram: 1755, 670, 1089; 142 e 948 mg.L-1, respectivamente. As eficiências de remoção da DQO T e DBO5 no reator UASB foram de 78 e 75%, respectivamente. A produção média de biogás e metano (CH4 foi de 0,14 e 0,10 L.d-1. O potencial de produção de CH4 em termos de DBO5 removida foi de 0,01 m³CH4.(kg.DBO removida -1. O sistema apresentou boa eficiência quanto a remoção de DQO T, DBO5 e Sólidos.The present research aimed at evaluating in lab-scale system the removal of pollutants and biogas production efficiency in treating a swine liquid effluent. The research was carried out in the Laboratory of Water Analysis from the Engineering Department of Federal University of Lavras (LAADEG. The system parts built up were: Acidification Equalization Tank (AET, an Upflow Anaerobic Sludge Blanket reactor (UASB with biogas measurement and an Aerated Facultative Pond (AFP. The batch feeding process was carried

  13. Hydrolysis of particulate substrate by activated sludge under aerobic, anoxic and anaerobic conditions

    DEFF Research Database (Denmark)

    Henze, Mogens; Mladenovski, C.

    1991-01-01

    An investigation of hydrolysis of particulate organic substrate by activated sludge has been made. Raw municipal wastewater was used as substrate. It was mixed with activated sludge from a high loaded activated sludge plant with pure oxygen aeration. During 4 days batch experiments under aerobic......, anoxic and anaerobic conditions, the hydrolysis was following through the production of ammonia. The hydrolysis rate of nitrogeneous compounds is significantly affected by the electron donor available. The rate is high under aerobic conditions, medium under anaerobic conditions and low under anoxic...... conditions. The ratio between the hydrolysis rates under aerobic and under anoxic conditions are very similar to the respiration rates measured as electron equivalents....

  14. Determination of greenhouse gas emission reductions from sewage sludge anaerobic digestion in China.

    Science.gov (United States)

    Liu, H-T; Kong, X-J; Zheng, G-D; Chen, C-C

    2016-01-01

    Sewage sludge is a considerable source of greenhouse gas (GHG) emission in the field of organic solid waste treatment and disposal. In this case study, total GHG emissions from sludge anaerobic digestion, including direct and indirect emissions as well as replaceable emission reduction due to biogas being reused instead of natural gas, were quantified respectively. The results indicated that no GHG generation needed to be considered during the anaerobic digestion process. Indirect emissions were mainly from electricity and fossil fuel consumption on-site and sludge transportation. Overall, the total GHG emission owing to relative subtraction from anaerobic digestion rather than landfill, and replaceable GHG reduction caused by reuse of its product of biogas, were quantified to be 0.7214 (northern China) or 0.7384 (southern China) MgCO2 MgWS(-1) (wet sludge).

  15. The Impact of Chemical Phosphorus Removal on the Process of Anaerobic Sludge Digestion

    Directory of Open Access Journals (Sweden)

    Svetlana Ofverstrom

    2011-02-01

    Full Text Available The paper investigates the efficiency of the mixture of primary sludge and excess activated sludge in Vilnius WWTP with reference to the anaerobic digestion process. Sludge digestion was carried out under laboratory conditions using anaerobic sludge digestion model W8 (Armfield Ltd., UK. Laboratory analyses consist of two periods – the anaerobic digestion of the un-dosed and Fe-dosed sludge mixture. The results of digestion were processed using the methods of statistical analysis. The findings showed reduction in volatile solids approx. by 6% when dosing min FeCl3·6H2O and 15% when dosing max FeCl3·6H2O into feed sludge. Gas volume produced during the digestion of the un-dosed sludge was 90–160 ml/d and 60–125 ml/d in min Fe-dosed sludge and 45-95 ml/d. Also, correlation between VS loadings and biogas production was found. A rise in VS loading from 0,64 g/l/d to 1,01 g/l/d increased biogas production from 90 ml/d to 140–160 ml/d.Article in Lithuanian

  16. Mesophilic anaerobic stabilization of sewage sludge. Mesophile anaerobe Klaerschlammstabilisierung mit aerober Folgebehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, U.

    1988-01-01

    Sludges treated in two stages in experiments - 7 days of anaerobic treatment and 2 days of aerobic-thermophilic treatment - can be judged to be completely stabilized because of the stabilization parameters BOD/sub 5//COD ratio and respiratory activity. The degradation results obtained are comparable to or better than those of the 20-day digestion (reference process). For all aerobic processes under investigation a clear temperature increase in the aerobic reactor was measured because of the exothermal metabolic processes of the aerobic biocenosis. There was a temperature rise of 15/sup 0/C in the tests in the aerobic reactor even after longer digestion times of 15 and 20 days. The results of the epidemics and hygiene investigations show that a secondary aerobic-thermophilic stage after the mesophilic digestion with adequate marginal conditions - germ retention time of 23 hours in the aerobic reactor at process temperatures higher than 50/sup 0/C as well as charging in batch quantities - leads to a safe and complete decontamination. Under these process and operation conditions all salmonellae were killed and the number of the enterobacteriaceae in 1 g of sludge was always less than 1.000. (orig./EF).

  17. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    Science.gov (United States)

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-05-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them.

  18. Anaerobic treatment of complex wastewater and waste activated sludge - Appl. of an upflow anaerobic solid removal (UASR).

    NARCIS (Netherlands)

    Zeeman, G.; Sanders, W.T.M.; Wang, K.Y.; Lettinga, G.

    1997-01-01

    The application of one phase anaerobic wastewater systems for the treatment of complex wastewaters containing high amounts of suspended solids or lipids is usually limited by accumulation of these compounds in the sludge bed. This accumulation reduces the solid retention time and methanogenic activi

  19. The effect of operational conditions on the hydrodynamic characteristics of the sludge bed in UASB reactors

    NARCIS (Netherlands)

    Leitao, R.C.; Santaellla, S.T.; Haandel, van A.C.; Zeeman, G.; Lettinga, G.

    2011-01-01

    This work aims to evaluate the hydrodynamic properties of the sludge bed of Upflow Anaerobic Sludge Blanket (UASB) reactors based on its settleability and expansion characteristics. The methodologies used for the evaluation of the settleability of aerobic activated sludge, and for the expansibility

  20. Performance of up flow anaerobic sludge fixed film bioreactor for the treatment of high organic load and biogas production of cheese whey wastewater

    Directory of Open Access Journals (Sweden)

    Tehrani Nazila Samimi

    2015-01-01

    Full Text Available Among various wastewater treatment technologies, biological wastewater treatment appears to be the most promising method. A pilot scale of hybrid anaerobic bioreactor was fabricated and used for the whey wastewater treatment. The top and bottom of the hybrid bioreactor known as up flow anaerobic sludge fixed film (UASFF; was a combination of up flow anaerobic sludge blanket (UASB and up flow anaerobic fixed film reactor (UAFF, respectively. The effects of operating parameters such as temperature and hydraulic retention time (HRT on chemical oxygen demand (COD removal and biogas production in the hybrid bioreactor were investigated. Treatability of the samples at various HRTs of 12, 24, 36 and 48 hours was evaluated in the fabricated bioreactor. The desired conditions for COD removal such as HRT of 48 hours and operation temperature of 40 °C were obtained. The maximum COD removal and biogas production were 80% and 2.40 (L/d, respectively. Kinetic models of Riccati, Monod and Verhalst were also evaluated for the living microorganisms in the treatment process. Among the above models, Riccati model was the best growth model fitted with the experimental data with R2 of about 0.99.

  1. Enhancing anaerobic digestion of waste activated sludge by pretreatment: effect of volatile to total solids.

    Science.gov (United States)

    Wang, Xiao; Duan, Xu; Chen, Jianguang; Fang, Kuo; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi

    2016-06-01

    In this study the effect of volatile to total solids (VS/TS) on anaerobic digestion of waste activated sludge (WAS) pretreated by alkaline, thermal and thermal-alkaline strategies was studied. Experimental results showed that the production of methane from sludge was increased with VS/TS. When anaerobic digesters were fed with sludge pretreated by the thermal-alkaline method, the average methane yield was improved from 2.8 L/d at VS/TS 0.35 to 4.7 L/d at VS/TS 0.56. Also, the efficiency of VS reduction during sludge anaerobic digestion varied between 18.9% and 45.6%, and increased gradually with VS/TS. Mechanism investigation of VS/TS on WAS anaerobic digestion suggested that the general activities of anaerobic microorganisms, activities of key enzymes related to sludge hydrolysis, acidification and methanogenesis, and the ratio of Archaea to Bacteria were all increased with VS/TS, showing good agreement with methane production. PMID:26698921

  2. Pretreatment on Anaerobic Sludge for Enhancement of Biohydrogen Production from Cassava Processing Wastewater

    Directory of Open Access Journals (Sweden)

    Franciele do Carmo Lamaison

    2014-02-01

    Full Text Available Methods for the enrichment of an anaerobic sludge with H2-producing bacteria have been compared by using cassava processing wastewater as substrate.The sludge was submitted to three different pretreatments: 1 heat pretreatment by boiling at 98 °C for 15 min., 2 heat pretreatment followed by sludge washout in a Continuous Stirring Tank Reactor (CSTR operated at a dilution rate (D of 0.021 h-1, and 3 sludge washout as the sole enrichment method. The pretreated sludge and the sludge without pretreatment (control were employed in the seeding of 4 batch bioreactors, in order to verify the volume and composition of the generated biogas. Maximum H2 production rates (Rm from the pretreated sludges, were estimated by the modified Gompertz model. Compared to the control, H2 production was ca. 4 times higher for the sludge submitted to the heat pretreatment only and for the sludge subjected to heat pretreatment combined with washout, and 10 times higher for washout. These findings demonstrated that the use of sludge washout as the sole sludge pretreatment method was the most effective in terms of H2 production, as compared to the heat and to the combined heat and washout pretreatments.

  3. Enhanced stabilization of digested sludge during long-term storage in anaerobic lagoons.

    Science.gov (United States)

    Lukicheva, Irina; Pagilla, Krishna; Tian, Guanglong; Cox, Albert; Granato, Thomas

    2014-04-01

    The goal of this work was to study changes in anaerobically stored digested sludge under different lengths of storage time to evaluate the quality of final product biosolids. The analyses of collected data suggest the organic matter degradation occurrence in the anaerobic environment of the lagoon approximately within the first year. After that, the degradation becomes very slow, which is likely caused by unfavorable environmental conditions. The performance of lagoon aging of digested sludge was also compared to the performance of lagoon aging of anaerobically digested and dewatered sludge. It was concluded that both of these processes result in biosolids of comparative quality and that the former provides more economical solution to biosolids handling by eliminating the need for mechanical dewatering. PMID:24851324

  4. Thermal and enzymatic pretreatment of sludge containing phthalate esters prior to mesophilic anaerobic digestion

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Yenal, U.; Ahring, Birgitte Kiær

    2004-01-01

    /biological activity. Therefore, thermal pretreatment of sludge containing PAE should be either avoided or combined with a treatment step focusing on PAE reduction. On the other hand, enzymatic treatment was very efficient in the removal of PAE. The enzymatic degradation of DBP, DEP, and DEHP could be one to two......The present study aimed at investigating the effect of thermal pretreatment of sludge at 70degreesC on the anaerobic degradation of three commonly found phthalic acid esters (PAE): di-ethyl phthalate (DEP), di-butyl phthalate (DBP), and di-ethylhexyl phthalate (DEHP). Also, the enzymatic treatment...... orders of magnitude faster than under normal mesophilic anaerobic conditions. Moreover, the enzymatic treatment resulted in the shortest half-life of DEHP in sludge reported so far. Our study further showed that enzymatic treatment with lipases can be applied to raw sludge and its efficiency does...

  5. Biodegradation of 14C-dicofol in wastewater aerobic treatment and sludge anaerobic biodigestion.

    Science.gov (United States)

    Oliveira, Jaime L da M; Silva, Denise P; Martins, Edir M; Langenbach, Tomaz; Dezotti, Marcia

    2012-01-01

    Organic micropollutants are often found in domestic and industrial effluents. Thus, it is important to learn their fate, the metabolites generated and their sorption during biological treatment processes. This work investigated the biodegradation of 14C-dicofol organochloride during wastewater aerobic treatment and sludge anaerobic biodigestion. The performance of these processes was evaluated by physical-chemical parameters. Radioactivity levels were monitored in both treatments, and residues of dicofol (DCF) and dichlorobenzophenone (DBP) were quantified by HPLC/UV. The efficiency of the aerobic and anaerobic processes was slightly reduced in the presence of DCF and DBP. After aerobic treatment, only 0.1% of DCF was mineralized, and 57% of radioactivity remained sorbed on biological sludge as DBP. After 18 days of anaerobiosis, only 3% of DCF and 5% of DBP were detected in the sludge. However, 70% of radioactivity remained in the sludge, probably as other metabolites. Dicofol was biodegraded in the investigated process, but not mineralized. PMID:22629645

  6. Activated Sludge and other Aerobic Suspended Culture Processes.

    Science.gov (United States)

    Li, Chunying; Wei, Li; Chang, Chein-Chi; Zhang, Yuhua; Wei, Dong

    2016-10-01

    This is a literature review for the year 2015 and contains information specifically associated with suspended growth processes including activated sludge, upflow anaerobic sludge blanket, and sequencing batch reactors. The review encompasses modeling and kinetics, nutrient removal, system design and operation. Compared to past reviews, many topics show increase in activity in 2015. These include, fate and effect of xenobiotics, industrial wastes treatment with sludge, and pretreatment for the activated sludge. These topics are referred to the degradation of constituents in activated sludge. Other sections include population dynamics, process microbiology give an insight into the activated sludge. The subsection in industrial wastes: converting sewage sludge into biogases was also mentioned. PMID:27620082

  7. Combined carbon and nitrogen removal in integrated anaerobic/anoxic sludge bed reactors for the treatment of domestic sewage

    OpenAIRE

    Kassab, G.

    2009-01-01

    The main objective of this research is to assess the applicability and effectiveness of integrating anaerobic digestion and denitrification processes in a single sludge system. The integrated concept is of particular interest for the treatment of highstrength domestic wastewater and is accomplished by means of a sequential anaerobic-aerobic system. The anaerobic pre-treatment can consist of a single anaerobic stage or two anaerobic stages, conditioned mainly by the wastewater characteristics,...

  8. Biotransformation of tetrabromobisphenol A (TBBPA) in anaerobic digester sludge, soils, and freshwater sediments.

    Science.gov (United States)

    McAvoy, Drew C; Pittinger, Charles A; Willis, Alison M

    2016-09-01

    The biotransformation of tetrabromobisphenol A (TBBPA) was evaluated in anaerobic digester sludge, soils, and freshwater sediments. In anaerobic digester sludge, TBBPA biotransformed rapidly with a 50% disappearance time (DT50) of 19 days, though little mineralization (1.1%) was observed. In aerobic soils, mineralization of TBBPA ranged from 17.5% to 21.6% with 55.3-83.6% of the TBBPA incorporated into the soils as a non-extractable bound residue. The DT50 for TBBPA in aerobic soils ranged from 5.3 to 7.7 days. In anaerobic soils, 48.3-100% of the TBBPA was incorporated into the soils as non-extractable bound residue with sediments the DT50 for TBBPA ranged from 28 to 42 days, whereas in aerobic sediments the DT50 for TBBPA ranged from 48 to 84 days and depended on the initial dose concentration. Most of the TBBPA in the sediment studies was incorporated as a non-extractable bound residue with little mineralization observed. Sediment extracts revealed three unknown biotransformation products and bisphenol A (BPA). These results were consistent with previously published studies where TBBPA biotransformed in anaerobic environments (digester sludge and sediments) by debromination and slowly mineralized in the test environments (anaerobic digester sludge, soils, and freshwater sediments). PMID:26212340

  9. Simulation of DEHP biodegradation and sorption during the anaerobic digestion of secondary sludge

    DEFF Research Database (Denmark)

    Fountoulakis, M.S.; Stamatelatou, K.; Batstone, Damien J.;

    2006-01-01

    -limiting for the compound biodegradation. In this study, the anaerobic biodegradation of DEHP was investigated through batch kinetic experiments and dynamic transitions of a continuous stirred tank reactor (CSTR) fed with secondary sludge contaminated with DEHP. A widely accepted model (ADM1) was used to fit the anaerobic......" against biodegradation. The model, fitted to the batch experimental data, was able to predict DEHP removal in the CSTR operated at various HRTs....

  10. Ammonia-methane two-stage anaerobic digestion of dehydrated waste-activated sludge

    OpenAIRE

    Nakashimada, Yutaka; Ohshima, Yasutaka; Minami, Hisao; Yabu, Hironori; Namba,Yuzaburo; Nishio, Naomichi

    2008-01-01

    In repeated batch-wise thermophilic anaerobic digestion of dehydrated waste-activated sludge with 80% (w/w) water content (DWAS), although methane production reached 30 % of total organic carbon in DWAS in the first run of 15d, it gradually decreased and finally stopped in the subsequent runs together with an increase in ammonia concentration. When the loading of DWAS on anaerobic digestion was investigated, methane production at 30d significantly decreased with the increase in the amount of ...

  11. Determination of kinetic parameters of a lab-scale upflow anaerobic sludge blanket reator (uasb removing organic loading from swine manure effluents Determinação de parâmetros cinéticos utilizando reator anaeróbio de manta de lodo (uasb em escala laboratorial para remoção da carga orgânica de efluentes de suinocultura

    Directory of Open Access Journals (Sweden)

    Cláudio Milton Montenegro Campos

    2005-10-01

    Full Text Available The present work aimed at determining and evaluating the kinetic parameters from the UASB reactor treating swine manure effluent in a lab-scale experiment. The research was carried out in the Laboratory of Water Analysis at the Engineering Department (LAADEG at the campus of Federal University of Lavras - UFLA. The system was assembled with an acidification and equalization tank (AET, an UASB reactor and an aerated facultative pond (AFP. The hydraulic retention time (HRT adopted in the UASB reactor were: 55; 39; 34; 24; 17; and 16 hours. The operational average temperature in the UASB reactor was 25 ± 2ºC. The kinetic studies used the following parameters: Chemical Oxygen Demand (COD T, Total Volatile Solids (TVS, Temperature, Flowrate and Total Solids Profile (TVS P, in the reactor, and the number of analyses were: 72; 72; 250; 250; and 30, respectively. The frequency was twice a week for COD T, and TVS, and daily for temperature and flowrate. The kinetic parameters determined were: yield coefficient Y=0.3046 to 0.4231mg COD T mgTVS-1.d-1, decay coefficient Kd=0.0125 to 0.0173d-1, maximum growth rate coefficient ìmax=0.2835 to 0.03938d-1 and limiting substrate concentration coefficient Ks= 51.70 to 71.80mg COD T.L-1. The values found were within the range appointed in the specific literatures and were determined based on linear regression studies, giving in this way, a technical scientific support to the physical chemical operational data collected during the operational research period.Com a presente pesquisa, objetivou-se determinar os parâmetros cinéticos de um reator anaeróbio de manta de lodo (UASB-Upflow Anaerobic Sludge Blanket, em escala laboratorial, empregado para reduzir a carga orgânica poluidora de dejetos de suínos. Os trabalhos foram conduzidos no Laboratório de Análise de Água do Departamento de Engenharia LAADEG localizado no campus da UFLA, utilizando dejetos de suínos coletados da granja de suínos do Departamento

  12. [Study on biodegradation of 2,4-DCP by anaerobic sludge acclimated by mixed mono-chlorphenols].

    Science.gov (United States)

    Zhang, Wen; Chen, Ling; Ji, Jun-Ping; Xia, Si-Qing

    2007-06-01

    Purpose of this study was to determine the treatability of 2,4-dichlorophenol (2,4-DCP) by anaerobic granular sludge which was acclimated by mixed mono-chlorphenols (2-CP, 4-MCP). The characteristic of degradation of 2,4-DCP by anaerobic sludge acclimated by mixed mono-chlorphenols was investigated through shake flask study and performance of continuous flow anaerobic bioreactors. The difference of degradation of 2,4-DCP by acclimated and unacclimated sludge was also compared. 2,4-DCP was degraded at 50 h and 180 h respectively for acclimated and unacclimated sludge, which testified that acclimated sludge could more effectively degrade 2,4-DCP. Although the intermediate product 4-MCP was present in both reaction system, 4-MCP could be degraded completely after 400 h in the acclimated sludge but accumulated in the unacclimated sludge. Therefore, acclimation by the mixed mono-chlorphenols (2-CP, 4-MCP) could enhance the ability of para- and meta-dechlorination for anaerobic sludge and increase the treatability of 2,4-DCP. The results of continuous anaerobic sludge-suspended carrier bioreactor (ASSCB) indicate that inoculation of the acclimated sludge by mixed mono-chlorphenols can degrade two mono-chlorphenols simultaneously, shorten the setup period, and increase the efficiency of degrading 2,4-DCP. 2-CP was easily degraded with removal rate of over 80% . While the removal rate of 4-MCP was fluctuating within 30% - 80% with changes of its influent concentration. PMID:17674731

  13. [Study on biodegradation of 2,4-DCP by anaerobic sludge acclimated by mixed mono-chlorphenols].

    Science.gov (United States)

    Zhang, Wen; Chen, Ling; Ji, Jun-Ping; Xia, Si-Qing

    2007-06-01

    Purpose of this study was to determine the treatability of 2,4-dichlorophenol (2,4-DCP) by anaerobic granular sludge which was acclimated by mixed mono-chlorphenols (2-CP, 4-MCP). The characteristic of degradation of 2,4-DCP by anaerobic sludge acclimated by mixed mono-chlorphenols was investigated through shake flask study and performance of continuous flow anaerobic bioreactors. The difference of degradation of 2,4-DCP by acclimated and unacclimated sludge was also compared. 2,4-DCP was degraded at 50 h and 180 h respectively for acclimated and unacclimated sludge, which testified that acclimated sludge could more effectively degrade 2,4-DCP. Although the intermediate product 4-MCP was present in both reaction system, 4-MCP could be degraded completely after 400 h in the acclimated sludge but accumulated in the unacclimated sludge. Therefore, acclimation by the mixed mono-chlorphenols (2-CP, 4-MCP) could enhance the ability of para- and meta-dechlorination for anaerobic sludge and increase the treatability of 2,4-DCP. The results of continuous anaerobic sludge-suspended carrier bioreactor (ASSCB) indicate that inoculation of the acclimated sludge by mixed mono-chlorphenols can degrade two mono-chlorphenols simultaneously, shorten the setup period, and increase the efficiency of degrading 2,4-DCP. 2-CP was easily degraded with removal rate of over 80% . While the removal rate of 4-MCP was fluctuating within 30% - 80% with changes of its influent concentration.

  14. Effect of Calcium Ions on Dewaterability of Enzymatic-Enhanced Anaerobic Digestion Sludge.

    Science.gov (United States)

    Luo, Kun; Yang, Qi; Li, Xiao-Ming; Zhang, Shi-Ying; Pang, Ya; Li, Xue; Liao, Xing-Sheng

    2015-08-01

    Waste-activated sludge (WAS) solubilized remarkably after enzymatic-enhanced anaerobic digestion, but its dewaterability was deteriorated. In this study, a novel method was performed to improve the dewaterability of enzymatic-enhanced anaerobic digestion sludge by adding CaCl2 (0.01~1.00 g/g total sludge). The capillary suction time (CST), moisture content, and filtrate turbidity were employed to characterize the dewaterability of WAS, and the possible mechanisms involved were clarified. The results showed the dewaterability did not worsen when CaCl2 was added before sludge digestion, and the CST, moisture content, and filtrate turbidity were notably reduced with the increase of CaCl2 dosage. It also shown that calcium ions played an important role in the bioflocculation of digested sludge by neutralizing negative charges on the surface of sludge. In addition, soluble protein initially lowered a little and then observably improved with the addition of CaCl2, while soluble carbohydrate was reduced sharply first and then bounced back afterwards. The interactions between calcium ions and the biopolymer further enhanced the dewatering of sludge through bridging of colloidal particles together. PMID:26129703

  15. Solids removal in upflow anaerobic reactors, a review

    NARCIS (Netherlands)

    Mahmoud, N.; Zeeman, G.; Gijzen, H.J.; Lettinga, G.

    2003-01-01

    This desk study deals with the mechanisms and parameters affecting particles separation from wastewater in mainly upflow anaerobic reactors. Despite the fact that the functioning of upflow anaerobic sludge blanket (UASB) systems depends on both physical parameters and biological processes, the physi

  16. Hybrid alkali-hydrodynamic disintegration of waste-activated sludge before two-stage anaerobic digestion process

    OpenAIRE

    Grübel, Klaudiusz; Suschka, Jan

    2014-01-01

    The first step of anaerobic digestion, the hydrolysis, is regarded as the rate-limiting step in the degradation of complex organic compounds, such as waste-activated sludge (WAS). The aim of lab-scale experiments was to pre-hydrolyze the sludge by means of low intensive alkaline sludge conditioning before applying hydrodynamic disintegration, as the pre-treatment procedure. Application of both processes as a hybrid disintegration sludge technology resulted in a higher organic matter release (...

  17. Mesophilic anaerobic co-digestion of municipal solid waste and sewage sludge

    DEFF Research Database (Denmark)

    Aghdam, Ehsan Fathi; Kinnunen, V.; Rintala, Jukka A.

    2015-01-01

    This paper presents mesophilic anaerobic digestion (AD) of organic fraction of municipal solid waste (OFMSW), biowaste (BW), sewage sludge (SS), and co-digestion of BW and SS. Average methane yields of 386 ± 54, 385 ± 82, 198 ± 14, and 318 ± 59 L CH4/kg volatile solids (VS) were obtained for OFMSW...

  18. Minimisation of excess sludge production in a WWTP by coupling thermal hydrolysis and rapid anaerobic digestion.

    Science.gov (United States)

    Chauzy, J; Graja, S; Gerardin, F; Crétenot, D; Patria, L; Fernandes, P

    2005-01-01

    In many cases, reducing sludge production could be the solution for wastewater treatment plants (WWTP) that here difficulty evacuating the residuals of wastewater treatment. The aim of this study was to test the possibility of minimising the excess sludge production by coupling a thermal hydrolysis stage and an anaerobic digestion with a very short HRT. The tests were carried out on a 2,500 p.e. pilot plant installed on a recycling loop between the clarifier and the actived sludge basin. The line equipped with the full scale pilot plant produced 38% TSS less than the control line during a 10 week period. Moreover, the rapid anaerobic digestion removed, on average, more than 50% of the total COD load with a hydraulic retention time (HRT) of 3 days. Lastly, the dryness of the remaining excess sludge, sanitised by the thermal hydrolysis, was more than 35% with an industrial centrifuge. This combination of thermal hydrolysis and rapid anaerobic digestion equally permits a significant gain of compactness compared to traditional anaerobic digesters.

  19. Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors

    NARCIS (Netherlands)

    Lenz, M.; Hullebusch, van E.D.; Hommes, G.; Corvini, P.F.X.; Lens, P.N.L.

    2008-01-01

    This paper evaluates the use of upflow anaerobic sludge bed (UASB) bioreactors (30 degrees C, pH = 7.0) to remove selenium oxyanions from contaminated waters (790 mu g Se L-1) under methanogenic and sulfate-reducing conditions using lactate as electron donor. One UASB reactor received sulfate at dif

  20. The Effect of Anaerobic and Aerobic Fish Sludge Supernatant on Hydroponic Lettuce

    NARCIS (Netherlands)

    Goddek, Simon; Schmautz, Zala; Scott, Ben; Delaide, Boris; Keesman, Karel; Wuertz, Sven; Junge, Ranka

    2016-01-01

    The mobilization of nutrients from fish sludge (i.e., feces and uneaten feed) plays a key role in optimizing the resource utilization and thus in improving the sustainability of aquaponic systems. While several studies have documented the aerobic and anaerobic digestion performance of aquaculture sl

  1. Metal supplementation to anaerobic granular sludge bed reactors: an environmental engineering approach

    NARCIS (Netherlands)

    Gonzalez Fermoso, F.

    2008-01-01

    The objective of this research is the optimization of essential metal dosing in upflow anaerobic sludge bed (UASB) reactors used for methanogenic wastewater treatment. Optimization of essential metal dosing in UASB reactors is a compromise between achieving the maximal biological activity of the bio

  2. Cobalt sorption onto anaerobic granular sludge: Isotherm and spatial localization analysis

    NARCIS (Netherlands)

    Hullebusch, van E.D.; Gieteling, J.; Zhang, M.; Zandvoort, M.H.; Daele, van W.; Defrancq, J.; Lens, P.N.L.

    2006-01-01

    This study investigated the effect of different feeding regimes on the cobalt sorption capacity of anaerobic granular sludge from a full-scale bioreactor treating paper mill wastewater. Adsorption experiments were done with non-fed granules in monometal (only Co) and competitive conditions (Co and N

  3. Quinone-respiration improves dechlorination of carbon tetrachloride by anaerobic sludge

    NARCIS (Netherlands)

    Cervantes, F.J.; Vu-Thi-Thu, L.; Lettinga, G.; Field, J.A.

    2004-01-01

    The impact of humic acids and the humic model compound, anthraquinone-2,6-disulfonate (AQDS), on the biodegradation of carbon tetrachloride (CT) by anaerobic granular sludge was studied. Addition of both humic acids and AQDS at sub-stoichiometric levels increased the first-order rate of conversion o

  4. Evidence for PAH Removal Coupled to the First Steps of Anaerobic Digestion in Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Glenda Cea-Barcia

    2013-01-01

    Full Text Available Anaerobic degradation of polycyclic aromatic hydrocarbons has been brought to the fore, but information on removal kinetics and anaerobic degrading bacteria is still lacking. In order to explore the organic micropollutants removal kinetics under anaerobic conditions in regard to the methane production kinetics, the removal rate of 12 polycyclic aromatic hydrocarbons was measured in two anaerobic batch reactors series fed with a highly loaded secondary sludge as growth substrate. The results underscore that organic micropollutants removal is coupled to the initial stages of anaerobic digestion (acidogenesis and acetogenesis. In addition, the organic micropollutants kinetics suggest that the main removal mechanisms of these hydrophobic compounds are biodegradation and/or sequestration depending on the compounds.

  5. The Effect of Anaerobic and Aerobic Fish Sludge Supernatant on Hydroponic Lettuce

    Directory of Open Access Journals (Sweden)

    Simon Goddek

    2016-06-01

    Full Text Available The mobilization of nutrients from fish sludge (i.e., feces and uneaten feed plays a key role in optimizing the resource utilization and thus in improving the sustainability of aquaponic systems. While several studies have documented the aerobic and anaerobic digestion performance of aquaculture sludge, the impact of the digestate on plant growth has yet to be understood. The present study examines the impact of either an aerobic or an anaerobic digestion effluent on lettuce plant growth, by enriching a mixture of aquaculture and tap water with supernatants from both aerobic and anaerobic batch reactors. The lettuce plants grown in the hydroponic system supplied with supernatant from an anaerobic reactor had significantly better performance with respect to weight gain than both, those in the system where supernatant from the aerobic reactor was added, as well as the control system. It can be hypothesized that this effect was caused by the presence of NH4+ as well as dissolved organic matter, plant growth promoting rhizobacteria and fungi, and humic acid, which are predominantly present in anaerobic effluents. This study should therefore be of value to researchers and practitioners wishing to further develop sludge remineralization in aquaponic systems.

  6. Zero valent iron simultaneously enhances methane production and sulfate reduction in anaerobic granular sludge reactors.

    Science.gov (United States)

    Liu, Yiwen; Zhang, Yaobin; Ni, Bing-Jie

    2015-05-15

    Zero valent iron (ZVI) packed anaerobic granular sludge reactors have been developed for improved anaerobic wastewater treatment. In this work, a mathematical model is developed to describe the enhanced methane production and sulfate reduction in anaerobic granular sludge reactors with the addition of ZVI. The model is successfully calibrated and validated using long-term experimental data sets from two independent ZVI-enhanced anaerobic granular sludge reactors with different operational conditions. The model satisfactorily describes the chemical oxygen demand (COD) removal, sulfate reduction and methane production data from both systems. Results show ZVI directly promotes propionate degradation and methanogenesis to enhance methane production. Simultaneously, ZVI alleviates the inhibition of un-dissociated H2S on acetogens, methanogens and sulfate reducing bacteria (SRB) through buffering pH (Fe(0) + 2H(+) = Fe(2+) + H2) and iron sulfide precipitation, which improve the sulfate reduction capacity, especially under deterioration conditions. In addition, the enhancement of ZVI on methane production and sulfate reduction occurs mainly at relatively low COD/ [Formula: see text] ratio (e.g., 2-4.5) rather than high COD/ [Formula: see text] ratio (e.g., 16.7) compared to the reactor without ZVI addition. The model proposed in this work is expected to provide support for further development of a more efficient ZVI-based anaerobic granular system.

  7. Anaerobic granular sludge as a biocatalyst for 1,3-propanediol production from glycerol in continuous bioreactors

    OpenAIRE

    Gallardo, R.; Faria, Cristiana; Rodrigues, L. R.; Alves, M. M.

    2015-01-01

    1,3-propanediol (1,3-PDO) was produced from glycerol in three parallel Expanded Granular Sludge Blanket (EGSB) reactors inoculated with granular sludge (control reactor-R1), heat-treated granular sludge (R2) and disrupted granular sludge (R3) at Hydraulic Retention Times (HRT) between 3 and 24 h. Maximum 1,3-PDO yield (0.52 mol mol-1) and productivity (57 g L-1 d-1) were achieved in R1 at HRTs of 12 h and 3 h, respectively. DGGE profiling of PCR-amplified 16S rRNA gene fragments showed that v...

  8. Anaerobic granular sludge as a biocatalyst for 1,3-propanediol production from glycerol in continuous bioreactors

    OpenAIRE

    Gallardo, R.; Faria, Cristiana; Rodrigues, L. R.; Pereira, M. A.; Alves, M. M.

    2014-01-01

    1,3-propanediol (1,3-PDO) was produced from glycerol in three parallel Expanded Granular Sludge Blanket (EGSB) reactors inoculated with granular sludge (control reactor-R1), heat-treated granular sludge (R2) and disrupted granular sludge (R3) at Hydraulic Retention Times (HRT) between 3 and 24 h. Maximum 1,3-PDO yield (0.52 mol mol-1) and productivity (57 g L-1 d-1) were achieved in R1 at HRTs of 12 h and 3 h, respectively. DGGE profiling of PCR-amplified 16S rRNA gene fragments showed that v...

  9. Biohydrogen production from dual digestion pretreatment of poultry slaughterhouse sludge by anaerobic self-fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Sittijunda, Sureewan [Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002 (Thailand); Reungsang, Alissara [Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002 (Thailand); Fermentation Research Center for Value Added Agricultural Products, Khon Kaen University, Khon Kaen 40002 (Thailand); O-thong, Sompong [Department of Biology, Faculty of Science, Thaksin University, Patthalung 93110 (Thailand)

    2010-12-15

    Poultry slaughterhouse sludge from chicken processing wastewater treatment plant was tested for their suitability as a substrate and inoculum source for fermentation hydrogen production. Dual digestion of poultry slaughterhouse sludge was employed to produce hydrogen by batch anaerobic self-fermentation without any extra-seeds. The sludge (5% TS) was dual digested by aerobic thermophilic digestion at 55 C with the varying retention time before using as substrate in anaerobic self-fermentation. The best digestion time for enriching hydrogen-producing seeds was 48 h as it completely repressed methanogenic activity and gave the maximum hydrogen yield of 136.9 mL H{sub 2}/g TS with a hydrogen production rate of 2.56 mL H{sub 2}/L/h. The hydrogen production of treated sludge at 48 h (136.9 mL H{sub 2}/g TS) was 15 times higher than that of the raw sludge (8.83 mL H{sub 2}/g TS). With this fermentation process, tCOD value in the activated sludge could be reduced up to 30%. (author)

  10. Start-up and HRT Influence in Thermophilic and Mesophilic Anaerobic Digesters Seeded with Waste Activated Sludge

    OpenAIRE

    Benabdallah, El-Hadj T.; Dosta, J.; Mata-Alvarez, J.

    2007-01-01

    Since thermophilic anaerobic digestion represents an efficient alternative to mesophilic anaerobic digestion, multiple studies have been developed to compare their performance and viability. One of the problems related to thermophilic anaerobic digestion is the availability of an adequate seed to start-up the process. The goal of this study is to evaluate the possibility of using waste activated sludge (WAS) as a seed for both mesophilic (35 °C) and thermophilic (55 °C) anaerobic digesters...

  11. Anaerobic bioprocessing of sewage sludge, focusing on degradation of linear alkylbenzene sulfonates (LAS)

    Energy Technology Data Exchange (ETDEWEB)

    Angelidaki, I.; Toraeng, L.; Waul, C.M.; Schmidt, J.E.

    2003-07-01

    Anaerobic degradation of sludge amended with linear alkylbenzene sulfonates (LAS) was tested in one stage continuous stirred tank reactor (CSTR) and a two stages reactor system consisting by a CSTR as first step and upflow anaerobic sludge bed (UASB) reactor in the second step. Anaerobic removal of LAS was only observed at the second step but not at the first step. Removal of LAS in the UASB reactors was approx. 80% where half was due to absorption and the other half was apparently due to biological removal as shown from the LAS mass balance. At the end of the experiment the reactors were spiked with {sup 14}C-LAS which resulted in 5.6% {sup 14}CO{sub 2} in the produced gas. Total mass balance of the radioactivity was however not achieved. In batch experiments it was found that LAS at concentrations higher than 50 mg/l is inhibitory for the most microbial groups of the anaerobic process. Therefore, low initial LAS concentration is a prerequisite for successful LAS degradation. The results from the present study suggest that anaerobic degradation of LAS is possible in UASB reactors when the concentration of LAS is low enough to avoid inhibition of microorganisms active in the anaerobic process. (author)

  12. Fate of extracellular polymeric substances of anaerobically digested sewage sludge during pre-dewatering conditioning with Acidithiobacillus ferrooxidans culture.

    Science.gov (United States)

    Murugesan, Kumarasamy; Ravindran, Balasubramani; Selvam, Ammaiyappan; Kurade, Mayur B; Yu, Shuk-Man; Wong, Jonathan W C

    2016-10-01

    This study investigated the fate of extracellular polymeric substances (EPS) of anaerobically digested saline sewage sludge during its preconditioning. Sludge was conditioned with Acidithiobacillus ferrooxidans (AF) culture for 24h in the presence and absence of Fe(2+) as an energy substrate. pH decreased from 7.24 to 3.12 during sludge conditioning process. The capillary suction time (CST) of conditioned sludge significantly decreased to 94% as compared with control within 4h of conditioning with or without Fe(2+), indicating a significant (P<0.001) improvement in sludge dewaterability. A noticeable decrease in extractable EPS was observed in conditioned sludge. The EPS contents showed a significant negative correlation with dewaterability of sludge (P<0.05). The results suggest that bioacidification treatment using A. ferrooxidans effectively improved sludge dewaterability through modification of sludge EPS. PMID:27040507

  13. Semi-technical experiments in the mechanical solubilization of excess sludge with subsequent anaerobic stabilization; Halbtechnische Versuche zum mechanischen Aufschluss von Ueberschussschlaemmen mit anschliessender anaerober Stabilisierung

    Energy Technology Data Exchange (ETDEWEB)

    Palmowski, L.; Schwedes, J. [Technische Univ. Braunschweig (Germany). Inst. fuer Mechanische Verfahrenstechnik; Winter, A.; Dichtl, N. [Technische Univ. Braunschweig (Germany). Inst. fuer Siedlungswasserwirtschaft; Schmelz, K.G. [Emschergenossenschaft und Lippeverband, Essen (Germany); Mueller, J. [Technische Univ. Braunschweig (Germany). Inst. fuer Mechanische Verfahrenstechnik; Technische Univ. Braunschweig (Germany). Inst. fuer Siedlungswasserwirtschaft

    1999-07-01

    Within the framework of this project, the influence of the mechanical disintegration of different types of sludge on their anaerobic degradation behaviour and dewatering properties was investigated on a semi-technical scale. (orig.) [German] Im Rahmen dieses Projektes wurde in halbtechnischem Versuchsmassstab der Einfluss der mechanischen Desintegration verschiedener Schlaemme auf ihr anaerobes Abbauverhalten und ihr Entwaesserungsverhalten untersucht. (orig.)

  14. Is anaerobic digestion effective for the removal of organic micropollutants and biological activities from sewage sludge?

    Science.gov (United States)

    Gonzalez-Gil, L; Papa, M; Feretti, D; Ceretti, E; Mazzoleni, G; Steimberg, N; Pedrazzani, R; Bertanza, G; Lema, J M; Carballa, M

    2016-10-01

    The occurrence of emerging organic micropollutants (OMPs) in sewage sludge has been widely reported; nevertheless, their fate during sludge treatment remains unclear. The objective of this work was to study the fate of OMPs during mesophilic and thermophilic anaerobic digestion (AD), the most common processes used for sludge stabilization, by using raw sewage sludge without spiking OMPs. Moreover, the results of analytical chemistry were complemented with biological assays in order to verify the possible adverse effects (estrogenic and genotoxic) on the environment and human health in view of an agricultural (re)use of digested sludge. Musk fragrances (AHTN, HHCB), ibuprofen (IBP) and triclosan (TCS) were the most abundant compounds detected in sewage sludge. In general, the efficiency of the AD process was not dependent on operational parameters but compound-specific: some OMPs were highly biotransformed (e.g. sulfamethoxazole and naproxen), while others were only slightly affected (e.g. IBP and TCS) or even unaltered (e.g. AHTN and HHCB). The MCF-7 assay evidenced that estrogenicity removal was driven by temperature. The Ames test did not show point mutation in Salmonella typhimurium while the Comet test exhibited a genotoxic effect on human leukocytes attenuated by AD. This study highlights the importance of combining chemical analysis and biological activities in order to establish appropriate operational strategies for a safer disposal of sewage sludge. Actually, it was demonstrated that temperature has an insignificant effect on the disappearance of the parent compounds while it is crucial to decrease estrogenicity. PMID:27344252

  15. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    Science.gov (United States)

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-02-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology.

  16. Effects of inoculating microorganisms on mesophilic anaerobic digestion of septic sludge

    Institute of Scientific and Technical Information of China (English)

    黄川; 谷伟; 王里奥; 宋珍霞

    2009-01-01

    The anaerobic digestion of septic sludge was studied through inoculating effective microorganisms (EMs) under mesophilic condition (35 ℃). The variation of COD,total solid (TS),volatile solid (VS),pH value and the gas production rate during the digestion process were presented,and the optimal adding concentration of EMs was determined by comparing the reduction effectiveness of septic sludge. The results show that proper addition of EMs can enhance acid buffering capacity of the system,and the NH3-N concentration is lower than inhibition concentration of 2 g/L reported in the literature and maintain the range of pH value which is suitable for both hydrolysis-acidification and methanogenesis. However,overdose of EMs can reduce the initial pH value of septic sludge and decrease the effects of the anaerobic digestion. EMs can increase the quantity of microbe in septic sludge and improve the gas production and generation rate over a period of time. But overdosing EMs can lead to low pH,restrain activity of methanogenic bacteria and affect the quantity and the generation rate of gas. Adding 0.01% EMs achieves the highest sludge reduction with the removal rates of TS,VS and COD by 32.51%,42.34% and 40.97%,respectively.

  17. Impact of high saline wastewaters on anaerobic granular sludge functionalities

    NARCIS (Netherlands)

    Jeison, D.A.; Rio, del A.; Lier, van J.B.

    2008-01-01

    Three UASB reactors were operated at different salinity levels in order to assess the effects on the granular sludge properties. High levels of activity inhibition were observed at sodium concentrations over 7 g Na+/L, which resulted in low applicable organic loading rates and VFA accumulation in re

  18. Evaluation of Baffle Fixes Film up Flow Sludge Blanket Filtration (BFUSBF) System in Treatment of Wastewaters from Phenol and 2,4-Dinitrophenol Using Daphnia Magna Bioassay

    OpenAIRE

    Mohammad Javad Ghannadzadeh; Ahmad Jonidi Jafari; Abbas Rezaee; Fatemeh Eftekharian; Ali Koolivand

    2016-01-01

    Background: Phenol and nitrophenol are common compounds found in different types of industrial wastewater known as serious threats to human health and natural environment. In this study, Daphnia magna was used to evaluate the effectiveness of "baffle fixes film up flow sludge blanket filtration" (BFUSBF) system in elimination of phenolic compounds from water. Methods: D. magna cultures were used as toxicity index of phenol and 2,4-DNP mixtures after treatment by a pilot BFUSBF system which...

  19. Increase of the efficiency of anaerobic digestion by various pre-treatment processes of sewage sludge

    OpenAIRE

    Łukasz Krawczyk; Małgorzata Budych; Łukasz Chrzanowski; Agnieszka Drożdżyńska; Roman Marecik; Agnieszka Piotrowska-Cyplik; Artur Szwengiel; Katarzyna Czaczyk; Paweł Cyplik

    2011-01-01

    The aim of this paper is to demonstrate the effects of pre-treatment increase of the efficiency of anaerobic digestion on waste activated sludge. There were four methods for pre-treatment of the waste activated sludge: A – thermally treated at 121°C for 30 min, homogenized and hydrolysed by Bacillus subtilis bacteria, B – thermally treated at 121°C for 30 min and homogenized, C – thermally treated at 121°C for 30 min and hydrolysed by B. subtilis bacteria, D &nda...

  20. Diagnosis of an anaerobic pond treating temperate domestic wastewater: An alternative sludge strategy for small works

    OpenAIRE

    Cruddas, Peter; Wang, K.; Best, D.; Jefferson, Bruce; Cartmell, Elise; Parker, Alison; McAdam, Ewan J.

    2014-01-01

    An anaerobic pond (AP) for treatment of temperate domestic wastewater has been studied as a small works sludge management strategy to challenge existing practice which comprises solids separation followed by open sludge storage, for up to 90 days. During the study, effluent temperature ranged between 0.1 °C and 21.1 °C. Soluble COD production was noted in the AP at effluent temperatures typically greater than 10 °C and was coincident with an increase in effluent volatile fatty acids (VFA) con...

  1. Effects of sludge inoculum and organic feedstock on active microbial communities and methane yield during anaerobic digestion

    OpenAIRE

    Wilkins, David; Rao, Subramanya; Lu, Xiaoying; Lee, Patrick K. H.

    2015-01-01

    Anaerobic digestion (AD) is a widespread microbial technology used to treat organic waste and recover energy in the form of methane (“biogas”). While most AD systems have been designed to treat a single input, mixtures of digester sludge and solid organic waste are emerging as a means to improve efficiency and methane yield. We examined laboratory anaerobic cultures of AD sludge from two sources amended with food waste, xylose, and xylan at mesophilic temperatures, and with cellulose at meso-...

  2. Effects of anaerobic reaction time and sludge age on the biological phosphorus removal in SBR

    International Nuclear Information System (INIS)

    In this research, a pilot consisting of two Sequencing Batch Reactors used to remove phosphorus biologically. Both reactors were in operation in a 12 hours cycle and they were controlled by a computer. The blank one had no primary anaerobic stage and its aeration time was 9.5 hours. The other one had the primary anaerobic stage with no change in the total reaction time (9.5 hours). The average concentration of influent phosphorus and COD in reactors were 7.5 and 800 milligram per litre respectively. In two months periods, the average efficiencies of ph osporus removal for the blank reactor and the second reactor with anaerobic reaction times of 2,3, and 4.5 hours were 16%, 26%, 64%, and 99% respectively. In the reactor with anaerobic reaction time of 4.5 hours, increasing the sludge age from 5 days to 10 days resulted in decreasing of phosphorus removal efficiency from 99% to 87%. In general, the result of this investigation show that the increases of anaerobic reaction time can increase the efficiency of phosphorus removal, because of the prevalence of phosphorus removing microorganisms over other species. Also, the accurate control of additional sludge volume (clogged age) has an appropriate effect on the removal efficiency

  3. Improvement of anaerobic digestion of sewage sludge through microwave pre-treatment.

    Science.gov (United States)

    Serrano, A; Siles, J A; Martín, M A; Chica, A F; Estévez-Pastor, F S; Toro-Baptista, E

    2016-07-15

    Sewage sludge generated in the activated sludge process is a polluting waste that must be treated adequately to avoid important environmental impacts. Traditional management methods, such as landfill disposal or incineration, are being ruled out due to the high content in heavy metal, pathogens, micropolluting compounds of the sewage sludge and the lack of use of resources. Anaerobic digestion could be an interesting treatment, but must be improved since the biomethanisation of sewage sludge entails low biodegradability and low methane production. A microwave pre-treatment at pilot scale is proposed to increase the organic matter solubilisation of sewage sludge and enhance the biomethanisation yield. The operational variables of microwave pre-treatment (power and specific energy applied) were optimised by analysing the physicochemical characteristics of sewage sludge (both total and soluble fraction) under different pre-treatment conditions. According to the variation in the sCOD and TN concentration, the optimal operation variables of the pre-treatment were fixed at 20,000 J/g TS and 700 W. A subsequent anaerobic digestion test was carried out with raw and pre-treated sewage sludge under different conditions (20,000 J/g TS and 700 W; 20,000 J/g TS and 400 W; and 30,000 J/g TS and 400 W). Although stability was maintained throughout the process, the enhancement in the total methane yield was not high (up to 17%). Nevertheless, very promising improvements were determined for the kinetics of the process, where the rG and the OLR increased by 43% and 39%, respectively, after carrying out a pre-treatment at 20,000 J/g TS and 700 W. PMID:27107391

  4. Anaerobic digestion for simultaneous sewage sludge treatment and CO biomethanation: process performance and microbial ecology

    DEFF Research Database (Denmark)

    Luo, Gang; Wang, Wen; Angelidaki, Irini

    2013-01-01

    in an anaerobic reactor was presented. Batch experiments showed that CO was inhibitory to methanogens, but not to bacteria, at CO partial pressure between 0.25 and 1 atm under thermophilic conditions. During anaerobic digestion of sewage sludge supplemented with CO added through a hollow fiber membrane (HFM....... However, the two species were distributed differently in the liquid phase and in the biofilm. Although carboxidotrophic activities test showed that CO was converted by both archaea and bacteria, the bacterial species responsible for CO conversion are unknown....

  5. Reductive Decouloristation of Dyes by Thermophilic Anaerobic Granular Sludge

    NARCIS (Netherlands)

    Bezerra Dos Santos, A.

    2005-01-01

    The colour removal achieved under anaerobic conditions is also called reductive decolourisation, which is composed of a biological part, i.e. the reducing equivalents are biologically generated, and a chemical part, i.e. the formed electrons reduce chemically the dyes. The overall objective of this

  6. Enrichment of anaerobic syngas converting bacteria from bioreactor sludges

    NARCIS (Netherlands)

    Alves, J.I.; Stams, A.J.M.; Plugge, C.M.; Alves, M.M.; Sousa, D.Z.

    2013-01-01

    Thermophilic (55°C) anaerobic microbial communities were enriched with a synthetic syngas mixture (composed of CO, H2 and CO2 ) or with CO alone. Cultures T-Syn and T-CO were incubated and successively transferred with syngas (16 transfers) or CO (9 transfers), respectively, with increasing CO parti

  7. The behaviour of pharmaceuticals in anaerobic digester sludge

    OpenAIRE

    Campbell, Alison

    2013-01-01

    Pharmaceuticals are biologically active compounds that may be consumed in hundreds of tonnes per year, and which are excreted into municipal sewerage systems. Many pharmaceuticals persist during sewage treatment, and significant environmental risk has been linked to incomplete removal of pharmaceuticals. Evaluation of this risk is important and should be as representative as possible, taking into consideration all significant exposure routes and removal processes. Sludge treatment processes a...

  8. Thermophilic versus Mesophilic Anaerobic Digestion of Sewage Sludge: A Comparative Review

    Directory of Open Access Journals (Sweden)

    Getachew D. Gebreeyessus

    2016-06-01

    Full Text Available During advanced biological wastewater treatment, a huge amount of sludge is produced as a by-product of the treatment process. Hence, reuse and recovery of resources and energy from the sludge is a big technological challenge. The processing of sludge produced by Wastewater Treatment Plants (WWTPs is massive, which takes up a big part of the overall operational costs. In this regard, anaerobic digestion (AD of sewage sludge continues to be an attractive option to produce biogas that could contribute to the wastewater management cost reduction and foster the sustainability of those WWTPs. At the same time, AD reduces sludge amounts and that again contributes to the reduction of the sludge disposal costs. However, sludge volume minimization remains, a challenge thus improvement of dewatering efficiency is an inevitable part of WWTP operation. As a result, AD parameters could have significant impact on sludge properties. One of the most important operational parameters influencing the AD process is temperature. Consequently, the thermophilic and the mesophilic modes of sludge AD are compared for their pros and cons by many researchers. However, most comparisons are more focused on biogas yield, process speed and stability. Regarding the biogas yield, thermophilic sludge AD is preferred over the mesophilic one because of its faster biochemical reaction rate. Equally important but not studied sufficiently until now was the influence of temperature on the digestate quality, which is expressed mainly by the sludge dewateringability, and the reject water quality (chemical oxygen demand, ammonia nitrogen, and pH. In the field of comparison of thermophilic and mesophilic digestion process, few and often inconclusive research, unfortunately, has been published so far. Hence, recommendations for optimized technologies have not yet been done. The review presented provides a comparison of existing sludge AD technologies and the gaps that need to be filled so

  9. Anaerobic biodegradability essays from brewery wastewater using granular and flocculent sludges

    Directory of Open Access Journals (Sweden)

    C J Collazos Chávez

    2010-03-01

    Full Text Available At the beginning of nineties the colombian beer industry begun the application of anaerobic technology for the treatment of their wastewater efluents throught different regions of the country. These treatment plants have not been working appropriately due to different factors, and are creating concern among the industrial sector and the water pollution control agencies. This work constitutes the second phase of a research project designed to establish a selection and improvement criteria of the sludges used in the systems. It also looks to analyze other associated factors such as: waste, characteristics, operation conditions and design parameters. The investigation was conducted in two phases using granular and floculent sludges. This method was used for determining the anaerobic biodegradability of wastewater from two industrial plants.

  10. Reduction of sludge production from WWTP using thermal pretreatment and enhanced anaerobic methanisation.

    Science.gov (United States)

    Graja, S; Chauzy, J; Fernandes, P; Patria, L; Cretenot, D

    2005-01-01

    The objective of the study presented here was to investigate the performance of an enhanced two-step anaerobic process for the treatment of WWTP sludge. This process was developed to answer the urgent need currently faced by WWTP operators to reduce the production of biosolids, for which disposal pathways are facing increasing difficulties. A pilot plant was operated on a full-scale WWTP (2,500 p.e.) over a period of 4 months. It consisted of a thermal pre-treatment of excess sludge at 175 degrees C and 40 min, followed by dewatering and methanisation of the centrate in a fixed-film reactor. The thermal lysis had a two-fold enhancing effect on sludge reduction efficiency: firstly, it allowed a decrease of the HRT in the methaniser to 2.9 days and secondly, it yielded biosolids with a high dewaterability. This contributed to further reductions in the final volume of sludge to be disposed of. The two-step process achieved a sludge reduction efficiency of 65% as TSS, thus giving an interesting treatment option for WWTP facing sludge disposal problems.

  11. The impact of temperature on the rheological behaviour of anaerobic digested sludge

    OpenAIRE

    Baudez, J.C.; Slatter, P.; Eshtiaghi, N.

    2013-01-01

    The rheological properties of municipal anaerobic digested sludge rheology are temperature dependent. In this paper, we show that both solid and liquid characteristics decrease with temperature. We also show that the yield stress and the high shear (Bingham) viscosity are the two key parameters determining the rheological behaviour. By normalising the shear stress with the yield stress and the shear rate with the yield stress divided by the Bingham viscosity, a master curve was obtained, inde...

  12. Sustainable Agro-Food Industrial Wastewater Treatment Using High Rate Anaerobic Process

    OpenAIRE

    Yung-Tse Hung; Michel Torrijos; Cata Saady, Noori M.; Rajinikanth Rajagopal; Joseph V. Thanikal

    2013-01-01

    This review article compiles the various advances made since 2008 in sustainable high-rate anaerobic technologies with emphasis on their performance enhancement when treating agro-food industrial wastewater. The review explores the generation and characteristics of different agro-food industrial wastewaters; the need for and the performance of high rate anaerobic reactors, such as an upflow anaerobic fixed bed reactor, an upflow anaerobic sludge blanket (UASB) reactor, hybrid systems etc.; op...

  13. Characterisation by image analysis of anaerobic sludge under shock conditions

    OpenAIRE

    Alves, M. M.; Cavaleiro, A. J.; Ferreira, E.C.; A.L. Amaral; Mota, M; Motta, Maurício da; Vivier, H.; Pons, M.N.

    2000-01-01

    In the present work the characterisation by image analysis of anaerobic biomass under organic and hydraulic shocks was performed. The digester was fed with a synthetic substrate, containing 50% oleic acid (as COD). Organic and hydraulic shocks were performed by stepwise increasing the substrate concentration or by reducing the hydraulic retention time. In both cases the organic loading rate changed from 6 to 30 kg COD/m³.d. Hydraulic shock induced a fast decrease in the number of ...

  14. Production of Volatile Derivatives of Metal(loid)s by Microflora Involved in Anaerobic Digestion of Sewage Sludge

    OpenAIRE

    Michalke, K.; Wickenheiser, E. B.; Mehring, M.; A. V. Hirner; Hensel, R.

    2000-01-01

    Gases released from anaerobic wastewater treatment facilities contain considerable amounts of volatile methyl and hydride derivatives of metals and metalloids, such as arsine (AsH3), monomethylarsine, dimethylarsine, trimethylarsine, trimethylbismuth (TMBi), elemental mercury (Hg0), trimethylstibine, dimethyltellurium, and tetramethyltin. Most of these compounds could be shown to be produced by pure cultures of microorganisms which are representatives of the anaerobic sewage sludge microflora...

  15. Bacterial and archaeal phylogenetic diversity associated with swine sludge from an anaerobic treatment lagoon.

    Science.gov (United States)

    Cardinali-Rezende, Juliana; Pereira, Zelina L; Sanz, José L; Chartone-Souza, Edmar; Nascimento, Andréa M A

    2012-11-01

    Over the last decades, the demand for pork products has increased significantly, along with concern about suitable waste management. Anaerobic-lagoon fermentation for swine-sludge stabilization is a good strategy, although little is known about the microbial communities in the lagoons. Here, we employed a cloning- and sequencing-based analysis of the 16S rRNA gene to characterize and quantify the prokaryotic community composition in a swine-waste-sludge anaerobic lagoon (SAL). DNA sequence analysis revealed that the SAL library harbored 15 bacterial phyla: Bacteroidetes, Cloroflexi, Proteobacteria, Firmicutes, Deinococcus-Thermus, Synergystetes, Gemmatimonadetes, Chlorobi, Fibrobacteres, Verrucomicrobia and candidates division OP5, OP8, WWE1, KSB1, WS6. The SAL library was generally dominated by carbohydrate-oxidizing bacteria. The archaeal sequences were related to the Crenarchaeota and Euryarchaeota phyla. Crenarchaeota predominated in the library, demonstrating that it is not restricted to high-temperature environments, being also responsible for ammonium oxidation in the anaerobic lagoon. Euryarchaeota sequences were associated with the hydrogenotrophic methanogens (Methanomicrobiales and Methanobacteriales). Quantitative PCR analysis revealed that the number of bacterial cells was at least three orders of magnitude higher than the number of archaeal cells in the SAL. The identified prokaryotic diversity was ecologically significant, particularly the archaeal community of hydrogenotrophic methanogens, which was responsible for methane production in the anaerobic lagoon. This study provided insight into the archaeal involvement in the overall oxidation of organic matter and the production of methane. Therefore, the treatment of swine waste in the sludge anaerobic lagoon could represent a potential inoculum for the start-up of municipal solid-waste digesters. PMID:22828793

  16. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system

    International Nuclear Information System (INIS)

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g CODrem for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.

  17. A hybrid anaerobic membrane bioreactor coupled with online ultrasonic equipment for digestion of waste activated sludge.

    Science.gov (United States)

    Xu, Meilan; Wen, Xianghua; Yu, Zhiyong; Li, Yushan; Huang, Xia

    2011-05-01

    Anaerobic membrane bioreactor and online ultrasonic equipment used to enhance membrane filtration were coupled to form a hybrid system (US-AnMBR) designed for long-term digestion of waste activated sludge. The US-AnMBR was operated under volatile solids loading rates of 1.1-3.7 gVS/L·d. After comprehensive studies on digestion performance and membrane fouling control in the US-AnMBR, the final loading rate was determined to be 2.7 gVS/L·d with 51.3% volatile solids destruction. In the US-AnMBR, the improved digestion was due to enhanced sludge disintegration, as indicated by soluble matter comparison in the supernatant and particle size distribution in the digested sludge. Maximum specific methanogenic activity revealed that ultrasound application had no negative effect on anaerobic microorganisms. Furthermore, implementing ultrasound effectively controlled membrane fouling and successfully facilitated membrane bioreactor operation. This lab-scale study demonstrates the potential feasibility and effectiveness of setting up a US-AnMBR system for sludge digestion. PMID:21421308

  18. Enhancement of anaerobic biohydrogen/methane production from cellulose using heat-treated activated sludge.

    Science.gov (United States)

    Lay, C H; Chang, F Y; Chu, C Y; Chen, C C; Chi, Y C; Hsieh, T T; Huang, H H; Lin, C Y

    2011-01-01

    Anaerobic digestion is an effective technology to convert cellulosic wastes to methane and hydrogen. Heat-treatment is a well known method to inhibit hydrogen-consuming bacteria in using anaerobic mixed cultures for seeding. This study aims to investigate the effects of heat-treatment temperature and time on activated sludge for fermentative hydrogen production from alpha-cellulose by response surface methodology. Hydrogen and methane production was evaluated based on the production rate and yield (the ability of converting cellulose into hydrogen and methane) with heat-treated sludge as the seed at various temperatures (60-97 degrees C) and times (20-60 min). Batch experiments were conducted at 55 degrees C and initial pH of 8.0. The results indicate that hydrogen and methane production yields peaked at 4.3 mmol H2/g cellulose and 11.6 mmol CH4/g cellulose using the seed activated sludge that was thermally treated at 60 degrees C for 40 min. These parameter values are higher than those of no-treatment seed (HY 3.6 mmol H2/g cellulose and MY 10.4 mmol CH4/g cellulose). The maximum hydrogen production rate of 26.0 mmol H2/L/d and methane production rate of 23.2 mmol CH4/L/d were obtained for the seed activated sludge that was thermally treated at 70 degrees C for 50 min and 60 degrees C for 40 min, respectively.

  19. Enhanced high-solids anaerobic digestion of waste activated sludge by the addition of scrap iron.

    Science.gov (United States)

    Zhang, Yaobin; Feng, Yinghong; Yu, Qilin; Xu, Zibin; Quan, Xie

    2014-05-01

    Anaerobic digestion of waste activated sludge usually requires pretreatment procedure to improve the bioavailability of sludge, which involves considerable energy and high expenditures. This study proposes a cost-effective method for enhanced anaerobic digestion of sludge without a pretreatment by directly adding iron into the digester. The results showed that addition of Fe(0) powder could enhance 14.46% methane yield, and Fe scrap (clean scrap) could further enhance methane yield (improving rate 21.28%) because the scrap has better mass transfer efficiency with sludge and liquid than Fe(0) powder. The scrap of Fe with rust (rusty scrap) could induce microbial Fe(III) reduction, which resulted in achieving the highest methane yield (improving rate 29.51%), and the reduction rate of volatile suspended solids (VSS) was also highest (48.27%) among Fe powder, clean scrap and rusty scrap. PCR-DGGE proved that the addition of rusty scrap could enhance diversity of acetobacteria and enrich iron-reducing bacteria to enhance degradation of complex substrates.

  20. Application of acidic thermal treatment for one- and two-stage anaerobic digestion of sewage sludge.

    Science.gov (United States)

    Takashima, M; Tanaka, Y

    2010-01-01

    The effectiveness of acidic thermal treatment (ATT) was examined in a 106-day continuous experiment, when applied to one- or two-stage anaerobic digestion of sewage sludge (4.3% TS). The ATT was performed at 170 °C and pH 5 for 1 hour (sulfuric acid for lowering pH). The one-stage process was mesophilic at 20 days hydraulic retention time (HRT), and incorporated the ATT as pre-treatment. The two-stage process consisted of a thermophilic digester at 5 days HRT and a mesophilic digester at 15 days HRT, and incorporated the ATT as interstage-treatment. On average, VSS reduction was 48.7% for the one-stage control, 65.8% for the one-stage ATT, 52.7% for the two-stage control and 67.6% for the two-stage ATT. Therefore, VSS reduction was increased by 15-17%, when the ATT was combined in both one- and two-stage processes. In addition, the dewaterability of digested sludge was remarkably improved, and phosphate release was enhanced. On the other hand, total methane production did not differ significantly, and color generation was noted in the digested sludge solutions with the ATT. In conclusion, the anaerobic digestion with ATT can be an attractive alternative for sludge reduction, handling, and phosphorus recovery. PMID:21099053

  1. Hydrolysis and thermophilic anaerobic digestion of sewage sludge and organic fraction of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Del Borghi, A.; Converti, A.; Palazzi, E.; Del Borghi, M. [Institute of Chemical and Process Engineering ``G.B. Bonino``, Genoa University, Via Opera Pia 15, 16145 Genoa (Italy)

    1999-06-01

    An attempt is presented and discussed to adapt a well-known process successfully employed in the U.S.A. for the simultaneous treatment of the organic fraction of municipal solid waste (MSWOF) and sewage sludge to the particular situation of water works in Italy. It consists of preliminary domestic grinding of MSWOF, its discharge into the sewer, screening, and final digestion of the resulting residue together with sewage sludge. In order to avoid extension work of the present activated sludge sections necessary to face the organic load increase, a fine screening is necessary, while the efficiency of anaerobic digestion can be improved by shifting the system from mesophilic (37 C) to thermophilic (55 C) conditions. The effects of thermal, chemical, and biological pretreatments of both MSWOF and sewage sludge on methane, carbon dioxide, and biogas productions are investigated either separately or jointly. During these pretreatments, volatile suspended solid (VSS) concentration remarkably decreased while soluble chemical oxygen demand (COD) increased as the result of the progressive hydrolysis of the polymeric materials present in the feed. Finally, the kinetic parameters of the hydrolysis of these materials are estimated and compared in order to provide useful information on the factors limiting the anaerobic digestion as well as to suggest the best way to carry out the process on a large scale. (orig.) With 8 figs., 7 tabs., 20 refs.

  2. Bacterial stress enrichment enhances anaerobic hydrogen production in cattle manure sludge.

    Science.gov (United States)

    Cheong, Dae-Yeol; Hansen, Conly L

    2006-10-01

    Methodology was evaluated to selectively enrich hydrogen-producing species present in biological sludge produced during organic wastewater treatment. The influence of bacterial stress enrichment on anaerobic hydrogen-producing microorganisms was investigated in batch tests using serum bottles. Enrichment conditions investigated included application of acute physical and chemical stresses: wet heat, dry heat and desiccation, use of a methanogen inhibitor, freezing and thawing, and chemical acidification with and without preacidification of the sludge at pH 3. For each enrichment sample, cultivation pH value was set at an initial value of 7. After application of selective enrichment (by bacterial stress), hydrogen production was significantly higher than that of untreated original sludge. Hydrogen production from the inocula with bacterial stress enrichment was 1.9-9.8 times greater when compared with control sludge. Chemical acidification using perchloric acid showed the best hydrogen production potential, irrespective of preacidification. Enhancement is due to the selective capture of hydrogen-producing sporeformers, which induces altered anaerobic fermentative metabolism. PMID:16525779

  3. High rate treatment of terephthalic acid production wastewater in a two-stage anaerobic bioreactor

    NARCIS (Netherlands)

    Kleerebezem, R.; Beckers, J.; Pol, L.W.H.; Lettinga, G.

    2005-01-01

    The feasibility was studied of anaerobic treatment of wastewater generated during purified terephthalic acid (PTA) production in two-stage upflow anaerobic sludge blanket (UASB) reactor system. The artificial influent of the system contained the main organic substrates of PTA-wastewater: acetate, be

  4. The Leachate Release and Microstructure of the Sewage Sludge under the Anaerobic Fermentation

    Directory of Open Access Journals (Sweden)

    Yiqie Dong

    2015-01-01

    Full Text Available Pollutant release, pore structure, and thermal effect of sewage sludge during anaerobic fermentation were investigated. Results showed that the pH value firstly declined and then increased during anaerobic fermentation. The BOD5 and organics of sewage sludge declined, and the BOD5 of samples which was originally neutral declined as much as 53.6%. The micropore of samples was relatively developed. The biggest adsorption amount was 69.2 cm3/g. The average pore size was enlarged about 16.0–19.8% under anaerobic fermentation. There existed endothermic valley during heating procedure of 0–200∘C because of the dehydration, and the mass loss was 60.9–72.5%. The endothermic valley of the sample fluctuated at the 14th day in the anaerobic fermentation. During the heating procedure of 200–600∘C, there existed exothermal peaks because of the oxidation and burning of the organics. The curve of sample which was originally neutral had comparatively large endothermic valley and exothermal peak.

  5. Selective separation of anaerobic sludge by means of hydrocyclones; Selektive Abtrennung von Anaerobschlamm mit Hydrozyklonen

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, M.; Bohnet, M. [Technische Univ. Braunschweig (Germany). Inst. fuer Verfahrens- und Kerntechnik

    1999-07-01

    In anaerobic waste water cleaning, biomass concentration constitutes a central problem because of long generating times and low biomass sinking speeds. In order to decouple hydraulic retention time from biomass retention time, biomass must be fed back into the reactor. The fact that separation by means of common gravitational separators such as sedimentation tanks and baffle plate thickeners is unspecific results in the enrichment in the reactor of inorganic solids, whose presence is corollary to the anaerobic sludge process. Hence, industry has a great interest in separating anaerobic sludge into organic and inorganic constituents as a means of safeguarding high operating stability and degradation efficiency of anaerobic reactors. Hydrocyclones, permitting selective separation, are an obvious approach. (orig.) [German] Bei der anaeroben Abwasserreinigung ist die Biomassekonzentrierung aufgrund langer Generationszeiten und geringer Sinkgeschwindigkeiten der Biomasse ein zentrales Problem. Zur Entkopplung der hydraulischen Verweilzeit von der Verweilzeit der Biomasse ist eine Rueckfuehrung der Biomasse erforderlich. Da bisher eingesetzte Schwerkraftabscheider, wie Absetzbecken und Lamellenklaerer, unspezifisch trennen, kommt es zu einer Anreicherung anorganischer Feststoffe im Reaktor, die sich prozessbedingt im Anaerobschlamm befinden. So hat die Industrie ein grosses Interesse an einer Auftrennung des Anaerobschlamms in organische und anorganische Bestandteile, um eine hohe Betriebsstabilitaet und Abbauleistung der Anaerobreaktoren zu gewaehrleisten. Hierzu bieten sich Hydrozyklone an, weil mit ihnen eine selektive Trennung moeglich ist. (orig.)

  6. Occurrence and Fate of Trace Contaminants during Aerobic and Anaerobic Sludge Digestion and Dewatering.

    Science.gov (United States)

    Guerra, Paula; Kleywegt, Sonya; Payne, Michael; Svoboda, M Lewina; Lee, Hing-Biu; Reiner, Eric; Kolic, Terry; Metcalfe, Chris; Smyth, Shirley Anne

    2015-07-01

    Digestion of municipal wastewater biosolids is a necessary prerequisite to their beneficial use in land application, in order to protect public health and the receiving environment. In this study, 13 pharmaceuticals and personal care products (PPCPs), 11 musks, and 17 polybrominated diphenyl ethers were analyzed in 84 samples including primary sludge, waste activated sludge, digested biosolids, dewatered biosolids, and dewatering centrate or filtrate collected from five wastewater treatment plants with aerobic or anaerobic digestion. Aerobic digestion processes were sampled during both warm and cold temperatures to analyze seasonal differences. Among the studied compounds, triclosan, triclocarban, galaxolide, and BDE-209 were the substances most frequently detected under different treatment processes at levels up to 30,000 ng/g dry weight. Comparing aerobic and anaerobic digestion, it was observed that the levels of certain PPCPs and musks were significantly higher in anaerobically digested biosolids, relative to the residues from aerobic digestion. Therefore, aerobic digestion has the potential advantage of reducing levels of PPCPs and musks. On the other hand, anaerobic digestion has the advantage of recovering energy from the biosolids in the form of combustible gases while retaining the nutrient and soil conditioning value of this resource. PMID:26437100

  7. Batch anaerobic co-digestion of waste activated sludge and microalgae (Chlorella sorokiniana) at mesophilic temperature.

    Science.gov (United States)

    Beltrán, Carolina; Jeison, David; Fermoso, Fernando G; Borja, Rafael

    2016-08-23

    The microalgae Chlorella sorokiniana are used as co-substrate for waste activated sludge (WAS) anaerobic digestion. The specific objective of this research was to evaluate the feasibility of improving methane production from anaerobic digestion of WAS in co-digestion with this microalga, based on an optimized mixture percentage. Thus, the anaerobic co-digestion of both substrates aims to overcome the drawbacks of the anaerobic digestion of single WAS, simultaneously improving its management. Different co-digestion mixtures (0% WAS-100% microalgae; 25% WAS-75% microalgae; 50% WAS-50% microalgae; 75% WAS-25% microalgae; 100% WAS-0% microalgae) were studied. The highest methane yield (442 mL CH4/g VS) was obtained for the mixture with 75% WAS and 25% microalgae. This value was 22% and 39% higher than that obtained in the anaerobic digestion of the sole substrates WAS and microalgae, respectively, as well as 16% and 25% higher than those obtained for the co-digestion mixtures with 25% WAS and 75% microalgae and 50% WAS and 50% microalgae, respectively. The kinetic constant of the process increased 42%, 42% and 12%, respectively, for the mixtures with 25%, 50% and 75% of WAS compared to the substrate without WAS. Anaerobic digestion of WAS, together with C. sorokiniana, has been clearly improved by ensuring its viability, suitability and efficiency.

  8. Batch anaerobic co-digestion of waste activated sludge and microalgae (Chlorella sorokiniana) at mesophilic temperature.

    Science.gov (United States)

    Beltrán, Carolina; Jeison, David; Fermoso, Fernando G; Borja, Rafael

    2016-08-23

    The microalgae Chlorella sorokiniana are used as co-substrate for waste activated sludge (WAS) anaerobic digestion. The specific objective of this research was to evaluate the feasibility of improving methane production from anaerobic digestion of WAS in co-digestion with this microalga, based on an optimized mixture percentage. Thus, the anaerobic co-digestion of both substrates aims to overcome the drawbacks of the anaerobic digestion of single WAS, simultaneously improving its management. Different co-digestion mixtures (0% WAS-100% microalgae; 25% WAS-75% microalgae; 50% WAS-50% microalgae; 75% WAS-25% microalgae; 100% WAS-0% microalgae) were studied. The highest methane yield (442 mL CH4/g VS) was obtained for the mixture with 75% WAS and 25% microalgae. This value was 22% and 39% higher than that obtained in the anaerobic digestion of the sole substrates WAS and microalgae, respectively, as well as 16% and 25% higher than those obtained for the co-digestion mixtures with 25% WAS and 75% microalgae and 50% WAS and 50% microalgae, respectively. The kinetic constant of the process increased 42%, 42% and 12%, respectively, for the mixtures with 25%, 50% and 75% of WAS compared to the substrate without WAS. Anaerobic digestion of WAS, together with C. sorokiniana, has been clearly improved by ensuring its viability, suitability and efficiency. PMID:27230742

  9. Enhanced biogas production by increasing organic load rate in mesophilic anaerobic digestion with sludge recirculation.

    OpenAIRE

    Huang, Zhanzhao

    2012-01-01

    For enhancing anaerobic sludge digestion and biogas recovery, an increase in organic load rate (OLR) from 1.0 to 3.0kgVS/(m3·day) was imposed upon a new anaerobic digestion process combined with a sludge recirculation. The new setup requires a traditional mesophilic anaerobic digester coupled with a centrifuge for maintaining relatively high solid content within the digester. The hypothesis of this study was that increasing continuously OLR from 1.0 to 3.0kgVS/(m3·day) in a pilot-scale anaero...

  10. Modelling the rheological properties of sludge during anaerobic digestion in a batch reactor by using electrical measurements.

    Science.gov (United States)

    Dieudé-Fauvel, E; Héritier, P; Chanet, M; Girault, R; Pastorelli, D; Guibelin, E; Baudez, J C

    2014-03-15

    Anaerobic digestion is a significant process leading to biogas production and waste management. Despite this double interest, professionals still face a lack of efficient tools to monitor and manage the whole procedure. This is especially true for rheological properties of the material inside the reactor, which are of major importance for anaerobic digestion management. However, rheological properties can hardly be determined in-situ and it would be very helpful to determine indicators of their evolution. To solve this problem, this paper investigates the evolution of sewage sludge rheological and electrical properties during the anaerobic digestion in a batch reactor. We especially focus on apparent viscosity and complex impedance, measured by electrical impedance spectroscopy. Both of them can be modelled by a linear combination of raw sludge and inoculum properties, weighted by time-dependent coefficients. Thus, by determining digested sludge electrical signature, it is possible to obtain those coefficients and model sludge apparent viscosity. This work offers many theoretical and practical prospects.

  11. REDUCING OF EXCESS SLUDGE PRODUCTION IN WASTEWATER TREATMENT USING COMBINED ANAEROBIC/AEROBIC SUBMERGED BIOLOGICAL FILTERS

    Directory of Open Access Journals (Sweden)

    M. A. Baghapour

    2011-09-01

    Full Text Available In this research, possibility of reducing excess sludge production in wastewater treatment was investigated using a combined anaerobic and aerobic submerged biological filter in a pilot scale. The physical model designed, erected and operated consisted of two pipes of PVC type with 147mm and 237mm diameter used as aerobic and anaerobic filters, respectively. The effective height of porous media in these filters was 70cm. Two filters were connected to eachother in a series form and the resulted system was loaded using synthetic wastewater based on sucrose in the range of 1.91 to 30.61 kg/m3 for anaerobic filter and 1.133 to 53.017 kg/m3 for aerobic filter. For similar loadings, the aerobic filter showed efficiency of 1.8 times that of anaerobic filter in removal of soluble COD. Return of 100% flow from the aerobic filter to the anaerobic filter for 30kg/m3.d of organic loading increased the efficiencies of the anaerobic filter, the aerobic filter and the combined system as 17%, 14% and 15%, respectively and the effect of the return of the flow was more pronounced in smaller hydraulic retention times and larger loadings. 100% return of the flow reduced the yield coefficient for the whole system to 0.037 for 53 kg/m3 loading which is a suitable value with regard to the scheme and no use of chemical materials such as chlorine and ozone. This coefficient reached a value as small as 0.007 in common loadings (7.5kg/m3 for 100% return of the flow which is very close to zero. So, this method could be considered as a complete biological treatment with low excess sludge and could be assessed in full scale.

  12. Domestic wastewater anaerobic treatment I : Performance of one-step UASB and HUSB reactors; Tratamiento anaerobio de aguas residuales urbanas I : Aplicacion de reactores UASB y HUSB de etapa unica

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Rodriguez, J. A.; Gomez Lopez, M.; Soto Castineira, M.

    2005-07-01

    Domestic wastewater treatment was carried out on a pilot scale anaerobic digester, with an active volume of 25.5 m''3. The digester operated at different conditions: (a) as an UASB reactor (up-flow anaerobic sludge blanket), with the aim of reaching a complete anaerobic treatment of domestic wastewater, and (b) as a HUSB (hydrolytic upflow sludge blanket) reactor, working in this case as a wastewater pre-treatment that removes suspended solid matter and increase the effluent biodegradability. The advantages of these treatment systems are its economic feasibility, no energy consumption and low excess sludge generation. (Author) 17 refs.

  13. A biodegradation and treatment of palm oil mill effluent (POME using a hybrid up-flow anaerobic sludge bed (HUASB reactor

    Directory of Open Access Journals (Sweden)

    S. A. Habeeb, AB. Aziz Abdul Latiff, Zawawi Daud, Zulkifli Ahmad

    2011-07-01

    Full Text Available Generally, anaerobic treatment has become a viable alternative in support of industrial wastewater treatment. Particularly, it is used in common to treat the palm oil mill effluent (POME. This study was carried out to assess the start-up performance of a bioreactor hybrid up-flow anaerobic sludge blanket (HUASB. Whereby, three identical reactors of 7.85-l capacity R1, R2, and R3 were operated for 57 days in order to provide two alienated comparisons. Identical operation conditions of organic loading rate (OLR and hydraulic retention time (HRT of 1.85 kg.m-3.day-1, and 2.6 day, respectively. R1 was operated in room temperature of 28±2°C, and packed with palm oil shell as filter medium support. R2 was set with room temperature but packed with course gravel. R3 was provided with water bath system to adjust its temperature at 37±1°C mesophilic, while its filter material had to be palm oil shell. During the whole operation period R3 was more efficient for organic materials, where a chemical oxygen demand (COD removal efficiency of 82% was registered, while R1 and R2 were relatively less efficient of 78%, and 76%, respectively. Furthermore, TSS removal of R3 was also higher than R1, and R2 as registered 80%, 77% and 76%, respectively. On the other hand, turbidity and colour removal were not efficient and needed a post treatment. The seeded sludge was developed in each reactor as illustrated in this paper. Therefore, all reactors show favorable performance of anaerobic treatability of POME as well as good response of microbial species development.

  14. Effect of gamma radiation on yields of methane gas from the anaerobic bacterial digestion of sewage sludge

    International Nuclear Information System (INIS)

    Anaerobic digestion is widely employed to degrade soluble and insoluble organic materials in sewage sludge into the gaseous products carbon dioxide and methane. Previous research has established that gamma radiation at sufficiently high dose levels sterilizes the irradiated material and interacts with high molecular weight organic substrates to produce crosslinking or degradation, or both. Considering the increased scarcity and price of natural gas, investigators in this preliminary research program explored the interaction of two wastes, sewage sludge and spent nuclear fuel rods, to determine if a combination of processes could increase the yield or production rate of gas from sewage sludge. The study was designed to determine enhancement of methane production when radiation was used in conjunction with microbial action. Several conclusions can be stated as a result of the experiments in this research program. Treatment of anaerobically digested sewage sludge with gamma radiation from a cobalt 60 source for 24 hours at a dose of approximately 0.4 M rad per hour produces very little methane from direct scission of the organic material in the sludge. Sludge suspensions treated with the same radiation dose in the presence of excess oxygen consistently increased gas yield, up to 50%, from anaerobic bacterial digestion. Gas production increased up to 16% when air dried sludge was treated in an air atmosphere. When sludge suspensions were treated with a restricted access to air, decreases in gas production, though small (up to 26%), were noted in every case

  15. Mixing characteristics of sludge simulant in a model anaerobic digester.

    Science.gov (United States)

    Low, Siew Cheng; Eshtiaghi, Nicky; Slatter, Paul; Baudez, Jean-Christophe; Parthasarathy, Rajarathinam

    2016-03-01

    This study aims to investigate the mixing characteristics of a transparent sludge simulant in a mechanically agitated model digester using flow visualisation technique. Video images of the flow patterns were obtained by recording the progress of an acid-base reaction and analysed to determine the active and inactive volumes as a function of time. The doughnut-shaped inactive region formed above and below the impeller in low concentration simulant decreases in size with time and disappears finally. The 'cavern' shaped active mixing region formed around the impeller in simulant solutions with higher concentrations increases with increasing agitation time and reaches a steady state equilibrium size, which is a function of specific power input. These results indicate that the active volume is jointly determined by simulant rheology and specific power input. A mathematical correlation is proposed to estimate the active volume as a function of simulant concentration in terms of yield Reynolds number. PMID:26739143

  16. Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Uma Rani, R.; Adish Kumar, S. [Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli 627 007, Tamil Nadu (India); Kaliappan, S. [Department of Civil Engineering, Ponjesly College of Engineering, Nagercoil 629 003, Tamil Nadu (India); Yeom, IckTae [Department of Civil and Environmental Engineering, Sungkyunkwan University (Korea, Republic of); Rajesh Banu, J., E-mail: rajeshces@gmail.com [Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli 627 007, Tamil Nadu (India)

    2013-05-15

    Highlights: ► Microwave pretreatment of dairy WAS was studied. ► MW pretreatment at 70% intensity for 12 min, COD solubilization was 18.6%. ► Biogas production and SS reduction was 35% and 14% higher than control. ► In digester at 15 days SRT with medium OLR, SS and VS reduction was 67% and 64%. ► Biogas and methane production was 57% and 49% higher than control, in digesters. - Abstract: Microwave (MW) irradiation is one of the new and possible methods used for pretreating the sludge. Following its use in different fields, this MW irradiation method has proved to be more appropriate in the field of environmental research. In this paper, we focused on the effects of MW irradiation at different intensities on solubilization, biodegradation and anaerobic digestion of sludge from the dairy sludge. The changes in the soluble fractions of the organic matter, the biogas yield, the methane content in the biogas were used as control parameters for evaluating the efficiency of the MW pretreatment. Additionally, the energetic efficiency was also examined. In terms of an energetic aspect, the most economical pretreatment of sludge was at 70% intensity for 12 min irradiation time. At this, COD solubilization, SS reduction and biogas production were found to be 18.6%, 14% and 35% higher than the control, respectively. Not only the increase in biogas production was investigated, excluding protein and carbohydrate hydrolysis was also performed successfully by this microwave pretreatment even at low irradiation energy input. Also, experiments were carried out in semi continuous anaerobic digesters, with 3.5 L working volume. Combining microwave pretreatment with anaerobic digestion led to 67%, 64% and 57% of SS reduction, VS reduction and biogas production higher than the control, respectively.

  17. Correlation between Organic Matter Degradation and the Rheological Performance of Waste Sludge During Anaerobic Digestion

    Science.gov (United States)

    Morel, Evangelina S.; Hernández-Hernándes, José A.; Méndez-Contreras, Juan M.; Cantú-Lozano, Denis

    2008-07-01

    Anaerobic digestion has demonstrated to be a good possibility to reduce the organic matter contents in waste activated sludge resulting in the effluents treatment. An anaerobic digestion was carried out in a 3.5 L reactor at 35 °C for a period of 20 days. An electronic thermostat controlled the temperature. The reactor was agitated at a rate of 200 rpm. The study of the rheological behavior of the waste activated sludge was done with an Anton Paar™ rheometer model MCR301 with a peltier plate for temperature control. Four-blade vane geometry was used with samples of 37 mL for determining rheological properties. Sampling (two samples) was taken every four days of anaerobic digestion through a peristaltic pump. The samples behavior was characterized by the Herschel-Bulkley model, with R2>0.99 for most cases. In all samples were found an apparent viscosity (ηap) and yield stress (τo) decrement when organic matter content diminishes. This demonstrates a relationship between rheological properties and organic matter concentration (% volatile solids). Also the flow activation energy (Ea) was calculated using the Ahrrenius correlation and samples of waste activated sludge before anaerobic digestion. In this case, samples were run in the rheometer at 200 rpm and a temperature range of 25 to 75 °C with an increment rate of 2 °C per minute. The yield stress observed was in a range of 0.93-0.18 Pa, the apparent viscosity was in a range of 0.0358-0.0010 Pa.s, the reduction of organic matter was in a range of 62.57-58.43% volatile solids and the average flow activation energy was 1.71 Calṡg-mol-1.

  18. A laboratory-scale test of anaerobic digestion and methane production after phosphorus recovery from waste activated sludge.

    Science.gov (United States)

    Takiguchi, Noboru; Kishino, Machiko; Kuroda, Akio; Kato, Junichi; Ohtake, Hisao

    2004-01-01

    In enhanced biological phosphorus removal (EBPR) processes, activated sludge microorganisms accumulate large quantities of polyphosphate (polyP) intracellularly. We previously discovered that nearly all of polyP could be released from waste activated sludge simply by heating it at 70 degrees C for about 1 h. We also demonstrated that this simple method was applicable to phosphorus (P) recovery from waste activated sludge in a pilot plant-scale EBPR process. In the present study, we evaluated the effect of this sludge processing (heat treatment followed by calcium phosphate precipitation) on anaerobic digestion in laboratory-scale experiments. The results suggested that the sludge processing for P recovery could improve digestive efficiency and methane productivity at both mesophilic (37 degrees C) and thermophilic (53 degrees C) temperatures. In addition, heat-treated waste sludge released far less P into the digested sludge liquor than did untreated waste sludge. It is likely that the P recovery step prior to anaerobic digestion has a potential advantage for controlling struvite (magnesium ammonium phosphate) deposit problems in sludge handling processes. PMID:16233643

  19. Effect of chemo-mechanical disintegration on sludge anaerobic digestion for enhanced biogas production.

    Science.gov (United States)

    Kavitha, S; Pray, S Saji; Yogalakshmi, K N; Kumar, S Adish; Yeom, Ick-Tae; Banu, J Rajesh

    2016-02-01

    The effect of combined surfactant-dispersion pretreatment on dairy waste activated sludge (WAS) reduction in anaerobic digesters was investigated. The experiments were performed with surfactant, Sodium dodecyl sulfate (SDS) in the range of 0.01 to 0.1 g/g suspended solids (SS) and disperser with rpm of 5000-25,000. The COD (chemical oxygen demand) solubilization, suspended solids reduction, and biogas generation increased for an energy input of 7377 kJ/kg total solids (TS) (12,000 rpm, 0.04 g/g SS, and 30 min) and were found to be 38, 32, and 75 %, higher than that of control. The pretreated sludge improved the performance of semicontinuous anaerobic digesters of 4 L working volume operated at four different SRTs (sludge retention time). SRT of 15 days was found to be appropriate showing 49 and 51 % reduction in SS and volatile solids (VS), respectively. The methane yield of the pretreated sample was observed to be 50 mL/g VS removed which was observed to be comparatively higher than the control (12 mL/g VS removed) at optimal SRT of 15 days. To the best of the authors' knowledge, this study is the first to be reported and not yet been documented in literature.

  20. Effect of chemo-mechanical disintegration on sludge anaerobic digestion for enhanced biogas production.

    Science.gov (United States)

    Kavitha, S; Pray, S Saji; Yogalakshmi, K N; Kumar, S Adish; Yeom, Ick-Tae; Banu, J Rajesh

    2016-02-01

    The effect of combined surfactant-dispersion pretreatment on dairy waste activated sludge (WAS) reduction in anaerobic digesters was investigated. The experiments were performed with surfactant, Sodium dodecyl sulfate (SDS) in the range of 0.01 to 0.1 g/g suspended solids (SS) and disperser with rpm of 5000-25,000. The COD (chemical oxygen demand) solubilization, suspended solids reduction, and biogas generation increased for an energy input of 7377 kJ/kg total solids (TS) (12,000 rpm, 0.04 g/g SS, and 30 min) and were found to be 38, 32, and 75 %, higher than that of control. The pretreated sludge improved the performance of semicontinuous anaerobic digesters of 4 L working volume operated at four different SRTs (sludge retention time). SRT of 15 days was found to be appropriate showing 49 and 51 % reduction in SS and volatile solids (VS), respectively. The methane yield of the pretreated sample was observed to be 50 mL/g VS removed which was observed to be comparatively higher than the control (12 mL/g VS removed) at optimal SRT of 15 days. To the best of the authors' knowledge, this study is the first to be reported and not yet been documented in literature. PMID:26416122

  1. Metal concentrations in lime stabilised, thermally dried and anaerobically digested sewage sludges.

    Science.gov (United States)

    Healy, M G; Fenton, O; Forrestal, P J; Danaher, M; Brennan, R B; Morrison, L

    2016-02-01

    Cognisant of the negative debate and public sentiment about the land application of treated sewage sludges ('biosolids'), it is important to characterise such wastes beyond current regulated parameters. Concerns may be warranted, as many priority metal pollutants may be present in biosolids. This study represents the first time that extensive use was made of a handheld X-ray fluorescence (XRF) analyser to characterise metals in sludges, having undergone treatment by thermal drying, lime stabilisation, or anaerobic digestion, in 16 wastewater treatment plants (WWTPs) in Ireland. The concentrations of metals, expressed as mgkg(-1) dry solids (DS), which are currently regulated in the European Union, ranged from 11 (cadmium, anaerobically digested (AD) biosolids) to 1273mgkg(-1) (zinc, AD biosolids), and with the exception of lead in one WWTP (which had a concentration of 3696mgkg(-1)), all metals were within EU regulatory limits. Two potentially hazardous metals, antimony (Sb) and tin (Sn), for which no legislation currently exists, were much higher than their baseline concentrations in soils (17-20mgSbkg(-1) and 23-55mgSnkg(-1)), meaning that potentially large amounts of these elements may be applied to the soil without regulation. This study recommends that the regulations governing the values for metal concentrations in sludges for reuse in agriculture are extended to include Sb and Sn. PMID:26611400

  2. Simplified mechanistic model for the two-stage anaerobic degradation of sewage sludge.

    Science.gov (United States)

    Donoso-Bravo, Andrés; Pérez-Elvira, Sara; Fdz-Polanco, Fernando

    2015-01-01

    Two-phase anaerobic systems are being increasingly implemented for the treatment of both sewage sludge and organic fraction of municipal solid waste. Despite the good amount of mathematical models in anaerobic digestion, few have been applied in two-phase systems. In this study, a three-reaction mechanistic model has been developed, implemented and validated by using experimental data from a long-term anaerobic two-phase (TPAD) digester treating sewage sludge. A sensitivity analysis shows that the most influential parameters of the model are the ones related to the hydrolysis reaction and the activity of methanogens in the thermophilic reactor. The calibration procedure highlights a noticeable growth rate of the thermophilic methanogens throughout the evaluation period. Overall, all the measured variables are properly predicted by the model during both the calibration and the cross-validation periods. The model's representation of the organic matter behaviour is quite good. The most important disagreements are observed for the biogas production especially during the validation period. The whole application procedure underlines the ability of the model to properly predict the behaviour of this bioprocess. PMID:25400016

  3. Trace methane oxidation and the methane dependency of sulfate reduction in anaerobic granular sludge

    KAUST Repository

    Meulepas, Roel J.W.

    2010-05-01

    This study investigates the oxidation of labeled methane (CH4) and the CH4 dependence of sulfate reduction in three types of anaerobic granular sludge. In all samples, 13C-labeled CH4 was anaerobically oxidized to 13C-labeled CO2, while net endogenous CH4 production was observed. Labeled-CH4 oxidation rates followed CH4 production rates, and the presence of sulfate hampered both labeled-CH4 oxidation and methanogenesis. Labeled-CH4 oxidation was therefore linked to methanogenesis. This process is referred to as trace CH4 oxidation and has been demonstrated in methanogenic pure cultures. This study shows that the ratio between labeled-CH4 oxidation and methanogenesis is positively affected by the CH4 partial pressure and that this ratio is in methanogenic granular sludge more than 40 times higher than that in pure cultures of methanogens. The CH4 partial pressure also positively affected sulfate reduction and negatively affected methanogenesis: a repression of methanogenesis at elevated CH4 partial pressures confers an advantage to sulfate reducers that compete with methanogens for common substrates, formed from endogenous material. The oxidation of labeled CH 4 and the CH4 dependence of sulfate reduction are thus not necessarily evidence of anaerobic oxidation of CH4 coupled to sulfate reduction. © 2010 Federation of European Microbiological Societies.

  4. Enhanced Versus Conventional Sludge Anaerobic Processes: Performances and Techno-Economic Assessment.

    Science.gov (United States)

    Gianico, Andrea; Bertanza, Giorgio; Braguglia, Camilla M; Canato, Matteo; Gallipoli, Agata; Laera, Giuseppe; Levantesi, Caterina; Mininni, Giuseppe

    2016-05-01

    Sewage sludge processing is a key issue in water resource recovery facilities due to the inefficacy of conventional treatments to produce high quality biosolids to be safely used in agriculture. Under this framework, the performances of several enhanced stabilization processes, namely ultrasound-pretreated Mesophilic Anaerobic Digestion (US+MAD), thermophilic anaerobic digestion (TAD), thermal-pretreated TAD (TH+TAD) and ultrasound-pretreated inverse Temperature Phased Anaerobic Digestion (US+iTPAD) have been investigated. Such enhanced processes resulted in higher biogas yields and higher destruction of pathogens with respect to conventional MAD process, thus suggesting their feasibility in full-scale implementation perspectives. A procedure for technical-economic comparison of new sludge processing lines against conventional ones (benchmarking) was developed, based on the definition of technical issues (e.g. reliability, complexity, etc.) which are rated for each situation. Moreover, capital and operating costs were estimated. The enhanced processes analyzed in this work showed some potentially critical items, mainly related to energy balance and reagent consumption. PMID:27131310

  5. Identical full-scale biogas-lift reactors (Blrs) with anaerobic granular sludge and residual activated sludge for brewery wastewater treatment and kinetic modeling.

    Science.gov (United States)

    Xu, Fu; Huang, Zhenxing; Miao, Hengfeng; Ren, Hongyan; Zhao, Mingxing; Ruan, Wenquan

    2013-10-01

    Two identical full-scale biogas-lift reactors treating brewery wastewater were inoculated with different types of sludge to compare their operational conditions, sludge characteristics, and kinetic models at a mesophilic temperature. One reactor (R1) started up with anaerobic granular sludge in 12 weeks and obtained a continuously average organic loading rate (OLR) of 7.4 kg chemical oxygen demand (COD)/(m3 x day), COD removal efficiency of 80%, and effluent COD of 450 mg/L. The other reactor (R2) started up with residual activated sludge in 30 weeks and granulation accomplished when the reactor reached an average OLR of 8.3 kg COD/(m3 x day), COD removal efficiency of 90%, and effluent COD of 240 mg/L. Differences in sludge characteristics, biogas compositions, and biogas-lift processes may be accounted for the superior efficiency of the treatment performance of R2 over R1. Grau second-order and modified StoverKincannon models based on influent and effluent concentrations as well as hydraulic retention time were successfully used to develop kinetic parameters of the experimental data with high correlation coefficients (R2 > 0.95), which further showed that R2 had higher treatment performance than R1. These results demonstrated that residual activated sludge could be used effectively instead of anaerobic granular sludge despite the need for a longer time. PMID:24494489

  6. Evaluation of In-situ Sludge Reduction and Enhanced Nutrient Removal in an Integrated Repeatedly Coupling Aerobic and Anaerobic and Oxic-setting-anaerobic System

    Institute of Scientific and Technical Information of China (English)

    Shanshan Yang; Wanqian Guo; Qinglian Wu; Haichao Luo; Simai Peng; Heshan Zheng; Xiaochi Feng; Nanqi Ren∗

    2015-01-01

    Aiming to achieve simultaneous good performances of in⁃situ sludge reduction and effluent quality, an integrated repeatedly coupling aerobic and anaerobic and oxic⁃setting⁃anaerobic system ( rCAA+OSA ) is developed to reduce sludge production and enhance nutrient removal. Considering the mechanism of in⁃situ sludge reduction in this rCAA+OSA system, the combined effect of energy uncoupling metabolism and sludge cryptic growth maybe attributed to the higher reduction of biomass. Results show that the maximal sludge reduction in this rCAA+OSA system is obtained when the hydraulic retention time ( HRT ) is controlled at 6�5 h, which an increase in 16�67% reduction in excess sludge is achieved compared with OSA system ( HRT of 6�5 h) . When compared the performances of effluent qualities, the enhanced nutrient removal efficiencies also can be observed in this rCAA+OSA system. Three⁃dimensional excitation emission matrix ( 3D⁃EEM ) fluorescence spectroscopy is applied to characterize the effluent organic matters ( EfOM) under different HRTs in the OSA and the rCAA+OSA systems. Analyses of 3D⁃EEM spectra show that more refractory humic⁃like and fulvic⁃like components are observed in the effluent of the OSA system. On the basis of these results, simultaneous enhanced in⁃situ sludge reduction and improved nutrient removal can be obtained in the rCAA+OSA systems.

  7. The influence of hydrolysis induced biopolymers from recycled aerobic sludge on specific methanogenic activity and sludge filterability in an anaerobic membrane bioreactor.

    Science.gov (United States)

    Buntner, D; Spanjers, H; van Lier, J B

    2014-03-15

    The objective of the present study was to evaluate the impact of excess aerobic sludge on the specific methanogenic activity (SMA), in order to establish the maximum allowable aerobic sludge loading. In batch tests, different ratios of aerobic sludge to anaerobic inoculum were used, i.e. 0.03, 0.05, 0.10 and 0.15, showing that low ratios led to an increased SMA. However, the ratio 0.15 caused more than 20% SMA decrease. In addition to the SMA tests, the potential influence of biopolymers and extracellular substances, that are generated as a result of excess aerobic sludge hydrolysis, on membrane performance was determined by assessing the fouling potential of the liquid broth, taking into account parameters such as specific resistance to filtration (SRF) and supernatant filterability (SF). Addition of aerobic sludge to the anaerobic biomass resulted in a high membrane fouling potential. The increase in biopolymers could be ascribed to aerobic sludge hydrolysis. A clear positive correlation between the concentration of the colloidal fraction of biopolymer clusters (cBPC) and the SRF was observed and a negative correlation between the cBPC and the SF measured at the end of the above described SMA tests. The latter implies that sludge filtration resistance increases when more aerobic sludge is hydrolyzed, and thus more cBPC is released. During AnMBR operation, proteins significantly contributed to sludge filterability decrease expressed as SRF and SF, whereas the carbohydrate fraction of SMP was of less importance due to low concentrations. On the contrary, carbohydrates seemed to improve filterability and diminish SRF of the sludge. Albeit, cBPC increase caused an increase in mean TMP during the AnMBR operation, confirming that cBPC is positively correlated to membrane fouling.

  8. The influence of hydrolysis induced biopolymers from recycled aerobic sludge on specific methanogenic activity and sludge filterability in an anaerobic membrane bioreactor.

    Science.gov (United States)

    Buntner, D; Spanjers, H; van Lier, J B

    2014-03-15

    The objective of the present study was to evaluate the impact of excess aerobic sludge on the specific methanogenic activity (SMA), in order to establish the maximum allowable aerobic sludge loading. In batch tests, different ratios of aerobic sludge to anaerobic inoculum were used, i.e. 0.03, 0.05, 0.10 and 0.15, showing that low ratios led to an increased SMA. However, the ratio 0.15 caused more than 20% SMA decrease. In addition to the SMA tests, the potential influence of biopolymers and extracellular substances, that are generated as a result of excess aerobic sludge hydrolysis, on membrane performance was determined by assessing the fouling potential of the liquid broth, taking into account parameters such as specific resistance to filtration (SRF) and supernatant filterability (SF). Addition of aerobic sludge to the anaerobic biomass resulted in a high membrane fouling potential. The increase in biopolymers could be ascribed to aerobic sludge hydrolysis. A clear positive correlation between the concentration of the colloidal fraction of biopolymer clusters (cBPC) and the SRF was observed and a negative correlation between the cBPC and the SF measured at the end of the above described SMA tests. The latter implies that sludge filtration resistance increases when more aerobic sludge is hydrolyzed, and thus more cBPC is released. During AnMBR operation, proteins significantly contributed to sludge filterability decrease expressed as SRF and SF, whereas the carbohydrate fraction of SMP was of less importance due to low concentrations. On the contrary, carbohydrates seemed to improve filterability and diminish SRF of the sludge. Albeit, cBPC increase caused an increase in mean TMP during the AnMBR operation, confirming that cBPC is positively correlated to membrane fouling. PMID:24284260

  9. A site-specific curated database for the microorganisms of activated sludge and anaerobic digesters

    DEFF Research Database (Denmark)

    McIlroy, Simon Jon; Kirkegaard, Rasmus Hansen; McIlroy, Bianca;

    the composition and dynamics of the most abundant organisms. However, to understand the relationship between the population dynamics and operational parameters of the system, a functional role must be attributed to each organism. The Microbial Database for Activated Sludge (MiDAS) and Anaerobic Digesters (AD......) presented here provides a site specific curated taxonomy for abundant and important microorganisms and integrates it into a community knowledge web platform about the microbes in activated sludge (AS) and their associated ADs (www.midasfieldguide.org). The MiDAS taxonomy, a manual curation of the SILVA...... taxonomy, proposes putative names for each genus-level-taxon that can be used as a common vocabulary for all researchers in the field. The online database covers >250 genera found to be abundant and/or important in biological nutrient removal treatment plants, based on extensive in-house surveys with 16S r...

  10. Nitrogen removal from sludge dewatering effluent through anaerobic ammonia oxidation process

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shao-hui; ZHENG Ping; HUA Yu-mei

    2005-01-01

    Anaerobic ammonia oxidation(Anammox) process is a novel and promising wastewater nitrogen removal process. The feasibility of transition of Anammox from denitrification and the performance of lab-scale Anammox biofilm reactor were investigated with sludge dewatering effluent. The results showed that Anammox process could be successfully started up after cultivation of denitrification biofilm and using it as inoculum. The transition of Anammox from denitrification was accomplished within 85 d. Anammox process was found suitable to remove ammonia from sludge dewatering effluent. The effluent ammonia concentration was detected to be 23.11 mgN/L at HRT of 28 h when influent ammonia concentration was fed 245 mgN/L, which was less than that for the national discharge standard Ⅱ (25 mgN/L) of 243.25 mg NH4+ -N/L and 288.31 mg NO2- -N/L.

  11. Waste activated sludge treatment based on temperature staged and biologically phased anaerobic digestion system.

    Science.gov (United States)

    Yu, Jingwen; Zheng, Mingxia; Tao, Tao; Zuo, Jiane; Wang, Kaijun

    2013-10-01

    The concept of temperature staged and biological phased (TSBP) was proposed to enhance the performance of waste-activated sludge anaerobic digestion. Semi-continuous experiments were used to investigate the effect of temperature (35 to 70 degrees C) as well as the hydraulic retention time (HRT) (2, 4 and 6 days) on the acidogenic phase. The results showed that the solubilization degree of waste-activated sludge increased from 14.7% to 30.1% with temperature increasing from 35 to 70 degrees C, while the acidification degree was highest at 45 degrees C (17.6%), and this was quite different from the temperature impact on hydrolysis. Compared with HRT of 2 and 6 days, 4 days was chosen as the appropriate HRT because of its relatively high solubilization degree (24.6%) and acidification degree (20.1%) at 45 degrees C. The TSBP system combined the acidogenic reactor (45 degrees C, 4 days) with the methanogenic reactor (35 degrees C, 16 days) and the results showed 84.8% and 11.4% higher methane yield and volatile solid reduction, respectively, compared with that of the single-stage anaerobic digestion system with HRT of 20 days at 35 degrees C. Moreover, different microbial morphologies were observed in the acidogenic- and methanogenic-phase reactors, which resulted from the temperature control and HRT adjustment. All the above results indicated that 45 degrees C was the optimum temperature to inhibit the activity of methanogenic bacteria in the acidogenic phase, and temperature staging and phase separation was thus accomplished. The advantages of the TSBP process were also confirmed by a full-scale waste-activated sludge anaerobic digestion project which was an energy self-sufficient system.

  12. A new model for anaerobic processes of up-flow anaerobic sludge blanket reactors based on cellular automata

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Ahring, Birgitte Kiær

    2002-01-01

    The advantageous performance of the UASB reactors is due to the immobilisation of the active biomass, since bacteria coagulate forming aggregates usually called granules. Changes in organic loading rate, hydraulic loading rate or influent substrate composition usually result in changes in granule...

  13. Bio-Gas production from municipal sludge waste using anaerobic membrane bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Lee, S.

    2009-07-01

    A laboratory scale anaerobic membrane bioreactor (AnMBR) system for the bio-methane gas production was operated for 60 days with municipal sludge wastes as a sole carbon source. The AnMRR system utilized the external cross-flow membrane module and was equipped with on-line data acquisition which enables continuous monitoring of the performance of both bioreactor and membrane through the analyses of pH, temperature, gas production; permeate flow rate, and transmembrane pressure (TMP). Such a configuration also provides an efficient tool to study rapid variations of monitoring membrane pressure (TMP). (Author)

  14. Remove and recover phosphorus during anaerobic digestion of excess sludge by adding waste iron scrap

    OpenAIRE

    Zheng Wei; Li Xiao Ming; Wang Dong Bo; Yang Qi; Luo Kun; Jing Yang Guo; Zeng Guang Ming

    2013-01-01

    In the current investigation, the feasibility of phosphorus removal in the anaerobic digestion of excess sludge by adding waste iron scrap (WIS) was studied. The results show that the removal efficiency of phosphorus increases with the amount of WIS, and the maximum removal efficiency could reach 39%, 93% and 99% at WIS dosages of 1, 2 and 3 g/L, respectively. Sterilization greatly decreases the removal efficiency of phosphorus, having only -6%, 53% and 64% at WIS dosages of 1, 2 and 3 ...

  15. Bio-Gas production from municipal sludge waste using anaerobic membrane bioreactor

    International Nuclear Information System (INIS)

    A laboratory scale anaerobic membrane bioreactor (AnMBR) system for the bio-methane gas production was operated for 60 days with municipal sludge wastes as a sole carbon source. The AnMRR system utilized the external cross-flow membrane module and was equipped with on-line data acquisition which enables continuous monitoring of the performance of both bioreactor and membrane through the analyses of pH, temperature, gas production; permeate flow rate, and transmembrane pressure (TMP). Such a configuration also provides an efficient tool to study rapid variations of monitoring membrane pressure (TMP). (Author)

  16. High-Rate Anaerobic Side-Stream Reactor (ASSR) Processes to Minimize the Production of Excess Sludge.

    Science.gov (United States)

    Park, Chul; Chon, Dong-Hyun

    2015-12-01

    High-rate anaerobic side-stream reactor (ASSR) processes were developed to minimize excess sludge production during wastewater treatment. New ASSRs were operated in 2.5-day solids retention time (SRT), much shorter than 10-day SRT used by the commercial sludge reduction process. The 2.5-day was selected based on literature review and preliminary studies, showing that maximum solublization of key floc components, such as divalent cations, extracellular polymeric substances (EPS), and protease, occur within 2 to 3 days of anaerobic digestion. The laboratory reactor study showed that 2.5-day ASSR systems produced approximately 60 and 20% less sludge than the control (no ASSR) and the 10-day ASSR, respectively. The experimental systems showed acceptable effluent quality, despite minimal sludge wastage. This was possible because sludge EPS were continuously released/degraded and regenerated as sludge underwent recirculation between ASSR and the aerobic basin. The results supported that the activated sludge process incorporating small ASSRs significantly decrease the production of excess sludge during wastewater treatment.

  17. Anaerobic Codigestion of Sludge: Addition of Butcher's Fat Waste as a Cosubstrate for Increasing Biogas Production.

    Science.gov (United States)

    Martínez, E J; Gil, M V; Fernandez, C; Rosas, J G; Gómez, X

    2016-01-01

    Fat waste discarded from butcheries was used as a cosubstrate in the anaerobic codigestion of sewage sludge (SS). The process was evaluated under mesophilic and thermophilic conditions. The codigestion was successfully attained despite some inhibitory stages initially present that had their origin in the accumulation of volatile fatty acids (VFA) and adsorption of long-chain fatty acids (LCFA). The addition of a fat waste improved digestion stability and increased biogas yields thanks to the higher organic loading rate (OLR) applied to the reactors. However, thermophilic digestion was characterized by an effluent of poor quality and high VFA content. Results from spectroscopic analysis suggested the adsorption of lipid components onto the anaerobic biomass, thus disturbing the complete degradation of substrate during the treatment. The formation of fatty aggregates in the thermophilic reactor prevented process failure by avoiding the exposure of biomass to the toxic effect of high LCFA concentrations. PMID:27071074

  18. ANAEROBIC SLUDGE LOAD IMPACT LOAD OF ORGANIC SUBSTANCES CONTAINED IN THE WHEY OF THE FERMENTATION KINETICS

    Directory of Open Access Journals (Sweden)

    Marcin Dębowski

    2014-10-01

    Full Text Available The study aimed to determine the effect of the load cell model anaerobic load of organic substances contained in the whey acidic fermentation kinetics of transformation. Specified rate of biogas production and the amount and composition of the product gas quality sludge anaerobic metabolism. The highest yield of biogas rate of 945 ml was obtained during the application of the load of 4.0 g / l, the ratio of production rate of 0.25 k 1 / d Biogas production rate increased with the increase of the initial charge of organic compounds introduced into the digester and the model was in the range from 96.3 to 236.5. Biogas composition analysis revealed that the highest concentration of methane was obtained at a load of 1.0 g / l

  19. Modelling of Two-Stage Anaerobic Treating Wastewater from a Molasses-Based Ethanol Distillery with the IWA Anaerobic Digestion Model No.1

    OpenAIRE

    Kittikhun Taruyanon; Sarun Tejasen

    2010-01-01

    This paper presents the application of ADM1 model to simulate the dynamic behaviour of a two-stage anaerobic treatment process treating the wastewater generated from the ethanol distillery process. The laboratory-scale process comprised an anaerobic continuous stirred tank reactor (CSTR) and an upflow anaerobic sludge blanket (UASB) connecting in series, was used to treat wastewater from the ethanol distillery process. The CSTR and UASB hydraulic retention times (HRT) were 12 and 70 hours, re...

  20. 好氧活性污泥在升流式厌氧污泥床反应器中的厌氧颗粒化过程及机制%Mechanism and Process of Anaerobic Sludge Granulation in UASB Reactor with Aerobic Activated Sludge as Seed

    Institute of Scientific and Technical Information of China (English)

    李建政; 张立国; 班巧英; 许一平; 艾斌凌

    2012-01-01

    采用升流式厌氧污泥床(UASB)反应器,以城市污水处理厂二沉池活性污泥为种泥,研究好氧絮状污泥的厌氧颗粒化过程及其机制.UASB在污泥负荷(SLR)0.25kg (COD)/(kg(VSS)·d)和水力负荷(HLR)0.1m3/(m2·h)的条件下启动后,通过分阶段缩短水力停留时间(HRT)的方式逐步将SLR和HLR提高到0.52kg(COD)/(kg(VSS)·d)和0.3m3/(m2·h),经过150d的连续运行,成功培育出了厌氧颗粒污泥,系统对COD的去除率达到了95%以上.厌氧颗粒污泥的形成过程先后经历了污泥驯化期、微生物聚集体形成期、初生颗粒污泥形成期、次生颗粒污泥形成期、成熟颗粒污泥形成期5个时期.好氧絮状污泥的厌氧颗粒化机制整体上符合二次核学说,其中初生颗粒污泥的形成符合黏液学说,而次生颗粒污泥的形成机制与目前已报道的厌氧颗粒污泥形成机制不同,其内核是由初生颗粒污泥破碎后的碎片组成,产甲烷丝状菌和其他细菌通过插入碎片中或者附着于碎片表面的方式形成聚集体,并逐渐发展成为次生颗粒污泥.%The mechanism and the process of the anaerobic sludge granulation of the aerobic flocculent sludge in an Upflow Anaerobic Sludge Blanket (UASB) reactor are studied in this paper. The sludge is obtained from a secondary sedimentation tank of an activated sludge plant for treating municipal wastewater. The results show that the anaerobic granular sludge is cultivated successfully after the continuous operation for 150 d and the Hydraulic Retention Time (HRT) is reduced from 24h to 8h. During the phase-shortening, the sludge load and the hydraulic load are increased from 0.25kg COD/(kg(VSS)-d) and 0.1m7(m2-h) to 0.52kg COD/(kg(VSS)-d) and 0.3 m3/(m2-h), respectively. The process of the granulation contains five stages, including the sludge acclimation, the microbial aggregates formation, the primary granular sludge formation, the secondary granular sludge formation and the

  1. Characterization and Adaptation of Anaerobic Sludge Microbial Communities Exposed to Tetrabromobisphenol A

    Science.gov (United States)

    Lefevre, Emilie; Cooper, Ellen; Stapleton, Heather M.

    2016-01-01

    The increasing occurrence of tetrabromobisphenol A (TBBPA) in the environment is raising questions about its potential ecological and human health impacts. TBBPA is microbially transformed under anaerobic conditions to bisphenol A (BPA). However, little is known about which taxa degrade TBBPA and the adaptation of microbial communities exposed to TBBPA. The objectives of this study were to characterize the effect of TBBPA on microbial community structure during the start-up phase of a bench-scale anaerobic sludge reactor, and identify taxa that may be associated with TBBPA degradation. TBBPA degradation was monitored using LC/MS-MS, and the microbial community was characterized using Ion Torrent sequencing and qPCR. TBBPA was nearly completely transformed to BPA via reductive debromination in 55 days. Anaerobic reactor performance was not negatively affected by the presence of TBBPA and the bulk of the microbial community did not experience significant shifts. Several taxa showed a positive response to TBBPA, suggesting they may be associated with TBBPA degradation. Some of these taxa had been previously identified as dehalogenating bacteria including Dehalococcoides, Desulfovibrio, Propionibacterium, and Methylosinus species, but most had not previously been identified as having dehalogenating capacities. This study is the first to provide in-depth information on the microbial dynamics of anaerobic microbial communities exposed to TBBPA. PMID:27463972

  2. Characterization and Adaptation of Anaerobic Sludge Microbial Communities Exposed to Tetrabromobisphenol A.

    Directory of Open Access Journals (Sweden)

    Emilie Lefevre

    Full Text Available The increasing occurrence of tetrabromobisphenol A (TBBPA in the environment is raising questions about its potential ecological and human health impacts. TBBPA is microbially transformed under anaerobic conditions to bisphenol A (BPA. However, little is known about which taxa degrade TBBPA and the adaptation of microbial communities exposed to TBBPA. The objectives of this study were to characterize the effect of TBBPA on microbial community structure during the start-up phase of a bench-scale anaerobic sludge reactor, and identify taxa that may be associated with TBBPA degradation. TBBPA degradation was monitored using LC/MS-MS, and the microbial community was characterized using Ion Torrent sequencing and qPCR. TBBPA was nearly completely transformed to BPA via reductive debromination in 55 days. Anaerobic reactor performance was not negatively affected by the presence of TBBPA and the bulk of the microbial community did not experience significant shifts. Several taxa showed a positive response to TBBPA, suggesting they may be associated with TBBPA degradation. Some of these taxa had been previously identified as dehalogenating bacteria including Dehalococcoides, Desulfovibrio, Propionibacterium, and Methylosinus species, but most had not previously been identified as having dehalogenating capacities. This study is the first to provide in-depth information on the microbial dynamics of anaerobic microbial communities exposed to TBBPA.

  3. Characterization and Adaptation of Anaerobic Sludge Microbial Communities Exposed to Tetrabromobisphenol A.

    Science.gov (United States)

    Lefevre, Emilie; Cooper, Ellen; Stapleton, Heather M; Gunsch, Claudia K

    2016-01-01

    The increasing occurrence of tetrabromobisphenol A (TBBPA) in the environment is raising questions about its potential ecological and human health impacts. TBBPA is microbially transformed under anaerobic conditions to bisphenol A (BPA). However, little is known about which taxa degrade TBBPA and the adaptation of microbial communities exposed to TBBPA. The objectives of this study were to characterize the effect of TBBPA on microbial community structure during the start-up phase of a bench-scale anaerobic sludge reactor, and identify taxa that may be associated with TBBPA degradation. TBBPA degradation was monitored using LC/MS-MS, and the microbial community was characterized using Ion Torrent sequencing and qPCR. TBBPA was nearly completely transformed to BPA via reductive debromination in 55 days. Anaerobic reactor performance was not negatively affected by the presence of TBBPA and the bulk of the microbial community did not experience significant shifts. Several taxa showed a positive response to TBBPA, suggesting they may be associated with TBBPA degradation. Some of these taxa had been previously identified as dehalogenating bacteria including Dehalococcoides, Desulfovibrio, Propionibacterium, and Methylosinus species, but most had not previously been identified as having dehalogenating capacities. This study is the first to provide in-depth information on the microbial dynamics of anaerobic microbial communities exposed to TBBPA. PMID:27463972

  4. [Pilot study of thermal treatment/thermophilic anaerobic digestion process treating waste activated sludge of high solid content].

    Science.gov (United States)

    Wu, Jing; Wang, Guang-qi; Cao, Zhi-ping; Li, Zhong-hua; Hu, Yu-ying; Wang, Kai-jun; Zu, Jian-e

    2014-09-01

    A pilot-scale experiment about the process of "thermal pretreatment at 70°C/thermophilic anaerobic digestion" of waste activated sludge of high solid content (8% -9% ) was conducted. The process employed thermal treatment of 3 days to accelerate the hydrolysis and thermophilic digestion to enhance anaerobic reaction. Thus it was good at organic removal and stabilization. When the solid retention time (SRT) was longer than 20 days, the VSS removal rate was greater than 42. 22% and it was linearly correlated to the SRT of the aerobic digestion with the R2 of 0. 915 3. It was suggested that SRT of anaerobic digestion was 25 days in practice. VSS removal rate and biogas production rate of the pilot experiment were similar to those of the run-well traditional full-scale sludge anaerobic digestion plants (solid content 3% -5% ) and the plant of high solid content using German technique.

  5. Improving methane production and phosphorus release in anaerobic digestion of particulate saline sludge from a brackish aquaculture recirculation system.

    Science.gov (United States)

    Zhang, Xuedong; Ferreira, Rui B; Hu, Jianmei; Spanjers, Henri; van Lier, Jules B

    2014-06-01

    In this study, batch tests were conducted to examine the effects of trehalose and glycine betaine as well as potassium on the specific methanogenic activity (SMA), acid and alkaline phosphatase activity of anaerobic biomass and phosphorus release in anaerobic digestion of saline sludge from a brackish recirculation aquaculture system. The results of ANOVA and Tukey's HSD (honestly significant difference) tests showed that glycine betaine and trehalose enhanced SMA of anaerobic biomass and reactive phosphorus release from the particulate waste. Moreover, SMA tests revealed that methanogenic sludge, which was long-term acclimatized to a salinity level of 17 g/L was severely affected by the increase in salinity to values exceeding 35 g/L. Addition of compatible solutes, such as glycine betaine and trehalose, could be used to enhance the specific methane production rate and phosphorus release in anaerobic digestion from particulate organic waste produced in marine or brackish aquaculture recirculation systems.

  6. Morphology and physiology of anaerobic granular sludge exposed to an organic solvent

    International Nuclear Information System (INIS)

    The use of quantitative image analysis techniques, together with physiological information might be used to monitor and detect operational problems in advance to reactor performance failure. Industrial organic solvents, such as White Spirit, are potentially harmful to granular sludge. In preliminary batch assays, 33 mg L-1 of solvent caused 50% relative biomass activity loss. In an expanded granular sludge blanket reactor fed with 40 mg L-1 of solvent, during 222 h, the reactor performance seemed to be unaffected, presenting COD removal efficiency consistently >95%. However, in the last days of exposure, the biogas production and the methane content were inhibited. Afterwards, already during recovery phase, the COD removal efficiency decreased to 33%, probably because the reactor was underloaded and the biomass became saturated in solvent only at this stage. In the first hours of exposure the specific acetoclastic and the specific hydrogenotrophic methanogenic activities decreased 29% and 21%, respectively. The % of aggregates projected area with equivalent diameter (Deq) > 1 mm decreased from 81% to 53%. The mean Deq of the aggregates ≥0.2 mm decreased, as well as the settling velocity, showing that the granules experienced fragmentation phenomenon caused by the solvent shock load. The ratio between total filaments length and total aggregates projected area (LfA) increased 2 days before effluent volatile suspended solids, suggesting that LfA could be an early-warning indicator of washout events.

  7. Enhancement of acidic dye biosorption capacity on poly(ethylenimine) grafted anaerobic granular sludge

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xue-Fei, E-mail: xfsun06@gmail.com [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Wang, Shu-Guang, E-mail: wsg@sdu.edu.cn [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Cheng, Wen [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Fan, Maohong [School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Tian, Bing-Hui [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Gao, Bao-Yu; Li, Xiao-Ming [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China)

    2011-05-15

    Developing a novel biosorbent with high capacity is crucial to remove dyes from waters in an efficient way. This study demonstrated that porous anaerobic granular sludge could be grafted with polyethylenimine (PEI), which definitely improved the sorption capacity towards Acid Red 18 (AR18) removal. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) study revealed that the PEI modification introduced a large number of amino groups on the surface of sludge, and the amino groups played an important role in the adsorption of dye molecule. Analysis of sorption data using a Boyd plot confirms the film diffusion was the rate-limiting step. The equilibrium data were well fitted Langmuir model, with a maximum AR18 uptake of 520.52 mg/g. Removal of AR18 decreased with the increasing pH and the maximum color removal was observed at pH 2.0. The sorption energy calculated from Dubinin-Radushkevich isotherm was found to be less than 8 for the biosorption of AR 18, which suggested that the biosorption processes of dye molecule onto modified anaerobic granules could be taken place by physical adsorption. Various thermodynamic parameters, such as {Delta}G{sup 0}, {Delta}H{sup 0} and {Delta}S{sup 0}, were also calculated, which indicated that the present system was spontaneous and endothermic process.

  8. Increase of the efficiency of anaerobic digestion by various pre-treatment processes of sewage sludge

    Directory of Open Access Journals (Sweden)

    Łukasz Krawczyk

    2011-09-01

    Full Text Available The aim of this paper is to demonstrate the effects of pre-treatment increase of the efficiency of anaerobic digestion on waste activated sludge. There were four methods for pre-treatment of the waste activated sludge: A – thermally treated at 121°C for 30 min, homogenized and hydrolysed by Bacillus subtilis bacteria, B – thermally treated at 121°C for 30 min and homogenized, C – thermally treated at 121°C for 30 min and hydrolysed by B. subtilis bacteria, D – thermally treated at 121°C for 30 min. The process consisted of a hydrolyses phase and anaerobic digestion phase operated at 36°C ±1°C for 35 days. It was investigated with regard to hydrolytic enzymes: amylase, cellulase, lipase and protease. Acetic acid (4.3 g∙dm-3 and butanediotic acid (0.1 g∙dm-3 were reported to appear in biggest quantities in volatile fatty acids according to measurement of VFA. The amount of carbon and nitrogen decreased while the ratio of C:N increased from 8:1 to 10:1. The highest methane yield was obtained in A method.

  9. Enhancement of Anaerobic Digestion to Treat Saline Sludge from Recirculating Aquaculture Systems

    Directory of Open Access Journals (Sweden)

    Guo-zhi Luo

    2015-01-01

    Full Text Available The effectiveness of carbohydrate addition and the use of ultrasonication as a pretreatment for the mesophilic anaerobic digestion of saline aquacultural sludge was assessed. Analyses were conducted using an anaerobic sequencing batch reactor (ASBR, which included stopped gas production attributed to the saline inhibition. After increasing the C : N ratio, gas production was observed, and the total chemical oxygen demand (TCOD removal efficiency increased from 75% to 80%. The TCOD removal efficiency of the sonication period was approximately 85%, compared to 75% for the untreated waste. Ultrasonication of aquaculture sludge was also found to enhance the gas production rate and the TCOD removal efficiency. The average volatile fatty acid (VFA to alkalinity ratios ranged from 0.1 to 0.05, confirming the stability of the digesters. Furthermore, soluble chemical oxygen demand (SCOD, VFA, and PO43- concentrations increased in the effluents. There was a 114% greater gas generation during the ultrasonication period, with an average production of 0.08 g COD/L·day−1.

  10. Enhancement of Anaerobic Digestion to Treat Saline Sludge from Recirculating Aquaculture Systems

    Science.gov (United States)

    Luo, Guo-zhi; Ma, Niannian; Li, Ping; Tan, Hong-xin; Liu, Wenchang

    2015-01-01

    The effectiveness of carbohydrate addition and the use of ultrasonication as a pretreatment for the mesophilic anaerobic digestion of saline aquacultural sludge was assessed. Analyses were conducted using an anaerobic sequencing batch reactor (ASBR), which included stopped gas production attributed to the saline inhibition. After increasing the C : N ratio, gas production was observed, and the total chemical oxygen demand (TCOD) removal efficiency increased from 75% to 80%. The TCOD removal efficiency of the sonication period was approximately 85%, compared to 75% for the untreated waste. Ultrasonication of aquaculture sludge was also found to enhance the gas production rate and the TCOD removal efficiency. The average volatile fatty acid (VFA) to alkalinity ratios ranged from 0.1 to 0.05, confirming the stability of the digesters. Furthermore, soluble chemical oxygen demand (SCOD), VFA, and PO43− concentrations increased in the effluents. There was a 114% greater gas generation during the ultrasonication period, with an average production of 0.08 g COD/L·day−1. PMID:26301258

  11. Rational Basis for Designing Horizontal-Flow Anaerobic Immobilized Sludge (HAIS Reactor for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M. Zaiat

    1997-03-01

    Full Text Available The conception and development on a rational basis of a new configuration of anaerobic fixed-bed bioreactor for wastewater treatment, the horizontal-flow anaerobic immobilized sludge (HAIS reactor, is presented. Such a reactor containing immobilized sludge in polyurethane foam matrices was first assayed for treating paper industry wastewater. A very short start-up period was observed and the reactor achieved stable operation by the eighth day. Afterwards, fundamental aspects of the process were investigated in order to obtain a rational basis for HAIS reactor design. A sequence of experiments was carried out for evaluating the cell wash-out from polyurethane foam matrices, the liquid-phase mass transfer coefficient and the intrinsic kinetic parameters, besides the hydrodynamic flow pattern of the reactor. The knowledge of such fundamental phenomena is useful for improving the reactor’s design and operation. Besides, these fundamental studies are essential to provide parameters for simulation and optimization of processes that make use of immobilized biomass

  12. Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Yenal, U.; Skiadas, Ioannis V.;

    2003-01-01

    subsequent thermophilic digestion of primary sludge. The methane production rate was mostly influenced by the pre-treatment of secondary sludge followed by mesophilic and thermophilic digestion whereas the methane potential only was positively influenced when mesophilic digestion followed. Our results...... digestion. Furthermore, thermal pre-treatment is suitable for the improvement of stabilization, enhancement of dewatering of the sludge, reduction of the numbers of pathogens and could be realized at relatively low cost especially at low temperatures. The present study investigates (a) the differences...... suggest that the selection of the pre-treatment duration as well as the temperature of the subsequent anaerobic step for sludge stabilization should depend on the ratio of primary to secondary sludge....

  13. Influence of feed characteristics on the removal of micropollutants during the anaerobic digestion of contaminated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Barret, M., E-mail: barret@supagro.inra.fr [INRA, UR 050, Laboratoire de Biotechnologie de l' Environnement, Avenue des Etangs, 11100 Narbonne (France); Barcia, G. Cea, E-mail: cea@supagro.inra.fr [INRA, UR 050, Laboratoire de Biotechnologie de l' Environnement, Avenue des Etangs, 11100 Narbonne (France); Guillon, A., E-mail: a.guillon@ism.u-bordeaux1.fr [INRA, UR 050, Laboratoire de Biotechnologie de l' Environnement, Avenue des Etangs, 11100 Narbonne (France); Carrere, H., E-mail: carrere@supagro.inra.fr [INRA, UR 050, Laboratoire de Biotechnologie de l' Environnement, Avenue des Etangs, 11100 Narbonne (France); Patureau, D., E-mail: patureau@supagro.inra.fr [INRA, UR 050, Laboratoire de Biotechnologie de l' Environnement, Avenue des Etangs, 11100 Narbonne (France)

    2010-09-15

    The removal of 13 polycyclic aromatic hydrocarbons, 7 polychlorobiphenyls and nonylphenol was measured during the continuous anaerobic digestion of five different sludge samples. The reactors were fed with one of the following: primary/secondary sludge (PS/SS), thermally treated PS, cellulose-added SS, or SS augmented with dissolved and colloidal matter (DCM). These various feeding conditions induced variable levels of micropollutant bioavailability (assumed to limit their biodegradation) and overall metabolism (supposed to be linked to micropollutant metabolism throughout co-metabolism). On the one hand, overall metabolism was higher with secondary sludge than with primary and the same was observed for micropollutant removal. However, when overall metabolism was enhanced thanks to cellulose addition, a negative influence on micropollutant removal was observed. This suggests that either the co-metabolic synergy would be linked to a specific metabolism or co-metabolism was not the limiting factor in this case. On the other hand, micropollutant bioavailability was presumably diminished by thermal treatment and increased by DCM addition. In both cases, micropollutant removal was reduced. These results suggest that neither overall metabolism nor bioavailability would absolutely limit micropollutant removal. Each phenomenon might alternatively predominate depending on the feed characteristics.

  14. Anaerobic Codigestion of Municipal Wastewater Treatment Plant Sludge with Food Waste: A Case Study

    Directory of Open Access Journals (Sweden)

    Zubayeda Zahan

    2016-01-01

    Full Text Available The aim of this study was to assess the effects of the codigestion of food manufacturing and processing wastes (FW with sewage sludge (SS, that is, municipal wastewater treatment plant primary sludge and waste activated sludge. Bench scale mesophilic anaerobic reactors were fed intermittently with varying ratio of SS and FW and operated at a hydraulic retention time of 20 days and organic loading of 2.0 kg TS/m3·d. The specific biogas production (SBP increased by 25% to 50% with the addition of 1%–5% FW to SS which is significantly higher than the SBP from SS of 284±9.7 mLN/g VS added. Although the TS, VS, and tCOD removal slightly increased, the biogas yield and methane content improved significantly and no inhibitory effects were observed as indicated by the stable pH throughout the experiment. Metal screening of the digestate suggested the biosolids meet the guidelines for use as a soil conditioner. Batch biochemical methane potential tests at different ratios of SS : FW were used to determine the optimum ratio using surface model analysis. The results showed that up to 47-48% FW can be codigested with SS. Overall these results confirm that codigestion has great potential in improving the methane yield of SS.

  15. Anaerobic Codigestion of Municipal Wastewater Treatment Plant Sludge with Food Waste: A Case Study

    Science.gov (United States)

    Rajendram, William

    2016-01-01

    The aim of this study was to assess the effects of the codigestion of food manufacturing and processing wastes (FW) with sewage sludge (SS), that is, municipal wastewater treatment plant primary sludge and waste activated sludge. Bench scale mesophilic anaerobic reactors were fed intermittently with varying ratio of SS and FW and operated at a hydraulic retention time of 20 days and organic loading of 2.0 kg TS/m3·d. The specific biogas production (SBP) increased by 25% to 50% with the addition of 1%–5% FW to SS which is significantly higher than the SBP from SS of 284 ± 9.7 mLN/g VS added. Although the TS, VS, and tCOD removal slightly increased, the biogas yield and methane content improved significantly and no inhibitory effects were observed as indicated by the stable pH throughout the experiment. Metal screening of the digestate suggested the biosolids meet the guidelines for use as a soil conditioner. Batch biochemical methane potential tests at different ratios of SS : FW were used to determine the optimum ratio using surface model analysis. The results showed that up to 47-48% FW can be codigested with SS. Overall these results confirm that codigestion has great potential in improving the methane yield of SS. PMID:27689091

  16. Kinetics of para-nitrophenol and chemical oxygen demand removal from synthetic wastewater in an anaerobic migrating blanket reactor.

    Science.gov (United States)

    Kuşçu, Ozlem Selçuk; Sponza, Delia Teresa

    2009-01-30

    A laboratory scale anaerobic migrating blanket reactor (AMBR) was operated at different HRTs (1-10.38 days) in order to determine the para-nitrophenol (p-NP) and COD removal kinetic constants. The reactor was fed with 40 mg L(-1)p-NP and 3000 mg L(-1) glucose-COD. Modified Stover-Kincannon and Grau second-order kinetic models were applied to the experimental data. The predicted p-NP and COD concentrations were calculated using the kinetic constants. It was found that these data were in better agreement with the observed ones in the modified Stover-Kincannon compared to Grau second-order model. The kinetic constants calculated according to Stover-Kincannon model are as follows: the saturation value constant (K(B)) and maximum utilization rate constants (R(max)) were found as 31.55 g CODL(-1)day(-1), 29.49 g CODL(-1)day(-1) for COD removal and 0.428 g p-NPL(-1)day(-1), 0.407 g p-NPL(-1)day(-1) for p-NP removal, respectively (R(2)=1). The values of (a) and (b) were found to be 0.096 day and 1.071 (dimensionless) with high correlation coefficients of R(2)=0.85 for COD removal. Kinetic constants for specific gas production rate were evaluated using modified Stover-Kincannon, Van der Meer and Heerrtjes and Chen and Hasminoto models. It was shown that Stover-Kincannon model is more appropriate for calculating the effluent COD, p-NP concentrations in AMBR compared to the other models. The maximum specific biogas production rate, G(max), and proportionality constant, G(B), were found to be 1666.7 mL L(-1) day(-1) and 2.83 (dimensionless), respectively in modified Stover-Kincannon gas model. The bacteria had low Haldane inhibition constants (K(ID)=14 and 23 mg L(-1)) for p-NP concentrations higher than 40 mg L(-1) while the half velocity constant (K(s)) increased from 10 to 60 and 118 mg L(-1) with increasing p-NP concentrations from 40 to 85 and 125 mg L(-1).

  17. Microbiological characterization and specific methanogenic activity of anaerobe sludges used in urban solid waste treatment

    International Nuclear Information System (INIS)

    This study presents the microbiological characterization of the anaerobic sludge used in a two-stage anaerobic reactor for the treatment of organic fraction of urban solid waste (OFUSW). This treatment is one alternative for reducing solid waste in landfills at the same time producing a biogas (CH4 and CO2) and an effluent that can be used as biofertilizer. The system was inoculated with sludge from a wastewater treatment plant (WWTP) (Rio Frio Plant in Bucaramanga-Colombia) and a methanogenic anaerobic digester for the treatment of pig manure (Mesa de los Santos in Santander). Bacterial populations were evaluated by counting groups related to oxygen sensitivity, while metabolic groups were determined by most probable number (MPN) technique. Specific methanogenic activity (SMA) for acetate, formate, methanol and ethanol substrates was also determined. In the acidogenic reactor (R1), volatile fatty acids (VFA) reached values of 25,000 mg L-1 and a concentration of CO2 of 90%. In this reactor, the fermentative population was predominant (105-106 MPN mL-1). The acetogenic population was (105 MPN mL-1) and the sulphate-reducing population was (104-105 MPN mL-1). In the methanogenic reactor (R2), levels of CH4 (70%) were higher than CO2 (25%), whereas the VFA values were lower than 4000 mg L-1. Substrate competition between sulphate-reducing (104-105 MPN mL-1) and methanogenic bacteria (105 MPN mL-1) was not detected. From the SMA results obtained, acetoclastic (2.39 g COD-CH4 g-1 VSS-1 day-1) and hydrogenophilic (0.94 g COD-CH4 g-1 VSS-1 day-1) transformations as possible metabolic pathways used by methanogenic bacteria is suggested from the SMA results obtained. Methanotrix sp., Methanosarcina sp., Methanoccocus sp. and Methanobacterium sp. were identified

  18. The efficiency of concentration methods used to detect enteric viruses in anaerobically digested sludge

    Directory of Open Access Journals (Sweden)

    Tatiana Prado

    2013-02-01

    Full Text Available The presence of enteric viruses in biosolids can be underestimated due to the inefficient methods (mainly molecular methods used to recover the viruses from these matrices. Therefore, the goal of this study was to evaluate the different methods used to recover adenoviruses (AdV, rotavirus species A (RVA, norovirus genogroup II (NoV GII and the hepatitis A virus (HAV from biosolid samples at a large urban wastewater treatment plant in Brazil after they had been treated by mesophilic anaerobic digestion. Quantitative polymerase chain reaction (PCR was used for spiking experiments to compare the detection limits of feasible methods, such as beef extract elution and ultracentrifugation. Tests were performed to detect the inhibition levels and the bacteriophage PP7 was used as an internal control. The results showed that the inhibitors affected the efficiency of the PCR reaction and that beef extract elution is a suitable method for detecting enteric viruses, mainly AdV from biosolid samples. All of the viral groups were detected in the biosolid samples: AdV (90%, RVA, NoV GII (45% and HAV (18%, indicating the viruses' resistance to the anaerobic treatment process. This is the first study in Brazil to detect the presence of RVA, AdV, NoV GII and HAV in anaerobically digested sludge, highlighting the importance of adequate waste management.

  19. Methane Production from Rice Straw Hydrolysate Treated with Dilute Acid by Anaerobic Granular Sludge.

    Science.gov (United States)

    Cheng, Jing-Rong; Liu, Xue-Ming; Chen, Zhi-Yi

    2016-01-01

    The traditional anaerobic digestion process of straw to biogas faces bottlenecks of long anaerobic digestion time, low digestion rate, less gas production, etc., while straw hydrolysate has the potential to overcome these drawbacks. In this study, the dilute sulphuric acid-treated hydrolysate of rice straw (DSARSH) containing high sulfate was firstly proved to be a feasible substrate for methane production under mesophilic digestion by granular sludge within a short digestion time. Batch anaerobic digestion process was operated under different initial chemical oxygen demand (COD) values at temperature of 37 °C with the pH of 8.5. Among the initial COD values ranging from 3000 to 11,000 mg/L, 5000 mg/L was proved to be the most appropriate considering high COD removal efficiency (94.17 ± 1.67 %), CH4 content (65.52 ± 3.12 %), and CH4 yield (0.346 ± 0.008 LCH4/g COD removed) within 120 h. Furthermore, when the studied system operated at the initial COD of 5000 mg/L, the sulfate removal ratio could reach 56.28 %.

  20. Methane Production from Rice Straw Hydrolysate Treated with Dilute Acid by Anaerobic Granular Sludge.

    Science.gov (United States)

    Cheng, Jing-Rong; Liu, Xue-Ming; Chen, Zhi-Yi

    2016-01-01

    The traditional anaerobic digestion process of straw to biogas faces bottlenecks of long anaerobic digestion time, low digestion rate, less gas production, etc., while straw hydrolysate has the potential to overcome these drawbacks. In this study, the dilute sulphuric acid-treated hydrolysate of rice straw (DSARSH) containing high sulfate was firstly proved to be a feasible substrate for methane production under mesophilic digestion by granular sludge within a short digestion time. Batch anaerobic digestion process was operated under different initial chemical oxygen demand (COD) values at temperature of 37 °C with the pH of 8.5. Among the initial COD values ranging from 3000 to 11,000 mg/L, 5000 mg/L was proved to be the most appropriate considering high COD removal efficiency (94.17 ± 1.67 %), CH4 content (65.52 ± 3.12 %), and CH4 yield (0.346 ± 0.008 LCH4/g COD removed) within 120 h. Furthermore, when the studied system operated at the initial COD of 5000 mg/L, the sulfate removal ratio could reach 56.28 %. PMID:26378012

  1. Combined carbon and nitrogen removal in integrated anaerobic/anoxic sludge bed reactors for the treatment of domestic sewage

    NARCIS (Netherlands)

    Kassab, G.

    2009-01-01

    The main objective of this research is to assess the applicability and effectiveness of integrating anaerobic digestion and denitrification processes in a single sludge system. The integrated concept is of particular interest for the treatment of highstrength domestic wastewater and is accomplished

  2. Two-step upflow anaerobic sludge bed system for sewage treatment under subtropical conditions with posttreatment in waste stabilization ponds

    NARCIS (Netherlands)

    Seghezzo, L.; Trupiano, A.P.; Liberal, V.; Todd, P.G.; Figueroa, M.E.; Gutierrez, M.A.; Silva Wilches, Da A.C.; Iribarnegaray, M.; Guerra, R.G.; Arena, A.; Cuevas, C.M.; Zeeman, G.; Lettinga, G.

    2003-01-01

    A pilot-scale sewage treatment system consisting of two upflow anaerobic sludge bed (UASB) reactors followed by five waste stabilization ponds (WSPs) in series was studied under subtropical conditions. The first UASB reactor started up in only 1 mo (stable operation, high chemical oxygen demand [COD

  3. Evaluation of size exclusion chromatography (SEC) for the characterization of extracellular polymeric substances (EPS) in anaerobic granular sludges

    NARCIS (Netherlands)

    Simon, S.; Pairo, B.; Villain, M.; Abzac, D' P.; Hullebusch, E.; Lens, P.N.L.; Guibaud, G.

    2009-01-01

    The extracellular polymeric substances (EPS) extracted from three granular and one flocculant anaerobic sludges were characterised by size exclusion chromatography (SEC) using two serially linked chromatographic columns in order to obtain more detailed chromatograms. A Superdex peptide 10/300 GL (0.

  4. Anaerobic phosphate release from activated sludge with enhanced biological phosphorus removal. A possible mechanism of intracellular pH control

    Energy Technology Data Exchange (ETDEWEB)

    Bond, P.L.; Keller, J.; Blackall, L.L. [Univ. of Queensland, Brisbane (Australia)

    1999-06-05

    The biochemical mechanisms of the wastewater treatment process known as enhanced biological phosphorus removal (EBPR) are presently described in a metabolic model. The authors investigated details of the EBPR model to determine the nature of the anaerobic phosphate release and how this may be metabolically associated with polyhydroxyalkanoate (PHA) formation. Iodoacetate, an inhibitor of glycolysis, was found to inhibit the anaerobic formation of PHA and phosphate release, supporting the pathways proposed in the EBPR metabolic model. In the metabolic model, it is proposed that polyphosphate degradation provides energy for the microorganisms in anaerobic regions of these treatment systems. Other investigations have shown that anaerobic phosphate release depends on the extracellular pH. The authors observed that when the intracellular pH of EBPR sludge was raised, substantial anaerobic phosphate release was caused without volatile fatty acid (VFA) uptake. Acidification of the sludge inhibited anaerobic phosphate release even in the presence of VFA. from these observations, the authors postulate that an additional possible role of anaerobic polyphosphate degradation in EBPR is for intracellular pH control. Intracellular pH control may be a metabolic feature of EBPR, not previously considered, that could have some use in the control and optimization of EBPR.

  5. Two-stage anaerobic and post-aerobic mesophilic digestion of sewage sludge: Analysis of process performance and hygienization potential.

    Science.gov (United States)

    Tomei, M Concetta; Mosca Angelucci, Domenica; Levantesi, Caterina

    2016-03-01

    Sequential anaerobic-aerobic digestion has been demonstrated to be effective for enhanced sludge stabilization, in terms of increased solid reduction and improvement of sludge dewaterability. In this study, we propose a modified version of the sequential anaerobic-aerobic digestion process by operating the aerobic step under mesophilic conditions (T=37 °C), in order to improve the aerobic degradation kinetics of soluble and particulate chemical oxygen demand (COD). Process performance has been assessed in terms of "classical parameters" such as volatile solids (VS) removal, biogas production, COD removal, nitrogen species, and polysaccharide and protein fate. The aerobic step was operated under intermittent aeration to achieve nitrogen removal. Aerobic mesophilic conditions consistently increased VS removal, providing 32% additional removal vs. 20% at 20 °C. Similar results were obtained for nitrogen removal, increasing from 64% up to 99% at the higher temperature. Improved sludge dewaterability was also observed with a capillary suction time decrease of ~50% during the mesophilic aerobic step. This finding may be attributable to the decreased protein content in the aerobic digested sludge. The post-aerobic digestion exerted a positive effect on the reduction of microbial indicators while no consistent improvement of hygienization related to the increased temperature was observed. The techno-economic analysis of the proposed digestion layout showed a net cost saving for sludge disposal estimated in the range of 28-35% in comparison to the single-phase anaerobic digestion. PMID:26760266

  6. High-solids anaerobic digestion of municipal sludge pretreated by thermal hydrolysis.

    Science.gov (United States)

    Jolis, Domènec

    2008-07-01

    High-solids anaerobic digestion can consistently achieve 55 to 60% volatile solids destruction after thermal hydrolysis pretreatment, which reduces its viscosity and increases the fraction of soluble organic matter. For feed sludge with total solids concentrations between 6.8 and 8.2%, the process is stable at hydraulic retention times of 9 to 12 days, significantly increasing the treatment capacity of existing digesters or, in treatment plants without spare capacity, helping to postpone, reduce, or even avoid costly infrastructure investments. Process stability is related to the high concentration of soluble organic matter in the digesters. High-solids temperature-phased digestion appears to be superior to high-solids mesophilic digestion, with respect to process flexibility and stability, biosolids stabilization, and biogas generation, although ammonia inhibition may have occurred. Implementation of high-solids digestion could significantly reduce operation and maintenance costs of solids-handling operations. PMID:18710149

  7. Radiotracer study on the efficiency of a cylindrical 2-stage anaerobic sludge digester

    International Nuclear Information System (INIS)

    Radiotracer experiments were carried out on a cylindrical 2-stage anaerobic sludge digester in order to investigate the improvement of their efficiency by means of RTD (residence time distribution) measurements before and after cleaning up the inside of the digester. The tracer was scandium in an EDTA solution which forms such a stable complex compound to keep the isotope form being adsorbed onto the surface of the pipelines or the wall. It was injected into the digester by pressurized nitrogen gas and its movement was monitored by NaI(Tl) scintillation detectors installed around the digester and recorded for a month by a 24-channel data acquisition system specially developed for radiotracer experiments by the Korea Tracer Group of KAERI. The experimental data was analysed for the MRT (mean residence time) and other parameters characterizing the flow behaviour. (author)

  8. Effect of Ce(3+) on soluble microbial products production in anaerobic granular sludge digestion.

    Science.gov (United States)

    Fu, Bo; Liang, Rui; Xia, Qing; Ding, Lili; Xu, Ke; Ren, Hongqiang

    2011-01-01

    Upflow anaerobic sludge bed reactors fed on glucose were used to investigate the effects of Ce(3+) on soluble microbial products (SMP) production, which is the majority of the residual chemical oxygen demand present in the effluent. It was found that Ce(3+) concentration of 0.05 mg/L had no significant effect on the amount of SMP production, whereas that of 1 mg/L led to the increase in SMP production. The molecular-weight distribution and carbohydrate analysis indicated that an increase in SMP production may be partly attributed to the release of extracellular polymeric substances (EPS) into the bulk solution resulted from cerium toxicity, and the nucleic acids analysis suggested that increased cell lysis also contributed to SMP accumulation in the presence of Ce(3+). The increase in SMP production in the presence of Ce(3+) is possibly a consequence of the release of EPS and increased cell lysis due to cerium toxicity. PMID:22179643

  9. Microbial hydrogen production with Bacillus coagulans IIT-BT S1 isolated from anaerobic sewage sludge.

    Science.gov (United States)

    Kotay, Shireen Meher; Das, Debabrata

    2007-04-01

    Bacillus coagulans strain IIT-BT S1 isolated from anaerobically digested activated sewage sludge was investigated for its ability to produce H(2) from glucose-based medium under the influence of different environmental parameters. At mid-exponential phase of cell growth, H(2) production initiated and reached maximum production rate in the stationary phase. The maximal H(2) yield (2.28 mol H(2)/molglucose) was recorded at an initial glucose concentration of 2% (w/v), pH 6.5, temperature 37 degrees C, inoculum volume of 10% (v/v) and inoculum age of 14 h. Cell growth rate and rate of hydrogen production decreased when glucose concentration was elevated above 2% w/v, indicating substrate inhibition. The ability of the organism to utilize various carbon sources for H(2) fermentation was also determined.

  10. Optimization of microwave pretreatment conditions to maximize methane production and methane yield in mesophilic anaerobic sludge digestion.

    Science.gov (United States)

    Park, W J; Ahn, J H

    2011-10-01

    The objective of this study was to find optimum microwave pretreatment conditions for methane production and methane yield in anaerobic sludge digestion. The sludge was pretreated using a laboratory-scale industrial microwave unit (2450 MHz frequency). Microwave temperature increase rate (TIR) (2.9-17.1 degrees C/min) and final temperature (FT) (52-108 degrees C) significantly affected solubilization, methane production, and methane yield. Solubilization degree (soluble chemical oxygen demand (COD)/total COD) in the pretreated sludge (3.3-14.7%) was clearly higher than that in the raw sludge (2.6%). Within the design boundaries, the optimum conditions for maximum methane production (2.02 L/L) were TIR = 9.1 degrees C/min and FT = 90 degrees C, and the optimum conditions for maximum methane yield (809 mL/g VS(removed)) were TIR 7.1 degrees C/min and FT = 92 degrees C.

  11. Fate of antibiotic resistance bacteria and genes during enhanced anaerobic digestion of sewage sludge by microwave pretreatment.

    Science.gov (United States)

    Tong, Juan; Liu, Jibao; Zheng, Xiang; Zhang, Junya; Ni, Xiaotang; Chen, Meixue; Wei, Yuansong

    2016-10-01

    The fate of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) were investigated during the sludge anaerobic digestion (AD) with microwave-acid (MW-H), microwave (MW) and microwave-H2O2-alkaline (MW-H2O2) pretreatments. Results showed that combined MW pretreatment especially for the MW-H pretreatment could efficiently reduce the ARB concentration, and most ARG concentrations tended to attenuate during the pretreatment. The subsequent AD showed evident removal of the ARB, but most ARGs were enriched after AD. Only the concentration of tetX kept continuous declination during the whole sludge treatment. The total ARGs concentration showed significant correlation with 16S rRNA during the pretreatment and AD. Compared with unpretreated sludge, the AD of MW and MW-H2O2 pretreated sludge presented slightly better ARB and ARGs reduction efficiency. PMID:26970692

  12. Anaerobic Removal of Trace Organic Contaminants in Sewage Sludge: 15 Years of Experience

    Institute of Scientific and Technical Information of China (English)

    M. BARRET; L. DELGADILLO-MIRQUEZ; E. TRABLY; N. DELGENES; F. BRAUN; G. CEA-BARCIA; J. P. STEYER; D. PATUREAU

    2012-01-01

    Trace organic contaminants (TOCs) correspond to a broad range of molecules generated either directly or indirectly by human activity.Even though TOCs are found at low concentrations in the environment,they often accumulate by biomagnification and bioaccumulation into biological organisms and cause irreversible damages in biological systems through direct or indirect toxic effects such as endocrine disruption and tumour initiation.This manuscript presents the main findings of over fifteen years of research focusing on biological removal of various TOCs found in sewage sludge from urban treatment plants.A special focus of the research was made on microbial processes in complex anaerobic ecosystems.Four families of compounds mostly retrieved in urban plants were studied:the polycyclic aromatic hydrocarbons (PAHs),the polychlorobiphenyls (PCBs),the phthalic acid esters (PAEs),and the nonylphenol ethoxylates (NPEs).It was observed that the microbial capability for removing low amounts of TOCs required a long adaptation time and was often limited by the bioavailability of these compounds.In fact,the overall biodegradation resulted from the numerous interactions existing between the matrix (organic matter) and the microbial ecosystems according to the physico-chemical sorption properties of these compounds.Mechanistic aspects were also tackled in depth and specific models were developed for better understanding the network of interactions between TOCs,microorganisms,and organic matter.These findings could be extrapolated to other ecosystems such as soils and sediments.Finally,it was shown that microbial cometabolism was essential for TOC removal,and the concept of bioavailability was not only dependent on the nature,the level,and the sorption properties of TOCs but was alsostrongly dependent on the nature and the concentration of the sludge organic matter.Specific parameters were proposed for better evaluating the fate of TOCs in microbial anaerobic processes and

  13. Performance of a microbial fuel cell-based biosensor for online monitoring in an integrated system combining microbial fuel cell and upflow anaerobic sludge bed reactor.

    Science.gov (United States)

    Jia, Hui; Yang, Guang; Wang, Jie; Ngo, Huu Hao; Guo, Wenshan; Zhang, Hongwei; Zhang, Xinbo

    2016-10-01

    A hybrid system integrating a microbial fuel cell (MFC)-based biosensor with upflow anaerobic sludge blanket (UASB) was investigated for real-time online monitoring of the internal operation of the UASB reactor. The features concerned were its rapidity and steadiness with a constant operation condition. In addition, the signal feedback mechanism was examined by the relationship between voltage and time point of changed COD concentration. The sensitivity of different concentrations was explored by comparing the signal feedback time point between the voltage and pH. Results showed that the electrical signal feedback was more sensitive than pH and the thresholds of sensitivity were S=3×10(-5)V/(mg/L) and S=8×10(-5)V/(mg/L) in different concentration ranges, respectively. Although only 0.94% of the influent COD was translated into electricity and applied for biosensing, this integrated system indicated great potential without additional COD consumption for real-time monitoring. PMID:27372008

  14. Performance of anaerobic membrane bioreactor during digestion and thickening of aerobic membrane bioreactor excess sludge.

    Science.gov (United States)

    Hafuka, Akira; Mimura, Kazuhisa; Ding, Qing; Yamamura, Hiroshi; Satoh, Hisashi; Watanabe, Yoshimasa

    2016-10-01

    In this study, we evaluated the performance of an anaerobic membrane bioreactor in terms of digestion and thickening of excess sludge from an aerobic membrane bioreactor. A digestion reactor equipped with an external polytetrafluoroethylene tubular microfiltration membrane module was operated in semi-batch mode. Solids were concentrated by repeated membrane filtration and sludge feeding, and their concentration reached 25,400mg/L after 92d. A high chemical oxygen demand (COD) removal efficiency, i.e., 98%, was achieved during operation. A hydraulic retention time of 34d and a pulse organic loading rate of 2200mg-COD/(L-reactor) gave a biogas production rate and biogas yield of 1.33L/(reactor d) and 0.08L/g-CODinput, respectively. The external membrane unit worked well without membrane cleaning for 90d. The transmembrane pressure reached 25kPa and the filtration flux decreased by 80% because of membrane fouling after operation for 90d. PMID:27394993

  15. Testing the Fertilizer Effect of Compost Produced by Anaerobic Fermentation of Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Benoni Lixandru

    2010-10-01

    Full Text Available The compost tested in this study resulted from the anaerobic fermentation process of sewage sludge with cereal straw. Processing and post-treatment were made by Biotechnological Research Centre within INCD ECOIND from Bucharest. Experimental program included testing the effect of fertilizer in quantities of 25 t, 50 t and 100 t compost / ha on the production of soya beans. It was also investigated the influence of the combination of fertilization with compost and inorganic fertilization with levels of 200 kg, respectively, 400 kg NPK / ha. Was analyzed the following productivity indicators: plant density, number of floors of pods, number and weight of pods and total beans production, in full ripening stage. In the case of fertilization only with composted sludge, production of peas and beans was higher in variants with 50 t / ha and 100 t / ha (2095 kg and 1990 kg grain / ha. Therefore, doubling the amount of compost does not provide corresponding increase yields of soybeans. Combining organic and inorganic fertilization determine a proportional production increase only for the total biomass production. The tested compost is a good organic fertilizer and the amount that provides the greatest soybeans production is 50 t / ha.

  16. Remove and recover phosphorus during anaerobic digestion of excess sludge by adding waste iron scrap

    Directory of Open Access Journals (Sweden)

    Zheng Wei

    2013-01-01

    Full Text Available In the current investigation, the feasibility of phosphorus removal in the anaerobic digestion of excess sludge by adding waste iron scrap (WIS was studied. The results show that the removal efficiency of phosphorus increases with the amount of WIS, and the maximum removal efficiency could reach 39%, 93% and 99% at WIS dosages of 1, 2 and 3 g/L, respectively. Sterilization greatly decreases the removal efficiency of phosphorus, having only -6%, 53% and 64% at WIS dosages of 1, 2 and 3 g/L, respectively. This means that iron-reducing bacteria and hydrolytic bacteria enhance 45%, 40% and 35% of phosphorus removal at WIS dosages of 1, 2 and 3 g/L, respectively. The first and the most important mechanism of phosphorus removal using WIS is hydrolytic bacteria, which reduce the pH of sludge to corrode the WIS, followed by precipitation of phosphorus by ferrous iron generated from the iron-reducing bacteria. Phosphorus adsorption onto the WIS is the second probable mechanism. The removed phosphorus is recovered up to 56% using magnet. This method is characterized by high removal efficiency, easy and steady operation, low cost, recovery and reuse, making it better than other physical and chemical treatments.

  17. Innovative two-stage mesophilic/thermophilic anaerobic degradation of sonicated sludge: performances and energy balance.

    Science.gov (United States)

    Gianico, A; Braguglia, C M; Gallipoli, A; Mininni, G

    2015-05-01

    This study investigates for the first time, on laboratory scale, the possible application of an innovative enhanced stabilization process based on sequential mesophilic/thermophilic anaerobic digestion of waste-activated sludge, with low-energy sonication pretreatment. The first mesophilic digestion step was conducted at short hydraulic retention time (3-5 days), in order to favor volatile fatty acid production, followed by a longer thermophilic step of 10 days to enhance the bioconversion kinetics, assuring a complete pathogen removal. The high volatile solid removals, up to 55%, noticeably higher compared to the performances of a single-stage process carried out in same conditions, can guarantee the stability of the final digestate for land application. The ultrasonic pretreatment influenced significantly the fatty acid formation and composition during the first mesophilic step, improving consequently the thermophilic conversion of these compounds into methane. Methane yield from sonicated sludge digestion reached values up to 0.2 Nm(3)/kgVSfed. Positive energy balances highlighted the possible exploitation of this innovative two-stage digestion in place of conventional single-stage processes. PMID:24906832

  18. Treatment of anaerobic sludge digester effluents by the CANON process in an air pulsing SBR

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez-Padin, J.R., E-mail: jose.vazquez.padin@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Lope Gomez de Marzoa, s/n, E-15782 (Spain); Pozo, M.J. [Environmental Department, National Polytechnic School, Ladron de Guevara E11-253, Quito (Ecuador); Jarpa, M. [Environmental Science Center EULA-Chile, University of Concepcion, P.O. Box 160-C, Concepcion (Chile); Figueroa, M.; Franco, A.; Mosquera-Corral, A.; Campos, J.L.; Mendez, R. [Department of Chemical Engineering, University of Santiago de Compostela, Lope Gomez de Marzoa, s/n, E-15782 (Spain)

    2009-07-15

    The CANON (Completely Autotrophic Nitrogen removal Over Nitrite) process was successfully developed in an air pulsing reactor type SBR fed with the supernatant from an anaerobic sludge digester and operated at moderately low temperatures (18-24 {sup o}C). The SBR was started up as a nitrifying reactor, lowering progressively the dissolved oxygen concentration until reaching partial nitrification. Afterwards, an inoculation with sludge containing Anammox biomass was carried out. Nitrogen volumetric removal rates of 0.25 g N L{sup -1} d{sup -1} due to Anammox activity were measured 35 d after inoculation even though the inoculum constituted only 8% (w/w) of the biomass present in the reactor and it was poorly enriched in Anammox bacteria. The maximal nitrogen removal rate was of 0.45 g N L{sup -1} d{sup -1}. By working at a dissolved oxygen concentration of 0.5 mg L{sup -1} in the bulk liquid, nitrogen removal percentages up to 85% were achieved. The reactor presented good biomass retention capacity allowing the accumulation of 4.5 g VSS L{sup -1}. The biomass was composed by ammonia oxidizing bacteria (AOB) forming fluffy structures and granules with an average diameter of 1.6 mm. These granules were composed by Anammox bacteria located in internal anoxic layers surrounded by an external aerobic layer where AOB were placed.

  19. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate

    Science.gov (United States)

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-01

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d-1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.

  20. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate

    Science.gov (United States)

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-01

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d‑1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.

  1. Enhancement of thermophilic anaerobic digestion of thickened waste activated sludge by combined microwave and alkaline pretreatment

    Institute of Scientific and Technical Information of China (English)

    Yongzhi Chi; Yuyou Li; Xuening Fei; Shaopo Wang; Hongying Yun

    2011-01-01

    Pretreatment of thickened waste activated sludge (TWAS) by combined microwave and alkaline pretreatment (MAP) was studied to improve thermophilic anaerobic digestion efficiency.Uniform design was applied to determine the combination of target temperature (110-210℃),microwave holding time (1-51 min),and NaOH dose (0-2.5 g NaOH/g suspended solids (SS)) in terms of their effect on volatile suspended solids (VSS) solubilization.Maximum solubilization ratio (85.1%) of VSS was observed at 210℃ with 0.2 g-NaOH/g-SS and 35 min holding time.The effects of 12 different pretreatment methods were investigated in 28 thermophilic batch reactors by monitoring cumulative methane production (CMP).Improvements in methane production in the TWAS were directly related to the microwave and alkaline pretreatment of the sludge.The highest CMP was a 27% improvement over the control.In spite of the increase in soluble chemical oxygen demand concentration and the decrease in dewaterability of digested sludge,a semi-continuous thennophilic reactor fed with pretreated TWAS without neutralization (at 170℃ with 1 rain holding time and 0.05 g NaOH/g SS) was stable and functioned well,with volatile solid (VS) and total chemical oxygen demand (TCOD) reductions of 28% and 18%,respectively,which were higher than those of the control system.Additionally,methane yields (L@STP/g-CODadded,at standard temperature and pressure (STP) conditions of 0℃ and 101.325 kPa) and (L@STP/g VSadded) increased by 17% and 13%,respectively,compared to the control reactor.

  2. Toxicity assessment of inorganic nanoparticles to acetoclastic and hydrogenotrophic methanogenic activity in anaerobic granular sludge.

    Science.gov (United States)

    Gonzalez-Estrella, Jorge; Sierra-Alvarez, Reyes; Field, James A

    2013-09-15

    Release of engineered nanoparticles (NPs) to municipal wastewater from industrial and residential sources could impact biological systems in wastewater treatment plants. Methanogenic inhibition can cause failure of anaerobic waste(water) treatment. This study investigated the inhibitory effect of a wide array of inorganic NPs (Ag(0), Al₂O₃, CeO₂, Cu(0), CuO, Fe(0), Fe₂O₃, Mn₂O₃, SiO₂, TiO₂, and ZnO supplied up to 1500 mgL(-1)) to acetoclastic and hydrogenotrophic methanogenic activity of anaerobic granular sludge. Of all the NPs tested, only Cu(0) and ZnO caused severe methanogenic inhibition. The 50% inhibiting concentrations determined towards acetoclastic and hydrogenotrophic methanogens were 62 and 68 mgL(-1) for Cu(0) NP; and 87 and 250 mgL(-1) for ZnO NP, respectively. CuO NPs also caused inhibition of acetoclastic methanogens. Cu(2+) and Zn(2+) salts caused similar levels of inhibition as Cu(0) and ZnO NPs based on equilibrium soluble metal concentrations measured during the assays, suggesting that the toxicity was due to the release of metal ions by NP-corrosion. A commercial dispersant, Dispex, intended to increase NP stability did not affect the inhibitory impact of the NPs. The results taken as a whole suggest that Zn- and Cu-containing NPs can release metal ions that are inhibitory for methanogenesis.

  3. Characteristics of fermentative hydrogen production with Klebsiella pneumoniae ECU-15 isolated from anaerobic sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Kun; Zhang, Xu; Tan, Wen-Song; Zhu, Ming-Long [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China)

    2010-01-15

    Klebsiella pneumoniae ECU-15 (EU360791), which was isolated from anaerobic sewage sludge, was investigated in this paper for its characteristics of fermentative hydrogen production. It was found that the anaerobic condition favored hydrogen production than that of the micro-aerobic condition. Culture temperature and pH of 37 C and 6.0 were the most favorable for the hydrogen production. The strain could grow in several kinds of monosaccharide and disaccharide, as well as the complicated corn stalk hydrolysate, with the best results exhibited in glucose. The maximum hydrogen production rate and yield of 482 ml/l/h and 2.07 mol/mol glucose were obtained at initial glucose concentration of 30 g/L and 5 g/L, respectively. Fermentation results in the diluent corn stalk hydrolysate showed that cell growth was not inhibited. However, the hydrogen production of 0.65 V/V was relatively lower than that of the glucose (1.11 V/V), which was mainly due to the interaction between xylose and glucose. (author)

  4. The integration of methanogenesis with denitrification and anaerobic ammonium oxidation in an expanded granular sludge bed reactor

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The integration of methanogenesis with denitrification and anaerobic ammonium oxidation(ANAMMOX) was studied in an expanded granular sludge bed(EGSB) reactor in this work. Experimental results from the continuous treatment of wastewater with nitrite and ammonium, which lasted for 107 days, demonstrated that wastewater with high nitrite and ammonium could be anaerobically treated in an expanded granular sludge bed reactor. More than 91% to 97% of COD were removed at up to about 3.9 g COD/(L@d) of COD volumetric loading rate. More than 97% to 100% of nitrite was denitrified at up to about 0.8g NO2-N/(L@d), which is 16 times higher than that in a conventional activated sludge system with nitrification/denitrification(0.05g N/((L@d). No dissimilatory reduction of nitrite to ammonium occurred in the process. However, maximum of about 40% ammonium was found to be lost. Batch tests of 15 days with sludge from the reactor showed that 100% of nitrite was denitrified completely, and about 3% of ammonium was removed when only ammonium (34.3 mg/L) and nitrite(34.3 mg/L) were added into the sludge suspension medium. Furthermore, about 15% of ammonium amounts were lost with organic COD addition. It suggested that the methanogenesis in the system could enhance ANAMMOX because of intermediate hydrogen produced during methanogenesis.

  5. Effect of gamma radiation on yields of methane gas from the anaerobic bacterial digestion of sewage sludge

    International Nuclear Information System (INIS)

    The present study was designed to determine enhancement of methane production when radiation was used in conjunction with microbial action. Researchers theorized that radiation degradation of the raw material might produce methane via scission of some methyl group bonding to increase yields directly, but that most enhancement would result from breakdown of the original structures to simpler species which could then be attacked and converted to methane by the microorganisms. In normal microbiological degradations, some 40 to 60% of the material remains unaffected, producing a limited methane yield as well as posing potential disposal problems. Several conclusions can be stated as a result of the experiments in this research program. Treatment of anaerobically digested sewage sludge with gamma radiation from a cobalt 60 source for 24 hours at a dose of approximately 0.4 M rad per hour produces very little methane from direct scission of the organic material in the sludge. Sludge suspensions treated with the same radiation dose in the presence of excess oxygen consistenly increased gas yield, up to 50%, from anaerobic bacterial digestion. Gas production increased up to 16% when air-dried sludge was treated in an air atmosphere. When sludge suspensions were treated with a restricted access to air, decreases in gas production, though small (up to 26%), were noted in every case

  6. Enhancement of sludge anaerobic biodegradability by combined microwave-H2O2 pretreatment in acidic conditions.

    Science.gov (United States)

    Eswari, Parvathy; Kavitha, S; Kaliappan, S; Yeom, Ick-Tae; Banu, J Rajesh

    2016-07-01

    The aim of this study was to increase the sludge disintegration and reduce the cost of microwave (MW) pretreatment. Thermodynamic analysis of MW hydrolysis revealed the best fit with a first-order kinetic model at a specific energy of 18,600 kJ/kg total solids (TS). Combining H2O2 with MW resulted in a significant increment in solubilization from 30 to 50 % at 18,600 kJ/kg TS. The pH of H2O2-assisted MW-pretreated sludge (MW + H2O2) was in the alkaline range (pH 9-10), and it made the sludge unfavorable for subsequent anaerobic digestion and inhibits methane production. In order to nullify the alkaline effect caused by the MW + H2O2 combination, the addition of acid was considered for pH adjustment. H2O2-assisted MW-pretreated sludge in acidic conditions (MW + H2O2 + acid) showed a maximum methane production of 323 mL/g volatile solids (VS) than others during anaerobic biodegradability. A cost analysis of this study reveals that MW + H2O2 + acid was the most economical method with a net profit of 59.90 €/t of sludge. PMID:27026550

  7. Hybrid alkali-hydrodynamic disintegration of waste-activated sludge before two-stage anaerobic digestion process.

    Science.gov (United States)

    Grübel, Klaudiusz; Suschka, Jan

    2015-05-01

    The first step of anaerobic digestion, the hydrolysis, is regarded as the rate-limiting step in the degradation of complex organic compounds, such as waste-activated sludge (WAS). The aim of lab-scale experiments was to pre-hydrolyze the sludge by means of low intensive alkaline sludge conditioning before applying hydrodynamic disintegration, as the pre-treatment procedure. Application of both processes as a hybrid disintegration sludge technology resulted in a higher organic matter release (soluble chemical oxygen demand (SCOD)) to the liquid sludge phase compared with the effects of processes conducted separately. The total SCOD after alkalization at 9 pH (pH in the range of 8.96-9.10, SCOD = 600 mg O2/L) and after hydrodynamic (SCOD = 1450 mg O2/L) disintegration equaled to 2050 mg/L. However, due to the synergistic effect, the obtained SCOD value amounted to 2800 mg/L, which constitutes an additional chemical oxygen demand (COD) dissolution of about 35 %. Similarly, the synergistic effect after alkalization at 10 pH was also obtained. The applied hybrid pre-hydrolysis technology resulted in a disintegration degree of 28-35%. The experiments aimed at selection of the most appropriate procedures in terms of optimal sludge digestion results, including high organic matter degradation (removal) and high biogas production. The analyzed soft hybrid technology influenced the effectiveness of mesophilic/thermophilic anaerobic digestion in a positive way and ensured the sludge minimization. The adopted pre-treatment technology (alkalization + hydrodynamic cavitation) resulted in 22-27% higher biogas production and 13-28% higher biogas yield. After two stages of anaerobic digestion (mesophilic conditions (MAD) + thermophilic anaerobic digestion (TAD)), the highest total solids (TS) reduction amounted to 45.6% and was received for the following sample at 7 days MAD + 17 days TAD. About 7% higher TS reduction was noticed compared with the sample after 9

  8. Thermal pre-treatment of primary and secondary sludge at 70ºC prior to anaerobic digestion

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, H.N.; Lu, Jingquan;

    2005-01-01

    and the methane production during the subsequent anaerobic digestion step at 55 degrees C. It also greatly contributed to the destruction of pathogens present in primary sludge. Finally it results in enhanced microbial activities of the subsequent anaerobic step suggesting that the same efficiencies in organic...... biochemical reactions and higher growth rate of microorganisms resulting in an increased methanogenic potential at lower hydraulic retention times. Furthermore, thermal pre-treatment is suitable for the improvement of stabilization and could be realized at relatively low cost especially at low temperatures...

  9. Treatment of anaerobically pre-treated domestic sewage by a rotating biological contactor

    NARCIS (Netherlands)

    Tawfik, A.; Klapwijk, A.; el-Gohary, F.; Lettinga, G.

    2002-01-01

    The performance of a rotating biological contactor (RBC) for the post-treatment of the effluent of an up-flow anaerobic sludge blanket (UASB) was the subject of this study. Different hydraulic and organic loading rates have been investigated. The removal efficiencies of CODtotal, CODsuspended, CODco

  10. Polyurethane rotating disc system for post-treatment of anaerobically pre-treated sewage

    NARCIS (Netherlands)

    Tawfik, A.; Klapwijk, A.

    2010-01-01

    The performance of polyurethane rotating discs (RBC-1) versus polystyrene rotating discs (RBC-2) for the treatment of an up-flow anaerobic sludge blanket (UASB) reactor effluent fed with domestic wastewater was investigated. Both RBC units were operated at the same organic loading rate (OLR) of 10.5

  11. Comparison of long-term performances and final microbial compositions of anaerobic reactors treating landfill leachate

    NARCIS (Netherlands)

    Calli, B.; Mertoglu, B.; Roest, C.; Inanc, B.

    2006-01-01

    Laboratory scale anaerobic upflow filter, sludge blanket and hybrid bed reactors were operated for 860 days in the treatment of high ammonia landfill leachate. Organic loading was gradually increased from 1.3 to 23.5 kg COD/m3 day in the start-up period and then fluctuated according to the COD conce

  12. Sorption and release of organics by primary, anaerobic, and aerobic activated sludge mixed with raw municipal wastewater.

    Science.gov (United States)

    Modin, Oskar; Saheb Alam, Soroush; Persson, Frank; Wilén, Britt-Marie

    2015-01-01

    New activated sludge processes that utilize sorption as a major mechanism for organics removal are being developed to maximize energy recovery from wastewater organics, or as enhanced primary treatment technologies. To model and optimize sorption-based activated sludge processes, further knowledge about sorption of organics onto sludge is needed. This study compared primary-, anaerobic-, and aerobic activated sludge as sorbents, determined sorption capacity and kinetics, and investigated some characteristics of the organics being sorbed. Batch sorption assays were carried out without aeration at a mixing velocity of 200 rpm. Only aerobic activated sludge showed net sorption of organics. Sorption of dissolved organics occurred by a near-instantaneous sorption event followed by a slower process that obeyed 1st order kinetics. Sorption of particulates also followed 1st order kinetics but there was no instantaneous sorption event; instead there was a release of particles upon mixing. The 5-min sorption capacity of activated sludge was 6.5±10.8 mg total organic carbon (TOC) per g volatile suspend solids (VSS) for particulate organics and 5.0±4.7 mgTOC/gVSS for dissolved organics. The observed instantaneous sorption appeared to be mainly due to organics larger than 20 kDa in size being sorbed, although molecules with a size of about 200 Da with strong UV absorbance at 215-230 nm were also rapidly removed.

  13. Anaerobic side-stream reactor for excess sludge reduction: 5-year management of a full-scale plant.

    Science.gov (United States)

    Velho, V F; Foladori, P; Andreottola, G; Costa, R H R

    2016-07-15

    The long-term performances of a full-scale anaerobic side-stream reactor (ASSR) aimed at sludge reduction have been monitored for the first time, in comparison with a conventional activated sludge process (CAS). The plant was integrated with an ASSR treatment of 2293-3293 m(3). Operational parameters in the ASSR were: ORP -250 mV, interchange ratio of 7-10%, hydraulic retention time of 7 d. No worsening of effluent quality was observed in the ASSR configuration and removal efficiency of COD and NH4 was above 95%. A slight increase in the Sludge Volume Index did not cause worsening in effluent solids concentration. The observed sludge yield (Yobs) passed from 0.44 kgTSS/kgCOD in the CAS to 0.35 in the ASSR configuration. The reduction of Yobs by 20% is lower than expected from the literature where sythetic wastewater is used, indicating that sludge reduction efficiency is largely affected by inert mass fed with influent real wastewater. An increase by 45% of the ASSR volume did not promote a further reduction of Yobs, because sludge reduction is affected not solely by endogenous decay but also by other factors such as interchange ratio and aerobiosis/anaerobiosis alternation. PMID:27107390

  14. Sorption and release of organics by primary, anaerobic, and aerobic activated sludge mixed with raw municipal wastewater.

    Directory of Open Access Journals (Sweden)

    Oskar Modin

    Full Text Available New activated sludge processes that utilize sorption as a major mechanism for organics removal are being developed to maximize energy recovery from wastewater organics, or as enhanced primary treatment technologies. To model and optimize sorption-based activated sludge processes, further knowledge about sorption of organics onto sludge is needed. This study compared primary-, anaerobic-, and aerobic activated sludge as sorbents, determined sorption capacity and kinetics, and investigated some characteristics of the organics being sorbed. Batch sorption assays were carried out without aeration at a mixing velocity of 200 rpm. Only aerobic activated sludge showed net sorption of organics. Sorption of dissolved organics occurred by a near-instantaneous sorption event followed by a slower process that obeyed 1st order kinetics. Sorption of particulates also followed 1st order kinetics but there was no instantaneous sorption event; instead there was a release of particles upon mixing. The 5-min sorption capacity of activated sludge was 6.5±10.8 mg total organic carbon (TOC per g volatile suspend solids (VSS for particulate organics and 5.0±4.7 mgTOC/gVSS for dissolved organics. The observed instantaneous sorption appeared to be mainly due to organics larger than 20 kDa in size being sorbed, although molecules with a size of about 200 Da with strong UV absorbance at 215-230 nm were also rapidly removed.

  15. Microbial network for waste activated sludge cascade utilization in an integrated system of microbial electrolysis and anaerobic fermentation

    DEFF Research Database (Denmark)

    Liu, Wenzong; He, Zhangwei; Yang, Chunxue;

    2016-01-01

    Background: Bioelectrochemical systems have been considered a promising novel technology that shows an enhanced energy recovery, as well as generation of value-added products. A number of recent studies suggested that an enhancement of carbon conversion and biogas production can be achieved...... in an integrated system of microbial electrolysis cell (MEC) and anaerobic digestion (AD) for waste activated sludge (WAS). Microbial communities in integrated system would build a thorough energetic and metabolic interaction network regarding fermentation communities and electrode respiring communities...

  16. Monitoring of growth and physiological activities of biofilm during succession on polystyrene from activated sludge under aerobic and anaerobic conditions.

    Science.gov (United States)

    Naz, Iffat; Batool, Syeda Ain-ul; Ali, Naeem; Khatoon, Nazia; Atiq, Niama; Hameed, Abdul; Ahmed, Safia

    2013-08-01

    The present research work monitored the successive biofilm development and its catabolic role in the degradation of polystyrene (PS). PS material was artificially colonized with biofilm by incubating it with activated sludge under aerobic and anaerobic conditions. Biofilm formation was monitored by gravimetric weight analysis, spectrophotometric absorbance technique, heterotrophic plate count, and scanning electron microscopy under aerobic and anaerobic conditions. The wet weight (1.59 and 1.17 g) and dry weight (0.41 and 0.08 g) of a biofilm showed a significant constant increase under aerobic and anaerobic conditions, respectively, from first till 9 weeks of incubation. Plate count of the selected bacteria (Escherichia coli, Salmonella typhimurium, Shigella dysenteriae, Pseudomonas aeruginosa) considerably declined (90-99 %) in the biofilm after seventh and fifth weeks of incubation under aerobic and anaerobic conditions, respectively, indicating a positive shift from pathogenic to beneficial microbial community. While most probable number index of fecal coliforms and E. coli in the sludge showed more reduction (98 and 99 %) under aerobic as compare to anaerobic conditions (86 and 91 %) after 9 weeks of biofilm formation on PS cubes. Correspondingly, the decreasing levels of chemical oxygen demand and biochemical oxygen demand (up to 73 %) showed signs of sludge digestion. Scanning electron microscope coupled with energy dispersive X-ray spectroscope revealed nature of PS media containing high carbon content. However, biofilm development proved to be involved in the biochemical transformation of the PS medium as indicated by Fourier transform infrared spectroscopy.

  17. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen.

    Science.gov (United States)

    Lay, J J

    2000-05-01

    The pH and hydraulic retention time (HRT) of a chemostat reactor were varied according to a central composite design methodology with the aim of modeling and optimizing the conversion of starch into hydrogen by microorganisms in an anaerobic digested sludge. Experimental results from 23 runs indicate that a maximum hydrogen production rate of 1600 L/m(3)/d under the organic loading rate of 6 kg starch m(3)/d obtained at pH = 5.2 and HRT = 17 h. Throughout this study, the hydrogen percentage in the biogas was approximately 60% and no methanogenesis was observed. while the reactor was operated with HRT of 17 h, hydrogen was produced within a pH range between 4.7 and 5.7. Alcohol production rate was greater than hydrogen production rate if the pH was lower than 4.3 or higher than 6.1. Supplementary experiments confirm that the optimum conditions evaluated in this study were highly reliable; while a hydrogen production yield of 1.29 l H(2)/g starch-COD was obtained. An examination of the response surfaces, including hydrogen, volatile fatty acids (VFA) and alcohols production, led us to the belief that clostridium sp. predominated in the anaerobic hydrogen-producing microorganisms in this study. Experiment results obtained emphasize that the response of metabolites was a more useful indicator than hydrogenic activity for obtaining efficient hydrogen production. Furthermore, expressions of contour plots indicate that Response-Surface Methodology may provide easily interpretable advice on the operation of a hydrogen-producing bioprocess.

  18. HYDROLYSIS AND METHANOGENIC PHASE OF ANAEROBIC DIGESTION OF SEWAGE SLUDGE AND URBAN SOLID WASTE = HIDRÓLISIS Y FASE METANOGÉNICA DE LA DIGESTIÓN ANAEROBIA DE LODOS DE DEPURADORA Y RESIDUOS SÓLIDOS URBANOS

    OpenAIRE

    Tânia Forster Carneiro; Montserrat Pérez

    2012-01-01

    This paper presents and discusses the feasibility of the mesophilic anaerobic digestion of the sewage sludge and urban solid waste. The experiment consists in the implementation of anaerobic reactors for sewage sludge operating under mesophilic (35º C) and semi-continuous (TRS 30 and 20 days) and using two different sources of inoculum (30% inoculation) and digested sludge urban waste. The thermal effects, chemical, physical and biological treatment of sewage sludge and MSW to methane and car...

  19. A comprehensive study into fouling properties of extracellular polymeric substance (EPS) extracted from bulk sludge and cake sludge in a mesophilic anaerobic membrane bioreactor.

    Science.gov (United States)

    Ding, Yi; Tian, Yu; Li, Zhipeng; Zuo, Wei; Zhang, Jun

    2015-09-01

    This study focused on the fouling behaviors of extracellular polymeric substances (EPS) in a mesophilic anaerobic membrane bioreactor (AnMBR) to obtain the relations of EPS specific constituents with membrane fouling. It was found that for the EPS extracted from bulk sludge, the LB-EPS induced the largest flux decline; however, for EPS extracted from cake sludge, the S-EPS caused the highest flux decline. The preferential rejection fraction by membrane further confirmed that the greater flux decline was exhibited with the higher percent rejection of EPS fractions. The adhesion and cohesion interactions of EPS fractions and membranes could explain the different rejection rates of the EPS components. The structural characteristics analysis indicated that the fouling layers of different EPS fractions with the greater loss of filterability had the smaller porosity. Further investigations demonstrated that these changes could be attributed to the different content of HPO-N in EPS fractions. PMID:26022972

  20. Anaerobic and aerobic transformations affecting stability of dewatered sludge during long-term storage in a lagoon.

    Science.gov (United States)

    Lukicheva, Irina; Tian, Guanglong; Cox, Albert; Granato, Thomas; Pagilla, Krishna

    2012-01-01

    The goal of this work was to study long-term behavior of anaerobically digested and dewatered sludge (biosolids) in a lagoon under anaerobic and aerobic conditions to determine the stability of the final product as an indicator of its odor potential. Field lagoons were sampled to estimate spatial and temporal variations in the physical-chemical properties and biological stability characteristics such as volatile solids content, accumulated oxygen uptake, and soluble protein content and odorous compound assessment. The analyses of collected data suggest that the surface layer of the lagoon (depth of above 0.15 m) undergoes long-term aerobic oxidation resulting in a higher degree of stabilization in the final product. The subsurface layers (depth 0.15 m below the surface and deeper) are subjected to an anaerobic environment where the conditions favor the initial rapid organic matter degradation within approximately the first year, followed by slow degradation. PMID:22368823

  1. Anaerobic co-digestion of sewage sludge. Application to the macroalgae from the Venice lagoon

    Energy Technology Data Exchange (ETDEWEB)

    Cecchi, F. [University of L`Aquila, Department of Chemistry, Chemical Engineering and Materials, Abruzzo (Italy); Pavan, P. [Environmental Sciences, University of Venice, Venice (Italy); Mata-Alvarez, J. [Department of Chemical Engineering, University of Barcelona, Barcelona (Spain)

    1996-07-05

    Possibilities of co-digestion of sewage sludge (SS) with other organic wastes are examined in this paper. Anaerobic co-digestion of macroalgae of the Venice lagoon (A) with SS, in wastewater treatment plants is studied in detail. This approach can contribute to the solution of the final disposal of the 50,000 m{sup 3} of macrophytes harvested each season. These are mainly Ulva rigida and Gracilaria confervoides. In the experiments A and SS were mixed at different ratios (20 - 40% algae, TS basis) and fed to mesophilic (37C) and thermophilic (55C) digesters which operated at 11- to 15-day hydraulic retention times and 1.7 - 4.4 kgTVS/ m{sup 3}/day organic loading rates. It was concluded that the mesophilic co-digestion process is applicable with potentialities of around 30% of the present SS flow-rate. Thermophilic digestion is not possible, because of the inhibition of methanogens probably due to the activity of sulphate-reducers

  2. Performance of novel sludge-bed anaerobic membrane bioreactor (SB-AnMBR) treating prehydrolysis liquor.

    Science.gov (United States)

    Kale, Mayur M; Singh, Kripa S

    2014-01-01

    The feasibility of a novel sludge-bed anaerobic membrane bioreactor (SB-AnMBR) configuration for treating a waste stream from a dissolving pulp production industry was evaluated. The waste stream, called prehydrolysis liquor (PHL), is generated after the wood chips are subjected to high temperature steam to remove unwanted hemicelluloses. The PHL with total chemical oxygen demand (COD) of approximately 100 g/L contained mainly sugars, furfural, lignin, and acetic acid. The SB-AnMBR was fed with the PHL at organic loading rates in a range of 0.8 to10 kg-COD/(m(3)·d). The COD removal efficiency of more than 85% and an average rate of methane production of 0.35 m(3)/(kg-COD·d) were observed at each loading rate. No detectable sugars or furfural were present in the treated effluent from SB-AnMBR. Lignin removal varied from 60 to 90%. Flat-sheet membranes performed well with one fouling event during first 400 days of operation. PMID:24569279

  3. Analysis of submerged membrane for a sludge-bed anaerobic membrane bioreactor treating prehydrolysis liquor.

    Science.gov (United States)

    Kale, Mayur Milan; Singh, Kripa Shankar

    2016-08-01

    An analysis of foulants and the performance of membranes in innovative sludge-bed anaerobic membrane bioreactors (SB-AnMBRs) were evaluated at mesophilic (35°C for approx. 400 days) followed by thermophilic (55°C for approx. 400 days) temperatures while treating the prehydrolysis liquor (PHL) waste stream from a dissolving pulp production plant. The membrane fouling of SB-AnMBR was analyzed for 0.1, 0.15 and 0.2 m(3)/m(2)/d flux conditions. Physico-chemical analyses of the membrane showed that the combination of 5% citric acid, 0.5% NaOCl and 2% NaOH solutions was effective in achieving more than 80% recovery of membrane flux. Chemical characterization of foulants showed that proteins were more predominant in membrane fouling than carbohydrates. Sugars and lignin contribution were negligible as compared to proteins in the total organic carbon content of the foulant. Membrane fouling occurred through a biofilm-dominated process and organic fouling. Combination of cleaning chemicals which included 0.5% NaClO and 2% NaOH solutions was most effective in the removal of the organic foulants. SEM analysis showed the pictorial evolution of the impact of fouling on the pore openings and the effect of cleaning on the membrane surface. PMID:26708166

  4. Methane production from rice straw with acclimated anaerobic sludge: effect of phosphate supplementation.

    Science.gov (United States)

    Lei, Zhongfang; Chen, Jiayi; Zhang, Zhenya; Sugiura, Norio

    2010-06-01

    Rice straw particles were directly used as substrate for anaerobic digestion with acclimated sludge under room temperature and different levels of phosphate. Two obvious biogas production peaks were observed for all reactors, with biogas or methane yields of (0.33-0.35)m(3)/kg-VS loaded or (0.27-0.29)m(3) CH(4)/kg-VS loaded and average methane contents of 75.9-78.2%. A separated two-stage first-order kinetic model was developed in this study and showed a good fit to the experimental data when this complicated process was divided into two stages. The average biogas and methane production rate constants were (0.027-0.031)d(-1) and (0.028-0.033)d(-1), respectively, increased by 2-3 times in the second stages than those in the first. The results indicated that an adequate level of phosphate addition (465 mg-P/L) could accelerate the biogasification process: 7-13 days earlier appearance of the two peaks and shorter time needed for complete biogasification of rice straw.

  5. Bioleaching and chemical leaching of heavy metals from anaerobically digested sludge

    Energy Technology Data Exchange (ETDEWEB)

    Marchioretto, M.M.; Bruning, H.; Hien, N.T.P.; Rulkens, W.H.

    2003-07-01

    The present work aims to evaluate the practical application of bioleaching in the solubilization of Cr, Cu, Pb and Zn from anaerobically digested sludge. Chemical leaching with H{sub 2}SO{sub 4} and bioleaching with elemental sulfur and ferrous iron are applied. The results are compared with those found in the literature and in previous leaching experiments with HCl. Bioleaching can be a feasible alternative to promote Zn and Cu solubilizations, especially when ferrous iron is added as substrate. Under this condition, the maximum extraction yield achieved for Zn is 80.8 % with pH value of 2.7, and for Cu it is 65.5 % with pH value of 2.5. Cr solubilization is possible when pH is around 2.5 and Pb is not detected in solution. Chemical leaching with HCl at pH value of 1 solubilizes 100 % of Pb and also provides the best extraction yield for Cr (around 72 %). With the same pH value HCl is more effective than H{sub 2}SO{sub 4} to solubilize all the metals studied. (author)

  6. Size effect of anaerobic granular sludge on biogas production: A micro scale study.

    Science.gov (United States)

    Wu, Jing; Afridi, Zohaib Ur Rehman; Cao, Zhi Ping; Zhang, Zhong Liang; Poncin, Souhila; Li, Huai Zhi; Zuo, Jian E; Wang, Kai Jun

    2016-02-01

    This study investigated the influence of anaerobic granular sludge size on its bioactivity at COD concentration of 1000, 3000 and 6000 mg/L. Based on size, granules were categorized as large (3-3.5 mm), medium (1.5-2 mm) and small (0.5-1 mm). A positive relationship was obtained between granule size and biogas production rate. For instance, at COD 6000 mg/L, large granules had highest biogas production rate of 0.031 m(3)/kgVSS/d while medium and small granules had 0.016 and 0.006 m(3)/kgVSS/d respectively. The results were reaffirmed by applying modified Fick's law of diffusion. Diffusion rates of substrate for large, medium and small granules were 1.67×10(-3), 6.1×10(-4)and 1.8×10(-4) mg/s respectively at that COD. Large granules were highly bio-active due to their internal structure, i.e. big pore size, high porosity and short diffusion distance as compared to medium and small granules, thus large granules could improve the performance of reactor. PMID:26708484

  7. Sewage sludge pretreatment by microwave irradiation combined with activated carbon fibre at alkaline pH for anaerobic digestion.

    Science.gov (United States)

    Sun, Dedong; Guo, Sixiao; Ma, Nina; Wang, Guowen; Ma, Chun; Hao, Jun; Xue, Mang; Zhang, Xinxin

    2016-01-01

    This research focuses on the effects of microwave-assisted activated carbon fibre (ACF) (MW-ACF) treatment on sewage sludge at alkaline pH. The disintegration and biodegradability of sewage sludge were studied. It was found that the MW-ACF process at alkaline pH provided a rapid and efficient process to disrupt the microbial cells in the sludge. The results suggested that when irradiated at 800 W MW for 110 s with a dose of 1.0 g ACF/g solid concentration (SS) at pH 10.5, the MW-ACF pretreatment achieved 55% SS disintegration, 23% greater than the value of MW alone (32%). The concentration of total nitrogen, total phosphorus, supernatant soluble chemical oxygen demand, protein, and polysaccharide increased by 60%, 144%, 145%, 74%, and 77%, respectively. An increase in biogas production by 63.7% was achieved after 20 days of anaerobic digestion (AD), compared to the control. The results indicated that the MW-ACF pretreatment process at alkaline pH provides novel sludge management options in disintegration of sewage sludge for further AD.

  8. Comparison of ozone and thermal hydrolysis combined with anaerobic digestion for municipal and pharmaceutical waste sludge with tetracycline resistance genes.

    Science.gov (United States)

    Pei, Jin; Yao, Hong; Wang, Hui; Ren, Jia; Yu, Xiaohua

    2016-08-01

    Biosolids from wastewater treatment plant (WWTP) are environmental reservoirs of antibiotic resistance genes, which attract great concerns on their efficient treatments. Anaerobic digestion (AD) is widely used for sewage sludge treatment but its effectiveness is limited due to the slow hydrolysis. Ozone and thermal hydrolysis pre-treatment were employed to improve AD efficiency and reduce antibiotic-resistant genes in municipal and pharmaceutical waste sludge (MWS and PWS, respectively) in this study. Sludge solubilization achieved 15.75-25.09% and 14.85-33.92% after ozone and thermal hydrolysis, respectively. Both pre-treatments improved cumulative methane production and the enhancements were greater on PWS than MWS. Five tetracycline-resistant genes (tet(A), tet(G), tet(Q), tet(W), tet(X)) and one mobile element (intI1) were qPCR to assess pre-treatments. AD of pre-treated sludge reduced more tet genes than raw sludge for both ozonation and thermal hydrolysis in PWS and MWS. Thermal hydrolysis pre-treatment was more efficient than ozone for reduction after AD. Results of this study help support management options for reducing the spread of antibiotic resistance from biosolids. PMID:27151286

  9. Specific methanogenic activity (SMA of industrial sludge from the aerobic and anaerobic biological treatment

    Directory of Open Access Journals (Sweden)

    Danieli Schneiders

    2013-08-01

    Full Text Available In this study, specific methanogenic activity (SMA tests were performed on textile sludge and food industry sludge. The textile sludge from an activated sludge was collected at the entrance of the secondary biologic clarifier and the food sludge was collected in a UASB reactor. Once collected, the sludges were characterized and tested for SMA. It was found that the microrganisms present in the food sludge had SMA of 0.17 gCOD-CH4 gSSV.d-1 and 337.05 mL of methane production, while the microrganisms of the textile sludge presented 0.10 gCOD-CH4 gSSV.d-1 of SMA and 3.04 mL of methane production. Therefore, the food sludge was more suitable to be used as a starting inoculum in UASB.

  10. Sustainable Agro-Food Industrial Wastewater Treatment Using High Rate Anaerobic Process

    Directory of Open Access Journals (Sweden)

    Yung-Tse Hung

    2013-03-01

    Full Text Available This review article compiles the various advances made since 2008 in sustainable high-rate anaerobic technologies with emphasis on their performance enhancement when treating agro-food industrial wastewater. The review explores the generation and characteristics of different agro-food industrial wastewaters; the need for and the performance of high rate anaerobic reactors, such as an upflow anaerobic fixed bed reactor, an upflow anaerobic sludge blanket (UASB reactor, hybrid systems etc.; operational challenges, mass transfer considerations, energy production estimation, toxicity, modeling, technology assessment and recommendations for successful operation

  11. Effect of vitamin B12 pulse addition on the performance of cobalt deprived anaerobic granular sludge bioreactors

    KAUST Repository

    Fermoso, Fernando G.

    2010-07-01

    The effect of a pulse addition of vitamin B12 as cobalt source to restore the performance of cobalt depleted methanol-fed bioreactors was investigated. One upflow anaerobic sludge bed (UASB) reactor was supplied with a pulse of vitamin B12, and its operation was compared to that of another cobalt depleted UASB reactor to which a pulse of CoCl2 was given. The addition of cobalt in the form of CoCl2 supplies enough cobalt to restore methanogenesis and maintain full methanol degradation coupled to methane production during more than 35 days after the CoCl2 pulse. Similar to CoCl2, pulse addition of vitamin B12 supplies enough cobalt to maintain full methanol degradation during more than 35 days after the pulse. However, the specific methanogenic activities (SMAs) of the sludge in the vitamin B12 supplied reactor were around 3 times higher than the SMA of the sludge from the CoCl2 supplied reactor at the same sampling times. An appropriate dosing strategy (repeated pulse dosing) combined with the choice of vitamin B12 as the cobalt species is suggested as a promising dosing strategy for methanol-fed anaerobic bioreactors limited by the micronutrient cobalt. © 2010 Elsevier Ltd. All rights reserved.

  12. Research Regarding the Accumulation in Soybeans of Heavy Metals from Anaerobic Composted Sewage Sludge Used as Organic Fertilizer

    Directory of Open Access Journals (Sweden)

    Benoni Lixandru

    2010-10-01

    Full Text Available In sewage sludge from urban wastewater treatment stations can often be find high levels of Ni, Pb, Cu, Zn, Mn andCd. Aerobic or anaerobic composting of this sewage sludge does not eliminate the possibility of bioaccumulation ofthese metals in plants through metabolic processes of phytoextraction type. Researches regarding the accumulationdegree of heavy metals through phytoextraction processes were performed on soybean plants (Glycine max, Condorvariety. Plants were fertilized with anaerobic composted sludge in amounts of 25 t of / ha, 50 t / ha and 100 t / ha.The chemical analysis was done on an average sample of three repetitions. Metal concentration in soybeans wasanalyzed by reporting to the maximum allowance level for sheep, considered one of the most sensitive farm speciesto heavy metal toxicity. Our results showed a higher level than normal with 5.8 mg / kg only in the case of copperions. Zn, Pb, Mn and Cd concentration in soybeans was below the maximum allowance limits set by the rules offeeding farm animals. Also, heavy metal content of soybeans was not affected by the amount of composted sludgeused as fertilizer.

  13. Thermophilic anaerobic digestion of sewage sludge: focus on the influence of the start-up. A review.

    Science.gov (United States)

    De la Rubia, M A; Riau, V; Raposo, F; Borja, R

    2013-12-01

    The thermophilic anaerobic digestion (TAD) of sewage sludge has often been found to be less stable than mesophilic treatment. In comparison to mesophilic digesters, thermophilic reactors treating sludge are generally characterized by relatively high concentrations of volatile fatty acids (VFA) in the effluent along with poor effluent quality, indicating a lower level of process stability. However, reviewing the literature related to the procedure for obtaining a thermophilic inoculum, it seems that most of the problems associated with the instability and the accumulation of organic intermediates are the result of the manner in which the thermophilic sludge has been obtained. In this paper, the different options available for obtaining an anaerobic digester operating at thermophilic temperature (55°C) have been reviewed. In this light, rapid heating to the target temperature followed by the development of thermophilic microorganisms, which can be determined by VFA dropping to ≤ 500 mg acetic acid L(-1) before increasing the organic loading rate (OLR), has been determined the most suitable means of establishing TAD.

  14. Evaluation of Baffle Fixes Film up Flow Sludge Blanket Filtration (BFUSBF System in Treatment of Wastewaters from Phenol and 2,4-Dinitrophenol Using Daphnia Magna Bioassay

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Ghannadzadeh

    2016-02-01

    Full Text Available Background: Phenol and nitrophenol are common compounds found in different types of industrial wastewater known as serious threats to human health and natural environment. In this study, Daphnia magna was used to evaluate the effectiveness of "baffle fixes film up flow sludge blanket filtration" (BFUSBF system in elimination of phenolic compounds from water. Methods: D. magna cultures were used as toxicity index of phenol and 2,4-DNP mixtures after treatment by a pilot BFUSBF system which consisted of baffle in anoxic section and biofilm in aerobic sections. Initial concentrations were 312 mg/L phenol and 288 mg/L 2,4-dinitrophenol (2,4-DNP. Results: Bioassay tests showed that D. magna was influenced by the toxicity of phenol and 2,4 DNP mixtures. The comparison between the toxicity of initial phenol and 2,4-DNP mixtures and the output toxic unit (TU derived from BFUSBF treatment system showed that the TU of the effluent from BFUSBF reactor was much lower than that of the solution that entered the reactor. Conclusion: Based on the acute toxicity test, BFUSBF process could reduce phenol and 2,4-DNP in aqueous solutions. Therefore, it is possible to use BFUSBF process as an appropriate treatment option for wastewaters containing phenolic compounds.

  15. Enhancement in characteristics of sewage sludge and anaerobic treatability by electron beam pre-treatment

    International Nuclear Information System (INIS)

    Electron beam was studied to enhance the biodegradability of sewage sludge. Changes in physicochemical characteristics of the sludge were examined with various irradiation doses, sludge thicknesses and exposure times. Irradiation thickness was suggested as the key factor affecting the efficiency of solublization of solid organic matter, whereas exposure time would be the most critical parameter in inducing cell lysis in sewage sludge. In addition, biogas production was improved as much as 22% when the sludge thickness was 0.5 cm with a dose of 7 kGy

  16. Production of hydrogen and methane from wastewater sludge using anaerobic fermentation.

    Science.gov (United States)

    Ting, C H; Lin, K R; Lee, D J; Tay, J H

    2004-01-01

    The hydrogen and methane were produced from wastewater sludge using a Clostridium strain. The original sludge and the pre-treated (acidified, sterilized, freeze/thawed, and sonicated) sludges were tested. Some pre-treatment could enhance hydrogen yield, and the other tests could enhance methane yield. Hydrogen yield followed freeze/thawed>acidified>sterilized>original sludge>sonicated; while methane yield followed sonicated>freeze/thawed>sterilized>acidified>original sludge. The production and consumption of acetate correlated closely with the trends in both yields.

  17. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost.

    Science.gov (United States)

    Ueno, Y; Haruta, S; Ishii, M; Igarashi, Y

    2001-11-01

    Hydrogen production by thermophilic anaerobic microflora enriched from sludge compost was studied by using an artificial medium containing cellulose powder. Hydrogen gas was evolved with the formation of acetate, ethanol, and butyrate by decomposition of the cellulose powder. The hydrogen production yield was 2.0 mol/mol-hexose by either batch or chemostat cultivation. A medium that did not contain peptone demonstrated a lower hydrogen production yield of 1.0 mol/mol-hexose with less formation of butyrate. The microbial community in the microflora was investigated through isolation of the microorganisms by both plating and denaturing gradient gel electrophoresis (DGGE) of the' PCR-amplified V3 region of 16S rDNA. Sixty-eight microorganisms were isolated from the microflora and classified into nine distinct groups by genetic fingerprinting of the PCR-DGGE or by a random amplified polymorphic DNA analysis and determination of the partial sequence of 16S rDNA. Most of the isolates belonged to the cluster of the thermophilic Clostridium/Bacillus subphylum of low G+C gram-positive bacteria. Product formation by most of the isolated strains corresponded to that produced by the microflora. Thermoanaerobacterium thermosaccharolyticium was isolated in the enrichment culture with or without added peptone. and was detected with strong intensity by PCR-DGGE. Two other thermophilic cellulolytic microorganisms, Clostridium thermocellum and Clostridium cellulosi, were also detected by PCR-DGGE, although they could not be isolated. These findings imply that hydrogen production from cellulose by microflora is performed by a consortium of several species of microorganisms.

  18. Physical characteristics of conditioned anaerobic digested sludge - A fractal,transient and dynamic rheological viewpoint

    Institute of Scientific and Technical Information of China (English)

    Yili Wang; Emilie Dieude-Fauvel; Steven K Dentel

    2011-01-01

    The changes in the physical characteristics of unconditioned and conditioned anaerobic digested sludge (ADS) biosolids,such as capillary suction time (CST),yield stress,average size and fractal dimensions,were investigated through a CST test,transient and dynamic rheological test and image analysis.The results showed that the optimum polymer dose range was observed when CST or its reciprocal value was employed as an indicator.There were good correlations between the yield stresses determined from both a controlled shear stress test and a strain amplitude sweep test.The yield stress and storage modulus (G') increased as the polymer dose increased in most cases.A frequency sweep test revealed that polymer conditioning could extend the frequency sweep ranges for their elastic behaviors over viscous behaviors as well as the gel-like structure in the linear viscoelastic range.These results implied that more deformation energy was stored in this rigid structure,and that elastic behavior became increasingly dominant with the addition of the polymer in most cases.In addition,both the average sizes and two-dimensional fractal dimensions for conditioned ADS biosolids presented a similar up-climax-down variation trend as the polymer doses increased,whereas the critical polymer doses at the highest average sizes or two-dimensional fractal dimensions,were different.Correlation analysis revealed that the conditioned ADS dewaterability was not correlated with the yield stresses,while the average sizes or the two-dimensional fractal dimensions for conditioned ADS biosolids could be taken as the indication parameters for ADS dewaterability.

  19. Degradation of organic pollutants and characteristics of activated sludge in an anaerobic/anoxic/oxic reactor treating chemical industrial wastewater

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2014-09-01

    Full Text Available A laboratory-scale anaerobic/anoxic/oxic system operated at the hydraulic retention times (HRT of 20, 40, and 60 h with mixed liquor suspended solids (MLSS concentrations of 3 g/L and 6 g/L was considered for treating chemical industrial wastewater rich in complex organic compounds and total dissolved solids. Extending the HRT and increasing the MLSS concentration resulted in higher removal efficiency for chemical oxygen demand at 72%. Organic compounds in wastewater could be classified into easily-removed and refractory compounds during treatment. The easily-removed compounds consisted primarily of ethers, alcohols, and aldehydes, whereas the refractory compounds included mainly oxygen-containing heterocyclic and benzene-containing compounds. Results from energy-dispersive X-ray spectroscopy showed that several metal ions accumulated in activated sludge, particularly Fe(III. Fe accumulated mainly on the surface of sludge floc pellets and resulted in the compactness of activated sludge, which caused the values of mixed liquor volatile suspended solids /MLSS and sludge volume index to decrease.

  20. Improve biogas production from low-organic-content sludge through high-solids anaerobic co-digestion with food waste.

    Science.gov (United States)

    Liu, Chuanyang; Li, Huan; Zhang, Yuyao; Liu, Can

    2016-11-01

    Anaerobic co-digestion of sewage sludge and food waste was tested at two different total solid (TS) concentrations. In the low-solids group with TS 4.8%, the biogas production increased linearly as the ratio of food waste in substrate increased from 0 to 100%, but no synergetic effect was found between the two substrates. Moreover, the additive food waste resulted in the accumulation of volatile fatty acids and decelerated biogas production. Thus, the blend ratio of food waste should be lower than 50%. While in the high-solids group with TS 14%, the weak alkaline environment with pH 7.5-8.5 avoided excessive acidification but high concentration of free ammonia was a potential risk. However, good synergetic effect was found between the two substrates because the added food waste improved mass transfer in sludge cake. Thus, 50% was recommended as the optimum ratio of food waste in substrate because of the best synergetic effect.

  1. Biological pretreatment of non-flocculated sludge augments the biogas production in the anaerobic digestion of the pretreated waste activated sludge.

    Science.gov (United States)

    Merrylin, J; Kumar, S Adish; Kaliappan, S; Yeom, Ick-Tae; Banu, J Rajesh

    2013-01-01

    High-efficiency resource recovery from municipal solid waste (MSW) has been a focus of attention. The objective of this research is to develop a bio-pretreatment process for application prior to the anaerobic digestion of MSW to improve methane productivity. Bacillus licheniformis was used for pretreating MSW (non-flocculated with 0.07% citric acid), followed by anaerobic digestion. Laboratory-scale experiments were carried out in semi-continuous bioreactors, with a total volume of 5 L and working volume of 3 L. Among the nine organic loading rates (OLRs) investigated, the OLR of 0.84 kg SS m(-3) reactor day(-1) was found to be the most appropriate for economic operation of the reactor. Pretreatment of MSW prior to anaerobic digestion led to 55% and 64% increase of suspended solids (SS) and volatile solids reduction, respectively, with an improvement of 57% in biogas production. The results indicate that the pretreatment of non-flocculated sludge with Bacillus licheniformis which consumes less energy compared to other pretreatment techniques could be a cost-effective and environmentally sound method for producing methane from MSW. PMID:24350465

  2. Improvement of anaerobic digestion of waste-activated sludge by using H₂O₂ oxidation, electrolysis, electro-oxidation and thermo-alkaline pretreatments.

    Science.gov (United States)

    Feki, Emna; Khoufi, Sonia; Loukil, Slim; Sayadi, Sami

    2015-10-01

    Disintegration of municipal waste-activated sludge (WAS) is regarded as a prerequisite of the anaerobic digestion process to reduce sludge volume and improve biogas yield. Pretreatment of WAS using thermo-alkaline (TA), H2O2 oxidation, electrolysis and electro-oxidation (EO) processes were investigated and compared in term of COD solubilization and biogas production. For each pretreatment, the influences of different operational variables were studied in detail. At optimum conditions, EO gave the maximum COD solubilization (28 %). The effects of pretreatments under the optimum conditions on anaerobic digestion were experienced with biochemical methane potential assay. Significant increases in biogas yield up to 78 and 40 % were observed respectively in the EO and TA pretreated samples compared to raw sludge. Results clearly revealed that the application of EO is a significant alternative method for the improvement of WAS anaerobic digestion. PMID:25982985

  3. Coproduction of hydrogen and methane via anaerobic fermentation of cornstalk waste in continuous stirred tank reactor integrated with up-flow anaerobic sludge bed.

    Science.gov (United States)

    Cheng, Xi-Yu; Li, Qian; Liu, Chun-Zhao

    2012-06-01

    A 10 L continuous stirred tank reactor (CSTR) system was developed for a two-stage hydrogen fermentation process with an integrated alkaline treatment. The maximum hydrogen production rate reached 218.5 mL/L h at a cornstalk concentration of 30 g/L, and the total hydrogen yield and volumetric hydrogen production rate reached 58.0 mL/g-cornstalk and 0.55-0.57 L/L d, respectively. A 10 L up-flow anaerobic sludge bed (UASB) was used for continuous methane fermentation of the effluents obtained from the two-stage hydrogen fermentation. At the optimal organic loading rate of 15.0 g-COD/Ld, the COD removal efficiency and volumetric biogas production rate reached 83.3% and 4.6L/Ld, respectively. Total methane yield reached 200.9 mL/g-cornstalk in anaerobic fermentation with the effluents and alkaline hydrolysate. As a result, the total energy recovery by coproduction of hydrogen and methane with anaerobic fermentation of cornstalk reached 67.1%.

  4. Energetic autonomy of waste water treatment plants using anaerobic co-digestion of sewage sludges and MSW - A case study

    Energy Technology Data Exchange (ETDEWEB)

    Cecchi, F.; Traverso, P.G.; Chiesa, G.; Bozzola, L.

    The paper is a technical and economic analysis of the possibility to apply the sorted organic fraction of municipal solid wastes (MSW) to the anaerobic stabilization section of sewage sludge in a waste water treatment plant. The aim is to attain energetic autonomy of the plant through the increasing of the gas production rate. The study shows that savings of 65,000,000 Italian lire per year can be obtained with an investment cost of 300,000,000 lire. At the current interest rate (4-10%), this total amount can be paid back within 4 to 6 years.

  5. A bacterial population analysis of granular sludge from an anaerobic digester treating a maize-processing waste

    Energy Technology Data Exchange (ETDEWEB)

    Howgrave-Graham, A.R.; Wallis, F.M. (Natal Univ., Pietermaritzburg (ZA). Dept. of Microbiology and Plant Pathology); Steyn, P.L. (Pretoria Univ. (South Africa))

    1991-01-01

    Microbial population studies were conducted on a dense granular sludge, with excellent settling, thickening and nutrient removal properties, from a South African clarigester treating effluent from a factory producing glucose and other carbohydrates from maize. The bacterial population comprised a heterogeneous group including acetogens, enterobacteria, sulphate-reducers, spirochaetes, heterofermentative lactobacilli and methanogens. The presence of these bacteria and lack of propionic acid and butyric acid bacteria suggests that the microbial activity of this anaerobic digester involved acetate and lactate metabolism rather than propionate or butyrate catabolism as a source of precursors for methane production. (author).

  6. Optimization of the hydrolytic-acidogenic anaerobic digestion stage (55 degrees C) of sewage sludge: influence of pH and solid content.

    Science.gov (United States)

    Ponsá, Sergio; Ferrer, Ivet; Vázquez, Felícitas; Font, Xavier

    2008-08-01

    In conventional single-stage anaerobic digestion processes, hydrolysis is regarded as the rate-limiting step in the degradation of complex organic compounds, such as sewage sludge. Two-stage systems have been proposed to enhance this process. However, so far it is not clear which are the best conditions for a two-stage anaerobic digestion process of sewage sludge, in terms of temperature and hydraulic retention time of each stage. The aim of this work was to determine the optimal conditions for the hydrolytic-acidogenic stage treating real sludge with a high concentration of total solids (40-50gL(-1)) and volatile solids (25-30gL(-1)), named high concentration sludge. The variables considered for this first stage were: hydraulic retention time (1-4 days) and temperature (55 and 65 degrees C). Maximum volatile fatty acids generation was obtained at 4 days and 3 days hydraulic retention time for 55 degrees C and 65 degrees C, respectively. Consequently, 4 days hydraulic retention time and temperature of 55 degrees C were set as the working conditions for the hydrolytic-acidogenic stage treating high concentration sludge. The results obtained when operating with high concentration sludge were compared with a low concentration sludge consisting of 17-28gL(-1) total solids and 13-21gL(-1) volatile solids. The effect of decreasing the influent sludge pH, when working at the optimal conditions established, was also evaluated. PMID:18687452

  7. Production of volatile derivatives of metal(loid)s by microflora involved in anaerobic digestion of sewage sludge.

    Science.gov (United States)

    Michalke, K; Wickenheiser, E B; Mehring, M; Hirner, A V; Hensel, R

    2000-07-01

    Gases released from anaerobic wastewater treatment facilities contain considerable amounts of volatile methyl and hydride derivatives of metals and metalloids, such as arsine (AsH(3)), monomethylarsine, dimethylarsine, trimethylarsine, trimethylbismuth (TMBi), elemental mercury (Hg(0)), trimethylstibine, dimethyltellurium, and tetramethyltin. Most of these compounds could be shown to be produced by pure cultures of microorganisms which are representatives of the anaerobic sewage sludge microflora, i.e., methanogenic archaea (Methanobacterium formicicum, Methanosarcina barkeri, Methanobacterium thermoautotrophicum), sulfate-reducing bacteria (Desulfovibrio vulgaris, D. gigas), and a peptolytic bacterium (Clostridium collagenovorans). Additionally, dimethylselenium and dimethyldiselenium could be detected in the headspace of most of the pure cultures. This is the first report of the production of TMBi, stibine, monomethylstibine, and dimethylstibine by a pure culture of M. formicicum. PMID:10877769

  8. Evolution of microbial community along with increasing solid concentration during high-solids anaerobic digestion of sewage sludge.

    Science.gov (United States)

    Liu, Can; Li, Huan; Zhang, Yuyao; Si, Dandan; Chen, Qingwu

    2016-09-01

    High-solids anaerobic digestion (HSAD), a promising method with smaller reactor and less heating energy consumption, showed relatively lower digestion efficiency sometimes and higher tolerance to some inhibitors. To investigate the phenomena, the archaeal and bacterial communities in four anaerobic digesters treating sewage sludge with total solids (TS) of 10-19% were investigated. Although acetoclastic methanogenesis conducted mainly by genus Methanosarcina was still the main pathway producing methane, the total ratio of acetoclastic methanogens decreased along with the increased TS. In contrary, the relative abundance of hydrogenotrophic methanogens increased from 6.8% at TS 10% to 22.3% at TS 19%, and methylotrophic methanogens from 10.4% to 20.9%. The bacterial community was dominated by five phyla. Acidogenic and acetogenic bacteria affiliated to Firmicutes decreased following the increase of TS; while the proteolysis phylum Bacteroidetes increased, with a tolerant family ST-12K33 notably existing in the digesters at TS 17% and 19%. PMID:27235970

  9. Study on the Characteristics of Anaerobic Granular Sludge by Internal Circulation Anaerobic Reactor%内循环厌氧反应器厌氧颗粒污泥的特性研究

    Institute of Scientific and Technical Information of China (English)

    王英

    2015-01-01

    Anaerobic granular sludge anaerobic reactor is the basis and key to the efficient and stable operation.This paper presents an improved internal circulation anaerobic reactor,to overcome the traditional internal circulation anaerobic reactor complex structure,easy to cause blockage and other shortcomings.To study the characteristics of anaerobic granular sludge,the study on the characteristics of anaerobic granular sludge to the production practice has important guiding significance.This experimental research is circulate in the modified on the basis of the stable operation of anaerobic reactor,particle size distribution of granular sludge,sludge methane-producing activity and DGGE analysis.%厌氧颗粒污泥是厌氧反应器高效稳定运行的基础和关键。试验研究利用了一种改进型的内循环厌氧反应器,克服了传统内循环厌氧反应器结构复杂易引起堵塞等缺点,对厌氧颗粒污泥的特性进行研究,研究厌氧颗粒污泥的特性对生产实践具有重要的指导意义。该试验研究是在改进型内循环厌氧反应器稳定运行的基础上,对颗粒污泥的粒径分布、污泥产甲烷活性、DGGE 等特性进行分析。

  10. Feasibility of expanded granular sludge bed reactors for the anaerobic treatment of low-strength soluble wastewaters.

    Science.gov (United States)

    Kato, M T; Field, J A; Versteeg, P; Lettinga, G

    1994-08-01

    The application of the expanded granular sludge bed (EGSB) reactor for the anaerobic treatment of low-strength soluble wastewaters using ethanol as a model substrate was investigated in laboratory-scale reactors at 30oC. Chemical oxygen demand (COD) removal efficiency was above 80% at organic loading rates up to12 g COD/L . d with influent concentrations as low as 100 to 200 mg COD/L. These results demonstrate the suitability of the EGBS reactor for the anaerobic treatment of low-strength wastewaters. The high treatment performance can be attributed to the intense mixing regime obtained by high hydraulic and organic loads. Good mixing of the bulk liquid phase for the substrate-biomass contact and adequate expansion of the substrate-biomass contact and adequate expansion of the sludge bed for the degassing were obtained when the liquid upflow velocity (V(up)) was greater than 2.5 m/h. Under such conditions, an extremely low apparent K(s) value for acetoclastic methanogenesis of 9.8 mg COD/L was observed. The presence of dissolved oxygen in the wastewater had no detrimental effect on the treatment performance. Sludge piston flotation from pockets of biogas accumulating under the sludge bed occurred at V(up) lower than 2.5 m/h due to poor bed expansion. This problem is expected only in small diameter laboratory-scale reactors. A. more important restriction of the EGSB reactor was the sludge washout occurring at V(up) higher than 5.5 m/h and which was intensified at organic loads higher than 7 g COD/L. d due to buoyancy forces from the gas production. To achieve an equilibrium between the mixing intensity and the sludge hold-up, the operation should be limited to an organic loading rate of 7 g COD/L d. and to a liquid up-flow velocity between 2.5 and 5.5 m/h (c) 1994 John Wiley & Sons, Inc. PMID:18618781

  11. Effects of titanium dioxide and zinc oxide nanoparticles on methane production from anaerobic co-digestion of primary and excess sludge.

    Science.gov (United States)

    Zheng, Xiong; Wu, Lijuan; Chen, Yinguang; Su, Yinglong; Wan, Rui; Liu, Kun; Huang, Haining

    2015-01-01

    Anaerobic co-digestion of primary and excess sludge is regarded as an efficient way to reuse sludge organic matter to produce methane. In this study, short-term and long-term exposure experiments were conducted to investigate the possible effects of titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles (NPs) on methane production from anaerobic co-digestion of primary and excess sludge. The data showed that TiO2 NPs had no measurable impact on methane production, even at a high concentration (150 mg/g total suspended solids (TSS)). However, short-term (8 days) exposure to 30 or 150 mg/g-TSS of ZnO NPs significantly decreased methane production. More importantly, these negative effects of ZnO NPs on anaerobic sludge co-digestion were not alleviated by increasing the adaptation time to 105 days. Further studies indicated that the presence of ZnO NPs substantially decreased the abundance of methanogenic archaea, which reduced methane production. Meanwhile, the activities of some key enzymes involved in methane production, such as protease, acetate kinase, and coenzyme F420, were remarkably inhibited by the presence of ZnO NPs, which was also an important reason for the decreased methane production. These results provide a better understanding of the potential risks of TiO2 and ZnO NPs to methane production from anaerobic sludge co-digestion.

  12. Effect of redox mediator, AQDS, on the decolourisation of a reactive azo dye containing triazine group in a thermophilic anaerobic EGSB reactor

    NARCIS (Netherlands)

    Bezerra Dos Santos, A.; Cervantes-Carillo, F.J.; Yaya Beas, R.E.; Lier, van J.B.

    2003-01-01

    The feasibility of thermophilic (55 degreesC) anaerobic treatment applied to colour removal of a triazine contained reactive azo dye was investigated in two 0.531 expanded granular sludge blanket (EGSB) reactors in parallel at a hydraulic retention time (HRT) of 10 h. Generally, this group of azo dy

  13. Anaerobic side-stream reactor: a sustainable solution for sewage sludge reduction

    OpenAIRE

    Ferrentino, Roberta

    2016-01-01

    Over the last two decades, the production of excess sludge has increased rapidly due to a more stringent legislation on effluent quality and a growing number of new plants, becoming an economic and an environmental critical issue. Processing excess sludge could account for half up to 65% of the total operation costs of a wastewater treatment plant. Technologies to reduce the excess sludge had been widely studied. Several studies reported that the technologies inte...

  14. Activity, life time and effect of hydrolytic enzymes for enhanced biogas production from sludge anaerobic digestion.

    Science.gov (United States)

    Odnell, Anna; Recktenwald, Michael; Stensén, Katarina; Jonsson, Bengt-Harald; Karlsson, Martin

    2016-10-15

    As an alternative to energy intensive physical methods, enzymatic treatment of sludge produced at wastewater treatment plants for increased hydrolysis and biogas production was investigated. Several hydrolytic enzymes were assessed with a focus on how enzyme activity and life time was influenced by sludge environments. It could be concluded that the activity life time of added enzymes was limited (implementation, enzymes better suited to the sludge environments are needed. PMID:27498254

  15. Development of the Inverted anaerobic sludge blanket reactor: a novel technology for the treatment of industrial wastewater containing fat

    OpenAIRE

    Picavet, M. A.

    2012-01-01

    Tese de doutoramento em Engenharia Química e Biológica Lipids are ubiquitous in industrial wastewater produced in the food industry, yet practically no biological treatment systems are available on the market that are capable of directly treating wastewater containing lipids. In general, lipids are considered a nuisance and are normally removed prior to biological treatment. Lipids are however compounds with a high calorific value and therefore highly interesting for conversion...

  16. Polycyclic Aromatic Hydrocarbon Affects Acetic Acid Production during Anaerobic Fermentation of Waste Activated Sludge by Altering Activity and Viability of Acetogen.

    Science.gov (United States)

    Luo, Jingyang; Chen, Yinguang; Feng, Leiyu

    2016-07-01

    Till now, almost all the studies on anaerobic fermentation of waste activated sludge (WAS) for bioproducts generation focused on the influences of operating conditions, pretreatment methods and sludge characteristics, and few considered those of widespread persistent organic pollutants (POPs) in sludge, for example, polycyclic aromatic hydrocarbons (PAHs). Herein, phenanthrene, which was a typical PAH and widespread in WAS, was selected as a model compound to investigate its effect on WAS anaerobic fermentation for short-chain fatty acids (SCFAs) accumulation. Experimental results showed that the concentration of SCFAs derived from WAS was increased in the presence of phenanthrene during anaerobic fermentation. The yield of acetic acid which was the predominant SCFA in the fermentation reactor with the concentration of 100 mg/kg dry sludge was 1.8 fold of that in the control. Mechanism exploration revealed that the present phenanthrene mainly affected the acidification process of anaerobic fermentation and caused the shift of the microbial community to benefit the accumulation of acetic acid. Further investigation showed that both the activities of key enzymes (phosphotransacetylase and acetate kinase) involved in acetic acid production and the quantities of their corresponding encoding genes were enhanced in the presence of phenanthrene. Viability tests by determining the adenosine 5'-triphosphate content and membrane potential confirmed that the acetogens were more viable in anaerobic fermentation systems with phenanthrene, which resulted in the increased production of acetic acid. PMID:27267805

  17. Application of Novel Amino-Functionalized NZVI@SiO2 Nanoparticles to Enhance Anaerobic Granular Sludge Removal of 2,4,6-Trichlorophenol

    Directory of Open Access Journals (Sweden)

    Zeyu Guan

    2015-01-01

    Full Text Available A novel amino-functionalized silica-coated nanoscale zerovalent iron (NZVI@SiO2-NH2 was successfully synthesized by using one-step liquid-phase method with the surface functionalization of nanoscale zerovalent iron (NZVI to enhance degradation of chlorinated organic contaminants from anaerobic microbial system. NZVI@SiO2-NH2 nanoparticles were synthesized under optimal conditions with the uniform core-shell structure (80–100 nm, high loading of amino functionality (~0.9 wt%, and relatively large specific surface area (126.3 m2/g. The result demonstrated that well-dispersed NZVI@SiO2-NH2 nanoparticle with nFe0-core and amino-functional silicon shell can effectively remove 2,4,6-trichlorophenol (2,4,6-TCP in the neutral condition, much higher than that of NZVI. Besides, the surface-modified nanoparticles (NZVI@SiO2-NH2 in anaerobic granule sludge system also showed a positive effect to promote anaerobic biodechlorination system. More than 94.6% of 2,4,6-TCP was removed from the combined NZVI@SiO2-NH2-anaerobic granular sludge system during the anaerobic dechlorination processes. Moreover, adding the appropriate concentration of NZVI@SiO2-NH2 in anaerobic granular sludge treatment system can decrease the toxicity of 2,4,6-TCP to anaerobic microorganisms and improved the cumulative amount of methane production and electron transport system activity. The results from this study clearly demonstrated that the NZVI@SiO2-NH2/anaerobic granular sludge system could become an effective and promising technology for the removal of chlorophenols in industrial wastewater.

  18. 三氯乙烯厌氧降解颗粒污泥影响因素分析%Research on influencing factors of trichloroethylene (TCE) anaerobic degradation granular sludge

    Institute of Scientific and Technical Information of China (English)

    张颖; 刘洋; 李娟; 胡淼; 王薪

    2014-01-01

    Acclimation of trichloroethylene (TCE)-degrading anaerobic granular sludge was successful by using upflow anaerobic sludge blanket (UASB) reactor. The influences of temperature, pH and initial concentration of TCE on the degradation characteristics of TCE-degrading anaerobic granular sludge were investigated in serum bottles. The results showed that 35℃was the optimum temperature of the granular sludge, the degradation rate constant was 0.1879, the half-life was 3.69 d, and the TCE degradation rate was 90.15%; 7.2 was the optimum pH of granular sludge, the degradation rate constant was 0.1672, the half-life was 4.15 d, and the TCE degradation rate was 88.74%; Under the conditions of temperature of 35℃, pH of 7.2, and the TCE test concentration range from 14.6 to 73.0 mg·L-1, the smal er the initial TCE concentration was, the faster the degradation rate was; When TCE concentration was 73 mg·L-1, TCE-degrading anaerobic granular sludge stil had higher ability to degrade TCE. After 14 d, TCE could be effectively removed and the final TCE degradation rate was over 80%.%通过在上流式厌氧污泥床(UASB)反应器成功驯化TCE厌氧降解颗粒污泥,于小瓶中进行温度、pH和TCE浓度等对TCE厌氧降解颗粒污泥降解特性影响的试验研究。结果表明,35℃是颗粒污泥最适温度,降解速率常数为0.1879,半衰期为3.69 d,TCE降解率为90.15%;颗粒污泥最适pH为7.2,降解速率常数为0.1672,半衰期为4.15 d,TCE降解率为88.74%;在温度为35℃,pH 7.2条件下,试验浓度范围内(14.6~73.0 mg·L-1),TCE初始浓度越小,降解速率越快,降解率越大;当TCE浓度达到73 mg·L-1时,TCE厌氧降解颗粒污泥仍能以较高速率降解TCE,14 d后TCE均可被有效去除,最终降解率在80%以上。

  19. A pilot study of anaerobic membrane digesters for concurrent thickening and digestion of waste activated sludge (WAS).

    Science.gov (United States)

    Dagnew, Martha; Parker, Wayne J; Seto, Peter

    2010-01-01

    The increased interest in biomass energy provides incentive for the development of efficient and high throughput digesters such as anaerobic membrane bioreactors (AnMBRs) to stabilize waste activated sludge (WAS). This paper presents the results of a pilot and short term filtration study that was conducted to assess the performance of AnMBRs when treating WAS at a 15 day hydraulic retention time (HRT) and 30 day sludge retention time (SRT) in comparison to two conventional digesters running at 15 (BSR-15) and 30 days (BSR-30) HRT/SRT. At steady state, the AnMBR digester showed a slightly higher volatile solids (VS) destruction of 48% in comparison to 44% and 35.3% for BSR-30 and BSR-15, respectively. The corresponding values of specific methane production were 0.32, 0.28 and 0.21 m(3) CH(4)/kg of VS fed. Stable membrane operation at an average flux of 40+/-3.6 LM(-2 )H(-1) (LMH) was observed when the digester was fed with a polymer-dosed thickened waste activated sludge (TWAS) and digester total suspended solids (TSS) concentrations were less than 15 gL(-1). Above this solids concentration a flux decline to 24.1+/-2.0 LM(-2) H(-1) was observed. Short term filtration tests conducted using sludge fractions of a 9.7 and 17.1 gL(-1) TSS sludge indicated 84 and 70% decline in filtration performance to be associated with the supernatant fraction of the sludge. At a higher sludge concentration, the introduction of unique fouling control strategy to tubular membranes, a relaxed mode of operation (i.e. 5 minutes permeation and 1 minute relaxation by) significantly increased the flux from 23.8+/-1.1 to 37.8+/-2.3 LMH for a neutral membrane and from 25.7+/-1.1 to 44.9+/-2.9 LMH for a negatively charged membrane. The study clearly indicates that it is technically feasible to employ AnMBRs to achieve a substantial reduction in digester volumes. PMID:20351424

  20. Promoting sludge granulation by putting xonotlite into the UASB reactors during starting-up stage

    Institute of Scientific and Technical Information of China (English)

    Wen Ni; Hongwei Duan; Xiaoling Ai; Jianping Li

    2003-01-01

    Four reactors of up-flow anaerobic sludge blanket (UASB) were concurrently operated to examine the effects of the xonotlite secondary particles on promoting the sludge granulation during the starting-up stage at room temperature. The results show that the putting of the xonotlite secondary particles into the UASB reactors can increase the basicity of the reacting liquid significantly. The particles can act as the media for biomass accumulation. Thus, the granulation process of the sludge within the reactor can be largely promoted by the special performances of the particles both in physical and chemical aspects.

  1. Enhanced methane production from rice straw co-digested with anaerobic sludge from pulp and paper mill treatment process.

    Science.gov (United States)

    Mussoline, Wendy; Esposito, Giovanni; Lens, Piet; Spagni, Alessandro; Giordano, Andrea

    2013-11-01

    Rice straw is a widely available lignocellulosic waste with potential for energy recovery through anaerobic digestion. Lignin slows the hydrolysis phase, resulting in low methane recovery and long digestion periods. Although pretreatment is effective, it often requires high energy inputs or chemicals that are not feasible for farm-scale systems. This study investigates a unique co-digestion strategy to improve methane yields and reduce digestion times for farm-scale systems. By adding both piggery wastewater and paper mill sludge, specific methane yields in laboratory-scale digesters reached the theoretical value for rice straw (i.e. 330LNCH4/kgVS) over the 92-day period. Accelerated hydrolysis of the straw was directly related to the quantity of sludge added. The most stable digester, with sufficient buffering capacity and nutrients, contained equal parts of straw, wastewater and sludge. This approach is feasible for farm-scale applications since it requires no additional energy inputs or changes to existing infrastructure for dry systems. PMID:24045200

  2. Implementing Both Domestic Wastewater Reuse and Sludge Reduction by a Combination of Anaerobic Phase and Membrane bioreactor

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The aim of the research was to obtain both an excellenteffluent for reuse and a reduced sludge production simultaneously by a combination process of anaerobic phase and Membrane bioreactor (MBR) technology in treatingdomestic wastewater. During the experimental period of three months, excellent removals for COD, NH3-H, TN wereobtained, and mean removals were 91. 87%, 96.13%, and 69.23%, respectively. Whereas, at first 20 days, the removal for TP was only about 15.87%. In the following days, about 30% of raw water was introduced into theanaerobic reactor to supply organics for denitrifieation and release of polypbosphate, then a significant improvement for TP removal was observed, and mean removal of TP increased to 76.35%. During the operational period, it was investigated that the permeate could meet the requirements of several water criteria for reuse except free chlorine, and a mean excess sludge yield coefficient of 0.137 g MLSS/g COD was obtained. Therefore, the predicted goals of permeate for reuse and excess sludge reduction could be both achieved after dosing a certain quantity of disinfectant into the permeate.

  3. Carbon capture and biogas enhancement by carbon dioxide enrichment of anaerobic digesters treating sewage sludge or food waste.

    Science.gov (United States)

    Bajón Fernández, Y; Soares, A; Villa, R; Vale, P; Cartmell, E

    2014-05-01

    The increasing concentration of carbon dioxide (CO2) in the atmosphere and the stringent greenhouse gases (GHG) reduction targets, require the development of CO2 sequestration technologies applicable for the waste and wastewater sector. This study addressed the reduction of CO2 emissions and enhancement of biogas production associated with CO2 enrichment of anaerobic digesters (ADs). The benefits of CO2 enrichment were examined by injecting CO2 at 0, 0.3, 0.6 and 0.9 M fractions into batch ADs treating food waste or sewage sludge. Daily specific methane (CH4) production increased 11-16% for food waste and 96-138% for sewage sludge over the first 24h. Potential CO2 reductions of 8-34% for sewage sludge and 3-11% for food waste were estimated. The capacity of ADs to utilise additional CO2 was demonstrated, which could provide a potential solution for onsite sequestration of CO2 streams while enhancing renewable energy production.

  4. Carbon capture and biogas enhancement by carbon dioxide enrichment of anaerobic digesters treating sewage sludge or food waste.

    Science.gov (United States)

    Bajón Fernández, Y; Soares, A; Villa, R; Vale, P; Cartmell, E

    2014-05-01

    The increasing concentration of carbon dioxide (CO2) in the atmosphere and the stringent greenhouse gases (GHG) reduction targets, require the development of CO2 sequestration technologies applicable for the waste and wastewater sector. This study addressed the reduction of CO2 emissions and enhancement of biogas production associated with CO2 enrichment of anaerobic digesters (ADs). The benefits of CO2 enrichment were examined by injecting CO2 at 0, 0.3, 0.6 and 0.9 M fractions into batch ADs treating food waste or sewage sludge. Daily specific methane (CH4) production increased 11-16% for food waste and 96-138% for sewage sludge over the first 24h. Potential CO2 reductions of 8-34% for sewage sludge and 3-11% for food waste were estimated. The capacity of ADs to utilise additional CO2 was demonstrated, which could provide a potential solution for onsite sequestration of CO2 streams while enhancing renewable energy production. PMID:24632434

  5. Biomethanation of Syngas Using Anaerobic Sludge: Shift in the Catabolic Routes with the CO Partial Pressure Increase

    Science.gov (United States)

    Sancho Navarro, Silvia; Cimpoia, Ruxandra; Bruant, Guillaume; Guiot, Serge R.

    2016-01-01

    Syngas generated by thermal gasification of biomass or coal can be steam reformed and purified into methane, which could be used locally for energy needs, or re-injected in the natural gas grid. As an alternative to chemical catalysis, the main components of the syngas (CO, CO2, and H2) can be used as substrates by a wide range of microorganisms, to be converted into gas biofuels, including methane. This study evaluates the carboxydotrophic (CO-consuming) methanogenic potential present in an anaerobic sludge from an upflow anaerobic sludge bed (UASB) reactor treating waste water, and elucidates the CO conversion routes to methane at 35 ± 3°C. Kinetic activity tests under CO at partial pressures (pCO) varying from 0.1 to 1.5 atm (0.09–1.31 mmol/L in the liquid phase) showed a significant carboxydotrophic activity potential for growing conditions on CO alone. A maximum methanogenic activity of 1 mmol CH4 per g of volatile suspended solid and per day was achieved at 0.2 atm of CO (0.17 mmol/L), and then the rate decreased with the amount of CO supplied. The intermediary metabolites such as acetate, H2, and propionate started to accumulate at higher CO concentrations. Inhibition experiments with 2-bromoethanesulfonic acid (BES), fluoroacetate, and vancomycin showed that in a mixed culture CO was converted mainly to acetate by acetogenic bacteria, which was further transformed to methane by acetoclastic methanogens, while direct methanogenic CO conversion was negligible. Methanogenesis was totally blocked at high pCO in the bottles (≥1 atm). However it was possible to achieve higher methanogenic potential under a 100% CO atmosphere after acclimation of the sludge to CO. This adaptation to high CO concentrations led to a shift in the archaeal population, then dominated by hydrogen-utilizing methanogens, which were able to take over acetoclastic methanogens, while syntrophic acetate oxidizing (SAO) bacteria oxidized acetate into CO2 and H2. The disaggregation of the

  6. Biomethanation of Syngas Using Anaerobic Sludge: Shift in the Catabolic Routes with the CO Partial Pressure Increase.

    Science.gov (United States)

    Sancho Navarro, Silvia; Cimpoia, Ruxandra; Bruant, Guillaume; Guiot, Serge R

    2016-01-01

    Syngas generated by thermal gasification of biomass or coal can be steam reformed and purified into methane, which could be used locally for energy needs, or re-injected in the natural gas grid. As an alternative to chemical catalysis, the main components of the syngas (CO, CO2, and H2) can be used as substrates by a wide range of microorganisms, to be converted into gas biofuels, including methane. This study evaluates the carboxydotrophic (CO-consuming) methanogenic potential present in an anaerobic sludge from an upflow anaerobic sludge bed (UASB) reactor treating waste water, and elucidates the CO conversion routes to methane at 35 ± 3°C. Kinetic activity tests under CO at partial pressures (pCO) varying from 0.1 to 1.5 atm (0.09-1.31 mmol/L in the liquid phase) showed a significant carboxydotrophic activity potential for growing conditions on CO alone. A maximum methanogenic activity of 1 mmol CH4 per g of volatile suspended solid and per day was achieved at 0.2 atm of CO (0.17 mmol/L), and then the rate decreased with the amount of CO supplied. The intermediary metabolites such as acetate, H2, and propionate started to accumulate at higher CO concentrations. Inhibition experiments with 2-bromoethanesulfonic acid (BES), fluoroacetate, and vancomycin showed that in a mixed culture CO was converted mainly to acetate by acetogenic bacteria, which was further transformed to methane by acetoclastic methanogens, while direct methanogenic CO conversion was negligible. Methanogenesis was totally blocked at high pCO in the bottles (≥1 atm). However it was possible to achieve higher methanogenic potential under a 100% CO atmosphere after acclimation of the sludge to CO. This adaptation to high CO concentrations led to a shift in the archaeal population, then dominated by hydrogen-utilizing methanogens, which were able to take over acetoclastic methanogens, while syntrophic acetate oxidizing (SAO) bacteria oxidized acetate into CO2 and H2. The disaggregation of the

  7. Biomethanation of Syngas Using Anaerobic Sludge: Shift in the Catabolic Routes with the CO Partial Pressure Increase.

    Science.gov (United States)

    Sancho Navarro, Silvia; Cimpoia, Ruxandra; Bruant, Guillaume; Guiot, Serge R

    2016-01-01

    Syngas generated by thermal gasification of biomass or coal can be steam reformed and purified into methane, which could be used locally for energy needs, or re-injected in the natural gas grid. As an alternative to chemical catalysis, the main components of the syngas (CO, CO2, and H2) can be used as substrates by a wide range of microorganisms, to be converted into gas biofuels, including methane. This study evaluates the carboxydotrophic (CO-consuming) methanogenic potential present in an anaerobic sludge from an upflow anaerobic sludge bed (UASB) reactor treating waste water, and elucidates the CO conversion routes to methane at 35 ± 3°C. Kinetic activity tests under CO at partial pressures (pCO) varying from 0.1 to 1.5 atm (0.09-1.31 mmol/L in the liquid phase) showed a significant carboxydotrophic activity potential for growing conditions on CO alone. A maximum methanogenic activity of 1 mmol CH4 per g of volatile suspended solid and per day was achieved at 0.2 atm of CO (0.17 mmol/L), and then the rate decreased with the amount of CO supplied. The intermediary metabolites such as acetate, H2, and propionate started to accumulate at higher CO concentrations. Inhibition experiments with 2-bromoethanesulfonic acid (BES), fluoroacetate, and vancomycin showed that in a mixed culture CO was converted mainly to acetate by acetogenic bacteria, which was further transformed to methane by acetoclastic methanogens, while direct methanogenic CO conversion was negligible. Methanogenesis was totally blocked at high pCO in the bottles (≥1 atm). However it was possible to achieve higher methanogenic potential under a 100% CO atmosphere after acclimation of the sludge to CO. This adaptation to high CO concentrations led to a shift in the archaeal population, then dominated by hydrogen-utilizing methanogens, which were able to take over acetoclastic methanogens, while syntrophic acetate oxidizing (SAO) bacteria oxidized acetate into CO2 and H2. The disaggregation of the

  8. Biomethanation Of Syngas Using Anaerobic Sludge: Shift In The Catabolic Routes With The CO Partial Pressure Increase

    Directory of Open Access Journals (Sweden)

    Silvia Sancho-Navarro

    2016-08-01

    Full Text Available Syngas generated by thermal gasification of biomass or coal can be steam reformed and purified into methane, which could be used locally for energy needs, or re-injected in the natural gas grid. As an alternative to chemical catalysis, the main components of the syngas (CO, CO2, and H2 can be used as substrates by a wide range of microorganisms, to be converted into gas biofuels, including methane. This study evaluates the carboxydotrophic (CO-consuming methanogenic potential present in an anaerobic sludge from an upflow anaerobic sludge bed (UASB reactor treating waste water, and elucidates the CO conversion routes to methane at 35±3˚C. Kinetic activity tests under CO at partial pressures (pCO varying from 0.1 to 1.5 atm (0.09-1.31 mmol/L in the liquid phase showed a significant carboxydotrophic activity potential for growing conditions on CO alone. A maximum methanogenic activity of 1 mmol CH4 per g of volatile suspended solid and per day was achieved at 0.2 atm of CO (0.17 mmol/L, and then the rate decreased with the amount of CO supplied. The intermediary metabolites such as acetate, H2 and propionate started to accumulate at higher CO concentrations. Inhibition experiments with 2-bromoethanesulfonic acid (BES, fluoroacetate, and vancomycin showed that in a mixed culture CO was converted mainly to acetate by acetogenic bacteria, which was further transformed to methane by acetoclastic methanogens, while direct methanogenic CO conversion was negligible. Methanogenesis was totally blocked at high pCO in the bottles (≥ 1 atm. However it was possible to achieve higher methanogenic potential under a 100% CO atmosphere after acclimation of the sludge to CO. This adaptation to high CO concentrations led to a shift in the archaeal population, then dominated by hydrogen-utilizing methanogens, which were able to take over acetoclastic methanogens, while syntrophic acetate oxidizing (SAO bacteria oxidized acetate into CO2 and H2. The disaggregation

  9. Rheological characterisation of thermally-treated anaerobic digested sludge: Impact of temperature and thermal history

    OpenAIRE

    Farno, E.; Baudez, J.C.; Parthasarathy, R.; Eshtiaghi, N.

    2014-01-01

    This study investigated the partially irreversible effect of thermal treatment on the rheology of digested sludge when it was subjected to temperature change between 20°C and 80°C and then cooled down to 20°C. The yield stress, infinite viscosity and liquor viscosity of sludge were measured at 20°C for different thermal histories and were compared to the evolution of the solubilised chemical oxygen demand (COD) of sludge liquor. The results showed that thermal history irreversibly affects...

  10. Effect of organic loading rate on methane and volatile fatty acids productions from anaerobic treatment of palm oil mill effluent in UASB and UFAF reactors

    OpenAIRE

    Sumate Chaiprapat; Poonsuk Prasertsan; Piyarat Boonsawang; Ronnachai Chaisri

    2007-01-01

    Anaerobic treatment of palm oil mill effluent (POME) with the separation of the acidogenic and methanogenic phase was studied in an up-flow anaerobic sludge blanket (UASB) reactor and an up-flowanaerobic filter (UFAF) reactor. Furthermore, the effect of OLR on methane and volatile fatty acid productions in UASB and UFAF reactors was investigated. In this research, UASB as acidogenic reactor wasused for volatile fatty acid production and UFAF as methanogenic reactor was used for methane produc...

  11. Bioelectricity generation in microbial fuel cell using natural microflora and isolated pure culture bacteria from anaerobic palm oil mill effluent sludge.

    Science.gov (United States)

    Nor, Muhamad Hanif Md; Mubarak, Mohd Fahmi Muhammad; Elmi, Hassan Sh Abdirahman; Ibrahim, Norahim; Wahab, Mohd Firdaus Abdul; Ibrahim, Zaharah

    2015-08-01

    A double-chambered membrane microbial fuel cell (MFC) was constructed to investigate the potential use of natural microflora anaerobic palm oil mill effluent (POME) sludge and pure culture bacteria isolated from anaerobic POME sludge as inoculum for electricity generation. Sterilized final discharge POME was used as the substrate with no addition of nutrients. MFC operation using natural microflora anaerobic POME sludge showed a maximum power density and current density of 85.11mW/m(2) and 91.12mA/m(2) respectively. Bacterial identification using 16S rRNA analysis of the pure culture isolated from the biofilm on the anode MFC was identified as Pseudomonas aeruginosa strain ZH1. The electricity generated in MFC using P. aeruginosa strain ZH1 showed maximum power density and current density of 451.26mW/m(2) and 654.90mA/m(2) respectively which were five times higher in power density and seven times higher in current density compared to that of MFC using anaerobic POME sludge.

  12. Recycling of phosphorus by precipitation of magnesium ammonium phosphate from local anaerobic sludge; Phosphorrecycling durch MAP-Faellung im kommunalen Faulschlamm

    Energy Technology Data Exchange (ETDEWEB)

    Stumpf, Daniel [Technische Univ. Berlin (Germany). Fachgruppe Verfahrenstechnik

    2007-07-01

    Phosphorus is essential for organisms. Thus, the recycling of phosphorus is of great importance. Under this aspect, the author of the contribution under consideration reports on the recycling of phosphorus by precipitation of magnesium ammonium phosphate from local anaerobic sludge. For this, the author presents different approaches of procedure due to a literature search.

  13. Impact of sludge thickening on energy recovery from anaerobic digestion[Held jointly with the 4. Canadian organic residuals and biosolids managment conference

    Energy Technology Data Exchange (ETDEWEB)

    Puchajda, B. [Stantec Consulting Ltd., Winnipeg, MB (Canada); Oleszkiewicz, J. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Civil Engineering

    2007-07-01

    The anaerobic digestion of wastewater sludge leads to production of a biogas mixture of methane and carbon dioxide. The technology of anaerobic digestion has been applied in various configurations and generally claims greater biogas production and additional stability to the process as compared to conventional mesophilic anaerobic digestion. However, biogas production is only one of many components of anaerobic digester energy balance. This paper presented energy balances for various digestion systems, including single mesophilic digestion; single thermophilic digestion; two-stage thermophilic-mesophilic digestion; and systems at elevated solids content in sludge. Energy balance included two components, namely energy demand and recoverable energy. Energy demand is defined as energy required for process operation such as heat requirement to elevate sludge temperature, and heat losses through digesters walls. Recoverable energy is defined as energy associated with methane content in biogas, that can be recovered either in the form of heat or electricity, and heat recovered through heat exchangers. The paper identified the assumptions used in all energy balance calculations. It presented the objectives and methods of the study as well as the results. It was concluded that two-stage thermophilic-mesophilic digestion system generate more available energy than single mesophilic digestion and single thermophilic digestion systems. Sludge thickening offers the greatest amount of available energy. However, that energy surplus is offset by the cost of thickening. 12 refs., 3 tabs., 6 figs.

  14. Effect of carbon monoxide, hydrogen and sulfate on thermophilic (55°C) hydrogenogenic carbon monoxide conversion in two anaerobic bioreactor sludges

    NARCIS (Netherlands)

    Sipma, J.; Meulepas, R.J.W.; Stams, A.J.M.; Lettinga, G.; Lens, P.N.L.

    2004-01-01

    The conversion routes of carbon monoxide (CO) at 55°C by full-scale grown anaerobic sludges treating paper mill and distillery wastewater were elucidated. Inhibition experiments with 2-bromoethanesulfonate (BES) and vancomycin showed that CO conversion was performed by a hydrogenogenic population an

  15. Enhancement of methane production in mesophilic anaerobic digestion of secondary sewage sludge by advanced thermal hydrolysis pretreatment.

    Science.gov (United States)

    Abelleira-Pereira, Jose M; Pérez-Elvira, Sara I; Sánchez-Oneto, Jezabel; de la Cruz, Roberto; Portela, Juan R; Nebot, Enrique

    2015-03-15

    Studies on the development and evolution of anaerobic digestion (AD) pretreatments are nowadays becoming widespread, due to the outstanding benefits that these processes could entail in the management of sewage sludge. Production of sewage sludge in wastewater treatment plants (WWTPs) is becoming an extremely important environmental issue. The work presented in this paper is a continuation of our previous studies with the aim of understanding and developing the advanced thermal hydrolysis (ATH) process. ATH is a novel AD pretreatment based on a thermal hydrolysis (TH) process plus hydrogen peroxide (H2O2) addition that takes advantage of a peroxidation/direct steam injection synergistic effect. The main goal of the present research was to compare the performance of TH and ATH, conducted at a wide range of operating conditions, as pretreatments of mesophilic AD with an emphasis on methane production enhancement as a key parameter and its connection with the sludge solubilization. Results showed that both TH and ATH patently improved methane production in subsequent mesophilic BMP (biochemical methane potential) tests in comparison with BMP control tests (raw secondary sewage sludge). Besides other interesting results and discussions, a promising result was obtained since ATH, operated at temperature (115 °C), pretreatment time (5 min) and pressure (1 bar) considerably below those typically used in TH (170 °C, 30 min, 8 bar), managed to enhance the methane production in subsequent mesophilic BMP tests [biodegradability factor (fB) = cumulative CH4production/cumulative CH4production (Control) = 1.51 ± 0.01] to quite similar levels than conventional TH pretreatment [fB = 1.52 ± 0.03].

  16. Anaerobic Digestion I. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    Science.gov (United States)

    Arasmith, E. E.

    This lesson is the first of a two-part series on anaerobic digestion. Topics discussed include the five basic functions of an anaerobic digester, basic theory of the biological processes involved, basic equipment necessary for digestion, and the products of digestion. The lesson includes an instructor's guide and student workbook. The instructor's…

  17. Trace metal dynamics in methanol fed anaerobic granular sludge bed reactors

    NARCIS (Netherlands)

    Zandvoort, M.H.

    2005-01-01

    Trace metals are essential for anaerobic microorganisms, because they are present as cofactor in many of their enzymes. Therefore anaerobic wastewater treatment systems using these microorganisms to perform biological conversions are dependent on these metals for their (optimal) performance. In prac

  18. Effects of solution conditions on the physicochemical properties of stratification components of extracellular polymeric substances in anaerobic digested sludge

    Institute of Scientific and Technical Information of China (English)

    Dongqin Yuan; Yili Wang

    2013-01-01

    The composition and effects of solution conditions on the physicochemical properties of the stratification components of extracellular polymeric substances (EPS) in anaerobic digested sludge were determined.The total EPS in anaerobic digested sludge were extracted by the cation exchange resin method.Another EPS extraction method,the centrifugation and sonication technique was employed to stratify the EPS into three fractions:slime,loosely bound (LB)-EPS,and tightly bound (TB)-EPS from the outside to the inside of the anaerobic digested sludge.Proteins and polysaccharides were dispersed uniformly across the different EPS fractions,and humic-like substances were mainly partitioned in the slime,with TB-EPS second.Protein was the major constituent of the LB-EPS and TB-EPS,and the corresponding ratios ranged from 54.0% to 65.6%.The hydrophobic part in the EPS chemical components was primarily comprised of protein and DNA,while the hydrophilic part was mainly composed of polysaccharide.In the slime,the hydrophobic values of several EPS chemical components (protein,polysaccharide,humic-like substances and DNA) were all below 50%.The protein/polysaccharide ratio had a significant influence on the Zeta potentials and isoelectric point values of the EPS:the greater the protein/polysaccharide ratio of the EPS was,the greater the Zeta potential and the higher the isoeleetric point value were.All Zeta potentials of the EPS showed a decreasing trend with increasing pH.The corresponding isoeleetric point values (pH) were 2.8 for total EPS,2.2 for slime,2.7 for LB-EPS,and 2.6 for TB-EPS.As the ionic strength increased,the Zeta potentials sharply increased and then gradually became constant without charge reversal.In addition,as the temperature increased (< 40℃),the apparent viscosity of the EPS decreased monotonically and then gradually became stable between 40 and 60℃.

  19. Bioaccumulation of metals in ryegrass (Lolium perenne L.) following the application of lime stabilised, thermally dried and anaerobically digested sewage sludge.

    Science.gov (United States)

    Healy, M G; Ryan, P C; Fenton, O; Peyton, D P; Wall, D P; Morrison, L

    2016-08-01

    The uptake and accumulation of metals in plants is a potential pathway for the transfer of environmental contaminants in the food chain, and poses potential health and environmental risks. In light of increased population growth and urbanisation, the safe disposal of sewage sludge, which can contain significant levels of toxic contaminants, remains an environmental challenge globally. The aims of this experiment were to apply municipal sludge, having undergone treatment by thermal drying, anaerobic digestion, and lime stabilisation, to permanent grassland in order to assess the bioaccumulation of metals (B, Al, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Nb, Mo, Sb, Ba, W, Pb, Fe, Cd) by perennial ryegrass over a period of up to 18 weeks after application. The legislation currently prohibits use of grassland for fodder or grazing for at least three weeks after application of treated sewage sludge (biosolids). Five treatments were used: thermally dried (TD), anaerobically digested (AD) and lime stabilised (LS) sludge all from one wastewater treatment plant (WWTP), AD sludge from another WWTP, and a study control (grassland only, without application of biosolids). In general, there was no significant difference in metal content of the ryegrass between micro-plots that received treated municipal sludge and the control over the study duration. The metal content of the ryegrass was below the levels at which phytotoxicity occurs and below the maximum levels specified for animal feeds. PMID:27174047

  20. Experimental Study on Sludge Mesotherm Anaerobic Digestion%污泥中温厌氧消化的实验研究

    Institute of Scientific and Technical Information of China (English)

    张毅; 王伟; 唐秋萍; 朱伟

    2011-01-01

    通过实验室装置对活性污泥中温 (35℃) 厌氧消化过程中的沼气产生量和气体成分进行了监测,并对消化前后污泥的含水率、vS、成分等进行对比分析.结果表明:该污泥可以采用中温厌氧消化的方法进行处理,沼气的收集可以实现能量的回收,但由于消化后污泥中Cu、Ni的重金属含量超过GB 4284-1984 农用污泥中污染物控制标准,因此不能用作农业肥料.%The output and composition of digestion gas were monitored in the process of actived sludge mesotherm anaerobic digestion (35 ℃) with experimental facilities. And moisture content, VS, and compositions of the raw sludge and digested sludge were analyzed and compared. The result showed that this kind of sludge can be treated with mesotherm anaerobic digestion method, and recovery of energy can be realized by collection of digestion gas. But the contents of heavy metals (Ct,Ni) in the digested sludge were higher than that of the standard requirement of pollutants control of agricultural sludge (GB 4284-1984). It can't be utilized as fertilizer.

  1. Correlation between microbial community and granule conductivity in anaerobic bioreactors for brewery wastewater treatment

    DEFF Research Database (Denmark)

    Shrestha, Pravin; Malvankar, Nikhil S.; Werner, Jeffrey;

    2014-01-01

    Prior investigation of an upflow anaerobic sludge blanket (UASB) reactor treating brewery wastes suggested that direct interspecies electron transfer (DIET) significantly contributed to interspecies electron transfer to methanogens. To investigate DIET in granules further, the electrical...... conductivity and bacterial community composition of granules in fourteen samples from four different UASB reactors treating brewery wastes were investigated. All of the UASB granules were electrically conductive whereas control granules from ANAMMOX (ANaerobic AMMonium OXidation) reactors and microbial...... with previous studies, which have demonstrated that Geobacter species can donate electrons to methanogens that are typically predominant in anaerobic digesters, suggest that DIET may be a widespread phenomenon in UASB reactors treating brewery wastes....

  2. Characterization and performance of carbonaceous materials obtained from exhausted sludges for the anaerobic biodecolorization of the azo dye Acid Orange II

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Carbonaceous materials were prepared from exhausted sludge materials. • High surface area and good physicochemical properties were achieved. • Utilization of waste sludge materials and mixed anaerobic cultures were used in a continuous anaerobic UPBR system (upflow packed bed biological reactor). • Effective treatment of dye contaminated wastewater in a cheapest and environmental friendly method was demonstrated. - Abstract: This work presents the preliminary study of new carbonaceous materials (CMs) obtained from exhausted sludge, their use in the heterogeneous anaerobic process of biodecolorization of azo dyes and the comparison of their performance with one commercial active carbon. The preparation of carbonaceous materials was conducted through chemical activation and carbonization. Chemical activation was carried out through impregnation of sludge-exhausted materials with ZnCl2 and the activation by means of carbonization at different temperatures (400, 600 and 800 °C). Their physicochemical and surface characteristics were also investigated. Sludge based carbonaceous (SBC) materials SBC400, SBC600 and SBC800 present values of 13.0, 111.3 and 202.0 m2/g of surface area. Biodecolorization levels of 76% were achieved for SBC600 and 86% for SBC800 at space time (τ) of 1.0 min, similar to that obtained with commercial activated carbons in the continuous anaerobic up-flow packed bed reactor (UPBR). The experimental data fit well to the first order kinetic model and equilibrium data are well represented by the Langmuir isotherm model. Carbonaceous materials show high level of biodecolorization even at very short space times. Results indicate that carbonaceous materials prepared from sludge-exhausted materials have outstanding textural properties and significant degradation capacity for treating textile effluents

  3. The use of ultrasound and {gamma}-irradiation as pre-treatments for the anaerobic digestion of waste activated sludge at mesophilic and thermophilic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lafitte-Trouque, S.; Forster, C.F. [The University of Birmingham (United Kingdom). School of Engineering

    2002-09-01

    The effect of ultrasound and {gamma}-irradiation used as pre-treatments for the anaerobic digestion of waste activated sludge at both mesophilic and thermophilic temperatures was examined. Untreated activated sludge was also subjected to anaerobic digestion at these temperatures as a control. The sonication time was 90 s using a Soniprep 150 (MSE Scientific Instruments) which operated at 23 kHz and had been adjusted to give an output of 47 W and the {gamma}-irradiation dose was 500 krad. The digesters were operated in a semi-continuous mode, being fed with fresh sludge every 24 h at hydraulic retention times (HRT) of 8, 10 and 12 days. Over the 24 h period the differences between the digesters, in terms of volatile solids (VS) reductions and biogas production, were not statistically significant for any particular set of conditions. Thermophilic digestion performed better than mesophilic digestion in terms of biogas production, VS reductions (except at HRT of 8 days) and specific methane yields and the optimum retention time was 10 days, at both temperatures. When gas production over the initial eight hours (probably the hydrolytic stage) was examined, it was found that the gas production rates for pre-treated sludges were higher than those for untreated sludges. This was most pronounced at thermophilic temperatures and a HRT of 10 days. Sonication did not affect the numbers of faecal coliforms in the sludge. However, {gamma}-irradiation caused a 3-log reduction and, when coupled with mesophilic digestion, gave a product which contained <100 g{sup -1} TS. Thermophilic anaerobic digestion produced sludges which contained <1 g{sup -1} TS irrespective of any pre-treatment. (author)

  4. Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge

    OpenAIRE

    Luesken, Francisca A.; van Alen, Theo A.; van der Biezen, Erwin; Frijters, Carla; Toonen, Ger; Kampman, Christel; Hendrickx, Tim L. G.; Zeeman, Grietje; Temmink, Hardy; Strous, Marc; Op den Camp, Huub J. M.; Jetten, Mike S. M.

    2011-01-01

    Recently discovered microorganisms affiliated to the bacterial phylum NC10, named “Candidatus Methylomirabilis oxyfera”, perform nitrite-dependent anaerobic methane oxidation. These microorganisms could be important players in a novel way of anaerobic wastewater treatment where ammonium and residual dissolved methane might be removed at the expense of nitrate or nitrite. To find suitable inocula for reactor startup, ten selected wastewater treatment plants (WWTPs) located in The Netherlands w...

  5. Improvement of anaerobic digestion of municipal wastewater treatment plant sludges and lignocellulosic substrates in biogas production

    OpenAIRE

    Kolbl, Sabina

    2014-01-01

    The aim of this doctoral dissertation was to improve the production of methane by mechanical and enzymatic pretreatments of organic substrates. For anaerobic digestion of different substrates and determination of biomethane potential, Automatic Methane Potential Test System (AMPTS II) device was used. AMPTS II is an analytical laboratory scale device used in measurements of ultra low speed production of biomethane produced during the anaerobic digestion of biodegradable substrates. Although b...

  6. Enhanced biological nutrient removal in modified carbon source division anaerobic anoxic oxic process with return activated sludge pre-concentration☆

    Institute of Scientific and Technical Information of China (English)

    Qin Lu; Haiyan Wu; Haoyan Li; Dianhai Yang

    2015-01-01

    A pilot-scale modified carbon source division anaerobic anoxic oxic (AAO) process with pre-concentration of returned activated sludge (RAS) was proposed in this study for the enhanced biological nutrient removal (BNR) of municipal wastewater with limited carbon source. The influent carbon source was fed in step while a novel RAS pre-concentration tank was adopted to improve BNR efficiency, and the effects of an influent carbon source distribution ratio and a RAS pre-concentration ratio were investigated. The results show that the removal efficiency of TN is mainly influenced by the carbon source distribution ratio while the TP removal relies on the RAS pre-concentration ratio. The optimum carbon source distribution ratio and RAS pre-concentration ratio are 60%and 50%, respectively, with an inner recycling ratio of 100%under the optimum steady operation of pilot test, reaching an average effluent TN concentration of 9.8 mg·L−1 with a removal efficiency of 63%and an average TP removal efficiency of 94%. The mechanism of nutrient removal is discussed and the kinetics is analyzed. The results reveal that the optimal carbon source distribution ratio provides sufficient denitrifying carbon source to each anoxic phase, reducing nitrate accumulation while the RAS pre-concentration ratio improves the condition of anaerobic zone to ensure the phosphorus release due to less nitrate in the returned sludge. Therefore, nitrifying bacteria, denitrifying bacteria and phosphorus accumulation organisms play an important role under the optimum condition, enhancing the performance of nutrient removal in this test.

  7. Activity, life time and effect of hydrolytic enzymes for enhanced biogas production from sludge anaerobic digestion.

    Science.gov (United States)

    Odnell, Anna; Recktenwald, Michael; Stensén, Katarina; Jonsson, Bengt-Harald; Karlsson, Martin

    2016-10-15

    As an alternative to energy intensive physical methods, enzymatic treatment of sludge produced at wastewater treatment plants for increased hydrolysis and biogas production was investigated. Several hydrolytic enzymes were assessed with a focus on how enzyme activity and life time was influenced by sludge environments. It could be concluded that the activity life time of added enzymes was limited (enzymes, due to endogenous protease activity. In biogas in situ experiments, subtilisin at a 1% mixture on basis of volatile solids, was the only enzyme providing a significantly increased biomethane production of 37%. However, even at this high concentration, subtilisin could not hydrolyze all available substrate within the life time of the enzyme. Thus, for large scale implementation, enzymes better suited to the sludge environments are needed.

  8. Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease

    International Nuclear Information System (INIS)

    Highlights: → Co-digestion of thickened waste activated sludge (TWAS) with fat, oil and grease (FOG). → Co-digestion of TWAS and FOG at 64% VS increased biogas production by 137%. → FOG addition ratio at 74% of total VS caused inhibition of the anaerobic digestion process. → Micronutrients addition did not significantly improve the biogas production and digestion stabilization. - Abstract: Co-digestion of thickened waste activated sludge (TWAS) and fat, oil and grease (FOG) was conducted semi-continuously under mesophilic conditions. The results showed that daily methane yield at the steady state was 598 L/kg VSadded when TWAS and FOG (64% of total VS) were co-digested, which was 137% higher than that obtained from digestion of TWAS alone. The biogas composition was stabilized at a CH4 and CO2 content of 66.8% and 29.5%, respectively. Micronutrients added to co-digestion did not improve the biogas production and digestion stabilization. With a higher addition of FOG (74% of total VS), the digester initially failed but was slowly self-recovered; however, the methane yield was only about 50% of a healthy reactor with the same organic loading rate.

  9. Predominance of cluster I Clostridium in hydrogen fermentation of galactose seeded with various heat-treated anaerobic sludges.

    Science.gov (United States)

    Park, Jeong-Hoon; Lee, Sang-Hoon; Yoon, Jeong-Jun; Kim, Sang-Hyoun; Park, Hee-Deung

    2014-04-01

    To identify the key bacterial populations in hydrogen fermentation of galactose, a fermentor seeded with a heat-treated sludge was operated. After 27h of fermentation, the proportion of butyric acid increased to 69.4wt.% and the gas production yield reached 1.0molH2/molgalactose. In the pyrosequencing of 16S rDNA, an increase of the proportion of the phylum Firmicutes from 4.2% to 92% (mostly cluster I Clostridium) was observed. To verify the predominance and the ubiquity of the cluster, five fermentors seeded with different heat-treated anaerobic sludges having different feedstock compositions and digestion temperatures were investigated using qPCR analyses. The abundance of the cluster increased >100-fold during the fermentation, regardless of the inocula. Moreover, the abundance was negatively correlated with the lag time of hydrogen production and positively correlated with the hydrogen production rate, demonstrating the relevance of the cluster to hydrogen production. Taken together, the results clearly revealed the importance of cluster I Clostridium in the hydrogen fermentation of galactose.

  10. Simultaneous Biohydrogen and Bioethanol Production from Anaerobic Fermentation with Immobilized Sludge

    OpenAIRE

    Wei Han; Zhanqing Wang; Hong Chen; Xin Yao; Yongfeng Li

    2011-01-01

    The effects of organic loading rates (OLRs) on fermentative productions of hydrogen and ethanol were investigated in a continuous stirred tank reactor (CSTR) with attached sludge using molasses as substrate. The CSTR reactor with attached sludge was operated under different OLRs, ranging from 8 to 24 kg/m3·d. The H2 and ethanol production rate essentially increased with increasing OLR. The highest H2 production rate (10.74 mmol/h ⋅ L) and ethanol production rate (11.72 mmol/h ⋅ L) were obtain...

  11. Methane enhancement through oxidative cleavage and alkali solubilization pre-treatments for corn stover with anaerobic activated sludge.

    Science.gov (United States)

    Hassan, Muhammad; Ding, Weimin; Bi, Jinhua; Mehryar, Esmaeil; Talha, Zahir Ahmed Ali; Huang, Hongying

    2016-01-01

    In the present study, thermo-chemical pre-treatment was adopted to evaluate methane production potential from corn stover by co-digesting it with anaerobic activated sludge. Three chemicals H2O2, Ca(OH)2 and NaOH were selected with two levels of concentration. All thermo-chemical pre-treatments were found significant (Pyield by H2O2-1, H2O2-2, and NaOH-2 treated corn stover were 293.52, 310.50 and 279.42ml/g.VS which were 57.18%, 66.27% and 49.63% higher than the untreated corn stover respectively. In the previous studies pre-treatment time was reported in days but our method had reduced it to about one hour. H2O2-2 and NaOH-2 treatments remained prominent to increase lignocellulosic degradation vigorously up to 45% and 42% respectively. Process biochemistry during the anaerobic digestion process was taken into consideration to optimize the most feasible thermo-chemical pre-treatment for corn stover. PMID:26512865

  12. Increasing biogas production from sewage sludge anaerobic co-digestion process by adding crude glycerol from biodiesel industry.

    Science.gov (United States)

    Nartker, Steven; Ammerman, Michelle; Aurandt, Jennifer; Stogsdil, Michael; Hayden, Olivia; Antle, Chad

    2014-12-01

    In an effort to convert waste streams to energy in a green process, glycerol from biodiesel manufacturing has been used to increase the gas production and methane content of biogas within a mesophilic anaerobic co-digestion process using primary sewage sludge. Glycerol was systematically added to the primary digester from 0% to 60% of the organic loading rate (OLR). The optimum glycerol loading range was from 25% to 60% OLR. This resulted in an 82-280% improvement in specific gas production. Following the feeding schedule described, the digesters remained balanced and healthy until inhibition was achieved at 70% glycerol OLR. This suggests that high glycerol loadings are possible if slow additions are upheld in order to allow the bacterial community to adjust properly. Waste water treatment plant operators with anaerobic digesters can use the data to increase loadings and boost biogas production to enhance energy conversion. This process provides a safe, environmentally friendly method to convert a typical waste stream to an energy stream of biogas.

  13. Detection, phylogeny and population dynamics of syntrophic propionate-oxidizing bacteria in anaerobic granular sludge.

    NARCIS (Netherlands)

    Harmsen, H.J.M.

    1996-01-01

    The research described this thesis concerns the diversity and phylogeny of syntrophic propionate-oxidizing bacteria and their ecology in granular sludge, from which they were obtained. 16S rRNA was used as a molecular marker to study both the phylogeny and the ecology of these bacteria. Sequence ana

  14. Toxicity of di-(2-ethylhexyl) phthalate on the anaerobic digestion of wastewater sludge

    DEFF Research Database (Denmark)

    Alatriste-Mondragon, Felipe; Iranpour, R.; Ahring, Birgitte Kiær

    2003-01-01

    Bureau of Sanitation's Hyperion Treatment Plant. Di (2-ethylhexyl) phthalate (DEHP), the most common persistent PAE found in wastewater, and di-n-butyl phthalate (DBP), a common PAE with short ester chains, were sorbed into the sludge fed to a bench-scale digester for a period of 12 weeks. DEHP...

  15. Chemical characterization of municipal wastewater sludges produced by two-phase anaerobic digestion for biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Francioso, Ornella, E-mail: ornella.francioso@unibo.it [Dipartimento di Scienze e Tecnologie Agroambientali, V.le Fanin 40, 40127 Bologna (Italy); Rodriguez-Estrada, Maria Teresa [Dipartimento di Scienze degli Alimenti, V.le Fanin 40, 40127 Bologna (Italy); Montecchio, Daniela [Dipartimento di Scienze e Tecnologie Agroambientali, V.le Fanin 40, 40127 Bologna (Italy); Salomoni, Cesare; Caputo, Armando [Biotec sys srl, Via Gaetano Tacconi, 59, 40139 Bologna (Italy); Palenzona, Domenico [Dipartimento di Biologia Evoluzionistica Sperimentale, Via Selmi 3, 40126 Bologna (Italy)

    2010-03-15

    In the present study, the chemical features of municipal wastewater sludges treated in two-phase separate digesters (one for acetogenesis and the other one for methanogenesis), were characterized by using chemical analysis, stable carbon isotope ratios ({delta}{sup 13}C), HS-SPME-GC-MS, TG-DTA analysis and DRIFT spectroscopy. The results obtained showed that sludges from acetogenesis and methanogenesis differed from each other, as well as from influent raw sludges. Both processes exhibited a diverse chemical pattern in term of VFA and VOC. Additional variations were observed for {delta}{sup 13}C values that changed from acetogenesis to methanogenesis, as a consequence of fermentation processes that led to a greater fractionation of {sup 12}C with respect to the {sup 13}C isotope. Similarly, the thermal profiles of acetogenesis and methanogenesis sludges greatly differed in terms of heat combustion produced. These changes were also supported by higher lipid content (probably fatty acids) in acetogenesis than in methanogenesis, as also shown by DRIFT spectroscopy.

  16. Selective enrichment of Geobacter sulfurreducens from anaerobic granular sludge with quinones as terminal electron acceptors

    NARCIS (Netherlands)

    Cervantes-Carillo, F.J.; Duong Dac, T.; Ivanova, A.E.; Roest, de K.; Akkermans, A.D.L.; Lettinga, G.; Field, J.A.

    2003-01-01

    A quinone-respiring, enrichment culture derived from methanogenic granular sludge was phylogenetically characterized by using a combined cloning-denaturing gradient gel electrophoresis (DGGE) method, which revealed that the consortium developed was dominated by a single microorganism: 97% related, i

  17. Bioaugmentation of anaerobic sludge digestion with iron-reducing bacteria: process and microbial responses to variations in hydraulic retention time.

    Science.gov (United States)

    Baek, Gahyun; Kim, Jaai; Shin, Seung Gu; Lee, Changsoo

    2016-01-01

    Although anaerobic digestion (AD) is a widely used option to manage waste activated sludge (WAS), there are some drawbacks related to its slow reaction rate and low energy productivity. This study examined an anaerobic WAS digester, augmented with an iron-reducing microbial consortium, relative to changes in microbial community structure and process performance at decreasing hydraulic retention times (HRTs) of 20 to 10 days. The enhanced methanation performance (approximately 40 % increase in methane yield) by the bioaugmentation was sustained until the HRT was decreased to 12.5 days, under Fe(3+)-rich conditions (ferric oxyhydroxide, 20 mM Fe). Enhanced iron-reducing activity was evidenced by the increased Fe(2+) to total Fe ratio maintained above 50 % during the stable operational phases. A further decrease in HRT to 10 days resulted in a significant performance deterioration, along with a drop in the Fe(2+) to total Fe ratio to <35 %, after four turnovers of operation. Prevailing existence of putative iron-reducing bacteria (IRBs) was identified by denaturing gradient gel electrophoresis (DGGE), with Spirochaetaceae- and Thauera-related organisms being dominant members, and clear dominance shifts among them with respect to decrease in HRT were observed. Lowering HRT led to evident shifts in bacterial community structure likely associated with washout of IRBs, leading to decreases in iron respiration activity and AD performance at a lower HRT. The bacterial community structure shifted dynamically over phases, and the community transitions correlated well with the changes in process performance. Overall, the combined biostimulation and bioaugmentation investigated in this study proved effective for enhanced methane recovery from anaerobic WAS digestion, which suggests an interesting potential for high-rate AD.

  18. Bioaugmentation of anaerobic sludge digestion with iron-reducing bacteria: process and microbial responses to variations in hydraulic retention time.

    Science.gov (United States)

    Baek, Gahyun; Kim, Jaai; Shin, Seung Gu; Lee, Changsoo

    2016-01-01

    Although anaerobic digestion (AD) is a widely used option to manage waste activated sludge (WAS), there are some drawbacks related to its slow reaction rate and low energy productivity. This study examined an anaerobic WAS digester, augmented with an iron-reducing microbial consortium, relative to changes in microbial community structure and process performance at decreasing hydraulic retention times (HRTs) of 20 to 10 days. The enhanced methanation performance (approximately 40 % increase in methane yield) by the bioaugmentation was sustained until the HRT was decreased to 12.5 days, under Fe(3+)-rich conditions (ferric oxyhydroxide, 20 mM Fe). Enhanced iron-reducing activity was evidenced by the increased Fe(2+) to total Fe ratio maintained above 50 % during the stable operational phases. A further decrease in HRT to 10 days resulted in a significant performance deterioration, along with a drop in the Fe(2+) to total Fe ratio to <35 %, after four turnovers of operation. Prevailing existence of putative iron-reducing bacteria (IRBs) was identified by denaturing gradient gel electrophoresis (DGGE), with Spirochaetaceae- and Thauera-related organisms being dominant members, and clear dominance shifts among them with respect to decrease in HRT were observed. Lowering HRT led to evident shifts in bacterial community structure likely associated with washout of IRBs, leading to decreases in iron respiration activity and AD performance at a lower HRT. The bacterial community structure shifted dynamically over phases, and the community transitions correlated well with the changes in process performance. Overall, the combined biostimulation and bioaugmentation investigated in this study proved effective for enhanced methane recovery from anaerobic WAS digestion, which suggests an interesting potential for high-rate AD. PMID:26428233

  19. Technical and economical analysis of the anaerobic biodigestion of vinasse from sugar cane for energetic purposes; Analise tecnico-economica da biodigestao anaerobia da vinhaca de cana de acucar para fins energeticos

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Raquel Melegari de; Paula Junior, Durval Rodrigues de [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia de Alimentos e Agricola]. E-mail: rasop97@yahoo.com

    1999-07-01

    This paper performs an economical evaluation of the Brazilian biogas production resulting from the anaerobic digestion of the sugar cane vinasse for electric power generation and using in vehicles, aiming the substitution of conventional fuels. In this work, for the biodigestion technology the UASB (Upflow Anaerobic Sludge Blanket Reactor) is considered. The economic analysis is performed based on the biogas production costs (investment + operational costs), considering three alternatives for the biogas use, in accordance with data available in the literature.

  20. High rate mesophilic, thermophilic, and temperature phased anaerobic digestion of waste activated sludge: A pilot scale study

    International Nuclear Information System (INIS)

    Highlights: ► High temperatures were tested in single and two-stage anaerobic digestion of waste activated sludge. ► The increased temperature demonstrated the possibility of improving typical yields of the conventional mesophilic process. ► The temperature phased anaerobic digestion process (65 + 55 °C) showed the best performances with yields of 0.49 m3/kgVSfed. ► Ammonia and phosphate released from solids destruction determined the precipitation of struvite in the reactor. - Abstract: The paper reports the findings of a two-year pilot scale experimental trial for the mesophilic (35 °C), thermophilic (55 °C) and temperature phased (65 + 55 °C) anaerobic digestion of waste activated sludge. During the mesophilic and thermophilic runs, the reactor operated at an organic loading rate of 2.2 kgVS/m3d and a hydraulic retention time of 20 days. In the temperature phased run, the first reactor operated at an organic loading rate of 15 kgVS/m3d and a hydraulic retention time of 2 days while the second reactor operated at an organic loading rate of 2.2 kgVS/m3d and a hydraulic retention time of 18 days (20 days for the whole temperature phased system). The performance of the reactor improved with increases in temperature. The COD removal increased from 35% in mesophilic conditions, to 45% in thermophilic conditions, and 55% in the two stage temperature phased system. As a consequence, the specific biogas production increased from 0.33 to 0.45 and to 0.49 m3/kgVSfed at 35, 55, and 65 + 55 °C, respectively. The extreme thermophilic reactor working at 65 °C showed a high hydrolytic capability and a specific yield of 0.33 gCOD (soluble) per gVSfed. The effluent of the extreme thermophilic reactor showed an average concentration of soluble COD and volatile fatty acids of 20 and 9 g/l, respectively. Acetic and propionic acids were the main compounds found in the acids mixture. Because of the improved digestion efficiency, organic nitrogen and phosphorus were

  1. Energy potential and alternative usages of biogas and sludge from UASB reactors: case study of the Laboreaux wastewater treatment plant.

    Science.gov (United States)

    Rosa, A P; Conesa, J A; Fullana, A; Melo, G C B; Borges, J M; Chernicharo, C A L

    2016-01-01

    This work assessed the energy potential and alternative usages of biogas and sludge generated in upflow anaerobic sludge blanket reactors at the Laboreaux sewage treatment plant (STP), Brazil. Two scenarios were considered: (i) priority use of biogas for the thermal drying of dehydrated sludge and the use of the excess biogas for electricity generation in an ICE (internal combustion engine); and (ii) priority use of biogas for electricity generation and the use of the heat of the engine exhaust gases for the thermal drying of the sludge. Scenario 1 showed that the electricity generated is able to supply 22.2% of the STP power demand, but the thermal drying process enables a greater reduction or even elimination of the final volume of sludge to be disposed. In Scenario 2, the electricity generated is able to supply 57.6% of the STP power demand; however, the heat in the exhaust gases is not enough to dry the total amount of dehydrated sludge.

  2. Empowerment with VFA as an alternative to improve a seed of raw activated sludge for the starting of UASB reactors

    International Nuclear Information System (INIS)

    In this research the technique for the improvement of a seed coming from the aerobic digestion process of domestic wastewaters, was determined. It was done in UASB (up flow anaerobic sludge blanket) reactor, by adding volatile fatty acids (VFA), during fifty days. The seed was anaerobically acclimated for ninety days, prior to the improving process. Results show that the VFA addition improves the behavior regarding control variables and yielding, and increase in the bacterial population involved in the anaerobic digestion process. It was observed that, for upward speeds greater than 0.30 m/h, there are mass losses in the reactor with VFA

  3. The contribution of biotic and abiotic processes during azo dye reduction in anaerobic sludge

    NARCIS (Netherlands)

    Zee, van der F.P.; Bisschops, I.A.E.; Blanchard, V.G.; Bouwman, R.H.M.; Lettinga, G.; Field, J.A.

    2003-01-01

    Azo dye reduction results from a combination of biotic and abiotic processes during the anaerobic treatment of dye containing effluents. Biotic processes are due to enzymatic reactions whereas the chemical reaction is due to sulfide. In this research, the relative impact of the different azo dye red

  4. Anaerobic Digestion II. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    Science.gov (United States)

    Arasmith, E. E.

    This lesson is the second of a two-part series on anaerobic digestion. Topics discussed include classification of digester by function, roof design, and temperature range, mixing systems, gas system components, operational control basics, and general safety considerations. The lesson includes an instructor's guide and student workbook. The…

  5. Anaerobic co-digestion of cork based oil sorbent and cow manure or sludge

    NARCIS (Netherlands)

    Cavaleiro, A.J.; Neves, T.M.; Guedes, A.P.; Alves, M.M.; Pinto, P.; Silva, S.P.; Machado de Sousa, Diana

    2015-01-01

    Cork, a material with great economic, social and environmental importance in Portugal, is also a good oil sorbent that can be used in the remediation of oil spills. The oil-impregnated cork can be easily removed, but requires further treatment. In the case of vegetable oil spills, anaerobic diges

  6. Improving volatile fatty acid yield from sludge anaerobic fermentation through self-forming dynamic membrane separation.

    Science.gov (United States)

    Liu, Hongbo; Wang, Yuanyuan; Yin, Bo; Zhu, Yanfang; Fu, Bo; Liu, He

    2016-10-01

    Self-forming dynamic membrane (SFDM) separation was applied to the conventional sludge fermenter for improving VFA yields. Results indicated SFDM presented good performance in transferring products, retaining substrates, and enriching useful bacteria. The retention ratios of suspended solids, soluble COD, proteins, and polysaccharides reached 99%, 30%, 70%, and 40%, respectively, and more than 90% of the VFAs and ammonia could be transferred in a timely manner. The structure of the microbial community was optimized, which led to enhanced releases of hydrolytic enzymes and accelerated enrichments of functional bacteria. Protease and β-glucosidase activities increased from 1.0 to 5.0U/mL and 15.0 to 23.0μmol/L·h, respectively. VFA yield and sludge conversion ratio increased by 233.3% and 227.9%, respectively. Moreover, SFDM had good operation stability, including a short formation time, a long operation period, and a low transmembrane pressure. These results show VFA yield from sludge fermentation can be greatly improved by SFDM separation. PMID:27347803

  7. 市政污泥厌氧消化处理的工程设计%Engineering Design of Anaerobic Digestion Treatment of Municipal Sludge

    Institute of Scientific and Technical Information of China (English)

    李光

    2013-01-01

    The process of sludge anaerobic digestion was expounded.The composition and function of each unit of the process were described,and the important design parameters were defined.Meanwhile,the economic analysis of sludge anaerobic digestion was carried out,and its engineering goal was put forward.%阐述了污泥厌氧消化工艺,介绍了各单元处理的组成和功能,并对重要设计参数进行了界定,同时对污泥厌氧消化工艺作了经济分析,提出了其工程目标.

  8. Biological hydrolysis and acidification of sludge under anaerobic conditions: The effect of sludge type and origin on the production and composition of olatile fatty acids

    DEFF Research Database (Denmark)

    Ucisik, Ahmed Süheyl; Henze, Mogens

    2008-01-01

    New wastewater treatment processes resulting in considerably reduced sludge production and more effective treatment are needed. This is due to the more stringent legislations controlling discharges of wastewater treatment plants (WWTPs) and existing problems such as high sludge production....... In this study, the feasibility of implementing biological hydrolysis and acidification process on different types of municipal sludge was investigated by batch and semi-continuous experiments. The municipal sludge originated from six major treatment plants located in Denmark were used. The results showed...... that fermentation of primary sludge produced the highest amount of volatile fatty acids (VFAs) and generated significantly higher COD- and VFA-yields compared to the other sludge types regardless of which WWTP the sludge originated from. Fermentation of activated and primary sludge resulted in 1.9–5.6% and 8...

  9. Anaerobic Treatment of Municipal Solid Waste and Sludge for Energy Production and Recycling of Nutrients

    Science.gov (United States)

    Leinonen, S.

    This volume contains 18 papers presented at a Nordic workshop dealing with application of anaerobic decomposition processes on various types of organic wastes, held at the Siikasalmi Research and Experimental Station of the University of Joensuu on 1-2 Oct. 1992. Subject coverage of the presentations extends from the biochemical and microbiological principles of organic waste processing to descriptions and practical experiences of various types of treatment plants. The theoretical and experimental papers include studies on anaerobic and thermophilic degradation processes, methanogenesis, effects of hydrogen, treatment of chlorinated and phenolic compounds, and process modeling, while the practical examples range from treatment of various types of municipal, industrial, and mining wastes to agricultural and fish farm effluents. The papers provide technical descriptions of several biogas plants in operation. Geographically, the presentations span the Nordic and Baltic countries.

  10. Effect of carbon monoxide, hydrogen and sulfate on thermophilic (55 degrees C) hydrogenogenic carbon monoxide conversion in two anaerobic bioreactor sludges.

    Science.gov (United States)

    Sipma, J; Meulepas, R J W; Parshina, S N; Stams, A J M; Lettinga, G; Lens, P N L

    2004-04-01

    The conversion routes of carbon monoxide (CO) at 55 degrees C by full-scale grown anaerobic sludges treating paper mill and distillery wastewater were elucidated. Inhibition experiments with 2-bromoethanesulfonate (BES) and vancomycin showed that CO conversion was performed by a hydrogenogenic population and that its products, i.e. hydrogen and CO2, were subsequently used by methanogens, homo-acetogens or sulfate reducers depending on the sludge source and inhibitors supplied. Direct methanogenic CO conversion occurred only at low CO concentrations [partial pressure of CO (PCO) hydrogen production from CO, especially since after 30 min exposure to 95 degrees C, the production of CH4 at 55 degrees C was negligible. The paper mill sludge was capable of sulfate reduction with hydrogen, tolerating and using high CO concentrations (PCO>1.6 bar), indicating that CO-rich synthesis gas can be used efficiently as an electron donor for biological sulfate reduction.

  11. In-situ formation and immobilization of biogenic nanopalladium into anaerobic granular sludge enhances azo dyes degradation.

    Science.gov (United States)

    Quan, Xiangchun; Zhang, Xin; Xu, Hengduo

    2015-07-01

    Azo dyes are toxic and recalcitrant wastewater pollutants. An innovative technology based on biogenic nanopalladium (Bio-Pd) supported anaerobic granular sludge (AGS) was developed for azo dyes reduction. In-situ formation of Bio-Pd in the AGS was observed by Scanning Electron Microscopy coupled with Energy Dispersive Spectrometer (SEM-EDS). The Pd associated AGS (Pd-AGS) showed enhanced decolorization rates to the three azo dyes of Congo Red, Evans Blue and Orange II, with the degradation kinetic constants increased by 2.3-10 fold compared to the control AGS in the presence of electron donor formate. Impacts of different electron donors on Orange II decolorization were further investigated. Results showed that formic acid, formate, acetate, glucose, ethanol and lactate could serve as electron and hydrogen donors to stimulate Orange II decolorization by the Pd-AGS, and their activities followed the order: formic acid > formate > ethanol > glucose > lactate > acetate. Most of the Bio-Pd was bound with microbes in the AGS with a small fraction in the extracellular polymer substances (EPS). Transmission Electronic Microscopy analysis revealed that the Bio-Pd formed in the periplasmic space, cytoplasm and on the cell walls of bacteria. This study provides a new concept for azo dye reduction, which couples sludge microbial degradation ability with Bio-Pd catalytic ability via in-situ formation and immobilization of Bio-Pd into AGS, and offers an alternative for the current azo dye treatment technology.

  12. Maximising biogas in anaerobic digestion by using engine waste heat for thermal hydrolysis pre-treatment of sludge.

    Science.gov (United States)

    Pickworth, B; Adams, J; Panter, K; Solheim, O E

    2006-01-01

    Dublin's Ringsend WWTP was designed to serve a population of approximately 1.2 million p.e. with a sludge production of 37,000 dry tonnes per year after upgrading to full secondary treatment. Several technical solutions were put forward as part of a design, build, finance and operate (DBFO) competition, with the chosen solution being a proposal by Black and Veatch for a combination of sequencing batch reactor (SBR) technology and anaerobic digestion with Cambi thermal hydrolysis pre-treatment (THP). The THP plant was built by Cambi and handed over to B&V in 2002. The plant is now operated by Celtic Anglian Water. In September 2004 a test was carried out on the mass and energy balance of the plant following 2 years of operation and is detailed in this paper. The process enables digestion at very high dry solids feed and low hydraulic retention time. The plant was built with three digesters of 4250 m3 each and is fed with hydrolysed sludge at 11% DS. There are four no. 1 MW Jenbacher engines operating mainly on biogas. Each pair of engines is fitted with a waste heat boiler with a capacity of one tonne steam per hour. These boilers have sufficient capacity to provide 80% of the steam required for the THP, which in turn provides all the heat for the subsequent digestion in the form of hydrolysed feed. There are two main biogas boilers for top up steam and other uses of the biogas including thermal oxidation of concentrated odours. PMID:17087375

  13. Anaerobic digestion for simultaneous sewage sludge treatment and CO biomethanation: process performance and microbial ecology

    DEFF Research Database (Denmark)

    Luo, Gang; Wang, Wen; Angelidaki, Irini

    2013-01-01

    Syngas is produced by thermal gasification of both non-renewable and renewable sources including biomass and coal, and it consists mainly of CO, CO2 and H2. In this paper we aim to bio-convert CO in the syngas to CH4. A novel technology for simultaneous sewage sludge treatment and CO biomethanation...... biomethanation. However, the two species were distributed differently in the liquid phase and in the biofilm. Although carboxidotrophic activities test showed that CO was converted by both archaea and bacteria, the bacterial species responsible for CO conversion are unknown....

  14. Production of hydrogen in a granular sludge-based anaerobic continuous stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Show, Kuan-Yeow [Faculty of Engineering and Science, University of Tunku Abdul Rahman, 53300 Setapak, Kuala Lumpur (Malaysia); Zhang, Zhen-Peng; Tay, Joo-Hwa [School of Civil and Environmental Engineering, Nanyang Technological University, 639798 (Singapore); Institute of Environmental Science and Engineering, Nanyang Technological University, 637723 (Singapore); Tee Liang, David [Institute of Environmental Science and Engineering, Nanyang Technological University, 637723 (Singapore); Lee, Duu-Jong [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, RO (China); Jiang, Wen-Ju [Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065 (China)

    2007-12-15

    An investigation on biohydrogen production was conducted in a granular sludge-based continuous stirred tank reactor (CSTR). The reactor performance was assessed at five different glucose concentrations of 2.5, 5, 10, 20 and 40 g/L and four hydraulic retention times (HRTs) of 0.25, 0.5, 1 and 2 h, resulting in the organic loading rates (OLRs) ranged between 2.5 and 20 g-glucose/L h. Carbon flow was traced by analyzing the composition of gaseous and soluble metabolites as well as the cell yield. Butyrate, acetate and ethanol were found to be the major soluble metabolite products in the biochemical synthesis of hydrogen. Carbon balance analysis showed that more than half of the glucose carbon was converted into unidentified soluble products at an OLR of 2.5 g-glucose/L h. It was found that high hydrogen yields corresponded to a sludge loading rate in between 0.6 and 0.8 g-glucose/g-VSS h. Substantial suppression in hydrogen yield was noted as the sludge loading rate fell beyond the optimum range. It is deduced that decreasing the sludge loading rate induced the metabolic shift of biochemical reactions at an OLR of 2.5 g-glucose/L h, which resulted in a substantial reduction in hydrogen yield to 0.36-0.41 mol-H{sub 2}/mol-glucose. Optimal operation conditions for peak hydrogen yield (1.84 mol-H{sub 2}/mol-glucose) and hydrogen production rate (3.26 L/L h) were achieved at an OLR of 20 g-glucose/L h, which corresponded to an HRT of 0.5 h and an influent glucose concentration of 10 g/L. Influence of HRT and substrate concentration on the reactor performance was interrelated and the adverse impact on hydrogen production was noted as substrate concentration was higher than 20 g/L or HRT was shorter than 0.5 h. The experimental study indicated that a higher OLR derived from appropriate HRTs and substrate concentrations was desirable for hydrogen production in such a granule-based CSTR. (author)

  15. MiDAS: A curated database for the microorganisms of activated sludge and anaerobic digesters

    DEFF Research Database (Denmark)

    McIlroy, Simon Jon; Kirkegaard, Rasmus Hansen; McIlroy, Bianca;

    A deep understanding of the microbial communities and dynamics in wastewater treatment systems is a powerful tool for process optimization and design (Rittmann et al., 2006). With the advent of amplicon sequencing of the 16S rRNA gene, the diversity within the microbial communities can now...... web platform about the microbes in activated sludge and their associated ADs. The MiDAS taxonomy proposes putative names for each genus-level-taxon that can be used as a common vocabulary for all researchers in the field....

  16. Improved anaerobic digestion of a thermally pretreated mixture of physicochemical sludge; broiler excreta and sugar cane wastes (SCW): Effect on organic matter solubilization, biodegradability and bioenergy production.

    Science.gov (United States)

    Nava-Valente, Noemí; Alvarado-Lassman, Alejandro; Nativitas-Sandoval, Liliana S; Mendez-Contreras, Juan M

    2016-01-01

    Thermal pretreatment effect of a mixture of organic wastes (physicochemical sludge, excreta of broiler chickens and sugarcane wastes (SCW)) in the solubilization and biodegradability organic matter as well as bioenergy production by anaerobic digestion was evaluated. Two different mixtures of physicochemical sludge, excreta of broiler chickens and SCW (70%, 15%, 15% and 60%, 20%, 20% of VS, respectively) were treated at different temperatures (80 °C, 85 °C and 90 °C) and contact time (30, 60 and 90 min). Results indicate that, organic matter solubilization degree increased from 1.14 to 6.56%; subsequently, in the anaerobic digestion process, an increase of 50% in the volatile solids removal and 10% in biogas production was observed, while, retention time decreased from 23 up to 9 days. The results obtained were similar to pilot-scale. In both experimental scales it showed that the synergy produced by the simultaneous anaerobic digestion of different substrates could increase bioenergy production up to 1.3 L bio g(-1) VS removed and 0.82 L CH4 g(-1) VS removed. The treatment conditions presented in this study allow for large residue quantities to be treated and large bioenergy quantities to be produced (10% higher than during conventional treatment) without increasing the anaerobic digester volume. PMID:26819145

  17. Improved anaerobic digestion of a thermally pretreated mixture of physicochemical sludge; broiler excreta and sugar cane wastes (SCW): Effect on organic matter solubilization, biodegradability and bioenergy production.

    Science.gov (United States)

    Nava-Valente, Noemí; Alvarado-Lassman, Alejandro; Nativitas-Sandoval, Liliana S; Mendez-Contreras, Juan M

    2016-01-01

    Thermal pretreatment effect of a mixture of organic wastes (physicochemical sludge, excreta of broiler chickens and sugarcane wastes (SCW)) in the solubilization and biodegradability organic matter as well as bioenergy production by anaerobic digestion was evaluated. Two different mixtures of physicochemical sludge, excreta of broiler chickens and SCW (70%, 15%, 15% and 60%, 20%, 20% of VS, respectively) were treated at different temperatures (80 °C, 85 °C and 90 °C) and contact time (30, 60 and 90 min). Results indicate that, organic matter solubilization degree increased from 1.14 to 6.56%; subsequently, in the anaerobic digestion process, an increase of 50% in the volatile solids removal and 10% in biogas production was observed, while, retention time decreased from 23 up to 9 days. The results obtained were similar to pilot-scale. In both experimental scales it showed that the synergy produced by the simultaneous anaerobic digestion of different substrates could increase bioenergy production up to 1.3 L bio g(-1) VS removed and 0.82 L CH4 g(-1) VS removed. The treatment conditions presented in this study allow for large residue quantities to be treated and large bioenergy quantities to be produced (10% higher than during conventional treatment) without increasing the anaerobic digester volume.

  18. Simultaneous Biohydrogen and Bioethanol Production from Anaerobic Fermentation with Immobilized Sludge

    Directory of Open Access Journals (Sweden)

    Wei Han

    2011-01-01

    Full Text Available The effects of organic loading rates (OLRs on fermentative productions of hydrogen and ethanol were investigated in a continuous stirred tank reactor (CSTR with attached sludge using molasses as substrate. The CSTR reactor with attached sludge was operated under different OLRs, ranging from 8 to 24 kg/m3·d. The H2 and ethanol production rate essentially increased with increasing OLR. The highest H2 production rate (10.74 mmol/h⋅L and ethanol production rate (11.72 mmol/h⋅L were obtained both operating at OLR = 24 kg/m3·d. Linear regression results show that ethanol production rate ( and H2 production rate ( were proportionately correlated and can be expressed as =1.5365−5.054 (2=0.9751. The best energy generation rate was 19.08 kJ/h⋅L, which occurred at OLR = 24 kg/m3·d. In addition, the hydrogen yield was affected by the presence of ethanol and acetic acid in the liquid phase, and the maximum hydrogen production rate occurred while the ratio of ethanol to acetic acid was close to 1.

  19. Enhancement of sludge granulation in hydrolytic acidogenesis by denitrification.

    Science.gov (United States)

    Li, Yang; Zhang, Yaobin; Zhao, Zisheng; Sun, Songlan; Quan, Xie; Zhao, Huimin

    2016-04-01

    Acidogenesis is an important pretreatment process for various industrial wastewater treatments. Granular sludge is an efficient form of a microbial community in anaerobic methanogenic reactors, such as upflow anaerobic sludge blanket (UASB), but it is hard to develop in the acidogenic process due to the short hydraulic retention times (HRTs) of acidogenesis. In this study, nitrate was added into an acidogenic reactor as an electron acceptor to enhance electron exchange between acidogenic and denitrifying bacteria to accelerate sludge growth in the acidogenesis process. The results showed that it developed solid and mature granular sludge with a mean size of 410 ± 35 μm over 84 days of operation. Comparatively, the sludge in a no-nitrate acidogenic reactor showed a flocculent appearance with a mean size of 110 ± 18 μm. Analysis of the microbial community indicated that denitrifying bacteria interwoven with propionate-oxidizing bacteria were distributed in the outer granule layer, which provided an ideal shield for susceptible microorganisms inside the granules. This microbial structure was favorable for the development of granular sludge and made the system possible to respond well to shocks in the operation. PMID:26637420

  20. The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester.

    Science.gov (United States)

    Uysal, Ayla; Yilmazel, Y Dilsad; Demirer, Goksel N

    2010-09-15

    The formation of struvite (MgNH(4)PO(4).6H(2)O) in wastewater treatment plants can lead to scaling and thus operational problems reducing the treatment efficiency. However, struvite has significant commercial value as an agricultural fertilizer. Therefore, controlled struvite formation in wastewater treatment plants not only presents an opportunity to recover nutrients but also corresponds to the valorization of wastes. NH(4)-N and PO(4)-P removal and recovery from the effluent of a full-scale sewage sludge anaerobic digester via controlled struvite precipitation were investigated in this study. The effect of the residual heavy metal and micropollutant content of the formed struvite on fertilizer quality was also evaluated. Removal efficiencies of NH(4)-N, PO(4)-P and COD were 89.35%, 95% and 39.78% when Mg:N:P molar ratio was 1.5:1:1 and pH was 9.0. Mercury, nickel, zinc and chrome concentrations derived from struvite precipitation were below the regulatory limit for fertilizer usage in Turkey. The precipitate did not contain polychlorinated biphenyls (PCB). X-ray diffraction (XRD) analysis conducted on the precipitate indicated a struvite formation.

  1. Long-term effect of the antibiotic cefalexin on methane production during waste activated sludge anaerobic digestion.

    Science.gov (United States)

    Lu, Xueqin; Zhen, Guangyin; Liu, Yuan; Hojo, Toshimasa; Estrada, Adriana Ledezma; Li, Yu-You

    2014-10-01

    Long-term experiments herein were conducted to investigate the effect of cefalexin (CLX) on methane production during waste activated sludge (WAS) anaerobic digestion. CLX exhibited a considerable inhibition in methane production during the initial 25 days while the negative effect attenuated subsequently and methane production recovered depending on CLX doses used (600 and 1000 mg/L). The highest methane yield reached 450 mL at 1000 mg-CLX/L after 157 days of digestion, 63.8% higher than CLX-free one. Stimulated excretion of extracellular polymeric substances (EPS) by CLX served as microbial protecting layers, creating a suitable environment for microbes' growth and fermentation. Further examination via ultraviolet visible (UV-Vis) spectra also verified the elevated slime EPS, LB-EPS and TB-EPS indicated by UV-254 in the presence of CLX. Unlike the commonly accepted adverse effect, this study demonstrated the beneficial role of CLX in methane production, providing new insights into its true environmental impacts.

  2. The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester

    Energy Technology Data Exchange (ETDEWEB)

    Uysal, Ayla, E-mail: auysal@mmf.sdu.edu.tr [Department of Environmental Engineering, Suleyman Demirel University, Isparta (Turkey); Yilmazel, Y. Dilsad; Demirer, Goksel N. [Department of Environmental Engineering, Middle East Technical University, Ankara (Turkey)

    2010-09-15

    The formation of struvite (MgNH{sub 4}PO{sub 4}.6H{sub 2}O) in wastewater treatment plants can lead to scaling and thus operational problems reducing the treatment efficiency. However, struvite has significant commercial value as an agricultural fertilizer. Therefore, controlled struvite formation in wastewater treatment plants not only presents an opportunity to recover nutrients but also corresponds to the valorization of wastes. NH{sub 4}-N and PO{sub 4}-P removal and recovery from the effluent of a full-scale sewage sludge anaerobic digester via controlled struvite precipitation were investigated in this study. The effect of the residual heavy metal and micropollutant content of the formed struvite on fertilizer quality was also evaluated. Removal efficiencies of NH{sub 4}-N, PO{sub 4}-P and COD were 89.35%, 95% and 39.78% when Mg:N:P molar ratio was 1.5:1:1 and pH was 9.0. Mercury, nickel, zinc and chrome concentrations derived from struvite precipitation were below the regulatory limit for fertilizer usage in Turkey. The precipitate did not contain polychlorinated biphenyls (PCB). X-ray diffraction (XRD) analysis conducted on the precipitate indicated a struvite formation.

  3. Start-up of an anaerobic dynamic membrane digester for waste activated sludge digestion: temporal variations in microbial communities.

    Directory of Open Access Journals (Sweden)

    Hongguang Yu

    Full Text Available An anaerobic dynamic membrane digester (ADMD was developed to digest waste sludge, and pyrosequencing was used to analyze the variations of the bacterial and archaeal communities during the start-up. Results showed that bacterial community richness decreased and then increased over time, while bacterial diversity remained almost the same during the start-up. Proteobacteria and Bacteroidetes were the major phyla. At the class level, Betaproteobacteria was the most abundant at the end of start-up, followed by Sphingobacteria. In the archaeal community, richness and diversity peaked at the end of the start-up stage. Principle component and cluster analyses demonstrated that archaeal consortia experienced a distinct shift and became stable after day 38. Methanomicrobiales and Methanosarcinales were the two predominant orders. Further investigations indicated that Methanolinea and Methanosaeta were responsible for methane production in the ADMD system. Hydrogenotrophic pathways might prevail over acetoclastic means for methanogenesis during the start-up, supported by specific methanogenic activity tests.

  4. Increased temperature in the thermophilic stage in temperature phased anaerobic digestion (TPAD) improves degradability of waste activated sludge.

    Science.gov (United States)

    Ge, Huoqing; Jensen, Paul D; Batstone, Damien J

    2011-03-15

    Two-stage temperature phased anaerobic digestion (TPAD) is an increasingly popular method to improve stabilisation of sewage waste activated sludge, which normally has inherently poor and slow degradation. However, there has been limited systematic analysis of the impact of the initial thermophilic stage (temperature, pH and retention time) on performance in the main mesophilic stage. In this study, we demonstrate a novel two-stage batch test method for TPAD processes, and use it to optimize operating conditions of the thermophilic stage in terms of degradation extent and methane production. The method determines overall degradability and apparent hydrolysis coefficient in both stages. The overall process was more effective with short pre-treatment retention times (1-2 days) and neutral pH compared to longer retention time (4 days) and low pH (4-5). Degradabilities and apparent hydrolysis coefficients were 0.3-0.5 (fraction degradable) and 0.1-0.4d(-1), respectively, with a margin of error in each measurement of approximately 20% relative (95% confidence). Pre-treatment temperature had a strong impact on the whole process, increasing overall degradability from 0.3 to 0.5 as temperature increased from 50 to 65 °C, with apparent hydrolysis coefficient increasing from 0.1 to 0.4d(-1). PMID:21277081

  5. Enhancement in hydrogen production by thermophilic anaerobic co-digestion of organic fraction of municipal solid waste and sewage sludge--optimization of treatment conditions.

    Science.gov (United States)

    Tyagi, Vinay Kumar; Angériz Campoy, Rubén; Álvarez-Gallego, C J; Romero García, L I

    2014-07-01

    Batch dry-thermophilic anaerobic co-digestion (55°C) of organic fraction of municipal solid waste (OFMSW) and sewage sludge (SS) for hydrogen production was studied under several sludge combinations (primary sludge, PS; waste activated sludge, WAS; and mixed sludge, MS), TS concentrations (10-25%) and mixing ratios of OFMSW and SS (1:1, 2.5:1, 5:1, 10:1). The co-digestion of OFMSW and SS showed a 70% improvement in hydrogen production rate over the OFMSW fermentation only. The co-digestion of OFMSW with MS showed 47% and 115% higher hydrogen production potential as compared with OFMSW+PS and OFMSW+WAS, respectively. The maximum hydrogen yield of 51 mL H2/g VS consumed was observed at TS concentration of 20% and OFMSW to MS mixing ratio of 5:1, respectively. The acetic and butyric acids were the main acids in VFAs evolution; however, the higher butyric acid evolution indicated that the H2 fermentation was butyrate type fermentation.

  6. Enhancing anaerobic digestion of waste activated sludge by the combined use of NaOH and Mg(OH)2: Performance evaluation and mechanism study.

    Science.gov (United States)

    Huang, Cheng; Lai, Jia; Sun, Xiuyun; Li, Jiansheng; Shen, Jinyou; Han, Weiqing; Wang, Lianjun

    2016-11-01

    In this study, the combination treatment of NaOH and Mg(OH)2 was applied to anaerobic digestion of waste activated sludge (WAS) for simultaneously enhancement of volatile fatty acids (VFAs) production, nutrients removal and sludge dewaterability. The maximum VFAs production (461mg COD/g VSS) was obtained at the NaOH/Mg(OH)2 ratio of 75:25, which was much higher than that of the blank or sole NaOH. Moreover, nutrients removal and sludge dewaterability were improved by the combined using of NaOH and Mg(OH)2. Mechanism investigations revealed that the presence of Mg(OH)2 could maintain alkaline environment, which contributed to inhibit the activity of methanogens. Also, the bridging between Mg(2+) and extracellular polymeric substances (EPS) plays an important role in the solubilization and dewatering of sludge. High-throughput sequencing analysis demonstrated that the abundance of bacteria involved in sludge hydrolysis and VFAs accumulation was greatly enriched with the mixtures of NaOH and Mg(OH)2. PMID:27619711

  7. Desulfatirhabdium butyrativorans gen. nov., sp. nov., a butyrate-oxidizing, sulfate-reducing bacterium isolated from an anaerobic bioreactor

    NARCIS (Netherlands)

    Balk, M.; Altinbas, M.; Rijpstra, W.I.C.; Sinninghe Damste, J.S.; Stams, A.J.M.

    2008-01-01

    A novel sulfate-reducing bacterium, strain HB1T, was isolated from an upflow anaerobic sludge blanket (UASB) reactor treating paper-mill wastewater operated at 37 °C. Cells of strain HB1T were oval to rod-shaped, 1¿1.3 µm wide and 2.6¿3.5 µm long and Gram-negative. The optimum temperature for growth

  8. Microbial electrolysis contribution to anaerobic digestion of waste activated sludge, leading to accelerated methane production

    DEFF Research Database (Denmark)

    Liu, Wenzong; Cai, Weiwei; Guo, Zechong;

    2016-01-01

    Methane production rate (MPR) in waste activated sludge (WAS) digestion processes is typically limitedby the initial steps of complex organic matter degradation, leading to a limited MPR due to sludgefermentation speed of solid particles. In this study, a novel microbial electrolysis AD reactor (ME......-AD) wasused to accelerate methane production for energy recovery from WAS. Carbon bioconversion wasaccelerated by ME producing H2 at the cathode. MPR was enhanced to 91.8 gCH4/m3 reactor/d in themicrobial electrolysis ME-AD reactor, thus improving the rate by 3 times compared to control conditions (30.6 gCH4......-AD reactor allowed to significantly enhance carbon degradation and methaneproduction from WAS....

  9. Anaerobic treatment with biogas recovery of beverage industry waste water

    International Nuclear Information System (INIS)

    This paper briefly describes the application, by a leading Italian non-alcoholic beverage firm, of an up-flow anaerobic sludge blanket process in the treatment of waste water deriving from the production and bottling of beverages. In addition to describing the key design, operation and performance characteristics of the treatment process, the paper focuses on the economic benefits being obtained through the use of the innovative expansive sludge bed anaerobic digestion system which has proven itself to be particularly suitable for the treatment of food and beverage industry liquid wastes. The system, which has already been operating, with good results, for six months, has shown itself to be capable of yielding overall COD removal efficiencies of up to 94.8% and of producing about 0.43 Ncubic meters of biogas per kg of removed COD

  10. Anaerobic digestion technology in livestock manure treatment for biogas production: a review

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, Ismail M. [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Selangor (Malaysia); Mohd Ghazi, Tinia I.; Omar, Rozita

    2012-06-15

    This article reviews the potential of anaerobic digestion (AD) for biogas production from livestock manure wastes and compares the operating and performance data for various anaerobic process configurations. It examines different kinds of manure waste treatment techniques and the influence of several parameters on biogas and methane yield. The comparison indicates that a variety of different operational conditions, various reactor configurations such as batch reactors, continuously stirred tank reactor (CSTR), plug flow reactor (PFR), up-flow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), temperature phased anaerobic digestion (TPAD), and continuous one- and two-stage systems, present a suitable technology for the AD of livestock manure waste. Main performance indicators are biogas and methane yield, degradation of volatile solids (VS), higher loading, and process stability with a short retention time. (copyright 2012 WILEY-VCH Verlag GmbH 8 Co. KGaA, Weinheim)

  11. The Effect of Higher Sludge Recycling Rate on Anaerobic Treatment of Palm Oil Mill Effluent in a Semi-Commercial Closed Digester for Renewable Energy

    Directory of Open Access Journals (Sweden)

    Alawi Sulaiman

    2009-01-01

    Full Text Available Problem statement: A 500 m3 semi-commercial closed anaerobic digester was constructed for Palm Oil Mill Effluent (POME treatment and methane gas capture for renewable energy. During the start-up operation period, the Volatile Fatty Acids (VFA accumulation could not be controlled and caused instability on the system. Approach: A settling tank was installed and sludge was recycled as to provide a balanced microorganisms population for the treatment of POME and methane gas production. The effect of sludge recycling rate was studied by applying Organic Loading Rates (OLR (between 1.0 and 10.0 kgCOD m-3 day-1 at different sludge recycling rates (6, 12 and 18 m3 day-1. Results: At sludge recycling rate of 18 m3 day-1, the maximum OLR was 10.0 kgCOD m-3 day-1 with biogas and methane productivity of 1.5 and 0.9 m3 m-3 day-1, respectively. By increasing the sludge recycling rate the VFA concentration was controlled below its inhibitory limit (1000 mg L-1 and the COD removal efficiency recorded was above 95% which indicated good treatment performance for the digester. Two methanogens species (Methanosarcina sp. and Methanosaeta concilii had been identified from sludge samples obtained from the digester and recycled stream. Conclusion: By increasing the sludge recycling rate upon higher application of OLR, the treatment process was kept stable with high COD removal efficiency. The biogas and methane productivity were initially improved but reduced once OLR and recycling rate were increased to 10.0 kg COD m3 day-1 and 18 m3 day-1 respectively.

  12. Influence of Continuous Flow Microwave Pre-Treatment on Anaerobic Digestion of Secondary Thickened Sludge for Sustainable Energy Recovery in Sewage Treatment Plant

    Science.gov (United States)

    Hephzibah, D.; Kumaran, P.; Saifuddin, N. M.

    2016-03-01

    This work elucidates the effects of pre-treatment of secondary thickened sludge (STS) for enhancement of biogas production that has great potential to generate energy for the utilization of the sewage treatment plant (STP) itself. Microwave pre-treatment has been adopted for this study. Experiment works have been designed and conducted to examine the effectiveness of continuous flow microwave pre-treatment on the solubility of STS, digestibility of STS and biogas production at a power level of 80 W for 5, 10 and 15 minutes. A few characteristics of the sewage sludge were monitored daily to identify the effect of pre-treatment on the sludge. The soluble chemical oxygen demand (SCOD)/total chemical oxygen demand (TCOD) ratio increased by 0.1, 1.0 and 1.8%, while the volatile fatty acids (VFA) concentration of the pre-treated sludge improved by 4.4, 5.1, 5.9% at the irradiation time of 5, 10 and 15 minutes, respectively at a microwave power level of 80 W. Besides that, the digestate also indicates that the pre-treated sludge undergoes efficient VS removal and TCOD removal after anaerobic digestion compared to the untreated sludge. Moreover, the biogas quantity increased by an average of 19.2, 24.1 and 32.2% in 5, 10 and 15 minutes irradiation time respectively compared to the untreated sludge. The additional quantity of biogas generated has shown a great potential for sustainable energy generation that can be utilized internally by the STP.

  13. Anaerobic co-digestion of waste activated sludge and greasy sludge from flotation process: batch versus CSTR experiments to investigate optimal design.

    Science.gov (United States)

    Girault, R; Bridoux, G; Nauleau, F; Poullain, C; Buffet, J; Peu, P; Sadowski, A G; Béline, F

    2012-02-01

    In this study, the maximum ratio of greasy sludge to incorporate with waste activated sludge was investigated in batch and CSTR experiments. In batch experiments, inhibition occurred with a greasy sludge ratio of more than 20-30% of the feed COD. In CSTR experiments, the optimal greasy sludge ratio was 60% of the feed COD and inhibition occurred above a ratio of 80%. Hence, batch experiments can predict the CSTR yield when the degradation phenomenon are additive but cannot be used to determine the maximum ratio to be used in a CSTR configuration. Additionally, when the ratio of greasy sludge increased from 0% to 60% of the feed COD, CSTR methane production increased by more than 60%. When the greasy sludge ratio increased from 60% to 90% of the feed COD, the reactor yield decreased by 75%.

  14. Anaerobic wastewater treatment in the food processing industry: two case studies

    Energy Technology Data Exchange (ETDEWEB)

    Campos, J.R.; Foresti, E.; Camacho, R.D.P.

    1986-01-01

    This article relates two experiments with wastewater treatment in the food processing industry. One of them refers to the use of an anaerobic filter (meat processing industry) and the other to the use of an upflow anaerobic sludge blanket reactor-UASB (vegetable and fruit processing industry). In the first case, the study describes the performance of an anaerobic filter which has been working for 6 years and provides COD removal efficiency (including primary treatment) equal or better than 80% with an organic loading of 1.4 kg of COD/cubic m/day. The reactor has a bed of broken stones with size of 0.75 m having a medium hydraulic retention time of 13 hours. Discharges of accumulated sludge in a false bottom below the filter are made at intervals of 2 or 3 months. In the second case, the study describes the performance of an upflow anaerobic sludge blanket reactor (88 cubic m) during 255 days of operation including the adaptation phase or startup. This reactor receives wastewater from vegetable and fruit processing including tomato, corn, guava and peach. At the end of each operational phase studied, the COD removal efficiency was about 80%. In the last phase (7.5 hours hydraulic retention time), the organic loading was 1.4 kg of COD/cubic m/day and the hydraulic loading was 3.2 cubic m/cubic m/day. (Refs. 11).

  15. Performance evaluation of an side-stream anaerobic membrane bioreactor: Synthetic and alcoholic beverage industry wastewater

    OpenAIRE

    Nurdan BÜYÜKKAMACI; Yunus AKSOY

    2016-01-01

    The treatment performance of a laboratory-scale anaerobic membrane bioreactor (AnMBR) using high strength wastewater was evaluated. The AnMBR model system consisted of an up-flow anaerobic sludge blanket reactor (UASB) and an ultrafiltration (UF) membrane. Its performance was first examined using molasses based synthetic wastewater at different hydraulic retention times (1-3 days) and organic loading rates (5-15 kg COD/m3.day). As a result of the experimental studies, maximum treatment effici...

  16. A+OSA活性污泥工艺剩余污泥减量特性研究%Characterisation of Excess Sludge Reduction in an Anoxic + Oxic-Settling-Anaerobic Activated Sludge Process

    Institute of Scientific and Technical Information of China (English)

    高旭; 卢艳华; 郭劲松

    2009-01-01

    An energy balance analysis method with auto calorimeter being adopted was introduced to determine calorific values of sludge samples in influent and effluent of uncoupling tank in an anoxic (A) + oxic-settling-anaerobic(OSA) process and a reference system.The affiliation of sludge amount change and its energy content were studied,as well as potential of excess sludge reduction was evaluated through modifying performance of uncoupling tank.The characteristics and causes of sludge reduction in OSA system were deduced according to energy and matter balance analysis.Results show that when the hydraulic retention time (HRT) of uncoupling tank are 5.56 h,7.14 h and 9 h,the excess sludge reduction of whole A+OSA system are 1.236 g/d,0.771 g/d and 0.599 g/d respectively.Energy content of sludge flows into and out of the uncoupling tank changes,the specific calorific value of sludge in effluent is inclined to be higher than that in influent with the HRT of the tank increasing: there isn't any significant difference of sludge calorific values between influent and effluent at 5.56 h,while the differences are in 99-113 J/g at 7.14 h,and 191-329 J/g at 9 h.Sludge in uncoupling tank would decay and longer HRT will result in more attenuation.It could be concluded that excess sludge reduction of A+OSA system is caused by both of sludge decay in uncoupling tank and sludge proliferation in AO reaction zone.%采用自动热量计对Anoxic (A) + oxic-settling-anaerobic(OSA)系统解偶联池进出污泥进行热值分析,以考察污泥量变动与能值变动的相互关系;通过解偶联池参数调整,了解污泥减量趋势,结合能量和物质平衡与常规水质指标测试,推测减量途径和特性.结果表明,解偶联池水力停留时间为5.56、 7.14和9 h时,整个系统污泥减量分别为1.236、 0.771和0.599 g/d.进出解偶联池的污泥含能水平发生了变化,随停留时间增加出流污泥的单位热值有高于进流污泥单位热值的趋势:5

  17. Hydrogen production from molasses by anaerobic fermentation in an activated sludge immobilized bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Han, W.; Yao, X.; Chen, H.; Yue, L.R. [Northeast Forestry Univ., Harbin (China). Forestry School; Li, Y.F. [Shanghai Univ. of Engineering and Science (China). School of Chemical Engineering; Northeast Forestry Univ., Harbin (China). Forestry School

    2010-07-01

    This study investigated the use of granular activated carbon as a support material for the production of biohydrogen in a continuous stirred tank reactor (CSTR) with 5.4 L of molasses as a substrate. The CSTR contained both granular activated carbon and pre-treated sludge operating and was operated at a temperature of 36 degrees C with a hydraulic retention time (HRT) of 6 hours. The procedure increased both biogas and hydrogen yields. The biogas was principally comprised of carbon dioxide (CO{sub 2}) and hydrogen (H{sub 2}). The H{sub 2} percentage ranged from 38.4 per cent to 41 per cent. The maximum H{sub 2} production rate of 3.56 L was obtained at an OLR of 24 kg/m{sup t}d. H{sub 2} yield was influenced by the presence of ethanol to acetic acid in the liquid phase. Maximum H{sub 2} production rates occurred when the ratio of ethanol to acetic acid was close to 1. The study indicated that granular activated carbon can help to stabilize H{sub 2} production systems.

  18. Effective anaerobic biodegradation of municipal solid waste fresh leachate using a novel pilot-scale reactor: comparison under different seeding granular sludge.

    Science.gov (United States)

    Luo, Jinghuan; Zhou, Jizhi; Qian, Guangren; Liu, Jianyong

    2014-08-01

    A novel integrated internal and external circulation (IIEC) reactor was developed for anaerobic biodegradation of municipal solid waste (MSW) fresh leachate with chemical oxygen demand (COD) between 40,000 and 60,000mg/l. The pilot-scale IIEC reactor was inoculated with two kinds of granular sludge from paper mill (SPM) and from citric acid factory (SCF), respectively. The bio-treating capacity in contaminant removal and biogas production performed much superior to others' results, principally attributed to appropriate configuration modification. Compared to SCF, much higher organic loading rate (40.5 vs 23.0kgCOD/m(3)d) and COD removal efficiency (>80% vs 60-75%) were achieved for the reactor with SPM. For methane production, 11.77 or ∼6m(3)STP/m(3)d of rate and 66-85% of content were observed with SPM or SCF, respectively. Due to better sludge concentrations and methanogenic activity, these findings indicate the anaerobic reactor could effectively bio-treat MSW leachate for methane generation, especially inoculated with granular sludge derived from leachate-like-wastewater. PMID:24755395

  19. [Physicochemical and ecological characteristics of the granular sludge during start-up of Anammox reactor].

    Science.gov (United States)

    Song, Yuxia; Xiong, Lei; Chai, Liyuan; Liao, Qi; Tang, Chongjian; Min, Xiaobo; Yang, Zhihui

    2014-12-01

    The anaerobic granular sludge from an Internal Circulation (IC) reactor of a paper mill wastewater treatment plant were seeded in an Anammox upflow anaerobic sludge blanket reactor. After 185 days operation, the reactor was finally started up by increasing the influent ammonium and nitrite concentrations to 224 mg/L and 255 mg/L, respectively, with volumetric nitrogen removal rate increasing to 3.76 kg/(m3·d). The physicochemical characteristics of the cultivated Anammox granules were observed by scanning electron microscope, transmission electron microscope and Fourier Transform infrared spectroscopy (FTIR). Results suggested that during the start-up course, the granular sludge initially disintegrated and then re-aggregated. FTIR spectra results revealed that the Anammox granular sludge contained abundant functional groups, indicating that it may also possess good adsorption properties. The ecological structure of the granular sludge, analyzed by the metagenomic sequencing methods, suggested that the relative abundance of the dominant bacterial community in the seeding sludge, i.e., Proteobacteria, Firmicutes, Bacteroidetes, significantly reduced, while Planctomycetes which contains anaerobic ammonium oxidation bacteria remarkably increased from 1.59% to 23.24% in the Anammox granules. PMID:26016375

  20. Anaerobic biodegradability of Category 2 animal by-products: methane potential and inoculum source.

    Science.gov (United States)

    Pozdniakova, Tatiana A; Costa, José C; Santos, Ricardo J; Alves, M M; Boaventura, Rui A R

    2012-11-01

    Category 2 animal by-products that need to be sterilized with steam pressure according Regulation (EC) 1774/2002 are studied. In this work, 2 sets of experiments were performed in mesophilic conditions: (i) biomethane potential determination testing 0.5%, 2.0% and 5.0% total solids (TS), using sludge from the anaerobic digester of a wastewater treatment plant as inoculum; (ii) biodegradability tests at a constant TS concentration of 2.0% and different inoculum sources (digested sludge from a wastewater treatment plant; granular sludge from an upflow anaerobic sludge blanket reactor; leachate from a municipal solid waste landfill; and sludge from the slaughterhouse wastewater treatment anaerobic lagoon) to select the more adapted inoculum to the substrate in study. The higher specific methane production was of 317 mL CH(4)g(-1) VS(substrate) for 2.0% TS. The digested sludge from the wastewater treatment plant led to the lowest lag-phase period and higher methane potential rate. PMID:22989655

  1. Effects of sludge recirculation rate and mixing time on performance of a prototype single-stage anaerobic digester for conversion of food wastes to biogas and energy recovery.

    Science.gov (United States)

    Ratanatamskul, Chavalit; Saleart, Tawinan

    2016-04-01

    Food wastes have been recognized as the largest waste stream and accounts for 39.25 % of total municipal solid waste in Thailand. Chulalongkorn University has participated in the program of in situ energy recovery from food wastes under the Ministry of Energy (MOE), Thailand. This research aims to develop a prototype single-stage anaerobic digestion system for biogas production and energy recovery from food wastes inside Chulalongkorn University. Here, the effects of sludge recirculation rate and mixing time were investigated as the main key parameters for the system design and operation. From the results obtained in this study, it was found that the sludge recirculation rate of 100 % and the mixing time of 60 min per day were the most suitable design parameters to achieve high efficiencies in terms of chemical oxygen demand (COD), total solids (TS), and total volatile solid (TVS) removal and also biogas production by this prototype anaerobic digester. The obtained biogas production was found to be 0.71 m(3)/kg COD and the composition of methane was 61.6 %. Moreover, the efficiencies of COD removal were as high as 82.9 % and TVS removal could reach 83.9 % at the optimal condition. Therefore, the developed prototype single-stage anaerobic digester can be highly promising for university canteen application to recover energy from food wastes via biogas production.

  2. Anaerobic fermentation combined with low-temperature thermal pretreatment for phosphorus-accumulating granular sludge: Release of carbon source and phosphorus as well as hydrogen production potential.

    Science.gov (United States)

    Zou, Jinte; Li, Yongmei

    2016-10-01

    Releases of organic compounds and phosphorus from phosphorus-accumulating granular sludge (PGS) and phosphorus-accumulating flocculent sludge (PFS) during low-temperature thermal pretreatment and anaerobic fermentation were investigated. Meanwhile, biogas production potential and microbial community structures were explored. The results indicate that much more soluble chemical oxygen demand (SCOD) and phosphorus were released from PGS than from PFS via low-temperature thermal pretreatment because of the higher extracellular polymeric substances (EPS) content in PGS and higher ratio of phosphorus reserved in EPS. Furthermore, PGS contains more anaerobes and dead cells, resulting in much higher SCOD and volatile fatty acids release from PGS than those from PFS during fermentation. PGS fermentation facilitated the n-butyric acid production, and PGS exhibited the hydrogen production potential during fermentation due to the presence of hydrogen-producing bacteria. Therefore, anaerobic fermentation combined with low-temperature thermal pretreatment can facilitate the recovery of carbon and phosphorus as well as producing hydrogen from PGS. PMID:27344244

  3. Effects of sludge recirculation rate and mixing time on performance of a prototype single-stage anaerobic digester for conversion of food wastes to biogas and energy recovery.

    Science.gov (United States)

    Ratanatamskul, Chavalit; Saleart, Tawinan

    2016-04-01

    Food wastes have been recognized as the largest waste stream and accounts for 39.25 % of total municipal solid waste in Thailand. Chulalongkorn University has participated in the program of in situ energy recovery from food wastes under the Ministry of Energy (MOE), Thailand. This research aims to develop a prototype single-stage anaerobic digestion system for biogas production and energy recovery from food wastes inside Chulalongkorn University. Here, the effects of sludge recirculation rate and mixing time were investigated as the main key parameters for the system design and operation. From the results obtained in this study, it was found that the sludge recirculation rate of 100 % and the mixing time of 60 min per day were the most suitable design parameters to achieve high efficiencies in terms of chemical oxygen demand (COD), total solids (TS), and total volatile solid (TVS) removal and also biogas production by this prototype anaerobic digester. The obtained biogas production was found to be 0.71 m(3)/kg COD and the composition of methane was 61.6 %. Moreover, the efficiencies of COD removal were as high as 82.9 % and TVS removal could reach 83.9 % at the optimal condition. Therefore, the developed prototype single-stage anaerobic digester can be highly promising for university canteen application to recover energy from food wastes via biogas production. PMID:25864735

  4. Enhanced deodorization and sludge reduction in situ by a humus soil cooperated anaerobic/anoxic/oxic (A2O) wastewater treatment system.

    Science.gov (United States)

    Yan, Xing; Li, Biqing; Lei, Fang; Feng, Xin; Pang, Bo

    2016-08-01

    Simultaneous sludge reduction and malodor abatement in humus soil cooperated an anaerobic/anoxic/oxic (A2O) wastewater treatment were investigated in this study. The HSR-A2O was composed of a humus soil reactor (HSR) and a conventional A2O (designated as C-A2O).The results showed that adding HSR did not deteriorate the chemical oxygen demand (COD) removal, while total phosphorus (TP) removal efficiency in HSR-A2O was improved by 18 % in comparison with that in the C-A2O. Both processes had good performance on total nitrogen (TN) removal, and there was no significant difference between them (76.8 and 77.1 %, respectively). However, NH4 (+)-N and NO3 (-)-N were reduced to 0.3 and 6.7 mg/L in HSR-A2O compared to 1.5 and 4.5 mg/L. Moreover, adding HSR induced the sludge reduction, and the sludge production rate was lower than that in the C-A2O. The observed sludge yield was estimated to be 0.32 kg MLSS/day in HSR-A2O, which represent a 33.5 % reduction compared to a C-A2O process. Activated sludge underwent humification and produced more humic acid in HSR-A2O, which is beneficial to sludge reduction. Odor abatement was achieved in HSR-A2O, ammonium (NH3), and sulfuretted hydrogen (H2S) emission decreased from 1.34 and 1.33 to 0.06 mg/m(3), 0.025 mg/m(3) in anaerobic area, with the corresponding reduction efficiency of 95.5 and 98.1 %. Microbial community analysis revealed that the relevant microorganism enrichment explained the reduction effect of humus soil on NH3 and H2S emission. The whole study demonstrated that humus soil enhanced odor abatement and sludge reduction in situ.

  5. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH?

    Science.gov (United States)

    Ma, Huijun; Chen, Xingchun; Liu, He; Liu, Hongbo; Fu, Bo

    2016-02-01

    In this study, the anaerobic fermentation was carried out for volatile fatty acids (VFAs) production at different pH (between 7.0 and 10.0) conditions with untreated sludge and heat-alkaline pretreated waste activated sludge. In the fermentation with untreated sludge, the extent of hydrolysis of organic matters and extent of acidification at alkaline pH are 54.37% and 30.37%, respectively, resulting in the highest VFAs yield at 235.46mg COD/gVS of three pH conditions. In the fermentation with heat-alkaline pretreated sludge, the acidification rate and VFAs yield at neutral pH are 30.98% and 240.14mg COD/gVS, respectively, which are higher than that at other pH conditions. With the glucose or bovine serum albumin as substrate for VFAs production, the neutral pH showed a higher VFAs concentration than the alkaline pH condition. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that the alkaline pH caused low microbial richness. Based on the results in this study, we demonstrated that the alkaline pH is favor of hydrolysis of organic matter in sludge while neutral pH improved the acidogenesis for the VFAs production from sludge. Our finding is obvious different to the previous research and helpful for the understanding of how heat-alkaline pretreatment and alkaline fermentation influence the VFAs production, and beneficial to the development of VFAs production process. PMID:26652215

  6. Effect of nanoscale zero-valent iron and magnetite (Fe3O4) on the fate of metals during anaerobic digestion of sludge.

    Science.gov (United States)

    Suanon, Fidèle; Sun, Qian; Mama, Daouda; Li, Jiangwei; Dimon, Biaou; Yu, Chang-Ping

    2016-01-01

    Anaerobic digestion (AD) is one of the most widely used processes to stabilize waste sewage sludge and produce biogas renewable energy. In this study, two different iron nanoparticles [nanoscale zero-valent iron (nZVI) and magnetite (Fe3O4)] were used in the mesophilic AD processes (37 ± 1 °C) to improve biogas production. In addition, changes of heavy metal (Cd, Co, Cu, Zn, Ni and Cr) speciation during AD of sludge with and without iron nanoparticles have been investigated. Concentrations of metals in the initial sludge were as follows: 63.1, 73.4, 1102.2, 2060.3, 483.9 and 604.1 mg kg(-1) (dry sludge basis) for Cd, Co, Cu, Zn, Ni and Cr, respectively. Sequential fractionation showed that metals were predominantly bonded to organic matter and carbonates in the initial sludge. Compared with AD without iron nanoparticles, the application of iron nanoparticles (at dose of 0.5% in this study) showed positive impact not only on biogas production, but also on improvement of metals stabilization in the digestate. Metals were found concentrated in Fe-Mn bound and residual fractions and little was accumulated in the liquid digestate and most mobile fractions of solid digestate (water soluble, exchangeable and carbonates bound). Therefore, iron nanoparticles when properly used, could improve not only biogas yield, but also regulate and control the mobilization of metals during AD process. However, our study also observed that iron nanoparticles could promote the immobilization of phosphorus within the sludge during AD, and more research is needed to fully address the mechanism behind this phenomenon and the impact on future phosphorus reuse. PMID:26613183

  7. Optimisation of sewage sludge anaerobic digestion through co-digestion with OFMSW: Effect of collection system and particle size

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre, Gracia [IRTA, GIRO Joint Research Unit IRTA-UPC, Torre Marimon, Barcelona (Spain); Ainia, Departamento de Medio Ambiente, Bioenergía e Higiene Industrial, Paterna, Valencia (Spain); Bonmatí, August [IRTA, GIRO Joint Research Unit IRTA-UPC, Torre Marimon, Barcelona (Spain); Fernández, Belén, E-mail: belen.fernandez@irta.cat [IRTA, GIRO Joint Research Unit IRTA-UPC, Torre Marimon, Barcelona (Spain)

    2015-09-15

    Highlights: • Methane production rate increased between 56% and 208% during OFMSW–SS codigestion. • The OFMSW particle size reduction from 20 to 8 mm did not affect the methane yield. • OFMSW–SS codigestion promoted β-oxidation and acetoclastic methanogenic activity. • The evolution of specific activity was a feasible tool to control the process. - Abstract: The effect of organic fraction of municipal solid waste (OFMSW) loading rate and particulate size on the sewage sludge (SS) mesophilic anaerobic co-digestion was assessed in continuous stirred tank reactor at hydraulic retention time of 20 days. The SS–OFMSW mixture composed by 54% of the volatile solids fed (inlet-VS), at OLR of 3.1 kg{sub COD} m{sup −3} d{sup −1} (1.9 kg{sub VS} m{sup −3} d{sup −1}), showed the highest increment on the volumetric methane production and yield of +200% and +59% respectively, under stable conditions. The effect of particulate size was assessed with the same mixture and same operational conditions but reducing the OFMSW particulate size from 20 mm to 8 mm with the aim to improve the hydrolysis step, but the results showed any influence in the OFMSW particulate size range analysed. In addition, specific biomass activity was assessed at the end of each co-digestion period. Results showed that OFMSW promoted β-oxidation syntrophic acetogens and the acetoclastic methanogens activity; although the last increase of the OFMSW percentage (from 47% to 54% inlet-VS) affected negatively the specific substrate activity, but not inhibitory effect was observed. Therefore, the results obtained in the continuous experiment could be related with some inhibitory or toxic effect and not due to hydrolysis limitation. The specific biomass activity test was demonstrated to be an interesting tool to evaluate and control the co-digestion process, especially when conventional parameters did not explain the behaviour of the biological system.

  8. Optimisation of sewage sludge anaerobic digestion through co-digestion with OFMSW: Effect of collection system and particle size

    International Nuclear Information System (INIS)

    Highlights: • Methane production rate increased between 56% and 208% during OFMSW–SS codigestion. • The OFMSW particle size reduction from 20 to 8 mm did not affect the methane yield. • OFMSW–SS codigestion promoted β-oxidation and acetoclastic methanogenic activity. • The evolution of specific activity was a feasible tool to control the process. - Abstract: The effect of organic fraction of municipal solid waste (OFMSW) loading rate and particulate size on the sewage sludge (SS) mesophilic anaerobic co-digestion was assessed in continuous stirred tank reactor at hydraulic retention time of 20 days. The SS–OFMSW mixture composed by 54% of the volatile solids fed (inlet-VS), at OLR of 3.1 kgCOD m−3 d−1 (1.9 kgVS m−3 d−1), showed the highest increment on the volumetric methane production and yield of +200% and +59% respectively, under stable conditions. The effect of particulate size was assessed with the same mixture and same operational conditions but reducing the OFMSW particulate size from 20 mm to 8 mm with the aim to improve the hydrolysis step, but the results showed any influence in the OFMSW particulate size range analysed. In addition, specific biomass activity was assessed at the end of each co-digestion period. Results showed that OFMSW promoted β-oxidation syntrophic acetogens and the acetoclastic methanogens activity; although the last increase of the OFMSW percentage (from 47% to 54% inlet-VS) affected negatively the specific substrate activity, but not inhibitory effect was observed. Therefore, the results obtained in the continuous experiment could be related with some inhibitory or toxic effect and not due to hydrolysis limitation. The specific biomass activity test was demonstrated to be an interesting tool to evaluate and control the co-digestion process, especially when conventional parameters did not explain the behaviour of the biological system

  9. Review of Anaerobic Bioreactors for Wastewater Treatment%厌氧生物处理反应器概述

    Institute of Scientific and Technical Information of China (English)

    张鹏; 赵衍武; 郭宏山

    2013-01-01

      The theory and main influencing factors in anaerobic digestion stage were summarized;and the development history of anaerobic bioreactors was also introduced.The operating principles, structures, technical characteristics, operation mechanism and application of several typical anaerobic bioreactors ( upflow anaerobic sludge blanket, anaerobic buffed reactor, expanded granular sludge blanket, internal cyclic reactor ) were discussed in details. Finally, research trend of anaerobic bioreactors in the future was prospected.%  概述了厌氧消化阶段理论与厌氧消化的主要影响因素;介绍了厌氧生物反应器的发展历史;并对几种典型的高效厌氧生物反应器(上流式厌氧污泥床,厌氧折板反应器,厌氧膨胀颗粒污泥床和内循环式反应器)的工作原理、构造、技术特点、运行机制及其应用情况等做了详尽的阐述;最后,对厌氧反应器今后的研究方向给予了展望。

  10. Effect of thermal pretreatment on the biogas production and microbial communities balance during anaerobic digestion of urban and industrial waste activated sludge.

    Science.gov (United States)

    Ennouri, Hajer; Miladi, Baligh; Diaz, Soraya Zahedi; Güelfo, Luis Alberto Fernández; Solera, Rosario; Hamdi, Moktar; Bouallagui, Hassib

    2016-08-01

    The effect of thermal pre-treatment on the microbial populations balance and biogas production was studied during anaerobic digestion of waste activated sludge (WAS) coming from urban (US: urban sludge) and industrial (IS: industrial sludge) wastewater treatment plants (WWTP). The highest biogas yields of 0.42l/gvolatile solid (VS) removed and 0.37l/gVS removed were obtained with urban and industrial sludge pre-treated at 120°C, respectively. Fluorescent in situ hybridization (FISH) was used to quantify the major Bacteria and Archaea groups. Compared to control trails without pretreatment, Archaea content increased from 34% to 86% and from 46% to 83% for pretreated IS and US, respectively. In fact, the thermal pre-treatment of WAS enhanced the growth of hydrogen-using methanogens (HUMs), which consume rapidly the H2 generated to allow the acetogenesis. Therefore, the stable and better performance of digesters was observed involving the balance and syntrophic associations between the different microbial populations. PMID:27132226

  11. Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production.

    Science.gov (United States)

    Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-10-01

    An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production.

  12. Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production.

    Science.gov (United States)

    Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-10-01

    An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production. PMID:23419990

  13. Technological Processes of Pretreatment of Anaerobic Digestion Improvement for Sewage Sludge%改善污泥厌氧消化性能的预处理技术

    Institute of Scientific and Technical Information of China (English)

    蔺金贤; 朱南文; 袁海平; 于豹

    2013-01-01

    厌氧消化是污泥稳定化处理的主要技术之一.通过采用一定的预处理技术,破坏细胞结构,释放有机质,促进污泥的水解速率,从而改善污泥厌氧消化性能.该文综述了几种国内外目前研究较为广泛的预处理技术,主要包括热预处理法、转动球磨法、高压喷射法、超声波预处理法、酸预处理法、碱预处理法和氧化法等技术,并分别探讨了各种技术的作用原理、特点、处理效果及应用前景.%Anaerobic digestion is one of the main sludge stabilization technologies.Pretreatment processes can destroy the cell structure,increase nutrient releasing and promote the rate of hydrolysis of the sludge,thereby improving the performance of anaerobic digestion.Paper presents a review of the main sludge treatment techniques used as a pretreatment of anaerobic digestion.These processes include thermal,mechanical (such as grinding,high pressure and ultrasound),and chemical(mainly with acid,alkali or oxidant)treatments.The basic principles,characteristics,treatment efficiency and future application of these methods were discussed as well.

  14. Anaerobic wastewater treatment in single-and double-stage digesters; Tratamiento anaerobio de aguas residuales en digestores de simple y doble etapa

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Lopez, M.; Vazquez Garcia, M. J.; Pena Caamano, P.; Soto Castineira, M. [Universidad da Coruna (Spain)

    2000-07-01

    Anaerobic treatment are a major alternative in wastewater treatment due to simplicity and lower power requirements, although greater understanding of this process and its technology is needed to make it possible. The most important concepts and parameters developed to treat medium-and high-load effluents are defined and various technologies are discussed, including: anaerobic filter (AF), upflow anaerobic sludge blanket (UASB) reactors, fluidized bed (FB) reactors, expanded granular sludge beds (EGSB). To determine the efficiency in municipal wastewater treatment, a pilot plant was constructed with a UASB reactor, obtaining elimination efficiency values of 60-65% for total COD and 55% for TSS. Finally a comparative chart of aerobic versus anaerobic treatment is provided, high-lighting the major possibilities offered by the latter. (Author) 28 refs.

  15. Anaerobic co-digestion of waste activated sludge and greasy sludge from flotation process: Batch versus CSTR experiments to investigate optimal design

    OpenAIRE

    Girault, R.; Bridoux, G.; Nauleau, F.; Poullain, C.; Buffet, J.; Peu, P.; Sadowski, A.G.; Béline, F.

    2012-01-01

    In this study, the maximum ratio of greasy sluvdge to incorporate with waste activated sludge was investigated in batch and CSTR experiments. In batch experiments, inhibition occurred with a greasy sludge ratio of more than 20-30% of the feed COD. In CSTR experiments, the optimal greasy sludge ratio was 60% of the feed COD and inhibition occurred above a ratio of 80%. Hence, batch experiments can predict the CSTR yield when the degradation phenomenon are additive but cannot be used to determi...

  16. Microbial Communities and Their Performances in Anaerobic Hybrid Sludge Bed-Fixed Film Reactor for Treatment of Palm Oil Mill Effluent under Various Organic Pollutant Concentrations

    OpenAIRE

    Kanlayanee Meesap; Nimaradee Boonapatcharoen; Somkiet Techkarnjanaruk; Pawinee Chaiprasert

    2012-01-01

    The anaerobic hybrid reactor consisting of sludge and packed zones was operated with organic pollutant loading rates from 6.2 to 8.2 g COD/L day, composed mainly of suspended solids (SS) and oil and grease (O&G) concentrations between 5.2 to 10.2 and 0.9 to 1.9 g/L, respectively. The overall process performance in terms of chemical oxygen demands (COD), SS, and O&G removals was 73, 63, and 56%, respectively. When the organic pollutant concentrations were increased, the resultant methane poten...

  17. Application of the IWA ADM1 model to simulate anaerobic co-digestion of organic waste with waste activated sludge in mesophilic condition.

    Science.gov (United States)

    Derbal, K; Bencheikh-Lehocine, M; Cecchi, F; Meniai, A-H; Pavan, P

    2009-02-01

    Anaerobic digestion model no. 1 model of international water association was applied to a full scale anaerobic co-digestion process for the treatment of the organic fraction of municipal solid wastes along with activated sludge wastes originating from a municipal wastewater treatment plant. This operation was carried out in a digester of 2000 m(3) in volume. It is operates at an average hydraulic retention time of 26.9 days with an average organic loading rate of 1.01 kg TVS/m(3) day, at a temperature of 37 degrees C with an average gas production rate of 0.296 m(3)/m(3) day. The aim of the present study is to compare the results obtained from the simulation with the experimental values. The simulated results showed a good fit for pH, methane and carbon dioxide percentages, biogas volume, chemical oxygen demand, total volatile fatty acids, inorganic nitrogen and inorganic carbon.

  18. Intracellular Accumulation of Glycine in Polyphosphate-Accumulating Organisms in Activated Sludge, a Novel Storage Mechanism under Dynamic Anaerobic-Aerobic Conditions.

    Science.gov (United States)

    Nguyen, Hien Thi Thu; Kristiansen, Rikke; Vestergaard, Mette; Wimmer, Reinhard; Nielsen, Per Halkjær

    2015-07-01

    Dynamic anaerobic-aerobic feast-famine conditions are applied to wastewater treatment plants to select polyphosphate-accumulating organisms to carry out enhanced biological phosphorus removal. Acetate is a well-known substrate to stimulate this process, and here we show that different amino acids also are suitable substrates, with glycine as the most promising. (13)C-labeled glycine and nuclear magnetic resonance (NMR) were applied to investigate uptake and potential storage products when activated sludge was fed with glycine under anaerobic conditions. Glycine was consumed by the biomass, and the majority was stored intracellularly as free glycine and fermentation products. Subsequently, in the aerobic phase without addition of external substrate, the stored glycine was consumed. The uptake of glycine and oxidation of intracellular metabolites took place along with a release and uptake of orthophosphate, respectively. Fluorescence in situ hybridization combined with microautoradiography using (3)H-labeled glycine revealed uncultured actinobacterial Tetrasphaera as a dominant glycine consumer. Experiments with Tetrasphaera elongata as representative of uncultured Tetrasphaera showed that under anaerobic conditions it was able to take up labeled glycine and accumulate this and other labeled metabolites to an intracellular concentration of approximately 4 mM. All components were consumed under subsequent aerobic conditions. Intracellular accumulation of amino acids seems to be a novel storage strategy for polyphosphate-accumulating bacteria under dynamic anaerobic-aerobic feast-famine conditions. PMID:25956769

  19. Novel insights into enzymatic-enhanced anaerobic digestion of waste activated sludge by three-dimensional excitation and emission matrix fluorescence spectroscopy.

    Science.gov (United States)

    Luo, Kun; Yang, Qi; Li, Xiao-ming; Chen, Hong-Bo; Liu, Xian; Yang, Guo-jing; Zeng, Guang-Ming

    2013-04-01

    In our previous study, it has been proposed that the hydrolysis of waste activated sludge (WAS) can be enhanced by hydrolytic enzymes. In this study, fluorescence spectral characteristics of extracellular polymeric substances (EPSs) and dissolved organic matter (DOM) during anaerobic digestion were investigated using three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy to explore the destruction mechanisms of WAS enhanced by additional enzymes (protease, α-amylase and the mixture). Two individual fluorescence peaks associated with protein-like fluorophores (aromatic and tryptophan protein-like substances) were identified in the EEM fluorescence spectra of the EPS after 1 and 6d, and only aromatic protein-like substances were observed after 12d of anaerobic digestion for all treatments. As for the DOM, three individual fluorescence peaks were identified, but the peaks associated with visible humic acid-like fluorophores disappeared after 12d. The EEM fluorescence intensity of EPS decreased during the entire anaerobic process, whereas that of the DOM increased at 1d and then decreased till the end. In the EPS, the residual protein-like substances were found to be the lowest during the entire anaerobic process when treated with protease. Correspondingly, the protein-like substances in the DOM increased rapidly from 1 to 6d, and decreased to the lowest level after 12d for the protease treatment. PMID:23266409

  20. A comparison study on the high-rate co-digestion of sewage sludge and food waste using a temperature-phased anaerobic sequencing batch reactor system.

    Science.gov (United States)

    Kim, Hyun-Woo; Nam, Joo-Youn; Shin, Hang-Sik

    2011-08-01

    Assessing contemporary anaerobic biotechnologies requires proofs on reliable performance in terms of renewable bioenergy recovery such as methane (CH(4)) production rate, CH(4) yield while removing volatile solid (VS) effectively. This study, therefore, aims to evaluate temperature-phased anaerobic sequencing batch reactor (TPASBR) system that is a promising approach for the sustainable treatment of organic fraction of municipal solid wastes (OFMSW). TPASBR system is compared with a conventional system, mesophilic two-stage anaerobic sequencing batch reactor system, which differs in operating temperature of 1st-stage. Results demonstrate that TPASBR system can obtain 44% VS removal from co-substrate of sewage sludge and food waste while producing 1.2m(3)CH(4)/m(3)(system)/d (0.2m(3)CH(4)/kgVS(added)) at organic loading rate of 6.1gVS/L/d through the synergy of sequencing-batch operation, co-digestion, and temperature-phasing. Consequently, the rapid and balanced anaerobic metabolism at thermophilic stage makes TPASBR system to afford high organic loading rate showing superior performance on OFMSW stabilization. PMID:21600764

  1. An efficient and green pretreatment to stimulate short-chain fatty acids production from waste activated sludge anaerobic fermentation using free nitrous acid.

    Science.gov (United States)

    Li, Xiaoming; Zhao, Jianwei; Wang, Dongbo; Yang, Qi; Xu, Qiuxiang; Deng, Yongchao; Yang, Weiqiang; Zeng, Guangming

    2016-02-01

    Short-chain fatty acid (SCFA) production from waste activated sludge (WAS) anaerobic fermentation is often limited by the slow hydrolysis rate and poor substrate availability, thus a long fermentation time is required. This paper reports a new pretreatment approach, i.e., using free nitrous acid (FNA) to pretreat sludge, for significantly enhanced SCFA production. Experimental results showed the highest SCFA production occurred at 1.8 mg FNA/L with time of day 6, which was 3.7-fold of the blank at fermentation time of day 12. Mechanism studies revealed that FNA pretreatment accelerated disruption of both extracellular polymeric substances and cell envelope. It was also found that FNA pretreatment benefited hydrolysis and acidification processes but inhibited the activities of methanogens, thereby promoting the yield of SCFA. In addition, the FNA pretreatment substantially stimulated the activities of key enzymes responsible for hydrolysis and acidification, which were consistent with the improvement of solubilization, hydrolysis and acidification of WAS anaerobic fermentation. PMID:26363316

  2. Aerobic/anoxic post-treatment of anaerobically digested sewage sludge as an alternative to biological nitrogen removal from reject water.

    Science.gov (United States)

    Morras, Mikel; Dosta, J; García-Heras, J L

    2015-05-01

    Stabilisation and biological nitrogen removal (BNR) of anaerobically digested sewage sludge were studied in a post-aeration reactor at pilot scale working under alternating anoxic-aerobic conditions. Digested sludge came from a two-stage anaerobic digestion (thermophilic + mesophilic). The best post-aerator performance was achieved when working at an HRT of 10 days (4 days aerobic; dissolved oxygen of 1.8 mg L(-1)) and VS content in the feed no lower than 6.7 g L(-1). Free ammonia concentration values in the effluent above 1.5 mg N L(-1) (around 150 mg NH4 (+)-N L(-1) at pH 7) were necessary to promote the BNR over nitrite. Removal efficiencies up to 80 % NH4 (+)-N, 50-55 % total nitrogen and 15-20 % VS were recorded in this study, with no external addition of chemicals. A nitrogen mass balance revealed that the high percent of NH4 (+)-N assimilated in heterotrophic growth was counteracted with that released in ammonification and fermentation, leading to a NH4 (+)-N removal mainly related to biological nitritation/denitritation. PMID:25407727

  3. An efficient and green pretreatment to stimulate short-chain fatty acids production from waste activated sludge anaerobic fermentation using free nitrous acid.

    Science.gov (United States)

    Li, Xiaoming; Zhao, Jianwei; Wang, Dongbo; Yang, Qi; Xu, Qiuxiang; Deng, Yongchao; Yang, Weiqiang; Zeng, Guangming

    2016-02-01

    Short-chain fatty acid (SCFA) production from waste activated sludge (WAS) anaerobic fermentation is often limited by the slow hydrolysis rate and poor substrate availability, thus a long fermentation time is required. This paper reports a new pretreatment approach, i.e., using free nitrous acid (FNA) to pretreat sludge, for significantly enhanced SCFA production. Experimental results showed the highest SCFA production occurred at 1.8 mg FNA/L with time of day 6, which was 3.7-fold of the blank at fermentation time of day 12. Mechanism studies revealed that FNA pretreatment accelerated disruption of both extracellular polymeric substances and cell envelope. It was also found that FNA pretreatment benefited hydrolysis and acidification processes but inhibited the activities of methanogens, thereby promoting the yield of SCFA. In addition, the FNA pretreatment substantially stimulated the activities of key enzymes responsible for hydrolysis and acidification, which were consistent with the improvement of solubilization, hydrolysis and acidification of WAS anaerobic fermentation.

  4. Vinasses treatment in anaerobic fludized bed reactor.

    Directory of Open Access Journals (Sweden)

    Francisco J. C. Terán

    2009-03-01

    Full Text Available The agricultural use of vinasse produced by the sugar industry has gone through many changes over the years. Coupled with concern over the increased agronomic efficiency and optimizing the management of the use of such waste, you can highlight the major global ecological awareness, developed after 90s. This study aims at the construction and operation of a reactor anaerobic cracker (RALF on pilot scale to verify the burden of chemical demand of oxygen (DQO of vinasse, under mesophilic. The stillage used for feeding the reactor was from a sugar cane processing plant, located in the city of Regente Feijó, São Paulo State. The inoculum was anaerobic sludge from a reactor and upward flow anaerobic sludge blanket (UASB treating wastewater from a factory of soda. The concentrations of vinasse to be treated ranged 17,239 mg DQO L-1 up to 28,174 mg DQO L-1. The effluent pH was maintained between 6.4 and 8.6 during the research. The productivity of biogas in the reactor has not achieved the expected rates, reaching only 46 mL day-1. Maximum efficiency attained during operation was 51.1 %, corresponding to a 14-day operation time, vinasses organic loading of 19.5 kg DQO m-3 dia-1 and to an hydraulic detention time of one day.

  5. Anaerobic co-digestion of wine/fruit-juice production waste with landfill leachate diluted municipal sludge cake under semi-continuous flow operation.

    Science.gov (United States)

    Leiva, M Barrantes; Koupaie, E Hosseini; Eskicioglu, C

    2014-10-01

    Anaerobic co-digestion of four organic waste streams; a thickened waste activated sludge (TWAS) and screen cake (SC) from a fruit-juice/winery wastewater treatment plant along with municipal sludge cake (MC) and landfill leachate (LL) was evaluated. A total of eight semi-continuously-fed single and co-digesters were operated side-by-side at sludge retention times (SRT) of 20 and 10 days. Co-digestion of industrial waste streams (TWAS and SC) with MC and LL resulted in increased operational stability compared to the single digestion of industrial TWAS at the higher organic loading (10 d SRT). Although digester operational temperature had no statistically significant effect on organics removal and biogas production, mesophilic digesters had consistently higher total coliform densities (8838-37,959 most probable number or MPN/g-dry weight) compared to the thermophilic digesters (41-6723 MPN/g-dry weight) at both SRTs. Coliform analysis results also proved that most of the thermophilic digestates could be classified as Class A biosolids according to regulations. Furthermore, addition of industrial TWAS to co-digesters enhanced the dewaterability of the digested streams. A cost-benefit analysis confirmed the benefits and indicated that a full-scale co-digester utilizing all four waste streams can decrease the total capital and operational cost by 22% ($10.52 million). PMID:25081853

  6. Effect of thermal pre-treatment on inoculum sludge to enhance bio-hydrogen production from alkali hydrolysed rice straw in a mesophilic anaerobic baffled reactor.

    Science.gov (United States)

    El-Bery, Haitham; Tawfik, Ahmed; Kumari, Sheena; Bux, Faizal

    2013-01-01

    The effect of thermal pre-treatment on inoculum sludge for continuous H2 production from alkali hydrolysed rice straw using anaerobic baffled reactor (ABR) was investigated. Two reactors, ABR1 and ABR2, were inoculated with untreated and thermally pre-treated sludge, respectively. Both reactors were operated in parallel at a constant hydraulic retention time of 20 h and organic loading rate ranged from 0.5 to 2.16 g COD/L d. The results obtained indicated that ABR2 achieved a better hydrogen conversion rate and hydrogen yield as compared with ABR1. The hydrogen conversion rates were 30% and 24%, while the hydrogen yields were 1.19 and 0.97 mol H2/mol glucose for ABR2 and ABR1, respectively. Similar trend was observed for chemical oxygen demand (COD) and carbohydrate removal, where ABR2 provided a removal efficiency of 53 +/- 2.3% for COD and 46 +/- 2% for carbohydrate. The microbial community analysis using 16S rRNA phylogeny revealed the presence of different species of bacteria, namely Clostridium, Prevotella, Paludibacter, Ensifer, and Petrimonas within the reactors. Volatile fatty acids generated from ABR1 and ABR2 were mainly in the form of acetate and butyrate and a relatively low fraction ofpropionate was detected in ABR1. Based on these results, thermal pre-treatment ofinoculum sludge is preferable for hydrogen production from hydrolysed rice straw.

  7. Sludge granulation and efficiency of phase separator in UASB reactor treating combined industrial effluent

    Institute of Scientific and Technical Information of China (English)

    Abdullah Yasar; Nasir Ahmad; Muhammad Nawaz Chaudhry; Aamir Amanat Ali Khan

    2007-01-01

    Sludge granulation and the effect of gas-liquid-solid separator (GLSS) design on the efficiency of upflow anaerobic sludge blanket (UASB) and upflow anaerobic sludge filter (UASF) reactors, operating at HRTs ranging from 3 to 12 h was investigated. VSS/TS ratio gradually increased in both the reactors with increasing sludge age (from 0.5 to more than 0.7 for UASB reactor and 0.012 to 0.043 for UASF reactor). X-Ray diffraction analysis of the UASF sludge showed the presence of expanding clays revealing its additional absorption capability. Fuoraphyllite and albite precipitation related to excellular polymers of the microbial shell structure, showed the extended growth of microorganisms during sludge granulation. A gradual decrease (82%-69%) in COD removal with decreasing HRT was apparent in UASF reactor. In case of UASB reactor, this decrease was marginal because addition of GLSS device significantly improved (14%-20%) the overall efficiency of the UASB reactor. GLSS enhanced the efficiency of the UASB reactor by increasing the settleability of suspended particles and accelerating the coagulation of colloidal particles due to the velocity gradient.

  8. Enhancing Volatile Fatty Acid by anaerobic digestion using municipal sludge combined with multiple organics%污泥联合不同有机质对厌氧发酵产酸的影响

    Institute of Scientific and Technical Information of China (English)

    李骥延

    2016-01-01

    This paper studied the process of three main organic components(carbohydrates,proteins,lipids)anaerobic digestion with municipal sludge to inhancing Volatile Fatty Acid(VFA)product. According to the text,VFA achieves maximum production when anaerobic digestion com-bined with protein,the maximum yield reaches 14. 52 g/ L and 43. 47% productivity,increasing 218% and 59% respectively compared to sludge solo anaerobic digestion. Sludge combined with lipid produce only 39% yield of VFA compared to sludge solo anaerobic digestion.%研究了城市有机垃圾的三种主要成分(碳水化合物,蛋白质,脂质)与市政污泥联合厌氧发酵产酸的过程,试验结果表明,蛋白类有机质能大幅提高厌氧发酵效率,其后期产酸量达到14.52 g/ L,挥发酸产率43.47%,分别比污泥单独厌氧发酵提高218%和59%;污泥联合脂质厌氧发酵产酸量最低,仅为单独厌氧发酵产酸量的39%。

  9. Effect of different redox mediators during thermophilic azo dye reduction by anaerobic granular sludge and comparative study between mesophilic (30C) and thermophilic (55C) treatments for decolourisation of textile wastewaters

    NARCIS (Netherlands)

    Bezerra Dos Santos, A.; Bisschops, I.A.E.; Cervantes, F.J.; Lier, van J.B.

    2004-01-01

    The impact of different redox mediators on colour removal of azo dye model compounds and textile wastewater by thermophilic anaerobic granular sludge (55 C) was investigated in batch assays. Additionally, a comparative study between mesophilic (30 C) and thermophilic (55 C) colour removal was perfor

  10. Microbial Communities and Their Performances in Anaerobic Hybrid Sludge Bed-Fixed Film Reactor for Treatment of Palm Oil Mill Effluent under Various Organic Pollutant Concentrations

    Directory of Open Access Journals (Sweden)

    Kanlayanee Meesap

    2012-01-01

    Full Text Available The anaerobic hybrid reactor consisting of sludge and packed zones was operated with organic pollutant loading rates from 6.2 to 8.2 g COD/L day, composed mainly of suspended solids (SS and oil and grease (O&G concentrations between 5.2 to 10.2 and 0.9 to 1.9 g/L, respectively. The overall process performance in terms of chemical oxygen demands (COD, SS, and O&G removals was 73, 63, and 56%, respectively. When the organic pollutant concentrations were increased, the resultant methane potentials were higher, and the methane yield increased to 0.30 L CH4/g CODremoved. It was observed these effects on the microbial population and activity in the sludge and packed zones. The eubacterial population and activity in the sludge zone increased to 6.4 × 109 copies rDNA/g VSS and 1.65 g COD/g VSS day, respectively, whereas those in the packed zone were lower. The predominant hydrolytic and fermentative bacteria were Pseudomonas, Clostridium, and Bacteroidetes. In addition, the archaeal population and activity in the packed zone were increased from to 9.1 × 107 copies rDNA/g VSS and 0.34 g COD-CH4/g VSS day, respectively, whereas those in the sludge zone were not much changed. The most represented species of methanogens were the acetoclastic Methanosaeta, the hydrogenotrophic Methanobacterium sp., and the hydrogenotrophic Methanomicrobiaceae.

  11. Microbial community analysis in sludge of anaerobic wastewater treatment systems : integrated culture-dependent and culture-independent approaches

    NARCIS (Netherlands)

    Roest, C.

    2007-01-01

    The need for clean water is increasing and anaerobic wastewater treatment can be used as a cost-effective solution for purification of organically polluted industrial waste streams. This thesis presents results from microbiological investigations of several full-scale and lab-scale anaerobic wastewa

  12. Relationships between anaerobic consortia and removal efficiencies in an UASB reactor degrading 2,4 dichlorophenol (DCP).

    Science.gov (United States)

    Sponza, Delia Teresa; Cigal, Canan

    2008-04-01

    To gain more insight into the interactions between anaerobic bacteria and reactor performances (chemical oxygen demand-COD, 2,4 dichlorophenol-2,4 DCP removals, volatile fatty acid-VFA, and methane gas productions) and how they depended on operational conditions the microbial variations in the anaerobic granular sludge from an upflow anaerobic sludge blanket (UASB) reactor treating 2,4 DCP was studied. The study was composed of two parts. In the first part, the numbers of methanogens and acedogens in the anaerobic granular sludge were counted at different COD removal efficiencies. The relationships between the numbers of methanogens, the methane gas production and VFA production were investigated. The COD removal efficiencies increased to 74% from 30% while the number of total acedogens decreased to 10 from 30 cfu ml(-1). The number of total methanogens and acedogens varied between 11 x 10(3) and 10 x 10(9)MPN g(-1) and 10 and 30 cfu ml(-1) as the 2,4 DCP removal efficiencies were obtained between 60% and 99%, respectively. It was seen that, as the number of total acedogens decreased, the COD removal efficiencies increased. However, the number of total methanogens increased as the COD removal efficiencies increased. Correlations between the bacterial number and with the removal efficiencies obtained in different operational conditions were investigated. From the results presented in this paper a high correlation between the number of bacteria, COD removals, methane gas percentage, 2,4 DCP removals and VFA was observed. In the second part, methanogen bacteria in the anaerobic granular sludge were identified. Microbial observations and biochemical tests were applied to identify the anaerobic microorganisms from the anaerobic granular sludge. In the reactor treating 2,4 DCP, Methanobacterium bryantii, Methanobacterium formicicum, Methanobrevibacter smithii, Methanococcus voltae, Methanosarcina mazei, Methanosarcina acetivorans, Methanogenium bourgense and

  13. Relationships between anaerobic consortia and removal efficiencies in an UASB reactor degrading 2,4 dichlorophenol (DCP).

    Science.gov (United States)

    Sponza, Delia Teresa; Cigal, Canan

    2008-04-01

    To gain more insight into the interactions between anaerobic bacteria and reactor performances (chemical oxygen demand-COD, 2,4 dichlorophenol-2,4 DCP removals, volatile fatty acid-VFA, and methane gas productions) and how they depended on operational conditions the microbial variations in the anaerobic granular sludge from an upflow anaerobic sludge blanket (UASB) reactor treating 2,4 DCP was studied. The study was composed of two parts. In the first part, the numbers of methanogens and acedogens in the anaerobic granular sludge were counted at different COD removal efficiencies. The relationships between the numbers of methanogens, the methane gas production and VFA production were investigated. The COD removal efficiencies increased to 74% from 30% while the number of total acedogens decreased to 10 from 30 cfu ml(-1). The number of total methanogens and acedogens varied between 11 x 10(3) and 10 x 10(9)MPN g(-1) and 10 and 30 cfu ml(-1) as the 2,4 DCP removal efficiencies were obtained between 60% and 99%, respectively. It was seen that, as the number of total acedogens decreased, the COD removal efficiencies increased. However, the number of total methanogens increased as the COD removal efficiencies increased. Correlations between the bacterial number and with the removal efficiencies obtained in different operational conditions were investigated. From the results presented in this paper a high correlation between the number of bacteria, COD removals, methane gas percentage, 2,4 DCP removals and VFA was observed. In the second part, methanogen bacteria in the anaerobic granular sludge were identified. Microbial observations and biochemical tests were applied to identify the anaerobic microorganisms from the anaerobic granular sludge. In the reactor treating 2,4 DCP, Methanobacterium bryantii, Methanobacterium formicicum, Methanobrevibacter smithii, Methanococcus voltae, Methanosarcina mazei, Methanosarcina acetivorans, Methanogenium bourgense and

  14. Behavior of the anaerobic CSTR in the presence of scum during primary sludge digestion and the role of pH.

    Science.gov (United States)

    Gömeç, Ciğdem Yangin

    2006-01-01

    Anaerobic digestion of the primary sludge with or without scum addition and the role of pH were evaluated in four completely stirred tank reactors (CSTR) operated as batch systems at 35 degrees C (mesophilic). For investigating the scum influence, two CSTRs were only fed with the primary sludge (PS) whereas the other CSTRs were composed of the primary sludge with 15% scum (PS+Scum). The pH in two reactors was fixed at 6.5, whereas the pH in the other two reactors was left to be operated at their original values for evaluating the retardation in biodegradation rates at low pH values. Since scum is generally produced at most primary settling tanks and given into the anaerobic digesters, the behavior of the CSTR was examined with or without scum addition. The results indicated that scum addition favoured low pH levels and led to retardation in methanogenesis. Besides, pH control enhanced the biodegradation rates and led to methanogenesis to perform at shorter digestion times in the reactors. The destructions of TSS and VSS were better when the pH was controlled. When only primary sludge was used as the substrate, the reactors with or without pH control removed VSS with a corresponding production of VFAs and soluble COD. However, their productions ceased earlier and the complete VFAs consumption occurred 4 days earlier in the reactors with pH control. In the reactors consisting of PS+Scum, soluble COD productions continued during 4 days of digestion. However, soluble COD remained constant and almost no VFAs consumption occurred during the whole operation period without pH control whereas VFAs were consumed completely after around 11 days in the reactor with pH control. Overall, scum addition caused methanogenesis to perform at longer operation periods when the pH was controlled and kept above 6.5. When the pH was not controlled, scum favoured acidic conditions and did not allow methanogenesis to start due to the fact that methanogens could not perform well at low p

  15. Microbial aerobic and anaerobic degradation of acrylamide in sludge and water under environmental conditions--case study in a sand and gravel quarry.

    Science.gov (United States)

    Guezennec, A G; Michel, C; Ozturk, S; Togola, A; Guzzo, J; Desroche, N

    2015-05-01

    Polyacrylamides (PAMs) are used in sand and gravel quarries as water purification flocculants for recycling process water in a recycling loop system where the flocculants remove fine particles in the form of sludge. The PAM-based flocculants, however, contain residual amounts of acrylamide (AMD) that did not react during the polymerization process. This acrylamide is released into the environment when the sludge is discharged into a settling basin. Here, we explore the microbial diversity and the potential for AMD biodegradation in water and sludge samples collected in a quarry site submitted to low AMD concentrations. The microbial diversity, analyzed by culture-dependent methods and the denaturing gradient gel electrophoresis approach, reveals the presence of Proteobacteria, Cyanobacteria, and Actinobacteria, among which some species are known to have an AMD biodegradation activity. Results also show that the two main parts of the water recycling loop-the washing process and the settling basin-display significantly different bacterial profiles. The exposure time with residual AMD could, thus, be one of the parameters that lead to a selection of specific bacterial species. AMD degradation experiments with 0.5 g L(-1) AMD showed a high potential for biodegradation in all parts of the washing process, except the make-up water. The AMD biodegradation potential in samples collected from the washing process and settling basin was also analyzed taking into account on-site conditions: low (12 °C) and high (25 °C) temperatures reflecting the winter and summer seasons, and AMD concentrations of 50 μg L(-1). Batch tests showed rapid (as little as 18 h) AMD biodegradation under aerobic and anaerobic conditions at both the winter and summer temperatures, although there was a greater lag time before activity started with the AMD biodegradation at 12 °C. This study, thus, demonstrates that bacteria present in sludge and water samples exert an in situ and rapid

  16. 新型厌氧反应器UBF的发展及应用%Development and Application of New Anaerobic Reactor UBF

    Institute of Scientific and Technical Information of China (English)

    孙根行; 王丹

    2011-01-01

    The development process of anaerobic biological treatment technology was introduced, and the disadvantages of Up-flow Anaerobic Sludge Blanket were analyzed,the operating principle and application situation of the UBF reactor which was invented based on the UASB reactor were emphasized.%回顾了厌氧生物处理技术的发展历程,分析了UASB反应器的不足之处,重点阐述了在其基础上改进的UBF反应器的工作原理及应用现状.

  17. Microbial decolorization of reactive black-5 in a two-stage anaerobic-aerobic reactor using acclimatized activated textile sludge.

    Science.gov (United States)

    Mohanty, Sagarika; Dafale, Nishant; Rao, Nageswara Neti

    2006-10-01

    A two-stage anaerobic-aerobic treatment process based on mixed culture of bacteria isolated from textile dye effluent was used to degrade reactive black 5 dye (RB-5). The anaerobic step was studied in more detail by varying the dye concentration from 100 to 3000 mg l(-1). The results showed that major decolorization was achieved during the anaerobic process. The time required for decolorization by > 90% increased as the concentration of the dye increased. It was also found that maintaining dissolved oxygen (DO) concentration below 0.5 mg l(-1 )and addition of a co-substrate viz., glucose, facilitates anaerobic decolorization reaction remarkably. An attempt was made to identify the metabolites formed in anaerobic process by using high performance liquid chromatography (HPLC) and UV-VIS spectrophotometry. A plate assay was performed for the detection of dominant decolorizing bacteria. Only a few bacterial colonies with high clearing zones (decolorization zones) were found. The results showed that under anaerobic condition RB-5 molecules were reduced and aromatic amines were generated. The aromatic amine metabolite was partly removed in subsequent aerobic bio-treatment. It was possible to achieve more than 90% decolorization and approximately 46% reduction in amine metabolite concentration through two-stage anaerobic-aerobic treatment after a reaction period of 2 days.

  18. ANAEROBIC DIGESTION AND THE DENITRIFICATION IN UASB REACTOR

    Directory of Open Access Journals (Sweden)

    José Tavares de Sousa

    2008-01-01

    Full Text Available The environmental conditions in Brazil have been contributing to the development of anaerobic systems in the treatment of wastewaters, especially UASB - Upflow Anaerobic Sludge Blanket reactors. The classic biological process for removal of nutrients uses three reactors - Bardenpho System, therefore, this work intends an alternative system, where the anaerobic digestion and the denitrification happen in the same reactor reducing the number of reactors for two. The experimental system was constituted by two units: first one was a nitrification reactor with 35 L volume and 15 d of sludge age. This system was fed with raw sanitary waste. Second unit was an UASB, with 7.8 L and 6 h of hydraulic detention time, fed with ¾ of effluent nitrification reactor and ¼ of raw sanitary waste. This work had as objective to evaluate the performance of the UASB reactor. In terms of removal efficiency, of bath COD and nitrogen, it was verified that the anaerobic digestion process was not affected. The removal efficiency of organic material expressed in COD was 71%, performance already expected for a reactor of this type. It was also observed that the denitrification process happened; the removal nitrate efficiency was 90%. Therefore, the denitrification process in reactor UASB is viable.

  19. Breeding blanket for DEMO

    International Nuclear Information System (INIS)

    This paper presents the main design features, their rationale, and the main critical issues for the development, of the four DEMO-relevant blanket concepts presently being investigated within the framework of the European Test-Blanket Development Programme. (orig.)

  20. Breeding blanket for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Proust, E. (Commissariat a l' Energie Atomique (CEA), DRN/DMT/SERMA, CE, Saclay (France)); Anzidei, L. (ENEA/FUS, C.R.E., Frascati (Italy)); Casini, G. (Commission of the European Communities, Joint Research Center, Ispara (Italy)); Dalle Donne, M. (Kernforschungszentrum Karlsruhe GmbH (Germany)); Giancarli, L. (Commissariat a l' Energie Atomique (CEA), DRN/DMT/SERMA, CE, Saclay (France)); Malang, S. (Kernforschungszentrum Karlsruhe GmbH (Germany))

    1993-03-01

    This paper presents the main design features, their rationale, and the main critical issues for the development, of the four DEMO-relevant blanket concepts presently being investigated within the framework of the European Test-Blanket Development Programme. (orig.)