WorldWideScience

Sample records for anaerobic ethanol producer

  1. High ethanol tolerance of the thermophilic anaerobic ethanol producer Thermoanaerobacter BG1L1

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Mikkelsen, Marie Just; Ahring, Birgitte Kiær

    2007-01-01

    The low ethanol tolerance of thermophilic anaerobic bacteria, generally less than 2% (v/v) ethanol, is one of the main limiting factors for their potential use for second generation fuel ethanol production. In this work, the tolerance of thermophilic anaerobic bacterium Thermoanaerobacter BG 1L1 ...

  2. Effect of temperature on ethanol tolerance of a thermophilic anaerobic ethanol producer Thermoanaerobacter A10: modeling and simulation.

    Science.gov (United States)

    Georgieva, Tania I; Skiadas, Ioannis V; Ahring, Birgitte K

    2007-12-15

    The low ethanol tolerance of thermophilic anaerobic bacteria (Levenspiel was used to describe the ethanol (product) inhibition. The model predicted quite well the experimental data for the temperature interval 50-70 degrees C, and the maximum specific growth rate and the toxic power (n), which describes the order of ethanol inhibition at each temperature, were estimated. The toxic power (n) was 1.33 at 70 degrees C, and corresponding critical inhibitory product concentration (P(crit)) above which no microbial growth occurs was determined to be 5.4% (v/v). An analysis of toxic power (n) and P(crit) showed that the optimum temperature for combined microbial growth and ethanol tolerance was 60 degrees C. At this temperature, the toxic power (n), and P(crit) were 0.50, and 6.5% (v/v) ethanol, respectively. From a practical point of view, the model may be applied to compare the ethanol inhibition (ethanol tolerance) on microbial growth of different thermophilic anaerobic bacterial strains.

  3. Fermentation method producing ethanol

    Science.gov (United States)

    Wang, Daniel I. C.; Dalal, Rajen

    1986-01-01

    Ethanol is the major end product of an anaerobic, thermophilic fermentation process using a mutant strain of bacterium Clostridium thermosaccharolyticum. This organism is capable of converting hexose and pentose carbohydrates to ethanol, acetic and lactic acids. Mutants of Clostridium thermosaccharolyticum are capable of converting these substrates to ethanol in exceptionally high yield and with increased productivity. Both the mutant organism and the technique for its isolation are provided.

  4. Identification and characterization of an anaerobic ethanol-producing cellulolytic bacterial consortium from Great Basin hot springs with agricultural residues and energy crops.

    Science.gov (United States)

    Zhao, Chao; Deng, Yunjin; Wang, Xingna; Li, Qiuzhe; Huang, Yifan; Liu, Bin

    2014-09-01

    In order to obtain the cellulolytic bacterial consortia, sediments from Great Basin hot springs (Nevada, USA) were sampled and enriched with cellulosic biomass as the sole carbon source. The bacterial composition of the resulting anaerobic ethanol-producing celluloytic bacterial consortium, named SV79, was analyzed. With methods of the full-length 16S rRNA librarybased analysis and denaturing gradient gel electrophoresis, 21 bacteria belonging to eight genera were detected from this consortium. Clones with closest relation to the genera Acetivibrio, Clostridium, Cellulosilyticum, Ruminococcus, and Sporomusa were predominant. The cellulase activities and ethanol productions of consortium SV79 using different agricultural residues (sugarcane bagasse and spent mushroom substrate) and energy crops (Spartina anglica, Miscanthus floridulus, and Pennisetum sinese Roxb) were studied. During cultivation, consortium SV79 produced the maximum filter paper activity (FPase, 9.41 U/ml), carboxymethylcellulase activity (CMCase, 6.35 U/ml), and xylanase activity (4.28 U/ml) with sugarcane bagasse, spent mushroom substrate, and S. anglica, respectively. The ethanol production using M. floridulus as substrate was up to 2.63 mM ethanol/g using gas chromatography analysis. It has high potential to be a new candidate for producing ethanol with cellulosic biomass under anoxic conditions in natural environments.

  5. Themoanaerobacterium calidifontis sp. nov., a novel anaerobic, thermophilic, ethanol-producing bacterium from hot springs in China.

    Science.gov (United States)

    Shang, Shu-mei; Qian, Long; Zhang, Xu; Li, Kun-zhi; Chagan, Irbis

    2013-06-01

    A novel thermophilic Gram staining positive strain Rx1 was isolated from hot springs in Baoshan of Yunnan Province, China. The strain was characterized as a hemicellulose-decomposing obligate anaerobe bacterium that is rod-shaped (diameter: 0.5-0.7 μm; length: 2.0-6.7 μm), spore-forming, and motile. Its growth temperature range is 38-68 °C (optimum 50-55 °C) and pH range is 4.5-8.0 (optimum 7.0). The maximum tolerance concentration of NaCl was 3 %. Rx1 converted thiosulfate to elemental sulfur and reduced sulfite to hydrogen sulfide. The bacterium grew by utilizing xylan and starch, as well as a wide range of monosaccharide and polysaccharides, including glucose and xylose. The main products of fermentation were ethanol, lactate, acetate, CO2, and H2. The maximum xylanase activity in the culture supernatant after 30 h of incubation at 55 °C was 16.2 U/ml. Rx1 DNA G + C content was 36 mol %. 16S rRNA gene sequence analysis indicated that strain Rx1 belonged to the genus Thermoanaerobacterium of the family 'Thermoanaerobacteriaceae' (Firmicutes), with Thermoanaerobacterium aciditolerans 761-119 (99.2 % 16S rRNA gene sequence similarity) being its closest relative. DNA-DNA hybridization between Rx1 and T. aciditolerans 761-119 showed 36 % relatedness. Based on its physiological and biochemical tests and DNA-DNA hybridization analyses, the isolate is considered to represent a novel species in the genus Thermoanaerobacterium, for which the name Thermoanaerobacterium calidifontis sp. nov. is proposed, with the type strain is Rx1 (=JCM 18270 = CCTCC M 2011109).

  6. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    Science.gov (United States)

    Ljungdahl, Lars G.; Carriera, Laura H.

    1983-01-01

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  7. An anaerobic mitochondrion that produces hydrogen

    NARCIS (Netherlands)

    Boxma, Brigitte; Graaf, Rob M. de; Staay, Georg W.M. van der; Alen, Theo A. van; Ricard, Guenola; Gabaldón, Toni; Hoek, Angela H.A.M. van; Moon-van der Staay, Seung Yeo; Koopman, Werner J.H.; Hellemond, Jaap J. van; Tielens, Aloysius G.M.; Friedrich, Thorsten; Veenhuis, Marten; Huynen, Martijn A.; Hackstein, Johannes H.P.

    2005-01-01

    Hydrogenosomes are organelles that produce ATP and hydrogen, and are found in various unrelated eukaryotes, such as anaerobic flagellates, chytridiomycete fungi and ciliates. Although all of these organelles generate hydrogen, the hydrogenosomes from these organisms are structurally and metabolicall

  8. Industrial symbiosis: corn ethanol fermentation, hydrothermal carbonization, and anaerobic digestion.

    Science.gov (United States)

    Wood, Brandon M; Jader, Lindsey R; Schendel, Frederick J; Hahn, Nicholas J; Valentas, Kenneth J; McNamara, Patrick J; Novak, Paige M; Heilmann, Steven M

    2013-10-01

    The production of dry-grind corn ethanol results in the generation of intermediate products, thin and whole stillage, which require energy-intensive downstream processing for conversion into commercial animal feed products. Hydrothermal carbonization of thin and whole stillage coupled with anaerobic digestion was investigated as alternative processing methods that could benefit the industry. By substantially eliminating evaporation of water, reductions in downstream energy consumption from 65% to 73% were achieved while generating hydrochar, fatty acids, treated process water, and biogas co-products providing new opportunities for the industry. Processing whole stillage in this manner produced the four co-products, eliminated centrifugation and evaporation, and substantially reduced drying. With thin stillage, all four co-products were again produced, as well as a high quality animal feed. Anaerobic digestion of the aqueous product stream from the hydrothermal carbonization of thin stillage reduced chemical oxygen demand (COD) by more than 90% and converted 83% of the initial COD to methane. Internal use of this biogas could entirely fuel the HTC process and reduce overall natural gas usage.

  9. Anaerobic digestion as final step of a cellulosic ethanol biorefinery:

    DEFF Research Database (Denmark)

    Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2010-01-01

    In order to lower the costs for second generation bioethanol from lignocellulosic biomass anaerobic digestion of the effluent from ethanol fermentation was implemented using an upflow anaerobic sludge blanket (UASB) reactor system in a pilot-scale biorefinery plant. Both thermophilic (538C...... were, however, higher under mesophilic conditions compared to thermophilic conditions. The conversion of dissolved organic matter (VSdiss) was between 68% and 91%. The effluent from the ethanol fermentation showed no signs of toxicity to the anaerobic microorganisms. However, a high content...... of suspended matter reduced the degradation efficiency. The retention time of the anaerobic system could be reduced from 70 to 7 h by additional removal of suspended matter by clarification. Implementation of the biogas production from the fermentation effluent accounted for about 30% higher carbon utilization...

  10. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  11. Suitability of anaerobic digestion effluent as process water for corn fuel ethanol fermentation.

    Science.gov (United States)

    Wang, Ke; Zhang, Jian-Hua; Liu, Pei; Mao, Zhong-Gui

    2014-01-01

    A corn fuel ethanol plant integrated with anaerobic digestion treatment of thin stillage increases the net energy balance. Furthermore, the anaerobic digestion effluent (ADE) can be reused as a potential substitute for process water in the ethanol fermentation. In this study, the suitability of ADE as process water for corn ethanol fermentation was investigated by analyzing the potential inhibitory components in the ADE. It was found that ammonium influenced the growth and metabolism of Saccharomyces cerevisiae. Maximum ethanol production was obtained when the concentration of ammonium nitrogen was 200 mg/L, and ammonium could replace urea as the nitrogen source for S. cerevisiae under this concentration. In the ethanol fermentation with a higher concentration of ammonium, more glycerol was produced, thereby resulting in the decrease of ethanol production. In addition, components except ammonium in the ADE caused no inhibition to ethanol production. These results suggest that ADE could be reused as process water for corn ethanol fermentation without negative effect when ammonium concentration is well controlled.

  12. Conversion of hemicelluloses and D-xylose into ethanol by the use of thermophilic anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Ethanol is a CO{sub 2} neutral liquid fuel that can substitute the use of fossil fuels in the transportation sector, thereby reducing the CO{sub 2} emission to the atmosphere. CO{sub 2} emission is suspected to contribute significantly to the so-called greenhouse effect, the global heating. Substrates for production of ethanol must be cheap and plentiful. This can be met by the use of lignocellulosic biomass such as willow, wheat straw, hardwood and softwood. However, the complexity of these polymeric substrates and the presence of several types of carbohydrates (glucose, xylose, mannose, galactose, arabinose) require additional treatment to release the useful carbohydrates and ferment the major carbohydrates fractions. The costs related to the ethanol-production must be kept at a minimum to be price competitive compared to gasoline. Therefore all of the carbohydrates present in lignocellulose need to be converted into ethanol. Glucose can be fermented to ethanol by yeast strains such as Saccharomyces cerevisiae, which, however, is unable to ferment the other major carbohydrate fraction, D-xylose. Thermophilic anaerobic ethanol producing bacteria can be used for fermentation of the hemicelluloses fraction of lignocellulosic biomass. However, physiological studies of thermophilic anaerobic bacteria have shown that the ethanol yield decreases at increasing substrate concentration. The biochemical limitations causing this phenomenon are not known in detail. Physiological and biochemical studies of a newly characterized thermophilic anaerobic ethanol producing bacterium, Thermoanaerobacter mathranii, was performed. This study included extraction of intracellular metabolites and enzymes of the pentose phosphate pathway and glycolysis. These studies revealed several bottlenecks in the D-xylose metabolism. This knowledge makes way for physiological and genetic engineering of this strain to improve the ethanol yield and productivity at high concentration of D-xylose. (au)

  13. An anaerobic mitochondrion that produces hydrogen

    NARCIS (Netherlands)

    Boxma, B.; Graaf, de R.M.; Staay, van der G.W.M.; Alen, T.A.; Richard, G.; Gabalon, T.; Hoek, van A.H.A.M.; Moon - van der Staay, S.Y.; Koopman, W.J.H.; Hellemond, van J.J.; Tielens, A.G.M.; Friedrich, T.; Veenhuis, M.; Huynen, M.A.; Hackstein, J.H.P.

    2005-01-01

    Hydrogenosomes are organelles that produce ATP and hydrogen(1), and are found in various unrelated eukaryotes, such as anaerobic flagellates, chytridiomycete fungi and ciliates(2). Although all of these organelles generate hydrogen, the hydrogenosomes from these organisms are structurally and metabo

  14. Pervaporation of ethanol produced from banana waste.

    Science.gov (United States)

    Bello, Roger Hoel; Linzmeyer, Poliana; Franco, Cláudia Maria Bueno; Souza, Ozair; Sellin, Noeli; Medeiros, Sandra Helena Westrupp; Marangoni, Cintia

    2014-08-01

    Banana waste has the potential to produce ethanol with a low-cost and sustainable production method. The present work seeks to evaluate the separation of ethanol produced from banana waste (rejected fruit) using pervaporation with different operating conditions. Tests were carried out with model solutions and broth with commercial hollow hydrophobic polydimethylsiloxane membranes. It was observed that pervaporation performance for ethanol/water binary mixtures was strongly dependent on the feed concentration and operating temperature with ethanol concentrations of 1-10%; that an increase of feed flow rate can enhance the permeation rate of ethanol with the water remaining at almost the same value; that water and ethanol fluxes was increased with the temperature increase; and that the higher effect in flux increase was observed when the vapor pressure in the permeate stream was close to the ethanol vapor pressure. Better results were obtained with fermentation broth than with model solutions, indicated by the permeance and membrane selectivity. This could be attributed to by-products present in the multicomponent mixtures, facilitating the ethanol permeability. By-products analyses show that the presence of lactic acid increased the hydrophilicity of the membrane. Based on this, we believe that pervaporation with hollow membrane of ethanol produced from banana waste is indeed a technology with the potential to be applied.

  15. Assessing solid digestate from anaerobic digestion as feedstock for ethanol production.

    Science.gov (United States)

    Teater, Charles; Yue, Zhengbo; MacLellan, James; Liu, Yan; Liao, Wei

    2011-01-01

    Ethanol production using solid digestate (AD fiber) from a completely stirred tank reactor (CSTR) anaerobic digester was assessed comparing to an energy crop of switchgrass, and an agricultural residue of corn stover. A complete random design was fulfilled to optimize the reaction conditions of dilute alkali pretreatment. The most effective dilute alkali pretreatment conditions for raw CSTR AD fiber were 2% sodium hydroxide, 130 °C, and 3 h. Under these pretreatment conditions, the cellulose concentration of the AD fiber was increased from 34% to 48%. Enzymatic hydrolysis of 10% (dry basis) pretreated AD fiber produced 49.8 g/L glucose, while utilizing 62.6% of the raw cellulose in the AD fiber. The ethanol fermentation on the hydrolysate had an 80.3% ethanol yield. The cellulose utilization efficiencies determined that the CSTR AD fiber was a suitable biorefining feedstock compared to switchgrass and corn stover.

  16. Enhancement of fermentative hydrogen/ethanol production from cellulose using mixed anaerobic cultures

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chiu-Yue; Hung, Wen-Chin [BioHydrogen Laboratory, Department of Environmental Engineering and Science, Feng Chia University, Taichung 40724 (China)

    2008-07-15

    Batch tests were conducted to evaluate the enhancement of hydrogen/ethanol (EtOH) productivity using cow dung microflora to ferment {alpha}-cellulose and saccharification products (glucose and xylose). Hydrogen/ethanol production was evaluated based on hydrogen/ethanol yields (HY/EY) under 55 C at various initial pH conditions (5.5-9.0). Our test results indicate that cow dung sludge is a good mixed natural-microflora seed source for producing biohydrogen/ethanol from cellulose and xylose. The heat-pretreatment, commonly used to produce hydrogen more efficiently from hexose, applied to mixed anaerobic cultures did not help cow dung culture convert cellulose and xylose into hydrogen/ethanol. Instead of heat-pretreatment, the mixed culture received enrichments cultivated at 55 C for 4 days. Positive results were observed: hydrogen/ethanol production from fermenting cellulose and xylose was effectively enhanced at increases of 4.8 (ethanol) to 8 (hydrogen) and 2.4 (ethanol) to 15.6 (hydrogen) folds, respectively. In which, the ethanol concentration produced from xylose reached 4-4.4 g/L, an output comparable to that of using heat-treated sewage sludge and better than that (1.25-3 g/L) using pure cultures. Our test results show that for the enriched cultures the initial cultivation pH can affect hydrogen/ethanol production including HY, EY and liquid fermentation product concentration and distribution. These results were also concurred using a denaturing gradient gel electrophoresis analysis saying that both cultivation pH and substrate can affect the enriched cow dung culture microbial communities. The enriched cow dung culture had an optimal initial cultivation pH range of 7.6-8.0 with peak HY/EY values of 2.8 mmol-H{sub 2}/g-cellulose, 5.8 mmol-EtOH/g-cellulose, 0.3 mol-H{sub 2}/mol-xylose and 1 mol-EtOH/mol-xylose. However, a pH change of 0.5 units from the optimal values reduced hydrogen/ethanol production efficiency by 20%. Strategies based on the experimental

  17. Conversion of hemicellulose and D-xylose into ethanol by the use of thermophilic anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Peter

    1998-02-01

    Ethanol is a CO{sub 2} neutral liquid fuel that can substitute the use of fossil fuels in the transportation sector, thereby reducing the CO{sub 2} emission to the atmoshpere. CO{sub 2} emission is suspected to contribute significantly to the so-called greenhouse effect, the global heating. Substrates for production of ethanol must be cheap and plentiful. This can be met by the use of lignocellulosic biomass such as willow, wheat straw, hardwood and softwood. However, the complexity of these polymeric substrates and the presence of several types of carbohydrates (glucose, xylose, mannose, galactose, arabinose) require additional treatment to release the useful carbohydrates and ferment the major carbohydrates fractions. The costs related to the ethanol-production must be kept at a minimum to be price competitive compared to gasoline. Therefore all of the carbohydrates present in lignocellulose need to be converted into ethanol. Glucose can be fermented to ethanol by yeast strains such as Saccharomyces cerevisiae, which, however, is unable to ferment the other major carbohydrate fraction, D-xylose. The need for a microorganism able to ferment D-xylose is therefore apparent. Thermophilic anaerobic ethanol producing bacteria can therefore be considered for fermentation of D-xylose. Screening of 130 thermophilic anaerobic bacterial strains, from hot-springs, mesophilic and thermophilic biogas plants, paper pulp industries and brewery waste, were examined for production of ethanol from D-xylose and wet-oxidized hemicellulose hydrolysate. Several strains were isolated and one particular strain was selected for best performance during the screening test. This strain was characterized as a new species, Thermoanaerobacter mathranii. However, the ethanol yield on wet-oxidized hemicellulose hydrolysate was not satisfactory. The bacterium was adapted by isolation of mutant strains, now resistant to the inhibitory compounds present in the hydrolysate. Growth and ethanol yield

  18. Techno-economic evaluation of stillage treatment with anaerobic digestion in a softwood-to-ethanol process

    Directory of Open Access Journals (Sweden)

    Barta Zsolt

    2010-09-01

    Full Text Available Abstract Background Replacing the energy-intensive evaporation of stillage by anaerobic digestion is one way of decreasing the energy demand of the lignocellulosic biomass to the ethanol process. The biogas can be upgraded and sold as transportation fuel, injected directly into the gas grid or be incinerated on-site for combined heat and power generation. A techno-economic evaluation of the spruce-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, has been performed using the commercial flow-sheeting program Aspen Plus™. Various process configurations of anaerobic digestion of the stillage, with different combinations of co-products, have been evaluated in terms of energy efficiency and ethanol production cost versus the reference case of evaporation. Results Anaerobic digestion of the stillage showed a significantly higher overall energy efficiency (87-92%, based on the lower heating values, than the reference case (81%. Although the amount of ethanol produced was the same in all scenarios, the production cost varied between 4.00 and 5.27 Swedish kronor per litre (0.38-0.50 euro/L, including the reference case. Conclusions Higher energy efficiency options did not necessarily result in lower ethanol production costs. Anaerobic digestion of the stillage with biogas upgrading was demonstrated to be a favourable option for both energy efficiency and ethanol production cost. The difference in the production cost of ethanol between using the whole stillage or only the liquid fraction in anaerobic digestion was negligible for the combination of co-products including upgraded biogas, electricity and district heat.

  19. Bioenergy from stillage anaerobic digestion to enhance the energy balance ratio of ethanol production.

    Science.gov (United States)

    Fuess, Lucas Tadeu; Garcia, Marcelo Loureiro

    2015-10-01

    The challenges associated with the availability of fossil fuels in the past decades intensified the search for alternative energy sources, based on an ever-increasing demand for energy. In this context, the application of anaerobic digestion (AD) as a core treatment technology in industrial plants should be highlighted, since this process combines the pollution control of wastewaters and the generation of bioenergy, based on the conversion of the organic fraction to biogas, a methane-rich gaseous mixture that may supply the energetic demands in industrial plants. In this context, this work aimed at assessing the energetic potential of AD applied to the treatment of stillage, the main wastewater from ethanol production, in an attempt to highlight the improvements in the energy balance ratio of ethanol by inserting the heating value of methane as a bioenergy source. At least 5-15% of the global energy consumption in the ethanol industry could be supplied by the energetic potential of stillage, regardless the feedstock (i.e. sugarcane, corn or cassava). The association between bagasse combustion and stillage anaerobic digestion in sugarcane-based distilleries could provide a bioenergy surplus of at least 130% of the total fossil fuel input into the ethanol plant, considering only the energy from methane. In terms of financial aspects, the economic gains could reach US$ 0.1901 and US$ 0.0512 per liter of produced ethanol, respectively for molasses- (Brazil) and corn-based (EUA) production chains. For large-scale (∼1000 m(3)EtOH per day) Brazilian molasses-based plants, an annual economic gain of up to US$ 70 million could be observed. Considering the association between anaerobic and aerobic digestion, for the scenarios analyzed, at least 25% of the energetic potential of stillage would be required to supply the energy consumption with aeration, however, more suitable effluents for agricultural application could be produced. The main conclusion from this work

  20. Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH.

    Science.gov (United States)

    Hwang, Moon H; Jang, Nam J; Hyun, Seung H; Kim, In S

    2004-08-01

    Hydrogen was produced by an ethanol-acetate fermentation at pH of 5.0 +/- 0.2 and HRT of 3 days. The yield of hydrogen was 100-200 ml g Glu(-1) with a hydrogen content of 25-40%. This fluctuation in the hydrogen yield was attributed to the formation of propionate and the activity of hydrogen utilizing methanogens. The change in the operational pH for the inhibition of this methanogenic activity induced a change in the main fermentation pathway. In this study, the main products were butyrate, ethanol and propionate, in the pH ranges 4.0-4.5, 4.5-5.0 and 5.0-6.0, respectively. However, the activity of all the microorganisms was inhibited below pH 4.0. Therefore, pH 4.0 was regarded as the operational limit for the anaerobic bio-hydrogen production process. These results indicate that the pH plays an important role in determining the type of anaerobic fermentation pathway in anaerobic bio-hydrogen processes.

  1. Modeling microbial ethanol production by E. coli under aerobic/anaerobic conditions: applicability to real postmortem cases and to postmortem blood derived microbial cultures.

    Science.gov (United States)

    Boumba, Vassiliki A; Kourkoumelis, Nikolaos; Gousia, Panagiota; Economou, Vangelis; Papadopoulou, Chrissanthy; Vougiouklakis, Theodore

    2013-10-10

    The mathematical modeling of the microbial ethanol production under strict anaerobic experimental conditions for some bacterial species has been proposed by our research group as the first approximation to the quantification of the microbial ethanol production in cases where other alcohols were produced simultaneously with ethanol. The present study aims to: (i) study the microbial ethanol production by Escherichia coli under controlled aerobic/anaerobic conditions; (ii) model the correlation between the microbial produced ethanol and the other higher alcohols; and (iii) test their applicability in: (a) real postmortem cases that had positive BACs (>0.10 g/L) and co-detection of higher alcohols and 1-butanol during the original ethanol analysis and (b) postmortem blood derived microbial cultures under aerobic/anaerobic controlled experimental conditions. The statistical evaluation of the results revealed that the formulated models were presumably correlated to 1-propanol and 1-butanol which were recognized as the most significant descriptors of the modeling process. The significance of 1-propanol and 1-butanol as descriptors was so powerful that they could be used as the only independent variables to create a simple and satisfactory model. The current models showed a potential for application to estimate microbial ethanol - within an acceptable standard error - in various tested cases where ethanol and other alcohols have been produced from different microbes.

  2. Retooling the ethanol industry: thermophilic anaerobic digestion of thin stillage for methane production and pollution prevention.

    Science.gov (United States)

    Schaefer, Scott H; Sung, Shihwu

    2008-02-01

    Anaerobic digestion of corn ethanol thin stillage was tested at thermophilic temperature (55 degrees C) with two completely stirred tank reactors. The thin stillage wastestream was organically concentrated with 100 g/L total chemical oxygen demand and 60 g/L volatiles solids and a low pH of approximately 4.0. Steady-state was achieved at 30-, 20-, and 15-day hydraulic retention times (HRTs) and digester failure at a 12-day HRT. Significant reduction of volatile solids was achieved, with a maximum reduction (89.8%) at the 20-day HRT. Methane yield ranged from 0.6 to 0.7 L methane/g volatile solids removed during steady-state operation. Effluent volatile fatty acids below 200 mg/L as acetic acid were achieved at 20- and 30-day HRTs. Ultrasonic pretreatment was used for one digester, although no significant improvement was observed. Ethanol plant natural gas consumption could be reduced 43 to 59% with the methane produced, while saving an estimated $7 to $17 million ($10 million likely) for a facility producing 360 million L ethanol/y.

  3. Modelling of Two-Stage Anaerobic Treating Wastewater from a Molasses-Based Ethanol Distillery with the IWA Anaerobic Digestion Model No.1

    OpenAIRE

    Kittikhun Taruyanon; Sarun Tejasen

    2010-01-01

    This paper presents the application of ADM1 model to simulate the dynamic behaviour of a two-stage anaerobic treatment process treating the wastewater generated from the ethanol distillery process. The laboratory-scale process comprised an anaerobic continuous stirred tank reactor (CSTR) and an upflow anaerobic sludge blanket (UASB) connecting in series, was used to treat wastewater from the ethanol distillery process. The CSTR and UASB hydraulic retention times (HRT) were 12 and 70 hours, re...

  4. Research on the Nature of Thermophilic Anaerobic Ethanol Producer Thermo anaerobacter sp DF3 in Petroleum Reservoirs%一株产乙醇嗜热厌氧油藏微生物ThermoanaerobacterspDF3的性质研究

    Institute of Scientific and Technical Information of China (English)

    兰贵红; 邢钰; 曹毅; 乔代蓉; 邹长军; 邓宇; 张辉; 尹小波

    2012-01-01

    [目的]了解油藏微生物ThermoanaerobacterspDF3的生理生化特性,优化木糖产乙醇培养方案。[方法]利用厌氧分离技术从大港油田油层采出液中分离到一株产乙醇厌氧杆菌DF3采用生理生化鉴定与16SrDNA序列的系统发育学分析其系统发育地位,用气相色谱分析其代谢产物。[结果]菌株DF3是一株严格厌氧的嗜热细菌,呈直杆状,G-菌体大小为O.42μm×(1.60~5.20)μm,单生成对或成串生,产顶端芽孢;生长温度为45~78℃(最适65℃),能利用葡萄糖、木糖、果糖、核糖、甘露糖、阿拉伯糖、蔗糖、半乳糖、乳糖、纤维二糖、松三糖、棉子糖、淀粉等作为底物;其16SrRNA与zpseud。ethanolicw相似性为99.7%发酵葡萄糖与木糖的主要产物为乙醇,培养方案优化后其代谢木糖产乙醇终浓度为2.0g/L。[结论]通过试验证明菌株DF3是目前已知菌株中产乙醇活性较强的菌株之一,在65℃时代谢木糖能产生2.0g/L的乙醇目前代谢木糖高产乙醇的菌株均由国外分离获得,菌株DF3的分离获得为我国研究木质纤维素产乙醇提供了优良的出发菌株。%[Objective] The aim was to study the physiological and biochemical char- acteristics of Thermoanaerobacter sp DF3 in petroleum reservoirs and optimize the culture plan of producing ethanol from xylose. [Method] DF3, an anaerobic bacillus producing ethanol, was isolated from produced liquid from oil layer of Dagang oil field with anaerobic isolation technique. The phylogenetic position was analyzed by physiological and biochemical identification and phylogeny of 16S rDNA sequence. The metabolites were analyzed by gas chromatograph. [Result] The strain DF3 was a strict anaerobic thermophilic bacterium, which was straight in rod shape,and gram negative. Besides, it was 0.42 μmx(1.60-5.20) iJm in length. The strains can be soli- tary,in pairs or string and apical spore usually

  5. Potential of a Saccharomyces cerevisiae recombinant strain lacking ethanol and glycerol biosynthesis pathways in efficient anaerobic bioproduction

    Science.gov (United States)

    Hirasawa, Takashi; Ida, Yoshihiro; Furuasawa, Chikara; Shimizu, Hiroshi

    2014-01-01

    Saccharomyces cerevisiae shows high growth activity under low pH conditions and can be used for producing acidic chemicals such as organic acids as well as fuel ethanol. However, ethanol can also be a problematic by-product in the production of chemicals except for ethanol. We have reported that a stable low-ethanol production phenotype was achieved by disrupting 6 NADH-dependent alcohol dehydrogenase genes of S. cerevisiae. Moreover, the genes encoding the NADH-dependent glycerol biosynthesis enzymes were further disrupted because the ADH-disrupted recombinant strain showed high glycerol production to maintain intracellular redox balance. The recombinant strain incapable producing ethanol and glycerol could have the potential to be a host for producing metabolite(s) whose biosynthesis is coupled with NADH oxidation. Indeed, we successfully achieved almost 100% yield for L-lactate production using this recombinant strain as a host. In addition, the potential of our constructed recombinant strain for efficient bioproduction, particularly under anaerobic conditions, is also discussed. PMID:24247205

  6. Fermentation of xylose to produce ethanol by recombinant Saccharomyces cerevisiae strain containing XYLA and XKS1

    Institute of Scientific and Technical Information of China (English)

    LIU Xiaolin; JIANG Ning; HE Peng; LU Dajun; SHEN An

    2005-01-01

    Fermentation of the pentose sugar xylose to produce ethanol using lignocellulosic biomass would make bioethanol production economically more competitive. Saccharomyce cerevisise, an efficient ethanol producer, cannot utilize xylose because it lacks the ability to convert xylose to its isomer xylulose. In this study, XYLA gene encoding xylose isomerase (XI) from Thermoanaerobacter tengcongensis MB4T and XKS1 gene encoding xylulokinase (XK) from Pichia stipitis were cloned and functionally coexpressed in Saccharomyces cerevisiae EF-326 to construct a recombinant xylose-utilizing strain. The resulting strain S. cerevisiae EF 1014 not only grew on xylose as sole carbon source, but also produced ethanol under anaerobic conditions. Fermentations performed with different xylose concentrations at different temperatures demonstrated that the highest ethanol productivity was 0.11 g/g xylose when xylose concentration was provided at 50 g/L. Under this condition, 28.4% of xylose was consumed and 1.54 g/L xylitol was formed. An increasing fermentation temperature from 30℃ to 37℃ did not improve ethanol yield.

  7. Anaerobic digestion of thin stillage for energy recovery and water reuse in corn-ethanol plants.

    Science.gov (United States)

    Alkan-Ozkaynak, A; Karthikeyan, K G

    2011-11-01

    Recycling of anaerobically-digested thin stillage within a corn-ethanol plant may result in the accumulation of nutrients of environmental concern in animal feed coproducts and inhibitory organic materials in the fermentation tank. Our focus is on anaerobic digestion of treated (centrifugation and lime addition) thin stillage. Suitability of digestate from anaerobic treatment for reuse as process water was also investigated. Experiments conducted at various inoculum-to-substrate ratios (ISRs) revealed that alkalinity is a critical parameter limiting digestibility of thin stillage. An ISR level of 2 appeared optimal based on high biogas production level (763 mL biogas/g volatile solids added) and organic matter removal (80.6% COD removal). The digester supernatant at this ISR level was found to contain both organic and inorganic constituents at levels that would cause no inhibition to ethanol fermentation. Anaerobic digestion of treated-thin stillage can be expected to improve the water and energy efficiencies of dry grind corn-ethanol plants.

  8. Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield.

    Science.gov (United States)

    Shaw, A Joe; Podkaminer, Kara K; Desai, Sunil G; Bardsley, John S; Rogers, Stephen R; Thorne, Philip G; Hogsett, David A; Lynd, Lee R

    2008-09-16

    We report engineering Thermoanaerobacterium saccharolyticum, a thermophilic anaerobic bacterium that ferments xylan and biomass-derived sugars, to produce ethanol at high yield. Knockout of genes involved in organic acid formation (acetate kinase, phosphate acetyltransferase, and L-lactate dehydrogenase) resulted in a strain able to produce ethanol as the only detectable organic product and substantial changes in electron flow relative to the wild type. Ethanol formation in the engineered strain (ALK2) utilizes pyruvate:ferredoxin oxidoreductase with electrons transferred from ferredoxin to NAD(P), a pathway different from that in previously described microbes with a homoethanol fermentation. The homoethanologenic phenotype was stable for >150 generations in continuous culture. The growth rate of strain ALK2 was similar to the wild-type strain, with a reduction in cell yield proportional to the decreased ATP availability resulting from acetate kinase inactivation. Glucose and xylose are co-utilized and utilization of mannose and arabinose commences before glucose and xylose are exhausted. Using strain ALK2 in simultaneous hydrolysis and fermentation experiments at 50 degrees C allows a 2.5-fold reduction in cellulase loading compared with using Saccharomyces cerevisiae at 37 degrees C. The maximum ethanol titer produced by strain ALK2, 37 g/liter, is the highest reported thus far for a thermophilic anaerobe, although further improvements are desired and likely possible. Our results extend the frontier of metabolic engineering in thermophilic hosts, have the potential to significantly lower the cost of cellulosic ethanol production, and support the feasibility of further cost reductions through engineering a diversity of host organisms.

  9. Ethanol production from maize silage as lignocellulosic biomass in anaerobically digested and wet-oxidized manure

    DEFF Research Database (Denmark)

    Oleskowicz-Popiel, Piotr; Lisiecki, P.; Holm-Nielsen, J.B.

    2008-01-01

    In this communication, pretreatment of the anaerobically digested (AD) manure and the application of the pretreated AD manure as liquid medium for the simultaneous saccharification and fermentation (SSF) were described. Furthermore, fermentation of pretreated maize silage and wheat straw....... No extra nitrogen source was needed in the fermentation broth. It was shown that the AD manure could successfully substitute process water in SSF of pretreated lignocellulosic fibres. Theoretical ethanol yields of 82% were achieved, giving 30.8 kg ethanol per 100 kg dry mass of maize silage. (C) 2007...

  10. Modelling Methane Production and Sulfate Reduction in Anaerobic Granular Sludge Reactor with Ethanol as Electron Donor

    Science.gov (United States)

    Sun, Jing; Dai, Xiaohu; Wang, Qilin; Pan, Yuting; Ni, Bing-Jie

    2016-10-01

    In this work, a mathematical model based on growth kinetics of microorganisms and substrates transportation through biofilms was developed to describe methane production and sulfate reduction with ethanol being a key electron donor. The model was calibrated and validated using experimental data from two case studies conducted in granule-based Upflow Anaerobic Sludge Blanket reactors. The results suggest that the developed model could satisfactorily describe methane and sulfide productions as well as ethanol and sulfate removals in both systems. The modeling results reveal a stratified distribution of methanogenic archaea, sulfate-reducing bacteria and fermentative bacteria in the anaerobic granular sludge and the relative abundances of these microorganisms vary with substrate concentrations. It also indicates sulfate-reducing bacteria can successfully outcompete fermentative bacteria for ethanol utilization when COD/SO42‑ ratio reaches 0.5. Model simulation suggests that an optimal granule diameter for the maximum methane production efficiency can be achieved while the sulfate reduction efficiency is not significantly affected by variation in granule size. It also indicates that the methane production and sulfate reduction can be affected by ethanol and sulfate loading rates, and the microbial community development stage in the reactor, which provided comprehensive insights into the system for its practical operation.

  11. Ethanol production from maize silage as lignocellulosic biomass in anaerobically digested and wet-oxidized manure.

    Science.gov (United States)

    Oleskowicz-Popiel, Piotr; Lisiecki, Przemyslaw; Holm-Nielsen, Jens Bo; Thomsen, Anne Belinda; Thomsen, Mette Hedegaard

    2008-09-01

    In this communication, pretreatment of the anaerobically digested (AD) manure and the application of the pretreated AD manure as liquid medium for the simultaneous saccharification and fermentation (SSF) were described. Furthermore, fermentation of pretreated maize silage and wheat straw was investigated using 2l bioreactors. Wet oxidation performed for 20 min at 121 degrees C was found as the most suitable pretreatment conditions for AD manure. High ammonia concentration and significant amount of macro- and micro-nutrients in the AD manure had a positive influence on the ethanol fermentation. No extra nitrogen source was needed in the fermentation broth. It was shown that the AD manure could successfully substitute process water in SSF of pretreated lignocellulosic fibres. Theoretical ethanol yields of 82% were achieved, giving 30.8 kg ethanol per 100 kg dry mass of maize silage.

  12. Improvement of hydrogen production via ethanol-type fermentation in an anaerobic down-flow structured bed reactor.

    Science.gov (United States)

    Anzola-Rojas, Mélida del Pilar; Zaiat, Marcelo; De Wever, Heleen

    2016-02-01

    Although a novel anaerobic down-flow structured bed reactor has shown feasibility and stable performance for a long-term compared to other anaerobic fixed bed systems for continuous hydrogen production, the volumetric rates and yields have so far been too low. In order to improve the performance, an operation strategy was applied by organic loading rate (OLR) variation (12-96 g COD L(-1) d(-1)). Different volumetric hydrogen rates, and yields at the same OLR indicated that the system was mainly driven by the specific organic load (SOL). When SOL was kept between 3.8 and 6.2 g sucrose g(-1) VSS d(-1), the volumetric rates raised from 0.1 to 8.9 L H2 L(-1) d(-1), and the yields were stable around 2.0 mol H2 mol(-1) converted sucrose. Furthermore, hydrogen was produced mainly via ethanol-type fermentation, reaching a total energy conversion rate of 23.40 kJ h(-1) L(-1) based on both hydrogen and ethanol production.

  13. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.

    Science.gov (United States)

    Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M

    2015-12-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level.

  14. Modelling of Two-Stage Anaerobic Treating Wastewater from a Molasses-Based Ethanol Distillery with the IWA Anaerobic Digestion Model No.1

    Directory of Open Access Journals (Sweden)

    Kittikhun Taruyanon

    2010-03-01

    Full Text Available This paper presents the application of ADM1 model to simulate the dynamic behaviour of a two-stage anaerobic treatment process treating the wastewater generated from the ethanol distillery process. The laboratory-scale process comprised an anaerobic continuous stirred tank reactor (CSTR and an upflow anaerobic sludge blanket (UASB connecting in series, was used to treat wastewater from the ethanol distillery process. The CSTR and UASB hydraulic retention times (HRT were 12 and 70 hours, respectively. The model was developed based on ADM1 basic structure and implemented with the simulation software AQUASIM. The simulated results were compared with measured data obtained from using the laboratory-scale two-stage anaerobic treatment process to treat wastewater. The sensitivity analysis identified maximum specific uptake rate (km and half-saturation constant (Ks of acetate degrader and sulfate reducing bacteria as the kinetic parameters which highly affected the process behaviour, which were further estimated. The study concluded that the model could predict the dynamic behaviour of a two-stage anaerobic treatment process treating the ethanol distillery process wastewater with varying strength of influents with reasonable accuracy.

  15. Isolation and characterization of a hydrogen- and ethanol-producing Clostridium sp. strain URNW.

    Science.gov (United States)

    Ramachandran, Umesh; Wrana, Nathan; Cicek, Nazim; Sparling, Richard; Levin, David B

    2011-03-01

    Identification, characterization, and end-product synthesis patterns were analyzed in a newly identified mesophilic, anaerobic Clostridium sp. strain URNW, capable of producing hydrogen (H₂) and ethanol. Metabolic profiling was used to characterize putative end-product synthesis pathways of the Clostridium sp. strain URNW, which was found to grow on cellobiose; on hexose sugars, such as glucose, sucrose, and mannose; and on sugar alcohols, like mannitol and sorbitol. When grown in batch cultures on 2 g cellobiose·L⁻¹, Clostridium sp. strain URNW showed a cell generation time of 1.5 h, and the major end-products were H2, formate, carbon dioxide (CO₂), lactate, butyrate, acetate, pyruvate, and ethanol. The total volumetric H₂ production was 14.2 mmol·(L culture)⁻¹ and the total production of ethanol was 0.4 mmol·(L culture)⁻¹. The maximum yield of H₂ was 1.3 mol·(mol glucose equivalent)⁻¹ at a carbon recovery of 94%. The specific production rates of H₂, CO₂, and ethanol were 0.45, 0.13, and 0.003 mol·h⁻¹·(g dry cell mass)-1, respectively. BLAST analyses of 16S rDNA and chaperonin 60 (cpn60) sequences from Clostridium sp. strain URNW revealed a 98% nucleotide sequence identity with the 16S rDNA and cpn60 sequences from Clostridium intestinale ATCC 49213. Phylogenetic analyses placed Clostridium sp. strain URNW within the butyrate-synthesizing clostridia.

  16. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: A microcosm study

    Science.gov (United States)

    Chen, Yu Dao; Barker, James F.; Gui, Lai

    2008-02-01

    Increased use of ethanol-blended gasoline (gasohol) and its potential release into the subsurface have spurred interest in studying the biodegradation of and interactions between ethanol and gasoline components such as benzene, toluene, ethylbenzene and xylene isomers (BTEX) in groundwater plumes. The preferred substrate status and the high biological oxygen demand (BOD) posed by ethanol and its biodegradation products suggests that anaerobic electron acceptors (EAs) will be required to support in situ bioremediation of BTEX. To develop a strategy for aromatic hydrocarbon bioremediation and to understand the impacts of ethanol on BTEX biodegradation under strictly anaerobic conditions, a microcosm experiment was conducted using pristine aquifer sand and groundwater obtained from Canadian Forces Base Borden, Canada. The initial electron accepter pool included nitrate, sulfate and/or ferric iron. The microcosms typically contained 400 g of sediment, 600˜800 ml of groundwater, and with differing EAs added, and were run under anaerobic conditions. Ethanol was added to some at concentrations of 500 and 5000 mg/L. Trends for biodegradation of aromatic hydrocarbons for the Borden aquifer material were first developed in the absence of ethanol, The results showed that indigenous microorganisms could degrade all aromatic hydrocarbons (BTEX and trimethylbenzene isomers-TMB) under nitrate- and ferric iron-combined conditions, but not under sulfate-reducing conditions. Toluene, ethylbenzene and m/p-xylene were biodegraded under denitrifying conditions. However, the persistence of benzene indicated that enhancing denitrification alone was insufficient. Both benzene and o-xylene biodegraded significantly under iron-reducing conditions, but only after denitrification had removed other aromatics. For the trimethylbenzene isomers, 1,3,5-TMB biodegradation was found under denitrifying and then iron-reducing conditions. Biodegradation of 1,2,3-TMB or 1,2,4-TMB was slower under iron

  17. The molecular biological characterization of a strain of biohydrogen-producing anaerobe in Clostridium Genus

    Institute of Scientific and Technical Information of China (English)

    LI Yong-feng; REN Nan-qi; ZHENG Guo-xiang; LIU Min; HU Li-jie; CHEN Ying; WANG Xiang-jing

    2005-01-01

    The anaerobic process of biohydrogen production was developed recently. The isolation and identification of biohydrogen producing anaerobic bacteria with high evolution rate and yield is an important foundation of the fermented biohydrogen production process through which anaerobic bacteria digest organic wastewater. By considering physiological and biochemical traits, morphological characteristics and a 16S rDNA sequence, the isolated Rennanqilyf33 is shown to be a new species.

  18. Ethanol and hydrogen production by two thermophilic, anaerobic bacteria isolated from Icelandic geothermal areas.

    Science.gov (United States)

    Koskinen, Perttu E P; Beck, Steinar R; Orlygsson, Jóhann; Puhakka, Jaakko A

    2008-11-01

    Microbial fermentations are potential producers of sustainable energy carriers. In this study, ethanol and hydrogen production was studied by two thermophilic bacteria (strain AK15 and AK17) isolated from geothermal springs in Iceland. Strain AK15 was affiliated with Clostridium uzonii (98.8%), while AK17 was affiliated with Thermoanaerobacterium aciditolerans (99.2%) based on the 16S rRNA gene sequence analysis. Both strains fermented a wide variety of sugar residues typically found in lignocellulosic materials, and some polysaccharides. In the batch cultivations, strain AK17 produced ethanol from glucose and xylose fermentations of up to 1.6 mol-EtOH/mol-glucose (80% of the theoretical maximum) and 1.1 mol-EtOH/mol-xylose (66%), respectively. The hydrogen yields by AK17 were up to 1.2 mol-H2/ mol-glucose (30% of the theoretical maximum) and 1.0 mol-H2/mol-xylose (30%). The strain AK15 produced hydrogen as the main fermentation product from glucose (up to 1.9 mol-H2/mol-glucose [48%]) and xylose (1.1 mol-H2/mol-xylose [33%]). The strain AK17 tolerated exogenously added ethanol up to 4% (v/v). The ethanol and hydrogen production performance from glucose by a co-culture of the strains AK15 and AK17 was studied in a continuous-flow bioreactor at 60 degrees C. Stable and continuous ethanol and hydrogen co-production was achieved with ethanol yield of 1.35 mol-EtOH/mol-glucose, and with the hydrogen production rate of 6.1 mmol/h/L (H2 yield of 0.80 mol-H2/mol-glucose). PCR-DGGE analysis revealed that the AK17 became the dominant bacterium in the bioreactor. In conclusion, strain AK17 is a promising strain for the co-production of ethanol and hydrogen with a wide substrate utilization spectrum, relatively high ethanol tolerance, and ethanol yields among the highest reported for thermoanaerobes.

  19. The maximum specific hydrogen-producing activity of anaerobic mixed cultures: definition and determination

    Science.gov (United States)

    Mu, Yang; Yang, Hou-Yun; Wang, Ya-Zhou; He, Chuan-Shu; Zhao, Quan-Bao; Wang, Yi; Yu, Han-Qing

    2014-06-01

    Fermentative hydrogen production from wastes has many advantages compared to various chemical methods. Methodology for characterizing the hydrogen-producing activity of anaerobic mixed cultures is essential for monitoring reactor operation in fermentative hydrogen production, however there is lack of such kind of standardized methodologies. In the present study, a new index, i.e., the maximum specific hydrogen-producing activity (SHAm) of anaerobic mixed cultures, was proposed, and consequently a reliable and simple method, named SHAm test, was developed to determine it. Furthermore, the influences of various parameters on the SHAm value determination of anaerobic mixed cultures were evaluated. Additionally, this SHAm assay was tested for different types of substrates and bacterial inocula. Our results demonstrate that this novel SHAm assay was a rapid, accurate and simple methodology for determining the hydrogen-producing activity of anaerobic mixed cultures. Thus, application of this approach is beneficial to establishing a stable anaerobic hydrogen-producing system.

  20. Simultaneous Coproduction of Hydrogen and Ethanol in Anaerobic Packed-Bed Reactors

    Directory of Open Access Journals (Sweden)

    Cristiane Marques dos Reis

    2014-01-01

    Full Text Available This study evaluated the use of an anaerobic packed-bed reactor for hydrogen production at different hydraulic retention times (HRT (1–8 h. Two reactors filled with expanded clay and fed with glucose (3136–3875 mg L−1 were operated at different total upflow velocities: 0.30 cm s−1 (R030 and 0.60 cm s−1 (R060. The effluent pH of the reactors was maintained between 4 and 5 by adding NaHCO3 and HCl solutions. It was observed a maximum hydrogen production rate of 0.92 L H2 h−1 L−1 in R030 at HRT of 1 h. Furthermore, the highest hydrogen yield of 2.39 mol H2 mol−1 glucose was obtained in R060. No clear trend was observed by doubling the upflow velocities at this experiment. High ethanol production was also observed, indicating that the ethanol-pathway prevailed throughout the experiment.

  1. Simultaneous coproduction of hydrogen and ethanol in anaerobic packed-bed reactors.

    Science.gov (United States)

    dos Reis, Cristiane Marques; Silva, Edson Luiz

    2014-01-01

    This study evaluated the use of an anaerobic packed-bed reactor for hydrogen production at different hydraulic retention times (HRT) (1-8 h). Two reactors filled with expanded clay and fed with glucose (3136-3875 mg L(-1)) were operated at different total upflow velocities: 0.30 cm s(-1) (R030) and 0.60 cm s(-1) (R060). The effluent pH of the reactors was maintained between 4 and 5 by adding NaHCO3 and HCl solutions. It was observed a maximum hydrogen production rate of 0.92 L H2 h(-1) L(-1) in R030 at HRT of 1 h. Furthermore, the highest hydrogen yield of 2.39 mol H2 mol(-1) glucose was obtained in R060. No clear trend was observed by doubling the upflow velocities at this experiment. High ethanol production was also observed, indicating that the ethanol-pathway prevailed throughout the experiment.

  2. Generation potential of electric power surplus with the biogas produced from anaerobic bio digestion of vinasse in Brazilian sugar-ethanol industry; Potencial de geracao de excedentes de energia eletrica com o biogas produzido a partir da biodigestao da vinhaca na industria sucro-alcooleira brasileira

    Energy Technology Data Exchange (ETDEWEB)

    Lamonica, Helcio Martins [Universidade Estadual de Campinas (DE/FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Energia

    2006-07-01

    This work evaluates the electric power potential of the Brazilian sugarcane industry using the biogas produced by vinasse biodigestion in internal combustion engine driven generators. The electric power surplus based on crop 2004/05 ethanol production data is 9,292 TJ/year (2.6 TWh/year), 0.75% of the total electric power consumption in Brazil during the year of 2003. In spite of its considerable potential the determined minimum selling price for its produced energy of R$ 89.98/GJ (R$ 323.92/MWh) is expensive for present Brazilian electric power market price. (author)

  3. High-throughput detection of ethanol-producing cyanobacteria in a microdroplet platform.

    Science.gov (United States)

    Abalde-Cela, Sara; Gould, Anna; Liu, Xin; Kazamia, Elena; Smith, Alison G; Abell, Chris

    2015-05-06

    Ethanol production by microorganisms is an important renewable energy source. Most processes involve fermentation of sugars from plant feedstock, but there is increasing interest in direct ethanol production by photosynthetic organisms. To facilitate this, a high-throughput screening technique for the detection of ethanol is required. Here, a method for the quantitative detection of ethanol in a microdroplet-based platform is described that can be used for screening cyanobacterial strains to identify those with the highest ethanol productivity levels. The detection of ethanol by enzymatic assay was optimized both in bulk and in microdroplets. In parallel, the encapsulation of engineered ethanol-producing cyanobacteria in microdroplets and their growth dynamics in microdroplet reservoirs were demonstrated. The combination of modular microdroplet operations including droplet generation for cyanobacteria encapsulation, droplet re-injection and pico-injection, and laser-induced fluorescence, were used to create this new platform to screen genetically engineered strains of cyanobacteria with different levels of ethanol production.

  4. [Prolonged cultivation of an anaerobic bacterial community producing hydrogen].

    Science.gov (United States)

    Belokopytov, B F; Ryzhmanova, Ia V; Laurinavichius, K S; Shcherbakova, V A

    2012-01-01

    This paper studies various methods of long-term maintenance of the process of hydrogen evolution during the growth of an aerobic bacterial community on a starch-containing environment. When cultured in separable trip fermentation mode for 72 days, from 0.10 to 0.23 H2/l of medium/day was formed. The regime of regular reseeding lasted more than 100 days, forming an average of 0.81 1 H2/l of medium/day. The advantages and disadvantages of different methods of microbial hydrogen production during a dark starch fermentation process are presented. From the obtained H2 forming microbial communities, we isolated an anaerobic spore-forming bacterium (strain BF). Phylogenetic analysis of the 16S RNA gene sequence of the new strain showed that according to its genotype it belongs to the Clostridium butyricum species.

  5. Effect of Ethanol and Ethanol Biodegradation Products on Prospects for Natural Anaerobic Biodegradation of Benzene at Gasoline Spill Sites

    Science.gov (United States)

    There has been an increasing use of biofuels (ethanol in particular) in the fuel supply nationwide, and an increase in the number of stations that sell gasoline that contains more than 10% ethanol. The U.S. EPA needs to understand the fate of these materials if they are released ...

  6. Micro-aerobic, anaerobic and two-stage condition for ethanol production by Enterobacter aerogenes from biodiesel-derived crude glycerol

    DEFF Research Database (Denmark)

    Saisaard, Kanokrat; Angelidaki, Irini; Prasertsan, Poonsuk

    2011-01-01

    The microbial production of ethanol from biodiesel-derived crude glycerol by Enterobacter aerogenes TISTR1468, under micro-aerobic and anaerobic conditions, was investigated. The experimental results showed that micro-aerobic conditions were more favorable for cellular growth (4.0 g/L DCW), ethanol...... production (20.7 g/L) as well as the ethanol yield (0.47 g/g glycerol) than anaerobic conditions (1.2 g/L DCW, 6.3 g/L ethanol and 0.72 g/g glycerol, respectively). Crude glycerol (100 g/L) was consumed completely with the rate of 1.80 g/L/h. Two-stage fermentation (combination of micro-aerobic and anaerobic...

  7. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost.

    Science.gov (United States)

    Ueno, Y; Haruta, S; Ishii, M; Igarashi, Y

    2001-11-01

    Hydrogen production by thermophilic anaerobic microflora enriched from sludge compost was studied by using an artificial medium containing cellulose powder. Hydrogen gas was evolved with the formation of acetate, ethanol, and butyrate by decomposition of the cellulose powder. The hydrogen production yield was 2.0 mol/mol-hexose by either batch or chemostat cultivation. A medium that did not contain peptone demonstrated a lower hydrogen production yield of 1.0 mol/mol-hexose with less formation of butyrate. The microbial community in the microflora was investigated through isolation of the microorganisms by both plating and denaturing gradient gel electrophoresis (DGGE) of the' PCR-amplified V3 region of 16S rDNA. Sixty-eight microorganisms were isolated from the microflora and classified into nine distinct groups by genetic fingerprinting of the PCR-DGGE or by a random amplified polymorphic DNA analysis and determination of the partial sequence of 16S rDNA. Most of the isolates belonged to the cluster of the thermophilic Clostridium/Bacillus subphylum of low G+C gram-positive bacteria. Product formation by most of the isolated strains corresponded to that produced by the microflora. Thermoanaerobacterium thermosaccharolyticium was isolated in the enrichment culture with or without added peptone. and was detected with strong intensity by PCR-DGGE. Two other thermophilic cellulolytic microorganisms, Clostridium thermocellum and Clostridium cellulosi, were also detected by PCR-DGGE, although they could not be isolated. These findings imply that hydrogen production from cellulose by microflora is performed by a consortium of several species of microorganisms.

  8. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass

    DEFF Research Database (Denmark)

    Klinke, H.B.; Thomsen, A.B.; Ahring, Birgitte Kiær

    2004-01-01

    An overview of the different inhibitors formed by pre-treatment of lignocellulosic materials and their inhibition of ethanol production in yeast and bacteria is given. Different high temperature physical pre-treatment methods are available to render the carbohydrates in lignocellulose accessible...... for ethanol fermentation. The resulting hydrolyzsates contain substances inhibitory to fermentation-depending on both the raw material (biomass) and the pre-treatment applied. An overview of the inhibitory effect on ethanol production by yeast and bacteria is presented. Apart from furans formed by sugar...... degradation, phenol monomers from lignin degradation are important co-factors in hydrolysate inhibition, and inhibitory effects of these aromatic compounds on different ethanol producing microorganisms is reviewed. The furans and phenols generally inhibited growth and ethanol production rate (Q...

  9. A strict anaerobic extreme thermophilic hydrogen-producing culture enriched from digested household waste

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Kotay, Shireen Meher; Trably, Eric;

    2009-01-01

    The aim of this study was to enrich, characterize and identify strict anaerobic extreme thermophilic hydrogen (H-2) producers from digested household solid wastes. A strict anaerobic extreme thermophilic H-2 producing bacterial culture was enriched from a lab-scale digester treating household was...... from digested household wastes. This study provided a culture with a potential to be applied in reactor systems for extreme thermophilic H-2 production from complex organic wastes.......The aim of this study was to enrich, characterize and identify strict anaerobic extreme thermophilic hydrogen (H-2) producers from digested household solid wastes. A strict anaerobic extreme thermophilic H-2 producing bacterial culture was enriched from a lab-scale digester treating household...... sources. Growth on glucose produced acetate, H-2 and carbon dioxide. Maximal H-2 production rate on glucose was 1.1 mmol l(-1) h(-1) with a maximum H-2 yield of 1.9 mole H-2 per mole glucose. 16S ribosomal DNA clone library analyses showed that the culture members were phylogenetically affiliated...

  10. Anaerobic digestion in combination with 2nd generation ethanol production for maximizing biofuels yield from lignocellulosic biomass – testing in an integrated pilot-scale biorefinery plant

    DEFF Research Database (Denmark)

    Uellendahl, Hinrich; Ahring, Birgitte Kiær

    An integrated biorefinery concept for 2nd generation bioethanol production together with biogas production from the fermentation effluent was tested in pilot-scale. The pilot plant comprised pretreatment, enzymatic hydrolysis, hexose and pentose fermentation into ethanol and anaerobic digestion...... of the fermentation effluent in a UASB (upflow anaerobic sludge blanket) reactor. Operation of the 770 liter UASB reactor was tested under both mesophilic (38ºC) and thermophilic (53ºC) conditions with increasing loading rates of the liquid fraction of the effluent from ethanol fermentation. At an OLR of 3.5 kg...... for mesophilic than for thermophilic operation. The effluent from the ethanol fermentation showed no signs of toxicity to the anaerobic microorganisms. Implementation of the biogas production from the fermentation effluent accounted for about 30% higher biofuels yield in the biorefinery compared to a system...

  11. Treatment of corn ethanol distillery wastewater using two-stage anaerobic digestion.

    Science.gov (United States)

    Ráduly, B; Gyenge, L; Szilveszter, Sz; Kedves, A; Crognale, S

    In this study the mesophilic two-stage anaerobic digestion (AD) of corn bioethanol distillery wastewater is investigated in laboratory-scale reactors. Two-stage AD technology separates the different sub-processes of the AD in two distinct reactors, enabling the use of optimal conditions for the different microbial consortia involved in the different process phases, and thus allowing for higher applicable organic loading rates (OLRs), shorter hydraulic retention times (HRTs) and better conversion rates of the organic matter, as well as higher methane content of the produced biogas. In our experiments the reactors have been operated in semi-continuous phase-separated mode. A specific methane production of 1,092 mL/(L·d) has been reached at an OLR of 6.5 g TCOD/(L·d) (TCOD: total chemical oxygen demand) and a total HRT of 21 days (5.7 days in the first-stage, and 15.3 days in the second-stage reactor). Nonetheless the methane concentration in the second-stage reactor was very high (78.9%); the two-stage AD outperformed the reference single-stage AD (conducted at the same reactor loading rate and retention time) by only a small margin in terms of volumetric methane production rate. This makes questionable whether the higher methane content of the biogas counterbalances the added complexity of the two-stage digestion.

  12. KINETIKA FERMENTASI ASAM ASETAT (VINEGAR) OLEH BAKTERI Acetobacter aceti B 127 DARI ETANOL HASIL FERMENTASI LIMBAH CAIR PULP KAKAO [Kinetics of Acetic Acid (Vinegar) Fermentation By Acetobacter aceti B127 from Ethanol Produced by Fermentation of Liquid Waste of Cacao Pulp

    OpenAIRE

    M. Supli Effendi

    2002-01-01

    Acetic acid concentration is one of vinegar’s quality parameter. Acetic acid concentration in vinegar is influenced by the activity of acetic acid bacteria. This research studied the kinetics of anaerobic fermentation of liquid waste of cacao pulp by Saccharomyces cerevisiae R60 to produce ethanol and the kinetics of acetic acid fermentation from ethanol by Acetobacter aceti B127. The kinetics of acetic acid fermentation from ethanol by Acetobacter aceti B127 can be used as a basic of biopro...

  13. Production and the application of anaerobic granular sludge produced by landfill

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Sludge granulation is considered to be the most critical parameter governing successful operation of an upflow anaerobic sludge blanket and expanded granular sludge bed (EGSB) reactors. Pre-granulated seeding sludge could greatly reduce the required start-up time. Two lab-scale and a pilot-scale EGSB reactors were operated to treat Shaoxing Wastewater Treatment Plant containing wastewater from real engineering printing and dyeing with high pH and sulfate concentration. The microbiological structure and the particle size distribution in aerobic excess sludge, sanitary landfill sludge digested for one year, and the granular sludge of EGSB reactor after 400 d of operation were analyzed through scanning electron microscopy (SEM) and sieves. The lab-scale EGSB reactor seeded with anaerobic sludge after digestion for one year in landfill showed obviously better total chemical oxygen demand (TCOD) removal efficiency than one seeded with aerobic excess sludge after cation polyacrylamide flocculation-concentration and dehydration. The TCOD removed was 470.8 mg/L in pilot scale EGSB reactor at short hydraulic retention time of 15 h. SEM of sludge granules showed that the microbiological structure of the sludge from different sources showed some differences. SEM demonstrated that Methanobacterium sp. was present in the granules of pilot-scale EGSB and the granular sludge produced by landfill contained a mixture of anaerobic/anoxic organisms in abundance. The particle size distribution in EGSB demonstrated that using anaerobic granular sludge produced by sanitary landfill as the seeding granular sludge was feasible.

  14. Glycosaminoglycan-depolymerizing enzymes produced by anaerobic bacteria isolated from the human mouth.

    Science.gov (United States)

    Tipler, L S; Embery, G

    1985-01-01

    A number of obligately anaerobic bacteria, some implicated in periodontal disease, were screened for their ability to produce enzymes capable of degrading hyaluronic acid and chondroitin-4-sulphate. Two screening methods were used following anaerobic incubation at 37 degrees C for 7 days. One involved incorporating the respective substrates and bovine-serum albumin into agar plates and, after incubation, flooding the plates with 2 M acetic acid. Clear zones were produced around colonies which produced enzymes capable of depolymerizing the substrates. The second was a sensitive spectrophotometric procedure based on the ability of certain bacteria to produce eliminase enzymes, which degrade the substrates to unsaturated products having a characteristic u.v. absorption at 232 nm. Strains of Bacteroides gingivalis and Bacteroides melaninogenicus degraded both substrates whereas Bacteroides asaccharolyticus degraded neither substrate by either method. Some bacteria gave negative results with the plate method whereas the more sensitive spectrophotometric assay proved positive. The number of anaerobic bacteria capable of degrading hyaluronic acid and chondroitin-4-sulphate in vitro may therefore have been underestimated in previous studies.

  15. Ethanol production by anaerobic thermophilic bacteria: kinetics in fed-batch cultures of Clostridium thermohydrosulfuricum

    Energy Technology Data Exchange (ETDEWEB)

    Toukourou, F.; Donaduzzi, L.; Miclo, A.; Germain, P. (Lab. of Industrial Microbiology, ENSAIA-INPL, Vandoeuvre les Nancy (FR))

    1989-06-01

    Fed-batch fermentations of Clostridium thermohydrosulfuricum are carried out using a medium rich in nitrogen source and with glucose as growth limiting factor. The ethanol/lactate yield increases as the specific growth rate and specific rate of consumption of glucose diminish. Under the experimental conditions chosen here this yield attained 3.66 moles. mole/sup -1/ with a maximal ethanol concentration of 12 g.1/sup -1/. In batch fermentation, the maximum concentration of ethanol did not exceed 8 g.1/sup -1/ independent of the concentration in glucose or nitrogen source applied. (author).

  16. 2015 Survey of Non-Starch Ethanol and Renewable Hydrocarbon Biofuels Producers

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Warner, Ethan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lewis, John [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-22

    In order to understand the anticipated status of the industry for non-starch ethanol and renewable hydrocarbon biofuels as of the end of calendar year 2015, the National Renewable Energy Laboratory (NREL) conducted its first annual survey update of U.S. non-starch ethanol and renewable hydrocarbon biofuels producers. This report presents the results of this survey, describes the survey methodology, and documents important changes since the 2013 survey.

  17. Anaerobic digestion of hemicellulose hydrolysate produced after hydrothermal pretreatment of sugarcane bagasse in UASB reactor.

    Science.gov (United States)

    Ribeiro, Fernanda Resende; Passos, Fabiana; Gurgel, Leandro Vinícius Alves; Baêta, Bruno Eduardo Lobo; de Aquino, Sérgio Francisco

    2017-04-15

    In the context of a sugarcane biorefinery, sugarcane bagasse produced may be pretreated generating a solid and liquid fraction. The solid fraction may be used for 2G bioethanol production, while the liquid fraction may be used to produce biogas through anaerobic digestion. The aim of this study consisted in evaluating the anaerobic digestion performance of hemicellulose hydrolysate produced after hydrothermal pretreatment of sugarcane bagasse. For this, hydrothermal pretreatment was assessed in a continuous upflow anaerobic sludge blanket (UASB) reactor operated at a hydraulic retention time (HRT) of 18.4h. Process performance was investigated by varying the dilution of sugarcane bagasse hydrolysate with a solution containing xylose and the inlet organic loading rate (OLR). Experimental data showed that an increase in the proportion of hydrolysate in the feed resulted in better process performance for steps using 50% and 100% of real substrate. The best performance condition was achieved when increasing the organic loading rate (OLR) from 1.2 to 2.4gCOD/L·d, with an organic matter removal of 85.7%. During this period, the methane yield estimated by the COD removal would be 270LCH4/kg COD. Nonetheless, when further increasing the OLR to 4.8gCOD/L·d, the COD removal decreased to 74%, together with an increase in effluent concentrations of VFA (0.80gCOD/L) and furans (115.3mg/L), which might have inhibited the process performance. On the whole, the results showed that anaerobic digestion of sugarcane bagasse hydrolysate was feasible and may improve the net energy generation in a bioethanol plant, while enabling utilization of the surplus sugarcane bagasse in a sustainable manner.

  18. Utilization of Soft Wood Wastes as a Feed Stock to Produce Fuel Ethanol

    Directory of Open Access Journals (Sweden)

    Adnan M. Khalil

    2009-01-01

    Full Text Available Problem statement: The current research investigated the utilization of soft wood waste as a feedstock to produce a value-added product-fuel ethanol. Approach: The main issue in converting soft wood waste to fuel ethanol is the accessibility of the polysaccharides for breaking down into monosaccharides. This study focused on the use of steam as the pretreatment method. The governing factors for the effectiveness of steam pretreatment are steam temperature and retention times. Following steam pretreatment, soft wood waste was subjected to acid hydrolysis. The sugars released by acid hydrolysis were fermented in series chemical reactions that convert sugars to ethanol. The fermentation reaction was caused by yeast, which feed on the sugars. Results: Steam pretreatment was able to improve both glucose yields from acid hydrolysis and ethanol yields from fermentation. The results obtained from this study showed that steam pretreated soft wood waste are a heterogeneous material. So biomass goes through a size-reduction step to make it easier to handle and to make the ethanol production process more efficient. Steam treatment on soft wood waste increased the hydrolysis of cellulose by acid hydrolysis. Following 24 h of diluted or concentrated acid hydrolysis, a maximum cellulose conversion of 20.5% was obtained. Similarly, sugars to ethanol conversions were improved by steam treatment. Maximum sugar to ethanol conversion of 40.7% was observed. Conclusion: It was recommended that the hydrolysis process be done for 40 min to obtain the maximum sugars yield in a reasonable period of time.

  19. Chronic ethanol consumption in rats produces opioid antinociceptive tolerance through inhibition of mu opioid receptor endocytosis.

    Directory of Open Access Journals (Sweden)

    Li He

    Full Text Available It is well known that the mu-opioid receptor (MOR plays an important role in the rewarding properties of ethanol. However, it is less clear how chronic ethanol consumption affects MOR signaling. Here, we demonstrate that rats with prolonged voluntary ethanol consumption develop antinociceptive tolerance to opioids. Signaling through the MOR is controlled at many levels, including via the process of endocytosis. Importantly, agonists at the MOR that promote receptor endocytosis, such as the endogenous peptides enkephalin and β-endorphin, show a reduced propensity to promote antinociceptive tolerance than do agonists, like morphine, which do not promote receptor endocytosis. These observations led us to examine whether chronic ethanol consumption produced opioid tolerance by interfering with MOR endocytosis. Indeed, here we show that chronic ethanol consumption inhibits the endocytosis of MOR in response to opioid peptide. This loss of endocytosis was accompanied by a dramatic decrease in G protein coupled receptor kinase 2 (GRK2 protein levels after chronic drinking, suggesting that loss of this component of the trafficking machinery could be a mechanism by which endocytosis is lost. We also found that MOR coupling to G-protein was decreased in ethanol-drinking rats, providing a functional explanation for loss of opioid antinociception. Together, these results suggest that chronic ethanol drinking alters the ability of MOR to endocytose in response to opioid peptides, and consequently, promotes tolerance to the effects of opioids.

  20. Efficient process for producing saccharides and ethanol from a biomass feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Okeke, Benedict C.; Nanjundaswamy, Ananda K.

    2017-04-11

    Described herein is a process for producing saccharides and ethanol from biomass feedstock that includes (a) producing an enzyme composition by culturing a fungal strain(s) in the presence of a lignocellulosic medium, (b) using the enzyme composition to saccharify the biomass feedstock, and (c) fermenting the saccharified biomass feedstock to produce ethanol. The process is scalable and, in certain aspects, is capable of being deployed on farms, thereby allowing local production of saccharides and ethanol and resulting in a reduction of energy and other costs for farm operators. Optional steps to improve the biomass-to-fuel conversion efficiency are also contemplated, as are uses for byproducts of the process described herein.

  1. Use of lignocellulosic biomass to produce ethanol. Aprovechamiento de la biomasa lignocelulosica para la produccion de etanol

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, J.M.

    1993-01-01

    Gasohol is an automobile fuel with 10% ethanol and 90% gasoline used in USA. A 20/80% mixture is also used in Brasil. Lignocellulosic biomass can be a source to produce ethanol. It is a mixture of cellulose (30%), Memicellulose (32%), lignine (17%) and other (13%). The fundamentals of the ethanol production process are presented. (Author)

  2. Pie waste - A component of food waste and a renewable substrate for producing ethanol.

    Science.gov (United States)

    Magyar, Margaret; da Costa Sousa, Leonardo; Jayanthi, Singaram; Balan, Venkatesh

    2017-02-17

    Sugar-rich food waste is a sustainable feedstock that can be converted into ethanol without an expensive thermochemical pretreatment that is commonly used in first and second generation processes. In this manuscript we have outlined the pie waste conversion to ethanol through a two-step process, namely, enzyme hydrolysis using commercial enzyme products mixtures and microbial fermentation using yeast. Optimized enzyme cocktail was found to be 45% alpha amylase, 45% gamma amylase, and 10% pectinase at 2.5mg enzyme protein/g glucan produced a hydrolysate with high glucose concentration. All three solid loadings (20%, 30%, and 40%) produced sugar-rich hydrolysates and ethanol with little to no enzyme or yeast inhibition. Enzymatic hydrolysis and fermentation process mass balance was carried out using pie waste on a 1000g dry weight basis that produced 329g ethanol at 20% solids loading. This process clearly demonstrate how food waste could be efficiently converted to ethanol that could be used for making biodiesel by reacting with waste cooking oil.

  3. Integrated systems of producing feed and ethanol from fractionated maize silage

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, D.; Mowat, D.N.

    1985-01-01

    Systems were designed, simulated and analyzed to assess the economic feasibility of producing ethanol from high-moisture grain, gradually separated from mature whole-plant maize silage. The residual stover fraction containing some grain fines was fed, along with ethanol production by-products (stillage or maize gluten feed), to growing steers. Three systems were compared. In the control, regular maize silage was fed to growing steers with extra maize harvested later and sold as grain for cash. In one alternative (system 2), the separated grain fraction was processed to ethanol and stillage at a local farmer-cooperative plant. In another alternative (system 3), the grain fraction was transferred to a regional industrial plant for wet milling to ethanol, corn gluten-feed and other products. System comparisons were based on estimating gross costs per farm during 1980 to 1982, minus credits for products such as grain maize (control) and ethanol (alternative systems). System 3 was the more attractive alternative. When ethanol was valued at wholesale prices for regular leaded gasoline, these costs were similar in 1981 and 1982 for System 3 and the control. Further refinements of a separation unit, and detailed assessment of the feeding value of the stover fraction plus stillage or corn gluten feed, are warranted. 17 references.

  4. Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass.

    Science.gov (United States)

    Schell, Daniel J; Dowe, Nancy; Chapeaux, Alexandre; Nelson, Robert S; Jennings, Edward W

    2016-04-01

    Accurate mass balance and conversion data from integrated operation is needed to fully elucidate the economics of biofuel production processes. This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose-xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations presented here account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan to ethanol and ethanol titers of 63g/L and 69g/L, respectively. These procedures will be employed in the future and the resulting information used for techno-economic analysis.

  5. Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Jensen, K.; Nielsen, P.

    1996-01-01

    Wheat straw was pretreated by wet oxidation (oxygen pressure, alkaline conditions, elevated temperature) or hydrothermal processing (without oxygen) in order to solubilize the hemicellulose, facilitating bio-conversion. The effect of oxygen pressure and sodium carbonate addition on hemicellulose...... solubilization was investigated. The two process parameters had little effect on the solubilization of hemicellulose. However alkaline conditions affected the furfural formation whereas oxygen had no effect. After pretreatment, the filtrate was used as a fermentation medium for thermophilic anaerobic bacterin...... of the microorganism to the wet oxidized filtrate was also examined. Copyright (C) 1997 Elsevier Science Ltd....

  6. Determining the cost of producing ethanol from corn starch and lignocellulosic feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    McAloon, Andrew [U.S. Department of Agriculture, Washington D.C. (United States); Taylor, Frank [U.S. Department of Agriculture, Washington D.C. (United States); Yee, Winnie [U.S. Department of Agriculture, Washington D.C. (United States); Ibsen, Kelly [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wooley, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2000-10-01

    This report describes the comparison of the processes, each producing 25 million annual gallons of fuel ethanol. This paper attempts to compare the two processes as mature technologies, which requires assuming that the technology improvements needed to make the lignocellulosic process commercializable are achieved, and enough plants have been built to make the design well-understood.

  7. Ethanol Production from Wet-Exploded Wheat Straw Hydrolysate by Thermophilic Anaerobic Bacterium Thermoanaerobacter BG1L1 in a Continuous Immobilized Reactor

    Science.gov (United States)

    Georgieva, Tania I.; Mikkelsen, Marie J.; Ahring, Birgitte K.

    Thermophilic ethanol fermentation of wet-exploded wheat straw hydrolysate was investigated in a continuous immobilized reactor system. The experiments were carried out in a lab-scale fluidized bed reactor (FBR) at 70°C. Undetoxified wheat straw hydrolysate was used (3-12% dry matter), corresponding to sugar mixtures of glucose and xylose ranging from 12 to 41 g/1. The organism, thermophilic anaerobic bacterium Thermoanaerobacter BG1L1, exhibited significant resistance to high levels of acetic acid (up to 10 g/1) and other metabolic inhibitors present in the hydrolysate. Although the hydrolysate was not detoxified, ethanol yield in a range of 0.39-0.42 g/g was obtained. Overall, sugar efficiency to ethanol was 68-76%. The reactor was operated continuously for approximately 143 days, and no contamination was seen without the use of any agent for preventing bacterial infections. The tested microorganism has considerable potential to be a novel candidate for lignocellulose bioconversion into ethanol. The work reported here also demonstrates that the use of FBR configuration might be a viable approach for thermophilic anaerobic ethanol fermentation.

  8. 2013 Survey of Non-Starch Ethanol and Renewable Hydrocarbon Biofuels Producers

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Geiger, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lewis, John [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    In order to understand the status of the industry for non-starch ethanol and renewable hydrocarbon biofuels as of the end of calendar year 2013, the National Renewable Energy Laboratory (NREL) conducted the first of what is anticipated to be an annual survey of U.S. non-starch ethanol and renewable hydrocarbon biofuels producers. This report presents the results of this initial survey and describes the survey methodology. Subsequent surveys will report on the progress over time of the development of these facilities and companies.

  9. Simultaneous Coproduction of Hydrogen and Ethanol in Anaerobic Packed-Bed Reactors

    OpenAIRE

    Cristiane Marques dos Reis; Edson Luiz Silva

    2014-01-01

    This study evaluated the use of an anaerobic packed-bed reactor for hydrogen production at different hydraulic retention times (HRT) (1–8 h). Two reactors filled with expanded clay and fed with glucose (3136–3875 mg L−1) were operated at different total upflow velocities: 0.30 cm s−1 (R030) and 0.60 cm s−1 (R060). The effluent pH of the reactors was maintained between 4 and 5 by adding NaHCO3 and HCl solutions. It was observed a maximum hydrogen production rate of 0.92 L H2 h−1 L−1 in R030 at...

  10. Applying Adaptive Agricultural Management & Industrial Ecology Principles to Produce Lower- Carbon Ethanol from California Energy Beets

    Science.gov (United States)

    Alexiades, Anthy Maria

    The life cycle assessment of a proposed beet-to-ethanol pathway demonstrates how agricultural management and industrial ecology principles can be applied to reduce greenhouse gas emissions, minimize agrochemical inputs and waste, provide ecosystem services and yield a lower-carbon fuel from a highly land-use efficient, first-generation feedstock cultivated in California. Beets grown in California have unique potential as a biofuel feedstock. A mature agricultural product with well-developed supply chains, beet-sugar production in California has contracted over recent decades, leaving idle production capacity and forcing growers to seek other crops for use in rotation or find a new market for beets. California's Low Carbon Fuel Standard (LCFS) faces risk of steeply-rising compliance costs, as greenhouse gas reduction targets in the transportation sector were established assuming commercial volumes of lower-carbon fuels from second-generation feedstocks -- such as residues, waste, algae and cellulosic crops -- would be available by 2020. The expected shortfall of cellulosic ethanol has created an immediate need to develop lower-carbon fuels from readily available feedstocks using conventional conversion technologies. The life cycle carbon intensity of this ethanol pathway is less than 28 gCO2e/MJEthanol: a 72% reduction compared to gasoline and 19% lower than the most efficient corn ethanol pathway (34 gCO2e/MJ not including indirect land use change) approved under LCFS. The system relies primarily on waste-to-energy resources; nearly 18 gCO2e/MJ are avoided by using renewable heat and power generated from anaerobic digestion of fermentation stillage and gasification of orchard residues to meet 88% of the facility's steam demand. Co-products displace 2 gCO2e/MJ. Beet cultivation is the largest source of emissions, contributing 15 gCO 2e/MJ. The goal of the study is to explore opportunities to minimize carbon intensity of beet-ethanol and investigate the potential

  11. [Isolation, Identification and Characteristic Analysis of an Oil-producing Chlorella sp. Tolerant to High-strength Anaerobic Digestion Effluent].

    Science.gov (United States)

    Yang, Chuang; Wang, Wen-guo; Ma, Dan-wei; Tang, Xiao-yu; Hu, Qi-chun

    2015-07-01

    A Chlorella strain tolerant to high-strength anaerobic digestion effluent was isolated from the anaerobic digestion effluent with a long-term exposure to air. The strain was identified as a Chlorella by morphological and molecular biological methods, and named Chlorella sp. BWY-1, The anaerobic digestion effluent used in this study was from a biogas plant with the raw materials of swine wastewater after solid-liquid separation. The Chlorella regularis (FACHB-729) was used as the control strain. The comparative study showed that Chlorella sp, BWY-Ihad relatively higher growth rate, biomass accumulation capacity and pollutants removal rate in BG11. and different concentrations of anaerobic digestion effluent. Chlorella sp. BWY-1 had the highest growth rate and biomass productivity (324.40 mg.L-1) in BG11, but its lipid productivity and lipid content increased with the increase of anaerobic digestion effluent concentration, In undiluted anaerobic digestion effluent, the lipid productivity and lipid content of Chlorella sp. BWY-1 were up to 44. 43% and 108. 70 mg.L-1, respectively. Those results showed that the isolated algal strain bad some potential applications in livestock wastewater treatment and bioenergy production, it could be combined with a solid-liquid separation, anaerobic fermentation and other techniques for processing livestock wastewater and producing biodiesel.

  12. An integrated process to produce ethanol, vanillin, and xylooligosaccharides from Camellia oleifera shell.

    Science.gov (United States)

    Zhu, Junjun; Zhu, Yuanyuan; Jiang, Faxian; Xu, Yong; Ouyang, Jia; Yu, Shiyuan

    2013-12-15

    This study aims to present an integrated process that can be used to produce ethanol, vanillin, and xylooligosaccharides from Camellia oleifera shell. After the shell was pretreated with NaOH, two fractions were obtained: solid and liquid fractions. The solid fraction was hydrolyzed with cellulase and then fermented with Pichia stipitis to produce ethanol. The liquid fraction was subjected to oxidation to prepare vanillin or hydrolysis with xylanase to prepare xylooligosaccharides. The optimal pretreatment conditions of an orthogonal test were as follows: 12% NaOH concentration; 120°C; 150 min; and liquid-solid ratio of 10.0. After pretreatment, the solid fraction containing cellulose and a small part of xylan at 10% substance concentration via enzymatic hydrolysis and glucose-xylose cofermentation could obtain 17.35 g/L of ethanol, 80.90% of the theoretical yield. The liquid fraction was initially hydrolyzed with xylanase to produce 1758.63 mg/L of xylooligosaccharides (DP2-6) and then oxidized to produce 322.07 mg/L of vanillin.

  13. Reforming of Ethanol to Produce Hydrogen over PtRuMg/ZrO2 Catalyst

    Directory of Open Access Journals (Sweden)

    Josh Y. Z. Chiou

    2012-01-01

    Full Text Available A modified PtRu/ZrO2 catalyst with Mg is evaluated for the oxidative steam reforming of ethanol (OSRE and the steam reforming of ethanol (SRE. In order to understand the variation in the reaction mechanism on OSRE and SRE, further analysis of both fresh and used catalyst is concentrated on for TEM, TG, Raman, and TPR characterization. The results show that the OSRE reaction requires a higher temperature (∼390°C to achieve 100% ethanol conversion than the SRE reaction (∼2500°C. The distribution of CO is minor for both reactions (< 5% for OSRE, < 1% for SRE. This demonstrates that the water gas shift (WGS reaction is an important side-reaction in the reforming of ethanol to produce H2 and CO2. A comparison of the temperature of WGS (WGS shows it is lower for the SRE reaction (WGS∼250°C for SRE, ~340°C for OSRE.

  14. Anaerobic Biodegradation of Biofuels (Ethanol and Biodiesel) and Proposed Biofuels (n-Propanol, iso-Propanol, n-Butanol)

    Science.gov (United States)

    Biofuels, such as ethanol and biodiesel, are a growing component of the nation’s fuel supply. Ethanol is the primary biofuel in the US market, distributed as a blend with petroleum gasoline, in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made fr...

  15. Coenzyme B12 can be produced by engineered Escherichia coli under both anaerobic and aerobic conditions.

    Science.gov (United States)

    Ko, Yeounjoo; Ashok, Somasundar; Ainala, Satish Kumar; Sankaranarayanan, Mugesh; Chun, Ah Yeong; Jung, Gyoo Yeol; Park, Sunghoon

    2014-12-01

    Coenzyme B12 (Vitamin B12 ) is one of the most complex biomolecules and an essential cofactor required for the catalytic activity of many enzymes. Pseudomonas denitrificans synthesizes coenzyme B12 in an oxygen-dependent manner using a pathway encoded by more than 25 genes that are located in six different operons. Escherichia coli, a robust and suitable host for metabolic engineering was used to produce coenzyme B12 . These genes were cloned into three compatible plasmids and expressed heterologously in E. coli BL21 (DE3). Real-time PCR, SDS-PAGE analysis and bioassay showed that the recombinant E. coli expressed the coenzyme B12 synthetic genes and successfully produced coenzyme B12 . However, according to the quantitative determination by inductively coupled plasma-mass spectrometry, the amount of coenzyme B12 produced by the recombinant E. coli (0.21 ± 0.02 μg/g cdw) was approximately 13-fold lower than that by P. denitrificans (2.75 ± 0.22 μg/g cdw). Optimization of the culture conditions to improve the production of coenzyme B12 by the recombinant E. coli was successful, and the highest titer (0.65 ± 0.03 μg/g cdw) of coenzyme B12 was obtained. Interestingly, although the synthesis of coenzyme B12 in P. denitrificans is strictly oxygen-dependent, the recombinant E. coli could produce coenzyme B12 under anaerobic conditions.

  16. Tungsten effect over co-hydrotalcite catalysts to produce hydrogen from bio-ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, J.L.; Ortiz, M.A.; Luna, R.; Nuno, L. [Univ. Autonoma Metropolitana-Azcapozalco, Mexico City (Mexico). Dept. de Energia; Fuentes, G.A. [Univ. Autonoma Metropolitana-Iztapalapa, Mexico City (Mexico). Dept. de IPH; Salmones, J.; Zeifert, B. [Inst. Politecnico Nacional, Mexico City (Mexico); Vazquez, A. [Inst. Mexicano del Petroleo, Mexico City (Mexico)

    2010-07-15

    The use of bioethanol has been considered for generating hydrogen via catalytic reforming. The reaction of ethanol with stream is strongly endothermic and produces hydrogen (H{sub 2}) and carbon dioxide (CO{sub 2}). However, undesirable products such as carbon monoxide (CO) and methane (CH{sub 4}) may also form during the reaction. This paper reported on the newly found stabilization effect of tungsten over the Co-hydrotalcite catalysts to produce H{sub 2} from ethanol in steam reforming. The catalysts were characterized by nitrogen (N{sub 2}) physisorption (BET area), X-ray diffraction, Infrared, Raman and UV-vis spectroscopies. Catalytic evaluations were determined using a fixed bed reactor with a water/ethanol mol ratio of 4 at 450 degrees C. The tungsten concentration studied was from 0.5 to 3 wt percent. The intensity of crystalline reflections of the Co-hydrotalcite catalysts decreased as tungsten concentration increased. Infrared spectroscopy was used to determine the superficial chemical groups, notably -OH, H{sub 2}O, Al-OH, Mg-OH, W-O-W and CO{sub 3}{sup 2.} The highest H{sub 2} production and the best catalytic stability was found in catalysts with low tungsten. The smallest pore volume of this catalyst could be related with long residence times of ethanol in the pores. Tungsten promoted the conversion for the Co-hydrotalcite catalysts. The reaction products were H{sub 2}, CO{sub 2}, CH{sub 3}CHO, CH{sub 4} and C{sub 2}H{sub 4} and the catalysts did not produce CO. 33 refs., 2 tabs., 10 figs.

  17. Ethanol withdrawal is required to produce persisting N-methyl-D-aspartate receptor-dependent hippocampal cytotoxicity during chronic intermittent ethanol exposure

    Science.gov (United States)

    Reynolds, Anna R.; Berry, B. Jennifer N.; Sharrett-Field, Lynda; Prendergast, Mark A.

    2015-01-01

    Chronic intermittent ethanol consumption is associated with neurodegeneration and cognitive deficits in preclinical laboratory animals and in the clinical population. While previous work suggests a role for neuroadaptations in the N-methyl-D-aspartate (NMDA) receptor in the development of ethanol dependence and manifestation of withdrawal, the relative roles of ethanol exposure and ethanol withdrawal in producing these effects have not been fully characterized. To examine underlying cytotoxic mechanisms associated with CIE exposure, organotypic hippocampal slices were exposed to 1–3 cycles of ethanol (50 mM) in cell culture medium for 5 days, followed by 24-hours of ethanol withdrawal in which a portion of slices were exposed to competitive NMDA receptor antagonist (2R)-amino-5-phosphonovaleric acid (APV; 40 µM). Cytotoxicity was assessed using immunohistochemical labeling of neuron specific nuclear protein (NeuN; Fox-3), a marker of mature neurons, and thionine (2%) staining of Nissl bodies. Multiple cycles of CIE produced neurotoxicity, as reflected in persisting losses of neuron NeuN immunoreactivity and thionine staining in each of the primary cell layers of the hippocampal formation. Hippocampi aged in vitro were significantly more sensitive to the toxic effects of multiple CIEs than were non-aged hippocampi. This effect was not demonstrated in slices exposed to continuous ethanol, in the absence of withdrawal, or to a single exposure/withdrawal regimen. Exposure to APV significantly attenuated the cytotoxicity observed in the primary cell layers of the hippocampus. The present findings suggest that ethanol withdrawal is required to produce NMDA receptor-dependent hippocampal cytotoxicity, particularly in the aging hippocampus in vitro. PMID:25746220

  18. 40 CFR 80.1155 - What are the additional requirements for a producer of cellulosic biomass ethanol or waste...

    Science.gov (United States)

    2010-07-01

    ..., 40 CFR part 32, or the Debarment, Suspension and Ineligibility provisions of the Federal Acquisition Regulations, 48 CFR, part 9, subpart 9.4, shall be deemed noncompliance with the requirements of this section... for a producer of cellulosic biomass ethanol or waste derived ethanol? 80.1155 Section...

  19. Potential of Biogas Power Plant Produced by Anaerobic Digestion of Biodegradable Materials

    Directory of Open Access Journals (Sweden)

    Nur Shuhada Ghazali

    2013-09-01

    Full Text Available Biogas typically refers to a gas produced by the breakdown of organic matter in the absence of oxygen. It is a renewable energy source, like solar and wind energy. Furthermore, biogas can be produced from regionally available raw materials and recycled waste and is environmentally friendly and CO2 neutral. Biogas is produced by the anaerobic digestion or fermentation of biodegradable materials such as manure, sewage, municipal waste, green waste, plant material, and crops. Biogas comprises primarily methane (CH4 and carbon dioxide (CO2 and may have small amounts of hydrogen sulphide (H2S, moisture and siloxanes. The gases methane, hydrogen, and carbon monoxide (CO can be combusted or oxidized with oxygen. This energy release allows biogas to be used as a fuel. Biogas can be compressed, much like natural gas, and used to power motor vehicles. Biogas is a renewable fuel so it qualifies for renewable energy subsidies in some parts of the world. Biogas can also be cleaned and upgraded to natural gas standards when it becomes bio methane. This paper will discuss the potential of biogas in order to provide a clean, easily controlled source of renewable energy from organic waste materials for a small labour input, replacing firewood or fossil fuels which are becoming more expensive as supply falls behind demand.

  20. 高温CSTR-中温UASB两级厌氧处理木薯酒精废水%Two-stage anaerobic treatment of cassava ethanol wastewater using thermophilic CSTR and mesophilic UASB

    Institute of Scientific and Technical Information of China (English)

    陈金荣; 谢丽; 罗刚; 周琪

    2011-01-01

    Since cassava ethanol wastewater is characterized by high temperature,high solid content and high organism concentration,the two-stage anaerobic treatment using thermophilic continuous stirred tank reactor (CSTR)and mesophilic upflow anaerobic sludge bed (UASB) has been conducted. Experimental results show that when the influent COD loading of thermophilic CSTR is controlled 14 kg/(m3·d) and COD loading of mesophilic UASB reactor is controlled 3 kg/(m3·d) ,the total removal rates of COD,SS,TN and TP are 94% ,96% ,44% and 87% ,respectively, after the two-stage anaerobic treatment.The life cycle of cassava ethanol production and economic benefits of such wastewater treatment are discussed,indicating that two-stage anaerobic treatment process can not only reduce the pollution resulted from cassava ethanol production, but also create economic benefits from the biogas produced in the course of treatment.%针对木薯酒精废水温度、固体含量及有机物浓度高的特点,采用高温CSTR-中温UASB两级厌氧工艺处理木薯酒精废水.小试结果表明,控制高温CSTR进水COD负荷为14 kg/(m3·d),中温UASB COD负荷为3 kg/(m3·d)时,两级厌氧对COD、SS、溶解性TN、溶解性TP的总去除率分别达94%、96%、44%和87%.对木薯酒精生产周期和废水处理经济效益的分析表明,采用两级厌氧工艺处理木薯酒精废水,不仅削减了木薯酒精生产过程中产生的污染物,其处理过程中产生的沼气还带来了一定的经济效益.

  1. Life Cycle Environmental Impacts of Electricity from Biogas Produced by Anaerobic Digestion.

    Science.gov (United States)

    Fusi, Alessandra; Bacenetti, Jacopo; Fiala, Marco; Azapagic, Adisa

    2016-01-01

    The aim of this study was to evaluate life cycle environmental impacts associated with the generation of electricity from biogas produced by the anaerobic digestion (AD) of agricultural products and waste. Five real plants in Italy were considered, using maize silage, slurry, and tomato waste as feedstocks and cogenerating electricity and heat; the latter is not utilized. The results suggest that maize silage and the operation of anaerobic digesters, including open storage of digestate, are the main contributors to the impacts of biogas electricity. The system that uses animal slurry is the best option, except for the marine and terrestrial ecotoxicity. The results also suggest that it is environmentally better to have smaller plants using slurry and waste rather than bigger installations, which require maize silage to operate efficiently. Electricity from biogas is environmentally more sustainable than grid electricity for seven out of 11 impacts considered. However, in comparison with natural gas, biogas electricity is worse for seven out of 11 impacts. It also has mostly higher impacts than other renewables, with a few exceptions, notably solar photovoltaics. Thus, for the AD systems and mesophilic operating conditions considered in this study, biogas electricity can help reduce greenhouse gas (GHG) emissions relative to a fossil-intensive electricity mix; however, some other impacts increase. If mitigation of climate change is the main aim, other renewables have a greater potential to reduce GHG emissions. If, in addition to this, other impacts are considered, then hydro, wind, and geothermal power are better alternatives to biogas electricity. However, utilization of heat would improve significantly its environmental sustainability, particularly global warming potential, summer smog, and the depletion of abiotic resources and the ozone layer. Further improvements can be achieved by banning open digestate storage to prevent methane emissions and regulating

  2. Life cycle environmental impacts of electricity from biogas produced by anaerobic digestion

    Directory of Open Access Journals (Sweden)

    Alessandra eFusi

    2016-03-01

    Full Text Available The aim of this study was to evaluate life cycle environmental impacts associated with the generation of electricity from biogas produced by the anaerobic digestion of agricultural products and waste. Five real plants in Italy were considered, using maize silage, slurry and tomato waste as feedstocks and co-generating electricity and heat; the latter is not utilized. The results suggest that maize silage and the operation of anaerobic digesters, including open storage of digestate, are the main contributors to the impacts of biogas electricity. The system which uses animal slurry is the best option, except for the marine and terrestrial eco-toxicity. The results also suggest that it is environmentally better to have smaller plants using slurry and waste rather than bigger installations which require maize silage to operate efficiently. Electricity from biogas is environmentally more sustainable than grid electricity for seven out of 11 impacts considered. However, in comparison with natural gas, biogas electricity is worse for seven out of 11 impacts. It also has mostly higher impacts than other renewables, with a few exceptions, notably solar photovoltaics. Thus, for the AD systems and mesophilic operating conditions considered in this study, biogas electricity can help reduce greenhouse gas (GHG emissions relative to a fossil-intensive electricity mix; however, some other impacts increase. If mitigation of climate change is the main aim, other renewables have a greater potential to reduce GHG emissions. If, in addition to this, other impacts are considered, then hydro, wind and geothermal power are better alternatives to biogas electricity. However, utilization of heat would improve significantly its environmental sustainability, particularly global warming potential, summer smog and the depletion of abiotic resources and the ozone layer. Further improvements can be achieved by banning open digestate storage to prevent methane emissions and

  3. Life Cycle Environmental Impacts of Electricity from Biogas Produced by Anaerobic Digestion

    Science.gov (United States)

    Fusi, Alessandra; Bacenetti, Jacopo; Fiala, Marco; Azapagic, Adisa

    2016-01-01

    The aim of this study was to evaluate life cycle environmental impacts associated with the generation of electricity from biogas produced by the anaerobic digestion (AD) of agricultural products and waste. Five real plants in Italy were considered, using maize silage, slurry, and tomato waste as feedstocks and cogenerating electricity and heat; the latter is not utilized. The results suggest that maize silage and the operation of anaerobic digesters, including open storage of digestate, are the main contributors to the impacts of biogas electricity. The system that uses animal slurry is the best option, except for the marine and terrestrial ecotoxicity. The results also suggest that it is environmentally better to have smaller plants using slurry and waste rather than bigger installations, which require maize silage to operate efficiently. Electricity from biogas is environmentally more sustainable than grid electricity for seven out of 11 impacts considered. However, in comparison with natural gas, biogas electricity is worse for seven out of 11 impacts. It also has mostly higher impacts than other renewables, with a few exceptions, notably solar photovoltaics. Thus, for the AD systems and mesophilic operating conditions considered in this study, biogas electricity can help reduce greenhouse gas (GHG) emissions relative to a fossil-intensive electricity mix; however, some other impacts increase. If mitigation of climate change is the main aim, other renewables have a greater potential to reduce GHG emissions. If, in addition to this, other impacts are considered, then hydro, wind, and geothermal power are better alternatives to biogas electricity. However, utilization of heat would improve significantly its environmental sustainability, particularly global warming potential, summer smog, and the depletion of abiotic resources and the ozone layer. Further improvements can be achieved by banning open digestate storage to prevent methane emissions and regulating

  4. Enrichment and hydrogen production by marine anaerobic hydrogen-producing microflora

    Institute of Scientific and Technical Information of China (English)

    CAI JinLing; WANG GuangCe; LI YanChuan; ZHU DaLing; PAN GuangHua

    2009-01-01

    Acid,alkali,heat-shock,KNO3 and control pretreatment methods applied to anaerobic sludge were evaluated for their ability to selectively enrich the marine hydrogen-producing mixed microflora.Seawater culture medium was used as the substrate.The hydrogen yield of pretreated microflora was higher than that of the un-pretreated control (P<0.05).Among the pretreatment methods studied,heat-shock pretreatment yielded the greatest hydrogen production,which was 14.6 times that of the control.When the effect of initial pH on hydrogen production of heat-shock pretreated samples was studied,hydrogen was produced over the entire pH range (pH 4-10).The hydrogen yield peaked at initial pH 8 (79 mL/g sucrose) and then steadily decreased as the initial pH increased.Sucrose consumption was high at neutral initial pH.During the process of hydrogen production,pH decreased gradually,which indicated that the acquired microflora consisted of acidogenic bacteria.

  5. The feasibility of producing adequate feedstock for year–round cellulosic ethanol production in an intensive agricultural fuelshed

    Science.gov (United States)

    Uden, Daniel R.; Mitchell, Rob B.; Allen, Craig R.; Guan, Qingfeng; McCoy, Tim D.

    2013-01-01

    To date, cellulosic ethanol production has not been commercialized in the United States. However, government mandates aimed at increasing second-generation biofuel production could spur exploratory development in the cellulosic ethanol industry. We conducted an in-depth analysis of the fuelshed surrounding a starch-based ethanol plant near York, Nebraska that has the potential for cellulosic ethanol production. To assess the feasibility of supplying adequate biomass for year-round cellulosic ethanol production from residual maize (Zea mays) stover and bioenergy switchgrass (Panicum virgatum) within a 40-km road network service area of the existing ethanol plant, we identified ∼14,000 ha of marginally productive cropland within the service area suitable for conversion from annual rowcrops to switchgrass and ∼132,000 ha of maize-enrolled cropland from which maize stover could be collected. Annual maize stover and switchgrass biomass supplies within the 40-km service area could range between 429,000 and 752,000 metric tons (mT). Approximately 140–250 million liters (l) of cellulosic ethanol could be produced, rivaling the current 208 million l annual starch-based ethanol production capacity of the plant. We conclude that sufficient quantities of biomass could be produced from maize stover and switchgrass near the plant to support year-round cellulosic ethanol production at current feedstock yields, sustainable removal rates and bioconversion efficiencies. Modifying existing starch-based ethanol plants in intensive agricultural fuelsheds could increase ethanol output, return marginally productive cropland to perennial vegetation, and remove maize stover from productive cropland to meet feedstock demand.

  6. Process stability and microbial community structure in anaerobic hydrogen-producing microflora from food waste containing kimchi.

    Science.gov (United States)

    Jo, Ji Hye; Jeon, Che Ok; Lee, Dae Sung; Park, Jong Moon

    2007-09-15

    Hydrogen production by the dark fermentation of food wastes is an economic and environmentally friendly technology to produce the clean energy source as well as to treat the problematic wastes. However, the long-term operations of the continuous anaerobic reactor for fermentative hydrogen production were frequently unstable. In this study, the structure of microbial community within the anaerobic reactor during unstable hydrogen production was examined by denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) techniques. The changes in microbial community from H(2)-producing Clostridium spp. to lactic acid-producing Lactobacillus spp. were well coincident with the unexpected process failures and the changes of metabolites concentrations in the effluent of the anaerobic reactor. As the rate of hydrogen production decreased, effluent lactic acid concentration increased. Low rate of hydrogen production and changes in microbial community were related to the 'kimchi' content and storage temperature of food waste feed solution. After low temperature control of the storage tank of the feed solution, any significant change in microbial community within the anaerobic reactor did not occur and the hydrogen production was very stably maintained for a long time.

  7. Selection of hemicellulosic hydrolysate pretreatments and fermentation conditions to stimulate xylitol protection by ethanol-producing yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Converti, A. [Ist. di Ingegneria Chimica e di Processo `G.B. Bonino`, Facolta di Ingegneria, Univ. degli Studi di Genova (Italy); Del Borghi, M. [Ist. di Ingegneria Chimica e di Processo `G.B. Bonino`, Facolta di Ingegneria, Univ. degli Studi di Genova (Italy)

    1996-12-31

    Xylitol production from hardwood hemicellulosic hydrolysates by well-known ethanol-producing yeasts was stimulated through an experimental schedule including pretreatments of the hydrolysate, the choice of the best xylitol producer and the selection of the optimum fermentation conditions. The xylitol or ethanol yields obtained on consumed xylose demonstrated that their production was stimulated under completely different conditions, as to be expected by the fact that these catabolites are the final products of different metabolic pathways. In particular, the catabolism of Pachysolen tannophilus, that is the best ethanol producer from this natural substrate, could be targeted towards xylitol rather than towards ethanol production by ensuring a strongly reducing environment through a suitable pretreatment of the hydrolysate. The final removal of fermentation inhibitors by adsorption onto highly adsorbing substances allowed a further 20% xylitol yield increase. (orig.)

  8. Microbiological Diversity of the Anaerobic Sludge During Treatment of Venezuelan Oilfield Produced Waters

    Directory of Open Access Journals (Sweden)

    Cajacuri María Patricia

    2013-06-01

    Full Text Available In the present investigation the microbial abundances in the granular sludge of two upflow anaerobic sludge blanket reactors (UASB were compared: the first one fed with production waters of light oil (31.1-39.0° API, from the zuliana region (Venezuela (APP and the second one with glucose. To this respect, the populations of glucose fermenting bacteria (BFG, acetogenic bacteria (BAC, metanogens (MET, sulfatereducing bacteria (BSR, nitrate-reducing bacteria (BNRand heterotrophic bacteria were monitored, using selective culture media. The microbial density was correlated with physicochemical parameters: pH, total alkalinity, COD, SO4 =, NO3-, as well as with the percentages of CH4, CO2 and N2in the biogas. The results exhibit significant differences between the microbial diversity of both reactors, with a proportion of BFG > BSR > MET > BAC > BNR for the glucose reactor and of MET > BNR > BAC > BSR > BFG for the APP. The abundance of bacteria in the glucose reactor was in the order of 108, whereas in the APP reactor was of 105, which ensues from the organic and mineral composition of effluents. The results presented in this study reach evidences on the population dynamics in sludge of UASB reactors, during the treatment of oilfield produced waters.

  9. Continuous Ethanol Fermentation of Pretreated Lignocellulosic Biomasses, Waste Biomasses, Molasses and Syrup Using the Anaerobic, Thermophilic Bacterium Thermoanaerobacter italicus Pentocrobe 411.

    Directory of Open Access Journals (Sweden)

    Rasmus Lund Andersen

    Full Text Available Lignocellosic ethanol production is now at a stage where commercial or semi-commercial plants are coming online and, provided cost effective production can be achieved, lignocellulosic ethanol will become an important part of the world bio economy. However, challenges are still to be overcome throughout the process and particularly for the fermentation of the complex sugar mixtures resulting from the hydrolysis of hemicellulose. Here we describe the continuous fermentation of glucose, xylose and arabinose from non-detoxified pretreated wheat straw, birch, corn cob, sugar cane bagasse, cardboard, mixed bio waste, oil palm empty fruit bunch and frond, sugar cane syrup and sugar cane molasses using the anaerobic, thermophilic bacterium Thermoanaerobacter Pentocrobe 411. All fermentations resulted in close to maximum theoretical ethanol yields of 0.47-0.49 g/g (based on glucose, xylose, and arabinose, volumetric ethanol productivities of 1.2-2.7 g/L/h and a total sugar conversion of 90-99% including glucose, xylose and arabinose. The results solidify the potential of Thermoanaerobacter strains as candidates for lignocellulose bioconversion.

  10. Continuous Ethanol Fermentation of Pretreated Lignocellulosic Biomasses, Waste Biomasses, Molasses and Syrup Using the Anaerobic, Thermophilic Bacterium Thermoanaerobacter italicus Pentocrobe 411.

    Science.gov (United States)

    Andersen, Rasmus Lund; Jensen, Karen Møller; Mikkelsen, Marie Just

    2015-01-01

    Lignocellosic ethanol production is now at a stage where commercial or semi-commercial plants are coming online and, provided cost effective production can be achieved, lignocellulosic ethanol will become an important part of the world bio economy. However, challenges are still to be overcome throughout the process and particularly for the fermentation of the complex sugar mixtures resulting from the hydrolysis of hemicellulose. Here we describe the continuous fermentation of glucose, xylose and arabinose from non-detoxified pretreated wheat straw, birch, corn cob, sugar cane bagasse, cardboard, mixed bio waste, oil palm empty fruit bunch and frond, sugar cane syrup and sugar cane molasses using the anaerobic, thermophilic bacterium Thermoanaerobacter Pentocrobe 411. All fermentations resulted in close to maximum theoretical ethanol yields of 0.47-0.49 g/g (based on glucose, xylose, and arabinose), volumetric ethanol productivities of 1.2-2.7 g/L/h and a total sugar conversion of 90-99% including glucose, xylose and arabinose. The results solidify the potential of Thermoanaerobacter strains as candidates for lignocellulose bioconversion.

  11. Microbial development in distillers wet grains produced during fuel ethanol production from corn (Zea mays).

    Science.gov (United States)

    Lehman, R Michael; Rosentrater, Kurt A

    2007-09-01

    Distillers grains are coproduced with ethanol and carbon dioxide during the production of fuel ethanol from the dry milling and fermentation of corn grain, yet there is little basic microbiological information on these materials. We undertook a replicated field study of the microbiology of distillers wet grains (DWG) over a 9 day period following their production at an industrial fuel ethanol plant. Freshly produced DWG had a pH of about 4.4, a moisture content of about 53.5% (wet mass basis), and 4 x 10(5) total yeast cells/g dry mass, of which about 0.1% were viable. Total bacterial cells were initially below detection limits (ca. 10(6) cells/g dry mass) and then were estimated to be approximately 5 x 10(7) cells/g dry mass during the first 4 days following production. Culturable aerobic heterotrophic organisms (fungi plus bacteria) ranged between 10(4) and 10(5) CFU/g dry mass during the initial 4 day period, and lactic acid bacteria increased from 36 to 10(3) CFU/g dry mass over this same period. At 9 days, total viable bacteria and yeasts and (or) molds topped 10(8) CFU/g dry mass and lactic acid bacteria approached 10(6) CFU/g dry mass. Community phospholipid fatty acid analysis indicated a stable microbial community over the first 4 days of storage. Thirteen morphologically distinct isolates were recovered, of which 10 were yeasts and molds from 6 different genera, 2 were strains of the lactic-acid-producing Pediococcus pentosaceus and only one was an aerobic heterotrophic bacteria, Micrococcus luteus. The microbiology of DWG is fundamental to the assessment of spoilage, deleterious effects (e.g., toxins), or beneficial effects (e.g., probiotics) in its use as feed or in alternative applications.

  12. Utilization of biogas produced by anaerobic digestion of agro-industrial waste: Energy, economic and environmental effects.

    Science.gov (United States)

    Hublin, Andrea; Schneider, Daniel Rolph; Džodan, Janko

    2014-07-01

    Anaerobic digestion of agro-industrial waste is of significant interest in order to facilitate a sustainable development of energy supply. Using of material and energy potentials of agro-industrial waste, in the framework of technical, economic, and ecological possibilities, contributes in increasing the share of energy generated from renewable energy sources. The paper deals with the benefits arising from the utilization of biogas produced by co-digestion of whey and cow manure. The advantages of this process are the profitability of the plant and the convenience in realizing an anaerobic digestion plant to produce biogas that is enabled by the benefits from the sale of electric energy at favorable prices. Economic aspects are related to the capital cost (€ 2,250,000) of anaerobic digestion treatment in a biogas plant with a 300 kW power and 510 kW heating unit in a medium size farm (450 livestock units). Considering the optimum biogas yield of 20.7 dm(3) kg(-1) of wet substrate and methane content in the biogas obtained of 79%, the anaerobic process results in a daily methane production of 2,500 kg, with the maximum power generation of 2,160,000 kWh y(-1) and heat generation of 2,400,000 kWh y(-1) The net present value (NPV), internal rate of return (IRR) and payback period for implementation of profitable anaerobic digestion process is evaluated. Ecological aspects related to carbon dioxide (CO2) and methane (CH4) emission reduction are assessed.

  13. Isolation, identification and optimization of ethanol producing bacteria from Saccharomyces-based fermentation process of alcohol industries in Iran

    OpenAIRE

    Hoda Ebrahimi; Mojtaba Mohseni

    2013-01-01

    Introduction: Due to the vast growth of world population, consumption of a lot of energy, limited energy supply and rising prices of fuel oil in the future, other alternative energy source is essential. Ethanol is renewable and a safe fuel and it is mainly based on microbial fermentation. The purpose of this study was isolation of high ethanol producing bacteria from the fermentation process of alcohol industries and optimization of growth conditions to be introduced to the industries. Materi...

  14. The metabolic costs of improving ethanol yield by reducing glycerol formation capacity under anaerobic conditions in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Pagliardini, Julien; Hubmann, Georg; Alfenore, Sandrine; Nevoigt, Elke; Bideaux, Carine; Guillouet, Stephane E.

    2013-01-01

    Background: Finely regulating the carbon flux through the glycerol pathway by regulating the expression of the rate controlling enzyme, glycerol-3-phosphate dehydrogenase (GPDH), has been a promising approach to redirect carbon from glycerol to ethanol and thereby increasing the ethanol yield in eth

  15. Improving isobutanol production in metabolically engineered Escherichia coli by co-producing ethanol and modulation of pentose phosphate pathway.

    Science.gov (United States)

    Liu, Zichun; Liu, Pingping; Xiao, Dongguang; Zhang, Xueli

    2016-06-01

    Redox imbalance has been regarded as the key limitation for anaerobic isobutanol production in metabolically engineered Escherichia coli strains. In this work, the ethanol synthetic pathway was recruited to solve the NADH redundant problem while the pentose phosphate pathway was modulated to solve the NADPH deficient problem for anaerobic isobutanol production. Recruiting the ethanol synthetic pathway in strain AS108 decreased isobutanol yield from 0.66 to 0.29 mol/mol glucose. It was found that there was a negative correlation between aldehyde/alcohol dehydrogenase (AdhE) activity and isobutanol production. Decreasing AdhE activity increased isobutanol yield from 0.29 to 0.6 mol/mol. On the other hand, modulation of the glucose 6-phosphate dehydrogenase gene of the pentose phosphate pathway increased isobutanol yield from 0.29 to 0.41 mol/mol. Combination of these two strategies had a synergistic effect on improving isobutanol production. Isobutanol titer and yield of the best strain ZL021 were 53 mM and 0.74 mol/mol, which were 51 % and 12 % higher than the starting strain AS108, respectively. The total alcohol yield of strain ZL021 was 0.81 mol/mol, which was 23 % higher than strain AS108.

  16. Isolation, identification and optimization of ethanol producing bacteria from Saccharomyces-based fermentation process of alcohol industries in Iran

    Directory of Open Access Journals (Sweden)

    Hoda Ebrahimi

    2013-01-01

    Full Text Available Introduction: Due to the vast growth of world population, consumption of a lot of energy, limited energy supply and rising prices of fuel oil in the future, other alternative energy source is essential. Ethanol is renewable and a safe fuel and it is mainly based on microbial fermentation. The purpose of this study was isolation of high ethanol producing bacteria from the fermentation process of alcohol industries and optimization of growth conditions to be introduced to the industries. Materials and methods: The samples that were collected from fermentation tanks of alcohol industries were enriched in ZSM medium. To isolate the ethanol producing bacteria, the enriched culture was transferred on RMA agar. Bacterial growth conditions and their effects on ethanol production were optimized based on pH, growth temperature, agitation, fermentation time, initial substrate concentration and carbon and nitrogen sources. In addition, the morphological, physiological and molecular characterizations were investigated for identification of the isolates.Results: Three bacterial isolates ZYM7, ZYM8 and ZYM9 were isolated from fermentation tank. All isolates were able to produce ethanol 5.00, 7.60 and 4.00 gL-1 after 48 hours, respectively. The results demonstrated that all isolates were able to consume most sugars sources specially pentose carbon xylose. The isolate ZYM7 produced 13.00 gL-1 ethanol by consumption of xylose. The results of morphological and physiological characteristics showed that ZYM7 belonged to Lactobacillus sp. and ZYM8 and ZYM9 belonged to Acetobacter sp. Moreover, 16S rRNA sequencing and phylogenetic analyses exhibited that ZYM7 was similar to Lactobacillus rhamnosus with 99% homology and ZYM8 and ZYM9 were similar to Acetobacter pasteurianus with 99 and 98% homology, respectively.Discussion and conclusion: The results showed that that the isolated bacteria were suitable candidates to produce ethanol from raw material enriched with

  17. Price determination for hydrogen produced from bio-ethanol in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Gregorini, V.A.; Pasquevich, D. [Instituto de Energia y Desarrollo Sustentable - CNEA, Av. Del Libertador 8250, Buenos Aires (Argentina); Laborde, M. [Facultad de Ingenieria - Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires (Argentina)

    2010-06-15

    A massive penetration for hydrogen as a fuel vector requires a price reduction against fossil fuels (up to lower or at less equal to current prices). That is why it is important to calculate the current prices, so that we can determinate the gap between them and work in reducing them. In order to follow properly prices evolution it is necessary been able to compare data generated by Universities, Laboratories and Industries. So that, DOE creates in 2003 a tool (H2A) to determine prices for hydrogen, with some assumptions and pre defined values, to facilitate transparency and consistency of data. In this work we will use the H2A tool to calculate de price of hydrogen produced in a bio-ethanol semi-industrial Plant in Argentina, and we will compare it with the prices of USA studies. (author)

  18. Microbial development in distillers wet grains produced during fuel ethanol production from corn (Zea mays)

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, R.M.; Rosentrater, K.A. [United States Dept. of Agriculture, Brookings, SD (United States). North Central Agricultural Research Laboratory

    2007-09-15

    The microbiology of post-production distillers wet grains (DWG) was investigated over a period of 9 days at an industrial ethanol plant. Samples of the DWG were physically and chemically characterized. Compositional analyses were conducted for protein, fiber, and fat. Fixed suspensions of DWG were dispersed and disrupted by sonication. Bacterial cells were enumerated under epifluorescent illumination. Solid media and standard dilution were used to enumerate total colony-forming units (CFU) of lactic-acid producing bacteria (LAB), and aerobic heterotrophic organisms. The DWG had a pH of approximately 4.4, a moisture content of 53.5 per cent, and 4 x 10{sup 5} total yeast cells. Thirteen morphologically distinct isolates were identified during the study, 10 of which were yeasts and molds from 6 different genera. Two of the yeasts were of the lactic-acid Pediococcus pentosaceus strain, and 1 of the yeasts was an aerobic heterotrophic bacteria. Results showed that the matrix of the DWG produced severe technical difficulties for several of the culture-independent community-level analyses. It was concluded that numbers of potentially beneficial bacteria appeared to increase over the time period relative to potential spoilage agents. Molds capable of producing mycotoxins colonized the DWG and grew to high densities over the 9 day period. 31 refs., 3 tabs., 2 figs.

  19. Ethanol at levels produced by Saccharomyces cerevisiae during wheat dough fermentation has a strong impact on dough properties.

    Science.gov (United States)

    Jayaram, Vinay B; Rezaei, Mohammad N; Cuyvers, Sven; Verstrepen, Kevin J; Delcour, Jan A; Courtin, Christophe M

    2014-09-24

    Yeast's role in bread making is primarily the fermentative production of carbon dioxide to leaven the dough. Fermentation also impacts dough matrix rheology, thereby affecting the quality of the end product. Surprisingly, the role of ethanol, the other yeast primary metabolite, has been ill studied in this context. Therefore, this study aims to assess the potential impact of ethanol on yeastless dough extensibility and spread and gluten agglomeration at concentrations at which it is produced in fermenting dough, i.e., up to 60 mmol per 100 g of flour. Reduced dough extensibility and dough spread were observed upon incorporation of ethanol in the dough formula, and were more pronounced for a weak than for a strong flour. Uniaxial and biaxial extension tests showed up to 50% decrease in dough extensibility and a dough strength increase of up to 18% for 60 mmol of ethanol/100 g of flour. Ethanol enhanced gluten agglomeration of a weak flour. Sequential extraction of flour in increasing ethanol concentrations showed that better gluten-solvent interaction is a possible explanation for the changed dough behavior.

  20. Method for producing ethanol and co-products from cellulosic biomass

    Science.gov (United States)

    Nguyen, Quang A

    2013-10-01

    The present invention generally relates to processes for production of ethanol from cellulosic biomass. The present invention also relates to production of various co-products of preparation of ethanol from cellulosic biomass. The present invention further relates to improvements in one or more aspects of preparation of ethanol from cellulosic biomass including, for example, improved methods for cleaning biomass feedstocks, improved acid impregnation, and improved steam treatment, or "steam explosion."

  1. Effect of endogenously synthesized and exogenously applied ethanol on tomato fruit ripening

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, M.O.; Saltveit, M.E. Jr.

    1988-09-01

    Tomato (Lycopersicon esculentum Mill. var Castlemart) fruit ripening was inhibited by tissue concentrations of ethanol that were produced by either exposure to exogenous ethanol vapors or synthesis under anaerobic atmospheres. Ethanol was not detected in aerobically ripened tomato fruit. Ripening was not inhibited by exposure to methanol at an equivalent molar concentration to inhibitory concentrations of ethanol, while ripening was slightly more inhibited by n-propanol than by equivalent molar concentrations of ethanol. The mottled appearance of a few ripened ethanol-treated fruit was not observed in n-propanol-treated fruit.

  2. Ethanol Basics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  3. Acute extracellular ethanol load does not produce hyponatremia by internal osmoregulation

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J.E.; Tzamaloukas, A.H.; Long, D.A.

    1986-03-05

    Hyponatremia is frequently present in subjects intoxicated with ethanol. To study whether an acute increase in extracellular osmolality by addition of ethanol creates any clinically appreciable osmotic shift of intracellular water extracellularly, they infused over 20 sec 11 mmol/kg of ethanol intravenously into 5 anesthetized dogs (2 with intact renal function, 3 anuric) and measured plasma sodium and ethanol concentrations and osmolality at frequent intervals for 100 min after the end of the infusion. For a range of ethanol concentration between 4 and 120 mmol/l, changes in osmolality were equal to ethanol concentration in plasma water (y = -0.49 + 1.06 x mosm/kg per mmol/l, r = 0.981, p < 0.01). Plasma sodium concentration remained unchanged from baseline throughout the experiments, even at 1 min post-infusion, when osmolality was 78 +/- 25 mosm/kg above the baseline. An acute increase in extracellular osmolality created by rapid intravenous infusion of a large dose of ethanol does not create any osmotic shift of intracellular water extracellularly, that can be detected by dilution of extracellular sodium. The mechanism of hyponatremia in ethanol intoxication is not internal osmoregulation, but abnormalities in external balance of body water and/or solute.

  4. Design optimization of a polygeneration plant producing power, heat, and lignocellulosic ethanol

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst; Haglind, Fredrik

    2015-01-01

    /L at a straw processing capacity of 5 kg/s to 1.113 Euro/L at a capacity of 12 kg/s, indicating that diseconomies- of-scale applies for the suggested ethanol production scheme. A thermodynamic evaluation further discloses that the average yearly exergy efficiency decreases continuously with increasing ethanol...

  5. Mating type and ploidy effect on the β-glucosidase activity and ethanol-producing performance of Saccharomyces cerevisiae with multiple δ-integrated bgl1 gene.

    Science.gov (United States)

    Wang, Jianjun; Ma, Yuanyuan; Zhang, Kun; Yang, Huajun; Liu, Cheng; Zou, Shaolan; Hong, Jiefang; Zhang, Minhua

    2016-08-10

    In order to investigate the effect of mating type and ploidy on enzymatic activity and fermentation performance in yeast with multiple δ-integrated foreign genes, eight ploidy series strains were constructed. The initial haploid strain BGL-a was shown to contain about 19 copies of the bgl1 gene. In rich media containing 2% (w/v) sugar the specific activities of BGL-aα were lower than those of BGL-aa or BGL-αα, which indicates the existence of mating type effects. While the maximum OD660 decreased with rising ploidy, the biomass yield showed no significant difference between the eight strains and the specific activities (expressed as U/mL or U/mg DCW) showed little to no variation. When cellobiose was used as the carbon source and β-glucosidase substrate, β-glucosidase was expressed more quickly and at higher levels than in glucose-containing media. The maximum specific activitiy values obtained were 19.07U/mL and 19.39U/mL for BGL-αα and BGL-aa, repsectively. The anaerobic biomass and ethanol-producing performance in rich media containing 10% cellobiose showed no significant difference among the eight strains. Their maximal ethanol concentrations and corresponding yields ranged from 40.27 to 43.46g/L and 77.56 to 83.71%, respectively. When the acid- and alkali-pretreated corncob (10% solids content) was used, the diploid BGL-aα fermented the best. When urea was used as the only supplemented nutrient, the ethanol titer and yield were 35.65g/L and 83.69%, respectively, while a control experiment using industrial Angel yeast with exogenous β-glucosidase addition gave values of 37.93g/L and 89.04%. The combined effects of δ-integration of bgl1, ploidy and mating type result in BGL-aa or BGL-αα being the optimal choice for enzyme production and BGL-aα being more suitable for cellulosic ethanol fermentation. These results provide valuable information for future yeast breeding and utilization efforts.

  6. FEEDSTOCK PRETREATMENT STRATEGIES FOR PRODUCING ETHANOL FROM WOOD, BARK, AND FOREST RESIDUES

    Directory of Open Access Journals (Sweden)

    Gang Hu

    2008-02-01

    Full Text Available Energy and environmental issues are among the major concerns facing the global community today. Transportation fuel represents a large proportion of energy consumption, not only in the US, but also world-wide. As fossil fuel is being depleted, new substitutes are needed to provide energy. Ethanol, which has been produced mainly from the fermentation of corn starch in the US, has been regarded as one of the main liquid transportation fuels that can take the place of fossil fuel. However, limitations in the supply of starch are creating a need for different substrates. Forest biomass is believed to be one of the most abundant sources of sugars, although much research has been reported on herbaceous grass, agricultural residue, and municipal waste. The use of biomass sugars entails pretreatment to disrupt the lignin-carbohydrate complex and expose carbohydrates to enzymes. This paper reviews pretreatment technologies from the perspective of their potential use with wood, bark, and forest residues. Acetic acid catalysis is suggested for the first time to be used in steam explosion pretreatment. Its pretreatment economics, as well as that for ammonia fiber explosion pretreatment, is estimated. This analysis suggests that both are promising techniques worthy of further exploration or optimization for commercialization.

  7. Studies on the biosorption of uranium by a thermotolerant, ethanol-producing strain of Kluyveromyces marxianus

    Energy Technology Data Exchange (ETDEWEB)

    Bustard, M. [Biotechnology Research Group, School of Applied Biological and Chemical Sciences, University of Ulster, Coleraine, Co. Londonderry, BT52 1SA (United Kingdom); Donnellan, N. [Biotechnology Research Group, School of Applied Biological and Chemical Sciences, University of Ulster, Coleraine, Co. Londonderry, BT52 1SA (United Kingdom); Rollan, A. [Biotechnology Research Group, School of Applied Biological and Chemical Sciences, University of Ulster, Coleraine, Co. Londonderry, BT52 1SA (United Kingdom); McHale, A.P. [Biotechnology Research Group, School of Applied Biological and Chemical Sciences, University of Ulster, Coleraine, Co. Londonderry, BT52 1SA (United Kingdom)

    1997-06-01

    The ability of residual biomass from the thermotolerant ethanol-producing yeast strain Kluyveromyces marxianus IMB3 to function as a biosorbent for uranium has been examined. It was found that the biomass had an observed maximum biosorption capacity of 120 mg U/g dry weight of biomass. The calculated value for the biosorption maximum, obtained by fitting the data to the Langmuir model was found to be 130 mg U/g dry weight biomass. Maximum biosorption capacities were examined at a number of temperatures and both the observed and calculated values obtained for those capacities increased with increasing temperature. Decreasing the pH of the biosorbate solution resulted in a decrease in uptake capacity. When biosorption reactions were carried out using sea-water as the diluent it was found that the maximum biosorption capacity of the biomass increased significantly. Using transmission electron microscopy, uranium crystals were shown to be concentrated on the outer surface of the cell wall, although uranium deposition was also observed in the interior of the cell. (orig.). With 3 figs., 2 tabs.

  8. Anaerobic Biodegradation of Biofuels (Ethanol, Biodiesel, n-Propanol, n-Butanol, and iso-Butanol) in Aquifer Sediment (PP)

    Science.gov (United States)

    In the late 1990s, there was a perception that “green” fuels such as ethanol posed less of a threat to ground water because they were readily degraded. This lead to a conclusion that the transition to “green” fuels would require less vigilance and that the existing level of effo...

  9. Anaerobic Biodegradation of Biofuels (Ethanol, Biodiesel, n-Propanol, n-Butanol, and iso-Butanol) in Aquifer Sediment

    Science.gov (United States)

    In the late 1990s, there was a perception that “green” fuels such as ethanol posed less of a threat to ground water because they were readily degraded. This lead to a conclusion that the transition to “green” fuels would require less vigilance and that the existing level of effo...

  10. Fermentative Hydrogen Production by Pure Culture with a New H2-producing Anaerobe

    Institute of Scientific and Technical Information of China (English)

    LI Yong-feng; REN Nan-qi; YANG Chuan-ping; XU Jing-li

    2006-01-01

    As a new clean energy source, the utilization and demand for hydrogen fuel are rapidly increasing. The integrated process of wastewater treatment of DESAR and energy recovery was developed in the studies. A new hydrogen anaerobe was isolated from the activated sludge. The optimal glucose concentration and the optimal initial pH were 12.0 g/L and 5. 5 respectively. The optimum C/N of the growth and hydrogen production in Rennanqilyf3 was (3.0 ~3.5): 1. The integrated process between DESAR system and biohydrogen production will be an important progress on energy recovery of DESAR system.

  11. Ethanol exposure disrupts extraembryonic microtubule cytoskeleton and embryonic blastomere cell adhesion, producing epiboly and gastrulation defects

    Directory of Open Access Journals (Sweden)

    Swapnalee Sarmah

    2013-08-01

    Fetal alcohol spectrum disorder (FASD occurs when pregnant mothers consume alcohol, causing embryonic ethanol exposure and characteristic birth defects that include craniofacial, neural and cardiac defects. Gastrulation is a particularly sensitive developmental stage for teratogen exposure, and zebrafish is an outstanding model to study gastrulation and FASD. Epiboly (spreading blastomere cells over the yolk cell, prechordal plate migration and convergence/extension cell movements are sensitive to early ethanol exposure. Here, experiments are presented that characterize mechanisms of ethanol toxicity on epiboly and gastrulation. Epiboly mechanisms include blastomere radial intercalation cell movements and yolk cell microtubule cytoskeleton pulling the embryo to the vegetal pole. Both of these processes were disrupted by ethanol exposure. Ethanol effects on cell migration also indicated that cell adhesion was affected, which was confirmed by cell aggregation assays. E-cadherin cell adhesion molecule expression was not affected by ethanol exposure, but E-cadherin distribution, which controls epiboly and gastrulation, was changed. E-cadherin was redistributed into cytoplasmic aggregates in blastomeres and dramatically redistributed in the extraembryonic yolk cell. Gene expression microarray analysis was used to identify potential causative factors for early development defects, and expression of the cell adhesion molecule protocadherin-18a (pcdh18a, which controls epiboly, was significantly reduced in ethanol exposed embryos. Injecting pcdh18a synthetic mRNA in ethanol treated embryos partially rescued epiboly cell movements, including enveloping layer cell shape changes. Together, data show that epiboly and gastrulation defects induced by ethanol are multifactorial, and include yolk cell (extraembryonic tissue microtubule cytoskeleton disruption and blastomere adhesion defects, in part caused by reduced pcdh18a expression.

  12. Improving the performance of industrial ethanol-producing yeast by expressing the aspartyl protease on the cell surface.

    Science.gov (United States)

    Guo, Zhong-peng; Zhang, Liang; Ding, Zhong-yang; Wang, Zheng-Xiang; Shi, Gui-Yang

    2010-12-01

    The yeasts used in fuel ethanol manufacture are unable to metabolize soluble proteins. The PEP4 gene, encoding a vacuolar aspartyl protease in Saccharomyces cerevisiae, was either secretively or cell-surface anchored expressed in industrial ethanol-producing S. cerevisiae. The obtained recombinant strains APA (expressing the protease secretively) and APB (expressing the protease on the cell wall) were studied under ethanol fermentation conditions in feed barley cultures. The effects of expression of the protease on product formation, growth and cell protein content were measured. The biomass yield of the wild-type was clearly lower than that of the recombinant strains (0.578 ± 0.12 g biomass/g glucose for APA and 0.582 ± 0.08 g biomass/g glucose for APB). In addition, nearly 98-99% of the theoretical maximum level of ethanol yield was achieved (relative to the amount of substrate consumed) for the recombinant strains, while limiting the nitrogen source resulted in dissatisfactory fermentation for the wild-type and more than 30 g/l residual sugar was detected at the end of fermentation. In addition, higher growth rate, viability and lower yields of byproducts such as glycerol and pyruvic acid for recombinant strains were observed. Expressing acid protease can be expected to lead to a significant increase in ethanol productivity.

  13. Methods for increasing the production of ethanol from microbial fermentation

    Science.gov (United States)

    Gaddy, James L.; Arora, Dinesh K.; Ko, Ching-Whan; Phillips, John Randall; Basu, Rahul; Wikstrom, Carl V.; Clausen, Edgar C.

    2007-10-23

    A stable continuous method for producing ethanol from the anaerobic bacterial fermentation of a gaseous substrate containing at least one reducing gas involves culturing a fermentation bioreactor anaerobic, acetogenic bacteria in a liquid nutrient medium; supplying the gaseous substrate to the bioreactor; and manipulating the bacteria in the bioreactor by reducing the redox potential, or increasing the NAD(P)H TO NAD(P) ratio, in the fermentation broth after the bacteria achieves a steady state and stable cell concentration in the bioreactor. The free acetic acid concentration in the bioreactor is maintained at less than 5 g/L free acid. This method allows ethanol to be produced in the fermentation broth in the bioreactor at a productivity greater than 10 g/L per day. Both ethanol and acetate are produced in a ratio of ethanol to acetate ranging from 1:1 to 20:1.

  14. Direct fermentation of raw starch using a Kluyveromyces marxianus strain that expresses glucoamylase and alpha-amylase to produce ethanol.

    Science.gov (United States)

    Wang, Rongliang; Wang, Dongmei; Gao, Xiaolian; Hong, Jiong

    2014-01-01

    Raw starch and raw cassava tuber powder were directly and efficiently fermented at elevated temperatures to produce ethanol using the thermotolerant yeast Kluyveromyces marxianus that expresses α-amylase from Aspergillus oryzae as well as α-amylase and glucoamylase from Debaryomyces occidentalis. Among the constructed K. marxianus strains, YRL 009 had the highest efficiency in direct starch fermentation. Raw starch from corn, potato, cassava, or wheat can be fermented at temperatures higher than 40°C. At the optimal fermentation temperature 42°C, YRL 009 produced 66.52 g/L ethanol from 200 g/L cassava starch, which was the highest production among the selected raw starches. This production increased to 79.75 g/L ethanol with a 78.3% theoretical yield (with all cassava starch were consumed) from raw cassava starch at higher initial cell densities. Fermentation was also carried out at 45 and 48°C. By using 200 g/L raw cassava starch, 137.11 and 87.71 g/L sugar were consumed with 55.36 and 32.16 g/L ethanol produced, respectively. Furthermore, this strain could directly ferment 200 g/L nonsterile raw cassava tuber powder (containing 178.52 g/L cassava starch) without additional nutritional supplements to produce 69.73 g/L ethanol by consuming 166.07 g/L sugar at 42°C. YRL 009, which has consolidated bioprocessing ability, is the best strain for fermenting starches at elevated temperatures that has been reported to date.

  15. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants

    Science.gov (United States)

    Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Fou...

  16. Tolerant yeast in situ detoxifies major class of toxic chemicals while producing ethanol

    Science.gov (United States)

    Renewable lignocellulosic materials contain abundant sugar source and biofuels conversion including cellulosic ethanol production from lignocellulosic biomass provides a sustainable alternative energy resource for a cleaner environment. In order to release the biomass sugars from the complex cellulo...

  17. Optimizing promoters and secretory signal sequences for producing ethanol from inulin by recombinant Saccharomyces cerevisiae carrying Kluyveromyces marxianus inulinase.

    Science.gov (United States)

    Hong, Soo-Jeong; Kim, Hyo Jin; Kim, Jin-Woo; Lee, Dae-Hee; Seo, Jin-Ho

    2015-02-01

    Inulin is a polyfructan that is abundant in plants such as Jerusalem artichoke, chicory and dahlia. Inulinase can easily hydrolyze inulin to fructose, which is consumed by microorganisms. Generally, Saccharomyces cerevisiae, an industrial workhorse strain for bioethanol production, is known for not having inulinase activity. The inulinase gene from Kluyveromyces marxianus (KmINU), with the ability of converting inulin to fructose, was introduced into S. cerevisiae D452-2. The inulinase gene was fused to three different types of promoter (GPD, PGK1, truncated HXT7) and secretory signal sequence (KmINU, MFα1, SUC2) to generate nine expression cassettes. The inulin fermentation performance of the nine transformants containing different promoter and signal sequence combinations for inulinase production were compared to select an optimized expression system for efficient inulin fermentation. Among the nine inulinase-producing transformants, the S. cerevisiae carrying the PGK1 promoter and MFα1 signal sequence (S. cerevisiae D452-2/p426PM) showed not only the highest specific KmINU activity, but also the best inulin fermentation capability. Finally, a batch fermentation of the selected S. cerevisiae D452-2/p426PM in a bioreactor with 188.2 g/L inulin was performed to produce 80.2 g/L ethanol with 0.43 g ethanol/g inulin of ethanol yield and 1.22 g/L h of ethanol productivity.

  18. Esterification with ethanol to produce biodiesel from high acidity raw materials. Kinetic studies and analysis of secondary reactions

    Energy Technology Data Exchange (ETDEWEB)

    Pisarello, M.L.; Dalla Costa, B.; Mendow, G.; Querini, C.A. [Instituto de Investigaciones en Catalisis y Petroquimica (INCAPE)-(FIQ-UNL, CONICET), Santiago del Estero 2654-Santa Fe, S3000AOJ (Argentina)

    2010-09-15

    In this work, the esterification reaction of free fatty acids (FFA) in sunflower oil, coconut oil and concentrated FFA, with ethanol, methanol and ethanol 96%, using homogeneous acid catalysts to produce biodiesel is studied. Kinetic parameters are estimated with a simplified model, and then used to predict the reaction behavior. Reactions other than the reversible esterification are considered to explain the behavior that this system displays. Such reactions are the triglycerides conversion by acid catalyzed transesterification and hydrolysis. In addition, we include kinetic studies of the reaction that occur between the sulphuric acid and methanol (or ethanol), forming mono and dialkylsulphates. This reaction produces water and consumes methanol (or ethanol), and consequently has a direct impact in the esterification reaction rate and equilibrium conversion. The concentration of sulphuric acid decreases to less than 50% of the initial value due to the reaction with the alcohol. A minimum in the acidity due to the free fatty acids as a function of time was clearly observed during the reaction, which has not been reported earlier. This behavior is related to the consecutive reactions that take place during the esterification of FFA in the presence of triglycerides. The phase separation due to the presence of water, which is generated during the reaction, is also studied. (author)

  19. Bioethanol Production From Cellulose by Candida tropicalis, as An Alternative Microbial Agent to Produce Ethanol from Lignocellulosic Biomass

    Directory of Open Access Journals (Sweden)

    Hermansyah

    2016-04-01

    Full Text Available Abstract: Candida tropicalis isolated from Tuak is a potentially useful microorganism for the ethanol production from lignocellulosic biomass and it can be alterbative agent replacing Saccharomyces cerevisae for fermentation process. Although C.tropicalis could not convert all carbohydrates content of lignocellulosic into bioethanol, however it is able to grow on medium in the presence of either xylose or arabinose as carbon source. Our result showed that fermentation of 10 % (w/v cellulosic as sole carbon source produced 2.88% (v/v ethanol by C.tropicalis. This ethanol production was lower than usage of 10% (w/v dextrose as sole carbon source medium which producing 5.51% (v/v ethanol. Based upon our expreiment indicated that C.tropicalis is able to conduct two main process in converting of cellulosic material- to ethanol which is hydrolysis the degradation of cellulose into glucose, and fermentation the process the conversion glucose into bioethanol. Keywords : Candida tropicalis, bioethanol, fermentation, cellulosic Abstrak (Indonesian: Candida tropicalis yang diisiolasi dari Tuak adalah agen yang berpotensi dalam produksi etanol dari biomasa lignoselulosa dan dapat dijadikan agen alternatif menggantikan Saccharomyces cerevisiae pada proses fernentasi. Walaupun C.tropicalis tidak dapat mengkonversi semua kandungan karbohidrat lignoselulosamenjadi etanol, akan tetapi C.tropicalis mampu tumbuh pada media dengan xilosa atau arabinosa sebagaisumber karbon. Hasil kami menunjukkan bahwa dengan mengguankan C.tropicalis fermentasi 10% (w/v selulosa sebagai satu-satunya sumber karbon menghasilkan 2,88% (v/v etanol, Produksi etanol ini lebih rendah jika menggunakan 10% (w/v dekstrosa sebagai satu satunya sumber karbon yang menghasilkan 5,51% (v/v etanol. Berdasarkan percobaan menunjukkan bahwa C.tropicalis mampu melakukan dua proses utama dalam mengkonversi material selulosa menjadi etanol yaitu hidrolisis degradasi selulosa menjadi glukosa, dan

  20. Redox state and energy metabolism during liver regeneration: alterations produced by acute ethanol administration.

    Science.gov (United States)

    Gutiérrez-Salinas, J; Miranda-Garduño, L; Trejo-Izquierdo, E; Díaz-Muñoz, M; Vidrio, S; Morales-González, J A; Hernández-Muñoz, R

    1999-12-01

    Ethanol metabolism can induce modifications in liver metabolic pathways that are tightly regulated through the availability of cellular energy and through the redox state. Since partial hepatectomy (PH)-induced liver proliferation requires an oversupply of energy for enhanced syntheses of DNA and proteins, the present study was aimed at evaluating the effect of acute ethanol administration on the PH-induced changes in cellular redox and energy potentials. Ethanol (5 g/kg body weight) was administered to control rats and to two-thirds hepatectomized rats. Quantitation of the liver content of lactate, pyruvate, beta-hydroxybutyrate, acetoacetate, and adenine nucleotides led us to estimate the cytosolic and mitochondrial redox potentials and energy parameters. Specific activities in the liver of alcohol-metabolizing enzymes also were measured in these animals. Liver regeneration had no effect on cellular energy availability, but induced a more reduced cytosolic redox state accompanied by an oxidized mitochondrial redox state during the first 48 hr of treatment; the redox state normalized thereafter. Administration of ethanol did not modify energy parameters in PH rats, but this hepatotoxin readily blocked the PH-induced changes in the cellular redox state. In addition, proliferating liver promoted decreases in the activity of alcohol dehydrogenase (ADH) and of cytochrome P4502E1 (CYP2E1); ethanol treatment prevented the PH-induced diminution of ADH activity. In summary, our data suggest that ethanol could minimize the PH-promoted metabolic adjustments mediated by redox reactions, probably leading to an ineffective preparatory event that culminates in compensatory liver growth after PH in the rat.

  1. Efficient chemical and enzymatic saccharification of the lignocellulosic residue from Agave tequilana bagasse to produce ethanol by Pichia caribbica.

    Science.gov (United States)

    Saucedo-Luna, Jaime; Castro-Montoya, Agustin Jaime; Martinez-Pacheco, Mauro Manuel; Sosa-Aguirre, Carlos Ruben; Campos-Garcia, Jesus

    2011-06-01

    Bagasse of Agave tequilana (BAT) is the residual lignocellulosic waste that remains from tequila production. In this study we characterized the chemical composition of BAT, which was further saccharified and fermented to produce ethanol. BAT was constituted by cellulose (42%), hemicellulose (20%), lignin (15%), and other (23%). Saccharification of BAT was carried out at 147 °C with 2% sulfuric acid for 15 min, yielding 25.8 g/l of fermentable sugars, corresponding to 36.1% of saccharificable material (cellulose and hemicellulose contents, w/w). The remaining lignocellulosic material was further hydrolyzed by commercial enzymes, ~8.2% of BAT load was incubated for 72 h at 40 °C rendering 41 g/l of fermentable sugars corresponding to 73.6% of the saccharificable material (w/w). Mathematic surface response analysis of the acid and enzymatic BAT hydrolysis was used for process optimization. The results showed a satisfactory correlation (R (2) = 0.90) between the obtained and predicted responses. The native yeast Pichia caribbica UM-5 was used to ferment sugar liquors from both acid and enzymatic hydrolysis to ethanol yielding 50 and 87%, respectively. The final optimized process generated 8.99 g ethanol/50 g of BAT, corresponding to an overall 56.75% of theoretical ethanol (w/w). Thus, BAT may be employed as a lignocellulosic raw material for bioethanol production and can contribute to BAT residue elimination from environment.

  2. Thermoanaerobacter pentosaceus sp. nov., an anaerobic, extreme thermophilic, high ethanol-yielding bacterium isolated from household waste

    DEFF Research Database (Denmark)

    Tomás, Ana Faria; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2013-01-01

    An extremely thermophilic, xylanolytic, spore-forming and strict anaerobic bacterium DTU01(T) was isolated from a continuously stirred tank reactor fed with xylose and household waste. Cells stained Gram-negative and were rod-shaped (0.5-2 µm in length). Spores were terminal with a diameter......, but not sulphate, nitrate or nitrite, could be used as electron acceptor. On the basis of 16S rRNA gene sequence similarity, strain DTU01(T) was shown to be closely related to Thermoanaerobacter mathranii A3(T), T. italicus Ab9(T) and T. thermocopriae JT3-3(T), with 98-99% similarity. Despite this......, the physiological and phylogenetic differences (DNA G+C content, substrate utilization, electron acceptors, phylogenetic distance, isolation site) allow for the proposal of strain DTU01(T) as a new species within the genus Thermoanaerobacter, for which the name Thermoanaerobacter pentosaceus sp. nov. is proposed...

  3. Microbial community analysis in a combined anaerobic and aerobic digestion system for treatment of cellulosic ethanol production wastewater.

    Science.gov (United States)

    Shan, Lili; Yu, Yanling; Zhu, Zebing; Zhao, Wei; Wang, Haiman; Ambuchi, John J; Feng, Yujie

    2015-11-01

    This study investigated the microbial diversity established in a combined system composed of a continuous stirred tank reactor (CSTR), expanded granular sludge bed (EGSB) reactor, and sequencing batch reactor (SBR) for treatment of cellulosic ethanol production wastewater. Excellent wastewater treatment performance was obtained in the combined system, which showed a high chemical oxygen demand removal efficiency of 95.8% and completely eliminated most complex organics revealed by gas chromatography-mass spectrometry (GC-MS). Denaturing gradient gel electrophoresis (DGGE) analysis revealed differences in the microbial community structures of the three reactors. Further identification of the microbial populations suggested that the presence of Lactobacillus and Prevotella in CSTR played an active role in the production of volatile fatty acids (VFAs). The most diverse microorganisms with analogous distribution patterns of different layers were observed in the EGSB reactor, and bacteria affiliated with Firmicutes, Synergistetes, and Thermotogae were associated with production of acetate and carbon dioxide/hydrogen, while all acetoclastic methanogens identified belonged to Methanosaetaceae. Overall, microorganisms associated with the ability to degrade cellulose, hemicellulose, and other biomass-derived organic carbons were observed in the combined system. The results presented herein will facilitate the development of an improved cellulosic ethanol production wastewater treatment system.

  4. Prospect of Chinese Bio-energy Grasses to Produce Fuel Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Q.Z.; Xu, L.J. (Grassland Research Inst. of Chinese Academy of Agriculture Science, Hohhot 010010 (China)). E-mail:sunqz@126.com; Yu, Z. (College of Animal Science and Technology, Agricultural Univ., Beijing 100094 (China))

    2008-10-15

    The current energy shortage is seriously restricting the economic development of countries around the world. To seek bio-energy resources to replace liquid fossil fuels is inevitable. In China, energy grasses, Medicago sativa, Panicum virgatum, Astragalus adsurgens, Sorghum sudanense, Caragana Korshinskii and Lespedeza hedysaroides play more important role in development and utilization of fuel ethanol, and have a board application prospect

  5. Chronic ethanol exposure produces time- and brain region-dependent changes in gene coexpression networks.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Osterndorff-Kahanek

    Full Text Available Repeated ethanol exposure and withdrawal in mice increases voluntary drinking and represents an animal model of physical dependence. We examined time- and brain region-dependent changes in gene coexpression networks in amygdala (AMY, nucleus accumbens (NAC, prefrontal cortex (PFC, and liver after four weekly cycles of chronic intermittent ethanol (CIE vapor exposure in C57BL/6J mice. Microarrays were used to compare gene expression profiles at 0-, 8-, and 120-hours following the last ethanol exposure. Each brain region exhibited a large number of differentially expressed genes (2,000-3,000 at the 0- and 8-hour time points, but fewer changes were detected at the 120-hour time point (400-600. Within each region, there was little gene overlap across time (~20%. All brain regions were significantly enriched with differentially expressed immune-related genes at the 8-hour time point. Weighted gene correlation network analysis identified modules that were highly enriched with differentially expressed genes at the 0- and 8-hour time points with virtually no enrichment at 120 hours. Modules enriched for both ethanol-responsive and cell-specific genes were identified in each brain region. These results indicate that chronic alcohol exposure causes global 'rewiring' of coexpression systems involving glial and immune signaling as well as neuronal genes.

  6. Effect of sludge retention time on the biological performance of anaerobic membrane bioreactors treating corn-to-ethanol thin stillage with high lipid content.

    Science.gov (United States)

    Dereli, Recep Kaan; van der Zee, Frank P; Heffernan, Barry; Grelot, Aurelie; van Lier, Jules B

    2014-02-01

    The potential of anaerobic membrane bioreactors (AnMBRs) for the treatment of lipid rich corn-to-ethanol thin stillage was investigated at three different sludge retention times (SRT), i.e. 20, 30 and 50 days. The membrane assisted biomass retention in AnMBRs provided an excellent solution to sludge washout problems reported for the treatment of lipid rich wastewaters by granular sludge bed reactors. The AnMBRs achieved high COD removal efficiencies up to 99% and excellent effluent quality. Although higher organic loading rates (OLRs) up to 8.0 kg COD m(-3) d(-1) could be applied to the reactors operated at shorter SRTs, better biological degradation efficiencies, i.e. up to 83%, was achieved at increased SRTs. Severe long chain fatty acid (LCFA) inhibition was observed at 50 days SRT, possibly caused by the extensive dissolution of LCFA in the reactor broth, inhibiting the methanogenic biomass. Physicochemical mechanisms such as precipitation with divalent cations and adsorption on the sludge played an important role in the occurrence of LCFA removal, conversion, and inhibition.

  7. Processing of cassava to produce ethanol - effect of raw material preparation

    Energy Technology Data Exchange (ETDEWEB)

    Greenfield, P.F.; Brooks, R.B.

    1982-06-01

    The effect of disintegration severity on starch hydrolysis and ethanol production from cassava roots and stems has been evaluated. It was found that a considerable fraction of the starch in the roots was made available for hydrolysis with relatively crude processing; all such material was readily fermented. To achieve a very high fermentables yield, either very intensive processing or, preferably, a two stage process, with the second stage being applied only to the oversize material, is required. Whether it is economically viable to process the oversize material further depends on a number of site-specific factors. The two stage option appears the more attractive alternative especially in small to medium size cassava to ethanol plants because of the need to minimise power requirements and thereby steam usage.

  8. KRAFT MILL BIOREFINERY TO PRODUCE ACETIC ACID AND ETHANOL: TECHNICAL ECONOMIC ANALYSIS

    OpenAIRE

    Haibo Mao; Joseph M. Genco; Adriaan van Heiningen; Hemant Pendse

    2010-01-01

    The “near neutral hemicellulose extraction process” involves extraction of hemicellulose using green liquor prior to kraft pulping. Ancillary unit operations include hydrolysis of the extracted carbohydrates using sulfuric acid, removal of extracted lignin, liquid-liquid extraction of acetic acid, liming followed by separation of gypsum, fermentation of C5 and C6 sugars, and upgrading the acetic acid and ethanol products by distillation. The process described here is a variant of the “near n...

  9. Interaction of Lactobacillus vini with the ethanol-producing yeasts Dekkera bruxellensis and Saccharomyces cerevisiae.

    Science.gov (United States)

    Tiukova, Ievgeniia; Eberhard, Thomas; Passoth, Volkmar

    2014-01-01

    Lactobacillus vini was recently described as a contaminant in industrial ethanol fermentations and its co-occurrence with Dekkera bruxellensis was noted. We investigated the growth characteristics of L. vini in cocultivation together with either Saccharomyces cerevisiae or D. bruxellensis. Lower cell numbers of both the yeasts and L. vini as well as a decrease in ethanol and lactate formation in mixed batch cultures compared with pure cultures were noted. L. vini formed cell aggregates (flocs) in all cultivation media with different shapes in Man-Rogosa-Sharpe and yeast extract-peptone-dextrose media. Flocs' size and proportion of cells bound to flocs increased with increasing ethanol concentration. In coculture, formation of lactic acid bacteria-yeast cell aggregates consisting of a bacterial core with an outer layer of yeast cells was observed. L. vini-D. bruxellensis flocs had a bigger surface, due to cells protruding from the pseudomycelium. The involvement of mannose residues in the flocculation between L. vini and yeasts was tested. The presence of mannose induced deflocculation in a concentration-dependent manner. Less mannose was required for the deflocculation of D. bruxellensis as compared with S. cerevisiae.

  10. Greenhouse gas emissions and production cost of ethanol produced from biosyngas fermentation process.

    Science.gov (United States)

    Roy, Poritosh; Dutta, Animesh; Deen, Bill

    2015-09-01

    Life cycle (LC) of ethanol has been evaluated to determine the environmental and economical viability of ethanol that was derived from biosyngas fermentation process (gasification-biosynthesis). Four scenarios [S1: untreated (raw), S2: treated (torrefied); S3: untreated-chemical looping gasification (CLG), S4: treated-CLG] were considered. The simulated biosyngas composition was used in this evaluation process. The GHG emissions and production cost varied from 1.19 to 1.32 kg-CO2 e/L and 0.78 to 0.90$/L, respectively, which were found to be dependent on the scenarios. The environmental and economical viability was found be improved when untreated feedstock was used instead of treated feedstock. Although the GHG emissions slightly reduced in the case of CLG process, production cost was nominally increased because of the cost incurred by the use of CaO. This study revealed that miscanthus is a promising feedstock for the ethanol industry, even if it is grown on marginal land, which can help abate GHG emissions.

  11. High cell density cultures produced by internal retention: application in continuous ethanol fermentation

    Directory of Open Access Journals (Sweden)

    Berta Carola Pérez

    2007-04-01

    Full Text Available Ethanol has provoked great interest due to its potential as an alternative fuel. Nevertheless, fermentation processes must be developed by increasing the low volumetric productivity achieved in conventional cultures (batch or continuous to make this product become economically competitive. This can be achieved by using techniques leading to high cell concentration and reducing inhibition by the end-product. One of the frequently employed methods involves cell recycling. This work thus developed a membrane reactor incorporating a filtration module with 5 u,m stainless steel tubular units inside a 3L stirred jar fermenter for investigating its application in continuous ethanol production. The effects of cell concentration and transmembrane pressure difference on permeate flux were evaluated for testing the filtration module's performance. The internal cell retention system was operated in Saccharomyces cerevisiae continuous culture derived from sucrose, once fermentation conditions had been selected (30 °C, 1.25 -1.75 vvm, pH 4.5. Filter unit permeability was maintained by applying pulses of air. More than 97% of the grown cells were retained in the fermenter, reaching 51 g/L cell concentration and 8.51 g/L.h average ethanol productivity in culture with internal cell retention; this was twice that obtained in a conventional continuous culture. Key words: Membrane reactor, Saccharomyces cerevisiae, alcoholic fermentation, cell recycling.

  12. Redesigning Escherichia coli metabolism for anaerobic production of isobutanol.

    Science.gov (United States)

    Trinh, Cong T; Li, Johnny; Blanch, Harvey W; Clark, Douglas S

    2011-07-01

    Fermentation enables the production of reduced metabolites, such as the biofuels ethanol and butanol, from fermentable sugars. This work demonstrates a general approach for designing and constructing a production host that uses a heterologous pathway as an obligately fermentative pathway to produce reduced metabolites, specifically, the biofuel isobutanol. Elementary mode analysis was applied to design an Escherichia coli strain optimized for isobutanol production under strictly anaerobic conditions. The central metabolism of E. coli was decomposed into 38,219 functional, unique, and elementary modes (EMs). The model predictions revealed that during anaerobic growth E. coli cannot produce isobutanol as the sole fermentative product. By deleting 7 chromosomal genes, the total 38,219 EMs were constrained to 12 EMs, 6 of which can produce high yields of isobutanol in a range from 0.29 to 0.41 g isobutanol/g glucose under anaerobic conditions. The remaining 6 EMs rely primarily on the pyruvate dehydrogenase enzyme complex (PDHC) and are typically inhibited under anaerobic conditions. The redesigned E. coli strain was constrained to employ the anaerobic isobutanol pathways through deletion of 7 chromosomal genes, addition of 2 heterologous genes, and overexpression of 5 genes. Here we present the design, construction, and characterization of an isobutanol-producing E. coli strain to illustrate the approach. The model predictions are evaluated in relation to experimental data and strategies proposed to improve anaerobic isobutanol production. We also show that the endogenous alcohol/aldehyde dehydrogenase AdhE is the key enzyme responsible for the production of isobutanol and ethanol under anaerobic conditions. The glycolytic flux can be controlled to regulate the ratio of isobutanol to ethanol production.

  13. Anaerobic Biodegradation of Biofuels (Ethanol and Biodiesel) and Proposed Biofuels (n-Propanol, iso-Propanol, n-Butanol, and 2,5-Dimethylfuran) in Aquifer Sediments

    Science.gov (United States)

    Biofuels, such as ethanol and biodiesel, are a growing component of the nation's fuel supply. Ethanol is the primary biofuel in the US martket, distributed as a blend with petroleum gasoline in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made ...

  14. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy – A life cycle perspective

    NARCIS (Netherlands)

    Vries, de J.W.; Vinken, T.M.W.J.; Hamelin, L.; Boer, de I.J.M.

    2012-01-01

    The aim of this work was to assess the environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy, from a life cycle perspective. This included assessing environmental impacts and land use change emissions (LUC) required to replace used co-substrates for anaer

  15. Thermal hygienization of excess anaerobic sludge: a possible self-sustained application of biogas produced in UASB reactors.

    Science.gov (United States)

    Borges, E S M; Godinho, V M; Chernicharo, C A L

    2005-01-01

    The main current trends in final disposal of sludge from Wastewater Treatment Plants (WTP) include: safe use of nutrients and organic matter in agriculture, sludge disinfection and restricted use in landfill. As to sludge hygienization, helminth eggs have been used as a major parameter to determine the effectiveness of such process, and its inactivation can be reached by means of thermal treatment, under varying temperature and other conditions. In such context, the objective of this research was to determine how effectively biogas produced in UASB reactors could be used as a source of calorific energy for the thermal hygienization of excess anaerobic sludge, with Ascaris lumbricoides eggs being used as indicator microorganisms, and whether the system can operate on a self-sustained basis. The experiments were conducted in a pilot-scale plant comprising one UASB reactor, two biogas holders and one thermal reactor. The investigation proved to be of extreme importance to developing countries, since it leads to a simplified and fully self-sustainable solution for sludge hygienization, while making it possible to reuse such material for agricultural purposes. It should be also noted that using biogas from UASB reactors is more than sufficient to accomplish the thermal hygienization of all excess sludge produced by this system, when used for treating domestic sewage.

  16. Establishment and assessment of a novel cleaner production process of corn grain fuel ethanol.

    Science.gov (United States)

    Wang, Ke; Zhang, Jianhua; Tang, Lei; Zhang, Hongjian; Zhang, Guiying; Yang, Xizhao; Liu, Pei; Mao, Zhonggui

    2013-11-01

    An integrated corn ethanol-methane fermentation system was proposed to solve the problem of stillage handling, where thin stillage was treated by anaerobic digestion and then reused to make mash for the following ethanol fermentation. This system was evaluated at laboratory and pilot scale. Anaerobic digestion of thin stillage ran steadily with total chemical oxygen demand removal efficiency of 98% at laboratory scale and 97% at pilot scale. Ethanol production was not influenced by recycling anaerobic digestion effluent at laboratory and pilot scale. Compared with dried distillers' grains with solubles produced in conventional process, dried distillers' grains in the proposed system exhibited higher quality because of increased protein concentration and decreased salts concentration. Energetic assessment indicated that application of this novel process enhanced the net energy balance ratio from 1.26 (conventional process) to 1.76. In conclusion, the proposed system possessed technical advantage over the conventional process for corn fuel ethanol production.

  17. High gravity fermentation of sugarcane molasses to produce ethanol: Effect of nutrients

    OpenAIRE

    Pradeep, P; Reddy, O. V. S.

    2010-01-01

    Fermentation efficiency of more than 85% was obtained by high gravity fermentation of 33–34°Bx (spec. gravity ≈1.134) molasses medium with certain nutrients, instead of generally employed medium containing ≈16% (w/v) total sugar (spec. gravity ≈1.090) for ethanol fermentation in distilleries to get maximum 80–85% conversion. The fermenting yeast, Saccharomyces, has varied capabilities, depending on the species and nutrition for fermenting the high solids medium. The fermentation period was re...

  18. Pretreatment of rice straw using a butanone or an acetaldehyde dilute solution explosion for producing ethanol.

    Science.gov (United States)

    Zhang, Jian; Zhang, Wen-Xue; Yang, Jian; Liu, Yue-Hong; Zhong, Xia; Wu, Zheng-Yun; Kida, Kenji; Deng, Yu

    2012-04-01

    Ethanol conversion from rice straw using butanone and acetaldehyde dilute solution explosions was evaluated based on the optimization of pure water explosion. To decrease residual inhibitor content, the exploded slurry was dried and investigated at different temperature. Using a 0.9-mol/L butanone solution explosion, with the explosion pressure set at 3.1 MPa, the residence time at 7 min, the dried rice straw-to-water ratio at 1:3 (w/w), and the exploded slurry drying temperuture at 90 °C for 8 h, the yields of total sugar, glucose, and xylose were 85%, 88%, 82% (w/w), respectively, and the ethanol productivity was 26.0 g/100 g rice straw dry matter. Moreover, 0.5-mol/L acetaldehyde dilute solution explosion improved the efficiency of enzymatic hydrolysis (EH) and simultaneous saccharification and co-fermentation (SSCF), and the residual inhibitors had negligible effects on EH and SSCF after detoxification by drying. The results suggested that compared with pure water explosions, the use of butanone and of acetaldehyde dilute solution explosions lowered the explosive temperature and improved the sugar yield, although relative crystallinity of the rice straw dry matter was increased after the explosion.

  19. Regulation of pH attenuates toxicity of a byproduct produced by an ethanologenic strain of Sphingomonas sp. A1 during ethanol fermentation from alginate

    Science.gov (United States)

    Fujii, Mari; Yoshida, Shiori; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Marine macroalgae is a promising carbon source that contains alginate and mannitol as major carbohydrates. A bioengineered ethanologenic strain of the bacterium Sphingomonas sp. A1 can produce ethanol from alginate, but not mannitol, whereas the yeast Saccharomyces paradoxus NBRC 0259–3 can produce ethanol from mannitol, but not alginate. Thus, one practical approach for converting both alginate and mannitol into ethanol would involve two-step fermentation, in which the ethanologenic bacterium initially converts alginate into ethanol, and then the yeast produces ethanol from mannitol. In this study, we found that, during fermentation from alginate, the ethanologenic bacterium lost viability and secreted toxic byproducts into the medium. These toxic byproducts inhibited bacterial growth and killed bacterial cells and also inhibited growth of S. paradoxus NBRC 0259–3. We discovered that adjusting the pH of the culture supernatant or the culture medium containing the toxic byproducts to 6.0 attenuated the toxicity toward both bacteria and yeast, and also extended the period of viability of the bacterium. Although continuous adjustment of pH to 6.0 failed to improve the ethanol productivity of this ethanologenic bacterium, this pH adjustment worked very well in the two-step fermentation due to the attenuation of toxicity toward S. paradoxus NBRC 0259–3. These findings provide information critical for establishment of a practical system for ethanol production from brown macroalgae. PMID:24445222

  20. Chemical characterization of municipal wastewater sludges produced by two-phase anaerobic digestion for biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Francioso, Ornella, E-mail: ornella.francioso@unibo.it [Dipartimento di Scienze e Tecnologie Agroambientali, V.le Fanin 40, 40127 Bologna (Italy); Rodriguez-Estrada, Maria Teresa [Dipartimento di Scienze degli Alimenti, V.le Fanin 40, 40127 Bologna (Italy); Montecchio, Daniela [Dipartimento di Scienze e Tecnologie Agroambientali, V.le Fanin 40, 40127 Bologna (Italy); Salomoni, Cesare; Caputo, Armando [Biotec sys srl, Via Gaetano Tacconi, 59, 40139 Bologna (Italy); Palenzona, Domenico [Dipartimento di Biologia Evoluzionistica Sperimentale, Via Selmi 3, 40126 Bologna (Italy)

    2010-03-15

    In the present study, the chemical features of municipal wastewater sludges treated in two-phase separate digesters (one for acetogenesis and the other one for methanogenesis), were characterized by using chemical analysis, stable carbon isotope ratios ({delta}{sup 13}C), HS-SPME-GC-MS, TG-DTA analysis and DRIFT spectroscopy. The results obtained showed that sludges from acetogenesis and methanogenesis differed from each other, as well as from influent raw sludges. Both processes exhibited a diverse chemical pattern in term of VFA and VOC. Additional variations were observed for {delta}{sup 13}C values that changed from acetogenesis to methanogenesis, as a consequence of fermentation processes that led to a greater fractionation of {sup 12}C with respect to the {sup 13}C isotope. Similarly, the thermal profiles of acetogenesis and methanogenesis sludges greatly differed in terms of heat combustion produced. These changes were also supported by higher lipid content (probably fatty acids) in acetogenesis than in methanogenesis, as also shown by DRIFT spectroscopy.

  1. Economic Assessment of Producing Corn and Cellulosic Ethanol Mandate on Agricultural Producers and Consumers in the United States

    OpenAIRE

    Adusumilli, Naveen C.; Ronald D. Lacewell; C. Robert Taylor; M. Edward Rister

    2016-01-01

    Strong support for the biofuels program in the USA is expected to influence dedicated biomass crops production. Their production is expected to compete for resources with traditional crops and in turn influence commodity prices, economic surplus, and trade balance. Implications of dedicated biomass crop as bioenergy feedstock, alternative energy policies, and government initiatives on agricultural producers and consumers are evaluated using a national quantitative model, AGSIM. Economic impac...

  2. Microbial diversity analysis of long term operated biofilm configured anaerobic reactor producing biohydrogen from wastewater under diverse conditions

    Energy Technology Data Exchange (ETDEWEB)

    Venkata Mohan, S.; Raghavulu, S. Veer; Goud, R. Kannaiah; Srikanth, S.; Babu, V. Lalit; Sarma, P.N. [Bioengineering and Environmental Centre (BEEC), Indian Institute of Chemical Technology (IICT), Hyderabad 500 607 (India)

    2010-11-15

    This communication provides an insight into the composition of the microbial community survived in the biofilm configured anaerobic reactor operated for biohydrogen (H{sub 2}) production using wastewater as substrate under diverse conditions for past four years. PCR amplified 16S rDNA product (at variable V3 region using universal primers 341F and 517R) was separated by using denaturing gradient gel electrophoresis (DGGE) to identify the diversity in microbial population survived. The phyologenetic profile of the bioreactor showed significant diversity in the microbial community where major nucleotide sequences were affiliated to Class Clostridia followed by Bacteroidetes, Deltaproteobacteria and Flavobacteria. Clostridium were found to be dominant in the microbial community observed. The controlled growth conditions, application of pre-treatment to biocatalyst, operation with specific pH and variation in substrate composition are reasoned for the robust acidogenic culture identified in the bioreactor. Most of the operational taxonomic units (OTUs) observed in the bioreactor are capable to undergo acetate producing pathway, feasible for effective H{sub 2} production. (author)

  3. Alkalibaculum bacchi gen. nov., sp. nov., a CO-oxidizing, ethanol-producing acetogen isolated from livestock-impacted soil.

    Science.gov (United States)

    Allen, Toby D; Caldwell, Matthew E; Lawson, Paul A; Huhnke, Raymond L; Tanner, Ralph S

    2010-10-01

    Phenotypic and phylogenetic studies were performed on three strains of an acetogenic bacterium isolated from livestock-impacted soil. The bacterium stained Gram-negative and was a non-spore-forming rod that was motile by peritrichous flagella. The novel strains had an optimum pH for growth of 8.0-8.5 and utilized H₂ : CO₂, CO : CO₂, glucose, fructose, mannose, turanose, ribose, trimethylamine, pyruvate, methanol, ethanol, n-propanol and n-butanol as growth substrates. Acetate was produced from glucose. Acetate, CO₂ and ethanol were produced from CO : CO₂. 16S rRNA gene sequence analysis indicated that the novel strains formed a new subline in the family Eubacteriaceae (rRNA cluster XV) of the low G+C-containing Gram-positive bacteria of the class Clostridia. The DNA G+C base composition was 34 mol%. Cell wall analysis revealed the existence of a novel B-type peptidoglycan similar to the B2α-type (B4) configuration with a variation containing aspartic acid. Based on phylogenetic and phenotypic evidence, it is proposed that the new isolates represent a novel genus and species, for which the name Alkalibaculum bacchi gen. nov., sp. nov. is proposed. The type strain of the type species is CP11(T) (=ATCC BAA-1772(T)=DSM 22112(T)).

  4. Methanol or ethanol produced from woody biomass: which is more advantageous?

    Science.gov (United States)

    Hasegawa, Fumio; Yokoyama, Shinya; Imou, Kenji

    2010-01-01

    In this study, two conversion technologies--methanol synthesis and ethanol fermentation--were compared and CO(2) mitigation effect was estimated. The biomethanol production process was revealed as being preferable to the bioethanol process in terms of thermal efficiency, carbon conversion and environmental burden except electrical energy consumption. When biofuels are employed in internal combustion engines, biomethanol has greater potential for gasoline substitution, but the difference in expected CO(2) reduction is rather small due to higher power consumption in methanol production. Consequently, from a short-term perspective, bioethanol is preferable since it can readily substitute the gasoline for conventional vehicles. From a long-term perspective, however, biomethanol has greater potential for gasoline substitution and CO(2) mitigation.

  5. Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland

    DEFF Research Database (Denmark)

    Larsen, L.; Nielsen, P.; Ahring, B.K.

    1997-01-01

    occurred in the range of 50-75 degrees C. The pH range for growth was 4.7-8.8, with an optimum at pH 7.0. Strain A3 was sensitive to tetracycline, chloramphenicol, penicillin G. neomycin, and vancomycin at 100 mg/l but was not sensitive to chloramphenicol and neomycin at 10 mg/l, which indicates...

  6. Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H2 and ethanol-producing bacteria

    Directory of Open Access Journals (Sweden)

    Carere Carlo R

    2012-12-01

    Full Text Available Abstract Background Fermentative bacteria offer the potential to convert lignocellulosic waste-streams into biofuels such as hydrogen (H2 and ethanol. Current fermentative H2 and ethanol yields, however, are below theoretical maxima, vary greatly among organisms, and depend on the extent of metabolic pathways utilized. For fermentative H2 and/or ethanol production to become practical, biofuel yields must be increased. We performed a comparative meta-analysis of (i reported end-product yields, and (ii genes encoding pyruvate metabolism and end-product synthesis pathways to identify suitable biomarkers for screening a microorganism’s potential of H2 and/or ethanol production, and to identify targets for metabolic engineering to improve biofuel yields. Our interest in H2 and/or ethanol optimization restricted our meta-analysis to organisms with sequenced genomes and limited branched end-product pathways. These included members of the Firmicutes, Euryarchaeota, and Thermotogae. Results Bioinformatic analysis revealed that the absence of genes encoding acetaldehyde dehydrogenase and bifunctional acetaldehyde/alcohol dehydrogenase (AdhE in Caldicellulosiruptor, Thermococcus, Pyrococcus, and Thermotoga species coincide with high H2 yields and low ethanol production. Organisms containing genes (or activities for both ethanol and H2 synthesis pathways (i.e. Caldanaerobacter subterraneus subsp. tengcongensis, Ethanoligenens harbinense, and Clostridium species had relatively uniform mixed product patterns. The absence of hydrogenases in Geobacillus and Bacillus species did not confer high ethanol production, but rather high lactate production. Only Thermoanaerobacter pseudethanolicus produced relatively high ethanol and low H2 yields. This may be attributed to the presence of genes encoding proteins that promote NADH production. Lactate dehydrogenase and pyruvate:formate lyase are not conducive for ethanol and/or H2 production. While the type(s of

  7. The effect of soluble alginate and calcium on {beta}-galactosidase activity produced by the thermotolerant, ethanol-producing yeast strain Kluyveromyces marxianus imb3

    Energy Technology Data Exchange (ETDEWEB)

    Brady, D.; Logan, S.R.; McHale, A.P. [Biotechnology Research Group, School of Applied Biological and Chemical Sciences, University of Ulster, Coleraine, Co. Londonderry, BT52 1SA (United Kingdom)

    1998-02-01

    Since it has previously been demonstrated that ethanol production by the thermotolerant yeast strain, Kluyveromyces marxianus IMB3 is more efficient in calcium alginate-based immobilization systems during growth on lactose-containing media, it was decided to examine the separate effects of soluble alginate and free calcium on the {beta}-galactosidase activity produced by that organism. It was found that the presence of Ca{sup 2+} significantly increased the thermal stability of the activity at 45 C, although the pH and temperature optima remained the same in the presence and absence of that cation. It was also found that the presence of 2% (w/v) sodium alginate (soluble) had a very limited positive effect on the thermal stability of the enzyme at 45 C, although it was found that activity was very significantly stimulated at that temperature. The activity was found to have an enhanced thermal stability at 30 C in the presence of sodium alginate. The presence of sodium alginate in assay mixtures had no significant effect on the Km of the activity for the substrate o-nitrophenyl-{beta}-D-galactoside. The results observed in the presence of either free calcium or soluble alginate may at least partially explain enhanced ethanol production by this microorganism in alginate-based immobilization systems. (orig.) With 2 figs., 14 refs.

  8. Economic Assessment of Producing Corn and Cellulosic Ethanol Mandate on Agricultural Producers and Consumers in the United States

    Directory of Open Access Journals (Sweden)

    Naveen C. Adusumilli

    2016-01-01

    Full Text Available Strong support for the biofuels program in the USA is expected to influence dedicated biomass crops production. Their production is expected to compete for resources with traditional crops and in turn influence commodity prices, economic surplus, and trade balance. Implications of dedicated biomass crop as bioenergy feedstock, alternative energy policies, and government initiatives on agricultural producers and consumers are evaluated using a national quantitative model, AGSIM. Economic impacts include effect on cropping patterns, crop prices, fertilizer prices, consumer and producer surplus, and trade balance. Economic analyses based on alternative assumptions related to marginal lands currently in conservation use returning to crop production as well as biomass crop yields are conducted. Results indicate that present biofuel policies are associated with large costs to consumers in terms of increased commodity prices and negative trade balance. Increase in net farm income is offset by decrease in consumer surplus. The results represent a robust set of economic impacts, which suggests policy makers to consider the unexpected economic consequences of bioenergy policy and warrants consideration of multiple alternative energy sources to achieve a sustainable energy goal.

  9. Selenite Reduction by Anaerobic Microbial Aggregates: Microbial Community Structure, and Proteins Associated to the Produced Selenium Spheres

    KAUST Repository

    Gonzalez-Gil, Graciela

    2016-04-26

    Certain types of anaerobic granular sludge, which consists of microbial aggregates, can reduce selenium oxyanions. To envisage strategies for removing those oxyanions from wastewater and recovering the produced elemental selenium (Se0), insights into the microbial community structure and synthesis of Se0 within these microbial aggregates are required. High-throughput sequencing showed that Veillonellaceae (c.a. 20%) and Pseudomonadaceae (c.a.10%) were the most abundant microbial phylotypes in selenite reducing microbial aggregates. The majority of the Pseudomonadaceae sequences were affiliated to the genus Pseudomonas. A distinct outer layer (∼200 μm) of selenium deposits indicated that bioreduction occurred in the outer zone of the microbial aggregates. In that outer layer, SEM analysis showed abundant intracellular and extracellular Se0 (nano)spheres, with some cells having high numbers of intracellular Se0 spheres. Electron tomography showed that microbial cells can harbor a single large intracellular sphere that stretches the cell body. The Se0 spheres produced by the microorganisms were capped with organic material. X-ray photoelectron spectroscopy (XPS) analysis of extracted Se0 spheres, combined with a mathematical approach to analyzing XPS spectra from biological origin, indicated that proteins and lipids were components of the capping material associated to the Se0 spheres. The most abundant proteins associated to the spheres were identified by proteomic analysis. Most of the proteins or peptide sequences capping the Se0 spheres were identified as periplasmic outer membrane porins and as the cytoplasmic elongation factor Tu protein, suggesting an intracellular formation of the Se0 spheres. In view of these and previous findings, a schematic model for the synthesis of Se0 spheres by the microorganisms inhabiting the granular sludge is proposed.

  10. Selenite Reduction by Anaerobic Microbial Aggregates: Microbial Community Structure, and Proteins Associated to the Produced Selenium Spheres

    Science.gov (United States)

    Gonzalez-Gil, Graciela; Lens, Piet N. L.; Saikaly, Pascal E.

    2016-01-01

    Certain types of anaerobic granular sludge, which consists of microbial aggregates, can reduce selenium oxyanions. To envisage strategies for removing those oxyanions from wastewater and recovering the produced elemental selenium (Se0), insights into the microbial community structure and synthesis of Se0 within these microbial aggregates are required. High-throughput sequencing showed that Veillonellaceae (c.a. 20%) and Pseudomonadaceae (c.a.10%) were the most abundant microbial phylotypes in selenite reducing microbial aggregates. The majority of the Pseudomonadaceae sequences were affiliated to the genus Pseudomonas. A distinct outer layer (∼200 μm) of selenium deposits indicated that bioreduction occurred in the outer zone of the microbial aggregates. In that outer layer, SEM analysis showed abundant intracellular and extracellular Se0 (nano)spheres, with some cells having high numbers of intracellular Se0 spheres. Electron tomography showed that microbial cells can harbor a single large intracellular sphere that stretches the cell body. The Se0 spheres produced by the microorganisms were capped with organic material. X-ray photoelectron spectroscopy (XPS) analysis of extracted Se0 spheres, combined with a mathematical approach to analyzing XPS spectra from biological origin, indicated that proteins and lipids were components of the capping material associated to the Se0 spheres. The most abundant proteins associated to the spheres were identified by proteomic analysis. Most of the proteins or peptide sequences capping the Se0 spheres were identified as periplasmic outer membrane porins and as the cytoplasmic elongation factor Tu protein, suggesting an intracellular formation of the Se0 spheres. In view of these and previous findings, a schematic model for the synthesis of Se0 spheres by the microorganisms inhabiting the granular sludge is proposed. PMID:27199909

  11. Selenite reduction by anaerobic microbial aggregates: Microbial community structure, and proteins associated to the produced selenium spheres.

    Directory of Open Access Journals (Sweden)

    Graciela eGonzalez-Gil

    2016-04-01

    Full Text Available Certain types of anaerobic granular sludge, which consists of microbial aggregates, can reduce selenium oxyanions. To envisage strategies for removing those oxyanions from wastewater and recovering the produced elemental selenium (Se0, insights into the microbial community structure and synthesis of Se0 within these microbial aggregates are required. High-throughput sequencing showed that Veillonellaceae (c.a. 20 % and Pseudomonadaceae (c.a.10 % were the most abundant microbial phylotypes in selenite reducing microbial aggregates. The majority of the Pseudomonadaceae sequences were affiliated to the genus Pseudomonas. A distinct outer layer (~200 m of selenium deposits indicated that bioreduction occurred in the outer zone of the microbial aggregates. In that outer layer, SEM analysis showed abundant intracellular and extracellular Se0 (nano spheres, with some cells having high numbers of intracellular Se0 spheres. Electron tomography showed that microbial cells can harbor a single large intracellular sphere that stretches the cell body. The Se0 spheres produced by the microorganisms were capped with organic material. X-ray photoelectron spectroscopy (XPS analysis of extracted Se0 spheres, combined with a mathematical approach to analyzing XPS spectra from biological origin, indicated that proteins and lipids were components of the capping material associated to the Se0 spheres. The most abundant proteins associated to the spheres were identified by proteomic analysis. Most of the proteins or peptide sequences capping the Se0 spheres were identified as periplasmic outer membrane porins and as the cytoplasmic elongation factor Tu protein, suggesting an intracellular formation of the Se0 spheres. In view of these and previous findings, a schematic model for the synthesis of Se0 spheres by the microorganisms inhabiting the granular sludge is proposed.

  12. Anaerobic and sequential aerobic production of high-titer ethanol and single cell protein from NaOH-pretreated corn stover by a genome shuffling-modified Saccharomyces cerevisiae strain.

    Science.gov (United States)

    Ren, Xueliang; Wang, Juncong; Yu, Hui; Peng, Chunlan; Hu, Jinlong; Ruan, Zhiyong; Zhao, Shumiao; Liang, Yunxiang; Peng, Nan

    2016-10-01

    In this study, a Saccharomyces cerevisiae recombinant strain 14 was constructed through genome shuffling method by transferring the whole genomic DNA of Candida intermedia strain 23 into a thermo-tolerant S. cerevisiae strain. The recombinant strain 14 combined the good natures of both parent strains that efficiently produced ethanol from glucose and single cell protein from xylose with 54.6% crude protein and all essential amino acids except cysteine at 35°C. Importantly, the recombinant strain 14 produced 64.07g/L ethanol from 25%(w/v) NaOH-pretreated and washed corn stover with the ethanol yield of 0.26g/g total stover by fed-batch simultaneous saccharification and fermentation and produced 66.50g/L dry cell mass subsequently from the residual hydrolysate and ethanol. Therefore, this study represents a feasible method to comprehensively utilize hexose and pentose in lignocellulosic materials.

  13. Ethanol production from glucose and xylose by immobilized Thermoanaerobacter pentosaceus at 70 °C in an up-flow anaerobic sludge blanket (UASB) reactor

    DEFF Research Database (Denmark)

    Sittijunda, Sureewan; Tomás, Ana Faria; Reungsang, Alissara;

    2013-01-01

    The newly isolated extreme thermophilic ethanologen Thermoanaerobacter pentosaceus was immobilized in different support materials in order to improve its ethanol production ability. In batch fermentation, a maximum ethanol yield of 1.36 mol mol-1 consumed sugars was obtained by T. pentosaceus...... immobilized on rapeseed straw. Additionally, immobilized T. pentosaceus’ ethanol production was improved by 11 % in comparison to free cells. In continuous mode, it was shown that hydraulic retention time (HRT) affected ethanol yield, and a dramatic shift from ethanol to acetate and lactate production...

  14. Hydrogen production by ethanol partial oxidation over nano-iron oxide catalysts produced by chemical vapour synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Wael Ahmed Abou Taleb Sayed

    2011-01-13

    This work presents the experimental results of the synthesis of unsupported and supported SiC iron oxide nanoparticles and their catalytic activity towards ethanol partial oxidation. For comparison, further unsupported iron oxide phases were investigated towards the ethanol partial oxidation. These {gamma}-Fe{sub 2}O{sub 3} and {alpha}/{gamma}-Fe{sub 2}O{sub 3} phase catalysts were prepared by the CVS method using Fe(CO){sub 5} as precursor, supplied by another author. The {alpha}-Fe{sub 2}O{sub 3} and SiC nanoparticles were prepared by the CVS method using a home made hot wall reactor technique at atmospheric pressure. Ferrocene and tetramethylsilane were used as precursor for the production process. Process parameters of precursor evaporation temperature, precursor concentration, gas mixture velocity and gas mixture dilution were investigated and optimised to produce particle sizes in a range of 10 nm. For Fe{sub 2}O{sub 3}/SiC catalyst series production, a new hot wall reactor setup was used. The particles were produced by simultaneous thermal decomposition of ferrocene and tetramethylsilane in one reactor from both sides. The production parameters of inlet tube distance inside the reactor, precursor evaporation temperature and carrier gas flow were investigated to produce a series of samples with different iron oxide content. The prepared catalysts composition, physical and chemical properties were characterized by XRD, EDX, SEM, BET surface area, FTIR, XPS and dynamic light scattering (DLS) techniques. The catalytic activity for the ethanol gas-phase oxidation was investigated in a temperature range from 260 C to 290 C. The product distributions obtained over all catalysts were analysed with mass spectrometry analysis tool. The activity of bulk Fe{sub 2}O{sub 3} and SiC nanoparticles was compared with prepared nano-iron oxide phase catalysts. The reaction parameters, such as reaction temperature and O{sub 2}/ethanol ratio were investigated. The catalysts

  15. 乙醇预发酵对餐厨垃圾与酒糟混合甲烷发酵的影响%Effect of ethanol pre-fermentation on methane fermentation during anaerobic co-digestion of kitchen waste and vinasse

    Institute of Scientific and Technical Information of China (English)

    张笑; 宋娜; 汪群慧; 王利红; 项娟; 常强; 于淼

    2014-01-01

    To solve the inhibition issue caused by volatile fatty acids in two-stage dry anaerobic co-digestion of food waste and distillers grains, microzyme was added into the reactors in the acidification process with different pre-treated times of 12 h, 24 h and 48 h respectively. After pre-fermentation, all groups underwent anaerobic digestion under the same experimental condition. The purpose was to investigate the effects of pre-treated time on methane yield, the changes of parameters such as pH, TVFA, acetic acid, propanoic acid, and ethanol concentration in the methane fermentation process, and to compare them with the control group. The most innovative idea is that of the ethanol pre-fermentation process, food waste was converted into ethanol which decreased the other volatile fatty acids`concentration in the meantime. Since ethanol is neutral and it can convert into acetic acid, which can be directly used by methanogens, this ethanol pre-fermentation process can indeed improve digestion efficiency and methane yield in the following anaerobic system. Moreover, with less volatile fatty acids produced at the beginning of digestion, the acid accumulation issue could be well relieved in the future. This meaningful topic has been focused on by our research team since 2011. Please find more detailed information in our articles if you are interested. According to this experiment, the result showed that the ranks of ethanol concentration and pH (from high to low) of all groups were: pre-treated 48h > 24h > 12h > control. However, the ranks of acetic acid and TVFA concentration were the opposite. This phenomenon is caused by the ethanol pre-fermentation which can force more glucose to degrade into ethanol instead of other volatile fatty acids such as propanoic acid. Besides, the ethanol is neutral, and it can convert into acetic acid more easily than propanoic acid. Therefore, the pre-fermentation process can overcome the acidification issue caused by the accumulation of

  16. XAS analysis of iron and palladium bonded to a polysaccharide produced anaerobically by a strain of Klebsiella oxytoca.

    Science.gov (United States)

    Arčon, Iztok; Paganelli, Stefano; Piccolo, Oreste; Gallo, Michele; Vogel-Mikuš, Katarina; Baldi, Franco

    2015-09-01

    Klebsiella oxytoca BAS-10 ferments citrate to acetic acid and CO2, and secretes a specific exopolysaccharide (EPS), which is able to bind different metallic species. These biomaterials may be used for different biotechnological purposes, including applications as innovative green biogenerated catalysts. In production of biogenerated Pd species, the Fe(III) as ferric citrate is added to anaerobic culture of K. oxytoca BAS-10, in the presence of palladium species, to increase the EPS secretion and improve Pd-EPS yield. In this process, bi-metallic (FePd-EPS) biomaterials were produced for the first time. The morphology of bi-metallic EPS, and the chemical state of the two metals in the FePd-EPS, are investigated by transmission electron microscopy, Fourier transform infra-red spectroscopy, micro-X-ray fluorescence, and X-ray absorption spectroscopy methods (XANES and EXAFS), and compared with mono-metallic Pd-EPS and Fe-EPS complexes. Iron in FePd-EPS is in the mineralized form of iron oxides/hydroxides, predominantly in the form of Fe(3+), with a small amount of Fe(2+) in the structure, most probably a mixture of different nano-crystalline iron oxides and hydroxides, as in mono-metallic Fe-EPS. Palladium is found as Pd(0) in the form of metallic nanoparticles with face-centred cubic structure in both bi-metallic (FePd-EPS) and mono-metallic (Pd-EPS) species. In bi-metallic species, Pd and Fe nanoparticles agglomerate in larger clusters, but they remain spatially separated. The catalytic ability of bi-metallic species (FePd-EPS) in a hydrodechlorination reaction is improved in comparison with mono-metallic Pd-EPS.

  17. The role of acid incubation in rapid immobilization of hydrogen-producing culture in anaerobic upflow column reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen-Peng; Tay, Joo-Hwa [School of Civil and Environmental Engineering, Nanyang Technological University (Singapore); Institute of Environmental Science and Engineering, Nanyang Technological University (Singapore); Show, Kuan-Yeow [Faculty of Science, Engineering and Technology, University Tunku Abdul Rahman, 31900 Kampar, Perak (Malaysia); Liang, David Tee [Institute of Environmental Science and Engineering, Nanyang Technological University (Singapore); Lee, Duu-Jong [Department of Chemical Engineering, National Taiwan University, Taipei 10617 (China); Su, Ay [Department of Mechanical Engineering, Fuel Cell Center, Yuan-Ze University, Taoyuan 320 (China)

    2008-10-15

    An approach of acidification was examined on formation of hydrogen-producing granules and biofilms in upflow column-shaped reactors. The reactors were fed with synthetic glucose wastewater and operated at 37 C and pH 5.5. The acclimated anaerobic culture was inoculated in four reactors designated R1, R2, R3 and R4, with R3 and R4 filled with granular activated carbon as support medium. To unveil the roles of acidification, microbial culture in R2 and R3 was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The experimental results suggested that the acidification substantially accelerated microbial granulation, but not biofilm formation. Microbial activities were inhibited by the acid incubation for about 78 h, resulting in the retarded formation of biofilms of the acidified culture. Reducing culture pH resulted in improvement in cell surface physicochemical properties favoring microbial adhesion and immobilization. Zeta potential increased from -25.3 mV to 11.9 mV, hydrophobicity in terms of contact angle improved from 31 to 38 and production of extracellular polymers increased from 66 mg/g-VSS to 136 mg/g-VSS. As a result of the formation of granules and biofilms, high hydrogen production rates of 6.98 and 7.49 L/L h were achieved in granule-based and biofilm-based reactors, respectively. It is concluded that acid incubation is an efficient means to initiate the rapid formation of granules by regulating the surface characteristics of microbial culture. The use of support media as starting nuclei may result in rapid formation of biofilms without the acidification. (author)

  18. Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase.

    Science.gov (United States)

    Yu, Kyung Ok; Jung, Ju; Kim, Seung Wook; Park, Chul Hwan; Han, Sung Ok

    2012-01-01

    The high price of petroleum-based diesel fuel has led to the development of alternative fuels, such as ethanol. Saccharomyces cerevisiae was metabolically engineered to utilize glycerol as a substrate for ethanol production. For the synthesis of fatty acid ethyl esters (FAEEs) by engineered S. cerevisiae that utilize glycerol as substrate, heterologous expression of an unspecific acyltransferase from Acinetobacter baylyi with glycerol utilizing genes was established. As a result, the engineered YPH499 (pGcyaDak, pGupWs-DgaTCas) strain produced 0.24 g/L FAEEs using endogenous ethanol produced from glycerol. And this study also demonstrated the possibility of increasing FAEE production by enhancing ethanol production by minimizing the synthesis of glycerol. The overall FAEE production in strain YPH499 fps1Δ gpd2Δ (pGcyaDak, pGupWs-DgaTCas) was 2.1-fold more than in YPH499 (pGcyaDak, pGupWs-DgaTCas), with approximately 0.52 g/L FAEEs produced, while nearly 17 g/L of glycerol was consumed. These results clearly indicated that FAEEs were synthesized in engineered S. cerevisiae by esterifying exogenous fatty acids with endogenously produced ethanol from glycerol. This microbial system acts as a platform in applying metabolic engineering that allows the production of FAEEs from cheap and abundant substrates specifically glycerol through the use of endogenous bioethanol.

  19. Pilot Scale Integrated Biorefinery for Producing Ethanol from Hybrid Algae: Cooperative Research and Development Final Report, CRADA Number CRD-10-389

    Energy Technology Data Exchange (ETDEWEB)

    Pienkos, P. T.

    2013-11-01

    This collaboration between Algenol Biofuels Inc. and NREL will provide valuable information regarding Direct to Ethanol technology. Specifically, the cooperative R&D will analyze the use of flue gas from industrial sources in the Direct to Ethanol process, which may demonstrate the potential to significantly reduce greenhouse gas emissions while simultaneously producing a valuable product, i.e., ethanol. Additionally, Algenol Biofuels Inc. and NREL will develop both a techno-economic model with full material and energy balances and an updated life-cycle analysis to identify greenhouse gas emissions relative to gasoline, each of which will provide a better understanding of the Direct to Ethanol process and further demonstrate that it is a breakthrough technology with varied and significant benefits.

  20. NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts

    NARCIS (Netherlands)

    Bruinenberg, P.M.; De Bot, P.H.M.; Van Dijken, J.P.; Scheffers, W.A.

    1984-01-01

    The kinetics and enzymology of o-xylose utilization were studied in aerobic and anaerobic batch cultures of the facultatively fermentative yeasts Candida utilis, Pachysolen tannophilus, and Pichia stipitis. These yeasts did not produce ethanol under aerobic conditions. When shifted to anaerobiosis c

  1. Combining protein extraction and anaerobic digestion to produce feed, fuel and fertilizer from green biomass – An organic biorefinery concept

    DEFF Research Database (Denmark)

    Fernandez, Maria Santamaria; Salces, Beatriz Molinuevo; Lübeck, Mette

    Organically grown green biomass (red clover, clover grass) was investigated as a resource for organic feed and organic fertilizer by combination of proteins extraction and anaerobic digestion of the residues. Extraction of proteins from both crops revealed very favourable amino acid composition...

  2. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy – A life cycle perspective

    DEFF Research Database (Denmark)

    De Vries, J.W.; Vinken, T.M.W.J; Hamelin, Lorie

    2012-01-01

    The aim of this work was to assess the environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy, from a life cycle perspective. This included assessing environmental impacts and land use change emissions (LUC) required to replace used co-substrates for an......The aim of this work was to assess the environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy, from a life cycle perspective. This included assessing environmental impacts and land use change emissions (LUC) required to replace used co......-substrates for anaerobic digestion. Environmental impact categories considered were climate change, terrestrial acidification, marine and freshwater eutrophication, particulate matter formation, land use, and fossil fuel depletion. Six scenarios were evaluated: mono-digestion of manure, co-digestion with: maize silage......, maize silage and glycerin, beet tails, wheat yeast concentrate (WYC), and roadside grass. Mono-digestion reduced most impacts, but represented a limited source for bio-energy. Co-digestion with maize silage, beet tails, and WYC (competing with animal feed), and glycerin increased bio-energy production...

  3. 2-CSTRs 两相厌氧消化系统在不同乙醇回收率下的联合产能%Simultaneous biofuel production of 2-CSTRs anaerobic digestion system with different recovery rates of ethanol

    Institute of Scientific and Technical Information of China (English)

    万松; 李永峰

    2015-01-01

    以2-CSTRs(连续流搅拌釜式反应器)两相厌氧消化系统的能量转化率为主要研究对象,以氢气、乙醇及甲烷为目标产物,在不同有机负荷下,通过控制反应参数使产氢相反应器内部环境呈现乙醇型发酵状态,并将产氢相出水经回收乙醇后作为产甲烷相反应基质,研究在不同乙醇回收率下2-CSTRs两相厌氧消化系统产能效率.结果表明:当乙醇回收率在0~50%范围内时,系统产能率、能量转化率及基质降解率随乙醇回收率的增加而增加.当乙醇回收率控制在50%时系统可获得最佳运行结果,与未回收乙醇时相比,系统的日产能率平均高约32.63%,能量转化率平均高约17.53%,基质降解率平均高约12.85%.%With the energy conversion efficiency of 2-CSTRs (continuous stirred tank reactor) anaerobic digestion system as the study objectives, hydrogen, ethanol and methane as the target products, at different organic loading rates (OLRs), the ethanol-type fermentation was provided by controlling the available reaction parameters in hydrogen production phase, the treatment water of hydrogen production phase which was recovered ethanol served as the feed of methane production phase, and the energy conversion efficiency of the 2-CSTRs system were dug with different ethanol recovery rates (ERRs). The survey results indicated that energy conversion rate (εT), energy conversion yield (εY) and SDR essentially increased with increasing ERR of 0~50%. Compared with the regular anaerobic digestion system,εT,εY and SDR of the system with ethanol recovery have increased by 32.63%, 17.53% and 12.85% , respectively, with the ERR of 50%.

  4. 钠盐浓度对厌氧产氢颗粒污泥从蔗糖中产氢的影响%Effect of Sodium Ion Concentration on Hydrogen Production from Sucrose by Anaerobic Hydrogen-producing Granular Sludge

    Institute of Scientific and Technical Information of China (English)

    郝小龙; 周明华; 俞汉青; 沈琴琴; 雷乐成

    2006-01-01

    This work evaluated the effects of sodium ion concentration, ranging from 0 to 16000mg·L-1(Na+), on the conversion of sucrose to hydrogen by a high-activity anaerobic hydrogen-producing granular sludge. At the optimum sodium ion concentration [1000-2000mg·L-1(Na+)] for hydrogen production at 37℃, the maximum sucrose degradation rate, the specific hydrogen production yield and the specific hydrogen production rate were 393.6-413.1mg·L-1·h-1, 28.04-28.97ml·g-1, 7.52-7.83ml·g-1·h-1, respectively. The specific production yields of propionate, butyrate and valerate decreased, with increasing sodium ion concentration, whereas the specific acetate production yield increased, meanwhile the specific production yields of ethanol and caproate were less than 55.3 and 12.6mg·g-1, respectively. The hybrid fermentation composition gradually developed from acetate, propionate and butyrate to acetate with the increase in sodium ion concentration.

  5. BAMBOO CELLULOSIC PULP PRODUCED BY THE ETHANOL/WATER PROCESS FOR REINFORCEMENT APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Viviane da Costa Correia

    2015-01-01

    Full Text Available Organosolv pulping is the clean chemical process of using organic solvents to aid in the removal of lignin and hemicellulose from lignocellulosic raw materials. This method provides facility for solvent recovery at the end of the process. In this work, it was to produce bamboo cellulosic pulp by the organosolv process evaluating different temperatures and reaction times, and the pulps were analyzed aiming their future application in the reinforcement of composites. The production of bamboo pulp by the organosolv process was studied varying the cooking conditions at 1, 2 and 3 h and 150, 170 and 190oC of temperature, in order to achieve the ideal conditions of yield, chemical and morphological characteristics of the pulp for its potential application in the reinforcement of composites. The best results for delignification (kappa number of 38, with relatively lower fiber degradation (viscosity of 625 cm3 g-1, aspect ratio of 40.4 and the index zero-span of 204 Nm g-1, were achieved for the pulping process at 190oC for 2 h. These pulping conditions can be considered as the more appropriate in the range of time intervals evaluated in this work. The higher mechanical strength and the lower incidence of morphological defects in the fiber (6.0% of curls and 10.6% of kinks can demonstrate the potential of organosolv bamboo pulp as a reinforcing element.

  6. Simultaneous fermentation of glucose and xylose at elevated temperatures co-produces ethanol and xylitol through overexpression of a xylose-specific transporter in engineered Kluyveromyces marxianus.

    Science.gov (United States)

    Zhang, Biao; Zhang, Jia; Wang, Dongmei; Han, Ruixiang; Ding, Rui; Gao, Xiaolian; Sun, Lianhong; Hong, Jiong

    2016-09-01

    Engineered Kluyveromyces marxianus strains were constructed through over-expression of various transporters for simultaneous co-fermentation of glucose and xylose. The glucose was converted into ethanol, whereas xylose was converted into xylitol which has higher value than ethanol. Over-expressing xylose-specific transporter ScGAL2-N376F mutant enabled yeast to co-ferment glucose and xylose and the co-fermentation ability was obviously improved through increasing ScGAL2-N376F expression. The production of glycerol was blocked and acetate production was reduced by disrupting gene KmGPD1. The obtained K. marxianus YZJ119 utilized 120g/L glucose and 60g/L xylose simultaneously and produced 50.10g/L ethanol and 55.88g/L xylitol at 42°C. The yield of xylitol from consumed xylose was over 98% (0.99g/g). Through simultaneous saccharification and co-fermentation at 42°C, YZJ119 produced a maximal concentration of 44.58g/L ethanol and 32.03g/L xylitol or 29.82g/L ethanol and 31.72g/L xylitol, respectively, from detoxified or non-detoxified diluted acid pretreated corncob.

  7. Features of a Clostridium, strain CV-AA1, an obligatory anaerobic bacterium producing acetic acid from methanol.

    Science.gov (United States)

    Adamse, A D; Velzeboer, C T

    1982-01-01

    Isolation and characterization of a new, obligatory, anaerobic, methylotrophic, homoacetogenic bacterium is described. This bacterium is a mesophilic, motile, slightly curved rod that demonstrated a negative Gram reaction, formed spherical, (sub)terminal spores and performed a homoacetic fermentation with methanol, a CO2-2H2-gas mixture, glucose or fructose, respectively, as the substrate. The methanol fermentation proceeded only when a suitable amount of NaHCO3 was available in the nutrient solution supplied.

  8. Impacts of an ethanol-blended fuel release on groundwater and fate of produced methane: Simulation of field observations

    Science.gov (United States)

    In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10, two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (No-Ethanol Lane) and BToX plus ethanol...

  9. The anaerobic digestion process capability to produce biostimulant: the case study of the dissolved organic matter (DOM) vs. auxin-like property.

    Science.gov (United States)

    Scaglia, Barbara; Pognani, Michele; Adani, Fabrizio

    2017-07-01

    Biostimulants improve plant growth by stimulating nutrient uptake and efficiency, improving tolerance to abiotic stress and raising crop quality. Biostimulants are currently only recognised in five categories. However, the recent interest in this sector has led to the identification of some new ones. The aim of this work was to study the auxin-like activity of digestate dissolved organic matter (DOM) obtained from full scale anaerobic digester plants. All DOMs had biostimulant capacity comparable with humic acid and amino acids. The auxin-like activities depended mainly on the hydrophobic DOM fractions for the presence of auxin-active and other auxin-like molecules. Significant correlations were found for the auxin-effect in relation to auxin-active molecules and fatty acids responsible for most of the auxin-like effects (67% of the total importance in giving auxin-like activity) while a minor or null contribution was attributable to the carboxylic acids and aminoacid categories. Therefore, the anaerobic digestion process seems to be a useful biotechnology to produce biostimulants. Basing on these first results, the expanding anaerobic digestion sector could become important for the production of new biostimulant classes to meet the agricultural sector's new requirements and saving on raw materials.

  10. Economic process to produce biohydrogen and volatile fatty acids by a mixed culture using vinasse from sugarcane ethanol industry as nutrient source.

    Science.gov (United States)

    Sydney, Eduardo Bittencourt; Larroche, Christian; Novak, Alessandra Cristine; Nouaille, Regis; Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Letti, Luiz Alberto; Soccol, Vanete Thomaz; Soccol, Carlos Ricardo

    2014-05-01

    This work evaluates the potential of vinasse (a waste obtained at the bottom of sugarcane ethanol distillation columns) as nutrient source for biohydrogen and volatile fatty acids production by means of anaerobic consortia. Two different media were proposed, using sugarcane juice or molasses as carbon source. The consortium LPBAH1 was selected for fermentation of vinasse supplemented with sugarcane juice, resulting in a higher H2 yield of 7.14 molH2 molsucrose(-1) and hydrogen content in biogas of approx. 31%, while consortium LPBAH2 resulted in 3.66 molH2/molsucrose and 32.7% hydrogen content in biogas. The proposed process showed a rational and economical use for vinasse, a mandatory byproduct of the renewable Brazilian energy matrix.

  11. Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Ahring, Birgitte Kiær

    2007-01-01

    Dilute sulfuric acid pretreated corn stover is potential feedstock of industrial interest for second generation fuel ethanol production. However, the toxicity of corn stover hydrolysate (PCS) has been a challenge for fermentation by recombinant xylose fermenting organisms. In this work...

  12. Glucose Consumption Assay for the Evaluation of Ethanol-producing Capability of Microzyme%酵母菌产酒精能力的葡萄糖消耗检测法

    Institute of Scientific and Technical Information of China (English)

    张新军; 岳海梅

    2011-01-01

    研究了1种检测酵母菌产酒精能力的新方法。利用酒精发酵液体培养基在厌氧条件下对产酒精酵母菌株YE—1、YE-2、YE-3进行酒精发酵培养,同时利用菌体发酵培养基在有氧条件下进行菌体培养实验作为对照。通过分光光度法检测培养基中葡萄糖的消耗量,根据所消耗的葡萄糖中用于酒精发酵的量,推算出3株酵母菌菌株在酒精发酵培养基中酒精含量分别为4.03mg/mL、3.50mg/mL和3.77mg/mL,进而比较出各菌株产酒精能力的大小。%A new method for the evaluation of ethanol-producing capability of microzyme had been developed. In the experiments, while microzyme cells were cultured in cell culture mediums under aerobic conditions, ethanol-producing microzyme strains YE-1, YE-2 and YE-3 were cultured for alcohol fermentation in liquid culture mediums under anaerobic conditions. The amount of glucose consumption in alcohol fermentation liquid mediums was detected by spectrophotometric assay. Then alcohol concentration was calculated according to the amount of glucose consumption for alcohol fermentation. The alcohol concentration in these three alcohol fermentation aleohol mediums were 4.03 mg / mL, 3.50 mg / mL and 3.77 mg / mL respectively, and then ethanol-producing capability of each strain was revealed.

  13. Impacts of an ethanol-blended fuel release on groundwater and fate of produced methane: Simulation of field observations

    Science.gov (United States)

    Rasa, Ehsan; Bekins, Barbara A.; Mackay, Douglas M.; Sieyes, Nicholas R.; Wilson, John T.; Feris, Kevin P.; Wood, Isaac A.; Scow, Kate M.

    2013-08-01

    In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10 (10% ethanol and 90% conventional gasoline), two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (no-ethanol lane) and BToX plus ethanol (with-ethanol lane) for 283 days. We developed a reactive transport model to understand processes controlling the fate of ethanol and BToX. The model was calibrated to the extensive field data set and accounted for concentrations of sulfate, iron, acetate, and methane along with iron-reducing bacteria, sulfate-reducing bacteria, fermentative bacteria, and methanogenic archaea. The benzene plume was about 4.5 times longer in the with-ethanol lane than in the no-ethanol lane. Matching this different behavior in the two lanes required inhibiting benzene degradation in the presence of ethanol. Inclusion of iron reduction with negligible growth of iron reducers was required to reproduce the observed constant degradation rate of benzene. Modeling suggested that vertical dispersion and diffusion of sulfate from an adjacent aquitard were important sources of sulfate in the aquifer. Matching of methane data required incorporating initial fermentation of ethanol to acetate, methane loss by outgassing, and methane oxidation coupled to sulfate and iron reduction. Simulation of microbial growth using dual Monod kinetics, and including inhibition by more favorable electron acceptors, generally resulted in reasonable yields for microbial growth of 0.01-0.05.

  14. Ethanol Basics (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  15. Biological reactor for anaerobic digestion of organic materials to produce methane gas by fermentation by enzymes. Bioreaktor fuer anaerobe Ausfaulung organischer Stoffe zur Methangaserzeugung mittels Fermentierung durch Enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Lindemann, R.W.

    1981-11-12

    In order to make undisturbed development of the methane bacteria possible, the biomass (organic waste of all kinds, e.g. sewage sludge, manure, organic industrial waste) is first pre-fermented by adding enzymes. The methane bacteria, which are used to inject the biomass in the fermentation reactor, are fermented separately in feeding solutions. The biological reactor is a system heated by a thermostatically controlled waterbath, with at least 12 individual digestion chambers, which are filled in sequence with biomass. Circulation and therefore destruction of the floating sludge layer is done with biogas produced under pressure in the system. By adding lime solution, a pH value of 7 is set in the chambers. The advantages of the invention consist of a shortened digestion time (6 days) and a reduced CO/sub 2/ consist at a gas yield of 80%.

  16. Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Saricks, Christoper [Argonne National Lab. (ANL), Argonne, IL (United States); Wu, May [Argonne National Lab. (ANL), Argonne, IL (United States)

    1997-12-19

    This study addresses two issues: (1) data and information essential to an informed choice about the corn-to-ethanol cycle are in need of updating, thanks to scientific and technological advances in both corn farming and ethanol production; and (2) generalized national estimates of energy intensities and greenhouse gas (GHG) production are of less relevance than estimates based specifically on activities and practices in the principal domestic corn production and milling region -- the upper Midwest.

  17. Two-phase (acidogenic-methanogenic) anaerobic thermophilic/mesophilic digestion system for producing Class A biosolids from municipal sludge.

    Science.gov (United States)

    Rubio-Loza, L A; Noyola, A

    2010-01-01

    Two different arrangements of two-phase anaerobic sludge systems were operated treating a mixture of primary and secondary sludge. Two steady state periods were evaluated: the first acidogenic thermophilic phase was operated at hydraulic retention times of 3 and 2 days and the second methanogenic (mesophilic and thermophilic) phases at 13 and 10 days. The two-phase systems had an efficient removal of pathogens and parasites, achieving values lower than those specified for Class A biosolids, according to the Mexican Standard NOM-004-SEMARNAT-2002. The first thermophilic phase achieved almost complete destruction of pathogens and parasites by itself. During the second steady state period, volatile fatty acids accumulated in the second methanogenic phases (HRT of 10 days and an organic load of 3 kg VS/m(3)d) indicating that the systems were overloaded, mainly the mesophilic digester. In this case, the accumulation of propionic acid may be related to a deficiency of micronutrients. The results show that the two-phase thermophilic/mesophilic anaerobic sludge digestion may be considered as an adequate option for the production of Class A biosolids.

  18. Recent Advances in Second Generation Ethanol Production by Thermophilic Bacteria

    Directory of Open Access Journals (Sweden)

    Sean Michael Scully

    2014-12-01

    Full Text Available There is an increased interest in using thermophilic bacteria for the production of bioethanol from complex lignocellulosic biomass due to their higher operating temperatures and broad substrate range. This review focuses upon the main genera of thermophilic anaerobes known to produce ethanol, their physiology, and the relevance of various environmental factors on ethanol yields including the partial pressure of hydrogen, ethanol tolerance, pH and substrate inhibition. Additionally, recent development in evolutionary adaptation and genetic engineering of thermophilic bacteria is highlighted. Recent developments in advanced process techniques used for ethanol production are reviewed with an emphasis on the advantages of using thermophilic bacteria in process strategies including separate saccharification and fermentation, simultaneous saccharification and fermentation (SSF, and consolidated bioprocessing (CBP.

  19. Inhibition of Hepatitis B Virus Replication by Rheum palmatum L. Ethanol Extract in a Stable HBV-producing Cell

    Institute of Scientific and Technical Information of China (English)

    Yan SUN; Li-jun LI; Jing LI; Zhi LI

    2007-01-01

    Hepatitis B virus(HBV) infection is a severe health problem in the world.However,there is still not a satisfactory therapeutic strategy for the HBV infection.To search for new anti-HBV agents with higher efficacy and less side-effects,the inhibitory activities of traditional Chinese medicine Rheum palmatum L.ethanol extract(RPE) against HBV replication were investigated in this study.Quantitative real-time polymerase chain reaction(PCR) was employed to analyze the inhibitory activity of RPE against HBV-DNA replication in a stable HBV-producing cell line HepAD38; the expression levels of HBV surface antigen(HBsAg) and e antigen(HBeAg) were also determined by enzyme linked immunosorbent assay(ELISA) after RPE treatment.RPE could dose-dependently inhibit the production of HBV-DNA and HBsAg.The concentration of 50% inhibition(IC50) was calculated at 209.63,252.53 μg/mL,respectively.However,its inhibitory activity against HBeAg expression was slight even at high concentrations.RPE had a weak cytotoxic effect on HepAD38 cells(CC50 = 1 640 μg/mL) and the selectivity index(SI) was calculated at 7.82.Compared with two anthraquinone derivatives emodin and rhein,RPE showed higher ability of anti-HBV and weaker cytotoxicity.So Rheum palmatum L.might possess other functional agents which could effectively inhibit HBV-DNA replication and HBsAg expression.Further purification of the active agents,identification and modification of their structures to improve the efficacy and decrease the cytotoxicity are required.

  20. Ethanol and reactive species increase basal sequence heterogeneity of hepatitis C virus and produce variants with reduced susceptibility to antivirals.

    Science.gov (United States)

    Seronello, Scott; Montanez, Jessica; Presleigh, Kristen; Barlow, Miriam; Park, Seung Bum; Choi, Jinah

    2011-01-01

    Hepatitis C virus (HCV) exhibits a high level of genetic variability, and variants with reduced susceptibility to antivirals can occur even before treatment begins. In addition, alcohol decreases efficacy of antiviral therapy and increases sequence heterogeneity of HCV RNA but how ethanol affects HCV sequence is unknown. Ethanol metabolism and HCV infection increase the level of reactive species that can alter cell metabolism, modify signaling, and potentially act as mutagen to the viral RNA. Therefore, we investigated whether ethanol and reactive species affected the basal sequence variability of HCV RNA in hepatocytes. Human hepatoma cells supporting a continuous replication of genotype 1b HCV RNA (Con1, AJ242652) were exposed to ethanol, acetaldehyde, hydrogen peroxide, or L-buthionine-S,R-sulfoximine (BSO) that decreases intracellular glutathione as seen in patients. Then, NS5A region was sequenced and compared with genotype 1b HCV sequences in the database. Ethanol and BSO elevated nucleotide and amino acid substitution rates of HCV RNA by 4-18 folds within 48 hrs which were accompanied by oxidative RNA damage. Iron chelator and glutathione ester decreased both RNA damage and mutation rates. Furthermore, infectious HCV and HCV core gene were sufficient to induce oxidative RNA damage even in the absence of ethanol or BSO. Interestingly, the dn/ds ratio and percentage of sites undergoing positive selection increased with ethanol and BSO, resulting in an increased detection of NS5A variants with reduced susceptibility to interferon alpha, cyclosporine, and ribavirin and others implicated in immune tolerance and modulation of viral replication. Therefore, alcohol is likely to synergize with virus-induced oxidative/nitrosative stress to modulate the basal mutation rate of HCV. Positive selection induced by alcohol and reactive species may contribute to antiviral resistance.

  1. Complete genome sequence of the bile-resistant pigment- producing anaerobe Alistipes finegoldii type strain (AHN2437T)

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Stackebrandt, Erko [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Munk, Christine [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Gronow, Sabine [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute

    2013-01-01

    Alistipes finegoldii Rautio et al. 2003 is one of five species of Alistipes with a validly pub- lished name: family Rikenellaceae, order Bacteroidetes, class Bacteroidia, phylum Bacteroidetes. This rod-shaped and strictly anaerobic organism has been isolated mostly from human tissues. Here we describe the features of the type strain of this species, together with the complete genome sequence, and annotation. A. finegoldii is the first member of the genus Alistipes for which the complete genome sequence of its type strain is now available. The 3,734,239 bp long single replicon genome with its 3,302 protein-coding and 68 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  2. Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Mikkelsen, Marie Just; Ahring, Birgitte Kiær

    2008-01-01

    Thermophilic ethanol fermentation of wet-exploded wheat straw hydrolysate was investigated in a continuous immobilized reactor system. The experiments were carried out in a lab-scale fluidized bed reactor (FBR) at 70C. Undetoxified wheat straw hydrolysate was used (3-12% dry matter), corresponding...

  3. Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum.

    Directory of Open Access Journals (Sweden)

    Ranjita Biswas

    Full Text Available Large-scale production of lignocellulosic biofuel is a potential solution to sustainably meet global energy needs. One-step consolidated bioprocessing (CBP is a potentially advantageous approach for the production of biofuels, but requires an organism capable of hydrolyzing biomass to sugars and fermenting the sugars to ethanol at commercially viable titers and yields. Clostridium thermocellum, a thermophilic anaerobe, can ferment cellulosic biomass to ethanol and organic acids, but low yield, low titer, and ethanol sensitivity remain barriers to industrial production. Here, we deleted the hypoxanthine phosphoribosyltransferase gene in ethanol tolerant strain of C. thermocellum adhE*(EA in order to allow use of previously developed gene deletion tools, then deleted lactate dehydrogenase (ldh to redirect carbon flux towards ethanol. Upon deletion of ldh, the adhE*(EA Δldh strain produced 30% more ethanol than wild type on minimal medium. The adhE*(EA Δldh strain retained tolerance to 5% v/v ethanol, resulting in an ethanol tolerant platform strain of C. thermocellum for future metabolic engineering efforts.

  4. Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Ranjita [ORNL; Prabhu, Sandeep [ORNL; Lynd, Lee R [Thayer School of Engineering at Dartmouth; Guss, Adam M [ORNL

    2014-01-01

    Large-scale production of lignocellulosic biofuel is a potential solution to sustainably meet global energy needs. One-step consolidated bioprocessing (CBP) is a potentially advantageous approach for the production of biofuels, but requires an organism capable of hydrolyzing biomass to sugars and fermenting the sugars to ethanol at commercially viable titers and yields. Clostridium thermocellum, a thermophilic anaerobe, can ferment cellulosic biomass to ethanol and organic acids, but low yield, low titer, and ethanol sensitivity remain barriers to industrial production. Here, we deleted the hypoxanthine phosphoribosyltransferase gene in ethanol tolerant strain of C. thermocellum adhE*(EA) in order to allow use of previously developed gene deletion tools, then deleted lactate dehydrogenase (ldh) to redirect carbon flux towards ethanol. Upon deletion of ldh, the adhE*(EA) ldh strain produced 30% more ethanol than wild type on minimal medium. The adhE*(EA) ldh strain retained tolerance to 5% v/v ethanol, resulting in an ethanol tolerant platform strain of C. thermocellum for future metabolic engineering efforts.

  5. Ethanol production from kitchen waste using the flocculating yeast Saccharomyces cerevisiae strain KF-7

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yue-Qin; Liu, Kai; An, Ming-Zhe; Morimura, Shigeru; Kida, Kenji [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Koike, Yoji [Tokyo Gas Co., Ltd., 1-7-7 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045 (Japan); Wu, Xiao-Lei [Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2008-11-15

    A process for producing ethanol from kitchen waste was developed in this study. The process consists of freshness preservation of the waste, saccharification of the sugars in the waste, continuous ethanol fermentation of the saccharified liquid, and anaerobic treatment of the saccharification residue and the stillage. Spraying lactic acid bacteria (LCB) on the kitchen waste kept the waste fresh for over 1 week. High glucose recovery (85.5%) from LCB-sprayed waste was achieved after saccharification using Nagase N-40 glucoamylase. The resulting saccharified liquid was used directly for ethanol fermentation, without the addition of any nutrients. High ethanol productivity (24.0 g l{sup -1} h{sup -1}) was obtained when the flocculating yeast strain KF-7 was used in a continuous ethanol fermentation process at a dilution rate of 0.8 h{sup -1}. The saccharification residue was mixed with stillage and treated in a thermophilic anaerobic continuous stirred tank reactor (CSTR); a VTS loading rate of 6 g l{sup -1} d{sup -1} with 72% VTS digestion efficiency was achieved. Using this process, 30.9 g ethanol, and 65.2 l biogas with 50% methane, was produced from 1 kg of kitchen waste containing 118.0 g total sugar. Thus, energy in kitchen waste can be converted to ethanol and methane, which can then be used as fuels, while simultaneously treating kitchen waste. (author)

  6. KINETIKA FERMENTASI ASAM ASETAT (VINEGAR OLEH BAKTERI Acetobacter aceti B 127 DARI ETANOL HASIL FERMENTASI LIMBAH CAIR PULP KAKAO [Kinetics of Acetic Acid (Vinegar Fermentation By Acetobacter aceti B127 from Ethanol Produced by Fermentation of Liquid Waste of Cacao Pulp

    Directory of Open Access Journals (Sweden)

    M. Supli Effendi

    2002-08-01

    Full Text Available Acetic acid concentration is one of vinegar’s quality parameter. Acetic acid concentration in vinegar is influenced by the activity of acetic acid bacteria. This research studied the kinetics of anaerobic fermentation of liquid waste of cacao pulp by Saccharomyces cerevisiae R60 to produce ethanol and the kinetics of acetic acid fermentation from ethanol by Acetobacter aceti B127. The kinetics of acetic acid fermentation from ethanol by Acetobacter aceti B127 can be used as a basic of bioprocess design for aerobic fermentation in general and acetic acid fermentation from ethanol by Acetobacter aceti B127 in particular. Fermentation medium used was liquid waste of cocoa pulp with sugar content of 12.85%, and the addition of sucrosa and urea. The parameter observed was growth of Saccharomyces cerevisiae R60 and Acetobacter aceti B127, and chemical analysis including concentration of ethanol, total sugar and acetic acid, content. The research result showed that the  value was 0.048 hour-1, Y P was 0.676, Qp value was 0.033 hour-, and KLa value was 0.344, QO2.Cx value was 0.125 (mgO2L-1jam-1, Y X was s O2 0.378 (x 108selmL-1g-1¬¬O2, and dCT was 0.150 mgL-1hour-1. Concentration of acetic acid in the product was 4.24% or 42.4 gL-1

  7. Ethanol-induced c-Fos expression in catecholamine- and neuropeptide Y-producing neurons in rat brainstem

    NARCIS (Netherlands)

    Thiele, TE; Cubero, [No Value; van Dijk, G; Mediavilla, C; Bernstein, IL; Thiele, Todd E.; Cubero, Inmaculada

    2000-01-01

    Background: Previous studies have used c-Fos-like immunoreactivity (cFLI) to examine the neuroanatomical location of cells that are activated in response to ethanol administration. However, the use of cFLI alone fails to reveal the phenotypical identity of cells. Tn the present study we used double-

  8. Ruthenibacterium lactatiformans gen. nov., sp. nov., an anaerobic, lactate-producing member of the family Ruminococcaceae isolated from human faeces.

    Science.gov (United States)

    Shkoporov, Andrei N; Chaplin, Andrei V; Shcherbakova, Victoria A; Suzina, Natalia E; Kafarskaia, Lyudmila I; Bozhenko, Vladimir K; Efimov, Boris A

    2016-08-01

    Two novel strains of Gram-stain-negative, rod-shaped, obligately anaerobic, non-spore-forming, non-motile bacteria were isolated from the faeces of healthy human subjects. The strains, designated as 585-1T and 668, were characterized by mesophilic fermentative metabolism, production of d-lactic acid, succinic acid and acetic acid as end products of d-glucose fermentation, prevalence of C18 : 1ω9, C18 : 1ω9 aldehyde, C16 : 0 and C16 : 1ω7c fatty acids, presence of glycine, glutamic acid, lysine, alanine and aspartic acid in the petidoglycan peptide moiety and lack of respiratory quinones. Whole genome sequencing revealed the DNA G+C content was 56.4-56.6 mol%. The complete 16S rRNA gene sequences of the two strains shared 91.7/91.6 % similarity with Anaerofilum pentosovorans FaeT, 91.3/91.2 % with Gemmiger formicilis ATCC 27749T and 88.9/88.8 % with Faecalibacterium prausnitzii ATCC 27768T. On the basis of chemotaxonomic and genomic properties it was concluded that the strains represent a novel species in a new genus within the family Ruminococcaceae, for which the name Ruthenibacterium lactatiformans gen. nov., sp. nov. is proposed. The type strain of Ruthenibacterium lactatiformans is 585-1T (=DSM 100348T=VKM B-2901T).

  9. Characterization of cellobiose fermentations to ethanol by yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Freer, S.N.; Detroy, R.W.

    1983-02-01

    Twenty-two different yeasts were screened for their ability to ferment both glucose and cellobiose. The fermentation characteristics of Candida lusitaniae (NRRL Y-5394) and C. wickerhamii (NRRL Y-2563) were selected for further study because their initial rate of ethanol production from cellobiose was faster than the other test cultures. C. lusitaniae produced 44 g/L ethanol from 90 g/L cellobiose after 5-7 days. When higher carbohydrate concentrations were employed, fermentation ceased when the ethanol concentration reached 45-60 g/L. C. lusitaniae exhibited barely detectable levels of BETA-glucosidase, even though the culture actively fermented cellobiose. C. wickerhamii produced ethanol from cellobiose at a rate equivalent to C. lusitaniae; however, once the ethanol concentration reached 20 g/L, fermentation ceased. Using p-nitrophenyl-BETA-D-glucopyranoside (pNPG) as substrate, BETA-glucosidase (3-5 U/mL) was detected when C. wickerhamii was grown anaerobically on glucose or cellobiose. About 35% of the BETA-glucosidase activity was excreted into the medium. The cell-associated activity was highest against pNPG and salicin. Approximately 100-fold less activity was detected with cellobiose as substrate. When employing these organisms in a simultaneous saccharification-fermentation of avicel, using Trichoderma reesei cellulase as the saccharifying agent, 10-30% more ethanol was produced by the two yeasts capable of fermenting cellobiose than by the control, Saccharomyces cerevisiae.

  10. The Produce of Methyl Ester from Crude Palm Oil (CPO) Using Heterogene Catalyst Ash of Chicken Bone (CaO) using Ethanol as Solvent

    Science.gov (United States)

    Sinaga, M. S.; Fauzi, R.; Turnip, J. R.

    2017-03-01

    Methyl Ester (methyl ester) is generally made by trans esterification using heterogeneous base catalyst. To simplify the separation, the heterogeneous catalyst is used, such as CaO, which in this case was isolated from chicken bones made by softening chicken bones and do calcination process. Some other important variables other than the selection of the catalyst is the catalyst dosage, molar ratio of ethanol to the CPO and the reaction temperature. The best result from this observe is at the molar ratio of ethanol to the CPO is 17: 1, the reaction temperature is 70 ° C and 7% catalyst (w.t) with reaction time for 7 hours at 500 rpm as a constant variable, got 90,052 % purity, so that this result does not get the standard requirements of biodiesel, because of the purity of the biodiesel standard temporary must be achieve > 96.5 %. This study aims to produce methyl ester yield with the influence of the reaction temperature, percent of catalyst and molar ratio of ethanol and CPO. The most influential variable is the temperature of the reaction that gives a significant yield difference of methyl ester produced. It’s been proven by the increasing temperature used will also significantly increase the yield of methyl ester.

  11. Competitiveness of Brazilian Sugarcane Ethanol Compared to US Corn Ethanol

    OpenAIRE

    Crago, Christine Lasco; Khanna, Madhu; Barton, Jason; Giuliani, Eduardo; Amaral, Weber

    2010-01-01

    Corn ethanol produced in the US and sugarcane ethanol produced in Brazil are the world’s leading sources of biofuel. Current US biofuel policies create both incentives and constraints for the import of ethanol from Brazil, and together with the competitiveness and greenhouse gas intensity of sugarcane ethanol compared to corn ethanol will determine the extent of these imports. This study analyzes the supply-side determinants of this competitiveness and compares the greenhouse gas intensity of...

  12. UV-C mutagenesis of Kluyveromyces marxianus NRRL Y-1109 strain for improved anaerobic growth at elevated temperature on pentose and hexose sugars

    Science.gov (United States)

    More robust industrial yeast strains from Kluyveromyces marxianus NRRL Y-1109 and have been produced using UV-C irradiation specifically for anaerobic conversion of lignocellulosic sugar streams to fuel ethanol at elevated temperature (45°C). This type of random mutagenesis offers the possibility o...

  13. Three alcohol dehydrogenase genes and one acetyl-CoA synthetase gene are responsible for ethanol utilization in Yarrowia lipolytica.

    Science.gov (United States)

    Gatter, Michael; Ottlik, Stephanie; Kövesi, Zsolt; Bauer, Benjamin; Matthäus, Falk; Barth, Gerold

    2016-10-01

    The non-conventional yeast Yarrowia lipolytica is able to utilize a wide range of different substrates like glucose, glycerol, ethanol, acetate, proteins and various hydrophobic molecules. Although most metabolic pathways for the utilization of these substrates have been clarified by now, it was not clear whether ethanol is oxidized by alcohol dehydrogenases or by an alternative oxidation system inside the cell. In order to detect the genes that are required for ethanol utilization in Y. lipolytica, eight alcohol dehydrogenase (ADH) genes and one alcohol oxidase gene (FAO1) have been identified and respective deletion strains were tested for their ability to metabolize ethanol. As a result of this, we found that the availability of ADH1, ADH2 or ADH3 is required for ethanol utilization in Y. lipolytica. A strain with deletions in all three genes is lacking the ability to utilize ethanol as sole carbon source. Although Adh2p showed by far the highest enzyme activity in an in vitro assay, the availability of any of the three genes was sufficient to enable a decent growth. In addition to ADH1, ADH2 and ADH3, an acetyl-CoA synthetase encoding gene (ACS1) was found to be essential for ethanol utilization. As Y. lipolytica is a non-fermenting yeast, it is neither able to grow under anaerobic conditions nor to produce ethanol. To investigate whether Y. lipolytica may produce ethanol, the key genes of alcoholic fermentation in S. cerevisiae, ScADH1 and ScPDC1, were overexpressed in an ADH and an ACS1 deletion strain. However, instead of producing ethanol, the respective strains regained the ability to use ethanol as single carbon source and were still not able to grow under anaerobic conditions.

  14. Giant cane (Arundo donax L.) can substitute traditional energy crops in producing energy by anaerobic digestion, reducing surface area and costs: A full-scale approach.

    Science.gov (United States)

    Corno, Luca; Lonati, Samuele; Riva, Carlo; Pilu, Roberto; Adani, Fabrizio

    2016-10-01

    Arundo donax L. (Giant cane) was used in a full-scale anaerobic digester (AD) plant (power of 380kWhEE) in partial substitution for corn to produce biogas and electricity. Corn substitution was made on a biomethane potential (BMP) basis so that A. donax L. after substitution accounted for 15.6% of the total mix-BMP (BMPmix) and corn for 66.6% BMPmix. Results obtained indicated that Giant cane was able to substitute for corn, reducing both biomass and electricity production costs, because of both higher biomass productivity (Mg total solid Ha(-1)) and lower biomass cost (€Ha(-1)). Total electricity biogas costs were reduced by 5.5%. The total biomass cost, the total surface area needed to produce the energy crop and the total cost of producing electricity can be reduced by 75.5%, 36.6% and 22%, by substituting corn completely with Giant cane in the mix fed to the full-scale plant.

  15. Production of cellulosic ethanol and enzyme from waste fiber sludge using SSF, recycling of hydrolytic enzymes and yeast, and recombinant cellulase-producing Aspergillus niger.

    Science.gov (United States)

    Cavka, Adnan; Alriksson, Björn; Rose, Shaunita H; van Zyl, Willem H; Jönsson, Leif J

    2014-08-01

    Bioethanol and enzymes were produced from fiber sludges through sequential microbial cultivations. After a first simultaneous saccharification and fermentation (SSF) with yeast, the bioethanol concentrations of sulfate and sulfite fiber sludges were 45.6 and 64.7 g/L, respectively. The second SSF, which included fresh fiber sludges and recycled yeast and enzymes from the first SSF, resulted in ethanol concentrations of 38.3 g/L for sulfate fiber sludge and 24.4 g/L for sulfite fiber sludge. Aspergillus niger carrying the endoglucanase-encoding Cel7B gene of Trichoderma reesei was grown in the spent fiber sludge hydrolysates. The cellulase activities obtained with spent hydrolysates of sulfate and sulfite fiber sludges were 2,700 and 2,900 nkat/mL, respectively. The high cellulase activities produced by using stillage and the significant ethanol concentrations produced in the second SSF suggest that onsite enzyme production and recycling of enzyme are realistic concepts that warrant further attention.

  16. Quantitative analysis of a high-rate hydrogen-producing microbial community in anaerobic agitated granular sludge bed bioreactors using glucose as substrate.

    Science.gov (United States)

    Hung, Chun-Hsiung; Lee, Kuo-Shing; Cheng, Lu-Hsiu; Huang, Yu-Hsin; Lin, Ping-Jei; Chang, Jo-Shu

    2007-06-01

    Fermentative H(2) production microbial structure in an agitated granular sludge bed bioreactor was analyzed using fluorescence in situ hybridization (FISH) and polymerase chain reaction-denatured gradient gel electrophoresis (PCR-DGGE). This hydrogen-producing system was operated at four different hydraulic retention times (HRTs) of 4, 2, 1, and 0.5 h and with an influent glucose concentration of 20 g chemical oxygen demand/l. According to the PCR-DGGE analysis, bacterial community structures were mainly composed of Clostridium sp. (possibly Clostridium pasteurianum), Klebsiella oxytoca, and Streptococcus sp. Significant increase of Clostridium/total cell ratio (68%) was observed when the reactor was operated under higher influent flow rate. The existence of Streptococcus sp. in the reactor became more important when operated under a short HRT as indicated by the ratio of Streptococcus probe-positive cells to Clostridium probe-positive cells changing from 21% (HRT 4 h) to 38% (HRT 0.5 h). FISH images suggested that Streptococcus cells probably acted as seeds for self-flocculated granule formation. Furthermore, combining the inspections with hydrogen production under different HRTs and their corresponding FISH analysis indicated that K. oxytoca did not directly contribute to H(2) production but possibly played a role in consuming O(2) to create an anaerobic environment for the hydrogen-producing Clostridium.

  17. Foreign matter contaminating ethanolic extract of propolis: a filth-test survey comparing products from small beekeeping farms and industrial producers.

    Science.gov (United States)

    Canale, Angelo; Cosci, Francesca; Canovai, Roberto; Giannotti, Paolo; Benelli, Giovanni

    2014-01-01

    Propolis is a resinous material collected by honeybees from the exudates and buds of plants. It has been widely used as a remedy by humans since ancient times, as well as for dietary supplements and cosmetics. European legislation recently focused on the quality and hygiene standards of foods, including beehive products, and extensive efforts have been made to avoid the presence of chemical contaminants, whilst in contrast few studies have investigated the magnitude of contamination by physical ones. We conducted a filth-test survey to evaluate the contamination of ethanolic extract of propolis by foreign materials. We also compared the abundance of contaminants in propolis extracts currently marketed by small beekeepers and industrial producers. We found different foreign materials in the ethanol extract of propolis. Contaminants differed in abundance, with a higher number of carbon particles (small beekeepers: 2.70 ± 0.63; industrial producers: 1.25 ± 0.49; mean (n/30 ml) ± SE) and other inorganic fragments (small beekeepers: 3.50 ± 0.31; industrial producers: 3.88 ± 1.11) than arthropod fragments (small beekeepers: 0.30 ± 0.21; industrial producers: 0.38 ± 0.26) and mammal hairs (small beekeepers: 0.10 ± 0.10; industrial producers: 0.38 ± 0.26). No differences in the abundance of foreign matter between propolis from small beekeepers and industrial producers were found, allowing us to point out an increased awareness by small producers of issues inherent in hygiene management. Contamination of propolis extracts by animal body parts, such as insect fragments, mites and rodent hairs, indicates poor management of hygiene in the production process and low effectiveness of the filtration phase. Animal-borne contaminants can act as pathogen vectors as well as introducing dangerous allergens when ingested or applied to human skin. The filth-test applied to ethanolic propolis extract quality control can be considered a promising tool, also for small beekeeper

  18. Kinetics Study on Solid State Batch Fermentation of Sweet Sorghum Stalks to Produce Ethanol%甜高粱秆分批固态发酵制乙醇动力学研究

    Institute of Scientific and Technical Information of China (English)

    王二强; 耿欣; 李十中; 李天成

    2009-01-01

    与液态发酵相比,甜高粱秆固态发酵制燃料乙醇具有能耗低、工艺设备简单和排放废物少等优点,近年来引起人们越来越多的注意.发酵动力学是工业放大过程中设计、操作和模拟优化的基础,文中基于实验室自行筛选的高效酵母菌株TSH-SC-1,对甜高粱秆分批固态发酵制乙醇的动力学进行了研究.根据固态发酵实验结果,分别采用Logistic方程、Leudeking-Piret方程和类似Luedeking-Piret方程,建立了描述固态发酵过程中菌体生长、底物消耗和产物生成的动力学模型方程,并利用最小二乘法对模型参数进行非线性拟合.结果表明,酒精作为酵母厌氧呼吸的能量代谢副产物,与菌体生长速率和菌体浓度都有关系,最大比生长速率为0.331/h,维持常数为0.0127 g(糖分)/[g(菌体干重)·h].模型预测值和实验值有良好的拟合性,菌体生长、糖分消耗、乙醇生成3条曲线的相关指数R2分别为0.83,0.996和0.994.表明该动力学模型可以较好地定量描述基于TSH-SC-1菌株的甜高梁秆乙醇固态发酵过程,对指导其下一步过程放大和生产具有实际意义.%Compared with liquid state fermentation, solid state fermentation of sweet sorghum stalks has such advantages as lower energy consumption, simpler process and equipment, and fewer waste water emissions, so it has drawn more and more attention recently. Fermentation kinetics models are the basis of design, operation, simulation and optimization during industrial scale up process. Based on selective yeast TSH-SC-1, we performed research on fermentation kinetics of solid state fermentation of sweet sorghum stalks to produce ethanol. The models for biomass, substrate consumption and product were established respectively based on Logitstic equation, Leudeking-Piret equation and Leudeking-Piret-like equation, and those parameters in the models were estimated by Non-linear Least Squares method. The results showed that

  19. Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium

    Science.gov (United States)

    Sparks, N. H. C.; Mann, S.; Bazylinski, D. A.; Lovley, D. R.; Jannasch, H. W.; Frankel, R. B.

    1990-04-01

    Intracellular crystals of magnetite synthesized by cells of the magnetotactic vibroid organism, MV-1, and extracellular crystals of magnetite produced by the non-magnetotactic dissimilatory iron-reducing bacterium strain GS-15, were examined using high-resolution transmission electron microscopy, electron diffraction and 57Fe Mo¨ssbauer spectroscopy. The magnetotactic bacterium contained a single chain of approximately 10 crystals aligned along the long axis of the cell. The crystals were essentially pure stoichiometric magnetite. When viewed along the crystal long axis the particles had a hexagonal cross-section whereas side-on they appeared as rectangules or truncated rectangles of average dimension, 53 × 35 nm. These findings are explained in terms of a three-dimensional morphology comprising a hexagonal prism of 110 faces which are capped and truncated by 111 end faces. Electron diffraction and lattice imaging studies indicated that the particles were structurally well-defined single crystals. In contrast, magnetite particles produced by the strain, GS-15 were irregular in shape and had smaller mean dimensions (14 nm). Single crystals were imaged but these were not of high structural perfection. These results highlight the influence of intracellular control on the crystallochemical specificity of bacterial magnetites. The characterization of these crystals is important in aiding the identification of biogenic magnetic materials in paleomagnetism and in studies of sediment magnetization.

  20. Direct Conversion of Plant Biomass to Ethanol by Engineered Caldicellulosiruptor bescii

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Daehwan [University of Georgia, Athens, GA; Cha, Minseok [University of Georgia, Athens, GA; Guss, Adam M [ORNL; Westpheling, Janet [University of Georgia, Athens, GA

    2014-01-01

    Ethanol is the most widely used renewable transportation biofuel in the United States, with the production of 13.3 billion gallons in 2012 [John UM (2013) Contribution of the Ethanol Industry to the Economy of the United States]. Despite considerable effort to produce fuels from lignocellulosic biomass, chemical pretreatment and the addition of saccharolytic enzymes before microbial bioconversion remain economic barriers to industrial deployment [Lynd LR, et al. (2008) Nat Biotechnol 26(2):169-172]. We began with the thermophilic, anaerobic, cellulolytic bacterium Caldicellulosiruptor bescii, which efficiently uses unpretreated biomass, and engineered it to produce ethanol. Here we report the direct conversion of switchgrass, a nonfood, renewable feedstock, to ethanol without conventional pretreatment of the biomass. This process was accomplished by deletion of lactate dehydrogenase and heterologous expression of a Clostridium thermocellum bifunctional acetaldehyde/alcohol dehydrogenase. Whereas wild-type C. bescii lacks the ability to make ethanol, 70% of the fermentation products in the engineered strain were ethanol [12.8 mM ethanol directly from 2% (wt/vol) switchgrass, a real-world substrate] with decreased production of acetate by 38% compared with wild-type. Direct conversion of biomass to ethanol represents a new paradigm for consolidated bioprocessing, offering the potential for carbon neutral, cost-effective, sustainable fuel production.

  1. Flow-FISH analysis and isolation of clostridial strains in an anaerobic semi-solid bio-hydrogen producing system by hydrogenase gene target.

    Science.gov (United States)

    Jen, Chang Jui; Chou, Chia-Hung; Hsu, Ping-Chi; Yu, Sian-Jhong; Chen, Wei-En; Lay, Jiunn-Jyi; Huang, Chieh-Chen; Wen, Fu-Shyan

    2007-04-01

    By using hydrogenase gene-targeted polymerase chain reaction (PCR) and reverse transcriptase PCR (RT-PCR), the predominant clostridial hydrogenase that may have contributed to biohydrogen production in an anaerobic semi-solid fermentation system has been monitored. The results revealed that a Clostridium pasteurianum-like hydrogenase gene sequence can be detected by both PCR and RT-PCR and suggested that the bacterial strain possessing this specific hydrogenase gene was dominant in hydrogenase activity and population. Whereas another Clostridium saccharobutylicum-like hydrogenase gene can be detected only by RT-PCR and suggest that the bacterial strain possessing this specific hydrogenase gene may be less dominant in population. In this study, hydrogenase gene-targeted fluorescence in situ hybridization (FISH) and flow cytometry analysis confirmed that only 6.6% of the total eubacterial cells in a hydrogen-producing culture were detected to express the C. saccharobutylicum-like hydrogenase, whereas the eubacteria that expressed the C. pasteurianum-like hydrogenase was 25.6%. A clostridial strain M1 possessing the identical nucleotide sequences of the C. saccharobutylicum-like hydrogenase gene was then isolated and identified as Clostridium butyricum based on 16S rRNA sequence. Comparing to the original inoculum with mixed microflora, either using C. butyricum M1 as the only inoculum or co-culturing with a Bacillus thermoamylovorans isolate will guarantee an effective and even better production of hydrogen from brewery yeast waste.

  2. The potential of bacteria isolated from ruminal contents of seaweed-eating North Ronaldsay sheep to hydrolyse seaweed components and produce methane by anaerobic digestion in vitro.

    Science.gov (United States)

    Williams, Allan G; Withers, Susan; Sutherland, Alastair D

    2013-01-01

    The production of methane biofuel from seaweeds is limited by the hydrolysis of polysaccharides. The rumen microbiota of seaweed-eating North Ronaldsay sheep was studied for polysaccharidic bacterial isolates degrading brown-seaweed polysaccharides. Only nine isolates out of 65 utilized >90% of the polysaccharide they were isolated on. The nine isolates (eight Prevotella spp. and one Clostridium butyricum) utilized whole Laminaria hyperborea extract and a range of seaweed polysaccharides, including alginate (seven out of nine isolates), laminarin and carboxymethylcellulose (eight out of nine isolates); while two out of nine isolates additionally hydrolysed fucoidan to some extent. Crude enzyme extracts from three of the isolates studied further had diverse glycosidases and polysaccharidase activities; particularly against laminarin and alginate (two isolates were shown to have alginate lyase activity) and notably fucoidan and carageenan (one isolate). In serial culture rumen microbiota hydrolysed a range of seaweed polysaccharides (fucoidan to a notably lesser degree) and homogenates of L. hyperborea, mixed Fucus spp. and Ascophyllum nodosum to produce methane and acetate. The rumen microbiota and isolates represent potential adjunct organisms or enzymes which may improve hydrolysis of seaweed components and thus improve the efficiency of seaweed anaerobic digestion for methane biofuel production.

  3. Quantitative fluorescent in-situ hybridization: a hypothesized competition mode between two dominant bacteria groups in hydrogen-producing anaerobic sludge processes.

    Science.gov (United States)

    Huang, C-L; Chen, C-C; Lin, C-Y; Liu, W-T

    2009-01-01

    Two hydrogen-producing continuous flow stirred tank reactors (CSTRs) fed respectively with glucose and sucrose were investigated by polymerase chain reaction-denatured gradient gel electrophoresis (PCR-DGGE) and fluorescent in-situ hybridization (FISH). The substrate was fed in a continuous mode decreased from hydraulic retention time (HRT) 10 hours to 6, 5, 4, 3, and 2 hours. Quantitative fluorescent in-situ hybridization (FISH) observations further demonstrated that two morphotypes of bacteria dominated both microbial communities. One was long rod bacteria which can be targeted either by Chis150 probe designed to hybridize the gram positive low G + C bacteria or the specific oligonucleotide probe Lg10-6. The probe Lg10-6, affiliated with Clostridium pasteurianum, was designed and then checked with other reference organisms. The other type, unknown group, which cannot be detected by Chis150 was curved rod bacteria. Notably, the population ratios of the two predominant groups reflected the different operational performance of the two reactors, such as hydrogen producing rates, substrate turnover rates and metabolites compositions. Therefore, a competition mode of the two dominant bacteria groups was hypothesized. In the study, 16S rRNA-based gene library of hydrogen-producing microbial communities was established. The efficiency of hydrogen yields was correlated with substrates (glucose or sucrose), HRT, metabolites compositions (acetate, propionate, butyrate and ethanol), thermal pre-treatment (seed biomass was heated at 100 degrees C for 45 minutes), and microbial communities in the bioreactor, not sludge sources (municipal sewage sludge, alcohol-processing sludge, or bean-processing sludge). The designed specific oligonucleotide probe Lg10-6 also provides us a useful and fast molecular tool to screen hydrogen-producing microbial communities in the future research.

  4. Automotive fuels from cellulose materials. [Production of ethanol and methane simultaneously

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, B.; Thornton, R.H.

    1980-01-01

    The results of this investigation showed that it was feasible to link the alcohol fermentation and anaerobic digestion processes into a system for the production of both alcohol and methane from organic substrates. The rate of ethanol production has been determined with respect to cell concentration and the prerequisite of both a high cell concentration and yeast recycling has been shown. Ethanol fermentation under reduced pressure has been shown to be feasible and to give higher ethanol productivities. Although optimization of fermentation has been attempted in this report, with due regard to energy conservation, for industrial application the cost of sugar will be the overriding factor. Cysewski and Wilke (7) pointed out that the cost of sugar overwhelms all other costs in the production of ethanol by fermetation: up to 70 to 80% of the total cost of the ethanol. Results showed that the resultant fermentation spent wash and extracted crop residues could be anaerobically digested to produce methane (and carbon dioxide). A hydraulic retention time of 10 days or longer was needed for effective digestion in which a reduction of chemical oxygen demand (COD) of up to 85% was achieved. Results indicated that further reduction in retention time may be possible if the microbial biomass could be either retained on support media, or recycled more effectively. A gas production rate of 4270 liters gas/m/sup 3/ culture/day at 11.6 day retention time was obtained with the anaerobic contact digester using fodder beet spent wash. Using the same substrate, results over short periods with the anaerobic filter system could produce up to 4.8 liters gas/litre culture/day. The high methane composition of this gas (75 to 80%) make this an attractive proposition.

  5. Study of the role of anaerobic metabolism in succinate production by Enterobacter aerogenes.

    Science.gov (United States)

    Tajima, Yoshinori; Kaida, Kenichi; Hayakawa, Atsushi; Fukui, Keita; Nishio, Yousuke; Hashiguchi, Kenichi; Fudou, Ryosuke; Matsui, Kazuhiko; Usuda, Yoshihiro; Sode, Koji

    2014-09-01

    Succinate is a core biochemical building block; optimizing succinate production from biomass by microbial fermentation is a focus of basic and applied biotechnology research. Lowering pH in anaerobic succinate fermentation culture is a cost-effective and environmentally friendly approach to reducing the use of sub-raw materials such as alkali, which are needed for neutralization. To evaluate the potential of bacteria-based succinate fermentation under weak acidic (pH Enterobacter aerogenes AJ110637, which rapidly assimilates glucose at pH 5.0. Based on the profile of anaerobic products, we constructed single-gene knockout mutants to eliminate the main anaerobic metabolic pathways involved in NADH re-oxidation. These single-gene knockout studies showed that the ethanol synthesis pathway serves as the dominant NADH re-oxidation pathway in this organism. To generate a metabolically engineered strain for succinate production, we eliminated ethanol formation and introduced a heterogeneous carboxylation enzyme, yielding E. aerogenes strain ΔadhE/PCK. The strain produced succinate from glucose with a 60.5% yield (grams of succinate produced per gram of glucose consumed) at pH <6.2 and anaerobic conditions. Thus, we showed the potential of bacteria-based succinate fermentation under weak acidic conditions.

  6. Research on the Ethanol Produced from the Simultaneous Glycation and Fermentation of Cellulose%纤维素同步糖化发酵生产乙醇

    Institute of Scientific and Technical Information of China (English)

    孙武举; 翁海波; 李萍萍; 晋果果

    2011-01-01

    [目的]利用微生物方法生产乙醇,从而替代化石能源.[方法]土曲霉M11利用纤维素为原料产酶并糖化纤维素成还原糖,利用酿酒酵母发酵生成乙醇.[结果]通过对土曲霉M11生长条件的研究,确定了土曲霉M11的最佳培养时间是3d,最佳接种量为200μl,最适培养湿度为80%,最适培养温度为45℃,最适培养pH为3.0,此条件下可获得最大的产酶量.通过对糖化过程的研究,确定了纤维素酶的最适糖化温度为55℃,最适pH为5.0,此条件下可获得较高的还原糖量,且在酸性条件下酶活力较高,具有很好的热稳定性.通过发酵.还原糖量占原材料干重的62.42%,产生的乙醇占原材料干重的21.36%.[结论]此方法可以应用于工业发酵生产乙醇,有利于保护环境、降低成本、提高社会效益,有很好的应用价值.%[Objective] The ethanol was produced by means of microbiological processes for the replacing approach of energy source. [ Method] The reducing sugar was produced from the cellulose, which was saccharified by the enzyme that was from the cellulose as raw material was acted by Aspergillus teneus-Mll,,and the ethanol was produced based on the fermentation of yeast. [ Result] The experimental result indicated that the optimal culture condition of Aspergillus terreus-Mll growth was that the best time was 3 days,the best inoculation was 200 μl,the optimal culture humidity was 80% ,the optimum temperature was 45℃ and the optimal culture pH was 3.0,under which condition,the largest amount of enzyme-producing was available. And the experiment in the glycation process of cellulase showed the optimal temperature was 55 ℃ and the optimum pH was 5.0,under which condition the production of reducing sugar,which enzyme activity under acidic condition was higher and had good thermal stability,was relevantly high. By fermentation,the reduced sugar accounted for 62.42% of the dry weight of raw material and the produced ethanol

  7. The use of a thermotolerant fermentative Kluyveromyces marxianus IMB3 yeast strain for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Banat, I.M. [Univ. of the United Arab Emirates, Al-Ain (United Arab Emirates). Dept. of Biolology; Singh, D. [Haryana Agriculture Univ., Hisar (India). Dept. of Microbiology; Marchant, R. [Ulster Univ. (United Kingdom). School of Applied Biological and Chemical Sciences

    1996-12-31

    An investigation was carried out on the growth and ethanol production of a novel thermotolerant ethanol-producing Kluyveromyces marxianus IMB3 yeast strain. It grew aerobically on glucose, lactose, cellobiose, xylose and whey permeate and fermented all the above carbon sources to ethanol at 45 C. This strain was capable of growing under anaerobic chemostat fermentation conditions at 45 C and a dilution rate of 0.15 h{sup -1} and produced {<=}0.9 g/l biomass and 1.8% (v/v) ethanol. An increase in biomass (up to 10.0 g/l) and ethanol (up to 4.3% v/v at 45 C and 7.7% v/v at 40 C) were achieved by applying a continuous two-stage fermentation in sequence (one aerobic and one anerobic stage) or a two-stage anaerobic fermentation with cell recycling. Potential applications, involving alcohol production systems, for use in dairy and wood related industries, were discussed. (orig.)

  8. Mechanism and controlling strategy of the production and accumulation of propionic acid for anaerobic wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    任南琪; 李建政; 赵丹; 陈晓蕾

    2002-01-01

    The production and accumulation of propionic acid affect significantly anaerobic wastewater treatment system, but the reasons are not approached until now. Based on the results of continuous-flow tests and the analysis of biochemistry and ecology, two mechanisms of producing propionic acid have been put forward. It is demonstrated that the reasons of propionic acid production and accumulation are not caused by higher hydrogen partial pressure. The combination of specific pH value and ORP is the ecological factor affecting propionic acid production, and the equilibrium regulation of NADH/NAD+ ratio in cells is the physiological factor. Meanwhile, it is put forward that using the two-phase anaerobic treatment process and the ethanol type fermentation in anaerobic reactor to avoid propionic acid accumulation are efficient methods.

  9. Environmental Releases in the Fuel Ethanol Industry

    Science.gov (United States)

    Corn ethanol is the largest produced alternate biofuel in the United States. More than 13 billion gallons of ethanol were produced in 2010. The projected corn ethanol production is 15 billion gallons by 2015. With increased production of ethanol, the environmental releases from e...

  10. Anaerobic bacteria

    Science.gov (United States)

    Brook I, Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 297. Stedman's Online ...

  11. Characterization of cellobiose fermentations to ethanol by yeasts. [Candida lusitaniae and C. wickerhamii

    Energy Technology Data Exchange (ETDEWEB)

    Freer, S.N.; Detroy, R.W.

    1983-02-01

    Twenty-two different yeasts were screened for their ability to ferment both glucose and cellobiose. The fermentation characteristics of Candida lusitaniae (NRRL Y-5394) and C. wickerhamii (NRRL Y-2563) were selected for further study because their initial rate of ethanol production from cellobiose was faster than the other test culture. C. lusitaniae produced 44 g/L ethanol from 90 g/L cellobiose after 5-7 days. When carbohydrate concentrations were employed, fermentation ceased when the ethanol concentration reached 45-60 g/L. C. lusitaniae exhibited barely detectable levels of beta-glucosidase, even though the culture actively fermented cellobiose. C. wickerhamii produced ethanol from cellobiose at a rate equivalent to C. lusitaniae; however, once the ethanol concentration reached 20 g/L, fermentation ceased. Using p-nitrophenyl-beta-D-glucopyranoside (pNPG) as substrate, beta- glucosidase (3-5 U/mL) was detected when C. wickerhamii was grown anaerobically on glucose or cellobiose. About 35% of the beta-glucosidase activity was excreted into the medium. The cell-associated activity was highest against pNPG and salicin. Approximately 100-fold less activity was detected with cellobiose as substrate. When employing these organisms in a simultaneous saccharification-fermentation of Avicel, using Trichoderma reesei cellulase as the saccharifying agent 10-30% more ethanol was produced by the two yeasts capable of fermenting cellobiose than by the control, Saccharomyces cerevisiae. (Refs. 27).

  12. Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shihui [ORNL; Tschaplinski, Timothy J [ORNL; Engle, Nancy L [ORNL; Carroll, Sue L [ORNL; Martin, S L. [North Carolina State University; Davison, Brian H [ORNL; Palumbo, Anthony Vito [ORNL; Brown, Steven D [ORNL

    2009-01-01

    Zymomonas mobilis ZM4 (ZM4) produces near theoretical yields of ethanol with high specific productivity and recombinant strains are able to ferment both C-5 and C-6 sugars. Z. mobilis performs best under anaerobic conditions, but is an aerotolerant organism. However, the genetic and physiological basis of ZM4's response to various stresses is understood poorly. In this study, transcriptomic and metabolomic profiles for ZM4 aerobic and anaerobic fermentations were elucidated by microarray analysis and by high-performance liquid chromatography (HPLC), gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) analyses. In the absence of oxygen, ZM4 consumed glucose more rapidly, had a higher growth rate, and ethanol was the major end-product. Greater amounts of other end-products such as acetate, lactate, and acetoin were detected under aerobic conditions and at 26 h there was only 1.7% of the amount of ethanol present aerobically as there was anaerobically. In the early exponential growth phase, significant differences in gene expression were not observed between aerobic and anaerobic conditions via microarray analysis. HPLC and GC analyses revealed minor differences in extracellular metabolite profiles at the corresponding early exponential phase time point. Differences in extracellular metabolite profiles between conditions became greater as the fermentations progressed. GC-MS analysis of stationary phase intracellular metabolites indicated that ZM4 contained lower levels of amino acids such as alanine, valine and lysine, and other metabolites like lactate, ribitol, and 4-hydroxybutanoate under anaerobic conditions relative to aerobic conditions. Stationary phase microarray analysis revealed that 166 genes were significantly differentially expressed by more than two-fold. Transcripts for Entner-Doudoroff (ED) pathway genes (glk, zwf, pgl, pgk, and eno) and gene pdc, encoding a key enzyme leading to ethanol production, were at least 30-fold more

  13. Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations

    Directory of Open Access Journals (Sweden)

    Palumbo Anthony V

    2009-01-01

    Full Text Available Abstract Background Zymomonas mobilis ZM4 (ZM4 produces near theoretical yields of ethanol with high specific productivity and recombinant strains are able to ferment both C-5 and C-6 sugars. Z. mobilis performs best under anaerobic conditions, but is an aerotolerant organism. However, the genetic and physiological basis of ZM4's response to various stresses is understood poorly. Results In this study, transcriptomic and metabolomic profiles for ZM4 aerobic and anaerobic fermentations were elucidated by microarray analysis and by high-performance liquid chromatography (HPLC, gas chromatography (GC and gas chromatography-mass spectrometry (GC-MS analyses. In the absence of oxygen, ZM4 consumed glucose more rapidly, had a higher growth rate, and ethanol was the major end-product. Greater amounts of other end-products such as acetate, lactate, and acetoin were detected under aerobic conditions and at 26 h there was only 1.7% of the amount of ethanol present aerobically as there was anaerobically. In the early exponential growth phase, significant differences in gene expression were not observed between aerobic and anaerobic conditions via microarray analysis. HPLC and GC analyses revealed minor differences in extracellular metabolite profiles at the corresponding early exponential phase time point. Differences in extracellular metabolite profiles between conditions became greater as the fermentations progressed. GC-MS analysis of stationary phase intracellular metabolites indicated that ZM4 contained lower levels of amino acids such as alanine, valine and lysine, and other metabolites like lactate, ribitol, and 4-hydroxybutanoate under anaerobic conditions relative to aerobic conditions. Stationary phase microarray analysis revealed that 166 genes were significantly differentially expressed by more than two-fold. Transcripts for Entner-Doudoroff (ED pathway genes (glk, zwf, pgl, pgk, and eno and gene pdc, encoding a key enzyme leading to ethanol

  14. Increased ethanol production with UV-C mutagenized Kluyveromyces marxianus capable of anaerobic growth at elevated temperature on pentose and hexose sugars using fermentation strategies with corn pericarp hydrolysates

    Science.gov (United States)

    Several novel Kluyveromyces marxianus strains were obtained by irradiation with UV-C (UV-C 234nm) to achieve an 80% mortality rate. The surviving cells were subsequently grown anaerobically for 5 months at 46C and resulted in two mutagenized strains that were able to grow anaerobically at elevated ...

  15. Elementary Flux Mode Analysis for Optimized Ethanol Yield in Anaerobic Fermentation of Glucose with Saccharomyces cerevisiae%利用基元模式分析酿酒酵母的葡萄糖厌氧发酵过程以提高己醇产量

    Institute of Scientific and Technical Information of China (English)

    许晓菁; 曹利民; 陈询

    2008-01-01

    Elementary flux mode (EFM) analysis was used in the metabolic analysis of central carbon metabolism in Saccharomyces cerevisiae based on constructed cellular network. Calculated from the metabolic model, the ethanol-producing pathway No. 37 furthest converts the substrate into ethanol among the 78 elementary flux modes.The in silico metabolic phenotypes predicted based on this analysis fit well with the fermentation performance of the engineered strains, KAM3 and KAM11, which confirmed that EFM analysis is valid to direct the construction of Saccharomyces cerevisiae engineered strains, to increase the ethanol yield.

  16. Economic viability of anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Wellinger, A. [INFOENERGIE, Ettenhausen (Switzerland)

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  17. 多种原料燃料乙醇生产技术%The Technology of Fuel Ethanol Produced From Different Raw Materials

    Institute of Scientific and Technical Information of China (English)

    高文中; 汪成美; 闫莉; 马传路; 赵淑杰; 吕惠生

    2014-01-01

    Fuel ethanolis the most successful alternative liquid transportation fuel by far. It will take prominently part in the renewable fuel market. In this paper, the mainstream production technologies and the technical conditions of fuel ethanol produced from different raw materials such as corn, sugar cane, cassava and cellulosic materials were reviewed. Each technological important indexes such as steam consumption were put forward and discussed. What's more, Suggestions of technology and industry development were put forward.%燃料乙醇是迄今为止最为成功的液体替代运输燃料,其在可再生燃料市场中将占重要地位。综述了玉米,甘蔗,木薯,纤维素等不同原料燃料乙醇目前主流的生产工艺,以及我国在相关技术领域的技术状况及产业化水平,并给出了各工艺代表性装置蒸汽消耗等标志生产水平的重要指标,进行了讨论比较,提出了多种原料燃料乙醇技术及产业发展建议。

  18. Co-production of ethanol, biogas, protein fodder and natural fertilizer in organic farming--evaluation of a concept for a farm-scale biorefinery.

    Science.gov (United States)

    Oleskowicz-Popiel, Piotr; Kádár, Zsófia; Heiske, Stefan; Klein-Marcuschamer, Daniel; Simmons, Blake A; Blanch, Harvey W; Schmidt, Jens Ejbye

    2012-01-01

    The addition of a biorefinery to an organic farm was investigated, where ethanol was produced from germinated rye grains and whey, and the effluent was separated into two streams: the protein-rich solid fraction, to be used as animal feed, and the liquid fraction, which can be co-digested with clover grass silage to produce biogas. A method for ethanol production from rye was applied by utilizing inherent amylase activity from germination of the seed. Biogas potential of ethanol fermentation effluent was measured through anaerobic digestion trials. The effluent from the trials was assumed to serve as natural fertilizer. A technoeconomic analysis was also performed; total capital investment was estimated to be approximately 4 M USD. Setting a methane selling price according to available incentives for "green electricity" (0.72 USD/m(3)) led to a minimum ethanol selling price of 1.89 USD/L (project lifetime 25 yr, at a discount rate 10%).

  19. Metabolic engineering of ethanol production in Thermoanaerobacter mathranii

    Energy Technology Data Exchange (ETDEWEB)

    Shou Yao

    2010-11-15

    Strain BG1 is a xylanolytic, thermophilic, anaerobic, Gram-positive bacterium originally isolated from an Icelandic hot spring. The strain belongs to the species Thermoanaerobacter mathranii. The strain ferments glucose, xylose, arabinose, galactose and mannose simultaneously and produces ethanol, acetate, lactate, CO{sub 2}, and H2 as fermentation end-products. As a potential ethanol producer from lignocellulosic biomass, tailor-made BG1 strain with the metabolism redirected to produce ethanol is needed. Metabolic engineering of T. mathranii BG1 is therefore necessary to improve ethanol production. Strain BG1 contains four alcohol dehydrogenase (ADH) encoding genes. They are adhA, adhB, bdhA and adhE encoding primary alcohol dehydrogenase, secondary alcohol dehydrogenase, butanol dehydrogenase and bifunctional alcohol/acetaldehyde dehydrogenase, respectively. The presence in an organism of multiple alcohol dehydrogenases with overlapping specificities makes the determination of the specific role of each ADH difficult. Deletion of each individual adh gene in the strain revealed that the adhE deficient mutant strain fails to produce ethanol as the fermentation product. The bifunctional alcohol/acetaldehyde dehydrogenase, AdhE, is therefore proposed responsible for ethanol production in T. mathranii BG1, by catalyzing sequential NADH-dependent reductions of acetyl-CoA to acetaldehyde and then to ethanol under fermentative conditions. Moreover, AdhE was conditionally expressed from a xylose-induced promoter in a recombinant strain (BG1E1) with a concomitant deletion of a lactate dehydrogenase. Over-expression of AdhE in strain BG1E1 with xylose as a substrate facilitates the production of ethanol at an increased yield. With a cofactor-dependent ethanol production pathway in T. mathranii BG1, it may become crucial to regenerate cofactor to increase the ethanol yield. Feeding the cells with a more reduced carbon source, such as mannitol, was shown to increase ethanol

  20. Production of functional killer protein in batch cultures upon a shift from aerobic to anaerobic conditions

    Directory of Open Access Journals (Sweden)

    Gildo Almeida da Silva

    2011-06-01

    Full Text Available The aim of this work was to study the production of functional protein in yeast culture. The cells of Saccharomyces cerevisiae Embrapa 1B (K+R+ killed a strain of Saccharomyces cerevisiae Embrapa 26B (K-R-in grape must and YEPD media. The lethal effect of toxin-containing supernatant and the effect of aeration upon functional killer production and the correlation between the products of anaerobic metabolism and the functional toxin formation were evaluated. The results showed that at low sugar concentration, the toxin of the killer strain of Sacch. cerevisiae was only produced under anaerobic conditions . The system of killer protein production showed to be regulated by Pasteur and Crabtree effects. As soon as the ethanol was formed, the functional killer toxin was produced. The synthesis of the active killer toxin seemed to be somewhat associated with the switch to fermentation process and with concomitant alcohol dehydrogenase (ADH activity.

  1. Dynamic research on the anaerobic treatment of ceIIuIosic ethanoI wastewater producing methane%厌氧处理纤维素乙醇废水产甲烷动态研究

    Institute of Scientific and Technical Information of China (English)

    张蕾; 郭宏山; 李宝忠; 陈天佐; 朱卫

    2016-01-01

    Cellulosic ethanol wastewater as the researc h target,the BMP test is carried out,under the following conditions:the mass ratio of substrate COD/inoculum VSS are 0.13,0.27,0.40,0.54,respectively,and the initial COD are 5,10,15,20 g/L,respectively. The results show that after a 30 day anaerobic fermentation,the BMP test results of various samples are 37.7,81.2,114.2,153.0 mL/gVSS,respectively,and anaerobic biodegradability RA is above 80%. The modified Gompertz model is used for the nonlinear fitting of cumulative methane production. The model can exactly predict the maximum methane production velocity,anaerobic starting lag phase,and suitable residence time,under different initial organic loading. After the BMP test,the COD removing rate obtained is higher than 80%,and both pH and alkalinity are improved remarkably.%以纤维素乙醇废水为研究对象,在底物COD与接种物VSS的质量比分别为0.13、0.27、0.40、0.54,初始COD分别为5、10、15、20 g/L的条件下进行了BMP测试。结果表明:厌氧发酵30 d后各样品的BMP测试结果分别为37.7、81.2、114.2、153.0 mL/gVSS,厌氧生物可降解率RA在80%以上。利用修正的Gompertz模型对累积产甲烷量进行非线性拟合,模型可以准确地预测出不同初始有机负荷下的最大产甲烷速率、厌氧启动延滞期以及合适的停留时间。 BMP测试结束后,测得COD去除率达到80%以上,pH和碱度均显著提高。

  2. The anaerobic digestion process

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States); Boone, D.R. [Oregon Graduate Inst., Portland, OR (United States)

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  3. Re-engineering bacteria for ethanol production

    Science.gov (United States)

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  4. Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures

    Energy Technology Data Exchange (ETDEWEB)

    Hanqing Yu; Zhenhu Zhu [University of Science and Technology, Hefei, Anhui (China). School of Chemistry and Materials; Wenrong Hu [Shandong Univ., Jinan (China). School of Resources and Environmental Engineering; Haisheng Zhang [Jingzi Wine Distillery Company, Shandong (China)

    2002-12-01

    Continuous production of hydrogen from the anaerobic acidogenesis of a high-strength rice winery wastewater by a mixed bacterial flora was demonstrated. The experiment was conducted in a 3.0-l upflow reactor to investigate individual effects of hydraulic retention time (HRT) (2-24 h), chemical oxygen demand (COD) concentration in wastewater (14-36 g COD/l), pH (4.5-6.0) and temperature (20-55{sup o}C) on bio-hydrogen production from the wastewater. The biogas produced under all test conditions was composed of mostly hydrogen (53-61%) and carbon dioxide (37-45%), but contained no detectable methane. Specific hydrogen production rate increased with wastewater concentration and temperature, but with a decrease in HRT. An optimum hydrogen production rate of 9.33 lH{sub 2}/gVSSd was achieved at an HRT of 2 h, COD of 34 g/l, pH 5.5 and 55{sup o}C. The hydrogen yield was in the range of 1.37-2.14 mol/mol-hexose. In addition to acetate, propionate and butyrate, ethanol was also present in the effluent as an aqueous product. The distribution of these compounds in the effluent was more sensitive to wastewater concentration, pH and temperature, but was less sensitive to HRT. This upflow reactor was shown to be a promising biosystem for hydrogen production from high-strength wastewaters by mixed anaerobic cultures. (Author)

  5. Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation.

    Science.gov (United States)

    Nissen, T L; Kielland-Brandt, M C; Nielsen, J; Villadsen, J

    2000-01-01

    Ethanol is still one of the most important products originating from the biotechnological industry with respect to both value and amount. In addition to ethanol, a number of byproducts are formed during an anaerobic fermentation of Saccharomyces cerevisiae. One of the most important of these compounds, glycerol, is produced by yeast to reoxidize NADH, formed in synthesis of biomass and secondary fermentation products, to NAD+. The purpose of this study was to evaluate whether a reduced formation of surplus NADH and an increased consumption of ATP in biosynthesis would result in a decreased glycerol yield and an increased ethanol yield in anaerobic cultivations of S. cerevisiae. A yeast strain was constructed in which GLN1, encoding glutamine synthetase, and GLT1, encoding glutamate synthase, were overexpressed, and GDH1, encoding the NADPH-dependent glutamate dehydrogenase, was deleted. Hereby the normal NADPH-consuming synthesis of glutamate from ammonium and 2-oxoglutarate was substituted by a new pathway in which ATP and NADH were consumed. The resulting strain TN19 (gdh1-A1 PGK1p-GLT1 PGK1p-GLN1) had a 10% higher ethanol yield and a 38% lower glycerol yield compared to the wild type in anaerobic batch fermentations. The maximum specific growth rate of strain TN19 was slightly lower than the wild-type value, but earlier results suggest that this can be circumvented by increasing the specific activities of Gln1p and Glt1p even more. Thus, the results verify the proposed concept of increasing the ethanol yield in S. cerevisiae by metabolic engineering of pathways involved in biomass synthesis.

  6. Anaerobic biodegradability of macropollutants

    DEFF Research Database (Denmark)

    Angelidaki, Irini

    2002-01-01

    A variety of test procedures for determination of anaerobic biodegradability has been reported. This paper reviews the methods developed for determination of anaerobic biodegradability of macro-pollutants. Anaerobic biodegradability of micro-pollutants is not included. Furthermore, factors import...

  7. Development of corn silk as a biocarrier for Zymomonas mobilis biofilms in ethanol production from rice straw.

    Science.gov (United States)

    Todhanakasem, Tatsaporn; Tiwari, Rashmi; Thanonkeo, Pornthap

    2016-01-01

    Z. mobilis cell immobilization has been proposed as an effective means of improving ethanol production. In this work, polystyrene and corn silk were used as biofilm developmental matrices for Z. mobilis ethanol production with rice straw hydrolysate as a substrate. Rice straw was hydrolyzed by dilute sulfuric acid (H2SO4) and enzymatic hydrolysis. The final hydrolysate contained furfural (271.95 ± 76.30 ppm), 5-hydroxymethyl furfural (0.07 ± 0.00 ppm), vanillin (1.81 ± 0.00 ppm), syringaldehyde (5.07 ± 0.83 ppm), 4-hydroxybenzaldehyde (4-HB) (2.39 ± 1.20 ppm) and acetic acid (0.26 ± 0.08%). Bacterial attachment or biofilm formation of Z. mobilis strain TISTR 551 on polystyrene and delignified corn silk carrier provided significant ethanol yields. Results showed up to 0.40 ± 0.15 g ethanol produced/g glucose consumed when Z. mobilis was immobilized on a polystyrene carrier and 0.51 ± 0.13 g ethanol produced/g glucose consumed when immobilized on delignified corn silk carrier under batch fermentation by Z. mobilis TISTR 551 biofilm. The higher ethanol yield from immobilized, rather than free living, Z. mobilis could possibly be explained by a higher cell density, better control of anaerobic conditions and higher toxic tolerance of Z. mobilis biofilms over free cells.

  8. Experimental Research on Anaerobic Digestion of Chlorella to Produce Methane%小球藻高浓度厌氧消化产甲烷实验研究

    Institute of Scientific and Technical Information of China (English)

    王楠楠

    2015-01-01

    The chlorella that has been used mostly in microalgae researches,was selected to study its productivity of methane. Biochemical Methane Potential test (BMP) indicated that the methane yield reached 461 mL/g. Microalgae biomass was easily degraded by anaerobic microorganisms,and organics (including microalgae oils,proteins,carbohydrates and other cellular components,and the liquid organic) can be completely converted into biogas. Under semi-continuous operation condition with theorganic loading rate of 2.25 kg/(m3·d) in CSTR reactor,the gas production rate of chlorella reached 1.1 m3/(m3·d),with methane content around 62% and the organic matter degradation rate around 57.7%, respectively. Chlorella was easily degraded under anaerobic conditions,and the process was stable. The entire system had a high energy conversion efficiency.%选择了微藻研究中使用较多的小球藻,对其产甲烷性能进行了研究。厌氧消化产甲烷潜能(BMP)实验结果表明:小球藻厌氧消化产甲烷潜势达到461 mL/g。微藻生物质容易被厌氧微生物降解,能够将有机质(包括微藻油脂、蛋白质、糖类等细胞成分以及藻液中有机物)充分转化成沼气。半连续实验结果表明:运行 CSTR 反应器负荷率在2.25 kg/(m3·d)条件下,小球藻厌氧消化容积产气率达到1.1 m3/(m3·d),沼气中甲烷平均含量为62%,有机物 VS 降解率57.7%。小球藻易于在厌氧条件下降解且工艺运行稳定,整个系统具有较高的能源转化效率。

  9. 生产纤维素乙醇的原生质体融合菌株的构建%CONSTRUCTION OF A FUSANT STRAIN BY PROTOPLAST FUSION FOR ETHANOL PRODUCE FROM LIGNICELLULOSIC MATERIAL

    Institute of Scientific and Technical Information of China (English)

    曹萌; 宫彦婷; 张宜; 门珣; 杨非; 杨秀山; 田沈

    2011-01-01

    To obtain a strain that is able to produce ethanol from lignocellulosic materials with efficient toxin-tolerant, ethanol-tolerant, and utilization of xylose, a hybridized strain was constructed by the protoplast fusion technique, Saccharomyces cerevisiae Y5 and Pichia stipitis CBS6054 served as parents. The fusant named Y10-F was obtained that able to convert xylose into ethanol with satisfied metabolism of inhibitors. Y10-F consumed 58. 8% xylose with ethanol concentration of 5.2g/L in 96h. Y10-F was able to tolerate 6g/L and 8g/L ethanol, which was better than the parents. In medium containing 3. Og/L furfural, the prolonged lag phase of cell growth reduced to 6h and 18h compared to Y5 and CBS6054, respectively. When the enzymatic hydrolysate from steam-explored corn stover without detoxification by washing used for ethanol production, the strain Y10-F expressed sufficient abilities of toxin-tolerant and ethanol production%为了获得耐发酵抑制剂、耐乙醇并利用木糖的纤维素乙醇生产菌种,以实验室保藏菌种Saccharomyces cerevisiae Y5和Pichia stipitis CBS6054为亲本,采用双亲灭活原生质体融合技术,选育出了共代谢葡萄糖和木糖,且耐受发酵抑制剂的酵母菌株Y10-F.该菌在以木糖为唯一碳源的培养基中培养96h,木糖的利用率达到58.8%,乙醇浓度为5.2g/L.在外加6.0、8.0g/L乙醇的培养液中,Y10-F的生长优于亲株.外加3.0g/L的糠醛时,Y10-F的延滞期较亲本Y5和CBS6054分别缩短了6h和18h.对融合菌株Y10-F进行了汽爆法预处理玉米秸秆的酶解液发酵实验,具有较好的耐毒和产乙醇能力.

  10. Developing Biofuel in the Teaching Laboratory: Ethanol from Various Sources

    Science.gov (United States)

    Epstein, Jessica L.; Vieira, Matthew; Aryal, Binod; Vera, Nicolas; Solis, Melissa

    2010-01-01

    In this series of experiments, we mimic a small-scale ethanol plant. Students discover that the practical aspects of ethanol production are determined by the quantity of biomass produced per unit land, rather than the volume of ethanol produced per unit of biomass. These experiments explore the production of ethanol from different sources: fruits,…

  11. Anaerobic Thermophiles

    Directory of Open Access Journals (Sweden)

    Francesco Canganella

    2014-02-01

    Full Text Available The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong

  12. Enhancement of anaerobic hydrogen production by iron and nickel

    Energy Technology Data Exchange (ETDEWEB)

    Karadag, Dogan; Puhakka, Jaakko A. [Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere (Finland)

    2010-08-15

    The effects of iron and nickel on hydrogen (H{sub 2}) production were investigated in a glucose-fed anaerobic Continuous Flow Stirred Tank Reactor (ACSTR). Both iron and nickel improved the reactor performance and H{sub 2} production was enhanced by 71% with the sole iron or nickel supplementation. In all cases, H{sub 2} production yield was increased by lowering both ethanol and total metabolites production and increasing butyrate production. Furthermore, iron and nickel slightly increased biomass production while glucose degradation decreased with the supplementation of nickel. Dynamic changes in bacterial composition as analyzed by 16S rRNA gene-targeted denaturing gradient gel electrophoresis (DGGE) revealed that hydrogen was produced mainly by Clostridium butyricum strains and that nickel addition decreased the microbial diversity. (author)

  13. Metabolic engineering of Escherichia coli for ethanol production without foreign genes

    Science.gov (United States)

    Kim, Youngnyun

    Worldwide dependence on finite petroleum-based energy necessitates alternative energy sources that can be produced from renewable resources. A successful example of an alternative transportation fuel is bioethanol, produced by microorganisms, from corn starch that is blended with gasoline. However, corn, currently the main feedstock for bioethanol production, also occupies a significant role in human food and animal feed chains. As more corn is diverted to bioethanol, the cost of corn is expected to increase with an increase in the price of food, feed and ethanol. Using lignocellulosic biomass for ethanol production is considered to resolve this problem. However, this requires a microbial biocatalyst that can ferment hexoses and pentoses to ethanol. Escherichia coli is an efficient biocatalyst that can use all the monomeric sugars in lignocellulose, and recombinant derivatives of E. coli have been engineered to produce ethanol as the major fermentation product. In my study, ethanologenic E. coli strains were isolated from a ldhA-, pflB- derivative without introduction of foreign genes. These isolates grew anaerobically and produced ethanol as the main fermentation product. The mutation responsible for anaerobic growth and ethanol production was mapped in the lpdA gene and the mutation was identified as E354K in three of the isolates tested. Another three isolates carried an lpdA mutation, H352Y. Enzyme kinetic studies revealed that the mutated form of the dihydrolipoamide dehydrogenase (LPD) encoded by the lpdA was significantly less sensitive to NADH inhibition than the native LPD. This reduced NADH sensitivity of the mutated LPD was translated into lower sensitivity to NADH of the pyruvate dehydrogenase complex in strain SE2378. The net yield of 4 moles of NADH and 2 moles of acetyl-CoA per mole of glucose produced by a combination of glycolysis and PDH provided a logical basis to explain the production of 2 moles of ethanol per glucose. The development of E

  14. Reduction of hematite with ethanol to produce magnetic nanoparticles of Fe3O4, Fe1 - x O or Fe0 coated with carbon

    Science.gov (United States)

    Tristão, Juliana C.; Ardisson, José D.; Sansiviero, Maria Terezinha C.; Lago, Rochel M.

    2010-01-01

    The production of magnetic nanoparticles of Fe3O4 or Fe0 coated with carbon and carbon nanotubes was investigated by the reduction of hematite with ethanol in a Temperature Programmed Reaction up to 950°C. XRD and Mössbauer measurements showed after reaction at 350°C the partial reduction of hematite to magnetite. At 600°C the hematite is completely reduced to magnetite (59%), wüstite (39%) and metallic iron (7%). At higher temperatures, carbide and metallic iron are the only phases present. TG weight losses suggested the formation of 3-56 wt.% carbon deposits after reaction with ethanol. It was observed by SEM images a high concentration of nanometric carbon filaments on the material surface. BET analyses showed a slight increase in the surface area after reaction. These materials have potential application as catalyst support and removal of spilled oil contaminants.

  15. Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum.

    Science.gov (United States)

    Thompson, R Adam; Layton, Donovan S; Guss, Adam M; Olson, Daniel G; Lynd, Lee R; Trinh, Cong T

    2015-11-01

    Clostridium thermocellum is an anaerobic, Gram-positive, thermophilic bacterium that has generated great interest due to its ability to ferment lignocellulosic biomass to ethanol. However, ethanol production is low due to the complex and poorly understood branched metabolism of C. thermocellum, and in some cases overflow metabolism as well. In this work, we developed a predictive stoichiometric metabolic model for C. thermocellum which incorporates the current state of understanding, with particular attention to cofactor specificity in the atypical glycolytic enzymes and the complex energy, redox, and fermentative pathways with the goal of aiding metabolic engineering efforts. We validated the model's capability to encompass experimentally observed phenotypes for the parent strain and derived mutants designed for significant perturbation of redox and energy pathways. Metabolic flux distributions revealed significant alterations in key metabolic branch points (e.g., phosphoenol pyruvate, pyruvate, acetyl-CoA, and cofactor nodes) in engineered strains for channeling electron and carbon fluxes for enhanced ethanol synthesis, with the best performing strain doubling ethanol yield and titer compared to the parent strain. In silico predictions of a redox-imbalanced genotype incapable of growth were confirmed in vivo, and a mutant strain was used as a platform to probe redox bottlenecks in the central metabolism that hinder efficient ethanol production. The results highlight the robustness of the redox metabolism of C. thermocellum and the necessity of streamlined electron flux from reduced ferredoxin to NAD(P)H for high ethanol production. The model was further used to design a metabolic engineering strategy to phenotypically constrain C. thermocellum to achieve high ethanol yields while requiring minimal genetic manipulations. The model can be applied to design C. thermocellum as a platform microbe for consolidated bioprocessing to produce ethanol and other reduced

  16. Sugar-Based Ethanol Biorefinery: Ethanol, Succinic Acid and By-Product Production

    Energy Technology Data Exchange (ETDEWEB)

    Donal F. Day

    2009-03-31

    The work conducted in this project is an extension of the developments itemized in DE-FG-36-04GO14236. This program is designed to help the development of a biorefinery based around a raw sugar mill, which in Louisiana is an underutilized asset. Some technical questions were answered regarding the addition of a biomass to ethanol facility to existing sugar mills. The focus of this work is on developing technology to produce ethanol and valuable by-products from bagasse. Three major areas are addressed, feedstock storage, potential by-products and the technology for producing ethanol from dilute ammonia pre-treated bagasse. Sugar mills normally store bagasse in a simple pile. During the off season there is a natural degradation of the bagasse, due to the composting action of microorganisms in the pile. This has serious implications if bagasse must be stored to operate a bagasse/biorefinery for a 300+ day operating cycle. Deterioration of the fermentables in bagasse was found to be 6.5% per month, on pile storage. This indicates that long term storage of adequate amounts of bagasse for year-round operation is probably not feasible. Lignin from pretreatment seemed to offer a potential source of valuable by-products. Although a wide range of phenolic compounds were present in the effluent from dilute ammonia pretreatment, the concentrations of each (except for benzoic acid) were too low to consider for extraction. The cellulosic hydrolysis system was modified to produce commercially recoverable quantities of cellobiose, which has a small but growing market in the food process industries. A spin-off of this led to the production of a specific oligosaccharide which appears to have both medical and commercial implications as a fungal growth inhibitor. An alternate use of sugars produced from biomass hydrolysis would be to produce succinic acid as a chemical feedstock for other conversions. An organism was developed which can do this bioconversion, but the economics of

  17. Obtaining ethanol from hemicelluloses (xylane) of deciduous trees and one year old plants. Final report. Gewinnung von Ethanol aus den Hemicellulosen (Xylanen) von Laubhoelzern und Einjahrespflanzen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Puls, J.; Wiegel, J.

    1985-01-01

    In contrast to yeast, bacteria have a wide substrate spectrum. Certain bacteria can convert xylose into ethanol. Thermo-anaerobic bacterium ethanolicus and its mutants can also hydrolyse oligomeric xylane and produce alcohol. An elegant and simple process to obtain pentose and pentosane from ligno-cellulose is the steam pressure extraction process, in which the hemi-cellulose can be obtained by prewashing after brief steam pressure treatment between 170 and 210degC. By controlling the parameters of temperature and time, the hemicellulose yield can be optimized and the production of sugar decay products can be minimised. The batch fermentation of a polymer beech wood xylane after integrated hydrolysis and sterilisation gave an ethanol concentration of 5.3 g/litre after 94 hours.

  18. Fair Oaks Dairy Farms Cellulosic Ethanol Technology Review Summary

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Wold; Robert Divers

    2011-06-23

    At Fair Oaks Dairy, dried manure solids (''DMS'') are currently used as a low value compost. United Power was engaged to evaluate the feasibility of processing these DMS into ethanol utilizing commercially available cellulosic biofuels conversion platforms. The Fair Oaks Dairy group is transitioning their traditional ''manure to methane'' mesophilic anaerobic digester platform to an integrated bio-refinery centered upon thermophilic digestion. Presently, the Digested Manure Solids (DMS) are used as a low value soil amendment (compost). United Power evaluated the feasibility of processing DMS into higher value ethanol utilizing commercially available cellulosic biofuels conversion platforms. DMS was analyzed and over 100 potential technology providers were reviewed and evaluated. DMS contains enough carbon to be suitable as a biomass feedstock for conversion into ethanol by gasification technology, or as part of a conversion process that would include combined heat and power. In the first process, 100% of the feedstock is converted into ethanol. In the second process, the feedstock is combusted to provide heat to generate electrical power supporting other processes. Of the 100 technology vendors evaluated, a short list of nine technology providers was developed. From this, two vendors were selected as finalists (one was an enzymatic platform and one was a gasification platform). Their selection was based upon the technical feasibility of their systems, engineering expertise, experience in commercial or pilot scale operations, the ability or willingness to integrate the system into the Fair Oaks Biorefinery, the know-how or experience in producing bio-ethanol, and a clear path to commercial development.

  19. Influence of torrefaction pretreatment for ethanol fermentation from waste money bills.

    Science.gov (United States)

    Sheikh, Md Mominul Islam; Kim, Chul-Hwan; Park, Hyeon-Jin; Kim, Sung-Ho; Kim, Gyeong-Chul; Lee, Ji-Young; Sim, Sung-Woong; Kim, Jae Won

    2013-01-01

    Waste money bills (WMB) that are no longer legal tender are nonrecyclable and are generally useless. In this work, we used this cellulose-rich material for ethanol fermentation for the first time. Torrefaction of this nonlignocellulosic waste material was attempted to examine whether such material could benefit from this process as a conventional lignocellulosic material does. Effects of two important parameters, that is, residence times (20, 40, and 60 Min) and temperatures (140, 160, 180, 200, and 220°C), on the torrefaction yield were studied under an inert atmosphere. Glucose and ethanol yields were compared using a factorial experimental design. The highest glucose yield (81.59 mg/mL) was obtained with a torrefaction treatment consisting of 40 min at 180 °C, and it was increased 44.89% compared to untreated WMB. Based on ethanol feasibility studies conducted on WMB, this estimated quantity of glucose could be produced for subsequent fermentation to ethanol (38.92 mg/mL) and it was increased 47.92% compared to the untreated sample. The fermentation rate was also enhanced by adding 0.4 mM benzoic acid under anaerobic conditions. It is concluded that production of ethanol from WMB would reduce waste management costs and thus would be profitable.

  20. Steam Reforming of Bio-Ethanol to Produce Hydrogen over Co/CeO2 Catalysts Derived from Ce1−xCoxO2−y Precursors

    Directory of Open Access Journals (Sweden)

    Yanyong Liu

    2016-02-01

    Full Text Available A series of Ce1−xCoxO2−y precursors were prepared by homogeneous precipitation using urea as a precipitant. The Co/CeO2 catalysts obtained from the Ce1−xCoxO2−y precursors were used for the steam reforming of ethanol to produce hydrogen. Co ions could enter the CeO2 lattices to form Ce1−xCoxO2−y mixed oxides at x ≤ 0.2 using the homogeneous precipitation (hp method. CeO2 was an excellent support for Co metal in the steam reforming of ethanol because a strong interaction between support and metal (SISM exists in the Co/CeO2 catalysts. Because Co/CeO2 (hp prepared by homogeneous precipitation possessed a high BET surface area and small Co metal particles, Co/CeO2 (hp showed a higher ethanol conversion than the Co/CeO2 catalysts prepared using the co-precipitation (cp method and the impregnation (im method. The selectivity of CO2 over Co/CeO2 (hp increased with increasing reaction temperature at from 573 to 673 K, and decreased with increasing reaction temperature above 673 K due to the increase of CO formation. The carbonaceous deposits formed on the catalyst surface during the reaction caused a slow deactivation in the steam reforming of ethanol over Co/CeO2 (hp. The catalytic activity of the used catalysts could be regenerated by an oxidation-reduction treatment, calcined in air at 723 K and then reduced by H2 at 673 K.

  1. Elucidating and reprogramming Escherichia coli metabolisms for obligate anaerobic n-butanol and isobutanol production.

    Science.gov (United States)

    Trinh, Cong T

    2012-08-01

    Elementary mode (EM) analysis based on the constraint-based metabolic network modeling was applied to elucidate and compare complex fermentative metabolisms of Escherichia coli for obligate anaerobic production of n-butanol and isobutanol. The result shows that the n-butanol fermentative metabolism was NADH-deficient, while the isobutanol fermentative metabolism was NADH redundant. E. coli could grow and produce n-butanol anaerobically as the sole fermentative product but not achieve the maximum theoretical n-butanol yield. In contrast, for the isobutanol fermentative metabolism, E. coli was required to couple with either ethanol- or succinate-producing pathway to recycle NADH. To overcome these "defective" metabolisms, EM analysis was implemented to reprogram the native fermentative metabolism of E. coli for optimized anaerobic production of n-butanol and isobutanol through multiple gene deletion (~8-9 genes), addition (~6-7 genes), up- and downexpression (~6-7 genes), and cofactor engineering (e.g., NADH, NADPH). The designed strains were forced to couple both growth and anaerobic production of n-butanol and isobutanol, which is a useful characteristic to enhance biofuel production and tolerance through metabolic pathway evolution. Even though the n-butanol and isobutanol fermentative metabolisms were quite different, the designed strains could be engineered to have identical metabolic flux distribution in "core" metabolic pathways mainly supporting cell growth and maintenance. Finally, the model prediction in elucidating and reprogramming the native fermentative metabolism of E. coli for obligate anaerobic production of n-butanol and isobutanol was validated with published experimental data.

  2. The occurrence and identification of microbiological contamination in fuel ethanol production

    Directory of Open Access Journals (Sweden)

    Katarzyna Leja

    2009-12-01

    Full Text Available Background. Bacterial contamination is a major problem for commercial fuel ethanol production in distilleries all over the world. The contaminating microorganisms produce acetic and lactic acid that has a detrimental effect on fermentation efficiency. The aim of this work was to calculate the number of bacterial contaminants in some distilleries. Moreover, in this study it was signified what kind of bacteria contaminate ethanol production process. Material and methods. Grains were obtained from five distilleries from some regions in Poland, in this work hereafter referred to as α, β, γ, δ, and ε distilleries. Corn was the raw material in the α, β, and γ distilleries, triticale in δ distillery, and rye in the ε one. From these five distilleries, sweet mashes during fermentation and after it, were also analysed. The total number of microorganisms, the number of lactic acid bacteria, the number of anaerobic bacteria and the quantity of yeasts and moulds in raw materials were calculated. Results. The number of total viable bacteria (CFU/g, lactic acid bacteria (CFU/g, anaerobic bacteria (CFU/g, moulds, and yeasts (CFU/g occur in the samples were determined. In all distilleries tested, all groups of microorganism were present. Conclusions. The results of our study show that all tested distilleries have a lot of difficulties with microbiology pollution which leads to a decrease of ethanol production and economical problems. From the economical point of view, reduction of microbial contamination makes it possible to increase the production volume.

  3. Modification of the Farr assay using ethanol-ammonium acetate precipitation and its application to the measurement of affinity of anti-HCG produced in several species.

    Science.gov (United States)

    Thanavala, Y M; Hay, F C

    1978-01-01

    A double isotope modified Farr assay was used to determine the total binding sites and affinity of antibodies to human chorionic gonadotrophin. Precipitation of the antigen--antibody complex at equilibrium with ammonium sulphate gave very high levels of nonspecific binding. Good discrimination over background was observed using a specific anti-immunoglobulin serum. However since we were interested in measuring the affinity of antibodies raised in several animal species it was more appropriate to use a single nonspecies precipitating reagent. We found that the use of a mixture of ethanol-ammonium acetate gave very low levels of non-specific binding in baboons, marmosets, rabbits and mice.

  4. Secondary liquefaction in ethanol production

    DEFF Research Database (Denmark)

    2007-01-01

    The invention relates to a method of producing ethanol by fermentation, said method comprising a secondary liquefaction step in the presence of a themostable acid alpha-amylase or, a themostable maltogenic acid alpha-amylase.......The invention relates to a method of producing ethanol by fermentation, said method comprising a secondary liquefaction step in the presence of a themostable acid alpha-amylase or, a themostable maltogenic acid alpha-amylase....

  5. Electron spin resonance study of free radicals produced from ethanol and acetaldehyde after exposure to a Fenton system or to brain and liver microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Gonthier, B.; Jeunet, A.; Barret, L. (Departement de Toxicologie, C.H.R.U. de Grenoble, (France))

    1991-09-01

    Free radical formation from ethanol and acetaldehyde was studied in the presence of a spin-trap and a NADPH generating system with a chemical model, Fenton's reagent, or by enzymatic oxidation of these solvents by rat liver and brain microsomes. The free radicals were detected by electron spin resonance spectroscopy (E.S.R.), using the spin-trapping agent, alpha-(4-pyridyl l-oxide)-N-tertbutyl-nitrone (POBN). Under such conditions, the hydroxyethyl radical derived from ethanol was obtained after both incubation in liver and brain microsomes as well as after exposure to the Fenton system. Enzymatic inhibition and activation showed that the mixed function oxidase system plays an important role in the generation of such a radical, even in the brain. Under all the experimental conditions acetaldehyde could also generate a free radical deriving directly from the parent molecule and modified by enzymatic activation or inhibition. A second, longer lasting radical was also observed in the presence of acetaldehyde. On the basis of a comparative study to a known process causing lipoperoxidation, its lipidic origin was suggested.

  6. Ethanol tolerance in yeasts.

    Science.gov (United States)

    Casey, G P; Ingledew, W M

    1986-01-01

    It is now certain that the inherent ethanol tolerance of the Saccharomyces strain used is not the prime factor regulating the level of ethanol that can be produced in a high sugar brewing, wine, sake, or distillery fermentation. In fact, in terms of the maximum concentration that these yeasts can produce under batch (16 to 17% [v/v]) or fed-batch conditions, there is clearly no difference in ethanol tolerance. This is not to say, however, that under defined conditions there is no difference in ethanol tolerance among different Saccharomyces yeasts. This property, although a genetic determinant, is clearly influenced by many factors (carbohydrate level, wort nutrition, temperature, osmotic pressure/water activity, and substrate concentration), and each yeast strain reacts to each factor differently. This will indeed lead to differences in measured tolerance. Thus, it is extremely important that each of these be taken into consideration when determining "tolerance" for a particular set of fermentation conditions. The manner in which each alcohol-related industry has evolved is now known to have played a major role in determining traditional thinking on ethanol tolerance in Saccharomyces yeasts. It is interesting to speculate on how different our thinking on ethanol tolerance would be today if sake fermentations had not evolved with successive mashing and simultaneous saccharification and fermentation of rice carbohydrate, if distillers' worts were clarified prior to fermentation but brewers' wort were not, and if grape skins with their associated unsaturated lipids had not been an integral part of red wine musts. The time is now ripe for ethanol-related industries to take advantage of these findings to improve the economies of production. In the authors' opinion, breweries could produce higher alcohol beers if oxygenation (leading to unsaturated lipids) and "usable" nitrogen source levels were increased in high gravity worts. White wine fermentations could also, if

  7. Sequential saccharification of corn fiber and ethanol production by the brown rot fungus Gloeophyllum trabeum.

    Science.gov (United States)

    Rasmussen, M L; Shrestha, P; Khanal, S K; Pometto, A L; Hans van Leeuwen, J

    2010-05-01

    Degradation of lignocellulosic biomass to sugars through a purely biological process is a key to sustainable biofuel production. Hydrolysis of the corn wet-milling co-product-corn fiber-to simple sugars by the brown rot fungus Gloeophyllum trabeum was studied in suspended-culture and solid-state fermentations. Suspended-culture experiments were not effective in producing harvestable sugars from the corn fiber. The fungus consumed sugars released by fungal extracellular enzymes. Solid-state fermentation demonstrated up to 40% fiber degradation within 9days. Enzyme activity assays on solid-state fermentation filtrates confirmed the involvement of starch- and cellulose-degrading enzymes. To reduce fungal consumption of sugars and to accelerate enzyme activity, 2- and 3-d solid-state fermentation biomasses (fiber and fungus) were submerged in buffer and incubated at 37 degrees C without shaking. This anaerobic incubation converted up to almost 11% of the corn fiber into harvestable reducing sugars. Sugars released by G. trabeum were fermented to a maximum yield of 3.3g ethanol/100g fiber. This is the first report, to our knowledge, of G. trabeum fermenting sugar to ethanol. The addition of Saccharomyces cerevisiae as a co-culture led to more rapid fermentation to a maximum yield of 4.0g ethanol/100g fiber. The findings demonstrate the potential for this simple fungal process, requiring no pretreatment of the corn fiber, to produce more ethanol by hydrolyzing and fermenting carbohydrates in this lignocellulosic co-product.

  8. 微囊藻毒素缺氧/厌氧降解产物Adda对秀丽线虫的毒性%Toxicities of Adda Produced During Microcystin Anoxic/Anaerobic Degradation to Caenorhabditis elegans

    Institute of Scientific and Technical Information of China (English)

    陈晓国; 吴小燕; 章伟成

    2012-01-01

    Recent studies have shown that micocystins(MCs) can be degraded by indigenous bacteria from lake sediments under anoxic/ anaerobic conditions. Unlike aerobic MCs degradation, in which MCs are completely decomposed, anoxic/anaerobic degradation can produce and accumulate one product Adda. Up to now, however, little is known about the toxicities of this product. To assess the safety of anoxic/ anaerobic degradation of MCs, the toxicities of Adda were investigated using Caenorhabditis elegans(C. elegans) as the animal model. Our results showed that exposure to low dose Adda(not more than 0.05 μmol·L‐1) had no negative effect on C. elegans. Exposure to Adda of 0.1 μmol · L‐1 could lead to significant defects of head and body locomotion, whereas no negative effect was observed for other functions at the same dosage, suggesting that locomotion ability of C. elegans was more susceptible to Adda than other tested functions. All tested functions except for the rate of vulva abnormality of C. elegans were significantly negatively affected when exposed to Adda of 0.5 μmol · L‐1. These results suggest that Adda is far less toxic than MCLR and biodegradation under anoxic/anaerobic conditions can detoxify MCs efficiently. However, the high concentration of Adda may still pose new risks to ecosystem if it accumulates in natural environment during MCs anoxic/anaer-obic degradation.%微囊藻毒素(MCs)在缺氧/厌氧条件下可以被湖泊沉积物中的土著微生物降解,产生并积累一种降解产物Adda.为了揭示该降解过程的环境安全性,以秀丽线虫(Caenorhabditis elegans)作为模式生物研究了MCs缺氧/厌氧降解产物Adda的毒性.结果表明,低浓度Adda(≤0.05μmol· L-1)暴露对秀丽线虫各项指标均无显著影响,而0.1μmol· L-1的Adda可显著降低线虫的头部和身体摆动频率,说明Adda对线虫运动能力影响较大.当Adda暴露浓度达到0.5μmol· L-1时,可显著影响线虫的寿命、发育、运

  9. 高产酿酒酵母SCY6生长与发酵条件的优化%Optimization of Growth and Fermentation Conditions for High Ethanol-Producing Saccharomyces cerevisiae Strain SCY6

    Institute of Scientific and Technical Information of China (English)

    顾华祥; 宋晨; 李迅

    2012-01-01

    采用高产酿酒酵母(Saccharomyces cerevisiae)SCY6发酵葡萄糖产乙醇,设计单因素试验考察该酵母菌株适宜的生长条件,采用正交试验优化酵母发酵产乙醇的条件.结果表明,该酵母菌株的最适生长温度和pH分别为28℃、5.0,培养基中葡萄糖质量分数为15%时其生长状态较好.正交试验结果表明,最适合该酿酒酵母发酵产乙醇的条件为玉米浆和(NH4)2SO4作为氮源,用量分别为20 g/L和2 g/L,接种量为4%,pH 5.0.在此条件下进行发酵,发酵液中乙醇体积分数可达7.77%,葡萄糖转化率达83.82%.%The high ethanol-producing Saccharomyces cerevisiae strain SCY6 was used to ferment glucose to ethanol. Single factor tests were conducted to optimize the cultivation conditions; while orthogonal design was adopted to optimize ethanol fermentation conditions. The results showed that the optimum temperature and pH for yeast growth was 28℃ and 5.0, respectively. The yeast grew well when mass ratio of glucose in YPD medium was 15%. The result of orthogonal test showed that the optimal ethanol fermentation conditions were, 2 g/L (NH4)2SO4 and 20g/L corn syrup as N source; inoculation dose, 4% volume fraction; and pH 5.0. The yield of ethanol reached 7.77%; and the conversion rate of glucose was 83.82% under these conditions.

  10. Efficient carbon dioxide utilization and simultaneous hydrogen enrichment from off-gas of acetone-butanol-ethanol fermentation by succinic acid producing Escherichia coli.

    Science.gov (United States)

    He, Aiyong; Kong, Xiangping; Wang, Chao; Wu, Hao; Jiang, Min; Ma, Jiangfeng; Ouyang, Pingkai

    2016-08-01

    The off-gas from acetone-butanol-ethanol (ABE) fermentation was firstly used to be CO2 source (co-substrate) for succinic acid production. The optimum ratio of H2/CO2 indicated higher CO2 partial pressures with presence of H2 could enhance C4 pathway flux and reductive product productivity. Moreover, when an inner recycling bioreactor was used for CO2 recycling at a high total pressure (0.2Mpa), a maximum succinic acid concentration of 65.7g·L(-1) was obtained, and a productivity of 0.76g·L(-1)·h(-1) and a high yield of 0.86g·g(-1) glucose were achieved. Furthermore, the hydrogen content was simultaneously enriched to 92.7%. These results showed one successful attempt to reuse the off-gas of ABE fermentation which can be an attractive CO2 source for succinic acid production.

  11. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass.

    Science.gov (United States)

    Hassan, Elhagag Ahmed; Abd-Alla, Mohamed Hemida; Bagy, Magdy Mohamed Khalil; Morsy, Fatthy Mohamed

    2015-08-01

    An in situ batch fermentation technique was employed for biohydrogen, acetone, butanol, ethanol and microdiesel production from oleaginous fungal biomass using the anaerobic fermentative bacterium Clostridium acetobutylicum ATCC 824. Oleaginous fungal Cunninghamella echinulata biomass which has ability to accumulate up to 71% cellular lipid was used as the substrate carbon source. The maximum cumulative hydrogen by C. acetobutylicum ATCC 824 from crude C. echinulata biomass was 260 ml H2 l(-1), hydrogen production efficiency was 0.32 mol H2 mole(-1) glucose and the hydrogen production rate was 5.2 ml H2 h(-1). Subsequently, the produced acids (acetic and butyric acids) during acidogenesis phase are re-utilized by ABE-producing clostridia and converted into acetone, butanol, and ethanol. The total ABE produced by C. acetobutylicum ATCC 824 during batch fermentation was 3.6 g l(-1) from crude fungal biomass including acetone (1.05 g l(-1)), butanol (2.19 g l(-1)) and ethanol (0.36 g l(-1)). C. acetobutylicum ATCC 824 has ability to produce lipolytic enzymes with a specific activity 5.59 U/mg protein to hydrolyze ester containing substrates. The lipolytic potential of C. acetobutylicum ATCC 824 was used as a biocatalyst for a lipase transesterification process using the produced ethanol from ABE fermentation for microdiesel production. The fatty acid ethyl esters (microdiesel) generated from the lipase transesterification of crude C. echinulata dry mass was analyzed by GC/MS as 15.4% of total FAEEs. The gross energy content of biohydrogen, acetone, butanol, ethanol and biodiesel generated through C. acetobutylicum fermentation from crude C. echinulata dry mass was 3113.14 kJ mol(-1). These results suggest a possibility of integrating biohydrogen, acetone, butanol and ethanol production technology by C. acetobutylicum with microdiesel production from crude C. echinulata dry mass and therefore improve the feasibility and commercialization of bioenergy production.

  12. Ethanol production with starch-based Tetraselmis subcordiformis grown with CO2 produced during ethanol fermentation%利用乙醇发酵副产CO2培养富含淀粉亚心型四爿藻作为其补充原料

    Institute of Scientific and Technical Information of China (English)

    廖莎; 姚长洪; 薛松; 张卫; 白凤武

    2011-01-01

    建立了乙醇发酵耦联微藻培养系统,研究了利用酿酒酵母Saccharomyces cerevisiae乙醇发酵副产CO2为碳源,培养富含淀粉的亚心形四爿藻Tetraselmis subcordiformis,作为乙醇发酵补充原料的可行性.在连续光照条件下,间歇式培养7d,反应器中藻细胞密度达到2.0 g/L左右,胞内淀粉含量约45%.微藻细胞收集后,经超声处理和酶法水解,葡萄糖释放量为胞内淀粉总量的71.1%.S.cerevisiae发酵微藻生物质水解液生产乙醇,其得率达到理论值的87.6%.表明乙醇发酵耦联微藻培养可行,既减少了CO2向环境的排放,又收获了富含淀粉的微藻生物质作为乙醇发酵的补充原料,节省粮食类淀粉质原料的消耗.%A system coupling ethanol fermentation with microalgae culture was developed, in which CO2 produced during ethanol fermentation was used as carbon source for the growth of Tetraselmis subcordiformis, a microalgae accumulating starch intracellularly. The biomass concentration about 2.0 g DCW/L was achieved within the photobioreactor for the batchculture of 7 days, and intracellular starch accumulation was about 45%. Furthermore, ultrasonic pretreatment and enzymatic hydrolysis were applied to the microalgae biomass, and 71.1% of the intracellular starch was converted into glucose that was fermented sequentially to ethanol by Saccharomyces cerevisiae with an ethanol yield of 87.6% of the theoretical value, indicating that the microalgae biomass could be an alternative feedstock for ethanol production to save grain consumption, and in the meantime mitigate the CO2 emission.

  13. Anaerobic Digestion: Process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Batstone, Damien J.

    2011-01-01

    with very little dry matter may also be called a digest. The digest should not be termed compost unless it specifically has been composted in an aerated step. This chapter describes the basic processes of anaerobic digestion. Chapter 9.5 describes the anaerobic treatment technologies, and Chapter 9.......6 addresses the mass balances and environmental aspects of anaerobic digestion....

  14. Cellulosic ethanol

    DEFF Research Database (Denmark)

    Lindedam, Jane; Bruun, Sander; Jørgensen, Henning;

    2010-01-01

    Background Variations in sugar yield due to genotypic qualities of feedstock are largely undescribed for pilot-scale ethanol processing. Our objectives were to compare glucose and xylose yield (conversion and total sugar yield) from straw of five winter wheat cultivars at three enzyme loadings (2...

  15. Development of a mixed culture chain elongation process based on municipal solid waste and ethanol

    NARCIS (Netherlands)

    Grootscholten, T.I.M.

    2013-01-01

    Keywords: mixed culture fermentation; Carboxylates; Caproate; Heptanoate; ethanol; OFMSW To reduce dependence on oil, alternative fuel and chemical production processes are investigates. In this thesis, we investigated the production of medium chain fatty acids (MCFAs) using an anaerobic chain elon

  16. Sorghum to Ethanol Research

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, Jeffrey A. [Univ. of California, Parlier, CA (United States). Kearney Research and Extension Center; Wolfrum, Edward J. [National Renewable Energy Lab. (NREL), Golden, CO (United States). Process and Analytical Engineering Group

    2010-09-28

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called "dedicated bioenergy crops" including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help

  17. Sorghum to Ethanol Research

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, Jeff; Wolfrum, Ed

    2010-06-30

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called dedicated bioenergy crops including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help

  18. Sorghum to Ethanol Research

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Dahlberg, Ph D; Ed Wolfrum, Ph D

    2010-06-30

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called "dedicated bioenergy crops" including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help

  19. Fermentation of hexoses to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Lena [Goeteborg Univ. (Sweden). Dept. of General and Marine Microbiology]|[Chalmers Univ. of Technology, Goeteborg (Sweden). Dept of Chemical Reaction Engineering

    2000-06-01

    The Goals of the project has been: to increase the ethanol yield by reducing the by-product formation, primarily biomass and glycerol, and to prevent stuck fermentations, i.e. to maintain a high ethanol production rate simultaneously with a high ethanol yield. The studies have been performed both in defined laboratory media and in a mixture of wood- and wheat hydrolysates. The yeast strains used have been both industrial strains of bakers yeast, Saccharomyces cerevisiae, and haploid laboratory strains. The Relevance of these studies with respect to production of ethanol to be used as fuel is explained by: With the traditional process design used today, it is very difficult to reach a yield of more than 90 % of the theoretical maximal value of ethanol based on fermented hexose. During 'normal' growth and fermentation conditions in either anaerobic batch or chemostat cultures, substrate is lost as biomass and glycerol in the range of 8 to 11 % and 6 to 11 % of the substrate consumed (kg/kg). It is essential to reduce these by-products. Traditional processes are mostly batch processes, in which there is a risk that the biocatalyst, i.e. the yeast, may become inactivated. If for example yeast biomass production is avoided by use of non-growing systems, the ethanol production rate is instantaneously reduced by at least 50%. Unfortunately, even if yeast biomass production is not avoided on purpose, it is well known that stuck fermentations caused by cell death is a problem in large scale yeast processes. The main reason for stuck fermentations is nutrient imbalances. For a good process economy, it is necessary to ensure process accessibility, i.e. to maintain a high and reproducible production rate. This will both considerably reduce the necessary total volume of the fermentors (and thereby the investment costs), and moreover minimize undesirable product fall-out.

  20. 以玉米秸秆为原料同步糖化发酵生产燃料乙醇%Taking corn stalk as raw material to produce fuel ethanol by synchronous saccharification and fermentation

    Institute of Scientific and Technical Information of China (English)

    谢慧; 耿涛; 王风芹; 任天宝; 宋安东

    2011-01-01

    Fuel ethanol was produced by synchronization saccharification and fermentation (SSF). The corn stalk was taken as raw ma terials pretreated with acid method. The optimum SSF condition was 341 , for reaction temperature, 5. 5 for initial fermentation liquid pH value, solid to liquid ratio 1:8. After 108h, the ethanol concentration reach highest(8. 33g/L).%以玉米秸秆为原料,经酸法预处理后,采用同步糖化发酵SSF工艺生产燃料乙醇.正交试验获得的最佳体系为:培养温度 34℃、发酵pH值 5.5、发酵的液固比 8:1、当发酵108h后,乙醇浓度可达8.33g/L.该实验为纤维质燃料乙醇的产业化生产提供技术依据.

  1. Fungal protein and ethanol from lignocelluloses using Rhizopus pellets under simultaneous saccharification, filtration and fermentation (SSFF

    Directory of Open Access Journals (Sweden)

    Somayeh FazeliNejad

    2016-03-01

    Full Text Available The economic viability of the 2nd generation bioethanol production process cannot rely on a single product but on a biorefinery built around it. In this work, ethanol and fungal biomass (animal feed were produced from acid-pretreated wheat straw slurry under an innovative simultaneous saccharification, fermentation, and filtration (SSFF strategy. A membrane unit separated the solids from the liquid and the latter was converted to biomass or to both biomass and ethanol in the fermentation reactor containing Rhizopus sp. pellets. Biomass yields of up to 0.34 g/g based on the consumed monomeric sugars and acetic acid were achieved. A surplus of glucose in the feed resulted in ethanol production and reduced the biomass yield, whereas limiting glucose concentrations resulted in higher consumption of xylose and acetic acid. The specific growth rate, in the range of 0.013-0.015/h, did not appear to be influenced by the composition of the carbon source. Under anaerobic conditions, an ethanol yield of 0.40 g/g was obtained. The present strategy benefits from the easier separation of the biomass from the medium and the fungus ability to assimilate carbon residuals in comparison with when yeast is used. More specifically, it allows in-situ separation of insoluble solids leading to the production of pure fungal biomass as a value-added product.

  2. Daidzin decreases ethanol consumption in rats.

    Science.gov (United States)

    Heyman, G M; Keung, W M; Vallee, B L

    1996-09-01

    In a previous study, daidzin, a constituent of an ancient Chinese herbal treatment for alcoholism, decreased home-cage ethanol consumption in laboratory Syrian golden hamsters. The present study tested the generality of daidzin's antidipsotropic effects. Rats served as subjects in a two-lever choice procedure. At one lever, responses earned 10% ethanol, flavored with saccharin. At the other lever, responses earned an isocaloric starch solution. Daidzin decreased both ethanol and starch consumption, but the decreases in ethanol intake were larger. Changes in consumption were dose dependent, and differences in ethanol and food consumption increased slightly (but significantly) as dose increased. Daidzin produced a similar pattern of decreases in lever pressing. In baseline, there was an approximately equal distribution of responses between the two levers; at the highest daidzin dose, the relative number of responses at the ethanol lever decreased to 30%. These results replicate and extend earlier findings, and they encourage further research on daidzin's capacity to decrease ethanol consumption.

  3. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis

    DEFF Research Database (Denmark)

    Nissen, Torben Lauesgaard; Hamann, Claus Wendelboe; Kielland-Brandt, M. C.;

    2000-01-01

    Glycerol is formed as a by-product in production of ethanol and baker's yeast during fermentation of Saccharomyces cerevisiae under anaerobic and aerobic growth conditions, respectively. One physiological role of glycerol formation by yeast is to reoxidize NADH, formed in synthesis of biomass....... The modest effect of the GPD1 deletion under anaerobic conditions on the maximum specific growth rate and product yields clearly showed that Gdh2p is the important factor in glycerol formation during anaerobic growth. Strain TN6 (gpd1-Delta 1 gpd2-Delta 1) was unable to grow under anaerobic conditions due...

  4. Energy concentration and phosphorus digestibility in yeast products produced from the ethanol industry, and in brewers' yeast, fish meal, and soybean meal fed to growing pigs.

    Science.gov (United States)

    Kim, B G; Liu, Y; Stein, H H

    2014-12-01

    Two experiments were conducted to determine the DE, ME, and standardized total tract digestibility (STTD) of P in 2 novel sources of yeast (C-yeast and S-yeast) and in brewers' yeast, fish meal, and soybean meal fed to growing pigs. The 2 new sources of yeast are coproducts from the dry-grind ethanol industry. The concentrations of DM, GE, and P were 94.8%, 5,103 kcal/kg, and 1.07% in C-yeast; 94.4%, 4,926 kcal/kg, and 2.01% in S-yeast; 93.6%, 4,524 kcal/kg, and 1.40% in brewers' yeast; 91.4%, 4,461 kcal/kg, and 3.26% in fish meal; and 87.7%, 4,136 kcal/kg, and 0.70% in soybean meal, respectively. The DE and ME in each of the ingredients were determined using 42 growing barrows (28.9±2.18 kg BW). A corn-based basal diet and 5 diets containing corn and 24% to 40% of each test ingredient were formulated. The total collection method was used to collect feces and urine, and the difference procedure was used to calculate values for DE and ME in each ingredient. The concentrations of DE in corn, C-yeast, S-yeast, brewers' yeast, fish meal, and soybean meal were 4,004, 4,344, 4,537, 4,290, 4,544, and 4,362 kcal/kg DM (SEM=57), respectively, and the ME values were 3,879, 3,952, 4,255, 3,771, 4,224, and 4,007 kcal/kg DM (SEM=76), respectively. The ME in S-yeast and fish meal were greater (Pcorn and brewers' yeast, whereas the ME in C-yeast and soybean meal were not different from those of any of the other ingredients. The STTD of P in the 5 ingredients was determined using 42 barrows (28.3±7.21 kg BW) that were placed in metabolism cages. Five diets were formulated to contain each test ingredient as the sole source of P, and a P-free diet was used to estimate the basal endogenous loss of P. Feces were collected for 5 d using the marker to marker method after a 5-d adaptation period. The STTD of P in brewers' yeast (85.2%) was greater (Pcorn, fish meal, and soybean meal, and the STTD of P in the 2 yeast products is not different from the STTD of P in fish meal.

  5. Methane Production by Anaerobic Co-digestion of Chicken Manure and Spartina alterniflora Residue After Producing Methane%鸡粪与互花米草沼渣混合发酵产甲烷的研究

    Institute of Scientific and Technical Information of China (English)

    陈广银; 常志州; 叶小梅; 杜静; 徐跃定; 张建英

    2012-01-01

    The characteristics of Spartina alterniflora residue after producing methane (SAR) digested alone and co-digestion of various proportions of chicken manure and SAR were investigated by batch model at 35℃±1℃. The initial total solid (TS) loading of all treatments was 8.0%. The results indicated that there was still some biogas produced by SAR with TS biogas yield of 107.25 mL·g-1 and average methane content of 76.92%. The cellulose crystallinity of re-digested SAR was destructed by anaerobic microorganisms, and the destruction rate was 5.55%. Co-digestion meliorated the environment where microorganisms lived in and increased the cumulative biogas yield. When the ratio of chicken manure to SAR was 4∶1, the cumulative biogas yield was highest while the cumulative biogas yield of T1 (the rate of chicken manure to SAR is 5∶0 based on TS), T3-T6 (the rate of chicken manure to SAR are 3∶2, 2∶3, 1∶4 and 0∶5 based on TS, respectively) were 61.31%, 62.09%, 52.15%, 39.74% and 31.67% of it. The anaerobic fermentation type of co-digestion is mix acid type fermentation. Co-digested with chicken manure promoted the destruction of cellulous crystallinity by 1.13%-21.61% and especially when the rate of chicken manure to SAR was 4∶1.%在中温(35℃±1℃)条件下,采用批式发酵方式,进行了鸡粪与互花米草沼渣不同混合比例的厌氧发酵实验.实验设置鸡粪∶互花米草沼渣干物质(TS)比分别为5∶0(T1)、4∶1(T2)、3∶2(T3)、2∶3(T4)、1∶4(T5)和0∶5(T6)共6个处理.结果表明,经中温干发酵后的互花米草沼渣仍具有一定的厌氧产沼气能力,TS产气量为107.25 mL·g-1,甲烷含量为76.92%,厌氧微生物对互花米草沼渣纤维素的结晶区有一定的破坏作用,厌氧发酵后纤维素的相对结晶度指数CrI下降了5.55%; 将鸡粪与互花米草沼渣混合发酵,明显提高了原料的厌氧产气性能,T2的产气效果最好,T1、T3~T6

  6. Inhibition of the anaerobic digestion process by linear alkylbenzene sulfonates

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Ahring, Birgitte Kiær

    2002-01-01

    Linear Alkylbenzene Sulfonates (LAS) are the most widely used synthetic anionic surfactants. They are anthropogenic, toxic compounds and are found in the primary sludge generated in municipal wastewater treatment plants. Primary sludge is usually stabilized anaerobically and therefore...... of the anaerobic digestion process should be seriously taken into consideration when wastewater from a surfactant producing industry is to be treated biologically or enter a municipal wastewater treatment plant that employs anaerobic technology. The upper allowable biomass specific LAS concentration should be 14...

  7. Hemicellulases from anaerobic thermophiles. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Wiegel, J.

    1994-05-01

    The longterm goal of this research effort is to obtain an anaerobic thermophilic bacterium that efficiently converts various hemicellulose-containing biomass to ethanol over a broad pH range. The strategy is to modify the outfit and regulation of the rate-limiting xylanases, glycosidases and xylan esterases in the ethanologenic, anaerobic thermophile Thermoanaerobacter ethanolicus, which grows between pH 4.5 and 9.5. Although it utilizes xylans, the xylanase, acetyl(xylan) esterase and O-methylglucuronidase activities in T. ethanolicus are barely measurable and regarded as the rate limiting steps in its xylan utilization. Thus, and also due to the presently limited knowledge of hemicellulases in anaerobic thermophiles, we characterize the hemicellulolytic enzymes from this and other anaerobic thermophiles as enzyme donors. Beside the active xylosidase/arabinosidase from T. ethanolicus, exhibiting the two different activities, we characterized 2 xylosidases, two acetyl(xylan) esterases, and an O-methylglucuronidase from Thermoanaerobacterium spec. We will continue with the characterization of xylanases from novel isolated slightly acidophilic, neutrophilic and slightly alkalophilic thermophiles. We have cloned, subcloned and partially sequenced the 165,000 Da (2 x 85,000) xylosidase/arabinosidase from T. ethanolicus and started with the cloning of the esterases from Thermoanaerobacterium spec. Consequently, we will develop a shuttle vector and continue to apply electroporation of autoplasts as a method for cloning into T. ethanolicus.

  8. Production of ethanol directly from potato starch by mixed culture of Saccharomyces cerevisiae and Aspergillus niger using electrochemical bioreactor.

    Science.gov (United States)

    Jeon, Bo Young; Kim, Dae Hee; Na, Byung Kwan; Ahn, Dae Hee; Park, Doo Hyun

    2008-03-01

    When cultivated aerobically, Aspergillus niger hyphae produced extracellular glucoamylase, which catalyzes the saccharification of unliquified potato starch into glucose, but not when grown under anaerobic conditions. The Km and Vmax of the extracellular glucoamylase were 652.3 mg starch l-1 and 253.3 mg glucose l-1 min-1, respectively. In mixed culture of A. niger and Saccharomyces cerevisiae, oxygen had a negative influence on the alcohol fermentation of yeast, but activated fungal growth. Therefore, oxygen is a critical factor for ethanol production in the mixed culture, and its generation through electrolysis of water in an electrochemical bioreactor needs to be optimized for ethanol production from starch by coculture of fungal hyphae and yeast cells. By applying pulsed electric fields (PEF) into the electrochemical bioreactor, ethanol production from starch improved significantly: Ethanol produced from 50 g potato starch l-1 by a mixed culture of A. niger and S. cerevisiae was about 5 g l-1 in a conventional bioreactor, but was 9 g l-1 in 5 volts of PEF and about 19 g l-1 in 4 volts of PEF for 5 days.

  9. Ethanol production from agricultural wastes using Saccharomyces cerevisiae.

    Science.gov (United States)

    Irfan, Muhammad; Nadeem, Muhammad; Syed, Quratualain

    2014-01-01

    The main objective of this study was production of ethanol from three lignocellulosic biomasses like sugarcane bagasse, rice straw and wheat straw by Sacchromyces cervisae. All the three substrates were ground to powder form (2 mm) and pretreated with 3%H2O2 + 2% NaOH followed by steaming at 130 °C for 60 min. These substrates were hydrolyzed by commercial cellulase enzyme. The whole fermentation process was carried out in 500 mL Erlenmeyer flask under anaerobic conditions in submerged fermentation at 30 °C for three days of incubation period. FTIR analysis of the substrates indicated significant changes in the alteration of the structure occurred after pretreatment which leads to efficient saccharification. After pretreatment the substrates were hydrolyzed by commercial cellulase enzyme and maximum hydrolysis was observed in sugarcane bagasse (64%) followed by rice straw (40%) and wheat straw (34%). Among all these tested substrates, sugarcane bagasse (77 g/L) produced more ethanol as compared to rice straw (62 g/L) and wheat straw (44 g/L) using medium composition of (%) 0.25 (NH4)2SO4, 0.1 KH2PO4, 0.05 MgSO4, 0.25 Yeast extract by S. cervisae.

  10. Ethanol production from agricultural wastes using Sacchromyces cervisae

    Directory of Open Access Journals (Sweden)

    Muhammad Irfan

    2014-06-01

    Full Text Available The main objective of this study was production of ethanol from three lignocellulosic biomasses like sugarcane bagasse, rice straw and wheat straw by Sacchromyces cervisae. All the three substrates were ground to powder form (2 mm and pretreated with 3%H2O2 + 2% NaOH followed by steaming at 130 °C for 60 min. These substrates were hydrolyzed by commercial cellulase enzyme. The whole fermentation process was carried out in 500 mL Erlenmeyer flask under anaerobic conditions in submerged fermentation at 30 °C for three days of incubation period. FTIR analysis of the substrates indicated significant changes in the alteration of the structure occurred after pretreatment which leads to efficient saccharification. After pretreatment the substrates were hydrolyzed by commercial cellulase enzyme and maximum hydrolysis was observed in sugarcane bagasse (64% followed by rice straw (40% and wheat straw (34%. Among all these tested substrates, sugarcane bagasse (77 g/L produced more ethanol as compared to rice straw (62 g/L and wheat straw (44 g/L using medium composition of (% 0.25 (NH42SO4, 0.1 KH2PO4, 0.05 MgSO4, 0.25 Yeast extract by S. cervisae.

  11. New bacteria suitable for production of ethanol from maltose. Marutosu kara no etanoru seizo ni tekishita shinki saikin

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, T.; Taguchi, H.; Nakamura, K. (Kirin Brewery Co. Ltd., Tokyo (Japan))

    1992-10-07

    Bacteria such as Zymomonas atracts attention in production of ethanol from carbohydrates in addition to yeast used for a long time, however, Zymomonas ferments only glucose, fructose and sucrose. After searching microbes in the nature with excellent properties in fermentation ability and salt resistance, a new Gram-negative bacterium has been isolated from a certain tree sap which is suitable for production of ethanol from maltose and starch hydrolyzate. The features of cell morphology of the new bacterium are: bacillus, peritrichous, no sport forming, Q-9 in quinone system, and an anaerobic Gram-negative bacterium. It utilizes maltose, sorbitol and maltose and produces [alpha]-glucosidas but no [beta]-galactosidase nor arginine dihydrase. The strain T109 is deposited as FERM BP-3292 to the Industrial Research Institute of Microbiology. 2 figs., 2 tabs.

  12. Effect of substrate loading on hydrogen production during anaerobic fermentation by Clostridium thermocellum 27405.

    Science.gov (United States)

    Islam, Rumana; Cicek, Nazim; Sparling, Richard; Levin, David

    2006-09-01

    We have investigated hydrogen (H2) production by the cellulose-degrading anaerobic bacterium, Clostridium thermocellum. In the following experiments, batch-fermentations were carried out with cellobiose at three different substrate concentrations to observe the effects of carbon-limited or carbon-excess conditions on the carbon flow, H2-production, and synthesis of other fermentation end products, such as ethanol and organic acids. Rates of cell growth were unaffected by different substrate concentrations. H2, carbon dioxide (CO2), acetate, and ethanol were the main products of fermentation. Other significant end products detected were formate and lactate. In cultures where cell growth was severely limited due to low initial substrate concentrations, hydrogen yields of 1 mol H2/mol of glucose were obtained. In the cultures where growth ceased due to carbon depletion, lactate and formate represented a small fraction of the total end products produced, which consisted mainly of H2, CO2, acetate, and ethanol throughout growth. In cultures with high initial substrate concentrations, cellobiose consumption was incomplete and cell growth was limited by factors other than carbon availability. H2-production continued even in stationary phase and H2/CO2 ratios were consistently greater than 1 with a maximum of 1.2 at the stationary phase. A maximum specific H2 production rate of 14.6 mmol g dry cell(-1) h(-1) was observed. As cells entered stationary phase, extracellular pyruvate production was observed in high substrate concentration cultures and lactate became a major end product.

  13. Ethanol and biogas production after steam pretreatment of corn stover with or without the addition of sulphuric acid

    Directory of Open Access Journals (Sweden)

    Bondesson Pia-Maria

    2013-01-01

    Full Text Available Abstract Background Lignocellulosic biomass, such as corn stover, is a potential raw material for ethanol production. One step in the process of producing ethanol from lignocellulose is enzymatic hydrolysis, which produces fermentable sugars from carbohydrates present in the corn stover in the form of cellulose and hemicellulose. A pretreatment step is crucial to achieve efficient conversion of lignocellulosic biomass to soluble sugars, and later ethanol. This study has investigated steam pretreatment of corn stover, with and without sulphuric acid as catalyst, and examined the effect of residence time (5–10 min and temperature (190–210°C on glucose and xylose recovery. The pretreatment conditions with and without dilute acid that gave the highest glucose yield were then used in subsequent experiments. Materials pretreated at the optimal conditions were subjected to simultaneous saccharification and fermentation (SSF to produce ethanol, and remaining organic compounds were used to produce biogas by anaerobic digestion (AD. Results The highest glucose yield achieved was 86%, obtained after pretreatment at 210°C for 10 minutes in the absence of catalyst, followed by enzymatic hydrolysis. The highest yield using sulphuric acid, 78%, was achieved using pretreatment at 200°C for 10 minutes. These two pretreatment conditions were investigated using two different process configurations. The highest ethanol and methane yields were obtained from the material pretreated in the presence of sulphuric acid. The slurry in this case was split into a solid fraction and a liquid fraction, where the solid fraction was used to produce ethanol and the liquid fraction to produce biogas. The total energy recovery in this case was 86% of the enthalpy of combustion energy in corn stover. Conclusions The highest yield, comprising ethanol, methane and solids, was achieved using pretreatment in the presence of sulphuric acid followed by a process configuration in

  14. Anaerobic xylose fermentation by Spathaspora passalidarum

    DEFF Research Database (Denmark)

    Hou, Xiaoru

    2012-01-01

    A cost-effective conversion of lignocellulosic biomass into bioethanol requires that the xylose released from the hemicellulose fraction (20–40% of biomass) can be fermented. Baker’s yeast, Saccharomyces cerevisiae, efficiently ferments glucose but it lacks the ability to ferment xylose. Xylose-fermenting...... yeast such as Pichia stipitis requires accurately controlled microaerophilic conditions during the xylose fermentation, rendering the process technically difficult and expensive. In this study, it is demonstrated that under anaerobic conditions Spathaspora passalidarum showed high ethanol production...

  15. The Role of Acetaldehyde in the Increased Acceptance of Ethanol after Prenatal Ethanol Exposure

    Science.gov (United States)

    Gaztañaga, Mirari; Angulo-Alcalde, Asier; Spear, Norman E.; Chotro, M. Gabriela

    2017-01-01

    Recent studies show that acetaldehyde, the first metabolite in the oxidation of ethanol, can be responsible for both, the appetitive and the aversive effects produced by ethanol intoxication. More specifically, it has been hypothesized that acetaldehyde produced in the periphery by the liver is responsible for the aversive effects of ethanol, while the appetitive effects relate to the acetaldehyde produced centrally through the catalase system. On the other hand, from studies in our and other laboratories, it is known that ethanol exposure during the last gestational days (GD) consistently enhances the postnatal acceptance of ethanol when measured during early ontogeny in the rat. This increased liking of ethanol is a conditioned appetitive response acquired by the fetus by the association of ethanol’s flavor and an appetitive reinforcer. Although this reinforcer has not yet been fully identified, one possibility points to acetaldehyde produced centrally in the fetus as a likely candidate. This hypothesis is supported by data showing that very early in the rat’s ontogeny brain catalases are functional, while the liver’s enzymatic system is still immature. In this study, rat dams were administered on GD 17–20 with water or ethanol, together with an acetaldehyde-sequestering agent (D-penicillamine). The offspring’s responses to ethanol was then assessed at different postnatal stages with procedures adequate for each developmental stage: on day 1, using the “odor crawling locomotion test” to measure ethanol’s odor attractiveness; on day 5, in an operant conditioning procedure with ethanol as the reinforcer; and on day 14 in an ethanol intake test. Results show that the absence of acetaldehyde during prenatal ethanol exposure impeded the observation of the increased acceptance of ethanol at any age. This seems to confirm the crucial role of acetaldehyde as a reinforcer in the appetitive learning occurring during prenatal ethanol exposure. PMID:28197082

  16. TEST RESULTS FOR FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS

    Science.gov (United States)

    EPA, in conjunction with ONSI Corp., embarked on a project to define, design, test, and assess a fuel cell energy recovery system for application at anaerobic digester waste water (sewage) treatment plants. Anaerobic digester gas (ADG) is produced at these plants during the proce...

  17. Disclosure ambiental dos produtores de etanol com ações listadas na Bovespa e Nyse - Environmental disclosure by ethanol producers listed on the Bovespa and Nyse stock exchanges

    Directory of Open Access Journals (Sweden)

    Cassio Luiz Vellani

    2009-05-01

    ethanol producers listed on the BOVESPA and NYSE stock exchanges report the expenditures and benefits incurred by their environmental activities: do they report monetary values or words only? Is their a pattern of disclosure? On the basis of case study research, it is concluded that ethanol-producing firms listed on BOVESPA and the NYSE disclose environmental information by means of written, non-financial texts contained in the accounting reports sent to SEC and CVM, respectively. The amount of environmental expenditures and benefits are not completely cited. An evolving pattern can be perceived. It can be said that firms still report only what is required by law and regulatory bodies. No evidence was found of economic-financial environmental reports.

  18. Anaerobic Digestion and its Applications

    Science.gov (United States)

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  19. Redox potential driven aeration during very-high-gravity ethanol fermentation by using flocculating yeast.

    Science.gov (United States)

    Liu, Chen-Guang; Hao, Xue-Mi; Lin, Yen-Han; Bai, Feng-Wu

    2016-05-10

    Ethanol fermentation requires oxygen to maintain high biomass and cell viability, especially under very-high-gravity (VHG) condition. In this work, fermentation redox potential (ORP) was applied to drive the aeration process at low dissolved oxygen (DO) levels, which is infeasible to be regulated by a DO sensor. The performance and characteristics of flocculating yeast grown under 300 and 260 g glucose/L conditions were subjected to various aeration strategies including: no aeration; controlled aeration at -150, -100 and -50 mV levels; and constant aeration at 0.05 and 0.2 vvm. The results showed that anaerobic fermentation produced the least ethanol and had the highest residual glucose after 72 h of fermentation. Controlled aerations, depending on the real-time oxygen demand, led to higher cell viability than the no-aeration counterpart. Constant aeration triggered a quick biomass formation, and fast glucose utilization. However, over aeration at 0.2 vvm caused a reduction of final ethanol concentration. The controlled aeration driven by ORP under VHG conditions resulted in the best fermentation performance. Moreover, the controlled aeration could enhance yeast flocculating activity, promote an increase of flocs size, and accelerate yeast separation near the end of fermentation.

  20. Treatment of biomass to obtain ethanol

    Science.gov (United States)

    Dunson, Jr., James B.; Elander, Richard T.; Tucker, III, Melvin P.; Hennessey, Susan Marie

    2011-08-16

    Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

  1. 挥发性有机酸对产沼气效果的模拟试验%Simulation experiment of volatility organic acids on biogas-producing characteristics under anaerobic condition

    Institute of Scientific and Technical Information of China (English)

    董保成; 赵立欣; 万小春; 罗娟; 陈羚; 高新星

    2011-01-01

    两相厌氧生物处理工艺在废弃物资源化利用中得到广泛应用.为了摸清产酸相的主要产物在产气过程中的效应,该文利用甲酸、乙酸、丙酸和丁酸等4种有机酸模拟产酸过程中的主要酸化产物,以活性污泥为接种物,设计单因素试验和正交试验,研究了在中温条件下,4种有机酸单一作用条件下和混合作用条件下,甲烷日产气量和累积产气量的变化.结果表明:单一有机酸作底物时,存在一个浓度阈值,高于此值会抑制甲烷产生,低于此值,产气效果随着酸浓度增大而提高;有机酸共同存在时,可以产生协同优势,其中乙酸的产气优势高于丁酸,丙酸具有抑制作用;4种单一酸中,单位浓度下乙酸产气效果最好,甲酸产气量最大,甲酸积累不易对发酵过程产生抑制作用,而丙酸累积最易造成抑制.因此,建议在沼气工程中适当调整产甲酸、乙酸和丁酸较多的发酵物料浓度,从而提高产气效率.%Two-phase anaerobic biological treatment has been widely applied in waste disposal/utilization. In order to study the effects of main products on the biogas-producing process, based on the simulation of four major acidified organic acids (formic acid, acetic acid, propionic acid and butyric acid), the activated sludge was inoculated. Then single factor and orthogonal experiments were designed to study the main and interactive effects of organic acids on dynamics of both daily and accumulative methane production under medium temperature condition. The results showed that there existed a critical threshold of organic acid concentration in single organic acid, where high concentration above the threshold would have inhibited effect on gas production; and gas production got increased with the acid concentration increasing when it below the threshold. There was a significant interactive effect among the four organic acids, and acetic acid had the stronger increasing effect than

  2. Potential Uses of Bagasse for Ethanol Production Versus Electricity Production

    Directory of Open Access Journals (Sweden)

    Zumalacárregui-De Cárdenas Lourdes Margarita

    2015-07-01

    Full Text Available The procedure to carry out the energy balance for ethanol production by bagasse’s hydrolysis is presented. The loss of potentialities for electric power generation when bagasse is used to produce ethanol instead of electricity directly is calculated. Potential losses are 45-64% according to the efficiency of the lignocellulosic ethanol production. The relationship that exists between the volume of ethanol and the efficiency of Otto and Rankine cycles is analyzed. Those cycles are used to produce electricity from ethanol and bagasse, respectively.

  3. Biohydrogen production and wastewater treatment from organic wastewater by anaerobic fermentation with UASB

    Science.gov (United States)

    Wang, Lu; Li, Yong-feng; Wang, Yi-xuan; Yang, Chuan-ping

    2010-11-01

    In order to discuss the ability of H2-production and wastewater treatment, an up-flow anaerobic sludge bed (UASB) using a synthesized substrate with brown sugar wastewater was conducted to investigate the hydrogen yield, hydrogen producing rate, fermentation type of biohydrogen production, and the chemical oxygen demand (COD) removal rate, respectively. The results show that when the biomass of inoculants was 22.5 g SSṡL-1 and the influent concentration, hydraulic retention time (HRT) and initial pH were within the ranges of 4000˜6000 mg CODṡL-1, 8 h and 5-5.5, respectively, and the biohydrogen producing reactor could work effectively. The maximum hydrogen production rate is 5.98 Lṡd-1. Simultaneously, the concentration of ethanol and acetic acid is around 80% of the aqueous terminal production in the system, which presents the typical ethanol type fermentation. pH is at the range of 4˜4.5 during the whole performing process, however, the removal rate of COD is just about 20%. Therefore, it's still needs further research to successfully achieve the biohydrogen production and wastewater treatment, simultaneously.

  4. A low temperature anaerobic digestion system reduces instability and produces optimal methane yield : case study of a Farrow to Finish farm marketing 10,000 hogs per year in Quebec

    Energy Technology Data Exchange (ETDEWEB)

    Villeneuve, E.; Boivin, S.; Hince, J.-F. [Bio-Terre Systems, Sherbrooke, PQ (Canada); Masse, D. [Agriculture and Agri-Food Canada, Ottawa, ON (Canada)

    2008-07-01

    This presentation described a joint collaboration between Agriculture and Agri-Food Canada (AAFC) and Bio-Terre Systems that resulted in the development of an innovative environmental solution for manure management. The solution which combines low-temperature anaerobic digestion, concentration of solids and production of green energy, responds to the growth of hog production in North America. A case study of a Farrow to Finish farm marketing 10,000 swine in St.-Hilaire, Quebec was presented with particular reference to background information on the farm, process stability and process performance. The Bio-Terre technology was discussed in detail including a discussion of the psychrophilic anaerobic digestion and microorganisms and sequencing batch reactor (SBR) process. The advantages and disadvantages of this process were presented. It was concluded that the process offers many benefits, including energy economy, improved health of animals, odorless spreading, better fertilizer, and reduction of land required. tabs., figs.

  5. Anaerobic Pre-treatment of Strong Sewage

    NARCIS (Netherlands)

    Halalsheh, M.M.

    2002-01-01

    The main objective of this research was to assess the feasibility of applying low cost anaerobic technology for the treatment of relatively high strength sewage of Jordan using two-stage and one-stage UASB reactors operated at ambient temperatures. The wastewater produced in Jordan is characterised

  6. Anaerobic Digestion Foaming Causes

    OpenAIRE

    Ganidi, Nafsika

    2008-01-01

    Anaerobic digestion foaming has been encountered in several sewage treatment plants in the UK. Foaming has raised major concerns for the water utilities due to significant impacts on process efficiency and operational costs. Several foaming causes have been suggested over the past few years by researchers. However, the supporting experimental information is limited and in some cases site specific. The present report aimed to provide a better understanding of the anaerobic di...

  7. Ethanol production by Mucor indicus and Rhizopus oryzae from rice straw by separate hydrolysis and fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Abedinifar, Sorahi [Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran); Karimi, Keikhosro [Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran); School of Engineering, University of Boraas, SE-501 90 Boraas (Sweden); Khanahmadi, Morteza [Isfahan Agriculture and Natural Resources Research Centre, Isfahan (Iran); Taherzadeh, Mohammad J. [School of Engineering, University of Boraas, SE-501 90 Boraas (Sweden)

    2009-05-15

    Rice straw was successfully converted to ethanol by separate enzymatic hydrolysis and fermentation by Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. The hydrolysis temperature and pH of commercial cellulase and {beta}-glucosidase enzymes were first investigated and their best performance obtained at 45 C and pH 5.0. The pretreatment of the straw with dilute-acid hydrolysis resulted in 0.72 g g{sup -1} sugar yield during 48 h enzymatic hydrolysis, which was higher than steam-pretreated (0.60 g g{sup -1}) and untreated straw (0.46 g g{sup -1}). Furthermore, increasing the concentration of the dilute-acid pretreated straw from 20 to 50 and 100 g L{sup -1} resulted in 13% and 16% lower sugar yield, respectively. Anaerobic cultivation of the hydrolyzates with M. indicus resulted in 0.36-0.43 g g{sup -1} ethanol, 0.11-0.17 g g{sup -1} biomass, and 0.04-0.06 g g{sup -1} glycerol, which is comparable with the corresponding yields by S. cerevisiae (0.37-0.45 g g{sup -1} ethanol, 0.04-0.10 g g{sup -1} biomass and 0.05-0.07 glycerol). These two fungi produced no other major metabolite from the straw and completed the cultivation in less than 25 h. However, R. oryzae produced lactic acid as the major by-product with yield of 0.05-0.09 g g{sup -1}. This fungus had ethanol, biomass and glycerol yields of 0.33-0.41, 0.06-0.12, and 0.03-0.04 g g{sup -1}, respectively. (author)

  8. Growth of a Strictly Anaerobic Bacterium on Furfural (2-Furaldehyde)

    OpenAIRE

    Brune, Gerhard; Schoberth, Siegfried M.; Sahm, Hermann

    1983-01-01

    A strictly anaerobic bacterium was isolated from a continuous fermentor culture which converted the organic constituents of sulfite evaporator condensate to methane and carbon dioxide. Furfural is one of the major components of this condensate. This furfural isolate could degrade furfural as the sole source of carbon and energy in a defined mineral-vitamin-sulfate medium. Acetic acid was the major fermentation product. This organism could also use ethanol, lactate, pyruvate, or fumarate and c...

  9. Achieving ethanol-type fermentation for hydrogen production in a granular sludge system by aeration.

    Science.gov (United States)

    Zhang, Song; Liu, Min; Chen, Ying; Pan, Yu-Ting

    2017-01-01

    To investigate the effects of aeration on hydrogen-producing granular system, experiments were performed in two laboratory-scale anaerobic internal circulation hydrogen production (AICHP) reactors. The preliminary experiment of Reactor 1 showed that direct aeration was beneficial to enhancing hydrogen production. After the direct aeration was implied in Reactor 2, hydrogen production rate (HPR) and hydrogen content were increased by 100% and 60%, respectively. In addition, mixed-acid fermentation was transformed into typical ethanol-type fermentation (ETF). Illumina MiSeq sequencing shows that the direct aeration did not change the species of hydrogen-producing bacteria but altered their abundance. Hydrogen-producing bacteria and ethanol-type fermentative bacteria were increased by 24.5% and 146.3%, respectively. Ethanoligenens sp. sharply increased by 162.2% and turned into predominant bacteria in the system. These findings indicated that appropriate direct aeration might be a novel and promising way to obtain ETF and enhance hydrogen production in practical use.

  10. Lignocellulosic ethanol in Brazil : technical assessment of 1st and 2nd generation sugarcane ethanol in a Brazilian setting

    NARCIS (Netherlands)

    Stojanovic, M.; Bakker, R.R.C.

    2009-01-01

    Brazil is currently the largest ethanol-biofuel producer worldwide. Ethanol is produced by fermenting the sucrose part of the sugarcane that contains only one third of the sugarcane energy. The rest of the plant is burned to produce energy to run the process and to generate electricity that is sold

  11. Repeated episodes of chronic intermittent ethanol promote insensitivity to devaluation of the reinforcing effect of ethanol.

    Science.gov (United States)

    Lopez, M F; Becker, H C; Chandler, L J

    2014-11-01

    Studies in animal models have shown that repeated episodes of alcohol dependence and withdrawal promote escalation of drinking that is presumably associated with alterations in the addiction neurocircuitry. Using a lithium chloride-ethanol pairing procedure to devalue the reinforcing properties of ethanol, the present study determined whether multiple cycles of chronic intermittent ethanol (CIE) exposure by vapor inhalation also alters the sensitivity of drinking behavior to the devaluation of ethanol's reinforcing effects. The effect of devaluation on operant ethanol self-administration and extinction was examined in mice prior to initiation of CIE (short drinking history) and after repeated cycles of CIE or air control exposure (long drinking history). Devaluation significantly attenuated the recovery of baseline ethanol self-administration when tested either prior to CIE or in the air-exposed controls that had experienced repeated bouts of drinking but no CIE. In contrast, in mice that had undergone repeated cycles of CIE exposure that promoted escalation of ethanol drinking, self-administration was completely resistant to the effect of devaluation. Devaluation had no effect on the time course of extinction training in either pre-CIE or post-CIE mice. Taken together, these results are consistent with the suggestion that repeated cycles of ethanol dependence and withdrawal produce escalation of ethanol self-administration that is associated with a change in sensitivity to devaluation of the reinforcing properties of ethanol.

  12. Use of an anaerobic sequencing batch reactor for parameter estimation in modelling of anaerobic digestion.

    Science.gov (United States)

    Batstone, D J; Torrijos, M; Ruiz, C; Schmidt, J E

    2004-01-01

    The model structure in anaerobic digestion has been clarified following publication of the IWA Anaerobic Digestion Model No. 1 (ADM1). However, parameter values are not well known, and uncertainty and variability in the parameter values given is almost unknown. Additionally, platforms for identification of parameters, namely continuous-flow laboratory digesters, and batch tests suffer from disadvantages such as long run times, and difficulty in defining initial conditions, respectively. Anaerobic sequencing batch reactors (ASBRs) are sequenced into fill-react-settle-decant phases, and offer promising possibilities for estimation of parameters, as they are by nature, dynamic in behaviour, and allow repeatable behaviour to establish initial conditions, and evaluate parameters. In this study, we estimated parameters describing winery wastewater (most COD as ethanol) degradation using data from sequencing operation, and validated these parameters using unsequenced pulses of ethanol and acetate. The model used was the ADM1, with an extension for ethanol degradation. Parameter confidence spaces were found by non-linear, correlated analysis of the two main Monod parameters; maximum uptake rate (k(m)), and half saturation concentration (K(S)). These parameters could be estimated together using only the measured acetate concentration (20 points per cycle). From interpolating the single cycle acetate data to multiple cycles, we estimate that a practical "optimal" identifiability could be achieved after two cycles for the acetate parameters, and three cycles for the ethanol parameters. The parameters found performed well in the short term, and represented the pulses of acetate and ethanol (within 4 days of the winery-fed cycles) very well. The main discrepancy was poor prediction of pH dynamics, which could be due to an unidentified buffer with an overall influence the same as a weak base (possibly CaCO3). Based on this work, ASBR systems are effective for parameter

  13. Anaerobic Biodegradation of Detergent Surfactants

    Directory of Open Access Journals (Sweden)

    Erich Jelen

    2009-03-01

    Full Text Available Detergent surfactantscan be found in wastewater in relevant concentrations. Most of them are known as ready degradable under aerobic conditions, as required by European legislation. Far fewer surfactants have been tested so far for biodegradability under anaerobic conditions. The natural environment is predominantly aerobic, but there are some environmental compartments such as river sediments, sub-surface soil layer and anaerobic sludge digesters of wastewater treatment plants which have strictly anaerobic conditions. This review gives an overview on anaerobic biodegradation processes, the methods for testing anaerobic biodegradability, and the anaerobic biodegradability of different detergent surfactant types (anionic, nonionic, cationic, amphoteric surfactants.

  14. Supply chain optimization of sugarcane first generation and eucalyptus second generation ethanol production in Brazil

    NARCIS (Netherlands)

    Jonker, J. G G; Junginger, H. M.; Verstegen, J. A.; Lin, T.; Rodríguez, L. F.; Ting, K. C.; Faaij, A. P C; van der Hilst, F.

    2016-01-01

    The expansion of the ethanol industry in Brazil faces two important challenges: to reduce total ethanol production costs and to limit the greenhouse gas (GHG) emission intensity of the ethanol produced. The objective of this study is to economically optimize the scale and location of ethanol product

  15. Norepinephrine-induced diuresis in chronically ethanol-treated rats

    Energy Technology Data Exchange (ETDEWEB)

    Pohorecky, L.A. (Rutgers Univ., Piscataway, NJ (USA))

    1989-01-01

    Previous research from this laboratory indicated that noradrenergic mechanisms might mediate ethanol diuresis. Experiments described here examined changes in sensitivity of noradrenergic mechanisms in animals chronically treated with ethanol. Norepinephrine hydrochloride (0-12 ug intracerebroventricularly) produced dose-dependent diuresis in control and ethanol treated rats on the first day of treatment. Tolerance to ethanol diuresis was present after 10 day of ethanol treatment. Lack of responsiveness to norepinephrine-induced diuresis was evident only on the 20th day of treatment in both the ethanol and dextrin-maltose groups of rats. These results indicate a temporal dissociation between the tolerance to ethanol-induced and norepinephrine-induced diuresis and suggest that norepinephrine may not play a primary role in the development of tolerance to the diuretic action of ethanol.

  16. Ethanol-induced analgesia

    Energy Technology Data Exchange (ETDEWEB)

    Pohorecky, L.A.; Shah, P.

    1987-09-07

    The effect of ethanol (ET) on nociceptive sensitivity was evaluated using a new tail deflection response (TDR) method. The IP injection of ET (0.5 - 1.5 g/kg) produced raid dose-dependent analgesia. Near maximal effect (97% decrease in TDR) was produced with the 1.5 g/kg dose of ET ten minutes after injection. At ninety minutes post-injection there was still significant analgesia. Depression of ET-induced nociceptive sensitivity was partially reversed by a 1 mg/kg dose of naloxone. On the other hand, morphine (0.5 or 5.0 mg/kg IP) did not modify ET-induced analgesia, while 3.0 minutes of cold water swim (known to produce non-opioid mediated analgesia) potentiated ET-induced analgesic effect. The 0.5 g/kg dose of ET by itself did not depress motor activity in an open field test, but prevented partially the depression in motor activity produced by cold water swim (CWS). Thus, the potentiation by ET of the depression of the TDR produced by CWS cannot be ascribed to the depressant effects of ET on motor activity. 21 references, 4 figures, 1 table.

  17. Enhancing the anaerobic digestion of corn stalks using composite microbial pretreatment.

    Science.gov (United States)

    Yuan, Xufeng; Li, Peipei; Wang, Hui; Wang, Xiaofen; Cheng, Xu; Cui, Zongjun

    2011-07-01

    A composite microbial system (XDC-2) was used to pretreat and hydrolyze corn stalk to enhance anaerobic digestion. The results of pretreatment indicated that sCOD concentrations of hydrolysate were highest (8,233 mg/l) at the fifth day. XDC-2 efficiently degraded the corn stalk by nearly 45%, decreasing the cellulose content by 22.7% and the hemicellulose content by 74.1%. Total levels of volatile products peaked on the fifth day. The six major compounds present were ethanol (0.29 g/l), acetic acid (0.55 g/l), 1,2-ethanediol (0.49 g/l), propionic acid (0.15 g/l), butyric acid (0.22 g/l), and glycerine (2.48 g/l). The results of anaerobic digestion showed that corn stalks treated by XDC-2 produced 68.3% more total biogas and 87.9% more total methane than untreated controls. The technical digestion time for the treated corn stalks was 35.7% shorter than without treatment. The composite microbial system pretreatment could be a cost-effective and environmentally friendly microbial method for efficient biological conversion of corn stalk into bioenergy.

  18. Production of ethanol from wheat straw

    Directory of Open Access Journals (Sweden)

    Smuga-Kogut Małgorzata

    2015-09-01

    Full Text Available This study proposes a method for the production of ethanol from wheat straw lignocellulose where the raw material is chemically processed before hydrolysis and fermentation. The usefulness of wheat straw delignification was evaluated with the use of a 4:1 mixture of 95% ethanol and 65% HNO3 (V. Chemically processed lignocellulose was subjected to enzymatic hydrolysis to produce reducing sugars, which were converted to ethanol in the process of alcoholic fermentation. Chemical processing damages the molecular structure of wheat straw, thus improving ethanol yield. The removal of lignin from straw improves fermentation by eliminating lignin’s negative influence on the growth and viability of yeast cells. Straw pretreatment facilitates enzymatic hydrolysis by increasing the content of reducing sugars and ethanol per g in comparison with untreated wheat straw.

  19. Endogenous ethanol affects biopolyester molecular weight in recombinant Escherichia coli.

    Science.gov (United States)

    Hiroe, Ayaka; Hyakutake, Manami; Thomson, Nicholas M; Sivaniah, Easan; Tsuge, Takeharu

    2013-11-15

    In biopolyester synthesis, polyhydroxyalkanoate (PHA) synthase (PhaC) catalyzes the polymerization of PHA in bacterial cells, followed by a chain transfer (CT) reaction in which the PHA polymer chain is transferred from PhaC to a CT agent. Accordingly, the frequency of CT reaction determines PHA molecular weight. Previous studies have shown that exogenous alcohols are effective CT agents. This study aimed to clarify the effect of endogenous ethanol as a CT agent for poly[(R)-3-hydroxybutyrate] [P(3HB)] synthesis in recombinant Escherichia coli, by comparing with that of exogenous ethanol. Ethanol supplementation to the culture medium reduced P(3HB) molecular weights by up to 56% due to ethanol-induced CT reaction. NMR analysis of P(3HB) polymers purified from the culture supplemented with (13)C-labeled ethanol showed the formation of a covalent bond between ethanol and P(3HB) chain at the carboxyl end. Cultivation without ethanol supplementation resulted in the reduction of P(3HB) molecular weight with increasing host-produced ethanol depending on culture aeration. On the other hand, production in recombinant BW25113(ΔadhE), an alcohol dehydrogenase deletion strain, resulted in a 77% increase in molecular weight. Analysis of five E. coli strains revealed that the estimated number of CT reactions was correlated with ethanol production. These results demonstrate that host-produced ethanol acts as an equally effective CT agent as exogenous ethanol, and the control of ethanol production is important to regulate the PHA molecular weight.

  20. Steam reforming of ethanol

    DEFF Research Database (Denmark)

    Trane-Restrup, Rasmus; Dahl, Søren; Jensen, Anker Degn

    2013-01-01

    Steam reforming (SR) of oxygenated species like bio-oil or ethanol can be used to produce hydrogen or synthesis gas from renewable resources. However, deactivation due to carbon deposition is a major challenge for these processes. In this study, different strategies to minimize carbon deposition...... on Ni-based catalysts during SR of ethanol were investigated in a flow reactor. Four different supports for Ni were tested and Ce0.6Zr0.4O2 showed the highest activity, but also suffered from severe carbon deposition at 600 °C or below. Operation at 600 °C or above were needed for full conversion...... 400 ppm of the carbon in the feed at approx. 600 °C. The different promoters did not influence the product distribution to any significant extent. Selective poisoning with small amounts of K2SO4 on Ni–CeO2/MgAl2O4 at 600 °C decreased carbon deposition from 900 to 200 ppm of the carbon in the feed...

  1. Pathway engineering to improve ethanol production by thermophilic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Lynd, L.R.

    1998-12-31

    Continuation of a research project jointly funded by the NSF and DOE is proposed. The primary project goal is to develop and characterize strains of C. thermocellum and C. thermosaccharolyticum having ethanol selectivity similar to more convenient ethanol-producing organisms. An additional goal is to document the maximum concentration of ethanol that can be produced by thermophiles. These goals build on results from the previous project, including development of most of the genetic tools required for pathway engineering in the target organisms. As well, we demonstrated that the tolerance of C. thermosaccharolyticum to added ethanol is sufficiently high to allow practical utilization should similar tolerance to produced ethanol be demonstrated, and that inhibition by neutralizing agents may explain the limited concentrations of ethanol produced in studies to date. Task 1 involves optimization of electrotransformation, using either modified conditions or alternative plasmids to improve upon the low but reproducible transformation, frequencies we have obtained thus far.

  2. Vacuum stripping of ethanol during high solids fermentation of corn.

    Science.gov (United States)

    Shihadeh, Jameel K; Huang, Haibo; Rausch, Kent D; Tumbleson, Mike E; Singh, Vijay

    2014-05-01

    In corn-ethanol industry, yeast stress inducing glucose concentrations produced during liquefaction and subsequent high ethanol concentrations produced during fermentation restrict slurry solids to 32 % w/w. These limits were circumvented by combining two novel technologies: (1) granular starch hydrolyzing enzyme (GSHE) to break down starch simultaneously with fermentation and (2) vacuum stripping to remove ethanol. A vacuum stripping system was constructed and applied to fermentations at 30, 40, and 45 % solids. As solids increased from 30 to 40 %, ethanol yield decreased from 0.35 to 0.29 L/kg. Ethanol yield from 45 % solids was only 0.18 L/kg. An improvement was conducted by increasing enzyme dose from 0.25 to 0.75 g/g corn and reducing yeast inoculum by half. After improvement, ethanol yield from 40 % solids vacuum treatment increased to 0.36 L/kg, comparable to ethanol yield from 30 % solids (control).

  3. Ethanol from corn silage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mehlberg, R.L.

    1981-10-01

    The corn silage to ethanol process is described. The process feed is corn silage preserved with sulfuric acid. No anaerobic ensilement is necessary since H/sub 2/SO/sub 4/ completely prevents microbial growth. The acidified corn silage is heated by steam injection as it is loaded into a batch reactor. The polysaccharides are hydrolyzed to xylose and glucose over a 6 to 8 hour period. Then the sugars are washed from the residual fibers over a 6 to 12 hour period with thin stillage or water. The hot, acidic syrup is then neutralized and cooled for fermentation. After fermentation the ethanol is distilled. The residual fibers containing the thin stillage, corn germ, cellulose, and lignin are unloaded from the reactor and dried with flue gases for animal feed.

  4. [Isolation and characterization of new species hydrogen producing bacterium Ethanologenbacterium sp. strain X-1 and its capability of hydrogen production].

    Science.gov (United States)

    Xing, De-Feng; Ren, Nan-Qi; Li, Qiu-Bo

    2004-12-01

    To obtain hydrogen-producing bacterium of high efficiency, a strain X-1 of hydrogen-producing bacteria was isolated from the continuous stirred-tank reactor (CSTR) by anaerobic Hungate technique. The Comparative sequence analysis of 16S rDNA showed that homology of strain X-1 with Clostridium cellulose and Acetanaerobacterium elongatum is less than 94%. All sequence alignment of 16S-23S rDNA intergenic spacer regions (ISR) indicated displayed that consensus region is tRNA(Ala), and tRNA(Ile), variable region is not homologous. Morphological, physic-biochemical character, and comparative sequence analysis of 16S rDNA and 16S-23S rDNA ISR indicated that strain X-1 belong to new genus named Ethanologenbacterium gen. nov.. Strain X-1 is facultative anaerobe bacillus; its main fermentative products are acetic acid, ethanol, H2 and CO2. The metabolic character of strain X-1 is typical ethanol type fermentation. Its capability of hydrogen production was measured in the batch culture experiment. X-1's maximum specific hydrogen producing rate is 28.3 mmol H2/( g dry cell x h) at pH 4.0 and 36 degrees C. Result of identify and analysis of hydrogen production ability demonstrated strain X-1 belong to new genus of high hydrogen-producing bacteria.

  5. Production of bio-hydrogen by mesophilic anaerobic fermentation in an acid-phase sequencing batch reactor.

    Science.gov (United States)

    Cheong, Dae-Yeol; Hansen, Conly L; Stevens, David K

    2007-02-15

    The pH and hydraulic retention time (HRT) of an anaerobic sequencing batch reactor (ASBR) were varied to optimize the conversion of carbohydrate-rich synthetic wastewater into bio-hydrogen. A full factorial design using evolutionary operation (EVOP) was used to determine the effect of the factors and to find the optimum condition of each factor required for high hydrogen production rate. Experimental results from 20 runs indicate that a maximum hydrogen production rate of 4,460-5,540 mL/L/day under the volumetric organic loading rate (VOLR) of 75 g-COD/L/day obtained at an observed design point of HRT = 8 h and pH = 5.7. The hydrogen production rate was strongly dependent on the HRT, and the effect was statistically significant (P 0.05) was found for the pH on the hydrogen production rate. When the ASBR conditions were set for a maximum hydrogen production rate, the hydrogen production yield and specific hydrogen production rate were 60-74 mL/g-COD and 330-360 mL/g-VSS/day, respectively. The hydrogen composition was 43-51%, and no methanogenesis was observed. Acetate, propionate, butyrate, valerate, caproate, and ethanol were major liquid intermediate metabolites during runs of this ASBR. The dominant fermentative types were butyrate-acetate or ethanol-acetate, representing the typical anaerobic pathway of Clostridium species. This hydrogen-producing ASBR had a higher hydrogen production rate, compared with that produced using continuous-flow stirred tank reactors (CSTRs). This study suggests that the hydrogen-producing ASBR is a promising bio-system for prolonged and stable hydrogen production.

  6. Characteristics of biogas producing by anaerobic co-digestion of agricultural straw and swine wastewater based on improved straw-bed bioreactor%基于改进秸秆床发酵系统的厌氧发酵产沼气特性

    Institute of Scientific and Technical Information of China (English)

    陈广银; 杜静; 常志州; 叶小梅; 徐跃定; 张建英

    2014-01-01

    为同时解决农业秸秆和分散式畜禽养殖废水的资源化问题,以打捆秸秆为固定相,以猪粪废水为流动相,构筑秸秆床厌氧反应器,并在反应器后部连接废水二级厌氧反应器,研究秸秆床发酵系统的产气特性及可行性。结果表明:秸秆床发酵系统可同时处理打捆秸秆和猪粪废水,且不影响各发酵原料的厌氧生物转化率,秸秆床发酵系统中秸秆干物质产气量为394.96 mL/g,略高于秸秆单独发酵(382.11 mL/g);秸秆床发酵系统产气稳定性大幅提高,避免了单一发酵原料日产气量波动较大的问题,对产气中平均甲烷体积分数影响明显,秸秆床发酵系统、纯猪粪废水和纯秸秆发酵产气中平均甲烷体积分数分别为57.40%、60.37%和47.32%;与各物料单独发酵相比,秸秆床发酵系统平均容积产气率大幅提高,纯秸秆和猪粪废水单独发酵容积产气率仅为秸秆床发酵系统的69.42%和66.94%;试验35 d后,秸秆机械强度和孔隙度明显降低,秸秆互相粘结导气性下降,造成秸秆上浮严重及进水短流,反应器出水化学需氧量浓度快速增加并稳定在较高浓度,故在秸秆床反应器后部必须连接废水二级厌氧反应器以进一步处理秸秆床反应器出水。综合以上结果,采用秸秆床发酵系统同时处理打捆秸秆和猪粪废水是可行的,但需解决发酵后期秸秆上浮、导向性下降和进水短流等问题。%Agricultural straw and livestock wastewater were the main source of agricultural contaminant, how to reduce, reuse and recycle these wastes has become more and more important. Anaerobic digestion is an attractive technique for bio-waste treatment which can produce biogas and bio-fertilizer. Co-digested two and more wastes is beneficial for anaerobic digestion. By this way, we can not only get more biogas, but also reduce the investment of biogas plant. Two or more

  7. Balancing hygienization and anaerobic digestion of raw sewage sludge.

    Science.gov (United States)

    Astals, S; Venegas, C; Peces, M; Jofre, J; Lucena, F; Mata-Alvarez, J

    2012-12-01

    The anaerobic digestion of raw sewage sludge was evaluated in terms of process efficiency and sludge hygienization. Four different scenarios were analyzed, i.e. mesophilic anaerobic digestion, thermophilic anaerobic digestion and mesophilic anaerobic digestion followed by a 60 °C or by an 80 °C hygienization treatment. Digester performance (organic matter removal, process stability and biogas yield) and the hygienization efficiency (reduction of Escherichia coli, somatic coliphages and F-specific RNA phages) were the main examined factors. Moreover, a preliminary economical feasibility study of each option was carried out throughout an energy balance (heat and electricity). The obtained results showed that both thermophilic anaerobic digestion and mesophilic anaerobic digestion followed by a hygienization step were able to produce an effluent sludge that fulfills the American and the European legislation for land application. However, higher removal efficiencies of indicators were obtained when a hygienization post-treatment was present. Regarding the energy balance, it should be noted that all scenarios have a significant energy surplus. Particularly, positive heat balances will be obtained for the thermophilic anaerobic digestion and for the mesophilic anaerobic digestion followed by 60 °C hygienization post-treatment if an additional fresh-sludge/digested sludge heat exchanger is installed for energy recovery.

  8. Recent Advances in Catalytic Conversion of Ethanol to Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junming; Wang, Yong

    2014-04-30

    With increased availability and decreased cost, ethanol is potentially a promising platform molecule for the production of a variety of value-added chemicals. In this review, we provide a detailed summary of recent advances in catalytic conversion of ethanol to a wide range of chemicals and fuels. We particularly focus on catalyst advances and fundamental understanding of reaction mechanisms involved in ethanol steam reforming (ESR) to produce hydrogen, ethanol conversion to hydrocarbons ranging from light olefins to longer chain alkenes/alkanes and aromatics, and ethanol conversion to other oxygenates including 1-butanol, acetaldehyde, acetone, diethyl ether, and ethyl acetate.

  9. Anaerobic bacteria in otitis media.

    Science.gov (United States)

    Fulghum, R S; Daniel, H J; Yarborough, J G

    1977-01-01

    Anaerobic bacteria, Peptostrepotococcus intermedius and Propionibacterium acnes, were found in mixed culture specimens from four to ten tested cases of chronic secretory otitis media. These anaerobic bacteria were in a mixed infection flora with aerobic bacteria most often Staphylococcus epidermidis and Cornybacterium sp. which do not fit any established species. The findings of anaerobic bacteria in otitis media is consistent with the sporadic report of the involvement of anaerobic bacteria in otitis media in the literature since 1898.

  10. Effect of pH and sulfate concentration on hydrogen production using anaerobic mixed microflora

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jae-Hoon; Choi, Jeong-A.; Bhatnagar, Amit; Kumar, Eva; Jeon, Byong-Hun [Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do, 220-710 (Korea); Abou-Shanab, R.A.I. [Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do, 220-710 (Korea); Department of Environmental Biotechnology, Mubarak City for Scientific Research, Alexandria (Egypt); Min, Booki [Department of Environmental Science and Engineering, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea); Song, Hocheol; Kim, Yong Je [Geologic Environment Division, KIGAM, Daejeon, 305-350 (Korea); Choi, Jaeyoung [Korea Institute of Science and Technology (KIST), Gangneung Institute, Gangneung 210-340 (Korea); Lee, Eung Seok [Geological Sciences, College of Arts and Sciences, Ohio University, Athens, OH 45701-2979 (United States); Um, Sukkee [School of Mechanical Engineering, Hanyang University, 17 Haengdang-Dong, Seongdong-Gu, Seoul, 133-791 (Korea); Lee, Dae Sung [Petroleum and Marine Research Department, KIGAM, Daejeon (Korea)

    2009-12-15

    The effects of varying sulfate concentrations with pH on continuous fermentative hydrogen production were studied using anaerobic mixed cultures growing on a glucose substrate in a chemostat reactor. The maximum hydrogen production rate was 2.8 L/day at pH 5.5 and sulfate concentration of 3000 mg/L. Hydrogen production and residual sulfate level decreased with increasing the pH from 5.5 to 6.2. The volatile fatty acids (VFAs) and ethanol fractions in the effluent were in the order of butyric acid (HBu) > acetic acid (HAc) > ethanol > propionic acid (HPr). Fluorescence In Situ Hybridization (FISH) analysis revealed the presence of hydrogen producing bacteria (HPB) under all pH ranges while sulfate reducing bacteria (SRB) were present at pH 5.8 and 6.2. The inhibition in hydrogen production by SRB at pH 6.2 diminished entirely by lowering to pH 5.5, at which activity of SRB is substantially suppressed. (author)

  11. Metabolic engineering of the ethanol fermentation by Saccharomyces cerevisiae away from glycerol formation towards alternative products

    Energy Technology Data Exchange (ETDEWEB)

    Kumar Jain, V.; Divol, B.; Prior, B.; Franz Bauer, F. [Stellenbosch Univ., (South Africa). Inst. for Wine Biotechnology

    2009-07-01

    This study investigated the commercial advantage of eliminating glycerol from the ethanol fermentation process and possible replacement with other value products. Under fermentative conditions yeast re-oxidizes excess NADH through glycerol production which involves NADH-dependent glycerol-3-phosphate dehydrogenase. Deletion of these two genes renders the cells incapable of maintaining fermentative activity under anaerobic conditions due to accumulation of NADH. This study examined the feasibility of converting this excess NADH to Nad by transforming a glycerol synthesizing double mutant with genes that could restore the redox balance in the yeast. The study showed that although glycerol formation can be eliminated during fermentation, no alternative redox balancing pathway is as efficient at the glycerol pathway in maintaining fermentation. Alternative products such as sorbitol and 1,2propanediol can be produced instead of glycerol, but these genetic manipulations were shown to have negative effects on fermentative ability. Ethanol yields, but not concentrations, were improved in mutants. Significant amounts of acetate were also produced. This paper discussed the metabolic and biotechnological implications of these findings. tabs., figs.

  12. Wastepaper as a feedstock for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, P.W.; Riley, C.J.

    1991-11-01

    The possibility of using wastepaper as a cheap feedstock for production of ethanol is discussed. As the single largest material category in the municipal solid waste (MSW) stream, wastepaper is the main target of efforts to reduce the volume of MSW. And in the process for producing ethanol from lignocellulosics, the feedstock represents the highest cost. If wastepaper could be obtained cheaply in large enough quantities and if conversion process cost and efficiency prove to be similar to those for wood, the cost of ethanol could be significantly reduced. At the same time, the volume of wastepaper that must be disposed of in landfills could be lessened. 13 refs., 3 figs., 7 tabs.

  13. Environmental analysis of biomass-ethanol facilities

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D.; Putsche, V.

    1995-12-01

    This report analyzes the environmental regulatory requirements for several process configurations of a biomass-to-ethanol facility. It also evaluates the impact of two feedstocks (municipal solid waste [MSW] and agricultural residues) and three facility sizes (1000, 2000, and 3000 dry tons per day [dtpd]) on the environmental requirements. The basic biomass ethanol process has five major steps: (1) Milling, (2) Pretreatment, (3) Cofermentation, (4) Enzyme production, (5) Product recovery. Each step could have environmental impacts and thus be subject to regulation. Facilities that process 2000 dtpd of MSW or agricultural residues would produce 69 and 79 million gallons of ethanol, respectively.

  14. Isolation, Identification and Characteristic Analysis of an Oil-producing chlorella sp. Tolerant to High-strength Anaerobic Digestion Effluent%耐高浓度沼液产油小球藻的分离鉴定与特征分析

    Institute of Scientific and Technical Information of China (English)

    杨闯; 王文国; 马丹炜; 汤晓玉; 胡启春

    2015-01-01

    A Chlorella strain tolerant to high-strength anaerobic digestion effluent was isolated from the anaerobic digestion effluent with a long-term exposure to air. The strain was identified as a Chlorella by morphological and molecular biological methods, and named Chlorella sp. BWY-1. The anaerobic digestion effluent used in this study was from a biogas plant with the raw materials of swine wastewater after solid-liquid separation. The Chlorella regularis (FACHB-729) was used as the control strain. The comparative study showed that Chlorella sp. BWY-1had relatively higher growth rate, biomass accumulation capacity and pollutants removal rate in BG11 and different concentrations of anaerobic digestion effluent. Chlorella sp. BWY-1 had the highest growth rate and biomass productivity (324. 40 mg.L - 1 ) in BG11, but its lipid productivity and lipid content increased with the increase of anaerobic digestion effluent concentration. In undiluted anaerobic digestion effluent, the lipid productivity and lipid content of Chlorella sp. BWY-1 were up to 44. 43℅ and 108. 70 mg.L - 1 , respectively. Those results showed that the isolated algal strain had some potential applications in livestock wastewater treatment and bioenergy production, it could be combined with a solid-liquid separation, anaerobic fermentation and other techniques for processing livestock wastewater and producing biodiesel.%本研究从长期在空气中放置的沼液中分离得到1株可以耐受高浓度沼液的藻株,经形态和分子生物学方法鉴定为小球藻属的一种,命名为 Chlorella sp. BWY-1.本研究所用的沼液来自于以固液分离后的猪场废水为发酵原料的沼气工程.与普通小球藻 Chlorella regularis (FACHB-729)的对比研究表明,Chlorella sp. BWY-1在 BG11和不同浓度的沼液中都有相对较强的生长速率﹑生物量积累能力和氮磷等污染物去除能力. Chlorella sp. BWY-1在 BG11中有最高的生长速率和生物量生产力(324

  15. Autophagy and ethanol neurotoxicity.

    Science.gov (United States)

    Luo, Jia

    2014-01-01

    Excessive ethanol exposure is detrimental to the brain. The developing brain is particularly vulnerable to ethanol such that prenatal ethanol exposure causes fetal alcohol spectrum disorders (FASD). Neuronal loss in the brain is the most devastating consequence and is associated with mental retardation and other behavioral deficits observed in FASD. Since alcohol consumption during pregnancy has not declined, it is imperative to elucidate the underlying mechanisms and develop effective therapeutic strategies. One cellular mechanism that acts as a protective response for the central nervous system (CNS) is autophagy. Autophagy regulates lysosomal turnover of organelles and proteins within cells, and is involved in cell differentiation, survival, metabolism, and immunity. We have recently shown that ethanol activates autophagy in the developing brain. The autophagic preconditioning alleviates ethanol-induced neuron apoptosis, whereas inhibition of autophagy potentiates ethanol-stimulated reactive oxygen species (ROS) and exacerbates ethanol-induced neuroapoptosis. The expression of genes encoding proteins required for autophagy in the CNS is developmentally regulated; their levels are much lower during an ethanol-sensitive period than during an ethanol-resistant period. Ethanol may stimulate autophagy through multiple mechanisms; these include induction of oxidative stress and endoplasmic reticulum stress, modulation of MTOR and AMPK signaling, alterations in BCL2 family proteins, and disruption of intracellular calcium (Ca2+) homeostasis. This review discusses the most recent evidence regarding the involvement of autophagy in ethanol-mediated neurotoxicity as well as the potential therapeutic approach of targeting autophagic pathways.

  16. Anaerobic biotechnological approaches for production of liquid energy carriers from biomass

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Thomsen, Anne Belinda; Angelidaki, Irini

    2007-01-01

    In recent years, increasing attention has been paid to the use of renewable biomass for energy production. Anaerobic biotechnological approaches for production of liquid energy carriers (ethanol and a mixture of acetone, butanol and ethanol) from biomass can be employed to decrease environmental...... is determined by substrates and microbial communities available as well as the operating conditions applied. In this review, we evaluate the recent biotechnological approaches employed in ethanol and ABE fermentation. Practical applicability of different technologies is discussed taking into account...... the microbiology and biochemistry of the processes....

  17. Anaerobic digestion without biogas?

    NARCIS (Netherlands)

    Kleerebezem, R.; Joosse, B.; Rozendaal, R.; Van Loosdrecht, M.C.M.

    2015-01-01

    Anaerobic digestion for the production of methane containing biogas is the classic example of a resource recovery process that combines stabilization of particulate organic matter or wastewater treatment with the production of a valuable end-product. Attractive features of the process include the pr

  18. Methane and hydrogen production by human intestinal anaerobic bacteria.

    Science.gov (United States)

    McKay, L F; Holbrook, W P; Eastwood, M A

    1982-06-01

    The gas above liquid cultures of a variety of human intestinal anaerobic bacteria was sampled and analysed by headspace gas chromatography. Hydrogen production was greatest with strains of the genus Clostridium, intermediate with anaerobic cocci and least with Bacteroides sp. Very few strains produced methane although small amounts were detected with one strain of B. thetaiotaomicron, C. perfringens and C. histolyticum. There may be a relationship between these anaerobic bacteria and several gastrointestinal disorders in which there is a build up of hydrogen or methane in the intestines.

  19. Electron beam/biological processing of anaerobic and aerobic sludge

    Science.gov (United States)

    Čuba, V.; Pospíšil, M.; Múčka, V.; Jeníček, P.; Dohányos, M.; Zábranská, J.

    2003-01-01

    Besides common chemical and biological methods, the radiation technology is a promising way of sludge treatment. The paper describes possibilities of combined accelerated electrons/biological processing of both anaerobic and aerobic sludge. Besides one-shot experiments, experimental reactors for the simulation of anaerobic processes have been used. Main effort has been aimed to decrease organic compounds concentration and overall volume of solids, to improve some physico-chemical parameters of sludge, to validate hygienisation effects of the ionising radiation, and in the case of anaerobic sludge, to increase the volume of the produced biogas. Positive effects of the electron beam processing have been observed on all previously named parameters.

  20. Sublethal Concentrations Of Antibiotics Cause Shift To Anaerobic Metabolism In Listeria Monocytogenes And Induce Phenotypes Linked To Antibiotic Tolerance

    DEFF Research Database (Denmark)

    Knudsen, Gitte Maegaard; Ng, Yin; Gram, Lone

    2015-01-01

    Introduction: The foodborne pathogen Listeria monocytogenes can cause the severe infection listeriosis, which have up to 20-30% mortality, but if discovered in time, it can be treated with antibiotics. Most antibiotics are bacteriostatic against L. monocytogenes. This could be due...... to the coexistence with antibiotic-producing organisms during its saprophytic lifestyle. To determine if tolerance could be induced or potentially alter virulence, we investigated the transcriptome after exposure to sublethal antibiotic concentrations. Results: Four antibiotics caused induction of the alcohol...... dehydrogenase gene lmo1634 and repression of alsA and lmo1992, which are involved in acetoin production leading to more ethanol and less acetoin production. This shift in central metabolism indicates a shift from aerobic to anaerobic metabolism, that could reduce oxidative stress and be a survival strategy...

  1. Efficient Anaerobic Fermentation of Simple Sugars by Yeast Fuels Resistance Candida spp. Infections to Eradication by Drugs

    Directory of Open Access Journals (Sweden)

    Nedosa I. Valentine

    2011-01-01

    Full Text Available Problem statement: Human systemic Candida infections had proved difficult to eradicate by the medical health care system. Some practitioners and scholars see the problem as being due to drug resistance. For example an author wrote that ‘secondary drug resistance is clearly being encountered in one setting, oropharyngeal candidiasis in patients with advanced Human Immunodeficiency Virus type 1 (HIV-1 infection usually following years or months of azole therapy. Approach: This research work understudied the nutritional strategies of yeast colonies to serve as a guide to understanding the survival strategies of Candida colonies in human Candidiasis. The aim of the research was to make some impute into more effective ways of eradicating human Candida infections. Ethanol was produced biologically by fermentation of sugar by micro-organisms. The yeast Saccaromyces cerevisiae metabolises complex carbohydrates like starch in the absence of oxygen to ethanol, carbon dioxide and water. This study compared the average ethanol yield of hydrolyzed and unhydrolyzed gelatinized cassava starch fermented by Saccharomyces cerevisiae. The starch was hydrolyzed by α and β-amylase enzymes. Fermentation of the starch was done with a 1% innoculums of a 12 h culture of saccharomyces cerevisiae incubated for 48 h under anaerobic conditions. Results: The results of the study showed that there was no starch hydrolysis in the absence of α and β-amylase enzymes. Starch hydrolysis in the presence of α and β-amylase enzyme took 1 h. There was no starch fermentation in the absence of saccharomyces cerevisiae. The ethanol yield of starch which had been hydrolyzed by α and β-amylases prior to fermentation by saccharomyces cerevisae was 28 times higher than the ethanol yield of starch which had not been previously hydrolyzed by α and β-amylases. These results of the study suggest that yeast infections in human and animal tissues produce 28 times more ethanol yield from

  2. A biochemically structured model for ethanol fermentation by Kluyveromyces marxianus: A batch fermentation and kinetic study

    DEFF Research Database (Denmark)

    Sansonetti, Sascha; Hobley, Timothy John; Calabrò, V.

    2011-01-01

    Anaerobic batch fermentations of ricotta cheese whey (i.e. containing lactose) were performed under different operating conditions. Ethanol concentrations of ca. 22gL−1 were found from whey containing ca. 44gL−1 lactose, which corresponded to up to 95% of the theoretical ethanol yield within 15h...... coefficients within a physically meaningful range thereby providing valuable and reliable insight into fermentation processes....

  3. Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Yao, Shuo; Mikkelsen, Marie Just

    2010-01-01

    Thermoanaerobacter mathranii can produce ethanol from lignocellulosic biomass at high temperatures, but its biotechnological exploitation will require metabolic engineering to increase its ethanol yield. With a cofactor-dependent ethanol production pathway in T. mathranii, it may become crucial...... to regenerate cofactor to increase the ethanol yield. Feeding the cells with a more reduced carbon source, such as mannitol, was shown to increase ethanol yield beyond that obtained with glucose and xylose. The ldh gene coding for lactate dehydrogenase was previously deleted from T. mathranii to eliminate...... an NADH oxidation pathway. To further facilitate NADH regeneration used for ethanol formation, a heterologous gene gldA encoding an NAD+-dependent glycerol dehydrogenase was expressed in T. mathranii. One of the resulting recombinant strains, T. mathranii BG1G1 (Δldh, P xyl GldA), showed increased ethanol...

  4. Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor.

    Science.gov (United States)

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Li, Xu-Dong

    2015-01-01

    Large volumes of untreated palm oil mill effluent (POME) pose threat to aquatic environment due to the presence of very high organic content. The present investigation involved two pilot-scale anaerobic expanded granular sludge bed (EGSB) reactors, continuously operated for 1 year to treat POME. Setting HRT at 9.8 d, the anaerobic EGSB reactors reduced COD from 71179 mg/L to 12341 mg/L and recycled half of sludge by a dissolved air flotation (DAF). The average effluent COD was 3587 mg/L with the consistent COD removal efficiency of 94.89%. Adding cationic polymer (PAM) dose of 30 mg/L to DAF unit and recycling its half of sludge caused granulation of anaerobic sludge. Bacilli and small coccid bacteria were the dominant microbial species of the reactor. The reactor produced 27.65 m(3) of biogas per m(3) of POME which was utilized for electricity generation.

  5. Biodegradability of leathers through anaerobic pathway.

    Science.gov (United States)

    Dhayalan, K; Fathima, N Nishad; Gnanamani, A; Rao, J Raghava; Nair, B Unni; Ramasami, T

    2007-01-01

    Leather processing generates huge amounts of both solid and liquid wastes. The management of solid wastes, especially tanned leather waste, is a challenging problem faced by tanners. Hence, studies on biodegradability of leather become imperative. In this present work, biodegradability of untanned, chrome tanned and vegetable tanned leather under anaerobic conditions has been addressed. Two different sources of anaerobes have been used for this purpose. The effect of detanning as a pretreatment method before subjecting the leather to biodegradation has also been studied. It has been found that vegetable tanned leather leads to more gas production than chrome tanned leather. Mixed anaerobic isolates when employed as an inoculum are able to degrade the soluble organics of vegetable tanned material and thus exhibit an increased level of gas production during the initial days, compared to the results of the treatments that received the anaerobic sludge. With chrome tanned materials, there was not much change in the volume of the gas produced from the two different sources. It has been found that detanning tends to improve the biodegradability of both types of leathers.

  6. Anaerobic degradation of linear alkylbenzene sulfonate.

    Science.gov (United States)

    Mogensen, Anders S; Haagensen, Frank; Ahring, Birgitte K

    2003-04-01

    Linear alkylbenzene sulfonate (LAS) found in wastewater is removed in the wastewater treatment facilities by sorption and aerobic biodegradation. The anaerobic digestion of sewage sludge has not been shown to contribute to the removal. The concentration of LAS based on dry matter typically increases during anaerobic stabilization due to transformation of easily degradable organic matter. Hence, LAS is regarded as resistant to biodegradation under anaerobic conditions. We present data from a lab-scale semi-continuously stirred tank reactor (CSTR) spiked with linear dodecylbenzene sulfonate (C12 LAS), which show that C12 LAS was biodegradable under methanogenic conditions. Sorption of C12 LAS on sewage sludge was described with a Freundlich isotherm. The C12 LAS sorption was determined with different concentrations of total solids (TS). In the semi-continuously stirred tank reactor, 18% of the added C12 LAS was bioavailable and 20% was biotransformed when spiking with 100 mg/L of C12 LAS and a TS concentration of 14.2 mg/L. Enhanced bioavailability of C12 LAS was obtained in an upflow anaerobic sludge blanket (UASB) reactor inoculated with granular sludge and sewage sludge. Biodegradation under thermophilic conditions was 37% with LAS as sole carbon source. Benzaldehyde was produced in the UASB reactor during LAS transformation.

  7. Anaerobic treatment of wastewater containing methanol in upflow anaerobic sludge bed (UASB) reactor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The direct conversion of methanol into methane is the main process in anaerobic treatment of methanol containing wastewater.However,acetic acid can also be produced from methanol theoretically,which may probably result in an abrupt pH drop and deteriorate the anaerobic process.Therefore,it is interesting to know what would really happen in an anaerobic reactor treating methanol wastewater.In this study,an up-flow anaerobic sludge bed (UASB) reactor treating methanol wastewater was operated.The chemical oxygen demand (COD),acetic acid and pH of the effluent were monitored at different loadings and influent alkalinity.The results showed that the anaerobic reactor could be operated steadily at as low as 119 mg/L of influent alkalinity and high organic loading rate with no obvious pH drops.Volatile fatty acids accumulation was not observed even at strong shock loadings.The microorganisms in the sludge at the end of the test became homogeneous in morphology,which were mainly spherical or spheroidal in shape.

  8. Elucidating the roles of ethanol fermentation metabolism in causing off-flavors in mandarins.

    Science.gov (United States)

    Tietel, Zipora; Lewinsohn, Efraim; Fallik, Elazar; Porat, Ron

    2011-11-09

    To elucidate the roles of ethanol fermentation metabolism in causing off-flavors, 'Mor' mandarins were exposed to anaerobic atmospheres for 0, 2, 4, 7, and 10 days to gradually increase juice ethanol and acetaldehyde levels through enhanced fermentation. Exposure to anaerobic atmosphere caused progressive decline in fruit sensory quality, from nearly "good" to "very bad", because of decreased typical mandarin flavor and increased sensation of 'musty' and 'ethanol' off-flavors. GC-MS analysis revealed significant (p ≤ 0.05) increases in the contents of 12 aroma volatiles, including the ethanol fermentation metabolites ethanol and acetaldehyde, and several fatty acid and amino acid catabolism derivates, 7 of which were ethyl esters, which suggests that they were esterification products of ethanol and acyl-CoA's derived from fatty acid and amino acid catabolism. These de novo synthesized anaerobiosis-regulated ethyl esters impart 'pungent', 'ethereal', 'waxy', 'musty', and 'fruity' notes. Overall, these results suggest that besides the direct effects of ethanol and acetaldehyde, downstream ethanol esterification products may also be involved in causing off-flavor sensation in mandarins.

  9. Ethanol cellular defense induce unfolded protein response in yeast

    Directory of Open Access Journals (Sweden)

    Elisabet eNavarro-Tapia

    2016-02-01

    Full Text Available Ethanol is a valuable industrial product and a common metabolite used by many cell types. However, this molecule produces high levels of cytotoxicity affecting cellular performance at several levels. In the presence of ethanol, cells must adjust some of their components, such as the membrane lipids to maintain homeostasis. In the case of microorganism as Saccharomyces cerevisiae, ethanol is one of the principal products of their metabolism and is the main stress factor during fermentation. Although many efforts have been made, mechanisms of ethanol tolerance are not fully understood and very little evidence is available to date for specific signaling by ethanol in the cell. This work studied two Saccharomyces cerevisiae strains, CECT10094 and Temohaya-MI26, isolated from flor wine and agave fermentation (a traditional fermentation from Mexico respectively, which differ in ethanol tolerance, in order to understand the molecular mechanisms underlying the ethanol stress response and the reasons for different ethanol tolerance. The transcriptome was analyzed after ethanol stress and, among others, an increased activation of genes related with the unfolded protein response (UPR and its transcription factor, Hac1p, was observed in the tolerant strain CECT10094. We observed that this strain also resist more UPR agents than Temohaya-MI26 and the UPR-ethanol stress correlation was corroborated observing growth of 15 more strains and discarding UPR correlation with other stresses as thermal or oxidative stress. Furthermore, higher activation of UPR pathway in the tolerant strain CECT10094 was observed using a UPR mCherry reporter. Finally, we observed UPR activation in response to ethanol stress in other S. cerevisiae ethanol tolerant strains as the wine strains T73 and EC1118. This work demonstrates that the UPR pathway is activated under ethanol stress occurring in a standard fermentation and links this response to an enhanced ethanol tolerance. Thus

  10. Evaluation of yeast strains for production of fuel ethanol from biomass hydrolysates

    Science.gov (United States)

    Robust industrial yeast strains are needed for profitable production of fuel ethanol from mixed biomass waste. USDA, ARS, NCAUR, RPT has been evaluating ethanol-producing yeasts, including Saccharomyces cerevisiae, engineered GMAX Saccharomyces cerevisiae, irradiated Kluyveromyces marxianus, and Pi...

  11. Energetic potential of biogas produced from cassava starch wastewater using a pilot scale two-stage anaerobic biodigester; Potencial energetico do biogas gerado no tratamento de aguas residuarias de fecularias em sistema piloto de biodigestao anaerobia com separacao de fases

    Energy Technology Data Exchange (ETDEWEB)

    Feiden, Armin [Universidade Estadual do Oeste do Parana (UNIOESTE), Marechal Candido Rondon, PR (Brazil). Centro de Ciencias Agrarias]. E-mail: armin_feiden@yahoo.com.br; Cereda, Marney Pascoli [UNESP, Botucatu, SP (Brazil). Centro de Raizes Tropicais

    2003-06-01

    Cassava starch is extracted in more of 70 units in west of Parana state, South of Brazil. Near the border of the Parana river there is a big concentration of this type of industry. The cassava starch extraction generates a great quantity of wastewater. The aim of this work was to evaluate the energetic potential of biogas generated in the anaerobic treatment of cassava. The pilot reactors were located at a cassava processing factory, with cassava roots grauding capacity of 250 metric ton day{sup -1} at the parallel 24 deg 09'18'' South latitude and meridian 54 deg 09'26'' West longitude of Grw. The treatment pilot system was consisted of two settling tanks with 500 L each, connected in series, followed by a two-stage anaerobic biodigester reactor. The acidogenic reactor had a capacity of 1,000 L and the methanogenic had a capacity of 3,000 L. The experiment was conducted at temperatures ranging from 23.9 deg C to 27.7 deg C, with a annual average of 25.8 deg C. It was not used the addition of nutrients nor pH correction. The best results were obtained at a flow rate of 901 L d{sup -1} with a TOC (total organic carbon) loading rate of 0.565 g L{sup -1} d{sup -1} and COD (chemical oxygen demand) of 2.49 g L{sup -1} d{sup -1}, and a hydraulic residence time of 4.4 days. At this loading rate, the system had an average biogas yield of 3.975 L L{sup -1} wastewater 0.895 L L{sup -1} reactor day{sup -1}, and 0.391 L g{sup -1} TOC removed. The net biogas yield was 16.10 m{sup 3} ton{sup -1} cassava roots processed, with 28.65% CO{sub 2}. By calculation it was found that the biogas production is enough to supply 30% of the heat necessity to steam production of the industry, 100% of the heat necessity of direct drying of cassava starch, or 50% of the general total electricity need of the factory. (author)

  12. 厌氧菌群SVY42产酶条件分析及产木聚糖酶菌株的分离鉴定%Enzyme-Producing Conditions Analysis of Anaerobic Bactearial Population SVY42 andIsolation and Identification of a Xylanase-Producing Strain

    Institute of Scientific and Technical Information of China (English)

    赵超; 李婷; 邓云金; 刘晓艳; 黄一帆; 刘斌

    2013-01-01

    A highly effective and stable cellulose and hemicellulose degradable anaerobic bacterial population (ABP) SVY42 from the samples collected from Great Basin Hot Spring in Nevada,USA as material was enriched with and obtained.Their production conditions of CMCase,β-galactosidase and xylanase by ABP SVY42 were studied with the giant Juncao,bagasse,waste mushroom culturing cylinder,sodium carboxymethyl cellulose (CMC),filter paper and xylan as carbon sources.Based on these,a xylanase high-producing strain was screened using xylan as substrate.The highest β-galactosidase activity was 0.23 U/mL using the giant Juncao as substrate.The highest CMCase and xylanase activities were 0.31 U/mL and 0.35 U/mL using xylan as substrate respectively.A xylanase high-producing thermophilic strain SVY42-1 from ABP SVY42 was screened from ABP SVY42.The xylanase activity reached 0.26 U/mL under the optimal temperature (41℃) and pH (8.0).Strain SVY42-1 was identified by 16S rDNA sequencing analysis and only 93.8% similar to the highest homology of the known strains,and identified initially belong to a new genus.%以美国内华达州大盆地温泉采集样品为材料,富集获得纤维素及半纤维素高效稳定降解厌氧菌群SVY42,以巨菌草、甘蔗渣、废菇筒、羧甲基纤维素钠、滤纸、木聚糖为碳源,分析菌群SVY42产内切葡聚糖酶(CMC酶)、β-葡萄糖苷酶和木聚糖酶的情况.在此基础上,以木聚糖为底物筛选高产木聚糖酶的菌株.菌群SVY42在以巨菌草作为碳源时的β-葡萄糖苷酶活最高为0.23 U/mL,以木聚糖作为碳源时CMC酶活和木聚糖酶活均为最高,分别为0.31 U/mL和0.35 U/mL.从菌群SVY42中筛选得到1株高产木聚糖酶厌氧菌株SVY42-1,该菌在最适温度41℃和pH 8.0条件下,其木聚糖酶活力为0.26 U/mL,对其进行16S rDNA序列系统进化分析,SVY42-1与已知菌株的最高同源性仅为93.81%,初步鉴定属于新属.

  13. Ultrastructural changes of Saccharomyces cerevisiae in response to ethanol stress.

    Science.gov (United States)

    Ma, Manli; Han, Pei; Zhang, Ruimin; Li, Hao

    2013-09-01

    In the fermentative process using Saccharomyces cerevisiae to produce bioethanol, the performance of cells is often compromised by the accumulation of ethanol. However, the mechanism of how S. cerevisiae responds against ethanol stress remains elusive. In the current study, S. cerevisiae cells were cultured in YPD (yeast extract - peptone - dextrose) medium containing various concentrations of ethanol (0%, 2.5%, 5%, 7.5%, 10%, and 15% (v/v)). Compared with the control group without ethanol, the mean cell volume of S. cerevisiae decreased significantly in the presence of 7.5% and 10% ethanol after incubation for 16 h (P < 0.05), and in the presence of 15% ethanol at all 3 sampling time points (1, 8, and 16 h) (P < 0.05). The exposure of S. cerevisiae cells to ethanol also led to an increase in malonyldialdehyde content (P < 0.05) and a decrease in sulfhydryl group content (P < 0.05). Moreover, the observations through transmission electron microscopy enabled us to relate ultrastructural changes elicited by ethanol with the cellular stress physiology. Under ethanol stress, the integrity of the cell membrane was compromised. The swelling or distortion of mitochondria together with the occurrence of a single and large vacuole was correlated with the addition of ethanol. These results suggested that the cell membrane is one of the targets of ethanol, and the degeneration of mitochondria promoted the accumulation of intracellular reactive oxygen species.

  14. Reduction of hematite with ethanol to produce magnetic nanoparticles of Fe{sub 3}O{sub 4}, Fe{sub 1-x}O or Fe{sup 0} coated with carbon

    Energy Technology Data Exchange (ETDEWEB)

    Tristao, Juliana C. [Universidade Federal de Minas Gerais, Departamento de Quimica-ICEx (Brazil); Ardisson, Jose D. [Centro de Desenvolvimento de Tecnologia Nuclear, CDTN, Laboratorio de Fisica Aplicada (Brazil); Sansiviero, Maria Terezinha C.; Lago, Rochel M., E-mail: rochel@ufmg.br [Universidade Federal de Minas Gerais, Departamento de Quimica-ICEx (Brazil)

    2010-01-15

    The production of magnetic nanoparticles of Fe{sub 3}O{sub 4} or Fe{sup 0} coated with carbon and carbon nanotubes was investigated by the reduction of hematite with ethanol in a Temperature Programmed Reaction up to 950 deg. C. XRD and Moessbauer measurements showed after reaction at 350 deg. C the partial reduction of hematite to magnetite. At 600 deg. C the hematite is completely reduced to magnetite (59%), wuestite (39%) and metallic iron (7%). At higher temperatures, carbide and metallic iron are the only phases present. TG weight losses suggested the formation of 3-56 wt.% carbon deposits after reaction with ethanol. It was observed by SEM images a high concentration of nanometric carbon filaments on the material surface. BET analyses showed a slight increase in the surface area after reaction. These materials have potential application as catalyst support and removal of spilled oil contaminants.

  15. Synthesis of nanoparticles using ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jia Xu

    2017-01-24

    The present disclosure relates to methods for producing nanoparticles. The nanoparticles may be made using ethanol as the solvent and the reductant to fabricate noble-metal nanoparticles with a narrow particle size distributions, and to coat a thin metal shell on other metal cores. With or without carbon supports, particle size is controlled by fine-tuning the reduction power of ethanol, by adjusting the temperature, and by adding an alkaline solution during syntheses. The thickness of the added or coated metal shell can be varied easily from sub-monolayer to multiple layers in a seed-mediated growth process. The entire synthesis of designed core-shell catalysts can be completed using metal salts as the precursors with more than 98% yield; and, substantially no cleaning processes are necessary apart from simple rinsing. Accordingly, this method is considered to be a "green" chemistry method.

  16. Degradation Action of the Anaerobic Bacteria and Oxygen to the Polymer

    Institute of Scientific and Technical Information of China (English)

    LU Xiang-Guo; ZHANG Ke

    2008-01-01

    Oxygen could prohibit anaerobic bacterium in the produced water and degrade the polymer molecular chains.Aiming at problems making up aerobic polymer solution by the produced water in Daqing Oil Field, some evaluations were done on the viscosity characteristics of polymer solution and bactericide in anaerobic and aerobic environments. Reasonable aerobic concentration of the produced water was obtained. The experimental results indicate that the viscosity of polymer solution confected by the produced water in the aerobic environment is higher than that of the polymer solution confected by the produced water in the anaerobic environment, and the reasonable ments, but the sterilization effect is better in the aerobic environment.

  17. Enhanced bioprocessing of lignocellulose: Wood-rot fungal saccharification and fermentation of corn fiber to ethanol

    Science.gov (United States)

    Shrestha, Prachand

    no improvement in ethanol yields. We showed that saccharification of lignocellulosic material with a wood-rot fungal process is quite feasible. Corn fiber from wet milling was best degraded to sugars using aerobic solid state fermentation with the soft-rot fungus T. reesei. However, it was shown that both the white-rot fungus P. chrysosporium and brown-rot fungus G. trabeum had the ability to produce additional consortia of hemi/cellulose degrading enzymes. It is likely that a consortium of enzymes from these fungi would be the best approach in saccharification of lignocellulose. In all cases, a subsequent anaerobic yeast process under submerged conditions is required to ferment the released sugars to ethanol. To our knowledge, this is the first time report on production of cellulolytic enzymes from wet-milled corn fiber using white- and brown-rot fungi for sequential fermentation of corn fiber hydrolyzate to ethanol. Keywords: lignocellulose, ethanol, biofuel, bioeconomy, biomass, renewable resources, corn fiber, pretreatment, solid-substrate fermentation, simultaneous saccharification and fermentation (SSF), white-rot fungus, brown-rot fungus, soft-rot fungus, fermentable sugars, enzyme activities, cellulytic enzymes Phanerochaete chrysosporium, Gloleophyllum trabeum, Trichoderma reesei, Saccharomyces cerevisiae.

  18. Cellulose ethanol is ready to go

    Energy Technology Data Exchange (ETDEWEB)

    Hladik, M. [Iogen Corp., Ottawa, ON (Canada)

    2006-07-01

    Ottawa-based Iogen Corporation is a leader in industrial biotechnology with a focus on cellulose-based enzyme technology. The company designed and operates the world's first and largest cellulose ethanol demonstration facility making ethanol from biomass. This presentation described Iogen's cellulose ethanol demonstration facility and outlined the innovative process in which enzymes prepare the plant fibres for fermentation, distillation and finally conversion to cellulose ethanol fuel. Hydrolysis and fermentation are achieved using a multi-stage hydrolysis process. It is anticipated that biorefineries will use the residues from locally grown agriculture to produce the ethanol, but stakeholder alliances will have to be built in order to form the elements of commercialization. Feedstocks, government policy, infrastructure issues, investment climate and ethanol sales all contribute to the success of a commercial plant. An assessment of preliminary global feedstock availability was presented with reference to total wheat, coarse grains, barley, oats, rye, sorghum, rice straw and sugar cane production. To date, the use of cellulose ethanol fuel has been demonstrated in vehicle trials in Bonn, Germany, as well as fleet vehicles operated by Natural Resources Canada and Agriculture Canada. Sample feedstock basins in Germany, Canada and the United States were highlighted. The supply of cellulose feedstock is large enough to contribute significantly to reductions in fossil fuel consumption. The United States Department of Energy claims that cellulose ethanol could displace over 30 per cent of the current petroleum consumption in the United States, and that land resources in the United States are capable of producing a sustainable supply of biomass. However, technology, financing and government policies are the factors which currently affect the commercialization of emerging technologies. tabs., figs.

  19. Life cycle greenhouse gas impacts of ethanol, biomethane and limonene production from citrus waste

    Science.gov (United States)

    Pourbafrani, Mohammad; McKechnie, Jon; MacLean, Heather L.; Saville, Bradley A.

    2013-03-01

    The production of biofuel from cellulosic residues can have both environmental and financial benefits. A particular benefit is that it can alleviate competition for land conventionally used for food and feed production. In this research, we investigate greenhouse gas (GHG) emissions associated with the production of ethanol, biomethane, limonene and digestate from citrus waste, a byproduct of the citrus processing industry. The study represents the first life cycle-based evaluations of citrus waste biorefineries. Two biorefinery configurations are studied—a large biorefinery that converts citrus waste into ethanol, biomethane, limonene and digestate, and a small biorefinery that converts citrus waste into biomethane, limonene and digestate. Ethanol is assumed to be used as E85, displacing gasoline as a light-duty vehicle fuel; biomethane displaces natural gas for electricity generation, limonene displaces acetone in solvents, and digestate from the anaerobic digestion process displaces synthetic fertilizer. System expansion and two allocation methods (energy, market value) are considered to determine emissions of co-products. Considerable GHG reductions would be achieved by producing and utilizing the citrus waste-based products in place of the petroleum-based or other non-renewable products. For the large biorefinery, ethanol used as E85 in light-duty vehicles results in a 134% reduction in GHG emissions compared to gasoline-fueled vehicles when applying a system expansion approach. For the small biorefinery, when electricity is generated from biomethane rather than natural gas, GHG emissions are reduced by 77% when applying system expansion. The life cycle GHG emissions vary substantially depending upon biomethane leakage rate, feedstock GHG emissions and the method to determine emissions assigned to co-products. Among the process design parameters, the biomethane leakage rate is critical, and the ethanol produced in the large biorefinery would not meet EISA

  20. Traits of selected Clostridium strains for syngas fermentation to ethanol.

    Science.gov (United States)

    Martin, Michael E; Richter, Hanno; Saha, Surya; Angenent, Largus T

    2016-03-01

    Syngas fermentation is an anaerobic bioprocess that could become industrially relevant as a biorefinery platform for sustainable production of fuels and chemicals. An important prerequisite for commercialization is adequate performance of the biocatalyst (i.e., sufficiently high production rate, titer, selectivity, yield, and stability of the fermentation). Here, we compared the performance of three potential candidate Clostridium strains in syngas-to-ethanol conversion: Clostridium ljungdahlii PETC, C. ljungdahlii ERI-2, and Clostridium autoethanogenum JA1-1. Experiments were conducted in a two-stage, continuously fed syngas-fermentation system that had been optimized for stable ethanol production. The two C. ljungdahlii strains performed similar to each other but different from C. autoethanogenum. When the pH value was lowered from 5.5 to 4.5 to induce solventogenesis, the cell-specific carbon monoxide and hydrogen consumption (similar rate for all strains at pH 5.5), severely decreased in JA1-1, but hardly in PETC and ERI-2. Ethanol production in strains PETC and ERI-2 remained relatively stable while the rate of acetate production decreased, resulting in a high ethanol/acetate ratio, but lower overall productivities. With JA1-1, lowering the pH severely lowered rates of both ethanol and acetate production; and as a consequence, no pronounced shift to solventogenesis was observed. The highest overall ethanol production rate of 0.301 g · L(-1)  · h(-1) was achieved with PETC at pH 4.5 with a corresponding 19 g/L (1.9% w/v) ethanol concentration and a 5.5:1 ethanol/acetate molar ratio. A comparison of the genes relevant for ethanol metabolism revealed differences between C. ljungdahlii and C. autoethanogenum that, however, did not conclusively explain the different phenotypes.

  1. Invited review: anaerobic fermentation of dairy food wastewater.

    Science.gov (United States)

    Hassan, A N; Nelson, B K

    2012-11-01

    Dairy food wastewater disposal represents a major environmental problem. This review discusses microorganisms associated with anaerobic digestion of dairy food wastewater, biochemistry of the process, factors affecting anaerobic digestion, and efforts to develop defined cultures. Anaerobic digestion of dairy food wastewater offers many advantages over other treatments in that a high level of waste stabilization is achieved with much lower levels of sludge. In addition, the process produces readily usable methane with low nutrient requirements and no oxygen. Anaerobic digestion is a series of complex reactions that broadly involve 2 groups of anaerobic or facultative anaerobic microorganisms: acidogens and methanogens. The first group of microorganisms breaks down organic compounds into CO(2) and volatile fatty acids. Some of these organisms are acetogenic, which convert long-chain fatty acids to acetate, CO(2), and hydrogen. Methanogens convert the acidogens' products to methane. The imbalance among the different microbial groups can lead not only to less methane production, but also to process failure. This is due to accumulation of intermediate compounds, such as volatile fatty acids, that inhibit methanogens. The criteria used for evaluation of the anaerobic digestion include levels of hydrogen and volatile fatty acids, methane:carbon ratio, and the gas production rate. A steady state is achieved in an anaerobic digester when the pH, chemical oxygen demand of the effluent, the suspended solids of the effluent, and the daily gas production remain constant. Factors affecting efficiency and stability of the process are types of microorganisms, feed C:N ratio, hydraulic retention time, reactor design, temperature, pH control, hydrogen pressure, and additives such as manure and surfactants. As anaerobic digesters become increasingly used in dairy plants, more research should be directed toward selecting the best cultures that maximize methane production from dairy

  2. Anaerobic digestion for sustainable development: a natural approach

    Energy Technology Data Exchange (ETDEWEB)

    Gijzen, H.J.

    2002-07-01

    After the discovery of methane gas by Alessandro Volta in 1776, it took about 100 years before anaerobic processes for the treatment of wastewater and sludges were introduced. The development of high rate anaerobic digesters for the treatment of sewage and industrial wastewater took until the nineteen-seventies and for solid waste even till the nineteen-eighties. All digesters have in common that they apply natural anaerobic consortia of microorganisms for degradation and transformation processes. In view of this, it could be rewarding to evaluate the efficiency of natural ecosystems for their possible application. Examples of high rate anaerobic natural systems include the forestomach of ruminants and the hindgut of certain insects, such as termites and cockroaches. These ''natural reactors'' exhibit volumetric methane production rates as high as 35 l/l.d. The development of anaerobic reactors based on such natural anaerobic systems could produce eco-technologies for the effective management of a wide variety of solid wastes and industrial wastewater. Important limitations of anaerobic treatment of domestic sewage relate to the absence of nutrient and pathogen removal. A combination of anaerobic pre-treatment followed by photosynthetic post-treatment is proposed for the effective recovery of energy and nutrients from sewage. This eco-technology approach is based on the recognition that the main nutrient assimilating capacity is housed in photosynthetic plants. The proposed anaerobic-photosynthetic process is energy efficient, cost effective and applicable under a wide variety of rural and urban conditions. In conclusion: a natural systems approach towards waste management could generate affordable eco-technologies for effective treatment and resource recovery. (author)

  3. Tar water digestion in an upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Skibsted Mogensen, A.; Angelidaki, I.; Schmidt, J.E.; Ahring, B.K. [Technical Univ., Dept. of Environmental Science and Engineering, Lyngby (Denmark)

    1998-08-01

    The water from the gasification and wet oxidised tar water has been digested anaerobically in UASB reactors and were digested in respectively 10 and 50% in batches. Though the tar water show inhibition at very low concentrations to aerobic microorganisms, the granular sludge used in UASB reactors degrades tar water in concentrations that reveal total inhibition of e.g. bacteria conducting the nitrification process. The value of waste waters are determined, showing that the tar water produces more biogas in the anaerobic digestion. A wide range of xenobiotics, especially phenolic compounds can be transformed in the anaerobic digestion process. Seven phenolic are followed in batch experiments and UASB reactor experiments, and their particular fate in the anaerobic systems embody large differences in the transformation pattern. (au) 24 refs.

  4. Nutrient recovery and improvement of anaerobic digestion process by low grade magnesium oxide application

    OpenAIRE

    Romero Güiza, Maycoll Stiven

    2015-01-01

    Anaerobic digestion is a worldwide technology to treat organic waste streams, primarily due to its capacity to produce methane as renewable energy. However, there is an increasing interest on nutrient recovery (N and P), which from both environmental and economic reasons have been identified as key feature in anaerobic digestion plants. Controlled struvite formation has been attracting increasing attention as a near mature technology to recover nutrients from anaerobic digestion. However, str...

  5. New perspectives in anaerobic digestion

    DEFF Research Database (Denmark)

    van Lier, J.B.; Tilche, A.; Ahring, Birgitte Kiær;

    2001-01-01

    The IWA specialised group on anaerobic digestion (AD) is one of the oldest working groups of the former IAWQ organisation. Despite the fact that anaerobic technology dates back more than 100 years, the technology is still under development, adapting novel treatment systems to the modern...... requirements. In fact, most advances were achieved during the last three decades, when high-rate reactor systems were developed and a profound insight was obtained in the microbiology of the anaerobic communities. This insight led to a better understanding of anaerobic treatment and, subsequently, to a broader...

  6. Batchwise ethanol fermentation with shochu distillery waste

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, S.; Teramoto, Y.; Oba, R.; Ueki, T.; Kimura, K. (Kumamoto Institute of Technology, Kumamoto (Japan)); Shiota, S. (Tohi Jozo Co. Ltd., Kumamoto (Japan))

    1991-10-25

    In order to produce a shochu with a mild aroma, a new vacuum distillation precedure at low temperature of 35 to 40 centigrade was applied to shochu distillation. The resulting rice shochu distillery waste contained a large amount of viable yeast glucoamylase activity, acid protease activity, and neutral protease activity. About 10% of ethanol was produced in the fermented mash at 30 centigrade within three days. In contrast, distillery waste discharged by conventional distillation at high temperature of 55 to 60 centigrade could not be used for secondary ethanol fermentation at all. It was provided that the filtrate of secondarily-fermented distillery waste, which is containing ethanol and possessing a fine aroma fortified with higher alcohols and volatile esters during ethanol fermentation, can be useful for the production of a mirin-like liquor for cooking, Akazake,'' a characteristic red-colored, sweet alcoholic beverage produced in Kumamoto prefecture only, and a bath additive containing ethanol, a fine aroma, and enzymes. 15 refs, 2 figs., 3 tabs.

  7. An Indirect Route for Ethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Eggeman, T.; Verser, D.; Weber, E.

    2005-04-29

    The ZeaChem indirect method is a radically new approach to producing fuel ethanol from renewable resources. Sugar and syngas processing platforms are combined in a novel way that allows all fractions of biomass feedstocks (e.g. carbohydrates, lignins, etc.) to contribute their energy directly into the ethanol product via fermentation and hydrogen based chemical process technologies. The goals of this project were: (1) Collect engineering data necessary for scale-up of the indirect route for ethanol production, and (2) Produce process and economic models to guide the development effort. Both goals were successfully accomplished. The projected economics of the Base Case developed in this work are comparable to today's corn based ethanol technology. Sensitivity analysis shows that significant improvements in economics for the indirect route would result if a biomass feedstock rather that starch hydrolyzate were used as the carbohydrate source. The energy ratio, defined as the ratio of green energy produced divided by the amount of fossil energy consumed, is projected to be 3.11 to 12.32 for the indirect route depending upon the details of implementation. Conventional technology has an energy ratio of 1.34, thus the indirect route will have a significant environmental advantage over today's technology. Energy savings of 7.48 trillion Btu/yr will result when 100 MMgal/yr (neat) of ethanol capacity via the indirect route is placed on-line by the year 2010.

  8. Characteristics of some fermentative bacteria from a thermophilic methane-producing fermenter

    Energy Technology Data Exchange (ETDEWEB)

    Varel, V.H.

    1984-01-01

    Anaerobic bacteria from a 55/sup 0/C methane-producing beef waste fermenter were enumerated, isolated, and characterized. Direct microscopic bacterial counts were 5.2-6.8 X 10/sup 10/ per g fermenter effluent. Using a nonselective roll-tube medium which contained 40% fermenter effluent, 8.5-14.1% of microscopic count was culturable. Deletion of fermenter effluent significantly reduced the viable count. Sixty-four randomly picked strains were characterized. All were pleomorphic, gram-negative, anaerobic rods, many of which were difficult to grow in liquid media. The strains were divided into 5 major groups based on glucose fermentation, hydrogen sulfide production, starch hydrolysis, fermentation products, and morphology. Glucose was fermented by 75% of the isolates, 76% utilized starch, 25% produced hydrogen sulfide, 76% produced hydrogen, 37% produced indole, 21% hydrolyzed gelatin, and 13% were sporeformers. Ethanol, lactate, formate, acetate, and hydrogen were common fermentation products. Twenty-four representative strains had 1-12 flagella. Growth was observed between 35 and 73/sup 0/C. These studies indicate that species diversity among the isolated organisms was low. 38 references, 3 tables.

  9. Modeling of two-phase anaerobic process treating traditional Chinese medicine wastewater with the IWA Anaerobic Digestion Model No. 1.

    Science.gov (United States)

    Chen, Zhaobo; Hu, Dongxue; Zhang, Zhenpeng; Ren, Nanqi; Zhu, Haibo

    2009-10-01

    The aim of the study was to implement a mathematical model to simulate two-phase anaerobic digestion (TPAD) process which consisted of an anaerobic continuous stirred tank reactor (CSTR) and an upflow anaerobic sludge blanket (UASB) reactor in series treating traditional Chinese medicine (TCM) wastewater. A model was built on the basis of Anaerobic Digestion Model No. 1 (ADM1) while considering complete mixing model for the CSTR, and axial direction discrete model and mixed series connection model for the UASB. The mathematical model was implemented with the simulation software package MATLABTM/Simulinks. System performance, in terms of COD removal, volatile fatty acids (VFA) accumulation and pH fluctuation, was simulated and compared with the measured values. The simulation results indicated that the model built was able to well predict the COD removal rate (-4.8-5.0%) and pH variation (-2.9-1.4%) of the UASB reactor, while failed to simulate the CSTR performance. Comparing to the measured results, the simulated acetic acid concentration of the CSTR effluent was underpredicted with a deviation ratios of 13.8-23.2%, resulting in an underprediction of total VFA and COD concentrations despite good estimation of propionic acid, butyric acid and valeric acid. It is presumed that ethanol present in the raw wastewater was converted into acetic acid during the acidification process, which was not considered by the model. Additionally, due to the underprediction of acetic acid the pH of CSTR effluent was overestimated.

  10. Ethanol tolerance in Aspergillus niger and Escherichia coli phytase

    Science.gov (United States)

    The expanded use of corn and other grain for biofuels have created an increased supply of dried grains with soluble (DDGS) and other byproducts of ethanol fermentation. Elevated levels of phytic acid in this DDGS indicate that ethanol is denaturing the native phytase produced by the yeast, Saccharo...

  11. The expanding U. S. ethanol industry

    Energy Technology Data Exchange (ETDEWEB)

    Fecht, B.

    1991-01-01

    American experience in the ethanol industry is discussed. Archer Daniel Midlands Co. (ADM) is a large agri-processing company that is the largest processor of grains and oilseeds, and processes ca 400,000 bushels of corn per day at its Decateur facility. Waste water and heat from the plant is used to grow vegetables hydroponically, with carbon dioxide from distillation used to speed growing at night. About 40,000 heads of lettuce per day are harvested, with cucumbers and tomatoes grown as premium crops. The plant includes a state-of-the-art fluidized bed power plant that burns high sulfur coal without sulfur emission. Approval has recently been granted by the Environmental Protection Agency to burn used tires, and payback for the process is expected to take 3-4 years. Ethanol is produced by steeping corn and separating germ and starch, with the starch used to make corn sweeteners. As well as ethanol, byproducts include animal feed, hydroponics, oils and margarines. ADM is the largest barging company in the U.S., with 14,000 rail cars, 1,200 dedicated to fuel ethanol. The Clean Air Act will mandate a 2.7% oxygen gasoline, and 10% ethanol additive gives 3.3% oxygen. The high octane rating of ethanol-blend gasoline is a strong selling point, and is a good deal for refiners, especially at octane-poor refineries.

  12. High Speed/ Low Effluent Process for Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  13. Bioconversion of crude glycerol feedstocks into ethanol by Pachysolen tannophilus

    DEFF Research Database (Denmark)

    Liu, Xiaoying; Jensen, Peter Ruhdal; Workman, Mhairi

    2012-01-01

    Glycerol, the by-product of biodiesel production, is considered as a waste by biodiesel producers. This study demonstrated the potential of utilising the glycerol surplus through conversion to ethanol by the yeast Pachysolen tannophilus (CBS4044). This study demonstrates a robust bioprocess which...... was not sensitive to the batch variability in crude glycerol dependent on raw materials used for biodiesel production. The oxygen transfer rate (OTR) was a key factor for ethanol production, with lower OTR having a positive effect on ethanol production. The highest ethanol production was 17.5 g/L on 5% (v/v) crude...... glycerol, corresponding to 56% of the theoretical yield. A staged batch process achieved 28.1 g/L ethanol, the maximum achieved so far for conversion of glycerol to ethanol in a microbial bioprocess. The fermentation physiology has been investigated as a means to designing a competitive bioethanol...

  14. A two-stage process for the anaerobic digestion of sludge generated during the production of bioethanol from sweet sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Stamatelatou, K.; Dravillas, K.; Lyberatos, G.

    2003-07-01

    Sweet sorghum is an energy crop, often cultivated to recover energy in the form of ethanol, hydrogen etc by applying biological processes. These processes, however, produce a significant amount of sludge (bagasse) which contains the recalcitrant unconverted portion of sorghum, the non-hydrolyzed portion of the plant biomass as well as microbial biomass. In this work, the sludge from the alcoholic fermentation of sweet sorghum following a distillation step (to remove the generated bioethanol) was subjected to anaerobic digestion for further biodegradation and energy production (methane). A two-stage configuration for the anaerobic digestion of this type of industrial sludge was conceived and compared with a single stage anaerobic digestion of bagasse. For the two-stage process, the sludge was separated into one solid and one liquid stream. The solid portion of the sludge (9%) contributed mainly to the total organic load, although there was a significant organic load dissolved in the liquid portion too (28.73{+-}11.01 g/l). In the two stage system the solid and liquid phases of the sludge were separately treated under different operating conditions in two separate reactors: the solid phase in a thermophilic hydrolyzing reactor and the liquid phase in a mesophilic high-rate digester. The overall yield of the continuous two-stage process was 16 l methane/l wastewater at a hydraulic retention time of almost 20 days, while the maximum methane yield that could be achieved in batch experiments (duration 40d) was 30 l/l wastewater. (author)

  15. Anaerobic Digestion of Piggery Waste

    NARCIS (Netherlands)

    Velsen, van A.F.M.

    1981-01-01

    Anaerobic digestion is a biological process by which organic matter is converted to methane and carbon dioxide by microbes in the absence of air (oxygen). In nature, anaerobic conversions occur at all places where organic material accumulates and the supply of oxygen is deficient, e.g. in marshes an

  16. Anaerobic digestion of solid material

    DEFF Research Database (Denmark)

    Vavilin, V.A.; Lokshina, L.Y.; Flotats, X.

    2007-01-01

    A new multidimensional (3 and 2D) anaerobic digestion model for cylindrical reactor with non-uniform influent concentration distributions was developed to study the way in which mixing intensity affects the efficiency of continuous-flow anaerobic digestion. Batch experiments reported and simulate...

  17. Bioelectrochemical reduction of volatile fatty acids in anaerobic digestion effluent for the production of biofuels.

    Science.gov (United States)

    Kondaveeti, Sanath; Min, Booki

    2015-12-15

    This study proves for the first time the feasibility of biofuel production from anaerobic digestion effluent via bioelectrochemical cell operation at various applied cell voltages (1.0, 1.5 and 2.0 V). An increase in cell voltage from 1 to 2 V resulted in more reduction current generation (-0.48 to -0.78 mA) at a lowered cathode potential (-0.45 to -0.84 mV vs Ag/AgCl). Various alcohols were produced depending on applied cell voltages, and the main products were butanol, ethanol, and propanol. Hydrogen and methane production were also observed in the headspace of the cell. A large amount of lactic acid was unexpectedly formed at all conditions, which might be the primary cause of the limited biofuel production. The addition of neutral red (NR) to the system could increase the cathodic reduction current, and thus more biofuels were produced with an enhanced alcohol formation compared to without a mediator.

  18. Biological production of ethanol from coal

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H[sub 2], CO[sub 2], CH[sub 4] and sulfur gases, is first produced using traditional gasification techniques. The CO, CO[sub 2] and H[sub 2] are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the wild strain'' produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

  19. Ethanol neurobehavioural teratogenesis and the role of L-glutamate in the fetal hippocampus.

    Science.gov (United States)

    Reynolds, J D; Brien, J F

    1995-09-01

    The purpose of this article is to review the current state of knowledge of ethanol neurobehavioural teratogenesis and its postulated mechanisms. The review comprises an examination of ethanol teratogenesis in the human, including the fetal alcohol syndrome, and in experimental animals. Several current proposed mechanisms of ethanol neurobehavioural teratogenesis are critically assessed, including the role of acetaldehyde as the proximate metabolite of ethanol; fetal hypoxia; placental dysfunction; fetal prostaglandin metabolism; and action of ethanol on developing neurons in the fetal brain, including the hippocampus, one of ethanol's main target sites. The effect of ethanol on the release of L-glutamate, an excitatory amino acid neurotransmitter, in the fetal hippocampus is described, and the role of L-glutamate in ethanol teratogenesis involving the hippocampus is discussed. A novel mechanism for abnormal neuronal development in the fetal hippocampus produced by prenatal ethanol exposure is presented, and future experiments to test this hypothesis are proposed.

  20. Anaerobic benzene oxidation via phenol in Geobacter metallireducens.

    Science.gov (United States)

    Zhang, Tian; Tremblay, Pier-Luc; Chaurasia, Akhilesh Kumar; Smith, Jessica A; Bain, Timothy S; Lovley, Derek R

    2013-12-01

    Anaerobic activation of benzene is expected to represent a novel biochemistry of environmental significance. Therefore, benzene metabolism was investigated in Geobacter metallireducens, the only genetically tractable organism known to anaerobically degrade benzene. Trace amounts (Geobacter metallireducens anaerobically oxidizing benzene to carbon dioxide with the reduction of Fe(III). Phenol was not detected in cell-free controls or in Fe(II)- and benzene-containing cultures of Geobacter sulfurreducens, a Geobacter species that cannot metabolize benzene. The phenol produced in G. metallireducens cultures was labeled with (18)O during growth in H2(18)O, as expected for anaerobic conversion of benzene to phenol. Analysis of whole-genome gene expression patterns indicated that genes for phenol metabolism were upregulated during growth on benzene but that genes for benzoate or toluene metabolism were not, further suggesting that phenol was an intermediate in benzene metabolism. Deletion of the genes for PpsA or PpcB, subunits of two enzymes specifically required for the metabolism of phenol, removed the capacity for benzene metabolism. These results demonstrate that benzene hydroxylation to phenol is an alternative to carboxylation for anaerobic benzene activation and suggest that this may be an important metabolic route for benzene removal in petroleum-contaminated groundwaters, in which Geobacter species are considered to play an important role in anaerobic benzene degradation.

  1. STUDY ON THE DECHLORINTION MECHANISMS DURING ANAEROBIC TREATMENT OF PULP BLEACHERY EFFLUENTS

    Institute of Scientific and Technical Information of China (English)

    Yuancai Chen; Xiuqiong Guan; Huaiyu Zhan; Zhonghao Chen; Shiyu Fu

    2004-01-01

    Anaerobic treatment could effectively degrade organic chlorine. Reductive dechlorination mechanisms were confirmed through GC-MS analysis during anaerobic treatment of pulp bleachery effluents, the influence of sulfide biologically produced and pH on the dechlorination revealed that nucleophilic substitution and alkaline hydrolysis were also nonbiological mechanisms.

  2. FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS: CONCEPTUAL DESIGN AND ASSESSMENT

    Science.gov (United States)

    The conceptual design of a fuel cell (FC) system for operation on anaerobic digester gas (ADG) is described and its economic and environmental feasibility is projected. ADG is produced at water treatment plants during the process of treating sewage anaerobically to reduce solids....

  3. Evaluation of biogas production by dry anaerobic digestion of switchgrass-animal manure mixtures

    Science.gov (United States)

    Anaerobic digestion is a biological method used to convert organic wastes into a stable product for land application without adverse environmental effects. The biogas produced can be used as an alternative renewable energy source. Dry anaerobic digestion (> 15% TS; total solid) has an advantage ov...

  4. Research on Combination of Ethanol and Biogas Production with Cassava%木薯联合产乙醇和产沼气的研究

    Institute of Scientific and Technical Information of China (English)

    雷宇; 黄文荣; 刘士清; 胡械科; 张无敌; 尹芳; 陈玉保; 柳静; 赵兴玲

    2013-01-01

    [Objective] To find a way to use cassava as a resource. [ Method] Through optimizing ethanol fermentation technology, the ethanol production rate of cassava was improved; and using ethanol fermentation waste to produce biogas and making the waste become resource. [Result] The ethanol production rate increase 2% through adding complex enzyme and adjusting some process parameters; the cassava fermentation waste which will result in pollution become clear fuel biogas and organic fertilizer through anaerobic fermentation. [ Conclusion] It is a good way that converting cassava to clear fuel through combination of ethanol and biogas fermentation.%[目的]找到一种木薯的资源化利用途径.[方法]通过优化现有工艺,提高木薯乙醇的出酒率;同时对酒精废醪液进行沼气发酵,达到资源化利用的效果.[结果]通过添加复合酶制剂以及对各工段进行优化,最终出酒率比现有工艺提高约2个百分点.酒精废醪液发酵产生的沼气能替代酒精生产中的一部分煤,产生的沼液、沼渣可做有机肥,节约成本的同时减轻对环境的污染.[结论]木薯通过发酵产乙醇,产生的废醪液再进行沼气发酵是一种较好的资源化利用途径.

  5. Ethanol Production from Various Sugars and Cellulosic Biomass by White Rot Fungus Lenzites betulinus.

    Science.gov (United States)

    Im, Kyung Hoan; Nguyen, Trung Kien; Choi, Jaehyuk; Lee, Tae Soo

    2016-03-01

    Lenzites betulinus, known as gilled polypore belongs to Basidiomycota was isolated from fruiting body on broadleaf dead trees. It was found that the mycelia of white rot fungus Lenzites betulinus IUM 5468 produced ethanol from various sugars, including glucose, mannose, galactose, and cellobiose with a yield of 0.38, 0.26, 0.07, and 0.26 g of ethanol per gram of sugar consumed, respectively. This fungus relatively exhibited a good ethanol production from xylose at 0.26 g of ethanol per gram of sugar consumed. However, the ethanol conversion rate of arabinose was relatively low (at 0.07 g of ethanol per gram sugar). L. betulinus was capable of producing ethanol directly from rice straw and corn stalks at 0.22 g and 0.16 g of ethanol per gram of substrates, respectively, when this fungus was cultured in a basal medium containing 20 g/L rice straw or corn stalks. These results indicate that L. betulinus can produce ethanol efficiently from glucose, mannose, and cellobiose and produce ethanol very poorly from galactose and arabinose. Therefore, it is suggested that this fungus can ferment ethanol from various sugars and hydrolyze cellulosic materials to sugars and convert them to ethanol simultaneously.

  6. Very high gravity ethanol and fatty acid production of Zymomonas mobilis without amino acid and vitamin.

    Science.gov (United States)

    Wang, Haoyong; Cao, Shangzhi; Wang, William Tianshuo; Wang, Kaven Tianyv; Jia, Xianhui

    2016-06-01

    Very high gravity (VHG) fermentation is the mainstream technology in ethanol industry, which requires the strains be resistant to multiple stresses such as high glucose concentration, high ethanol concentration, high temperature and harsh acidic conditions. To our knowledge, it was not reported previously that any ethanol-producing microbe showed a high performance in VHG fermentations without amino acid and vitamin. Here we demonstrate the engineering of a xylose utilizing recombinant Zymomonas mobilis for VHG ethanol fermentations. The recombinant strain can produce ethanol up to 136 g/L without amino acid and vitamin with a theoretical yield of 90 %, which is significantly superior to that produced by all the reported ethanol-producing strains. The intracellular fatty acids of the bacterial were about 16 % of the bacterial dry biomass, with the ratio of ethanol:fatty acids was about 273:1 (g/g). The recombinant strain was achieved by a multivariate-modular strategy tackles with the multiple stresses which are closely linked to the ethanol productivity of Z. mobilis. The over-expression of metB/yfdZ operon enabled the growth of the recombinant Z. mobilis in a chemically defined medium without amino acid and vitamin; and the fatty acids overproduction significantly increased ethanol tolerance and ethanol production. The coupled production of ethanol with fatty acids of the Z. mobilis without amino acid and vitamin under VHG fermentation conditions may permit a significant reduction of the production cost of ethanol and microbial fatty acids.

  7. Use of high-ethanol-resistant yeast isolates from Nigerian palm wine in lager beer brewing.

    Science.gov (United States)

    Agu, R C; Anyanwu, T U; Onwumelu, A H

    1993-11-01

    High-ethanol-resistant yeasts, characterized as Saccharomyces sp., were isolated from Nigerian palm wine with added sucrose for high gravity brewing. The yeast isolates that survived the highest ethanol production were used to ferment brewery wort and produced 8.2 to 8.5% (v/v) ethanol; values almost double that of the control yeast from a local brewery.

  8. Ethanol Fuels Incentives Applied in the U.S.: Reviewed from California's Perspective

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, Tom [California Energy Commision, Sacramento, CA (United States)

    2004-01-01

    This report describes measures employed by state governments and by the federal government to advance the production and use of ethanol fuel in the United States. The future of ethanol as an alternative transportation fuel poses a number of increasingly-important issues and decisions for California government, as the state becomes a larger consumer, and potentially a larger producer, of ethanol.

  9. Furfural and ethanol production from corn stover by dilute phosphoric acid pretreatment

    Science.gov (United States)

    Lignocellulosic biomass is the most abundant carbohydrate source in the world and has potential for economical production of biofuels, especially ethanol. However, its composition is an obstacle for the production of ethanol by the conventional ethanol producing yeast Saccharomyces cerevisiae as it...

  10. Winter barley ethanol - a new advanced biofuel

    Science.gov (United States)

    The Energy Independence and Security Act (EISA) of 2007 set an ambitious goal for the United States to annually produce and use 36 billion gallons of renewable fuels by 2022. Of this quantity, only 15 billion gallons may come from conventional sources, such as corn ethanol, and the remainder must b...

  11. Vinasses treatment in anaerobic fludized bed reactor.

    Directory of Open Access Journals (Sweden)

    Francisco J. C. Terán

    2009-03-01

    Full Text Available The agricultural use of vinasse produced by the sugar industry has gone through many changes over the years. Coupled with concern over the increased agronomic efficiency and optimizing the management of the use of such waste, you can highlight the major global ecological awareness, developed after 90s. This study aims at the construction and operation of a reactor anaerobic cracker (RALF on pilot scale to verify the burden of chemical demand of oxygen (DQO of vinasse, under mesophilic. The stillage used for feeding the reactor was from a sugar cane processing plant, located in the city of Regente Feijó, São Paulo State. The inoculum was anaerobic sludge from a reactor and upward flow anaerobic sludge blanket (UASB treating wastewater from a factory of soda. The concentrations of vinasse to be treated ranged 17,239 mg DQO L-1 up to 28,174 mg DQO L-1. The effluent pH was maintained between 6.4 and 8.6 during the research. The productivity of biogas in the reactor has not achieved the expected rates, reaching only 46 mL day-1. Maximum efficiency attained during operation was 51.1 %, corresponding to a 14-day operation time, vinasses organic loading of 19.5 kg DQO m-3 dia-1 and to an hydraulic detention time of one day.

  12. Adding value to carbon dioxide from ethanol fermentations.

    Science.gov (United States)

    Xu, Yixiang; Isom, Loren; Hanna, Milford A

    2010-05-01

    Carbon dioxide (CO(2)) from ethanol production facilities is increasing as more ethanol is produced for alternative transportation fuels. CO(2) produced from ethanol fermentation processes is of high purity and is nearly a saturated gas. Such highly-concentrated source of CO(2) is a potential candidate for capture and utilization by the CO(2) industry. Quantity, quality and capture of CO(2) from ethanol fermentations are discussed in this review. The established and emerging value-added opportunities and markets for CO(2) from ethanol plants also are reviewed. The majority of CO(2) applications are dedicated to serving carbonated beverage and food processing and preservation markets. Beyond traditional merchant markets, the potential for exploring some fresh and profitable markets are discussed including carbon sources in chemical industries for the following: enhanced oil recovery; production of chemicals, fuels, and polymers; and production of algae-based biofuels through CO(2) fixation by microalgae.

  13. Ethanol production by recombinant and natural xylose-utilising yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Eliasson, Anna

    2000-07-01

    The xylose-fermenting capacity of recombinant Saccharomyces cerevisiae carrying XYL1 and XYL2 from Pichia stipitis, which encode xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively, is poor due to high xylitol formation. Whereas, P. stipitis exhibits high ethanol yield on xylose, the tolerance towards inhibitors in the lignocellulosic hydrolysate is low. A recombinant strain possessing the advantageous characteristics of both S. cerevisiae and P. stipitis would constitute a biocatalyst capable of efficient ethanol production from lignocellulosic hydrolysate. In the work presented in this thesis, factors influencing xylose fermentation in recombinant S. cerevisiae and in the natural xylose-fermenting yeast P. stipitis have been identified and investigated. Anaerobic xylulose fermentation was compared in strains of Zygosaccharomyces and S. cerevisiae, mutants and wild-type strains to identify host strain background and genetic modifications beneficial for xylose fermentation. The greatest positive effect was found for over-expression of the gene XKS1 for the pentose phosphate pathway (PPP) enzyme xylulokinase (XK), which increased the ethanol yield by almost 85%. The Zygosaccharomyces strains tested formed large amounts of polyols, making them unsuitable as host strains. The XR/XDH/XK ratio was found to determine whether carbon accumulated in a xylitol pool or was further utilised for ethanol production in recombinant xylose-utilising S. cerevisiae. Simulations, based on a kinetic model, and anaerobic xylose cultivation experiments implied that a 1:{>=}10:{>=}4 relation was optimal in minimising xylitol formation. Ethanol formation increased with decreasing XR/XDH ratio, whereas xylitol formation decreased and XK overexpression was necessary for adequate ethanol formation. Based on the knowledge of optimal enzyme ratios, a stable, xylose-utilising strain, S. cerevisiae TMB 3001, was constructed by chromosomal integration of the XYL1 and XYL2 genes

  14. Ethanol production by recombinant and natural xylose-utilising yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Eliasson, Anna

    2000-07-01

    The xylose-fermenting capacity of recombinant Saccharomyces cerevisiae carrying XYL1 and XYL2 from Pichia stipitis, which encode xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively, is poor due to high xylitol formation. Whereas, P. stipitis exhibits high ethanol yield on xylose, the tolerance towards inhibitors in the lignocellulosic hydrolysate is low. A recombinant strain possessing the advantageous characteristics of both S. cerevisiae and P. stipitis would constitute a biocatalyst capable of efficient ethanol production from lignocellulosic hydrolysate. In the work presented in this thesis, factors influencing xylose fermentation in recombinant S. cerevisiae and in the natural xylose-fermenting yeast P. stipitis have been identified and investigated. Anaerobic xylulose fermentation was compared in strains of Zygosaccharomyces and S. cerevisiae, mutants and wild-type strains to identify host strain background and genetic modifications beneficial for xylose fermentation. The greatest positive effect was found for over-expression of the gene XKS1 for the pentose phosphate pathway (PPP) enzyme xylulokinase (XK), which increased the ethanol yield by almost 85%. The Zygosaccharomyces strains tested formed large amounts of polyols, making them unsuitable as host strains. The XR/XDH/XK ratio was found to determine whether carbon accumulated in a xylitol pool or was further utilised for ethanol production in recombinant xylose-utilising S. cerevisiae. Simulations, based on a kinetic model, and anaerobic xylose cultivation experiments implied that a 1:{>=}10:{>=}4 relation was optimal in minimising xylitol formation. Ethanol formation increased with decreasing XR/XDH ratio, whereas xylitol formation decreased and XK overexpression was necessary for adequate ethanol formation. Based on the knowledge of optimal enzyme ratios, a stable, xylose-utilising strain, S. cerevisiae TMB 3001, was constructed by chromosomal integration of the XYL1 and XYL2 genes

  15. Short-Run Price and Welfare Impacts of Federal Ethanol Policies

    OpenAIRE

    Lihong Lu McPhail; Bruce A. Babcock

    2008-01-01

    High commodity prices have increased interest in the impacts of federal ethanol policies. We present a stochastic, short-run structural model of U.S. corn, ethanol, and gasoline markets to estimate the price and welfare impacts of alternative policies on producers and consumers of corn, ethanol, and gasoline. The three federal policies that we consider are the Renewable Fuels Standard, the blenders tax credit, and the tariff on imported ethanol. Our model examines the impact of these policies...

  16. Analysis of the Link between Ethanol, Energy, and Crop Markets, An

    OpenAIRE

    Simla Tokgoz; Amani Elobeid

    2006-01-01

    This study analyzes the impact of price shocks in three input and output markets critical to ethanol: gasoline, corn, and sugar. We investigate the impact of these shocks on ethanol and related agricultural markets in the United States and Brazil. We find that the composition of a country's vehicle fleet determines the direction of the response of ethanol consumption to changes in the gasoline price. We also find that a change in feedstock costs affects the profitability of ethanol producers ...

  17. Understanding the Growth of the Cellulosic Ethanol Industry

    Energy Technology Data Exchange (ETDEWEB)

    Sandor, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wallace, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Peterson, S. [Peterson Group, Anchorage, AK (United States)

    2008-04-01

    Report identifies and documents plausible scenarios for producing significant quantities of lignocellulosic ethanol in 2017 as a guide for setting government policy and targeting government investment to areas with greatest potential impact.

  18. Understanding the Growth of the Cellulosic Ethanol Industry

    Energy Technology Data Exchange (ETDEWEB)

    Sandor, D.; Wallace, R.; Peterson, S.

    2008-04-01

    This report identifies, outlines, and documents a set of plausible scenarios for producing significant quantities of lignocellulosic ethanol in 2017. These scenarios can provide guidance for setting government policy and targeting government investment to the areas with greatest potential impact.

  19. Isolation and Cultivation of Anaerobes

    DEFF Research Database (Denmark)

    Aragao Börner, Rosa

    2016-01-01

    Anaerobic microorganisms play important roles in different biotechnological processes. Their complex metabolism and special cultivation requirements have led to less isolated representatives in comparison to their aerobic counterparts.In view of that, the isolation and cultivation of anaerobic...... microorganisms is still a promising venture, and conventional methodologies as well as considerations and modifications are presented here. An insight into new methodologies and devices as well as a discussion on future perspectives for the cultivation of anaerobes may open the prospects of the exploitation...

  20. Feasibility study on fermentative conversion of raw and hydrolyzed starch to hydrogen using anaerobic mixed microflora

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ching-Hsiung [Department of Biological Engineering, Yung Ta Institute of Technology and Commerce, Pingtung (China); Lu, Wei-Bin [Department of Cosmetic Science, Chung Hwa College of Medical Technology, Tainan (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan 701 (China)

    2007-11-15

    In this work, H{sub 2} was produced by anaerobic mixed microflora with phosphate-buffered medium containing starch or enzyme-treated starch hydrolyzate as the carbon substrate. The effect of pH on H{sub 2}-producing performance was examined for cultures converting raw starch or hydrolyzed starch into H{sub 2}. Response surface methodology was utilized to determine the best condition (41 C, pH 5.2, 2.1% (v/v) enzyme dosage, 27 h reaction time) for starch hydrolysis with concentrated crude amylase obtained from Bacillus subtilis ATCC 21332. The mixed culture was able to produce H{sub 2} at an optimal pH of 7.0 irrespective of raw or hydrolyzed starch. Direct starch fermentation attained a highest maximum H{sub 2} production rate (R{sub max}), overall H{sub 2} production rate (R{sub overall}), and H{sub 2} yield (Y{sub H2}) of 25.6 ml/h, 88 ml/h/l, and 5.28 mmol H{sub 2}/g starch (4.64 mmol H{sub 2}/g COD), respectively. In contrast, using hydrolyzed starch as the substrate gave rise to much better H{sub 2} producing performance, as the highest R{sub max}, R{sub overall}, and Y{sub H2} values increased to 43.1 ml/h, 210 ml/h/l, and 6.1 mmol H{sub 2}/g COD, respectively. This clearly demonstrates the advantage of using hydrolyzed starch for fermentative H{sub 2} production. The soluble metabolites consisted primarily of acetate (HAc), ethanol (EtOH), butyrate (HBu), and 2,3 butandiol. The amount of H{sub 2} produced from raw and hydrolyzed starch (especially, raw starch) could be estimated from formation of HAc and HBu known to stoichiometrically correlate with H{sub 2} production. (author)

  1. BIOESTABILIZATION ANAEROBIC SOLID WASTE ORGANIC:QUANTITATIVE ASPECTS

    Directory of Open Access Journals (Sweden)

    Valderi Duarte Leite

    2015-01-01

    Full Text Available It is estimated that in Brazil, the municipal solid waste produced are constituted on average 55% of fermentable organic solid waste and that this quantity can be applied in aerobic or anaerobic stabilization process. Anaerobic digestion is an important alternative for the treatment of different types of potentially fermentable waste, considering providing an alternative source of energy that can be used to replace fossil fuels. To perform the experimental part of this work was constructed and monitored an experimental system consisting of an anaerobic batch reactor, shredding unit of fermentable organic wastes and additional devices. Fermentable organic wastes consisted of leftover fruits and vegetables and were listed in EMPASA (Paraibana Company of Food and Agricultural Services, located in the city of Campina Grande- PB. The residues were collected and transported to the Experimental Station Biological Sewage Treatment (EXTRABES where they were processed and used for substrate preparation. The substrate consisted of a mixture of fermentable organic waste, more anaerobic sewage sludge in the proportion of 80 and 20 % respectively. In the specific case of this study, it was found that 1m3 of substrate concentration of total COD equal to 169 g L-1, considering the reactor efficiency equal to 80 %, the production of CH4 would be approximately 47.25 Nm3 CH4. Therefore, fermentable organic waste, when subjected to anaerobic treatment process produces a quantity of methane gas in addition to the partially biostabilized compound may be applied as a soil conditioning agent.

  2. Assessing the environmental sustainability of ethanol from integrated biorefineries.

    Science.gov (United States)

    Falano, Temitope; Jeswani, Harish K; Azapagic, Adisa

    2014-06-01

    This paper considers the life cycle environmental sustainability of ethanol produced in integrated biorefineries together with chemicals and energy. Four types of second-generation feedstocks are considered: wheat straw, forest residue, poplar, and miscanthus. Seven out of 11 environmental impacts from ethanol are negative, including greenhouse gas (GHG) emissions, when the system is credited for the co-products, indicating environmental savings. Ethanol from poplar is the best and straw the worst option for most impacts. Land use change from forest to miscanthus increases the GHG emissions several-fold. For poplar, the effect is opposite: converting grassland to forest reduces the emissions by three-fold. Compared to fossil and first-generation ethanol, ethanol from integrated biorefineries is more sustainable for most impacts, with the exception of wheat straw. Pure ethanol saves up to 87% of GHG emissions compared to petrol per MJ of fuel. However, for the current 5% ethanol-petrol blends, the savings are much smaller (<3%). Therefore, unless much higher blends become widespread, the contribution of ethanol from integrated biorefineries to the reduction of GHG emissions will be insignificant. Yet, higher ethanol blends would lead to an increase in some impacts, notably terrestrial and freshwater toxicity as well as eutrophication for some feedstocks.

  3. Ethanol-induced hypothermia in rats is antagonized by dexamethasone

    Directory of Open Access Journals (Sweden)

    Carreño C.F.T.

    1997-01-01

    Full Text Available The effect of dexamethasone on ethanol-induced hypothermia was investigated in 3.5-month old male Wistar rats (N = 10 animals per group. The animals were pretreated with dexamethasone (2.0 mg/kg, ip; volume of injection = 1 ml/kg 15 min before ethanol administration (2.0, 3.0 and 4.0 g/kg, ip; 20% w/v and the colon temperature was monitored with a digital thermometer 30, 60 and 90 min after ethanol administration. Ethanol treatment produced dose-dependent hypothermia throughout the experiment (-1.84 ± 0.10, -2.79 ± 0.09 and -3.79 ± 0.15oC for 2.0, 3.0 and 4.0 g/kg ethanol, respectively, 30 min after ethanol but only the effects of 2.0 and 3.0 g/kg ethanol were significantly antagonized (-0.57 ± 0.09 and -1.25 ± 0.10, respectively, 30 min after ethanol by pretreatment with dexamethasone (ANOVA, P<0.05. These results are in agreement with data from the literature on the rapid antagonism by glucocorticoids of other effects of ethanol. The antagonism was obtained after a short period of time, suggesting that the effect of dexamethasone is different from the classical actions of corticosteroids

  4. Market penetration of biodiesel and ethanol

    Science.gov (United States)

    Szulczyk, Kenneth Ray

    subsidies have a large expansionary impact on aggregate biodiesel production, but only expand the ethanol industry at low gasoline prices. All of these factors increase agricultural welfare with most expanding producer surplus and mixed effects on consumers.

  5. Zymomonas mobilis: a bacterium for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Baratti, J.C.; Bu' Lock, J.D.

    1986-01-01

    Zymomonas mobilis is a facultative anaerobic gram negative bacterium first isolated in tropical countries from alcoholic beverages like the African palm wine, the Mexican pulque and also as a contaminant of cider (cider sickness) or beer in the European countries. It is one of the few facultative anaerobic bacteria degrading glucose by the Entner-Doudoroff pathway usually found in strictly aerobic microorganisms. Some work was devoted to this bacterium in the 50s and 60s and was reviewed by Swings and De Ley in their classical paper published in 1977. During the 70s there was very little work on the bacterium until 1979 and the first report by the Australian group of P.L. Rogers on the great potentialities of Z. mobilis for ethanol production. At that time the petroleum crisis had led the developed countries to search for alternative fuel from renewable resources. The Australian group clearly demonstrated the advantages of the bacterium compared to the yeasts traditionally used for the alcoholic fermentation. As a result, there was a considerable burst in the Zymomonas literature which started from nearly zero in the late 70s to attain 70 papers published in the field in 1984. In this article, papers published from 1982 to 1986 are reviewed.

  6. Marine Microorganisms: perspectives for getting involved in cellulosic ethanol.

    Science.gov (United States)

    Intriago, Pablo

    2012-08-29

    The production of ethanol has been considered as an alternative to replace part of the petroleum derivate. Brazil and the US are the leading producers, but more environmentally friendly alternatives are needed. Lignocellulose has an enormous potential but technology has to be still improve in order to economically produce ethanol. The present paper reviews the potential and problems of this technology and proposes the study of a group of microorganisms with the largest genetic pool, marine microorganism.

  7. Marine Microorganisms: perspectives for getting involved in cellulosic ethanol

    OpenAIRE

    Intriago, Pablo

    2012-01-01

    The production of ethanol has been considered as an alternative to replace part of the petroleum derivate. Brazil and the US are the leading producers, but more environmentally friendly alternatives are needed. Lignocellulose has an enormous potential but technology has to be still improve in order to economically produce ethanol. The present paper reviews the potential and problems of this technology and proposes the study of a group of microorganisms with the largest genetic pool, marine mi...

  8. Enteric bacterial catalysts for fuel ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, L.O.; Aldrich, H.C.; Borges, A.C.C. [and others

    1999-10-01

    The technology is available to produce fuel ethanol from renewable lignocellulosic biomass. The current challenge is to assemble the various process options into a commercial venture and begin the task of incremental improvement. Current process designs for lignocellulose are far more complex than grain to ethanol processes. This complexity results in part from the complexity of the substrate and the biological limitations of the catalyst. Their work at the University of Florida has focused primarily on the genetic engineering of Enteric bacteria using genes encoding Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase. These two genes have been assembled into a portable ethanol production cassette, the PET operon, and integrated into the chromosome of Escherichia coli B for use with hemicellulose-derived syrups. The resulting strain, KO11, produces ethanol efficiently from all hexose and pentose sugars present in the polymers of hemicellulose. By using the same approach, the authors integrated the PET operon into the chromosome of Klebsiella oxytoca to produce strain P2 for use in the simultaneous saccharification and fermentation (SSF) process for cellulose. Strain P2 has the native ability to ferment cellobiose and cellotriose, eliminating the need for one class of cellulase enzymes.

  9. Ethanol is a strategic raw material

    Directory of Open Access Journals (Sweden)

    Baras Josip K.

    2002-01-01

    Full Text Available The first part of this review article considers general data about ethanol as an industrial product, its qualities and uses. It is emphasized that, if produced from biomass as a renewable raw material, its perspectives as a chemical raw material and energent are brilliant. Starchy grains, such as corn, must be used as the main raw materials for ethanol production. The production of bioethanol by the enzyme-catalyzed conversion of starch followed by (yeast fermentation, distillation is the process of choice. If used as a motor fuel, anhydrous ethanol can be directly blended with gasoline or converted into an oxygenator such as ETBE. Finally, bioethanol production in Yugoslavia and the possibilities for its further development are discussed.

  10. Saponification of fatty slaughterhouse wastes for enhancing anaerobic biodegradability.

    Science.gov (United States)

    Battimelli, Audrey; Carrère, Hélène; Delgenès, Jean-Philippe

    2009-08-01

    The thermochemical pretreatment by saponification of two kinds of fatty slaughterhouse waste--aeroflotation fats and flesh fats from animal carcasses--was studied in order to improve the waste's anaerobic degradation. The effect of an easily biodegradable compound, ethanol, on raw waste biodegradation was also examined. The aims of the study were to enhance the methanisation of fatty waste and also to show a link between biodegradability and bio-availability. The anaerobic digestion of raw waste, saponified waste and waste with a co-substrate was carried out in batch mode under mesophilic and thermophilic conditions. The results showed little increase in the total volume of biogas, indicating a good biodegradability of the raw wastes. Mean biogas volume reached 1200 mL/g VS which represented more than 90% of the maximal theoretical biogas potential. Raw fatty wastes were slowly biodegraded whereas pretreated wastes showed improved initial reaction kinetics, indicating a better initial bio-availability, particularly for mesophilic runs. The effects observed for raw wastes with ethanol as co-substrate depended on the process temperature: in mesophilic conditions, an initial improvement was observed whereas in thermophilic conditions a significant decrease in biodegradability was observed.

  11. Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation.

    Science.gov (United States)

    Albers, E; Larsson, C; Lidén, G; Niklasson, C; Gustafsson, L

    1996-09-01

    To prevent the loss of raw material in ethanol production by anaerobic yeast cultures, glycerol formation has to be reduced. In theory, this may be done by providing the yeast with amino acids, since the de novo cell synthesis of amino acids from glucose and ammonia gives rise to a surplus of NADH, which has to be reoxidized by the formation of glycerol. An industrial strain of Saccharomyces cerevisiae was cultivated in batch cultures with different nitrogen sources, i.e., ammonium salt, glutamic acid, and a mixture of amino acids, with 20 g of glucose per liter as the carbon and energy source. The effects of the nitrogen source on metabolite formation, growth, and cell composition were measured. The glycerol yields obtained with glutamic acid (0.17 mol/mol of glucose) or with the mixture of amino acids (0.10 mol/mol) as a nitrogen source were clearly lower than those for ammonium-grown cultures (0.21 mol/mol). In addition, the ethanol yield increased for growth on both glutamic acid (by 9%) and the mixture of amino acids (by 14%). Glutamic acid has a large influence on the formation of products; the production of, for example, alpha-ketoglutaric acid, succinic acid, and acetic acid, increased compared with their production with the other nitrogen sources. Cultures grown on amino acids have a higher specific growth rate (0.52 h-1) than cultures of both ammonium-grown (0.45 h-1) and glutamic acid-grown (0.33 h-1) cells. Although the product yields differed, similar compositions of the cells were attained. The NADH produced in the amino acid, RNA, and extracellular metabolite syntheses was calculated together with the corresponding glycerol formation. The lower-range values of the theoretically calculated yields of glycerol were in good agreement with the experimental yields, which may indicate that the regulation of metabolism succeeds in the most efficient balancing of the redox potential.

  12. Greenhouse gases in the corn-to-fuel ethanol pathway.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M. Q.

    1998-06-18

    Argonne National Laboratory (ANL) has applied its Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model to examine greenhouse gas (GHG) emissions of corn-feedstock ethanol, given present and near-future production technology and practice. On the basis of updated information appropriate to corn farming and processing operations in the four principal corn- and ethanol-producing states (Illinois, Iowa, Minnesota, and Nebraska), the model was used to estimate energy requirements and GHG emissions of corn farming; the manufacture, transportation to farms, and field application of fertilizer and pesticide; transportation of harvested corn to ethanol plants; nitrous oxide emissions from cultivated cornfields; ethanol production in current average and future technology wet and dry mills; and operation of cars and light trucks using ethanol fuels. For all cases examined on the basis of mass emissions per travel mile, the corn-to-ethanol fuel cycle for Midwest-produced ethanol used in both E85 and E10 blends with gasoline outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG production. Also, GHG reductions (but not energy use) appear surprisingly sensitive to the value chosen for combined soil and leached N-fertilizer conversion to nitrous oxide. Co-product energy-use attribution remains the single key factor in estimating ethanol's relative benefits because this value can range from 0 to 50%, depending on the attribution method chosen.

  13. Second Generation Ethanol Production from Brewers’ Spent Grain

    Directory of Open Access Journals (Sweden)

    Rossana Liguori

    2015-03-01

    Full Text Available Ethanol production from lignocellulosic biomasses raises a global interest because it represents a good alternative to petroleum-derived energies and reduces the food versus fuel conflict generated by first generation ethanol. In this study, alkaline-acid pretreated brewers’ spent grain (BSG was evaluated for ethanol production after enzymatic hydrolysis with commercial enzymes. The obtained hydrolysate containing a glucose concentration of 75 g/L was adopted, after dilution up to 50 g/L, for fermentation by the strain Saccharomyces cerevisiae NRRL YB 2293 selected as the best producer among five ethanologenic microorganims. When the hydrolysate was supplemented with yeast extract, 12.79 g/L of ethanol, corresponding to 0.28 g of ethanol per grams of glucose consumed (55% efficiency, was obtained within 24 h, while in the non-supplemented hydrolysate, a similar concentration was reached within 48 h. The volumetric productivity increased from 0.25 g/L·h in the un-supplemented hydrolysate to 0.53 g/L h in the yeast extract supplemented hydrolysate. In conclusion, the strain S. cerevisiae NRRL YB 2293 was shown able to produce ethanol from BSG. Although an equal amount of ethanol was reached in both BSG hydrolysate media, the nitrogen source supplementation reduced the ethanol fermentation time and promoted glucose uptake and cell growth.

  14. Cultivos de alta densidad celular por retención interna: aplicación a la fermentación continua de etanol High cell density cultures produced by internal retention: application in continuous ethanol fermentation

    Directory of Open Access Journals (Sweden)

    Godoy Rubén Darío

    2004-12-01

    Full Text Available El etanol ha generado gran interés por su potencial como combustible alternativo. No obstante, para que este producto sea competitivo económicamente, es necesario desarrollar procesos de fermentación que incrementen la baja productividad volumétrica lograda en cultivos convencionales (por lote o continuo, por medio de técnicas que permitan altas concentraciones celulares y reduzcan la inhibición por producto. Uno de los métodos empleados frecuentemente involucra la recirculación celular; por ello, en este trabajo se desarrolló un reactor de membrana incorporando un módulo de filtración, con unidades tubulares de 5 u,m en acero inoxidable, dentro de un fermentador de tanque agitado de 3L, para investigar su aplicación en la producción continua de etanol. Los efectos de la concentración celular y la caída de presión transmembranal sobre el flux de permeado fueron evaluados para probar el desempeño del módulo de filtración. Previa selección de las condiciones de fermentación (30 °C, 1,25 -1,75 vvm, pH 4,5, el sistema con retención celular interna fue operado en el cultivo continuo de Saccharomyces cerevisiae a partir de sacarosa. La permeabilidad de las unidades filtrantes fue mantenida mediante la aplicación de pulsos de aire. Más del 97% de las células cultivadas fueron retenidas en el fermentador, alcanzándose una concentración celular de 51 g/L y una productividad promedio de etanol, en el cultivo con retención celular, de 8,51 g/L.h, la cual fue dos veces mayor a la que se obtiene en un cultivo continuo convencional. Palabras clave: reactor de membrana, Saccharomyces cerevisiae, fermentación alcohólica, recirculación celular.Ethanol has provoked great interest due to its potential as an alternative fuel. Nevertheless, fermentation processes must be developed by increasing the low volumetric productivity achieved in conventional cultures (batch or continuous to make this product become economically competitive

  15. CARBOXYLIC ACID EFFECTS ON ETHANOL RECOVERY FROM AQUEOUS MIXTURES USING PERVAPORATION THROUGH MFI ZEOLITE-FILLED POLYDIMETHYLSILOXANE MEMBRANES

    Science.gov (United States)

    Most bioethanol is produced by fermenting sugars released from biomass and using distillation to recover the ethanol. Recovering ethanol from the fermentation broths using pervaporation through hydrophobic membranes is potentially economically competitive with distillation for s...

  16. Biofuels policy and the US market for motor fuels: Empirical analysis of ethanol splashing

    Energy Technology Data Exchange (ETDEWEB)

    Walls, W.D., E-mail: wdwalls@ucalgary.ca [Department of Economics, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4 (Canada); Rusco, Frank; Kendix, Michael [US GAO (United States)

    2011-07-15

    Low ethanol prices relative to the price of gasoline blendstock, and tax credits, have resulted in discretionary blending at wholesale terminals of ethanol into fuel supplies above required levels-a practice known as ethanol splashing in industry parlance. No one knows precisely where or in what volume ethanol is being blended with gasoline and this has important implications for motor fuels markets: Because refiners cannot perfectly predict where ethanol will be blended with finished gasoline by wholesalers, they cannot know when to produce and where to ship a blendstock that when mixed with ethanol at 10% would create the most economically efficient finished motor gasoline that meets engine standards and has comparable evaporative emissions as conventional gasoline without ethanol blending. In contrast to previous empirical analyses of biofuels that have relied on highly aggregated data, our analysis is disaggregated to the level of individual wholesale fuel terminals or racks (of which there are about 350 in the US). We incorporate the price of ethanol as well as the blendstock price to model the wholesaler's decision of whether or not to blend additional ethanol into gasoline at any particular wholesale city-terminal. The empirical analysis illustrates how ethanol and gasoline prices affect ethanol usage, controlling for fuel specifications, blend attributes, and city-terminal-specific effects that, among other things, control for differential costs of delivering ethanol from bio-refinery to wholesale rack. - Research Highlights: > Low ethanol prices and tax credits have resulted in discretionary blending of ethanol into fuel supplies above required levels. > This has important implications for motor fuels markets and vehicular emissions. > Our analysis incorporates the price of ethanol as well as the blendstock price to model the wholesaler's decision of whether or not to blend additional ethanol into gasoline at any particular wholesale city

  17. A marine microbial consortium apparently mediating anaerobic oxidation of methane

    DEFF Research Database (Denmark)

    Boetius, A.; Ravenschlag, K.; Schubert, CJ;

    2000-01-01

    A large fraction of globally produced methane is converted to CO2 by anaerobic oxidation in marine sediments(1). Strong geochemical evidence for net methane consumption in anoxic sediments is based on methane profiles(2), radiotracer experiments(3) and stable carbon isotope data(4). But the elusive...

  18. Hydrogenosomes : convergent adaptations of mitochondria to anaerobic environments

    NARCIS (Netherlands)

    Hackstein, JHP; Akhmanova, A; Voncken, F; van Hoek, A; van Alen, T; Boxma, B; Moon-van der Staay, SY; van der Staay, G; Leunissen, J; Huynen, M; Rosenberg, J; Veenhuis, M; Hackstein, Johannes H.P.; Moon-van der Staay, Seung Yeo

    2001-01-01

    Hydrogenosomes are membrane-bound organelles that compartmentalise the Final steps of energy metabo I is in in a number of anaerobic eukaryotes. They produce hydrogen and ATP. Here we will review the data, which are relevant for the questions: how did the hydrogenosomes originate, and what was their

  19. Anaerobic Membrane Bioreactors For Cost-Effective Municipal Water Reuse

    NARCIS (Netherlands)

    Özgün, H.

    2015-01-01

    In recent years, anaerobic membrane bioreactor (AnMBR) technology has been increasingly researched for municipal wastewater treatment as a means to produce nutrient-rich, solids free effluents with low levels of pathogens, while occupying a small footprint. An AnMBR can be used not only for on-site

  20. Biogas energy production from tropical biomass wastes by anaerobic digestion

    Science.gov (United States)

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass, and food w...

  1. Anaerobic Biodegradation of Detergent Surfactants

    OpenAIRE

    Erich Jelen; Ute Merrettig-Bruns

    2009-01-01

    Detergent surfactantscan be found in wastewater in relevant concentrations. Most of them are known as ready degradable under aerobic conditions, as required by European legislation. Far fewer surfactants have been tested so far for biodegradability under anaerobic conditions. The natural environment is predominantly aerobic, but there are some environmental compartments such as river sediments, sub-surface soil layer and anaerobic sludge digesters of wastewater treatment plants which have str...

  2. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies

    KAUST Repository

    Shoener, B. D.

    2014-01-01

    The negative energy balance of wastewater treatment could be reversed if anaerobic technologies were implemented for organic carbon oxidation and phototrophic technologies were utilized for nutrient recovery. To characterize the potential for energy positive wastewater treatment by anaerobic and phototrophic biotechnologies we performed a comprehensive literature review and analysis, focusing on energy production (as kJ per capita per day and as kJ m-3 of wastewater treated), energy consumption, and treatment efficacy. Anaerobic technologies included in this review were the anaerobic baffled reactor (ABR), anaerobic membrane bioreactor (AnMBR), anaerobic fluidized bed reactor (AFB), upflow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), microbial electrolysis cell (MEC), and microbial fuel cell (MFC). Phototrophic technologies included were the high rate algal pond (HRAP), photobioreactor (PBR), stirred tank reactor, waste stabilization pond (WSP), and algal turf scrubber (ATS). Average energy recovery efficiencies for anaerobic technologies ranged from 1.6% (MFC) to 47.5% (ABR). When including typical percent chemical oxygen demand (COD) removals by each technology, this range would equate to roughly 40-1200 kJ per capita per day or 110-3300 kJ m-3 of treated wastewater. The average bioenergy feedstock production by phototrophic technologies ranged from 1200-4700 kJ per capita per day or 3400-13000 kJ m-3 (exceeding anaerobic technologies and, at times, the energetic content of the influent organic carbon), with usable energy production dependent upon downstream conversion to fuels. Energy consumption analysis showed that energy positive anaerobic wastewater treatment by emerging technologies would require significant reductions of parasitic losses from mechanical mixing and gas sparging. Technology targets and critical barriers for energy-producing technologies are identified, and the role of integrated anaerobic and phototrophic

  3. Anaerobic bioleaching of metals from waste activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Meulepas, Roel J.W., E-mail: roel.meulepas@wetsus.nl [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Gonzalez-Gil, Graciela [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal 13955-69000 (Saudi Arabia); Teshager, Fitfety Melese; Witharana, Ayoma [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Saikaly, Pascal E. [King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal 13955-69000 (Saudi Arabia); Lens, Piet N.L. [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands)

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g{sup −1} of copper, 487 μg g{sup −1} of lead, 793 μg g{sup −1} of zinc, 27 μg g{sup −1} of nickel and 2.3 μg g{sup −1} of cadmium. During the anaerobic acidification of 3 g{sub dry} {sub weight} L{sup −1} waste activated sludge, 80–85% of the copper, 66–69% of the lead, 87% of the zinc, 94–99% of the nickel and 73–83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead. - Highlights: • Heavy metals were leached during anaerobic acidification of waste activated sludge. • The process does not require the addition of chelating or oxidizing agents. • The metal leaching efficiencies (66 to 99%) were comparable to chemical leaching. • The produced leachate may be used for metal recovery and biogas production. • The produced digested sludge may be used as soil conditioner.

  4. KCNQ channels show conserved ethanol block and function in ethanol behaviour.

    Directory of Open Access Journals (Sweden)

    Sonia Cavaliere

    Full Text Available In humans, KCNQ2/3 channels form an M-current that regulates neuronal excitability, with mutations in these channels causing benign neonatal familial convulsions. The M-current is important in mechanisms of neural plasticity underlying associative memory and in the response to ethanol, with KCNQ controlling the release of dopamine after ethanol exposure. We show that dKCNQ is broadly expressed in the nervous system, with targeted reduction in neuronal KCNQ increasing neural excitability and KCNQ overexpression decreasing excitability and calcium signalling, consistent with KCNQ regulating the resting membrane potential and neural release as in mammalian neurons. We show that the single KCNQ channel in Drosophila (dKCNQ has similar electrophysiological properties to neuronal KCNQ2/3, including conserved acute sensitivity to ethanol block, with the fly channel (IC(50 = 19.8 mM being more sensitive than its mammalian ortholog (IC(50 = 42.1 mM. This suggests that the role of KCNQ in alcohol behaviour can be determined for the first time by using Drosophila. We present evidence that loss of KCNQ function in Drosophila increased sensitivity and tolerance to the sedative effects of ethanol. Acute activation of dopaminergic neurons by heat-activated TRP channel or KCNQ-RNAi expression produced ethanol hypersensitivity, suggesting that both act via a common mechanism involving membrane depolarisation and increased dopamine signalling leading to ethanol sedation.

  5. Cellulose fermentation by nitrogen-fixing anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Canale-Parola, E.

    1992-12-13

    In anaerobic natural environments cellulose is degraded to methane, carbon dioxide and other products by the combined activities of many diverse microorganisms. We are simulating processes occurring in natural environments by constructing biologically-defined, stable, heterogeneous bacterial communities (consortia) that we use as in vitro systems for quantitative studies of cellulose degradation under conditions of combined nitrogen deprivation. These studies include the investigation of (i) metabolic interactions among members of cellulose-degrading microbial populations, and (ii) processes that regulate the activity or biosynthesis of cellulolytic enzymes. In addition, we are studying the sensory mechanisms that, in natural environments, may enable motile cellulolytic bacteria to migrate toward cellulose. This part of our work includes biochemical characterization of the cellobiose chemoreceptor of cellulolytic bacteria. Finally, an important aspect of our research is the investigation of the mechanisms by which multienzyme complexes of anaerobic bacteria catalyze the depolymerization of crystalline cellulose and of other plant cell wall polysacchaddes. The research will provide fundamental information on the physiology and ecology of cellulose-fermenting, N{sub 2}-fixing bacteria, and on the intricate processes involved in C and N cycling in anaerobic environments. Furthermore, the information will be valuable for the development of practical applications, such as the conversion of plant biomass (e.g., agricultural, forestry and municipal wastes) to automotive fuels such as ethanol.

  6. Hydrogen production from cheese whey with ethanol-type fermentation: effect of hydraulic retention time on the microbial community composition.

    Science.gov (United States)

    Rosa, Paula Rúbia Ferreira; Santos, Samantha Christine; Sakamoto, Isabel Kimiko; Varesche, Maria Bernadete Amâncio; Silva, Edson Luiz

    2014-06-01

    The effects of different hydraulic retention times (HRTs) of 4, 2, and 1h and varying sources of inoculum (sludge from swine and sludge from poultry) on the hydrogen production in two anaerobic fluidized bed reactors (AFBRs) were evaluated. Cheese whey was used as a substrate, and 5000mgCODL(-1) was applied. The highest hydrogen yield (HY) of 1.33molmol(-1) lactose and highest ethanol yield (EtOHY) of 1.22molEtOHmol(-1) lactose were obtained at the highest HRT (4h). When the reactors were operated at an HRT of 1h, methane (0.68LCH4h(-1)L(-1)) was produced concurrently with hydrogen (0.51LH2h(-1)L(-1)). The major metabolites observed were soluble ethanol, methanol, acetic acid, and butyric acid. Cloning of the 16S rRNA gene sequences indicated that the microbial community were affiliated with the genera Selenomonas sp. (69% of the sequences), and Methanobacterium sp. (98% of the sequences).

  7. Bacteria engineered for fuel ethanol production: current status

    Energy Technology Data Exchange (ETDEWEB)

    Dien, B.S.; Cotta, M.A. [National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL (United States); Jeffries, T.W. [Inst. for Microbial and Biochemical Technology, Forest Service, Forest Products Lab., USDA, Madison, WI (United States)

    2004-07-01

    The lack of industrially suitable microorganisms for converting biomass into fuel ethanol has traditionally been cited as a major technical roadblock to developing a bioethanol industry. In the last two decades, numerous microorganisms have been engineered to selectively produce ethanol. Lignocellulosic biomass contains complex carbohydrates that necessitate utilizing microorganisms capable of fermenting sugars not fermentable by brewers' yeast. The most significant of these is xylose. The greatest successes have been in the engineering of gram-negative bacteria: Escherichia coli, Klebsiella oxytoca, and Zymomonas mobilis. E. coli and K. oxytoca are naturally able to use a wide spectrum of sugars, and work has concentrated on engineering these strains to selectively produce ethanol. Z. mobilis produces ethanol at high yields, but ferments only glucose and fructose. Work on this organism has concentrated on introducing pathways for the fermentation of arabinose and xylose. The history of constructing these strains and current progress in refining them are detailed in this review. (orig.)

  8. Screening of bacterial strains capable of converting biodiesel-derived raw glycerol into 1,3-propanediol, 2,3-butanediol and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Metsoviti, Maria; Paramithiotis, Spiros; Drosinos, Eleftherios H.; Galiotou-Panayotou, Maria; Nychas, George-John E.; Papanikolaou, Seraphim [Department of Food Science and Technology, Agricultural University of Athens, Athens (Greece); Zeng, An-Ping [Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology (TUHH), Hamburg (Germany)

    2012-02-15

    The ability of bacterial strains to assimilate glycerol derived from biodiesel facilities to produce metabolic compounds of importance for the food, textile and chemical industry, such as 1,3-propanediol (PD), 2,3-butanediol (BD) and ethanol (EtOH), was assessed. The screening of 84 bacterial strains was performed using glycerol as carbon source. After initial trials, 12 strains were identified capable of consuming raw glycerol under anaerobic conditions, whereas 5 strains consumed glycerol under aerobiosis. A plethora of metabolic compounds was synthesized; in anaerobic batch-bioreactor cultures PD in quantities up to 11.3 g/L was produced by Clostridium butyricum NRRL B-23495, while the respective value was 10.1 g/L for a newly isolated Citrobacter freundii. Adaptation of Cl. butyricum at higher initial glycerol concentration resulted in a PD{sub max} concentration of {proportional_to}32 g/L. BD was produced by a new Enterobacter aerogenes isolate in shake-flask experiments, under fully aerobic conditions, with a maximum concentration of {proportional_to}22 g/L which was achieved at an initial glycerol quantity of 55 g/L. A new Klebsiella oxytoca isolate converted waste glycerol into mixtures of PD, BD and EtOH at various ratios. Finally, another new C. freundii isolate converted waste glycerol into EtOH in anaerobic batch-bioreactor cultures with constant pH, achieving a final EtOH concentration of 14.5 g/L, a conversion yield of 0.45 g/g and a volumetric productivity of {proportional_to}0.7 g/L/h. As a conclusion, the current study confirmed the utilization of biodiesel-derived raw glycerol as an appropriate substrate for the production of PD, BD and EtOH by several newly isolated bacterial strains under different experimental conditions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Anaerobic digestion of industrial hemp-effect of harvest time on methane energy yield per hectare

    Energy Technology Data Exchange (ETDEWEB)

    Kreuger, E.; Escobar, F.; Bjoernsson, L. [Department of Biotechnology, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden); Prade, T.; Svensson, S.-E.; Englund, J.-E. [Department of Agriculture-Farming Systems, Technology and Product Quality, Swedish University of Agricultural Sciences, P.O. Box 104, SE-230 53 Alnarp (Sweden)

    2011-02-15

    There is a worldwide emphasis to increase the share of renewable transportation fuels. When using agricultural land for production of renewable transportation fuels, the energy output per hectare for different crops and transportation fuels is a crucial factor. In this study, the gross methane energy yield per hectare from anaerobic digestion of industrial hemp (Cannabis sativa L.), was determined at four different harvest times between July and October in Southern Sweden, a cold climate region. The biomass yield was determined for three years and the methane yield was determined for two years through the biochemical methane potential test. The highest biomass yield, 16 tonnes dry matter per hectare on an average, and the highest methane energy yield per hectare was achieved when the hemp was harvested in September or October, with an average gross methane energy yield of 136 {+-} 24 GJ per hectare. There was no significant difference in the specific methane yield between the harvest times; the average being 234 {+-} 35 m{sup 3} per tonne volatile solids. Biogas from hemp turned out to be a high yielding alternative to the currently dominating renewable transportation fuels produced from crops grown in Sweden: ethanol from wheat and biodiesel from rapeseed. (author)

  10. Arrowroot as a novel substrate for ethanol production by solid state simultaneous saccharification and fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tian-xiang; Tang, Qing-li; Zhu, Zuo-hua [School of Chemical Engineering, Guizhou University, Guizhou, Guiyang 550003 (China); Wang, Feng [National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2010-08-15

    Ethanol production from Canna edulis Ker was successfully carried out by solid state simultaneous saccharification and fermentation. The enzymatic hydrolysis conditions of C. edulis were optimized by Plackett-Burman design. The effect of inert carrier (corncob and rice bran) on ethanol fermentation and the kinetics of solid state simultaneous saccharification and fermentation was investigated. It was found that C. edulis was an alternative substrate for ethanol production, 10.1% (v/v) of ethanol concentration can attained when 40 g corncob and 10 g rice bran per 100 g C. edulis powder were added for ethanol fermentation. No shortage of fermentable sugars was observed during solid state simultaneous saccharification and fermentation. There was no wastewater produced in the process of ethanol production from C. edulis with solid state simultaneous saccharification and fermentation and the ethanol yield of more than 0.28 tonne per one tonne feedstock was achieved. This is first report for ethanol production from C. edulis powder. (author)

  11. The Health Impacts of Ethanol Blend Petrol

    Directory of Open Access Journals (Sweden)

    Rosemary Wood

    2011-02-01

    Full Text Available A measurement program designed to evaluate health impacts or benefits of using ethanol blend petrol examined exhaust and evaporative emissions from 21 vehicles representative of the current Australian light duty petrol (gasoline vehicle fleet using a composite urban emissions drive cycle. The fuels used were unleaded petrol (ULP, ULP blended with either 5% ethanol (E5 or 10% ethanol (E10. The resulting data were combined with inventory data for Sydney to determine the expected fleet emissions for different uptakes of ethanol blended fuel. Fleet ethanol compatibility was estimated to be 60% for 2006, and for the air quality modelling it was assumed that in 2011 over 95% of the fleet would be ethanol compatible. Secondary organic aerosol (SOA formation from ULP, E5 and E10 emissions was studied under controlled conditions by the use of a smog chamber. This was combined with meteorological data from Sydney for February 2004 and the emission data (both measured and inventory data to model pollutant concentrations in Sydney’s airshed for 2006 and 2011. These concentrations were combined with the population distribution to evaluate population exposure to the pollutant. There is a health benefit to the Sydney population arising from a move from ULP to ethanol blends in spark-ignition vehicles. Potential health cost savings for Urban Australia (Sydney, Melbourne, Brisbane and Perth are estimated to be A$39 million (in 2007 dollars for a 50% uptake (by ethanol compatible vehicles of E10 in 2006 and $42 million per annum for a 100% take up of E10 in 2011. Over 97% of the estimated health savings are due to reduced emissions of PM2.5 and consequent reduced impacts on mortality and morbidity (e.g., asthma, cardiovascular disease. Despite more petrol-driven vehicles predicted for 2011, the quantified health impact differential between ULP and ethanol fuelled vehicles drops from 2006 to 2011. This is because modern petrol vehicles, with lower emissions than

  12. Engineering Escherichia coli for improved ethanol production from gluconate.

    Science.gov (United States)

    Hildebrand, Amanda; Schlacta, Theresa; Warmack, Rebeccah; Kasuga, Takao; Fan, Zhiliang

    2013-10-10

    We report on engineering Escherichia coli to produce ethanol at high yield from gluconic acid (gluconate). Knocking out genes encoding for the competing pathways (l-lactate dehydrogenase and pyruvate formate lyase A) in E. coli KO11 eliminated lactate production, lowered the carbon flow toward acetate production, and improved the ethanol yield from 87.5% to 97.5% of the theoretical maximum, while the growth rate of the mutant strain was about 70% of the wild type. The corresponding genetic modifications led to a small improvement of ethanol yield from 101.5% to 106.0% on glucose. Deletion of the pyruvate dehydrogenase gene (pdh) alone improved the ethanol yield from 87.5% to 90.4% when gluconate was a substrate. The growth rate of the mutant strain was identical to that of the wild type. The corresponding genetic modification led to no improvements on ethanol yield on glucose.

  13. Metabolic engineering of bacteria for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, L.O.; Gomez, P.F.; Lai, X.; Moniruzzaman, M.; Wood, B.E.; Yomano, L.P.; York, S.W. [Univ. of Florida, Gainesville, FL (United States). Dept. of Microbiology and Cell Science

    1998-04-20

    Technologies are available which will allow the conversion of lignocellulose into fuel ethanol using genetically engineered bacteria. Assembling these into a cost-effective process remains a challenge. The authors` work has focused primarily on the genetic engineering of enteric bacteria using a portable ethanol production pathway. Genes encoding Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase have been integrated into the chromosome of Escherichia coli B to produce strain KO11 for the fermentation of hemicellulose-derived syrups. This organism can efficiently ferment all hexose and pentose sugars present in the polymers of hemicellulose. Klebsiella oxytoca M5A1 has been genetically engineered in a similar manner to produce strain P2 for ethanol production from cellulose. This organism has the native ability to ferment cellobiose and cellotriose, eliminating the need for one class of cellulase enzymes. The optimal pH for cellulose fermentation with this organism is near that of fungal cellulases. The general approach for the genetic engineering of new biocatalysts has been most successful with enteric bacteria thus far. However, this approach may also prove useful with gram-positive bacteria which have other important traits for lignocellulose conversion. Many opportunities remain for further improvements in the biomass to ethanol processes.

  14. Production of Biocellulosic Ethanol from Wheat Straw

    Directory of Open Access Journals (Sweden)

    Ismail

    2012-01-01

    Full Text Available Wheat straw is an abundant lignocellulosic feedstock in many parts of the world, and has been selected for producing ethanol in an economically feasible manner. It contains a mixture of sugars (hexoses and pentoses.Two-stage acid hydrolysis was carried out with concentrates of perchloric acid, using wheat straw. The hydrolysate was concentrated by vacuum evaporation to increase the concentration of fermentable sugars, and was detoxified by over-liming to decrease the concentration of fermentation inhibitors. After two-stage acid hydrolysis, the sugars and the inhibitors were measured. The ethanol yields obtained from by converting hexoses and pentoses in the hydrolysate with the co-culture of Saccharomyces cerevisiae and Pichia stipites were higher than the ethanol yields produced with a monoculture of S. cerevisiae. Various conditions for hysdrolysis and fermentation were investigated. The ethanol concentration was 11.42 g/l in 42 h of incubation, with a yield of 0.475 g/g, productivity of 0.272 gl ·h, and fermentation efficiency of 92.955 %, using a co-culture of Saccharomyces cerevisiae and Pichia stipites

  15. Response surface optimisation for acetone-butanol-ethanol production from cassava starch by co-culture of Clostridium butylicum and Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Benjamas Cheirsilp

    2011-11-01

    Full Text Available Acetone-butanol-ethanol (ABE production from cassava starch was enhanced by a syntrophic co-culture of Clostridium butylicum TISTR 1032 and high amylase producing Bacillus subtilis WD 161 without anaerobic pretreatment. The production of amylase and ABE using this co-culture were respectively 16 and 6 times higher than those using the pure culture of C. butylicum TISTR 1032. The effect of the medium components on the performance of the co-culture was investigated using response surface methodology (RSM. Among the investigated components, cassava starch and ammonium nitrate contributed a significant effect on the production of amylase and ABE, while yeast extract had less effect. Based on the optimum strategy using RSM, the ABE production by the co-culture was improved 2.2-fold compared with that obtained from the initial condition and with a minimum requirement of nitrogen source.

  16. Anaerobic conversion of microalgal biomass to sustainable energy carriers--a review.

    Science.gov (United States)

    Lakaniemi, Aino-Maija; Tuovinen, Olli H; Puhakka, Jaakko A

    2013-05-01

    This review discusses anaerobic production of methane, hydrogen, ethanol, butanol and electricity from microalgal biomass. The amenability of microalgal biomass to these bioenergy conversion processes is compared with other aquatic and terrestrial biomass sources. The highest energy yields (kJ g(-1) dry wt. microalgal biomass) reported in the literature have been 14.8 as ethanol, 14.4 as methane, 6.6 as butanol and 1.2 as hydrogen. The highest power density reported from microalgal biomass in microbial fuel cells has been 980 mW m(-2). Sequential production of different energy carriers increases attainable energy yields, but also increases investment and maintenance costs. Microalgal biomass is a promising feedstock for anaerobic energy conversion processes, especially for methanogenic digestion and ethanol fermentation. The reviewed studies have mainly been based on laboratory scale experiments and thus scale-up of anaerobic utilization of microalgal biomass for production of energy carriers is now timely and required for cost-effectiveness comparisons.

  17. Biochemical Disincentives to Fertilizing Cellulosic Ethanol Crops

    Science.gov (United States)

    Gallagher, M. E.; Hockaday, W. C.; Snapp, S.; McSwiney, C.; Baldock, J.

    2010-12-01

    Corn grain biofuel crops produce the highest yields when the cropping ecosystem is not nitrogen (N)-limited, achieved by application of fertilizer. There are environmental consequences for excessive fertilizer application to crops, including greenhouse gas emissions, hypoxic “dead zones,” and health problems from N runoff into groundwater. The increase in corn acreage in response to demand for alternative fuels (i.e. ethanol) could exacerbate these problems, and divert food supplies to fuel production. A potential substitute for grain ethanol that could reduce some of these impacts is cellulosic ethanol. Cellulosic ethanol feedstocks include grasses (switchgrass), hardwoods, and crop residues (e.g. corn stover, wheat straw). It has been assumed that these feedstocks will require similar N fertilization rates to grain biofuel crops to maximize yields, but carbohydrate yield versus N application has not previously been monitored. We report the biochemical stocks (carbohydrate, protein, and lignin in Mg ha-1) of a corn ecosystem grown under varying N levels. We measured biochemical yield in Mg ha-1 within the grain, leaf and stem, and reproductive parts of corn plants grown at seven N fertilization rates (0-202 kg N ha-1), to evaluate the quantity and quality of these feedstocks across a N fertilization gradient. The N fertilization rate study was performed at the Kellogg Biological Station-Long Term Ecological Research Site (KBS-LTER) in Michigan. Biochemical stocks were measured using 13C nuclear magnetic resonance spectroscopy (NMR), combined with a molecular mixing model (Baldock et al. 2004). Carbohydrate and lignin are the main biochemicals of interest in ethanol production since carbohydrate is the ethanol feedstock, and lignin hinders the carbohydrate to ethanol conversion process. We show that corn residue carbohydrate yields respond only weakly to N fertilization compared to grain. Grain carbohydrate yields plateau in response to fertilization at

  18. Impacts on potential ethanol and crude protein yield in alfalfa

    Science.gov (United States)

    An alfalfa (Medicago sativa L.) biomass energy production system would produce two products. Leaves would be separated from stems to produce a high protein feed for livestock while stems would be processed to produce ethanol. Therefore, maximum yields of both leaves and stems are essential for profi...

  19. Ethanol from wood. Cellulase enzyme production

    Energy Technology Data Exchange (ETDEWEB)

    Szengyel, Zsolt

    2000-03-01

    Conversion of biomass to liquid fuels, such as ethanol, has been investigated during the past decades. First due to the oil crisis of the 1970s and lately because of concerns about greenhouse effect, ethanol has been found to be a suitable substitute for gasoline in transportation. Although ethanol is produced in large quantities from corn starch, the conversion of lignocellulosic biomass to ethanol is rather problematic. However, cellulosic raw materials are important as they are available in large quantities from agriculture and forestry. One of the most extensively investigated processes is the enzymatic process, in which fungal cellulolytic enzymes are used to convert the cellulose content of the biomass to glucose, which is then fermented to ethanol. In order to make the raw material accessible to biological attack, it has to be pretreated first. The most successful method, which has been evaluated for various lignocellulosic materials, is the steam pretreatment. In this thesis the utilization of steam pretreated willow (hardwood) and spruce (softwood) was examined for enzyme production using a filamentous fungus T. reesei RUT C30. Various carbon sources originating from the steam pretreated materials have been investigated. The replacement of the solid carbon source with a liquid carbon source, as well as the effect of pH, was studied. The effect of toxic compounds generated during pretreatment was also examined. Comparative study of softwood and hardwood showed that steam pretreated hardwood is a better carbon source than softwood. The hydrolytic potential of enzyme solutions produced on wood derived carbon sources was better compared to commercial cellulases. Also enzyme solutions produced on steam pretreated spruce showed less sensitivity towards toxic compounds formed during steam pretreatment.

  20. University of Wisconsin Oshkosh Anaerobic Dry Digestion Facility

    Energy Technology Data Exchange (ETDEWEB)

    Koker, John [Univ. of Wisconsin, Oshkosh, WI (United States); Lizotte, Michael [Univ. of Wisconsin, Oshkosh, WI (United States)

    2017-02-08

    The University of Wisconsin Oshkosh Anaerobic Dry Digestion Facility is a demonstration project that supported the first commercial-scale use in the United States of high solids, static pile technology for anaerobic digestion of organic waste to generate biogas for use in generating electricity and heat. The research adds to the understanding of startup, operation and supply chain issues for anaerobic digester technology. Issues and performance were documented for equipment installation and modifications, feedstock availability and quality, weekly loading and unloading of digestion chambers, chemical composition of biogas produced, and energy production. This facility also demonstrated an urban industrial ecology approach to siting such facilities near sewage treatment plants (to capture and use excess biogas generated by the plants) and organic yard waste collection sites (a source of feedstock).

  1. Biogas production using anaerobic groundwater containing a subterranean microbial community associated with the accretionary prism

    OpenAIRE

    Baito, Kyohei; Imai, Satomi; Matsushita, Makoto; Otani, Miku; Sato, Yu; Kimura, Hiroyuki

    2014-01-01

    In a deep aquifer associated with an accretionary prism, significant methane (CH4) is produced by a subterranean microbial community. Here, we developed bioreactors for producing CH4 and hydrogen (H2) using anaerobic groundwater collected from the deep aquifer. To generate CH4, the anaerobic groundwater amended with organic substrates was incubated in the bioreactor. At first, H2 was detected and accumulated in the gas phase of the bioreactor. After the H2 decreased, rapid CH4 production was ...

  2. Anaerobic bioleaching of metals from waste activated sludge

    KAUST Repository

    Meulepas, Roel J W

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342μgg-1 of copper, 487μgg-1 of lead, 793μgg-1 of zinc, 27μgg-1 of nickel and 2.3μgg-1 of cadmium. During the anaerobic acidification of 3gdry weightL-1 waste activated sludge, 80-85% of the copper, 66-69% of the lead, 87% of the zinc, 94-99% of the nickel and 73-83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead.

  3. Role of phosphodiesterase-4 on ethanol elicited locomotion and narcosis.

    Science.gov (United States)

    Baliño, Pablo; Ledesma, Juan Carlos; Aragon, Carlos M G

    2016-02-01

    The cAMP signaling pathway has emerged as an important modulator of the pharmacological effects of ethanol. In this respect, the cAMP-dependent protein kinase has been shown to play an important role in the modulation of several ethanol-induced behavioral actions. Cellular levels of cAMP are maintained by the activity of adenylyl cyclases and phosphodiesterases. In the present work we have focused on ascertaining the role of PDE4 in mediating the neurobehavioral effects of ethanol. For this purpose, we have used the selective PDE4 inhibitor Ro 20-1724. This compound has been proven to enhance cellular cAMP response by PDE4 blockade and can be administered systemically. Swiss mice were injected intraperitoneally (i.p.) with Ro 20-1724 (0-5 mg/kg; i.p.) at different time intervals before ethanol (0-4 g/kg; i.p.) administration. Immediately after the ethanol injection, locomotor activity, loss of righting reflex, PKA footprint and enzymatic activity were assessed. Pretreatment with Ro 20-1724 increased ethanol-induced locomotor stimulation in a dose-dependent manner. Doses that increased locomotor stimulation did not modify basal locomotion or the suppression of motor activity produced by high doses of this alcohol. Ro 20-1724 did not alter the locomotor activation produced by amphetamine or cocaine. The time of loss of righting reflex evoked by ethanol was increased after pretreatment with Ro 20-1724. This effect was selective for the narcotic effects of ethanol since Ro 20-1724 did not affect pentobarbital-induced narcotic effects. Moreover, Ro 20-1724 administration increased the PKA footprint and enzymatic activity response elicited by ethanol. These data provide further evidence of the key role of the cAMP signaling pathway in the central effects of ethanol.

  4. Anaerobic digestion of pot-ale

    Energy Technology Data Exchange (ETDEWEB)

    Mosey, F.E.

    1990-12-01

    In the production of whisky, the fermented wash is distilled twice and each bushel of grain yields about 15.5 gallons of pot-ale, 6.0 gallons of spent lees and 2.7 gallons of proof spirit. Disposal of pot-ale, the strong residue from the first distillation, containing all the non-volatile and unfermented components of the wash, will always be difficult. Anaerobic digestion provides a possible option. By destroying most of the biodegradable solids and converting them to biogas, it provides an intermediate effluent which conventional treatment technology can purify to river discharge standards. Pilot-scale trials confirm that pot-ale can be treated by anaerobic digestion. The most severe problems are the high purification efficiencies required to achieve UK river discharge standards and the quality and settling properties of the biological sludges produced. To achieved these standards, the design and operation of the entire treatment chain is dominated by the need to capture and concentrate suspended solids (SS) produced by the biological fermentations. Overall performance targets are 99.95% removal of biological oxygen demand (BOD), 99% removal of ammonia and a surplus sludge production of less than 20% of the incoming flow. (author).

  5. Thermodynamics of Microbial Growth Coupled to Metabolism of Glucose, Ethanol, Short-Chain Organic Acids, and Hydrogen ▿ †

    Science.gov (United States)

    Roden, Eric E.; Jin, Qusheng

    2011-01-01

    A literature compilation demonstrated a linear relationship between microbial growth yield and the free energy of aerobic and anaerobic (respiratory and/or fermentative) metabolism of glucose, ethanol, formate, acetate, lactate, propionate, butyrate, and H2. This relationship provides a means to estimate growth yields for modeling microbial redox metabolism in soil and sedimentary environments. PMID:21216913

  6. Caracterización y evaluación de biosólidos producidos por digestión anaerobia de residuos agroindustriales Characterization and evaluation of biosolids produced by anaerobic digestion of agroindustrial residues

    Directory of Open Access Journals (Sweden)

    Amabelia del Pino

    2012-12-01

    Full Text Available El objetivo de este trabajo fue la caracterización y evaluación de los biosólidos (lodos producidos en un reactor piloto alimentado con residuos agroindustriales. La caracterización química de los lodos y la estimación de la variabilidad de los parámetros se realizó a partir de muestras tomadas durante cinco semanas. En las muestras se determinó pH, materia seca (MS y contenidos totales de C, N, P, K, Na, Ca, Mg, Cu, Fe, Mn y Zn. Para estudiar los patrones de descomposición y liberación de nutrientes de los lodos se incubaron dos suelos de diferente textura con dosis de lodo equivalentes a 80 y 160 kg ha-1 de N, comparándose con dosis iguales de N como fertilizante y un tratamiento testigo sin agregados. En el experimento de incubación se determinó la respiración del suelo y liberación de nutrientes durante 115 días. El contenido promedio de MS de los lodos fue 5,2%, el pH alcalino y las mayores concentraciones de nutrientes correspondieron a N, P y Ca. Hubo variabilidad entre muestreos, aunque los coeficientes de variación fueron menores a 20%. Los niveles de Na y micronutrientes no estuvieron en el rango considerado como riesgo para el ambiente. El agregado de lodo promovió la actividad microbiana del suelo. En el suelo limoso se perdió como CO2 aproximadamente un tercio y en el franco arenoso un quinto del C agregado. El N del lodo se mineralizó rápidamente, llegando a niveles similares de N mineral a los suelos fertilizados. El agregado de lodo incrementó el contenido de P disponible, N mineral, Ca y Mg intercambiables, por lo tanto se concluye que fue beneficioso para la fertilidad del suelo.The objective of this study was to characterize and evaluate the biosolids (slurry produced in a pilot reactor feed with agroindustrial residues. The chemical characterization of the biosolids and variability estimation were conducted on slurry samples taken during five weeks. Samples were analyzed for dry matter (DM, pH, and

  7. Preparation and emission characteristics of ethanol-diesel fuel blends

    Institute of Scientific and Technical Information of China (English)

    ZHANG Run-duo; HE Hong; SHI Xiao-yan; ZHANG Chang-bin; HE Bang-quan; WANG Jian-xin

    2004-01-01

    The preparation of ethanol-diesel fuel blends and their emission characteristics were investigated. Results showed the absolute ethanol can dissolve in diesel fuel at an arbitrary ratio and a small quantity of water(0.2%) addition can lead to the phase separation of blends. An organic additive was synthesized and it can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The emission characteristics of 10%, 20%, and 30% ethanol-diesel fuel blends, with or without additives, were compared with those of diesel fuel in a direct injection(DI) diesel engine. The experimental results indicated that the blend of ethanol with diesel fuel significantly reduced the concentrations of smoke, hydrocarbon(HC), and carbon monoxide(CO) in exhaust gas. Using 20% ethanol-diesel fuel blend with the additive of 2% of the total volume, the optimum mixing ratio was achieved, at which the bench diesel engine testing showed a significant decrease in exhaust gas. Bosch smoke number was reduced by 55%, HC emission by 70%, and CO emission by 45%, at 13 kW/1540 r/min. However, ethanol-diesel fuel blends produced a few ppm acetaldehydes and more ethanol in exhaust gas.

  8. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Teixeira Miguel C

    2012-07-01

    Full Text Available Abstract Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC Superfamily and Major Facilitator Superfamily (MFS in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3 H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to

  9. Effect of aeration and inulin concentration on ethanol production by Kluyveromyces marxinaus YX01%通气量和菊粉浓度对克鲁维酵母乙醇发酵的影响

    Institute of Scientific and Technical Information of China (English)

    高教琪; 袁文杰; 陈丽杰; 韩锡铜; 白凤武

    2013-01-01

    Consolidated bioprocessing technology can be used for Kluyveromyces marxianus YX01 to produce ethanol from Jerusalem artichoke, which is one of the potential processes to produce biofuel from non-cereal crops. In this study, we combined the aeration rate with the substrate concentration to conduct cross-over experiments for K. marxinaus YX01, and studied ethanol fermentation and the influence of inulin enzyme activity. The substrate concentration had a little repressive effect on ethanol productivity. When substrate concentration reached 250 g/L under anaerobic conditions, ethanol concentration was 84.8 g/L, and ethanol yield was reduced from 86.4% (50 g/L substrate concentration) to 84.7% of the theoretical value. Aeration rate could accelerate K. marxinaus YX01 ethanol fermentation, but reduced ethanol yield. When substrate concentration reached 250 g/L under aeration at 1.0 vvm, ethanol yield was reduced from 84.7% under anaerobic conditions to 73.3% of the theoretical value. With increased concentration of the carbon source and reduced aeration rate, the inulinase of AT. marxinaus YX01 reduced and the concentration of glycerol increased, however, the acetic acid increased with the increased concentration of the carbon source and aeration rate. When substrate concentration reached 250 g/L under anaerobic conditions, inulinase activity was only 6.59 U/mL; when substrate concentration reached 50 g/L under aeration at 1.0 vvm, inulinase activity was 21.54 U/mL.%马克斯克鲁维酵母能够利用集成生物加工技术发酵菊芋生产乙醇,具有非粮燃料乙醇生产潜力.文中研究了该技术中的两个关键因素(通气量和底物浓度)对于K.marxinaus YX01乙醇发酵过程和菊粉酶活性的影响.研究结果表明,底物浓度对乙醇得率影响不大,底物浓度为250 g/L时,发酵终点乙醇浓度为84.74 g/L,但乙醇得率由低浓度50 g/L的86.4%(理论值),降为84.7%.通气能够加速K.marxinaus YX01的乙醇发酵过程,

  10. The development and microbiology of bioprocesses for the production of hydrogen and ethanol by dark fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Koskinen, P.

    2008-07-01

    This work investigated the production of hydrogen and ethanol from carbohydrates by bacterial dark fermentation. Meso and thermophilic fermenters were enriched from the environment, and their H{sub 2} and/or ethanol production in batch determined. Continuous biofilm, suspended-cell and granular-cell processes for H{sub 2} or ethanol+H{sub 2} production from glucose were developed and studied. Dynamics of microbial communities in processes were determined based on the 16S rRNA gene sequence analyses. Mesophilic enrichment, obtained from anaerobic digester sludge, produced 1.24 mol-H{sub 2} mol-glucose-1 in batch assays. Hydrogen production by the enrichment in a mesophilic fluidized-bed bioreactor (FBR) was found to be unstable - prompt onset of H{sub 2} production along with butyrate-acetate was followed by rapid decrease and cease associated with propionate-acetate production. Intermittent batch (semi-continuous) operation allowed a momentary recovery of H{sub 2} production in the FBR. The highest H{sub 2} production rate (HPR) observed in FBR was 28.8 mmol h-1 L-1, which corresponded to a relatively high hydrogen yield (HY) of 1.90 mol-H{sub 2} mol-glucose-1. Mesophilic, completely-mixed column reactor (CMCR), with a similar inoculum and feed as used in the FBR, provided a prolonged H{sub 2} production for 5 months. Highest HPR observed in the CMCR was 18.8 mmol h-1 L-1 (HY of 1.70 mol-H{sub 2} mol-glucose-1), while it in general remained between 1 and 6 mmol h-1 L-1. Hydrogen production in the CMCR was decreased by shifts in microbial community metabolism from initial butyrate-acetate metabolism, first to ethanol-acetate, followed by acetate-dominated metabolism, and finally to propionate-acetate metabolism, which ceased H{sub 2} production. The transitions of dominant metabolisms were successfully detected and visualized by self-organizing maps (SOMs). Developed Clustering hybrid regression (CHR) model, performed well in modeling the HPR based on the data on

  11. Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor

    Science.gov (United States)

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Li, Xu-Dong

    2015-01-01

    Large volumes of untreated palm oil mill effluent (POME) pose threat to aquatic environment due to the presence of very high organic content. The present investigation involved two pilot-scale anaerobic expanded granular sludge bed (EGSB) reactors, continuously operated for 1 year to treat POME. Setting HRT at 9.8 d, the anaerobic EGSB reactors reduced COD from 71179 mg/L to 12341 mg/L and recycled half of sludge by a dissolved air flotation (DAF). The average effluent COD was 3587 mg/L with the consistent COD removal efficiency of 94.89%. Adding cationic polymer (PAM) dose of 30 mg/L to DAF unit and recycling its half of sludge caused granulation of anaerobic sludge. Bacilli and small coccid bacteria were the dominant microbial species of the reactor. The reactor produced 27.65 m3 of biogas per m3 of POME which was utilized for electricity generation. PMID:26167485

  12. Ammonia disinfection of corn grains intended for ethanol fermentation

    Directory of Open Access Journals (Sweden)

    Magdalena Broda

    2009-12-01

    Full Text Available Background. Bacterial contamination is an ongoing problem for commercial bioethanol plants. It concerns factories using grain and also other raw materials for ethanol fermentation. Bacteria compete with precious yeasts for sugar substrates and micronutrients, secrete lactic and acetic acids, which are toxic for yeast and this competition leads to significant decrease of bioethanol productivity. For this study, bacterial contamination of corn grain was examined. Then the grain was treated by ammonia solution to reduce microbial pollution and after that the microbiological purity of grain was tested one more time. Disinfected and non-disinfected corn grains were ground and fermentation process was performed. Microbiological purity of this process and ethanol yield was checked out. Material and methods. The grain was disinfected by ammonia solution for two weeks. Then the grain was milled and used as a raw material for the ethanol fermentation. The fermentation process was carried out in 500-ml Erlenmeyer flasks. Samples were withdrawn for analysis at 0, 24, 48, 72 hrs. The number of total viable bacteria, lactic acid bacteria, acetic acid bacteria, anaerobic bacteria and the quantity of yeasts and moulds were signified by plate method. Results. Ammonia solution effectively reduces bacterial contamination of corn grain. Mash from grain disinfected by ammonia contains less undesirable microorganisms than mash from crude grain. Moreover, ethanol yield from disinfected grain is at the highest level. Conclusions. The ammonia solution proved to be a good disinfection agent for grain used as a raw material for bioethanol fermentation process.

  13. Ensilage and bioconversion of grape pomace into fuel ethanol.

    Science.gov (United States)

    Zheng, Yi; Lee, Christopher; Yu, Chaowei; Cheng, Yu-Shen; Simmons, Christopher W; Zhang, Ruihong; Jenkins, Bryan M; VanderGheynst, Jean S

    2012-11-07

    Two types of grape pomace were ensiled with eight strains of lactic acid bacteria (LAB). Both fresh grape pomace (FrGP) and fermented grape pomace (FeGP) were preserved through alcoholic fermentation but not malolactic conversion. Water leaching prior to storage was used to reduce water-soluble carbohydrates and ethanol from FrGP and FeGP, respectively, to increase malolactic conversion. Leached FeGP had spoilage after 28 days of ensilage, whereas FrGP was preserved. Dilute acid pretreatment was examined for increasing the conversion of pomace to ethanol via Escherichia coli KO11 fermentation. Dilute acid pretreatment doubled the ethanol yield from FeGP, but it did not improve the ethanol yield from FrGP. The ethanol yields from raw pomace were nearly double the yields from the ensiled pomace. For this reason, the recovery of ethanol produced during winemaking from FeGP and ethanol produced during storage of FrGP is critical for the economical conversion of grape pomace to biofuel.

  14. Which is a better transportation fuel – butanol or ethanol ?

    Directory of Open Access Journals (Sweden)

    Kenneth R. Szulczyk

    2010-05-01

    Full Text Available This article examines butanol and ethanol as transportation fuels for gasoline-powered engines. This paper examines two aspects. First, the fuel properties of butanol and ethanol are examined and compared to each other. Consequently, butanol overcomes three deficiencies of ethanol. Butanol has a higher energy content, butanol-gasoline blends do not separate in the presence of water, and butanol can be blended with gasoline in any percentage, all the way up to 100%. Second, a review of the fermentation technology is examined for both butanol and ethanol production. Both butanol and ethanol can be fermented from the same feedstocks, which include the sugar and starch crops and lignocellulosic fermentation from wood and crop residues, and fast-growing energy crops like hybrid poplar, switchgrass, and willow. Furthermore, the capital and facilities used to produce ethanol can be switched to butanol fermentation with minimal costs. Thus, society is able to transition away from ethanol and begin to produce butanol with minimal capital and infrastructure costs. Unfortunately, the main drawback to butanol fermentation is its low chemical yield. Until researchers discover or engineer new microorganisms that handle higher butanol concentrations, butanol may not be adapted as an alternative fuel.

  15. Hydrogen production from glucose by anaerobes.

    Science.gov (United States)

    Ogino, Hiroyasu; Miura, Takashi; Ishimi, Kosaku; Seki, Minoru; Yoshida, Hiroyuki

    2005-01-01

    Various anaerobes were cultivated in media containing glucose. When 100 mL of thioglycollate medium containing 2.0% (w/v) glucose was used, Clostridium butyricum ATCC 859, NBRC 3315, and NBRC 13949 evolved 227-243 mL of biogas containing about 180 mL of hydrogen in 1 day. Although some strains had some resistance against oxygen, C. butyricum ATCC 859 and 860 did not have it. C. butyricum NBRC 3315 and Enterobacter aerogenes NBRC 13534 produced hydrogen in the presence of glucose or pyruvic acid, and E. aerogenes NBRC 13534 produced hydrogen by not only glucose and pyruvic acid but also dextrin, sucrose, maltose, galactose, fructose, mannose, and mannitol. When a medium containing 0.5% (w/v) yeast extract and 2.0% (w/v) glucose was used, E. aerogenes NBRC 13534 evolved more biogas and hydrogen than C. butyricum NBRC 3315 in the absence of reducing agent.

  16. Combined process for ethanol fermentation at high-solids loading and biogas digestion from unwashed steam-exploded corn stover.

    Science.gov (United States)

    Wang, Zhen; Lv, Zhe; Du, Jiliang; Mo, Chunling; Yang, Xiushan; Tian, Shen

    2014-08-01

    A combined process was designed for the co-production of ethanol and methane from unwashed steam-exploded corn stover. A terminal ethanol titer of 69.8 g/kg mass weight (72.5%) was achieved when the fed-batch mode was performed at a final solids loading of 35.5% (w/w) dry matter (DM) content. The whole stillage from high-solids ethanol fermentation was directly transferred in a 3-L anaerobic digester. During 52-day single-stage digester operation, the methane productivity was 320 mL CH₄/g volatile solids (VS) with a maximum VS reduction efficiency of 55.3%. The calculated overall product yield was 197 g ethanol + 96 g methane/kg corn stover. This indicated that the combined process was able to improve overall content utilization and extract a greater yield of lignocellulosic biomass compared to ethanol fermentation alone.

  17. Horse manure as feedstock for anaerobic digestion.

    Science.gov (United States)

    Hadin, Sa; Eriksson, Ola

    2016-10-01

    Horse keeping is of great economic, social and environmental benefit for society, but causes environmental impacts throughout the whole chain from feed production to manure treatment. According to national statistics, the number of horses in Sweden is continually increasing and is currently approximately 360,000. This in turn leads to increasing amounts of horse manure that have to be managed and treated. Current practices could cause local and global environmental impacts due to poor performance or lack of proper management. Horse manure with its content of nutrients and organic material can however contribute to fertilisation of arable land and recovery of renewable energy following anaerobic digestion. At present anaerobic digestion of horse manure is not a common treatment. In this paper the potential for producing biogas and biofertiliser from horse manure is analysed based on a thorough literature review in combination with mathematical modelling and simulations. Anaerobic digestion was chosen as it has a high degree of resource conservation, both in terms of energy (biogas) and nutrients (digestate). Important factors regarding manure characteristics and operating factors in the biogas plant are identified. Two crucial factors are the type and amount of bedding material used, which has strong implications for feedstock characteristics, and the type of digestion method applied (dry or wet process). Straw and waste paper are identified as the best materials in an energy point of view. While the specific methane yield decreases with a high amount of bedding, the bedding material still makes a positive contribution to the energy balance. Thermophilic digestion increases the methane generation rate and yield, compared with mesophilic digestion, but the total effect is negligible.

  18. Ethanol production from biomass: technology and commercialization status.

    Science.gov (United States)

    Mielenz, J R

    2001-06-01

    Owing to technical improvements in the processes used to produce ethanol from biomass, construction of at least two waste-to-ethanol production plants in the United States is expected to start this year. Although there are a number of robust fermentation microorganisms available, initial pretreatment of the biomass and costly cellulase enzymes remain critical targets for process and cost improvements. A highly efficient, very low-acid pretreatment process is approaching pilot testing, while research on cellulases for ethanol production is expanding at both enzyme and organism level.

  19. Production of ethanol from cellulose using Clostridum thermocellum

    Energy Technology Data Exchange (ETDEWEB)

    Zertuche, L.; Zall, R.R.

    1982-01-01

    Clostridium thermocellum was used to produce ethanol from cellulose in a continuous system. Batch fermentations were first performed to observe the effects of buffers and agitation on generation time and ethanol production. Continuous fermentations were carried out at 60/sup 0/C and pH 7 using pure cellulose as the limiting substrate. The maximum ethanol concentrations produced with 1.5 and 3% cellulose fermenting liquid were 0.3 and 0.9% respectively. The yield of ethanol was about 0.3 grams per gram of cellulose consumed. While the continuous fermentaion of cellulose with Clostridium thermocellum appears to be feasible, it may not be economically promising due to the slow growth of the organism.

  20. Sustainability of grape-ethanol energy chain

    Directory of Open Access Journals (Sweden)

    G. Riva

    2013-09-01

    Full Text Available The aim of this work is to evaluate the sustainability, in terms of greenhouse gases emission saving, of a new potential bio-ethanol production chain in comparison with the most common ones. The innovation consists of producing bio-ethanol from different types of no-food grapes, while usually bio-ethanol is obtained from matrices taken away from crop for food destination: sugar cane, corn, wheat, sugar beet. In the past, breeding programs were conducted with the aim of improving grapevine characteristics, a large number of hybrid vine varieties were produced and are nowadays present in the CRA-VIT (Viticulture Research Centre Germplasm Collection. Some of them are potentially interesting for bio-energy production because of their high production of sugar, good resistance to diseases, and ability to grow in marginal lands. LCA (Life Cycle Assessment of grape ethanol energy chain was performed following two different methods: (i using the spreadsheet “BioGrace, developed within the “Intelligent Energy Europe” program to support and to ease the RED (Directive 2009/28/EC implementation; (ii using a dedicated LCA software. Emissions were expressed in CO2 equivalent (CO2eq. The results showed that the sustainability limits provided by the normative are respected to this day. On the contrary, from 2017 this production will be sustainable only if the transformation processes will be performed using renewable sources of energy. The comparison with other bioenergy chains points out that the production of ethanol using grapes represents an intermediate situation in terms of general emissions among the different production chains.

  1. Granular starch hydrolysis for fuel ethanol production

    Science.gov (United States)

    Wang, Ping

    Granular starch hydrolyzing enzymes (GSHE) convert starch into fermentable sugars at low temperatures (≤48°C). Use of GSHE in dry grind process can eliminate high temperature requirements during cooking and liquefaction (≥90°C). In this study, GSHE was compared with two combinations of commercial alpha-amylase and glucoamylase (DG1 and DG2, respectively). All three enzyme treatments resulted in comparable ethanol concentrations (between 14.1 to 14.2% v/v at 72 hr), ethanol conversion efficiencies and ethanol and DDGS yields. Sugar profiles for the GSHE treatment were different from DG1 and DG2 treatments, especially for glucose. During simultaneous saccharification and fermentation (SSF), the highest glucose concentration for the GSHE treatment was 7% (w/v); for DG1 and DG2 treatments, maximum glucose concentration was 19% (w/v). GSHE was used in one of the fractionation technologies (enzymatic dry grind) to improve recovery of germ and pericarp fiber prior to fermentation. The enzymatic dry grind process with GSHE was compared with the conventional dry grind process using GSHE with the same process parameters of dry solids content, pH, temperature, time, enzyme and yeast usages. Ethanol concentration (at 72 hr) of the enzymatic process was 15.5% (v/v), which was 9.2% higher than the conventional process (14.2% v/v). Distillers dried grains with solubles (DDGS) generated from the enzymatic process (9.8% db) was 66% less than conventional process (28.3% db). Three additional coproducts, germ 8.0% (db), pericarp fiber 7.7% (db) and endosperm fiber 5.2% (db) were produced. Costs and amounts of GSHE used is an important factor affecting dry grind process economics. Proteases can weaken protein matrix to aid starch release and may reduce GSHE doses. Proteases also can hydrolyze protein into free amino nitrogen (FAN), which can be used as a yeast nutrient during fermentation. Two types of proteases, exoprotease and endoprotease, were studied; protease and urea

  2. Potential for anaerobic conversion of xenobiotics

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Dolfing, J.; Haagensen, Frank;

    2003-01-01

    This review covers the latest research on the anaerobic biodegradation of aromatic xenobiotic compounds, with emphasis on surfactants, polycyclic aromatic hydrocarbons, phthalate esters, polychlorinated biphenyls, halogenated phenols, and pesticides. The versatility of anaerobic reactor systems...

  3. RISK FACTORS IN NEONATAL ANAEROBIC INFECTIONS

    Directory of Open Access Journals (Sweden)

    M. S. Tabib

    2008-06-01

    Full Text Available Anaerobic bacteria are well known causes of sepsis in adults but there are few studies regarding their role in neonatal sepsis. In an attempt to define the incidence of neonatal anaerobic infections a prospective study was performed during one year period. A total number of 400 neonates under sepsis study were entered this investigation. Anaerobic as well as aerobic cultures were sent. The patients were subjected to comparison in two groups: anaerobic culture positive and anaerobic culture negative and this comparison were analyzed statistically. There were 7 neonates with positive anaerobic culture and 35 neonates with positive aerobic culture. A significant statistical relationship was found between anaerobic infections and abdominal distention and pneumonia. It is recommended for those neonates with abdominal distention and pneumonia refractory to antibiotic treatment to be started on antibiotics with anaerobic coverage.

  4. Effect of acetic acid in recycling water on ethanol production for cassava in an integrated ethanol-methane fermentation process.

    Science.gov (United States)

    Yang, Xinchao; Wang, Ke; Zhang, Jianhua; Tang, Lei; Mao, Zhonggui

    2016-11-01

    Recently, the integrated ethanol-methane fermentation process has been studied to prevent wastewater pollution. However, when the anaerobic digestion reaction runs poorly, acetic acid will accumulate in the recycling water. In this paper, we studied the effect of low concentration of acetic acid (≤25 mM) on ethanol fermentation at different initial pH values (4.2, 5.2 or 6.2). At an initial pH of 4.2, ethanol yields increased by 3.0% and glycerol yields decreased by 33.6% as the acetic acid concentration was increased from 0 to 25 mM. Raising the concentration of acetic acid to 25 mM increased the buffering capacity of the medium without obvious effects on biomass production in the cassava medium. Acetic acid was metabolized by Saccharomyces cerevisiae for the reason that the final concentration of acetic acid was 38.17% lower than initial concentration at pH 5.2 when 25 mM acetic acid was added. These results confirmed that a low concentration of acetic acid in the process stimulated ethanol fermentation. Thus, reducing the acetic acid concentration to a controlled low level is more advantageous than completely removing it.

  5. Ethanol Sensitization during Adolescence or Adulthood Induces Different Patterns of Ethanol Consumption without Affecting Ethanol Metabolism

    Science.gov (United States)

    Carrara-Nascimento, Priscila F.; Hoffmann, Lucas B.; Contó, Marcos B.; Marcourakis, Tania; Camarini, Rosana

    2017-01-01

    In previous study, we demonstrated that ethanol preexposure may increase ethanol consumption in both adolescent and adult mice, in a two-bottle choice model. We now questioned if ethanol exposure during adolescence results in changes of consumption pattern using a three-bottle choice procedure, considering drinking-in-the-dark and alcohol deprivation effect as strategies for ethanol consumption escalation. We also analyzed aldehyde dehydrogenase (ALDH) activity as a measurement of ethanol metabolism. Adolescent and adult Swiss mice were treated with saline (SAL) or 2.0 g/kg ethanol (EtOH) during 15 days (groups: Adolescent-SAL, Adolescent-EtOH, Adult-SAL and Adult-EtOH). Five days after the last injection, mice were exposed to the three-bottle choice protocol using sucrose fading procedure (4% + sucrose vs. 8%–15% ethanol + sucrose vs. water + sucrose) for 2 h during the dark phase. Sucrose was faded out from 8% to 0%. The protocol was composed of a 6-week acquisition period, followed by four withdrawals and reexposures. Both adolescent and adult mice exhibited ethanol behavioral sensitization, although the magnitude of sensitization in adolescents was lower than in adults. Adolescent-EtOH displayed an escalation of 4% ethanol consumption during acquisition that was not observed in Adult-EtOH. Moreover, Adult-EtOH consumed less 4% ethanol throughout all the experiment and less 15% ethanol in the last reexposure period than Adolescent-EtOH. ALDH activity varied with age, in which older mice showed higher ALDH than younger ones. Ethanol pretreatment or the pattern of consumption did not have influence on ALDH activity. Our data suggest that ethanol pretreatment during adolescence but not adulthood may influence the pattern of ethanol consumption toward an escalation in ethanol consumption at low dose, without exerting an impact on ALDH activity.

  6. Prolonged Increase in the Sensitivity of the Posterior Ventral Tegmental Area to the Reinforcing Effects of Ethanol following Repeated Exposure to Cycles of Ethanol Access and Deprivation

    OpenAIRE

    Rodd, Zachary A.; Bell, Richard L.; McQueen, Victoria K.; Davids, Michelle R.; Hsu, Cathleen C.; Murphy, James M.; Li, Ting-Kai; Lumeng, Lawrence; McBride, William J.

    2005-01-01

    The posterior ventral tegmental area (VTA) is a neuroanatomical substrate mediating the reinforcing effects of ethanol in rats. Repeated alcohol deprivations produce robust ethanol intakes of alcohol-preferring (P) rats during relapse and increase the reinforcing effects of oral alcohol self-administration. The objective of this study was to test the hypothesis that alcohol drinking and repeated alcohol deprivations will increase the reinforcing effects of ethanol within the posterior VTA of ...

  7. Innovative production technology ethanol from sweet sorghum

    Science.gov (United States)

    Kashapov, N. F.; Nafikov, M. M.; Gazetdinov, M. X.; Nafikova, M. M.; Nigmatzyanov, A. R.

    2016-06-01

    The paper considers the technological aspects of production of ethanol from nontraditional for Russian Federation crops - sweet sorghum. Presents the technological scheme of alcohol production and fuel pellets from sweet sorghum. Special attention is paid to assessing the efficiency of alcohol production from sweet sorghum. The described advantage of sugar content in stem juice of sweet sorghum compared with other raw materials. Allegedly, the use of the technology for producing alcohol from sweet sorghum allows to save resources.

  8. Arsenic, Anaerobes, and Astrobiology

    Science.gov (United States)

    Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

    2013-12-01

    Arsenic is an element best known for its highly poisonous nature, so it is not something one would associate with being a well-spring for life. Yet discoveries made over the past two decades have delineated that not only are some microbes resistant to arsenic, but that this element's primary redox states can be exploited to conserve energy and support prokaryotic growth ('arsenotrophy') in the absence of oxygen. Hence, arsenite [As(III)] can serve as an electron donor for chemo- or photo-autotrophy while arsenate [As(V)] will serve as an electron acceptor for chemo-heterotrophs and chemo-autotrophs. The phylogenetic diversity of these microbes is broad, encompassing many individual species from diverse taxonomic groups in the Domain Bacteria, with fewer representatives in the Domain Archaea. Speculation with regard to the evolutionary origins of the key functional genes in anaerobic arsenic transformations (arrA and arxA) and aerobic oxidation (aioB) has led to a disputation as to which gene and function is the most ancient and whether arsenic metabolism extended back into the Archaean. Regardless of its origin, robust arsenic metabolism has been documented in extreme environments that are rich in their arsenic content, such as hot springs and especially hypersaline soda lakes associated with volcanic regions. Searles Lake, CA is an extreme, salt-saturated end member where vigorous arsenic metabolism occurs, but there is no detectable sulfate-reduction or methanogenesis. The latter processes are too weak bio-energetically to survive as compared with arsenotrophy, and are also highly sensitive to the abundance of borate ions present in these locales. These observations have implications with respect to the search for microbial life elsewhere in the Solar System where volcanic-like processes have been operative. Hence, because of the likelihood of encountering dense brines in the regolith of Mars (formed by evapo-concentration) or beneath the ice layers of Europa

  9. Water Footprints of Cassava- and Molasses-Based Ethanol Production in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Mangmeechai, Aweewan, E-mail: aweewan.m@nida.ac.th [National Institute of Development Administration, International College (Major in Public Policy and Management) (Thailand); Pavasant, Prasert [Chulalongkorn University, Department of Chemical Engineering, Faculty of Engineering (Thailand)

    2013-12-15

    The Thai government has been promoting renewable energy as well as stimulating the consumption of its products. Replacing transport fuels with bioethanol will require substantial amounts of water and enhance water competition locally. This study shows that the water footprint (WF) of molasses-based ethanol is less than that of cassava-based ethanol. The WF of molasses-based ethanol is estimated to be in the range of 1,510-1,990 L water/L ethanol, while that of cassava-based ethanol is estimated at 2,300-2,820 L water/L ethanol. Approximately 99% of the water in each of these WFs is used to cultivate crops. Ethanol production requires not only substantial amounts of water but also government interventions because it is not cost competitive. In Thailand, the government has exploited several strategies to lower ethanol prices such as oil tax exemptions for consumers, cost compensation for ethanol producers, and crop price assurances for farmers. For the renewable energy policy to succeed in the long run, the government may want to consider promoting molasses-based ethanol production as well as irrigation system improvements and sugarcane yield-enhancing practices, since molasses-based ethanol is more favorable than cassava-based ethanol in terms of its water consumption, chemical fertilizer use, and production costs.

  10. Protease increases fermentation rate and ethanol yield in dry-grind ethanol production.

    Science.gov (United States)

    Johnston, David B; McAloon, Andrew J

    2014-02-01

    The effects of acid protease and urea addition during the fermentation step were evaluated. The fermentations were also tested with and without the addition of urea to determine if protease altered the nitrogen requirements of the yeast. Results show that the addition of the protease had a statistically significant effect on the fermentation rate and yield. Fermentation rates and yields were improved with the addition of the protease over the corresponding controls without protease. Protease addition either with or with added urea resulted in a higher final ethanol yield than without the protease addition. Urea addition levels >1200 ppm of supplemental nitrogen inhibited ethanol production. The economic effects of the protease addition were evaluated by using process engineering and economic models developed at the Eastern Regional Research Center. The decrease in overall processing costs from protease addition was as high as $0.01/L (4 ¢/gal) of denatured ethanol produced.

  11. Anaerobic biodegradation of spent sulphite liquor in a UASB reactor

    DEFF Research Database (Denmark)

    Jantsch, T.G.; Angelidaki, Irini; Schmidt, Jens Ejbye

    2002-01-01

    Anaerobic biodegradation of fermented spent sulphite liquor, SSL, which is produced during the manufacture of sulphite pulp, was investigated. SSL contains a high concentration of lignin products in addition to hemicellulose and has a very high COD load (173 g COD l1). Batch experiments with dilu......Anaerobic biodegradation of fermented spent sulphite liquor, SSL, which is produced during the manufacture of sulphite pulp, was investigated. SSL contains a high concentration of lignin products in addition to hemicellulose and has a very high COD load (173 g COD l1). Batch experiments...... such as incineration. Although the total COD reduction achieved is limited, bioenergy is produced and readily biodegradable matter is removed causing less load on post-treatment installations. 2002 Elsevier Science Ltd. All rights reserved....

  12. Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from Obsidian Pool, Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton-Brehm, Scott [ORNL; Elkins, James G [ORNL; Phelps, Tommy Joe [ORNL; Keller, Martin [ORNL; Carroll, Sue L [ORNL; Allman, Steve L [ORNL; Podar, Mircea [ORNL; Mosher, Jennifer J [ORNL; Vishnivetskaya, Tatiana A [ORNL

    2010-01-01

    A novel, obligately anaerobic, extremely thermophilic, cellulolytic bacterium, designated OB47T, was isolated from Obsidian Pool, Yellowstone National Park, WY, USA. The isolate was a non-motile, non-spore forming, Gram-positive rod approximately 2 m long by 0.2 m wide and grew at temperatures between 55-85oC with the optimum at 78oC. The pH range for growth was 6.0-8.0 with values of near 7.0 being optimal. Growth on cellobiose produced the fastest specific growth rates at 0.75 hr-1. The organism also displayed fermentative growth on glucose, maltose, arabinose, fructose, starch, lactose, mannose, sucrose, galactose, xylose, arabinogalactan, Avicel, xylan, filter paper, processed cardboard, pectin, dilute acid-pretreated switchgrass and Populus. OB47T was unable to grow on mannitol, fucose, lignin, Gelrite, acetate, glycerol, ribose, sorbital, carboxymethylcellulose and casein. Yeast extract stimulated growth and thiosulfate, sulfate, nitrate, and sulfur were not reduced. Fermentation end products were mainly acetate, H2, and CO2 although lactate and ethanol were produced in 5 l batch fermentations. The G+C content of the DNA was 35 mol% and sequence analysis of the small subunit ribosomal RNA gene placed OB47T within the genus Caldicellulosiruptor. Based on its phylogenetic and phenotypic properties, the isolate is proposed to be designated Caldicellulosiruptor obsidiansis sp. nov. and OB47T is the type stain (ATCC = ____, JCM = ____).

  13. Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta

    NARCIS (Netherlands)

    Okamoto, Kenji; Nitta, Yasuyuki; Maekawa, Nitaro; Yanase, Hideshi

    2011-01-01

    The white rot fungus Trametes hirsuta produced ethanol from a variety of hexoses: glucose, mannose, cellobiose and maltose, with yields of 0.49. 0.48, 0.47 and 0.47 g/g of ethanol per sugar utilized, respectively. In addition, this fungus showed relatively favorable xylose consumption and ethanol pr

  14. Potential application of anaerobic extremophiles for hydrogen production

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-11-01

    In processes of the substrate fermentation most anaerobes produce molecular hydrogen as a waste end product, which often controls the culture growth as an inhibitor. Usually in nature the hydrogen is easily removed from an ecosystem, due to its physical features, and an immediate consumption by the secondary anaerobes that sometimes behave as competitors for electron donors; a classical example of this kind of substrate competition in anaerobic microbial communities is the interaction between methanogens and sulfate- or sulfur-reducers. Previously, on the mixed cultures of anaerobes at neutral pH, it was demonstrated that bacterial hydrogen production could provide a good alternative energy source. At neutral pH the original cultures could easily contaminated by methanogens, and the most unpleasant side effect of these conditions is the development of pathogenic bacteria. In both cases the rate of hydrogen production was dramatically decreased since some part of the hydrogen was transformed to methane, and furthermore, the cultivation with pathogenic contaminants on an industrial scale would create an unsafe situation. In our laboratory the experiments with obligately alkaliphilic bacteria producing hydrogen as an end metabolic product were performed at different conditions. The mesophilic, haloalkaliphilic and obligately anaerobic bacterium Spirochaeta americana ASpG1T was studied and various cultivation regimes were compared for the most effective hydrogen production. In a highly mineralized media with pH 9.5-10.0 not many known methanogens are capable of growth, and the probability of developing pathogenic contaminants is theoretically is close to zero (in medicine carbonate- saturated solutions are applied as antiseptics). Therefore the cultivation of alkaliphilic hydrogen producing bacteria could be considered as a safe and economical process for large-scale industrial bio-hydrogen production in the future. Here we present and discuss the experimental data

  15. 21 CFR 866.2120 - Anaerobic chamber.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber. (a) Identification. An anaerobic chamber is a device intended for medical purposes to maintain an anaerobic...

  16. The phenomenon of granulation of anaerobic sludge.

    NARCIS (Netherlands)

    Hulshoff Pol, L.W.

    1989-01-01

    Successful high-rate anaerobic wastewater treatment can only be accomplished when the slowgrowing anaerobic biomass is efficiently held back in the anaerobic treatment system. This biomass retention can be achieved in various ways including immobilization of the organisms on fixed materials and immo

  17. Effect of crude glycerol-derived inhibitors on ethanol production by Enterobacter aerogenes.

    Science.gov (United States)

    Lee, Sang Jun; Kim, Sung Bong; Kang, Seong Woo; Han, Sung Ok; Park, Chulhwan; Kim, Seung Wook

    2012-01-01

    In this study, ethanol production from pure and crude glycerol using Enterobacter aerogenes ATCC 29007 was evaluated under anaerobic culture conditions. Inhibitory effects of substrate concentrations, pH, and salt concentrations were investigated based on crude glycerol components. Ethanol production was performed with pure glycerol concentrations ranging from 5 to 30 g/L to evaluate the effects of substrate concentration and osmotic pressure. The consumed glycerol was 5-14.33 g/L, and the yield of ethanol was higher than 0.75 mol ethanol/mol glycerol after 24 h of cultivation. To evaluate the inhibitory effects of salts (NaCl and KCl), experiments were performed with 0-20 g/L of each salt. Inhibitory effects of salts were strongest at high salt concentrations. The inhibitory effect of pH was performed in the pH range 4-10, and cell growth and ethanol production were highest at pH 5-6. Also, ethanol production was slightly inhibited at low concentration of crude glycerol comparison with pure glycerol. However, significant inhibitory effects were not observed at 1.5 and 2% crude glycerol which showed higher ethanol production compared to pure glycerol.

  18. Bridging the logistics gap for sustainable ethanol production: the CentroSul ethanol pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Megiolaro, Moacir; Daud, Rodrigo; Pittelli, Fernanda [CentroSul Transportadora Dutoviaria, SP (Brazil); Singer, Eugenio [EMS Consultant, Sao Paulo, SP (Brazil)

    2009-07-01

    The continuous increase of ethanol production and growth in consumption in Brazil is a reality that poses significant logistics challenges both for producers and consumers. The Brazilian local market absorbs a great portion of the country's production of ethanol, but the export market is also experiencing significant expansion so that both local and external market consumption will require more adequate transportation solutions. The alternative routes for Brazilian ethanol exports within the South and Southeast regions of Brazil range from the port of Paranagua, in the state of Parana, to the port of Vitoria, in the state of Espirito Santo. Each of these routes is about 1,000 km distance from the main production areas in the Central South states of Brazil. Brazilian highways and railways systems are overly congested and do not present efficient logistics alternatives for the transportation of large ethanol flows over long distances (cross-country) from the central Midwest regions of the country to the consumer and export markets in the Southeast. In response to the challenge to overcome such logistic gaps, CentroSul Transportadora Dutoviaria 'CentroSul', a company recently founded by a Brazilian ethanol producer group, the Brenco Group, is developing a project for the first fully-dedicated ethanol pipeline to be constructed in Brazil. The ethanol pipeline will transport 3,3 million m{sup 3} of Brenco - Brazilian Renewable Energy Company's ethanol production and an additional 4,7 million cubic meters from other Brazilian producers. The pipeline, as currently projected, will, at its full capacity, displace a daily vehicle fleet equivalent to 500 trucks which would be required to transport the 8,0 million cubic meters from their production origins to the delivery regions. In addition, the project will reduce GHG (trucking) emissions minimizing the project's overall ecological footprint. Key steps including conceptual engineering, environmental

  19. Occurrence of ethylene in anaerobic soil

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.A.; Restall, S.W.F.

    1971-01-01

    The production of ethylene and other hydrocarbon gases by soils under anaerobic conditions was measured by gas chromatography. Ethylene was the only hydrocarbon gas which occurred in physiologically significant concentrations; more than 20 ppm was found in several soils after 10 days at 20/sup 0/C. These concentrations were considerably higher than those which were known to cause severe reductions in the extension of root axes of some plant species. Experiments with sterilized and unsterilized soil indicated that ethylene was produced by enzyme activity and not by chemical action. The gas was found in soil when the oxygen concentration fell below 2%; total evolution was correlated with organic matter content, and was affected by drying and rewetting and by the growth of plant roots. The rate of production was increased by raising the temperature and by addition of glucose or peptone; high concentrations of nitrate depressed the rate, but sulfate and phosphate had little effect. It is concluded that ethylene may be a significant factor in causing injury to crop plants under waterlogged conditions and also in situations where anaerobic pockets occur within a mainly aerobic soil structure, provided that escape of the gas from the soil is impeded sufficiently to allow inhibitory concentrations to build up in the vicinity of plant roots. 31 references, 7 figures, 3 tables.

  20. Electrolysis-enhanced anaerobic digestion of wastewater.

    Science.gov (United States)

    Tartakovsky, B; Mehta, P; Bourque, J-S; Guiot, S R

    2011-05-01

    This study demonstrates enhanced methane production from wastewater in laboratory-scale anaerobic reactors equipped with electrodes for water electrolysis. The electrodes were installed in the reactor sludge bed and a voltage of 2.8-3.5 V was applied resulting in a continuous supply of oxygen and hydrogen. The oxygen created micro-aerobic conditions, which facilitated hydrolysis of synthetic wastewater and reduced the release of hydrogen sulfide to the biogas. A portion of the hydrogen produced electrolytically escaped to the biogas improving its combustion properties, while another part was converted to methane by hydrogenotrophic methanogens, increasing the net methane production. The presence of oxygen in the biogas was minimized by limiting the applied voltage. At a volumetric energy consumption of 0.2-0.3 Wh/L(R), successful treatment of both low and high strength synthetic wastewaters was demonstrated. Methane production was increased by 10-25% and reactor stability was improved in comparison to a conventional anaerobic reactor.

  1. 浮霉菌门严格厌氧产氢细菌(Thermopirellula anaerolimosa)的分离及其生理特性%Isolation and characterization of Thermopirellula anaerolimosa gen.nov., sp.nov., an obligate anaerobic hydrogen-producing bacterium of the phylum Planctomycetes

    Institute of Scientific and Technical Information of China (English)

    刘冬英; 刘奕; 门学慧; 郭群群; 郭荣波; 邱艳玲

    2012-01-01

    [Objective] To cultivate various yet-to-be cultured heterotrophs from anaerobic granule sludge, we used a selective culture medium with low concentrations of substrates supplemented a variety of antibiotics.[Methods] An obligate anaerobic, thermophilic, hydrogen-producing bacterium, strainVM20-7 , was isolated from an upflow anaerobic sludge blanket ( UASB ) reactor treating high-strength organic wastewater from isomerized sugar production processes.[Results] Cells of strain VM20-7T are non-motile, spherical, pear or teardrop shaped, occurring singly°r as aggregates (0.7 -2.0 μm×0.7 -2.0 μm).Spore formation was not observed.Growth temperature ranges from 35 - 50℃ ( optimum 45℃ ), pH ranges from 6.0 - 8.3 ( optimum 7.0 - 7.5 ) , NaCl tolerant concentration ranges from 0% -0.5% ( w/v, optimum 0% ).Nitrate, sulfate, thiosulfate, sulfite, elemental sulfur and Fe (Ⅲ) -NTA were not used as terminal electron acceptors.Strain VM20-7 utilizes a wide range of carbohydrates, including glucose, maltose, ribose, xylose, sucrose, galactose, mannose, raffinose, pectin, yeast extract and xylan.Acetate and H2 are the main end products of glucose fermentation.The G + C content of the genomic DNA was 60.9 mol% .16S rRNA gene sequence analysis revealed that it is related to the Pirellula-Rhodopirellula-Blastopirellula (PRB) clade within the order Planctomycetales (82.7 -84.3% similarity with 16S rRNA genes of other known related species).[Conclusion] The first obligate anaerobic bacterium within the phylum Planctomycetes was isolated with low concentration of carbohydrates and antibiotics.On the basis of the physiological and phylogenetic data, the name Thermopirellula anaerolimosa gen.nov., sp.nov.is proposed for strain VM20-7T( =CGMCC 1.5169T = JCM 17478T = DSM24165T).%[目的]厌氧颗粒污泥中含有大量未知微生物资源,利用低浓度底物及添加抗生素的培养基进行厌氧发酵细菌的筛选,并对分离菌株进行生理生化特性研究.[方法]

  2. Life cycle cost of ethanol production from cassava in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Sorapipatana, Chumnong; Yoosin, Suthamma [Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Pracha-Uthit Rd., Tungkru, Bangmod, Bangkok 10140 (Thailand); Center for Energy Technology and Environment, Commission on Higher Education, Ministry of Education, Bangkok (Thailand)

    2011-02-15

    To increase the security of energy supply, lessen dependence on crude oil import and buffer against the impacts of large change in crude oil prices, the Thai government initiated and officially announced the national ethanol fuel program in year 2000. Since then, domestic ethanol demand has grown rapidly. Presently, all commercial ethanol in Thailand is produced from molasses as Thai law prohibits producing it from sugar cane directly. This is likely to limit ethanol supply in the near future. One possible solution is to supply more ethanol from cassava which is widely cultivated in this country. However, its production cost has not yet been known for certain. The objective of this study is to estimate the life cycle cost of ethanol production from cassava and to assess its economic competitiveness with gasoline in the Thai fuel market. Based on the record of cassava prices during the years 2002-2005, it was found that using it as feedstock would share more than 50% of the ethanol from cassava total production cost. It was also found that a bio-ethanol plant, with a capacity of 150,000 l/day, can produce ethanol from cassava in a range of ex-factory costs from 16.42 to 20.83 baht/l of gasoline equivalent (excluding all taxes), with an average cost of 18.15 baht/l of gasoline equivalent (41, 52 and 45 US cents/l gasoline equivalent respectively, based on 2005 exchange rate). In the same years, the range of 95-octane gasoline prices in Thailand varied from 6.18 baht to 20.86 baht/l, with an average price of 11.50 baht/l (15, 52 and 29 US cents/l respectively, based on 2005 exchange rate) which were much cheaper than the costs of ethanol made from cassava. Thus, we conclude that under the scenario of low to normal crude oil price, ethanol from cassava is not competitive with gasoline. The gasoline price has to rise consistently above 18.15 baht (45 US cents)/l before ethanol made from cassava can be commercially competitive with gasoline. (author)

  3. Xylose fermentation to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, J.D.

    1993-01-01

    The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-h have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.

  4. 加药气浮—厌氧水解—悬浮生物滤池工艺处理纺织印染助剂生产废水%COAGULATIVE FLOATAION-ANAEROBIC HYDROLYSIS-SUSPENDED BIOLOGICAL FILTER PROCESS FOR TEXTILE PRINTING AND DYING ADDITIVE PRODUCE WASTEWATER TREATMENT

    Institute of Scientific and Technical Information of China (English)

    谢娟; 章一丹; 徐灏龙; 白俊跃; 彭振华

    2012-01-01

    Textile printing and dying additive produce wastewater was characterized as high concentration of surfactant and emulsifier, ammonia nitrogen, organic amine, refractory compounds, which bad a lot of refractory material and great fluctuation in water quality and quantity. By adjusting tank-coagulative floatation tank-anaerobic hydrolysis tank-suspended biological filter (decarburized zone, nitrosation zone, nitrification zone) -sedimentation tank combined process,when the average influent COD was 4 284 mg/L and NHj-N mass concentration after hydrolytic acidification was 184 mg/L, the average effluent COD was 273 mg/L with COD removal rate of 93.6% and NH3-N concentration was 9.6 mg/L with NH3-N removal rate of 94.8%, the effluent index reached the standard of drainage network.%纺织印染助剂生产废水表面活性剂及乳化剂、氨氮、有机胺和有机物的含量较高,难降解物质多,水质水量波动大,采用调节池-加药气浮池-厌氧水解池-悬浮生物滤池(内分脱碳区、亚硝化区和硝化区)-沉淀池的组合工艺,在进水COD平均为4284mg/L,水解酸化后NH3-N质量浓度平均为184mg/L的情况下,出水COD平均为273mg/L,去除率达到93.6%,出水NH3-N质量浓度平均为9.6mg/L,去除率达到94.8%,达到入管排放标准.

  5. Denatured ethanol release into gasoline residuals, Part 2: Fate and transport

    Science.gov (United States)

    Freitas, Juliana G.; Barker, James F.

    2013-05-01

    When denatured ethanol (E95) is spilled in a site with previous gasoline contamination, it modifies the source distribution (Part 1). But it can also impact the transport and fate of hydrocarbons in the groundwater. Ethanol could cause an increase in dissolved concentrations and more persistent plumes due to cosolvency and decreased hydrocarbon biodegradation rates. To investigate these possibilities, two controlled releases were performed: first of E10 (gasoline with 10% ethanol) and one year later of E95 on top of the gasoline. Groundwater concentrations were monitored above and below the water table in multilevel wells. Soil cores and vapor samples were also collected over a period of approximately 400 days. Surprisingly, ethanol transport was very limited; at wells located 2.3 m downgradient from the mid-point of the release trench, the maximum concentration measured was around 2400 mg/L. After 392 days, only 3% of the ethanol released migrated past 2.3 m, and no ethanol remained in the source. The processes that caused ethanol loss were likely volatilization, aerobic biodegradation in the unsaturated zone, and anaerobic biodegradation. Evidence that biodegradation was significant in the source zone includes increased CO2 concentrations in the vapor and the presence of biodegradation products (acetate concentrations up to 2300 mg/L). The position of the dissolved hydrocarbon plumes was slightly shifted, but the concentrations and mass flux remained within the same range as before the spill, indicating that cosolvency was not significant. Hydrocarbons in the groundwater were significantly biodegraded, with more than 63% of the mass being removed in 7.5 m, even when ethanol was present in the groundwater. The impacts of ethanol on the hydrocarbon transport and fate were minimal, largely due to the separation of ethanol and hydrocarbons in the source (Part 1).

  6. Effects of ethanol on vehicle energy efficiency and implications on ethanol life-cycle greenhouse gas analysis.

    Science.gov (United States)

    Yan, Xiaoyu; Inderwildi, Oliver R; King, David A; Boies, Adam M

    2013-06-01

    Bioethanol is the world's largest-produced alternative to petroleum-derived transportation fuels due to its compatibility within existing spark-ignition engines and its relatively mature production technology. Despite its success, questions remain over the greenhouse gas (GHG) implications of fuel ethanol use with many studies showing significant impacts of differences in land use, feedstock, and refinery operation. While most efforts to quantify life-cycle GHG impacts have focused on the production stage, a few recent studies have acknowledged the effect of ethanol on engine performance and incorporated these effects into the fuel life cycle. These studies have broadly asserted that vehicle efficiency increases with ethanol use to justify reducing the GHG impact of ethanol. These results seem to conflict with the general notion that ethanol decreases the fuel efficiency (or increases the fuel consumption) of vehicles due to the lower volumetric energy content of ethanol when compared to gasoline. Here we argue that due to the increased emphasis on alternative fuels with drastically differing energy densities, vehicle efficiency should be evaluated based on energy rather than volume. When done so, we show that efficiency of existing vehicles can be affected by ethanol content, but these impacts can serve to have both positive and negative effects and are highly uncertain (ranging from -15% to +24%). As a result, uncertainties in the net GHG effect of ethanol, particularly when used in a low-level blend with gasoline, are considerably larger than previously estimated (standard deviations increase by >10% and >200% when used in high and low blends, respectively). Technical options exist to improve vehicle efficiency through smarter use of ethanol though changes to the vehicle fleets and fuel infrastructure would be required. Future biofuel policies should promote synergies between the vehicle and fuel industries in order to maximize the society-wise benefits or

  7. Use of post-harvest sugarcane residue for ethanol production.

    Science.gov (United States)

    Dawson, Letha; Boopathy, Raj

    2007-07-01

    Agricultural residues are produced in large quantities throughout the world. Approximately, 1kg of residue is produced for each kilogram of grains harvested. This ratio of grain/residue translates into an excess of 40 billion ton of crop residue produced each year in the USA. These residues are renewable resources that could be used to produce ethanol and many other value added products. In this study, we demonstrate that the post-harvest sugar cane residue could be used to produce fuel grade ethanol. A chemical pre-treatment process using alkaline peroxide or acid hydrolysis was applied to remove lignin, which acts as physical barrier to cellulolytic enzymes. Yeast Saccharomyces cerevisiae ATCC strain 765 was used in the experiment. The pre-treatment process effectively removed lignin. Ethanol production in the culture sample was monitored using high performance liquid chromatography. The results indicate that ethanol can be made from the sugarcane residue. The fermentation system needs to be optimized further to scale up the process for large-scale production of ethanol from sugar cane residue.

  8. Effect of xylose and nutrients concentration on ethanol production by a newly isolated extreme thermophilic bacterium

    DEFF Research Database (Denmark)

    Tomás, Ana Faria; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2011-01-01

    An extreme thermophilic ethanol-producing strain was isolated from an ethanol high-yielding mixed culture, originally isolated from a hydrogen producing reactor operated at 70 °C. Ethanol yields were assessed with increasing concentrations of xylose, up to 20 g/l. The ability of the strain to grow...... product under most of the conditions tested, including in media lacking vitamins, peptone and yeast extract. The results indicate that this new organism is a promising candidate for the development of a second generation bio-ethanol production process. © IWA Publishing 2011....

  9. Perspectives of Anaerobic Soil Disinfestation

    NARCIS (Netherlands)

    Lamers, J.G.; Runia, W.T.; Molendijk, L.P.G.; Bleeker, P.O.

    2010-01-01

    Biological soil disinfestation is an environmentally friendly method to disinfest soil. From now on we refer to it as anaerobic soil disinfestation (ASD). With ASD a green manure crop (40 t/ha) is homogeneously incorporated into the topsoil (0-30 cm) after which the field is lightly compacted and ir

  10. New techniques for growing anaerobic bacteria: Experiments with Clostridium butyricum and Clostridium acetobutylicum

    Energy Technology Data Exchange (ETDEWEB)

    Adler, H.I.; Crow, W.D.; Hadden, C.T.; Hall, J.; Machanoff, R.

    1983-01-01

    Stable membrane fragments derived from Escherichia coli produce and maintain strict anaerobic conditions when added to liquid or solid bacteriological media. Techniques for growing Clostridium butyricum and Clostridium acetobutylicum in membrane containing media are described. Liquid cultures initiated by very small inocula can be grown in direct contact with air. In solid media, colonies develop rapidly from individual cells even without incubation in anaerobic jars or similar devices. Observations on growth rates, spontaneous mutations, radiation and oxygen sensitivity of anaerobic bacteria have been made using these new techniques.

  11. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye

    2003-01-01

    by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change......-rate anaerobic treatment systems based on anaerobic granular sludge and biofilm are described in this chapter. Emphasis is given to a) the Up-flow Anaerobic Sludge Blanket (UASB) systems, b) the main characteristics of the anaerobic granular sludge, and c) the factors that control the granulation process...

  12. Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum.

    Science.gov (United States)

    Jojima, Toru; Noburyu, Ryoji; Sasaki, Miho; Tajima, Takahisa; Suda, Masako; Yukawa, Hideaki; Inui, Masayuki

    2015-02-01

    Recombinant Corynebacterium glutamicum harboring genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adhB) can produce ethanol under oxygen deprivation. We investigated the effects of elevating the expression levels of glycolytic genes, as well as pdc and adhB, on ethanol production. Overexpression of four glycolytic genes (pgi, pfkA, gapA, and pyk) in C. glutamicum significantly increased the rate of ethanol production. Overexpression of tpi, encoding triosephosphate isomerase, further enhanced productivity. Elevated expression of pdc and adhB increased ethanol yield, but not the rate of production. Fed-batch fermentation using an optimized strain resulted in ethanol production of 119 g/L from 245 g/L glucose with a yield of 95% of the theoretical maximum. Further metabolic engineering, including integration of the genes for xylose and arabinose metabolism, enabled consumption of glucose, xylose, and arabinose, and ethanol production (83 g/L) at a yield of 90 %. This study demonstrated that C. glutamicum has significant potential for the production of cellulosic ethanol.

  13. Biotechnological processes for conversion of corn into ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Bothast, R.J.; Schlicher, M.A. [National Corn-To-Ethanol Research Center, Southern Illinois Univ. Edwardsville, Edwardsville, IL (United States)

    2005-04-01

    Ethanol has been utilized as a fuel source in the United States since the turn of the century. However, it has repeatedly faced significant commercial viability obstacles relative to petroleum. Renewed interest exists in ethanol as a fuel source today owing to its positive impact on rural America, the environment and United States energy security. Today, most fuel ethanol is produced by either the dry grind or the wet mill process. Current technologies allow for 2.5 gallons (wet mill process) to 2.8 gallons (dry grind process) of ethanol (1 gallon = 3.7851) per bushel of corn. Valuable co-products, distillers dried grains with solubles (dry grind) and corn gluten meal and feed (wet mill), are also generated in the production of ethanol. While current supplies are generated from both processes, the majority of the growth in the industry is from dry grind plant construction in rural communities across the corn belt. While fuel ethanol production is an energy-efficient process today, additional research is occurring to improve its long-term economic viability. Three of the most significant areas of research are in the production of hybrids with a higher starch content or a higher extractable starch content, in the conversion of the corn kernel fiber fraction to ethanol, and in the identification and development of new and higher-value co-products. (orig.)

  14. Osmo-, thermo- and ethanol- tolerances of Saccharomyces cerevisiae S1

    Directory of Open Access Journals (Sweden)

    Sandrasegarampillai Balakumar

    2012-03-01

    Full Text Available Saccharomyces cerevisiae S1, which is a locally isolated and improved strain showed viability at 40, 45 and 50ºC and produced ethanol at 40, 43 and 45ºC. When the cells were given heat shock at 45ºC for 30min and grown at 40ºC, 100% viability was observed for 60h, and addition of 200gl-1 ethanol has led to complete cell death at 30h. Heat shock given at 45ºC (for 30min has improved the tolerance to temperature induced ethanol shock leading to 37% viability at 30h. when the cells were subjected to ethanol (200gl-1 for 30 min and osmotic shock (sorbitol 300gl-1, trehalose contents in the cells were increased. The heat shocked cells showed better viability in presence of added ethanol. Soy flour supplementation has improved the viability of S. cerevisiae S1 to 80% in presence of 100gl-1 added ethanol and to 60% in presence of 300gl-1 sorbitol. In presence of sorbitol (200gl-1 and ethanol (50gl-1 at 40ºC, 46% viability was retained by S. cerevisiae S1 at 48h and it was improved to 80% by soy flour supplementation.

  15. Absorption of ethanol by steam-exploded corn stalk.

    Science.gov (United States)

    Fei, Chi; Hongzhang, Chen

    2009-02-01

    The aim of this work is to study the feasibility of using a low-cost biomass absorbent steam-exploded corn stalk (SECS) to absorb ethanol in its production by fermentation. Measurement of many the physical properties of SECS showed its specific surface area was about 214 m(2)/g and it had a good structure for absorption. Some influencing parameters of using SECS to absorb ethanol in water were studied. Second-order and parabolic diffusion equations excellently described the kinetics of absorption for ethanol. Its absorption isotherm was well described by an improved BET equation, indicating that it was a process of polymolecular layer absorption and had phenomena similar to capillary coacervation. Mesh size did not significantly affect absorptivity, but absorbency decreased with temperature. Absorptivity of SECS for ethanol was compared to that of other absorbents: at 30 degrees C and 5% initial ethanol, the absorptivity of SECS for ethanol at 5h was 92 mg/g. When inactivated through use, SECS can continue to be used as an substrate to produce more ethanol, thus avoiding pollution through discarding.

  16. Recombinant host cells and media for ethanol production

    Science.gov (United States)

    Wood, Brent E; Ingram, Lonnie O; Yomano, Lorraine P; York, Sean W

    2014-02-18

    Disclosed are recombinant host cells suitable for degrading an oligosaccharide that have been optimized for growth and production of high yields of ethanol, and methods of making and using these cells. The invention further provides minimal media comprising urea-like compounds for economical production of ethanol by recombinant microorganisms. Recombinant host cells in accordance with the invention are modified by gene mutation to eliminate genes responsible for the production of unwanted products other than ethanol, thereby increasing the yield of ethanol produced from the oligosaccharides, relative to unmutated parent strains. The new and improved strains of recombinant bacteria are capable of superior ethanol productivity and yield when grown under conditions suitable for fermentation in minimal growth media containing inexpensive reagents. Systems optimized for ethanol production combine a selected optimized minimal medium with a recombinant host cell optimized for use in the selected medium. Preferred systems are suitable for efficient ethanol production by simultaneous saccharification and fermentation (SSF) using lignocellulose as an oligosaccharide source. The invention also provides novel isolated polynucleotide sequences, polypeptide sequences, vectors and antibodies.

  17. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes

    Science.gov (United States)

    Megonigal, J. P.; Hines, M. E.; Visscher, P. T.

    2003-12-01

    Life evolved and flourished in the absence of molecular oxygen (O2). As the O2 content of the atmosphere rose to the present level of 21% beginning about two billion years ago, anaerobic metabolism was gradually supplanted by aerobic metabolism. Anaerobic environments have persisted on Earth despite the transformation to an oxidized state because of the combined influence of water and organic matter. Molecular oxygen diffuses about 104 times more slowly through water than air, and organic matter supports a large biotic O2 demand that consumes the supply faster than it is replaced by diffusion. Such conditions exist in wetlands, rivers, estuaries, coastal marine sediments, aquifers, anoxic water columns, sewage digesters, landfills, the intestinal tracts of animals, and the rumen of herbivores. Anaerobic microsites are also embedded in oxic environments such as upland soils and marine water columns. Appreciable rates of aerobic respiration are restricted to areas that are in direct contact with air or those inhabited by organisms that produce O2.Rising atmospheric O2 reduced the global area of anaerobic habitat, but enhanced the overall rate of anaerobic metabolism (at least on an area basis) by increasing the supply of electron donors and acceptors. Organic carbon production increased dramatically, as did oxidized forms of nitrogen, manganese, iron, sulfur, and many other elements. In contemporary anaerobic ecosystems, nearly all of the reducing power is derived from photosynthesis, and most of it eventually returns to O2, the most electronegative electron acceptor that is abundant. This photosynthetically driven redox gradient has been thoroughly exploited by aerobic and anaerobic microorganisms for metabolism. The same is true of hydrothermal vents (Tunnicliffe, 1992) and some deep subsurface environments ( Chapelle et al., 2002), where thermal energy is the ultimate source of the reducing power.Although anaerobic habitats are currently a small fraction of Earth

  18. Enhanced biogas production from anaerobic codigestion of solid waste by sonolysis.

    Science.gov (United States)

    Cesaro, Alessandra; Naddeo, Vincenzo; Amodio, Valeria; Belgiorno, Vincenzo

    2012-05-01

    This paper examines the effectiveness of sonolysis in improving the anaerobic biodegradability of the organic fraction of municipal solid waste coming from mechanical selection, thus enhancing biogas production and energy recovery as well. Methane yield of solid organic material anaerobic digestion is significantly affected by substrate availability that was evaluated, in this investigation, through organic matter solubilisation tests carried out at different conditions of ultrasound treatment. Results show that sonolysis can significantly improve the solubilisation of organic solid waste, thus allowing higher biogas production from anaerobic treatment of sonicated substrates. After 45 days, the biogas produced during anaerobic codigestion tests for the sonicated mixture was 24% higher than untreated one. Therefore, these results can lay the basis for the development of technologies useful to produce high biogas quantities, in order to improve clean energy generation from biowaste.

  19. A Sustainable Ethanol Distillation System

    Directory of Open Access Journals (Sweden)

    Yuelei Yang

    2012-01-01

    Full Text Available The discarded fruit and vegetable waste from the consumer and retailer sectors provide a reliable source for ethanol production. In this paper, an ethanol distillation system has been developed to remove the water contents from the original wash that contains only around 15% of the ethanol. The system has an ethanol production capacity of over 100,000 liters per day. It includes an ethanol condenser, a wash pre-heater, a main exhaust heat exchanger as well as a fractionating column. One unique characteristic of this system is that it utilizes the waste heat rejected from a power plant to vaporize the ethanol, thus it saves a significant amount of energy and at the same time reduces the pollution to the environment.

  20. Metabolomics-based prediction models of yeast strains for screening of metabolites contributing to ethanol stress tolerance

    Science.gov (United States)

    Hashim, Z.; Fukusaki, E.

    2016-06-01

    The increased demand for clean, sustainable and renewable energy resources has driven the development of various microbial systems to produce biofuels. One of such systems is the ethanol-producing yeast. Although yeast produces ethanol naturally using its native pathways, production yield is low and requires improvement for commercial biofuel production. Moreover, ethanol is toxic to yeast and thus ethanol tolerance should be improved to further enhance ethanol production. In this study, we employed metabolomics-based strategy using 30 single-gene deleted yeast strains to construct multivariate models for ethanol tolerance and screen metabolites that relate to ethanol sensitivity/tolerance. The information obtained from this study can be used as an input for strain improvement via metabolic engineering.

  1. Ethanol Production from Waste Potato Mash by Using Saccharomyces Cerevisiae

    Directory of Open Access Journals (Sweden)

    Gulten Izmirlioglu

    2012-10-01

    Full Text Available Bio-ethanol is one of the energy sources that can be produced by renewable sources. Waste potato mash was chosen as a renewable carbon source for ethanol fermentation because it is relatively inexpensive compared with other feedstock considered as food sources. However, a pretreatment process is needed: specifically, liquefaction and saccharification processes are needed to convert starch of potato into fermentable sugars before ethanol fermentation. In this study, hydrolysis of waste potato mash and growth parameters of the ethanol fermentation were optimized to obtain maximum ethanol production. In order to obtain maximum glucose conversions, the relationship among parameters of the liquefaction and saccharification process was investigated by a response surface method. The optimum combination of temperature, dose of enzyme (α-amylase and amount of waste potato mash was 95 °C, 1 mL of enzyme (18.8 mg protein/mL and 4.04 g dry-weight/100 mL DI water, with a 68.86% loss in dry weight for liquefaction. For saccharification, temperature, dose of enzyme and saccharification time were optimized and optimum condition was determined as 60 °C-72 h-0.8 mL (300 Unit/mL of amyloglucosidase combination, yielded 34.9 g/L glucose. After optimization of hydrolysis of the waste potato mash, ethanol fermentation was studied. Effects of pH and inoculum size were evaluated to obtain maximum ethanol. Results showed that pH of 5.5 and 3% inolculum size were optimum pH and inoculum size, respectively for maximum ethanol concentration and production rate. The maximum bio-ethanol production rate was obtained at the optimum conditions of 30.99 g/L ethanol. Since yeast extract is not the most economical nitrogen source, four animal-based substitutes (poultry meal, hull and fines mix, feather meal, and meat and bone meal were evaluated to determine an economical alternative nitrogen source to yeast extract. Poultry meal and feather meal were able to produce 35 g/L and

  2. Bioavailability of ethanol is reduced in several commonly used liquid diets.

    Science.gov (United States)

    de Fiebre, N C; de Fiebre, C M; Booker, T K; Nelson, S; Collins, A C

    1994-01-01

    Liquid diets are often used as a vehicle for chronically treating laboratory animals with ethanol. However, a recent report suggested that one or more components of these diets may bind ethanol which could result in a decrease in the bioavailability of ethanol. Consequently, we compared the blood ethanol concentration vs. time curves obtained following the intragastric (i.g.) administration of ethanol dissolved in water or in one of three liquid diets (Bioserv AIN-76, Sustacal, or Carnation Slender) using the long-sleep (LS) and short-sleep (SS) mouse lines. The initial rates of absorption were generally the same for the water-ethanol and diet-ethanol groups, but the diets generally produced lower peak levels and the areas under the ethanol concentration-time curves were less for all of the liquid diets than for the control, ethanol-water solution. In vitro dialysis experiments indicated that the Bioserv diet binds ethanol in a saturable manner. Therefore, it may be that the slower release of ethanol, which should occur as a result of binding, serves to increase the role of first pass metabolism in regulating ethanol concentrations following oral administration. Because the effects of the diets were seen even after pyrazole treatment, it may be that the lower blood ethanol levels arise because metabolism by gastric ADH, rather than hepatic ADH, is responsible for a major portion of ethanol metabolism as ethanol is slowly released by the diets. If so, the observation that the diet/water differences were uniformly greater in the LS mice may indicate that LS-SS differences in gastric ADH exist.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Endogenous ethanol production in trauma victims associated with medical treatment.

    Science.gov (United States)

    Moriya, F; Hashimoto, Y

    1996-08-01

    Four cases of trauma, where endogenous ethanol production was suspected to have been occurred in association with medical treatment, are reported. To discriminate endogenous ethanol produced de novo by bacteria from exogenous ethanol by drinking, various tissues and body fluids, such as brain and cerebrospinal fluid, together with blood obtained from various locations, were subjected to analysis for both ethanol and n-propanol. The first individual was a 40-year-old man who had been stabbed in the abdomen with a knife and had died of bleeding about 12 h after peritoneotomy, and autopsied 12 h later. In the heart blood, 0.44 mg/g ethanol and 0.005 mg/g n-propanol were detected. Ethanol levels in the cerebrospinal fluid, vitreous humor and brain, reflecting exogenous ethanol levels, were 0.08-0.16 mg/g, and no n-propanol was detected in any of the specimens. The second individual was a 45-year-old man who had been punched hard in the head and face and had died of traumatic shock about 12 h after hospitalization, and autopsied 12 h later. The heart blood concentrations of ethanol and n-propanol were 0.15 and 0.008 mg/g respectively, and a subdural hematoma contained only 0.05 mg/g ethanol and non n-propanol. The third individual was a 34-year-old man who suffered incised wounds of the left arm and head with a sickle and had died of hemorrhagic shock. In the heart blood, 0.30 mg/g ethanol and 0.026 mg/g n-propanol were detected; there was 0.04 mg/g ethanol and no n-propanol in the brain. The fourth individual was a 76-year-old woman who had been hit by a motorcycle and had died of liver rupture about 1 h after admission to a hospital. The heart blood contained 0.22 mg/g ethanol and 0.002 mg/g n-propanol. Only a trace of ethanol and no n-propanol were detected in the pericardial sac fluid and cerebrospinal fluid.

  4. Timeline of bio-hydrogen production by anaerobic digestion of biomass

    OpenAIRE

    Bernadette E. TELEKY; Mugur C. BĂLAN; Nikolausz, Marcell

    2015-01-01

    Anaerobic digestion of biomass is a process capable to produce biohydrogen, a clean source of alternative energy. Lignocellulosic biomass from agricultural waste is considered a renewable energy source; therefore its utilization also contributes to the reduction of water, soil and air pollution. The study consists in five consecutive experiments designed to utilize anaerobic bacterial enrichment cultures originating from the Hungarian Lake, Hévíz. Wheat straw was used as com...

  5. Photochemistry of hypocrellin derivatives under anaerobic conditions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To improve the red absorption and solubility of hypocrellin, we have synthesized a series of hypocrellin B derivatives. The photochemistry of these new compounds in anaerobic media has been investigated by using electronic paramagnetic resonance (EPR) and spectrophotometric methods. The semiquinone anion radicals can be produced by self-electron transfer on irradiation, with the formation efficiency and EPR hyperfine structures of the semiquinone anion radicals dependent on the structures of the derivatives. When an electron donor is present, the electron transfer from electron donor to hypocrellin B derivatives enhanced the production of the corresponding semiquinone anion radical; in addition, the semiquinone anion radical and hydroquinone can be detected spectrophotometrically. Structural modifications exert little effect on the absorption position of semiquinone anion radical and hydroquinone, but influence their formation efficiency significantly.

  6. Conversion of corn milling low-value co-products to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Dien, B.S.; Hespell, R.B.; Bothast, R.J. [Dept. of Agriculture, Peoria, IL (United States); Ingram, L.O. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-31

    Most of the fuel ethanol produced in the United States is derived from corn starch. The ethanol yield can be significantly increased if the hemicellulose fraction of the corn kernel is also fermented. The hemicellulose and cellulose fractions are presently marketed as cattle feed. Conversion of the hemicellulose fraction to ethanol is problematic because, in addition to glucose from the residual starch, hydrolysis of the hemicellulose gives a mixture of pentoses (arabinose and xylose) and traditional industrial yeast do not ferment pentoses. We have evaluated non-traditional recombinant microorganisms for conversion of the hemicellulose fractions into ethanol. The hemicellulose were hydrolyzed with weak acid solutions and resulting sugar mixtures fermented using recombinant Escherichia coli strains K011 and SL40. Results of the fermentation are discussed in terms of volumetric ethanol production rates, ethanol yields, and effect of inhibitors produced during hydrolysis. 4 refs., 7 figs.

  7. A Probabilistic Analysis of the Switchgrass Ethanol Cycle

    Directory of Open Access Journals (Sweden)

    Tadeusz W. Patzek

    2010-09-01

    Full Text Available The switchgrass-driven process for producing ethanol has received much popular attention. However, a realistic analysis of this process indicates three serious limitations: (a If switchgrass planted on 140 million hectares (the entire area of active U.S. cropland were used as feedstock and energy source for ethanol production, the net ethanol yield would replace on average about 20% of today’s gasoline consumption in the U.S. (b Because nonrenewable resources are required to produce ethanol from switchgrass, the incremental gas emissions would be on average 55 million tons of equivalent carbon dioxide per year to replace just 10% of U.S. automotive gasoline. (c In terms of delivering electrical or mechanical power, ethanol from 1 hectare (10,000 m2 of switchgrass is equivalent, on average, to 30 m2 of low-efficiency photovoltaic cells. This analysis suggests that investing toward more efficient and durable solar cells, and batteries, may be more promising than investing in a process to convert switchgrass to ethanol.

  8. [Preparation of ethanol-diesel fuel blends and exhausts emission characteristics in diesel engine].

    Science.gov (United States)

    Zhang, Runduo; He, Hong; Zhang, Changbin; Shi, Xiaoyan

    2003-07-01

    The technology that diesel oil is partly substituted by ethanol can reduce diesel engine exhausts emission, especially fuel soot. This research is concentrated on preparation of ethanol-diesel blend fuel and exhausts emission characteristics using diesel engine bench. Absolute ethanol can dissolve into diesel fuel at an arbitrary ratio. However, a trace of water (0.2%) addition can lead to the phase separation of blends. Organic additive synthesized during this research can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The effects of 10%, 20%, and 30% ethanol-diesel fuel blends on exhausts emission, were compared with that of diesel fuel in direct injection (DI) diesel engine. The optimum ethanol percentage for ethanol-diesel fuel blends was 20%. Using 20% ethanol-diesel fuel blend with 2% additive of the total volume, bench diesel engine showed a large amount decrease of exhaust gas, e.g. 55% of Bosch smoke number, 70% of HC emission, and 45% of CO emission at 13 kW and 1540 r/min. Without the addition of additive, the blend of ethanol produced new organic compounds such as ethanol and acetaldehyde in tail gas. However, the addition of additive obviously reduced the emission of ethanol and acetaldehyde.

  9. Treatment of slaughterhouse wastewater in anaerobic sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Masse, D. I.; Masse, L. [Agriculture and Agri-Food Canada, Lennoxville, PQ (Canada)

    2000-09-01

    Slaughterhouse waste water was treated in anaerobic sequencing batch reactors operated at 30 degrees C. Two of the batch reactors were seeded with anaerobic granular sludge from a milk processing plant reactor; two others received anaerobic non-granulated sludge from a municipal waste water treatment plant. Influent total chemical oxygen demand was reduced by 90 to 96 per cent at organic loading rates rangin