WorldWideScience

Sample records for anaerobic continuously stirred

  1. Kinetics of propionate conversion in anaerobic continuously stirred tank reactors

    DEFF Research Database (Denmark)

    Bangsø Nielsen, Henrik; Mladenovska, Zuzana; Ahring, Birgitte Kiær

    2008-01-01

    The kinetic parameters of anaerobic propionate degradation by biomass from 7 continuously stirred tank reactors differing in temperature, hydraulic retention time and substrate composition were investigated. In substrate-depletion experiments (batch) the maximum propionate degradation rate, A......-m, was estimated. The results demonstrate that the rate of endogenous substrate (propionate) production should be taken into account when estimating kinetic parameters in biomass from manure-based anaerobic reactors.......(max), and the half saturation constant, K-m, were initially estimated by applying the integrated Michaelis-Menten equation. A(max) was in the range from 22.8 to 29.1 mu mol gVS(-1) h(-1) while K-m, was in the range from 0.46-0.95 mM. In general, A(max) gave a good reflection of the reactor performances. Secondly...

  2. Biological treatment of phenolic wastewater in an anaerobic continuous stirred tank reactor

    Directory of Open Access Journals (Sweden)

    Firozjaee Taghizade Tahere

    2013-01-01

    Full Text Available In the present study, an anaerobic continuous stirred tank reactor (ACSTR with consortium of mixed culture was operated continuously for a period of 110 days. The experiments were performed with three different hydraulic retention times and by varying initial phenol concentrations between 100 to 1000 mg/L. A maximum phenol removal was observed at a hydraulic retention time (HRT of 4 days, with an organic loading rate (OLR of 170.86 mg/L.d. At this condition, phenol removal rate of 89% was achieved. In addition, the chemical oxygen demand (COD removal corresponds to phenol removal. Additional operating parameters such as pH, MLSS and biogas production rate of the effluents were also measured. The present study provides valuable information to design an anaerobic ACSTR reactor for the biodegradation of phenolic wastewater.

  3. Anaerobic digestion performance of vinegar residue in continuously stirred tank reactor.

    Science.gov (United States)

    Li, Lin; Feng, Lu; Zhang, Ruihong; He, Yanfeng; Wang, Wen; Chen, Chang; Liu, Guangqing

    2015-06-01

    Anaerobic digestion (AD) of vinegar residue was investigated in continuously stirred tank reactor (CSTR). The influence of organic loading rate (OLR) and effluent recirculation on AD performance of vinegar residue was tested. Five OLRs, 1.0, 1.5, 2.0, 2.5, and 3.0 g(vs) L(-1) d(-1), were used. The highest volumetric methane productivity of 581.88 mL L(-1) was achieved at OLR of 2.5 g(vs) L(-1) d(-1). Effluent reflux ratio was set as 50%, the results showed that effluent recirculation could effectively neutralize the acidity of vinegar residue, raise the pH of the feedstock, and enhance the buffering capacity of the AD system. Anaerobic digestion of vinegar residue could be a promising way not only for converting this waste into gas energy but also alleviating environmental pollution which might be useful for future industrial application.

  4. Bio-hydrogen production from molasses by anaerobic fermentation in continuous stirred tank reactor

    Science.gov (United States)

    Han, Wei; Li, Yong-feng; Chen, Hong; Deng, Jie-xuan; Yang, Chuan-ping

    2010-11-01

    A study of bio-hydrogen production was performed in a continuous flow anaerobic fermentation reactor (with an available volume of 5.4 L). The continuous stirred tank reactor (CSTR) for bio-hydrogen production was operated under the organic loading rates (OLR) of 8-32 kg COD/m3 reactor/d (COD: chemical oxygen demand) with molasses as the substrate. The maximum hydrogen production yield of 8.19 L/d was obtained in the reactor with the OLR increased from 8 kg COD/m3 reactor/d to 24 kg COD/m3 d. However, the hydrogen production and volatile fatty acids (VFAs) drastically decreased at an OLR of 32 kg COD/m3 reactor/d. Ethanoi, acetic, butyric and propionic were the main liquid fermentation products with the percentages of 31%, 24%, 20% and 18%, which formed the mixed-type fermentation.

  5. Cassava Stillage Treatment by Thermophilic Anaerobic Continuously Stirred Tank Reactor (CSTR)

    Science.gov (United States)

    Luo, Gang; Xie, Li; Zou, Zhonghai; Zhou, Qi

    2010-11-01

    This paper assesses the performance of a thermophilic anaerobic Continuously Stirred Tank Reactor (CSTR) in the treatment of cassava stillage under various organic loading rates (OLRs) without suspended solids (SS) separation. The reactor was seeded with mesophilic anaerobic granular sludge, and the OLR increased by increments to 13.80 kg COD/m3/d (HRT 5d) over 80 days. Total COD removal efficiency remained stable at 90%, with biogas production at 18 L/d (60% methane). Increase in the OLR to 19.30 kg COD/m3/d (HRT 3d), however, led to a decrease in TCOD removal efficiency to 79% due to accumulation of suspended solids and incomplete degradation after shortened retention time. Reactor performance subsequently increased after OLR reduction. Alkalinity, VFA and pH levels were not significantly affected by OLR variation, indicating that no additional alkaline or pH adjustment is required. More than half of the SS in the cassava stillage could be digested in the process when HRT was 5 days, which demonstrated the suitability of anaerobic treatment of cassava stillage without SS separation.

  6. Operational strategies for thermophilic anaerobic digestion of organic fraction of municipal solid waste in continuously stirred tank reactors

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Cui, J.; Chen, X.;

    2006-01-01

    Three operational strategies to reduce inhibition due to ammonia during thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste (SS-OFMSW) rich in proteins were investigated. Feed was prepared by diluting SS-OFMSW (ratio of 1:4) with tap water or reactor process...... water with or without stripping ammonia. Three continuously stirred tank reactors were operated at 55 degrees C with 11.4 gVS d(-1) loading rate and 15 d retention time. Total ammonia nitrogen (TAN) level in the reactor fed with recirculated water alone was spiked to 3.5 and 5.5 g-N l(-1) through...... ammonium bicarbonate additions. Dilution of SS-OFMSW with fresh water showed a stable performance with volatile fatty acids of water after stripping ammonia showed even better performance with a methane yield...

  7. Coproduction of hydrogen and methane via anaerobic fermentation of cornstalk waste in continuous stirred tank reactor integrated with up-flow anaerobic sludge bed.

    Science.gov (United States)

    Cheng, Xi-Yu; Li, Qian; Liu, Chun-Zhao

    2012-06-01

    A 10 L continuous stirred tank reactor (CSTR) system was developed for a two-stage hydrogen fermentation process with an integrated alkaline treatment. The maximum hydrogen production rate reached 218.5 mL/L h at a cornstalk concentration of 30 g/L, and the total hydrogen yield and volumetric hydrogen production rate reached 58.0 mL/g-cornstalk and 0.55-0.57 L/L d, respectively. A 10 L up-flow anaerobic sludge bed (UASB) was used for continuous methane fermentation of the effluents obtained from the two-stage hydrogen fermentation. At the optimal organic loading rate of 15.0 g-COD/Ld, the COD removal efficiency and volumetric biogas production rate reached 83.3% and 4.6L/Ld, respectively. Total methane yield reached 200.9 mL/g-cornstalk in anaerobic fermentation with the effluents and alkaline hydrolysate. As a result, the total energy recovery by coproduction of hydrogen and methane with anaerobic fermentation of cornstalk reached 67.1%.

  8. Fermentative hydrogen production from beet sugar factory wastewater treatment in a continuous stirred tank reactor using anaerobic mixed consortia

    Institute of Scientific and Technical Information of China (English)

    Gefu ZHU; Chaoxiang LIU; Jianzheng LI; Nanqi REN; Lin LIU; Xu HUANG

    2013-01-01

    A low pH, ethanol-type fermentation process was evaluated for wastewater treatment and bio-hydrogen production from acidic beet sugar factory wastewater in a continuous stirred tank reactor (CSTR) with an effective volume of 9.6 L by anaerobic mixed cultures in this present study. After inoculating with aerobic activated sludge and operating at organic loading rate (OLR) of 12 kgCOD·m-3·d-1, HRT of 8h, and temperature of 35℃ for 28 days, the CSTR achieved stable ethanol-type fermentation. When OLR was further increased to 18 kgCOD·m-3·d-1, on the 53rd day, ethanol-type fermentation dominant microflora was enhanced. The liquid fermentation products, including volatile fatty acids (VFAs) and ethanol, stabilized at 1493mg·L-1 in the bioreactor. Effluent pH, oxidation-reduction potential (ORP), and alkalinity ranged at 4.1-4.5, -250-(-290) mV, and 230-260mgCaCO3·L-1. The specific hydrogen production rate of anaerobic activated sludge was 0.1 L'gMLVSS-1· d-1 and the COD removal efficiency was 45%. The experimental results showed that the CSTR system had good operation stability and microbial activity, which led to high substrate conversion rate and hydrogen production ability.

  9. Production of hydrogen in a granular sludge-based anaerobic continuous stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Show, Kuan-Yeow [Faculty of Engineering and Science, University of Tunku Abdul Rahman, 53300 Setapak, Kuala Lumpur (Malaysia); Zhang, Zhen-Peng; Tay, Joo-Hwa [School of Civil and Environmental Engineering, Nanyang Technological University, 639798 (Singapore); Institute of Environmental Science and Engineering, Nanyang Technological University, 637723 (Singapore); Tee Liang, David [Institute of Environmental Science and Engineering, Nanyang Technological University, 637723 (Singapore); Lee, Duu-Jong [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, RO (China); Jiang, Wen-Ju [Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065 (China)

    2007-12-15

    An investigation on biohydrogen production was conducted in a granular sludge-based continuous stirred tank reactor (CSTR). The reactor performance was assessed at five different glucose concentrations of 2.5, 5, 10, 20 and 40 g/L and four hydraulic retention times (HRTs) of 0.25, 0.5, 1 and 2 h, resulting in the organic loading rates (OLRs) ranged between 2.5 and 20 g-glucose/L h. Carbon flow was traced by analyzing the composition of gaseous and soluble metabolites as well as the cell yield. Butyrate, acetate and ethanol were found to be the major soluble metabolite products in the biochemical synthesis of hydrogen. Carbon balance analysis showed that more than half of the glucose carbon was converted into unidentified soluble products at an OLR of 2.5 g-glucose/L h. It was found that high hydrogen yields corresponded to a sludge loading rate in between 0.6 and 0.8 g-glucose/g-VSS h. Substantial suppression in hydrogen yield was noted as the sludge loading rate fell beyond the optimum range. It is deduced that decreasing the sludge loading rate induced the metabolic shift of biochemical reactions at an OLR of 2.5 g-glucose/L h, which resulted in a substantial reduction in hydrogen yield to 0.36-0.41 mol-H{sub 2}/mol-glucose. Optimal operation conditions for peak hydrogen yield (1.84 mol-H{sub 2}/mol-glucose) and hydrogen production rate (3.26 L/L h) were achieved at an OLR of 20 g-glucose/L h, which corresponded to an HRT of 0.5 h and an influent glucose concentration of 10 g/L. Influence of HRT and substrate concentration on the reactor performance was interrelated and the adverse impact on hydrogen production was noted as substrate concentration was higher than 20 g/L or HRT was shorter than 0.5 h. The experimental study indicated that a higher OLR derived from appropriate HRTs and substrate concentrations was desirable for hydrogen production in such a granule-based CSTR. (author)

  10. Biohydrogen production in a continuous stirred tank bioreactor from synthesis gas by anaerobic photosynthetic bacterium: Rhodopirillum rubrum.

    Science.gov (United States)

    Younesi, Habibollah; Najafpour, Ghasem; Ku Ismail, Ku Syahidah; Mohamed, Abdul Rahman; Kamaruddin, Azlina Harun

    2008-05-01

    Hydrogen may be considered a potential fuel for the future since it is carbon-free and oxidized to water as a combustion product. Bioconversion of synthesis gas (syngas) to hydrogen was demonstrated in continuous stirred tank bioreactor (CSTBR) utilizing acetate as a carbon source. An anaerobic photosynthetic bacterium, Rhodospirillum rubrum catalyzed water-gas shift reaction which was applied for the bioconversion of syngas to hydrogen. The continuous fermentation of syngas in the bioreactor was continuously operated at various gas flow rates and agitation speeds, for the period of two months. The gas flow rates were varied from 5 to 14 ml/min. The agitation speeds were increasingly altered in the range of 150-500 rpm. The pH and temperature of the bioreactor was set at 6.5 and 30 degrees C. The liquid flow rate was kept constant at 0.65 ml/min for the duration of 60 days. The inlet acetate concentration was fed at 4 g/l into the bioreactor. The hydrogen production rate and yield were 16+/-1.1 mmol g(-1)cell h(-1) and 87+/-2.4% at fixed agitation speed of 500 rpm and syngas flow rate of 14 ml/min, respectively. The mass transfer coefficient (KLa) at this condition was approximately 72.8h(-1). This new approach, using a biocatalyst was considered as an alternative method of conventional Fischer-Tropsch synthetic reactions, which were able to convert syngas into hydrogen.

  11. Production of biohythane from food waste via an integrated system of continuously stirred tank and anaerobic fixed bed reactors.

    Science.gov (United States)

    Yeshanew, Martha M; Frunzo, Luigi; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni

    2016-11-01

    The continuous production of biohythane (mixture of biohydrogen and methane) from food waste using an integrated system of a continuously stirred tank reactor (CSTR) and anaerobic fixed bed reactor (AFBR) was carried out in this study. The system performance was evaluated for an operation period of 200days, by stepwise shortening the hydraulic retention time (HRT). An increasing trend of biohydrogen in the CSTR and methane production rate in the AFBR was observed regardless of the HRT shortening. The highest biohydrogen yield in the CSTR and methane yield in the AFBR were 115.2 (±5.3)L H2/kgVSadded and 334.7 (±18.6)L CH4/kgCODadded, respectively. The AFBR presented a stable operation and excellent performance, indicated by the increased methane production rate at each shortened HRT. Besides, recirculation of the AFBR effluent to the CSTR was effective in providing alkalinity, maintaining the pH in optimal ranges (5.0-5.3) for the hydrogen producing bacteria.

  12. Performance comparison of a continuous-flow stirred-tank reactor and an anaerobic sequencing batch reactor for fermentative hydrogen production depending on substrate concentration.

    Science.gov (United States)

    Kim, S-H; Han, S-K; Shin, H-S

    2005-01-01

    This study was conducted to compare the performance of a continuous-flow stirred-tank reactor (CSTR) and an anaerobic sequencing batch reactor (ASBR) for fermentative hydrogen production at various substrate concentrations. Heat-treated anaerobic sludge was utilized as an inoculum, and hydraulic retention time (HRT) for each reactor was maintained at 12 h. At the influent sucrose concentration of 5 g COD/L, start-up was not successful in both reactors. The CSTR, which was started-up at 10 g COD/L, showed stable hydrogen production at the influent sucrose concentrations of 10-60 g COD/L during 203 days. Hydrogen production was dependent on substrate concentration, resulting in the highest performance at 30 g COD/L. At the lower substrate concentration, the hydrogen yield (based on hexose consumed) decreased with biomass reduction and changes in fermentation products. At the higher substrate concentration, substrate inhibition on biomass growth caused the decrease of carbohydrate degradation and hydrogen yield (based on hexose added). The ASBR showed higher biomass concentration and carbohydrate degradation efficiency than the CSTR, but hydrogen production in the ASBR was less effective than that in the CSTR at all the substrate concentrations.

  13. Anaerobic co-digestion of chicken manure and corn stover in batch and continuously stirred tank reactor (CSTR).

    Science.gov (United States)

    Li, Yeqing; Zhang, Ruihong; He, Yanfeng; Zhang, Chenyu; Liu, Xiaoying; Chen, Chang; Liu, Guangqing

    2014-03-01

    Anaerobic co-digestion of chicken manure and corn stover in batch and CSTR were investigated. The batch co-digestion tests were performed at an initial volatile solid (VS) concentration of 3gVS/L, carbon-to-nitrogen (C/N) ratio of 20, and retention time of 30d. The methane yield was determined to be 281±12mL/gVSadded. Continuous reactor was carried out with feeding concentration of 12% total solids and C/N ratio of 20 at organic loading rates (OLRs) of 1-4gVS/L/d. Results showed that at OLR of 4gVS/L/d, stable and preferable methane yield of 223±7mL/gVSadded was found, which was equal to energy yield (EY) of 8.0±0.3MJ/kgVSadded. Post-digestion of digestate gave extra EY of 1.5-2.6MJ/kgVSadded. Pyrolysis of digestate provided additional EY of 6.1MJ/kgVSadded. Pyrolysis can be a promising technique to reduce biogas residues and to produce valuable gas products simultaneously.

  14. Anaerobic treatment of cassava stillage for hydrogen and methane production in continuously stirred tank reactor (CSTR) under high organic loading rate (OLR)

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Gang; Xie, Li; Zou, Zhonghai; Wang, Wen; Zhou, Qi [Key Laboratory of Yangtze River Water Environment, Ministry of Education (Tongji University), UNEP-Tongji, Tongji University, Siping Road No. 1239, Shanghai 200092 (China); Shim, Hojae [Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR 999078 (China)

    2010-11-15

    Anaerobic hydrogen and methane production from cassava stillage in continuously stirred tank reactor (CSTR) were investigated in this study. Results showed that the heat-pretreatment of inoculum did not enhance hydrogen yield compared to raw inoculum under mesophilic condition after continuous operation. However, the hydrogen yield increased from about 14 ml H{sub 2}/gVS under mesophilic condition to 69.6 ml H{sub 2}/gVS under thermophilic condition due to the decrease of propionate concentration and inhibition of homoacetogens. Therefore, temperature was demonstrated to be more important than pretreatment of inoculum to enhance the hydrogen production. Under high organic loading rate (OLR) (>10 gVS/(L.d)), the two-phase thermophilic CSTR for hydrogen and methane production was stable with hydrogen and methane yields of 56.6 mlH{sub 2}/gVS and 249 mlCH{sub 4}/gVS. The one-phase thermophilic CSTR for methane production failed due to the accumulation of both acetate and propionate, leading to the pH lower than 6. Instead of propionate alone, the accumulations of both acetate and propionate were found to be related to the breakdown of methane reactor. (author)

  15. Anaerobic digestion of blackwater from vacuum toilets and kitchen refuse in a continuous stirred tank reactor (CSTR).

    Science.gov (United States)

    Wendland, C; Deegener, S; Behrendt, J; Toshev, P; Otterpohl, R

    2007-01-01

    The objective of this research was mesophilic anaerobic digestion of blackwater from vacuum toilets (BW) and kitchen refuse (KR) in a CSTR within an ecological sanitation system. A detailed investigation of the BW characteristics was carried out. Research on anaerobic digestion was performed with CSTR of 101 volume at HRT of 10, 15 and 20 days. The digestion of BW at 20 days HRT showed stable performance without inhibition effects, in spite of relatively high ammonium concentrations. The removal of total and particulate COD was 61% and 53%, respectively, and the methane yield 10/CH4/cap/day. The addition of kitchen refuse (KR) improved the performance of the CSTR in terms of COD removal efficiency and methane yield. At 20 days HRT the removal of total and particulate COD increased up to 71% and 67%, respectively, and the methane yield to 27/CH4/cap/day. The results at 15 days HRT showed similar performance. At HRT of 10 days, the anaerobic treatment was limited but reached steady state conditions at higher VFA concentrations in the effluent, with a decrease of COD removal of 30 to 33% and of methane yields of 19 to 21%.

  16. Effects of nitrobenzene concentration and hydraulic retention time on the treatment of nitrobenzene in sequential anaerobic baffled reactor (ABR)/continuously stirred tank reactor (CSTR) system.

    Science.gov (United States)

    Kuscu, Ozlem Selcuk; Sponza, Delia Teresa

    2009-04-01

    The effects of increasing nitrobenzene (NB) concentrations and hydraulic retention times (HRT) on the treatment of NB were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system. In the first step of the study, the maximum COD removal efficiencies were found as 88% and 92% at NB concentrations varying between 30 mg L(-1) and 210 mg L(-1) in ABR. The minimum COD removal efficiency was 79% at a NB concentration of 700 mg L(-1). The removal efficiency of NB was nearly 100% for all NB concentrations in the ABR reactor. The methane gas production and the methane gas percentage remained stable (1500 mL day(-1) and 48-50%, respectively) as the NB concentration was increased from 30 to 210 mg L(-1). In the second step of the study it was found that as the HRT decreased from 10.38 days to 2.5 days the COD removal efficiencies decreased slightly from 94% to 92% in the ABR. For maximum COD and NB removal efficiencies the optimum HRT was found as 2.5 days in the ABR. The total COD removal efficiency was 95% in sequential anaerobic (ABR)/aerobic (CSTR) reactor system at a minimum HRT of 1 day. When the HRT was decreased from 10.38 days to 1 day, the methane percentage decreased from 42% to 29% in an ABR reactor treating 100 mg L(-1) NB. Nitrobenzene was reduced to aniline under anaerobic conditions while aniline was mineralized to catechol with meta cleavage under aerobic conditions.

  17. Stirring and biomass starter influences the anaerobic digestion of different substrates for biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Christian; Fang, Sheng; Uhlenhut, Frank; Borchert, Axel; Stein, Ingo; Schlaak, Michael [Institut fuer Umwelttechnik EUTEC, Fachbereich Technik, Fachhochschule Emden/Leer, Emden (Germany)

    2010-08-15

    Here, we present the results of lab-scale experiments conducted in a batch mode to determine the biogas yield of lipid-rich waste and corn silage under the effect of stirring. Further semi-continuous experiments were carried out for the lipid-rich waste with/without stirring. Additionally, it was analyzed how the starter used for the batch experiment influences the digestion process. The results showed a significant stirring effect on the anaerobic digestion only when seed sludge from a biogas plant was used as a starter. In this case, the experiments without stirring yielded only about 50% of the expected biogas for the investigated substrates. The addition of manure slurry to the batch reactor as part of the starter improved the biogas production. The more diluted media in the reactor allowed a better contact between the bacteria and the substrates making stirring not necessary. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. Nonequilibrium chemical instabilities in continuous flow stirred tank reactors: The effect of stirring

    Science.gov (United States)

    Horsthemke, W.; Hannon, L.

    1984-11-01

    We present a stochastic model for stirred chemical reactors. In the limiting case of practical interest, i.e., fast stirring, we solve for the characteristic function in steady state and derive expressions for the stationary moments through a perturbation expansion. Moments are explicitly calculated for a generic model of bistable behavior. We find that stirring decreases the area of the bistable region essentially by changing the point of transition from the high reaction rate state to the low reaction rate state. This is in remarkable agreement with the experimental findings of Roux, et al. Our results indicate that stirring should not be considered simply as an ``enhanced diffusion'' process and that nucleation plays only a minor role in transitions between multiple steady states in a continuous flow stirred tank reactor (CSTR).

  19. Evaluation of an integrated continuous stirred microbial electrochemical reactor: Wastewater treatment, energy recovery and microbial community.

    Science.gov (United States)

    Wang, Haiman; Qu, Youpeng; Li, Da; Zhou, Xiangtong; Feng, Yujie

    2015-11-01

    A continuous stirred microbial electrochemical reactor (CSMER) was developed by integrating anaerobic digestion (AD) and microbial electrochemical system (MES). The system was capable of treating high strength artificial wastewater and simultaneously recovering electric and methane energy. Maximum power density of 583±9, 562±7, 533±10 and 572±6 mW m(-2) were obtained by each cell in a four-independent circuit mode operation at an OLR of 12 kg COD m(-3) d(-1). COD removal and energy recovery efficiency were 87.1% and 32.1%, which were 1.6 and 2.5 times higher than that of a continuous stirred tank reactor (CSTR). Larger amount of Deltaproteobacteria (5.3%) and hydrogenotrophic methanogens (47%) can account for the better performance of CSMER, since syntrophic associations among them provided more degradation pathways compared to the CSTR. Results demonstrate the CSMER holds great promise for efficient wastewater treatment and energy recovery.

  20. Feasibility of treating partially soluble wastewater in anaerobic sequencing batch biofilm reactor (ASBBR) with mechanical stirring.

    Science.gov (United States)

    Pinho, Samantha Cristina; Ratusznei, Suzana Maria; Rodrigues, José Alberto Domingues; Foresti, Eugenio; Zaiat, Marcelo

    2005-03-01

    This work reports on the treatment of partially soluble wastewater in an anaerobic sequencing batch biofilm reactor, containing biomass immobilized on polyurethane matrices and stirred mechanically. The results showed that agitation provided optimal mixing and improved the overall organic matter consumption rates. The system showed to be feasible to enhance the treatment of partially soluble wastewaters. PMID:15491835

  1. The Effect of Effluent Recirculation in a Semi-Continuous Two-Stage Anaerobic Digestion System

    OpenAIRE

    Karthik Rajendran; Azam Jeihanipour; Taherzadeh, Mohammad J.; Solmaz Aslanzadeh

    2013-01-01

    The effect of recirculation in increasing organic loading rate (OLR) and decreasing hydraulic retention time (HRT) in a semi-continuous two-stage anaerobic digestion system using stirred tank reactor (CSTR) and an upflow anaerobic sludge bed (UASB) was evaluated. Two-parallel processes were in operation for 100 days, one with recirculation (closed system) and the other without recirculation (open system). For this purpose, two structurally different carbohydrate-based substrates were used; st...

  2. Continuous biohydrogen production from waste bread by anaerobic sludge.

    Science.gov (United States)

    Han, Wei; Huang, Jingang; Zhao, Hongting; Li, Yongfeng

    2016-07-01

    In this study, continuous biohydrogen production from waste bread by anaerobic sludge was performed. The waste bread was first hydrolyzed by the crude enzymes which were generated by Aspergillus awamori and Aspergillus oryzae via solid-state fermentation. It was observed that 49.78g/L glucose and 284.12mg/L free amino nitrogen could be produced with waste bread mass ratio of 15% (w/v). The waste bread hydrolysate was then used for biohydrogen production by anaerobic sludge in a continuous stirred tank reactor (CSTR). The optimal hydrogen production rate of 7.4L/(Ld) was achieved at chemical oxygen demand (COD) of 6000mg/L. According to the results obtained from this study, 1g waste bread could generate 0.332g glucose which could be further utilized to produce 109.5mL hydrogen. This is the first study which reports continuous biohydrogen production from waste bread by anaerobic sludge.

  3. Adaptive Controller Design for Continuous Stirred Tank Reactor

    OpenAIRE

    Prabhu, K; V. Murali Bhaskaran

    2014-01-01

    Continues Stirred Tank Reactor (CSTR) is an important issue in chemical process and a wide range of research in the area of chemical engineering. Temperature Control of CSTR has been an issue in the chemical control engineering since it has highly non-linear complex equations. This study presents problem of temperature control of CSTR with the adaptive Controller. The Simulation is done in MATLAB and result shows that adaptive controller is an efficient controller for temperature control of C...

  4. Design of Controllers for Continuous Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    Somasundaram Deepa

    2015-02-01

    Full Text Available The objective of the project is to design various controllers for temperature control in Continuous Stirred Tank Reactor (CSTR systems. Initially Zeigler-Nichols, modified Zeigler-Nichols, Tyreus-Luyben, Shen-Yu and IMC based method of tuned Proportional Integral (PI controller is designed and comparisons are made with Fuzzy Logic Controller. Simulations are carried out and responses are obtained for the above controllers. Maximum peak overshoot, Settling time, Rise time,  ISE, IAE  are chosen as performance index. From the analysis it is found that the Fuzzy Logic Controller  is a promising controller than the conventional controllers.

  5. Adaptive Controller Design for Continuous Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    K. Prabhu

    2014-09-01

    Full Text Available Continues Stirred Tank Reactor (CSTR is an important issue in chemical process and a wide range of research in the area of chemical engineering. Temperature Control of CSTR has been an issue in the chemical control engineering since it has highly non-linear complex equations. This study presents problem of temperature control of CSTR with the adaptive Controller. The Simulation is done in MATLAB and result shows that adaptive controller is an efficient controller for temperature control of CSTR than PID controller.

  6. Fluid dynamic analysis of a continuous stirred tank reactor for technical optimization of wastewater digestion.

    Science.gov (United States)

    Hurtado, F J; Kaiser, A S; Zamora, B

    2015-03-15

    Continuous stirred tank reactors (CSTR) are widely used in wastewater treatment plants to reduce the organic matter and microorganism present in sludge by anaerobic digestion. The present study carries out a numerical analysis of the fluid dynamic behaviour of a CSTR in order to optimize the process energetically. The characterization of the sludge flow inside the digester tank, the residence time distribution and the active volume of the reactor under different criteria are determined. The effects of design and power of the mixing system on the active volume of the CSTR are analyzed. The numerical model is solved under non-steady conditions by examining the evolution of the flow during the stop and restart of the mixing system. An intermittent regime of the mixing system, which kept the active volume between 94% and 99%, is achieved. The results obtained can lead to the eventual energy optimization of the mixing system of the CSTR.

  7. A cubic autocatalytic reaction in a continuous stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yakubu, Aisha Aliyu; Yatim, Yazariah Mohd [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang Malaysia (Malaysia)

    2015-10-22

    In the present study, the dynamics of the cubic autocatalytic reaction model in a continuous stirred tank reactor with linear autocatalyst decay is studied. This model describes the behavior of two chemicals (reactant and autocatalyst) flowing into the tank reactor. The behavior of the model is studied analytically and numerically. The steady state solutions are obtained for two cases, i.e. with the presence of an autocatalyst and its absence in the inflow. In the case with an autocatalyst, the model has a stable steady state. While in the case without an autocatalyst, the model exhibits three steady states, where one of the steady state is stable, the second is a saddle point while the last is spiral node. The last steady state losses stability through Hopf bifurcation and the location is determined. The physical interpretations of the results are also presented.

  8. Implementation of Neural Control for Continuous Stirred Tank Reactor (CSTR

    Directory of Open Access Journals (Sweden)

    Karima M. Putrus

    2011-01-01

    Full Text Available In this paper a dynamic behavior and control of a jacketed continuous stirred tank reactor (CSTR is developed using different control strategies, conventional feedback control (PI and PID, and neural network (NARMA-L2, and NN Predictive control. The dynamic model for CSTR process is described by a first order lag system with dead time.The optimum tuning of control parameters are found by two different methods; Frequency Analysis Curve method (Bode diagram and Process Reaction Curve using the mean of Square Error (MSE method. It is found that the Process Reaction Curve method is better than the Frequency Analysis Curve method and PID feedback controller is better than PI feedback controller. The results show that the artificial neural network is the best method to control the CSTR process and it is better than the conventional method because it has smaller value of mean square error (MSE. MATLAB program is used as a tool of solution for all cases used in the present work.

  9. 升流式厌氧污泥床和连续流搅拌槽式反应器的废水处理效能及产甲烷菌群组成的对比分析%Comparative Analysis of the Efficiency and the Methanogens Composition in Upflow Anaerobic Sludge Blanket and Continuous Stirred-Tank Reactor

    Institute of Scientific and Technical Information of China (English)

    张立国; 李建政; 班巧英; 许一平

    2012-01-01

    分别运行升流式厌氧污泥床(UASB)反应器和连续流搅拌槽式反应器(CSTR)并使其达到稳定运行状态,在有机负荷率(OLR)均为6.0kg·m-3·d-1的条件下,对比分析了二者在稳定期的运行特性和产甲烷菌群的组成.结果表明,UASB的化学需氧量(COD)去除率为95%,显著高于CSTR的COD去除率(84%).然而,CSTR系统中的活性污泥的比产甲烷速率(315L·kg-1·d-1)和比COD去除率(0.85kg·kg-1·d-1)则显著高于UASB的260L·kg-1·d-1和0.67kg·kg-1·d-1.采用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)指纹分析技术对系统稳定期的活性污泥进行分析的结果表明,UASB系统的优势产甲烷菌为Methanosaeta concilii 和 Methanospirillum hungatei,而CSTR系统中的优势产甲烷菌为Methanosarcina mazeii和Methanobacterium formicicum.污泥微生物群落组成及其代谢特征的不同是造成厌氧处理系统效能差异的内在原因.UASB和CSTR在COD去除效能和污泥比活性方面各有所长,在实际应用中,须根据废水水质和预期处理程度合理选用.%The efficiency and the methanogens composition in an Upflow Anaerobic Sludge Blanket (UASB) reactor and a Continuous Stirred-Tank Reactor (CSTR) are investigated after achieving steady states at the same Organic Loading Rate (OLR) of 6.0kg· m-3 · d-1. The results show that the average removal rate of COD reaches 95% in the UASB, significantly higher than 84% of the CSTR. However, the specific methane production rate and the specific COD removal rate of the activated sludge are SlSL·kg-1·d-1 and 0.85kg·kg-1·d-1, respectively, in the CSTR, notably higher than those of the UASB of 260L·kg-1·d-1 and 0.67kg· kg-1·d-1, respectively. The analysis of the methanogens composition of the activated sludge by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) indicates that Methanosaeta concilii and Methanospirillum hungatei are the dominant methanogens in the UASB, while

  10. Efficacies of inocula on the startup of anaerobic reactors treating dairy manure under stirred and unstirred conditions

    International Nuclear Information System (INIS)

    Inocula play an important role in anaerobic reactor startup by balancing the populations of Syntrophobacter and methanogens. Such balances make syntrophic metabolism thermodynamically feasible in anaerobic digestion. In this study, the effect of inocula on the performance of dairy manure digestion was investigated by analyzing the change in volatile fatty acids (VFA), total solids (TS), volatile solids (VS), specific biogas production (SGPR), and specific methane production (SPMP) as well as scanning and transmission electron micrographs. The study was performed at four treatments. Treatment one was granular sludge (GM); treatment two was non-granular sludge (SM); treatment three was mixed culture from an anaerobic lagoon (LM); while the fourth treatment (the control denoted MM) did not receive any exogenous inocula. In addition, stirred and unstirred conditions were maintained in the reactors to determine their effect on reactor startup. Performance ranking based on the SGPR and SPMP of treatments (in descending order) was: GM, SM, LM and MM under stirred conditions. Under unstirred conditions, performance ranking (also in descending order) was: SM, GM, LM, and MM. Results of the examination of microcolonies in the granular, non-granular sludge, and dairy manure suggest that syntrophic juxtaposition of methanogens and Syntrophobacter in granular inoculum was common while it was less visible in non-granular sludge, and completely absent in dairy manure. -- Highlights: → We investigated impacts of inocula on anaerobic reactor startup period. → Reactor performance was evaluated under stirred and unstirred conditions at 35 oC. → In stirred conditions, granular sludge performance was better than other inocula. → In unstirred conditions, municipal sludge performance was better than other inocula. → Anaerobic lagoon's slurry did not improve reactor performance significantly.

  11. Biohydrogen and Bioethanol Production from Biodiesel-Based Glycerol by Enterobacter aerogenes in a Continuous Stir Tank Reactor.

    Science.gov (United States)

    Jitrwung, Rujira; Yargeau, Viviane

    2015-05-11

    Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process from small batches performed in small bottles to a 3.6-L continuous stir tank reactor (CSTR). Fresh feed rate, liquid recycling, pH, mixing speed, glycerol concentration, and waste recycling were optimized for biohydrogen and bioethanol production. Results confirmed that E. aerogenes uses small amounts of oxygen under semi-anaerobic conditions for growth before using oxygen from decomposable salts, mainly NH4NO3, under anaerobic condition to produce hydrogen and ethanol. The optimal conditions were determined to be 500 rpm, pH 6.4, 18.5 g/L crude glycerol (15 g/L glycerol) and 33% liquid recycling for a fresh feed rate of 0.44 mL/min. Using these optimized conditions, the process ran at a lower media cost than previous studies, was stable after 7 days without further inoculation and resulted in yields of 0.86 mol H2/mol glycerol and 0.75 mol ethanol/mole glycerol.

  12. Biohydrogen and Bioethanol Production from Biodiesel-Based Glycerol by Enterobacter aerogenes in a Continuous Stir Tank Reactor

    Directory of Open Access Journals (Sweden)

    Rujira Jitrwung

    2015-05-01

    Full Text Available Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process from small batches performed in small bottles to a 3.6-L continuous stir tank reactor (CSTR. Fresh feed rate, liquid recycling, pH, mixing speed, glycerol concentration, and waste recycling were optimized for biohydrogen and bioethanol production. Results confirmed that E. aerogenes uses small amounts of oxygen under semi-anaerobic conditions for growth before using oxygen from decomposable salts, mainly NH4NO3, under anaerobic condition to produce hydrogen and ethanol. The optimal conditions were determined to be 500 rpm, pH 6.4, 18.5 g/L crude glycerol (15 g/L glycerol and 33% liquid recycling for a fresh feed rate of 0.44 mL/min. Using these optimized conditions, the process ran at a lower media cost than previous studies, was stable after 7 days without further inoculation and resulted in yields of 0.86 mol H2/mol glycerol and 0.75 mol ethanol/mole glycerol.

  13. Cascade degradation of organic matters in brewery wastewater using a continuous stirred microbial electrochemical reactor and analysis of microbial communities

    Science.gov (United States)

    Wang, Haiman; Qu, Youpeng; Li, Da; Ambuchi, John J.; He, Weihua; Zhou, Xiangtong; Liu, Jia; Feng, Yujie

    2016-01-01

    A continuous stirred microbial electrochemical reactor (CSMER), comprising of a complete mixing zone (CMZ) and microbial electrochemical zone (MEZ), was used for brewery wastewater treatment. The system realized 75.4 ± 5.7% of TCOD and 64.9 ± 4.9% of TSS when fed with brewery wastewater concomitantly achieving an average maximum power density of 304 ± 31 m W m−2. Cascade utilization of organic matters made the CSMER remove a wider range of substrates compared with a continuous stirred tank reactor (CSTR), in which process 79.1 ± 5.6% of soluble protein and 86.6 ± 2.2% of soluble carbohydrates were degraded by anaerobic digestion in the CMZ and short-chain volatile fatty acids were further decomposed and generated current in the MEZ. Co-existence of fermentative bacteria (Clostridium and Bacteroides, 19.7% and 5.0%), acetogenic bacteria (Syntrophobacter, 20.8%), methanogenic archaea (Methanosaeta and Methanobacterium, 40.3% and 38.4%) and exoelectrogens (Geobacter, 12.4%) as well as a clear spatial distribution and syntrophic interaction among them contributed to the cascade degradation process in CSMER. The CSMER shows great promise for practical wastewater treatment application due to high pre-hydrolysis and acidification rate, high energy recovery and low capital cost. PMID:27270788

  14. Cascade degradation of organic matters in brewery wastewater using a continuous stirred microbial electrochemical reactor and analysis of microbial communities.

    Science.gov (United States)

    Wang, Haiman; Qu, Youpeng; Li, Da; Ambuchi, John J; He, Weihua; Zhou, Xiangtong; Liu, Jia; Feng, Yujie

    2016-06-07

    A continuous stirred microbial electrochemical reactor (CSMER), comprising of a complete mixing zone (CMZ) and microbial electrochemical zone (MEZ), was used for brewery wastewater treatment. The system realized 75.4 ± 5.7% of TCOD and 64.9 ± 4.9% of TSS when fed with brewery wastewater concomitantly achieving an average maximum power density of 304 ± 31 m W m(-2). Cascade utilization of organic matters made the CSMER remove a wider range of substrates compared with a continuous stirred tank reactor (CSTR), in which process 79.1 ± 5.6% of soluble protein and 86.6 ± 2.2% of soluble carbohydrates were degraded by anaerobic digestion in the CMZ and short-chain volatile fatty acids were further decomposed and generated current in the MEZ. Co-existence of fermentative bacteria (Clostridium and Bacteroides, 19.7% and 5.0%), acetogenic bacteria (Syntrophobacter, 20.8%), methanogenic archaea (Methanosaeta and Methanobacterium, 40.3% and 38.4%) and exoelectrogens (Geobacter, 12.4%) as well as a clear spatial distribution and syntrophic interaction among them contributed to the cascade degradation process in CSMER. The CSMER shows great promise for practical wastewater treatment application due to high pre-hydrolysis and acidification rate, high energy recovery and low capital cost.

  15. Cascade degradation of organic matters in brewery wastewater using a continuous stirred microbial electrochemical reactor and analysis of microbial communities.

    Science.gov (United States)

    Wang, Haiman; Qu, Youpeng; Li, Da; Ambuchi, John J; He, Weihua; Zhou, Xiangtong; Liu, Jia; Feng, Yujie

    2016-01-01

    A continuous stirred microbial electrochemical reactor (CSMER), comprising of a complete mixing zone (CMZ) and microbial electrochemical zone (MEZ), was used for brewery wastewater treatment. The system realized 75.4 ± 5.7% of TCOD and 64.9 ± 4.9% of TSS when fed with brewery wastewater concomitantly achieving an average maximum power density of 304 ± 31 m W m(-2). Cascade utilization of organic matters made the CSMER remove a wider range of substrates compared with a continuous stirred tank reactor (CSTR), in which process 79.1 ± 5.6% of soluble protein and 86.6 ± 2.2% of soluble carbohydrates were degraded by anaerobic digestion in the CMZ and short-chain volatile fatty acids were further decomposed and generated current in the MEZ. Co-existence of fermentative bacteria (Clostridium and Bacteroides, 19.7% and 5.0%), acetogenic bacteria (Syntrophobacter, 20.8%), methanogenic archaea (Methanosaeta and Methanobacterium, 40.3% and 38.4%) and exoelectrogens (Geobacter, 12.4%) as well as a clear spatial distribution and syntrophic interaction among them contributed to the cascade degradation process in CSMER. The CSMER shows great promise for practical wastewater treatment application due to high pre-hydrolysis and acidification rate, high energy recovery and low capital cost. PMID:27270788

  16. Optimal conditions and operational parameters for conversion of Robusta coffee residues in a continuous stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Msambichaka, B.L.; Kivaisi, A.K.; Rubindamayugi, M.S.T. [Univ. of Dar es Salaam, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    This experiment studied the possibility of optimizing anaerobic degradation, developing microbial adaptation and establishing long term process stability in a Continuous Stirred Tank Reactor (CSTR) running on Robusta coffee hulls as feed substrate. Decrease in lag phase and increase in methane production rate in batch culture experiment conducted before and after process stabilization of each operational phase in the CSTR clearly suggested that microbial adaptation to increasing coffee percentage composition was attained. Through gradual increase of coffee percentage composition, from 10% coffee, 2% VS, 20 days HRT and a 1 g VS/1/day loading rate to 80% coffee, 4.5% VS, 12 days HRT and a loading rate of 3 g VS/1/day the CSTR system was optimized at a maximum methane yield of 535 ml/g VS. Again it was possible to attain long term process stability at the above mentioned optimal operational parameters for a further 3 month period. (au)

  17. Kinetics and dynamic modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor.

    Science.gov (United States)

    Nopharatana, Annop; Pullammanappallil, Pratap C; Clarke, William P

    2007-01-01

    A series of batch, slurry anaerobic digestion experiments were performed where the soluble and insoluble fractions, and unwashed MSW were separately digested in a 200l stirred stainless steel vessel at a pH of 7.2 and a temperature of 38 degrees C. It was found that 7% of the total MSW COD was readily soluble, of which 80% was converted to biogas; 50% of the insoluble fraction was solubilised, of this only 80% was converted to biogas. The rate of digesting the insoluble fraction was about four times slower than the rate of digesting the soluble fraction; 48% of the total COD was converted to biogas and 40% of the total nitrogen was converted to ammonia. Soluble and insoluble fractions were broken down simultaneously. The minimum time to convert 95% of the degradable fraction to biogas was 20 days. The lag phase for the degradation of insoluble fraction of MSW can be overcome by acclimatising the culture with the soluble fraction. The rate of digestion and the methane yield was not affected by particle size (within the range of 2-50mm). A dynamic model was developed to describe batch digestion of MSW. The parameters of the model were estimated using data from the separate digestion of soluble and insoluble fractions and validated against data from the digestion of unwashed MSW. Trends in the specific aceticlastic and formate-utilising methanogenic activity were used to estimate initial methanogenic biomass concentration and bacterial death rate coefficient. The kinetics of hydrolysis of insoluble fraction could be adequately described by a Contois equation and the kinetics of acidogenesis, and aceticlastic and hydrogen utilising methanogenesis by Monod equations. PMID:16797956

  18. Chaotic behavior in the dynamical system of a continuous stirred tank reactor

    Science.gov (United States)

    Retzloff, D. G.; Chan, P. C.-H.; Chicone, C.; Offin, D.; Mohamed, R.

    1987-03-01

    The dynamical system describing a continuous stirred tank reactor (CSTR) for the reactions A→B→C and A→C, B→D is considered. A circulating attractor with accompanying circulating orbits is shown to exist when the critical point of the system is unique and unstable. The orbit structure has been numerically found to consist of periodic orbits and chaotic behavior.

  19. Effect of electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting

    Directory of Open Access Journals (Sweden)

    ZHOU Shu-cai

    2007-08-01

    Full Text Available An investigation on the influence of low frequency rotary electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting was experimentally conducted and carried out on an industrial trial basis. The results show that application of appropriate electromagnetic stirring parameters can obviously improve the macrostructure of austenitic stainless steel, in which both columnar and equiaxed grains can be greatly refined and shrinkage porosity or cavity zone along centerline can be remarkably decreased due to eliminating intracrystalline and enlarging equiaxed grains zone. The industrial trials verify that the electromagnetic stirring intensity of austenitic stainless steel should be higher than that of plain carbon steel. Electromagnetic stirring has somewhat affected the macrostructure of austenitic stainless steel even if the magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT in average at frequency f=3-4Hz, which provides a reference for the optimization of design and process parameters when applying the rotary electromagnetic stirrer.

  20. Effect of electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An investigation on the influence of low frequency rotary electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting was experimentally conducted and carried out on an industrial trial basis. The results show that application of appropriate electromagnetic stirring parameters can obviously improve the macrostructure of austenitic stainless steel, in which both columnar and equiaxed grains can be greatly refined and shrinkage porosity or cavity zone along centerline can be remarkably decreased due to eliminating intracrystalline and enlarging equiaxed grains zone. The industrial trials verify that the electromagnetic stirring intensity of austenitic stainless steel should be higher than that of plain carbon steel. Electromagnetic stirring has somewhat affected the macrostructure of austenitic stainless steel even if the magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT ) in average at frequency f=3-4Hz, which provides a reference for the optimization of design and process parameters when applying the rotary electromagnetic stirrer

  1. Effect of tryptone and ammonia on the biogas process in continuously stirred tank reactors treating cattle manure

    DEFF Research Database (Denmark)

    Nielsen, Hanne Bjerg; Ahring, Birgitte Kiær

    2007-01-01

    Two themophilic continuously stirred tank reactors, R1 and Two thermophilic continuously stirred tank reactors, R1 and R2, were subject to pulses of tryptone and ammonia. R1 was operated at an ammonia-N concentration of 3.0 g l(-1) and R2 was operated at an ammonia-N concentration of 1.7 g l(-1)....

  2. Selective precipitation of Cu from Zn in a pS controlled continuously stirred tank reactor

    NARCIS (Netherlands)

    Sampaio, R.M.; Timmers, R.A.; Xu, Y.; Keesman, K.J.; Lens, P.N.L.

    2009-01-01

    Copper was continuously and selectively precipitated with Na2S to concentrations below 0.3 ppb from water containing around 600 ppm of both Cu and Zn in a Continuously Stirred Tank Reactor. The pH was controlled at 3 and the pS at 25 (pS = ¿log(S2¿)) by means of an Ag2S sulfide selective electrode.

  3. Myocardial damage after continuous aerobic and anaerobic exercise in rats

    Directory of Open Access Journals (Sweden)

    Rostika Flora

    2013-12-01

    Full Text Available Background: Regular physical activity is highly recommended in preventive, curative, and rehabilitative programs in order to promote health, especially cardiovascular health. However, physical activity can also cause sudden death. In athletes, sudden death may occur during sport competitions, with myocardial infarction as the most common etiology. It is suspected that continuous training without any rest-day play a role in cardiac muscle damage and sudden death during competition. Our study was aimed to learn about cardiac muscle adaptation on continuous aerobic and anaerobic physical activity without any rest-day. Methods: The specimens in our study were cardiac muscle tissue obtained from rats that had performed aerobic and anaerobic physical activity on treadmill for 1, 3, 7, and 10 days without any rest-day. Blood gas analysis and hematological assessment were used as parameters of systemic adaptation to hypoxia during physical activity. Moreover, histopathology of cardiac muscle tissue was performed as parameter for cardiac muscle damage.Results: The results showed that aerobic and anaerobic physical activity caused a systemic hypoxic condition and triggered adaptation responses. Cardiac muscle damage occurred on the 10th day in both treatment groups, with more severe damage observed in the group with anaerobic physical activity. The tissue protein level in the anaerobic group increased progressively on the 10th day.Conclusion: Physical activity may result in hypoxia and systemic adaptation. Aerobic and anaerobic physical activities performed for 10 days without any rest-day may cause cardiac muscle damage. (Med J Indones. 2013;22:209-14. doi: 10.13181/mji.v22i4.601Keywords: Cardiac muscle, cardiac muscle damage, histopathology, physical activity

  4. Electromagnetic stirring in the continuous casting of steel. Agitacion electromagnetica en la colada continua de acero

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez de Toledo, G.; Campo, O.; Lainez, E. (Sidenor, Basauri (Spain))

    1995-01-01

    The electromagnetic stirring of steel in the machines for the continuous casting process has improved the internal quality of the cast product. Experimental work with stirrers situated at different positions of continuous casting machines of billets has been carried out. The in-mould stirrer is the one that produces a major modification of the billet internal structure, and also the biggest decrease of the central segregation. An in mould electromagnetic coil has been developed which allows the use of high stirring power without producing an undesirable movement of the liquid steel in the meniscus zone, therefore no mould powders entrapments are produced. It has been developed a method for determining the optimum electric frequency of the stirrer. (Author) 31 refs.

  5. Bistability in an uncatalyzed bromate oscillator in a continuously fed stirred tank reactor

    Science.gov (United States)

    Dutt, Arun K.; Müller, S. C.

    1996-01-01

    Uncatalyzed gallic acid oscillating system has been investigated in a continuously fed stirred tank reactor (CSTR). In the [Bromate]0-[Bromide]0 concentration space, a region has been located where a bistability is observed between an oscillatory branch and a flow branch. To our knowledge this is the first evidence of bistability in an uncatalyzed bromate oscillator. Some observations have been explained in terms of the skeleton mechanism proposed in the past.

  6. The Effect of Effluent Recirculation in a Semi-Continuous Two-Stage Anaerobic Digestion System

    Directory of Open Access Journals (Sweden)

    Karthik Rajendran

    2013-06-01

    Full Text Available The effect of recirculation in increasing organic loading rate (OLR and decreasing hydraulic retention time (HRT in a semi-continuous two-stage anaerobic digestion system using stirred tank reactor (CSTR and an upflow anaerobic sludge bed (UASB was evaluated. Two-parallel processes were in operation for 100 days, one with recirculation (closed system and the other without recirculation (open system. For this purpose, two structurally different carbohydrate-based substrates were used; starch and cotton. The digestion of starch and cotton in the closed system resulted in production of 91% and 80% of the theoretical methane yield during the first 60 days. In contrast, in the open system the methane yield was decreased to 82% and 56% of the theoretical value, for starch and cotton, respectively. The OLR could successfully be increased to 4 gVS/L/day for cotton and 10 gVS/L/day for starch. It is concluded that the recirculation supports the microorganisms for effective hydrolysis of polyhydrocarbons in CSTR and to preserve the nutrients in the system at higher OLRs, thereby improving the overall performance and stability of the process.

  7. Efficient azo dye decolorization in a continuous stirred tank reactor (CSTR) with built-in bioelectrochemical system.

    Science.gov (United States)

    Cui, Min-Hua; Cui, Dan; Gao, Lei; Cheng, Hao-Yi; Wang, Ai-Jie

    2016-10-01

    A continuous stirred tank reactor with built-in bioelectrochemical system (CSTR-BES) was developed for azo dye Alizarin Yellow R (AYR) containing wastewater treatment. The decolorization efficiency (DE) of the CSTR-BES was 97.04±0.06% for 7h with sludge concentration of 3000mg/L and initial AYR concentration of 100mg/L, which was superior to that of the sole CSTR mode (open circuit: 54.87±4.34%) and the sole BES mode (without sludge addition: 91.37±0.44%). The effects of sludge concentration and sodium acetate (NaAc) concentration on azo dye decolorization were investigated. The highest DE of CSTR-BES for 4h was 87.66±2.93% with sludge concentration of 12,000mg/L, NaAc concentration of 2000mg/L and initial AYR concentration of 100mg/L. The results in this study indicated that CSTR-BES could be a practical strategy for upgrading conventional anaerobic facilities against refractory wastewater treatment.

  8. Acclimation of Methane-fermenting Anaerobic Flocs in a Continuous Flow Stirred Tank Reactor for Treating Beet-sugar Processing Wastewater%制糖废水CSTR甲烷发酵系统的污泥驯化与运行特征

    Institute of Scientific and Technical Information of China (English)

    李建政; 叶菁菁; 王卫娜; 马超; 昌盛

    2008-01-01

    与厌氧颗粒污泥相比,絮状悬浮活性污泥具有传质界面大、速度快的突出优点,但要形成具有完整甲烷发酵过程的微生物生态系统则比较困难.采用连续搅拌槽式反应器(Continuous flow Stirred-Tank Reactor,CSTR),探讨了制糖废水厌氧生物处理系统的絮状污泥驯化与运行特征.研究表明,以有机废水好氧处理工艺的剩余污泥为种泥,在接种量MLVSS为8.52g/L,温度为(35±1)℃,COD浓度为4000mg/L,HRT为18 h,系统pH值保持在6.5~7.5等条件下,CSTR可在84d左右形成具有完整甲烷发酵过程的絮状是浮厌氧活性污泥系统.CSTR甲烷发酵系统对负荷冲击表现出了良好的调节能力,在有机负荷从5.3 kg COD/(m3·d)提高到9.33 kg COD/(m3·d)时,反应系统可在16d内重新达到稳定运行状态,其出水COD可稳定在1100mg/L左右,COD去除率和产气量平均为84%和38L/d,发酵气中的CO2和CH4含量分别为41%和48%.

  9. MODELLING AND CONTROL OF CONTINUOUS STIRRED TANK REACTOR WITH PID CONTROLLER

    Directory of Open Access Journals (Sweden)

    Artur Wodołażski

    2016-09-01

    Full Text Available This paper presents a model of dynamics control for continuous stirred tank reactor (CSTR in methanol synthesis in a three-phase system. The reactor simulation was carried out for steady and transient state. Efficiency ratio to achieve maximum performance of the product per reactor unit volume was calculated. Reactor dynamics simulation in closed loop allowed to received data for tuning PID controller (proportional-integral-derivative. The results of the regulation process allow to receive data for optimum reactor production capacity, along with local hot spots eliminations or temperature runaway.

  10. Enhancement of the performance of an anaerobic sequencing batch reactor treating low-strength wastewater through implementation of a variable stirring rate program

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, J.A.D.; Pinto, A.G.; Ratusznei, S.M.; Gedraite, R. [Instituto Maua de Tecnologia (IMT), Sao Caetano do Sul, SP (Brazil). Escola de Engenharia. Dept. de Engenharia Quimica e de Alimentos]. E-mail: rodrigues@maua.br; Zaiat, M. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Escola de Engenharia. Dept. de Hidraulica e Saneamento

    2004-09-01

    This work focuses on enhancement of the performance of an anaerobic sequencing batch reactor with a six-vertical-blade-disk-turbine impeller, containing granulated biomass treating low-strength synthetic wastewater, through a study of the feasibility of implementing a variable stirring rate program. The reactor was operated at 30 deg C and a six-hour cycle was used to treat approximately 2.0 L of the synthetic substrate with a chemical oxygen demand (COD) of nearly 500 mg/L. Two different stirring rate program were implemented: a constant rate of 50 rpm and a variable rate consisting of 75 rpm for one hour, 50 rpm for four hours and 25 rpm for 0.5 hour. The last 0.5 hour of the cycle was used for the settling step. In both cases, a very short start-up period and unfiltered and filtered substrate removal efficiencies of 81% and 88%, respectively, were attained. However, use of the variable stirring rate enhanced efficiency of the reactor dynamics without impairing biomass morphology, thus resulting in a reduction in the total cycle time and a possible decrease in energy consumption. Additionally, a simplified model of the anaerobic metabolic activity, using apparent kinetic parameters, was proposed as a consecutive first-order kinetic model with substrate and total volatile acid residual concentrations in order to analyze how the variable stirring rate affects reactor performance. (author)

  11. Enhancement of the performance of an anaerobic sequencing batch reactor treating low-strength wastewater through implementation of a variable stirring rate program

    Directory of Open Access Journals (Sweden)

    Rodrigues J. A. D.

    2004-01-01

    Full Text Available This work focuses on enhancement of the performance of an anaerobic sequencing batch reactor with a six-vertical-blade-disk-turbine impeller, containing granulated biomass treating low-strength synthetic wastewater, through a study of the feasibility of implementing a variable stirring rate program. The reactor was operated at 30ºC and a six-hour cycle was used to treat approximately 2.0 L of the synthetic substrate with a chemical oxygen demand (COD of nearly 500 mg/L. Two different stirring rate program were implemented: a constant rate of 50 rpm and a variable rate consisting of 75 rpm for one hour, 50 rpm for four hours and 25 rpm for 0.5 hour. The last 0.5 hour of the cycle was used for the settling step. In both cases, a very short start-up period and unfiltered and filtered substrate removal efficiencies of 81% and 88%, respectively, were attained. However, use of the variable stirring rate enhanced efficiency of the reactor dynamics without impairing biomass morphology, thus resulting in a reduction in the total cycle time and a possible decrease in energy consumption. Additionally, a simplified model of the anaerobic metabolic activity, using apparent kinetic parameters, was proposed as a consecutive first-order kinetic model with substrate and total volatile acid residual concentrations in order to analyze how the variable stirring rate affects reactor performance.

  12. Decolourization of anaerobically digested and polyaluminium chloride treated distillery spentwash in a fungal stirred tank aerobic reactor.

    Science.gov (United States)

    Singh, S S; Dikshit, A K

    2011-11-01

    Decolourization of anaerobically digested and polyaluminium chloride treated distillery spentwash was studied in a fungal stirred tank aerobic reactor without dilution of wastewater. Aspergillus niger isolate IITB-V8 was used as the fungal inoculum. The main objectives of the study were to optimize the stirrer speed for achieving maximum decolourization and to determine the kinetic parameters. A mathematical model was developed to describe the batch culture kinetics. Volumetric oxygen transfer coefficient (k (L) a) was obtained using dynamic method. The maximum specific growth rate and growth yield of fungus were determined using Logistic equation and using Luedeking-Piret equation. 150 rpm was found to be optimum stirrer speed for overall decolourization of 87%. At the optimum stirrer speed, volumetric oxygen transfer coefficient (k (L) a) was 0.4957 min(-1) and the maximum specific growth rate of fungus was 0.224 h(-1). The values of yield coefficient (Y ( x/s)) and maintenance coefficient (m (s)) were found to be 0.48 g cells (g substrate)(-1) and 0.015 g substrate (g cells)(-1) h(-1).

  13. Performance evaluation of a completely stirred anaerobic reactor treating pig manure at a low range of mesophilic conditions.

    Science.gov (United States)

    Guo, Jianbin; Dong, Renjie; Clemens, Joachim; Wang, Wei

    2013-11-01

    Many Chinese biogas plants run in the lower range of mesophilic conditions. This study evaluated the performance of a completely stirred anaerobic reactor treating pig manure at different temperatures (20, 28 and 38°C). The start-up phase of the reactor at 20°C was very long and extremely poor performance was observed with increasing organic loading rate (OLR). At an OLR of 4.3g ODML(-1)d(-1), methane production at 28°C was comparable (3% less) with that at 38°C, but the risk of acidification was high at 28°C. At low OLR (1.3g ODML(-1)d(-1)), the biogas process appeared stable at 28°C and gave same methane yields as compared to the reactor operating at 38°C. The estimated sludge yield at 28°C was 0.065g VSSg(-1) CODremoved, which was higher than that at 38°C (0.016g VSSg(-1) CODremoved). PMID:23842452

  14. Cascade degradation of organic matters in brewery wastewater using a continuous stirred microbial electrochemical reactor and analysis of microbial communities

    OpenAIRE

    Haiman Wang; Youpeng Qu; Da Li; Ambuchi, John J.; Weihua He; Xiangtong Zhou; Jia Liu; Yujie Feng

    2016-01-01

    A continuous stirred microbial electrochemical reactor (CSMER), comprising of a complete mixing zone (CMZ) and microbial electrochemical zone (MEZ), was used for brewery wastewater treatment. The system realized 75.4 ± 5.7% of TCOD and 64.9 ± 4.9% of TSS when fed with brewery wastewater concomitantly achieving an average maximum power density of 304 ± 31 m W m−2. Cascade utilization of organic matters made the CSMER remove a wider range of substrates compared with a continuous stirred tank re...

  15. Continuous-flow stirred-tank reactor 20-L demonstration test: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.D.; Collins, J.L.

    2000-02-01

    One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test using the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required.

  16. Genetic Algorithm Based PID Controller Tuning Approach for Continuous Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    A. Jayachitra

    2014-01-01

    Full Text Available Genetic algorithm (GA based PID (proportional integral derivative controller has been proposed for tuning optimized PID parameters in a continuous stirred tank reactor (CSTR process using a weighted combination of objective functions, namely, integral square error (ISE, integral absolute error (IAE, and integrated time absolute error (ITAE. Optimization of PID controller parameters is the key goal in chemical and biochemical industries. PID controllers have narrowed down the operating range of processes with dynamic nonlinearity. In our proposed work, globally optimized PID parameters tend to operate the CSTR process in its entire operating range to overcome the limitations of the linear PID controller. The simulation study reveals that the GA based PID controller tuned with fixed PID parameters provides satisfactory performance in terms of set point tracking and disturbance rejection.

  17. Immersion and invariance adaptive control of a class of continuous stirred tank reactors

    Institute of Scientific and Technical Information of China (English)

    Gaiyan HONG; Xiangbin LIU; Hongye SU

    2015-01-01

    An immersion and invariance (I&I) manifold based adaptive control algorithm is presented for a class of continuous stirred tank reactors (CSTR) to realize performance-oriented control in this paper. The nonlinear contraction method is combined into the control law design to render the closed-loop CSTR system globally asymptotically stable, firstly. Then, the I&I method is used to form the adaptation law such that the off-the-manifold coordinate (the parameter estimation error) converges to zero using P-monotone property enforced by selecting tuning function in manifold. As a result, the state of the closed-loop CSTR converges to its desired value asymptotically. The simulation is given to illustrate the effectiveness of the presented algorithm.

  18. Thermodynamics of open nonlinear systems far from equilibrium: The continuously stirred tank reactor

    Science.gov (United States)

    Yoshida, Nobuo

    1993-11-01

    A thermodynamic analysis is made of a continuously stirred tank reactor (CSTR) which is fed with ideal gases and in which arbitrary types of chemical reactions take place. For stationary states and oscillatory ones in which limit cycles are established, expressions are derived which describe the change of entropy of the reactor contents relative to the feed in terms of explicit quantities, including the rate of entropy production due to the chemical reactions. This entropy change is shown to be always greater than what would be observed in closed systems under comparable circumstances. It is pointed out that this statement is beyond what the second law of thermodynamics can predict. In previous articles, entropy and entropy production have been found to follow certain systematic trends in some specific models based on the CSTR. That work is compared with the present theory.

  19. Artificial Neural Networks Based Modeling and Control of Continuous Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    R. S.M.N. Malar

    2009-01-01

    Full Text Available Continuous Stirred Tank Reactor (CSTR is one of the common reactors in chemical plant. Problem statement: Developing a model incorporating the nonlinear dynamics of the system warrants lot of computation. An efficient control of the product concentration can be achieved only through accurate model. Approach: In this study, attempts were made to alleviate the above mentioned problem using “Artificial Intelligence” (AI techniques. One of the AI techniques namely Artificial Neural Networks (ANN was used to model the CSTR incorporating its non-linear characteristics. Two nonlinear models based control strategies namely internal model control and direct inverse control were designed using the neural networks and applied to the control of isothermal CSTR. Results: The simulation results for the above control schemes with set point tracking were presented. Conclusion: Results indicated that neural networks can learn accurate models and give good non-linear control when model equations are not known.

  20. Stability criteria and critical runway conditions of propylene glycol manufacture in a continuous stirred tank reactor

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Gómez

    2015-08-01

    Full Text Available Here, a new method for the analysis of the steady state and the safety operational conditions of the hydrolysis of propylene oxide with excess of water, in a Continuous Stirred Tank Reactor (CSTR, was developed. For industrial operational typical values, at first, the generated and removed heat balances were examined. Next, the effect of coolant fluid temperature in the critical ignition and extinction temperatures (TCI and TCE, respectively was analyzed. The influence of the heat exchange parameter (hS on coolant and critical temperatures was also studied. Finally, the steady state operation areas were defined. The existence of multiple stable states was recognized when the heat exchange parameter was in the range 6.636 < hS kJ/(min.K < 11.125. Unstable operation area was located between the TCI and TCE values, restricting the reactor operation area to the low stable temperatures.

  1. CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production.

    Science.gov (United States)

    Ding, Jie; Wang, Xu; Zhou, Xue-Fei; Ren, Nan-Qi; Guo, Wan-Qian

    2010-09-01

    There has been little work on the optimal configuration of biohydrogen production reactors. This paper describes three-dimensional computational fluid dynamics (CFD) simulations of gas-liquid flow in a laboratory-scale continuous stirred-tank reactor used for biohydrogen production. To evaluate the role of hydrodynamics in reactor design and optimize the reactor configuration, an optimized impeller design has been constructed and validated with CFD simulations of the normal and optimized impeller over a range of speeds and the numerical results were also validated by examination of residence time distribution. By integrating the CFD simulation with an ethanol-type fermentation process experiment, it was shown that impellers with different type and speed generated different flow patterns, and hence offered different efficiencies for biohydrogen production. The hydrodynamic behavior of the optimized impeller at speeds between 50 and 70 rev/min is most suited for economical biohydrogen production.

  2. Performance evaluation of a completely stirred anaerobic reactor treating pig manure at a low range of mesophilic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jianbin, E-mail: jianbinguo@gmail.com [Department of Environmental Engineering, Tsinghua University, Beijing 100084 (China); Dong, Renjie [College of Engineering, China Agricultural University, P.O. Box 184, Beijing 100083 (China); Clemens, Joachim [Institute of Crop Science and Resource Reservation (INRES), University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115 Bonn (Germany); Wang, Wei [Department of Environmental Engineering, Tsinghua University, Beijing 100084 (China)

    2013-11-15

    Highlights: • The biogas process can run stably at 20 °C at extremely low OLR after long-term acclimation of bacteria. • A biogas plant running at 28 °C seems as efficient as that operated at 38 °C at low OLR of 1.3 g ODM L{sup −1} d{sup −1}. • Lower temperature operation is inadvisable for the commercial biogas plant running at rather high OLR. • The estimated sludge yield at 28 °C is higher than that at 38 °C. - Abstract: Many Chinese biogas plants run in the lower range of mesophilic conditions. This study evaluated the performance of a completely stirred anaerobic reactor treating pig manure at different temperatures (20, 28 and 38 °C). The start-up phase of the reactor at 20 °C was very long and extremely poor performance was observed with increasing organic loading rate (OLR). At an OLR of 4.3 g ODM L{sup −1} d{sup −1}, methane production at 28 °C was comparable (3% less) with that at 38 °C, but the risk of acidification was high at 28 °C. At low OLR (1.3 g ODM L{sup −1} d{sup −1}), the biogas process appeared stable at 28 °C and gave same methane yields as compared to the reactor operating at 38 °C. The estimated sludge yield at 28 °C was 0.065 g VSS g{sup −1} COD{sub removed,} which was higher than that at 38 °C (0.016 g VSS g{sup −1} COD{sub removed})

  3. A new halogen-free chemical oscillator: the reaction between permanganate ion and ninhydrin in a continuously stirred tank reactor

    Science.gov (United States)

    Treindl, Ľudovít; Nagy, Arpád

    1987-07-01

    The reaction between permanganate ion and ninhydrin in the presence of phosphoric acid in aqueous solution shows sustained oscillations in a continuously stirred tank reactor (CSTR). It exhibits a kinetic bistability between an oscillatory and a stationary state. Our new oscillating system seems to be a second permanganate chemical oscillator, thus broadening the small group of non-halogen-based chemical oscillators.

  4. A mathematical model for multiple hydrogeneration reactions in a continuous stirred three phase slurry reactor with an evaporating solvent

    NARCIS (Netherlands)

    Janssen, H.J.; Westerterp, K.R.; Vos, J.

    1992-01-01

    An experimental study of the catalytic hydorgenation of 2,4-dinitrotoluene (DNT) in a mini-installation with a continuously operated stirred three-phase slurry reactor and an evaporating solvent is discussed. Some characteristic properties of the reactor system and the influence of the operating par

  5. Solidification Structure of Continuous Casting Large Round Billets under Mold Electromagnetic Stirring

    Institute of Scientific and Technical Information of China (English)

    Tao SUN; Feng YUE; Hua-jie WU; Chun GUO; Ying LI; Zhong-cun MA

    2016-01-01

    The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST software.The actual and simulated solidification structures were compared under mold electromagnetic stirring (MEMS)conditions (current of 300 A and frequency of 3 Hz).There-after,the solidification structures of the large round billet were investigated under different superheats,casting speeds,and secondary cooling intensities.Finally,the effect of the MEMS current on the solidification structures was obtained under fixed superheat,casting speed,secondary cooling intensity,and MEMS frequency.The model accurately simulated the actual solidification structures of any steel,regardless of its size and the parameters used in the continuous casting process.The ratio of the central equiaxed grain zone was found to increase with decreasing su-perheat,increasing casting speed,decreasing secondary cooling intensity,and increasing MEMS current.The grain size obviously decreased with decreasing superheat and increasing MEMS current but was less sensitive to the casting speed and secondary cooling intensity.

  6. Growth and Methane Oxidation Rates of Anaerobic Methanotrophic Archaea in a Continuous-Flow Bioreactor

    OpenAIRE

    Peter R. Girguis; Orphan, Victoria J; Hallam, Steven J.; DeLong, Edward F

    2003-01-01

    Anaerobic methanotrophic archaea have recently been identified in anoxic marine sediments, but have not yet been recovered in pure culture. Physiological studies on freshly collected samples containing archaea and their sulfate-reducing syntrophic partners have been conducted, but sample availability and viability can limit the scope of these experiments. To better study microbial anaerobic methane oxidation, we developed a novel continuous-flow anaerobic methane incubation system (AMIS) that...

  7. [Research on change process of nitrosation granular sludge in continuous stirred-tank reactor].

    Science.gov (United States)

    Yin, Fang-Fang; Liu, Wen-Ru; Wang, Jian-Fang; Wu, Peng; Shen, Yao-Liang

    2014-11-01

    In order to investigate the effect of different types of reactors on the nitrosation granular sludge, a continuous stirred-tank reactor (CSTR) was studied, using mature nitrosation granular sludge cultivated in sequencing batch reactor (SBR) as seed sludge. Results indicated that the change of reactor type and influent mode could induce part of granules to lose stability with gradual decrease in sludge settling ability during the initial period of operation. However, the flocs in CSTR achieved fast granulation in the following reactor operation. In spite of the changes of particle size distribution, e. g. the decreasing number of granules with diameter larger than 2.5 mm and the increasing number of granules with diameter smaller than 0.3 mm, granular sludge held the absolute predominance of sludge morphology in CSTR during the entire experimental period. Moreover, results showed that the change of reactor type and influent mode didn't affect the nitrite accumulation rate which was still kept at about 85% in effluent. Additionally, the average activity of the sludge in CSTR was stronger than that of the seed sludge, because the newly generated small particles in CSTR had higher specific reactive activity than the larger granules.

  8. Removal of phosphorus from aqueous solution by Posidonia oceanica fibers using continuous stirring tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wahab, Mohamed Ali, E-mail: waheb_med@yahoo.fr [University of Carthage, Water Research and Technologies Centre (CERTE), Wastewater Treatment and Recycling Laboratory, B.P. 273, 8020 Soliman (Tunisia); Hassine, Rafik Ben [International Environmental Green Technology (IGET) (Tunisia); Jellali, Salah, E-mail: salah.jallali@certe.rnrt.tn [University of Carthage, Water Research and Technologies Centre (CERTE), Wastewater Treatment and Recycling Laboratory, B.P. 273, 8020 Soliman (Tunisia)

    2011-05-15

    The present study aims to develop a new potentially low-cost, sustainable treatment approach to soluble inorganic phosphorus removal from synthetic solutions and secondary wastewater effluents in which a plant waste (Posidonia oceanica fiber: POF) is used for further agronomic benefit. Dynamic flow tests using a continuous stirred tank reactor (CSTR) were carried out to study the effect of initial concentration of phosphorus, amount of adsorbent, feeding flow rate and anions competition. The experimental results showed that the removal efficiency of phosphorus from synthetic solutions is about 80% for 10 g L{sup -1} of POF. In addition, the variation of the initial concentration of phosphorus from 8 to 50 mg L{sup -1} increased the adsorption capacity from 0.99 to 3.03 mg g{sup -1}. The use of secondary treated wastewater showed the presence of competition phenomenon between phosphorus and sulphate which could be overcoming with increasing the sorptive surface area and providing more adsorption sites when increasing the adsorbent dosage of POF. Compared with columns studies, this novel CSTR system showed more advantages for the removal of soluble phosphorus as a tertiary treatment of urban secondary effluents with more adsorption efficiency and capacity, in addition to the prospect use of saturated POF with nutriment as fertilizer and compost.

  9. Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation

    International Nuclear Information System (INIS)

    Highlights: ► Apple waste (AW) was co-digested with swine manure (SM). ► Mixture of AW and SM produced a higher biogas yield than SM only. ► Mixture of AW and SM produced a higher biogas yield at 55 °C than at 36.5 °C. ► Modified Gompertz model best fitted to the substrates used. ► Positive synergetic effect up to 33% AW during continuous digestion. -- Abstract: This study evaluated the performance of anaerobic digesters using a mixture of apple waste (AW) and swine manure (SM). Tests were performed using both batch and continuous digesters. The batch test evaluated the gas potential, gas production rate of the AW and SM (Experiment I), and the effect of AW co-digestion with SM (33:67,% volatile solids (VSs) basis) (Experiment II) at mesophilic and thermophilic temperatures. The first-order kinetic model and modified Gompertz model were also evaluated for methane yield. The continuous test evaluated the performance of a single stage completely stirred tank reactor (CSTR) with different mixture ratios of AW and SM at mesophilic temperature. The ultimate biogas and methane productivity of AW in terms of total chemical oxygen demand (TCOD) was determined to be 510 and 252 mL/g TCOD added, respectively. The mixture of AW and SM improved the biogas yield by approximately 16% and 48% at mesophilic and thermophilic temperatures, respectively, compared to the use of SM only, but no significant difference was found in the methane yield. The difference between the predicted and measured methane yield was higher with a first order kinetic model (4.6–18.1%) than with a modified Gompertz model (1.2–3.4%). When testing continuous digestion, the methane yield increased from 146 to 190 mL/g TCOD added when the AW content in the feed was increased from 25% to 33% (VS basis) at a constant organic loading rate (OLR) of 1.6 g VS/L/d and a hydraulic retention time (HRT) of 30 days. However, the total volatile fatty acids (TVFA) accumulation increased rapidly and the p

  10. Dynamical Analysis of a Continuous Stirred-Tank Reactor with the Formation of Biofilms for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Karen López Buriticá

    2015-01-01

    Full Text Available This paper analyzes the dynamics of a system that models the formation of biofilms in a continuous stirred-tank reactor (CSTR when it is utilized for wastewater treatment. The growth rate of the microorganisms is modeled using two different kinetics, Monod and Haldane kinetics, with the goal of studying the influence of each in the system. The equilibrium points are identified through a stability analysis, and the bifurcations found are characterized.

  11. The Reduced Rank of Ensemble Kalman Filter to Estimate the Temperature of Non Isothermal Continue Stirred Tank Reactor

    OpenAIRE

    Erna Apriliani; Dieky Adzkiya; Arief Baihaqi

    2011-01-01

    Kalman filter is an algorithm to estimate the state variable of dynamical stochastic system. The square root ensemble Kalman filter is an modification of Kalman filter. The square root ensemble Kalman filter is proposed to keep the computational stability and reduce the computational time. In this paper we study the efficiency of the reduced rank ensemble Kalman filter. We apply this algorithm to the non isothermal continue stirred tank reactor problem. We decompose the covariance of the ense...

  12. Control of the sulfide (S2-) concentration for optimal zinc removal by sulfide precipitation in a continuously stirred tank reactor

    NARCIS (Netherlands)

    Veeken, A.H.M.; Akoto, L.; Pol, L.W.H.; Weijma, J.

    2003-01-01

    Precipitation of Zn2+ with S2− was studied at room temperature in a continuously stirred tank reactor of 0.5 l to which solutions of ZnSO4 (800–5800 mg Zn2+/l) and Na2S were supplied. The pH was controlled at 6.5 and S2− concentration in the reactor was controlled at set point values ranging from 3.

  13. The nonequilibrium electromotive force. II. Theory for a continuously stirred tank reactor

    Science.gov (United States)

    Keizer, Joel

    1987-10-01

    In previous work [J. Keizer, J. Chem. Phys. 82, 2751 (1985)] we used statistical nonequilibrium thermodynamics to predict a non-Nernstian component to the electromotive force (EMF) for half-reactions involving reactants at nonequilibrium steady states. In this paper we present a simple theory for calculating the nonequilibrium component of the EMF based on the elementary transport processes occurring in a continuously stirred tank reactor (CSTR). The calculations utilize the density-density correlation function, which is obtained from the statistical theory of nonequilibrium thermodynamics. This gives rise to an expression for the second partial derivatives of the generalized entropy, or sigma function, which is used to calculate generalized chemical potentials. The generalized chemical potentials are related to the EMF through a generalization of the Nernst equation. The calculations presented here depend on the residence time in the CSTR, reaction rate constants, feed line concentrations in the CSTR, and the diffusion constants of reactants and products. A characteristic diffusion length is used to represent the length scale below which turbulent mixing effects are not important. Calculations with the theory are carried out for several different reaction mechanisms, including A+B⇄C; A+B⇄C, D+E⇄B; A+B⇄2B; and A+B→C+D, A+D→C+E. Values of the nonequilibrium EMF depend on the mechanism as well as all of the transport parameters cited above. For a plausible choice of the diffusion length, corrections to the Nernst formula can be as large as 10-15 mV. Specific calculations for the reaction of Fe2+ with S2O2-8 are shown in the preceding paper to agree with experimental measurements on this system in a CSTR.

  14. Optimization of mechanical stirring technology in anaerobic fermentation treating algae and pilot trial validation%蓝藻厌氧发酵产沼气机械搅拌工艺优化及中试验证

    Institute of Scientific and Technical Information of China (English)

    余亚琴; 吴义锋

    2014-01-01

    Water pollution caused by the excessive growth of blue-green algae has become a growing environmental problem. One current approach to reducing the algae in Taihu Lake is to refloat the algae after a bloom has occurred. It can remove nitrogen and phosphorus in the lake simultaneously. The amount of algae-laden water collected from Taihu Lake can be up to approximately several thousand tons in wet weight per day. And they needs timely and effective treatment. The algae can be effectively degraded and produced into methane by anaerobic fermentation technology. The algae is easy to float and crust in the reactor, thus affecting the efficiency of the gas production and reducing the processing effect of the reactor. In anaerobic reactors, proper stirring can prevent algae floating and facilitate contact between the algae and other microbes, thereby improving gas production efficiency. This paper designed experimental device for optimizing the stirring of blue-green algae anaerobic fermentation. The device was made of double transparent glass with a working volume of 3 L. The device was equipped with an adjustable speed motor, which control the stirring interval, stirring duration and stirring cycle. Response surface methodology (RSM) was employed to optimize the stirring conditions. Simultaneously, the pilot study was adopted to provide a support of the best stirring condition of blue-green algae anaerobic fermentation. In the pilot study, protease content was assayed to characterize hydrolysis activity, TTC-dehydrogenase content was measured to characterize microbial enzyme activity, and coenzyme F420 content showed the activity of methanogenic anaerobes. The experimental results showed that the algae anaerobic fermentation was influenced by stirring interval, stirring duration, and stirring cycle. The correlation coefficient of the RSM regression equation was 0.98. RSM revealed the optimized stirring parameters for algae anaerobic fermentation as follows:Stirring

  15. Relationships between chemical oxygen demand (COD) components and toxicity in a sequential anaerobic baffled reactor/aerobic completely stirred reactor system treating Kemicetine

    International Nuclear Information System (INIS)

    In this study the interactions between toxicity removals and Kemicetine, COD removals, intermediate products of Kemicetine and COD components (CODs originating from slowly degradable organics, readily degradable organics, inert microbial products and from the inert compounds) were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system with a real pharmaceutical wastewater. The total COD and Kemicetine removal efficiencies were 98% and 100%, respectively, in the sequential ABR/CSTR systems. 2-Amino-1 (p-nitrophenil)-1,3 propanediol, l-p-amino phenyl, p-amino phenol and phenol were detected in the ABR as the main readily degradable inter-metabolites. In the anaerobic ABR reactor, the Kemicetin was converted to corresponding inter-metabolites and a substantial part of the COD was removed. In the aerobic CSTR reactor the inter-metabolites produced in the anaerobic reactor were completely removed and the COD remaining from the anerobic reactor was biodegraded. It was found that the COD originating from the readily degradable organics did not limit the anaerobic degradation process, while the CODs originating from the slowly degradable organics and from the inert microbial products significantly decreased the anaerobic ABR reactor performance. The acute toxicity test results indicated that the toxicity decreased from the influent to the effluent of the aerobic CSTR reactor. The ANOVA test statistics showed that there was a strong linear correlation between acute toxicity, CODs originating from the slowly degradable organics and inert microbial products. A weak correlation between acute toxicity and CODs originating from the inert compounds was detected.

  16. Relationships between chemical oxygen demand (COD) components and toxicity in a sequential anaerobic baffled reactor/aerobic completely stirred reactor system treating Kemicetine.

    Science.gov (United States)

    Sponza, Delia Teresa; Demirden, Pinar

    2010-04-15

    In this study the interactions between toxicity removals and Kemicetine, COD removals, intermediate products of Kemicetine and COD components (CODs originating from slowly degradable organics, readily degradable organics, inert microbial products and from the inert compounds) were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system with a real pharmaceutical wastewater. The total COD and Kemicetine removal efficiencies were 98% and 100%, respectively, in the sequential ABR/CSTR systems. 2-Amino-1 (p-nitrophenil)-1,3 propanediol, l-p-amino phenyl, p-amino phenol and phenol were detected in the ABR as the main readily degradable inter-metabolites. In the anaerobic ABR reactor, the Kemicetin was converted to corresponding inter-metabolites and a substantial part of the COD was removed. In the aerobic CSTR reactor the inter-metabolites produced in the anaerobic reactor were completely removed and the COD remaining from the anerobic reactor was biodegraded. It was found that the COD originating from the readily degradable organics did not limit the anaerobic degradation process, while the CODs originating from the slowly degradable organics and from the inert microbial products significantly decreased the anaerobic ABR reactor performance. The acute toxicity test results indicated that the toxicity decreased from the influent to the effluent of the aerobic CSTR reactor. The ANOVA test statistics showed that there was a strong linear correlation between acute toxicity, CODs originating from the slowly degradable organics and inert microbial products. A weak correlation between acute toxicity and CODs originating from the inert compounds was detected.

  17. Dynamic characteristics of Paracoccus denitrificans in alternate aerobic-anaerobic continuous cultivations

    Energy Technology Data Exchange (ETDEWEB)

    Waki, T.; Kawato, Y.; Shimatani, Y.; Ichikawa, K.

    1980-06-01

    The alternate aerobic-anaerobic continuous culture system was used to analyze the adaptation phenomena of Paracoccus denitrificans quantitatively, which will be observed in a single sludge nitrification-denitrification system. After the initial rapid reduction of nitrate in the anaerobic period, a rather high rate of nitrate reduction was maintained. The lag of adaptation to each condition was short and this was explained by the presence of large amounts of the cytochromes and enzymes required for both aerobic and nitrate/nitrite respirations. When the alternation cycle of aerobic and anaerobic conditions was short, the nitrate concentration was lower than that in anaerobic continuous cultures at the same dilution rate. The apparent specific rate of nitrate reduction was almost the same as that in anaerobic continuous cultures when the alternation cycle was short. On the other hand, the nitrite accumulated at high concentrations and the apparent specific rate of nitrite reduction was very low. The actual reduction rate of nitrate in the anaerobic periods was found to be unaffected by the length of the aerobic periods, however, the actual reduction rate of nitrite was highly affected by the aerobic periods. By considering the initial rapid reduction of nitrate in the alternate aerobic-anaerobic system, it was suggested that the higher recycling ratio which corresponds to the shorter alternation cycle, was effective in increasing the efficiency of nitrogen removal in the single sludge nitrification-denitrification system.

  18. Hydrolysis-acidogenesis of food waste in solid-liquid-separating continuous stirred tank reactor (SLS-CSTR) for volatile organic acid production.

    Science.gov (United States)

    Karthikeyan, Obulisamy Parthiba; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-01-01

    The use of conventional continuous stirred tank reactor (CSTR) can affect the methane (CH4) recovery in a two-stage anaerobic digestion of food waste (FW) due to carbon short circuiting in the hydrolysis-acidogenesis (Hy-Aci) stage. In this research, we have designed and tested a solid-liquid-separating CSTR (SLS-CSTR) for effective Hy-Aci of FW. The working conditions were pH 6 and 9 (SLS-CSTR-1 and -2, respectively); temperature-37°C; agitation-300rpm; and organic loading rate (OLR)-2gVSL(-1)day(-1). The volatile fatty acids (VFA), enzyme activities and bacterial population (by qPCR) were determined as test parameters. Results showed that the Hy-Aci of FW at pH 9 produced ∼35% excess VFA as compared to that at pH 6, with acetic and butyric acids as major precursors, which correlated with the high enzyme activities and low lactic acid bacteria. The design provided efficient solid-liquid separation there by improved the organic acid yields from FW.

  19. Comparison of bioleaching of heavy metals from municipal sludge using indigenous sulfur and iron-oxidizing microorganisms: continuous stirred tank reactor studies.

    Science.gov (United States)

    Pathak, Ashish; Kothari, Richa; Dastidar, M G; Sreekrishnan, T R; Kim, Dong J

    2014-01-01

    A comparative study was undertaken using indigenous sulfur-oxidizing microorganisms and iron-oxidizing microorganisms in separate 12 litre continuous stirred tank reactors (CSTRs) for solubilization of heavy metals from anaerobically digested sewage sludge. The CSTRs were operated at hydraulic retention times (HRTs) ranging from 4 to 10 days using sewage sludge feed having near neutral pH. The pH, oxidation-reduction potential (ORP) and solubilization efficiency of metals were found to be highly dependent on HRT and an increase in HRT led to higher solubilization of metals in both the CSTRs. In both the CSTRs, the CSTR operated with sulfur-oxidizing microorganisms at an HRT of 8 days was found to be optimum in solubilizing 58% Cu, 52% Ni, 72% Zn and 43% Cu from the sludge. The nutrient value, nitrogen and phosphorus of bioleached sludge was also conserved (<20% loss) at 8 days HRT. The metals fractionation study conducted using BCR sequential extraction procedure suggested that most of the metals remaining in the bioleached sludge were in the more stable fractions (F3 and F4) and, therefore, can be safely apply as a fertilizer on land.

  20. Comparison of bioleaching of heavy metals from municipal sludge using indigenous sulfur and iron-oxidizing microorganisms: continuous stirred tank reactor studies.

    Science.gov (United States)

    Pathak, Ashish; Kothari, Richa; Dastidar, M G; Sreekrishnan, T R; Kim, Dong J

    2014-01-01

    A comparative study was undertaken using indigenous sulfur-oxidizing microorganisms and iron-oxidizing microorganisms in separate 12 litre continuous stirred tank reactors (CSTRs) for solubilization of heavy metals from anaerobically digested sewage sludge. The CSTRs were operated at hydraulic retention times (HRTs) ranging from 4 to 10 days using sewage sludge feed having near neutral pH. The pH, oxidation-reduction potential (ORP) and solubilization efficiency of metals were found to be highly dependent on HRT and an increase in HRT led to higher solubilization of metals in both the CSTRs. In both the CSTRs, the CSTR operated with sulfur-oxidizing microorganisms at an HRT of 8 days was found to be optimum in solubilizing 58% Cu, 52% Ni, 72% Zn and 43% Cu from the sludge. The nutrient value, nitrogen and phosphorus of bioleached sludge was also conserved (sequential extraction procedure suggested that most of the metals remaining in the bioleached sludge were in the more stable fractions (F3 and F4) and, therefore, can be safely apply as a fertilizer on land. PMID:24117088

  1. Hydrolysis-acidogenesis of food waste in solid-liquid-separating continuous stirred tank reactor (SLS-CSTR) for volatile organic acid production.

    Science.gov (United States)

    Karthikeyan, Obulisamy Parthiba; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-01-01

    The use of conventional continuous stirred tank reactor (CSTR) can affect the methane (CH4) recovery in a two-stage anaerobic digestion of food waste (FW) due to carbon short circuiting in the hydrolysis-acidogenesis (Hy-Aci) stage. In this research, we have designed and tested a solid-liquid-separating CSTR (SLS-CSTR) for effective Hy-Aci of FW. The working conditions were pH 6 and 9 (SLS-CSTR-1 and -2, respectively); temperature-37°C; agitation-300rpm; and organic loading rate (OLR)-2gVSL(-1)day(-1). The volatile fatty acids (VFA), enzyme activities and bacterial population (by qPCR) were determined as test parameters. Results showed that the Hy-Aci of FW at pH 9 produced ∼35% excess VFA as compared to that at pH 6, with acetic and butyric acids as major precursors, which correlated with the high enzyme activities and low lactic acid bacteria. The design provided efficient solid-liquid separation there by improved the organic acid yields from FW. PMID:26512860

  2. Extended continuous-flow stirred-tank reactor (ECSTR) as a simple model of life under thermodynamically open conditions

    Science.gov (United States)

    Takinoue, Masahiro; Ma, Yue; Mori, Yoshihito; Yoshikawa, Kenichi

    2009-07-01

    A continuous-flow stirred-tank reactor (CSTR) is a vital tool for investigating the nonlinear dynamics of chemical systems. This report proposes an extended CSTR (ECSTR) inspired by active and passive transports through a closed membrane in living systems. In addition to the externally-controlled flow in a conventional CSTR, we introduce passive diffusion through a membrane into the ECSTR. This extension allows us to control the chemical dynamics with a larger parameter-dimension. Numerical analyses show that the ECSTR can expand an oscillatory region in the parameter space and can convert a non-oscillatory chemical system to an oscillatory system.

  3. Data Pre-Processing Method to Remove Interference of Gas Bubbles and Cell Clusters During Anaerobic and Aerobic Yeast Fermentations in a Stirred Tank Bioreactor

    Science.gov (United States)

    Princz, S.; Wenzel, U.; Miller, R.; Hessling, M.

    2014-11-01

    One aerobic and four anaerobic batch fermentations of the yeast Saccharomyces cerevisiae were conducted in a stirred bioreactor and monitored inline by NIR spectroscopy and a transflectance dip probe. From the acquired NIR spectra, chemometric partial least squares regression (PLSR) models for predicting biomass, glucose and ethanol were constructed. The spectra were directly measured in the fermentation broth and successfully inspected for adulteration using our novel data pre-processing method. These adulterations manifested as strong fluctuations in the shape and offset of the absorption spectra. They resulted from cells, cell clusters, or gas bubbles intercepting the optical path of the dip probe. In the proposed data pre-processing method, adulterated signals are removed by passing the time-scanned non-averaged spectra through two filter algorithms with a 5% quantile cutoff. The filtered spectra containing meaningful data are then averaged. A second step checks whether the whole time scan is analyzable. If true, the average is calculated and used to prepare the PLSR models. This new method distinctly improved the prediction results. To dissociate possible correlations between analyte concentrations, such as glucose and ethanol, the feeding analytes were alternately supplied at different concentrations (spiking) at the end of the four anaerobic fermentations. This procedure yielded low-error (anaerobic) PLSR models for predicting analyte concentrations of 0.31 g/l for biomass, 3.41 g/l for glucose, and 2.17 g/l for ethanol. The maximum concentrations were 14 g/l biomass, 167 g/l glucose, and 80 g/l ethanol. Data from the aerobic fermentation, carried out under high agitation and high aeration, were incorporated to realize combined PLSR models, which have not been previously reported to our knowledge.

  4. Problem Based Learning (PBL: Analysis of Continuous Stirred Tank Chemical Reactors with a Process Control Approach

    Directory of Open Access Journals (Sweden)

    Regalado-Méndez Alejandro

    2010-10-01

    Full Text Available This work is focused on a project that integrates the curriculum such as thermodynamic, chemical reactorengineering, linear algebra, differential equations and computer programming. The purpose is thatstudents implement the most knowledge and tools to analyse the stirred tank chemical reactor as a simpledynamic system. When the students finished this practice they should have learned about analysis ofdynamic system through bifurcation analysis, hysteresis phenomena, find equilibrium points, stabilitytype, and phase portrait. Once the steps were accomplished, we concluded that the purpose wassatisfactorily reached with an increment in creative ability. The student showed a bigger interesting inthis practice, since they worked in group. The most important fact is that the percentage of failure amongstudents was 10%. Finally, using alternative teaching-learning process improves the Mexican systemeducation.

  5. Effect of continuous oleate addition on microbial communities involved in anaerobic digestion process

    DEFF Research Database (Denmark)

    Baserba, Manel Garrido; Angelidaki, Irini; Karakashev, Dimitar Borisov

    2012-01-01

    In the present study, the microbial diversity in anaerobic reactors, continuously exposed to oleate, added to a manure reactor influent, was investigated. Relative changes in archaeal community were less remarkable in comparison to changes in bacterial community indicating that dominant archaeal...

  6. Linear and Non-linear Multi-Input Multi-Output Model Predictive Control of Continuous Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    Muayad Al-Qaisy

    2013-04-01

    Full Text Available In this article, multi-input multi-output (MIMO linear model predictive controller (LMPC based on state space model and nonlinear model predictive controller based on neural network (NNMPC are applied on a continuous stirred tank reactor (CSTR. The idea is to have a good control system that will be able to give optimal performance, reject high load disturbance, and track set point change. In order to study the performance of the two model predictive controllers, MIMO Proportional-Integral-Derivative controller (PID strategy is used as benchmark. The LMPC, NNMPC, and PID strategies are used for controlling the residual concentration (CA and reactor temperature (T. NNMPC control shows a superior performance over the LMPC and PID controllers by presenting a smaller overshoot and shorter settling time.

  7. Stochastic resonance in the presence or absence of external signal in the continuous stirred tank reactor system

    Science.gov (United States)

    Hou, Zhonghuai; Xin, Houwen

    1999-07-01

    A two variable model, which has been proposed to describe a first-order, exothermic, irreversible reaction A→B carried out in a continuous stirred tank reactor (CSTR), is investigated when the control parameter is modulated by random and/or periodic forces. Within the bistable region where a limit cycle and a stable node coexist, stochastic resonance (SR) is observed when both random and periodic modulations are present. In the absence of periodic external signal noise induced coherent oscillations (NICO) appear when the control parameter is randomly modulated near the supercritical Hopf bifurcation point. In addition, the NICO-strength goes through a maximum with the increment of the noise intensity, characteristic for the occurrence of internal signal stochastic resonance (ISSR).

  8. Numerical investigation of the influence of kinetics and shape factor on barium sulfate precipitation in a continuous stirred tank

    Institute of Scientific and Technical Information of China (English)

    Zheng WANG; ZaiSha MAO; Chao YANG; Qinghua ZHANG; Jingcai CHENG

    2009-01-01

    The effect of kinetics and shape factor on barium sulfate precipitation in a continuous stirred tank has been investigated numerically through solving the standard momentum and mass transport equations in combination with the moment equations for crystal population balance. The numerical method was validated with the literature data. The simulated results include the distribution of the local supersaturation ratio in the reactor, the mean crystal size, and the coefficient of variation. The simulation results show that the value of shape factor used in the model affected greatly the mean crystal size and the moments of the crystal size distribution. The influence of the kinetic expressions on the simulation is also analyzed. It is important to investigate the relationship of the shape factor with the precipitator type and other operation conditions to obtain reliable simulation results and suitable kinetic equations of crystal nucleation and growth rates.

  9. Removal of oxytetracycline (OTC) in a synthetic pharmaceutical wastewater by a sequential anaerobic multichamber bed reactor (AMCBR)/completely stirred tank reactor (CSTR) system: biodegradation and inhibition kinetics.

    Science.gov (United States)

    Sponza, Delia Teresa; Çelebi, Hakan

    2012-01-01

    An anaerobic multichamber bed reactor (AMCBR) was effective in removing both molasses-chemical oxygen demand (COD), and the antibiotic oxytetracycline (OTC). The maximum COD and OTC removals were 99% in sequential AMCBR/completely stirred tank reactor (CSTR) at an OTC concentration of 300 mg L(-1). 51%, 29% and 9% of the total volatile fatty acid (TVFA) was composed of acetic, propionic acid and butyric acids, respectively. The OTC loading rates at between 22.22 and 133.33 g OTC m(-3) d(-1) improved the hydrolysis of molasses-COD (k), the maximum specific utilization of molasses-COD (k(mh)) and the maximum specific utilization rate of TVFA (k(TVFA)). The direct effect of high OTC loadings (155.56 and -177.78 g OTC m(-3) d(-1)) on acidogens and methanogens were evaluated with Haldane inhibition kinetic. A significant decrease of the Haldane inhibition constant was indicative of increases in toxicity at increasing loading rates.

  10. Anaerobic treatment of sludge: focusing on reduction of LAS concentration in sludge

    DEFF Research Database (Denmark)

    Haagensen, Frank; Mogensen, Anders Skibsted; Angelidaki, Irini;

    2002-01-01

    Anaerobic degradation of linear alkylbenzene sulfonates (LAS) was tested in continuous stirred tank reactors (CSTR). LAS12 was used as a model compound and was spiked on sewage sludge. The experiments clearly showed that transformation of LAS12 occurred under anaerobic conditions. The degree...

  11. COMPUTER SIMULATION OF CONTINUOUS ELECTROMAGNETIC STIRRING FOR MAKING RHEOLOGIC SEMI-SOLID SLURRY OF ZL112Y ALUMINUM ALLOY

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To realize the technology of fabricating the rheologic semi-solid slurry of ZL112Y aluminum alloy via continues electromagnetic stirring process, ANSYS software was used to simulate electromagnetic force field and fluid velocity field in the alloy melt in a crucible tube in three coils. In the first section of the paper, eletromagnetic force field and fluid velocity field caused by single coil were simulated. The result of this simulation gives an average velocity of 3.2 cm/s and it is called critical velocity because a fluid velocity over it will cause a fine and spherical structure of solid primary a in a semi-solid melt. And, from this result, a reasonable temperature of semi-solid of the alloy and an electrical current intensity were established. The electrical current intensity of the result of this simulation corresponded to the current intensity used in a practice experiment, in which the primary a was obviously refined and sphericized. Based on this simulation of single coil electromagnetic stirring, in the second section of the paper, eletromagnetic force field and fluid velocity field caused by three coils were simulated. The result of the simulation shows that, 1) there is a semi-solid zone of 32 mm from bottom of the crucible tube to the upper; 2) the electrical current intensities of three coils of 400 A, 600 A, and 400 A, which were set to top range, middle range and bottom range of the tube, respectively, were the optimum parameters of electromagnetic current intensity under the condition of this investigation; and 3) under effect of these electromagnetic current intensity, the fluid velocities of the melt in the tube were 6.3 cm/s in top range, 3.75 cm/s in middle range, and 3.9 cm/s in bottom range of it, respectively.

  12. Molecular weight​/branching distribution modeling of low-​density-​polyethylene accounting for topological scission and combination termination in continuous stirred tank reactor

    NARCIS (Netherlands)

    N. Yaghini; P.D. Iedema

    2014-01-01

    We present a comprehensive model to predict the molecular weight distribution (MWD),(1) and branching distribution of low-density polyethylene (IdPE),(2) for free radical polymerization system in a continuous stirred tank reactor (CSTR).(3) The model accounts for branching, by branching moment or ps

  13. The catalytic hydrogenation of 2,4-dinitrotoluene in a continuous stirred three-phase slurry reactor with an evaporting solvent

    NARCIS (Netherlands)

    Westerterp, K.R.; Janssen, H.J.; Kwast, van der H.J.

    1992-01-01

    An experimental study of the catalytic hydorgenation of 2,4-dinitrotoluene (DNT) in a mini-installation with a continuously operated stirred three-phase slurry reactor and an evaporating solvent is discussed. Some characteristic properties of the reactor system and the influence of the operating par

  14. Effects of casting speed on microstructure and segregation of electromagnetically stirred Aluminum alloy in continuous casting process

    Institute of Scientific and Technical Information of China (English)

    LEE Dock-Young; KANG Suk-Won; CHO Duck-Ho; KIM Ki-Bae

    2006-01-01

    Recently, a semi-solid metal processing has been acknowledged as a cost-effective technique to be able to manufacture high quality product for the transportation industry.In this study a hypo-eutectic Al alloy was fabricated by means of an electromagnetic stirrer in continuous casting process and the microstructural change during solidification due to a fluid flow by electromagnetic stirring was examined.Due to the forced fluid flow during solidification a dendritic phase of primary α phase of Al alloy was turned into a globular phase, which can make the Al alloy get a thixotropic behavior in the semi-solid region.In order to establish the quantitative relationship between microstructure and the process parameters, the morphology shape, a silicon distribution and a size of primary α phase were observed according to casting speed in continuous casting machine.The primary α phase was turned into the degenerate dendrites approaching a spherical configuration with increasing casting speed.The fine-grained and equiaxed microstructure appeared at higher casting speed.A segregation behavior of Si element was declined with increasing casting speed and a very uniform distribution of Si element was observed on the billet at a casting speed of 600 mm·min-1.A thickness of the solidifying shell of the billet was shortened with increasing the casting speed.

  15. Modelling of Two-Stage Anaerobic Treating Wastewater from a Molasses-Based Ethanol Distillery with the IWA Anaerobic Digestion Model No.1

    OpenAIRE

    Kittikhun Taruyanon; Sarun Tejasen

    2010-01-01

    This paper presents the application of ADM1 model to simulate the dynamic behaviour of a two-stage anaerobic treatment process treating the wastewater generated from the ethanol distillery process. The laboratory-scale process comprised an anaerobic continuous stirred tank reactor (CSTR) and an upflow anaerobic sludge blanket (UASB) connecting in series, was used to treat wastewater from the ethanol distillery process. The CSTR and UASB hydraulic retention times (HRT) were 12 and 70 hours, re...

  16. Ammonia tolerant enriched methanogenic cultures as bioaugmentation inocula to alleviate ammonia inhibition in continuous anaerobic reactors

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Wang, Han; Angelidaki, Irini

    tolerant methanogenic culture as potential bioaugmentation inoculum in a continuous stirred tank reactor (CSTR) operating under “inhibited steady-state”, triggered by high ammonia levels (5 g NH4+-N L-1). The results of the current study established for the first time that bioaugmentation of an enriched...... ammonia tolerant methanogen in a CSTR reactor could completely alleviate the ammonia inhibitory effect. Furthermore, it was found that bioaugmentation with the enriched culture resulted in 25% higher methane production compared to when the bioaugmentation was achieved with pure methanogenic strains....... The bioaugmentation was performed without pausing the continuous operation of the CSTR reactor and without excluding the ammonia-rich substrate from the feedstock. Thus, bioaugmentation with mixed methanogenic cultures could potentially support the development of an efficient and cost-effective biomethanation process...

  17. Ammonia tolerant enriched methanogenic cultures as bioaugmentation inocula to alleviate ammonia inhibition in continuous anaerobic reactors

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Wang, Han; Angelidaki, Irini

    . The bioaugmentation was performed without pausing the continuous operation of the CSTR reactor and without excluding the ammonia-rich substrate from the feedstock. Thus, bioaugmentation with mixed methanogenic cultures could potentially support the development of an efficient and cost-effective biomethanation process...... of a pure culture, to be used as bioaugmentation inoculum, poses technical difficulties due to the required sterile conditions and the special growing media. On the contrary acclimatized enrichment methanogenic cultures have lower requirements to sterility. In the present study, we used an enriched ammonia...... tolerant methanogenic culture as potential bioaugmentation inoculum in a continuous stirred tank reactor (CSTR) operating under “inhibited steady-state”, triggered by high ammonia levels (5 g NH4+-N L-1). The results of the current study established for the first time that bioaugmentation of an enriched...

  18. Dynamic nonlinear feedback for temperature control of continuous stirred reactor with complex behavior

    OpenAIRE

    Pablo A. López Pérez; Ricardo Aguilar‐López

    2009-01-01

    The main objective of this work is to present an alternative methodology for the design of a class of integral high order slidingmodecontroller applied to a class of continuous chemical reactor with complex behavior for temperature tracking purposes.The proposed design is based on the differential geometry framework, where the named reaching trajectory contains a highorder sliding mode term in order to diminish chattering. Considering that the proposed technique is model based, an observerbas...

  19. Continuous Drip Flow System to Develop Biofilm of E. faecalis under Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    Ana Maria Gonzalez

    2014-01-01

    Full Text Available Purpose. To evaluate a structurally mature E. faecalis biofilm developed under anaerobic/dynamic conditions in an in vitro system. Methods. An experimental device was developed using a continuous drip flow system designed to develop biofilm under anaerobic conditions. The inoculum was replaced every 24 hours with a fresh growth medium for up to 10 days to feed the system. Gram staining was done every 24 hours to control the microorganism purity. Biofilms developed under the system were evaluated under the scanning electron microscope (SEM. Results. SEM micrographs demonstrated mushroom-shaped structures, corresponding to a mature E. faecalis biofilm. In the mature biofilm bacterial cells are totally encased in a polymeric extracellular matrix. Conclusions. The proposed in vitro system model provides an additional useful tool to study the biofilm concept in endodontic microbiology, allowing for a better understanding of persistent root canal infections.

  20. Dynamic nonlinear feedback for temperature control of continuous stirred reactor with complex behavior

    Directory of Open Access Journals (Sweden)

    Pablo A. López Pérez

    2009-08-01

    Full Text Available The main objective of this work is to present an alternative methodology for the design of a class of integral high order slidingmodecontroller applied to a class of continuous chemical reactor with complex behavior for temperature tracking purposes.The proposed design is based on the differential geometry framework, where the named reaching trajectory contains a highorder sliding mode term in order to diminish chattering. Considering that the proposed technique is model based, an observerbaseduncertainty estimator is coupled, which provides robustness against model uncertainties and noisy measurements.Numerical simulations are performed in order to show the capacities of the proposed controller, which is compared with othernonlinear methodologies.

  1. Reuse of drinking water treatment residuals in a continuous stirred tank reactor for phosphate removal from urban wastewater.

    Science.gov (United States)

    Bai, Leilei; Wang, Changhui; Pei, Yuansheng; Zhao, Jinbo

    2014-01-01

    This work proposed a new approach of reusing drinking water treatment residuals (WTR) in a continuous stirred tank reactor (CSTR) to remove phosphate (P) from urban wastewater. The results revealed that the P removal efficiency of the WTR was more than 94% for urban wastewater, in the condition of initial P concentration (P0) of 10 mg L⁻¹, hydraulic retention time (HRT) of 2 h and WTR dosage (M0) of 10 g L⁻¹. The P mass transfer from the bulk to the solid-liquid interface in the CSTR system increased at lower P0, higher M0 and longer HRT. The P adsorption capacity of WTR from urban wastewater was comparable to that of the 201 × 4 resin and unaffected by ions competition. Moreover, WTR had a limited effect on the metals' (Fe, Al, Zn, Cu, Mn and Ni) concentrations of the urban wastewater. Based on the principle of waste recycling, the reuse of WTR in CSTR is a promising alternative technology for P removal from urban wastewater.

  2. Entropy production in a chemical system involving an autocatalytic reaction in an isothermal, continuous stirred tank reactor

    Science.gov (United States)

    Yoshida, Nobuo

    1990-02-01

    The rate of entropy production due to chemical reaction is calculated for various combinations of parameter values in the cubic autocatalator model in an isothermal, continuous stirred tank reactor (CSTR) proposed by Gray and Scott and by Escher and Ross. Values of the entropy production averaged over periods of limit cycle oscillations are compared with those in coexistent unstable stationary states. It is found that in ranges of the residence time over which there are limit cycles, the entropy production in coexisting stationary states increases as the residence time is shortened, i.e., as the system is removed farther from thermodynamic equilibrium. The average entropy production over a limit cycle is less than that in the corresponding stationary state over wide ranges of parameter values, but not necessarily for the whole oscillatory region. More specifically, the former inequality always prevails in ranges where the entropy production of stationary states is larger, i.e., the residence time is shorter, but in some cases the inequality is reversed in ranges of lower magnitudes of the entropy production.

  3. Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents.

    Science.gov (United States)

    Gargouri, Boutheina; Karray, Fatma; Mhiri, Najla; Aloui, Fathi; Sayadi, Sami

    2011-05-15

    A continuously stirred tank bioreactor (CSTR) was used to optimize feasible and reliable bioprocess system in order to treat hydrocarbon-rich industrial wastewaters. A successful bioremediation was developed by an efficient acclimatized microbial consortium. After an experimental period of 225 days, the process was shown to be highly efficient in decontaminating the wastewater. The performance of the bioaugmented reactor was demonstrated by the reduction of COD rates up to 95%. The residual total petroleum hydrocarbon (TPH) decreased from 320 mg TPH l(-1) to 8 mg TPH l(-1). Analysis using gas chromatography-mass spectrometry (GC-MS) identified 26 hydrocarbons. The use of the mixed cultures demonstrated high degradation performance for hydrocarbons range n-alkanes (C10-C35). Six microbial isolates from the CSTR were characterized and species identification was confirmed by sequencing the 16S rRNA genes. The partial 16S rRNA gene sequences demonstrated that 5 strains were closely related to Aeromonas punctata (Aeromonas caviae), Bacillus cereus, Ochrobactrum intermedium, Stenotrophomonas maltophilia and Rhodococcus sp. The 6th isolate was affiliated to genera Achromobacter. Besides, the treated wastewater could be considered as non toxic according to the phytotoxicity test since the germination index of Lepidium sativum ranged between 57 and 95%. The treatment provided satisfactory results and presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries.

  4. Quantifying the Reactive Uptake of OH by Organic Aerosols in aContinuous Flow Stirred Tank Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Che, Dung L.; Smith, Jared D.; Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.

    2009-03-01

    Here we report a new method for measuring the heterogeneous chemistry of submicron organic aerosol particles using a continuous flow stirred tank reactor. This approach is designed to quantify the real time heterogeneous kinetics, using a relative rate method, under conditions of low oxidant concentration and long reaction times that more closely mimic the real atmosphere. A general analytical expression, which couples the aerosol chemistry with the flow dynamics in the chamber is developed and applied to the heterogeneous oxidation of squalane particles by hydroxyl radicals (OH) in the presence of O2. The particle phase reaction is monitored via photoionization aerosol mass spectrometry and yields a reactive uptake coefficient of 0.51+-0.10, using OH concentrations of 1-7x108 molec cdot cm-3 and reaction times of 1.5+-3 hours. This uptake coefficient is larger than that found for the reaction carried out under high OH concentrations (~;;1x1010 molec cdot cm-3) and short reaction times in a flow tube reactor. This difference suggests that oxidant concentration and reaction time are not interchangeable quantities in reactions of organic aerosols with radicals. In general, this approach provides a new way to examine how the chemical aging of organic particles measured at short reaction times and high oxidant concentrations in flow tubes might differ from the long reaction times and low oxidant levels found in the real atmosphere.

  5. Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents

    Energy Technology Data Exchange (ETDEWEB)

    Gargouri, Boutheina; Karray, Fatma; Mhiri, Najla; Aloui, Fathi [Laboratoire des Bioprocedes Environnementaux, Pole d' Excellence Regional AUF-LBPE, Centre de Biotechnologie de Sfax, Universite de Sfax, BP 1117, 3018 Sfax (Tunisia); Sayadi, Sami, E-mail: sami.sayadi@cbs.rnrt.tn [Laboratoire des Bioprocedes Environnementaux, Pole d' Excellence Regional AUF-LBPE, Centre de Biotechnologie de Sfax, Universite de Sfax, BP 1117, 3018 Sfax (Tunisia)

    2011-05-15

    A continuously stirred tank bioreactor (CSTR) was used to optimize feasible and reliable bioprocess system in order to treat hydrocarbon-rich industrial wastewaters. A successful bioremediation was developed by an efficient acclimatized microbial consortium. After an experimental period of 225 days, the process was shown to be highly efficient in decontaminating the wastewater. The performance of the bioaugmented reactor was demonstrated by the reduction of COD rates up to 95%. The residual total petroleum hydrocarbon (TPH) decreased from 320 mg TPH l{sup -1} to 8 mg TPH l{sup -1}. Analysis using gas chromatography-mass spectrometry (GC-MS) identified 26 hydrocarbons. The use of the mixed cultures demonstrated high degradation performance for hydrocarbons range n-alkanes (C10-C35). Six microbial isolates from the CSTR were characterized and species identification was confirmed by sequencing the 16S rRNA genes. The partial 16S rRNA gene sequences demonstrated that 5 strains were closely related to Aeromonas punctata (Aeromonas caviae), Bacillus cereus, Ochrobactrum intermedium, Stenotrophomonas maltophilia and Rhodococcus sp. The 6th isolate was affiliated to genera Achromobacter. Besides, the treated wastewater could be considered as non toxic according to the phytotoxicity test since the germination index of Lepidium sativum ranged between 57 and 95%. The treatment provided satisfactory results and presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries.

  6. Reuse of drinking water treatment residuals in a continuous stirred tank reactor for phosphate removal from urban wastewater.

    Science.gov (United States)

    Bai, Leilei; Wang, Changhui; Pei, Yuansheng; Zhao, Jinbo

    2014-01-01

    This work proposed a new approach of reusing drinking water treatment residuals (WTR) in a continuous stirred tank reactor (CSTR) to remove phosphate (P) from urban wastewater. The results revealed that the P removal efficiency of the WTR was more than 94% for urban wastewater, in the condition of initial P concentration (P0) of 10 mg L⁻¹, hydraulic retention time (HRT) of 2 h and WTR dosage (M0) of 10 g L⁻¹. The P mass transfer from the bulk to the solid-liquid interface in the CSTR system increased at lower P0, higher M0 and longer HRT. The P adsorption capacity of WTR from urban wastewater was comparable to that of the 201 × 4 resin and unaffected by ions competition. Moreover, WTR had a limited effect on the metals' (Fe, Al, Zn, Cu, Mn and Ni) concentrations of the urban wastewater. Based on the principle of waste recycling, the reuse of WTR in CSTR is a promising alternative technology for P removal from urban wastewater. PMID:25176310

  7. A continuous stirred hydrogen-based polyvinyl chloride membrane biofilm reactor for the treatment of nitrate contaminated drinking water.

    Science.gov (United States)

    Xia, Siqing; Zhang, YanHao; Zhong, FoHua

    2009-12-01

    A continuous stirred hydrogen-based polyvinyl chloride (PVC) membrane biofilm reactor (MBfR) was investigated to remove nitrate from the drinking water. The reactor was operated over 100 days, and the result showed that the average nitrate denitrification rate of 1.2 g NO(3)(-)-N/m(2) d and the total nitrogen (TN) removal of 95.1% were achieved with the influent nitrate concentration of 50 mg NO(3)(-)-N/L and the hydrogen pressure of 0.05 MPa. Under the same conditions, the average rate of hydrogen utilization by biofilm was 0.031 mg H(2)/cm(2) d, which was sufficient to remove 50 mg NO(3)(-)-N/L from the contaminated water with the effluent nitrate and nitrite concentrations below drinking water limit values. The average hydrogen utilization efficiency was achieved as high as 99.5%. Flux analysis demonstrated that, compared to sulfate reduction, nitrate reduction competed more strongly for hydrogen electron, and obtained more electrons in high influent nitrate loading.

  8. INCREASING ANAEROBIC DIGESTION PERFORMANCE OF WASTEWATER WITH CO-DIGESTION USING DECANTER CAKE

    OpenAIRE

    Thaniya Kaosol; Narumol Sohgrathok

    2014-01-01

    Low biogas production in the frozen seafood wastewater anaerobic digestion is observed due to the low organic and Total Solids (TS) contents in the wastewater. In this research the decanter cake will be used in the anaerobic co-digestion process to improve the biogas production rate. The effect of co-digestion and Hydraulic Retention Time (HRT) will be investigated using the continuously stirred tank reactors under anaerobic conditions. Moreover, the study determines the biogas production pot...

  9. Simultaneous removal of selected oxidized contaminants in groundwater using a continuously stirred hydrogen-based membrane biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    Siqing Xia; Jun Liang; Xiaoyin Xu; Shuang Shen

    2013-01-01

    A laboratory trial was conducted for evaluating the capability of a continuously stirred hydrogen-based membrane biofilm reactor to simultaneously reduce nitrate (NO3--N),sulfate (SO42-),bromate (BrO3-),hexavalent chromium (Cr(Ⅵ)) and parachloronitrobenzene (p-CNB).The reactor contained two bundles of hollow fiber membranes functioning as an autotrophic biofilm carrier and hydrogen pipe as well.On the condition that hydrogen was supplied as electron donor and diffused into water through membrane pores,autohydrogenotrophic bacteria were capable of reducing contaminants to forms with lower toxicity.Reduction occurred within 1 day and removal fluxes for NO3--N,SO42-,BrO3-,Cr(Ⅵ),and p-CNB reached 0.641,2.396,0.008,0.016 and 0.031 g/(day.m2),respectively after 112 days of continuous operation.Except for the fact that sulfate was 37% removed under high surface loading,the other four contaminants were reduced by over 95%.The removal flux comparison between phases varying in surface loading and H2 pressure showed that decreasing surface loading or increasing H2 pressure would promote removal flux.Competition for electrons occurred among the five contaminants.Electron-equivalent flux analysis showed that the amount of utilized hydrogen was mainly controlled by NO2--N and SO42-reduction,which accounted for over 99% of the electron flux altogether.It also indicated the electron acceptor order,showing that nitrate was the most prior electron acceptor while sulfate was the second of the five contaminants.

  10. Phosphorus removal in aerated stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghigliazza, R.; Lodi, A.; Rovatti, M. [Inst. of Chemical and Process Engineering ``G.B. Bonino``, Univ. of Genoa (Italy)

    1999-03-01

    The possibility to obtain biological phosphorus removal in strictly aerobic conditions has been investigated. Experiments, carried out in a continuous stirred tank reactor (CSTR), show the feasibility to obtain phosphorus removal without the anaerobic phase. Reactor performance in terms of phosphorus abatement kept always higher then 65% depending on adopted sludge retention time (SRT). In fact increasing SRT from 5 days to 8 days phosphorus removal and reactor performance increase but overcoming this SRT value a decreasing in reactor efficiency was recorded. (orig.) With 6 figs., 3 tabs., 18 refs.

  11. Conversion-space time profiles of stirred tank reactors continuously fed with reactants and catalyst under conditions of strong catalyst deactivation

    OpenAIRE

    Flaschel, E.; Margot, A; Dohmen, M; Renken, A.

    1995-01-01

    Feeding continuously operated stirred tank reactors with reactants and homogeneous catalysts subject to inactivation will usually lead to a limited substrate conversion with increasing space time. However, it is shown that a max. of conversion may be obsd. under certain circumstances. Guided by exptl. evidence, the theor. background is discussed for identifying reaction systems for which such conversion maxima at distinct space times may be obtained. This phenomenon may be obsd. only if the c...

  12. Comparison of start-up strategies and process performance during semi-continuous anaerobic digestion of sugarcane filter cake co-digested with bagasse.

    Science.gov (United States)

    Janke, Leandro; Leite, Athaydes F; Nikolausz, Marcell; Radetski, Claudemir M; Nelles, Michael; Stinner, Walter

    2016-02-01

    The anaerobic digestion of sugarcane filter cake and the option of co-digestion with bagasse were investigated in a semi-continuous feeding regime to assess the main parameters used for large-scale process designing. Moreover, fresh cattle manure was considered as alternative inoculum for the start-up of biogas reactors in cases where digestate from a biogas plant would not be available in remote rural areas. Experiments were carried out in 6 lab-scale semi-continuous stirred-tank reactors at mesophilic conditions (38±1°C) while the main anaerobic digestion process parameters monitored. Fresh cattle manure demonstrated to be appropriate for the start-up process. However, an acclimation period was required due to the high initial volatile fatty acids concentration (8.5gL(-1)). Regardless the mono-digestion of filter cake presented 50% higher biogas yield (480mLgVS(-1)) than co-digestion with bagasse (320mLgVS(-1)) during steady state conditions. A large-scale co-digestion system would produce 58% more biogas (1008m(3)h(-1)) than mono-digestion of filter cake (634m(3)h(-1)) due to its higher biomass availability for biogas conversion. Considering that the biogas production rate was the technical parameter that displayed the most relevant differences between the analyzed substrate options (0.99-1.45m(3)biogasm(3)d(-1)). The decision of which substrate option should be implemented in practice would be mainly driven by the available construction techniques, since economically efficient tanks could compensate the lower biogas production rate of co-digestion option.

  13. Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Uma Rani, R.; Adish Kumar, S. [Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli 627 007, Tamil Nadu (India); Kaliappan, S. [Department of Civil Engineering, Ponjesly College of Engineering, Nagercoil 629 003, Tamil Nadu (India); Yeom, IckTae [Department of Civil and Environmental Engineering, Sungkyunkwan University (Korea, Republic of); Rajesh Banu, J., E-mail: rajeshces@gmail.com [Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli 627 007, Tamil Nadu (India)

    2013-05-15

    Highlights: ► Microwave pretreatment of dairy WAS was studied. ► MW pretreatment at 70% intensity for 12 min, COD solubilization was 18.6%. ► Biogas production and SS reduction was 35% and 14% higher than control. ► In digester at 15 days SRT with medium OLR, SS and VS reduction was 67% and 64%. ► Biogas and methane production was 57% and 49% higher than control, in digesters. - Abstract: Microwave (MW) irradiation is one of the new and possible methods used for pretreating the sludge. Following its use in different fields, this MW irradiation method has proved to be more appropriate in the field of environmental research. In this paper, we focused on the effects of MW irradiation at different intensities on solubilization, biodegradation and anaerobic digestion of sludge from the dairy sludge. The changes in the soluble fractions of the organic matter, the biogas yield, the methane content in the biogas were used as control parameters for evaluating the efficiency of the MW pretreatment. Additionally, the energetic efficiency was also examined. In terms of an energetic aspect, the most economical pretreatment of sludge was at 70% intensity for 12 min irradiation time. At this, COD solubilization, SS reduction and biogas production were found to be 18.6%, 14% and 35% higher than the control, respectively. Not only the increase in biogas production was investigated, excluding protein and carbohydrate hydrolysis was also performed successfully by this microwave pretreatment even at low irradiation energy input. Also, experiments were carried out in semi continuous anaerobic digesters, with 3.5 L working volume. Combining microwave pretreatment with anaerobic digestion led to 67%, 64% and 57% of SS reduction, VS reduction and biogas production higher than the control, respectively.

  14. Jet-Stirred Reactors

    OpenAIRE

    Herbinet, Olivier; Guillaume, Dayma

    2013-01-01

    The jet-stirred reactor is a type of ideal continuously stirred-tank reactor which is well suited for gas phase kinetic studies. It is mainly used to study the oxidation and the pyrolysis of hydrocarbon and oxygenated fuels. These studies consist in recording the evolution of the conversion of the reactants and of the mole fractions of reaction products as a function of different parameters such as reaction temperature, residence time, pressure and composition of the inlet gas. Gas chromatogr...

  15. Domestic wastewater treatment with purple phototrophic bacteria using a novel continuous photo anaerobic membrane bioreactor.

    Science.gov (United States)

    Hülsen, Tim; Barry, Edward M; Lu, Yang; Puyol, Daniel; Keller, Jürg; Batstone, Damien J

    2016-09-01

    A key future challenge of domestic wastewater treatment is nutrient recovery while still achieving acceptable discharge limits. Nutrient partitioning using purple phototrophic bacteria (PPB) has the potential to biologically concentrate nutrients through growth. This study evaluates the use of PPB in a continuous photo-anaerobic membrane bioreactor (PAnMBR) for simultaneous organics and nutrient removal from domestic wastewater. This process could continuously treat domestic wastewater to discharge limits (60% of PPB, though the PPB community was highly variable. The outcomes from the current work demonstrate the potential of PPB for continuous domestic (and possibly industrial) wastewater treatment and nutrient recovery. Technical challenges include the in situ COD supply in a continuous reactor system, as well as efficient light delivery. Addition of external (agricultural or fossil) derived organics is not financially nor environmentally justified, and carbon needs to be sourced internally from the biomass itself to enable this technology. Reduced energy consumption for lighting is technically feasible, and needs to be addressed as a key objective in scaleup. PMID:27232993

  16. Continuous high-solids anaerobic co-digestion of organic solid wastes under mesophilic conditions

    International Nuclear Information System (INIS)

    Highlights: → High-solids (dry) anaerobic digestion is attracting a lot of attention these days. → One reactor was fed with food waste (FW) and paper waste. → Maximum biogas production rate of 5.0 m3/m3/d was achieved at HRT 40 d and 40% TS. → The other reactor was fed with FW and livestock waste (LW). → Until a 40% LW content increase, the reactor exhibited a stable performance. - Abstract: With increasing concerns over the limited capacity of landfills, conservation of resources, and reduction of CO2 emissions, high-solids (dry) anaerobic digestion of organic solid waste (OSW) is attracting a great deal of attention these days. In the present work, two dry anaerobic co-digestion systems fed with different mixtures of OSW were continuously operated under mesophilic conditions. Dewatered sludge cake was used as a main seeding source. In reactor (I), which was fed with food waste (FW) and paper waste (PW), hydraulic retention time (HRT) and solid content were controlled to find the maximum treatability. At a fixed solid content of 30% total solids (TS), stable performance was maintained up to an HRT decrease to 40 d. However, the stable performance was not sustained at 30 d HRT, and hence, HRT was increased to 40 d again. In further operation, instead of decreasing HRT, solid content was increased to 40% TS, which was found to be a better option to increase the treatability. The biogas production rate (BPR), CH4 production yield (MPY) and VS reduction achieved in this condition were 5.0 m3/m3/d, 0.25 m3 CH4/g CODadded, and 80%, respectively. Reactor (II) was fed with FW and livestock waste (LW), and LW content was increased during the operation. Until a 40% LW content increase, reactor (II) exhibited a stable performance. A BPR of 1.7 m3/m3/d, MPY of 0.26 m3 CH4/g CODadded, and VS reduction of 72% was achieved at 40% LW content. However, when the LW content was increased to 60%, there was a significant performance drop, which was attributed to free ammonia

  17. INCREASING ANAEROBIC DIGESTION PERFORMANCE OF WASTEWATER WITH CO-DIGESTION USING DECANTER CAKE

    Directory of Open Access Journals (Sweden)

    Thaniya Kaosol

    2014-01-01

    Full Text Available Low biogas production in the frozen seafood wastewater anaerobic digestion is observed due to the low organic and Total Solids (TS contents in the wastewater. In this research the decanter cake will be used in the anaerobic co-digestion process to improve the biogas production rate. The effect of co-digestion and Hydraulic Retention Time (HRT will be investigated using the continuously stirred tank reactors under anaerobic conditions. Moreover, the study determines the biogas production potential of different HRTs and that of wastewater digestion alone. The anaerobic co-digestion is operated in continuous with continuously stirred reactors at HRT of 10, 20 and 30 days. The mechanical stirring units of all reactors are operated automatically. The stirring action occurred continuously during the experiments. The anaerobic co-digestion results show that the anaerobic co-digestion provides higher biogas production rate and higher methane yield than that of the wastewater digestion alone. The optimum HRT of the anaerobic co-digestion is 20 days. This reactor produces 2.88 L day-1, with 64.5% of methane and the maximum methane production rate of 1.87 L day-1 and the methane yield of 0.321 l CH4/g CODremoved. The anaerobic co-digestion of wastewater with decanter cake provides the higher methane yield potential production than that provided by the wastewater digestion alone at the ambient temperature. The best HRT is 20 days for anaerobic co-digestion between the wastewater and decanter cake. The experimental results reveal that HRT and co-digestion are the parameters that can affect the biogas production and methane yield.

  18. On the effect of aqueous ammonia soaking pretreatment on batch and continuous anaerobic digestion of digested swine manure fibers

    DEFF Research Database (Denmark)

    Mirtsou Xanthopoulou, Chrysoula; Jurado, Esperanza; Skiadas, Ioannis;

    2012-01-01

    to enhance their methane productivity in batch experiments. In the present study, continuous experiments at a mesophilic (38°C) CSTR-type anaerobic digester fed with swine manure first and a mixture of manure with AAS-treated digested fibers in the sequel, were performed. The methane yield of AAS...

  19. Continuous cultivation of Chlorella pyrenoidosa using anaerobic digested starch processing wastewater in the outdoors.

    Science.gov (United States)

    Chu, Hua-Qiang; Tan, Xiao-Bo; Zhang, Ya-Lei; Yang, Li-Bin; Zhao, Fang-Chao; Guo, Jun

    2015-06-01

    Microalgae cultivation using wastewater might be a suitable approach to support sustainable large-scale biomass production. Its compelling characteristics included the recycling of nutrients and water resources, reducing carbon emissions and harvesting available biomass. In outdoor batch and continuous cultures, Chlorella pyrenoidosa completely adapted to anaerobic digested starch processing wastewater and was the dominant microorganism in the photobioreactor. However, seasonal changes of environmental conditions significantly influenced biomass growth and lipid production. The long-term outdoor operation demonstrated that the biomass concentration and productivity in continuous operations at different hydraulic retention times (HRTs) can be successfully predicted using the kinetic growth parameters obtained from the batch culture. A moderate HRT (4days) in the summer provided the best microalgae and lipid production and achieved relatively high biomass concentrations of 1.29-1.62g/L, biomass productivities of 342.6±12.8mg/L/d and lipids productivities of 43.37±7.43mg/L/d.

  20. Modelling of slaughterhouse solid waste anaerobic digestion: determination of parameters and continuous reactor simulation.

    Science.gov (United States)

    López, Iván; Borzacconi, Liliana

    2010-10-01

    A model based on the work of Angelidaki et al. (1993) was applied to simulate the anaerobic biodegradation of ruminal contents. In this study, two fractions of solids with different biodegradation rates were considered. A first-order kinetic was used for the easily biodegradable fraction and a kinetic expression that is function of the extracellular enzyme concentration was used for the slowly biodegradable fraction. Batch experiments were performed to obtain an accumulated methane curve that was then used to obtain the model parameters. For this determination, a methodology derived from the "multiple-shooting" method was successfully used. Monte Carlo simulations allowed a confidence range to be obtained for each parameter. Simulations of a continuous reactor were performed using the optimal set of model parameters. The final steady-states were determined as functions of the operational conditions (solids load and residence time). The simulations showed that methane flow peaked at a flow rate of 0.5-0.8 Nm(3)/d/m(reactor)(3) at a residence time of 10-20 days. Simulations allow the adequate selection of operating conditions of a continuous reactor. PMID:20303732

  1. A laboratory and pilot plant scaled continuous stirred reactor separator for the production of ethanol from sugars, corn grits/starch or biomass streams

    Energy Technology Data Exchange (ETDEWEB)

    Dale, M.C.; Lei, Shuiwang; Zhou, Chongde

    1995-10-01

    An improved bio-reactor has been developed to allow the high speed, continues, low energy conversion of various substrates to ethanol. The Continuous Stirred Reactor Separator (CSRS) incorporates gas stripping of the ethanol using a recalculating gas stream between cascading stirred reactors in series. We have operated a 4 liter lab scale unit, and built and operated a 24,000 liter pilot scale version of the bioreactor. High rates of fermentation are maintained in the reactor stages using a highly flocculent yeast strain. Ethanol is recovered from the stripping gas using a hydrophobic solvent absorber (isothermal), after which the gas is returned to the bioreactor. Ethanol can then be removed from the solvent to recover a highly concentrated ethanol product. We have applied the lab scale CSRS to sugars (glucose/sucrose), molasses, and raw starch with simultaneous saccharification and fermentation of the starch granules (SSF). The pilot scale CSRS has been operated as a cascade reactor using dextrins as a feed. Operating data from both the lab and pilot scale CSRS are presented. Details of how the system might be applied to cellulosics, with some preliminary data are also given.

  2. Optimal control of hydrogen production in a continuous anaerobic fermentation bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Aceves-Lara, Cesar-Arturo [INRA, UMR792, Ingenierie des Systemes Biologiques et des Procedes, Toulouse (France); CNRS, UMR5504, Toulouse, France 135 Avenue de Rangueil, Toulouse Cedex F-31077 (France); INRA, UR050, Laboratoire de Biotechnologie de l' Environnement, Avenue des Etangs, Narbonne F-11100 (France); Latrille, Eric; Steyer, Jean-Philippe [INRA, UR050, Laboratoire de Biotechnologie de l' Environnement, Avenue des Etangs, Narbonne F-11100 (France)

    2010-10-15

    This paper addresses the problem of optimization of hydrogen production in continuous anaerobic digesters using a model predictive control (MPC) strategy. The process is described by a dynamic nonlinear model. The influent concentration of molasses together with the effluent substrate and product concentrations of acetate, propionate, butyrate and biomass were estimated by an asymptotic online observer from measurements of gas composition in H{sub 2} and CO{sub 2} and gas flow rate. The observer was tested experimentally before to apply MPC online. The combined strategy (MPC and observer) was used in order to optimize a bioreactor of 2 L. The hydrogen production was increased by 75% up to 8.27mL{sub H{sub 2}} L{sup -1}min{sup -1}, using the influent flow rate as the main control variable while keeping the conversion of the influent concentration higher than 95% and maintaining the temperature at 37 C and pH at 5.5. (author)

  3. Critical assessment of anaerobic processes for continuous biohydrogen production from organic wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Show, Kuan-Yeow [Faculty of Engineering and Green Technology, University Tunku Abdul Rahman, Jalan University, Bandar Barat, 31900 Kampar, Perak (Malaysia); Zhang, Zhen-Peng [Beijing Enterprises Water Group Limited, BLK 25, No. 3 Minzhuang Road, Beijing 100195 (China); Tay, Joo-Hwa [School of Civil and Environmental Engineering, Nanyang Technological University, Nanyang Avenue (Singapore); Liang, David Tee [Institute of Environmental Science and Engineering, Nanyang Technological University (Singapore); Lee, Duu-Jong [Department of Chemical Engineering, National Taiwan University, Taipei (China); Ren, Nanqi; Wang, Aijie [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China)

    2010-12-15

    Production of biohydrogen using dark fermentation has received much attention owing to the fact that hydrogen can be generated from renewable organics including waste materials. The key to successful application of anaerobic fermentation is to uncouple the liquid retention time and the biomass retention time in the reactor system. Various reactor designs based on biomass retention within the reactor system have been developed. This paper presents our research work on bioreactor designs and operation for biohydrogen production. Comparisons between immobilized-cell systems and suspended-cell systems based on biomass growth in the forms of granule, biofilm and flocs were made. Reactor configurations including column- and tank-based reactors were also assessed. Experimental results indicated that formation of granules or biofilms substantially enhanced biomass retention which was found to be proportional to the hydrogen production rate. Rapid hydrogen-producing culture growth and high organic loading rate might limit the application of biofilm biohydrogen production, since excessive growth of fermentative biomass would result in washout of support carrier. It follows that column-based granular sludge process is a preferred choice of process for continuous biohydrogen production from organic wastewater, indicating maximum hydrogen yield of 1.7 mol-H{sub 2}/mol-glucose and hydrogen production rate of 6.8 L-H{sub 2}/L-reactor h. (author)

  4. Anaerobic digestion of manure and mixture of manure with lipids: biogas reactor performance and microbial community analysis

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana; Dabrowski, Slawomir; Ahring, Birgitte Kiær

    2003-01-01

    Anaerobic digestion of cattle manure and a mixture of cattle manure with glycerol trioleate (GTO) was studied in lab-scale, continuously stirred tank reactors (CSTR) operated at 37degreesC. The reactor. codigesting manure and lipids exhibited a significantly higher specific methane yield and a hi......Anaerobic digestion of cattle manure and a mixture of cattle manure with glycerol trioleate (GTO) was studied in lab-scale, continuously stirred tank reactors (CSTR) operated at 37degreesC. The reactor. codigesting manure and lipids exhibited a significantly higher specific methane yield...

  5. Perspectives on carbon materials as powerful catalysts in continuous anaerobic bioreactors.

    Science.gov (United States)

    Pereira, R A; Salvador, A F; Dias, P; Pereira, M F R; Alves, M M; Pereira, L

    2016-09-15

    The catalytic effect of commercial microporous activated carbon (AC) and macroporous carbon nanotubes (CNT) is investigated in reductive bioreactions in continuous high rate anaerobic reactors, using the azo dye Acid Orange 10 (AO10) as model compound as electron acceptor and a mixture of VFA as electron donor. Size and concentration of carbon materials (CM) and hydraulic retention time (HRT) are assessed. CM increased the biological reduction rate of AO10, resulting in significantly higher colour removal, as compared to the control reactors. The highest efficiency, 98%, was achieved with a CNT diameter (d) lower than 0.25 mm, at a CNT concentration of 0.12 g per g of volatile solids (VS), a HRT of 10 h and resulted in a chemical oxygen demand (COD) removal of 85%. Reducing the HRT to 5 h, colour and COD removal in CM-mediated bioreactors were above 90% and 80%, respectively. In the control reactor, thought similar COD removal was achieved, AO10 decolourisation was just approximately 20%, demonstrating the ability of CM to significantly accelerate the reduction reactions in continuous bioreactors. AO10 reduction to the correspondent aromatic amines was proved by high performance liquid chromatography (HPLC). Colour decrease in the reactor treating a real effluent with CNT was the double comparatively to the reactor operated without CNT. The presence of AC in the reactor did not affect the microbial diversity, as compared to the control reactor, evidencing that the efficient reduction of AO10 was mainly due to AC rather than attributed to changes in the composition of the microbial communities. PMID:27295618

  6. Simulation of DEHP biodegradation and sorption during the anaerobic digestion of secondary sludge

    DEFF Research Database (Denmark)

    Fountoulakis, M.S.; Stamatelatou, K.; Batstone, Damien J.;

    2006-01-01

    -limiting for the compound biodegradation. In this study, the anaerobic biodegradation of DEHP was investigated through batch kinetic experiments and dynamic transitions of a continuous stirred tank reactor (CSTR) fed with secondary sludge contaminated with DEHP. A widely accepted model (ADM1) was used to fit the anaerobic......" against biodegradation. The model, fitted to the batch experimental data, was able to predict DEHP removal in the CSTR operated at various HRTs....

  7. Analysis on the Deflection Angle of Columnar Dendrites of Continuous Casting Steel Billets Under the Influence of Mold Electromagnetic Stirring

    Science.gov (United States)

    Wang, Xincheng; Wang, Shengqian; Zhang, Lifeng; Sridhar, Seetharaman; Conejo, Alberto; Liu, Xuefeng

    2016-11-01

    In the current study, the deflection angle of columnar dendrites on the cross section of steel billets under mold electromagnetic stirring (M-EMS) was observed. A mathematical model was developed to define the effect of M-EMS on fluid flow and then to analyze the relationship between flow velocities and deflection angle. The model was validated using experimental data that was measured with a Tesla meter on magnetic intensity. By coupling the numerical results with the experimental data, it was possible to define a relationship between the velocities of the fluid with the deflection angle of high-carbon steel. The deflection angle of high-carbon steel reached maximum values from 18 to 23 deg for a velocity from 0.35 to 0.40 m/s. The deflection angles of low-carbon steel under different EM parameters were discussed. The deflection angle of low-carbon steel was increased as the magnetic intensity, EM force, and velocity of molten steel increased.

  8. Effect of noise correlation on noise-induced oscillation frequency in the photosensitive Belousov-Zhabotinsky reaction in a continuous stirred tank reactor.

    Science.gov (United States)

    Simakov, David S A; Pérez-Mercader, Juan

    2013-12-27

    We report on the experimental study of noise-induced oscillations in the photosensitive Ru(bpy)3(2+)-catalyzed Belousov-Zhabotinsky reaction in a continuous stirred tank reactor (CSTR). In the absence of deterministic oscillations and any external periodic forcing, oscillations appear when the system is perturbed by stochastic fluctuations in light irradiation with sufficiently high amplitude in the vicinity of the bifurcation point. The frequency distribution of the noise-induced oscillations is strongly affected by noise correlation. There is a shift of the noise-induced oscillation frequency toward higher frequencies for an intermediate range of the noise correlation exponent, indicating the occurrence of coherence resonance. Our findings indicate that, in principle, noise correlation can be used to direct chemical reactions toward certain behavior.

  9. 基于MLD模型的CSTR建模和控制%Modeling and Control of a Continuous Stirred Tank Reactor Based on a Mixed Logical Dynamical Model

    Institute of Scientific and Technical Information of China (English)

    杜静静; 宋春跃; 李平

    2007-01-01

    A novel control strategy for a continuous stirred tank reactor (CSTR) system, which has the typical characteristic of strongly pronounced nonlinearity, multiple operating points, and a wide operating range, is initiated from the point of hybrid systems. The proposed scheme makes full use of the modeling power of mixed logical dynamical (MLD) systems to describe the highly nonlinear dynamics and multiple operating points in a unified framework as a hybrid system, and takes advantage of the good control quality of model predictive control (MPC)to design a controller. Thus, this approach avoids oscillation during switching between sub-systems, helps to relieve shaking in transition, and augments the stability robustness of the whole system, and finally achieves optimal (i.e.fast and smooth) transition between operating points. The simulation results demonstrate that the presented approach has a satisfactory performance.

  10. Importance of reduced sulfur for the equilibrium chemistry and kinetics of Fe(II), Co(II) and Ni(II) supplemented to semi-continuous stirred tank biogas reactors fed with stillage

    International Nuclear Information System (INIS)

    Highlights: • Thermodynamics and kinetics of Fe, Co and Ni added to biogas reactors were studied. • Formation of Fe-sulfide and Fe-thiol aqueous complexes controlled the Fe solubility. • Cobalt solubility was controlled by processes independent of Co-sulfide interaction. • Iron added to the biogas reactors effected the Ni speciation and solubility. - Abstract: The objective of the present study was to assess major chemical reactions and chemical forms contributing to solubility and speciation of Fe(II), Co(II), and Ni(II) during anaerobic digestion of sulfur (S)-rich stillage in semi-continuous stirred tank biogas reactors (SCSTR). These metals are essential supplements for efficient and stable performance of stillage-fed SCSTR. In particular, the influence of reduced inorganic and organic S species on kinetics and thermodynamics of the metals and their partitioning between aqueous and solid phases were investigated. Solid phase S speciation was determined by use of S K-edge X-ray absorption near-edge spectroscopy. Results demonstrated that the solubility and speciation of supplemented Fe were controlled by precipitation of FeS(s) and formation of the aqueous complexes of Fe-sulfide and Fe-thiol. The relatively high solubility of Co (∼20% of total Co content) was attributed to the formation of compounds other than Co-sulfide and Co-thiol, presumably of microbial origin. Nickel had lower solubility than Co and its speciation was regulated by interactions with FeS(s) (e.g. co-precipitation, adsorption, and ion substitution) in addition to precipitation/dissolution of discrete NiS(s) phase and formation of aqueous Ni-sulfide complexes

  11. Effects of shock 2,4-dichlorophenol (DCP) and cod loading rates on the removal of 2,4-DCP in a sequential upflow anaerobic sludge blanket/aerobic completely stirred tank reactor system.

    Science.gov (United States)

    Uluköy, A; Sponza, D T

    2008-04-01

    The treatability of 2,4-dwichlorophenol (DCP) was studied in an anaerobic/aerobic sequential reactor system. Laboratory scale upflow anaerobic sludge blanket (UASB) reactor/completely stirred tank reactors (CSTR) were operated at constant 2,4-DCP concentrations, and increasing chemical oxygen demand (COD) loading rates. The effect of shock organic loading rates on 2,4-DCP, COD removal efficiencies and methane gas production were investigated in the UASB reactor. When the organic loading rate was increased from 3.6 g l(-1) d(-1) to 30.16 g l(-1) d(-1), the COD and 2,4-DCP removal efficiencies decreased from 80 to 25% and from 99 to 60% in the UASB reactor. The optimum organic loading rates for maximum 2,4-DCP (E=99-100%) and COD (E=65-85%) removal efficiencies were 25-30 and 8-20 g-COD l(-1) d(-1), respectively. The percentage of methane of the total gas varied between 70 and 80 while the organic loadings were 18 g-COD l(-1) d(-1) and 20.36 g-COD l(-1) d(-1), respectively. During 80 days of operation, 2,4-DCP concentration was found to be below 0.5 and 0.1 mg l(-1) in aerobic reactor effluent resulting in 78 and 100% removal efficiencies. When the hydraulic retention time (HRT) was 18.72 h, the 2,4-DCP removal efficiency was 97% in the aerobic reactor. The optimum COD removal efficiency was 78.83% in anaerobic reactor effluent at an influent COD loading rate of 7.238 g-COD l(-1) d(-1) while 83.6% maximum COD removal efficiency was obtained in the aerobic reactor, resulting in a total COD removal efficiency of 96.83% in the whole system. The 2,4-DCP removal efficiency was 99% in the sequential anaerobic (UASB)/aerobic (CSTR) reactor system at COD loading rates varying between 11.46 and 30.16 g-COD l(-1) d(-1). PMID:18619146

  12. Effects of shock 2,4-dichlorophenol (DCP) and cod loading rates on the removal of 2,4-DCP in a sequential upflow anaerobic sludge blanket/aerobic completely stirred tank reactor system.

    Science.gov (United States)

    Uluköy, A; Sponza, D T

    2008-04-01

    The treatability of 2,4-dwichlorophenol (DCP) was studied in an anaerobic/aerobic sequential reactor system. Laboratory scale upflow anaerobic sludge blanket (UASB) reactor/completely stirred tank reactors (CSTR) were operated at constant 2,4-DCP concentrations, and increasing chemical oxygen demand (COD) loading rates. The effect of shock organic loading rates on 2,4-DCP, COD removal efficiencies and methane gas production were investigated in the UASB reactor. When the organic loading rate was increased from 3.6 g l(-1) d(-1) to 30.16 g l(-1) d(-1), the COD and 2,4-DCP removal efficiencies decreased from 80 to 25% and from 99 to 60% in the UASB reactor. The optimum organic loading rates for maximum 2,4-DCP (E=99-100%) and COD (E=65-85%) removal efficiencies were 25-30 and 8-20 g-COD l(-1) d(-1), respectively. The percentage of methane of the total gas varied between 70 and 80 while the organic loadings were 18 g-COD l(-1) d(-1) and 20.36 g-COD l(-1) d(-1), respectively. During 80 days of operation, 2,4-DCP concentration was found to be below 0.5 and 0.1 mg l(-1) in aerobic reactor effluent resulting in 78 and 100% removal efficiencies. When the hydraulic retention time (HRT) was 18.72 h, the 2,4-DCP removal efficiency was 97% in the aerobic reactor. The optimum COD removal efficiency was 78.83% in anaerobic reactor effluent at an influent COD loading rate of 7.238 g-COD l(-1) d(-1) while 83.6% maximum COD removal efficiency was obtained in the aerobic reactor, resulting in a total COD removal efficiency of 96.83% in the whole system. The 2,4-DCP removal efficiency was 99% in the sequential anaerobic (UASB)/aerobic (CSTR) reactor system at COD loading rates varying between 11.46 and 30.16 g-COD l(-1) d(-1).

  13. KINETIC MODELLING OF CONTINUOUS-MIX ANAEROBIC REACTORS OPERATING UNDER DIURNALLY CYCLIC TEMPERATURE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    E. A. Echiegu

    2014-01-01

    Full Text Available A two-culture dynamic model which incorporated the effects of diurnally cyclic temperature was developed and used to predict the dynamic response of anaerobic reactors operated on dairy manure under two diurnally cyclic temperature ranges of 20-40°C and 15-25°C which represent the summer and winter in Nigeria. The digesters were operated at various hydraulic retention times and solid concentrations and some useful kinetic parameters were determined. The model predicted biogas production, volatile solid reduction, methane yield and treatment efficiency with reasonable accuracy (R2 = 0.70 to 0.90. The model, however, under-predicted the cell mass concentration in the reactor probably because the Volatile Suspended Solid (VSS, which was used as the estimator of the actual cell mass concentration in the reactor, was not a good indicator of the active cell mass concentration in anaerobic reactors operating on dairy manure.

  14. Two-phase anaerobic co-digestion of olive mill wastes in semi-continuous digesters at mesophilic temperature.

    Science.gov (United States)

    Fezzani, Boubaker; Ben Cheikh, Ridha

    2010-03-01

    This study investigates for the first time, on laboratory scale, the possible exploitation of the advantages of two-phase anaerobic digestion for treating a mixture of olive mill wastewater (OMW) and olive mill solid waste (OMSW) using two sequencing semi-continuous digesters operated at mesophilic temperature (37+/-2 degrees C). The experiments were conducted at hydraulic retention times (HRTs) of 14 and 24 days corresponding to organic loading rates (OLRs) ranging from 5.54 to 14 g COD/L/day in the first stage (acidifier) and at HRTs of 18, 24 and 36 days corresponding to OLRs ranging from 2.28 to 9.17 g COD/L/day in the second stage (methanizer). The results indicated that volatile fatty acids (VFA) concentrations increased with the increase of either HRT or feed concentration and their high values were obtained with the most concentrated influent (196+/-5 g COD/L) digested at the longest HRT (24 days) corresponded to an OLR of 8.17 g COD/L/d. Furthermore, two-phase anaerobic digestion system has given the best performances concerning methane productivity, soluble COD (SCOD) and phenol removal efficiencies and effluent quality compared to those given by conventional one-phase anaerobic digestion (AD) reactors. PMID:19896368

  15. An improved enzyme-linked immunosorbent assay for whole-cell determination of methanogens in samples from anaerobic reactors

    DEFF Research Database (Denmark)

    Sørensen, A.H.; Ahring, B.K.

    1997-01-01

    An enzyme-linked immunosorbent assay was developed for the detection of whole cells of methanogens in samples from anaerobic continuously stirred tank digesters treating slurries of solid waste. The assay was found to allow for quantitative analysis of the most important groups of methanogens in ...

  16. Benefit of sodium hydroxide pretreatment of ensiled sorghum forage on the anaerobic reactor stability and methane production.

    Science.gov (United States)

    Sambusiti, C; Ficara, E; Malpei, F; Steyer, J P; Carrère, H

    2013-09-01

    The assessment of the pretreatment effect on the anaerobic digestion process is generally based on the results of batch tests, which may fail in truly predicting full-scale anaerobic reactors performance. Therefore, in this study, the effect of alkaline pretreatment on the anaerobic digestion of ensiled sorghum forage was evaluated by comparing the results of two semi-continuous CSTR (Continuously Stirred Tank Reactor) anaerobic reactors. Results showed that an alkaline pretreatment step, prior to the anaerobic digestion of ensiled sorghum forage, can have a beneficial effect both in enhancing methane production (an increase of 25% on methane production was observed, if compared to that of untreated sorghum) and in giving more stability to the anaerobic digestion process.

  17. Continuous High Rate Anaerobic Treatment of Oleic Acid Based Wastewater is Possible after a Step Feeding Start-Up

    OpenAIRE

    Cavaleiro, A. J.; Salvador, A. F.; Alves, J.I.; Alves, M. M.

    2009-01-01

    Mineralization of a synthetic effluent containing 50% COD as oleic acid was achieved in a continuous anaerobic reactor at organic loading rates up to 21 kg COD m−3 day−1, HRT of 9 h, attaining 99% of COD removal efficiency and a methane yield higher than 70%. A maximum specific methane production rate of 1170 ± 170 mg COD-CH4 g VS−1 day−1 was measured during the reactor’s operation. A start-up strategy combining feeding phases and batch degradation phases was applied to promote the developmen...

  18. Anaerobic digestion technology in livestock manure treatment for biogas production: a review

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, Ismail M. [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Selangor (Malaysia); Mohd Ghazi, Tinia I.; Omar, Rozita

    2012-06-15

    This article reviews the potential of anaerobic digestion (AD) for biogas production from livestock manure wastes and compares the operating and performance data for various anaerobic process configurations. It examines different kinds of manure waste treatment techniques and the influence of several parameters on biogas and methane yield. The comparison indicates that a variety of different operational conditions, various reactor configurations such as batch reactors, continuously stirred tank reactor (CSTR), plug flow reactor (PFR), up-flow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), temperature phased anaerobic digestion (TPAD), and continuous one- and two-stage systems, present a suitable technology for the AD of livestock manure waste. Main performance indicators are biogas and methane yield, degradation of volatile solids (VS), higher loading, and process stability with a short retention time. (copyright 2012 WILEY-VCH Verlag GmbH 8 Co. KGaA, Weinheim)

  19. Reactor models for a series of continuous stirred tank reactors with a gas-liquid-solid leaching system: Part I. Surface reaction control

    Science.gov (United States)

    Papangelakis, V. G.; Demopoulos, G. P.

    1992-12-01

    In this three-part series of articles, comprehensive three-phase steady-state hydrometallurgical reactor models of the continuous stirred tank reactor (CSTR) type are developed and applied to a commercial (pressure oxidation) process. The key features of the developed models are the coupling of both mass and heat balance equations, the description of the nonisothermal performance (autothermal) of a multistage continuous reactor, and the treatment of multimineral feed materials. The model considers only the oxidation reactions, because they mainly affect the thermal balance of the reactor. The stoichiometries and intrinsic kinetics of the heterogeneous leaching reactions, which are established via independent experiments, are the foundation of the developed model. A three-phase (g-l-s) reaction process might be controlled by either surface reaction control, i.e., the rate(s) of the heterogeneous leaching reaction(s), or by gas transfer control, i.e., the rate of transfer of the gaseous reactant into the liquid phase. In the present article (Part I), the case of surface reaction control is treated. The article addresses, in particular, the following topics: (1) it outlines the basic mass and heat balance equations which describe the performance of a multistage leaching reactor; (2) it presents a continuous function to describe the particle size distribution of the feed; and (3) it develops, on the basis of probability theory, number- and mass-particle size density functions which give the size distribution of particle populations reacting according to the surface reaction control-shrinking core model.

  20. Determination of Noncovalent Binding Using a Continuous Stirred Tank Reactor as a Flow Injection Device Coupled to Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Santos, Inês C.; Waybright, Veronica B.; Fan, Hui; Ramirez, Sabra; Mesquita, Raquel B. R.; Rangel, António O. S. S.; Fryčák, Petr; Schug, Kevin A.

    2015-07-01

    Described is a new method based on the concept of controlled band dispersion, achieved by hyphenating flow injection analysis with ESI-MS for noncovalent binding determinations. A continuous stirred tank reactor (CSTR) was used as a FIA device for exponential dilution of an equimolar host-guest solution over time. The data obtained was treated for the noncovalent binding determination using an equimolar binding model. Dissociation constants between vancomycin and Ac-Lys(Ac)-Ala-Ala-OH peptide stereoisomers were determined using both the positive and negative ionization modes. The results obtained for Ac- L-Lys(Ac)- D-Ala- D-Ala (a model for a Gram-positive bacterial cell wall) binding were in reasonable agreement with literature values made by other mass spectrometry binding determination techniques. Also, the developed method allowed the determination of dissociation constants for vancomycin with Ac- L-Lys(Ac)- D-Ala- L-Ala, Ac- L-Lys(Ac)- L-Ala- D-Ala, and Ac- L-Lys(Ac)- L-Ala- L-Ala. Although some differences in measured binding affinities were noted using different ionization modes, the results of each determination were generally consistent. Differences are likely attributable to the influence of a pseudo-physiological ammonium acetate buffer solution on the formation of positively- and negatively-charged ionic complexes.

  1. Coupling of acrylic dyeing wastewater treatment by heterogeneous Fenton oxidation in a continuous stirred tank reactor with biological degradation in a sequential batch reactor.

    Science.gov (United States)

    Esteves, Bruno M; Rodrigues, Carmen S D; Boaventura, Rui A R; Maldonado-Hódar, F J; Madeira, Luís M

    2016-01-15

    This work deals with the treatment of a recalcitrant effluent, from the dyeing stage of acrylic fibres, by combination of the heterogeneous Fenton's process in a continuous stirred tank reactor (CSTR) with biological degradation in a sequential batch reactor (SBR). Three different catalysts (a commercial Fe/ZSM-5 zeolite and two distinct Fe-containing activated carbons - ACs - prepared by wet impregnation of iron acetate and iron nitrate) were employed on the Fenton's process, and afterwards a parametric study was carried out to determine the effect of the main operating conditions, namely the hydrogen peroxide feed concentration, temperature and contact time. Under the best operating conditions found, using the activated carbon impregnated with iron nitrate, 62.7% of discolouration and 39.9% of total organic carbon (TOC) reduction were achieved, at steady-state. Furthermore, a considerable increase in the effluent's biodegradability was attained (BOD5:COD ratio increased from toxicity (from 92.1 to 94.0% of Vibrio fischeri inhibition down to 6.9-9.9%). This allowed the application of the subsequent biological degradation stage. The combination of the two processes provided a treated effluent that clearly complies with the legislated discharge limits. It was also found that the iron leaching from the three catalysts tested was very small in all runs, a crucial factor for the stability and long-term use of such materials. PMID:26513317

  2. Bistability in isothermal photochemical systems: The A ⇆ h nu B --> h nu C reaction in a continuous flow stirred tank reactor

    Science.gov (United States)

    Laplante, J. P.; Lavabre, D.; Micheau, J. C.

    1988-08-01

    In this paper we present a kinetic analysis of the consecutive photoreaction scheme A⇄hνB→hνC assuming the reaction is carried out in a continuous flow stirred tank reactor (CSTR). The reactor is kept at constant temperature and fed with reactant A at a constant flow rate. A numerical analysis of the model's stationary states reveals a range of constraints for which the system possesses multiple steady states. The observed bistability depends strongly on the rate constant of the B→A reaction k2 . It is typically observed when k2 is much larger than the other rate constants. Our numerical calculations also reveal a marked dependency on parameters such as the molar absorptivities and the irradiation intensity I0 . Interestingly, multiple steady states are only observed for intermediate values of I0 . Analytical approximations are obtained for the stationary states in the limit where the end-product C does not absorb light. These approximations are used to clarify the mechanism responsible for the light-induced instability.

  3. Biogas by two-stage microbial anaerobic and semi-continuous digestion of Chinese cabbage waste

    Institute of Scientific and Technical Information of China (English)

    Xiaoying Dong; Lijie Shao; Yan Wang; Wei Kou; Yanxin Cao; Dalei Zhang

    2015-01-01

    Anaerobic digestion of Chinese cabbage waste was investigated through a pilot-scale two-stage digester at a mesophilic temperature of 37 °C. In the acidification digester, the main product was acetic acid, with the maxi-mum concentration of 4289 mg·L-1 on the fourth day, accounting for 50.32%of total volatile fatty acids. The oxidation reduction potential (ORP) and NH4+-N level decreased gradual y with hydraulic retention time (HRT) of acidification. In the second digestion phase, the maximum methanogenic bacterial concentration reached 9.6 × 1010 ml-1 at the organic loading rate (OLR) of 3.5–4 kg VS·m-3, with corresponding HRT of 12–16 days. Accordingly, the optimal biogas production was 0.62 m3·(kg VS)-1, with methane content of 65%–68%. ORP and NH4+-N levels in the methanizer remained between-500 and-560 mV and 2000–4500 mg·L-1, respec-tively. Methanococcus and Methanosarcina served as the main methanogens in the anaerobic digester.

  4. Microbial community dynamics of a continuous mesophilic anaerobic biogas digester fed with sugar beet silage

    Energy Technology Data Exchange (ETDEWEB)

    Demirel, B.; Neumann, L.; Scherer, P. [Hochschule fuer Angewandte Wissenschaften, Fakultaet Life Sciences, Lifetec Process Engineering, Hamburg (Germany)

    2008-08-15

    The aim of the study was to investigate the long-term fermentation of an extremely sour substrate without any addition of manure. In the future, the limitation of manure and therefore the anaerobic digestion of silage with a very low buffering capacity will be an increasing general bottleneck for energy production from renewable biomass. During the mesophilic anaerobic digestion of sugar beet silage (without top and leaves) as the sole substrate (without any addition of manure), which had an extreme low pH of around 3.3, the highest specific gas production rate (spec. GPR) of 0.72 L/g volatile solids (VS) d was achieved at a hydraulic retention time (HRT) of 25 days compared to an organic loading rate (OLR) of 3.97 g VS/L d at a pH of around 6.80. The methane (CH{sub 4}) content of the digester ranged between 58 and 67 %, with an average of 63 %. The use of a new charge of substrate (a new harvest of the same substrate) with higher phosphate content improved the performance of the biogas digester significantly. The change of the substrate charge also seemed to affect the methanogenic population dynamics positively, thus improving the reactor performance. Using a new substrate charge, a further decrease in the HRT from 25 to 15 days did not influence the digester performance and did not seem to affect the structure of the methanogenic population significantly. However, a decrease in the HRT affected the size of the methanogenic population adversely. The lower spec. GPR of 0.54 L/g VS d attained on day 15 of the HRT could be attributed to a lower size of methanogenic population present in the anaerobic digester during this stage of the process. Furthermore, since sugar beet silage is a relatively poor substrate, in terms of the buffering capacity and the availability of nutrients, an external supply of buffering agents and nutrients is a prerequisite for a safe and stable digester operation. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  5. Solidification Structure and Macrosegregation of Billet Continuous Casting Process with Dual Electromagnetic Stirrings in Mold and Final Stage of Solidification: A Numerical Study

    Science.gov (United States)

    Jiang, D.; Zhu, M.

    2016-08-01

    Coupling macroscale heat transfer and fluid flow with microscale grain nucleation and crystal growth, a mixed columnar-equiaxed solidification model was established to study the SWRT82B steel solidification structure and macrosegregation in 160 mm × 160 mm billet continuous casting with dual electromagnetic stirrings in mold and final stage of solidification (M-EMS and F-EMS). In the model, the phases of liquid, columnar, and equiaxed were treated separately and the initial growing equiaxed phase, which could move freely with liquid, was regarded as slurry. To obtain the equiaxed grains nucleation and columnar front evolution, the unit tracking method and the columnar front tracking model were built. The model was validated by magnetic induction intensity of stirrer, billet surface temperature, and carbon segregation. The equiaxed phase evolution and the solute transport with effect of fluid flow and grains transport were described in this article. The results show that the equiaxed phase ratio will not increase obviously with higher current intensity of M-EMS, while the negative segregation near the strand surface becomes more serious. The negative segregation zone near the billet center and the center positive segregation come into being with the effect of equiaxed grains sedimentation and liquid thermosolutal flow. It is also found that the liquid solute transport in the F-EMS zone becomes the main factor with higher current intensity rather than the solidification rate, and therefore, the final billet center segregation decreases first and then turns to rise with the current intensity. The optimal current intensities of M-EMS and F-EMS proposed for SWRT82B billet continuous casting are 200 and 400 A, respectively.

  6. Recovery of resources for advanced life support space applications: effect of retention time on biodegradation of two crop residues in a fed-batch, continuous stirred tank reactor

    Science.gov (United States)

    Strayer, R. F.; Finger, B. W.; Alazraki, M. P.; Cook, K.; Garland, J. L.

    2002-01-01

    Bioreactor retention time is a key process variable that will influence costs that are relevant to long distance space travel or long duration space habitation. However. little is known about the effects of this parameter on the microbiological treatment options that are being proposed for Advanced Life Support (ALS) systems. Two bioreactor studies were designed to examine this variable. In the first one, six retention times ranging from 1.3 to 21.3 days--were run in duplicate, 81 working-volume continuous stirred tank reactors (CSTR) that were fed ALS wheat residues. Ash-free dry weight loss, carbon mineralization, soluble TOC reduction, changes in fiber content (cellulose, hemicellulose, and lignin), bacterial numbers, and mineral recoveries were monitored. At short retention times--1.33 days--biodegradation was poor (total: 16-20%, cellulose - 12%, hemicellulose - 28%) but soluble TOC was decreased by 75-80% and recovery of major crop inorganic nutrients was adequate, except for phosphorus. A high proportion of the total bacteria (ca. 83%) was actively respiring. At the longest retention time tested, 21.3 days, biodegradation was good (total: 55-60%, cellulose ca. 70%, hemicellulose - ca. 55%) and soluble TOC was decreased by 80%. Recovery of major nutrients, except phosphorus, remained adequate. A very low proportion of total bacteria was actively respiring (ca. 16%). The second bioreactor study used potato residue to determine if even shorter retention times could be used (range 0.25-2.0 days). Although overall biodegradation deteriorated, the degradation of soluble TOC continued to be ca. 75%. We conclude that if the goal of ALS bioprocessing is maximal degradation of crop residues, including cellulose, then retention times of 10 days or longer will be needed. If the goal is to provide inorganic nutrients with the smallest volume/weight bioreactor possible, then a retention time of 1 day (or less) is sufficient.

  7. Enrichment of a microbial community performing anaerobic oxidation of methane in a continuous high-pressure bioreactor

    Directory of Open Access Journals (Sweden)

    Wang Fengping

    2011-06-01

    Full Text Available Abstract Background Anaerobic oxidation of methane coupled to sulphate reduction (SR-AOM prevents more than 90% of the oceanic methane emission to the atmosphere. In a previous study, we demonstrated that the high methane pressure (1, 4.5, and 8 MPa stimulated in vitro SR-AOM activity. However, the information on the effect of high-pressure on the microbial community structure and architecture was still lacking. Results In this study we analysed the long-term enrichment (286 days of this microbial community, which was mediating SR-AOM in a continuous high-pressure bioreactor. 99.7% of the total biovolume represented cells in the form of small aggregates (diameter less then 15 μm. An increase of the total biovolume was observed (2.5 times. After 286 days, the ANME-2 (anaerobic methanotrophic archaea subgroup 2 and SRB (sulphate reducing bacteria increased with a factor 12.5 and 8.4, respectively. Conclusion This paper reports a net biomass growth of communities involved in SR-AOM, incubated at high-pressure.

  8. Anaerobic digestion of grape pomace: Biochemical characterization of the fractions and methane production in batch and continuous digesters.

    Science.gov (United States)

    El Achkar, Jean H; Lendormi, Thomas; Hobaika, Zeina; Salameh, Dominique; Louka, Nicolas; Maroun, Richard G; Lanoisellé, Jean-Louis

    2016-04-01

    In this study, we have estimated the biogas and methane production from grape pomace (variety Cabernet Franc). The physical and chemical characteristics of the raw material were determined, and the structural polysaccharides were identified and analyzed by the Van Soest method. Batch anaerobic digestions were carried out to assess the methane production of the grape pomace, pulp and seeds. The obtained cumulative methane productions are 0.125, 0.165 and 0.052 Nm(3) kg COD(-1) for grape pomace, pulps and seeds, respectively. The effect of grinding on the methane potential of the substrates, as a mechanical pretreatment, was evaluated. We found that it increased the anaerobic biodegradability for grape pomace, pulp and seeds by 13.1%, 4.8% and 22.2%, respectively. On the other hand, the methane potential of the grape pomace was determined in a laboratory pilot plant (12L) continuously mixed with an organic loading rate of 2.5 kg COD m(3) d(-1) and a hydraulic retention time of 30 days. The corresponding biogas production was 6.43 × 10(-3) Nm(3) d(-1), with a methane content of 62.3%. Thus, the pilot plant's efficiency compared to that achieved in the batch process was 81.2%. Finally, a significant correlation was found between the biochemical content and methane production.

  9. Effect of Diurnally Cyclic Temperature on the Performance of a Continuous Mix Anaerobic Digester

    Directory of Open Access Journals (Sweden)

    Abdel E. Ghaly

    2011-01-01

    Full Text Available Problem statement: Concentrated livestock production is a major contributor to environmental problems through the production of large quantity of husks on relatively small land area. Anaerobic digestion represents a valuable means of cover by these husks into methane while reducing manure pollution problems. Methodology: An experimental apparatus, including data acquisition and control system, was developed and used to investigate the effects of two diurnally cyclic temperature ranges (20-40 and 15-25°C and four levels of hydraulic retention times (25, 20, 15 and 10 d on the performance of anaerobic reactors operated on screened dairy manure. Results: The reactor temperature exhibited a lag relative to the chamber temperature. For the 20-40°C temperature cycles, the average lag at the maximum chamber temperature was 3.75 h while the lag at the minimum chamber temperature was 4.37 h. For the 15-25°C temperature cycle, the average lag at maximum chamber temperatures was 3.61 while the lag of the minimum chamber temperature was 4.34 h. The effluent solids content, total Kjeldahl nitrogen and ammonium nitrogen concentrations were not adversely affected by the reactor diurnally cyclic temperature. The observed values of these parameters compared fairly well with the values obtained by other researchers. The effluent total solids, volatile suspended solids, TKN, NH4-N and methane content of the biogas diurnally cyclic patterns were out of phase with the diurnally cyclic pattern of the reactor temperature by about 12 h under most of the investigated operating conditions. The pH and the carbon dioxide content of the biogas all exhibited a diurnally cyclic pattern which was in phase with the reactor diurnally cyclic temperature. The reductions in total solids, total suspended solids, fixed suspended solids, total Kjeldahl nitrogen, ammonium nitrogen and methane yield were all significantly affected by the diurnal temperature range and hydraulic

  10. Photocatalytic inactivation of Flavobacterium and E. coli in water by a continuous stirred tank reactor (CSTR) fed with suspended/immobilised TiO2 medium.

    Science.gov (United States)

    Cohen-Yaniv, Vered; Narkis, Nava; Armon, Robert

    2008-01-01

    A photocatalytic continuous stirred tank reactor (CSTR) was built at laboratory scale to inactivate two environmental bacteria strains (Flavobacterium and E. coli) in tap water. Several parameters were found to impact reactor efficiency. Bacterial initial concentration is an important factor in inactivation rate. After 30 minutes of irradiation at 10(8)-10(9) CFU mL(-1) starting concentration, a >5 log reduction was achieved while at 10(4)-10(6) CFU mL(-1) only a 2 log reduction was observed. Water hardness and pH have an important influence on the photocatalytic inactivation process. Soft water, with low Ca(+2) and Mg(+2) at low pH approximately 5.3 resulted in increased inactivation of Flavobacterium reaching >6 orders of magnitude reduction. E. coli and Flavobacterium at pH 5 were inactivated by 3 logs more as compared to pH 7 under similar conditions. pH below TiO2 isoelectric point (approximately 5.6) supports better contact between bacteria and anatase particles resulting in superior inactivation. TiO2 powder suspension was compared with immobilised powder in sol-gel coated glass beads in order to exclude the need for particles separation from the treated water. TiO2 suspension was more effective by 3 orders of magnitude when compared to coated glass beads. An interesting observation was found between the two bacterial strains based on their hydrophobicity/hydrophilicity balance. The more hydrophobic Flavobacterium compared to E. coli was inactivated photocatalytically by >3 logs more then E. coli in the first 30 minutes of irradiation interval. The results indicate the importance of the parameters involved in the contact between TiO2 particles and microorganisms that govern the successful inactivation rate in CSTR.

  11. Coupling of acrylic dyeing wastewater treatment by heterogeneous Fenton oxidation in a continuous stirred tank reactor with biological degradation in a sequential batch reactor.

    Science.gov (United States)

    Esteves, Bruno M; Rodrigues, Carmen S D; Boaventura, Rui A R; Maldonado-Hódar, F J; Madeira, Luís M

    2016-01-15

    This work deals with the treatment of a recalcitrant effluent, from the dyeing stage of acrylic fibres, by combination of the heterogeneous Fenton's process in a continuous stirred tank reactor (CSTR) with biological degradation in a sequential batch reactor (SBR). Three different catalysts (a commercial Fe/ZSM-5 zeolite and two distinct Fe-containing activated carbons - ACs - prepared by wet impregnation of iron acetate and iron nitrate) were employed on the Fenton's process, and afterwards a parametric study was carried out to determine the effect of the main operating conditions, namely the hydrogen peroxide feed concentration, temperature and contact time. Under the best operating conditions found, using the activated carbon impregnated with iron nitrate, 62.7% of discolouration and 39.9% of total organic carbon (TOC) reduction were achieved, at steady-state. Furthermore, a considerable increase in the effluent's biodegradability was attained (BOD5:COD ratio increased from <0.001 to 0.27 and SOUR - specific oxygen uptake rate - from <0.2 to 11.1 mg O2/(gVSS·h)), alongside a major decrease in its toxicity (from 92.1 to 94.0% of Vibrio fischeri inhibition down to 6.9-9.9%). This allowed the application of the subsequent biological degradation stage. The combination of the two processes provided a treated effluent that clearly complies with the legislated discharge limits. It was also found that the iron leaching from the three catalysts tested was very small in all runs, a crucial factor for the stability and long-term use of such materials.

  12. Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio

    NARCIS (Netherlands)

    Dar, S.A.; Kleerebezem, R.; Stams, A.J.M.; Kuenen, J.G.; Muyzer, G.

    2008-01-01

    The microbial population structure and function of natural anaerobic communities maintained in lab-scale continuously stirred tank reactors at different lactate to sulfate ratios and in the absence of sulfate were analyzed using an integrated approach of molecular techniques and chemical analysis. T

  13. Is the continuous two-stage anaerobic digestion process well suited for all substrates?

    Science.gov (United States)

    Lindner, Jonas; Zielonka, Simon; Oechsner, Hans; Lemmer, Andreas

    2016-01-01

    Two-stage anaerobic digestion systems are often considered to be advantageous compared to one-stage processes. Although process conditions and fermenter setups are well examined, overall substrate degradation in these systems is controversially discussed. Therefore, the aim of this study was to investigate how substrates with different fibre and sugar contents (hay/straw, maize silage, sugar beet) influence the degradation rate and methane production. Intermediates and gas compositions, as well as methane yields and VS-degradation degrees were recorded. The sugar beet substrate lead to a higher pH-value drop 5.67 in the acidification reactor, which resulted in a six time higher hydrogen production in comparison to the hay/straw substrate (pH-value drop 5.34). As the achieved yields in the two-stage system showed a difference of 70.6% for the hay/straw substrate, and only 7.8% for the sugar beet substrate. Therefore two-stage systems seem to be only recommendable for digesting sugar rich substrates. PMID:26519699

  14. Application of Box-Wilson experimental design method for 2,4-dinitrotoluene treatment in a sequential anaerobic migrating blanket reactor (AMBR)/aerobic completely stirred tank reactor (CSTR) system.

    Science.gov (United States)

    Kuşçu, Özlem Selçuk; Sponza, Delia Teresa

    2011-03-15

    A sequential aerobic completely stirred tank reactor (CSTR) following the anaerobic migrating blanket reactor (AMBR) was used to treat a synthetic wastewater containing 2,4-dinitrotoluene (2,4-DNT). A Box-Wilson statistical experiment design was used to determine the effects of 2,4-DNT and the hydraulic retention times (HRTs) on 2,4-DNT and COD removal efficiencies in the AMBR reactor. The 2,4-DNT concentrations in the feed (0-280 mg/L) and the HRT (0.5-10 days) were considered as the independent variables while the 2,4-DNT and chemical oxygen demand (COD) removal efficiencies, total and methane gas productions, methane gas percentage, pH, total volatile fatty acid (TVFA) and total volatile fatty acid/bicarbonate alkalinity (TVFA/Bic.Alk.) ratio were considered as the objective functions in the Box-Wilson statistical experiment design in the AMBR. The predicted data for the parameters given above were determined from the response functions by regression analysis of the experimental data and exhibited excellent agreement with the experimental results. The optimum HRT which gave the maximum COD (97.00%) and 2,4-DNT removal (99.90%) efficiencies was between 5 and 10 days at influent 2,4-DNT concentrations 1-280 mg/L in the AMBR. The aerobic CSTR was used for removals of residual COD remaining from the AMBR, and for metabolites of 2,4-DNT. The maximum COD removal efficiency was 99% at an HRT of 1.89 days at a 2,4-DNT concentration of 239 mg/L in the aerobic CSTR. It was found that 280 mg/L 2,4-DNT transformed to 2,4-diaminotoluene (2,4-DAT) via 2-amino-4-nitrotoluene (2-A-4-NT) and 4-amino-2-nitrotoluene (4-A-2-NT) in the AMBR. The maximum 2,4-DAT removal was 82% at an HRT of 8.61 days in the aerobic CSTR. The maximum total COD and 2,4-DNT removal efficiencies were 99.00% and 99.99%, respectively, at an influent 2,4-DNT concentration of 239 mg/L and at 1.89 days of HRT in the sequential AMBR/CSTR.

  15. Application of Box-Wilson experimental design method for 2,4-dinitrotoluene treatment in a sequential anaerobic migrating blanket reactor (AMBR)/aerobic completely stirred tank reactor (CSTR) system

    International Nuclear Information System (INIS)

    A sequential aerobic completely stirred tank reactor (CSTR) following the anaerobic migrating blanket reactor (AMBR) was used to treat a synthetic wastewater containing 2,4-dinitrotoluene (2,4-DNT). A Box-Wilson statistical experiment design was used to determine the effects of 2,4-DNT and the hydraulic retention times (HRTs) on 2,4-DNT and COD removal efficiencies in the AMBR reactor. The 2,4-DNT concentrations in the feed (0-280 mg/L) and the HRT (0.5-10 days) were considered as the independent variables while the 2,4-DNT and chemical oxygen demand (COD) removal efficiencies, total and methane gas productions, methane gas percentage, pH, total volatile fatty acid (TVFA) and total volatile fatty acid/bicarbonate alkalinity (TVFA/Bic.Alk.) ratio were considered as the objective functions in the Box-Wilson statistical experiment design in the AMBR. The predicted data for the parameters given above were determined from the response functions by regression analysis of the experimental data and exhibited excellent agreement with the experimental results. The optimum HRT which gave the maximum COD (97.00%) and 2,4-DNT removal (99.90%) efficiencies was between 5 and 10 days at influent 2,4-DNT concentrations 1-280 mg/L in the AMBR. The aerobic CSTR was used for removals of residual COD remaining from the AMBR, and for metabolites of 2,4-DNT. The maximum COD removal efficiency was 99% at an HRT of 1.89 days at a 2,4-DNT concentration of 239 mg/L in the aerobic CSTR. It was found that 280 mg/L 2,4-DNT transformed to 2,4-diaminotoluene (2,4-DAT) via 2-amino-4-nitrotoluene (2-A-4-NT) and 4-amino-2-nitrotoluene (4-A-2-NT) in the AMBR. The maximum 2,4-DAT removal was 82% at an HRT of 8.61 days in the aerobic CSTR. The maximum total COD and 2,4-DNT removal efficiencies were 99.00% and 99.99%, respectively, at an influent 2,4-DNT concentration of 239 mg/L and at 1.89 days of HRT in the sequential AMBR/CSTR.

  16. Partial Control of a Continuous Bioreactor: Application to an Anaerobic System for Heavy Metal Removal

    Directory of Open Access Journals (Sweden)

    M. I. Neria-González

    2016-01-01

    Full Text Available This work presents a control strategy for a continuous bioreactor for heavy metal removal. For this aim, regulation of the sulfate concentration, which is considered the measured and controlled state variable, allowed diminishing the cadmium concentration in the bioreactor, where the corresponding controller was designed via nonlinear bounded function. Furthermore, a nonlinear controllability analysis was done, which proved the closed-loop instability of the inner or uncontrolled dynamics of the bioreactor. A mathematical model, experimentally corroborated for cadmium removal, was employed as a benchmark for the proposed controller. Numerical experiments clearly illustrated the successful implementation of this methodology; therefore, cadmium removal amounted to more than 99%, when the initial cadmium concentration was up to 170 mg/L in continuous operating mode.

  17. Comparison of two continuous fungal bioreactors for posttreatment of anaerobically pretreated weak black liquor from kraft pulp mills.

    Science.gov (United States)

    Ortega-Clemente, Alfredo; Marín-Mezo, G; Ponce-Noyola, M T; Montes-Horcasitas, M C; Caffarel-Méndez, S; Barrera-Cortés, Josefina; Poggi-Varaldo, Héctor M

    2007-03-01

    The purpose of this work was to evaluate and compare two continuous systems of posttreatment of anaerobically pretreated weak black liquor (WBL). The first system consisted of a packed bed reactor (PBR) with Trametes versicolor (Tv) immobilized on wood cubes of holm oak (biocubes). The second system was a fluidized bed reactor (FBR) with Lentinus edodes (Le) immobilized on wood cubes of holm oak. The reactors operated for 65 days at a hydraulic retention time (HRT) of 5 days, at 28 degrees C, with continuous aeration. Response variables monitored were conventional and specific, unit, net removal efficiency (eta and eta(sun), respectively) of chemical oxygen demand (COD), color, and ligninoids, and enzymatic activities of manganese peroxidase (MnP), lignin peroxidase (LiP), laccase (Lac) and proteases. The PBR showed an average color eta superior to that of the FBR (52.42 +/- 21.78% and 25.34 +/- 14.38% for PBR and FBR, respectively); removals of COD and ligninoids presented a similar pattern to that of color. Lac activity was significantly larger in PBR than in FBR. Activity of MnP in PBR was higher than that of the FBR (0.004 and 0.002 U MnP/mL, respectively). This difference could be ascribed to the different fungi present in each bioreactor. LiP activity was very low in both reactors. Average value of proteases was almost double in the FBR as compared with PBR (0.472 and 0.209 U Proteases/mL, respectively). During the last 2 weeks of operation, biocubes in the FBR experienced a significant loss of the attached Le biomass, probably by attrition. This and higher protease activity in the FBR could explain the lower pollutant removals achieved in the FBR. Overall, PBR with immobilized Tv showed a better performance than the FBR with Le for the posttreatment of the recalcitrant anaerobic effluent. Extended and sustained pollutant removal (65 days) was achieved in the PBR, although more research is needed to evaluate bioreactor performance at shorter hydraulic

  18. In Search of functionality-diversity relationships in anaerobic mixed culture fermentations

    International Nuclear Information System (INIS)

    Based on the work described in this paper we will postulate that in environmental ecosystems with a weak selective pressure no clear relationship exists between the ecosystem functionality and the microbial diversity and microbial composition. In the past years we have been investigating the anaerobic fermentation of glucose, xylose, and glycerol, and mixtures of these substrates in continuously stirred tank reactors (CSTR) inoculated with an activated sludge characterized by a very rich microbial diversity. (Author)

  19. Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease

    International Nuclear Information System (INIS)

    Highlights: → Co-digestion of thickened waste activated sludge (TWAS) with fat, oil and grease (FOG). → Co-digestion of TWAS and FOG at 64% VS increased biogas production by 137%. → FOG addition ratio at 74% of total VS caused inhibition of the anaerobic digestion process. → Micronutrients addition did not significantly improve the biogas production and digestion stabilization. - Abstract: Co-digestion of thickened waste activated sludge (TWAS) and fat, oil and grease (FOG) was conducted semi-continuously under mesophilic conditions. The results showed that daily methane yield at the steady state was 598 L/kg VSadded when TWAS and FOG (64% of total VS) were co-digested, which was 137% higher than that obtained from digestion of TWAS alone. The biogas composition was stabilized at a CH4 and CO2 content of 66.8% and 29.5%, respectively. Micronutrients added to co-digestion did not improve the biogas production and digestion stabilization. With a higher addition of FOG (74% of total VS), the digester initially failed but was slowly self-recovered; however, the methane yield was only about 50% of a healthy reactor with the same organic loading rate.

  20. Semi-continuous solid substrate anaerobic reactors for H{sub 2} production from organic waste: Mesophilic versus thermophilic regime

    Energy Technology Data Exchange (ETDEWEB)

    Valdez-Vazquez, Idania; Rios-Leal, Elvira; Esparza-Garcia, Fernando; Poggi-Varaldo, Hector M. [CINVESTAV-IPN, Department Biotechnology and Bioengineering, Environmental Biotechnology, P.O. Box 14-740, Mexico D.F. 07000 (Mexico); Cecchi, Franco [Universita degli Studi di Verona, Verona (Italy)

    2005-11-01

    We evaluated the influence of the operation temperature (mesophilic vs. thermophilic regime) of semicontinuous, acidogenic solid substrate anaerobic digestion (A-SSAD) of the organic fraction of municipal solid waste (OFMSW) at lab scale. The H{sub 2} percentage was higher in the thermophilic regime than in the mesophilic operation (58% and 42%, respectively). The H{sub 2} yield of thermophilic A-SSAD was significantly higher than in our mesophilic reactors (360 vs. 165NmL H{sub 2}/g VS{sub rem}) and other studies reported in the literature (range of 62-180mL/g VS). Mesophilic A-SSAD showed a yield of 37% of the maximum yield based on 4molH{sub 2}/mol hexose, while thermophilic A-SSAD exhibited a yield of 80% of the maximum yield. This result is similar to works with pure cultures of extremophile microorganisms where H{sub 2} yields of 83% of the maximum were reported. We found higher concentrations of acetic acid in the digestates of thermophilic A-SSAD, while butyrate was in higher proportion in mesophilic A-SSAD spent solids. The moderate-to-high yields obtained with the semicontinuous process used in this work are in disagreement with previous reports claiming that batch and semicontinuous processes are less efficient than continuous ones. (author)

  1. Numerical Simulation of the Anaerobic Transformation of Tetrachloroethene to cis-Dichloroethene in a Continuous Flow Aquifer Column

    Science.gov (United States)

    Mustafa, N.; Azizian, M.; Dolan, M.; Semprini, L.

    2007-12-01

    The anaerobic reductive dechlorination of tetrachloroethene (PCE) to cis-dichloroethene (c-DCE) in a laboratory column study was numerically simulated and compared with experimental observations. The column study was conducted with continuous flow and injection of PCE in synthetic groundwater. The column was packed with aquifer solids from the Hanford DOE site and bioaugmented with the Evanite (EV) dechlorinating enrichment culture. After the column was bioaugmented and fed lactate as an electron donor, c-DCE concentrations in the column effluent exceeded the influent PCE concentration. This high c-DCE concentration resulted from enhanced PCE desorption and transformation. A 1-D reactive transport model was developed that included the processes of dispersion, advection, rate-limited sorption and desorption, reductive dechlorination kinetics with competitive inhibition and microbial growth and decay. The model was validated by mass balances, comparisons with analytical solutions and batch kinetic models. Previously determined kinetic and inhibition constants for the EV culture of Yu and Semprini (2004) were input into the model simulations. Initial biomass concentration was assumed to be exponentially distributed along the column. The sorption parameters including the aquifer: water distribution coefficients (Kds) and first-order mass transfer coefficients for PCE, trichloroethene (TCE), and c-DCE were determined in batch laboratory studies. The system of model equations was solved numerically using COMSOL 3.3, which employs finite-element methods. The reactive transport model successfully simulated the initial results of continuous flow column experiment. The increase in c-DCE above the influent PCE concentration was simulated and TCE was shown not to accumulate in the column effluent. The simulations showed that microbial kinetic values generated in previous studies and the sorption parameters generated in batch tests, when used in a transport model, did a

  2. Anaerobes beyond anaerobic digestion

    OpenAIRE

    Sousa, D. Z.; Pereira, M A; Alves, M.M.

    2009-01-01

    Anaerobic microorganisms are widespread in nature. Sediments, gastrointestinal tracks, volcanic vents, geothermal sources are examples of habitats where anaerobic metabolism prevail, in some cases at extreme temperature, pH and pressure conditions. In such microbial ecosystems waste of some is food for others in a true integrated structure. Anaerobic microorganisms are able to use a wide variety of organic and inorganic compounds. Recalcitrant compounds, such as hydrocarbons, a...

  3. 三维运动连续进料式混合搅拌机%Operating Principles and Properties of a 3-dimensional Motion Continuous Feeding Stirring Mixer

    Institute of Scientific and Technical Information of China (English)

    戴长虹; 李绍纯

    2011-01-01

    The paper introduced a new type of 3-dimensional motion continuous feeding stirring mixer, which includes fiamework, tempering tank, mixer shaft, agitating machine, rotating machine, rotating shaft, collector ring, and brush.The operating principles and assembling drawing of this stirring mixer were fully discussed. The main characteristic of this mixer includes two aspects, on the one hand is mixing the materials in rotary tempering tank under the rotating shaft functions, thus greatly increase the mix efficiency, on the other hand is mixing the materials while continuous charge-in through the hollow rotating shaft. Therefore, this type of mixer with continuous tilling function has advantages of high efficiency, high precision, low energy consumption and practical for many fields of industry. [ Ch, 1 fig. 14 ref. ]%文章设计了一种新型三维运动连续进料式混合搅拌机.其结构包括机架、混合桶、搅拌轴、搅拌电机、旋转电机、旋转轴、集电环和电刷.该混合搅拌机一方面将混合桶的旋转和混合桶内搅拌轴的旋转结合在一起,大幅度提高了混料的效率,另一方面将旋转轴作为进、出料口,可以进行连续性装填,提高了效率,降低了能耗.

  4. pH对发酵系统的产甲烷活性抑制及产氢强化%Enhancement of the fermentative hydrogen production in a continuous-flow stirred tank reactor by decreasing pH to inhibit methanogenesis

    Institute of Scientific and Technical Information of China (English)

    李建政; 苏晓煜; 昌盛; 张立国; 于泽

    2012-01-01

    To develop a feasible method for inhibiting methanogenesis while enhancing fermentative hydrogen production in anaerobic organic wastewater fermentation process, a continuous - flow stirred tank reactor (CSTR) a methane production feature was introduced and used as the base-line condition. The CSTR was op- erated at (35 ± 1 )℃ with an influent COD 7 000 mg/L and a hydraulic retention time (HRT) 8 h throughout the performance test. When the pH in the CSTR decreased from 6. 5 - 7.2 to 6. 0 - 6. 5, the methane yield decreased remarkably and could not be inspected in the biogas at last, while the percentage of hydrogen in bio- gas kept at a low level less than 3 %. When the CSTR operated with a lower pH 4. 0 -5.0, the acidogenesis was further enhanced with a total organic intermediate of 2 052 rag/L, dominated by ethanol and acetic acid, indicating a typical ethanol-type fermentation established in the CSTR. During the ethanol-type fermentation process, a biogas yield of 26 L/d was obtained with a hydrogen percentage about 45%. The specific hydrogen producing rate of the anaerobic activated sludge reached at 1.67 L/( g · d) averagely. Key words: organic wastewater; methanogenesis; fermentative hydrogen production; pH adjustment; continu- ous-flow stirred tank reactor (CSTR)%为抑制厌氧发酵系统的产甲烷活性,强化其发酵产氢性能,采用逐级降低pH的调控方法,探讨连续流搅拌槽式反应器(CSTR)从具有显著甲烷发酵特征的厌氧发酵系统向发酵产氢系统转变的运行特征.在进水COD7000mg/L、水力停留时间(HRT)8h条件下,发酵体系在pH由6.5~7.2降低到6.0~6.5时,虽然发酵气中的甲烷体积分数逐渐减少乃至消失,但氢气体积分数一直在3%以下;当pH下降到4.0~5.0时,系统中的产酸发酵作用得到了进一步强化,挥发性发酵产物总量平均为2052mg/L,呈现为典型的乙醇型发酵

  5. Comparison of semi-batch vs. continuously fed anaerobic bioreactors for the treatment of a high-strength, solids-rich pumpkin-processing wastewater.

    Science.gov (United States)

    del Agua, Isabel; Usack, Joseph G; Angenent, Largus T

    2015-01-01

    The objective of this work was to compare two different high-rate anaerobic bioreactor configurations--the anaerobic sequencing batch reactor (ASBR) and the upflow anaerobic solid removal (UASR) reactor--for the treatment of a solid-rich organic wastewater with a high strength. The two, 4.5-L reactors were operated in parallel for close to 100 days under mesophilic conditions (37°C) with non-granular biomass by feeding a pumpkin wastewater with ∼4% solids. The organic loading rate of pumpkin wastewater was increased periodically to a maximum of 8 g COD L(-1) d(-1) by shortening the hydraulic retention time to 5.3 days. Compositional analysis of pumpkin wastewater revealed deficiencies in the trace metal cobalt and alkalinity. With supplementation, the ASBR outperformed the UASR reactor with total chemical oxygen demand (COD) removal efficiencies of 64% and 53%, respectively, achieving a methane yield of 0.27 and 0.20 L CH4 g(-1) COD fed to the ASBR and UASR, respectively. The better performance realized with the ASBR and this specific wastewater was attributed to its semi-batch, dynamic operating conditions rather than the continuous operating conditions of the UASR reactor. PMID:25683478

  6. Aperiodicity resulting from two-cycle coupling in the Belousov-Zhabotinskii reaction. III. Analysis of a model of the effect of spatial inhomogeneities at the input ports of a continuous-flow, stirred tank reactor

    Science.gov (United States)

    Györgyi, László; Field, Richard J.

    1989-11-01

    Deterministic chaos is a well-established phenomenon in continuous-flow, stirred tank reactor (CSTR) experiments with the oscillatory Belousov-Zhabotinskii (BZ) reaction. However, it has not yet been possible to reproduce the experimentally observed, robust chaos in simulations using realistic models of the homogeneous chemical kinetics of the BZ reaction. That it may be necessary to consider spatial inhomogeneities in modeling the BZ chaos is suggested by the existence of strong stirring effects on the aperiodic behavior and by the difficulty of reproducing chaos under the same conditions in reactors of different physical configuration. Such inhomogeneity might result from a lack of perfect mixing in the CSTR, especially near the inlets, or from diffusion of species at low flow rates from the CSTR reaction mixture into the tips of the inlets. The presence of spatial inhomogeneities allows coupling between essentially independent oscillators, a well-known source of chaos. Such a model using a realistic representation of the BZ kinetics leads to an eight-variable set of ordinary differential equations. Numerical analysis of these equations by continuation methods and by numerical integration shows the existence of broad regions of chaos and various hysteresis effects involving limit cycles, a steady state and/or a strange attractor. Tristability was found in calculations in a narrow flow rate range. The computed behavior appears for parameter values closely related to the values used experimentally to obtain similar phenomena, and the visual similarity of the computed and experimental strange attractors is striking. The experimental routes to chaos, period doubling, intermittency, and secondary Hopf bifurcations are all reproduced in the simulations. The computed and experimental structures of periodic windows observed within chaotic regions also are very similar.

  7. Inhibitory effects on anaerobic digestion of swine manure

    International Nuclear Information System (INIS)

    This paper presents a laboratory study using anaerobic digestion for swine manure under both mesophilic and thermophilic conditions, with emphasis on the effects of inhibitory chemicals on biogas production. A series of batch tests were conducted to examine the effects of various process parameters by varying temperature, pH, ammonia and hydrogen sulfide concentrations. As well, continuous anaerobic digestion tests were conducted using a completely stirred reactor system with a sludge retention time of 15 days. The results showed that at the initial stage, biogas was generated rapidly in the thermophilic reactor, but was more and more inhibited during the later stage with the presence of ammonia and hydrogen sulfide. In contrast, the biogas production was initially delayed in the mesophilic reactor but afterwards had an even higher total gas production. In order to take advantages of both temperature effects in each reactor, the dual-stage system that consists of a thermophilic reactor followed by a mesophilic reactor was suggested. (author)

  8. Continuous live cell imaging of cellulose attachment by microbes under anaerobic and thermophilic conditions using confocal microscopy

    Institute of Scientific and Technical Information of China (English)

    Zhi-Wu Wang; Seung-Hwan Lee; James G.Elkins; Yongchao Li; Scott Hamilton-Brehm; Jennifer L.Morrell-Falvey

    2013-01-01

    Live cell imaging methods provide important insights into the dynamics of cellular processes that cannot be derived easily from population-averaged datasets.In the bioenergy field,much research is focused on fermentation of cellulosic biomass by thermophilic microbes to produce biofuels; however,little effort is dedicated to the development of imaging tools to monitor this dynamic biological process.This is,in part,due to the experimental challenges of imaging ceils under both anaerobic and thermophilic conditions.Here an imaging system is described that integrates confocal microscopy,a flow cell device,and a lipophilic dye to visualize cells.Solutions to technical obstacles regarding suitable fluorescent markers,photodamage during imaging,and maintenance of environmental conditions during imaging are presented.This system was utilized to observe cellulose colonization by Clostridium thermocellum under anaerobic conditions at 60℃.This method enables live cell imaging of bacterial growth under anaerobic and thermophilic conditions and should be widely applicable to visualizing different cell types or processes in real time.

  9. Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Mikkelsen, Marie Just; Ahring, Birgitte Kiær

    2008-01-01

    to sugar mixtures of glucose and xylose ranging from 12 to 41 g/l. The organism, thermophilic anaerobic bacterium Thermoanaerobacter BG1L1, exhibited significant resistance to high levels of acetic acid (up to 10 g/l) and other metabolic inhibitors present in the hydrolysate. Although the hydrolysate...... was not detoxified, ethanol yield in a range of 0.39-0.42 g/g was obtained. Overall, sugar efficiency to ethanol was 68-76%. The reactor was operated continuously for approximately 143 days, and no contamination was seen without the use of any agent for preventing bacterial infections. The tested microorganism has...

  10. Friction stir welding tool

    Science.gov (United States)

    Tolle; Charles R. , Clark; Denis E. , Barnes; Timothy A.

    2008-04-15

    A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.

  11. Effects of aerobic interval training versus continuous moderate exercise programme on aerobic and anaerobic capacity, somatic features and blood lipid profile in collegate females

    Directory of Open Access Journals (Sweden)

    Krzystof Mazurek

    2014-11-01

    Full Text Available introduction. Regular physical activity has many positive health benefits, including reducing the risk of cardiovascular diseases, metabolic diseases and some cancers, as well as improving the quality of life. objectives. The aim of the study was to examine the effects of 8-week aerobic interval cycle exercise training (AIT compared to continuous cycle exercises of moderate intensity (CME on the aerobic and anaerobic capacity, somatic features and lipid profile. material and methods. The research was conducted in 88 volunteers aged 19.5±0.6 years, who were randomized to three groups of organized physical activity (OPA, who exercised 3 times per week in 47 min sessions: (I AIT (n=24 comprising 2 series of 6x10 s sprinting with maximal pedalling cadence and active rest pedalling with intensity 65%–75% HRmax, (II CME (n=22 corresponding to 65%-75% HRmax, (III regular collegiate physical education classes of programmed exercises (CON; n=42. Before and after OPA anthropometrics, aero- and anaerobic capacity and lipid profile indices were measured. results. In AIT, a significantly greater decrease of waist circumference and WHR was noted when compared to CON, and a significantly greater reduction of sum of skinfolds than in CON and CME. Improvement in relative and absolute VO2max (L/min and ml/kg/min was significantly higher in AIT than CON. Work output and peak power output in the anaerobic test improved significantly in AIT, CME and CON, but independently of training type. OPA was effective only in reducing triglyceride concentrations in CME and CON groups, without interaction effects in relation to training type. conclusion. It was found that 8 weeks of OPA was beneficial in improving somatic and aerobic capacity indices, but AIT resulted in the greatest improvement in somatic indices (waist circumference, WHR, sum of skinfolds and in VO[sub]2[/sub]max, compared to CME and CON programmes.

  12. Robust L2-L∞ Control for Continuous Stirred Tank Reactor Based on T-S Model%基于T-S模型的连续搅拌反应釜鲁棒L2-L∞控制

    Institute of Scientific and Technical Information of China (English)

    李艳辉; 冯岩

    2014-01-01

    To realize precise control for CSTR( Continuous Stirring Tank Reactor) systems in actual reactions, a robust L2-L∞ state feedback control problem is studied by using a T-S fuzzy model to approximate the nonlinear object according to reaction characteristics of the CSTR. All reactor temperatures which are easier to be measured can be treated as premise variables in the model, where fewer number of fuzzy rules are employed. The design method of partial controllers is given by applying the PDC ( Parallel Distributed Compensation ) algorithm. A global controller is designed by adopting the LMI ( Linear Matrix Inequality ) technique, and the design of controllers is cast into a convex optimization problem. Simulations are provided to demonstrate the effectiveness of the proposed design scheme, which can be applied to other chemical industrial reactions.%为实现对连续搅拌反应釜( CSTR:Continuous Stirring Tank Reactor)系统在实际反应中的精确控制,根据CSTR反应特点,采用T-S模糊模型逼近非线性对象,研究鲁棒L2-L∞状态反馈控制问题。模型中将更易测量的反应器温度作为前件变量,模糊规则少。应用平行分配补偿算法( PDC:Parallel Distributed Compensation),给出局部控制器的设计方法,并利用线性矩阵不等式( LMI:Linear Matrix Inequality)技术设计全局控制器,在此基础上把控制器的设计转化为一个凸优化的求解问题。最后仿真验证了该方法的有效性,从而可扩展到其他化学工业反应中。

  13. Anaerobic bioprocessing of sewage sludge, focusing on degradation of linear alkylbenzene sulfonates (LAS)

    Energy Technology Data Exchange (ETDEWEB)

    Angelidaki, I.; Toraeng, L.; Waul, C.M.; Schmidt, J.E.

    2003-07-01

    Anaerobic degradation of sludge amended with linear alkylbenzene sulfonates (LAS) was tested in one stage continuous stirred tank reactor (CSTR) and a two stages reactor system consisting by a CSTR as first step and upflow anaerobic sludge bed (UASB) reactor in the second step. Anaerobic removal of LAS was only observed at the second step but not at the first step. Removal of LAS in the UASB reactors was approx. 80% where half was due to absorption and the other half was apparently due to biological removal as shown from the LAS mass balance. At the end of the experiment the reactors were spiked with {sup 14}C-LAS which resulted in 5.6% {sup 14}CO{sub 2} in the produced gas. Total mass balance of the radioactivity was however not achieved. In batch experiments it was found that LAS at concentrations higher than 50 mg/l is inhibitory for the most microbial groups of the anaerobic process. Therefore, low initial LAS concentration is a prerequisite for successful LAS degradation. The results from the present study suggest that anaerobic degradation of LAS is possible in UASB reactors when the concentration of LAS is low enough to avoid inhibition of microorganisms active in the anaerobic process. (author)

  14. Plants Growth Rate in Evapotranspiration continuous system reactors as the 2nd Treatment at Anaerobic-evapotranspiration system with High Strength Ammonium in Leachate Influent

    Directory of Open Access Journals (Sweden)

    Badrus Zaman

    2014-05-01

    Full Text Available Ammonium is one of parameter which responsible to leachate toxicity. Preliminary research was shown that the Fimbristylis globulosa (water plant, Alocasia macrorrhiza (terrestrial plant and Eleusine indica (terrestrial grass were potential plants for used as object in evaporation reactor system with high strength ammonium  concentration in leachate treatment. This research was integrated of anaerobic system with evapotranspiration system with continuous influent using ammonium concentration in leachate was 2000 mg/l NH4-N. Plants growth rate was analyzed for 25 days operated. The result shown that average of thallus growth rate of Fimbristylis globulosa was 17,5 cm d-1. The average of leaf and thallus growth rate of Alocasia macrorrhiza was 18,1 cm d-1 and 3,2 cm d-1 respectively. The average of blade and thallus of Eleusine indica were same that was 4,7 cm d-1.This research conclude that integration system of anaerobic and evpotranspiration was be potential used for high strength ammonium in leachate treatment.

  15. Assessment and parameter identification of simplified models to describe the kinetics of semi-continuous biomethane production from anaerobic digestion of green and food waste.

    Science.gov (United States)

    Owhondah, Raymond O; Walker, Mark; Ma, Lin; Nimmo, Bill; Ingham, Derek B; Poggio, Davide; Pourkashanian, Mohamed

    2016-06-01

    Biochemical reactions occurring during anaerobic digestion have been modelled using reaction kinetic equations such as first-order, Contois and Monod which are then combined to form mechanistic models. This work considers models which include between one and three biochemical reactions to investigate if the choice of the reaction rate equation, complexity of the model structure as well as the inclusion of inhibition plays a key role in the ability of the model to describe the methane production from the semi-continuous anaerobic digestion of green waste (GW) and food waste (FW). A parameter estimation method was used to investigate the most important phenomena influencing the biogas production process. Experimental data were used to numerically estimate the model parameters and the quality of fit was quantified. Results obtained reveal that the model structure (i.e. number of reactions, inhibition) has a much stronger influence on the quality of fit compared with the choice of kinetic rate equations. In the case of GW there was only a marginal improvement when moving from a one to two reaction model, and none with inclusion of inhibition or three reactions. However, the behaviour of FW digestion was more complex and required either a two or three reaction model with inhibition functions for both ammonia and volatile fatty acids. Parameter values for the best fitting models are given for use by other authors. PMID:26961220

  16. Use of natural zeolite at different doses and dosage procedures in batch and continuous anaerobic digestion of synthetic and swine wastes

    Energy Technology Data Exchange (ETDEWEB)

    Montalvo, S. [Centro de Estudio de Tecnologias Energeticas Renovables (CETER), Instituto Superior Politecnico Jose Antonio Echeverria (ISPJAE), Avenida 127 s/n, CUJAE, Marianao, Ciudad de la Habana (Cuba); Guerrero, L. [Departamento de Procesos Quimicos, Biotecnologicos y Ambientales, Universidad Tecnica Federico Santa Maria, Valparaiso (Chile); Borja, R.; Travieso, L.; Sanchez, E. [Instituto de la Grasa, CSIC, Avda Padre Garcia Tejero 4, 41012, Sevilla (Spain); Diaz, F. [Facultad de Ingenieria Quimica, ISPJAE, Avenida 127 s/n, CUJAE, Marianao, Ciudad de la Habana (Cuba)

    2006-05-15

    The aim of the present work was to study the behavior of conventional digesters working while adding natural zeolite to the anaerobic treatment of swine wastes. High nitrogen concentrations (3g/l) were also applied when synthetic media was used as feed in anaerobic reactors operating in batch mode. Three sets of experiments were carried out. The first experiment was carried out in batch mode, in order to find the most appropriate zeolite doses for the digester operation. One gram per litre of zeolite was found to be the dose that produced the best reactor performance. The second experiment was carried out using three reactors operating with swine wastes at three different hydraulic retention times (HRT): 10, 20 and 30 days. From this experiment, an HRT of 20 days was selected for the following continuous experiments. For the third experiment, the digesters operated in four different ways using synthetic waste and a zeolite dose of 1g/l, with different procedures for zeolite addition: (1) not adding natural zeolite; (2) adding zeolite at the start-up of anaerobic digestion; (3) adding natural zeolite at the start-up of the anaerobic digestion and again when the steady-state was reached; (4) adding natural zeolite on a daily basis. Finally, from these results, a fourth experiment was carried out using swine waste and the same zeolite doses and digesters, operating: (1) without adding natural zeolite; (2) adding natural zeolite at the start-up of the digestion; (3) adding natural zeolite on a daily basis. It was found that the application of natural zeolite allowed for a 17-20% increase in organic matter removal with respect to the experiments carried out where natural zeolite was not added. A daily methane production increase of 11.1-30.8% with respect to the reactors working where no natural zeolite was added. The daily addition of zeolite with the influent fed to the digesters was found to be the most appropriate procedure for dosage of this material on the basis

  17. Enhanced azo dye removal in a continuously operated up-flow anaerobic filter packed with henna plant biomass.

    Science.gov (United States)

    Huang, Jingang; Wu, Mengke; Chen, Jianjun; Liu, Xiuyan; Chen, Tingting; Wen, Yue; Tang, Junhong; Xie, Zhengmiao

    2015-12-15

    Effects of henna plant biomass (stem) packed in an up-flow anaerobic bio-filter (UAF) on an azo dye (AO7) removal were investigated. AO7 removal, sulfanilic acid (SA) formation, and pseudo first-order kinetic constants for these reactions (kAO7 and kSA) were higher in the henna-added UAF (R2) than in the control UAF without henna (R1). The maximum kAO7 in R1 and R2 were 0.0345 and 0.2024 cm(-1), respectively, on day 18; the corresponding molar ratios of SA formation to AO7 removal were 0.582 and 0.990. Adsorption and endogenous bio-reduction were the main AO7 removal pathways in R1, while in R2 bio-reduction was the dominant. Organics in henna could be released and fermented to volatile fatty acids, acting as effective electron donors for AO7 reduction, which was accelerated by soluble and/or fixed lawsone. Afterwards, the removal process weakened over time, indicating the demand of electron donation and lawsone-releasing during the long-term operation of UAF.

  18. Ce-Zr-La/Al2O3 prepared in a continuous stirred-tank reactor: a highly thermostable support for an efficient Rh-based three-way catalyst.

    Science.gov (United States)

    Wang, Su-Ning; Lan, Li; Hua, Wei-Bo; Shi, Zhong-Hua; Chen, Yao-Qiang; Gong, Mao-Chu; Zhong, Lin

    2015-12-21

    Two Ce-Zr-La/Al2O3 composite oxides, CZLA-C and CZLA-B, were synthesized using a co-precipitation method in a continuous stirred-tank reactor (CSTR) and a batch reactor (BR), respectively. Two Rh-based three-way catalysts (TWCs), Rh/CZLA-C and Rh/CZLA-B were obtained by a wet-impregnation method using the two composites as the supports. The physicochemical properties of the samples before and after thermal treatment at 1000 °C were characterized by N2 adsorption-desorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), H2-temperature programmed reduction (H2-TPR) and CO chemisorption. The results indicated that CZLA-C shows higher thermal stability than CZLA-B due to a sparsely-agglomerated morphology. Compared with Rh/CZLA-B, Rh/CZLA-C displayed better reducibility and higher thermal stability and exhibited significantly higher activity in the catalytic removal of the simulated gasoline vehicle exhaust emission (NO, CO and C3H8). Our work can provide a facile and economical synthesis route to advanced support materials and catalysts for exhaust emission control.

  19. Hinfinity control for continuous stirred tank reactor based on Takagi-Sugeno fuzzy bilinear models%基于Takagi-Sugeno模糊双线性模型的连续搅拌反应釜H∞控制

    Institute of Scientific and Technical Information of China (English)

    陈珺; 刘飞

    2012-01-01

    This paper is concerned with the H-infinity control for a class of continuous stirred tank reactor (CSTR) systems, in which the nonlinear dynamics are described by TakagiSugeno fuzzy bilinear models. By introducing two free matrix variables, we derive a new sufficient condition, in terms of linear matrix inequalities, of the global stability with a prescribed Hinfinity performance level for the closedloop fuzzy bilinear systems. The controller design method is also given. Simulation results of a CSTR system illustrate the effectiveness of the design method.%本文研究了一类连续搅拌反应釜(CSTR)系统的H∞控制问题.系统中的非线性动态特性可采)用Takagi-Sugeno(T-S)模糊双线性模型进行描述.通过引入两个自由矩阵,给出一个新的保证闭环模糊双线性系统在H∞性能指标下全局渐近稳定的充分条件和控制器设计方法,并且该条件最终可归结为求解一组线性矩阵不等式的可行性问题.CSTR系统的仿真结果表明设计方法的有效性.

  20. Inactivating effects of lignin-derived compounds released during lignocellulosic biomass pretreatment on the endo-glucanase catalyzed hydrolysis of carboxymethylcellulose: A study in continuous stirred ultrafiltration-membrane reactor.

    Science.gov (United States)

    Cantarella, Maria; Mucciante, Claudia; Cantarella, Laura

    2014-03-01

    This study focusses on the reversible/irreversible damage that selected phenolic compounds, released during steam-explosion pretreatment, mandatory for cellulose accessibility, causes on both stability and activity of a commercial cellulase (half-life=173h) during carboxymethyl-cellulose hydrolysis. Long-term experiments performed in continuous stirred UF-membrane bioreactors, operating at steady-state regime, in controlled operational conditions, allowed evaluating the inactivation-constant in the phenol presence (kd1) and after its removal (kd2) from the reactor feed. p-Hydroxybenzoic acid (1 and 2g L(-1)) are the extreme limits in the inactivating effect with enzyme half-lives 99.02 and 14.15h, respectively. The inactivation reversibility was assessed for vanillic acid, p-hydroxybenzoic acid, syringaldehyde, p-coumaric acid, being kd1>kd2. p-Hydroxybenzaldehyde and protocatechuic acid irreversibly affected cellulase stability increasing its inactivation with kd2>kd1. p-Hydroxybenzaldehyde, 1g L(-1), syringaldehyde, and vanillin, at 2gL(-1), had similar kd1÷kd2.

  1. Modelling of Two-Stage Anaerobic Treating Wastewater from a Molasses-Based Ethanol Distillery with the IWA Anaerobic Digestion Model No.1

    Directory of Open Access Journals (Sweden)

    Kittikhun Taruyanon

    2010-03-01

    Full Text Available This paper presents the application of ADM1 model to simulate the dynamic behaviour of a two-stage anaerobic treatment process treating the wastewater generated from the ethanol distillery process. The laboratory-scale process comprised an anaerobic continuous stirred tank reactor (CSTR and an upflow anaerobic sludge blanket (UASB connecting in series, was used to treat wastewater from the ethanol distillery process. The CSTR and UASB hydraulic retention times (HRT were 12 and 70 hours, respectively. The model was developed based on ADM1 basic structure and implemented with the simulation software AQUASIM. The simulated results were compared with measured data obtained from using the laboratory-scale two-stage anaerobic treatment process to treat wastewater. The sensitivity analysis identified maximum specific uptake rate (km and half-saturation constant (Ks of acetate degrader and sulfate reducing bacteria as the kinetic parameters which highly affected the process behaviour, which were further estimated. The study concluded that the model could predict the dynamic behaviour of a two-stage anaerobic treatment process treating the ethanol distillery process wastewater with varying strength of influents with reasonable accuracy.

  2. A semi-continuous culture system for production of cellulolytic and xylanolytic enzymes by the anaerobic fungus Piromyces sp. strain E2

    Energy Technology Data Exchange (ETDEWEB)

    Teunissen, M.J.; Baerends, R.J.S.; Knelissen, R.A.G.; Camp, H.J.M. op den; Vogels, G.D. (Katholieke Univ., Nijmegen (Netherlands). Dept. of Microbiology)

    1992-10-01

    A system was developed for the semi-continous cultivation of an anaerobic fungus, Piromyces sp. strain E2 (isolated from an Indian elephant), on Avicel (microcrystalline cellulose). The fungus was grown in a semi-continuous culture system: Solids and fungal biomass was retained by means of a simple filter construction whereas the culture fluid was removed continuously. The production of fermentation products (acetate, ethanol, formate, lactate, hydrogen or methane), cellulolytic and xylanolytic enzymes, and protein by the fungus in monoculture or co-culture with Methanobacterium formicicum during growth on Avicel was monitored up to 45 days. These productions stabilized after an adaptation period of 24 and 30 days in the semi-continuous co-culture and monoculture, respectively. After this period the average ([+-]SD) avicelase, [beta]-glucosidase, endoglucanase, and xylanase production in the semicontinuous monoculture were 27[+-]6, 140[+-]16, 1057[+-]120 and 5012[+-]583 IUxl[sup -1]xday[sup -1], respectively. Co-culture with the methanogen caused a shift in fermentation products to more acetate, and less ethanol and lactate. Furthermore, the production of all cellulolytic enzymes increased (40%) and xylanolytic enzyme production decreased (35%). (orig.).

  3. Macroscopic mass and energy balance of a pilot plant anaerobic bioreactor operated under thermophilic conditions.

    Science.gov (United States)

    Espinosa-Solares, Teodoro; Bombardiere, John; Chatfield, Mark; Domaschko, Max; Easter, Michael; Stafford, David A; Castillo-Angeles, Saul; Castellanos-Hernandez, Nehemias

    2006-01-01

    Intensive poultry production generates over 100,000 t of litter annually in West Virginia and 9 x 10(6) t nationwide. Current available technological alternatives based on thermophilic anaerobic digestion for residuals treatment are diverse. A modification of the typical continuous stirred tank reactor is a promising process being relatively stable and owing to its capability to manage considerable amounts of residuals at low operational cost. A 40-m3 pilot plant digester was used for performance evaluation considering energy input and methane production. Results suggest some changes to the pilot plant configuration are necessary to reduce power consumption although maximizing biodigester performance.

  4. Growth and genetic responses of Salmonella Typhimurium to pH-shifts in an anaerobic continuous culture

    Science.gov (United States)

    Salmonella infection of chickens that leads to potential human foodborne salmonellosis continues to be a concern. Changes in the pH of poultry gastrointestinal tract could influence Salmonella growth and virulence response. In the current study, growth responses of a chicken isolate Salmonella ent...

  5. Topological stirring of two-dimensional atomic Bose-Einstein condensates

    International Nuclear Information System (INIS)

    We stir vortices into a trapped quasi two-dimensional atomic Bose-Einstein condensate by moving three laser stirrers. We apply stirring protocols introduced by Boyland et al. (2000), that efficiently build in topological chaos in classical fluids and are classified as Pseudo-Anosov stirring protocols. These are compared to their inefficient mixing counterparts, finite-order stirring protocols. We investigate if inefficient stirring protocols result in a more clustered distribution of vortices. The efficiency with which vortices are 'mixed' or distributed in a condensate is important for investigating dynamics of continuously forced quantum turbulence and the existence of the inverse cascade in turbulent two-dimensional superfluids

  6. Early-warning process/control for anaerobic digestion and biological nitrogen transformation processes: Batch, semi-continuous, and/or chemostat experiments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hickey, R. [Science Applications International Corp., McLean, VA (United States)

    1992-09-01

    The objective of this project was to develop and test an early-warning/process control model for anaerobic sludge digestion (AD). The approach was to use batch and semi-continuously fed systems and to assemble system parameter data on a real-time basis. Specific goals were to produce a real-time early warning control model and computer code, tested for internal and external validity; to determine the minimum rate of data collection for maximum lag time to predict failure with a prescribed accuracy and confidence in the prediction; and to determine and characterize any trends in the real-time data collected in response to particular perturbations to feedstock quality. Trends in the response of trace gases carbon monoxide and hydrogen in batch experiments, were found to depend on toxicant type. For example, these trace gases respond differently for organic substances vs. heavy metals. In both batch and semi-continuously feed experiments, increased organic loading lead to proportionate increases in gas production rates as well as increases in CO and H{sub 2} concentration. An analysis of variance of gas parameters confirmed that CO was the most sensitive indicator variable by virtue of its relatively larger variance compared to the others. The other parameters evaluated including gas production, methane production, hydrogen, carbon monoxide, carbon dioxide and methane concentration. In addition, a relationship was hypothesized between gaseous CO concentration and acetate concentrations in the digester. The data from semicontinuous feed experiments were supportive.

  7. Neural network predictive control of continuous stirred-tank reactor based on Hammerstein-Wiener model%基于Hammerstein-Wiener模型的连续搅拌反应釜神经网络预测控制

    Institute of Scientific and Technical Information of China (English)

    满红; 邵诚

    2011-01-01

    针对化工过程中广泛使用的连续搅拌反应釜(CSTR),提出一种基于神经网络的模型预测控制策略,采用分段最小二乘支持向量机辨识Hammerstein-Wiener模型系数的方法,在此基础上建立线性自回归模式(ARX)结构和高斯径向基神经网络串联的非线性预测控制器.利用BP神经网络训练预测控制输入序列和拟牛顿算法求解非线性预测控制律,从而实现一种基于支持向量机Hammerstein-Wiener辨识模型的非线性神经网络预测控制算法.对CSTR的仿真结果表明,该方法能够更有效地跟踪控制反应物浓度.%A model predictive control strategy based on neural network is presented for a continuous stirred tank reactor (CSTR). A segmentation method was adopted to identify Hammerstein-Wiener model coefficient by least squares support vector machines and then to construct a nonlinear predictive controller which was by a linear optimal component and radial basis function neural networks in series. A nonlinear predictive control algorithm based on least support vector machines Hammerstein-Wiener model was realized by using BP neural network to train predictive input sequences and to solve nonlinear predictive control rules by Quasi-Newton method. The simulation results of CSTR illustrate that this approach is effective tracking and controlling product concentration.

  8. Evaluation of the Small-Tank Tetraphenylborate Process Using a Bench-Scale, 20-L Continuous Stirred Tank Reactor System at Oak Ridge National Laboratory: Results of Test 5

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.D.

    2001-08-30

    The goal of the Savannah River Salt Waste Processing Program (SPP) is to evaluate the presently available technologies and select the most effective approach for treatment of high-level waste salt solutions currently stored in underground tanks at the U.S. Department of Energy's Savannah River Site in Aiken, South Carolina. One of the three technologies currently being developed for this application is the Small-Tank Tetraphenylborate Process (STTP). This process uses sodium tetraphenylborate (TPB) to precipitate and remove radioactive cesium from the waste and monosodium titanate (MST) to sorb and remove radioactive strontium and actinides. Oak Ridge National Laboratory is demonstrating this process at the 1:4000 scale using a 20-L-capacity continuous-flow stirred-tank reactor (CSTR) system. Since March 1999, five operating campaigns of the 20-L CSTR have been conducted. The ultimate goal is to verify that this process, under certain extremes of operating conditions, can meet the minimum treatment criteria necessary for processing and disposing of the salt waste at the Savannah River Saltstone Facility. The waste acceptance criteria (WAC) for {sup 137}Cs, {sup 90}Sr, and total alpha nuclides are <40 nCi/g, <40 nCi/g, and <18 nCi/g, respectively. However, to allow for changes in process conditions, the SPP is seeking a level of treatment that is about 50% of the WAC. The bounding separation goals for {sup 137}Cs and {sup 90}Sr are to obtain decontamination factors (DFs) of 40,000 (99.998% removal) and 26 (96.15% removal), respectively. (DF is mathematically defined as the concentration of contaminant in the waste feed divided by the concentration of contaminant in the effluent stream.)

  9. Friction Stir Weld Tools

    Science.gov (United States)

    Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)

    2007-01-01

    A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.

  10. Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  11. Anaerobic digestion of waste sludges from the alginate extraction process

    Energy Technology Data Exchange (ETDEWEB)

    Kerner, K.N.; Hanssen, J.F.; Pedersen, T.A. (Agricultural Univ. of Norway, Aas (NO). Dept. of Biological Sciences)

    1991-01-01

    Anaerobic digestion of waste sludges produced during the industrial extraction of alginate from the algal species Laminaria hyperborea (Gunn.) Foslie and Ascophyllum nodosum (L.) Le Jol was studied. Experiments were carried out in bench scale (8-litre) intermittently stirred digesters at 35{sup o}C. Sieve and flotation sludges were digested in batch (1 month) and semi-continuous cultures. In the semi-continuous trials, retention times of 23 days and 16 days were tested. Methane production varied from 0.10 to 0.15 litre g{sup -1} volatile solids (VS) added during batch; and from 0.07 to 0.28 litre g{sup -1} VS added during semi-continuous fermentation. Specific gas production was significantly higher at 23 days than at 16 days retention time. VS reductions were 20-40% (batch) and 40-50% (semi-continuous). A distinct improvement of the settling qualities of digester effluents was obtained during the anaerobic digestion process. (author).

  12. [Municipal biowaste thermal-hydrolysis and ASBR anaerobic digestion].

    Science.gov (United States)

    Hou, Hua-hua; Wang, Wei; Hu, Song; Xu, Yi-xian

    2010-02-01

    Thermal-hydrolysis can remarkably improve the solid organics dissolving efficiency of urban biomass waste, and anaerobic sequencing batch reactor (ASBR) was used to improve the efficiency of urban biomass waste anaerobic digestion. The optimum thermal-hydrolysis temperature and holding time was 175 degrees C and 60 min, the volatile suspended solid (VSS) dissolving ratio of kitchen waste, fruit-and-vegetable waste and sludge were 31.3%, 31.9% and 49.7%, respectively. Two ASBR and one continuous-flow stirred tank reactor (CSTR) were started at hydraulic retention time (HRT) = 20 d, COD organic loading rate (OLR) = 3.2-3.6 kg/(m3 x d). The biogas production volumes were 5656 mL/d(A1), 6335 mL/d(A2) and 3 103 mL/d(CSTR), respectively; VSS degradation ratios were 45.3% (A1), 50.87% (A2), 20.81% (CSTR), and the total COD (TCOD) removal rates were 88.1% (A1), 90% (A2), 72.6% (CSTR). In ASBR, organic solid and anaerobic microorganism were remained in the reactor during settling period. When HRT was 20 d, the solid retention time (SRT) was over 130 d, which made ASBR higher efficiency than CSTR.

  13. 餐厨垃圾厌氧发酵制氢残留物连续沼气发酵研究%Research on Continuous Methane Fermentation of Residues of Hydrogen Production by Anaerobic Fermentation of Kitchen Waste

    Institute of Scientific and Technical Information of China (English)

    张国华; 张志红; 黄江丽; 王东升; 丁建南

    2015-01-01

    餐厨垃圾中有机物含量高,利用餐厨垃圾厌氧发酵制备氢气后残留物中含有丰富的低级脂肪酸、醇类等. 从接种产甲烷菌和pH调节角度,利用餐厨垃圾厌氧发酵制备氢气后的残留物研究连续沼气发酵,提高餐厨垃圾资源利用率. 结果表明,在接种产甲烷菌和调节发酵体系pH>7的条件下,餐厨垃圾厌氧发酵制备氢气后的残留物能够连续沼气发酵. 接种以新鲜沼渣为产甲烷菌来源的沼气发酵比以厌氧活性污泥为产甲烷菌种来源的沼气发酵产气效果好.%Kitchen waste contents high organic matter, and abundant of low-level fatty acids, alco-hols,etc. exist in the residues after using kitchen waste preparation for hydrogen by anaerobic fer-mentation. This paper studied the feasibility of continue to produce methane by anaerobic fermenta-tion of hydrogen production residues from inoculate methane bacteria and pH,which hope to improve the utilization of kitchen waste resources. The results show that, under the conditions of pH>7 and inoculated methane bacteria in the anaerobic fermentation system,it can continue to produce methane use the hydrogen production residues by anaerobic fermentation,and it is better of produce biogas by inoculated with fresh biogas residues as methane bacteria in anaerobic fermentation than inoculated with anaerobic activated sludge as methane bacteria.

  14. Experimental and modeling study of a two-stage pilot scale high solid anaerobic digester system.

    Science.gov (United States)

    Yu, Liang; Zhao, Quanbao; Ma, Jingwei; Frear, Craig; Chen, Shulin

    2012-11-01

    This study established a comprehensive model to configure a new two-stage high solid anaerobic digester (HSAD) system designed for highly degradable organic fraction of municipal solid wastes (OFMSW). The HSAD reactor as the first stage was naturally separated into two zones due to biogas floatation and low specific gravity of solid waste. The solid waste was retained in the upper zone while only the liquid leachate resided in the lower zone of the HSAD reactor. Continuous stirred-tank reactor (CSTR) and advective-diffusive reactor (ADR) models were constructed in series to describe the whole system. Anaerobic digestion model No. 1 (ADM1) was used as reaction kinetics and incorporated into each reactor module. Compared with the experimental data, the simulation results indicated that the model was able to well predict the pH, volatile fatty acid (VFA) and biogas production.

  15. Optimising the anaerobic co-digestion of urban organic waste using dynamic bioconversion mathematical modelling

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Boldrin, Alessio; Dorini, G.;

    2016-01-01

    strategies for controlling and optimising the co-digestion process. The model parameters were maintained in the same way as the original dynamic bioconversion model, albeit with minor adjustments, to simulate the co-digestion of food and garden waste with mixed sludge from a wastewater treatment plant......Mathematical anaerobic bioconversion models are often used as a convenient way to simulate the conversion of organic materials to biogas. The aim of the study was to apply a mathematical model for simulating the anaerobic co-digestion of various types of urban organic waste, in order to develop...... in a continuously stirred tank reactor. The model's outputs were validated with experimental results obtained in thermophilic conditions, with mixed sludge as a single substrate and urban organic waste as a co-substrate at hydraulic retention times of 30, 20, 15 and 10 days. The predicted performance parameter...

  16. Continuous Ethanol Fermentation of Pretreated Lignocellulosic Biomasses, Waste Biomasses, Molasses and Syrup Using the Anaerobic, Thermophilic Bacterium Thermoanaerobacter italicus Pentocrobe 411.

    Science.gov (United States)

    Andersen, Rasmus Lund; Jensen, Karen Møller; Mikkelsen, Marie Just

    2015-01-01

    Lignocellosic ethanol production is now at a stage where commercial or semi-commercial plants are coming online and, provided cost effective production can be achieved, lignocellulosic ethanol will become an important part of the world bio economy. However, challenges are still to be overcome throughout the process and particularly for the fermentation of the complex sugar mixtures resulting from the hydrolysis of hemicellulose. Here we describe the continuous fermentation of glucose, xylose and arabinose from non-detoxified pretreated wheat straw, birch, corn cob, sugar cane bagasse, cardboard, mixed bio waste, oil palm empty fruit bunch and frond, sugar cane syrup and sugar cane molasses using the anaerobic, thermophilic bacterium Thermoanaerobacter Pentocrobe 411. All fermentations resulted in close to maximum theoretical ethanol yields of 0.47-0.49 g/g (based on glucose, xylose, and arabinose), volumetric ethanol productivities of 1.2-2.7 g/L/h and a total sugar conversion of 90-99% including glucose, xylose and arabinose. The results solidify the potential of Thermoanaerobacter strains as candidates for lignocellulose bioconversion.

  17. Continuous Ethanol Fermentation of Pretreated Lignocellulosic Biomasses, Waste Biomasses, Molasses and Syrup Using the Anaerobic, Thermophilic Bacterium Thermoanaerobacter italicus Pentocrobe 411.

    Directory of Open Access Journals (Sweden)

    Rasmus Lund Andersen

    Full Text Available Lignocellosic ethanol production is now at a stage where commercial or semi-commercial plants are coming online and, provided cost effective production can be achieved, lignocellulosic ethanol will become an important part of the world bio economy. However, challenges are still to be overcome throughout the process and particularly for the fermentation of the complex sugar mixtures resulting from the hydrolysis of hemicellulose. Here we describe the continuous fermentation of glucose, xylose and arabinose from non-detoxified pretreated wheat straw, birch, corn cob, sugar cane bagasse, cardboard, mixed bio waste, oil palm empty fruit bunch and frond, sugar cane syrup and sugar cane molasses using the anaerobic, thermophilic bacterium Thermoanaerobacter Pentocrobe 411. All fermentations resulted in close to maximum theoretical ethanol yields of 0.47-0.49 g/g (based on glucose, xylose, and arabinose, volumetric ethanol productivities of 1.2-2.7 g/L/h and a total sugar conversion of 90-99% including glucose, xylose and arabinose. The results solidify the potential of Thermoanaerobacter strains as candidates for lignocellulose bioconversion.

  18. Anaerobic co-digestion of wine/fruit-juice production waste with landfill leachate diluted municipal sludge cake under semi-continuous flow operation.

    Science.gov (United States)

    Leiva, M Barrantes; Koupaie, E Hosseini; Eskicioglu, C

    2014-10-01

    Anaerobic co-digestion of four organic waste streams; a thickened waste activated sludge (TWAS) and screen cake (SC) from a fruit-juice/winery wastewater treatment plant along with municipal sludge cake (MC) and landfill leachate (LL) was evaluated. A total of eight semi-continuously-fed single and co-digesters were operated side-by-side at sludge retention times (SRT) of 20 and 10 days. Co-digestion of industrial waste streams (TWAS and SC) with MC and LL resulted in increased operational stability compared to the single digestion of industrial TWAS at the higher organic loading (10 d SRT). Although digester operational temperature had no statistically significant effect on organics removal and biogas production, mesophilic digesters had consistently higher total coliform densities (8838-37,959 most probable number or MPN/g-dry weight) compared to the thermophilic digesters (41-6723 MPN/g-dry weight) at both SRTs. Coliform analysis results also proved that most of the thermophilic digestates could be classified as Class A biosolids according to regulations. Furthermore, addition of industrial TWAS to co-digesters enhanced the dewaterability of the digested streams. A cost-benefit analysis confirmed the benefits and indicated that a full-scale co-digester utilizing all four waste streams can decrease the total capital and operational cost by 22% ($10.52 million). PMID:25081853

  19. Continuous Ethanol Fermentation of Pretreated Lignocellulosic Biomasses, Waste Biomasses, Molasses and Syrup Using the Anaerobic, Thermophilic Bacterium Thermoanaerobacter italicus Pentocrobe 411.

    Science.gov (United States)

    Andersen, Rasmus Lund; Jensen, Karen Møller; Mikkelsen, Marie Just

    2015-01-01

    Lignocellosic ethanol production is now at a stage where commercial or semi-commercial plants are coming online and, provided cost effective production can be achieved, lignocellulosic ethanol will become an important part of the world bio economy. However, challenges are still to be overcome throughout the process and particularly for the fermentation of the complex sugar mixtures resulting from the hydrolysis of hemicellulose. Here we describe the continuous fermentation of glucose, xylose and arabinose from non-detoxified pretreated wheat straw, birch, corn cob, sugar cane bagasse, cardboard, mixed bio waste, oil palm empty fruit bunch and frond, sugar cane syrup and sugar cane molasses using the anaerobic, thermophilic bacterium Thermoanaerobacter Pentocrobe 411. All fermentations resulted in close to maximum theoretical ethanol yields of 0.47-0.49 g/g (based on glucose, xylose, and arabinose), volumetric ethanol productivities of 1.2-2.7 g/L/h and a total sugar conversion of 90-99% including glucose, xylose and arabinose. The results solidify the potential of Thermoanaerobacter strains as candidates for lignocellulose bioconversion. PMID:26295944

  20. Anaerobic digestion of swine manure: Inhibition by ammonia

    DEFF Research Database (Denmark)

    Hansen, Kaare Hvid; Angelidaki, Irini; Ahring, Birgitte Kiær

    1998-01-01

    A stable anaerobic degradation of swine manure with ammonia concentration of 6 g-N/litre was obtained in continuously stirred tank reactors with a hydraulic retention time of 15 days, at Four different temperatures. Methane yields of 188, 141, 67 and 22 ml-CH4/g-VS were obtained at 37, 45, 55...... and 60 degrees C, respectively. The yields were significantly lower than the potential biogas yield of the swine manure used (300 ml-CH4/g-VS). A free ammonia concentration of 1.1 g-N/litre or more was found to cause inhibition in batch cultures at pH 8.0 (reactor pH), and higher free ammonia...

  1. Dynamics of the anaerobic process: Effects of volatile fatty acids

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    both CH4 yield, pH, and gas production and that a unique reaction pattern was seen for the higher VFAs as a result of these pulses. In this study, two thermophilic laboratory reactors were equipped with a novel VFA-sensor for monitoring specific VFAs online. Pulses of VFAs were shown to have a positive......A complex and fast dynamic response of the anaerobic biogas system was observed when the system was subjected to pulses of volatile fatty acids (VFAs). It was shown that a pulse of specific VFAs into a well-functioning continuous stirred tank reactor (CSTR) system operating on cow manure affected...... or inhibition was shown for the degradation of all VFAs tested. Based on the results, it was concluded that measurements of all specific VFAs are important for control purposes and increase and decrease in a specific VFA should always be evaluated in close relationship to the conversion of other VFAs...

  2. Enhancement of anaerobic hydrogen production by iron and nickel

    Energy Technology Data Exchange (ETDEWEB)

    Karadag, Dogan; Puhakka, Jaakko A. [Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere (Finland)

    2010-08-15

    The effects of iron and nickel on hydrogen (H{sub 2}) production were investigated in a glucose-fed anaerobic Continuous Flow Stirred Tank Reactor (ACSTR). Both iron and nickel improved the reactor performance and H{sub 2} production was enhanced by 71% with the sole iron or nickel supplementation. In all cases, H{sub 2} production yield was increased by lowering both ethanol and total metabolites production and increasing butyrate production. Furthermore, iron and nickel slightly increased biomass production while glucose degradation decreased with the supplementation of nickel. Dynamic changes in bacterial composition as analyzed by 16S rRNA gene-targeted denaturing gradient gel electrophoresis (DGGE) revealed that hydrogen was produced mainly by Clostridium butyricum strains and that nickel addition decreased the microbial diversity. (author)

  3. Continuous stirred tank reactor mechanical modelling and opening virtual simulation system development%连续搅拌反应釜机理建模与开放式虚拟仿真系统开发

    Institute of Scientific and Technical Information of China (English)

    邓晓刚; 于佐军

    2016-01-01

    This paper proposes an opening virtual simulation system design method based on the chemical reactor mechanism model.One common chemical reactor referred to as continuous stirred tank reactor (CSTR) is used as the simulation objective.Firstly,its mathematical models are built using the mechanism analysis technique.Then the process flow diagram is constructed by LabVIEW software and the simulation programs are established using the four-order Runge-Kutta method.With the help of shared variable engine (SVE),the simulation data are deployed to OPC server,which leads to good system open performances.Matlab is used to illustrate the calling procedure of sharing data.This system can simulate the CSTR device characteristics well. Also the openness of simulation helps students to design their own control strategy and provides a platform for the innovative experiment.%以一类常见的化学反应器———连续搅拌反应釜(CSTR)为虚拟仿真对象,提出一种基于化学反应器装置机理模型的开放式虚拟仿真系统开发方法。首先,使用机理分析法建立数学模型;然后,在 LabVIEW 软件中构建工艺流程界面,并基于四阶龙格-库塔法编制虚拟仿真程序;进一步,利用共享变量引擎将虚拟装置数据发布到 OPC Server 中,使虚拟系统具有良好的开放性。以 Matlab 软件为例,说明了共享数据的调用过程。该虚拟仿真系统不但能够较好地模拟 CSTR 的工艺特性,而且其数据的开放性有助于学生自行设计控制方案、自主开展创新性实验研究。

  4. Growth and Population Dynamics of Anaerobic Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in a Continuous-Flow Bioreactor

    OpenAIRE

    Peter R. Girguis; Cozen, Aaron E.; DeLong, Edward F

    2005-01-01

    The consumption of methane in anoxic marine sediments is a biogeochemical phenomenon mediated by two archaeal groups (ANME-1 and ANME-2) that exist syntrophically with sulfate-reducing bacteria. These anaerobic methanotrophs have yet to be recovered in pure culture, and key aspects of their ecology and physiology remain poorly understood. To characterize the growth and physiology of these anaerobic methanotrophs and the syntrophic sulfate-reducing bacteria, we incubated marine sediments using...

  5. Phase separation dynamics under stirring

    OpenAIRE

    Lacasta Palacio, Ana María; Sancho, Jose Maria; Sagués Mestre, Francesc

    1995-01-01

    Phase separation dynamics in the presence of externally imposed stirring is stuidied. The stirring is assumed independent of the concentration and it is generated with a well-defined energy spectrum. The domain growth process is either favored or frozen depending on the intensity and correlation length of this advective flow. This behavior is explained by analytical arguments.

  6. Influence of Continuous Flow Microwave Pre-Treatment on Anaerobic Digestion of Secondary Thickened Sludge for Sustainable Energy Recovery in Sewage Treatment Plant

    Science.gov (United States)

    Hephzibah, D.; Kumaran, P.; Saifuddin, N. M.

    2016-03-01

    This work elucidates the effects of pre-treatment of secondary thickened sludge (STS) for enhancement of biogas production that has great potential to generate energy for the utilization of the sewage treatment plant (STP) itself. Microwave pre-treatment has been adopted for this study. Experiment works have been designed and conducted to examine the effectiveness of continuous flow microwave pre-treatment on the solubility of STS, digestibility of STS and biogas production at a power level of 80 W for 5, 10 and 15 minutes. A few characteristics of the sewage sludge were monitored daily to identify the effect of pre-treatment on the sludge. The soluble chemical oxygen demand (SCOD)/total chemical oxygen demand (TCOD) ratio increased by 0.1, 1.0 and 1.8%, while the volatile fatty acids (VFA) concentration of the pre-treated sludge improved by 4.4, 5.1, 5.9% at the irradiation time of 5, 10 and 15 minutes, respectively at a microwave power level of 80 W. Besides that, the digestate also indicates that the pre-treated sludge undergoes efficient VS removal and TCOD removal after anaerobic digestion compared to the untreated sludge. Moreover, the biogas quantity increased by an average of 19.2, 24.1 and 32.2% in 5, 10 and 15 minutes irradiation time respectively compared to the untreated sludge. The additional quantity of biogas generated has shown a great potential for sustainable energy generation that can be utilized internally by the STP.

  7. Stirring by swimming bodies

    International Nuclear Information System (INIS)

    We consider the stirring of an inviscid fluid caused by the locomotion of bodies through it. The swimmers are approximated by non-interacting cylinders or spheres moving steadily along straight lines. We find the displacement of fluid particles caused by the nearby passage of a swimmer as a function of an impact parameter. We use this to compute the effective diffusion coefficient from the random walk of a fluid particle under the influence of a distribution of swimming bodies. We compare with the results of simulations. For typical sizes, densities and swimming velocities of schools of krill, the effective diffusivity in this model is five times the thermal diffusivity. However, we estimate that viscosity increases this value by two orders of magnitude.

  8. Research on Change Process of Nitrosation Granular Sludge in Continuous Stirred-Tank Reactor%CSTR 中亚硝化颗粒污泥的变化过程研究

    Institute of Scientific and Technical Information of China (English)

    阴方芳; 刘文如; 王建芳; 吴鹏; 沈耀良

    2014-01-01

    在连续全混反应器(CSTR)中接种 SBR 培养成熟的亚硝化颗粒污泥,考察反应器构型对亚硝化颗粒污泥生长和运行的影响特性.结果表明,反应器构型和进水模式变化初期部分颗粒污泥解体,污泥平均沉速下降;但随着反应器的进一步运行, CSTR 中实现了亚硝化絮体污泥的快速颗粒化过程;整个研究过程中,虽颗粒粒径分布存较大变化,如粒径>2.5 mm 颗粒的减少和粒径《0.3 mm 颗粒的增加,但颗粒态污泥始终是 CSTR 中占优势的污泥形态.另外,研究表明反应器构型和进水模式的改变对出水中亚硝酸盐累积率(保持在85%左右)无显著影响,并且新生的小粒径颗粒污泥比大粒径颗粒具有更高的比反应活性,此 CSTR 中污泥的平均活性亦高于接种污泥平均活性.%In order to investigate the effect of different types of reactors on the nitrosation granular sludge, a continuous stirred-tank reactor (CSTR) was studied, using mature nitrosation granular sludge cultivated in sequencing batch reactor (SBR) as seed sludge. Results indicated that the change of reactor type and influent mode could induce part of granules to lose stability with gradual decrease in sludge settling ability during the initial period of operation. However, the flocs in CSTR achieved fast granulation in the following reactor operation. In spite of the changes of particle size distribution, e. g. the decreasing number of granules with diameter larger than 2. 5 mm and the increasing number of granules with diameter smaller than 0. 3 mm, granular sludge held the absolute predominance of sludge morphology in CSTR during the entire experimental period. Moreover, results showed that the change of reactor type and influent mode didn't affect the nitrite accumulation rate which was still kept at about 85% in effluent. Additionally, the average activity of the sludge in CSTR was stronger than that of the seed sludge, because

  9. Cultivation of nitrite-dependent anaerobic methane-oxidizing bacteria: impact of reactor configuration.

    Science.gov (United States)

    Hu, Baolan; He, Zhanfei; Geng, Sha; Cai, Chen; Lou, Liping; Zheng, Ping; Xu, Xinhua

    2014-09-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is mediated by bacteria that anaerobically oxidize methane coupled with nitrite reduction and is a potential bioprocess for wastewater treatment. In this work, the effect of reactor configuration on n-damo bacterial cultivation was investigated. A magnetically stirred gas lift reactor (MSGLR), a sequencing batch reactor (SBR), and a continuously stirred tank reactor (CSTR) were selected to cultivate the bacteria. Microbial community was monitored by using quantitative PCR, 16S rRNA gene sequencing, pmoA gene sequencing, and fluorescence in situ hybridization (FISH). The effects of substrate inhibition, methane mass transfer, and biomass washout in the three reactors were focused on. The results indicated that the MSGLR had the best performance among the three reactor systems, with the highest total and specific n-damo activities. Its maximum volumetric nitrogen removal rate was up to 76.9 mg N L(-1) day(-1), which was higher than previously reported values (5.1-37.8 mg N L(-1) d(-1)).

  10. Anaerobic Process.

    Science.gov (United States)

    Yang, Qian; Ju, Mei-Ting; Li, Wei-Zun; Liu, Le; Wang, Yan-Nan; Chang, Chein-Chi

    2016-10-01

    A review of the literature published in 2015 on the focus of Anaerobic Process. It is divided into the following sections. Pretreatment Organic waste Multiple-stage co-digestion Process Methodology and Technology. PMID:27620085

  11. Anaerobic bacteria

    Science.gov (United States)

    Brook I, Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 297. Stedman's Online ...

  12. Continuous anaerobic bioreactor with a fixed-structure bed (ABFSB) for wastewater treatment with low solids and low applied organic loading content.

    Science.gov (United States)

    Mockaitis, G; Pantoja, J L R; Rodrigues, J A D; Foresti, E; Zaiat, M

    2014-07-01

    This paper describes a new type of anaerobic bioreactor with a fixed-structure bed (ABFSB) in which the support for the biomass consists of polyurethane foam strips placed along the length of the bioreactor. This configuration prevents the accumulation of biomass or solids in the bed as well as clogging and channeling effects. In this study, complex synthetic wastewater with a chemical oxygen demand of 404.4 mg O(2) L(-1) is treated by the reactor. The ABFSB, which has a working volume of 4.77 L, was inoculated with anaerobic sludge obtained from an upflow anaerobic sludge blanket bioreactor. A removal efficiency of 78 % for organic matter and an effluent pH of 6.97 were achieved. An analysis of the organic volatile acids produced by the ABFSB indicated that it operated under stable conditions during an experimental run of 36 days. The stable and efficient operation of the bioreactor was compared with the configurations of other anaerobic bioreactors used for complex wastewater treatment. The results of the study indicate that the ABFSB is a technological alternative to packed-bed bioreactors.

  13. 微生物燃料电池耦合连续搅拌反应系统(CSTR)低温下处理“糖蜜-电镀”废水%Microbial fuel cell with continuous stirred reactor system (CSTR) for continuous flow Processing of “Molasses-Electroplating”wastewater at low temperatures

    Institute of Scientific and Technical Information of China (English)

    谢静怡; 李永峰; 孙彩玉; 秦必达

    2015-01-01

    为提高传统微生物燃料电池( MFC)在低温条件下的效率,实现实验装置放大化.本实验将连续搅拌反应系统( CSTR)与双极室微生物燃料电池系统相结合,连续流处理糖蜜废水,并间接回收金属单质,处理模拟电镀废水,考察系统的产电性能和废水处理效果.结果表明,当系统稳定运行后,最高电压及功率密度分别可达到340 mV和58.65 mW·m-2.20 d后,系统COD去除率明显增加,最高COD去除率可达到81%.实验运行10 d后,银离子开始析出,最高去除率可达到90%左右.%In order to improve the efficiency of traditional microbial fuel cells ( MFC ) at low temperatures, and scale up the experimental device amplification, this experiment combined a continuous stirred reactor with a two chamber microbial fuel cell to continuously process molasses wastewater and simulated electroplating wastewater, indirectly recovered metals, and investigated electricity production and wastewater treatment effect. The results from the experiment showed that the highest voltage output of 340 mV and the maximum power density of 58. 65 mW·m-2 were obtained under a stable operating condition. In addition,COD removal rate reached its highest value (81%)after 20 d, and the maximum removal rate(90%) for Ag+ was recorded after 10 d.

  14. Stirring and mixing effects on oscillations and inhomogeneities in the minimal bromate oscillator

    Science.gov (United States)

    Dutt, A. K.; Menzinger, M.

    1999-04-01

    Stirring and mixing effects on the oscillations and inhomogeneities in the bromate-bromide-cerous system (minimal bromate oscillator) have been investigated in a continuously fed stirred tank reactor (CSTR). A movable microelectrode is used to monitor the inhomogeneities inside the CSTR in an oscillating phase. The results are explained in terms of the theory of imperfect mixing.

  15. Treatment of industrial wastewaters by anaerobic membrane bioreactors: implications of substrate characteristics

    OpenAIRE

    Dereli, R.K.

    2015-01-01

    The success of anaerobic digestion relies on the presence of highly active methanogenic biomass, requiring effective retention of slow growing anaerobic microorganisms inside bioreactor by decoupling the hydraulic retention time (HRT) from solids residence time (SRT) or the employment of long SRTs in fully mixed systems. So far, flow through systems, i.e. completely stirred tank reactor (CSTR) digesters, and granular sludge bed reactors have been commonly applied for anaerobic treatment of sl...

  16. Use of 13C Labeled Carbon Tetrachloride to Demonstrate the Transformation to Carbon Dioxide under Anaerobic Conditions in a Continuous Flow Column

    Science.gov (United States)

    Semprini, L.; Azizian, M.

    2012-12-01

    The demonstration of transformation of chlorinated aliphatic compounds (CAHs) in the subsurface is a challenge, especially when the products are carbon dioxide (CO2) and chloride ion. The groundwater contaminant carbon tetrachloride (CT) is of particular interest since a broad range of transformation products can be potentially formed under anaerobic conditions. The ability to demonstrate the transformation of CT to CO2 as a non toxic endproduct, is also of great interest. Results will be presented from a continuous flow column study where 13C labeled CT was used to demonstrate its transformation to CO2. The column was packed with a quartz sand and bioaugmented the Evanite Culture (EV) that is capable of transforming tetrachloroethene (PCE) to ethene. The column was continously fed a synthetic groundwater that was amended with PCE (0.10 mM) and either formate (1.5 mM) or lactate (1.1 mM), which ferments to produce hydrogen (H2) as the ultimate electron donor. Earlier CT transformation studies with the column, in the absence of sulfate reduction, and with formate added as a donor found CT (0.015 mM) was over 98% transformed with about 20% converted to chloroform (CF) (0.003 mM) and with a transient detection of chloromethane (CM). Methane and carbon disulfide, as potential products, were not detected. Neither CT nor CF inhibited the reductive dehalogenation of PCE to ethene. A series of transient studies conducted after these initial CT transformation tests, but in the absence of CT, showed formate remained an effective substrate for maintaining sulfate reduction and PCE transformation. Lactate, which was effectively fermented prior to CT addition, was not effectively fermented, with propionate accumulating as a fermentation product. When lactate was added, PCE was mainly transformed to cis-dichloroethene (cis-DCE) and VC, and sulfate reduction did not occur. In order to restore effective lactate fermentation the column was then bioaugmented with an EV culture that

  17. Design of A solar Thermophilic Anaerobic Reactor for Small Farms

    NARCIS (Netherlands)

    Mashad, El H.; Loon, van W.K.P.; Zeeman, G.; Bot, G.P.A.; Lettinga, G.

    2004-01-01

    A 10 m(3) completely stirred tank reactor has been designed for anaerobic treatment of liquid cow manure under thermophilic conditions (50degreesC), using a solar heating system mounted on the reactor roof. Simulation models for two systems have been developed. The first system consists of loose com

  18. Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure: The effect of ammonia inhibition.

    Science.gov (United States)

    Liu, Zhan-Guang; Zhou, Xue-Fei; Zhang, Ya-Lei; Zhu, Hong-Guang

    2012-01-01

    The effect of ammonia inhibition was evaluated during the enhanced anaerobic treatment of digested effluent from a 700m(3) chicken-manure continuous stirred tank reactor (CSTR). A 12.3L internal circulation (IC) reactor inoculated with an anaerobic granular sludge and operated at 35±1°C was employed for the investigation. With a corresponding organic loading rate of 1.5-3.5kg-COD/m(3)d over a hydraulic retention time of 1.5d, a maximum volumetric biogas production rate of 1.2m(3)/m(3)d and TCOD (total COD) removal efficiency ranging from 70% to 80% was achieved. However, the continual increase in the influent TAN content led to ammonia inhibition in the methanogenesis system. The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was presented to be the key controlling factor for the anaerobic treatment of semi-digested chicken manure, and further validation through shock loading and ammonia inhibition experiments was conducted. The threshold value of the SCOD/TAN ratio was determined to be 2.4 (corresponding to a TAN of 1250mg/L) at an influent pH of 8.5-9.

  19. Counteracting ammonia inhibition during anaerobic digestion by recovery using submersible microbial desalination cell

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    Ammonia inhibition is one of the most frequent and serious problems in biogas plants. In this study, a novel hybrid system consisting of a submersible microbial desalination cell (SMDC) and a continuous stirred tank reactor (CSTR) was developed for counteracting ammonia inhibition during anaerobic...... digestion (AD) with simultaneous in situ ammonia recovery and electricity production. The SMDC was powered by acetate in a buffer solution, while synthetic ammonia-rich wastewater was used as the feeding of the CSTR. Under continuous operation, ammonia recovery rate of 86 g-N/m2 /day and current density...... of 4.33 A/m2 were achieved at steady-state condition. As a result, 112% extra biogas was produced due to ammonia recovery by the SMDC. High-throughput sequencing showed that ammonia recovery had an impact on the microbial community structures in the SMDC and CSTR. Considering the additional economic...

  20. Biological production of ethanol from coal. Task 4 report, Continuous reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    The production of ethanol from synthesis gas by the anaerobic bacterium C. ljungdahlii has been demonstrated in continuous stirred tank reactors (CSTRs), CSTRs with cell recycle and trickle bed reactors. Various liquid media were utilized in these studies including basal medium, basal media with 1/2 B-vitamins and no yeast extract and a medium specifically designed for the growth of C. ljungdahlii in the CSTR. Ethanol production was successful in each of the three reactor types, although trickle bed operation with C. ljungdahlii was not as good as with the stirred tank reactors. Operation in the CSTR with cell recycle was particularly promising, producing 47 g/L ethanol with only minor concentrations of the by-product acetate.

  1. Growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough under continuous low oxygen concentration sparging: impact of the membrane-bound oxygen reductases.

    Directory of Open Access Journals (Sweden)

    Fanny Ramel

    Full Text Available Although obligate anaerobe, the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH exhibits high aerotolerance that involves several enzymatic systems, including two membrane-bound oxygen reductases, a bd-quinol oxidase and a cc(b/oo3 cytochrome oxidase. Effect of constant low oxygen concentration on growth and morphology of the wild-type, single (Δbd, Δcox and double deletion (Δcoxbd mutant strains of the genes encoding these oxygen reductases was studied. When both wild-type and deletion mutant strains were cultured in lactate/sulfate medium under constant 0.02% O2 sparging, they were able to grow but the final biomasses and the growth yield were lower than that obtained under anaerobic conditions. At the end of the growth, lactate was not completely consumed and when conditions were then switched to anaerobic, growth resumed. Time-lapse microscopy revealed that a large majority of the cells were then able to divide (over 97% but the time to recover a complete division event was longer for single deletion mutant Δbd than for the three other strains. Determination of the molar growth yields on lactate suggested that a part of the energy gained from lactate oxidation was derived toward cells protection/repairing against oxidative conditions rather than biosynthesis, and that this part was higher in the single deletion mutant Δbd and, to a lesser extent, Δcox strains. Our data show that when DvH encounters oxidative conditions, it is able to stop growing and to rapidly resume growing when conditions are switched to anaerobic, suggesting that it enters active dormancy sate under oxidative conditions. We propose that the pyruvate-ferredoxin oxidoreductase (PFOR plays a central role in this phenomenon by reversibly switching from an oxidative-sensitive fully active state to an oxidative-insensitive inactive state. The oxygen reductases, and especially the bd-quinol oxidase, would have a crucial function by maintaining

  2. Growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough under continuous low oxygen concentration sparging: impact of the membrane-bound oxygen reductases.

    Science.gov (United States)

    Ramel, Fanny; Brasseur, Gael; Pieulle, Laetitia; Valette, Odile; Hirschler-Réa, Agnès; Fardeau, Marie Laure; Dolla, Alain

    2015-01-01

    Although obligate anaerobe, the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH) exhibits high aerotolerance that involves several enzymatic systems, including two membrane-bound oxygen reductases, a bd-quinol oxidase and a cc(b/o)o3 cytochrome oxidase. Effect of constant low oxygen concentration on growth and morphology of the wild-type, single (Δbd, Δcox) and double deletion (Δcoxbd) mutant strains of the genes encoding these oxygen reductases was studied. When both wild-type and deletion mutant strains were cultured in lactate/sulfate medium under constant 0.02% O2 sparging, they were able to grow but the final biomasses and the growth yield were lower than that obtained under anaerobic conditions. At the end of the growth, lactate was not completely consumed and when conditions were then switched to anaerobic, growth resumed. Time-lapse microscopy revealed that a large majority of the cells were then able to divide (over 97%) but the time to recover a complete division event was longer for single deletion mutant Δbd than for the three other strains. Determination of the molar growth yields on lactate suggested that a part of the energy gained from lactate oxidation was derived toward cells protection/repairing against oxidative conditions rather than biosynthesis, and that this part was higher in the single deletion mutant Δbd and, to a lesser extent, Δcox strains. Our data show that when DvH encounters oxidative conditions, it is able to stop growing and to rapidly resume growing when conditions are switched to anaerobic, suggesting that it enters active dormancy sate under oxidative conditions. We propose that the pyruvate-ferredoxin oxidoreductase (PFOR) plays a central role in this phenomenon by reversibly switching from an oxidative-sensitive fully active state to an oxidative-insensitive inactive state. The oxygen reductases, and especially the bd-quinol oxidase, would have a crucial function by maintaining reducing conditions

  3. Improvement of anaerobic digestion performance by continuous nitrogen removal with a membrane contactor treating a substrate rich in ammonia and sulfide.

    Science.gov (United States)

    Lauterböck, B; Nikolausz, M; Lv, Z; Baumgartner, M; Liebhard, G; Fuchs, W

    2014-04-01

    The effect of reduced ammonia levels on anaerobic digestion was investigated. Two reactors were fed with slaughterhouse waste, one with a hollow fiber membrane contractor for ammonia removal and one without. Different organic loading rates (OLR) and free ammonia and sulfide concentrations were investigated. In the reactor with the membrane contactor, the NH4-N concentration was reduced threefold. At a moderate OLR (3.1 kg chemical oxygen demand - COD/m(3)/d), this reactor performed significantly better than the reference reactor. At high OLR (4.2 kg COD/m(3)/d), the reference reactor almost stopped producing methane (0.01 Nl/gCOD). The membrane reactor also showed a stable process with a methane yield of 0.23 Nl/g COD was achieved. Both reactors had predominantly a hydrogenotrophic microbial consortium, however in the membrane reactor the genus Methanosaeta (acetoclastic) was also detected. In general, all relevant parameters and the methanogenic consortium indicated improved anaerobic digestion of the reactor with the membrane.

  4. Kinetics and inhibition of reductive dechlorination of trichloroethene, cis-1,2-dichloroethene and vinyl chloride in a continuously fed anaerobic biofilm reactor.

    Science.gov (United States)

    Popat, Sudeep C; Deshusses, Marc A

    2011-02-15

    Anaerobic bioreactors containing Dehalococcoides spp. can be effective for the treatment of trichloroethene (TCE) contamination. However, reductive dehalogenation of TCE often results in partial conversion to harmless ethene, and significant production of undesired cis-1,2-dichloroethene (cis-DCE) and vinyl chloride (VC) is frequently observed. Here, a detailed modeling study was conducted focusing on the determination of biokinetic constants for the dechlorination of TCE and its reductive dechlorination intermediates cis-DCE and VC as well as any biokinetic inhibition that may exist between these compounds. Dechlorination data from an anaerobic biotrickling filter containing Dehalococcoides spp. fed with single compounds (TCE, cis-DCE, or VC) were fitted to the model to determine biokinetic constants. Experiments with multiple compounds were used to determine inhibition between the compounds. It was found that the Michaelis-Menten half-saturation constants for all compounds were higher than for cells grown in suspended cultures, indicating a lower enzyme affinity in biofilm cells. It was also observed that TCE competitively inhibited the dechlorination of cis-DCE and had a mild detrimental effect on the dechlorination of VC. Thus, careful selection of biotreatment conditions, possibly with the help of a model such as the one presented herein, is required to minimize the production of partially dechlorinated intermediates.

  5. Stirring-induced bifurcation driven by the chaotic regime in the Belousov—Zhabotinsky reaction in a CSTR

    Science.gov (United States)

    Strizhak, Peter E.

    1995-09-01

    The stirring-induced bifurcation at low stirring rate S 0 = 23 rpm of the reaction volume has been observed for the chaotic regime in the Belousov—Zhabotinsky oscillating chemical reaction (malonic acidbromatecerium(III)sulfuric acid) in a continuously stirred tank reactor in premixing mode. This bifurcation is characterized by a stepwise growth of the macroscopic spatial concentration gradients that is shown by the use of the time dependencies of the potential difference between two platinum electrodes.

  6. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    Science.gov (United States)

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  7. Deformation During Friction Stir Welding

    Science.gov (United States)

    White, Henry J.

    2002-01-01

    Friction Stir Welding (FSW) is a solid state welding process that exhibits characteristics similar to traditional metal cutting processes. The plastic deformation that occurs during friction stir welding is due to the superposition of three flow fields: a primary rotation of a radially symmetric solid plug of metal surrounding the pin tool, a secondary uniform translation, and a tertiary ring vortex flow (smoke rings) surrounding the tool. If the metal sticks to the tool, the plug surface extends down into the metal from the outer edge of the tool shoulder, decreases in diameter like a funnel, and closes up beneath the pin. Since its invention, ten years have gone by and still very little is known about the physics of the friction stir welding process. In this experiment, an H13 steel weld tool (shoulder diameter, 0.797 in; pin diameter, 0.312 in; and pin length, 0.2506 in) was used to weld three 0.255 in thick plates. The deformation behavior during friction stir welding was investigated by metallographically preparing a plan view sections of the weldment and taking Vickers hardness test in the key-hole region.

  8. Modelling of baffled stirred tanks

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstedt, H.; Lahtinen, M. [Tampere Univ. of Technology (Finland). Energy and Process Engineering

    1996-12-31

    The three-dimensional flow field of a baffled stirred tank has been calculated using four different turbulence models. The tank is driven by a Rushton-type impeller. The boundary condition for the impeller region has been given as a source term or by calculating the impeller using the sliding mesh technique. Calculated values have been compared with measured data. (author)

  9. 用数值模拟方法分析混合和导流筒对搅拌槽中沉淀硫酸钡的影响%Computational Fluid Dynamics Approach to the Effect of Mixing and Draft Tube on the Precipitation of Barium Sulfate in a Continuous Stirred Tank

    Institute of Scientific and Technical Information of China (English)

    王正; 毛在砂; 杨超; 沈湘黔

    2006-01-01

    The effect of mixing on the precipitation of barium sulfate in a continuous stirred tank is simulated numerically with different feeding location, feed concentration, impeller speed and residence time through solving the standard momentum and mass transport equations in combination with the moment equations for crystal population balance. The numerical method was validated with the literature data. The simulation results including the distribution of the local supersaturation ratio distribution in the precipitator, mean crystal size and coefficient of variation under different operating conditions compared well with experimental data in the literature. The effect of the presence of a draft tube on precipitation were also investigated, and it is suggested that the installation of a draft tube increased the mean crystal size, in general agreement with experimental work in the literature.

  10. New Tool Creates a Big Stir

    Science.gov (United States)

    2001-01-01

    A new self-adjusting, retractable pin tool for friction stir welding is now used in the manufacturing of components for NASA Space Shuttles. Friction stir welding is a process that makes straight-line welds without bringing the parent material to a liquid state. This is accomplished through high-speed rotation, which generates frictional heat between the welding tool and the piece being welded. This heat causes the material to soften to the point of plasticity without allowing it to melt. The plasticized material is then transferred from the front edge of the welding tool to the trail edge, where it joins the pieces being welded. However, a major flaw of this method is its reliance on a single-piece pin tool. The weld is left unfinished and a hole remains where the pin was inserted. The hole must be covered with a rivet in order to preserve the integrity of the weld. The NASA-developed pin tool, however, eliminates the need for this finishing step, as its retraction allows continuous rewelding at lesser depths, until the hole is completely closed. With this NASA technology, welding of higher strength alloys, as well as non-planer and variable thickness structures can be achieved.

  11. Anaerobic workout

    OpenAIRE

    McAdam, Ewan J.

    2010-01-01

    Anaerobic technology cannot directly replace current wastewater treatment processes exclusively. The UASB reactor configuration removes slightly less organic carbon by comparison as the process relies on lamella separation for passive clarification rather than using fine pores like anMBR. By contrast, whilst anMBR can operate as a single unit process for organic carbon removal, the membrane surface has to be cleaned using gas sparging to limit surface deposition, which requires extra energy. ...

  12. Continuous anaerobic digestion of swine manure: ADM1-based modelling and effect of addition of swine manure fibers pretreated with aqueous ammonia soaking

    DEFF Research Database (Denmark)

    Jurado, E.; Antonopoulou, G.; Lyberatos, G.;

    2016-01-01

    pretreated manure fibers was performed in CSTR-type digesters, fed with swine manure and/or a mixtureof swine manure and AAS pretreated manure fibers (at a total solids based ratio of 0.52 manure per0.48 fibers). Two different simulations were performed. In the first place, the Anaerobic Digestion Model 1...... (ADM1) was fitted to a manure-fed, CSTR-type digester and validated by simulating the performance of a second reactor digesting manure. It was shown that disintegration and hydrolysis of the solid matter of manure was such a slow process that the organic particulate matter did not significantly...... contribute to the methane production. In the second place, ADM1 was used to describe biogas production from the codigestion of manure and AAS pretreated manure fibers. The model predictions regarding biogas production and methane content were in good agreement with the experimental data. It was shown that...

  13. [Characteristics of anaerobic sequencing batch reactor for the treatment of high-solids-content waste].

    Science.gov (United States)

    Wang, Zhi-jun; Wang, Wei; Zhang, Xi-hui

    2006-06-01

    Based on the experiments of digestion of thermo-hydrolyzed sewage sludge in both mesophilic and thermophilic anaerobic sequencing batch reactors (ASBRs) with 20, 10, 7.5, 5d hydraulic retention time (HRT), operating characteristics of ASBR for treatment of high-solids-content waste were investigated. ASBR can efficiently accumulates suspended solids and keep high concentration solids, however there exists a "critical point" of ASBR, which means the maximum capability to accumulate suspended solids without negative effects on ASBR stability, and beyond which the performance deteriorates. Under steady condition, ASBR can sustains high solid retention time (SRT) and mean cell retention time (MCRT), the SRT and MCRT is 2.53 approximately 3.73 and 2.03 approximately 3.14 times of hydraulic retention time (HRT) when treating thermo-hydrolyzed sludge, respectively. Therefore, compared to traditional continuous-flow stirred tank reactor (CSTR), the efficiency of ASBR enhances about 7.13% approximately 34.68%.

  14. Anaerobic biodegradability of macropollutants

    DEFF Research Database (Denmark)

    Angelidaki, Irini

    2002-01-01

    A variety of test procedures for determination of anaerobic biodegradability has been reported. This paper reviews the methods developed for determination of anaerobic biodegradability of macro-pollutants. Anaerobic biodegradability of micro-pollutants is not included. Furthermore, factors import...

  15. Friction Stir Process Mapping Methodology

    Science.gov (United States)

    Kooney, Alex; Bjorkman, Gerry; Russell, Carolyn; Smelser, Jerry (Technical Monitor)

    2002-01-01

    In FSW (friction stir welding), the weld process performance for a given weld joint configuration and tool setup is summarized on a 2-D plot of RPM vs. IPM. A process envelope is drawn within the map to identify the range of acceptable welds. The sweet spot is selected as the nominal weld schedule. The nominal weld schedule is characterized in the expected manufacturing environment. The nominal weld schedule in conjunction with process control ensures a consistent and predictable weld performance.

  16. Pulsed ultrasonic stir welding system

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  17. Friction Stir Welding: A Review

    OpenAIRE

    Jain, Sumit; Gupta, Rajat; Singh, Arvinder; Sharma, Neeraj

    2013-01-01

    Friction stir welding (FSW) is a solid state joining process in which a rotating tool is used to join the two metal parts. The rotating tool is inserted in between two metal parts and the frictional energy is used to join the metal. In this research paper a review has been presented on FSW. The previous literature has been discussed along with the future aspects included in the field of FSW.

  18. Modelling of friction stir welding

    OpenAIRE

    Colegrove, Paul Andrew

    2004-01-01

    This thesis investigates the modelling of friction stir welding (FSW). FSW is a relatively new welding process where a rotating non-consumable tool is used to join two materials through high temperature deformation. The aim of the thesis is the development of a numerical model to improve process understanding and to assist in the design of new tools. The early part of the thesis describes the process, defines the modelling problem and describes why a computational fluid dynamics package (FLUE...

  19. Innovative bioelectrochemical-anaerobic-digestion integrated system for ammonia recovery and bioenergy production from ammonia-rich residues

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    (SMRC) and a continuous stirred tank reactor (CSTR), to prevent ammonia toxicity during anaerobic digestion by in-situ ammonia recovery and electricity production (Figure 1). In batch experiment, the ammonia concentration in the CSTR decreased from 6 to 0.7 g-N/L with an average recovery rate of 0.18 g-N/L(CSTR...... performance was enhanced. In addition, the coexistence of other cations in CSTR or cathode had no negative effect on the ammonia transportation. In continuous reactor operation, 112% extra biogas production was achieved due to ammonia recovery. High-throughput molecular sequencing analysis showed an impact...... of ammonia recovery on the microbial community composition in the integrated system. Results clearly indicate the great potential of the SMRC-CSTR-coupled system for efficient and cost-effective ammonia recovery, energy production and treatment of ammonia-rich residues....

  20. Ozone absorption in a mechanically stirred reactor

    Directory of Open Access Journals (Sweden)

    LJILJANA TAKIC

    2007-08-01

    Full Text Available Ozone absorption in water was investigated in a mechanically stirred reactor, using both the semi-batch and continuous mode of operation. A model for the precise determination of the volumetric mass transfer coefficient in open tanks without the necessity of the measurement the ozone concentration in the outlet gas was developed. It was found that slow ozone reactions in the liquid phase, including the decomposition of ozone, can be regarded as one pseudo-first order reaction. Under the examined operating conditions, the liquid phase was completely mixed, while mixing in a gas phase can be described as plug flow. The volumetric mass transfer coefficient was found to vary with the square of the impeller speed.

  1. Flexible Friction Stir Joining Technology

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhili [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lim, Yong Chae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mahoney, Murray [MegaStir Technologies LLC, Orem, UT (United States); Sanderson, Samuel [MegaStir Technologies LLC, Orem, UT (United States); Larsen, Steve [MegaStir Technologies LLC, Orem, UT (United States); Steel, Russel [MegaStir Technologies LLC, Orem, UT (United States); Fleck, Dale [MegaStir Technologies LLC, Orem, UT (United States); Fairchild, Doug P [ExxonMobil, Upstream Research Company (URC), Houston, TX (United States); Wasson, Andrew J [ExxonMobil, Upstream Research Company (URC), Houston, TX (United States); Babb, Jon [MegaStir Technologies LLC, Orem, UT (United States); Higgins, Paul [MegaStir Technologies LLC, Orem, UT (United States)

    2015-07-23

    Reported herein is the final report on a U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) project with industry cost-share that was jointly carried out by Oak Ridge National Laboratory (ORNL), ExxonMobil Upstream Research Company (ExxonMobil), and MegaStir Technologies (MegaStir). The project was aimed to advance the state of the art of friction stir welding (FSW) technology, a highly energy-efficient solid-state joining process, for field deployable, on-site fabrications of large, complex and thick-sectioned structures of high-performance and high-temperature materials. The technology innovations developed herein attempted to address two fundamental shortcomings of FSW: 1) the inability for on-site welding and 2) the inability to weld thick section steels, both of which have impeded widespread use of FSW in manufacturing. Through this work, major advance has been made toward transforming FSW technology from a “specialty” process to a mainstream materials joining technology to realize its pervasive energy, environmental, and economic benefits across industry.

  2. 21 CFR 866.2120 - Anaerobic chamber.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber....

  3. Friction Stir Spot Welding of DP780 Carbon Steel

    Energy Technology Data Exchange (ETDEWEB)

    Santella, Michael L [ORNL; Hovanski, Yuri [ORNL; Frederick, David Alan [ORNL; Grant, Glenn J [ORNL; Dahl, Michael E [ORNL

    2010-01-01

    Friction stir spot welds were made in uncoated and galvannealed DP780 sheets using polycrystalline boron nitride stir tools. The tools were plunged at either a single continuous rate or in two segments consisting of a relatively high rate followed by a slower rate of shorter depth. Welding times ranged from 1 to 10 s. Increasing tool rotation speed from 800 to 1600 rev min{sup -1} increased strength values. The 2-segment welding procedures also produced higher strength joints. Average lap shear strengths exceeding 10 {center_dot} 3 kN were consistently obtained in 4 s on both the uncoated and the galvannealed DP780. The likelihood of diffusion and mechanical interlocking contributing to bond formation was supported by metallographic examinations. A cost analysis based on spot welding in automobile assembly showed that for friction stir spot welding to be economically competitive with resistance spot welding the cost of stir tools must approach that of resistance spot welding electrode tips.

  4. Long-Term n-Caproic Acid Production from Yeast-Fermentation Beer in an Anaerobic Bioreactor with Continuous Product Extraction.

    Science.gov (United States)

    Ge, Shijian; Usack, Joseph G; Spirito, Catherine M; Angenent, Largus T

    2015-07-01

    Multifunctional reactor microbiomes can elongate short-chain carboxylic acids (SCCAs) to medium-chain carboxylic acids (MCCAs), such as n-caproic acid. However, it is unclear whether this microbiome biotechnology platform is stable enough during long operating periods to consistently produce MCCAs. During a period of 550 days, we improved the operating conditions of an anaerobic bioreactor for the conversion of complex yeast-fermentation beer from the corn kernel-to-ethanol industry into primarily n-caproic acid. We incorporated and improved in-line, membrane liquid-liquid extraction to prevent inhibition due to undissociated MCCAs at a pH of 5.5 and circumvented the addition of methanogenic inhibitors. The microbiome accomplished several functions, including hydrolysis and acidogenesis of complex organic compounds and sugars into SCCAs, subsequent chain elongation with undistilled ethanol in beer, and hydrogenotrophic methanogenesis. The methane yield was 2.40 ± 0.52% based on COD and was limited by the availability of carbon dioxide. We achieved an average n-caproate production rate of 3.38 ± 0.42 g L(-1) d(-1) (7.52 ± 0.94 g COD L(-1) d(-1)) with an n-caproate yield of 70.3 ± 8.81% and an n-caproate/ethanol ratio of 1.19 ± 0.15 based on COD for a period of ∼55 days. The maximum production rate was achieved by increasing the organic loading rates in tandem with elevating the capacity of the extraction system and a change in the complex feedstock batch. PMID:25941741

  5. Bioleaching of an organic-rich polymetallic concentrate using stirred-tank technology

    OpenAIRE

    Spolaore, Pauline; Joulian, Catherine; Gouin, Jérôme; Ibanez, A.; Augé, Thierry; Morin, Dominique; d'Hugues, Patrick

    2009-01-01

    The bioleaching of a concentrate produced from a black shale ore in an industrial operation in Poland was assessed. Following preliminary batch culture tests, processing in continuous conditions was tested to determine the main specifications for the application of the stirred-tank technology to this organic-rich polymetallic concentrate. The experimental work was carried out in a laboratory-scale unit consisting of three stirred tanks (50 L or 20 L) using an acidophilic and moderate thermoph...

  6. Friction Stir Processing of Cast Superalloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort examines the feasibility of an innovative fabrication technology incorporating sand casting and friction stir processing (FSP) for...

  7. Friction Stir Processing of Cast Superalloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR effort examines the feasibility of an innovative fabrication technology incorporating sand casting and friction stir processing (FSP) for producing...

  8. Start-up strategies for thermophilic anaerobic digestion of pig manure

    International Nuclear Information System (INIS)

    Sludge physicochemical composition, methane (CH4) yield, and methanogenic community structure and dynamics using quantitative real-time polymerase chain reaction were determined after start-up of anaerobic digestion of pig manure. Eight thermophilic continuous stirred anaerobic digesters were used during 126 days. Four management strategies were investigated: a feedless and a non-feedless period followed by a gradual or an abrupt addition of pig manure (two digesters per strategy). During the first 43 days, VFA (volatile fatty acids) accumulations and low CH4 yield were observed in all digesters. After this period, digesters recovered their initial status being propionic acid the last parameter to be re-established. Non-feedless digesters with an abrupt addition of pig manure showed the best performances (lower VFA accumulation and higher CH4 yield). Differences in microbial orders and dynamics, however, were less evident among treatments. Hydrogenotrophic methanogenesis, Methanomicrobiales first and Methanobacteriales second, was the dominant metabolic pathway in all digesters. Further research is needed to clarify the role and activity of hydrogenotrophic methanogens during the recovery start-up period and to identify the best molecular tools and methodologies to monitor microbial populations and dynamics reliably and accurately in anaerobic digesters. - Highlights: • Four start-up strategies for thermophilic anaerobic digestion of pig manure were tested. • Physicochemical composition, methane yield and methanogenic community were determined. • During the first 43 days, a decline in reactor's performance occurred. • The best start-up strategy was non-feedless with an abrupt addition of pig slurry. • Hydrogenotrophic methanogenesis was the dominant metabolic pathway

  9. Anaerobic thermophiles.

    Science.gov (United States)

    Canganella, Francesco; Wiegel, Juergen

    2014-01-01

    The term "extremophile" was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of "extreme" environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally "hot environments" on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong to the Archaea has definitely

  10. Anaerobic Thermophiles

    Directory of Open Access Journals (Sweden)

    Francesco Canganella

    2014-02-01

    Full Text Available The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong

  11. Studies of stirred jujube yogurt

    Institute of Scientific and Technical Information of China (English)

    郑强强; 薛菊兰; 刘亚丽; 秦婷婷

    2014-01-01

    Jujube is a delicious sweet fruits, with the functions of anti-tumor, anti-cancer, anti-aging, reducing blood pressure, improving immunity and so on [1]. Yogurt is a kind of high nutritional value and special flavor drinks. Its protein is easily digested and absorbed, especial y calcium. In this experiment, dry jujube and fresh milk as the main material to obtain solidified yoghurt. Then researched how the amounts of solidified yoghurt, sugar, jujube slurry to effect the yogurt quality. The results showed that: the best proportion of stirred yogurt: jujube slurry 15%, sugar 4%and yoghurt85%.

  12. Pulsed ultrasonic stir welding method

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  13. Gimbaled-shoulder friction stir welding tool

    Science.gov (United States)

    Carter, Robert W. (Inventor); Lawless, Kirby G. (Inventor)

    2010-01-01

    A gimbaled-shoulder friction stir welding tool includes a pin and first and second annular shoulders coupled to the pin. At least one of the annular shoulders is coupled to the pin for gimbaled motion with respect thereto as the tool is rotated by a friction stir welding apparatus.

  14. Stirring a Bose-Einstein condensate

    Energy Technology Data Exchange (ETDEWEB)

    Damski, Bogdan [Instytut Fizyki Imienia Mariana Smoluchowskiego, Uniwersytet Jagiellonski, Cracow (Poland); Institut fuer Theoretische Physik, Universitaet Hannover, Hannover (Germany); Sacha, Krzysztof; Zakrzewski, Jakub [Instytut Fizyki Imienia Mariana Smoluchowskiego, Uniwersytet Jagiellonski, Cracow (Poland)

    2002-10-14

    By shining a tightly focused laser light on a Bose-Einstein condensate (BEC) and moving the centre of the beam along a spiral path one may stir the BEC and create vortices. It is shown that one can induce rotation of the BEC in the direction opposite to the direction of stirring. (author)

  15. Effects of mechanical force on grain structures of friction stir welded oxide dispersion strengthened ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Han, Wentuo, E-mail: hanwentuo@hotmail.com [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Tsuda, Naoto [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Serizawa, Hisashi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Chen, Dongsheng [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Je, Hwanil [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Fujii, Hidetoshi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Ha, Yoosung [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Morisada, Yoshiaki [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Noto, Hiroyuki [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2014-12-15

    The weldability of oxide dispersion strengthened (ODS) ferritic steels is a critical obstructive in the development and use of these steels. Friction stir welding has been considered to be a promising way to solve this problem. The main purpose of this work was to reveal the effects of mechanical force on grain structures of friction stir welded ODS ferritic steel. The grain appearances and the misorientation angles of grain boundaries in different welded zones were investigated by the electron backscatter diffraction (EBSD). Results showed that the mechanical force imposed by the stir tool can activate and promote the recrystallization characterized by the transformation of boundaries from LABs to HABs, and contribute to the grain refinement. The type of recrystallization in the stir zone can be classified as the continuous dynamic recrystallization (CDRX)

  16. Effect of impeller type and stirring frequency on the behavior of an AnSBBR in the treatment of low-strength wastewater.

    Science.gov (United States)

    Cubas, Selma A; Foresti, Eugenio; Rodrigues, José Alberto D; Ratusznei, Suzana M; Zaiat, Marcelo

    2011-01-01

    The influence of impeller type and stirring frequency on the performance of a mechanically stirred anaerobic sequencing batch reactor containing immobilized biomass on an inert support (AnSBBR--Anaerobic Sequencing Batch Biofilm Reactor) was evaluated. The biomass was immobilized on polyurethane foam cubes placed in a stainless-steel basket inside a glass cylinder. Each 8-h batch run consisted of three stages: feed (10 min), reaction (460 min) and discharge (10 min) at 30 °C. Experiments were performed with four impeller types, i.e., helical, flat-blade, inclined-blade and curved-blade turbines, at stirring frequencies ranging from 100 to 1100 rpm. Synthetic wastewater was used in all experiments with an organic-matter concentration of 530±37 mg/L measured as chemical oxygen demand (COD). The reactor achieved an organic-matter removal efficiency of around 87% under all investigated conditions. Analysis of the four impeller types and the investigated stirring frequencies showed that mass transfer in the liquid phase was affected not only by the applied stirring frequency but also by the agitation mode imposed by each impeller type. The best reactor performance at all stirring frequencies was obtained when agitation was provided by the flat-blade turbine impeller. PMID:20888757

  17. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure

    NARCIS (Netherlands)

    Mashad, El H.; Zeeman, G.; Loon, van W.K.P.; Bot, G.P.A.; Lettinga, G.

    2004-01-01

    The influence of temperature, 50 and 60 °C, at hydraulic retention times (HRTs) of 20 and 10 days, on the performance of anaerobic digestion of cow manure has been investigated in completely stirred tank reactors (CSTRs). Furthermore, the effect of both daily downward and daily upward temperature fl

  18. Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Ahring, Birgitte Kiær

    2007-01-01

    Dilute sulfuric acid pretreated corn stover is potential feedstock of industrial interest for second generation fuel ethanol production. However, the toxicity of corn stover hydrolysate (PCS) has been a challenge for fermentation by recombinant xylose fermenting organisms. In this work, the therm......Dilute sulfuric acid pretreated corn stover is potential feedstock of industrial interest for second generation fuel ethanol production. However, the toxicity of corn stover hydrolysate (PCS) has been a challenge for fermentation by recombinant xylose fermenting organisms. In this work...... fermented yielding ethanol of 0.39–0.42 g/g-sugars consumed. Xylose was nearly completely utilized (89–98%) for PCS up to 10% TS, whereas at 15% TS, xylose conversion was lowered to 67%. The reactor was operated continuously for 135 days, and no contamination was seen without the use of any agent...

  19. Anaerobic digestion of paunch in a CSTR for renewable energy production and nutrient mineralization.

    Science.gov (United States)

    Nkemka, Valentine Nkongndem; Marchbank, Douglas H; Hao, Xiying

    2015-09-01

    A laboratory study investigated the anaerobic digestion of paunch in a continuous stirred tank reactor (CSTR) for the recovery of biogas and mineralization of nutrients. At an organic loading rate (OLR) of 2.8gVSL(-1)day(-1) with a 30-day hydraulic retention time (HRT), a CH4 yield of 0.213Lg(-1)VS and CH4 production rate of 0.600LL(-1)day(-1) were obtained. Post-anaerobic digestion of the effluent from the CSTR for 30days at 40°C recovered 0.067Lg(-1)VS as CH4, which was 21% of the batch CH4 potential. Post-digestion of the effluent from the digestate obtained at this OLR is needed to meet the stable effluent criteria. Furthermore, low levels of soluble ions such as K(+), Ca(2+) and Mg(2+) were found in the liquid fraction of the digestate and the remainder could have been retained in the solid digestate fraction. This study demonstrates the potential of biogas production from paunch in providing renewable energy. In addition, recovery of plant nutrients in the digestate is important for a sustainable agricultural system.

  20. Two-stage anaerobic fermentation of organic waste in CSTR and UFAF-reactors.

    Science.gov (United States)

    Held, Christof; Wellacher, Martin; Robra, Karl-Heinz; Gübitz, Georg M

    2002-01-01

    The mechanically separated liquid fraction of organic waste from households was used as a substrate for anaerobic fermentation. A two-step system consisting of a 2001 continuously stirred tank reactor (CSTR) and a 501 upflow anaerobic filter filled with glass foam pearls was constructed. The CSTR was operated for 5 months with a loading rate of 9.8 kg CSB m(-3) day(-1). At a resulting hydraulic retention time (HRT) of 24 days, 68% COD was degraded and a gas productivity of 4.0 m3 m(-3) day(-1) was achieved. Further digestion of the CSTR output was separately optimised in a 20 l-UFAF and based on these results a 50 l-UFAF was connected to the CSTR. At a resulting hydraulic retention time (HRT) of 6 days 38% COD was degraded and a gas productivity of 1.8 m3 m(-3) day(-1) was achieved with the 50 l-UFAF. Thus, the overall degradation efficiency of the two-phase system was 80%. The methane content (61%) of the biogas produced in the 50 l-UF

  1. Anaerobic digestion of sulfate-acidified cattle slurry: One-stage vs. two-stage.

    Science.gov (United States)

    Moset, Veronica; Ottosen, Lars Ditlev Mørck; Xavier, Cristiane de Almeida Neves; Møller, Henrik Bjarne

    2016-05-15

    Two strategies to include acidified cattle manure (AcCM) in co-digestion with normal cattle manure (CM) are presented in this work. The strategies are a single thermophilic (50 °C) continuous stirred tank reactor (CSTR) anaerobic digestion and a two-step (65 °C + 50 °C) CSTR process. In both strategies, two different inclusion levels of H2SO4-acidified CM (10% and 20%) in co-digestion with normal CM were tested and compared with a control CSTR fed only CM. Important enhancement of methane (CH4) yield and solid reductions were observed in the thermophilic one-step CSTR working with 10% AcCM. However, a higher inclusion level of AcCM (20%) caused volatile fatty acid accumulation in the reactor and a more than 30% reduction in CH4 production. In terms of CH4 production, when 10% of AcCM was co-digested with 90% of CM, the two-step anaerobic co-digestion yielded less than the single step. During the first step of the two-step CSTR process, acidogenesis and a partial sulfate reduction were achieved. However, sulfide stripping between the first and the second step must be promoted in order to advance this technology.

  2. Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes.

    Science.gov (United States)

    Sun, Yifei; Wang, Dian; Yan, Jiao; Qiao, Wei; Wang, Wei; Zhu, Tianle

    2014-06-01

    The influence of the lipid concentration on the anaerobic co-digestion of municipal biomass waste and waste-activated sludge was assessed by biochemical methane potential (BMP) tests and by bench-scale tests in a mesophilic semi-continuous stirred tank reactor. The effect of increasing the volatile solid (VS) concentration of lipid from 0% to 75% was investigated. BMP tests showed that lipids in municipal biomass waste could enhance the methane production. The results of bench-scale tests showed that a lipids concentration of 65% of total VS was the inhibition concentration. Methane yields increased with increasing lipid concentration when lipid concentrations were below 60%, but when lipid concentration was set as 65% or higher, methane yields decreased sharply. When lipid concentrations were below 60%, the pH values were in the optimum range for the growth of methanogenic bacteria and the ratios of volatile fatty acid (VFA)/alkalinity were in the range of 0.2-0.6. When lipid concentrations exceeded 65%, the pH values were below 5.2, the reactor was acidized and the values of VFA/alkalinity rose to 2.0. The amount of Brevibacterium decreased with increasing lipid content. Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process, thereby inhibiting anaerobic digestion. PMID:24075452

  3. Quick-start of full-scale anaerobic digestion (AD) using aeration

    Energy Technology Data Exchange (ETDEWEB)

    Lagerkvist, Anders, E-mail: al@ltu.se; Pelkonen, Markku; Wikström, Tommy

    2015-04-15

    Highlights: • A fast, and original, start up procedure for anaerobic digestors has been applied at full scale. • The development of a methanogenic culture has been documented using fluorescent in situ hybridization. • The technique can be widely applied. - Abstract: A conventional 1300 m{sup 3} continuously stirred anaerobic tank reactor at the city of Boden, north Sweden, which was receiving a feed of both sewage sludge and food waste, was put out of operation due to the build-up of a float phase. The reactor was emptied and cleaned. At start-up there was no methanogenic sludge available, so an unconventional start-up procedure was applied: The reactor was rapidly (8 days with 1200 kg of total solids (TS) added daily) filled with thickened, and slightly acidic sewage sludge, showing only slight methane generation, which was subsequently heated to 55 °C. Then compressed air was blown into the digester and within a month a fully functional methanogenic culture was established. The transfer from acidogenic to methanogenic conditions happened in about one week. As a start-up technique this is fast and cost efficient, it only requires the access of a compressor, electricity and a source of air. In total, about 16 tonnes of oxygen were used. It is proposed that this method may also be used as an operational amendment technique, should a reactor tend to acidify.

  4. Methanogenic community dynamics in anaerobic co-digestion of fruit and vegetable waste and food waste

    Institute of Scientific and Technical Information of China (English)

    Jia Lin; Jiane Zuo; Ruofan Ji; Xiaojie Chen; Fenglin Liu; Kaijun Wang; Yunfeng Yang

    2012-01-01

    A lab-scale continuously-stirred tank reactor (CSTR),used for anaerobic co-digestion of fruit and vegetable waste (FVW) and food waste (FW) at different mixture ratios,was operated for 178 days at the organic loading rate of 3 kg VS (volatile solids)/(m3.day).The dynamics of the Archaeal community and the correlations between environmental variables and methanogenic community structure were analyzed by polymerase chain reactions - denaturing gradient gel electrophoresis (PCR-DGGE) and redundancy analysis (RDA),respectively.PCR-DGGE results demonstrated that the mixture ratio of FVW to FW altered the community composition of Aachaea.As the FVW/FW ratio increased,Methanoculleus,Methanosaeta and Methanosarcina became the predominant methanogens in the community.Redundancy analysis results indicated that the shift of the methanogenic community was significantly correlated with the composition of acidogenic products and methane production yield.Different mixture ratios of substrates led to different compositions of intermediate metabolites,which may affect the methanogenic community.These results suggested that the analysis of microbial communities could be used to diagnose anaerobic processes.

  5. High-solid Anaerobic Co-digestion of Food Waste and Rice Straw for Biogas Production

    Institute of Scientific and Technical Information of China (English)

    Pei Zhan-jiang; Liu Jie; Shi Feng-mei; Wang Su; GaoYa-bing; Zhang Da-lei

    2014-01-01

    Anaerobic co-digestion of food waste (FW) and rice straw (RS) in continuously stirred tank reactor (CSTR) at high organic loading rate (OLR) was investigated. Co-digestion studies of FW and RS with six different mixing ratios were conducted at an initial volatile solid (VS) concentration of more than 3 gVS•L-1. The biogas production, methane contents, degradation efficiency of VS, chemical oxygen demand (COD) and volatile fatty acids (VFAs) were determined to evaluate the stability and performance of the system. The results showed that the co-digestion process had higher system stability and higher volumetric biogas production than mono-digestions. Increase in FW content in the feedstock could increase the methane yield and shorten retention time. The efficiency of co-digestion systems mainly relied on the mixing ratios of FW and RS to some extent. The highest methane yield was 60.55 mL•gV•S-1•d-1 at a mass ratio (FW/RS) of 3: 1, which was 178% and 70% higher than that of mono-digestions of FW and RS, respectively. Consequently, the anaerobic co-digestion of FW and RS could have superior stability and better performance than mono-digestions in higher organic loading system.

  6. Quick-start of full-scale anaerobic digestion (AD) using aeration

    International Nuclear Information System (INIS)

    Highlights: • A fast, and original, start up procedure for anaerobic digestors has been applied at full scale. • The development of a methanogenic culture has been documented using fluorescent in situ hybridization. • The technique can be widely applied. - Abstract: A conventional 1300 m3 continuously stirred anaerobic tank reactor at the city of Boden, north Sweden, which was receiving a feed of both sewage sludge and food waste, was put out of operation due to the build-up of a float phase. The reactor was emptied and cleaned. At start-up there was no methanogenic sludge available, so an unconventional start-up procedure was applied: The reactor was rapidly (8 days with 1200 kg of total solids (TS) added daily) filled with thickened, and slightly acidic sewage sludge, showing only slight methane generation, which was subsequently heated to 55 °C. Then compressed air was blown into the digester and within a month a fully functional methanogenic culture was established. The transfer from acidogenic to methanogenic conditions happened in about one week. As a start-up technique this is fast and cost efficient, it only requires the access of a compressor, electricity and a source of air. In total, about 16 tonnes of oxygen were used. It is proposed that this method may also be used as an operational amendment technique, should a reactor tend to acidify

  7. Anaerobic digestion of sulfate-acidified cattle slurry: One-stage vs. two-stage.

    Science.gov (United States)

    Moset, Veronica; Ottosen, Lars Ditlev Mørck; Xavier, Cristiane de Almeida Neves; Møller, Henrik Bjarne

    2016-05-15

    Two strategies to include acidified cattle manure (AcCM) in co-digestion with normal cattle manure (CM) are presented in this work. The strategies are a single thermophilic (50 °C) continuous stirred tank reactor (CSTR) anaerobic digestion and a two-step (65 °C + 50 °C) CSTR process. In both strategies, two different inclusion levels of H2SO4-acidified CM (10% and 20%) in co-digestion with normal CM were tested and compared with a control CSTR fed only CM. Important enhancement of methane (CH4) yield and solid reductions were observed in the thermophilic one-step CSTR working with 10% AcCM. However, a higher inclusion level of AcCM (20%) caused volatile fatty acid accumulation in the reactor and a more than 30% reduction in CH4 production. In terms of CH4 production, when 10% of AcCM was co-digested with 90% of CM, the two-step anaerobic co-digestion yielded less than the single step. During the first step of the two-step CSTR process, acidogenesis and a partial sulfate reduction were achieved. However, sulfide stripping between the first and the second step must be promoted in order to advance this technology. PMID:26985731

  8. A technology of floating type stirring%一种浮动式搅拌技术

    Institute of Scientific and Technical Information of China (English)

    罗娟; 赵立欣; 董保成; 陈羚; 宋成军; 万小春

    2012-01-01

    综述了搅拌对厌氧消化过程的影响.通过比较,分析目前沼气工程中应用的3种机械搅拌方式,针对秸秆厌氧消化过程中易发生布料不均匀、挂壁、结壳等造成消化率低、容积产气率低、使用寿命短的问题,开发了一种能够适应浮动物料、实现垂直空间大范围搅拌的搅拌技术,介绍了其工作原理并展望了在沼气工程中的应用前景.%The impact of stirring on anaerobic digestion process was discussed in this paper. Through the comparison, analysised three kinds of mechanical stirring methods which used in current biogas plans. According to the problems such as low digestibility value, low volumetric biogas production rate and short life performance resulting from uneven distributed material, wall sticking and encrustation, a stirring technology of floating type which can adapt to floating raw materials and realize vertical large-area stirring has been developed. The working principle of this technology was introduced, and its application prospects in biogas plans were proposed.

  9. Friction Stir Welding and Processing

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Carsley, John; Clarke, Kester D.; Krajewski, Paul E.

    2015-05-01

    With nearly twenty years of international research and collaboration in friction stir welding (FSW) and processing industrial applications have spread into nearly every feasible market. Currently applications exist in aerospace, railway, automotive, personal computers, technology, marine, cutlery, construction, as well as several other markets. Implementation of FSW has demonstrated diverse opportunities ranging from enabling new materials to reducing the production costs of current welding technologies by enabling condensed packaging solutions for traditional fabrication and assembly. TMS has sponsored focused instruction and communication in this technology area for more than fifteen years, with leadership from the Shaping and Forming Committee, which organizes a biannual symposium each odd year at the annual meeting. A focused publication produced from each of these symposia now comprises eight volumes detailing the primary research and development activities in this area over the last two decades. The articles assembled herein focus on both recent developments and technology reviews of several key markets from international experts in this area.

  10. Macrostructure of Friction Stir Welds

    Science.gov (United States)

    Aloor, S.; Nowak, B.; Vargas, R.; McClure, J. C.; Murr, L. E.; Nunes, A. C.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    This paper will discuss two of the well know large scale features of friction stir welds: the "onion rings" seen in transverse sections, and the striations on the surface of the work piece. It will be shown that the surface features (sometimes called "tool marks") are the result of irregularities on the rotating shoulder of the pin tool and disappear when the shoulder is polished. The "onion ring" structure seen in transverse cross sections is formed by parts of the "carousel", the zone of material adjacent to and rotating with the pin tool, that are shed off in each rotation. The relation between the carousel and the "ring vortex", a rotational flow extending both in and out of the carousel and resembling a smoke-ring with the hole centered on the pin tool, will be discussed.

  11. Fermentation and growth response of a primary poultry isolate of Salmonella typhimurium grown under strict anaerobic conditions in continuous culture and amino acid-limited batch culture.

    Science.gov (United States)

    Maciorowski, K G; Nisbet, D J; Ha, S D; Corrier, D E; DeLoach, J R; Ricke, S C

    1997-01-01

    Salmonella typhimurium is a significant hazard to consumer health that is carried asymptomatically in poultry gastrointestinal tracts. Nurmi cultures may prevent Salmonella colonization in young chicks, but the mechanism of competitive exclusion is unclear. Modeling Salmonella's metabolism in pure culture may allow for greater definition in choosing strains for Nurmi cultures. The growth rates and affinity constants of S. typhimurium growing in amino acid-limited conditions were determined in batch culture and compared to primary poultry isolates of cecal strains. Serine and NH4Cl were the best N sources for growth of all organisms tested in this study. The fermentation response of S. typhimurium was also monitored in continuous culture at a slow dilution rate of 0.021 h-1. S. typhimurium was found to adapt to VL media, with trends in protein disappearance, Yglucose, and Yprotein. This may show that amino acid or protein concentrations may be an integral component of the initial establishment of S. typhimurium in the cecum. PMID:9192013

  12. Fermentation and growth response of a primary poultry isolate of Salmonella typhimurium grown under strict anaerobic conditions in continuous culture and amino acid-limited batch culture.

    Science.gov (United States)

    Maciorowski, K G; Nisbet, D J; Ha, S D; Corrier, D E; DeLoach, J R; Ricke, S C

    1997-01-01

    Salmonella typhimurium is a significant hazard to consumer health that is carried asymptomatically in poultry gastrointestinal tracts. Nurmi cultures may prevent Salmonella colonization in young chicks, but the mechanism of competitive exclusion is unclear. Modeling Salmonella's metabolism in pure culture may allow for greater definition in choosing strains for Nurmi cultures. The growth rates and affinity constants of S. typhimurium growing in amino acid-limited conditions were determined in batch culture and compared to primary poultry isolates of cecal strains. Serine and NH4Cl were the best N sources for growth of all organisms tested in this study. The fermentation response of S. typhimurium was also monitored in continuous culture at a slow dilution rate of 0.021 h-1. S. typhimurium was found to adapt to VL media, with trends in protein disappearance, Yglucose, and Yprotein. This may show that amino acid or protein concentrations may be an integral component of the initial establishment of S. typhimurium in the cecum.

  13. An innovative bioelectrochemical-anaerobic digestion-coupled system for in-situ ammonia recovery and biogas enhancement: process performance and microbial ecology

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    (SMRC) and a continuous stirred tank reactor (CSTR), to prevent ammonia toxicity during anaerobic digestion by in-situ ammonia recovery and electricity production. In batch experiment, the ammonia concentration in the CSTR decreased from 6 to 0.7 g-N/L with an average recovery rate of 0.18 g-N/L(CSTR...... performance was enhanced. In addition, the coexistence of other cations in CSTR or cathode had no negative effect on the ammonia transportation. In continuous reactor operation, 112% extra biogas production was achieved due to ammonia recovery. High-throughput molecular sequencing analysis showed an impact...... of ammonia recovery on the microbial community composition in the integrated system. Results clearly indicate the great potential of the SMRC-CSTR-coupled system for efficient and cost-effective ammonia recovery, energy production and treatment of ammonia-rich residues....

  14. A Continuous Flow Column Study of the Anaerobic Transformation of a CAH Mixture of Tetrachloroethene and Carbon Tetrachloride Using Formate as an Electron Donor

    Science.gov (United States)

    Semprini, L.; Azizian, M. F.; Kim, Y.

    2011-12-01

    Many groundwater sites are contaminated with mixtures of chlorinated aliphatic hydrocarbons (CAHs) that represent a challenge when biological remediation processes are being considered. This is especially challenging when high concentrations of CAHs are present.Trichloromethane (CF), for example, has been observed to inhibit and potentially exert toxicity on reductive dehalogenation of tetrachloroethene (PCE) and trichloroethene (TCE). Results will be presented from a continuous flow column study where the simultaneous transformation of PCE and carbon tetrachloride (CT) was achieved. The column was packed with a quartz sand and bioaugmented with the Evanite Culture (EV) that is capable of transforming PCE to ethene. The column was fed a synthetic groundwater that was amended with PCE to achieve an influent concentration near its solubility limit (0.10 mM) and formate (1.5 mM) that reacts to produce hydrogen as the ultimate electron donor. The column was operated for over 1600 days prior to the addition of CT. During this period PCE was transformed mainly to vinyl chloride (VC) and ethene (ETH) and minor amounts of cis-dichloroethene (cis-DCE) and TCE. The transformation extent achieved based on the column effluent concentrations ranged from about 50% ETH, 30% VC, and 20 cis-DCE up to 80% ETH and 20% VC. When the column was fed sulfate, it was completely transformed via sulfate reduction. Ferrous iron production from ferric iron reduction was observed early in the study. Acetate was also formed as a result of homoacetogenesis from hydrogen utilization. CT addition (0.015 mM) was started at 1600 days while PCE addition was continued. During the first 25 days of CT addition, CT concentrations gradually increased to 50% of the injection concentration and chloromethane (CM) and CF were observed as transformation products. CT concentrations then decreased with over 98% transformation achieved.CM was removed to below the detection limit and CF concentration decreases to

  15. Modeling of material flow in friction stir welding process

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper presents a 3D numerical model to study the material flow in the friction stir welding process. Results indicate that the material in front of the pin moves upwards due to the extrusion of the pin, and then the upward material rotates with the pin. Behind the rotating tool, the material starts to move downwards and to deposit in the wake. This process is the real cause to make friction stir welding process continuing successfully. The tangent movement of the material takes the main contribution to the flow of the material in friction stir welding process. There exists a swirl on the advancing side and with the increase of the translational velocity the inverse flow of the material on the advancing side becomes faster. The shoulder can increase the velocity of material flow in both radial direction and tangent direction near the top surface. The variations of process parameters do have an effect on the velocity field near the pin, especially in the region in which the material flow is faster.

  16. Recent Developments in Friction Stir Welding of Al-alloys

    Science.gov (United States)

    Çam, Gürel; Mistikoglu, Selcuk

    2014-06-01

    The diversity and never-ending desire for a better life standard result in a continuous development of the existing manufacturing technologies. In line with these developments in the existing production technologies the demand for more complex products increases, which also stimulates new approaches in production routes of such products, e.g., novel welding procedures. For instance, the friction stir welding (FSW) technology, developed for joining difficult-to-weld Al-alloys, has been implemented by industry in manufacturing of several products. There are also numerous attempts to apply this method to other materials beyond Al-alloys. However, the process has not yet been implemented by industry for joining these materials with the exception of some limited applications. The microstructures and mechanical properties of friction stir welded Al-alloys existing in the open literature will be discussed in detail in this review. The correlations between weld parameters used during FSW and the microstructures evolved in the weld region and thus mechanical properties of the joints produced will be highlighted. However, the modeling studies, material flow, texture formation and developments in tool design are out of the scope of this work as well as the other variants of this technology, such as friction stir spot welding (FSSW).

  17. Study on Anaerobic Co-digestion of Kitchen Waste and Pig Manure by Semi-continuous Feeding Mode%半连续泔脚垃圾与猪粪混合厌氧消化研究

    Institute of Scientific and Technical Information of China (English)

    韦成健; 张文阳; 谭鹏; 周红艳

    2012-01-01

    Under mesophilic condition(35℃),the anaerobic co-digestion rules of the kitchen waste was studied in semi-continuous feeding mode by increasing organic loading rate(OLR) gradually.The digestion test showed a dynamic equilibrium between the acidification phase and the methanogenic phase at OLR of 1gVS/(L.d),1.25gVS/(L.d)and 1.5gVS/(L.d),respectively.The value of biogas and CH4 yield showed a similar variation.PH,VFA and ammonia were maintained at around 7.2,360 mg/L,1 500 mg/L,respectively.When the OLR is 1.5gVS/(L.d),the biogas yield and average CH4 content obtained the maximum figure of 1.40L/g and 71.3%,respectively.By then,the anaerobic digestion system achieves best performance.%在中温(35℃)条件下,采用逐渐提高有机负荷的半连续进料方式,研究泔脚垃圾厌氧消化规律。在1gVS/(L.d)、1.25 gVS/(L.d)和1.5 gVS/(L.d)的有机负荷下,厌氧消化系统能够稳定运行,实现水解酸化阶段和产甲烷阶段的动态平衡,甲烷产率与日产气量的变化规律一致,pH、VFA、氨氮浓度分别保持在7.2和360mg/L1、500 mg/L左右。当有机负荷为1.5 gVS/(L.d),每克VS的甲烷产率和甲烷百分数出现最大值,分别为1.40 L/g7、1.37%,此时厌氧消化系统处于最佳运行状态。

  18. Effect of ammoniacal nitrogen on one-stage and two-stage anaerobic digestion of food waste.

    Science.gov (United States)

    Ariunbaatar, Javkhlan; Scotto Di Perta, Ester; Panico, Antonio; Frunzo, Luigi; Esposito, Giovanni; Lens, Piet N L; Pirozzi, Francesco

    2015-04-01

    This research compares the operation of one-stage and two-stage anaerobic continuously stirred tank reactor (CSTR) systems fed semi-continuously with food waste. The main purpose was to investigate the effects of ammoniacal nitrogen on the anaerobic digestion process. The two-stage system gave more reliable operation compared to one-stage due to: (i) a better pH self-adjusting capacity; (ii) a higher resistance to organic loading shocks; and (iii) a higher conversion rate of organic substrate to biomethane. Also a small amount of biohydrogen was detected from the first stage of the two-stage reactor making this system attractive for biohythane production. As the digestate contains ammoniacal nitrogen, re-circulating it provided the necessary alkalinity in the systems, thus preventing an eventual failure by volatile fatty acids (VFA) accumulation. However, re-circulation also resulted in an ammonium accumulation, yielding a lower biomethane production. Based on the batch experimental results the 50% inhibitory concentration of total ammoniacal nitrogen on the methanogenic activities was calculated as 3.8 g/L, corresponding to 146 mg/L free ammonia for the inoculum used for this research. The two-stage system was affected by the inhibition more than the one-stage system, as it requires less alkalinity and the physically separated methanogens are more sensitive to inhibitory factors, such as ammonium and propionic acid. PMID:25613216

  19. Torque Control of Friction Stir Welding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Longhurst Engineering, PLC and Vanderbilt University propose the innovation of torque control of friction stir welding (FSW) as a replacement to force control of...

  20. Investigation of Friction Stir Spot Welding Method

    OpenAIRE

    MERT, Şenol; MERT, Sevda

    2013-01-01

    The Friction Stir Spot Welding (FSSW) method is a derivative of the Friction Stir Welding (FSW) process, which is a new process that recently has received considerable attention from the automotive and other industries. In both methods, the joining mechanism is the same. However, there are several important differences between the applications. The most obvious difference FSSW than FSW that there is no translation of the tool in the vertical direction during the welding. The FSSW process cons...

  1. Anaerobic digestion of paunch in a CSTR for renewable energy production and nutrient mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Nkemka, Valentine Nkongndem; Marchbank, Douglas H.; Hao, Xiying, E-mail: xiying.hao@agr.gc.ca

    2015-09-15

    Highlights: • Anaerobic digestion and nutrient mineralization of paunch in a CSTR. • Low CH{sub 4} yield and high CH{sub 4} productivity was obtained at an OLR of 2.8 g VS L{sup −1} day{sup −1.} • Post-digestion of the digestate resulted in a CH{sub 4} yield of 0.067 L g{sup −1} VS. • Post-digestion is recommended for further digestate stabilization. - Abstract: A laboratory study investigated the anaerobic digestion of paunch in a continuous stirred tank reactor (CSTR) for the recovery of biogas and mineralization of nutrients. At an organic loading rate (OLR) of 2.8 g VS L{sup −1} day{sup −1} with a 30-day hydraulic retention time (HRT), a CH{sub 4} yield of 0.213 L g{sup −1} VS and CH{sub 4} production rate of 0.600 L L{sup −1} day{sup −1} were obtained. Post-anaerobic digestion of the effluent from the CSTR for 30 days at 40 °C recovered 0.067 L g{sup −1} VS as CH{sub 4}, which was 21% of the batch CH{sub 4} potential. Post-digestion of the effluent from the digestate obtained at this OLR is needed to meet the stable effluent criteria. Furthermore, low levels of soluble ions such as K{sup +}, Ca{sup 2+} and Mg{sup 2+} were found in the liquid fraction of the digestate and the remainder could have been retained in the solid digestate fraction. This study demonstrates the potential of biogas production from paunch in providing renewable energy. In addition, recovery of plant nutrients in the digestate is important for a sustainable agricultural system.

  2. Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yifei, E-mail: sunif@buaa.edu.cn [School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Wang, Dian; Yan, Jiao [School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Qiao, Wei [College of Chemical Science and Engineering, China University of Petroleum, Beijing 102249 (China); Wang, Wei [School of Environment, Tsinghua University, Beijing 100084 (China); Zhu, Tianle [School of Chemistry and Environment, Beihang University, Beijing 100191 (China)

    2014-06-01

    Highlights: • Lipid in municipal biomass would not inhibited the anaerobic digestion process. • A lipid concentration of 65% of total VS was the inhibition concentration. • The amount of Brevibacterium decreased with the increasing of the lipid contents. • Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process. - Abstract: The influence of the lipid concentration on the anaerobic co-digestion of municipal biomass waste and waste-activated sludge was assessed by biochemical methane potential (BMP) tests and by bench-scale tests in a mesophilic semi-continuous stirred tank reactor. The effect of increasing the volatile solid (VS) concentration of lipid from 0% to 75% was investigated. BMP tests showed that lipids in municipal biomass waste could enhance the methane production. The results of bench-scale tests showed that a lipids concentration of 65% of total VS was the inhibition concentration. Methane yields increased with increasing lipid concentration when lipid concentrations were below 60%, but when lipid concentration was set as 65% or higher, methane yields decreased sharply. When lipid concentrations were below 60%, the pH values were in the optimum range for the growth of methanogenic bacteria and the ratios of volatile fatty acid (VFA)/alkalinity were in the range of 0.2–0.6. When lipid concentrations exceeded 65%, the pH values were below 5.2, the reactor was acidized and the values of VFA/alkalinity rose to 2.0. The amount of Brevibacterium decreased with increasing lipid content. Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process, thereby inhibiting anaerobic digestion.

  3. Anaerobic digestion of paunch in a CSTR for renewable energy production and nutrient mineralization

    International Nuclear Information System (INIS)

    Highlights: • Anaerobic digestion and nutrient mineralization of paunch in a CSTR. • Low CH4 yield and high CH4 productivity was obtained at an OLR of 2.8 g VS L−1 day−1. • Post-digestion of the digestate resulted in a CH4 yield of 0.067 L g−1 VS. • Post-digestion is recommended for further digestate stabilization. - Abstract: A laboratory study investigated the anaerobic digestion of paunch in a continuous stirred tank reactor (CSTR) for the recovery of biogas and mineralization of nutrients. At an organic loading rate (OLR) of 2.8 g VS L−1 day−1 with a 30-day hydraulic retention time (HRT), a CH4 yield of 0.213 L g−1 VS and CH4 production rate of 0.600 L L−1 day−1 were obtained. Post-anaerobic digestion of the effluent from the CSTR for 30 days at 40 °C recovered 0.067 L g−1 VS as CH4, which was 21% of the batch CH4 potential. Post-digestion of the effluent from the digestate obtained at this OLR is needed to meet the stable effluent criteria. Furthermore, low levels of soluble ions such as K+, Ca2+ and Mg2+ were found in the liquid fraction of the digestate and the remainder could have been retained in the solid digestate fraction. This study demonstrates the potential of biogas production from paunch in providing renewable energy. In addition, recovery of plant nutrients in the digestate is important for a sustainable agricultural system

  4. Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture.

    Science.gov (United States)

    Luo, Gang; Angelidaki, Irini

    2012-11-01

    Biogas produced by anaerobic digestion, is mainly used in a gas motor for heat and electricity production. However, after removal of CO(2) , biogas can be upgraded to natural gas quality, giving more utilization possibilities, such as utilization as autogas, or distant utilization by using the existing natural gas grid. The current study presents a new biological method for biogas upgrading in a separate biogas reactor, containing enriched hydrogenotrophic methanogens and fed with biogas and hydrogen. Both mesophilic- and thermophilic anaerobic cultures were enriched to convert CO(2) to CH(4) by addition of H(2) . Enrichment at thermophilic temperature (55°C) resulted in CO(2) and H(2) bioconversion rate of 320 mL CH(4) /(gVSS h), which was more than 60% higher than that under mesophilic temperature (37°C). Different dominant species were found at mesophilic- and thermophilic-enriched cultures, as revealed by PCR-DGGE. Nonetheless, they all belonged to the order Methanobacteriales, which can mediate hydrogenotrophic methanogenesis. Biogas upgrading was then tested in a thermophilic anaerobic reactor under various operation conditions. By continuous addition of hydrogen in the biogas reactor, high degree of biogas upgrading was achieved. The produced biogas had a CH(4) content, around 95% at steady-state, at gas (mixture of biogas and hydrogen) injection rate of 6 L/(L day). The increase of gas injection rate to 12 L/(L day) resulted in the decrease of CH(4) content to around 90%. Further study showed that by decreasing the gas-liquid mass transfer by increasing the stirring speed of the mixture the CH(4) content was increased to around 95%. Finally, the CH(4) content around 90% was achieved in this study with the gas injection rate as high as 24 L/(L day).

  5. Robust Nonlinear Control of Continuous Stirred Tank Reactors

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    1IntroductionRobustcontrolofuncertainsystemsisacentralissueincontroltheory.Inthepastfewyearsmuchinteresthasbeendevotedtothede...

  6. Gimballed Shoulders for Friction Stir Welding

    Science.gov (United States)

    Carter, Robert; Lawless, Kirby

    2008-01-01

    In a proposed improvement of tooling for friction stir welding, gimballed shoulders would supplant shoulders that, heretofore, have been fixedly aligned with pins. The proposal is especially relevant to self-reacting friction stir welding. Some definitions of terms, recapitulated from related prior NASA Tech Briefs articles, are prerequisite to a meaningful description of the proposed improvement. In friction stir welding, one uses a tool that includes (1) a rotating shoulder on top (or front) of the workpiece and (2) a pin that rotates with the shoulder and protrudes from the shoulder into the depth of the workpiece. In conventional friction stir welding, the main axial force exerted by the tool on the workpiece is reacted through a ridged backing anvil under (behind) the workpiece. When conventional friction stir welding is augmented with an auto-adjustable pin-tool (APT) capability, the depth of penetration of the pin into the workpiece is varied in real time by a position- or forcecontrol system that extends or retracts the pin as needed to obtain the desired effect. In self-reacting (also known as self-reacted) friction stir welding as practiced heretofore, there are two shoulders: one on top (or front) and one on the bottom (or back) of the workpiece. In this case, a threaded shaft protrudes from the tip of the pin to beyond the back surface of the workpiece. The back shoulder is held axially in place against tension by a nut on the threaded shaft. Both shoulders rotate with the pin and remain aligned coaxially with the pin. The main axial force exerted on the workpiece by the tool and front shoulder is reacted through the back shoulder and the threaded shaft into the friction-stir-welding machine head, so that a backing anvil is no longer needed. A key transmits torque between the bottom shoulder and the threaded shaft, so that the bottom shoulder rotates with the shaft. This concludes the prerequisite definitions of terms.

  7. Reduction of the hydraulic retention time at constant high organic loading rate to reach the microbial limits of anaerobic digestion in various reactor systems.

    Science.gov (United States)

    Ziganshin, Ayrat M; Schmidt, Thomas; Lv, Zuopeng; Liebetrau, Jan; Richnow, Hans Hermann; Kleinsteuber, Sabine; Nikolausz, Marcell

    2016-10-01

    The effects of hydraulic retention time (HRT) reduction at constant high organic loading rate on the activity of hydrogen-producing bacteria and methanogens were investigated in reactors digesting thin stillage. Stable isotope fingerprinting was additionally applied to assess methanogenic pathways. Based on hydA gene transcripts, Clostridiales was the most active hydrogen-producing order in continuous stirred tank reactor (CSTR), fixed-bed reactor (FBR) and anaerobic sequencing batch reactor (ASBR), but shorter HRT stimulated the activity of Spirochaetales. Further decreasing HRT diminished Spirochaetales activity in systems with biomass retention. Based on mcrA gene transcripts, Methanoculleus and Methanosarcina were the predominantly active in CSTR and ASBR, whereas Methanosaeta and Methanospirillum activity was more significant in stably performing FBR. Isotope values indicated the predominance of aceticlastic pathway in FBR. Interestingly, an increased activity of Methanosaeta was observed during shortening HRT in CSTR and ASBR despite high organic acids concentrations, what was supported by stable isotope data.

  8. Stable isotope composition of biogas allows early warning of complete process failure as a result of ammonia inhibition in anaerobic digesters.

    Science.gov (United States)

    Lv, Zuopeng; Hu, Meng; Harms, Hauke; Richnow, Hans Hermann; Liebetrau, Jan; Nikolausz, Marcell

    2014-09-01

    Four 15-L lab-scale continuous stirred tank reactors were operated under mesophilic conditions to investigate the effect of ammonia inhibition. Stable isotope fingerprinting of biogas was applied as a process monitoring tool. Ammonia inhibition was initiated by amendment of chicken manure to maize silage fed reactors. During the accumulation of ammonia, the concentration of volatile fatty acids increased while the biogas production and pH decreased. However, in one reactor, an inhibited steady state with stable gas production even at high ammonia levels was achieved, while the other reactor proceeded to complete process failure. A depletion of the δ(13)CH4 and δ(13)CO2 values preceded the process inhibition. Moreover, the stable isotope composition of biogas also forecasted the complete process failure earlier than other standard parameters. The stable isotope analyses of biogas have a potential for mechanistic insights in anaerobic processes, and may be used to pre-warn process failure under stress conditions.

  9. Reduction of the hydraulic retention time at constant high organic loading rate to reach the microbial limits of anaerobic digestion in various reactor systems.

    Science.gov (United States)

    Ziganshin, Ayrat M; Schmidt, Thomas; Lv, Zuopeng; Liebetrau, Jan; Richnow, Hans Hermann; Kleinsteuber, Sabine; Nikolausz, Marcell

    2016-10-01

    The effects of hydraulic retention time (HRT) reduction at constant high organic loading rate on the activity of hydrogen-producing bacteria and methanogens were investigated in reactors digesting thin stillage. Stable isotope fingerprinting was additionally applied to assess methanogenic pathways. Based on hydA gene transcripts, Clostridiales was the most active hydrogen-producing order in continuous stirred tank reactor (CSTR), fixed-bed reactor (FBR) and anaerobic sequencing batch reactor (ASBR), but shorter HRT stimulated the activity of Spirochaetales. Further decreasing HRT diminished Spirochaetales activity in systems with biomass retention. Based on mcrA gene transcripts, Methanoculleus and Methanosarcina were the predominantly active in CSTR and ASBR, whereas Methanosaeta and Methanospirillum activity was more significant in stably performing FBR. Isotope values indicated the predominance of aceticlastic pathway in FBR. Interestingly, an increased activity of Methanosaeta was observed during shortening HRT in CSTR and ASBR despite high organic acids concentrations, what was supported by stable isotope data. PMID:26853042

  10. Deterministic Chaos in Open Well-stirred Bray-Liebhafsky Reaction System

    Science.gov (United States)

    Kolar-Anić, Ljiljana; Vukojević, Vladana; Pejić, Nataša; Grozdić, Tomislav; Anić, Slobodan

    2004-12-01

    Dynamics of the Bray-Liebhafsky (BL) oscillatory reaction is analyzed in a Continuously-fed well-Stirred Thank Reactor (CSTR). Deterministic chaos is found under different conditions, when temperature and acidity are chosen as control parameters. Dynamic patterns observed in real experiments are also numerically simulated.

  11. Stirring effects and bistability in the iodate-arsenous acid reaction: Premixed vs segregated flows

    Science.gov (United States)

    Hannon, L.; Horsthemke, W.

    1987-01-01

    Using a coalescence-dispersion model of the continuous flow-stirred tank reactor (CSTR), we study the effect of premixed vs nonpremixed reactant flows on chemical bistability. The region of bistability is smaller for segregated feed streams than for a fully premixed feed stream. The transition from flow branch to thermodynamic branch is particularly sensitive to the feed stream configuration.

  12. Anaerobic digestion of solid material

    DEFF Research Database (Denmark)

    Vavilin, V.A.; Lokshina, L.Y.; Flotats, X.;

    2007-01-01

    A new multidimensional (3 and 2D) anaerobic digestion model for cylindrical reactor with non-uniform influent concentration distributions was developed to study the way in which mixing intensity affects the efficiency of continuous-flow anaerobic digestion. Batch experiments reported and simulated...... earlier by Vavilin and Angelidaki (2005) were used to modernize a kinetic scheme and to obtain the corresponding kinetic coefficients. In the new models, hydrolytic microorganisms were included using Contois kinetics for the hydrolysis/acidogenesis degradation of municipal solid waste (MSW). Monod...... kinetics was applied for description of methanogenesis. Both hydrolytic and methanogenic microorganisms were assumed to be inhibited by high volatile fatty acids (VFA) concentration. According to the new distributed models, the mixing level reduction expressed by increasing dimensionless Peclet number may...

  13. Gender comparisons in anaerobic power and anaerobic capacity tests.

    OpenAIRE

    Maud, P. J.; Shultz, B B

    1986-01-01

    The purpose of the study was to compare anaerobic power and anaerobic capacity test scores between young active men and women. Three performance measures of anaerobic power and two of anaerobic capacity were administered to a sample comprising 52 male and 50 female college students (means age = 21.4 yrs). Results indicated significant differences between men and women in body height, weight and per cent fat, in fat free mass (FFM), anaerobic power, and anaerobic capacity when recorded as gros...

  14. Submersible microbial desalination cell for simultaneous ammonia recovery and electricity production from anaerobic reactors containing high levels of ammonia.

    Science.gov (United States)

    Zhang, Yifeng; Angelidaki, Irini

    2015-02-01

    High ammonia concentration in anaerobic reactors can seriously inhibit the anaerobic digestion process. In this study, a submersible microbial desalination cell (SMDC) was developed as an innovative method to lower the ammonia level in a continuous stirred tank reactor (CSTR) by in situ ammonia recovery and electricity production. In batch experiment, the ammonia concentration in the CSTR decreased from 6 to 0.7 g-N/L during 30 days, resulting in an average recovery rate of 80 g-N/m(2)/d. Meanwhile, a maximum power density of 0.71±0.5 W/m(2) was generated at 2.85 A/m(2). Both current driven NH4(+) migration and free NH3 diffusion were identified as the mechanisms responsible for the ammonia transportation. With an increase in initial ammonia concentration and a decrease in external resistance, the SMDC performance was enhanced. In addition, the coexistence of other cations in CSTR or cathode had no negative effect on the ammonia transportation.

  15. Biogas production within the bioethanol production chain: Use of co-substrates for anaerobic digestion of sugar beet vinasse.

    Science.gov (United States)

    Moraes, B S; Triolo, J M; Lecona, V P; Zaiat, M; Sommer, S G

    2015-08-01

    Bioethanol production generates large amounts of vinasse, which is suitable for biogas production. In this study, the anaerobic digestion of sugar beet vinasse was optimised using continuous stirred-tank reactors (CSTR) supplemented either with lime fertiliser or with 3% cow manure. In both reactors, the C/N ratio was adjusted by adding straw. The biochemical methane potential (BMP) of vinasse was 267.4±4.5LCH4kgVS(-1). Due to the low content of macro- and micronutrients and low C/N ratio of vinasse, biogas production failed when vinasse alone was fed to the reactor. When co-substrate was added, biogas production achieved very close to the BMP of vinasse, being 235.7±32.2LCH4kgVS(-1) from the fertiliser supplied reactor and 265.2±26.8LCH4kgVS(-1) in manure supplied reactor at steady state. Anaerobic digestion was the most stable when cow manure was supplied to digestion of vinasse.

  16. Mitigating Abnormal Grain Growth for Friction Stir Welded Al-Li 2195 Spun Formed Domes

    Science.gov (United States)

    Chen, Po-Shou; Russell, Carolyn

    2012-01-01

    Formability and abnormal grain growth (AGG) are the two major issues that have been encountered for Al alloy spun formed dome development using friction stir welded blanks. Material properties that have significant influence on the formability include forming range and strain hardening exponent. In this study, tensile tests were performed for two 2195 friction stir weld parameter sets at 400 F to study the effects of post weld anneal on the forming range and strain hardening exponent. It was found that the formability can be enhanced by applying a newly developed post weld anneal to heat treat the friction stir welded panels. This new post weld anneal leads to a higher forming range and much improved strain hardening exponent. AGG in the weld nugget is known to cause a significant reduction of ductility and fracture toughness. This study also investigated how AGG may be influenced by the heating rate to the solution heat treatment temperature. After post-weld annealing, friction stir welds were strained to 15% and 39% by compression at 400 F before they were subjected to SHT at 950 F for 1 hour. Salt bath SHT is very effective in reducing the grain size as it helps arrest the onset of AGG and promote normal recrystallization and grain growth. However, heat treating a 18 ft dome using a salt bath is not practical. Efforts are continuing at Marshall Space Flight Center to identify the welding parameters and heat treating parameters that can help mitigate the AGG in the friction stir welds.

  17. Design and biogas production characteristics of vertical continuous dry fermentation equipment%立式连续干发酵装置的设计与产气特性

    Institute of Scientific and Technical Information of China (English)

    于美玲; 谷士艳; 于洋; 董颖; 刘沛含; 朱军; 谯兴国

    2016-01-01

    designed vertical continuous dry fermentation equipment include stir heat up adjustment tank, multipoint distribution feed, vertical anaerobic fermentation tank and slurry reflux mixing process. Altogether, the fermentation system can process high volume of solid organic waste and produce biogas. The vertical continuous dry fermentation equipment mainly included the stir heat up regulating tank, feed pump, vertical anaerobic fermentation tank and discharge pump. A reflux inlet and fresh organic waste material inlet at the top of stir heat up regulating tank were set up, the bottom of stir heat up regulating tank was connected to the vertical anaerobic fermentation tank through the feed pump. An air outlet at the top of fermentation tank was set up which was connected to the gas pipeline. The discharge port on the bottom, the biogas slurry and residue that outflowed from discharge port was divided into two paths by discharging pump and first adjust the control valve. One path was connected to reflux inlet of stir heat up regulating tank, the other was the residue export connected to the discharge piping. We expected that such design could realize a quick start for biogas generation without stirring and heating in anaerobic reactor, and without adding water consumption during the process. We also expected that such device could save energy, reduce the volume of biogas slurry residue, protect the environment, and reduce the cost. The top of the vertical anaerobic fermentation tank using multipoint feeding distribution way facilitated more uniform distribution of fermentation raw materials. The internal temperature in the fermentation tank without stirring and heating device was maintained by continuous in and out of the hot materials. We used the reactor to conduct fermentation experiment to study the effect of slurry reflux and gas characteristics by comparing with a control group. The VFA (volatile fatty acid) content of application reflux was reduced, and the VFA content

  18. Stirring and hydraulic retention time in biogas plant digesters

    Energy Technology Data Exchange (ETDEWEB)

    Kamarad, L.; Bochmann, G.; Kirchmayr, R. [University of Natural Resources and Life Sciences Vienna, Tulln (Austria). Dept. IFA; Pohn, S.; Harasek, M. [Vienna Univ. of Technology (Austria). Inst. of Chemical Engineering

    2010-07-01

    The quality of the mixing affects directly the hydraulic residence time of the feed substrates in the digester, homogeneity of the agitated material, biogas yield and total energy consumption of biogas plants. In practice, in most of the biogas plants the own energy demand is 4-10 % of the total produced electric energy. The majority of this energy (>60%) is needed only for running the agitators. Generally two basic types of stirrer systems are used in agricultural biogas plants. The high speed stirrers (typically propeller-stirrers) are applied for digesters with lower total solids content. Common application is for substrates like maize silage and manure. If the total solids content in the biogas slurry rises (e.g. over 10% TS) or if substrates with fibrous material and a tendency to form a surface layer are used it is preferable to install slow speed stirrers (typically paddle-stirrers) with a horizontal or vertical axis of rotation. In practice, both types are often combined to get a larger range of operating possibilities. Operating experiences showed that slow speed stirrers are less energy demanding than high speed stirrers (Laaber et al., 2007). The objective of this study is to investigate the real retention time of substrate material in anaerobic digesters by two biogas plants using different stirring systems, substrates, operation temperatures and total solids content (TS) in the biogas slurry.

  19. CFD simulation of solids suspension in stirred tanks: Review

    Directory of Open Access Journals (Sweden)

    Ochieng Aoyi

    2010-01-01

    Full Text Available Many chemical reactions are carried out using stirred tanks, and the efficiency of such systems depends on the quality of mixing, which has been a subject of research for many years. For solid-liquid mixing, traditionally the research efforts were geared towards determining mixing features such as off-bottom solid suspension using experimental techniques. In a few studies that focused on the determination of solids concentration distribution, some methods that have been used have not been accurate enough to account for some small scale flow mal-distribution such as the existence of dead zones. The present review shows that computational fluid dynamic (CFD techniques can be used to simulate mixing features such as solids off-bottom suspension, solids concentration and particle size distribution and cloud height. Information on the effects of particle size and particle size distribution on the solids concentration distribution is still scarce. Advancement of the CFD modeling is towards coupling the physical and kinetic data to capture mixing and reaction at meso- and micro-scales. Solids residence time distribution is important for the design; however, the current CFD models do not predict this parameter. Some advances have been made in recent years to apply CFD simulation to systems that involve fermentation and anaerobic processes. In these systems, complex interaction between the biochemical process and the hydrodynamics is still not well understood. This is one of the areas that still need more attention.

  20. 半连续餐厨垃圾与猪粪混合厌氧消化动力学研究%Kinetic Study of Semi-continuous Anaerobic Co-digestion with Kitchen Waste and Pig Waste

    Institute of Scientific and Technical Information of China (English)

    吴燕; 张文阳; 庞艳; 王涛

    2011-01-01

    采用逐渐提高有机负荷的半连续进料方式,研究中温35℃)条件下餐厨垃圾与猪粪混合厌氧消化规律和性能,并利用一级和准二级动力学模型对其试验结果进行动力学分析.研究表明,在0.5和0.75 gVS/(L·d)有机负荷条件下,厌氧消化系统产酸到产甲烷阶段微生物的消长与生化反应均能达到动态平衡.当有机负荷为0.75gVS/(L·d)时,厌氧消化性能达到最佳,系统出现最大单位原料产气率和最大平均甲烷含量,分别为0.78 L/VS和51%.对试验进行动力学分析,发现一级动力学模型标准偏差值r2= 0.9700,大于准二级动力学模型的标准偏差值0.9355.这说明一级反应动力学模型能较好地反映0.75 gVS/(L·d)负荷下的产气动力学过程.%The anaerobic co-digestion of kitchen waste and pig waste was conducted in a semi-continuous mode at 35 ℃ by gradually increasing organic loading rate (OLR). The result was studied by using the first-level and second-level kinetic models. The digestion experiment showed that the process from producing of the organic acid to the methanogenic phase could be reached a dynamic equilibrium by OLR of 0.5 gVS/ (L·D) and 0.75 gVS/(L·D).The maximum value of biogas yield and the average CH4 content under OLR of 0.75 gVS/ (L·d) were about 0.78 L/gVS and 51% , respectively. The kinetic analysis showed that the standard deviation value about 0.970 0 of the first-level kinetic model was greater than that about 0.935 5 of the second-level, which could be better described the kinetic process of the gas production.

  1. Counteracting ammonia inhibition during anaerobic digestion by recovery using submersible microbial desalination cell.

    Science.gov (United States)

    Zhang, Yifeng; Angelidaki, Irini

    2015-07-01

    Ammonia inhibition is one of the most frequent and serious problems in biogas plants. In this study, a novel hybrid system consisting of a submersible microbial desalination cell (SMDC) and a continuous stirred tank reactor (CSTR) was developed for counteracting ammonia inhibition during anaerobic digestion (AD) with simultaneous in situ ammonia recovery and electricity production. The SMDC was powered by acetate in a buffer solution, while synthetic ammonia-rich wastewater was used as the feeding of the CSTR. Under continuous operation, ammonia recovery rate of 86 g-N/m(2) /day and current density of 4.33 A/m(2) were achieved at steady-state condition. As a result, 112% extra biogas was produced due to ammonia recovery by the SMDC. High-throughput sequencing showed that ammonia recovery had an impact on the microbial community structures in the SMDC and CSTR. Considering the additional economic benefits of biogas enhancement and possible wastewater treatment, the SMDC may represent a cost-effective and environmentally friendly method for waste resources recovery and biomethanation of ammonia-rich residues.

  2. A fundamental study on the structural integrity of magnesium alloys joined by friction stir welding

    Science.gov (United States)

    Rao, Harish Mangebettu

    The goal of this research is to study the factors that influence the physical and mechanical properties of lap-shear joints produced using friction stir welding. This study focuses on understanding the effect of tool geometry and weld process parameters including the tool rotation rate, tool plunge depth and dwell time on the mechanical performance of similar magnesium alloy and dissimilar magnesium to aluminum alloy weld joints. A variety of experimental activities were conducted including tensile and fatigue testing, fracture surface and failure analysis, microstructure characterization, hardness measurements and chemical composition analysis. An investigation on the effect of weld process conditions in friction stir spot welding of magnesium to magnesium produced in a manner that had a large effective sheet thickness and smaller interfacial hook height exhibited superior weld strength. Furthermore, in fatigue testing of friction stir spot welded of magnesium to magnesium alloy, lap-shear welds produced using a triangular tool pin profile exhibited better fatigue life properties compared to lap-shear welds produced using a cylindrical tool pin profile. In friction stir spot welding of dissimilar magnesium to aluminum, formation of intermetallic compounds in the stir zone of the weld had a dominant effect on the weld strength. Lap-shear dissimilar welds with good material mixture and discontinues intermetallic compounds in the stir zone exhibited superior weld strength compared to lap-shear dissimilar welds with continuous formation of intermetallic compounds in the stir zone. The weld structural geometry like the interfacial hook, hook orientation and bond width also played a major role in influencing the weld strength of the dissimilar lap-shear friction stir spot welds. A wide scatter in fatigue test results was observed in friction stir linear welds of aluminum to magnesium alloys. Different modes of failure were observed under fatigue loading including crack

  3. Biohydrogen production from soluble condensed molasses fermentation using anaerobic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Lay, Chyi-How; Lin, Chiu-Yue [Department of Environmental Engineering and Science, Feng Chia University, Taichung 40724 (China); Wu, Jou-Hsien; Hsiao, Chin-Lang [Department of Water Resource Engineering, Feng Chia University (China); Chang, Jui-Jen [Department of Life Sciences, National Chung Hsing University (China); Chen, Chin-Chao [Environmental Resources Laboratory, Department of Landscape Architecture, Chungchou Institute of Technology (China)

    2010-12-15

    Using anaerobic micro-organisms to convert organic waste to produce hydrogen gas gives the benefits of energy recovery and environmental protection. The objective of this study was to develop a biohydrogen production technology from food wastewater focusing on hydrogen production efficiency and micro-flora community at different hydraulic retention times. Soluble condensed molasses fermentation (CMS) was used as the substrate because it is sacchariferous and ideal for hydrogen production. CMS contains nutrient components that are necessary for bacterial growth: microbial protein, amino acids, organic acids, vitamins and coenzymes. The seed sludge was obtained from the waste activated sludge from a municipal sewage treatment plant in Central Taiwan. This seed sludge was rich in Clostridium sp. A CSTR (continuously stirred tank reactor) lab-scale hydrogen fermentor (working volume, 4.0 L) was operated at a hydraulic retention time (HRT) of 3-24 h with an influent CMS concentration of 40 g COD/L. The results showed that the peak hydrogen production rate of 390 mmol H{sub 2}/L-d occurred at an organic loading rate (OLR) of 320 g COD/L-d at a HRT of 3 h. The peak hydrogen yield was obtained at an OLR of 80 g COD/L-d at a HRT of 12 h. At HRT 8 h, all hydrogenase mRNA detected were from Clostridium acetobutylicum-like and Clostridium pasteurianum-like hydrogen-producing bacteria by RT-PCR analysis. RNA based hydrogenase gene and 16S rRNA gene analysis suggests that Clostridium exists in the fermentative hydrogen-producing system and might be the dominant hydrogen-producing bacteria at tested HRTs (except 3 h). The hydrogen production feedstock from CMS is lower than that of sucrose and starch because CMS is a waste and has zero cost, requiring no added nutrients. Therefore, producing hydrogen from food wastewater is a more commercially feasible bioprocess. (author)

  4. Anaerobic Digestion: Process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Batstone, Damien J.

    2011-01-01

    with very little dry matter may also be called a digest. The digest should not be termed compost unless it specifically has been composted in an aerated step. This chapter describes the basic processes of anaerobic digestion. Chapter 9.5 describes the anaerobic treatment technologies, and Chapter 9...

  5. Anaerobic sludge granulation

    NARCIS (Netherlands)

    Hulshoff Pol, L.W.; Castro Lopes, de S.I.; Lettinga, G.; Lens, P.N.L.

    2004-01-01

    This paper reviews different theories on anaerobic sludge granulation in UASB-reactors that have been proposed during the past two decades
    This paper reviews different theories on anaerobic sludge granulation in UASB-reactors that have been proposed during the past two decades. The initial stage

  6. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies.

    Science.gov (United States)

    Shoener, B D; Bradley, I M; Cusick, R D; Guest, J S

    2014-05-01

    The negative energy balance of wastewater treatment could be reversed if anaerobic technologies were implemented for organic carbon oxidation and phototrophic technologies were utilized for nutrient recovery. To characterize the potential for energy positive wastewater treatment by anaerobic and phototrophic biotechnologies we performed a comprehensive literature review and analysis, focusing on energy production (as kJ per capita per day and as kJ m(-3) of wastewater treated), energy consumption, and treatment efficacy. Anaerobic technologies included in this review were the anaerobic baffled reactor (ABR), anaerobic membrane bioreactor (AnMBR), anaerobic fluidized bed reactor (AFB), upflow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), microbial electrolysis cell (MEC), and microbial fuel cell (MFC). Phototrophic technologies included were the high rate algal pond (HRAP), photobioreactor (PBR), stirred tank reactor, waste stabilization pond (WSP), and algal turf scrubber (ATS). Average energy recovery efficiencies for anaerobic technologies ranged from 1.6% (MFC) to 47.5% (ABR). When including typical percent chemical oxygen demand (COD) removals by each technology, this range would equate to roughly 40-1200 kJ per capita per day or 110-3300 kJ m(-3) of treated wastewater. The average bioenergy feedstock production by phototrophic technologies ranged from 1200-4700 kJ per capita per day or 3400-13 000 kJ m(-3) (exceeding anaerobic technologies and, at times, the energetic content of the influent organic carbon), with usable energy production dependent upon downstream conversion to fuels. Energy consumption analysis showed that energy positive anaerobic wastewater treatment by emerging technologies would require significant reductions of parasitic losses from mechanical mixing and gas sparging. Technology targets and critical barriers for energy-producing technologies are identified, and the role of integrated anaerobic and

  7. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies

    KAUST Repository

    Shoener, B. D.

    2014-01-01

    The negative energy balance of wastewater treatment could be reversed if anaerobic technologies were implemented for organic carbon oxidation and phototrophic technologies were utilized for nutrient recovery. To characterize the potential for energy positive wastewater treatment by anaerobic and phototrophic biotechnologies we performed a comprehensive literature review and analysis, focusing on energy production (as kJ per capita per day and as kJ m-3 of wastewater treated), energy consumption, and treatment efficacy. Anaerobic technologies included in this review were the anaerobic baffled reactor (ABR), anaerobic membrane bioreactor (AnMBR), anaerobic fluidized bed reactor (AFB), upflow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), microbial electrolysis cell (MEC), and microbial fuel cell (MFC). Phototrophic technologies included were the high rate algal pond (HRAP), photobioreactor (PBR), stirred tank reactor, waste stabilization pond (WSP), and algal turf scrubber (ATS). Average energy recovery efficiencies for anaerobic technologies ranged from 1.6% (MFC) to 47.5% (ABR). When including typical percent chemical oxygen demand (COD) removals by each technology, this range would equate to roughly 40-1200 kJ per capita per day or 110-3300 kJ m-3 of treated wastewater. The average bioenergy feedstock production by phototrophic technologies ranged from 1200-4700 kJ per capita per day or 3400-13000 kJ m-3 (exceeding anaerobic technologies and, at times, the energetic content of the influent organic carbon), with usable energy production dependent upon downstream conversion to fuels. Energy consumption analysis showed that energy positive anaerobic wastewater treatment by emerging technologies would require significant reductions of parasitic losses from mechanical mixing and gas sparging. Technology targets and critical barriers for energy-producing technologies are identified, and the role of integrated anaerobic and phototrophic

  8. Microstructures of AZ91D alloy solidified during electromagnetic stirring

    Institute of Scientific and Technical Information of China (English)

    MAO Wei-min; ZHEN Zi-sheng; CHEN Hong-tao

    2005-01-01

    With the help of an electromagnetic stirring device self-made and alloy melt quenching technology,the effect of electromagnetic stirring parameters on the microstructures of semi-solid AZ91D alloy was mainly studied at the stirring frequency of 200 Hz.The experimental results show that when the stirring power rises,the primary α-Mg rosettes in the semi-solid melt will bear stronger man-made temperature fluctuation and the root remelting effect of the dendritic arms is promoted so that the spherical primary α-Mg grains become much more and rounder.If the stirring frequency is 200 Hz,the ideal semi-solid microstructure of AZ91D magnesium alloy can be obtained when the stirring power is increased to 6.0 kW.If the stirring frequency is 200 Hz and the stirring power is 6.0 kW,it is found that the lower cooling rate is favorable for the spherical primary α-Mg grains to be developed during the electromagnetic stirring stage.If the AZ91D magnesium alloy billet prepared during electromagnetic stirring at the stirring frequency of 200 Hz and the stirring power of 6.0 kW is reheated to the solidus and liquidus temperature region,the primary α-Mg grain's shape will get more spherical,so it is very advantageous to the semi-solid thixoforming process.

  9. SLEEP DEPRIVATION INDUCED ANXIETY AND ANAEROBIC PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Selma Arzu Vardar

    2007-12-01

    Full Text Available The aim of this study was to investigate the effects of sleep deprivation induced anxiety on anaerobic performance. Thirteen volunteer male physical education students completed the Turkish version of State Anxiety Inventory and performed Wingate anaerobic test for three times: (1 following a full-night of habitual sleep (baseline measurements, (2 following 30 hours of sleep deprivation, and (3 following partial-night sleep deprivation. Baseline measurements were performed the day before total sleep deprivation. Measurements following partial sleep deprivation were made 2 weeks later than total sleep deprivation measurements. State anxiety was measured prior to each Wingate test. The mean state anxiety following total sleep deprivation was higher than the baseline measurement (44.9 ± 12.9 vs. 27.6 ± 4.2, respectively, p = 0.02 whereas anaerobic performance parameters remained unchanged. Neither anaerobic parameters nor state anxiety levels were affected by one night partial sleep deprivation. Our results suggest that 30 hours continuous wakefulness may increase anxiety level without impairing anaerobic performance, whereas one night of partial sleep deprivation was ineffective on both state anxiety and anaerobic performance

  10. Optimal stirring strategies for passive scalar mixing

    CERN Document Server

    Lin, Zhi; Doering, Charles R

    2011-01-01

    We address the challenge of optimal incompressible stirring to mix an initially inhomogeneous distribution of passive tracers. As a quantitative measure of mixing we adopt the $H^{-1}$ norm of the scalar fluctuation field, equivalent to the (square-root of the) variance of a low-pass filtered image of the tracer concentration field. First we establish that this is a useful gauge even in the absence of molecular diffusion: its vanishing as $t --> \\infty$ is evidence of the stirring flow's mixing properties in the sense of ergodic theory. Then we derive absolute limits on the total amount of mixing, as a function of time, on a periodic spatial domain with a prescribed instantaneous stirring energy or stirring power budget. We subsequently determine the flow field that instantaneously maximizes the decay of this mixing measure---when such a flow exists. When no such `steepest descent' flow exists (a possible but non-generic situation) we determine the flow that maximizes the growth rate of the $H^{-1}$ norm's de...

  11. Stirring the Ashes of Public Discourse.

    Science.gov (United States)

    Marinara, Martha

    Sylvia Plath's confessional poem, "Lady Lazarus" can be used to illustrate a connection between autobiography and social critique. "You poke and stir" among the institutions that form social relations--the educational system, the court system, the economic system--to find individuals whose lives, whose joys and pains, and struggles for survival…

  12. Friction Stir Welding of Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    FU Zhi-hong; HE Di-qiu; WANG Hong

    2004-01-01

    Friction stir welding(FSW), a new solid-state welding technology invited in the early 1990s,enables us weld aluminum alloys and titanium alloys etc. The processing of FSW, the microstructure in FSW alloysand the factors influencing weld quality are introduced. The complex factors affecting the properties are researched.

  13. Assessment Of Joints Using Friction Stir Welding And Refill Friction Stir Spot Welding Methods

    OpenAIRE

    Lacki P.; Więckowski W.; Wieczorek P.

    2015-01-01

    FSW (Friction Stir Welding) and RFSSW (Refill Friction Stir Spot Welding) joints have been increasingly used in industrial practice. They successfully replace fusion-welded, riveted or resistance-welded joints. In the last two decades, dynamic development of this method has stimulated investigations of the fast methods for joint diagnostics. These methods should be non-destructive and easy to be used in technological processes. The methods of assessment of joint quality are expected to detect...

  14. Ferrous friction stir weld physical simulation

    Science.gov (United States)

    Norton, Seth Jason

    2006-04-01

    Traditional fusion welding processes have several drawbacks associated with the melting and solidification of metal. Weld defects associated with the solidification of molten metal may act as initiation sites for cracks. Segregation of alloying elements during solidification may cause local changes in resistance to corrosion. The high amount of heat required to produce the molten metal in the weld can produce distortion from the intended position on cooling. The heat from the electric arc commonly used to melt metal in fusion welds may also produce metal fumes which are a potential health hazard. Friction stir welding is one application which has the potential to make full thickness welds in a single pass, while eliminating fume, reducing distortion, and eliminating solidification defects. Currently the friction stir welding process is used in the aerospace industry on aluminum alloys. Interest in the process by industries which rely on iron and its alloys for structural material is increasing. While friction stir welding has been shown to be feasible with iron alloys, the understanding of friction stir welding process effects on these materials is in its infancy. This project was aimed to better that understanding by developing a procedure for physical simulation of friction stir welding. Friction stir weld material tracer experiments utilizing stainless steel markers were conducted with plates of ingot iron and HSLA-65. Markers of 0.0625" diameter 308 stainless steel worked well for tracing the end position of material moved by the friction stir welding tool. The markers did not produce measurable increases in the loading of the tool in the direction of travel. Markers composed of 0.25" diameter 304 stainless steel did not perform as well as the smaller markers and produced increased loads on the friction stir welding tool. The smaller markers showed that material is moved in a curved path around the tool and deposited behind the tool. Material near the surface

  15. Friction Stir Welding of Shipbuilding Steel with Primer

    Directory of Open Access Journals (Sweden)

    José Azevedo

    2016-03-01

    Full Text Available Abstract Friction Stir Welding has proven its merits for welding of aluminium alloys and is focused in expanding its material database to steel and titanium and also to assess new joint configurations. The use of welded structures in shipbuilding industry has a long tradition and continuously seeks for innovation in terms of materials and processes maintaining, or even, reducing costs. Several studies have been performed in the past years on FSW of steel. However, just recently were reported defect-free welds, free of martensite with stable parameters in steel without Primer. FSW of steel with primer has not been addressed. This work aims to fulfil a knowledge gap related to the use of friction stir for welding shipbuilding steel by analysing the effect of welding parameters on the metallurgical characteristics and mechanical properties of welds obtained with an innovative FSW tool in joining steel plates with a primer. Welds were performed in 4mm thick GL-A36 steel plates painted with a zinc based primer followed by a detailed microscopic, chemical and mechanical analysis. The results that matching fatigue properties are obtained using this technique, in FSW of shipbuilding steel with Primer.

  16. Friction Stir Lap Welding: material flow, joint structure and strength

    Directory of Open Access Journals (Sweden)

    Z.W. Chen

    2012-12-01

    Full Text Available Friction stir welding has been studied intensively in recent years due to its importance in industrial applications. The majority of these studies have been based on butt joint configuration and friction stir lap welding (FSLW has received considerably less attention. Joining with lap joint configuration is also widely used in automotive and aerospace industries and thus FSLW has increasingly been the focus of FS research effort recently. number of thermomechancal and metallurgical aspects of FSLW have been studied in our laboratory. In this paper, features of hooking formed during FSLW of Al-to-Al and Mg-to-Mg will first be quantified. Not only the size measured in the vertical direction but hook continuity and hooking direction have been found highly FS condition dependent. These features will be explained taking into account the effects of the two material flows which are speed dependent and alloy deformation behaviour dependent. Strength values of the welds will be presented and how strength is affected by hook features and by alloy dependent local deformation behaviours will be explained. In the last part of the paper, experimental results of FSLW of Al-to-steel will be presented to briefly explain how joint interface microstructures affect the fracturing process during mechanical testing and thus the strength. From the results, tool positioning as a mean for achieving maximum weld strength can be suggested.

  17. Anaerobic Digestion and its Applications

    Science.gov (United States)

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  18. Methane Emission from Digestion of Palm Oil Mill Effluent (POME in a Thermophilic Anaerobic Reactor

    Directory of Open Access Journals (Sweden)

    I Irvan

    2012-04-01

    Full Text Available As the issue of global warming draws increasing concern, many studies to reduce CO2 and CH4 gases (greenhouse gases, GHG have been implemented in several countries, including in Indonesia. Considering that Indonesia has a huge numbers of palm oil mills, no doubt if their waste water treatment as one of the major sources in GHG.  This paper presents the results from a research project between Metawater Co., Ltd.-Japan and University of Sumatera Utara-Indonesia. The objective of the research is to study the methane emission of thermophilic fermentation in the treatment of palm oil mill effluent (POME on a laboratory scale. Anaerobic digestion was performed in two-litre water jacketed biodigester type continuous stirred tank reactor (CSTR and operated at a thermophilic temperature (55 oC. As raw material, a real liquid waste (POME from palm oil mill was used. Fresh POME was obtained from seeding pond of PTPN II waste water treatment facility which has concentration of 39.7 g of VS/L and COD value of 59,000 mg/L. To gain precise results, complete recording and reliable equipment of reactor was employed. As the experimental results, for hydraulic retention time (HRT 8 days, VS decomposition rate of 63.5% and gas generation of 6.05-9.82 L/day were obtained, while for HRT 6 and 4 days, VS decomposition rate of 61.2, 53.3% and gas generation of  6.93-8.94  and  13.95-16.14 L/day were obtained respectively. Keywords—methane (CH4, palm oil mill effluent (POME, anaerobic digestion, thermophilic, green house gases (GHG

  19. Friction stir processing on carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Sergei Yu., E-mail: tsy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Melnikov, Alexander G., E-mail: melnikov-ag@tpu.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Rubtsov, Valery E., E-mail: rvy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2014-11-14

    Friction stir processing of medium carbon steel samples has been carried out using a milling machine and tools made of cemented tungsten carbide. Samples have been machined from 40 and 40X steels. The tools have been made in the shape of 5×5×1.5 mm and 3×3×1.5 mm tetrahedrons. The microstructure of stirred zone has been obtained using the smaller tool and consists of fine recrystallized 2-3 μm grains, whereas the larger tool has produced the 'onion-like' structures comprising hard quenched 'white' 500-600 MPa layers with 300-350 MPa interlayers of bainite needles. The mean values of wear intensity obtained after measuring the wear scar width were 0.02 mm/m and 0.001 mm/m for non-processed and processed samples, respectively.

  20. Anaerobic monodigestion of poultry manure: determination of operational parameters for CSTR.

    Science.gov (United States)

    Chamy, R; León, C; Vivanco, E; Poirrier, P; Ramos, C

    2012-01-01

    In this work the anaerobic monodigestion for the treatment of turkey manure was evaluated, without its codigestion with another substrate. The effect of the organic loading rate (OLR) and the substrate concentration (high total solids (TS) concentration) or product concentration (high volatile fatty acids (VFA) and/or ammonia (NH(3)-N) concentrations) was studied. The results show that for a continuous stirred tank reactor (CSTR) operation, a maximum of 40 g/L of TS and 4.0 g/L of ammonium (NH(4)(+)) was required. In addition, the maximum organic loading rate (OLR) will not exceed 1.5 kg VS/m(3)d. Higher TS and NH(4)(+) concentrations and OLR lead to a reduction on the methane productivity and volatile solids (VS) removal. During the CSTR operation, a high alkalinity concentration (above 10 g/L CaCO(3)) was found; this situation allowed maintaining a constant and appropriate pH (close to 7.8), despite the VFA accumulation. In this sense, the alkalinity ratio (α) is a more appropriate control and monitoring parameter of the reactor operation compared to pH. Additionally, with this parameter a VS removal of 80% with a methane productivity of 0.50 m(3)(CH4)/m(3)(R)d is achieved.

  1. Microbial community structure and performance of an anaerobic reactor digesting cassava pulp and pig manure.

    Science.gov (United States)

    Panichnumsin, P; Ahring, B; Nopharatana, A; Chaiprasert, P

    2012-01-01

    Microbial community dynamics in response to changes in substrate types (i.e. pig manure (PM), cassava pulp (CP) and mixtures of PM and CP) were investigated in an anaerobic continuously stirred tank reactor (CSTR). Molecular identification of bacterial and archaeal domains were performed, using a 16S rDNA clone library with polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) screening and phylogenetic analysis. Analysis of bacterial clone libraries revealed that the differences in the community structure corresponded to the substrate types. However, the Bacteroidetes were the most abundant group in all substrates, followed by the Clostridia. With pure PM, the dominant bacterial groups were Bacteroidales, Clostridia and Paludibacter. With a co-substrate, at CP to PM (CP:PM) ratio of 50:50, the sequences analysis revealed the greatest diversity of bacterial communities at class level, and the sequences affiliated with Cytophaga sp. became an exclusive predominant. With CP alone, Bacteroides sp. was the dominant species and this reactor had the lowest diversity of bacteria. Archaea observed in the CSTR fed with all substrate types were Methanosaeta sp., Methanosaeta concilii and Methanospirillum hungatei. Among the Archaea, Methanosaeta sp. was the exclusive predominant. The relative distribution of Archaea also changed regarding to the substrate types.

  2. Water-energy nexus: Anaerobic co-digestion with elephant grass hydrolyzate.

    Science.gov (United States)

    Carvalho, A R; Fragoso, R; Gominho, J; Saraiva, A; Costa, R; Duarte, E

    2016-10-01

    The anaerobic co-digestion process in a continuous stirred-tank reactor (CSTR) was carried out under mesophilic conditions (37 ± 0.2 °C). All the trials were performed at a hydraulic retention time (HRT) of 15 days and the AD reactor was daily fed with a mixture of sewage sludge (SS) and elephant grass hydrolyzate (EGH). In this study, three different trials were assessed, with different mixture proportions of SSSS and EGH: F0 (100:0,v/v), F1 (75:25, v/v) and F2 (50:50, v/v), during 90 days each trial, keeping the organic loading rate (OLR) in a range of 0.94-1.16 g VS L(-1) day(-1). The experimental results obtained showed that the soluble chemical oxygen demand (SCOD) removal efficiency was around 77% and 86% for trials F1 and F2, respectively. SS co-digestion with EGH enhanced methane yield, leading to an increment between 23% and 38%, in comparison with the reference scenario (F0).

  3. Mixing effect on thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste

    KAUST Repository

    Ghanimeh, Sophia A.

    2012-08-01

    This paper examines the effect of mixing on the performance of thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste during the start-up phase and in the absence of an acclimated seed. For this purpose, two digesters were used under similar starting conditions and operated for 235days with different mixing schemes. While both digesters exhibited a successful startup with comparable specific methane yield of 0.327 and 0.314l CH 4/gVS, continuous slow stirring improved stability by reducing average VFA accumulation from 2890 to 825mg HAc/l, propionate content from 2073 to 488mg/l, and VFA-to-alkalinity ratio from 0.32 to 0.07. As a result, the startup with slow mixing was faster and smoother accomplishing a higher loading capacity of 2.5gVS/l/d in comparison to 1.9gVS/l/d for non-mixing. Mixing equally improved microbial abundance from 6.6 to 10gVSS/l and enhanced solids and soluble COD removal. © 2012 Elsevier Ltd.

  4. Anaerobic digestion from residue of industrial cassava industrialization with acidogenic and methanogenic physical separation phases.

    Science.gov (United States)

    Paixão, M A; Tavares, C R; Bergamasco, R; Bonifácio, A L; Costa, R T

    2000-01-01

    A trial was carried out in a continuous regimen, using a completely stirred tank reactor, at acidogenic phase, and a hybrid reactor (upflow anaerobic sludge blanket + fixed bed) at methanogenic phase at room temperature. The residue to be treated came from a flour and cassava meal industry, and the reactors operated for 300 d with affluent chemical oxygen demand (COD) concentrations of 7500, 9000, 11,000, and 14,000 mg/L. The final results showed a biogas production with a content of 80% methane and an average reduction of COD and free cyanide of nearly 96 and 98%, respectively. The separation of phases selected bacterial groups. At acidogenic phase, a predominance of propionic, n-butyric, and n-valeric acids, as well as a biomass composed of 95% fermentative bacilli, which were responsible for a 90% reduction in free cyanide concentration, was observed. At methanogenic phase, a predominance of methanogenic bacteria that came only from the Methanothrix genus was observed. The bacteria were responsible for high levels of organic matter removal and methane production.

  5. Cellulose-hydrogen production from corn stalk biomass by anaerobic fermentation

    Institute of Scientific and Technical Information of China (English)

    XING Yan; MA HongCui; FAN YaoTing; HOU HongWei; CHEN JingRun

    2009-01-01

    Cellulose-hydrogen production from corn stalk by lesser panda manure was carried out in batch testa and a 5 L scale-up continuously stirred anaerobic bioreactor (CSABR),respectively.The bio-pretreat-ment of corn stalk was found most effective at 25℃ using microbe additive of 7.5 g/kg,in which the yields of soluble saccharides (SS) and lactic acid were 212 mg/g-TS and 21 mg/g-TS,respectively.The maximum cumulative H2 yield (176 ml/g-TS) and H2 production rate (14.5 ml/g-TS h-1) were obtained at pH 5.5,36℃ by treating a substrate of 15 g/L.The hydrogen content in biogas was 57.2% and there was no significant methane gas observed.During the optimal period of H2 production,the ORP values stayed in the lower level ranging from -445 mV to -455 mV.The results show that the bio-pretreatment of the raw materials played a vital role in the effective conversion of corn stalk into cellulose-hydrogen by mixed culture.

  6. Pretreatment on Anaerobic Sludge for Enhancement of Biohydrogen Production from Cassava Processing Wastewater

    Directory of Open Access Journals (Sweden)

    Franciele do Carmo Lamaison

    2014-02-01

    Full Text Available Methods for the enrichment of an anaerobic sludge with H2-producing bacteria have been compared by using cassava processing wastewater as substrate.The sludge was submitted to three different pretreatments: 1 heat pretreatment by boiling at 98 °C for 15 min., 2 heat pretreatment followed by sludge washout in a Continuous Stirring Tank Reactor (CSTR operated at a dilution rate (D of 0.021 h-1, and 3 sludge washout as the sole enrichment method. The pretreated sludge and the sludge without pretreatment (control were employed in the seeding of 4 batch bioreactors, in order to verify the volume and composition of the generated biogas. Maximum H2 production rates (Rm from the pretreated sludges, were estimated by the modified Gompertz model. Compared to the control, H2 production was ca. 4 times higher for the sludge submitted to the heat pretreatment only and for the sludge subjected to heat pretreatment combined with washout, and 10 times higher for washout. These findings demonstrated that the use of sludge washout as the sole sludge pretreatment method was the most effective in terms of H2 production, as compared to the heat and to the combined heat and washout pretreatments.

  7. Friction Stir Spot Welding of Polymer Materials

    OpenAIRE

    Bekir ÇEVİK

    2014-01-01

    Polymer materials are engineering materials used for various industrial fields. Polymer processing and fabrication techniques have developed with the advancement of technology. Friction Stir Spot Welding (FSSW) is a solid-state process in joining thermoplastic materials. In the present work, the polymeric material (Polyethylene) has been made to join by FSSW process. 3 mm thickness polyethylene materials were used in the experiments. Welding process was carried out by rotating 460 and 900 rpm...

  8. Fuel property effects in stirred combustors

    Science.gov (United States)

    1980-01-01

    Soot formation in strongly backmixed combustion was investigated using the jet-stirred combustor (JSC). This device provided a combustion volume in which temperature and combustion were uniform. It simulated the recirculating characteristics of the gas turbine primary zone; it was in this zone where mixture conditions were sufficiently rich to produce soot. Results indicate that the JSC allows study of soot formation in an aerodynamic situation revelant to gas turbines.

  9. Ultrasonic stir welding process and apparatus

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2009-01-01

    An ultrasonic stir welding device provides a method and apparatus for elevating the temperature of a work piece utilizing at least one ultrasonic heater. Instead of relying on a rotating shoulder to provide heat to a workpiece an ultrasonic heater is utilized to provide ultrasonic energy to the workpiece. A rotating pin driven by a motor assembly performs the weld on the workpiece. A handheld version can be constructed as well as a fixedly mounted embodiment.

  10. Thermal modelling of friction stir welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blicher; Hattel, Jesper Henri

    2008-01-01

    The objective of the present work is to present the basic elements of the thermal modelling of friction stir welding as well as to clarify some of the uncertainties in the literature regarding the different contributions to the heat generation. Some results from a new thermal pseudomechanical model...... in which the temperature-dependent yield stress of the weld material controls the heat generation are also presented....

  11. Microstructure characterization of the stir zone of submerged friction stir processed aluminum alloy 2219

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xiuli, E-mail: feng.97@osu.edu [Welding Engineering Program, Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43221 (United States); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Liu, Huijie, E-mail: liuhj@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Lippold, John C., E-mail: lippold.1@osu.edu [Welding Engineering Program, Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43221 (United States)

    2013-08-15

    Aluminum alloy 2219-T6 was friction stir processed using a novel submerged processing technique to facilitate cooling. Processing was conducted at a constant tool traverse speed of 200 mm/min and spindle rotation speeds in the range from 600 to 800 rpm. The microstructural characteristics of the base metal and processed zone, including grain structure and precipitation behavior, were studied using optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Microhardness maps were constructed on polished cross sections of as-processed samples. The effect of tool rotation speed on the microstructure and hardness of the stir zone was investigated. The average grain size of the stir zone was much smaller than that of the base metal, but the hardness was also lower due to the formation of equilibrium θ precipitates from the base metal θ′ precipitates. Stir zone hardness was found to decrease with increasing rotation speed (heat input). The effect of processing conditions on strength (hardness) was rationalized based on the competition between grain refinement strengthening and softening due to precipitate overaging. - Highlights: • SZ grain size (∼ 1 μm) is reduced by over one order of magnitude relative to the BM. • Hardness in the SZ is lower than that of the precipitation strengthened BM. • Metastable θ′ in the base metal transforms to equilibrium θ in the stir zone. • Softening in the SZ results from a decrease of precipitation strengthening.

  12. Microstructure characterization of the stir zone of submerged friction stir processed aluminum alloy 2219

    International Nuclear Information System (INIS)

    Aluminum alloy 2219-T6 was friction stir processed using a novel submerged processing technique to facilitate cooling. Processing was conducted at a constant tool traverse speed of 200 mm/min and spindle rotation speeds in the range from 600 to 800 rpm. The microstructural characteristics of the base metal and processed zone, including grain structure and precipitation behavior, were studied using optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Microhardness maps were constructed on polished cross sections of as-processed samples. The effect of tool rotation speed on the microstructure and hardness of the stir zone was investigated. The average grain size of the stir zone was much smaller than that of the base metal, but the hardness was also lower due to the formation of equilibrium θ precipitates from the base metal θ′ precipitates. Stir zone hardness was found to decrease with increasing rotation speed (heat input). The effect of processing conditions on strength (hardness) was rationalized based on the competition between grain refinement strengthening and softening due to precipitate overaging. - Highlights: • SZ grain size (∼ 1 μm) is reduced by over one order of magnitude relative to the BM. • Hardness in the SZ is lower than that of the precipitation strengthened BM. • Metastable θ′ in the base metal transforms to equilibrium θ in the stir zone. • Softening in the SZ results from a decrease of precipitation strengthening

  13. Numerical simulation of friction stir welding

    Directory of Open Access Journals (Sweden)

    Mijajlović Miroslav

    2014-01-01

    Full Text Available Friction stir welding is a solid-state welding technique that utilizes thermo-mechanical influence of the rotating welding tool on parent material resulting with monolith joint-weld. On the contact of welding tool and parent material, significant stirring and deformation of parent material appears, and during this process mechanical energy is partially transformed into heat. The paper describes the software for the numerical simulation of friction stir welding developed at Mechanical Engineering Faculty, University of Nis. Numerical solution for estimation of welding plates temperature is estimated using finite difference method-explicit scheme with adaptive grid, considering influence of temperature on material's conductivity, contact conditions between welding tool and parent material, material flow around welding tool etc. The calculated results are in good agreement with the experimental results. [Projekat Ministarstva nauke Republike Srbije, br. TR35034: The research of modern non-conventional technologies application in manufacturing companies with the aim of increase efficiency of use, product quality, reduce of costs and save energy and materials

  14. Anaerobic co-digestion of source segregated brown water (feces-without-urine) and food waste: For Singapore context

    International Nuclear Information System (INIS)

    The objective of this study was to evaluate the feasibility of anaerobic co-digestion of brown water (BW) [feces-without-urine] and food waste (FW) in decentralized, source-separation-based sanitation concept. An effort has been made to separate the yellow water (urine) and brown water from the source (using no-mix toilet) primarily to facilitate further treatment, resource recovery and utilization. Batch assay analytical results indicated that anaerobic co-digestion [BW + FW] showed higher methane yield (0.54–0.59 L CH4/gVSadded) than BW or FW as a sole substrate. Anaerobic co-digestion was performed in the semi-continuously fed laboratory scale reactors viz. two-phase continuous stirred-tank reactor (CSTR) and single-stage sequencing-batch operational mode reactor (SeqBR). Initial 120 d of operation shows that SeqBR performed better in terms of organic matter removal and maximum methane production. At steady-state, CODs, CODt, VS removals of 92.0 ± 3.0, 76.7 ± 5.1 and 75.7 ± 6.6% were achieved for SeqBR at 16 d HRT, respectively. This corresponds to an OLR of 2–3 gCOD/L d and methane yield of about 0.41 L CH4/gVSadded. Good buffering capacity did not lead to accumulation of VFA, showing better process stability of SeqBR at higher loading rates. The positive findings show the great potential of applying anaerobic co-digestion of BW + FW for energy production and waste management. In addition, daily flush water consumption is reduced up to 80%. Decentralized, source-separation-based sanitation concept is expected to provide a practical solution for those countries experiencing rapid urbanization and water shortage issues, for instance Singapore. - Highlights: ► Source separation of organic waste/wastewater streams on household level was done. ► Brown water (BW) was collected from a specially designed no-mix toilet. ► BW and food waste codigestion proved as a potential substrate for biogas production. ► A distinct improvement in methane yield was

  15. Anaerobic co-digestion of source segregated brown water (feces-without-urine) and food waste: For Singapore context

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopal, Rajinikanth, E-mail: rrajinime@yahoo.co.in [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 06-08 CleanTech One, 1 Cleantech Loop, 637141 Singapore (Singapore); Lim, Jun Wei [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 06-08 CleanTech One, 1 Cleantech Loop, 637141 Singapore (Singapore); Mao, Yu [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 06-08 CleanTech One, 1 Cleantech Loop, 637141 Singapore (Singapore); School of Energy and Environmental Sciences, Yunnan Normal University, 121 Street, Kunming 650092 China (China); Chen, Chia-Lung [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 06-08 CleanTech One, 1 Cleantech Loop, 637141 Singapore (Singapore); Wang, Jing-Yuan [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 06-08 CleanTech One, 1 Cleantech Loop, 637141 Singapore (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore)

    2013-01-15

    The objective of this study was to evaluate the feasibility of anaerobic co-digestion of brown water (BW) [feces-without-urine] and food waste (FW) in decentralized, source-separation-based sanitation concept. An effort has been made to separate the yellow water (urine) and brown water from the source (using no-mix toilet) primarily to facilitate further treatment, resource recovery and utilization. Batch assay analytical results indicated that anaerobic co-digestion [BW + FW] showed higher methane yield (0.54–0.59 L CH{sub 4}/gVS{sub added}) than BW or FW as a sole substrate. Anaerobic co-digestion was performed in the semi-continuously fed laboratory scale reactors viz. two-phase continuous stirred-tank reactor (CSTR) and single-stage sequencing-batch operational mode reactor (SeqBR). Initial 120 d of operation shows that SeqBR performed better in terms of organic matter removal and maximum methane production. At steady-state, CODs, CODt, VS removals of 92.0 ± 3.0, 76.7 ± 5.1 and 75.7 ± 6.6% were achieved for SeqBR at 16 d HRT, respectively. This corresponds to an OLR of 2–3 gCOD/L d and methane yield of about 0.41 L CH{sub 4}/gVS{sub added}. Good buffering capacity did not lead to accumulation of VFA, showing better process stability of SeqBR at higher loading rates. The positive findings show the great potential of applying anaerobic co-digestion of BW + FW for energy production and waste management. In addition, daily flush water consumption is reduced up to 80%. Decentralized, source-separation-based sanitation concept is expected to provide a practical solution for those countries experiencing rapid urbanization and water shortage issues, for instance Singapore. - Highlights: ► Source separation of organic waste/wastewater streams on household level was done. ► Brown water (BW) was collected from a specially designed no-mix toilet. ► BW and food waste codigestion proved as a potential substrate for biogas production. ► A distinct improvement

  16. Mitigation of ammonia inhibition by internal dilution in high-rate anaerobic digestion of food waste leachate and evidences of microbial community response.

    Science.gov (United States)

    Yun, Yeo-Myeong; Kim, Dong-Hoon; Cho, Si-Kyung; Shin, Hang-Sik; Jung, Kyung-Won; Kim, Hyun-Woo

    2016-09-01

    A high-rate anaerobic digestion of food waste leachate were tested using intermittent continuously stirred tank reactors (iCSTRs) to evaluate how severe ammonia inhibition could be mitigated with internal dilution strategy, and to identify how bacterial and archaeal community respond in genus and species level. Experimental results show that the digestion performance was well maintained up to hydraulic retention time (HRT) of 40 days but could not keep steady-state as HRT decreased to 30 days due to severe free ammonia (FA) inhibition. Coupling internal dilution was the key to relieve the inhibition since it reduced FA concentration as low as 62 mg/L even at HRT 30 days, which corresponds to organic loading rate of 5 g COD/L/d, demonstrating CH4 yield of 0.32 L CH4 /g CODadded . It was confirmed that the dilution offers iCTSRs manage severe ammonia inhibition with the balanced community structure between bacteria and archaea in this high-rate anaerobic digestion. Genus and species level pyrosequencing evidence that FA inhibition to community dynamics of Methanosarcina and Methanosaeta is strongly connected to methanogenesis, and Methanosarcina plays a key role in an iCSTR with the dilution. Biotechnol. Bioeng. 2016;113: 1892-1901. © 2016 Wiley Periodicals, Inc. PMID:26927830

  17. Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy

    OpenAIRE

    Sabina Luisa Campanelli; Giuseppe Casalino; Caterina Casavola; Vincenzo Moramarco

    2013-01-01

    Friction Stir Welding (FSW) is a solid-state joining process; i.e., no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the we...

  18. Effect of ammoniacal nitrogen on one-stage and two-stage anaerobic digestion of food waste

    International Nuclear Information System (INIS)

    Highlights: • Almost 100% of the biomethane potential of food waste was recovered during AD in a two-stage CSTR. • Recirculation of the liquid fraction of the digestate provided the necessary buffer in the AD reactors. • A higher OLR (0.9 gVS/L·d) led to higher accumulation of TAN, which caused more toxicity. • A two-stage reactor is more sensitive to elevated concentrations of ammonia. • The IC50 of TAN for the AD of food waste amounts to 3.8 g/L. - Abstract: This research compares the operation of one-stage and two-stage anaerobic continuously stirred tank reactor (CSTR) systems fed semi-continuously with food waste. The main purpose was to investigate the effects of ammoniacal nitrogen on the anaerobic digestion process. The two-stage system gave more reliable operation compared to one-stage due to: (i) a better pH self-adjusting capacity; (ii) a higher resistance to organic loading shocks; and (iii) a higher conversion rate of organic substrate to biomethane. Also a small amount of biohydrogen was detected from the first stage of the two-stage reactor making this system attractive for biohythane production. As the digestate contains ammoniacal nitrogen, re-circulating it provided the necessary alkalinity in the systems, thus preventing an eventual failure by volatile fatty acids (VFA) accumulation. However, re-circulation also resulted in an ammonium accumulation, yielding a lower biomethane production. Based on the batch experimental results the 50% inhibitory concentration of total ammoniacal nitrogen on the methanogenic activities was calculated as 3.8 g/L, corresponding to 146 mg/L free ammonia for the inoculum used for this research. The two-stage system was affected by the inhibition more than the one-stage system, as it requires less alkalinity and the physically separated methanogens are more sensitive to inhibitory factors, such as ammonium and propionic acid

  19. Effect of ammoniacal nitrogen on one-stage and two-stage anaerobic digestion of food waste

    Energy Technology Data Exchange (ETDEWEB)

    Ariunbaatar, Javkhlan, E-mail: jaka@unicas.it [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino, FR (Italy); UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands); Scotto Di Perta, Ester [Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples (Italy); Panico, Antonio [Telematic University PEGASO, Piazza Trieste e Trento, 48, 80132 Naples (Italy); Frunzo, Luigi [Department of Mathematics and Applications Renato Caccioppoli, University of Naples Federico II, Via Claudio, 21, 80125 Naples (Italy); Esposito, Giovanni [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino, FR (Italy); Lens, Piet N.L. [UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands); Pirozzi, Francesco [Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples (Italy)

    2015-04-15

    Highlights: • Almost 100% of the biomethane potential of food waste was recovered during AD in a two-stage CSTR. • Recirculation of the liquid fraction of the digestate provided the necessary buffer in the AD reactors. • A higher OLR (0.9 gVS/L·d) led to higher accumulation of TAN, which caused more toxicity. • A two-stage reactor is more sensitive to elevated concentrations of ammonia. • The IC{sub 50} of TAN for the AD of food waste amounts to 3.8 g/L. - Abstract: This research compares the operation of one-stage and two-stage anaerobic continuously stirred tank reactor (CSTR) systems fed semi-continuously with food waste. The main purpose was to investigate the effects of ammoniacal nitrogen on the anaerobic digestion process. The two-stage system gave more reliable operation compared to one-stage due to: (i) a better pH self-adjusting capacity; (ii) a higher resistance to organic loading shocks; and (iii) a higher conversion rate of organic substrate to biomethane. Also a small amount of biohydrogen was detected from the first stage of the two-stage reactor making this system attractive for biohythane production. As the digestate contains ammoniacal nitrogen, re-circulating it provided the necessary alkalinity in the systems, thus preventing an eventual failure by volatile fatty acids (VFA) accumulation. However, re-circulation also resulted in an ammonium accumulation, yielding a lower biomethane production. Based on the batch experimental results the 50% inhibitory concentration of total ammoniacal nitrogen on the methanogenic activities was calculated as 3.8 g/L, corresponding to 146 mg/L free ammonia for the inoculum used for this research. The two-stage system was affected by the inhibition more than the one-stage system, as it requires less alkalinity and the physically separated methanogens are more sensitive to inhibitory factors, such as ammonium and propionic acid.

  20. Influence of vibrational treatment on thermomechanical response of material under conditions identical to friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Konovalenko, Ivan S., E-mail: ivkon@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Konovalenko, Igor S., E-mail: igkon@ispms.tsc.ru; Kolubaev, Evgeniy A., E-mail: eak@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Dmitriev, Andrey I., E-mail: dmitr@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Psakhie, Sergey G., E-mail: sp@ms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    A molecular dynamics model was constructed to describe material loading on the atomic scale by the mode identical to friction stir welding. It was shown that additional vibration applied to the tool during the loading mode provides specified intensity values and continuous thermomechanical action during welding. An increase in additional vibration intensity causes an increase both in the force acting on the workpiece from the rotating tool and in temperature within the welded area.

  1. In-Space Friction Stir Welding Machine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Longhurst Engineering, PLC, and Vanderbilt University propose an in-space friction stir welding (FSW) machine for joining complex structural aluminum components....

  2. Reducing the risk of foaming and decreasing viscosity by two-stage anaerobic digestion of sugar beet pressed pulp.

    Science.gov (United States)

    Stoyanova, Elitza; Forsthuber, Boris; Pohn, Stefan; Schwarz, Christian; Fuchs, Werner; Bochmann, Günther

    2014-04-01

    Anaerobic digestion (AD) of sugar beet pressed pulp (SBPP) is a promising treatment concept. It produces biogas as a renewable energy source making sugar production more energy efficient and it turns SBPP from a residue into a valuable resource. In this study one- and two-stage mono fermentation at mesophilic conditions in a continuous stirred tank reactor were compared. Also the optimal incubation temperature for the pre-acidification stage was studied. The fastest pre-acidification, with a hydraulic retention time (HRT) of 4 days, occurred at a temperature of 55 °C. In the methanogenic reactor of the two-stage system stable fermentation at loading rate of 7 kg VS/m³ d was demonstrated. No artificial pH adjustment was necessary to maintain optimum levels in both the pre-acidification and the methanogenic reactor. The total HRT of the two-stage AD was 36 days which is considerably lower compared to the one-stage AD (50 days). The frequently observed problem of foaming at high loading rates was less severe in the two-stage reactor. Moreover the viscosity of digestate in the methanogenic stage of the two-stage fermentation was in average tenfold lower than in the one-stage fermentation. This decreases the energy input for the reactor stirring about 80 %. The observed advantages make the two-stage process economically attractive, despite higher investments for a two reactor system. PMID:23963569

  3. Tolerance response to in situ ammonia stress in a pilot-scale anaerobic digestion reactor for alleviating ammonia inhibition.

    Science.gov (United States)

    Gao, Shumei; Zhao, Mingxing; Chen, Yang; Yu, Meijuan; Ruan, Wenquan

    2015-12-01

    The anaerobic digestion (AD) of protein-rich substrates is generally inhibited by ammonia. In this study, ammonia-tolerant acclimation was exposed to a stepwise in situ ammonia stress during the continuous AD of solid residual kitchen waste by using a continuous stirred tank reactor with a 50 L active volume. The reactor worked well during the acclimation process, with an average daily biogas production of 58 L/d, an effluent soluble chemical oxygen demand of 7238 mg/L, a volatile fatty acid (VFA) content of 578 mg/L, and a VFA/alkalinity ratio of less than 0.4. Moreover, ammonia stress enhanced the activity of Coenzyme F420. The results of high-throughput 16S rDNA sequencing showed that ammonia stress increased the relative abundance of Firmicutes bacteria and hydrogenotrophic methanogens but decreased the abundance of acetotrophic methanogens. This microbial community shift was proposed to be an in situ response strategy for ammonia stress adaptation.

  4. Automated multisyringe stir bar sorptive extraction using robust montmorillonite/epoxy-coated stir bars.

    Science.gov (United States)

    Ghani, Milad; Saraji, Mohammad; Maya, Fernando; Cerdà, Víctor

    2016-05-01

    Herein we present a simple, rapid and low cost strategy for the preparation of robust stir bar coatings based on the combination of montmorillonite with epoxy resin. The composite stir bar was implemented in a novel automated multisyringe stir bar sorptive extraction system (MS-SBSE), and applied to the extraction of four chlorophenols (4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol) as model compounds, followed by high performance liquid chromatography-diode array detection. The different experimental parameters of the MS-SBSE, such as sample volume, selection of the desorption solvent, desorption volume, desorption time, sample solution pH, salt effect and extraction time were studied. Under the optimum conditions, the detection limits were between 0.02 and 0.34μgL(-1). Relative standard deviations (RSD) of the method for the analytes at 10μgL(-1) concentration level ranged from 3.5% to 4.1% (as intra-day RSD) and from 3.9% to 4.3% (as inter-day RSD at 50μgL(-1) concentration level). Batch-to-batch reproducibility for three different stir bars was 4.6-5.1%. The enrichment factors were between 30 and 49. In order to investigate the capability of the developed technique for real sample analysis, well water, wastewater and leachates from a solid waste treatment plant were satisfactorily analyzed. PMID:27062720

  5. Stir zone microstructure and strain rate during Al 7075-T6 friction stir spot welding

    Science.gov (United States)

    Gerlich, A.; Avramovic-Cingara, G.; North, T. H.

    2006-09-01

    The factors determining the temperature, heating rate, microstructure, and strain rate in Al 7075-T6 friction stir spot welds are investigated. Stir zone microstructure was examined using a combination of transmission electron microscopy (TEM) and electron backscattered diffraction (EBSD) microscopy, while the strain rate during spot welding was calculated by incorporating measured temperatures and the average subgrain dimensions in the Zener-Hollomon relation. The highest temperature during friction stir spot welding (527 °C) was observed in spot welds made using a tool rotational speed of 3000 rpm. The stir zone regions comprised fine-grained, equiaxed, fully recrystallized microstructures. The calculated strain rate in Al 7075-T6 spot welds decreased from 650 to about 20 s-1 when the tool rotational speed increased from 1000 to 3000 rpm. It is suggested that the decrease in strain rate results when tool slippage occurs when the welding parameter settings facilitate transient local melting during the spot welding operation. Transient local melting and tool slippage are produced when the welding parameters produce sufficiently high heating rates and temperatures during spot welding. However, transient local melting and tool slippage is not produced in Al 7075-T6 spot welds made using a rotational speed of 1000 rpm since the peak temperature is always less than 475 °C.

  6. Automated multisyringe stir bar sorptive extraction using robust montmorillonite/epoxy-coated stir bars.

    Science.gov (United States)

    Ghani, Milad; Saraji, Mohammad; Maya, Fernando; Cerdà, Víctor

    2016-05-01

    Herein we present a simple, rapid and low cost strategy for the preparation of robust stir bar coatings based on the combination of montmorillonite with epoxy resin. The composite stir bar was implemented in a novel automated multisyringe stir bar sorptive extraction system (MS-SBSE), and applied to the extraction of four chlorophenols (4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol) as model compounds, followed by high performance liquid chromatography-diode array detection. The different experimental parameters of the MS-SBSE, such as sample volume, selection of the desorption solvent, desorption volume, desorption time, sample solution pH, salt effect and extraction time were studied. Under the optimum conditions, the detection limits were between 0.02 and 0.34μgL(-1). Relative standard deviations (RSD) of the method for the analytes at 10μgL(-1) concentration level ranged from 3.5% to 4.1% (as intra-day RSD) and from 3.9% to 4.3% (as inter-day RSD at 50μgL(-1) concentration level). Batch-to-batch reproducibility for three different stir bars was 4.6-5.1%. The enrichment factors were between 30 and 49. In order to investigate the capability of the developed technique for real sample analysis, well water, wastewater and leachates from a solid waste treatment plant were satisfactorily analyzed.

  7. Anaerobic bacteria in otitis media.

    Science.gov (United States)

    Fulghum, R S; Daniel, H J; Yarborough, J G

    1977-01-01

    Anaerobic bacteria, Peptostrepotococcus intermedius and Propionibacterium acnes, were found in mixed culture specimens from four to ten tested cases of chronic secretory otitis media. These anaerobic bacteria were in a mixed infection flora with aerobic bacteria most often Staphylococcus epidermidis and Cornybacterium sp. which do not fit any established species. The findings of anaerobic bacteria in otitis media is consistent with the sporadic report of the involvement of anaerobic bacteria in otitis media in the literature since 1898.

  8. Tristability in the iodate-As(III) chemical system arising from a model of stirring and mixing effects

    Science.gov (United States)

    Ganapathisubramanian, N.

    1991-08-01

    The iodate-As(III) system which exhibits bistability in an ideal continuous flow stirred tank reactor (CSTR), exhibits tristability when subjected to the mixing model of Kumpinsky and Epstein [J. Chem. Phys. 82, 53 (1985)]. The cross flow between the major and minor reactors influences the system's lower hysteresis limit more than its upper hysteresis limit.

  9. Start-up of semi-continously operated and completely stirred dry fermentation pilot-scale biogas reactor

    OpenAIRE

    Virkkunen, Elina

    2009-01-01

    In the year 2008, MTT Agrifood Research Finland built a pilot scale biogas reactor of 4.5 cubic meters situated in Sotkamo research station. The aim is to develop a completely stirred and semi-continuously operated biogas reactor that handles solid biomass.

  10. Modelling of friction stir spot welding

    OpenAIRE

    Reilly, Aidan

    2013-01-01

    Friction stir spot welding (FSSW) is a solid-state welding process which is especially useful for joining precipitation-hardened aluminium alloys that undergo adverse property changes during fusion welding. It also has potential as an effective method for solid-state joining of dissimilar alloys. In FSSW, heat generation and plastic flow are strongly linked, and the scale of the process in time and space is such that it is difficult to separate and control the influence of all the relevant in...

  11. Friction stir welding of single crystal aluminium

    DEFF Research Database (Denmark)

    Fonda, Richard Warren; Wert, John A.; Reynolds, A.P.;

    2007-01-01

    Friction stir welds were prepared in different orientations in an aluminium single crystal. The welds were quenched to preserve the microstructure surrounding the tool and then electron backscattered diffraction was used to reveal the generation of grain boundaries and the evolution...... of crystallographic texture around the tool in each weld. The extent of both dynamic recrystallisation and conventional recrystallisation varied considerably as a function of weld orientation. As the base plate begins to interact with the deformation field surrounding the tool, regions of the single crystal rotate...

  12. Hydrogen and methane production from condensed molasses fermentation soluble by a two-stage anaerobic process

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chiu-Yue; Liang, You-Chyuan; Lay, Chyi-How [Feng Chia Univ., Taichung, Taiwan (China). Dept. of Environmental Engineering and Science; Chen, Chin-Chao [Chungchou Institute of Technology, Taiwan (China). Environmental Resources Lab.; Chang, Feng-Yuan [Feng Chia Univ., Taichung, Taiwan (China). Research Center for Energy and Resources

    2010-07-01

    The treatment of condensed molasses fermentation soluble (CMS) is a troublesome problem for glutamate manufacturing factory. However, CMS contains high carbohydrate and nutrient contents and is an attractive and commercially potential feedstock for bioenergy production. The aim of this paper is to produce hydrogen and methane by two-stage anaerobic fermentation process. The fermentative hydrogen production from CMS was conducted in a continuously-stirred tank bioreactor (working volume 4 L) which was operated at a hydraulic retention time (HRT) of 8 h, organic loading rate (OLR) of 120 kg COD/m{sup 3}-d, temperature of 35 C, pH 5.5 and sewage sludge as seed. The anaerobic methane production was conducted in an up-flow bioreactor (working volume 11 L) which was operated at a HRT of 24 -60 hrs, OLR of 4.0-10 kg COD/m{sup 3}-d, temperature of 35 C, pH 7.0 with using anaerobic granule sludge from fructose manufacturing factory as the seed and the effluent from hydrogen production process as the substrate. These two reactors have been operated successfully for more than 400 days. The steady-state hydrogen content, hydrogen production rate and hydrogen production yield in the hydrogen fermentation system were 37%, 169 mmol-H{sub 2}/L-d and 93 mmol-H{sub 2}/g carbohydrate{sub removed}, respectively. In the methane fermentation system, the peak methane content and methane production rate were 66.5 and 86.8 mmol-CH{sub 4}/L-d with methane production yield of 189.3 mmol-CH{sub 4}/g COD{sub removed} at an OLR 10 kg/m{sup 3}-d. The energy production rate was used to elucidate the energy efficiency for this two-stage process. The total energy production rate of 133.3 kJ/L/d was obtained with 5.5 kJ/L/d from hydrogen fermentation and 127.8 kJ/L/d from methane fermentation. (orig.)

  13. ANAEROBIC MEMBRANE BIOREACTORS FOR DOMESTIC WASTEWATER TREATMENT. PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    Luisa Vera

    2014-12-01

    Full Text Available The operation of submerged anaerobic membrane bioreactors (SAnMBRs for domestic wastewaters treatment was studied in laboratory scale, with the objective to define sustainable filtration conditions of the suspensions along the process. During continuous experiments, the organic matter degradation by anaerobic way showed an average DQOT removal of 85% and 93%. Indeed, the degradation generated biogas after 12 days of operation and its relative methane composition was of 60% after 25 days of operation. Additionally, the comparison between membrane bioreactors (MBRs performance in aerobic and anaerobic conditions in filterability terms, reported that both systems behave similarly once reached the stationary state.

  14. Anaerobic biodegradation of long chain fatty acids : biomethanisation of biomass-associated LCFA as a challenge for the anaerobic treatment of effluents with high lipid/LCFA content

    OpenAIRE

    Pereira, M.A.

    2003-01-01

    Tese de doutoramento em Engenharia Biológica e Química. This work was focused on the anaerobic biodegradation of Long Chain Fatty Acids, especially those that are associated to anaerobic sludge by mechanisms of adsorption, precipitation or entrapment. When continuously fed with oleic acid (EGSB reactors, influent concentrations between 2 and 8 g COD/l and HRT=1 day), suspended and granular anaerobic sludge accumulated palmitic acid. This LCFA was efficiently biomethanised in batch assays, ...

  15. Microstructure Characteristics and Apparent Viscosity of Hypereutectic Al-24%Si Alloy Melt During Semi-solid State Stirring

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The microstructural evolution and apparent viscosity of hypereutectic Al-24%Si alloy during semi-solid state shearing were studied with a Searte type viscometer. When the alloy melt was continuously stirred from 720℃ to eutectic temperature, the primary Si crystals were gradually changed from elongated platelets to near-spherical shapes. It was found that some nondendritic  -phase formed when the melt was stirred below 585℃. The experiment showed that the semi-solid stirring had strong effect on inhibiting the anisotropic growth of Si crystals during solidification. The apparent viscosity of the alloy melt increased slowly with the decreasing of temperature before the formation of nondendritic  -phase, which caused the dramatic increase of apparent viscosity.

  16. The anaerobic digestion process

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States); Boone, D.R. [Oregon Graduate Inst., Portland, OR (United States)

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  17. Anaerobic biotransformation of estrogens

    Energy Technology Data Exchange (ETDEWEB)

    Czajka, Cynthia P. [Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2 (Canada); Londry, Kathleen L. [Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2 (Canada)]. E-mail: londryk@cc.umanitoba.ca

    2006-08-31

    Estrogens are important environmental contaminants that disrupt endocrine systems and feminize male fish. We investigated the potential for anaerobic biodegradation of the estrogens 17-{alpha}-ethynylestradiol (EE2) and 17-{beta}-estradiol (E2) in order to understand their fate in aquatic and terrestrial environments. Cultures were established using lake water and sediment under methanogenic, sulfate-, iron-, and nitrate-reducing conditions. Anaerobic degradation of EE2 (added at 5 mg/L) was not observed in multiple trials over long incubation periods (over three years). E2 (added at 5 mg/L) was transformed to estrone (E1) under all four anaerobic conditions (99-176 {mu}g L{sup -1} day{sup -1}), but the extent of conversion was different for each electron acceptor. The oxidation of E2 to E1 was not inhibited by E1. Under some conditions, reversible inter-conversion of E2 and E1 was observed, and the final steady state concentration of E2 depended on the electron-accepting condition but was independent of the total amount of estrogens added. In addition, racemization occurred and E1 was also transformed to 17-{alpha}-estradiol under all but nitrate-reducing conditions. Although E2 could be readily transformed to E1 and in many cases 17-{alpha}-estradiol under anaerobic conditions, the complete degradation of estrogens under these conditions was minimal, suggesting that they would accumulate in anoxic environments.

  18. ANAMMOX process start up and stabilization with an anaerobic seed in Anaerobic Membrane Bioreactor (AnMBR).

    Science.gov (United States)

    Suneethi, S; Joseph, Kurian

    2011-10-01

    ANaerobic AMMonium OXidation (ANAMMOX) process, an advanced biological nitrogen removal alternative to traditional nitrification--denitrification removes ammonia using nitrite as the electron acceptor without oxygen. The feasibility of enriching anammox bacteria from anaerobic seed culture to start up an Anaerobic Membrane Bioreactor (AnMBR) for N-removal is reported in this paper. The Anammox activity was established in the AnMBR with anaerobic digester seed culture from a Sewage Treatment Plant in batch mode with recirculation followed by semi continuous process and continuous modes of operation. The AnMBR performance under varying Nitrogen Loading Rates (NLR) and HRTs is reported for a year, in terms of nitrogen transformations to ammoniacal nitrogen, nitrite and nitrate along with hydrazine and hydroxylamine. Interestingly ANAMMOX process was evident from simultaneous Amm-N and nitrite reduction, consistent nitrate production, hydrazine and hydroxylamine presence, notable organic load reduction and bicarbonate consumption. PMID:21775136

  19. Friction Stir Welding at MSFC: Kinematics

    Science.gov (United States)

    Nunes, A. C., Jr.

    2001-01-01

    In 1991 The Welding Institute of the United Kingdom patented the Friction Stir Welding (FSW) process. In FSW a rotating pin-tool is inserted into a weld seam and literally stirs the faying surfaces together as it moves up the seam. By April 2000 the American Welding Society International Welding and Fabricating Exposition featured several exhibits of commercial FSW processes and the 81st Annual Convention devoted a technical session to the process. The FSW process is of interest to Marshall Space Flight Center (MSFC) as a means of avoiding hot-cracking problems presented by the 2195 aluminum-lithium alloy, which is the primary constituent of the Lightweight Space Shuttle External Tank. The process has been under development at MSFC for External Tank applications since the early 1990's. Early development of the FSW process proceeded by cut-and-try empirical methods. A substantial and complex body of data resulted. A theoretical model was wanted to deal with the complexity and reduce the data to concepts serviceable for process diagnostics, optimization, parameter selection, etc. A first step in understanding the FSW process is to determine the kinematics, i.e., the flow field in the metal in the vicinity of the pin-tool. Given the kinematics, the dynamics, i.e., the forces, can be targeted. Given a completed model of the FSW process, attempts at rational design of tools and selection of process parameters can be made.

  20. Methanosarcina Play an Important Role in Anaerobic Co-Digestion of the Seaweed Ulva lactuca: Taxonomy and Predicted Metabolism of Functional Microbial Communities.

    Directory of Open Access Journals (Sweden)

    Jamie A FitzGerald

    Full Text Available Macro-algae represent an ideal resource of third generation biofuels, but their use necessitates a refinement of commonly used anaerobic digestion processes. In a previous study, contrasting mixes of dairy slurry and the macro-alga Ulva lactuca were anaerobically digested in mesophilic continuously stirred tank reactors for 40 weeks. Higher proportions of U. lactuca in the feedstock led to inhibited digestion and rapid accumulation of volatile fatty acids, requiring a reduced organic loading rate. In this study, 16S pyrosequencing was employed to characterise the microbial communities of both the weakest (R1 and strongest (R6 performing reactors from the previous work as they developed over a 39 and 27-week period respectively. Comparing the reactor communities revealed clear differences in taxonomy, predicted metabolic orientation and mechanisms of inhibition, while constrained canonical analysis (CCA showed ammonia and biogas yield to be the strongest factors differentiating the two reactor communities. Significant biomarker taxa and predicted metabolic activities were identified for viable and failing anaerobic digestion of U. lactuca. Acetoclastic methanogens were inhibited early in R1 operation, followed by a gradual decline of hydrogenotrophic methanogens. Near-total loss of methanogens led to an accumulation of acetic acid that reduced performance of R1, while a slow decline in biogas yield in R6 could be attributed to inhibition of acetogenic rather than methanogenic activity. The improved performance of R6 is likely to have been as a result of the large Methanosarcina population, which enabled rapid removal of acetic acid, providing favourable conditions for substrate degradation.

  1. Friction Stir Welding Technology: Adapting NASA's Retractable Pin Tool

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    In late 1991, The Welding Institute (TWI), a British research and technology organization, invented and patented a welding process named Friction Stir Welding (FSW). Friction Stir Welding is a highly significant advancement in aluminum welding technology that can produce stronger, lighter, and more efficient welds than any previous process.

  2. Damage Tolerance Behavior of Friction Stir Welds in Aluminum Alloys

    Science.gov (United States)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of various aerospace structures. Self-reacting and conventional friction stir welding are variations of the friction stir weld process employed in the fabrication of cryogenic propellant tanks which are classified as pressurized structure in many spaceflight vehicle architectures. In order to address damage tolerance behavior associated with friction stir welds in these safety critical structures, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data describing fracture behavior, residual strength capability, and cyclic mission life capability of friction stir welds at ambient and cryogenic temperatures have been generated and will be presented in this paper. Fracture behavior will include fracture toughness and tearing (R-curve) response of the friction stir welds. Residual strength behavior will include an evaluation of the effects of lack of penetration on conventional friction stir welds, the effects of internal defects (wormholes) on self-reacting friction stir welds, and an evaluation of the effects of fatigue cycled surface cracks on both conventional and selfreacting welds. Cyclic mission life capability will demonstrate the effects of surface crack defects on service load cycle capability. The fracture data will be used to evaluate nondestructive inspection and proof test requirements for the welds.

  3. Validation of the revised STI-r method

    NARCIS (Netherlands)

    Steeneken, H.J.M.; Houtgast, T.

    2002-01-01

    The revised model for the speech transmission index (STIr, Speech Communication 28 (1999) 109), was validated with an independent set of 68 test conditions. For a subset of 18 conditions, including only additive noise and band-pass limiting, it was veri.ed that the STIr provides a good prediction of

  4. Steady-shear viscosity of stirred yogurts with varying ropiness

    NARCIS (Netherlands)

    Marle, van M.E.; Ende, van den D.; Kruif, de C.G.; Mellema, J.

    1999-01-01

    Stirred yogurt was viewed as a concentrated dispersion of aggregates consisting of protein particles. The steady-shear behavior of three types of stirred yogurt with varying ropiness was investigated experimentally. To describe the shear-dependent viscosity, a microrheological model was used which w

  5. Fluidization of potato starch in a stirred vibrating fluidized bed

    NARCIS (Netherlands)

    Kuipers, N.J M; Stamhuis, Eize; Beenackers, A.A C M

    1996-01-01

    A novel gas-solid reactor for cohesive C-powders such as potato starch is introduced, designed and characterized, the so-called stirred vibrating fluidized bed. The effects of a sinusoidal vibration of the gas distributor and/or stirring of the bed are investigated. The fluidization index, bed expan

  6. Gas hold-up in stirred tank reactors

    NARCIS (Netherlands)

    Yawalkar, A.A.; Pangarkar, V.G.; Beenackers, A.A C M

    2002-01-01

    Based on a study of the gas hold-up data for stirred tank reactor generated in the present work and the data available in the literature for large stirred tank reactors (T = 0.57 m to 2.7 m) equipped with disc turbines and pitched blade downflow turbines a correlation is presented which reliably pre

  7. Friction stir method for forming structures and materials

    Science.gov (United States)

    Feng, Zhili; David, Stan A.; Frederick, David Alan

    2011-11-22

    Processes for forming an enhanced material or structure are disclosed. The structure typically includes a preform that has a first common surface and a recess below the first common surface. A filler is added to the recess and seams are friction stir welded, and materials may be stir mixed.

  8. Certification of a weld produced by friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Obaditch, Chris; Grant, Glenn J

    2013-10-01

    Methods, devices, and systems for providing certification of friction stir welds are disclosed. A sensor is used to collect information related to a friction stir weld. Data from the sensor is compared to threshold values provided by an extrinsic standard setting organizations using a certification engine. The certification engine subsequently produces a report on the certification status of the weld.

  9. Anaerobic biological treatment

    International Nuclear Information System (INIS)

    The Enso-Fenox process has been very successfully used to remove chlorinated phenolic compounds from pulp bleaching effluents. It is a two-stage anaerobic/aerobic process consisting of a nonmethanogenic anaerobic fluidized bed followed by a trickling filter. Studies have been conducted on reductive dechlorination of chlorinated aromatic compounds under anaerobic conditions with chlorinated phenols as the sole carbon and energy source. Approximately 40% of the added chlorophenols was converted to CH4 and CO2. Substrate loading rates were 20 mg/L/d at hydraulic detention times of 2-4 days with 90% substrate conversion efficiency. Reductive dechlorination of mono, di-, tri-, and pentachlorophenols has been demonstrated in anaerobic sewage sludge. The following constituents were tested in the laboratory at their approximate concentrations in coal conversion wastewater (CCWW) and were anaerobically degraded in serum bottles: 1,000 mg/L phenol; 500 mg/L resorcinol; 1,000 mg/L benzoic acid; 500 mg/L p-cresol; 200 mg/L pyridine; 2,000 mg/L benzoic acid; 250 mg/L 40 methylcatechol; 500 mg/L 4-ethylpyridine; and 2,000 mg/L hexanoic acid. A petrochemical may initially exhibit toxicity to an unacclimated population of methane-fermenting bacteria, but with acclimation the toxicity may be greatly reduced or disappear. In addition, the microorganisms may develop the capacity to actually degrade compounds which showed initial toxicity. Since biomass digestion requires a complete consortium of bacteria, it is relevant to study the effect of a given process as well as to individual steps within the process. A toxicant can inhibit the rate-limiting step and/or change the step that is rate-limiting. Both manifestations of toxicity can severely affect the overall process

  10. Characterization of Spartina alterniflora as feedstock for anaerobic digestion

    International Nuclear Information System (INIS)

    Smooth cordgrass (Spartina alterniflora), a saltmarsh plant with high production, was characterized for its potential for use as feedstock for anaerobic digestion processes. The anaerobic digestibility and biogas yield of S. alterniflora were evaluated by anaerobic batch digestion experiments performed at 35 ± 1 C at initial volatile solids (VS) of 6%. The nutrient content analysis indicated that S. alterniflora contained the required nutrition for anaerobic microorganisms, but its high C/N of 58.8, high K and Na contents of 8.1, 22.7 g kg-1, respectively, may be disadvantageous to its anaerobic digestion. The cumulative biogas yield was determined to be 358 L kg-1 VS and the biodegradation efficiency was 45% after 60 days of digestion. The methane content of biogas increased from 53% on day 3 to around 62% after 13 days of digestion. The changes of volatile fatty acids (VFAs) indicated that the acidification of S. alterniflora was propionate-type fermentation with proportion of acetate and propionate ranging from 54.8% to 98.4%, and the hydrolysis of lignocellulose was the rate-limiting step for its anaerobic digestion. The analysis of cations suggested that K+ and Mg2+, with the maximum concentration of 1.35 and 0.43 g L-1 in fermentation liquor, respectively, could be inhibitory to the anaerobic digestion of S. alterniflora. It is concluded that S. alterniflora can be transformed into clean energy by anaerobic digestion and the high contents of K, Na, Ca and Mg may be the inhibitory factors when S. alterniflora is digested by continuous or semi-continuous anaerobic process. (author)

  11. Anaerobic digestion of food and vegetable waste

    OpenAIRE

    Jiang, Ying

    2012-01-01

    Food and vegetable wastes contribute a large percentage of the organic fraction of municipal solid waste (OFMSW), and anaerobic digestion potentially offers an ideal method for their management. Their chemical composition can, however, lead to unstable operation and in extreme cases complete process failure has been reported with this type of substrate. Semi-continuous trials on vegetable waste were carried out in laboratory-scale digesters with daily feed additions at different organic loadi...

  12. Anaerobic microbial LCFA degradation in bioreactors

    OpenAIRE

    Sousa, D.Z.; Pereira, M.A.; Alves, J.I.; Smidt, Hauke; Stams, A.J.M.; Alves, M. M.

    2008-01-01

    This paper reviews recent results obtained on long-chain fatty acids (LCFA) anaerobic degradation. Two LCFA were used as model substrates: oleate, a mono-unsaturated LCFA, and palmitate, a saturated LCFA, both abundant in LCFA-rich wastewaters. 16S rRNA gene analysis of sludge samples submitted to continuous oleate- and palmitate-feeding followed by batch degradation of the accumulated LCFA demonstrated that bacterial communities were dominated by members of the Clostridiaceae and Sy...

  13. Influence of Using Parameters on Stirring Uniformity of Mixer

    Institute of Scientific and Technical Information of China (English)

    LIU Honghai; MA Dengeheng

    2011-01-01

    Stirring uniformity of mixture depends not only on structural parameters of the mixer,motion parameters, but also to a large extent on the using parameters.Based on the analysis of the structure and working principle of mixer,these factors that affecting mixer performance was studied.The mathematical model of mixer performance characteristics was established by theoretical analysis,which associated with the mechanical structure, motion parameters and using parameters. According to the mathematical model,the effects of the mixer filling rate, stirring time,and other using parameters on the uniformity were studied. In each stirring cycle, the minimum number of revolutions formula for shaft was obtained. In addition,in different filling rates,the relationship between stirring shaft rotation laps and stirring uniformity was obtained too.Finally,full-scale experimental verification was conducted.

  14. High-Powered, Ultrasonically Assisted Thermal Stir Welding

    Science.gov (United States)

    Ding, Robert

    2013-01-01

    This method is a solid-state weld process capable of joining metallic alloys without melting. The weld workpieces to be joined by thermal stir welding (TSW) are drawn, by heavy forces, between containment plates past the TSW stir tool that then causes joining of the weld workpiece. TSW is similar to friction stir welding (FSW) in that material is heated into a plastic state (not melted) and stirred using a stir rod. The FSW pin tool is an integrated geometrical structure consisting of a large-diameter shoulder, and a smaller-diameter stir pin protruding from the shoulder. When the pin is plunged into a weld workpiece, the shoulder spins on the surface of the weld workpiece, thus inducing frictional heat into the part. The pin stirs the fraying surfaces of the weld joint, thus joining the weld workpiece into one structure. The shoulder and stir pin of the FSW pin tool must rotate together at a desired rotational speed. The induced frictional energy control and stir pin control of the pin tool cannot be de-coupled. The two work as one integrated unit. TSW, on the other hand, de-couples the heating and stirring of FSW, and allows for independent control of each process element. A uniquely designed induction coil heats the weld workpiece to a desired temperature, and once heated, the part moves into a stir rod whose RPM is also independently controlled. As the weld workpiece moves into the stir rod, the piece is positioned, or sandwiched, between upper and lower containment plates. The plate squeezes together, thus compressing the upper and lower surfaces of the weld workpiece. This compressive force, also called consolidation force, consolidates the plastic material within the weld nugget material as it is being stirred by the stir rod. The stir rod is positioned through the center of the top containment plate and protrudes midway through the opposite lower containment plate where it is mechanically captured. The upper and lower containment plates are separated by a

  15. Evolution of microstructure and mechanical properties in naturally aged 7050 and 7075 Al friction stir welds

    International Nuclear Information System (INIS)

    The microstructural and mechanical property evolution of friction stir welded 7050-T7651 and 7075-T651 Al alloys were examined as a function of room temperature (natural) aging for up to 67,920 h. During the range of aging times studied, transverse tensile strengths continuously increased, and are still increasing, with improvements of 24% and 29% measured for the 7050-T7651 and 7075-T651 Al alloy friction stir welds, respectively. Microstructural evolution within the weld nugget and heat-affected zone was evaluated with both transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). Formation of a high volume fraction of GP(II) zones produced a majority of the strength improvement within the weld nugget and HAZ regions. The rational for the microstructural changes are discussed in light of the mechanical properties.

  16. Simulation of 3D material flow in friction stir welding of AA6061-T6

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhao; Zhang Hongwu

    2008-01-01

    This paper reports the numerical simulation of the 3D material flow in friction stir welding process by using finite element methods based on solid mechanics. It is found that the material flow behind the pin is much faster than that in front of the pin. The material in front of the pin moves upwards and then rotates with the pin due to the effect of the rotating tool. Behind of the pin, the material moves downwards. This process of material movement is the real cause to make the friction stir welding process continuing successfully. With the increase of the translational velocity or the rotational velocity of the pin, the material flow becomes faster.

  17. Methane Production from Solid Potatoes by a Procedure Simulating a Bench-Scale Sequencing Batch Reactor Anaerobic Process

    OpenAIRE

    Colussi, I.; Cortesi, A.; Gallo, V; Rubesa Fernandez, A. S.; Vitanza, R.

    2014-01-01

    In this study, an experimental setup for the evaluation of a two-stage anaerobic digestion has been developed: a laboratory-scale apparatus was assembled employing solid potatoes as energy crops. Two coupled 5-litre batch-fed stirred reactors, one for the hydrolytic-acidogenic step and one for the acetogenic-methanogenic step, kept at mesophilic temperature (308.1 K), were adopted. Evaluated in the first acidogenic reactor was the influence of fermentative yeast (Saccharomyces cerevisiae) on ...

  18. Biogas and reduction of organic matter in anaerobic reactor with continuous flow means support; Producao de biogas e reducao de materia organica em reatores anaerobicos de fluxo continuo com meio suporte

    Energy Technology Data Exchange (ETDEWEB)

    Kunzler, Kathia Regina; Gomes, Simone Damasceno; Goncalves, Jefferson Luiz; Kuczman, Osvaldo [Universidade Estadual do Oeste do Parana (PGEAGRI/UNIOESTE), Cascavel, PR (Brazil). Programa de Pos-Graduacao em Engenharia Agricola], Emails: kathiark@yahoo.com.br, simoned@unioeste.br; Piana, Pitagoras Augusto [Universidade Estadual do Oeste do Parana (UNIOESTE), Toledo, PR (Brazil)

    2010-07-01

    Starch processing industries are to obtain cassava starch. Its main residue is the effluent resulting from pressing the roots, Manipueira, high organic load and toxic. In this study, we compared the removal efficiency of organic loading and biogas production in anaerobic reactors, with the support means bamboo in different relations width: height. The first lesion diameter of 15 cm and a length of 90 cm, a ratio 1:6 and the second with a diameter of 20 cm and 60 cm long, ratio of 1:3. The support medium consisted of rings of bamboo with 10 cm length and diameters between 1.7 and 2.5 cm. The loads applied were 0.519, 1.156, 1.471, 3.813, 4.347, 4.708 and 5.601gDQO/L.day. To evaluate the removal efficiency of organic matter, the samples were subjected to analysis of DQO biogas production was assessed in terms of organic load removed. Bamboo as a support allowed the application of higher loads. The higher efficiency in the production of biogas was produced in the reactor with the highest ratio width: height, being more significant for the organic load of 5, 601 gCOD/L.day, showing more stability this. (author)

  19. Effects of mixture ratio on anaerobic co-digestion with fruit and vegetable waste and food waste of China

    Institute of Scientific and Technical Information of China (English)

    Jia Lin; Jiane Zuo; Lili Gan; Peng Li; Fenglin Liu; Kaijun Wang; Lei Chen; Hainan Gan

    2011-01-01

    The biochemical methane potentials for typical fruit and vegetable waste (FVW) and food waste (FW) from a northern China city were investigated,which were 0.30,0.56 m3 CH4/kgVS (volatile solids) with biodegradabilities of 59.3% and 83.6%,respectively.Individual anaerobic digestion testes of FVW and FW were conducted at the organic loading rate (OLR) of 3 kg VS/(m3·day) using a lab-scale continuous stirred-tank reactor at 35℃.FVW could be digested stably with the biogas production rate of 2.17 m3/(m3.day) and methane production yield of 0.42 m3 CHl4/kg VS.However,anaerobic digestion process for FW was failed due to acids accumulation.The effects of FVW:FW ratio on co-digestion stability and performance were further investigated at the same OLR.At FVW and FW mixing ratios of 2:1 and 1:1,the performance and operation of the digester were maintained stable,with no accumulation of volatile fatty acids (VFA) and ammonia.Changing the feed to a higher FW content in a ratio of FVW to FW 1:2,resulted in an increase in VFAs concentration to 1100-1200 mg/L,and the methanogenesis was slightly inhibited.At the optimum mixture ratio 1:1 for co-digestion of FVW with FW,the methane production yield was 0.49 m3 CHl4/kg VS,and the volatile solids and soluble chemical oxygen demand (sCOD) removal efficiencies were 74.9% and 96.1%,respectively.

  20. Production of bio-hydrogen by mesophilic anaerobic fermentation in an acid-phase sequencing batch reactor.

    Science.gov (United States)

    Cheong, Dae-Yeol; Hansen, Conly L; Stevens, David K

    2007-02-15

    The pH and hydraulic retention time (HRT) of an anaerobic sequencing batch reactor (ASBR) were varied to optimize the conversion of carbohydrate-rich synthetic wastewater into bio-hydrogen. A full factorial design using evolutionary operation (EVOP) was used to determine the effect of the factors and to find the optimum condition of each factor required for high hydrogen production rate. Experimental results from 20 runs indicate that a maximum hydrogen production rate of 4,460-5,540 mL/L/day under the volumetric organic loading rate (VOLR) of 75 g-COD/L/day obtained at an observed design point of HRT = 8 h and pH = 5.7. The hydrogen production rate was strongly dependent on the HRT, and the effect was statistically significant (P 0.05) was found for the pH on the hydrogen production rate. When the ASBR conditions were set for a maximum hydrogen production rate, the hydrogen production yield and specific hydrogen production rate were 60-74 mL/g-COD and 330-360 mL/g-VSS/day, respectively. The hydrogen composition was 43-51%, and no methanogenesis was observed. Acetate, propionate, butyrate, valerate, caproate, and ethanol were major liquid intermediate metabolites during runs of this ASBR. The dominant fermentative types were butyrate-acetate or ethanol-acetate, representing the typical anaerobic pathway of Clostridium species. This hydrogen-producing ASBR had a higher hydrogen production rate, compared with that produced using continuous-flow stirred tank reactors (CSTRs). This study suggests that the hydrogen-producing ASBR is a promising bio-system for prolonged and stable hydrogen production.

  1. Horizontal stirring in the global ocean

    CERN Document Server

    Hernández-Carrasco, I; Hernández-García, E; Turiel, A

    2011-01-01

    Horizontal mixing and the distribution of coherent structures in the global ocean are analyzed using Finite-Size Lyapunov Exponents (FSLE), computed for the surface velocity field derived from the Ocean general circulation model For the Earth Simulator (OFES). FSLEs measure horizontal stirring and dispersion; additionally, the transport barriers which organize the oceanic flow can roughly be identified with the ridges of the FSLE field. We have performed a detailed statistical study, particularizing for the behaviour of the two hemispheres and different ocean basins. The computed Probability Distributions Functions (PDFs) of FSLE are broad and asymmetric. Horizontal mixing is generally more active in the northern hemisphere than in the southern one. Nevertheless the Southern Ocean is the most active ocean, and the Pacific the less active one. A striking result is that the main currents can be classified in two 'activity classes': Western Boundary Currents, which have broad PDFs with large FSLE values, and Eas...

  2. Ultrasonically-assisted Thermal Stir Welding System

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A welding head assembly has a work piece disposed between its containment plates' opposing surfaces with the work piece being maintained in a plastic state thereof at least in a vicinity of the welding head assembly's stir rod as the rod is rotated about its longitudinal axis. The welding head assembly and the work piece experience relative movement there between in a direction perpendicular to the rod's longitudinal axis as the work piece is subjected to a compressive force applied by the containment plates. A first source coupled to the first containment plate applies a first ultrasonic wave thereto such that the first ultrasonic wave propagates parallel to the direction of relative movement. A second source coupled to the second containment plate applies a second ultrasonic wave thereto such that the second ultrasonic wave propagates parallel to the direction of relative movement.propagates parallel to the direction of relative movement.

  3. Thermomechanical Modelling of Friction Stir Welding

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Schmidt, Henrik Nikolaj Blicher; Tutum, Cem Celal

    2009-01-01

    Friction Stir Welding (FSW) is a fully coupled thermomechanical process and should in general be modelled as such. Basically, there are two major application areas of thermomechanical models in the investigation of the FSW process: i) Analysis of the thermomechanical conditions such as e.g. heat...... generation and local material deformation (often referred to as flow) during the welding process itself. ii) Prediction of the residual stresses that will be present in the joint structure post to welding. While the former in general will call for a fully-coupled thermomechanical procedure, however...... for the FSW process at hand, the heat generation must either be prescribed analytically or based on a fully coupled analysis of the welding process itself. Along this line, a recently proposed thermal-pseudo-mechanical model is presented in which the temperature dependent yield stress of the weld material...

  4. Friction stir welding of copper alloys

    Institute of Scientific and Technical Information of China (English)

    Liu Shuhua; Liu Meng; Wang Deqing; Xu Zhenyue

    2007-01-01

    Copper plates,brass plates and copper/brass plates were friction stir welded with various parameters. Experimental results show that the microstructure of the weld is characterized by its much finer grains as contrasted with the coarse grains of parent materials and the heat-affected zones are very narrow. The microhardness of the copper weld is a little higher than that of parent plate. The microhardness of brass weld is about 25% higher than that of parent material. The tensile strength of copper joints increases with increasing welding speed in the test range. The range of parameters to obtain good welds for copper is much wider than that for brass. When different materials were welded, the position of copper plate before welding affected the quality of FSW joints. If the copper plate was put on the advancing side of weld, the good quality of weld could be got under proper parameters.

  5. High-rate anaerobic co-digestion of kraft mill fibre sludge and activated sludge by CSTRs with sludge recirculation.

    Science.gov (United States)

    Ekstrand, Eva-Maria; Karlsson, Marielle; Truong, Xu-Bin; Björn, Annika; Karlsson, Anna; Svensson, Bo H; Ejlertsson, Jörgen

    2016-10-01

    Kraft fibre sludge from the pulp and paper industry constitutes a new, widely available substrate for the biogas production industry, with high methane potential. In this study, anaerobic digestion of kraft fibre sludge was examined by applying continuously stirred tank reactors (CSTR) with sludge recirculation. Two lab-scale reactors (4L) were run for 800days, one on fibre sludge (R1), and the other on fibre sludge and activated sludge (R2). Additions of Mg, K and S stabilized reactor performance. Furthermore, the Ca:Mg ratio was important, and a stable process was achieved at a ratio below 16:1. Foaming was abated by short but frequent mixing. Co-digestion of fibre sludge and activated sludge resulted in more robust conditions, and high-rate operation at stable conditions was achieved at an organic loading rate of 4g volatile solids (VS)L(-1)day(-1), a hydraulic retention time of 4days and a methane production of 230±10NmL per g VS.

  6. High-rate anaerobic co-digestion of kraft mill fibre sludge and activated sludge by CSTRs with sludge recirculation.

    Science.gov (United States)

    Ekstrand, Eva-Maria; Karlsson, Marielle; Truong, Xu-Bin; Björn, Annika; Karlsson, Anna; Svensson, Bo H; Ejlertsson, Jörgen

    2016-10-01

    Kraft fibre sludge from the pulp and paper industry constitutes a new, widely available substrate for the biogas production industry, with high methane potential. In this study, anaerobic digestion of kraft fibre sludge was examined by applying continuously stirred tank reactors (CSTR) with sludge recirculation. Two lab-scale reactors (4L) were run for 800days, one on fibre sludge (R1), and the other on fibre sludge and activated sludge (R2). Additions of Mg, K and S stabilized reactor performance. Furthermore, the Ca:Mg ratio was important, and a stable process was achieved at a ratio below 16:1. Foaming was abated by short but frequent mixing. Co-digestion of fibre sludge and activated sludge resulted in more robust conditions, and high-rate operation at stable conditions was achieved at an organic loading rate of 4g volatile solids (VS)L(-1)day(-1), a hydraulic retention time of 4days and a methane production of 230±10NmL per g VS. PMID:27453288

  7. Fundamentals of friction stir spot welding

    Science.gov (United States)

    Badarinarayan, Harsha

    The recent spike in energy costs has been a major contributor to propel the use of light weight alloys in the transportation industry. In particular, the automotive industry sees benefit in using light weight alloys to increase fuel efficiency and enhance performance. In this context, light weight design by replacing steel with Al and/or Mg alloys have been considered as promising initiatives. The joining of structures made of light weight alloys is therefore very important and calls for more attention. Friction Stir Spot Welding (FSSW) is an evolving technique that offers several advantages over conventional joining processes. The fundamentals aspects of FSSW are systematically studied in this dissertation. The effects and influence of process inputs (weld parameters and tool geometry) on the process output (weld geometry and static strength) is studied. A Design of Experiments (DoE) is carried out to identify the effect of each process parameter on weld strength. It is found that the tool geometry, and in particular the pin profile has a significant role in determining the weld geometry (hook, stir zone size etc.) which in turn influences the failure mode and weld strength. A novel triangular pin tool geometry is proposed that suppresses the hook formation and produces welds with twice the static strength as those produced with conventional cylindrical pin tools. An experimental and numerical approach is undertaken to understand the effect of pin geometry on the material flow and failure mechanism of spot welds. In addition, key practical issues have been addressed such as quantification of tool life and a methodology to control tool plunge depth during welding. Finally, by implementing the findings of this dissertation, FSSW is successfully performed on a closure panel assembly for an automotive application.

  8. Anaerobic azo dye reduction

    OpenAIRE

    Zee, van der, KG Kristoffer

    2002-01-01

    Azo dyes, aromatic moieties linked together by azo (-N=N-) chromophores, represent the largest class of dyes used in textile-processing and other industries. The release of these compounds into the environment is undesirable, not only because of their colour, but also because many azo dyes and their breakdown products are toxic and/or mutagenic to life. To remove azo dyes from wastewater, a biological treatment strategy based on anaerobic reduction of the azo dyes, followed by aerobic transfo...

  9. Textures in Single-Crystal Aluminum Friction Stir Spot Welds

    Science.gov (United States)

    Shibayanagi, Toshiya; Gerlich, Adrian P.; Kashihara, Keizo; North, Thomas H.

    2009-04-01

    The present article examines the textural features produced during friction stir spot welding of single-crystal aluminum sheet. The crystal has the {111} plane perpendicular to the normal direction (ND) of the sheet, and the leftFriction stir spot welding was carried out using a rotation speed of 1500 rpm and a dwell time of 2 seconds, and completed spot welds were characterized using a combination of optical microscopy and electron backscatter diffraction (EBSD). The EBSD measurements indicate there are no significant changes in orientation in locations more than 840 μm from the stir-zone extremity. The orientation distribution in the thermomechanically-affected zone (TMAZ) region conformed with the {110}⊥ND orientation within 580 μm of the stir-zone extremity. In the location immediately adjacent to the stir-zone extremity, there was a deviation from the {110}//ND orientation due to a combination of compressive loading perpendicular to the stir-zone boundary and shear loading in the direction of tool rotation. It is suggested a {111}⊥ND texture in the stir zone is associated with material flow imposed by the thread on the rotating pin.

  10. In-process discontinuity detection during friction stir welding

    Science.gov (United States)

    Shrivastava, Amber

    The objective of this work is to develop a method for detecting the creation of discontinuities (e.g., voids) during friction stir welding. Friction stir welding is inherently cost-effective, however, the need for significant weld inspection can make the process cost-prohibitive. A new approach to weld inspection is required -- where an in-situ characterization of weld quality can be obtained, reducing the need for post-process inspection. Friction stir welds with discontinuity and without discontinuity were created. In this work, discontinuities are generated by reducing the friction stir tool rotation frequency and increasing the tool traverse speed in order to create "colder" welds. During the welds, forces are measured. Discontinuity sizes for welds are measured by computerized tomography. The relationship between the force transients and the discontinuity sizes indicate that the force measurement during friction stir welding can be effectively used for detecting discontinuities in friction stir welds. The normalized force transient data and normalized discontinuity size are correlated to develop a criterion for discontinuity detection. Additional welds are performed to validate the discontinuity detection method. The discontinuity sizes estimated by the force measurement based method are in good agreement with the discontinuity sizes measured by computerized tomography. These results show that the force measurement based discontinuity detection model method can be effectively used to detect discontinuities during friction stir welding.

  11. EVALUATION OF A TWO-STAGE TREATMENT OF DOMESTIC SEWAGE WITH ANAEROBIC-AEROBIC MICROBIAL FILM

    OpenAIRE

    A.Mesdaghinia

    1986-01-01

    The objective of this research was to study the feasibility of a two stage continuous system employing anaerobic-aerobic microbial film for domestic wastewater treatment and the effect of iron on the behavior of sulfate reducing bacteria in anaerobic metabolism. A bench scale system with an anaerobic filter followed by aerobic fixed units used plastic media and was operated in up flow manner with hydraulic detention times of 6 hours, whereas the aerobic unit utilized diffused aeration. Raw do...

  12. Effect of Solids Retention Time on the Denitrification Potential of Anaerobically Digested Swine Waste

    Science.gov (United States)

    Kinyua, Maureen Njoki

    Three continuously stirred tank reactors (CSTR) were operated in semi continuous mode treating swine waste using anaerobic digestion. The reactors were used to test the effect of solid retention time (SRT) on CH4 yield, total ammonia nitrogen (TAN) concentrations, % volatile solids (VS), chemical oxygen demand (COD) and volatile fatty acids (VFA) removal, readily biodegradable COD concentration and the denitrification potential for the effluent in a biological nutrient removal (BNR) system. During Phase I of the study, the three reactors were operated at the same 28 day SRT for 16 weeks. SRTs were then changed during the 12 week Phase II period. The SRTs studied were 14, 21 and 28 days, with the same organic loading rate (OLR) of 1.88 ± 0.2 kg VS/ m3-day. The reactor with the lowest SRT (14 days) had the highest VS and VFA removal at 73.6 and 67.6% and lowest TAN concentration at 0.78 g NH4+-N/L, followed by the 21 day and 28 day reactors. This was likely due to the fast microbial growth rates and substrate utilization rates in this reactor compared with the other two. The 14 day reactor had the highest CH4 yield at 0.33 m3CH 4/kg VS added and readily biodegradable COD concentration at 0.93 COD/L. The variations in CH4 yield and readily biodegradable COD concentrations between the three reactors were not statistically significant. Denitrification potential for the reactors was 1.20, 0.73 and 0.56 g COD/g N for 14, 21 and 28 day reactors, respectively, and the differences were statistically significant. None of the reactors achieved a denitrification potential of 5 g COD/g N, the amount required to use effluent of anaerobically digested swine waste as an internal carbon source in a BNR. This was attributed to operating conditions such as freezing and thawing of the raw swine waste that maximized CH4 yield and lowered the readily biodegradable COD concentration. In addition the 14 day reactor had low TAN concentrations thus increasing the denitrification potential

  13. 用于牛粪液厌氧消化的推流式和完全混合式反应器性能研究%Performance evaluation of anaerobic digestion of dairy manure in plug flow reactor and continuous stirred tank reactor

    Institute of Scientific and Technical Information of China (English)

    李荣平; 李秀金; Shulin Chen

    2007-01-01

    对推流式反应器(PFR)和完全混合式反应器(CSTR)用于牛粪液厌氧消化的性能进行了比较研究.在中温35℃下,对进料浓度40、80和128 g/L的3种牛粪液分别进行了试验.结果表明,CSTR比PFR具有更好的去除VS(挥发性固体)和产生物气的性能,在进料浓度为40、80和128 g/L时,CSTR中VS去除率比PFR中分别提高了17.4%~21.5%,3.9%~21.5%和0.5%~5.3%.在最优进料浓度80 g/L下,CSTR获得了最高的容积产气率和单位VS产气量,比PFR中提高了9.8%~25.9%.研究认为,CSTR中的搅拌作用加强了微生物与物料之间物质的传递,提高了降解去除有机物和产生物气的消化效果.因此,在牛粪液厌氧消化时,推荐使用CSTR反应器.

  14. Effects of mixing on methane production during thermophilic anaerobic digestion of manure

    DEFF Research Database (Denmark)

    Kaparaju, Prasad Laxmi-Narasimha; Buendia, Inmaculada M.; Ellegaard, Lars;

    2008-01-01

    /feeding) on methane production was investigated in three lab-scale continuously stirred tank reactors. On comparison to continuous mixing, intermittent and minimal mixing strategies improved methane productions by 1.3% and 12.5%, respectively. Pilot-scale studies also supported the lab-scale results with an average 7...

  15. Friction stir processing on high carbon steel U12

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, S. Yu., E-mail: tsy@ispms.ru; Rubtsov, V. E., E-mail: rvy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Melnikov, A. G., E-mail: melnikov-ag@tpu.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    Friction stir processing (FSP) of high carbon steel (U12) samples has been carried out using a milling machine and tools made of cemented tungsten carbide. The FSP tool has been made in the shape of 5×5×1.5 mm. The microstructural characterization of obtained stir zone and heat affected zone has been carried out. Microhardness at the level of 700 MPa has been obtained in the stir zone with microstructure consisting of large grains and cementitte network. This high-level of microhardness is explained by bainitic reaction developing from decarburization of austenitic grains during cementite network formation.

  16. Applications of Friction Stir Processing during Engraving of Soft Materials

    Directory of Open Access Journals (Sweden)

    V. Kočović

    2015-12-01

    Full Text Available Friction stir processing has extensive application in many technological operations. Application area of friction stir processing can be extended to the processing of non-metallic materials, such as wood. The paper examines the friction stir processing contact between a specially designed hard and temperature-resistant rotating tool and workpiece which is made of wood. Interval of speed slip and temperature level under which the combustion occurs and carbonization layer of soft material was determined. The results of the research can be applied in technological process of wood engraving operations which may have significant technological and aesthetic effects.

  17. Friction stir processing on high carbon steel U12

    International Nuclear Information System (INIS)

    Friction stir processing (FSP) of high carbon steel (U12) samples has been carried out using a milling machine and tools made of cemented tungsten carbide. The FSP tool has been made in the shape of 5×5×1.5 mm. The microstructural characterization of obtained stir zone and heat affected zone has been carried out. Microhardness at the level of 700 MPa has been obtained in the stir zone with microstructure consisting of large grains and cementitte network. This high-level of microhardness is explained by bainitic reaction developing from decarburization of austenitic grains during cementite network formation

  18. Stir frit microextraction: an approach for the determination of volatile compounds in water by headspace-gas chromatography/mass spectrometry.

    Science.gov (United States)

    Roldán-Pijuán, M; Alcudia-León, M C; Lucena, R; Cárdenas, S; Valcárcel, M

    2012-08-17

    In this article, a novel extraction approach, called stir frit microextraction (SFME), is presented. The new approach combines the extractive capability of a commercial polyethylene frit (20 μm of pore size) with the stirring in the same device. The proposed extraction procedure allows the determination of benzene, toluene, ethylbenzene, xylene isomers and styrene (BTEX-S) in water samples. The analytes are extracted on the frit, previously conditioned with methanol, under continuous magnetic stirring. Once the extraction is performed, the frit is transferred to a headspace vial where the volatile compounds are desorbed from the frit (90 °C, 30 min) in a headspace module and analyzed by gas chromatography/mass spectrometry. Headspace conditions (time and temperature) as well as extraction conditions (ionic strength, type of stirring, extraction time, stirring rate and sample volume) have been systematically evaluated. The method was characterized on the basis of its linearity, sensitivity and precision. Limits of detection were in the range from 18 ng/L (o-xylene) to 65 ng/L (benzene). The repeatability of the proposed method, expressed as relative standard deviation (RSD) varied between 3.8% (toluene) and 8.2% (m- and p-xylene). The recovery study carried out in different water samples provided an average recovery of 94%, which demonstrated the applicability of the stir frit microextraction for the analytical problem selected in this article. PMID:22771255

  19. Friction-Stir-Welded and Spin-Formed End Domes for Cryogenic Tanks

    Science.gov (United States)

    Hales, S. J.; Tayon, W. A.; Domack, M. S.

    2012-01-01

    Manufacturing of single-piece end domes for cryogenic tanks employing spin forming of tailored, friction-stir-welded blanks of Al-Li alloy 2195 plate offers cost and reliability benefits. The introduction of plastic deformation into a friction stir weld is a unique feature of the proposed manufacturing route. This investigation addressed abnormal grain growth [AGG] within the friction stir weldments during postfabrication processing of a prototype dome. The phenomenon of AGG was observed during the solution heat treatment [SHT] phase of T8 tempering and is a major concern for meeting specifications. Such abrupt microstructural transitions can be detrimental to notch-sensitive mechanical properties, such as ductility and/or fracture toughness. If the issue of AGG cannot be resolved, then the acceptance of this approach as a viable manufacturing route may be in jeopardy. The innovative approach adopted in this investigation was the insertion of a stand-alone, Intermediate Annealing Treatment [IAT] between the spin forming and T8 processing operations. A simple, recovery annealing step was deemed to be the most readily-scalable solution when fabricating thin-walled, ellipsoidal domes. The research effort culminated in the development of an effective IAT, which resulted in a significant decrease in AGG following SHT. The processing philosophy adopted in designing the IAT is outlined and the microstructural reasons for success are discussed. The analytical results presented are consistent with promoting continuous grain growth during the IAT, thereby suppressing AGG during the SHT.

  20. The Effect of Tool Position for Aluminum and Copper at High Rotational Friction Stir Welding

    Directory of Open Access Journals (Sweden)

    Recep Çakır

    2015-12-01

    Full Text Available Friction Stir Welding (FSW is a solid state welding process used for welding similar and dissimilar materials. This welding technique allows welding of Aluminum alloys which present difficulties in fusion joining and allows different material couples to be welded continuously. In this study, 1050 aluminum alloy and commercially pure copper to increase heat input were produced at high rotation rate (2440 rev/min with four different pin position (0-1-1.5-2 mm and three different weld speeds (20-30-50 mm/min by friction stir welding. The influence of welding parameters on microstructure and mechanical properties of the joints was investigated. Tensile and bending tests and microhardness measurements were used to determine of mechanical properties. Nugget zone microstructures were investigated by optical microscope and scanning electron microscope (SEM and were analyzed in energy-dispersive X-ray spectroscopy (EDX. Depending on the XRD analysis results intermetallic phase was observed to form in the interfacial region. In the tensile test results, 83.55% weld performance was obtained in the friction stir welding merge of Al-Cu.

  1. New perspectives in anaerobic digestion

    DEFF Research Database (Denmark)

    van Lier, J.B.; Tilche, A.; Ahring, Birgitte Kiær;

    2001-01-01

    requirements. In fact, most advances were achieved during the last three decades, when high-rate reactor systems were developed and a profound insight was obtained in the microbiology of the anaerobic communities. This insight led to a better understanding of anaerobic treatment and, subsequently, to a broader......The IWA specialised group on anaerobic digestion (AD) is one of the oldest working groups of the former IAWQ organisation. Despite the fact that anaerobic technology dates back more than 100 years, the technology is still under development, adapting novel treatment systems to the modern...

  2. A novel milliliter-scale chemostat system for parallel cultivation of microorganisms in stirred-tank bioreactors.

    Science.gov (United States)

    Schmideder, Andreas; Severin, Timm Steffen; Cremer, Johannes Heinrich; Weuster-Botz, Dirk

    2015-09-20

    A pH-controlled parallel stirred-tank bioreactor system was modified for parallel continuous cultivation on a 10 mL-scale by connecting multichannel peristaltic pumps for feeding and medium removal with micro-pipes (250 μm inner diameter). Parallel chemostat processes with Escherichia coli as an example showed high reproducibility with regard to culture volume and flow rates as well as dry cell weight, dissolved oxygen concentration and pH control at steady states (n=8, coefficient of variation bioreactor on a liter-scale. Thus, parallel and continuously operated stirred-tank bioreactors on a milliliter-scale facilitate timesaving and cost reducing steady state studies with microorganisms. The applied continuous bioreactor system overcomes the drawbacks of existing miniaturized bioreactors, like poor mass transfer and insufficient process control.

  3. On the kinetics of anaerobic power

    Directory of Open Access Journals (Sweden)

    Moxnes John F

    2012-07-01

    Full Text Available Abstract Background This study investigated two different mathematical models for the kinetics of anaerobic power. Model 1 assumes that the work power is linear with the work rate, while Model 2 assumes a linear relationship between the alactic anaerobic power and the rate of change of the aerobic power. In order to test these models, a cross country skier ran with poles on a treadmill at different exercise intensities. The aerobic power, based on the measured oxygen uptake, was used as input to the models, whereas the simulated blood lactate concentration was compared with experimental results. Thereafter, the metabolic rate from phosphocreatine break down was calculated theoretically. Finally, the models were used to compare phosphocreatine break down during continuous and interval exercises. Results Good similarity was found between experimental and simulated blood lactate concentration during steady state exercise intensities. The measured blood lactate concentrations were lower than simulated for intensities above the lactate threshold, but higher than simulated during recovery after high intensity exercise when the simulated lactate concentration was averaged over the whole lactate space. This fit was improved when the simulated lactate concentration was separated into two compartments; muscles + internal organs and blood. Model 2 gave a better behavior of alactic energy than Model 1 when compared against invasive measurements presented in the literature. During continuous exercise, Model 2 showed that the alactic energy storage decreased with time, whereas Model 1 showed a minimum value when steady state aerobic conditions were achieved. During interval exercise the two models showed similar patterns of alactic energy. Conclusions The current study provides useful insight on the kinetics of anaerobic power. Overall, our data indicate that blood lactate levels can be accurately modeled during steady state, and suggests a linear

  4. Friction stir processing (FSP: refining microstructures and improving properties

    Directory of Open Access Journals (Sweden)

    McNelley, T. R.

    2010-12-01

    Full Text Available FSP is reviewed as an allied technology of friction stir welding (FSW and additional considerations such as processing pattern and step over distance are introduced. The application of FSP to continuously cast AA5083 material in the as-cast condition is described and the extent of grain refinement and homogenization of microstructure is documented. The FSP-induced superplastic response of this material is compared to the response of conventionally processed AA5083 and the improved ductility of the FSP material is related to grain refinement and microstructure homogenization.

    Se revisa el procesado por fricción batida (FSP como un aliado tecnológico de la soldadura por fricción batida (FSW y se introducen consideraciones adicionales tales como el patrón de procesado y el paso en función de la distancia. Se describe la aplicación de FSP al material AA5083 por colada continua en la condición de colada y se documenta el grado de afino de grano y homogeneización de la microestructura. La respuesta de superplasticidad inducida por FSP se compara con la respuesta de la aleación AA5083 procesada convencionalmente y la mejora de ductilidad del material FSP se relaciona con el afino de grano y la homogeneización de la microestructura.

  5. Continuous wok-frying of vegetables:

    DEFF Research Database (Denmark)

    Adler-Nissen, Jens

    2007-01-01

    A new process for continuous stir-frying in industrial scale has been developed for producing convenience high-quality vegetables. The understanding of the dynamics of heat and mass transfer during stir-frying is crucial for up-scaling and controlling the process. The effect of different factors...... of loosely bound water from the vegetables allows the products to be frozen and re-heated without drip loss, and it is also an advantage when using them as ingredients in composite foods, such as pâtés. Examples developed by a professional chef indicate that he saved up to half of the cooking time compared...

  6. Reconstruction of Clear-PEM data with STIR

    CERN Document Server

    Martins, M V; Rodrigues, P; Trindade, A; Oliveira, N; Correia, M; Cordeiro, H; Ferreira, N C; Varela, J; Almeida, P

    2006-01-01

    The Clear-PEM scanner is a device based on planar detectors that is currently under development within the Crystal Clear Collaboration, at CERN. The basis for 3D image reconstruction in Clear-PEM is the software for tomographic image reconstruction (STIR). STIR is an open source object-oriented library that efficiently deals with the 3D positron emission tomography data sets. This library was originally designed for the traditional cylindrical scanners. In order to make its use compatible with planar scanner data, new functionalities were introduced into the library's framework. In this work, Monte Carlo simulations of the Clear-PEM scanner acquisitions were used as input for image reconstruction with the 3D OSEM algorithm available in STIR. The results presented indicate that dual plate PEM data can be accurately reconstructed using the enhanced STIR framework.

  7. STIR applied to the evaluation of dermatologic lesions

    International Nuclear Information System (INIS)

    This paper reports on the evaluation of dermatologic disorders using the short-inversion time-inversion-recovery (STIR) technique. The series included 20 cases, including five cavernous hemangiomas, three lymphangiomas, three melanomas, and nine others. Pulse sequences for STIR were TR/IR/TE = 1,500/100/30--40 (repetition time/inversion-recovery time/echo time, msec) 0.5 and 0.6 T) and TR/IR/TE = 1,500--2,000/200/22 (1.5 T). The images were evaluated for the extent and nature of the lesions. In all cases, STIR was valuable in discriminating lesions from subcutaneous fat tissues; in all cases of cavernous hemangioma and lymphangioma (in which lesions were shown by areas of high intensity) and in children (in whom Gd-DTPA studies were not applicable). Two melanomas were isointense in STIR as well as in T1- and T2-weighted images

  8. Low temperature friction stir welding of P91 steel

    Directory of Open Access Journals (Sweden)

    Prasad Rao Kalvala

    2016-08-01

    Full Text Available Bead-on-plate friction stir welds were made on P91 alloy with low and high rotational speeds (100 and 1000 RPM to study their effects on weld microstructural changes and impression creep behavior. Temperatures experienced by the stir zone were recorded at the weld tool tip. Different zones of welds were characterized for their microstructural changes, hardness and creep behavior (by impression creep tests. The results were compared with submerged arc fusion weld. Studies revealed that the stir zone temperature with 100 RPM was well below Ac1 temperature of P91 steel while it was above Ac3 with 1000 RPM. The results suggest that the microstructural degradation in P91 welds can be controlled by low temperature friction stir welding technique.

  9. Friction Stir Processing for Efficient Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Mr. Christopher B. Smith; Dr. Oyelayo Ajayi

    2012-01-31

    Friction at contacting surfaces in relative motion is a major source of parasitic energy loss in machine systems and manufacturing processes. Consequently, friction reduction usually translates to efficiency gain and reduction in energy consumption. Furthermore, friction at surfaces eventually leads to wear and failure of the components thereby compromising reliability and durability. In order to reduce friction and wear in tribological components, material surfaces are often hardened by a variety of methods, including conventional heat treatment, laser surface hardening, and thin-film coatings. While these surface treatments are effective when used in conjunction with lubrication to prevent failure, they are all energy intensive and could potentially add significant cost. A new concept for surface hardening of metallic materials and components is Friction Stir Processing (FSP). Compared to the current surface hardening technologies, FSP is more energy efficient has no emission or waste by products and may result in better tribological performance. FSP involves plunging a rotating tool to a predetermined depth (case layer thickness) and translating the FSP tool along the area to be processed. This action of the tool produces heating and severe plastic deformation of the processed area. For steel the temperature is high enough to cause phase transformation, ultimately forming hard martensitic phase. Indeed, FSP has been used for surface modification of several metals and alloys so as to homogenize the microstructure and refine the grain size, both of which led to improved fatigue and corrosion resistance. Based on the effect of FSP on near-surface layer material, it was expected to have beneficial effects on friction and wear performance of metallic materials. However, little or no knowledge existed on the impact of FSP concerning friction and wear performance the subject of the this project and final report. Specifically for steel, which is the most dominant

  10. Fatigue Strength of Friction Stir Welded Joints in Aluminium

    OpenAIRE

    Ericsson, Mats

    2005-01-01

    Solid state Friction stir welding (FSW) is of major interest in the welding of aluminium since it improves the joint properties. Many applications where Al-alloys are used are subject to varying load conditions, making fatigue failure a critical issue. In the scope of this thesis, the fatigue performance of friction stir welded AlMgSi-alloy 6082 has been investigated. Static and dynamic properties of different joint configurations and welds produced with varying process parameters have been d...

  11. Friction stir processing / welding of NiAl bronzes

    OpenAIRE

    McNelley, Terry; Menon, Sarath

    2016-01-01

    Research Project Friction stir processing (FSP) of as-cast NiAl bronzes converts the as-cast microstructure to a wrought condition in the volume of materials subjected to the process. This results in improved properties in the absence of component shape change. With the development of portable systems, friction stir processing may enable in situ repair of defective components such as propellers and thus avoid expensive procedures such as dry docking for such repairs.

  12. The effect of mechanical stirring on horizontal convection

    OpenAIRE

    R. Tailleux; Rouleau, L

    2010-01-01

    An important experimental result, as yet poorly understood, is that mechanical stirring can significantly enhance the strength of horizontal convection. A contentious issue is whether this necessarily implies that the mechanical stirring replaces the buoyancy forcing as the main source of energy driving the observed overturning circulation, as has been suggested for the Atlantic meridional overturning circulation (AMOC). In this paper, rigorous energetics considerations and idealized numerica...

  13. Anaerobic wastewater treatment using anaerobic baffled bioreactor: a review

    Science.gov (United States)

    Hassan, Siti; Dahlan, Irvan

    2013-09-01

    Anaerobic wastewater treatment is receiving renewed interest because it offers a means to treat wastewater with lower energy investment. Because the microorganisms involved grow more slowly, such systems require clever design so that the microbes have sufficient time with the substrate to complete treatment without requiring enormous reactor volumes. The anaerobic baffled reactor has inherent advantages over single compartment reactors due to its circulation pattern that approaches a plug flow reactor. The physical configuration of the anaerobic baffled reactor enables significant modifications to be made; resulting in a reactor which is proficient of treating complex wastewaters which presently require only one unit, ultimately significant reducing capital costs. This paper also concerns about mechanism, kinetic and hydrodynamic studies of anaerobic digestion for future application of the anaerobic baffled reactor for wastewater treatment.

  14. Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste.

    Science.gov (United States)

    Gou, Chengliu; Yang, Zhaohui; Huang, Jing; Wang, Huiling; Xu, Haiyin; Wang, Like

    2014-06-01

    Anaerobic co-digestion of waste activated sludge and food waste was investigated semi-continuously using continuously stirred tank reactors. Results showed that the performance of co-digestion system was distinctly influenced by temperature and organic loading rate (OLR) in terms of gas production rate (GPR), methane yield, volatile solids (VS) removal efficiency and the system stability. The highest GPR at 55 °C was 1.6 and 1.3 times higher than that at 35 and 45 °C with the OLR of 1 g VSL(-1)d(-1), and the corresponding average CH₄ yields were 0.40, 0.26 and 0.30 L CH₄ g(-1)VSadded, respectively. The thermophilic system exhibited the best load bearing capacity at extremely high OLR of 7 g VSL(-1)d(-1), while the mesophilic system showed the best process stability at low OLRs (Temperature had a more remarkable effect on the richness and diversity of microbial populations than the OLR.

  15. Advanced anaerobic bioconversion of lignocellulosic waste for the melissa life support system

    Science.gov (United States)

    Lissens, G.; Verstraete, W.; Albrecht, T.; Brunner, G.; Creuly, C.; Dussap, G.; Kube, J.; Maerkl, H.; Lasseur, C.

    The feasibility of nearly-complete conversion of lignocellulosic waste (70% food crops, 20% faecal matter and 10% green algae) into biogas was investigated in the context of the MELiSSA loop (Micro-Ecological Life Support System Alternative). The treatment comprised a series of processes, i.e. a mesophilic laboratory scale CSTR (continuously stirred tank reactor), an upflow biofilm reactor, a fiber liquefaction reactor employing the rumen bacterium Fibrobacter succinogenes and a hydrothermolysis system in near-critical water. By the one-stage CSTR, a biogas yield of 75% with a specific biogas production of 0.37 l biogas g-1 VSS (volatile suspended solids) added at a RT (hydraulic retention time) of 20-25 d was obtained. Biogas yields could not be increased considerably at higher RT, indicating the depletion of readily available substrate after 25 d. The solids present in the CSTR-effluent were subsequently treated in two ways. Hydrothermal treatment (T ˜ 310-350C, p ˜ 240 bar) resulted in effective carbon liquefaction (50-60% without and 83% with carbon dioxide saturation) and complete sanitation of the residue. Application of the cellulolytic Fibrobacter succinogenes converted remaining cellulose contained in the CSTR-effluent into acetate and propionate mainly. Subsequent anaerobic digestion of the hydrothermolysis and the Fibrobacter hydrolysates allowed conversion of 48-60% and 30%, respectively. Thus, the total process yielded biogas corresponding with conversions up to 90% of the original organic matter. It appears that particularly mesophilic digestion in conjunction with hydrothermolysis offers interesting features for (nearly) the MELiSSA system. The described additional technologies show that complete and hygienic carbon and energy recovery from human waste within MELiSSA is technically feasible, provided that the extra energy needed for the thermal treatment is guaranteed.

  16. Economic viability of anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Wellinger, A. [INFOENERGIE, Ettenhausen (Switzerland)

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  17. Anaerobic Digestion of Piggery Waste

    NARCIS (Netherlands)

    Velsen, van A.F.M.

    1981-01-01

    Anaerobic digestion is a biological process by which organic matter is converted to methane and carbon dioxide by microbes in the absence of air (oxygen). In nature, anaerobic conversions occur at all places where organic material accumulates and the supply of oxygen is deficient, e.g. in marshes an

  18. Magnetic Properties of Friction Stir Processed Composite

    Science.gov (United States)

    Das, Shamiparna; Martinez, Nelson Y.; Das, Santanu; Mishra, Rajiv S.; Grant, Glenn J.; Jana, Saumyadeep; Polikarpov, Evgueni

    2016-07-01

    Of the many existing inspection or monitoring systems, each has its own advantages and drawbacks. These systems are usually comprised of semi-remote sensors that frequently cause difficulty in reaching complex areas of a component. This study proposes to overcome that difficulty by developing embedded functional composites, so that embedding can be achieved in virtually any component part and periodically can be interrogated by a reading device. The "reinforcement rich" processed areas can then be used to record properties such as strain, temperature, and stress state, to name a few, depending on the reinforcement material. Friction stir processing was used to fabricate a magnetostrictive composite by embedding galfenol particles into a nonmagnetic aluminum matrix. The aim was to develop a composite that produces strain in response to a varying magnetic field. Reinforcements were distributed uniformly in the matrix. Magnetization curves were studied using a vibrating sample magnetometer. A simple and cost-effective setup was developed to measure the magnetostrictive strain of the composites. Important factors affecting the magnetic properties were identified and the processing route was modified to improve the magnetic response.

  19. Impeller Submergence Depth for Stirred Tanks

    Directory of Open Access Journals (Sweden)

    Thiyam T. Devi

    2011-11-01

    Full Text Available Impeller submergence governs the performance of mixing tanks employed in oxygen transfer operation. Present work experimentally investigates the effect of impeller submergence depths on oxygen transfer and corresponding power consumption. It has been found that at higher range of impeller submergence, mixing tanks consume less power and gives higher values of oxygen transfer coefficient. Optimal range of submergence depth is 0.7 to 0.9 times the impeller diameter. Copyright ©2011 BCREC UNDIP. All rights reserved.(Received: 4th March 2011; Revised: 12nd July 2011; Accepted: 14th July 2011[How to Cite: T.T. Devi, A.P. Sinha, M. Thakre, and B. Kumar. (2011. Impeller Submergence Depth for Stirred Tanks. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (2: 123-128. doi:10.9767/bcrec.6.2.826.123-128][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.2.826.123-128 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/826] | View in 

  20. Inspecting Friction Stir Welding using Electromagnetic Probes

    Science.gov (United States)

    Kinchen, David G.

    2004-01-01

    A report describes the use of advanced electromagnetic probes to measure the dimensions, the spatial distribution of electrical conductivity, and related other properties of friction stir welds (FSWs) between parts made of the same or different aluminum alloy(s). The probes are of the type described in in another Tech Brief. To recapitulate: A probe of this type is essentially an eddy-current probe that includes a primary (driver) winding that meanders and multiple secondary (sensing) windings that meander along the primary winding. Electrical conductivity is commonly used as a measure of heat treatment and tempering of aluminum alloys, but prior to the development of these probes, the inadequate sensitivity and limited accuracy of electrical-conductivity probes precluded such use on FSWs between different aluminum alloys, and the resolution of those probes was inadequate for measurement of FSW dimensions with positions and metallurgical properties. In contrast, the present probes afford adequate accuracy and spatial resolution for the purposes of measuring the dimensions of FSW welds and correlating spatially varying electrical conductivities with metallurgical properties, including surface defects.

  1. Nondestructive Ultrasonic Inspection of Friction Stir Welds

    Science.gov (United States)

    Tabatabaeipour, M.; Hettler, J.; Delrue, S.; Van Den Abeele, K.

    Friction Stir Welding (FSW) is a relatively new solid-state welding procedure developed at The Welding Institute (TWI-UK) and the technique is widely employed for welding aluminum alloys in various applications. In order to examine the quality of the welds and to detect a variety of welding flaws such as wormholes and root-flaws, it is required to develop a methodical inspection technique that can be used for the identification and localization of such defects. The most prevalent and risky defect in this type of welding is the barely visible root flaw with a length varying from 100-700 μm. Due to the extreme characteristics of the flaw, off-the-shelf ultrasonic weld inspection methods are not always able to readily detect this type of minute defect feature. Here, we propose a novel approach to characterize root flaws using an oblique incident ultrasonic C-scan backscattering analysis. The implementation consists of an immersion ultrasonic testing method in pulse echo (i.e. backscatter) mode with a 3.5 MHz transducer, and makes use of an empirical procedure to engender of a shear wave dominated excitation at the root surface, and to properly gate the received signal for root flaw examination. By scanning the surface above the welded component, a C-scan image displaying the backscatter response from the root surface of the nugget zone can be obtained which allows a simple interpretation of the root flaw status of the weld.

  2. Effect of Friction Stir Welding Parameters on the Mechanical and Microstructure Properties of the Al-Cu Butt Joint

    Directory of Open Access Journals (Sweden)

    Sare Celik

    2016-05-01

    Full Text Available Friction Stir Welding (FSW is a solid-state welding process used for welding similar and dissimilar materials. FSW is especially suitable to join sheet Al alloys, and this technique allows different material couples to be welded continuously. In this study, 1050 Al alloys and commercially pure Cu were produced at three different tool rotation speeds (630, 1330, 2440 rpm and three different tool traverse speeds (20, 30, 50 mm/min with four different tool position (0, 1, 1.5, 2 mm by friction stir welding. The influence of the welding parameters on the microstructure and mechanical properties of the joints was investigated. Tensile and bending tests and microhardness measurements were used to determine the mechanical properties. The microstructures of the weld zone were investigated by optical microscope and scanning electron microscope (SEM and were analyzed in an energy dispersed spectrometer (EDS. Intermetallic phases were detected based on the X-ray diffraction (XRD analysis results that evaluated the formation of phases in the weld zone. When the welding performance of the friction stir welded butt joints was evaluated, the maximum value obtained was 89.55% with a 1330 rpm tool rotational speed, 20 mm/min traverse speed and a 1 mm tool position configuration. The higher tensile strength is attributed to the dispersion strengthening of the fine Cu particles distributed over the Al material in the stir zone region.

  3. Texture Analyses of Ti/Al2O3 Nanocomposite Produced Using Friction Stir Processing

    Science.gov (United States)

    Shafiei-Zarghani, Aziz; Kashani-Bozorg, Seyed Farshid; Gerlich, Adrian P.

    2016-11-01

    The texture evolution of Ti/Al2O3 nanocomposite fabricated using friction stir processing (FSP) was investigated at both macroscopic and microscopic levels employing X-ray diffraction and electron backscattering diffraction techniques. The developed textures were compared with ideal shear textures of hexagonal close-packed (hcp) structure, revealing that the fabricated nanocomposite is dominated by the P 1 hcp (fiber { 10bar{1}1} continuous dynamic recrystallization as well as increasing the fraction of high-angle grain boundaries within the developed microstructure.

  4. Assessment Of Joints Using Friction Stir Welding And Refill Friction Stir Spot Welding Methods

    Directory of Open Access Journals (Sweden)

    Lacki P.

    2015-09-01

    Full Text Available FSW (Friction Stir Welding and RFSSW (Refill Friction Stir Spot Welding joints have been increasingly used in industrial practice. They successfully replace fusion-welded, riveted or resistance-welded joints. In the last two decades, dynamic development of this method has stimulated investigations of the fast methods for joint diagnostics. These methods should be non-destructive and easy to be used in technological processes. The methods of assessment of joint quality are expected to detect discontinuities in the structures welded using FSW and FSSW methods. Reliable detection of flaws would substantially extend the range of applications of FSW joints across many sectors of industry, including aviation. The investigations carried out in this paper allowed for characterization of defects present in FSW and RFSSW joints. Causes of these defects were also stressed. An overview of the methodologies for assessment of joint quality was presented. Results of assessment of the quality of joints made of 2024T6 aluminium sheet metal using FSW and RFSSW method were presented.

  5. Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Sabina Luisa Campanelli

    2013-12-01

    Full Text Available Friction Stir Welding (FSW is a solid-state joining process; i.e., no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force.

  6. Continuous dry fermentation of swine manure for biogas production.

    Science.gov (United States)

    Chen, Chuang; Zheng, Dan; Liu, Gang-Jin; Deng, Liang-Wei; Long, Yan; Fan, Zhan-Hui

    2015-04-01

    A down plug-flow anaerobic reactor (DPAR) was designed for the feasibility study on continuous dry fermentation of swine manure without any additional stirring. Using fresh swine manure as the feedstock with TS concentration (w/w) of 20%, 25%, 30%, and 35%, stable volumetric biogas production rates of 2.40, 1.92, 0.911, and 0.644L · (Ld)(-1) and biogas yields of 0.665, 0.532, 0.252, and 0.178 L g(-)(1)VS were obtained respectively, and the TS degradation rates were 46.5%, 45.4%, 53.2%, and 55.6%, respectively. With the increase of feedstock TS concentration, the concentration of ammonia nitrogen grew up to the maximum value of 3500 mg L(-1). Biogas production was obviously inhibited when the concentration of ammonia nitrogen was above 3000 mg L(-1). The maximal volumetric biogas production rate of 2.34 L ·(Ld)(-1) and biogas yield of 0.649 L g(-1)VS were obtained with TS concentration of 25% at 25°C without inhibition. Liquidity experiments showed that TS concentration of digestate could be less than 15.8%, and the flow rate of digestate more than 0.98 m s(-1) when the feedstock TS concentration was less than 35%, which indicated the digestate could be easily discharged from a DPAR. Therefore, it is feasible to conduct a continuous dry fermentation in a DPAR using fresh swine manure as the feedstock with TS concentration less than 35%, whereas the feedstock TS concentration should not exceed 30% to achieve the maximal biogas production rate and biogas yield.

  7. Thermal Stir Welding Development at Marshall Space Flight Center

    Science.gov (United States)

    Ding, Robert J.

    2008-01-01

    Solid state welding processes have become the focus of welding process development at NASA's Marshall Space Flight Center. Unlike fusion weld processes such as tungsten inert gas (TIG), variable polarity plasma arc (VPPA), electron beam (EB), etc., solid state welding processes do not melt the material during welding. The resultant microstructure can be characterized as a dynamically recrystallized morphology much different than the casted, dentritic structure typical of fusion weld processes. The primary benefits of solid state processes over fusion weld processes include superior mechanic properties and the elimination of thermal distortion and residual stresses. These solid state processes attributes have profoundly influenced the direction of advanced welding research and development within the NASA agency. Thermal Stir Welding (TSW) is a new solid state welding process being developed at the Marshall Space Flight Center. Unlike friction stir welding, the heating, stirring and forging elements of the weld process can be decoupled for independent control. An induction coil induces energy into a workpiece to attain a desired plastic temperature. An independently controlled stir rod, captured within non-rotating containment plates, then stirs the plasticized material followed by forging plates/rollers that work the stirred weld joint. The independent control (decoupling) of heating, stirring and forging allows, theoretically, for the precision control of microstructure morphology. The TSW process is being used to evaluate the solid state joining of Haynes 230 for ARES J-2X applications. It is also being developed for 500-in (12.5 mm) thick commercially pure grade 2 titanium for navy applications. Other interests include Inconel 718 and stainless steel. This presentation will provide metallurgical and mechanical property data for these high melting temperature alloys.

  8. Anaerobic fungal populations

    International Nuclear Information System (INIS)

    The development of molecular techniques has greatly broadened our view of microbial diversity and enabled a more complete detection and description of microbial communities. The application of these techniques provides a simple means of following community changes, for example, Ishii et al. described transient and more stable inhabitants in another dynamic microbial system, compost. Our present knowledge of anaerobic gut fungal population diversity within the gastrointestinal tract is based upon isolation, cultivation and observations in vivo. It is likely that there are many species yet to be described, some of which may be non-culturable. We have observed a distinct difference in the ease of cultivation between the different genera, for example, Caecomyes isolates are especially difficult to isolate and maintain in vitro, a feature that is likely to result in the under representation of this genera in culture-based enumerations. The anaerobic gut fungi are the only known obligately anaerobic fungi. For the majority of their life cycles, they are found tightly associated with solid digesta in the rumen and/or hindgut. They produce potent fibrolytic enzymes and grow invasively on and into the plant material they are digesting making them important contributors to fibre digestion. This close association with intestinal digesta has made it difficult to accurately determine the amount of fungal biomass present in the rumen, with Orpin suggesting 8% contribution to the total microbial biomass, whereas Rezaeian et al. more recently gave a value of approximately 20%. It is clear that the rumen microbial complement is affected by dietary changes, and that the fungi are more important in digestion in the rumens of animals fed with high-fibre diets. It seems likely that the gut fungi play an important role within the rumen as primary colonizers of plant fibre, and so we are particularly interested in being able to measure the appearance and diversity of fungi on the plant

  9. Friction Stir Processing of Particle Reinforced Composite Materials

    Directory of Open Access Journals (Sweden)

    Daniel Solomon

    2010-01-01

    Full Text Available The objective of this article is to provide a review of friction stir processing (FSP technology and its application for microstructure modification of particle reinforced composite materials. The main focus of FSP was on aluminum based alloys and composites. Recently, many researchers have investigated this technology for treating other alloys and materials including stainless steels, magnesium, titanium, and copper. It is shown that FSP technology is very effective in microstructure modification of reinforced metal matrix composite materials. FSP has also been used in the processing and structure modification of polymeric composite materials. Compared with other manufacturing processes, friction stir processing has the advantage of reducing distortion and defects in materials. The layout of this paper is as follows. The friction stir processing technology will be presented first. Then, the application of this technology in manufacturing and structure modification of particle reinforced composite materials will be introduced. Future application of friction stir processing in energy field, for example, for vanadium alloy and composites will be discussed. Finally, the challenges for improving friction stir processing technology will be mentioned.

  10. Improving the mixing performances of rice straw anaerobic digestion for higher biogas production by computational fluid dynamics (CFD) simulation.

    Science.gov (United States)

    Shen, Fei; Tian, Libin; Yuan, Hairong; Pang, Yunzhi; Chen, Shulin; Zou, Dexun; Zhu, Baoning; Liu, Yanping; Li, Xiujin

    2013-10-01

    As a lignocellulose-based substrate for anaerobic digestion, rice straw is characterized by low density, high water absorbability, and poor fluidity. Its mixing performances in digestion are completely different from traditional substrates such as animal manures. Computational fluid dynamics (CFD) simulation was employed to investigate mixing performances and determine suitable stirring parameters for efficient biogas production from rice straw. The results from CFD simulation were applied in the anaerobic digestion tests to further investigate their reliability. The results indicated that the mixing performances could be improved by triple impellers with pitched blade, and complete mixing was easily achieved at the stirring rate of 80 rpm, as compared to 20-60 rpm. However, mixing could not be significantly improved when the stirring rate was further increased from 80 to 160 rpm. The simulation results agreed well with the experimental results. The determined mixing parameters could achieve the highest biogas yield of 370 mL (g TS)(-1) (729 mL (g TS(digested))(-1)) and 431 mL (g TS)(-1) (632 mL (g TS(digested))(-1)) with the shortest technical digestion time (T 80) of 46 days. The results obtained in this work could provide useful guides for the design and operation of biogas plants using rice straw as substrates.

  11. Improving the mixing performances of rice straw anaerobic digestion for higher biogas production by computational fluid dynamics (CFD) simulation.

    Science.gov (United States)

    Shen, Fei; Tian, Libin; Yuan, Hairong; Pang, Yunzhi; Chen, Shulin; Zou, Dexun; Zhu, Baoning; Liu, Yanping; Li, Xiujin

    2013-10-01

    As a lignocellulose-based substrate for anaerobic digestion, rice straw is characterized by low density, high water absorbability, and poor fluidity. Its mixing performances in digestion are completely different from traditional substrates such as animal manures. Computational fluid dynamics (CFD) simulation was employed to investigate mixing performances and determine suitable stirring parameters for efficient biogas production from rice straw. The results from CFD simulation were applied in the anaerobic digestion tests to further investigate their reliability. The results indicated that the mixing performances could be improved by triple impellers with pitched blade, and complete mixing was easily achieved at the stirring rate of 80 rpm, as compared to 20-60 rpm. However, mixing could not be significantly improved when the stirring rate was further increased from 80 to 160 rpm. The simulation results agreed well with the experimental results. The determined mixing parameters could achieve the highest biogas yield of 370 mL (g TS)(-1) (729 mL (g TS(digested))(-1)) and 431 mL (g TS)(-1) (632 mL (g TS(digested))(-1)) with the shortest technical digestion time (T 80) of 46 days. The results obtained in this work could provide useful guides for the design and operation of biogas plants using rice straw as substrates. PMID:23873639

  12. Comparison of the sensitivities of fish, Microtox and Daphnia-magna bioassays to amoxycillin in anaerobic/aerobic sequential reactor systems.

    Science.gov (United States)

    Çelebi, H; Sponza, D T

    2012-01-01

    In this study the anaerobic treatability of amoxycillin (AMX) was investigated in a laboratory-scale anaerobic multi-chamber bed reactor (AMCBR)/aerobic continuously stirred tank reactor (CSTR) system. The chemical oxygen demand (COD) and AMX removal efficiencies were around 94% in the AMCBR reactor at hydraulic retention times (HRTs) between 2.25 and 5.5 days. Decreasing the HRT appeared not to have a significant effect on the performance of the AMCBR up to a HRT of 1.13 days. The maximum methane production rate and methane percentage were around 1,100-1,200 mL/day and 55%, respectively, at HRTs between 2.25 and 5.5 days. The decrease in HRT to 1.5 days decreased slightly the gas productions (1,000 mL/day and 500 mL for total and methane gases) and methane percentage (45%). The AMCBR recovered back to its baseline performance within a couple of days. The acute toxicity of 150 mg/L AMX was monitored with Daphnia magna, Lepistes sp., and Vibrio fischeri acute toxicity tests. The acute toxicity removals were 98, 96 and 96% for V. fischeri, D. magna and Lepistes sp. in the effluent of the sequential system treating 150 mg/L AMX at HRTs of 2.25-5.5 days. Among the trophic organisms used in the acute toxicity tests the most sensitive organism was found to be bacteria (V. fischeri) while the most resistant organism was found to be fish (Lepistes sp.).

  13. Comparison of the sensitivities of fish, Microtox and Daphnia-magna bioassays to amoxycillin in anaerobic/aerobic sequential reactor systems.

    Science.gov (United States)

    Çelebi, H; Sponza, D T

    2012-01-01

    In this study the anaerobic treatability of amoxycillin (AMX) was investigated in a laboratory-scale anaerobic multi-chamber bed reactor (AMCBR)/aerobic continuously stirred tank reactor (CSTR) system. The chemical oxygen demand (COD) and AMX removal efficiencies were around 94% in the AMCBR reactor at hydraulic retention times (HRTs) between 2.25 and 5.5 days. Decreasing the HRT appeared not to have a significant effect on the performance of the AMCBR up to a HRT of 1.13 days. The maximum methane production rate and methane percentage were around 1,100-1,200 mL/day and 55%, respectively, at HRTs between 2.25 and 5.5 days. The decrease in HRT to 1.5 days decreased slightly the gas productions (1,000 mL/day and 500 mL for total and methane gases) and methane percentage (45%). The AMCBR recovered back to its baseline performance within a couple of days. The acute toxicity of 150 mg/L AMX was monitored with Daphnia magna, Lepistes sp., and Vibrio fischeri acute toxicity tests. The acute toxicity removals were 98, 96 and 96% for V. fischeri, D. magna and Lepistes sp. in the effluent of the sequential system treating 150 mg/L AMX at HRTs of 2.25-5.5 days. Among the trophic organisms used in the acute toxicity tests the most sensitive organism was found to be bacteria (V. fischeri) while the most resistant organism was found to be fish (Lepistes sp.). PMID:22797243

  14. DECOLORIZATION AND BIOLOGICAL DEGRADATION OF AZO DYE REACTIVE RED2 BY ANAEROBIC/AEROBIC SEQUENTIAL PROCESS

    Directory of Open Access Journals (Sweden)

    A. Naimabadi ، H. Movahedian Attar ، A. Shahsavani

    2009-04-01

    Full Text Available This study investigates the anaerobic treatability of reactive Red2 in an anaerobic/aerobic sequential process. Laboratory scale anaerobic baffled reactor and fixed activated sludge reactor were operated at different organic loadings and hydraulic retention times. The effects of shock dye concentration on the chemical oxygen demand and color removal efficiencies were investigated in the anaerobic baffled reactor. The effect of hydraulic retention time on the color and chemical oxygen demand removal efficiencies were also investigated in the aerobic reactor. The studies were carried out in continuous mode and the effluent of the anaerobic baffled reactor was used as feed for the fixed activated sludge reactor. Chemical oxygen demand removal efficiency of 54.5% was obtained at HRT =1 day in the anaerobic reactor. The average color removal was 89.5%. Chemical oxygen demand removal efficiency of 69% was obtained at HRT =7 h in the aerobic fixed activated sludge reactor. A slight decrease of the color was also observed in the aerobic reactor. This investigation has shown that successful treatment of a highly colored wastewater is possible in the anaerobic baffled reactor. Also the results showed that, anaerobic biological system has higher efficiency in dye removal than fixed activated sludge system, while aerobic system has higher efficiency in chemical oxygen demand removal comparing with the anaerobic baffled reactor.

  15. Optimisation of sewage sludge anaerobic digestion through co-digestion with OFMSW: Effect of collection system and particle size

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre, Gracia [IRTA, GIRO Joint Research Unit IRTA-UPC, Torre Marimon, Barcelona (Spain); Ainia, Departamento de Medio Ambiente, Bioenergía e Higiene Industrial, Paterna, Valencia (Spain); Bonmatí, August [IRTA, GIRO Joint Research Unit IRTA-UPC, Torre Marimon, Barcelona (Spain); Fernández, Belén, E-mail: belen.fernandez@irta.cat [IRTA, GIRO Joint Research Unit IRTA-UPC, Torre Marimon, Barcelona (Spain)

    2015-09-15

    Highlights: • Methane production rate increased between 56% and 208% during OFMSW–SS codigestion. • The OFMSW particle size reduction from 20 to 8 mm did not affect the methane yield. • OFMSW–SS codigestion promoted β-oxidation and acetoclastic methanogenic activity. • The evolution of specific activity was a feasible tool to control the process. - Abstract: The effect of organic fraction of municipal solid waste (OFMSW) loading rate and particulate size on the sewage sludge (SS) mesophilic anaerobic co-digestion was assessed in continuous stirred tank reactor at hydraulic retention time of 20 days. The SS–OFMSW mixture composed by 54% of the volatile solids fed (inlet-VS), at OLR of 3.1 kg{sub COD} m{sup −3} d{sup −1} (1.9 kg{sub VS} m{sup −3} d{sup −1}), showed the highest increment on the volumetric methane production and yield of +200% and +59% respectively, under stable conditions. The effect of particulate size was assessed with the same mixture and same operational conditions but reducing the OFMSW particulate size from 20 mm to 8 mm with the aim to improve the hydrolysis step, but the results showed any influence in the OFMSW particulate size range analysed. In addition, specific biomass activity was assessed at the end of each co-digestion period. Results showed that OFMSW promoted β-oxidation syntrophic acetogens and the acetoclastic methanogens activity; although the last increase of the OFMSW percentage (from 47% to 54% inlet-VS) affected negatively the specific substrate activity, but not inhibitory effect was observed. Therefore, the results obtained in the continuous experiment could be related with some inhibitory or toxic effect and not due to hydrolysis limitation. The specific biomass activity test was demonstrated to be an interesting tool to evaluate and control the co-digestion process, especially when conventional parameters did not explain the behaviour of the biological system.

  16. Optimisation of sewage sludge anaerobic digestion through co-digestion with OFMSW: Effect of collection system and particle size

    International Nuclear Information System (INIS)

    Highlights: • Methane production rate increased between 56% and 208% during OFMSW–SS codigestion. • The OFMSW particle size reduction from 20 to 8 mm did not affect the methane yield. • OFMSW–SS codigestion promoted β-oxidation and acetoclastic methanogenic activity. • The evolution of specific activity was a feasible tool to control the process. - Abstract: The effect of organic fraction of municipal solid waste (OFMSW) loading rate and particulate size on the sewage sludge (SS) mesophilic anaerobic co-digestion was assessed in continuous stirred tank reactor at hydraulic retention time of 20 days. The SS–OFMSW mixture composed by 54% of the volatile solids fed (inlet-VS), at OLR of 3.1 kgCOD m−3 d−1 (1.9 kgVS m−3 d−1), showed the highest increment on the volumetric methane production and yield of +200% and +59% respectively, under stable conditions. The effect of particulate size was assessed with the same mixture and same operational conditions but reducing the OFMSW particulate size from 20 mm to 8 mm with the aim to improve the hydrolysis step, but the results showed any influence in the OFMSW particulate size range analysed. In addition, specific biomass activity was assessed at the end of each co-digestion period. Results showed that OFMSW promoted β-oxidation syntrophic acetogens and the acetoclastic methanogens activity; although the last increase of the OFMSW percentage (from 47% to 54% inlet-VS) affected negatively the specific substrate activity, but not inhibitory effect was observed. Therefore, the results obtained in the continuous experiment could be related with some inhibitory or toxic effect and not due to hydrolysis limitation. The specific biomass activity test was demonstrated to be an interesting tool to evaluate and control the co-digestion process, especially when conventional parameters did not explain the behaviour of the biological system

  17. Anaerobic co-digestion of desugared molasses with cow manure; focusingon sodium and potassium inhibition

    DEFF Research Database (Denmark)

    Fang, Cheng; Boe, Kanokwan; Angelidaki, Irini

    2011-01-01

    Desugared molasses (DM), a syrup residue from beet-molasses, was investigated for biogas production in both batch and in continuously-stirred tank reactor (CSTR) experiments. DM contained 2–3 times higher concentration of ions than normal molasses, which could inhibit the biogas process. The effect...

  18. Mechanistic Models of Friction Stir Welding

    Science.gov (United States)

    Stewart, Michael B.

    1998-01-01

    Friction stir welding is a welding process developed at The Welding Institute (TWI) in England. The method uses very large strain plastic deformation of the material to join two pieces of metal together. The material is deformed using a tool which is forced between the two pieces which rotates causing a bond. Beyond this, very little is actually known although many people working in the field are willing to speculate on the detailed mechanisms involved. Some measurements made using sacrificial thermocouples at the weld joint indicate that the maximum temperature during the weld process is on the order of 370C - well below the melting temperature of the material. However, at this temperature, the material properties are highly temperature dependent, and the yield stress is approximately an order of magnitude less at this temperature than it is at room temperature. As expected, there are many interpretations of the physical mechanisms occurring during the weld process. Although there is very little published concerned with FSW, some of the anecdotal theories will be described. One describes the primary mechanism as frictional heating at the front of the tool caused by slip between the tool and the material. At elevated temperatures, the weld material becomes soft and deforms around the tool but not essentially altered by the tool rotation, similar to an extrusion. As the material meets again at the rear of the tool, the temperatures and pressures are sufficient to cause the material to bond. All other structures seen are secondary and unimportant. Another theory examined last summer at NASA's Marshall Space Flight Center (MSFC) was that there was no slip between the tool and the material resulting in a rotating mass of plastic weld material traveling at a variety of angular velocities - the greatest at the tool surface diminishing to zero at the outer edge of the plastic mass surrounding the tool. This conceptual model was followed by simplified calculations which

  19. Nanoscale magnetic stirring bars for heterogeneous catalysis in microscopic systems.

    Science.gov (United States)

    Yang, Shuliang; Cao, Changyan; Sun, Yongbin; Huang, Peipei; Wei, Fangfang; Song, Weiguo

    2015-02-23

    Nanometer-sized magnetic stirring bars containing Pd nanoparticles (denoted as Fe3 O4 -NC-PZS-Pd) for heterogeneous catalysis in microscopic system were prepared through a facile two-step process. In the hydrogenation of styrene, Fe3 O4 -NC-PZS-Pd showed an activity similar to that of the commercial Pd/C catalyst, but much better stability. In microscopic catalytic systems, Fe3 O4 -NC-PZS-Pd can effectively stir the reaction solution within microdrops to accelerate mass transfer, and displays far better catalytic activity than the commercial Pd/C for the hydrogenation of methylene blue in an array of microdroplets. These results suggested that the Fe3 O4 -NC-PZS-Pd could be used as nanoscale stirring bars in nanoreactors.

  20. Weld Nugget Temperature Control in Thermal Stir Welding

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).

  1. A Brief Introduction to the Theory of Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and is already an important welding process for the aerospace industry, where welds of optimal quality are demanded. The structure of welds determines weld properties. The structure of friction stir welds is determined by the flow field in the weld metal in the vicinity of the weld tool. A simple kinematic model of the FSW flow field developed at Marshall Space Flight Center, which enables the basic features of FSW microstructure to be understood and related to weld process parameters and tool design, is explained.

  2. Wet gringing of zeolite in stirred media mill

    Science.gov (United States)

    Mucsi, G.; Bohács, K.

    2016-04-01

    In the present study the results of systematic experimental series are presented with the specific goal of optimizing the zeolite nanoparticles' production using a wet stirred media mill. The diameter of the grinding media as well as the rotor velocity were varied in the experiments. Particle size distribution and "outer" specific surface area of the ground samples were measured by a laser particle size analyser. Additionally, BET, XRD and FT-IR analyses were performed for the characterization of the "total" specific surface area as well as the crystalline and material structure, respectively. Based on the results of the laboratory experiments it was found that wet stirred media milling provided significant reductions in the particle size of zeolite. Furthermore, the crystallinity of the samples also decreased, so not only the physical but the mineralogical characteristics of zeolite can be controlled by stirred media milling.

  3. MICROSTRUCTURAL STUDIES OF FRICTION STIR WELDED AZ31 MAGNESIUM ALLOY

    Institute of Scientific and Technical Information of China (English)

    H.Zhang; S.B.Lin; L.Wu; J.C.Feng

    2004-01-01

    Friction stir welding achieves the weld in solid phase by locally introducing frictional heating and plastic flow arising from rotation of the welding tool, which results in changes in the local microstructure of magnesium alloy. The purpose in the paper is to study the microstructures of friction stir welded AZ3I magnesium alloy. Residual microstructures,including dynamic re-crystallization zone and nugget structures have been systematically investigated utilizing optical microscopy (OM), scanning electric microscopy (SEM),transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and micro-hardness. AZ31 magnesium alloy has been successfully friction stir welded and exhibits the variations of microstructure including dynamically recrystallized,equaxied grains in the weld nugget. Residual hardness in the nugget was found slightly lower than the parent but not too obvious.

  4. Microstructure Evolution during Friction Stir Spot Welding of TRIP Steel

    DEFF Research Database (Denmark)

    Lomholt, Trine Colding; Pantleon, Karen; Somers, Marcel A. J.

    2010-01-01

    In this study, the feasibility of friction stir spot welding of TRIP steel is investigated. In addition to manufacturing successful welds, the present study aims at a fundamental understanding of the mechanisms occurring at the (sub)micron scale during friction stir spot welding. As one of the main...... parameters to control friction stir welding, the influence of the rotational speed of the tool was investigated. Three different rotational speeds (500 rpm, 1000 rpm and 1500 rpm, respectively) were applied. The microstructure of the welded samples was investigated with reflected light microscopy, scanning...... electron microscopy, and electron backscatter diffraction. Microhardness measurements and lap-shear tensile tests completed the investigations of the welded samples and allow evaluation of the quality of the welds....

  5. Biodigestão anaeróbia de dejetos de caprinos e ovinos em reator contínuo de PVC flexível Anaerobic digestion of goat and sheep wastes in a continuous reactor of flexible PVC

    Directory of Open Access Journals (Sweden)

    Danilo G. de Quadros

    2010-03-01

    Full Text Available A escassez de fontes energéticas e as altas taxas de mortalidade do rebanho são dois grandes problemas para os agricultores familiares no semiárido brasileiro. De setembro de 2006 a abril de 2007 um reator contínuo com gasômetro em PVC flexível, com 33 m³ de volume, instalado na Estação Experimental da EBDA, Jaguarari, Estado da Bahia, foi monitorado quanto aos parâmetros bioquímicos, microbiológicos e parasitários do afluente e efluente, sendo avaliadas a produção e a composição do biogás, além da utilização do biofertilizante em capim-elefante. Com o manejo adequado, o poder poluente dos dejetos foi reduzido significativamente. Microbiologicamente, a eficiência de remoção de coliformes totais e fecais se manteve acima de 98% enquanto os ovos dos principais endoparasitos foram eliminados com o tratamento. A produção de biogás foi de 0,061 m³ kg-1 de esterco. Basicamente, o biogás apresentou, em sua composição, 58 e 34% de metano e gás carbônico, respectivamente. O biofertilizante (pH 7,5 foi uma boa fonte de nutrientes, sobretudo de nitrogênio (64 g 100L-1, 80% na forma amoniacal e potássio (214 g 100L-1, aumentando a produção de forragem sem alterações significativas na composição bromatológica, digestibilidade "in vitro" da matéria seca e teor de minerais.The scarcity of energy resources and the high livestock mortality rates are perpetual problems for small farmers of the Brazilian semi-arid region. From September 2006 to April 2007 a continuous reactor, of 33 m³ with gasometer in PVC flexible film, was installed at the EBDA Experimental Station, Jaguarari, Bahia State and the affluent and effluent biochemical, microbiological, and parasitological characteristics were monitored, the biogas production and composition being evaluated, as well as the use of the biofertilizer in elephant grass. With adequate management, the pollution power of residues reduced significantly. Microbiologically, the

  6. Effect of hydraulic retention time (HRT) on the anaerobic co-digestion of agro-industrial wastes in a two-stage CSTR system.

    Science.gov (United States)

    Dareioti, Margarita Andreas; Kornaros, Michael

    2014-09-01

    A two-stage anaerobic digestion system consisting of two continuously stirred tank reactors (CSTRs) operating at mesophilic conditions (37°C) were used to investigate the effect of hydraulic retention time (HRT) on hydrogen and methane production. The acidogenic reactor was fed with a mixture consisting of olive mill wastewater, cheese whey and liquid cow manure (in a ratio 55:40:5, v/v/v) and operated at five different HRTs (5, 3, 2, 1 and 0.75 d) aiming to evaluate hydrogen productivity and operational stability. The highest system efficiency was achieved at HRT 0.75 d with a maximum hydrogen production rate of 1.72 L/LRd and hydrogen yield of 0.54 mol H2/mol carbohydrates consumed. The methanogenic reactor was operated at HRTs 20 and 25 d with better stability observed at HRT 25 d, whereas accumulation of volatile fatty acids took place at HRT 20 d. The methane production rate at the steady state of HRT 25 d reached 0.33 L CH4/LRd.

  7. Study of microbial community and biodegradation efficiency for single- and two-phase anaerobic co-digestion of brown water and food waste.

    Science.gov (United States)

    Lim, J W; Chen, C-L; Ho, I J R; Wang, J-Y

    2013-11-01

    The objective of this work was to study the microbial community and reactor performance for the anaerobic co-digestion of brown water and food waste in single- and two-phase continuously stirred tank reactors (CSTRs). Bacterial and archaeal communities were analyzed after 150 days of reactor operation. As compared to single-phase CSTR, methane production in two-phase CSTR was found to be 23% higher. This was likely due to greater extent of solubilization and acidification observed in the latter. These findings could be attributed to the predominance of Firmicutes and greater bacterial diversity in two-phase CSTR, and the lack of Firmicutes in single-phase CSTR. Methanosaeta was predominant in both CSTRs and this correlated to low levels of acetate in their effluent. Insights gained from this study would enhance the understanding of microorganisms involved in co-digestion of brown water and food waste as well as the complex biochemical interactions promoting digester stability and performance.

  8. Anaerobic mesophilic co-digestion of ensiled sorghum, cheese whey and liquid cow manure in a two-stage CSTR system: Effect of hydraulic retention time.

    Science.gov (United States)

    Dareioti, Margarita Andreas; Kornaros, Michael

    2015-01-01

    The aim of this study was to investigate the effect of hydraulic retention time (HRT) on hydrogen and methane production using a two-stage anaerobic process. Two continuously stirred tank reactors (CSTRs) were used under mesophilic conditions (37°C) in order to enhance acidogenesis and methanogenesis. A mixture of pretreated ensiled sorghum, cheese whey and liquid cow manure (55:40:5, v/v/v) was used. The acidogenic reactor was operated at six different HRTs of 5, 3, 2, 1, 0.75 and 0.5d, under controlled pH5.5, whereas the methanogenic reactor was operated at three HRTs of 24, 16 and 12d. The maximum H2 productivity (2.14L/LRd) and maximum H2 yield (0.70mol H2/mol carbohydrates consumed) were observed at 0.5d HRT. On the other hand, the maximum CH4 production rate of 0.90L/LRd was achieved at HRT of 16d, whereas at lower HRT the process appeared to be inhibited and/or overloaded.

  9. Effect of hydraulic retention time (HRT) on the anaerobic co-digestion of agro-industrial wastes in a two-stage CSTR system.

    Science.gov (United States)

    Dareioti, Margarita Andreas; Kornaros, Michael

    2014-09-01

    A two-stage anaerobic digestion system consisting of two continuously stirred tank reactors (CSTRs) operating at mesophilic conditions (37°C) were used to investigate the effect of hydraulic retention time (HRT) on hydrogen and methane production. The acidogenic reactor was fed with a mixture consisting of olive mill wastewater, cheese whey and liquid cow manure (in a ratio 55:40:5, v/v/v) and operated at five different HRTs (5, 3, 2, 1 and 0.75 d) aiming to evaluate hydrogen productivity and operational stability. The highest system efficiency was achieved at HRT 0.75 d with a maximum hydrogen production rate of 1.72 L/LRd and hydrogen yield of 0.54 mol H2/mol carbohydrates consumed. The methanogenic reactor was operated at HRTs 20 and 25 d with better stability observed at HRT 25 d, whereas accumulation of volatile fatty acids took place at HRT 20 d. The methane production rate at the steady state of HRT 25 d reached 0.33 L CH4/LRd. PMID:25000396

  10. Anaerobic mesophilic co-digestion of ensiled sorghum, cheese whey and liquid cow manure in a two-stage CSTR system: Effect of hydraulic retention time.

    Science.gov (United States)

    Dareioti, Margarita Andreas; Kornaros, Michael

    2015-01-01

    The aim of this study was to investigate the effect of hydraulic retention time (HRT) on hydrogen and methane production using a two-stage anaerobic process. Two continuously stirred tank reactors (CSTRs) were used under mesophilic conditions (37°C) in order to enhance acidogenesis and methanogenesis. A mixture of pretreated ensiled sorghum, cheese whey and liquid cow manure (55:40:5, v/v/v) was used. The acidogenic reactor was operated at six different HRTs of 5, 3, 2, 1, 0.75 and 0.5d, under controlled pH5.5, whereas the methanogenic reactor was operated at three HRTs of 24, 16 and 12d. The maximum H2 productivity (2.14L/LRd) and maximum H2 yield (0.70mol H2/mol carbohydrates consumed) were observed at 0.5d HRT. On the other hand, the maximum CH4 production rate of 0.90L/LRd was achieved at HRT of 16d, whereas at lower HRT the process appeared to be inhibited and/or overloaded. PMID:25459867

  11. Performance and microbial community dynamics in a two-phase anaerobic co-digestion system using cassava dregs and pig manure.

    Science.gov (United States)

    Ren, Jiwei; Yuan, Xufeng; Li, Jie; Ma, Xuguang; Zhao, Ye; Zhu, Wanbing; Wang, Xiaofen; Cui, Zongjun

    2014-03-01

    The two-phase anaerobic co-digestion of cassava dregs (CD) with pig manure (PM) was evaluated using four sequencing batch reactors (SBRs) and a continuously stirred tank reactor (CSTR). The effect of seven different PM to CD volatile solid ratios (10:0, 8:2, 6:4, 5:5, 4:6, 2:8 and 0:10) on the acidification phase was investigated. Results indicated the concentrations of soluble chemical oxygen demand, NH4-N and volatile fatty acids increased substantially at seven ratios. Co-acidification of PM and CD performed well. Methanogenic fermentation of the acidification products at seven ratios was steady in CSTR. The highest methane yield and VS removal of 0.352m(3)/kg VSadded and 68.5% were achieved at PM:CD (4:6). The microbial population in CSTR was analyzed using molecular methods. Findings revealed that bacteria such as Firmicutes and Bacteroidetes, archaea such as Methanobacteriales and Methanomicrobiales were advantageous populations. Co-digestion of PM and CD supported higher quantity and diversity of methanogens. PMID:24463413

  12. The effect of mechanical stirring on buoyancy-driven circulations

    OpenAIRE

    Tailleux, Remi; Rouleau, Lucie

    2009-01-01

    The theoretical analysis of the energetics of mechanically-stirred horizontal convection for a Boussinesq fluid yields the formula: G(APE) = \\gamma_{mixing} G(KE) + (1+\\gamma_{mixing}) W_{r,laminar} where G(APE) and G(KE) are the work rate done by the buoyancy and mechanical forcing respectively, \\gamma_{mixing} is the mixing efficiency, and W_{r,laminar} is the background rate of increase in gravitational potential energy due to molecular diffusion. The formula shows that mechanical stirring...

  13. Seam-Tracking for Friction Stir Welded Lap Joints

    Science.gov (United States)

    Fleming, Paul A.; Hendricks, Christopher E.; Cook, George E.; Wilkes, D. M.; Strauss, Alvin M.; Lammlein, David H.

    2010-11-01

    This article presents a method for automatic seam-tracking in friction stir welding (FSW) of lap joints. In this method, tracking is accomplished by weaving the FSW tool back-and-forth perpendicular to the direction of travel during welding and monitoring force and torque signals. Research demonstrates the ability of this method to automatically track weld seam positions. Additionally, tensile and S-bend test result comparisons demonstrate that weaving most likely does not reduce weld quality. Finally, benefits of this weave-based method to FSW of lap joints are discussed and methods for incorporating it into existing friction stir welding control algorithms (such as axial load control) are examined.

  14. Numerical optimisation of friction stir welding: review of future challenges

    DEFF Research Database (Denmark)

    Tutum, Cem Celal; Hattel, Jesper Henri

    2011-01-01

    During the last decade, the combination of increasingly more advanced numerical simulation software with high computational power has resulted in models for friction stir welding (FSW), which have improved the understanding of the determining physical phenomena behind the process substantially....... This has made optimisation of certain process parameters possible and has in turn led to better performing friction stir welded products, thus contributing to a general increase in the popularity of the process and its applications. However, most of these optimisation studies do not go well beyond manual...

  15. Friction stir weld tools having fine grain structure

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Glenn J.; Frye, John G.; Kim, Jin Yong; Lavender, Curt A.; Weil, Kenneth Scott

    2016-03-15

    Tools for friction stir welding can be made with fewer process steps, lower cost techniques, and/or lower cost ingredients than other state-of-the-art processes by utilizing improved compositions and processes of fabrication. Furthermore, the tools resulting from the improved compositions and processes of fabrication can exhibit better distribution and homogeneity of chemical constituents, greater strength, and/or increased durability. In one example, a friction stir weld tool includes tungsten and rhenium and is characterized by carbide and oxide dispersoids, by carbide particulates, and by grains that comprise a solid solution of the tungsten and rhenium. The grains do not exceed 10 micrometers in diameter.

  16. Process optimization of friction stir welding based on thermal models

    DEFF Research Database (Denmark)

    Larsen, Anders Astrup

    2010-01-01

    This thesis investigates how to apply optimization methods to numerical models of a friction stir welding process. The work is intended as a proof-of-concept using different methods that are applicable to models of high complexity, possibly with high computational cost, and without the possibility...... information of the high-fidelity model. The optimization schemes are applied to stationary thermal models of differing complexity of the friction stir welding process. The optimization problems considered are based on optimizing the temperature field in the workpiece by finding optimal translational speed...

  17. Interfacial and Mechanical Behavior of AA5456 Filling Friction-Stir-Welded Lap Joints Using Similar and Dissimilar Pins

    Science.gov (United States)

    Behmand, Saleh Alaei; Mirsalehi, Seyyed Ehsan; Omidvar, Hamid; Safarkhanian, Mohammad Ali

    2016-06-01

    In this article, filling friction stir welding (FFSW) of the remaining exit holes of AA5456 alloy friction-stir-welded lap joints was studied. For this purpose, the influences of different rotating speeds, holding times, and pin materials, AA5456 and AA2024, on the metallurgical structure and joint strength were investigated. The observations showed that defect-free lap joints are successfully obtainable by this method using similar and dissimilar consumable pins. The results indicated that the higher rotating speed and holding time adversely affect the weld performance. The best result was achieved for 30 seconds holding time, 500 rpm rotating speed, and AA2024 consumable pin. In this condition, a lap shear strength of 10 pct higher than that of the nonfilled joint, equivalent to about 94 pct of the original defect-free FSW joint, was obtained, whereas the GTAW filled joint showed only approximately 87 pct of the continuous FSW joint strength.

  18. Interfacial and Mechanical Behavior of AA5456 Filling Friction-Stir-Welded Lap Joints Using Similar and Dissimilar Pins

    Science.gov (United States)

    Behmand, Saleh Alaei; Mirsalehi, Seyyed Ehsan; Omidvar, Hamid; Safarkhanian, Mohammad Ali

    2016-10-01

    In this article, filling friction stir welding (FFSW) of the remaining exit holes of AA5456 alloy friction-stir-welded lap joints was studied. For this purpose, the influences of different rotating speeds, holding times, and pin materials, AA5456 and AA2024, on the metallurgical structure and joint strength were investigated. The observations showed that defect-free lap joints are successfully obtainable by this method using similar and dissimilar consumable pins. The results indicated that the higher rotating speed and holding time adversely affect the weld performance. The best result was achieved for 30 seconds holding time, 500 rpm rotating speed, and AA2024 consumable pin. In this condition, a lap shear strength of 10 pct higher than that of the nonfilled joint, equivalent to about 94 pct of the original defect-free FSW joint, was obtained, whereas the GTAW filled joint showed only approximately 87 pct of the continuous FSW joint strength.

  19. Continuous fermentative hydrogen production from coffee drink manufacturing wastewater by applying UASB reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kyung-Won; Shin, Hang-Sik [Department of Civil and Environmental Engineering, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Dong-Hoon [Department of Civil and Environmental Engineering, University of Windsor, 401 Sunset Ave., Essex Hall, Windsor, Ontario (Canada)

    2010-12-15

    The feasibility of continuous H{sub 2} production from coffee drink manufacturing wastewater (CDMW) was tested in two different types of reactors: a completely-stirred tank reactor (CSTR) and an up-flow anaerobic sludge blanket reactor (UASBr). While the performance in CSTR was limited, it was significantly enhanced in UASBr. The maximum H{sub 2} yield of 1.29 mol H{sub 2}/mol hexose{sub added} was achieved at HRT of 6 h in UASBr operation. Non-hydrogenic, lactic acid was the dominant in CSTR, while butyric and caproic acids in UASBr. As caproic acid is generated by consuming acetic and butyric acids, all of which are related to H{sub 2} production, the presence of caproic acid in the broth also indicates H{sub 2} production, yielding 1.33 mol H{sub 2}/glucose. It was speculated that the enhanced performance in UASBr was attributed to the high concentration of biomass over 60,000 mg VSS/L in the blanket zone, which provided insufficient substrate for indigenous lactic acid bacteria (LAB) to survive. The abundance of LAB in CDMW was confirmed by natural fermentation of CDMW. That is without the addition of external inoculum, CDMW was mainly fermented into lactic acid under mesophilic condition. For the first time ever, H{sub 2} producing granules (HPG) with diameters of 2.1 mm were successfully formed by using actual waste as a substrate. (author)

  20. Ammonia-LCFA synergetic co-inhibition effect in manure-based continuous biomethanation process.

    Science.gov (United States)

    Wang, Han; Fotidis, Ioannis A; Angelidaki, Irini

    2016-06-01

    In the current study it has been hypothesized that, when organic loading of an anaerobic reactor is increased, the additional cell biomass biosynthesis would capture more ammonia nitrogen and thereby reduce the ammonia toxicity. Therefore, the alleviation of the toxicity of high ammonia levels using lipids (glycerol trioleate-GTO) or carbohydrates (glucose-GLU) as co-substrates in manure-based thermophilic continuous stirred-tank reactors (R(GTO) and R(GLU), respectively) was tested. At 5gNH4(+)-NL(-1), relative methane production of R(GTO) and R(GLU), was 10.5% and 41% compared to the expected uninhibited production, respectively. At the same time control reactor (R(CTL)), only fed with manure, reached 32.7% compared to the uninhibited basis production. Therefore, it seems that using lipids to counteract the ammonia effect in CSTR reactors creates an "ammonia-LCFA (long chain fatty acids) synergetic co-inhibition" effect. Moreover, co-digestion with glucose in R(GLU) was more robust to ammonia toxicity compared to R(CTL). PMID:26985628

  1. Performances comparison between three technologies for continuous ethanol production from molasses

    International Nuclear Information System (INIS)

    Molasses are a potential feedstock for ethanol production. The successful application of anaerobic fermentation for ethanol production from molasses is critically dependent to the development and the use of high rate bioreactors. In this study the fermentation of sugar cane molasses by Saccharomyces cerevisiae for the ethanol production in a continuously stirred tank reactor (CSTR), an immobilised cell reactor (ICR) and a membrane reactor (MBR) was investigated. Ethanol production and reactor productivities were compared under different dilution rates (D). When using the CSTR, a decent ethanol productivity (Qp) of 6.8 g L−1 h−1 was obtained at a dilution rate of 0.5 h−1. The Qp was improved by 48% and the residual sugar concentration was reduced by using the ICR. Intensifying the production of ethanol was investigated in the MBR to achieve a maximum ethanol concentration and a Qp of 46.5 g L−1 and 19.2 g L−1 h−1, respectively. The achieved results in the MBR worked with high substrate concentration are promising for the scale up operation. -- Highlights: ► We compare three reactors for ethanol production from sugar cane molasses. ► The ethanol productivity of 6.8 g L-1 h-1 was obtained using the CSTR. ► The ethanol productivity was improved by 48% by using the ICR. ► Intensifying ethanol productivity (19.2 g L-1 h-1) was investigated in the MBR

  2. Numeric simulations of a liquid metal model of a bloom caster under the effect of rotary electromagnetic stirring

    Science.gov (United States)

    Barna, M.; Javurek, M.; Willers, B.; Eckert, S.; Reiter, J.

    2016-07-01

    At the voestalpine Stahl Donawitz GmbH the continuous casting of round steel blooms is commonly supported by electromagnetically induced stirring of the liquid steel flow. A number of beneficial effects are attributed to electromagnetic stirring in the mould region (M-EMS), e.g. the enhanced transition from columnar to equiaxed solidification, the homogenization of the liquid steel flow or the reduction of surface and subsurface defects. Although the positive effects of M-EMS can be seen on the blooms (e.g. in etchings), the link between electromagnetic stirring of the steel melt and the quality of the solidified bloom is not sufficiently understood. Theoretical considerations are often limited to general cases and their results are therefore not directly applicable to real continuous casting geometries. On the other hand, plant measurements can only be performed to a limited extent due to the harsh conditions and other restrictions (e.g. safety regulations). In this work an alternative approach is used to investigate the steel flow in a round bloom caster under the influence of M-EMS. In a 1:3 scale Perspex model of a round bloom strand, measurements of the flow under the influence of a rotating magnetic field can be conducted. These measurements provide a validation benchmark for the numeric simulations. A numeric model of the before mentioned 1:3 scale model is implemented, encompassing the strand, the submerged entry nozzle as well as the M-EMS device. In the modelling approach, the bidirectional coupling between liquid steel flow and the electromagnetic field/forces has to be considered because otherwise the resulting tangential velocities will be overestimated. With the validated modelling approach, simulations of real casting machines can then be conducted, stirring parameter influences can be shown and conclusions for the real casting process can be drawn.

  3. Temporarily alloying titanium to facilitate friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri [Washington State Univ., Pullman, WA (United States)

    2009-05-01

    While historically hydrogen has been considered an impurity in titanium, when used as a temporary alloying agent it promotes beneficial changes to material properties that increase the hot-workability of the metal. This technique known as thermohydrogen processing was used to temporarily alloy hydrogen with commercially pure titanium sheet as a means of facilitating the friction stir welding process. Specific alloying parameters were developed to increase the overall hydrogen content of the titanium sheet ranging from commercially pure to 30 atomic percent. Each sheet was evaluated to determine the effect of the hydrogen content on process loads and tool deformation during the plunge phase of the friction stir welding process. Two materials, H-13 tool steel and pure tungsten, were used to fabricate friction stir welding tools that were plunged into each of the thermohydrogen processed titanium sheets. Tool wear was characterized and variations in machine loads were quantified for each tool material and weld metal combination. Thermohydrogen processing was shown to beneficially lower plunge forces and stabilize machine torques at specific hydrogen concentrations. The resulting effects of hydrogen addition to titanium metal undergoing the friction stir welding process are compared with modifications in titanium properties documented in modern literature. Such comparative analysis is used to explain the variance in resulting process loads as a function of the initial hydrogen concentration of the titanium.

  4. The Care Tradition: Beyond "Add Women and Stir."

    Science.gov (United States)

    Noddings, Nel

    2001-01-01

    Examines problems of curricular inclusion, emphasizing ways of including the interests and contributions of women in social studies curricula. After describing the inadequacy of the "add women and stir" approach to inclusion, the paper discusses the tradition of care long identified with female life, then explores ways to preserve and extend this…

  5. Stirring and mixing of liquids using acoustic radiation force.

    Science.gov (United States)

    Sarvazyan, Armen; Ostrovsky, Lev

    2009-06-01

    The possibility of using acoustic radiation force in standing waves for stirring and mixing small volumes of liquids is theoretically analyzed. The principle of stirring considered in this paper is based on moving the microparticles suspended in a standing acoustic wave by changing the frequency so that one standing wave mode is replaced by the other, with differently positioned minima of potential energy. The period-average transient dynamics of solid microparticles and gas microbubbles is considered, and simple analytical solutions are obtained for the case of standing waves of variable amplitude. It is shown that bubbles can be moved from one equilibrium position to another two to three orders of magnitude faster than solid particles. For example, radiation force in a standing acoustic wave field may induce movement of microbubbles with a speed of the order of a few m/s at a frequency of 1 MHz and ultrasound pressure amplitude of 100 kPa, whereas the speed of rigid particles does not exceed 1 cms under the same conditions. The stirring effect can be additionally enhanced due to the fact that the bubbles that are larger and smaller than the resonant bubbles move in opposite directions. Possible applications of the analyzed stirring mechanism, such as in microarrays, are discussed. PMID:19507936

  6. Numerical Simulation of Laminar Flow Field in a Stirred Tank

    Institute of Scientific and Technical Information of China (English)

    范茏; 王卫京; 杨超; 毛在砂

    2004-01-01

    Stirred tanks are used extensively in process industry and one of the most commonly used impellers in stirred tanks is the R.ushton disk turbine. Surprisingly few data are available regarding flow and mixing in stirred-tank reactors with Rushton turbine in the laminar regime, in particular the laminar flow in baffled tanks.In this paper, the laminar flow field in a baffled tank stirred by a standard R.ushton turbine is simulated with the improved inner-outer iterative method. The non-inertial coordinate system is used for the impeller region, which is in turn used as the boundary conditions for iteration. It is found that the simulation results are in good agreement with previous experiments. In addition, the flow number and impeller power number calculated from the simulated flow field are in satisfactory agreement with experimental data. This numerical method allows prediction of flow structure requiring no experimental data as the boundary conditions and has the potential of being used to scale-up and design of related process equipment.

  7. Imaging myocardial carcinoid with T2-STIR CMR

    OpenAIRE

    Baker Christopher; Schiavone William A; Prasad Sanjay K

    2008-01-01

    Abstract We used T2-STIR (Short Tau Inversion Recovery) cardiovascular magnetic resonance to demonstrate carcinoid tumor metastases to the heart and liver in a 64-year-old woman with a biopsy-proven ileal carcinoid tumor who was referred because of an abnormal echocardiogram.

  8. Stop Tobacco in Restaurants: Fifth Grade Students STIR City Hall

    Science.gov (United States)

    Morris, Ronald Vaughan

    2008-01-01

    This article discusses a campaign called STIR: Stop Tobacco in Restaurants, that was started by fourth and fifth grade students. The goal was to end smoking in public places, including restaurants, bowling alleys, sports bars, and pool halls. For two years they motivated their peers, coordinated an information campaign to urge kids and adults to…

  9. Horse manure as feedstock for anaerobic digestion.

    Science.gov (United States)

    Hadin, Sa; Eriksson, Ola

    2016-10-01

    Horse keeping is of great economic, social and environmental benefit for society, but causes environmental impacts throughout the whole chain from feed production to manure treatment. According to national statistics, the number of horses in Sweden is continually increasing and is currently approximately 360,000. This in turn leads to increasing amounts of horse manure that have to be managed and treated. Current practices could cause local and global environmental impacts due to poor performance or lack of proper management. Horse manure with its content of nutrients and organic material can however contribute to fertilisation of arable land and recovery of renewable energy following anaerobic digestion. At present anaerobic digestion of horse manure is not a common treatment. In this paper the potential for producing biogas and biofertiliser from horse manure is analysed based on a thorough literature review in combination with mathematical modelling and simulations. Anaerobic digestion was chosen as it has a high degree of resource conservation, both in terms of energy (biogas) and nutrients (digestate). Important factors regarding manure characteristics and operating factors in the biogas plant are identified. Two crucial factors are the type and amount of bedding material used, which has strong implications for feedstock characteristics, and the type of digestion method applied (dry or wet process). Straw and waste paper are identified as the best materials in an energy point of view. While the specific methane yield decreases with a high amount of bedding, the bedding material still makes a positive contribution to the energy balance. Thermophilic digestion increases the methane generation rate and yield, compared with mesophilic digestion, but the total effect is negligible.

  10. Horse manure as feedstock for anaerobic digestion.

    Science.gov (United States)

    Hadin, Sa; Eriksson, Ola

    2016-10-01

    Horse keeping is of great economic, social and environmental benefit for society, but causes environmental impacts throughout the whole chain from feed production to manure treatment. According to national statistics, the number of horses in Sweden is continually increasing and is currently approximately 360,000. This in turn leads to increasing amounts of horse manure that have to be managed and treated. Current practices could cause local and global environmental impacts due to poor performance or lack of proper management. Horse manure with its content of nutrients and organic material can however contribute to fertilisation of arable land and recovery of renewable energy following anaerobic digestion. At present anaerobic digestion of horse manure is not a common treatment. In this paper the potential for producing biogas and biofertiliser from horse manure is analysed based on a thorough literature review in combination with mathematical modelling and simulations. Anaerobic digestion was chosen as it has a high degree of resource conservation, both in terms of energy (biogas) and nutrients (digestate). Important factors regarding manure characteristics and operating factors in the biogas plant are identified. Two crucial factors are the type and amount of bedding material used, which has strong implications for feedstock characteristics, and the type of digestion method applied (dry or wet process). Straw and waste paper are identified as the best materials in an energy point of view. While the specific methane yield decreases with a high amount of bedding, the bedding material still makes a positive contribution to the energy balance. Thermophilic digestion increases the methane generation rate and yield, compared with mesophilic digestion, but the total effect is negligible. PMID:27396682

  11. Auto-Adjustable Tool for Self-Reacting and Conventional Friction Stir Welding

    Science.gov (United States)

    Carter, Robert W. (Inventor)

    2002-01-01

    A friction stir welding dcvice that is configured to perform convention friction stir welding as well as self-reacting friction stir welding is described. A pin passes hrough an upper shoulder and can selectively attach 10 and detach from a lower shoulder in a preferred embodiment. A controller maintains thc discrete position of, and/or force applied by, the upper and lower shoulders during self-reacting friction stir welding, or maintains the pin at a desired depth and/or applied force during conventional friction stir welding.

  12. StirMark Benchmark: audio watermarking attacks based on lossy compression

    Science.gov (United States)

    Steinebach, Martin; Lang, Andreas; Dittmann, Jana

    2002-04-01

    StirMark Benchmark is a well-known evaluation tool for watermarking robustness. Additional attacks are added to it continuously. To enable application based evaluation, in our paper we address attacks against audio watermarks based on lossy audio compression algorithms to be included in the test environment. We discuss the effect of different lossy compression algorithms like MPEG-2 audio Layer 3, Ogg or VQF on a selection of audio test data. Our focus is on changes regarding the basic characteristics of the audio data like spectrum or average power and on removal of embedded watermarks. Furthermore we compare results of different watermarking algorithms and show that lossy compression is still a challenge for most of them. There are two strategies for adding evaluation of robustness against lossy compression to StirMark Benchmark: (a) use of existing free compression algorithms (b) implementation of a generic lossy compression simulation. We discuss how such a model can be implemented based on the results of our tests. This method is less complex, as no real psycho acoustic model has to be applied. Our model can be used for audio watermarking evaluation of numerous application fields. As an example, we describe its importance for e-commerce applications with watermarking security.

  13. Vitrification of simulated radioactive Rocky Flats plutonium containing waste ash with a stir-melter system

    International Nuclear Information System (INIS)

    A demonstration trial has been completed in which a simulated Rocky Flats ash consisting of an industrial fly-ash material doped with cerium oxide was vitrified in an alloy tank Stir-Melter trademark System. The cerium oxide served as a substitute for plutonium oxide present in the actual Rocky Flats waste stream. The glass developed falls within the SiO2 +Al2O3 / ΣAlkali / B2O3 System. The glass batch contained approximately 40 wt % of ash, the ash was modified to contain ∼5 wt % CeO2 to simulate plutonium chemistry in the glass. The ash simulant was mixed with water and fed to the Stir-Melter as a slurry with a 60 wt % water to 40 wt % solids ratio. Glass melting temperature was maintained at approximately 1050 degrees C during the melting trials. Melting rates as functions of impeller speed and slurry feed rate were determined. An optimal melting rate was established through a series of evolutionary variations of the control variables' settings. The optimal melting rate condition was used for a continuous six hour steady state run of the vitrification system. Glass mass flow rates out of the melter were measured and correlated with the slurry feed mass flow. Melter off-gas was sampled for particulate and volatile species over a period of four hours during the steady state run. Glass composition and durability studies were run on samples collected during the steady state run

  14. EVALUATION OF A TWO-STAGE TREATMENT OF DOMESTIC SEWAGE WITH ANAEROBIC-AEROBIC MICROBIAL FILM

    Directory of Open Access Journals (Sweden)

    A.Mesdaghinia

    1986-08-01

    Full Text Available The objective of this research was to study the feasibility of a two stage continuous system employing anaerobic-aerobic microbial film for domestic wastewater treatment and the effect of iron on the behavior of sulfate reducing bacteria in anaerobic metabolism. A bench scale system with an anaerobic filter followed by aerobic fixed units used plastic media and was operated in up flow manner with hydraulic detention times of 6 hours, whereas the aerobic unit utilized diffused aeration. Raw domestic sewage was fed to the anaerobic unit, and the aerobic unit was fed with the anaerobic unit was fed with the anaerobic effluent. Although, the anaerobic filter did not show a considerable organic removal with domestic sex age it was improved when glucose was added to the influent to increase influent soluble COD. When glucose was added the anaerobic filter removed about 290 mg/1 of influent soluble COD. The aerobic unit produced an excellent effluent with COD, BOD5 and TSS concentrations of 37 mg/1, 9 mg/1 and 10 mg/l respectively. Overall, the system removed 95 percent of influent COD, 97 percent of influent BOD5 and 96 percent of influent TSS.

  15. Differences in microbial communities and performance between suspended and attached growth anaerobic membrane bioreactors treating synthetic municipal wastewater

    KAUST Repository

    Harb, Moustapha

    2015-08-14

    Two lab-scale anaerobic membrane bioreactors (AnMBRs), one up-flow attached-growth (UA) and another continuously stirred (CSTR), were operated under mesophilic conditions (35 °C) while treating synthetic municipal wastewater (800 mg L−1 COD). Each reactor was attached to both polyvinylidene fluoride (PVDF) and polyethersulfone (PES) microfiltration (MF) membranes in an external cross-flow configuration. Both reactors were started up and run under the same operating conditions for multiple steady-state experiments. Chemical oxygen demand (COD) removal rates were similar for both reactors (90–96%), but captured methane was found to be 11–18% higher for the CSTR than the UA reactor. Ion Torrent sequencing targeting 16S rRNA genes showed that several operational taxonomic units (OTUs) most closely related to fermentative bacteria (e.g., Microbacter margulisiae) were dominant in the suspended biomass of the CSTR, accounting for 30% of the microbial community. Conversely, methanogenic archaea (e.g., Methanosaeta) and syntrophic bacteria (e.g., Smithella propionica) were found in significantly higher relative abundances in the UA AnMBR as compared to the CSTR due to their affinity for surface attachment. Of the methanogens that were present in the CSTR sludge, hydrogenotrophic methanogens dominated (e.g., Methanobacterium). Measured EPS (both proteins and carbohydrates), which has been broadly linked to fouling, was determined to be consistently lower in the UA AnMBR membrane samples than in CSTR AnMBR membrane samples. Principal component analysis (PCA) based on HPLC profiles of soluble microbial products (SMPs) further demonstrated these differences between reactor types in replicate runs. The results of this study showed that reactor configuration can significantly impact the development of the microbial communities of AnMBRs that are responsible for both membrane and reactor performance.

  16. Arsenic, Anaerobes, and Astrobiology

    Science.gov (United States)

    Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

    2013-12-01

    Arsenic is an element best known for its highly poisonous nature, so it is not something one would associate with being a well-spring for life. Yet discoveries made over the past two decades have delineated that not only are some microbes resistant to arsenic, but that this element's primary redox states can be exploited to conserve energy and support prokaryotic growth ('arsenotrophy') in the absence of oxygen. Hence, arsenite [As(III)] can serve as an electron donor for chemo- or photo-autotrophy while arsenate [As(V)] will serve as an electron acceptor for chemo-heterotrophs and chemo-autotrophs. The phylogenetic diversity of these microbes is broad, encompassing many individual species from diverse taxonomic groups in the Domain Bacteria, with fewer representatives in the Domain Archaea. Speculation with regard to the evolutionary origins of the key functional genes in anaerobic arsenic transformations (arrA and arxA) and aerobic oxidation (aioB) has led to a disputation as to which gene and function is the most ancient and whether arsenic metabolism extended back into the Archaean. Regardless of its origin, robust arsenic metabolism has been documented in extreme environments that are rich in their arsenic content, such as hot springs and especially hypersaline soda lakes associated with volcanic regions. Searles Lake, CA is an extreme, salt-saturated end member where vigorous arsenic metabolism occurs, but there is no detectable sulfate-reduction or methanogenesis. The latter processes are too weak bio-energetically to survive as compared with arsenotrophy, and are also highly sensitive to the abundance of borate ions present in these locales. These observations have implications with respect to the search for microbial life elsewhere in the Solar System where volcanic-like processes have been operative. Hence, because of the likelihood of encountering dense brines in the regolith of Mars (formed by evapo-concentration) or beneath the ice layers of Europa

  17. Anaerobic microbial degradation of organochlorine insecticides Aldrin

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, T.C.; Yen, J.H.; Wang, Y.S. [National Taiwan Univ. (Taiwan)

    2004-09-15

    Aldrin (1,2,3,4,10,10-hexachloro-1,4,4a,5,8,8a-hexahydro-1,4-endo-exo-5,8-dimethanonnaphthalene), a cyclodiene organochlorine insecticide, was banned by nations and classified as B2 carcinogen by United States Environmental Protection Agency (EPA). Because of its chemical stability and lipophilicity, aldrin is regarded as a persistent and recalcitrant compound. Aldrin is easily adsorbed to soil and sediment after spreading to the environments, furthermore, it may be accumulated in animal's tissue or milk and then cause adverse effects by food-chain. The dissipation process of aldrin in environments has continuously been paid much attention by researchers. In general, the dissipation of aldrin has been thought as relating to three mechanisms: photo-degradation, chemical hydrolysis, and microbial degradation. And it has been well known that microbial degradation is the most important agent for breakdown of organochlorine pesticides. There has been shown that aldrin could be transformed to its metabolites, such as dieldrin or photo-dieldrin, by microorganisms under aerobic conditions, however, limited information has been shown under anaerobic conditions. For this reason, the degradation potential of aldrin by anaerobic microorganisms obtained from indigenous river sediment was evaluated, and the effect of environmental factors such as temperatures and nutrients on the aldrin degradation was also investigated in this study.

  18. Anaerobic Digestion of Piggery Waste

    OpenAIRE

    Velsen, van, L.S.

    1981-01-01

    Anaerobic digestion is a biological process by which organic matter is converted to methane and carbon dioxide by microbes in the absence of air (oxygen). In nature, anaerobic conversions occur at all places where organic material accumulates and the supply of oxygen is deficient, e.g. in marshes and lake sediments. Microbial formation of methane also plays a role in the ruminant digestion.In digestion units, the external conditions acting upon the process can be regulated to speed it up as c...

  19. Molecular genetic studies on obligate anaerobic bacteria

    International Nuclear Information System (INIS)

    Molecular genetic studies on obligate anaerobic bacteria have lagged behind similar studies in aerobes. However, the current interest in biotechnology, the involvement of anaerobes in disease and the emergence of antibioticresistant strains have focused attention on the genetics of anaerobes. This article reviews molecular genetic studies in Bacteroides spp., Clostridium spp. and methanogens. Certain genetic systems in some anaerobes differ from those in aerobes and illustrate the genetic diversity among bacteria

  20. The phenomenon of granulation of anaerobic sludge.

    NARCIS (Netherlands)

    Hulshoff Pol, L.W.

    1989-01-01

    Successful high-rate anaerobic wastewater treatment can only be accomplished when the slowgrowing anaerobic biomass is efficiently held back in the anaerobic treatment system. This biomass retention can be achieved in various ways including immobilization of the organisms on fixed materials and immo

  1. Viscosity evolution of anaerobic granular sludge

    NARCIS (Netherlands)

    Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Lens, P.N.L.; Baudu, M.

    2006-01-01

    The evolution of the apparent viscosity at steady shear rate of sieved anaerobic granular sludge (20¿315 ¿m diameter) sampled from different full-scale anaerobic reactors was recorded using rotation tests. The ¿limit viscosity¿ of sieved anaerobic granular sludge was determined from the apparent vis

  2. Kinetics and modeling of anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    Anaerobic digestion modeling started in the early 1970s when the need for design and efficient operation of anaerobic systems became evident. At that time not only was the knowledge about the complex process of anaerobic digestion inadequate but also there were computational limitations. Thus, th...

  3. Assessment of the ability of sludge to degrade PCP under anaerobic conditions

    OpenAIRE

    R. M. L. Bolaños; M. H. R. Z. Damianovic; ZAIAT M.; E. Foresti

    2005-01-01

    The capacity of sludge from different sources to degrade pentachlorophenol (PCP) was evaluated. Three 2.5 liter reactors (R1, R2, and R3) were inoculated with different anaerobic sludges, semi continuously fed and maintained in orbital motion at 30±1°C. R1 was inoculated with aerobic sludge and river sediment collected downstream from a pulp and paper plant. R2 received sludge from an anaerobic reactor treating effluents from a paper recycling plant and R3 received anaerobic sludge...

  4. Dry anaerobic digestion of rejects from pre-treated food waste; Torroetning av rejekt fraan foerbehandling av matavfall

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, Irene [NSR, Helsingborg (Sweden); Murto, Marika; Bjoernsson, Lovisa [Bioteknik, LTH, Lund (Sweden); Rosqvist, Haakan [Rosqvist Resurs, Klaagerup (Sweden)

    2011-11-15

    When the organic fraction of source separated municipal solid waste is digested anaerobically in a continuously stirred tank reactor there is a need for a pretreatment to make the waste pumpable and remove contaminants. In one type of pretreatment the material passes through a screw press which separates waste in a liquid fraction and a dry fraction (the reject). At NSR this technique is used and at present the reject is incinerated. A previous study has shown that about 30 % of the methane potential of the incoming organic waste can be found in the reject. The aim of the present project was to investigate the possibilities of realizing the methane potential through batch wise dry anaerobic digestion followed by composting as an alternative to incineration. In the technique used in the present project the material was digested in an anaerobic leach-bed with recirculation of leachate over the bed. It is important that the material is sufficiently porous to let the leachate spread evenly through the leach-bed. Treatment of reject and a mixture of reject and structural material were tested to investigate if the addition of structural material had an effect on the porosity. The flow of liquid through a leach-bed of reject and one of reject mixed with structural material was studied using LiBr as tracer. The digestate from the dry digestion process was composted, and the resulting compost was evaluated. The odor from the digestate, the active compost and the compost product was measured by analyzing the odor in the air of the porous space in heaps of the different materials. This was used to evaluate the risk of odor problems. The dry digestion and the tracer experiment both showed that mixing the reject with structural material had a positive effect on the flow of liquid through the material and the digestion process. Addition of structural material to the reject was needed in order to achieve an efficient digestion process. Using tracers proved to be a useful way of

  5. 高温CSTR-中温UASB两级厌氧处理木薯酒精废水%Two-stage anaerobic treatment of cassava ethanol wastewater using thermophilic CSTR and mesophilic UASB

    Institute of Scientific and Technical Information of China (English)

    陈金荣; 谢丽; 罗刚; 周琪

    2011-01-01

    Since cassava ethanol wastewater is characterized by high temperature,high solid content and high organism concentration,the two-stage anaerobic treatment using thermophilic continuous stirred tank reactor (CSTR)and mesophilic upflow anaerobic sludge bed (UASB) has been conducted. Experimental results show that when the influent COD loading of thermophilic CSTR is controlled 14 kg/(m3·d) and COD loading of mesophilic UASB reactor is controlled 3 kg/(m3·d) ,the total removal rates of COD,SS,TN and TP are 94% ,96% ,44% and 87% ,respectively, after the two-stage anaerobic treatment.The life cycle of cassava ethanol production and economic benefits of such wastewater treatment are discussed,indicating that two-stage anaerobic treatment process can not only reduce the pollution resulted from cassava ethanol production, but also create economic benefits from the biogas produced in the course of treatment.%针对木薯酒精废水温度、固体含量及有机物浓度高的特点,采用高温CSTR-中温UASB两级厌氧工艺处理木薯酒精废水.小试结果表明,控制高温CSTR进水COD负荷为14 kg/(m3·d),中温UASB COD负荷为3 kg/(m3·d)时,两级厌氧对COD、SS、溶解性TN、溶解性TP的总去除率分别达94%、96%、44%和87%.对木薯酒精生产周期和废水处理经济效益的分析表明,采用两级厌氧工艺处理木薯酒精废水,不仅削减了木薯酒精生产过程中产生的污染物,其处理过程中产生的沼气还带来了一定的经济效益.

  6. 反应器类型对生物厌氧发酵产氢的影响研究进展%Progress in Studying Effects of Bio-reactor Type on Anaerobic Fermentative Bio-hydgrogen Production

    Institute of Scientific and Technical Information of China (English)

    王磊; 谢丽; 罗刚; 周琪

    2012-01-01

    Recently, fermentative hydrogen production with organic wastewater or waste becomes a research focus in the field of bio-energy production, for it is a good way of garbage disposal and energy production. The type of bio-reactor is considered to have important effects on both microbial community structures and mass transfer efficiency between biomass and substrates, which could influence the hydrogen production and stability of the process. In this paper, immobilized-and suspended-cell Hj-producing systems are compared based on biomass growth in forms of granular, bio-film, gel-entrapped bio-particle. Reactor configurations such as continuous stirred tank reactor, anaerobic sequencing batch reactor, up-flow anaerobic sludge blanket, expanded granular sludge bed, anaerobic packed bed, anaerobic fluidized-bed, hybrid bio-reactor and their impacts on bio-hydrogen production are summarized. Finally, suggestions and perspectives are proposed to provide guidance for further research.%利用有机废水或废弃物厌氧发酵制取氢气可以同时达到除废和产能的双重目的,是近年来生物质能的研究热点.产氢反应器的类型会影响反应器内产氢菌的数量和种类以及微生物与底物之间的传质作用,进而影响产氢系统的稳定性和产氢效果.对厌氧产氢悬浮细胞系统和固定化细胞系统(颗粒污泥、生物膜、微生物包埋体)保留生物量的效果进行了对比,总结了连续搅拌釜式反应器( CSTR)、厌氧序批反应器(ASBR)、上流式厌氧污泥床(UASB)、膨胀颗粒污泥床(EGSB)、厌氧填充床、厌氧流化床(AFBR)以及复合生物反应器等不同反应器类型对厌氧产氢的影响,并提出了一些建议与展望,以期为以后的研究提供指导作用.

  7. Monitoring Methanotrophic Bacteria in Hybrid Anaerobic-Aerobic Reactors with PCR and a Catabolic Gene Probe

    OpenAIRE

    Miguez, Carlos B; Shen, Chun F; Bourque, Denis; Guiot, Serge R; Groleau, Denis

    1999-01-01

    We attempted to mimic in small upflow anaerobic sludge bed (UASB) bioreactors the metabolic association found in nature between methanogens and methanotrophs. UASB bioreactors were inoculated with pure cultures of methanotrophs, and the bioreactors were operated by using continuous low-level oxygenation in order to favor growth and/or survival of methanotrophs. Unlike the reactors in other similar studies, the hybrid anaerobic-aerobic bioreactors which we used were operated synchronously, not...

  8. An Analysis of the Feasibility of Anaerobic Digestion on Small-Scale Dairies in Utah

    OpenAIRE

    Lund, Steven Chans

    2016-01-01

    With an ever increasing concern for the environment, different methods of managing organic waste on dairy farms have been explored and analyzed. Anaerobic digestion has long been a popular method of managing organic waste. Its popularity stems from the potential to decrease greenhouse gases, improve air quality and provide a source of additional revenue for the farm. Problems with implementing anaerobic digestion arise from high failure rates, high start-up costs and continuous maintenance an...

  9. Technology for Anaerobic Fermentation of Blue-Green Algae%水华蓝藻厌氧发酵工艺技术研究

    Institute of Scientific and Technical Information of China (English)

    常志州; 杜静; 叶小梅; 严少华; 张振华

    2009-01-01

    以太湖水华蓝藻为底物,用改进的CSTR(continuous stirred tank reactor)工艺,研究了不同有机负荷条件下蓝藻厌氧发酵相关参数与蓝藻藻毒素的去除效果.结果表明:在(35±1) ℃条件下,逐步提高有机负荷,系统运行稳定,有机负荷最高可达3.53 kg·m-3·d-1,此时最大容积产气率达0.89 m3·m-3·d-1,COD去除率在70%左右,甲烷体积分数达60%以上.不同负荷条件下,出料中藻毒素(MC-RR、MC-LR)检测均为阴性,已达无害化处理要求,表明该工艺可以有效处置水华蓝藻,实现能量回收与无害化处理的目标.%Efficiency of the use of the modified continuous stirred tank reactor(CSTR) technology in anaerobic fermentation of blue-green algae collected from the Taihu Lake was studied under the different rates of organic loading.Results show that operation of the system at (35±1) ℃ remained stable with organic loading rate gradually increasing.After 65 days of operation,its organic loading could reach as high as 3.53 kg·m3·d-1,its gas producing rate well as high as 0.89 m3·m-3·d-1,its COD removal rate around 70%,and methane concentration of the biogas it produced over 60%.Test of the discharge from the system showed negative of microcystins (MC-RR or MC-LR) in all loading conditions.The findings suggest that the modified CSTR technology satisfies the requirement for efficient treatment of blue-green algae,while realizing the target of energy recovery and dehazardization of the blue-green algae.

  10. Oxygen Effects in Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Deshai Botheju

    2009-10-01

    Full Text Available Interaction of free oxygen in bio-gasification is a sparsely studied area, apart from the common argument of oxygen being toxic and inhibitory for anaerobic micro-cultures. Some studies have, however, revealed increased solubilisation of organic matter in the presence of some free oxygen in anaerobic digestion. This article analyses these counterbalancing phenomena with a mathematical modelling approach using the widely accepted biochemical model ADM 1. Aerobic oxidation of soluble carbon and inhibition of obligatory anaerobic organisms are modelled using standard saturation type kinetics. Biomass dependent first order hydrolysis kinetics is used to relate the increased hydrolysis rate with oxygen induced increase in biomass growth. The amended model, ADM 1-Ox (oxygen, has 25 state variables and 22 biochemical processes, presented in matrix form. The computer aided simulation tool AQUASIM 2.1 is used to simulate the developed model. Simulation predictions are evaluated against experimental data obtained using a laboratory batch test array comprising miniature anaerobic bio-reactors of 100 ml total volume each, operated under different initial air headspaces giving rise to the different oxygen loading conditions. The reactors were initially fed with a glucose solution and incubated at 35 Celsius, for 563 hours. Under the oxygen load conditions of 22, 44 and 88 mg/L, the ADM1-Ox model simulations predicted the experimental methane potentials quite adequately. Both the experimental data and the simulations suggest a linear reduction of methane potential with respect to the increase in oxygen load within this range.

  11. Anaerobic Treatment of Methanolic Wastes

    NARCIS (Netherlands)

    Lettinga, G.; Geest, van der A.Th.; Hobma, S.W.; Laan, van der J.B.R.

    1979-01-01

    Although it is well known that methanol can be fermented directly by a specific species of methane bacteria, viz. Methanosarcina barkeri, until now little information was available about the effect of important environmental factors on the anaerobic fermentation of methanol. As methanol can be the m

  12. Cosmetic wastewater treatment by upflow anaerobic sludge blanket reactor

    International Nuclear Information System (INIS)

    Anaerobic treatment of pre-settled cosmetic wastewater in batch and continuous experiments has been investigated. Biodegradability tests showed high COD and solid removal efficiencies (about 70%), being the hydrolysis of solids the limiting step of the process. Continuous treatment was carried out in an upflow anaerobic sludge blanket reactor. High COD and TSS removal efficiencies (up to 95% and 85%, respectively) were achieved over a wide range of organic load rate (from 1.8 to 9.2 g TCOD L-1 day-1). Methanogenesis inhibition was observed in batch assays, which can be predicted by means of a Haldane-based inhibition model. Both COD and solid removal were modelled by Monod and pseudo-first order models, respectively.

  13. Cosmetic wastewater treatment by upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Puyol, D.; Monsalvo, V.M.; Mohedano, A.F. [Seccion de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain); Sanz, J.L. [Departamento de Biologia Molecular, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain); Rodriguez, J.J., E-mail: juanjo.rodriguez@uam.es [Seccion de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain)

    2011-01-30

    Anaerobic treatment of pre-settled cosmetic wastewater in batch and continuous experiments has been investigated. Biodegradability tests showed high COD and solid removal efficiencies (about 70%), being the hydrolysis of solids the limiting step of the process. Continuous treatment was carried out in an upflow anaerobic sludge blanket reactor. High COD and TSS removal efficiencies (up to 95% and 85%, respectively) were achieved over a wide range of organic load rate (from 1.8 to 9.2 g TCOD L{sup -1} day{sup -1}). Methanogenesis inhibition was observed in batch assays, which can be predicted by means of a Haldane-based inhibition model. Both COD and solid removal were modelled by Monod and pseudo-first order models, respectively.

  14. Continuous Cultivation of Photosynthetic Bacteria for Fatty Acids Production

    DEFF Research Database (Denmark)

    Kim, Dong-Hoon; Lee, Ji-Hye; Hwang, Yuhoon;

    2013-01-01

    In the present work, we introduced a novel approach for microbial fatty acids (FA) production. Photosynthetic bacteria, Rhodobacter sphaeroides KD131, were cultivated in a continuous-flow, stirred-tank reactor (CFSTR) at various substrate (lactate) concentrations.At hydraulic retention time (HRT)...

  15. Anaerobic digestion of slaughterhouse by-products

    DEFF Research Database (Denmark)

    Hejnfelt, Anette; Angelidaki, Irini

    2009-01-01

    hydrolysis (NaOH) had no effect on achieved methane yields. Mesophilic digestion was more stable than thermophilic digestion, and higher methane yield was noticed at high waste concentrations. The lower yield at thermophilic temperature and high waste concentration was due to ammonia inhibition. Co......Anaerobic digestion of animal by-products was investigated in batch and semi-continuously fed, reactor experiments at 55 degrees C and for some experiments also at 37 degrees C. Separate or mixed by-products from pigs were tested. The methane potential measured by batch assays for meat- and bone...... giving the best results. High concentrations of long-chain fatty acids and ammonia in the by-products were found to inhibit the biogas process at concentrations higher than 5 g lipids dm(-3) and 7 gN dm(-3) respectively. Pretreatment (pasteurization: 70 degrees C, sterilization: 133 degrees C, and alkali...

  16. MRI of lymphedema using short-TI-IR (STIR)

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Koichi; Ishida, Osamu; Mabuchi, Norihisa; Shindou, Hiroshi; Yoshioka, Hiroyasu; Kumano, Machiko; Hamada, Tatsumi; Ohkuma, Moriya (Kinki Univ., Osaka (Japan). School of Medicine)

    1990-01-01

    Thirty four cases with lymphedema of the extremities were examined with MRI at 0.5 tesla. On T1-weighted image, the enlarged subcutaneous tissue and the subcutaneous trabecular structures were seen in all cases. Moreover, the trabecular structures in the enlarged subcutaneous tissue showed low signal intensity on T1-weighted image and high signal intensity on T2-weighted image in all cases. Additionally, in 12 of 15 cases examined by Short-TI-IR (STIR) image, the trabecular structures and fluid collections in the subcutaneous tissue were shown more definitely in high signal intensity than by T2-weighted image. We consider MRI using STIR is to be useful in the evaluation of edematous disease. (author).

  17. Effects of electromagnetic stirring on microstructures of solidified aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    时海芳; 张伟强

    2003-01-01

    Al-20%Cu, Al-33%Cu and Al-7%Si alloys were solidified with electromagnetic stirring(EMS). The fluid flow induced by electromagnetic stirring leads to the increases of the lamellar spacing of Al-CuAl2 and Al-Si eutectics and the secondary dendritic arm spacing. Rod-like eutectic structure plus pro-eutectic α(Al) are observed in Al-Cu eutectic alloy when the agitating voltage is increased over 130 V, and in the hypoeutectic alloys, globular grains of proeutectic α(Al) grains may form when the magnetic field is strong enough. The Si flakes in the Al-Si eutectic are also coarsened by applying forced flow during solidification, which is always related to the depression of their branching in the growth by the forced convection.

  18. CFD simulation of particle suspension in a stirred tank

    Institute of Scientific and Technical Information of China (English)

    Nana Qi; Hu Zhang; Kai Zhang; Gang Xu; Yongping Yang

    2013-01-01

    Particle suspension characteristics are predicted computationally in a stirred tank driven by a Smith turbine.In order to verify the hydrodynamic model and numerical method,the predicted power number and flow pattern are compared with designed values and simulated results from the literature,respectively.The effects of particle density,particle diameter,liquid viscosity and initial solid loading on particle suspension behavior are investigated by using the Eulerian-Eulerian two-fluid model and the standard k-ε turbulence model.The results indicate that solid concentration distribution depends on the flow field in the stirred tank.Higher particle density or larger particle size results in less homogenous distribution of solid particles in the tank.Increasing initial solid loading has an adverse impact on the homogeneous suspension of solid particles in a low-viscosity liquid,whilst more uniform particle distribution is found in a high-viscositv liauid.

  19. Friction stir welding of AZ31 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    林三宝; 张华; 吴林; 冯吉才; 戴鸿滨

    2003-01-01

    Friction stir welding (FSW) is an new solid-phase joining technology which has more advantages over fusion welding methods in welding of aluminum and other non-ferrous metals. The effects of welding parameters on mechanical properties and microstructure during friction stir welding of AZ31 magnesium alloy were studied in this paper. Microstructures and mechanical properties of the joints were investigated by means of optical microscopy, scanning electric microscopy (SEM), micro-hardness analysis, and tensile test. Experimental results show that the magnesium alloy can be successfully welded by FSW method, and the ultimate tensile strength (UTS) of FSW joint reaches up to 90 percent of base metal. The microstructures of welded joints exhibit the variation from dynamically recrystallized fine grains to greatly deformed grains. Hardness in nugget zone was found lower than the base metal but not too obvious.

  20. Structural response of superaustenitic stainless steel to friction stir welding

    International Nuclear Information System (INIS)

    Highlights: → Grain structure evolution was mainly governed by discontinuous recrystallization. → The recrystallization was static in nature and occurred during weld cooling cycle. → Material flow was mainly induced by the tool shoulder. → The texture was a superposition of {1 1 1} and {h k l} partial simple-shear fibers. - Abstract: Electron backscattering diffraction was employed to study grain structure development and texture evolution during friction stir welding (FSW) of a low stacking fault energy material, S31254 superaustenitic stainless steel. Formation of the final stir zone (SZ) microstructure was deduced to be primarily governed by discontinuous recrystallization occurring during the FSW cooling cycle. The textural pattern formed in the SZ was interpreted in the terms of {1 1 1} and {h k l} partial simple shear fiber textures.