WorldWideScience

Sample records for anaerobic ammonium-oxidizing anammox

  1. Temporal and Spatial Dynamics of Sediment Anaerobic Ammonium Oxidation (Anammox) Bacteria in Freshwater Lakes.

    Science.gov (United States)

    Yang, Yuyin; Dai, Yu; Li, Ningning; Li, Bingxin; Xie, Shuguang; Liu, Yong

    2017-02-01

    Anaerobic ammonium-oxidizing (anammox) process can play an important role in freshwater nitrogen cycle. However, the distribution of anammox bacteria in freshwater lake and the associated environmental factors remain essentially unclear. The present study investigated the temporal and spatial dynamics of sediment anammox bacterial populations in eutrotrophic Dianchi Lake and mesotrophic Erhai Lake on the Yunnan Plateau (southwestern China). The remarkable spatial change of anammox bacterial abundance was found in Dianchi Lake, while the relatively slight spatial shift occurred in Erhai Lake. Dianchi Lake had greater anammox bacterial abundance than Erhai Lake. In both Dianchi Lake and Erhai Lake, anammox bacteria were much more abundant in summer than in spring. Anammox bacterial community richness, diversity, and structure in these two freshwater lakes were subjected to temporal and spatial variations. Sediment anammox bacterial communities in Dianchi Lake and Erhai Lake were dominated by Candidatus Brocadia and a novel phylotype followed by Candidatus Kuenenia; however, these two lakes had distinct anammox bacterial community structure. In addition, trophic status determined sediment anammox bacterial community structure.

  2. Molecular detection of anaerobic ammonium-oxidizing (anammox) bacteria in high-temperature petroleum reservoirs.

    Science.gov (United States)

    Li, Hui; Chen, Shuo; Mu, Bo-Zhong; Gu, Ji-Dong

    2010-11-01

    Anaerobic ammonium-oxidizing (anammox) process plays an important role in the nitrogen cycle of the worldwide anoxic and mesophilic habitats. Recently, the existence and activity of anammox bacteria have been detected in some thermophilic environments, but their existence in the geothermal subterranean oil reservoirs is still not reported. This study investigated the abundance, distribution and functional diversity of anammox bacteria in nine out of 17 high-temperature oil reservoirs by molecular ecology analysis. High concentration (5.31-39.2 mg l(-1)) of ammonium was detected in the production water from these oilfields with temperatures between 55°C and 75°C. Both 16S rRNA and hzo molecular biomarkers indicated the occurrence of anammox bacteria in nine out of 17 samples. Most of 16S rRNA gene phylotypes are closely related to the known anammox bacterial genera Candidatus Brocadia, Candidatus Kuenenia, Candidatus Scalindua, and Candidatus Jettenia, while hzo gene phylotypes are closely related to the genera Candidatus Anammoxoglobus, Candidatus Kuenenia, Candidatus Scalindua, and Candidatus Jettenia. The total bacterial and anammox bacterial densities were 6.4 ± 0.5 × 10(3) to 2.0 ± 0.18 × 10(6) cells ml(-1) and 6.6 ± 0.51 × 10(2) to 4.9 ± 0.36 × 10(4) cell ml(-1), respectively. The cluster I of 16S rRNA gene sequences showed distant identity (<92%) to the known Candidatus Scalindua species, inferring this cluster of anammox bacteria to be a new species, and a tentative name Candidatus "Scalindua sinooilfield" was proposed. The results extended the existence of anammox bacteria to the high-temperature oil reservoirs.

  3. Hydroxylamine-dependent Anaerobic Ammonium Oxidation (Anammox) by “ Candidatus Brocadia sinica”

    KAUST Repository

    Oshiki, Mamoru; Ali, Muhammad; Shinyako-Hata, Kaori; Satoh, Hisashi; Okabe, Satoshi

    2016-01-01

    Although metabolic pathways and associated enzymes of anaerobic ammonium oxidation (anammox) of “Ca. Kuenenia stuttgartiensis” have been studied, those of other anammox bacteria are still poorly understood. NO2- reduction to NO is considered to be the first step in the anammox metabolism of “Ca. K. stuttgartiensis”, however, “Ca. Brocadia” lacks the genes that encode canonical NO-forming nitrite reductases (NirS or NirK) in its genome, which is different from “Ca. K. stuttgartiensis”. Here, we studied the anammox metabolism of “Ca. Brocadia sinica”. 15N-tracer experiments demonstrated that “Ca. B. sinica” cells could reduce NO2- to NH2OH, instead of NO, with as yet unidentified nitrite reductase(s). Furthermore, N2H4 synthesis, downstream reaction of NO2- reduction, was investigated using a purified “Ca. B. sinica” hydrazine synthase (Hzs) and intact cells. Both the “Ca. B. sinica” Hzs and cells utilized NH2OH and NH4+, but not NO and NH4+, for N2H4 synthesis and further oxidized N2H4 to N2 gas. Taken together, the metabolic pathway of “Ca. B. sinica” is NH2OH-dependent and different from the one of “Ca. K. stuttgartiensis”, indicating metabolic diversity of anammox bacteria. This article is protected by copyright. All rights reserved.

  4. Hydroxylamine-dependent anaerobic ammonium oxidation (anammox) by "Candidatus Brocadia sinica".

    Science.gov (United States)

    Oshiki, Mamoru; Ali, Muhammad; Shinyako-Hata, Kaori; Satoh, Hisashi; Okabe, Satoshi

    2016-09-01

    Although metabolic pathways and associated enzymes of anaerobic ammonium oxidation (anammox) of 'Ca. Kuenenia stuttgartiensis' have been studied, those of other anammox bacteria are still poorly understood. NO2- reduction to NO is considered to be the first step in the anammox metabolism of 'Ca. K. stuttgartiensis', however, 'Ca. Brocadia' lacks the genes that encode canonical NO-forming nitrite reductases (NirS or NirK) in its genome, which is different from 'Ca. K. stuttgartiensis'. Here, we studied the anammox metabolism of 'Ca. Brocadia sinica'. (15) N-tracer experiments demonstrated that 'Ca. B. sinica' cells could reduce NO2- to NH2 OH, instead of NO, with as yet unidentified nitrite reductase(s). Furthermore, N2 H4 synthesis, downstream reaction of NO2- reduction, was investigated using a purified 'Ca. B. sinica' hydrazine synthase (Hzs) and intact cells. Both the 'Ca. B. sinica' Hzs and cells utilized NH2 OH and NH4+, but not NO and NH4+, for N2 H4 synthesis and further oxidized N2 H4 to N2 gas. Taken together, the metabolic pathway of 'Ca. B. sinica' is NH2 OH-dependent and different from the one of 'Ca. K. stuttgartiensis', indicating metabolic diversity of anammox bacteria. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Hydroxylamine-dependent Anaerobic Ammonium Oxidation (Anammox) by “ Candidatus Brocadia sinica”

    KAUST Repository

    Oshiki, Mamoru

    2016-04-26

    Although metabolic pathways and associated enzymes of anaerobic ammonium oxidation (anammox) of “Ca. Kuenenia stuttgartiensis” have been studied, those of other anammox bacteria are still poorly understood. NO2- reduction to NO is considered to be the first step in the anammox metabolism of “Ca. K. stuttgartiensis”, however, “Ca. Brocadia” lacks the genes that encode canonical NO-forming nitrite reductases (NirS or NirK) in its genome, which is different from “Ca. K. stuttgartiensis”. Here, we studied the anammox metabolism of “Ca. Brocadia sinica”. 15N-tracer experiments demonstrated that “Ca. B. sinica” cells could reduce NO2- to NH2OH, instead of NO, with as yet unidentified nitrite reductase(s). Furthermore, N2H4 synthesis, downstream reaction of NO2- reduction, was investigated using a purified “Ca. B. sinica” hydrazine synthase (Hzs) and intact cells. Both the “Ca. B. sinica” Hzs and cells utilized NH2OH and NH4+, but not NO and NH4+, for N2H4 synthesis and further oxidized N2H4 to N2 gas. Taken together, the metabolic pathway of “Ca. B. sinica” is NH2OH-dependent and different from the one of “Ca. K. stuttgartiensis”, indicating metabolic diversity of anammox bacteria. This article is protected by copyright. All rights reserved.

  6. Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification

    DEFF Research Database (Denmark)

    Chamchoi, N.; Nitisoravut, S.; Schmidt, Jens Ejbye

    2008-01-01

    of Amx 820 and EUB 338 mixed. Denitrification was observed through the reductions of both COD and nitrate–nitrite concentrations under anaerobic/anoxic conditions. By providing a stoichiometric ratio of nitrite to ammonium nitrogen with addition nitrate nitrogen, a gradual reduction of ANAMMOX activity...... was found with an increase of COD concentration in a range of 100–400 mg l−1. This is equivalent to the COD to N ratio of 0.9–2.0. The COD concentration was found to be a control variable for process selection between ANAMMOX reaction and denitrification. A reduction of COD and nitrite–nitrate...

  7. Advances in methods for detection of anaerobic ammonium oxidizing (anammox) bacteria.

    Science.gov (United States)

    Li, Meng; Gu, Ji-Dong

    2011-05-01

    Anaerobic ammonium oxidation (anammox), the biochemical process oxidizing ammonium into dinitrogen gas using nitrite as an electron acceptor, has only been recognized for its significant role in the global nitrogen cycle not long ago, and its ubiquitous distribution in a wide range of environments has changed our knowledge about the contributors to the global nitrogen cycle. Currently, several groups of methods are used in detection of anammox bacteria based on their physiological and biochemical characteristics, cellular chemical composition, and both 16S rRNA gene and selective functional genes as biomarkers, including hydrazine oxidoreductase and nitrite reductase encoding genes hzo and nirS, respectively. Results from these methods coupling with advances in quantitative PCR, reverse transcription of mRNA genes and stable isotope labeling have improved our understanding on the distribution, diversity, and activity of anammox bacteria in different environments both natural and engineered ones. In this review, we summarize these methods used in detection of anammox bacteria from various environments, highlight the strengths and weakness of these methods, and also discuss the new development potentials on the existing and new techniques in the future.

  8. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea RID B-8834-2011

    DEFF Research Database (Denmark)

    Kuypers, MMM; Sliekers, AO; Lavik, G.

    2003-01-01

    The availability of fixed inorganic nitrogen (nitrate, nitrite and ammonium) limits primary productivity in many oceanic regions(1). The conversion of nitrate to N(2) by heterotrophic bacteria (denitrification) is believed to be the only important sink for fixed inorganic nitrogen in the ocean(2......). Here we provide evidence for bacteria that anaerobically oxidize ammonium with nitrite to N(2) in the world's largest anoxic basin, the Black Sea. Phylogenetic analysis of 16S ribosomal RNA gene sequences shows that these bacteria are related to members of the order Planctomycetales performing...... the anammox (anaerobic ammonium oxidation) process in ammonium-removing bioreactors(3). Nutrient profiles, fluorescently labelled RNA probes, (15)N tracer experiments and the distribution of specific 'ladderane' membrane lipids(4) indicate that ammonium diffusing upwards from the anoxic deep water is consumed...

  9. Enriquecimento de bactérias anaeróbias oxidadoras de amônia - anammox Enrichment of anaerobic ammonium oxidizing bacteria - anammox

    Directory of Open Access Journals (Sweden)

    Juliana Calábria de Araújo

    2010-06-01

    Full Text Available Bactérias anaeróbias oxidadoras de amônia (bactérias Anammox, do inglês anaerobic ammonium oxidizing bacteria foram enriquecidas em reator em batelada sequencial (RBS, a partir de lodo proveniente de um sistema convencional de lodos ativados tratando esgoto doméstico de Belo Horizonte (MG. Após três meses de cultivo, atividade Anammox foi detectada no sistema pelo consumo de quantidades estequiométricas de NO2- e NH4+. Análises de hibridação in situ fluorescente (FISH, do inglês fluorescent in situ hybridization confirmaram a presença de bactérias Anammox, provavelmente Candidatus Brocadia anammoxidans, e revelaram que estas representavam 53% do total de células (após 6 meses de cultivo. O desempenho do reator ao longo dos sete meses de operação demonstrou remoção quase que total de nitrito, baseada em concentração afluente de 61 a 95 mg N-NO2-/L. A eficiência máxima de remoção de amônia alcançada foi de 95%, a partir de concentração afluente de 55 a 82 mg N-NH4+/L.Anaerobic ammonium-oxidizing (Anammox bacteria were enriched from sludge collected at a conventional activated sludge system treating domestic wastewater of Belo Horizonte(MG, Brazil, employing a sequencing batch reactor (SBR. After three months of cultivation, Anammox activity was detected in the system by the consumption of stoichiometric amounts of NO2- and NH4+. Fluorescent in situ hybridization (FISH results revealed the presence of Anammox bacteria (probably Candidatus Brocadia anammoxidans and showed that they accounted for 53% of the total bacterial population (after 6 months of cultivation. The reactor performance during the seven months of operation showed a near perfect removal of nitrite, based on the influent NO2--N concentration of 61-95 mg/L. The maximum ammonia removal efficiency was 95% from the influent N-NH4+ concentration of 55-82 mg/L.

  10. Evaluation on the microbial interactions of anaerobic ammonium oxidizers and heterotrophs in Anammox biofilm

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Ruscalleda, Mael; Smets, Barth F.

    2012-01-01

    and the affecting factors were evaluated with both experimental and modeling approaches. Fluorescent in situ hybridization (FISH) analysis illustrated that Anammox bacteria and heterotrophs accounted for 77% and 23% of the total bacteria, respectively, even without addition of an external carbon source....... Experimental results showed the heterotrophs could grow both on SMP and decay released substrate from the metabolism of the Anammox bacteria. However, heterotrophic growth in Anammox biofilm (23%) was significantly lower than that of nitrifying biofilm (30–50%). The model predictions matched well...... with the experimental observations of the bacterial distribution, as well as the nitrogenous transformations in batch and continuous experiments. The modeling results showed that low nitrogen surface loading resulted in a lower availability of SMP leading to low heterotrophic growth in Anammox biofilm, but high...

  11. Engineering application of anaerobic ammonium oxidation process in wastewater treatment.

    Science.gov (United States)

    Mao, Nianjia; Ren, Hongqiang; Geng, Jinju; Ding, Lili; Xu, Ke

    2017-08-01

    Anaerobic ammonium oxidation (Anammox), a promising biological nitrogen removal process, has been verified as an efficient, sustainable and cost-effective alternative to conventional nitrification and denitrification processes. To date, more than 110 full-scale anammox plants have been installed and are in operation, treating industrial NH 4 + -rich wastewater worldwide, and anammox-based technologies are flourishing. This review the current state of the art for engineering applications of the anammox process, including various anammox-based technologies, reactor selection and attempts to apply it at different wastewater plants. Process control and implementation for stable performance are discussed as well as some remaining issues concerning engineering application are exposed, including the start-up period, process disturbances, greenhouse gas emissions and especially mainstream anammox applications. Finally, further development of the anammox engineering application is proposed in this review.

  12. Cell biology of anaerobic ammonium-oxidizing bacteria

    NARCIS (Netherlands)

    Niftrik, L.A.M.P. van

    2008-01-01

    Anammox bacteria perform anaerobic ammonium oxidation to dinitrogen gas and belong to the phylum Planctomycetes. Whereas most Prokaryotes consist of one compartment, the cytoplasm bounded by the cytoplasmic membrane and cell wall, the species within this phylum are compartmentalized by intracellular

  13. Development of anaerobic ammonium oxidation (anammox) for biological nitrogen removal in domestic wastewater treatment (Case study: Surabaya City, Indonesia)

    Science.gov (United States)

    Wijaya, I. Made Wahyu; Soedjono, Eddy Setiadi; Fitriani, Nurina

    2017-11-01

    Domestic wastewater effluent is the main contributor to diverse water pollution problems. The contaminants contained in the wastewater lead the low quality of water. The presence of ammonium and nitrate along with phosphorus are potentially cause eutrophication and endanger aquatic life. Excess nutrients, mostly N and P is the main cause of eutrophication which is result in oxygen depletion, biodiversity reduction, fish kills, odor and increased toxicity. Most of the domestic wastewater in Surabaya City still contains nitrogen that exceeded the threshold. The range of ammonium and orthophosphate concentration in the domestic wastewater is between 6.29 mg/L - 38.91 mg/L and 0.44 mg/L - 1.86 mg/L, respectively. An advance biological nitrogen removal process called anammox is a sustainable and cost effective alternative to the basic method of nitrogen removal, such as nitrification and denitrification. Many research have been conducted through anammox and resulted promisingly way to remove nitrogen. In this process, ammonium will be oxidized with nitrite as an electron acceptor to produce nitrogen gas and low nitrate in anoxic condition. Anammox requires less oxygen demand, no needs external carbon source, and low operational cost. Based on its advantages, anammox is possible to apply in domestic wastewater treatment in Surabaya with many further studies.

  14. Cultivation, detection, and ecophysiology of anaerobic ammonium-oxidizing bacteria.

    Science.gov (United States)

    Kartal, Boran; Geerts, Wim; Jetten, Mike S M

    2011-01-01

    Anaerobic ammonium-oxidizing (anammox) bacteria oxidize ammonium with nitrite under anoxic conditions. The anammox process is currently used to remove ammonium from wastewater and contributes significantly to the loss of fixed nitrogen from the oceans. In this chapter, we focus on the ecophysiology of anammox bacteria and describe new methodologies to grow these microorganisms. Now, it is possible to enrich anammox bacteria up to 95% with a membrane bioreactor that removes forces of selection for fast settling aggregates and facilitates the growth of planktonic cells. The biomass from this system has a high anaerobic ammonium oxidation rate (50 fmol NH(4)(+) · cell(-1) day(-1)) and is suitable for many ecophysiological and molecular experiments. A high throughput Percoll density gradient centrifugation protocol may be applied on this biomass for further enrichment (>99.5%) of anammox bacteria. Furthermore, we provide an up-to-date list of commonly used primers and introduce protocols for quantification and detection of functional genes of anammox bacteria in their natural environment. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Start-up of simultaneous removal of ammonium and sulfate from an anaerobic ammonium oxidation (anammox) process in an anaerobic up-flow bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhiquan [College of Environmental Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006 (China); Zhou Shaoqi, E-mail: fesqzhou@scut.edu.cn [College of Environmental Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006 (China); State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, Guangdong 510640 (China); Sun Yanbo [College of Environmental Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006 (China)

    2009-09-30

    A laboratory testing of simultaneous removal of ammonium and sulfate (SRAS) was studied from an anammox process in an anaerobic bioreactor filled with granular activated carbon. Two different phases of experiment were investigated to start up the SRAS process, and final batch tests were performed to analyze the SRAS process. The experiment included an anammox process and an SRAS process. During the anammox process, the highest removal efficiency of ammonium and nitrite was up to 97 and 98%, respectively. After 160 days in the stationary phase of anammox process, the ratio of ammonium to nitrite consumption was approximately 1:1.15, which is much higher than 1:1.32 in the traditional anammox process. The extra electron acceptor, such as sulfate, was thought to react with ammonium by bacteria. Synthetic wastewater containing ammonium chlorine and sodium sulfate was used as the feed for the bioreactor in the second phase of experiment. During the SRAS process, the influent concentrations of ammonium and sulfate were controlled to be 50-60 and 210-240 mg L{sup -1} respectively. After start-up and acclimatization of this process for 60 days, the average effluent concentrations of ammonium and sulfate were 30 and 160 mg L{sup -1}, respectively. The simultaneous ammonium and sulfate removal was detected in the reactor. In order to further validate the biochemical interaction between ammonium and sulfate, batch tests was carried out. Abiotic tests were carried out to demonstrate that the pure chemical action between ammonium and sulfate without microorganism was not possible. Biotic assays with different ammonium and sulfate concentrations were further investigated that high concentrations of ammonium and sulfate could promote simultaneous removal of ammonium and sulfate. And elemental sulfur and nitrogen gas as the products measured in the SRAS process helped to demonstrate the occurrence of new interaction between nitrogen and sulfur. The new process of SRAS in the

  16. Start-up of simultaneous removal of ammonium and sulfate from an anaerobic ammonium oxidation (anammox) process in an anaerobic up-flow bioreactor

    International Nuclear Information System (INIS)

    Yang Zhiquan; Zhou Shaoqi; Sun Yanbo

    2009-01-01

    A laboratory testing of simultaneous removal of ammonium and sulfate (SRAS) was studied from an anammox process in an anaerobic bioreactor filled with granular activated carbon. Two different phases of experiment were investigated to start up the SRAS process, and final batch tests were performed to analyze the SRAS process. The experiment included an anammox process and an SRAS process. During the anammox process, the highest removal efficiency of ammonium and nitrite was up to 97 and 98%, respectively. After 160 days in the stationary phase of anammox process, the ratio of ammonium to nitrite consumption was approximately 1:1.15, which is much higher than 1:1.32 in the traditional anammox process. The extra electron acceptor, such as sulfate, was thought to react with ammonium by bacteria. Synthetic wastewater containing ammonium chlorine and sodium sulfate was used as the feed for the bioreactor in the second phase of experiment. During the SRAS process, the influent concentrations of ammonium and sulfate were controlled to be 50-60 and 210-240 mg L -1 respectively. After start-up and acclimatization of this process for 60 days, the average effluent concentrations of ammonium and sulfate were 30 and 160 mg L -1 , respectively. The simultaneous ammonium and sulfate removal was detected in the reactor. In order to further validate the biochemical interaction between ammonium and sulfate, batch tests was carried out. Abiotic tests were carried out to demonstrate that the pure chemical action between ammonium and sulfate without microorganism was not possible. Biotic assays with different ammonium and sulfate concentrations were further investigated that high concentrations of ammonium and sulfate could promote simultaneous removal of ammonium and sulfate. And elemental sulfur and nitrogen gas as the products measured in the SRAS process helped to demonstrate the occurrence of new interaction between nitrogen and sulfur. The new process of SRAS in the inorganic

  17. Anaerobic Ammonium-Oxidizing Bacteria: Unique Microorganisms with Exceptional Properties

    Science.gov (United States)

    Jetten, Mike S. M.

    2012-01-01

    Summary: Anaerobic ammonium-oxidizing (anammox) bacteria defy many microbiological concepts and share numerous properties with both eukaryotes and archaea. Among their most intriguing characteristics are their compartmentalized cell plan and archaeon-like cell wall. Here we review our current knowledge about anammox cell biology. The anammox cell is divided into three separate compartments by bilayer membranes. The anammox cell consists of (from outside to inside) the cell wall, paryphoplasm, riboplasm, and anammoxosome. Not much is known about the composition or function of both the anammox cell wall and the paryphoplasm compartment. The cell wall is proposed to be proteinaceous and to lack both peptidoglycan and an outer membrane typical of Gram-negative bacteria. The function of the paryphoplasm is unknown, but it contains the cell division ring. The riboplasm resembles the standard cytoplasmic compartment of other bacteria; it contains ribosomes and the nucleoid. The anammoxosome occupies most of the cell volume and is a so-called “prokaryotic organelle” analogous to the eukaryotic mitochondrion. This is the site where the anammox reaction takes place, coupled over the curved anammoxosome membrane, possibly giving rise to a proton motive force and subsequent ATP synthesis. With these unique properties, anammox bacteria are food for thought concerning the early evolution of the domains Bacteria, Archaea, and Eukarya. PMID:22933561

  18. A multi-proxy study of anaerobic ammonium oxidation in marine sediments of the Gullmar Fjord, Sweden

    NARCIS (Netherlands)

    Brandsma, J.; van de Vossenberg, J.; Risgaard-Petersen, N.; Schmid, M.C.; Engstrom, P.; Eurenius, K.; Hulth, S.; Jaeschke, A.; Abbas, B.; Hopmans, E.C.; Strous, M.; Schouten, S.; Jetten, M.S.M.; Sinninghe Damsté, J.S.

    2011-01-01

    Anaerobic ammonium oxidation (anammox) is an important process for nitrogen removal in marine pelagic and benthic environments and represents a major sink in the global nitrogen cycle. We applied a suite of complementary methods for the detection and enumeration of anammox activity and anammox

  19. A multi-proxy study of anaerobic ammonium oxidation in marine sediments of the Gullmar Fjord, Sweden

    DEFF Research Database (Denmark)

    Brandsma, Joost; van de Vossenberg; Risgaard-Petersen, Nils

    2011-01-01

    Anaerobic ammonium oxidation (anammox) is an important process for nitrogen removal in marine pelagic and benthic environments and represents a major sink in the global nitrogen cycle. We applied a suite of complementary methods for the detection and enumeration of anammox activity and anammox...

  20. Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria.

    Science.gov (United States)

    Güven, Didem; Dapena, Ana; Kartal, Boran; Schmid, Markus C; Maas, Bart; van de Pas-Schoonen, Katinka; Sozen, Seval; Mendez, Ramon; Op den Camp, Huub J M; Jetten, Mike S M; Strous, Marc; Schmidt, Ingo

    2005-02-01

    Anaerobic ammonium oxidation (anammox) is a recently discovered microbial pathway and a cost-effective way to remove ammonium from wastewater. Anammox bacteria have been described as obligate chemolithoautotrophs. However, many chemolithoautotrophs (i.e., nitrifiers) can use organic compounds as a supplementary carbon source. In this study, the effect of organic compounds on anammox bacteria was investigated. It was shown that alcohols inhibited anammox bacteria, while organic acids were converted by them. Methanol was the most potent inhibitor, leading to complete and irreversible loss of activity at concentrations as low as 0.5 mM. Of the organic acids acetate and propionate, propionate was consumed at a higher rate (0.8 nmol min(-1) mg of protein(-1)) by Percoll-purified anammox cells. Glucose, formate, and alanine had no effect on the anammox process. It was shown that propionate was oxidized mainly to CO(2), with nitrate and/or nitrite as the electron acceptor. The anammox bacteria carried out propionate oxidation simultaneously with anaerobic ammonium oxidation. In an anammox enrichment culture fed with propionate for 150 days, the relative amounts of anammox cells and denitrifiers did not change significantly over time, indicating that anammox bacteria could compete successfully with heterotrophic denitrifiers for propionate. In conclusion, this study shows that anammox bacteria have a more versatile metabolism than previously assumed.

  1. Anaerobic Ammonium-Oxidizing Bacteria in Cow Manure Composting.

    Science.gov (United States)

    Wang, Tingting; Cheng, Lijun; Zhang, Wenhao; Xu, Xiuhong; Meng, Qingxin; Sun, Xuewei; Liu, Huajing; Li, Hongtao; Sun, Yu

    2017-07-28

    Composting is widely used to transform waste into valuable agricultural organic fertilizer. Anaerobic ammonium-oxidizing (anammox) bacteria play an important role in the global nitrogen cycle, but their role in composting remains poorly understood. In the present study, the community structure, diversity, and abundance of anammox bacteria were analyzed using cloning and sequencing methods by targeting the 16S rRNA gene and the hydrazine oxidase gene ( hzo ) in samples isolated from compost produced from cow manure and rice straw. A total of 25 operational taxonomic units were classified based on 16S rRNA gene clone libraries, and 14 operational taxonomic units were classified based on hzo gene clone libraries. The phylogenetic tree analysis of the 16S rRNA gene and deduced HZO protein sequences from the corresponding encoding genes indicated that the majority of the obtained clones were related to the known anammox bacteria Candidatus "Brocadia," Candidatus "Kuenenia," and Candidatus "Scalindua." The abundances of anammox bacteria were determined by quantitative PCR, and between 2.13 × 10 5 and 1.15 × 10 6 16S rRNA gene copies per gram of compost were found. This study provides the first demonstration of the existence of anammox bacteria with limited diversity in cow manure composting.

  2. Cytochrome cd1-containing nitrite reductase encoding gene nirS as a new functional biomarker for detection of anaerobic ammonium oxidizing (Anammox) bacteria.

    Science.gov (United States)

    Li, Meng; Ford, Tim; Li, Xiaoyan; Gu, Ji-Dong

    2011-04-15

    A newly designed primer set (AnnirS), together with a previously published primer set (ScnirS), was used to detect anammox bacterial nirS genes from sediments collected from three marine environments. Phylogenetic analysis demonstrated that all retrieved sequences were clearly different from typical denitrifiers' nirS, but do group together with the known anammox bacterial nirS. Sequences targeted by ScnirS are closely related to Scalindua nirS genes recovered from the Peruvian oxygen minimum zone (OMZ), whereas sequences targeted by AnnirS are more closely affiliated with the nirS of Candidatus 'Kuenenia stuttgartiensis' and even form a new phylogenetic nirS clade, which might be related to other genera of the anammox bacteria. Analysis demonstrated that retrieved sequences had higher sequence identities (>60%) with known anammox bacterial nirS genes than with denitrifiers' nirS, on both nucleotide and amino acid levels. Compared to the 16S rRNA and hydrazine oxidoreductase (hzo) genes, the anammox bacterial nirS not only showed consistent phylogenetic relationships but also demonstrated more reliable quantification of anammox bacteria because of the single copy of the nirS gene in the anammox bacterial genome and the specificity of PCR primers for different genera of anammox bacteria, thus providing a suitable functional biomarker for investigation of anammox bacteria.

  3. Nitrous oxide production pathways in a partial nitritation-anammox reactor: Isotopic evidence for nitrous oxide production associated anaerobic ammonium oxidation?

    Science.gov (United States)

    Wunderlin, P.; Harris, E. J.; Joss, A.; Emmenegger, L.; Kipf, M.; Mohn, J.; Siegrist, H.

    2014-12-01

    Nitrous oxide (N2O) is a strong greenhouse gas and a major sink for stratospheric ozone. In biological wastewater treatment N2O can be produced via several pathways. This study investigates the dynamics of N2O emissions from a nitritation-anammox reactor, and links its interpretation to the nitrogen and oxygen isotopic signature of the emitted N2O. A 400-litre single-stage nitritation-anammox reactor was operated and continuously fed with digester liquid. The isotopic composition of N2O emissions was monitored online with quantum cascade laser absorption spectroscopy (QCLAS; Aerodyne Research, Inc.; Waechter et al., 2008). Dissolved ammonium and nitrate were monitored online (ISEmax, Endress + Hauser), while nitrite was measured with test strips (Nitrite-test 0-24mgN/l, Merck). Table 1. Summary of experiments conducted to understand N2O emissions Experimental conditions O2[mgO2/L] NO2-[mgN/L] NH4+[mgN/L] N2O/NH4+[%] Normal operation production pathway, which is hypothesized to be mediated by anammox activity (Figure 1). A less likely explanation is that the SP of N2O was increased by partial N2O reduction by heterotrophic denitrification. Various experiments were conducted to further investigate N2O formation pathways in the reactor. Our data reveal that N2O emissions increased when reactor operation was not ideal, for example when dissolved oxygen was too high (Table 1). SP measurements confirmed that these N2O peaks were due to enhanced nitrifier denitrification, generally related to nitrite build-up in the reactor (Figure 1; Table 1). Overall, process control via online N2O monitoring was confirmed to be an ideal method to detect imbalances in reactor operation and regulate aeration, to ensure optimal reactor conditions and minimise N2O emissions. ReferencesWaechter H. et al. (2008) Optics Express, 16: 9239-9244. Wunderlin, P et al. (2013) Environmental Science & Technology 47: 1339-1348.

  4. Anaerobic ammonium oxidation and its contribution to nitrogen removal in China’s coastal wetlands

    Science.gov (United States)

    Hou, Lijun; Zheng, Yanling; Liu, Min; Li, Xiaofei; Lin, Xianbiao; Yin, Guoyu; Gao, Juan; Deng, Fengyu; Chen, Fei; Jiang, Xiaofen

    2015-01-01

    Over the past several decades, human activities have caused substantial enrichment of reactive nitrogen in China’s coastal wetlands. Although anaerobic ammonium oxidation (anammox), the process of oxidizing ammonium into dinitrogen gas through the reduction of nitrite, is identified as an important process for removing reactive nitrogen, little is known about the dynamics of anammox and its contribution to nitrogen removal in nitrogen-enriched environments. Here, we examine potential rates of anammox and associate them with bacterial diversity and abundance across the coastal wetlands of China using molecular and isotope tracing techniques. High anammox bacterial diversity was detected in China’s coastal wetlands and included Candidatus Scalindua, Kuenenia, Brocadia, and Jettenia. Potential anammox rates were more closely associated with the abundance of anammox bacteria than to their diversity. Among all measured environmental variables, temperature was a key environmental factor, causing a latitudinal distribution of the anammox bacterial community composition, biodiversity and activity along the coastal wetlands of China. Based on nitrogen isotope tracing experiments, anammox was estimated to account for approximately 3.8–10.7% of the total reactive nitrogen removal in the study area. Combined with denitrification, anammox can remove 20.7% of the total external terrigenous inorganic nitrogen annually transported into China’s coastal wetland ecosystems. PMID:26494435

  5. Diversity and distribution of planktonic anaerobic ammonium-oxidizing bacteria in the Dongjiang River, China.

    Science.gov (United States)

    Sun, Wei; Xia, Chunyu; Xu, Meiying; Guo, Jun; Wang, Aijie; Sun, Guoping

    2014-12-01

    Anaerobic ammonium-oxidizing (anammox) process has recently been recognized as an important pathway for removing fixed nitrogen (N) from aquatic ecosystems. Anammox organisms are widely distributed in freshwater environments. However, little is known about their presence in the water column of riverine ecosystems. Here, the existence of a diverse anammox community was revealed in the water column of the Dongjiang River by analyzing 16S rRNA and hydrazine oxidation (hzo) genes of anammox bacteria. Phylogenetic analyses of hzo genes showed that Candidatus Jettenia related clades of anammox bacteria were dominant in the river, suggesting the ecological microniche distinction from freshwater/estuary and marine anammox bacteria with Ca. Brocadia and Kuenenia genera mainly detected in freshwater/estuary ecosystems, and Ca. Scalindua genus mainly detected in marine ecosystems. The abundance and diversity of anammox bacteria along the river were both significantly correlated with concentrations of NH4(+)-N based on Pearson and partial correlation analyses. Redundancy analyses showed the contents of NH4(+)-N, NO3(-)-N and the ratio of NH4(+)-N to NO2(-)-N significantly influenced the spatial distributions of anammox bacteria in the water column of the Dongjiang River. These results expanded our understanding of the distribution and potential roles of anammox bacteria in the water column of the river ecosystem. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Modeling of simultaneous anaerobic methane and ammonium oxidation in a membrane biofilm reactor.

    Science.gov (United States)

    Chen, Xueming; Guo, Jianhua; Shi, Ying; Hu, Shihu; Yuan, Zhiguo; Ni, Bing-Jie

    2014-08-19

    Nitrogen removal by using the synergy of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) microorganisms in a membrane biofilm reactor (MBfR) has previously been demonstrated experimentally. In this work, a mathematical model is developed to describe the simultaneous anaerobic methane and ammonium oxidation by DAMO and Anammox microorganisms in an MBfR for the first time. In this model, DAMO archaea convert nitrate, both externally fed and/or produced by Anammox, to nitrite, with methane as the electron donor. Anammox and DAMO bacteria jointly remove the nitrite fed/produced, with ammonium and methane as the electron donor, respectively. The model is successfully calibrated and validated using the long-term (over 400 days) dynamic experimental data from the MBfR, as well as two independent batch tests at different operational stages of the MBfR. The model satisfactorily describes the methane oxidation and nitrogen conversion data from the system. Modeling results show the concentration gradients of methane and nitrogen would cause stratification of the biofilm, where Anammox bacteria mainly grow in the biofilm layer close to the bulk liquid and DAMO organisms attach close to the membrane surface. The low surface methane loadings result in a low fraction of DAMO microorganisms, but the high surface methane loadings would lead to overgrowth of DAMO bacteria, which would compete with Anammox for nitrite and decrease the fraction of Anammox bacteria. The results suggest an optimal methane supply under the given condition should be applied not only to benefit the nitrogen removal but also to avoid potential methane emissions.

  7. Anaerobic ammonium-oxidizing bacteria gain antibiotic resistance during long-term acclimatization.

    Science.gov (United States)

    Zhang, Zheng-Zhe; Zhang, Qian-Qian; Guo, Qiong; Chen, Qian-Qian; Jiang, Xiao-Yan; Jin, Ren-Cun

    2015-09-01

    Three broad-spectrum antibiotics, amoxicillin (AMX), florfenicol (FF) and sulfamethazine (SMZ), that inhibit bacteria via different target sites, were selected to evaluate the acute toxicity and long-term effects on anaerobic ammonium oxidation (anammox) granules. The specific anammox activity (SAA) levels reduced by approximately half within the first 3 days in the presence of antibiotics but no nitrite accumulation was observed in continuous-flow experiments. However, the SAA levels and heme c content gradually recovered as the antibiotic concentrations increased. Extracellular polymeric substances (EPS) analysis suggested that anaerobic ammonium-oxidizing bacteria gradually developed a better survival strategy during long-term acclimatization, which reduced the antibiotic stress via increased EPS secretion that provided a protective 'cocoon.' In terms of nitrogen removal efficiency, anammox granules could resist 60 mg-AMX L(-1), 10 mg-FF L(-1) and 100 mg-SMZ L(-1). This study supported the feasibility of using anammox granules to treat antibiotic-containing wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Enrichment and physiological characterization of an anaerobic ammonium-oxidizing bacterium ‘ Candidatus Brocadia sapporoensis’

    KAUST Repository

    Narita, Yuko; Zhang, Lei; Kimura, Zen-ichiro; Ali, Muhammad; Fujii, Takao; Okabe, Satoshi

    2017-01-01

    Anaerobic ammonium-oxidation (anammox) is recognized as an important microbial process in the global nitrogen cycle and wastewater treatment. In this study, we successfully enriched a novel anammox bacterium affiliated with the genus ‘Candidatus Brocadia’ with high purity (>90%) in a membrane bioreactor (MBR). The enriched bacterium was distantly related to the hitherto characterized ‘Ca. Brocadia fulgida’ and ‘Ca. Brocadia sinica’ with 96% and 93% of 16S ribosomal RNA gene sequence identity, respectively. The bacterium exhibited the common structural features of anammox bacteria and the production of hydrazine in the presence of hydroxylamine under anoxic conditions. The temperature range of anammox activity was 20 − 45°C with a maximum activity at 37°C. The maximum specific growth rate (μmax) was determined to be 0.0082h−1 at 37°C, corresponding to a doubling time of 3.5 days. The half-saturation constant (KS) for nitrite was 5±2.5μM. The anammox activity was inhibited by nitrite with 11.6mM representing the 50% inhibitory concentration (IC50) but no significant inhibition was observed in the presence of formate and acetate. The major respiratory quinone was identified to be menaquinone-7 (MK-7). Comparative genome analysis revealed that the anammox bacterium enriched in present study shared nearly half of genes with ‘Ca. Brocadia sinica’ and ‘Ca. Brocadia fulgida’. The bacterium enriched in this study showed all known physiological characteristics of anammox bacteria and can be distinguished from the close relatives by its rRNA gene sequences. Therefore, we proposed the name ‘Ca. Brocadia sapporoensis’ sp. nov.

  9. Enrichment and physiological characterization of an anaerobic ammonium-oxidizing bacterium ‘ Candidatus Brocadia sapporoensis’

    KAUST Repository

    Narita, Yuko

    2017-08-18

    Anaerobic ammonium-oxidation (anammox) is recognized as an important microbial process in the global nitrogen cycle and wastewater treatment. In this study, we successfully enriched a novel anammox bacterium affiliated with the genus ‘Candidatus Brocadia’ with high purity (>90%) in a membrane bioreactor (MBR). The enriched bacterium was distantly related to the hitherto characterized ‘Ca. Brocadia fulgida’ and ‘Ca. Brocadia sinica’ with 96% and 93% of 16S ribosomal RNA gene sequence identity, respectively. The bacterium exhibited the common structural features of anammox bacteria and the production of hydrazine in the presence of hydroxylamine under anoxic conditions. The temperature range of anammox activity was 20 − 45°C with a maximum activity at 37°C. The maximum specific growth rate (μmax) was determined to be 0.0082h−1 at 37°C, corresponding to a doubling time of 3.5 days. The half-saturation constant (KS) for nitrite was 5±2.5μM. The anammox activity was inhibited by nitrite with 11.6mM representing the 50% inhibitory concentration (IC50) but no significant inhibition was observed in the presence of formate and acetate. The major respiratory quinone was identified to be menaquinone-7 (MK-7). Comparative genome analysis revealed that the anammox bacterium enriched in present study shared nearly half of genes with ‘Ca. Brocadia sinica’ and ‘Ca. Brocadia fulgida’. The bacterium enriched in this study showed all known physiological characteristics of anammox bacteria and can be distinguished from the close relatives by its rRNA gene sequences. Therefore, we proposed the name ‘Ca. Brocadia sapporoensis’ sp. nov.

  10. Co-existence of Anaerobic Ammonium Oxidation Bacteria and Denitrifying Anaerobic Methane Oxidation Bacteria in Sewage Sludge: Community Diversity and Seasonal Dynamics

    DEFF Research Database (Denmark)

    Xu, Sai; Lu, Wenjing; Mustafa, Muhammad Farooq

    2017-01-01

    Anaerobic ammonium oxidation (ANAMMOX) and denitrifying anaerobic methane oxidation (DAMO) have been recently discovered as relevant processes in the carbon and nitrogen cycles of wastewater treatment plants. In this study, the seasonal dynamics of ANAMMOX and DAMO bacterial community structures......, and an unknown cluster was primarily detected in autumn and winter. Similar patterns of seasonal variation in the community structure of DAMO bacteria were also observed. Group B was the dominant in spring and summer, whereas in autumn and winter, group A and group B presented almost the same proportion...

  11. Activity, Microenvironments, and Community Structure of Aerobic and Anaerobic Ammonium Oxidizing Prokaryotes in Estuarine Sediment (Randers Fjord, DK)

    DEFF Research Database (Denmark)

    Schramm, Andreas; Revsbech, Niels Peter; Dalsgaard, Tage

    2006-01-01

    ACTIVITY, MICROENVIRONMENTS, AND COMMUNITY STRUCTURE OF AEROBIC AND ANAEROBIC AMMONIUM OXIDIZING PROKARYOTES IN ESTUARINE SEDIMENT (RANDERS FJORD, DK) A. Schramm 1, N.P. Revsbech 1, T. Dalsgaard 2, E. Piña-Ochoa 3, J. de la Torré 4, D.A. Stahl 4, N. Risgaard-Petersen 2 1 Department of Biological...... conversion of ammonium with nitrite to N2, is increasingly recognized as link in the aquatic nitrogen cycle. However, factors regulating the occurrence and activity of anammox bacteria are still poorly understood. Besides the influence of abiotic factors, anammox might be controlled by either aerobic ammonia...... oxidizing bacteria and archaea (AOB and AOA) or nitrate-reducing/denitrifying bacteria via their supply of nitrite. Along the Randers Fjord estuary (Denmark), gradients of salinity, nutrients, and organic loading can be observed, and anammox has been detected previously at some sites. The aim of this study...

  12. Nitrogen source effects on the denitrifying anaerobic methane oxidation culture and anaerobic ammonium oxidation bacteria enrichment process.

    Science.gov (United States)

    Fu, Liang; Ding, Jing; Lu, Yong-Ze; Ding, Zhao-Wei; Zeng, Raymond J

    2017-05-01

    The co-culture system of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) has a potential application in wastewater treatment plant. This study explored the effects of permutation and combination of nitrate, nitrite, and ammonium on the culture enrichment from freshwater sediments. The co-existence of NO 3 - , NO 2 - , and NH 4 + shortened the enrichment time from 75 to 30 days and achieved a total nitrogen removal rate of 106.5 mg/L/day on day 132. Even though ammonium addition led to Anammox bacteria increase and a higher nitrogen removal rate, DAMO bacteria still dominated in different reactors with the highest proportion of 64.7% and the maximum abundance was 3.07 ± 0.25 × 10 8 copies/L (increased by five orders of magnitude) in the nitrite reactor. DAMO bacteria showed greater diversity in the nitrate reactor, and one was similar to M. oxyfera; DAMO bacteria in the nitrite reactor were relatively unified and similar to M. sinica. Interestingly, no DAMO archaea were found in the nitrate reactor. This study will improve the understanding of the impact of nitrogen source on DAMO and Anammox co-culture enrichment.

  13. Community composition and activity of anaerobic ammonium oxidation bacteria in the rhizosphere of salt-marsh grass Spartina alterniflora.

    Science.gov (United States)

    Zheng, Yanling; Hou, Lijun; Liu, Min; Yin, Guoyu; Gao, Juan; Jiang, Xiaofen; Lin, Xianbiao; Li, Xiaofei; Yu, Chendi; Wang, Rong

    2016-09-01

    Anaerobic ammonium oxidation (anammox) as an important nitrogen removal pathway has been investigated in intertidal marshes. However, the rhizosphere-driven anammox process in these ecosystems is largely overlooked so far. In this study, the community dynamics and activities of anammox bacteria in the rhizosphere and non-rhizosphere sediments of salt-marsh grass Spartina alterniflora (a widely distributed plant in estuaries and intertidal ecosystems) were investigated using clone library analysis, quantitative PCR assay, and isotope-tracing technique. Phylogenetic analysis showed that anammox bacterial diversity was higher in the non-rhizosphere sediments (Scalindua and Kuenenia) compared with the rhizosphere zone (only Scalindua genus). Higher abundance of anammox bacteria was detected in the rhizosphere (6.46 × 10(6)-1.56 × 10(7) copies g(-1)), which was about 1.5-fold higher in comparison with that in the non-rhizosphere zone (4.22 × 10(6)-1.12 × 10(7) copies g(-1)). Nitrogen isotope-tracing experiments indicated that the anammox process in the rhizosphere contributed to 12-14 % N2 generation with rates of 0.43-1.58 nmol N g(-1) h(-1), while anammox activity in the non-rhizosphere zone contributed to only 4-7 % N2 production with significantly lower activities (0.28-0.83 nmol N g(-1) h(-1)). Overall, we propose that the rhizosphere microenvironment in intertidal marshes might provide a favorable niche for anammox bacteria and thus plays an important role in nitrogen cycling.

  14. Co-existence of Anaerobic Ammonium Oxidation Bacteria and Denitrifying Anaerobic Methane Oxidation Bacteria in Sewage Sludge: Community Diversity and Seasonal Dynamics.

    Science.gov (United States)

    Xu, Sai; Lu, Wenjing; Mustafa, Muhammad Farooq; Caicedo, Luis Miguel; Guo, Hanwen; Fu, Xindi; Wang, Hongtao

    2017-11-01

    Anaerobic ammonium oxidation (ANAMMOX) and denitrifying anaerobic methane oxidation (DAMO) have been recently discovered as relevant processes in the carbon and nitrogen cycles of wastewater treatment plants. In this study, the seasonal dynamics of ANAMMOX and DAMO bacterial community structures and their abundance in sewage sludge collected from wastewater treatment plants were analysed. Results indicated that ANAMMOX and DAMO bacteria co-existed in sewage sludge in different seasons and their abundance was positively correlated (P bacteria in autumn and winter indicated that these seasons were the preferred time to favour the growth of ANAMMOX and DAMO bacteria. The community structure of ANNAMOX and DAMO bacteria could also shift with seasonal changes. The "Candidatus Brocadia" genus of ANAMMOX bacteria was mainly recovered in spring and summer, and an unknown cluster was primarily detected in autumn and winter. Similar patterns of seasonal variation in the community structure of DAMO bacteria were also observed. Group B was the dominant in spring and summer, whereas in autumn and winter, group A and group B presented almost the same proportion. The redundancy analysis revealed that pH and nitrate were the most significant factors affecting community structures of these two groups (P < 0.01). This study reported the diversity of ANAMMOX and DAMO in wastewater treatment plants that may be the basis for new nitrogen removal technologies.

  15. Influence of substrates on nitrogen removal performance and microbiology of anaerobic ammonium oxidation by operating two UASB reactors fed with different substrate levels

    International Nuclear Information System (INIS)

    Tang Chongjian; Zheng Ping; Hu Baolan; Chen Jianwei; Wang Caihua

    2010-01-01

    Both ammonium and nitrite act as substrates as well as potential inhibitors of anoxic ammonium-oxidizing (Anammox) bacteria. To satisfy demand of substrates for Anammox bacteria and to prevent substrate inhibition simultaneously; two strategies, namely high or low substrate concentration, were carefully compared in the operation of two Anammox upflow anaerobic sludge blanket (UASB) reactors fed with different substrate concentrations. The reactor working at relatively low influent substrate concentration (NO 2 - N, 240 mg-N L -1 ) was shown to avoid the inhibition caused by nitrite and free ammonia. Using the strategy of low substrate concentration, a record super high volumetric nitrogen removal rate of 45.24 kg-N m -3 day -1 was noted after the operation of 230 days. To our knowledge, such a high value has not been reported previously. The evidence from transmission electron microscopy (TEM) showed that the morphology and ultrastructure of the Anammox cells in both the reactor enrichments was different.

  16. Optimization of three FISH procedures for in situ detection of anaerobic ammonium oxidizing bacteria in biological wastewater treatment.

    Science.gov (United States)

    Pavlekovic, Marko; Schmid, Markus C; Schmider-Poignee, Nadja; Spring, Stefan; Pilhofer, Martin; Gaul, Tobias; Fiandaca, Mark; Löffler, Frank E; Jetten, Mike; Schleifer, K-H; Lee, Natuschka M

    2009-08-01

    Fluorescence in situ hybridization (FISH) using fluorochrome-labeled DNA oligonucleotide probes has been successfully applied for in situ detection of anaerobic ammonium oxidizing (anammox) bacteria. However, application of the standard FISH protocols to visualize anammox bacteria in biofilms from a laboratory-scale wastewater reactor produced only weak signals. Increased signal intensity was achieved either by modifying the standard FISH protocol, using peptide nucleic acid probes (PNA FISH), or applying horse radish peroxidase- (HRP-) labeled probes and subsequent catalyzed reporter deposition (CARD-FISH). A comparative analysis using anammox biofilm samples and suspended anammox biomass from different laboratory wastewater bioreactors revealed that the modified standard FISH protocol and the PNA FISH probes produced equally strong fluorescence signals on suspended biomass, but only weak signals were obtained with the biofilm samples. The probe signal intensities in the biofilm samples could be enhanced by enzymatic pre-treatment of fixed cells, and by increasing the hybridization time of the PNA FISH protocol. CARD-FISH always produced up to four-fold stronger fluorescent signals but unspecific fluorescence signals, likely caused by endogenous peroxidases as reported in several previous studies, compromised the results. Interference of the development of fluorescence intensity with endogenous peroxidases was also observed in cells of aerobic ammonium oxidizers like Nitrosomonas europea, and sulfate-reducers like Desulfobacter postgatei. Interestingly, no interference was observed with other peroxidase-positive microorganisms, suggesting that CARD-FISH is not only compromised by the mere presence of peroxidases. Pre-treatment of cells to inactivate peroxidase with HCl or autoclavation/pasteurization failed to inactive peroxidases, but H(2)O(2) significantly reduced endogenous peroxidase activity. However, for optimal inactivation, different H(2)O(2

  17. Evaluating death and activity decay of Anammox bacteria during anaerobic and aerobic starvation.

    Science.gov (United States)

    Wang, Qilin; Song, Kang; Hao, Xiaodi; Wei, Jing; Pijuan, Maite; van Loosdrecht, Mark C M; Zhao, Huijun

    2018-06-01

    The decreased activity (i.e. decay) of anaerobic ammonium oxidation (Anammox) bacteria during starvation can be attributed to death (i.e. decrease in the amount of viable bacteria) and activity decay (i.e. decrease in the specific activity of viable bacteria). Although they are crucial for the operation of the Anammox process, they have never been comprehensively investigated. This study for the first time experimentally assessed death and activity decay of the Anammox bacteria during 84 days' starvation stress based on ammonium removal rate, Live/Dead staining and fluorescence in-situ hybridization. The anaerobic and aerobic decay rates of Anammox bacteria were determined as 0.015 ± 0.001 d -1 and 0.028 ± 0.001 d -1 , respectively, indicating Anammox bacteria would lose their activity more quickly in the aerobic starvation than in the anaerobic starvation. The anaerobic and aerobic death rates of Anammox bacteria were measured at 0.011 ± 0.001 d -1 and 0.025 ± 0.001 d -1 , respectively, while their anaerobic and aerobic activity decay rates were determined at 0.004 ± 0.001 d -1 and 0.003 ± 0.001 d -1 , respectively. Further analysis revealed that death accounted for 73 ± 4% and 89 ± 5% of the decreased activity of Anammox bacteria during anaerobic and aerobic starvations, and activity decay was only responsible for 27 ± 4% and 11 ± 5% of the decreased Anammox activity, respectively, over the same starvation periods. These deeply shed light on the response of Anammox bacteria to the starvation stress, which would facilitate operation and optimization of the Anammox process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Anaerobic ammonium oxidation by Anammox bacteria in the Black Sea

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Kuypers, M.M.M.; Sliekers, O.; Lavik, G.; Schmid, M.; Jørgensen, B.B.; Kuenen, J.G.; Strous, M.; Jetten, M.S.M.

    2003-01-01

    The availability of fixed inorganic nitrogen (nitrate, nitrite and ammonium) limits primary productivity in many oceanic regions1. The conversion of nitrate to N2 by heterotrophic bacteria (denitrification) is believed to be the only important sink for fixed inorganic nitrogen in the ocean2. Here we

  19. Ecophysiology of the Anammox Bacteria

    NARCIS (Netherlands)

    Kartal, M.B.

    2008-01-01

    Anaerobic ammonium oxidizing (anammox) bacteria oxidize ammonium to dinitrogen gas with nitrite as the electron acceptor. These bacteria are the key players in the global nitrogen cycle, responsible for the most of nitrogen production in natural ecosystems. The anammox process is also a

  20. Influence of substrates on nitrogen removal performance and microbiology of anaerobic ammonium oxidation by operating two UASB reactors fed with different substrate levels

    Energy Technology Data Exchange (ETDEWEB)

    Tang Chongjian [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China); Zheng Ping, E-mail: pzheng@zju.edu.cn [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China); Hu Baolan; Chen Jianwei; Wang Caihua [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China)

    2010-09-15

    Both ammonium and nitrite act as substrates as well as potential inhibitors of anoxic ammonium-oxidizing (Anammox) bacteria. To satisfy demand of substrates for Anammox bacteria and to prevent substrate inhibition simultaneously; two strategies, namely high or low substrate concentration, were carefully compared in the operation of two Anammox upflow anaerobic sludge blanket (UASB) reactors fed with different substrate concentrations. The reactor working at relatively low influent substrate concentration (NO{sub 2}{sup -}N, 240 mg-N L{sup -1}) was shown to avoid the inhibition caused by nitrite and free ammonia. Using the strategy of low substrate concentration, a record super high volumetric nitrogen removal rate of 45.24 kg-N m{sup -3} day{sup -1} was noted after the operation of 230 days. To our knowledge, such a high value has not been reported previously. The evidence from transmission electron microscopy (TEM) showed that the morphology and ultrastructure of the Anammox cells in both the reactor enrichments was different.

  1. [Bacterial anaerobic ammonia oxidation (Anammox) in the marine nitrogen cycle--a review].

    Science.gov (United States)

    Hong, Yiguo; Li, Meng; Gu, Jidong

    2009-03-01

    Anaerobic ammonium oxidation (Anammox) is a microbial oxidation process of ammonium, with nitrite as the electron acceptor and dinitrogen gas as the main product, and is performed by a clade of deeply branched Planctomycetes, which possess an intracytoplasmic membrane-bounded organelle, the anammoxosome, for the Anammox process. The wide distribution of Anammox bacteria in different natural environments has been greatly modified the traditional view of biogeochemical cycling of nitrogen, in which microbial denitrifier is considered as the only organism to respire nitrate and nitrite to produce nitric and nitrous oxides, and eventually nitrogen gas. More evidences indicate that Anammox is responsible for the production of more than 50% of oceanic N2 and plays an important role in global nitrogen cycling. Moreover, due to the close relationship between nitrogen and carbon cycling, it is anticipated that Anammox process might also affect the concentration of CO2 in the atmosphere, and influence the global climate change. In addition, the simultaneous transformation of nitrite and ammonium in wastewater treatment by Anammox would allow a 90% reduction in operational costs and provide a much more effective biotechnological process for wastewater treatment.

  2. Comparison of nitrogen removal rates and nitrous oxide production from enriched anaerobic ammonium oxidizing bacteria in suspended and attached growth reactors.

    Science.gov (United States)

    Panwivia, Supaporn; Sirvithayapakorn, Sanya; Wantawin, Chalermraj; Noophan, Pongsak Lek; Munakata-Marr, Junko

    2014-01-01

    Attached growth-systems for the anaerobic ammonium oxidation (anammox) process have been postulated for implementation in the field. However, information about the anammox process in attached growth-systems is limited. This study compared nitrogen removal rates and nitrous oxide (N2O) production of enriched anammox cultures in both suspended and attached growth sequencing batch reactors (SBRs). Suspended growth reactors (SBR-S) and attached growth reactors using polystyrene sponge as a medium (SBR-A) were used in these experiments. After inoculation with an enriched anammox culture, significant nitrogen removals of ammonium (NH4 (+)) and nitrite (NO2 (-)) were observed under NH4 (+):NO2 (-) ratios ranging from 1:1 to 1:2 in both types of SBRs. The specific rates of total nitrogen removal in SBR-S and SBR-A were 0.52 mg N/mg VSS-d and 0.44 mg N/mg VSS-d, respectively, at an NH4 (+):NO2 (-) ratio of 1:2. N2O production by the enriched anammox culture in both SBR-S and SBR-A was significantly higher at NH4 (+):NO2 (-) ratio of 1:2 than at NH4 (+):NO2 (-) ratios of 1:1 and 1:1.32. In addition, N2O production was higher at a pH of 6.8 than at pH 7.3, 7.8, and 8.3 in both SBR-S and SBR-A. The results of this investigation demonstrate that the anammox process may avoid N2O emission by maintaining an NH4 (+):NO2 (-) ratio of less than 1:2 and pH higher than 6.8.

  3. The anammoxosome: an intracytoplasmic compartment in anammox bacteria

    NARCIS (Netherlands)

    Niftrik, L.A.M.P. van; Fuerst, J.A.; Damste, J.S.S.; Kuenen, J.G.; Jetten, M.S.M.; Strous, M.

    2004-01-01

    Anammox bacteria belong to the phylum Planctomycetes and perform anaerobic ammonium oxidation (anammox); they oxidize ammonium with nitrite as the electron acceptor to yield dinitrogen gas. The anammox reaction takes place inside the anammoxosome: an intracytoplasmic compartment bounded by a single

  4. The anammoxosome : An intracytoplasmic compartment in anammox bacteria

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Niftrik, L.A. van; Fuerst, J.A.; Kuenen, J.G.; Jetten, M.S.M.; Strous, M.

    2004-01-01

    Anammox bacteria belong to the phylum Planctomycetes and perform anaerobic ammonium oxidation (anammox); they oxidize ammonium with nitrite as the electron acceptor to yield dinitrogen gas. The anammox reaction takes place inside the anammoxosome: an intracytoplasmic compartment bounded by a single

  5. Electrodes as Terminal Electron Acceptors in Anaerobic Ammonium Oxidation

    Science.gov (United States)

    Ruiz-Urigüen, M.; Jaffe, P. R.

    2017-12-01

    Anaerobic ammonium (NH4+) oxidation under iron (Fe) reducing conditions is a microbial- mediated process known as Feammox. This is a novel pathway in the nitrogen cycle, and a key process for alleviating NH4+ accumulation in anoxic soils, wetlands, and wastewater. Acidimicrobiaceae-bacterium A6, phylum Actinobacteria, are one type of autotrophic bacteria linked to this process. The Feammox-bacteria obtain their energy by oxidizing NH4+ and transferring the electrons to a terminal electron acceptor (TEA). Under environmental conditions, iron oxides are the TEAs. However, in this study we show that electrodes in Microbial Electrolysis Cells (MECs) or electrodes set in the field can be used as TEAs by Feammox-bacteria. The potential difference between electrodes is the driving force for electron transfer, making the reaction energetically feasible. Our results show that MECs containing Feammox cultures can remove NH4+ up to 3.5 mg/L in less than 4 hours, compared to an average of 9 mg/L in 2 weeks when cultured under traditional conditions. Concomitantly, MECs produce an average current of 30.5 A/m3 whilst dead bacteria produced low (Actinobacteria when compared to bulk soil. Electrodes as TEAs enhance electrogenic bacteria recovery and culturing. The use of MECs for the productions of Feammox-bacteria eliminates the dependence of Fe, a finite electron acceptor, therefore, allowing for continuous NH4+ removal. Finally, Fe-free Feammox-bacteria can be applied to reduce other metals of environmental concern; therefore, opening the range of possible application of Feammox-bacteria.

  6. Nitrogen loss from anaerobic ammonium oxidation coupled to Iron(III) reduction in a riparian zone.

    Science.gov (United States)

    Ding, Bangjing; Li, Zhengkui; Qin, Yunbin

    2017-12-01

    Anaerobic ammonium oxidation coupled to iron(III) reduction (termed Feammox) is a recently discovered pathway of nitrogen cycling. However, little is known about the pathways of N transformation via Feammox process in riparian zones. In this study, evidence for Feammox in riparian zones with or without vegetation cover was demonstrated using isotope tracing technique and high-throughput sequencing technology. The results showed that Feammox could occur in riparian zones, and demonstrated that N 2 directly from Feammox was dominant Feammox pathway. The Feammox rates in vegetated soil samples was 0.32-0.37 mg N kg -1 d -1 , which is higher than that in un-vegetated soil samples (0.20 mg N kg -1 d -1 ). Moreover, the growth of vegetation led to a 4.99-6.41% increase in the abundance of iron reducing bacteria (Anaeromyxobacter, Pseudomonas and Geobacter) and iron reducing bacteria play an essential role in Feammox process. An estimated loss of 23.7-43.9 kg N ha -1 year -1 was associated with Feammox in the examined riparian zone. Overall, the co-occurrence of ammonium oxidation and iron reduction suggest that Feammox can play an essential role in the pathway of nitrogen removal in riparian zones. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The role of paraffin oil on the interaction between denitrifying anaerobic methane oxidation and Anammox processes.

    Science.gov (United States)

    Fu, Liang; Ding, Zhao-Wei; Ding, Jing; Zhang, Fang; Zeng, Raymond J

    2015-10-01

    Methane is sparingly soluble in water, resulting in a slow reaction rate in the denitrifying anaerobic methane oxidation (DAMO) process. The slow rate limits the feasibility of research to examine the interaction between the DAMO and the anaerobic ammonium oxidation (Anammox) process. In this study, optimized 5 % (v/v) paraffin oil was added as a second liquid phase to improve methane solubility in a reactor containing DAMO and Anammox microbes. After just addition, methane solubility was found to increase by 25 % and DAMO activity was enhanced. After a 100-day cultivation, the paraffin reactor showed almost two times higher consumption rates of NO3 (-) (0.2268 mmol/day) and NH4 (+) (0.1403 mmol/day), compared to the control reactor without paraffin oil. The microbes tended to distribute in the oil-water interface. The quantitative (q) PCR result showed the abundance of gene copies of DAMO archaea, DAMO bacteria, and Anammox bacteria in the paraffin reactor were higher than those in the control reactor after 1 month. Fluorescence in situ hybridization revealed that the percentages of the three microbes were 55.5 and 77.6 % in the control and paraffin reactors after 100 days, respectively. A simple model of mass balance was developed to describe the interactions between DAMO and Anammox microbes and validate the activity results. A mechanism was proposed to describe the possible way that paraffin oil enhanced DAMO activity. It is quite clear that paraffin oil enhances not only DAMO activity but also Anammox activity via the interaction between them; both NO3 (-) and NH4 (+) consumption rates were about two times those of the control.

  8. Potential coupling effects of ammonia-oxidizing and anaerobic ammonium-oxidizing bacteria on completely autotrophic nitrogen removal over nitrite biofilm formation induced by the second messenger cyclic diguanylate.

    Science.gov (United States)

    Wang, Chao; Liu, Sitong; Xu, Xiaochen; Zhao, Chuanqi; Yang, Fenglin; Wang, Dong

    2017-05-01

    The objective of this study was to investigate the influence of extracellular polymeric substance (EPS) on the coupling effects between ammonia-oxidizing bacteria (AOB) and anaerobic ammonium-oxidizing (anammox) bacteria for the completely autotrophic nitrogen removal over nitrite (CANON) biofilm formation in a moving bed biofilm reactor (MBBR). Analysis of the quantity of EPS and cyclic diguanylate (c-di-GMP) confirmed that the contents of polysaccharides and c-di-GMP were correlated in the AOB sludge, anammox sludge, and CANON biofilm. The anammox sludge secreted more EPS (especially polysaccharides) than AOB with a markedly higher c-di-GMP content, which could be used by the bacteria to regulate the synthesis of exopolysaccharides that are ultimately used as a fixation matrix, for the adhesion of biomass. Indeed, increased intracellular c-di-GMP concentrations in the anammox sludge enhanced the regulation of polysaccharides to promote the adhesion of AOB and formation of the CANON biofilm. Overall, the results of this study provide new comprehensive information regarding the coupling effects of AOB and anammox bacteria for the nitrogen removal process.

  9. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation RID B-8834-2011

    DEFF Research Database (Denmark)

    Kuypers, MMM; Lavik, G.; Woebken, D.

    2005-01-01

    ) and is commonly attributed to denitrification (reduction of nitrate to N-2 by heterotrophic bacteria). Here, we show that instead, the anammox process (the anaerobic oxidation of ammonium by nitrite to yield N-2) is mainly responsible for nitrogen loss in the OMZ waters of one of the most productive regions......In many oceanic regions, growth of phytoplankton is nitrogen-limited because fixation of N-2 cannot make up for the removal of fixed inorganic nitrogen (NH4+, NO2-, and NO3-) by anaerobic microbial processes. Globally, 30-50% of the total nitrogen loss occurs in oxygen-minimum zones (OMZs...... that anammox bacteria are responsible for massive losses of fixed nitrogen. We have identified and directly linked anammox bacteria to the removal of fixed inorganic nitrogen in the OMZ waters of an open-ocean setting. We hypothesize that anammox could also be responsible for substantial nitrogen loss from...

  10. Evaluation of granular anaerobic ammonium oxidation process for the disposal of pre-treated swine manure

    Directory of Open Access Journals (Sweden)

    Shou-Qing Ni

    2014-04-01

    Full Text Available With rising environmental concerns on potable water safety and eutrophication, increased media attention and tighter environmental regulations, managing animal waste in an environmentally responsible and economically feasible way can be a challenge. In this study, the possibility of using granular anammox process for ammonia removal from swine waste treatment water was investigated. A rapid decrease of NO2−–N and NH4+–N was observed during incubation with wastewater from an activated sludge deodorization reactor and anaerobic digestion-partial oxidation treatment process treating swine manure and its corresponding control artificial wastewaters. Ammonium removal dropped from 98.0 ± 0.6% to 66.9 ± 2.7% and nearly absent when the organic load in the feeding increased from 232 mg COD/L to 1160 mg COD/L and 2320 mg COD/L. The presence of organic carbon had limited effect on nitrite and total nitrogen removal. At a COD to N ratio of 0.9, COD inhibitory organic load threshold concentration was 727 mg COD/L. Mass balance indicated that denitrifiers played an important role in nitrite, nitrate and organic carbon removal. These results demonstrated that anammox system had the potential to effectively treat swine manure that can achieve high nitrogen standards at reduced costs.

  11. Presence and diversity of anammox bacteria in cold hydrocarbon-rich seeps and hydrothermal vent sediments of the Guaymas Basin

    NARCIS (Netherlands)

    Russ, L.; Kartal, B.; Op den Camp, H.J.M.; Sollai, M.; Le Bruchec, J.; Caprais, J.-C.; Godfroy, A.; Sinninghe Damsté, J.S.; Jetten, M.S.M.

    2013-01-01

    Hydrothermally active sediments are highly productive, chemosynthetic areas which are characterized by the rapid turnover of particulate organic matter under extreme conditions in which ammonia is liberated. These systems might be suitable habitats for anaerobic ammonium oxidizing (anammox) bacteria

  12. Isolation and characterization of a prokaryotic cell organelle from the anammox bacterium

    NARCIS (Netherlands)

    Neumann, S.; Wessels, H.J.C.T.; Rijpstra, W.I.C.; Sinninghe Damsté, J.S.; Kartal, B.; Jetten, M.S.M.; van Niftrik, L.

    2014-01-01

    Anaerobic ammonium oxidizing (anammox) bacteria oxidize ammonium with nitrite to nitrogen gas in the absence of oxygen. These microorganisms form a significant sink for fixed nitrogen in the oceans and the anammox process is applied as a cost-effective and environment-friendly nitrogen removal

  13. Removing nitrogen from wastewater with side stream anammox: What are the trade-offs between environmental impacts?

    NARCIS (Netherlands)

    Hauck, M.; Maalcke-Luesken, F.A.; Jetten, M.S.M.; Huijbregts, M.A.J.

    2016-01-01

    Anaerobic ammonium oxidation (anammox) is a novel way to reduce nitrogen in ammonium rich wastewater. Although aquatic eutrophication will certainly be reduced, it is unknown how other environmental impacts may change by including anammox in the treatment of wastewater. Here, life cycle assessment

  14. Evaluation of granular anaerobic ammonium oxidation process for the disposal of pre-treated swine manure

    OpenAIRE

    Shou-Qing Ni; Ning Yang

    2014-01-01

    With rising environmental concerns on potable water safety and eutrophication, increased media attention and tighter environmental regulations, managing animal waste in an environmentally responsible and economically feasible way can be a challenge. In this study, the possibility of using granular anammox process for ammonia removal from swine waste treatment water was investigated. A rapid decrease of NO2 −–N and NH4 +–N was observed during incubation with wastewater from an activated sludge...

  15. Simultaneous enrichment of denitrifying anaerobic methane-oxidizing microorganisms and anammox bacteria in a hollow-fiber membrane biofilm reactor.

    Science.gov (United States)

    Ding, Zhao-Wei; Lu, Yong-Ze; Fu, Liang; Ding, Jing; Zeng, Raymond J

    2017-01-01

    In this study, the coculture system of denitrifying anaerobic methane oxidation (DAMO) microbes and anaerobic ammonium oxidation (anammox) bacteria was successfully enriched in a hollow-fiber membrane biofilm reactor (HfMBR) using freshwater sediment as the inoculum. The maximal removal rates of nitrate and ammonium were 78 mg N/L/day (131 mg N/m 2 /day) and 26 mg N/L/day (43 mg N/m 2 /day), respectively. Due to the high rate of methane mass transfer in HfMBR, the activity of DAMO archaea continued to increase during the enrichment period, indicating that HfMBR could be a powerful tool to enrich DAMO microorganisms. Effects of partial methane pressure, temperature, and pH on the cocultures were obvious. However, the microbial activity in HfMBR could be recovered quickly after the shock change of environmental factors. Furthermore, the result also found that DAMO bacteria likely had a stronger competitive advantage than anammox bacteria under the operating conditions in this study. High-throughput sequencing 16S rRNA genes illustrated that the dominant microbes were NC10, Euryarchaeota, Proteobacteria, Planctomycetes, and Chlorobi with relative abundance of 38.8, 26.2, 13.78, 6.2, and 3.6 %, respectively.

  16. Comprehensive study for Anammox process via multistage anaerobic baffled reactors

    Science.gov (United States)

    Ismail, Sherif; Tawfik, Ahmed

    2017-11-01

    Continuous anaerobic ammonia oxidation (Anammox) process in multistage anaerobic baffled (MABR) reactor was investigated. The reactor was operated for approximately 150 days at constant hydraulic retention time (HRT) of 48 h and was fed with synthetic wastewater containing nitrite and ammonium as main substrates. The MABR was inoculated with mixed culture bacteria collected from activated sludge plant (41.6 g MLSS/L and 19.1 g MLVSS/L). The MABR reactor exhibited excellent performance for the start-up of Anammox process within a period of 35 days. The start-up period was divided into four successive phases; cell lysis, lag, activity elevation and steady state. Total inorganic nitrogen (TIN) removal efficiency of 96.8± 0.9% was achieved at steady state conditions, corresponding to nitrogen removal rate (NRR) of 50.2±1.7 mg N/L·d. Moreover, the effect of HRT on the Anammox process was assessed with applying five different HRTs of (48, 38.4, 28.8, 19.2 and 9.6 h). Decreasing HRT from 48 to 9.6 h reduced the removal efficiencies of NH4-N, NO2-N and TIN from 97.7±2.2 to 49.0±9.8%, from 95.7±1.9 to 71.0±8.5% and from 96.8±0.9 to 57.9±9.1%, respectively, that corresponding to reduction in NRR from 50.8±1.2 mg N/L·d at HRT of 48 h to 32.5±5.0 mg N/L·d at HRT of 9.6 h.

  17. Anaerobic ammonium oxidation mediated by Mn-oxides: from sediment to strain level.

    Science.gov (United States)

    Javanaud, Cedric; Michotey, Valerie; Guasco, Sophie; Garcia, Nicole; Anschutz, Pierre; Canton, Mathieu; Bonin, Patricia

    2011-11-01

    Nitrite and (29)N(2) productions in slurry incubations of anaerobically sediment after (15)NO(3) or (15)NH(4) labelling in the presence of Mn-oxides suggested that anaerobic Mn-oxides mediated nitrification coupled with denitrification in muddy intertidal sediments of Arcachon Bay (SW Atlantic French coast). From this sediment, bacterial strains were isolated and physiologically characterized in terms of Mn-oxides and nitrate reduction as well as potential anaerobic nitrification. One of the isolated strain, identified as Marinobacter daepoensis strain M4AY14, was a denitrifier. Nitrous oxide production by this strain was demonstrated in the absence of nitrate and with Mn-oxides and NH(4) amendment, giving indirect proof of anaerobic nitrate or nitrite production. Anaerobic Mn-oxide-mediated nitrification was confirmed by (29)N(2) production in the presence of (15)NO(3) and (14)NH(4) under denitrifying conditions. Anaerobic nitrification by M4AY14 seemed to occur only in the absence of nitrate, or at nitrate levels lower than that of Mn-oxides. Most of the other isolates were affiliated with the Shewanella genus and were able to use both nitrate and Mn-oxides as electron acceptors. When both electron acceptors were present, whatever their concentrations, nitrate and Mn-oxide reduction co-occurred. These data indicate that bacterial Mn-oxide reduction could be an important process in marine sediments with low oxygen concentrations, and demonstrate for the first time the role of bacteria in anaerobic Mn-mediated nitrification. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. Startup of the Anammox Process in a Membrane Bioreactor (AnMBR) from Conventional Activated Sludge.

    Science.gov (United States)

    Gutwiński, P; Cema, G; Ziembińska-Buczyńska, A; Surmacz-Górska, J; Osadnik, M

    2016-12-01

      In this study, a laboratory-scale anammox process in a membrane bioreactor (AnMBR) was used to startup the anaerobic ammonium oxidation (anammox) process from conventional activated sludge. Stable operation was achieved after 125 days. From that time, nitrogen load was gradually increased. After six months, the average nitrogen removal efficiency exceeded 80%. The highest obtained special anammox activity (SAA) achieved was 0.17 g (-N + -N) (g VSS × d)-1. Fluorescent in situ hybridization also proved the presence of the anammox bacteria, typically a genus of Brocadia anammoxidans and Kuenenia stuttgartiensis.

  19. Microbial Anaerobic Ammonium Oxidation Under Iron Reducing Conditions, Alternative Electron Acceptors

    Science.gov (United States)

    Ruiz-Urigüen, M.; Jaffe, P. R.

    2015-12-01

    Autotrophic Acidimicrobiaceae-bacterium named A6 (A6), part of the Actinobacteria phylum have been linked to anaerobic ammonium (NH4+) oxidation under iron reducing conditions. These organisms obtain their energy by oxidizing NH4+ and transferring the electrons to a terminal electron acceptor (TEA). Under environmental conditions, the TEAs are iron oxides [Fe(III)], which are reduced to Fe(II), this process is known as Feammox. Our studies indicate that alternative forms of TEAs can be used by A6, e.g. iron rich clays (i.e. nontronite) and electrodes in bioelectrochemical systems such as Microbial Electrolysis Cells (MECs), which can sustain NH4+removal and A6 biomass production. Our results show that nontronite can support Feammox and promote bacterial cell production. A6 biomass increased from 4.7 x 104 to 3.9 x 105 cells/ml in 10 days. Incubations of A6 in nontronite resulted in up to 10 times more NH4+ removal and 3 times more biomass production than when ferrihydrite is used as the Fe(III) source. Additionally, Fe in nontronite can be reoxidized by aeration and A6 can reutilize it; however, Fe is still finite in the clay. In contrast, in MECs, A6 harvest electrons from NH4+ and use an anode as an unlimited TEA, as a result current is produced. We operated multiple MECs in parallel using a single external power source, as described by Call & Logan (2011). MECs were run with an applied voltage of 0.7V and different growing mediums always containing initial 5mM NH4+. Results show that current production is favored when anthraquinone-2,6-disulfonate (AQDS), an electron shuttled, is present in the medium as it facilitates the transfer of electrons from the bacterial cell to the anode. Additionally, A6 biomass increased from 1 x 104 to 9.77 x 105cells/ml in 14 days of operation. Due to Acidimicrobiaceae-bacterium A6's ability to use various TEAs, MECs represent an alternative, iron-free form, for optimized biomass production of A6 and its application in NH4

  20. [Rapid startup and nitrogen removal characteristic of anaerobic ammonium oxidation reactor in packed bed biofilm reactor with suspended carrier].

    Science.gov (United States)

    Chen, Sheng; Sun, De-zhi; Yu, Guang-lu

    2010-03-01

    Packed bed biofilm reactor with suspended carrier was used to cultivate ANAMMOX bacteria with sludge inoculums from WWTP secondary settler. The startup of ANAMMOX reactor was comparatively studied using high nitrogen loading method and low nitrogen loading method with aerobically biofilmed on the carrier, and the nitrogen removal characteristic was further investigated. The results showed that the reactor could be started up successfully within 90 days using low nitrogen loading method, the removal efficiencies of ammonium and nitrite were nearly 100% and the TN removal efficiencywas over 75% , however, the high nitrogen loading method was proved unsuccessfully for startup of ANAMMOX reactor probably because of the inhibition effect of high concentration of ammonium and nitrite. The pH value of effluent was slightly higher than the influent and the pH value can be used as an indicator for the process of ANAMMOX reaction. The packed bed ANAMMOX reactor with suspended carrier showed good characteristics of high nitrogen loading and high removal efficiency, 100% of removal efficiency could be achieved when the influent ammonium and nitrite concentration was lower than 800 mg/L.

  1. Summary of the preservation techniques and the evolution of the anammox bacteria characteristics during preservation.

    Science.gov (United States)

    Chen, Hui; Jin, Ren-Cun

    2017-06-01

    The anaerobic ammonium oxidation (anammox) process is a promising wastewater treatment method for biological nitrogen removal. A sufficient amount of active anammox sludge as a seed is crucial to the fast establishment and stability of the anammox process. Anammox bacteria is a kind of microorganism which is sensitive to the environmental conditions, e.g., oxygen, temperature. The optimum temperature and pH for the growth of the anammox bacteria are 30-40 °C and 6.7-8.3. A proper preservation technique allows fast start-up of the anammox process, overcoming the long doubling time of anammox biomass. The preservation of the anammox sludge is influenced by various factors, e.g., preservation techniques, duration, temperature, substrates, and protective agents. During preservation, the characteristics of the anammox biomass, including the bioactivity, heme c content, extracellular polymeric substances (EPS), and sludge morphology, change with time. The optimum preservation technique is not invariable and it depends on the purpose of preservation (precedence of bioactivity or quantity), the bacterial community, and other parameters. It is important for the preserved anammox biomass to achieve reactivation so that stable anammox reactors can be established as soon as possible. However, because the preservation process is complicated, the knowledge regarding preservation is far from complete, and much future work will be required to increase the understanding of preservation.

  2. Draft Genome of Scalindua rubra, Obtained from the Interface Above the Discovery Deep Brine in the Red Sea, Sheds Light on Potential Salt Adaptation Strategies in Anammox Bacteria

    NARCIS (Netherlands)

    Speth, Daan R.; Lagkouvardos, Ilias; Wang, Yong; Qian, Pei Yuan; Dutilh, Bas E.|info:eu-repo/dai/nl/304546313; Jetten, Mike S M

    2017-01-01

    Several recent studies have indicated that members of the phylum Planctomycetes are abundantly present at the brine-seawater interface (BSI) above multiple brine pools in the Red Sea. Planctomycetes include bacteria capable of anaerobic ammonium oxidation (anammox). Here, we investigated the

  3. Draft Genome of Scalindua rubra, Obtained from the Interface Above the Discovery Deep Brine in the Red Sea, Sheds Light on Potential Salt Adaptation Strategies in Anammox Bacteria

    NARCIS (Netherlands)

    Speth, Daan R.; Lagkouvardos, Ilias; Wang, Yong; Qian, Pei Yuan; Dutilh, Bas E.; Jetten, M.S.M.

    2017-01-01

    Several recent studies have indicated that members of the phylum Planctomycetes are abundantly present at the brine-seawater interface (BSI) above multiple brine pools in the Red Sea. Planctomycetes include bacteria capable of anaerobic ammonium oxidation (anammox). Here, we investigated the

  4. The relationship between anammox and denitrification in the sediment of an inland river

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Sheng, E-mail: zhous@outlook.com [Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, No. 1000 Jinqi Road, Shanghai 201403 (China); Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Borjigin, Sodbilig; Riya, Shohei; Terada, Akihiko; Hosomi, Masaaki [Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan)

    2014-08-15

    This study measured the microbial processes of anaerobic ammonium oxidation (anammox) and denitrification in sediment sampled from two sites in the estuary of an inland river (Koisegawa River, Ibaragi prefecture, Japan) using a nitrogen isotope pairing technique (IPT). The responses of anammox and denitrification activities to temperature and nitrate concentration were also evaluated. Further, to elucidate the correlation between anammox and denitrification processes, an inhibition experiment was conducted, using chlorate to inhibit the first step of denitrification. Denitrification activity was much higher than anammox activity, and it reached a maximum at the surface layer in February 2012. Denitrification activity decreased as sediment depth increased, and a similar phenomenon was observed for anammox activity in the sediment of site A, where aquatic plants were absent from the surroundings. The activities of both denitrification and anammox were temperature-dependent, but they responded differently to changes in incubation temperature. Compared to a linear increase in denitrification as temperature rose to 35 °C, the optimal temperature for anammox was 25 °C, after which the activity decreased sharply. At the same time, both anammox and denitrification activities increased with NO{sub 3}{sup −} concentration. The Michaelis–Menten kinetic constants (V{sub max} and K{sub m}) of denitrification were significantly higher than those of the anammox process. Furthermore, anammox activity decreased accordingly when the first step of denitrification was inhibited, which probably reduced the amount of the intermediate NO{sub 2}{sup −}. Our study provides the first direct exploration of the denitrification-dependent correlation of anammox activity in the sediment of inland river. - Highlights: • The activity of denitrification in river sediment was much higher than anammox. • Denitrification and anammox respond differently to changes in temperature.

  5. Start-Up Characteristics of a Granule-Based Anammox UASB Reactor Seeded with Anaerobic Granular Sludge

    Directory of Open Access Journals (Sweden)

    Lei Xiong

    2013-01-01

    Full Text Available The granulation of anammox sludge plays an important role in the high nitrogen removal performance of the anammox reactor. In this study, anaerobic granular sludge was selected as the seeding sludge to start up anammox reactor in order to directly obtain anammox granules. Results showed that the anammox UASB reactor was successfully started up by inoculating anaerobic granular sludge, with substrate capacity of 4435.2 mg/(L·d and average ammonium and nitrite removal efficiency of 90.36% and 93.29%, respectively. During the start-up course, the granular sludge initially disintegrated and then reaggregated and turned red, suggesting the high anammox performance. Zn-Fe precipitation was observed on the surface of granules during the operation by SEM-EDS, which would impose inhibition to the anammox activity of the granules. Accordingly, it is suggested to relatively reduce the trace metals concentrations, of Fe and Zn in the conventional medium. The findings of this study are expected to be used for a shorter start-up and more stable operation of anammox system.

  6. Start-Up Characteristics of a Granule-Based Anammox UASB Reactor Seeded with Anaerobic Granular Sludge

    Science.gov (United States)

    Wang, Yun-Yan; Tang, Chong-Jian; Chai, Li-Yuan; Xu, Kang-Que; Song, Yu-Xia

    2013-01-01

    The granulation of anammox sludge plays an important role in the high nitrogen removal performance of the anammox reactor. In this study, anaerobic granular sludge was selected as the seeding sludge to start up anammox reactor in order to directly obtain anammox granules. Results showed that the anammox UASB reactor was successfully started up by inoculating anaerobic granular sludge, with substrate capacity of 4435.2 mg/(L·d) and average ammonium and nitrite removal efficiency of 90.36% and 93.29%, respectively. During the start-up course, the granular sludge initially disintegrated and then reaggregated and turned red, suggesting the high anammox performance. Zn-Fe precipitation was observed on the surface of granules during the operation by SEM-EDS, which would impose inhibition to the anammox activity of the granules. Accordingly, it is suggested to relatively reduce the trace metals concentrations, of Fe and Zn in the conventional medium. The findings of this study are expected to be used for a shorter start-up and more stable operation of anammox system. PMID:24455691

  7. Short-and long-term effects of ammonia and nitrite on the anammox process

    International Nuclear Information System (INIS)

    Fernandez, I.; Campos, J. L.; Mosquera-Corral, A.; Mendez, R.

    2009-01-01

    Auto trophic anaerobic ammonium oxidation (Anammox) process is a feasible alternative to treat industrial wastewater with high ammonia concentration but low content of organic matter. In this process ammonium and nitrite are used by Planctomycete-type bacteria under anoxic conditions to generate nitrogen gas. Both substrates can exert inhibitory effects on the process, causing the decrease of the specific activity of the biomass and the loss of the performance and stability of reactors. (Author)

  8. Quantitative evaluation of inhibitory effect of various substances on anaerobic ammonia oxidation (anammox).

    Science.gov (United States)

    Nakamura, Tomotaka; Harigaya, Yuhki; Kimura, Yuya; Kuroiwa, Megumi; Kurata, Yuhri; Isaka, Kazuichi; Suwa, Yuichi

    2017-09-01

    The inhibitory effect of 20 substances of various chemical species on the anaerobic ammonia oxidation (anammox) activity of an enrichment culture, predominated by Candidatus Brocadia, was determined systematically by using a 15 N tracer technique. The initial anammox rate was determined during first 25 min with a small-scale anaerobic batch incubation supplemented with possible inhibitors. Although Cu 2+ and Mn 2+ did not inhibit anammox, the remaining 18 substances [Ni 2+ , Zn 2+ , Co 2+ , [Formula: see text] , Fe 2+ , 4 amines, ethylenediaminetetraacetic acid (EDTA), ethylenediamine-N,N'-bis (2-hydroxyphenylacetic acid) (EDDHA), citric acid, nitrilotriacetic acid (NTA), N,N-dimethylacetamide (DMA), 1,4-dioxane, dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF) and tetrahydrofuran (THF)] were inhibitory. Inhibitory effect of NTA, EDDHA, THF, DMF, DMA and amines on anammox was first determined in this study. Inhibitory effects of metals were re-evaluated because chelators, which may interfere inhibitory effect, have been used to dissolve metal salts into assay solution. The relative anammox activities as a function of concentration of each substance were described successfully (R 2  > 0.91) either with a linear inhibition model or with a Michaelis-Menten-based inhibition model. IC 50 values were estimated based on either model, and were compared. The IC 50 values of the 4 chelators (0.06-2.7 mM) and 5 metal ions (0.02-1.09 mM) were significantly lower than those of the 4 amines (10.6-29.1 mM) and 5 organic solvents (3.5-82 mM). Although it did not show any inhibition within 25 min, 0.1 mM Cu 2+ completely inhibited anammox activity in 240 min, suggesting that the inhibitory effect caused by Cu 2+ is time-dependent. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Mainstream upflow nitritation-anammox system with hybrid anaerobic pretreatment: Long-term performance and microbial community dynamics.

    Science.gov (United States)

    Li, Xiaojin; Sun, Shan; Yuan, Heyang; Badgley, Brian D; He, Zhen

    2017-11-15

    Mainstream nitritation-anammox is of strong interest to energy- and resource-efficient domestic wastewater treatment. However, there lack in-depth studies of pretreatment, tests of actual wastewater, and examination of long-term performance. Herein, an upflow nitritation-anammox granular reactor has been investigated to treat primary effluent with a hybrid anaerobic reactor (HAR) as pretreatment for more than 300 days. This system achieved 92% of COD removal, 75% of which was accomplished by the HAR, and had an average final effluent COD concentration of 22 mg L -1 . More than 90% of ammonium was removed in the nitritation-anammox reactor, achieving a nitrogen removal rate of 81.0 g N m -3  d -1 in the last stage. The accumulation of sulfate-reducing bacteria in the HAR evidenced the effect of sulfate on COD removal and subsequent nitrogen removal. Anammox bacteria (predominantly Ca. Jettenia asiatica) accounted for up to 40.2% of total granular communities, but their abundance decreased over time in the suspended communities. The dynamics of major metabolisms and functional genes involved in nitrogen conversion were predicted by PICRUSt based on the taxonomic data, providing more insights into the functions of the microbial communities. These results have demonstrated the effectiveness and importance of anaerobic pretreatment to successful mainstream nitritation-anammox. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Enhancing the Process of Anaerobic Ammonium Oxidation Coupled to Iron Reduction in Constructed Wetland Mesocosms with Supplementation of Ferric Iron Hydroxides

    Science.gov (United States)

    Shuai, W.; Jaffe, P. R.

    2017-12-01

    Effective ammonium (NH4+) removal has been a challenge in wastewater treatment processes. Aeration, which is required for the conventional NH4+ removal approach by ammonium oxidizing bacteria, is an energy intensive process during the operation of wastewater treatment plant. The efficiency of NH4+ oxidation in natural systems is also limited by oxygen transfer in water and sediments. The objective of this study is to enhance NH4+ removal by applying a novel microbial process, anaerobic NH4+ oxidation coupled to iron (Fe) reduction (also known as Feammox), in constructed wetlands (CW). Our studies have shown that an Acidimicrobiaceae bacterium named A6 can carry out the Feammox process using ferric Fe (Fe(III)) minerals like ferrihydrite as their electron acceptor. To investigate the properties of the Feammox process in CW as well as the influence of electrodes, Feammox bacterium A6 was inoculated in planted CW mesocosms with electrodes installed at multiple depths. CW mesocosms were operated using high NH4+ nutrient solution as inflow under high or low sediment Fe(III) level. During the operation, NH4+ and ferrous Fe concentration, pore water pH, voltages between electrodes, oxidation reduction potential and dissolved oxygen were measured. At the end of the experiment, CW sediment samples at different depths were taken, DNAs were extracted and quantitative polymerase chain reaction and pyrosequencing were performed to analyze the microbial communities. The results show that the high Fe level CW mesocosm has much higher NH4+ removal ability than the low Fe level CW mesocosm after Fe-reducing conditions are developed. This indicates the enhanced NH4+ removal can be attributed to elevated Feammox activity in high Fe level CW mesocosm. The microbial community structures are different in high or low Fe level CW mesocosms and on or away from the installed electrodes. The voltages between cathode and anode increased after the injection of A6 enrichment culture in low Fe

  11. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions

    Science.gov (United States)

    Huang, S.; Jaffé, P. R.

    2015-02-01

    Incubation experiments were conducted using soil samples from a forested riparian wetland where we have previously observed anaerobic ammonium oxidation coupled to iron reduction. Production of both nitrite and ferrous iron was measured repeatedly during incubations when the soil slurry was supplied with either ferrihydrite or goethite and ammonium chloride. Significant changes in the microbial community were observed after 180 days of incubation as well as in a continuous flow membrane reactor, using 16S rRNA gene PCR-denaturing gradient gel electrophoresis, 454 pyrosequencing, and real-time quantitative PCR analysis. We be Acidimicrobiaceae bacterium A6), belonging to the Acidimicrobiaceae family, whose closest cultivated relative is Ferrimicrobium acidiphilum (with 92% identity) and Acidimicrobium ferrooxidans (with 90% identity), might play a key role in this anaerobic biological process that uses ferric iron as an electron acceptor while oxidizing ammonium to nitrite. After ammonium was oxidized to nitrite, nitrogen loss proceeded via denitrification and/or anammox.

  12. Anammox-based technologies for nitrogen removal: Advances in process start-up and remaining issues.

    Science.gov (United States)

    Ali, Muhammad; Okabe, Satoshi

    2015-12-01

    Nitrogen removal from wastewater via anaerobic ammonium oxidation (anammox)-based process has been recognized as efficient, cost-effective and low energy alternative to the conventional nitrification and denitrification processes. To date, more than one hundred full-scale anammox plants have been installed and operated for treatment of NH4(+)-rich wastewater streams around the world, and the number is increasing rapidly. Since the discovery of anammox process, extensive researches have been done to develop various anammox-based technologies. However, there are still some challenges in practical application of anammox-based treatment process at full-scale, e.g., longer start-up period, limited application to mainstream municipal wastewater and poor effluent water quality. This paper aimed to summarize recent status of application of anammox process and researches on technological development for solving these remaining problems. In addition, an integrated system of anammox-based process and microbial fuel cell is proposed for sustainable and energy-positive wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Growth and metabolism of Anammox Bacteria

    NARCIS (Netherlands)

    Van der Star, W.R.L.

    2008-01-01

    The anoxic ammonium oxidation (anammox) process is the conversion of nitrite and ammonium under anoxic conditions- to form dinitrogen gas. The process is performed by deep-branching Planctomycetes. The startup of the first full-scale anammox reactor in the world is described in Chapter 2. The

  14. Start-up and stabilization of an Anammox process from a non-acclimatized sludge in CSTR.

    Science.gov (United States)

    Bagchi, Samik; Biswas, Rima; Nandy, Tapas

    2010-09-01

    Development of an Anammox (anaerobic ammonium oxidation) process using non-acclimatized sludge requires a long start-up period owing to the very slow growth rate of Anammox bacteria. This article addresses the issue of achieving a shorter start-up period for Anammox activity in a well-mixed continuously stirred tank reactor (CSTR) using non-acclimatized anaerobic sludge. Proper selection of enrichment conditions and low stirring speed of 30 +/- 5 rpm resulted in a shorter start-up period (82 days). Activity tests revealed the microbial community structure of Anammox micro-granules. Ammonia-oxidizing bacteria (AOB) were found on the surface and on the outer most layers of granules while nitrite-oxidizing bacteria (NOB) and Anammox bacteria were present inside. Fine-tuning of influent NO2(-)/NH4+ ratio allowed Anammox activity to be maintained when mixed microbial populations were present. The maximum nitrogen removal rate achieved in the system was 0.216 kg N/(m(3) day) with a maximum specific nitrogen removal rate of 0.434 g N/(g VSS day). During the study period, Anammox activity was not inhibited by pH changes and free ammonia toxicity.

  15. The first report of a microdiverse anammox bacteria community in waters of Colombian Pacific, a transition area between prominent oxygen minimum zones of the eastern tropical Pacific.

    Science.gov (United States)

    Castro-González, M; Molina, V; Rodríguez-Rubio, E; Ulloa, O

    2014-12-01

    Anaerobic ammonium oxidizers contribute to the removal of fixed nitrogen in oxygen-deficient marine ecosystems such as oxygen minimum zones (OMZ). Here we surveyed for the first time the occurrence and diversity of anammox bacteria in the Colombian Pacific, a transition area between the prominent South and North Pacific OMZs. Anammox bacteria were detected in the coastal and oceanic areas of the Colombian Pacific in low oxygen (Chile and Arabian Sea) within Candidatus ‘Scalindua spp’. Moreover, some anammox bacteria OTUs shared a low similarity with environmental phylotypes (86–94%). Our results indicated that a microdiverse anammox community inhabits the Colombian Pacific, generating new questions about the ecological and biogeochemical differences influencing its community structure.

  16. Nitrogen Removal by Anammox Biofilm Column Reactor at Moderately Low Temperature

    Directory of Open Access Journals (Sweden)

    Tuty Emilia Agustina

    2017-10-01

    Full Text Available The anaerobic ammonium oxidation (anammox as a new biological approach for nitrogen removal has been considered to be more cost-effective compared with the combination of nitrification and denitrification process. However, the anammox bioreactors are mostly explored at high temperature (>300C in which temperature controlling system is fully required. This research was intended to develop and to apply anammox process for high nitrogen concentration removal at ambient temperature used for treating wastewater in tropical countries. An up-flow biofilm column reactor, which the upper part constructed with a porous polyester non-woven fabric material as a carrier to attach the anammox bacteria was operated without heating system. A maximum nitrogen removal rate (NRR of 1.05 kg-N m3 d-1 was reached in the operation days of 178 with a Total Nitrogen (TN removal efficiency of 74%. This showed the biofilm column anammox reactor was successfully applied to moderate high nitrogen removal from synthetic wastewater at moderately low temperature. Keywords: Anammox, biofilm column reactor, ambient temperature, nitrogen removal

  17. Impact of reactor configuration on anammox process start-up: MBR versus SBR.

    Science.gov (United States)

    Tao, Yu; Gao, Da-Wen; Fu, Yuan; Wu, Wei-Min; Ren, Nan-Qi

    2012-01-01

    Anaerobic ammonium oxidation (anammox) is an energy saving biological nitrogen removal process which was limited to slow growth rate of anammox bacteria during start-up period. This study investigated the start-up of anammox process by a laboratory sequential batch reactor (SBR) for 218 days and subsequently modified the reactor as a membrane bioreactor (MBR) for 178 days. Modification of a SBR as MBR with installation of an external membrane module resulted in acceleration of specific anammox activity by 19 times. The acceleration of specific anammox activity with MBR was further confirmed by starting-up another MBR for a 242 day period. Molecular microbial analyses showed that Candidatus "Brocadia anammoxidans" and Candidatus "Kuenenia stuttgartiensis" were the dominant species in the inocula and biomass developed in the reactor. The start-up with MBR appeared to be more effective than SBR for the enrichment of anammox bacteria due to high sludge retention property of MBR configuration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Enrichment of marine anammox bacteria from seawater-related samples and bacterial community study.

    Science.gov (United States)

    Kawagoshi, Y; Nakamura, Y; Kawashima, H; Fujisaki, K; Furukawa, K; Fujimoto, A

    2010-01-01

    Anaerobic ammonium oxidation (anammox) is a novel nitrogen pathway catalyzed by anammox bacteria which are obligate anaerobic chemoautotrophs. In this study, enrichment culture of marine anammox bacteria (MAAOB) from the samples related to seawater was conducted. Simultaneous removal of ammonium and nitrite was confirmed in continuous culture inoculated with sediment of a sea-based waste disposal site within 50 days. However, no simultaneous nitrogen removal was observed in cultures inoculated with seawater-acclimated denitrifying sludge or with muddy sediment of tideland even during 200 days. Nitrogen removal rate of 0.13 kg/m(3)/day was achieved at nitrogen loading rate of 0.16 kg/m(3)/day after 320th days in the culture inoculated with the sediment of waste disposal site. The nitrogen removal ratio between ammonium nitrogen and nitrite nitrogen was 1:1.07. Denaturing gradient gel electrophoresis (DGGE) analysis indicated that an abundance of the bacteria close to MAAOB and coexistence of ammonium oxidizing bacteria and denitrifying bacteria in the culture.

  19. Microbial Aggregate and Functional Community Distribution in a Sequencing Batch Reactor with Anammox Granules

    KAUST Repository

    Sun, Shan

    2013-05-01

    Anammox (anaerobic ammonium oxidation) process is a one-step conversion of ammonia into nitrogen gas with nitrite as an electron acceptor. It has been developed as a sustainable technology for ammonia removal from wastewater in the last decade. For wastewater treatment, anammox biomass was widely developed as microbial aggregate where the conditions for enrichment of anammox community must be delicately controlled and growth of other bacteria especially NOB should be suppressed to enhance nitrogen removal efficiency. Little is known about the distribution of microbial aggregates in anammox process. Thus the objective of our study was to assess whether segregation of biomass occurs in granular anammox system. In this study, a laboratory-scale sequential batch reactor (SBR) was successfully operated for a period of 80 days with granular anammox biomass. Temporal and spatial distribution of microbial aggregates was studied by particle characterization system and the distribution of functional microbial communities was studied with qPCR and 16s rRNA amplicon pyrosequencing. Our study revealed the spatial and temporal distribution of biomass aggregates based on their sizes and density. Granules (>200 μm) preferentially accumulated in the bottom of the reactor while floccules (30-200 μm) were relatively rich at the top layer. The average density of aggregate was higher at the bottom than the density of those at the top layer. Degranulation caused by lack of hydrodynamic shear force in the top layer was considered responsible for this phenomenon. NOB was relatively rich in the top layer while percentage of anammox population was higher at the bottom, and anammox bacteria population gradually increased over a period of time. NOB growth was supposed to be associated with the increase of floccules based on the concurrent occurrence. Thus, segregation of biomass can be utilized to develop an effective strategy to enrich anammox and wash out NOB by shortening the settling

  20. Vertical distribution and community composition of anammox bacteria in sediments of a eutrophic shallow lake.

    Science.gov (United States)

    Qin, H; Han, C; Jin, Z; Wu, L; Deng, H; Zhu, G; Zhong, W

    2018-07-01

    The aim of this study was to explore the vertical distribution traits of anaerobic ammonium-oxidizing (anammox) bacterial relative abundance and community composition along the oxic/anoxic sediment profiles in a shallow lake. The Illumina Miseq-based sequencing and quantitative polymerase chain reactions were utilized to analyse relative abundance of anammox hydrazine synthase (hzsB) gene in comparison with bacterial 16S rRNA genes, anammox bacterial relative abundance (the number of anammox sequences divided by total number of sequences), community composition and diversity in sediments. The relative abundance of hzsB gene at the low-nitrogen (LN) site in the lake sediments showed that the vertical distribution of anammox bacteria increased to a peak, then decreased with increasing depth. Moreover, the relative abundance of hzsB gene at the high-nitrogen site was significantly lower than that at the LN site. Additionally, the community composition results showed that Candidatus Brocadia sp. was the dominant genus. In addition, the anammox bacterial diversity was also site specific. Redundancy analysis showed that the total N and the NH 4 + -N content might be the most important factors affecting anammox bacterial community composition in the studied sites. The results revealed the specific vertical variance of anammox bacterial distribution and community composition in oxic/anoxic sediments of a eutrophic shallow lake. This is the first study to demonstrate that anammox bacteria displayed the particular distribution in freshwater sediments, which implied a strong response to the anthropogenic eutrophication. © 2018 The Society for Applied Microbiology.

  1. Distribution and activity of anaerobic ammonium-oxidising bacteria in natural freshwater wetland soils.

    Science.gov (United States)

    Shen, Li-dong; Wu, Hong-sheng; Gao, Zhi-qiu; Cheng, Hai-xiang; Li, Ji; Liu, Xu; Ren, Qian-qi

    2016-04-01

    Anaerobic ammonium oxidation (anammox) process plays a significant role in the marine nitrogen cycle. However, the quantitative importance of this process in nitrogen removal in wetland systems, particularly in natural freshwater wetlands, is still not determined. In the present study, we provided the evidence of the distribution and activity of anammox bacteria in a natural freshwater wetland, located in southeastern China, by using (15)N stable isotope measurements, quantitative PCR assays and 16S rRNA gene clone library analysis. The potential anammox rates measured in this wetland system ranged between 2.5 and 25.5 nmol N2 g(-1) soil day(-1), and up to 20% soil dinitrogen gas production could be attributed to the anammox process. Phylogenetic analysis of 16S rRNA genes showed that anammox bacteria related to Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus and two novel anammox clusters coexisted in the collected soil cores, with Candidatus Brocadia and Candidatus Kuenenia being the dominant anammox genera. Quantitative PCR of hydrazine synthase genes showed that the abundance of anammox bacteria varied from 2.3 × 10(5) to 2.2 × 10(6) copies g(-1) soil in the examined soil cores. Correlation analyses suggested that the soil ammonium concentration had significant influence on the activity of anammox bacteria. On the basis of (15)N tracing technology, it is estimated that a total loss of 31.1 g N m(-2) per year could be linked the anammox process in the examined wetland.

  2. Environmental Factors Affecting Ammonium Oxidation Under Iron Reducing Conditions

    Science.gov (United States)

    Jaffe, P. R.; Huang, S.; Ruiz-Urigüen, M.

    2014-12-01

    35ºC. This is in contrast to anammox, another anaerobic ammonium oxidation pathway, for which optimal NH4+ oxidation is at temperatures ~ 30ºC. Hence, a Feammox-based process is an attractive candidate for wastewater treatment that could result in further energy savings, by requiring no aeration or heating of the wastewater in temperate climates.

  3. Achieving mainstream nitrogen removal through simultaneous partial nitrification, anammox and denitrification process in an integrated fixed film activated sludge reactor.

    Science.gov (United States)

    Wang, Chao; Liu, Sitong; Xu, Xiaochen; Zhang, Chaolei; Wang, Dong; Yang, Fenglin

    2018-07-01

    The anaerobic ammonium oxidation (anammox) is becoming a critical technology for energy neutral in mainstream wastewater treatment. However, the presence of chemical oxygen demanding in influent would result in a poor nitrogen removal efficiency during the deammonification process. In this study, the simultaneous partial nitrification, anammox and denitrification process (SNAD) for mainstream nitrogen removal was investigated in an integrated fixed film activated sludge (IFAS) reactor. SNAD-IFAS process achieved a total nitrogen (TN) removal efficiency of 72 ± 2% and an average COD removal efficiency was 88%. The optimum COD/N ratio for mainstream wastewater treatment was 1.2 ± 0.2. Illumina sequencing analysis and activity tests showed that anammox and denitrifying bacteria were the dominant nitrogen removal microorganism in the biofilm and the high COD/N ratios (≥2.0) leaded to the proliferation of heterotrophic bacteria (Hydrogenophaga) and nitrite-oxidizing bacteria (Nitrospira) in the suspended sludge. Network analysis confirmed that anammox bacteria (Candidatus Kuenenia) could survive in organic matter environment due to that anammox bacteria displayed significant co-occurrence through positive correlations with some heterotrophic bacteria (Limnobacter) which could protect anammox bacteria from hostile environments. Overall, the results of this study provided more comprehensive information regarding the community composition and assemblies in SNAD-IFAS process for mainstream nitrogen removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Development of a simultaneous partial nitrification and anaerobic ammonia oxidation process in a single reactor.

    Science.gov (United States)

    Cho, Sunja; Fujii, Naoki; Lee, Taeho; Okabe, Satoshi

    2011-01-01

    Up-flow oxygen-controlled biofilm reactors equipped with a non-woven fabric support were used as a single reactor system for autotrophic nitrogen removal based on a combined partial nitrification and anaerobic ammonium oxidation (anammox) reaction. The up-flow biofilm reactors were initiated as either a partial nitrifying reactor or an anammox reactor, respectively, and simultaneous partial nitrification and anammox was established by careful control of the aeration rate. The combined partial nitrification and anammox reaction was successfully developed in both biofilm reactors without additional biomass inoculation. The reactor initiated as the anammox reactor gave a slightly higher and more stable mean nitrogen removal rate of 0.35 (±0.19) kg-N m(-3) d(-1) than the reactor initiated as the partial nitrifying reactor (0.23 (±0.16) kg-N m(-3) d(-1)). FISH analysis revealed that the biofilm in the reactor started as the anammox reactor were composed of anammox bacteria located in inner anoxic layers that were surrounded by surface aerobic AOB layers, whereas AOB and anammox bacteria were mixed without a distinguishable niche in the biofilm in the reactor started as the partial nitrifying reactor. However, it was difficult to efficiently maintain the stable partial nitrification owing to inefficient aeration in the reactor, which is a key to development of the combined partial nitrification and anammox reaction in a single biofilm reactor. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Behavior and fate of copper ions in an anammox granular sludge reactor and strategies for remediation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zheng-Zhe; Deng, Rui; Cheng, Ya-Fei; Zhou, Yu-Huang; Buayi, Xiemuguli [College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036 (China); Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036 (China); Zhang, Xian; Wang, Hui-Zhong [College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036 (China); Jin, Ren-Cun, E-mail: jrczju@aliyun.com [College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036 (China); Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036 (China)

    2015-12-30

    Highlights: • The Cu partition in an anammox UASB reactor was predicted by models. • The distribution and form dynamics of Cu in anammox reactors were tracked. • The response of the EPS to Cu(II) was characterized by 3D-EEM spectra. • The mechanism of Cu inhibition on anammox granules was updated. • The feasibilities of two novel remediation strategies were investigated. - Abstract: In this study, the behavior, distribution and form dynamics of overloaded Cu(II) in anaerobic ammonium oxidation (anammox) granular sludge reactors were investigated. The performance and physiological characteristics were tracked by continuous-flow monitoring to evaluate the long-term effects. High Cu loading (0.24 g L{sup −1} d{sup −1}) exceeded sludge bearing capacity, and precipitation dominated the removal pathway. The Cu distribution migrated from the extracellular polymeric substances-bound to the cell-associated Cu and the Cu forms shifted from the weakly bound to strongly bound fractions over time. Pearson correlation and fluorescence spectra analyses showed that the increase in protein concentrations in the EPS was a clear self-defense response to Cu(II) stress. Two remediation strategies, i.e., ethylenediamine tetraacetic acid (EDTA) washing and ultrasound-enhanced EDTA washing, weakened the equilibrium metal partition coefficient from 5.8 to 0.45 and 0.34 L mg{sup −1}SS, respectively, thereby accelerating the external diffusion of the Cu that had accumulated in the anammox granules.

  6. Behavior and fate of copper ions in an anammox granular sludge reactor and strategies for remediation

    International Nuclear Information System (INIS)

    Zhang, Zheng-Zhe; Deng, Rui; Cheng, Ya-Fei; Zhou, Yu-Huang; Buayi, Xiemuguli; Zhang, Xian; Wang, Hui-Zhong; Jin, Ren-Cun

    2015-01-01

    Highlights: • The Cu partition in an anammox UASB reactor was predicted by models. • The distribution and form dynamics of Cu in anammox reactors were tracked. • The response of the EPS to Cu(II) was characterized by 3D-EEM spectra. • The mechanism of Cu inhibition on anammox granules was updated. • The feasibilities of two novel remediation strategies were investigated. - Abstract: In this study, the behavior, distribution and form dynamics of overloaded Cu(II) in anaerobic ammonium oxidation (anammox) granular sludge reactors were investigated. The performance and physiological characteristics were tracked by continuous-flow monitoring to evaluate the long-term effects. High Cu loading (0.24 g L −1 d −1 ) exceeded sludge bearing capacity, and precipitation dominated the removal pathway. The Cu distribution migrated from the extracellular polymeric substances-bound to the cell-associated Cu and the Cu forms shifted from the weakly bound to strongly bound fractions over time. Pearson correlation and fluorescence spectra analyses showed that the increase in protein concentrations in the EPS was a clear self-defense response to Cu(II) stress. Two remediation strategies, i.e., ethylenediamine tetraacetic acid (EDTA) washing and ultrasound-enhanced EDTA washing, weakened the equilibrium metal partition coefficient from 5.8 to 0.45 and 0.34 L mg −1 SS, respectively, thereby accelerating the external diffusion of the Cu that had accumulated in the anammox granules.

  7. Enrichment of anammox bacteria fro marine environment for the construction of a bioremediation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Jun; Sakka, Makiko; Kimura, Tetsuya; Sakka, Kazuo [Mie Univ., Tsu (Japan). Graduate School of Bioresources; Furukawa, Kenji [Kumamoto Univ. (Japan). Dept. of Civil Engineering and Architecture

    2008-01-15

    In the global ocean nitrogen cycle, the anaerobic ammonium-oxidizing (anammox) process is recognized as important. In this study, we established an enrichment culture of marine anammox bacteria (MAB) in a column-type reactor. The reactor, which included a porous polyester non-woven fabric that had been placed at the sea floor in advance for enrichment, was continuously fed with NH{sub 4}Cl and NaNO{sub 2} for more than 1 year. Anammox activity in the MAB reactor was confirmed by {sup 15}N tracer analysis using {sup 15}NH{sub 4}Cl and Na{sup 14}NO{sub 2}. We identified two 16S rRNA genes in the amplified DNA fragments derived from MAB, which were highly homologous with those from Candidatus ''Scalindua wagneri'' and an uncultured planctomycete clone. Fluorescence in situ hybridization analysis using an anammox-specific probe also confirmed that MAB predominated in the reactor. To our knowledge, this is the first report on the establishment of an enrichment culture of anammox bacteria from the marine environment using a continuous culture system. (orig.)

  8. Molecular detection of Candidatus Scalindua pacifica and environmental responses of sediment anammox bacterial community in the Bohai Sea, China.

    Directory of Open Access Journals (Sweden)

    Hongyue Dang

    Full Text Available The Bohai Sea is a large semi-enclosed shallow water basin, which receives extensive river discharges of various terrestrial and anthropogenic materials such as sediments, nutrients and contaminants. How these terrigenous inputs may influence the diversity, community structure, biogeographical distribution, abundance and ecophysiology of the sediment anaerobic ammonium oxidation (anammox bacteria was unknown. To answer this question, an investigation employing both 16S rRNA and hzo gene biomarkers was carried out. Ca. Scalindua bacteria were predominant in the surface sediments of the Bohai Sea, while non-Scalindua anammox bacteria were also detected in the Yellow River estuary and inner part of Liaodong Bay that received strong riverine and anthropogenic impacts. A novel 16S rRNA gene sequence clade was identified, putatively representing an anammox bacterial new candidate species tentatively named "Ca. Scalindua pacifica". Several groups of environmental factors, usually with distinct physicochemical or biogeochemical natures, including general marine and estuarine physicochemical properties, availability of anammox substrates (inorganic N compounds, alternative reductants and oxidants, environmental variations caused by river discharges and associated contaminants such as heavy metals, were identified to likely play important roles in influencing the ecology and biogeochemical functioning of the sediment anammox bacteria. In addition to inorganic N compounds that might play a key role in shaping the anammox microbiota, organic carbon, organic nitrogen, sulfate, sulfide and metals all showed the potentials to participate in the anammox process, releasing the strict dependence of the anammox bacteria upon the direct availability of inorganic N nutrients that might be limiting in certain areas of the Bohai Sea. The importance of inorganic N nutrients and certain other environmental factors to the sediment anammox microbiota suggests that these

  9. High-throughput profiling of microbial community structures in an ANAMMOX-UASB reactor treating high-strength wastewater.

    Science.gov (United States)

    Cao, Shenbin; Du, Rui; Li, Baikun; Ren, Nanqi; Peng, Yongzhen

    2016-07-01

    In this study, the microbial community structure was assessed in an anaerobic ammonium oxidation-upflow anaerobic sludge blanket (ANAMMOX-UASB) reactor treating high-strength wastewater (approximately 700 mg N L(-1) in total nitrogen) by employing Illumina high-throughput sequencing analysis. The reactor was started up and reached a steady state in 26 days by seeding mature ANAMMOX granules, and a high nitrogen removal rate (NRR) of 2.96 kg N m(-3) day(-1) was obtained at 13.2∼17.6 °C. Results revealed that the abundance of ANAMMOX bacteria increased during the operation, though it occupied a low proportion in the system. The phylum Planctomycetes was only 8.39 % on day 148 and Candidatus Brocadia was identified as the dominant ANAMMOX species with a percentage of 2.70 %. The phylum of Chloroflexi, Bacteroidetes, and Proteobacteria constituted a percentage up to 70 % in the community, of which the Chloroflexi and Bacteroidetes were likely to be related to the sludge granulation. In addition, it was found that heterotrophic denitrifying bacteria of Denitratisoma belonging to Proteobacteria phylum occupied a large proportion (22.1∼23.58 %), which was likely caused by the bacteria lysis and decay with the internal carbon source production. The SEM images also showed that plenty of other microorganisms existed in the ANAMMOX-UASB reactor.

  10. Evaluation of anaerobic digestion processes for short sludge-age waste activated sludge combined with anammox treatment of digestate liquor.

    Science.gov (United States)

    Ge, Huoqing; Batstone, Damien; Keller, Jurg

    2016-01-01

    The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity.

  11. The Experiment Study of Anaerobic Ammonia Oxidation Start-up by Using the Upflow Double Layer Anaerobic Filter

    Directory of Open Access Journals (Sweden)

    YAO Li

    2018-02-01

    Full Text Available Anammox is an efficient nitrogen removal process, but it is difficult to start-up and operate, and ananammox reactor is the efficient way to resolve this problem. The start-up of anammox reactor by upflow anaerobic filter was studied. Denitrifying sludge, anaerobic sludge, and mixed sludge was inoculated on the packing materials, respectively and an autotrophic denitrification condition was provided by the simulated wastewater influent. Along with the gradual increase of matrix concentration and hydraulic load, the microflora was converted to the anaerobic ammonium oxidation(anammoxreaction. The results showed that the anammox reaction could be started by all the three sludge, and the time of start-up of denitrifying sludge, anaerobic sludge, mixed sludge was 42, 54 days and 45 days, respectively. The best result was that inoculated with denitrifying sludge with 82.2% of the total nitrogen removal rate, which started-up quickly and nitrogen was removed efficiently. Double packing effectively improved the stability of anammox process in the reactor, in which the suitable influent concentration loading for the anammox bacteria was 270 mg·L-1 and 360 mg·L-1 for ammonia nitrogen and nitrite nitrogen, respectively, and the COD concentration could not be more than 150 mg· L-1. Furthermore, there was a coexist-effect for anaerobic ammonia oxidation and methanation in this reactor system.

  12. Symbiotic relationship analysis of predominant bacteria in a lab-scale anammox UASB bioreactor.

    Science.gov (United States)

    Wang, Yujia; Hu, Xiaomin; Jiang, Binhui; Song, Zhenhui; Ma, Yongguang

    2016-04-01

    In order to provide the comprehensive insight into the key microbial groups in anaerobic ammonium oxidation (anammox) process, high-throughput sequencing analysis has been used for the investigation of the bacterial communities of a lab-scale upflow anaerobic sludge bed (UASB) anammox bioreactor. Results revealed that 109 operational taxonomic units (OTUs; out of 14,820 reads) were identified and a domination of anammox bacteria of Candidatus Kuenenia stuttgartiensis (OTU474, 35.42 %), along with heterotrophs of Limnobacter sp. MED105 (OTU951, 14.98 %), Anerolinea thermophila UNI-1 (OTU465 and OTU833, 6.60 and 3.93 %), Azoarcus sp. B72 (OTU26, 9.47 %), and Ignavibacterium sp. JCM 16511 (OTU459, 8.33 %) were detected. Metabolic pathway analysis showed that Candidatus K. stuttgartiensis encountered gene defect in synthesizing a series of metabolic cofactors for growth, implying that K. stuttgartiensis is auxotrophic. Coincidentally, the other dominant species severally showed complete metabolic pathways with full set gene encoding to corresponding cofactors presented in the surrounding environment. Furthermore, it was likely that the survival of heterotrophs in the autotrophic system indicates the existence of a symbiotic and mutual relationship in anammox system.

  13. Enrichment of anammox bacteria from three sludge sources for the startup of monosodium glutamate industrial wastewater treatment system.

    Science.gov (United States)

    Li-dong, Shen; An-hui, Hu; Ren-cun, Jin; Dong-qing, Cheng; Ping, Zheng; Xiang-yang, Xu; Bao-lan, Hu

    2012-01-15

    Three activated sludges from a landfill leachate treatment plant (S1), a municipal sewage treatment plant (S2) and a monosodium glutamate (MSG) wastewater treatment plant (S3) were used as inocula to enrich anaerobic ammonium oxidation (anammox) bacteria for the startup of MSG industrial wastewater treatment system. After 360 days of cultivation using MSG wastewater, obvious anammox activity was observed in all three cultures. The maximum specific anammox activities of cultures S1, S2 and S3 were 0.11 kg N kg(-1) VSS day(-1), 0.09 kg N kg(-1) VSS day(-1) and 0.16 kg N kg(-1) VSS day(-1), respectively. Brownish-red anammox granules having diameters in the range of 0.2-1.0mm were visible in cultures S1 and S2, and large red granules having diameters in the range of 0.5-2.5mm were formed in culture S3 after 420 days of cultivation. Phylogenetic analysis of 16S rRNA genes showed that Kuenenia organisms were the dominant anammox species in all three cultures. The copy numbers of 16S rRNA genes of anammox bacteria in cultures S1, S2 and S3 were 6.8 × 10(7) copies mL(-1), 9.4 × 10(7) copies mL(-1) and 7.5 × 10(8) copies mL(-1), respectively. The results of this study demonstrated that anammox cultivation from conventional activated sludges was highly possible using MSG wastewater. Thus the anammox process has possibility of applying to the nitrogen removal from MSG wastewater. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems.

    Science.gov (United States)

    Zhu, Guibing; Jetten, Mike S M; Kuschk, Peter; Ettwig, Katharina F; Yin, Chengqing

    2010-04-01

    Anaerobic ammonium oxidation (anammox) and anaerobic methane oxidation (ANME coupled to denitrification) with nitrite as electron acceptor are two of the most recent discoveries in the microbial nitrogen cycle. Currently the anammox process has been relatively well investigated in a number of natural and man-made ecosystems, while ANME coupled to denitrification has only been observed in a limited number of freshwater ecosystems. The ubiquitous presence of anammox bacteria in marine ecosystems has changed our knowledge of the global nitrogen cycle. Up to 50% of N(2) production in marine sediments and oxygen-depleted zones may be attributed to anammox bacteria. However, there are only few indications of anammox in natural and constructed freshwater wetlands. In this paper, the potential role of anammox and denitrifying methanotrophic bacteria in natural and artificial wetlands is discussed in relation to global warming. The focus of the review is to explore and analyze if suitable environmental conditions exist for anammox and denitrifying methanotrophic bacteria in nitrogen-rich freshwater wetlands.

  15. Occurrence and importance of anaerobic ammonium-oxidising bacteria in vegetable soils.

    Science.gov (United States)

    Shen, Li-dong; Wu, Hong-sheng; Gao, Zhi-qiu; Xu, Xiang-hua; Chen, Tie-xi; Liu, Shuai; Cheng, Hai-xiang

    2015-07-01

    The quantitative importance of anaerobic ammonium oxidation (anammox) has been described in paddy fields, while the presence and importance of anammox in subsurface soil from vegetable fields have not been determined yet. Here, we investigated the occurrence and activity of anammox bacteria in five different types of vegetable fields located in Jiangsu Province, China. Stable isotope experiments confirmed the anammox activity in the examined soils, with the potential rates of 2.1 and 23.2 nmol N2 g(-1) dry soil day(-1), and the anammox accounted for 5.9-20.5% of total soil dinitrogen gas production. It is estimated that a total loss of 7.1-78.2 g N m(-2) year(-1) could be linked to the anammox process in the examined vegetable fields. Phylogenetic analyses showed that multiple co-occurring anammox genera were present in the examined soils, including Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus and Candidatus Jettenia, and Candidatus Brocadia appeared to be the most common anammox genus. Quantitative PCR further confirmed the presence of anammox bacteria in the examined soils, with the abundance varying from 2.8 × 10(5) to 3.0 × 10(6) copies g(-1) dry soil. Correlation analyses suggested that the soil ammonium concentration had significant influence on the activity and abundance of anammox bacteria in the examined soils. The results of our study showed the presence of diverse anammox bacteria and indicated that the anammox process could serve as an important nitrogen loss pathway in vegetable fields.

  16. Draft Genome of Scalindua rubra, Obtained from the Interface Above the Discovery Deep Brine in the Red Sea, Sheds Light on Potential Salt Adaptation Strategies in Anammox Bacteria.

    Science.gov (United States)

    Speth, Daan R; Lagkouvardos, Ilias; Wang, Yong; Qian, Pei-Yuan; Dutilh, Bas E; Jetten, Mike S M

    2017-07-01

    Several recent studies have indicated that members of the phylum Planctomycetes are abundantly present at the brine-seawater interface (BSI) above multiple brine pools in the Red Sea. Planctomycetes include bacteria capable of anaerobic ammonium oxidation (anammox). Here, we investigated the possibility of anammox at BSI sites using metagenomic shotgun sequencing of DNA obtained from the BSI above the Discovery Deep brine pool. Analysis of sequencing reads matching the 16S rRNA and hzsA genes confirmed presence of anammox bacteria of the genus Scalindua. Phylogenetic analysis of the 16S rRNA gene indicated that this Scalindua sp. belongs to a distinct group, separate from the anammox bacteria in the seawater column, that contains mostly sequences retrieved from high-salt environments. Using coverage- and composition-based binning, we extracted and assembled the draft genome of the dominant anammox bacterium. Comparative genomic analysis indicated that this Scalindua species uses compatible solutes for osmoadaptation, in contrast to other marine anammox bacteria that likely use a salt-in strategy. We propose the name Candidatus Scalindua rubra for this novel species, alluding to its discovery in the Red Sea.

  17. Nitrogen removal from sludge digester liquids by nitrification/denitrification or partial nitritation/anammox: environmental and economical considerations.

    Science.gov (United States)

    Fux, C; Siegrist, H

    2004-01-01

    In wastewater treatment plants with anaerobic sludge digestion, 15-20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant significantly reduces the nitrogen load of the activated sludge system. Two biological applications are considered for nitrogen elimination: (i) classical autotrophic nitrification/heterotrophic denitrification and (ii) partial nitritation/autotrophic anaerobic ammonium oxidation (anammox). With both applications 85-90% nitrogen removal can be achieved, but there are considerable differences in terms of sustainability and costs. The final gaseous products for heterotrophic denitrification are generally not measured and are assumed to be nitrogen gas (N2). However, significant nitrous oxide (N2O) production can occur at elevated nitrite concentrations in the reactor. Denitrification via nitrite instead of nitrate has been promoted in recent years in order to reduce the oxygen and the organic carbon requirements. Obviously this "achievement" turns out to be rather disadvantageous from an overall environmental point of view. On the other hand no unfavorable intermediates are emitted during anaerobic ammonium oxidation. A cost estimate for both applications demonstrates that partial nitritation/anammox is also more economical than classical nitrification/denitrification. Therefore autotrophic nitrogen elimination should be used in future to treat ammonium-rich sludge liquors.

  18. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron reducing conditions

    Science.gov (United States)

    Huang, S.; Jaffé, P. R.

    2014-08-01

    Incubation experiments were conducted using soil samples from a forested riparian wetland where we have previously observed anaerobic ammonium oxidation coupled to iron reduction. Production of both nitrite and ferrous iron were measured repeatedly during incubations when the soil slurry was supplied with either ferrihydrite or goethite and ammonium chloride. Significant changes in the microbial community were observed after 180 days of incubation as well as in a continuous flow membrane reactor, using 16S rRNA gene PCR-denaturing gradient gel electrophoresis, 454-pyrosequencing, and real-time quantitative PCR analysis. We believe that one of the dominant microbial species in our system (an uncultured Acidimicrobiaceae bacterium A6), belonging to the Acidimicrobiaceae family, whose closest cultivated relative is Ferrimicrobium acidiphilum (with 92% identity) and Acidimicrobium ferrooxidans (with 90% identity), might play a key role in this anaerobic biological process that uses ferric iron as an electron acceptor while oxidizing ammonium to nitrite. After ammonium was oxidized to nitrite, nitrogen loss proceeded via denitrification and/or anammox.

  19. Performance and microbial community of anammox in presence of micro-molecule carbon source.

    Science.gov (United States)

    He, Shilong; Yang, Wan; Qin, Meng; Mao, Zhen; Niu, Qigui; Han, Ming

    2018-08-01

    Because ammonium (NH 4 + -N) coexists with organic matter in some wastewaters, the possible adverse influences of organic matter become a major concern in the applications of anaerobic ammonium oxidation (anammox). In this study, the effects of acetate, as a representative of micro-molecule organic matter, on anammox were investigated. Efficient nitrogen removal was realized because denitrifying bacteria and anammox bacteria (AnAOB) had a better synergistic effect under the condition of chemical oxygen demand (COD) concentrations lower than 251 ± 7 mg L -1 . Furthermore, the nitrogen removal efficiency (NRE) decreased to 82.02 ± 3.14% when COD was increased to 730 ± 9 mg L -1 , and effluent free ammonia (FA) reached 21.93 ± 4.71 mg L -1 might be one of factors leading to inhibition. However, the nitrogen-removal contribution rate of anammox remained steady at 61.97 ± 2.84% at COD of 730 ± 9 mg L -1 , which indicated that anammox was still dominant in the system. AnAOB, such as Ca. Kuenenia and Ca. Jettenia, and denitrifying bacteria, such as Denitratisoma and Thauera, were found to coexist in the reactor. Interestingly, Ca. Kuenenia presented in the trend of first decreased then increased with the increasing of organic matter concentration, which might be one of reasons that anammox played an important role in nitrogen removal at high COD concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Presence and diversity of anammox bacteria in cold hydrocarbon-rich seeps and hydrothermal vent sediments of the Guaymas Basin.

    Science.gov (United States)

    Russ, Lina; Kartal, Boran; Op den Camp, Huub J M; Sollai, Martina; Le Bruchec, Julie; Caprais, Jean-Claude; Godfroy, Anne; Sinninghe Damsté, Jaap S; Jetten, Mike S M

    2013-01-01

    Hydrothermally active sediments are highly productive, chemosynthetic areas which are characterized by the rapid turnover of particulate organic matter under extreme conditions in which ammonia is liberated. These systems might be suitable habitats for anaerobic ammonium oxidizing (anammox) bacteria but this has not been investigated in detail. Here we report the diversity and abundance of anammox bacteria in sediments that seep cold hydrocarbon-rich fluids and hydrothermal vent areas of the Guaymas Basin in the Cortés Sea using the unique functional anammox marker gene, hydrazine synthase (hzsA). All clones retrieved were closely associated to the "Candidatus Scalindua" genus. Phylogenetic analysis revealed two distinct clusters of hzsA sequences (Ca. Scalindua hzsA cluster I and II). Comparison of individual sequences from both clusters showed that several of these sequences had a similarity as low as 76% on nucleotide level. Based on the analysis of this phylomarker, a very high interspecies diversity within the marine anammox group is apparent. Absolute numbers of anammox bacteria in the sediments samples were determined by amplification of a 257 bp fragment of the hszA gene in a qPCR assay. The results indicate that numbers of anammox bacteria are generally higher in cold hydrocarbon-rich sediments compared to the vent areas and the reference zone. Ladderanes, lipids unique to anammox bacteria were also detected in several of the sediment samples corroborating the hzsA analysis. Due to the high concentrations of reduced sulfur compounds and its potential impact on the cycling of nitrogen we aimed to get an indication about the key players in the oxidation of sulfide in the Guaymas Basin sediments using the alpha subunit of the adenosine-5'-phosphosulfate (APS) reductase (aprA). Amplification of the aprA gene revealed a high number of gammaproteobacterial aprA genes covering the two sulfur-oxidizing bacteria aprA lineages as well as sulfate-reducers.

  1. A coupled system of half-nitritation and ANAMMOX for mature landfill leachate nitrogen removal.

    Science.gov (United States)

    Li, Yun; Li, Jun; Zhao, Baihang; Wang, Xiujie; Zhang, Yanzhuo; Wei, Jia; Bian, Wei

    2017-09-01

    A coupled system of membrane bioreactor-nitritation (MBR-nitritation) and up-flow anaerobic sludge blanket-anaerobic ammonium oxidation (UASB-ANAMMOX) was employed to treat mature landfill leachate containing high ammonia nitrogen and low C/N. MBR-nitritation was successfully realized for undiluted mature landfill leachate with initial concentrations of 900-1500 mg/L [Formula: see text] and 2000-4000 mg/L chemical oxygen demand. The effluent [Formula: see text] concentration and the [Formula: see text] accumulation efficiency were 889 mg/L and 97% at 125 d, respectively. Half-nitritation was quickly realized by adjustment of hydraulic retention time and dissolved oxygen (DO), and a low DO control strategy could allow long-term stable operation. The UASB-ANAMMOX system showed high effective nitrogen removal at a low concentration of mature landfill leachate. The nitrogen removal efficiency was inhibited at excessive influent substrate concentration and the nitrogen removal efficiency of the system decreased as the concentration of mature landfill leachate increased. The MBR-nitritation and UASB-ANAMMOX processes were coupled for mature landfill leachate treatment and together resulted in high effective nitrogen removal. The effluent average total nitrogen concentration and removal efficiency values were 176 mg/L and 83%, respectively. However, the average nitrogen removal load decreased from 2.16 to 0.77 g/(L d) at higher concentrations of mature landfill leachate.

  2. Effect of Different Filling Materials in Anammox Bacteria Enrichment

    Directory of Open Access Journals (Sweden)

    Dilek ÖZGÜN

    2012-12-01

    Full Text Available Purpose: Anaerobic ammonium oxidation (Anammox is a process that ammonium as electron donor is oxidized to nitrogen gas using nitrite as electron acceptor. Compared to conventional nitrification-denitrification processes, this process is used less oxygen and no organic material (methanol, glucose. However, the slow growth rate of Anammox bacteria (11-30 days is disadvantages. Therefore, batch reactors have been carried out in these bacteria enrichment. In this study continuously operated upflow anaerobic sludge reactor (UASB using different filling materials disposing of sensitive and slow-growing Anammox bacteria out of the system is purposed. Design and Methods: System is operated up-flow column reactor at 2 days hydraulic retention time (HRT in 45 days. In this study, ceramic stones and Linpor filling material are used. Using synthetic wastewater containing ammonium and nitrite, Ar/CO2 anaerobic conditions (95/5% supplied with gas. System is operated at a temperature 253 C in UASB. Temperature, pH, ammonia-nitrogen and nitrite nitrogen are measured. Results: Both filling material reactors are operated in 45 days. Ceramic stones filling reactor is observed quickly reaches 90% were used reactor ammonium removal. The ammonium nitrogen removal was slower in Linpor filling materials reactor. Nitrite removal is reached up to 90% in both the reactor. When compared to the stoichiometric equation in Linpor was composed of large amounts of nitrate. At the end of 25 days the results were similar to ceramic stone filling reactor with Linpor filling material reactors. Conclusions and Original Value: Anammox process as from nitrogen removal processes was discovered in 1995. Anammox bacteria that make up this process due to very low growth rates of microbial bacteria in the system must be kept in the system. Most of the studies in the literature, these bacteria enrichment stage is started instead of a continuous batch reactor system. In this study

  3. Anaerobic ammonia oxidation in a fertilized paddy soil

    DEFF Research Database (Denmark)

    Zhu, Guibing; Wang, Shanyun; Wang, Yu

    2011-01-01

    Evidence for anaerobic ammonium oxidation in a paddy field was obtained in Southern China using an isotope-pairing technique, quantitative PCR assays and 16S rRNA gene clone libraries, along with nutrient profiles of soil cores. A paddy field with a high load of slurry manure as fertilizer...... was selected for this study and was shown to contain a high amount of ammonium (6.2–178.8 mg kg−1). The anaerobic oxidation of ammonium (anammox) rates in this paddy soil ranged between 0.5 and 2.9 nmolN per gram of soil per hour in different depths of the soil core, and the specific cellular anammox activity...

  4. Analysis of Anammox Bacterial Comunity Structure and Habitat of the Yangcheng Lake

    Science.gov (United States)

    Zhang, Y.; Ruan, X.

    2011-12-01

    Anaerobic ammonium oxidation (anammox) is a new pathway of nitrogen transformation processed by anammox bacteria. It produces dinitrogen gas under anoxic conditions by combining ammonium and nitrite. Recently, most of anammox bacteria species have been identified in freshwater systems around the world. However, little is known about the anammox bacteria abundance and diversity under different habitats. Yangcheng Lake, located in Yangtze River Delta, is a middle-pattern shallow lake (average depth 2.05 m) containing three interconnected lakes. The average sediment thickness is about 10 cm. Thirteen sediment and corresponding overlying water samples were collected in different seasons for physicochemical and molecular analysis. Anammox specified sequences were amplified from the 16S rRNA of sediment bacteria with anammox specific primers by nest PCR. The sequences were cloned into T-vector to establish the gene library and assigned to operational taxonomic units (OTUs) by cluster analysis. Sequences were blasted in NCBI (http://blast.ncbi.nlm.nih.gov), to construct the phylogenetic tree. Anammox-specific sequences were amplified from all 13 sediment samples. The sequences were mainly affiliated to the Candidatus Brocadia spp., and then affiliated to the Candidatus Kuenenia spp., both of them were the popular anammox species in freshwater systems. Results of physiochemical analysis of the overlying water and sediment pore-water showed that ammonia was the main component of the total inorganic nitrogen. The nitrogen concentrations of the overlying water and pore-water were ranged from 0.18 mg/L to 3.18 mg/L and 6.5 mg/L to 33.71 mg/L for ammonium , 0.01 mg/L to 0.09 mg/L and 0.02 mg/L to 0.20 mg/L for nitrite and 0.05 mg/L to 1.11 mg/L and 0.08 mg/L to 3.27 mg/L for nitrate, respectively. Relationships between the anammox bacterial community structure and environmental factors were analyzed by Detrended correspondence analysis (DCA). The results shows that, the higher

  5. Enrichment using an up-flow column reactor and community structure of marine anammox bacteria from coastal sediment.

    Science.gov (United States)

    Kindaichi, Tomonori; Awata, Takanori; Suzuki, Yuji; Tanabe, Katsuichiro; Hatamoto, Masashi; Ozaki, Noriatsu; Ohashi, Akiyoshi

    2011-01-01

    We established an enrichment culture of marine anaerobic ammonium oxidation (anammox) bacteria using an up-flow column reactor fed with artificial sea water supplemented with nitrogen and minerals and inoculated with coastal surface sediment collected from Hiroshima Bay. After 2 months of reactor operation, simultaneous removal of NH(4)(+) and NO(2)(-) was observed, suggesting that an anammox reaction was proceeding. A total nitrogen removal rate of 2.17 g-N L(-1) day(-1) was attained on day 594 while the nitrogen loading rate was 3.33 g-N L(-1) day(-1). Phylogenetic analysis revealed that at least two dominant "Candidatus Scalindua" species were present in this reactor. Moreover, many uncultured bacteria and archaea, including candidate division or ammonia-oxidizing archaea, were present. Fluorescence in situ hybridization (FISH) revealed that anammox bacteria accounted for 85.5 ± 4.5% of the total bacteria at day 393. We also designed two oligonucleotide probes specific to each dominant "Candidatus Scalindua" species. A simultaneous FISH analysis using both probes showed that two different "Candidatus Scalindua" species were clearly recognizable and coexisted during reactor operation, although there was some variation in their abundance. The marine anammox bacteria enriched in this study have potential applications to the treatment of industrial wastewater containing high levels of ammonium and salt.

  6. Anaerobic ammonium oxidation by marine and freshwater planctomycete-like bacteria RID B-8834-2011 RID B-5428-2008 RID C-3269-2011 RID D-1875-2009

    DEFF Research Database (Denmark)

    Jetten, MSM; Sliekers, O.; Kuypers, M.

    2003-01-01

    , and contributed substantially to the loss of fixed nitrogen. All three species contain a unique organelle-the anammoxosome-in their cytoplasm. The anammoxosome contains the hydrazine/hydroxylamine oxidoreductase enzyme, and is thus the site of anammox catabolism. The anammoxosome is surrounded by a very dense...

  7. Sustainable operation of submerged Anammox membrane bioreactor with recycling biogas sparging for alleviating membrane fouling.

    Science.gov (United States)

    Li, Ziyin; Xu, Xindi; Xu, Xiaochen; Yang, FengLin; Zhang, ShuShen

    2015-12-01

    A submerged anaerobic ammonium oxidizing (Anammox) membrane bioreactor with recycling biogas sparging for alleviating membrane fouling has been successfully operated for 100d. Based on the batch tests, a recycling biogas sparging rate at 0.2m(3)h(-1) was fixed as an ultimate value for the sustainable operation. The mixed liquor volatile suspended solid (VSS) of the inoculum for the long operation was around 3000mgL(-1). With recycling biogas sparging rate increasing stepwise from 0 to 0.2m(3)h(-1), the reactor reached an influent total nitrogen (TN) up to 1.7gL(-1), a stable TN removal efficiency of 83% and a maximum specific Anammox activity (SAA) of 0.56kg TNkg(-1) VSSd(-1). With recycling biogas sparging rate at 0.2 m(3) h(-1) (corresponding to an aeration intensity of 118m(3)m(-2)h(-1)), the membrane operation circle could prolong by around 20 times compared to that without gas sparging. Furthermore, mechanism of membrane fouling was proposed. And with recycling biogas sparging, the VSS and EPS content increasing rate in cake layer were far less than the ones without biogas sparging. The TN removal performance and sustainable membrane operation of this system showed the appealing potential of the submerged Anammox MBR with recycling biogas sparging in treating high-strength nitrogen-containing wastewaters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. High-rate nitrogen removal from waste brine by marine anammox bacteria in a pilot-scale UASB reactor.

    Science.gov (United States)

    Yokota, Nobuyuki; Watanabe, Yasutsugu; Tokutomi, Takaaki; Kiyokawa, Tomohiro; Hori, Tomoyuki; Ikeda, Daisuke; Song, Kang; Hosomi, Masaaki; Terada, Akihiko

    2018-02-01

    The goal of this study was to develop a startup strategy for a high-rate anaerobic ammonium oxidation (anammox) reactor to treat waste brine with high concentrations of ammonium from a natural gas plant. An upflow anaerobic sludge blanket (UASB) anammox reactor with an effective volume of 294 L was fed continuously with waste brine with a salinity of 3% and a NH 4 + concentration of 180 mg-N/L, as well as a NaNO 2 solution. By inoculating a methanogenic granular biomass as a biomass carrier, the reactor attained the maximum volumetric nitrogen removal rate (NRR) of 10.7 kg-N/m 3 /day on day 209, which was 1.7 times higher than the highest reported NRR for wastewater of comparable salinity. High-throughput sequencing of 16S rRNA gene amplicons revealed that Candidatus Scalindua wagneri was enriched successfully in granules in the UASB, and it replaced Methanosaeta and became dominant in the granule. The inhibitory effect of NO 2 - on the anammox reaction in the granules was assessed by a 15 N tracer method, and the results showed that anammox activity was maintained at 60% after exposure to 300 mg-N/L of NO 2 - for 24 h. Compared with previous studies of the susceptibilities of Candidatus Brocadia and Candidatus Kuenenia to NO 2 - , the enriched marine anammox bacteria were proven to have comparable or even higher tolerances for high NO 2 - concentrations after a long exposure.

  9. Shotgun metagenomic data reveals signifcant abundance but low diversity of Candidatus Scalindua marine anammox bacteria in the Arabian Sea oxygen minimum zone

    Directory of Open Access Journals (Sweden)

    laura eVillanueva

    2014-02-01

    Full Text Available Anaerobic ammonium oxidizing (anammox bacteria are responsible for a significant portion of the loss of fixed nitrogen from the oceans, making them important players in the global nitrogen cycle. To date, marine anammox bacteria found in both water columns and sediments worldwide belong almost exclusively to Candidatus Scalindua species. Recently the genome assembly of a marine anammox enrichment culture dominated by Candidatus Scalindua profunda became available and can now be used as a template to study metagenome data obtained from various oxygen minimum zones. Here, we sequenced genomic DNA from suspended particulate matter recovered at the upper (170 m deep and center (600 m area of the oxygen minimum zone in the Arabian Sea by SOLiD and Ion Torrent technology. The genome of Candidatus Scalindua profunda served as a template to collect reads. Based on the mapped reads marine anammox Abundance was estimated to be at least 0.4% in the upper and 1.7% in the center area. Single nucleotide variation (SNV analysis was performed to assess diversity of the Candidatus Scalindua populations. Most highly covered were the two diagnostic anammox genes hydrazine synthase (scal_01318c, hzsA and hydrazine dehydrogenase (scal_03295, hdh, while other genes involved in anammox metabolism (narGH, nirS, amtB, focA and ACS had a lower coverage but could still be assembled and analyzed. The results show that Candidatus Scalindua is abundantly present in the Arabian Sea OMZ, but that the diversity within the ecosystem is relatively low.

  10. Biophysical properties of membrane lipids of anammox bacteria : I. Ladderane phospholipids form highly organized fluid membranes

    NARCIS (Netherlands)

    Boumann, Henry A.; Longo, Marjorie L.; Stroeve, Pieter; Poolman, Bert; Hopmans, Ellen C.; Stuart, Marc C. A.; Damste, Jaap S. Sinninghe; Schouten, Stefan

    Anammox bacteria that are capable of anaerobically oxidizing ammonium (anammox) with nitrite to nitrogen gas produce unique membrane phospholipids that comprise hydrocarbon chains with three or five linearly condensed cyclobutane rings. To gain insight into the biophysical properties of these

  11. Model-Based Feasibility Assessment of Membrane Biofilm Reactor to Achieve Simultaneous Ammonium, Dissolved Methane, and Sulfide Removal from Anaerobic Digestion Liquor

    Science.gov (United States)

    Chen, Xueming; Liu, Yiwen; Peng, Lai; Yuan, Zhiguo; Ni, Bing-Jie

    2016-01-01

    In this study, the membrane biofilm reactor (MBfR) is proposed to achieve simultaneous removal of ammonium, dissolved methane, and sulfide from main-stream and side-stream anaerobic digestion liquors. To avoid dissolved methane stripping, oxygen is introduced through gas-permeable membranes, which also from the substratum for the growth of a biofilm likely comprising ammonium oxidizing bacteria (AOB), anaerobic ammonium oxidation (Anammox) bacteria, denitrifying anaerobic methane oxidation (DAMO) microorganisms, aerobic methane oxidizing bacteria (MOB), and sulfur oxidizing bacteria (SOB). A mathematical model is developed and applied to assess the feasibility of such a system and the associated microbial community structure under different operational conditions. The simulation studies demonstrate the feasibility of achieving high-level (>97.0%), simultaneous removal of ammonium, dissolved methane, and sulfide in the MBfRs from both main-stream and side-stream anaerobic digestion liquors through adjusting the influent surface loading (or hydraulic retention time (HRT)) and the oxygen surface loading. The optimal HRT was found to be inversely proportional to the corresponding oxygen surface loading. Under the optimal operational conditions, AOB, DAMO bacteria, MOB, and SOB dominate the biofilm of the main-stream MBfR, while AOB, Anammox bacteria, DAMO bacteria, and SOB coexist in the side-stream MBfR to remove ammonium, dissolved methane, and sulfide simultaneously. PMID:27112502

  12. Presence and diversity of anammox bacteria in cold hydrocarbon-rich seeps and hydrothermal vent sediments of the Guaymas Basin

    Directory of Open Access Journals (Sweden)

    Lina eRuss

    2013-08-01

    Full Text Available Hydrothermally active sediments are highly productive, chemosynthetic areas which are characterized by the rapid turnover of particulate organic matter under extreme conditions in which ammonia is liberated. These systems might be suitable habitats for anaerobic ammonium oxidizing (anammox bacteria but this has not been investigated in detail. Here we report the diversity and abundance of anammox bacteria in sediments that seep cold hydrocarbon-rich fluids and hydrothermal vent areas of the Guaymas Basin in the Cortés Sea using the unique functional anammox marker gene, hydrazine synthase (hzsA. All clones retrieved were closely associated to the ‘Candidatus Scalindua’ genus. Phylogenetic analysis revealed two distinct clusters of hzsA sequences (Ca. Scalindua hzsA cluster I and II. Comparison of individual sequences from both clusters showed that several of these sequences had a similarity as low as 76% on nucleotide level. Based on the analysis of this phylomarker, a very high interspecies diversity within the marine anammox group is apparent. Absolute numbers of anammox bacteria in the sediments samples were determined by amplification of a 257 bp fragment of the hszA gene in a qPCR assay. The results indicate that numbers of anammox bacteria are generally higher in cold hydrocarbon-rich sediments compared to the vent areas and the reference zone. Ladderanes, lipids unique to anammox bacteria were also detected in several of the sediment samples corroborating the hzsA analysis. Due to the high concentrations of reduced sulfur compounds and its potential impact on the cycling of nitrogen we aimed to get an indication about the key players in the oxidation of sulfide in the Guaymas Basin sediments using the alpha subunit of the adenosine-5’-phosphosulfate (APS reductase (aprA. Amplification of the aprA gene revealed a high number of gammaproteobacterial aprA genes covering the two sulfur-oxidizing bacteria aprA lineages as well as

  13. Reverse-transcriptional gene expression of anammox and ammonia-oxidizing archaea and bacteria in soybean and rice paddy soils of Northeast China.

    Science.gov (United States)

    Wang, Jing; Dong, Hailiang; Wang, Weidong; Gu, Ji-Dong

    2014-03-01

    The relative gene expression of hydrazine oxidoreductase encoding gene (hzo) for anaerobic ammonium oxidizing bacteria (anammox) and ammonia monooxygenase encoding gene (amoA) for both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in Sanjiang Plain soybean and rice paddy soils of Northeast China was investigated by using real-time reverse-transcriptional quantitative PCR. Metabolically active populations of anammox, AOA, and AOB in rice paddy soils were evident by the presence and successful quantification of hzo mRNA and amoA mRNA genes. The expression ratio of amoA gene for both AOA and AOB varied between soybean soils and different rice paddy soils while the expression of hzo gene for anammox was detectable only in rice paddy soils by showing a diverse relative expression ratio in each soil sample. Gene expression of both archaeal and bacterial amoA genes in rice paddy soils differed among the three sampling depths, but that of hzo was not. Both archaeal and bacterial amoA genes showed an increase trend of expression level with continuation of rice paddy cultivation, but the low expression ratio of hzo gene indicated a relatively small contribution of anammox in overall removal of inorganic nitrogen through N2 even under anoxic and high nitrogen input in agriculture. Bacterial amoA gene from two soybean fields and three rice paddy fields were also analyzed for community composition by denaturing gradient gel electrophoresis fingerprint. Community shift was observed between soybean and paddy fields and within each of them. The consistent occurrence of three bands 5, 6, and 7 in all samples showed their high adaptability for both arid cultivation and continuous rice paddy cultivation. Our data suggest that AOA and AOB are playing a more important role in nitrogen transformation in agricultural soils in oxic or anoxic environment and anammox bacteria may also contribute but in a less extent to N transformation in these agricultural soils

  14. Correlation between microbial community and granule conductivity in anaerobic bioreactors for brewery wastewater treatment

    DEFF Research Database (Denmark)

    Shrestha, Pravin; Malvankar, Nikhil S.; Werner, Jeffrey

    2014-01-01

    Prior investigation of an upflow anaerobic sludge blanket (UASB) reactor treating brewery wastes suggested that direct interspecies electron transfer (DIET) significantly contributed to interspecies electron transfer to methanogens. To investigate DIET in granules further, the electrical conducti......Prior investigation of an upflow anaerobic sludge blanket (UASB) reactor treating brewery wastes suggested that direct interspecies electron transfer (DIET) significantly contributed to interspecies electron transfer to methanogens. To investigate DIET in granules further, the electrical...... conductivity and bacterial community composition of granules in fourteen samples from four different UASB reactors treating brewery wastes were investigated. All of the UASB granules were electrically conductive whereas control granules from ANAMMOX (ANaerobic AMMonium OXidation) reactors and microbial...... granules from an aerobic bioreactor designed for phosphate removal were not. There was a moderate correlation (r = 0.67) between the abundance of Geobacter species in the UASB granules and granule conductivity, suggesting that Geobacter contributed to granule conductivity. These results, coupled...

  15. Effect of increase in salinity on ANAMMOX-UASB reactor stability.

    Science.gov (United States)

    Xing, Hui; Wang, Han; Fang, Fang; Li, Kai; Liu, Lianwei; Chen, Youpeng; Guo, Jinsong

    2017-05-01

    The effect of salinity on the anaerobic ammonium oxidation (ANAMMOX) process in a UASB reactor was investigated by analysing ammonium, nitrite, nitrate and TN concentrations, and TN removal efficiency. Extracellular polymeric substances (EPSs) and specific ANAMMOX activity (SAA) were evaluated. Results showed the effluent deteriorated after salinity was increased from 8 to 13 g/L and from 13 to 18 g/L, and TN removal efficiency decreased from 80% to 30% and 80% to 50%, respectively. However, ANAMMOX performance recovered and TN removal efficiency increased to 80% after 40 days when the influent concentrations of [Formula: see text] and [Formula: see text] were 200 mg/L and salinity levels were at 13 and 18 g/L, respectively. The amount of EPSs decreased from 58.9 to 37.1 mg/g volatile suspended solids (VSS) when the reactor was shocked by salinity of 13 g/L, and then increased to 57.2 mg/g VSS when the reactor recovered and ran stably at 13 g/L. The amount of EPSs decreased from 57.2 to 49.1 mg/g VSS when the reactor was shocked by salinity of 18 g/L, and then increased to 60.7 mg/g VSS when the reactor recovered and ran stably at 18 g/L. The amount of EPS and the amounts of polysaccharide, protein and humus showed no evident difference when the reactor recovered from different levels of salinity shocks. Batch tests showed salinity shock load from 8 to 38 g/L inhibited the SAA. However, when the reactor recovered from salinity shocks, SAA was higher compared to that when the reactor was subjected to the same level of salinity shock.

  16. Treatment capability of an up-flow anammox column reactor using polyethylene sponge strips as biomass carrier.

    Science.gov (United States)

    Zhang, Li; Yang, Jiachun; Ma, Yongguang; Li, Zhigang; Fujii, Takao; Zhang, Wenjie; Takashi, Nishiyama; Furukawa, Kenji

    2010-07-01

    The feasibility of applying a polyethylene (PE) sponge as a biomass carrier in an anaerobic ammonium oxidation (anammox) reactor and its nitrogen removal performance were also investigated. Experiments were carried out in an up-flow column reactor with synthetic inorganic wastewater. Experimental results indicate that reactor containing PE sponge biomass carriers showed a high nitrogen removal capability and exhibited stable performance. In addition, the reactor with 8 strips PE sponge as biomass carrier exhibited greater adaptation capacity compared to that with 6 strips and could achieve a high TN removal rate within a very short period. The ratio of NO(2)-N removal and NO(3)-N production to NH(4)-N removal for the reactor was 1.26:0.21. Furthermore, to investigate the bacterial composition of the mature community, 16S rRNA sequences were amplified by PCR and analyses were conducted using DNA databases. Results showed that a new kind of anammox microorganism (Kumadai-1) was the dominant species in the reactor when using PE sponge as a biomass carrier. 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Characterization of Anammox Hydrazine Dehydrogenase, a Key N2-producing Enzyme in the Global Nitrogen Cycle.

    Science.gov (United States)

    Maalcke, Wouter J; Reimann, Joachim; de Vries, Simon; Butt, Julea N; Dietl, Andreas; Kip, Nardy; Mersdorf, Ulrike; Barends, Thomas R M; Jetten, Mike S M; Keltjens, Jan T; Kartal, Boran

    2016-08-12

    Anaerobic ammonium-oxidizing (anammox) bacteria derive their energy for growth from the oxidation of ammonium with nitrite as the electron acceptor. N2, the end product of this metabolism, is produced from the oxidation of the intermediate, hydrazine (N2H4). Previously, we identified N2-producing hydrazine dehydrogenase (KsHDH) from the anammox organism Kuenenia stuttgartiensis as the gene product of kustc0694 and determined some of its catalytic properties. In the genome of K. stuttgartiensis, kustc0694 is one of 10 paralogs related to octaheme hydroxylamine (NH2OH) oxidoreductase (HAO). Here, we characterized KsHDH as a covalently cross-linked homotrimeric octaheme protein as found for HAO and HAO-related hydroxylamine-oxidizing enzyme kustc1061 from K. stuttgartiensis Interestingly, the HDH trimers formed octamers in solution, each octamer harboring an amazing 192 c-type heme moieties. Whereas HAO and kustc1061 are capable of hydrazine oxidation as well, KsHDH was highly specific for this activity. To understand this specificity, we performed detailed amino acid sequence analyses and investigated the catalytic and spectroscopic (electronic absorbance, EPR) properties of KsHDH in comparison with the well defined HAO and kustc1061. We conclude that HDH specificity is most likely derived from structural changes around the catalytic heme 4 (P460) and of the electron-wiring circuit comprising seven His/His-ligated c-type hemes in each subunit. These nuances make HDH a globally prominent N2-producing enzyme, next to nitrous oxide (N2O) reductase from denitrifying microorganisms. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Effects of inorganic carbon on the nitrous oxide emissions and microbial diversity of an anaerobic ammonia oxidation reactor.

    Science.gov (United States)

    Zhang, Wenjie; Wang, Dunqiu; Jin, Yue

    2018-02-01

    Inorganic carbon (IC) is important for anaerobic ammonium oxidation (anammox). In this study, the effects of the IC concentration on N 2 O emissions and microbial diversity in an anammox reactor were investigated. N 2 O emissions were positively correlated with IC concentrations, and IC concentrations in the range of 55-130 mg/L were optimal, considering the nitrogen removal rate and N 2 O emissions. High IC concentrations resulted in the formation of CaCO 3 on the surface of anammox granules, which impacted the diffusion conditions of the substrate. Microbial community analysis indicated that high IC concentrations decreased the populations of specific bacteria, such as Achromobacter spanius strain YJART-7, Achromobacter xylosoxidans strain IHB B 6801, and Denitratisoma oestradiolicum clone 20b_15. D. oestradiolicum clone 20b_15 appeared to be the key contributor to N 2 O emissions. High N 2 O emissions may result from changes in organic carbon sources, which lead to denitrification by D. oestradiolicum clone 20b_15. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Microbial monitoring of ammonia removal in a UASB reactor treating pre-digested chicken manure with anaerobic granular inoculum.

    Science.gov (United States)

    Yangin-Gomec, Cigdem; Pekyavas, Goksen; Sapmaz, Tugba; Aydin, Sevcan; Ince, Bahar; Akyol, Çağrı; Ince, Orhan

    2017-10-01

    Performance and microbial community dynamics in an upflow anaerobic sludge bed (UASB) reactor coupled with anaerobic ammonium oxidizing (Anammox) treating diluted chicken manure digestate (Total ammonia nitrogen; TAN=123±10mg/L) were investigated for a 120-d operating period in the presence of anaerobic granular inoculum. Maximum TAN removal efficiency reached to above 80% with as low as 20mg/L TAN concentrations in the effluent. Moreover, total COD (tCOD) with 807±215mg/L in the influent was removed by 60-80%. High-throughput sequencing revealed that Proteobacteria, Actinobacteria, and Firmicutes were dominant phyla followed by Euryarchaeota and Bacteroidetes. The relative abundance of Planctomycetes significantly increased from 4% to 8-9% during the late days of the operation with decreased tCOD concentration, which indicated a more optimum condition to favor ammonia removal through anammox route. There was also significant association between the hzsA gene and ammonia removal in the UASB reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effects of pH and seasonal temperature variation on simultaneous partial nitrification and anammox in free-water surface wetlands.

    Science.gov (United States)

    He, Yuling; Tao, Wendong; Wang, Ziyuan; Shayya, Walid

    2012-11-15

    Design considerations to enhance simultaneous partial nitrification and anammox in constructed wetlands are largely unknown. This study examined the effects of pH and seasonal temperature variation on simultaneous partial nitrification and anammox in two free-water surface wetlands. In order to enhance partial nitrification and inhibit nitrite oxidation, furnace slag was placed on the rooting substrate to maintain different pH levels in the wetland water. The wetlands were batch operated for dairy wastewater treatment under oxygen-limited conditions at a cycle time of 7 d. Fluorescence in situ hybridization analysis found that aerobic ammonium oxidizing bacteria and anammox bacteria accounted for 42-73% of the bacterial populations in the wetlands, which was the highest relative abundance of ammonium oxidizing and anammox bacteria in constructed wetlands enhancing simultaneous partial nitrification and anammox. The two wetlands removed total inorganic nitrogen efficiently, 3.36-3.38 g/m(2)/d in the warm season with water temperatures at 18.9-24.9 °C and 1.09-1.50 g/m(2)/d in the cool season at 13.8-18.9 °C. Plant uptake contributed 2-45% to the total inorganic nitrogen removal in the growing season. A seasonal temperature variation of more than 6 °C would affect simultaneous partial nitrification and anammox significantly. Significant pH effects were identified only when the temperatures were below 18.9 °C. Anammox was the limiting stage of simultaneous partial nitrification and anammox in the wetlands. Water pH should be controlled along with influent ammonium concentration and temperature to avoid toxicity of free ammonia to anammox bacteria. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Effects of specific inhibitors on anammox and denitrification in marine sediments.

    Science.gov (United States)

    Jensen, Marlene Mark; Thamdrup, Bo; Dalsgaard, Tage

    2007-05-01

    The effects of three metabolic inhibitors (acetylene, methanol, and allylthiourea [ATU]) on the pathways of N2 production were investigated by using short anoxic incubations of marine sediment with a 15N isotope technique. Acetylene inhibited ammonium oxidation through the anammox pathway as the oxidation rate decreased exponentially with increasing acetylene concentration; the rate decay constant was 0.10+/-0.02 microM-1, and there was 95% inhibition at approximately 30 microM. Nitrous oxide reduction, the final step of denitrification, was not sensitive to acetylene concentrations below 10 microM. However, nitrous oxide reduction was inhibited by higher concentrations, and the sensitivity was approximately one-half the sensitivity of anammox (decay constant, 0.049+/-0.004 microM-1; 95% inhibition at approximately 70 microM). Methanol specifically inhibited anammox with a decay constant of 0.79+/-0.12 mM-1, and thus 3 to 4 mM methanol was required for nearly complete inhibition. This level of methanol stimulated denitrification by approximately 50%. ATU did not have marked effects on the rates of anammox and denitrification. The profile of inhibitor effects on anammox agreed with the results of studies of the process in wastewater bioreactors, which confirmed the similarity between the anammox bacteria in bioreactors and natural environments. Acetylene and methanol can be used to separate anammox and denitrification, but the effects of these compounds on nitrification limits their use in studies of these processes in systems where nitrification is an important source of nitrate. The observed differential effects of acetylene and methanol on anammox and denitrification support our current understanding of the two main pathways of N2 production in marine sediments and the use of 15N isotope methods for their quantification.

  2. Reduction of nitric oxide catalyzed by hydroxylamine oxidoreductase from an anammox bacterium.

    Science.gov (United States)

    Irisa, Tatsuya; Hira, Daisuke; Furukawa, Kenji; Fujii, Takao

    2014-12-01

    The hydroxylamine oxidoreductase (HAO) from the anammox bacterium, Candidatus Kuenenia stuttgartiensis has been reported to catalyze the oxidation of hydroxylamine (NH2OH) to nitric oxide (NO) by using bovine cytochrome c as an oxidant. In contrast, we investigated whether the HAO from anammox bacterium strain KSU-1 could catalyze the reduction of NO with reduced benzyl viologen (BVred) and the NO-releasing reagent, NOC 7. The reduction proceeded, resulting in the formation of NH2OH as a product. The oxidation rate of BVred was proportional to the concentration of BVred itself for a short period in each experiment, a situation that was termed quasi-steady state. The analyses of the states at various concentrations of HAO allowed us to determine the rate constant for the catalytic reaction, (2.85 ± 0.19) × 10(5) M(-1) s(-1), governing NO reduction by BVred and HAO, which was comparable to that reported for the HAO from the ammonium oxidizer, Nitrosomonas with reduced methyl viologen. These results suggest that the anammox HAO functions to adjust anammox by inter-conversion of NO and NH2OH depending on the redox potential of the physiological electron transfer protein in anammox bacteria. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. More than a decade of experience of landfill leachate treatment with a full-scale anammox plant combining activated sludge and activated carbon biofilm.

    Science.gov (United States)

    Azari, Mohammad; Walter, Uwe; Rekers, Volker; Gu, Ji-Dong; Denecke, Martin

    2017-05-01

    The performance of biological treatment for high ammonium removal from landfill leachate has been demonstrated. The plant was upgraded combining the activated sludge process followed by activated carbon reactor. Based on a long-term analysis of data collected from 2006 to 2015, the average total nitrogen removal efficiency of 94% was achieved for wastewaters with a C: N ratio varying from 1 to 5 kg-COD kg-TN -1 . But without the presence of activated carbon reactor, the average of biological removal efficiency for total nitrogen was only 82% ± 6% for the activated sludge stage. It means that up to 20% of the nitrogen in the influent can only be eliminated by microorganisms attached to granular activated carbon. After upgrades of the plant, the energy efficiency showed a reduction in the specific energy demand from 1.6 to less than 0.2 kWh m -3 . Methanol consumption and sludge production was reduced by 91% and 96%, respectively. Fluorescent in situ Hybridization was used for microbial diversity analysis on floccular sludge and granular biofilm samples. Anaerobic ammonium oxidation (anammox) bacteria and nitrifiers were detected and Candidatus Scalindua was found in two forms of flocs and biofilms. Due to stochastic risk assessment based on the long-term data analysis given in this research, the treatment criteria were achieved and the combination of granular activated carbon biofilm process and activated sludge can be a novel and sought approach to better enrich anammox biomass for full-scale treatment applications to reduce operating costs and promote nutrient removal stability and efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates.

    Science.gov (United States)

    Klawonn, Isabell; Bonaglia, Stefano; Brüchert, Volker; Ploug, Helle

    2015-06-01

    Colonies of N(2)-fixing cyanobacteria are key players in supplying new nitrogen to the ocean, but the biological fate of this fixed nitrogen remains poorly constrained. Here, we report on aerobic and anaerobic microbial nitrogen transformation processes that co-occur within millimetre-sized cyanobacterial aggregates (Nodularia spumigena) collected in aerated surface waters in the Baltic Sea. Microelectrode profiles showed steep oxygen gradients inside the aggregates and the potential for nitrous oxide production in the aggregates' anoxic centres. (15)N-isotope labelling experiments and nutrient analyses revealed that N(2) fixation, ammonification, nitrification, nitrate reduction to ammonium, denitrification and possibly anaerobic ammonium oxidation (anammox) can co-occur within these consortia. Thus, N. spumigena aggregates are potential sites of nitrogen gain, recycling and loss. Rates of nitrate reduction to ammonium and N(2) were limited by low internal nitrification rates and low concentrations of nitrate in the ambient water. Presumably, patterns of N-transformation processes similar to those observed in this study arise also in other phytoplankton colonies, marine snow and fecal pellets. Anoxic microniches, as a pre-condition for anaerobic nitrogen transformations, may occur within large aggregates (⩾1 mm) even when suspended in fully oxygenated waters, whereas anoxia in small aggregates (1.5 μM), O(2)-depleted water layers, for example, in the chemocline of the Baltic Sea or the oceanic mesopelagic zone, aggregates may promote N-recycling and -loss processes.

  5. Oxygen at Nanomolar Levels Reversibly Suppresses Process Rates and Gene Expression in Anammox and Denitrification in the Oxygen Minimum Zone off Northern Chile

    OpenAIRE

    Dalsgaard, Tage; Stewart, Frank J.; Thamdrup, Bo; De Brabandere, Loreto; Revsbech, Niels Peter; Ulloa, Osvaldo; Canfield, Don E.; DeLong, Edward

    2014-01-01

    A major percentage (20 to 40%) of global marine fixed-nitrogen loss occurs in oxygen minimum zones (OMZs). Concentrations of O[subscript 2] and the sensitivity of the anaerobic N[subscript 2]-producing processes of anammox and denitrification determine where this loss occurs. We studied experimentally how O[subscript 2] at nanomolar levels affects anammox and denitrification rates and the transcription of nitrogen cycle genes in the anoxic OMZ off Chile. Rates of anammox and denitrification w...

  6. Anaerobic ammonium oxidation in the old trickling filters at Daspooort wastewater treatment works

    CSIR Research Space (South Africa)

    Wilsenach, J

    2014-01-01

    Full Text Available _(sup+)-N) and nitrite-nitrogen (NO(sub2)(sup-)-N). These reactors were subsequently monitored by conducting stoichiometric analyses of chemical oxygen demand (COD), NH(sub4)(sup+)-N, NO(sub2)(sup-)-N, and nitrate-nitrogen (NO(sub3)(sup...

  7. Aeration Strategies To Mitigate Nitrous Oxide Emissions from Single-Stage Nitritation/Anammox Reactors

    DEFF Research Database (Denmark)

    Domingo Felez, Carlos; Mutlu, A. Gizem; Jensen, Marlene Mark

    2014-01-01

    Autotrophic nitrogen removal is regarded as a resource efficient process to manage nitrogen-rich residual streams. However, nitrous oxide emissions of these processes are poorly documented and strategies to mitigate emissions unknown. In this study, two sequencing batch reactors performing single...... was noted when the duration of aeration was increased while decreasing air flow rate (10.9 +/- 3.2% Delta N2O/Delta TN). The extant ammonium oxidation activity (mgNH(4)(+)-N/gVSS.min) positively correlated with the specific N2O production rate (mgN(2)O-N/gVSS.min) of the systems. Operating under conditions......-stage nitritation/anammox were operated under different aeration strategies, gradually adjusted over six months. At constant but limiting oxygen loading, synthetic reject water was fed (0.75g-N/L.d) and high nitrogen removal efficiencies (83 +/- 5 and 88 +/- 2%) obtained. Dynamics of liquid phase nitrous (N2O...

  8. Long-term preservation of anammox bacteria.

    Science.gov (United States)

    Rothrock, Michael J; Vanotti, Matias B; Szögi, Ariel A; Gonzalez, Maria Cruz Garcia; Fujii, Takao

    2011-10-01

    Deposit of useful microorganisms in culture collections requires long-term preservation and successful reactivation techniques. The goal of this study was to develop a simple preservation protocol for the long-term storage and reactivation of the anammox biomass. To achieve this, anammox biomass was frozen or lyophilized at two different freezing temperatures (-60°C and in liquid nitrogen (-200°C)) in skim milk media (with and without glycerol), and the reactivation of anammox activity was monitored after a 4-month storage period. Of the different preservation treatments tested, only anammox biomass preserved via freezing in liquid nitrogen followed by lyophilization in skim milk media without glycerol achieved stoichiometric ratios for the anammox reaction similar to the biomass in both the parent bioreactor and in the freshly harvested control treatment. A freezing temperature of -60°C alone, or in conjunction with lyophilization, resulted in the partial recovery of the anammox bacteria, with an equal mixture of anammox and nitrifying bacteria in the reactivated biomass. To our knowledge, this is the first report of the successful reactivation of anammox biomass preserved via sub-zero freezing and/or lyophilization. The simple preservation protocol developed from this study could be beneficial to accelerate the integration of anammox-based processes into current treatment systems through a highly efficient starting anammox biomass.

  9. Simultaneous Fe(III) reduction and ammonia oxidation process in Anammox sludge.

    Science.gov (United States)

    Li, Xiang; Huang, Yong; Liu, Heng-Wei; Wu, Chuan; Bi, Wei; Yuan, Yi; Liu, Xin

    2018-02-01

    In recent years, there have been a number of reports on the phenomenon in which ferric iron (Fe(III)) is reduced to ferrous iron [Fe(II)] in anaerobic environments, accompanied by simultaneous oxidation of ammonia to NO 2 - , NO 3 - , or N 2. However, studies on the relevant reaction characteristics and mechanisms are rare. Recently, in research on the effect of Fe(III) on the activity of Anammox sludge, excess ammonia oxidization has also been found. Hence, in the present study, Fe(III) was used to serve as the electron acceptor instead of NO 2 - , and the feasibility and characteristics of Anammox coupled to Fe(III) reduction (termed Feammox) were investigated. After 160days of cultivation, the conversion rate of ammonia in the reactor was above 80%, accompanied by the production of a large amount of NO 3 - and a small amount of NO 2 - . The total nitrogen removal rate was up to 71.8%. Furthermore, quantities of Fe(II) were detected in the sludge fluorescence in situ hybridization (FISH) and denaturated gradient gel electrophoresis (DGGE) analyses further revealed that in the sludge, some Anammox bacteria were retained, and some microbes were enriched during the acclimatization process. We thus deduced that in Anammox sludge, Fe(III) reduction takes place together with ammonia oxidation to NO 2 - and NO 3 - along with the Anammox process. Copyright © 2017. Published by Elsevier B.V.

  10. Influencing factors analysis of anammox bacteria cultured by mixing denitrifying-anammox

    OpenAIRE

    Sihui WANG; Yuanyuan SONG; Yunman LIU; Yankai GUO; Jing LIAN; Jianbo GUO

    2017-01-01

    In order to get the optimal growth conditions of anammox bacteria, the mature-cultured anammox granule sludge is used to investigate the influencing factors. The effects of temperature, pH value, COD and influent substrate (NO-2-N and NH+4-N) on anammox bacteria activity are investigated. The results demonstrate that the optimal temperature is 40 ℃ and the optimal pH value is between 7.0~8.0 for anammox bacteria. The anammox bacteria activity is not inhibited severely when COD concentration i...

  11. Effect of organic matter strength on anammox for modified greenhouse turtle breeding wastewater treatment.

    Science.gov (United States)

    Chen, Chongjun; Huang, Xiaoxiao; Lei, Chenxiao; Zhang, Tian C; Wu, Weixiang

    2013-11-01

    Anaerobic ammonium-N removal from modified greenhouse turtle breeding wastewater with different chemical oxygen demand (COD) strengths (194.0-577.8 mg L(-1)) at relatively fixed C/N ratios (≈ 2) was investigated using a lab-scale up-flow anaerobic sludge blanket (UASB) anammox reactor. During the entire experiment, the total nitrogen (TN) removal efficiency was about 85% or higher, while the average COD removal efficiency was around 56.5 ± 7.9%. Based on the nitrogen and carbon balance, the nitrogen removal contribution was 79.6 ± 4.2% for anammox, 12.7 ± 3.0% for denitrification+denitritation and 7.7 ± 4.9% for other mechanisms. Denaturing gradient gel electrophoresis (DGGE) analyses revealed that Planctomycete, Proteobacteria and Chloroflexi bacteria were coexisted in the reactor. Anammox was always dominant when the reactor was fed with different COD concentrations, which indicated the stability of the anammox process with the coexistence of the denitrification process in treating greenhouse turtle breeding wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Effect of freshwater mussels on the vertical distribution of anaerobic ammonia oxidizers and other nitrogen-transforming microorganisms in upper Mississippi river sediment

    Directory of Open Access Journals (Sweden)

    Ellen M. Black

    2017-07-01

    Full Text Available Targeted qPCR and non-targeted amplicon sequencing of 16S rRNA genes within sediment layers identified the anaerobic ammonium oxidation (anammox niche and characterized microbial community changes attributable to freshwater mussels. Anammox bacteria were normally distributed (Shapiro-Wilk normality test, W-statistic =0.954, p = 0.773 between 1 and 15 cm depth and were increased by a factor of 2.2 (p < 0.001 at 3 cm below the water-sediment interface when mussels were present. Amplicon sequencing of sediment at depths relevant to mussel burrowing (3 and 5 cm showed that mussel presence reduced observed species richness (p = 0.005, Chao1 diversity (p = 0.005, and Shannon diversity (p < 0.001, with more pronounced decreases at 5 cm depth. A non-metric, multidimensional scaling model showed that intersample microbial species diversity varied as a function of mussel presence, indicating that sediment below mussels harbored distinct microbial communities. Mussel presence corresponded with a 4-fold decrease in a majority of operational taxonomic units (OTUs classified in the phyla Gemmatimonadetes, Actinobacteria, Acidobacteria, Plantomycetes, Chloroflexi, Firmicutes, Crenarcheota, and Verrucomicrobia. 38 OTUs in the phylum Nitrospirae were differentially abundant (p < 0.001 with mussels, resulting in an overall increase from 25% to 35%. Nitrogen (N-cycle OTUs significantly impacted by mussels belonged to anammmox genus Candidatus Brocadia, ammonium oxidizing bacteria family Nitrosomonadaceae, ammonium oxidizing archaea genus Candidatus Nitrososphaera, nitrite oxidizing bacteria in genus Nitrospira, and nitrate- and nitrite-dependent anaerobic methane oxidizing organisms in the archaeal family “ANME-2d” and bacterial phylum “NC10”, respectively. Nitrosomonadaceae (0.9-fold (p < 0.001 increased with mussels, while NC10 (2.1-fold (p < 0.001, ANME-2d (1.8-fold (p < 0.001, and Candidatus Nitrososphaera (1.5-fold (p < 0

  13. The transformation from anammox granules to deammonification granules in micro-aerobic system by facilitating indigenous ammonia oxidizing bacteria.

    Science.gov (United States)

    Wang, Xiaolong; Gao, Dawen

    2018-02-01

    Granular deammonification process is a good way to retain aerobic and anaerobic ammonia oxidizing bacteria (AOB and anammox bacteria) and exhaust flocculent nitrite oxidizing bacteria (NOB). In this study, to facilitate indigenous AOB growth on anammox granules, by stepwise reducing influent nitrite, anammox granules were effectively transformed into deammonification granules in a micro-aerobic EGSB in 100 days. Total nitrogen removal efficiency of 90% and nitrogen removal rate of 2.3 g N/L/d were reached at stable deammonification stage. High influent FA and limited oxygen supply contributed suppression for Nitrospira-like NOB. In transition stages, Proteobacteria and Chloroflexi were always dominated. Anammox abundance decreased, while AOB abundance grew fast. Anammox bacteria and AOB were dominated by Brocadia fulgida and Nitrosomonas europaea, respectively. Denitrification activity and bacteria existed although without influent organic. The final AOB abundance was about 4.55-13.8 times more than anammox bacteria abundance, with almost equal potential activities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. [Hydroxylamine conversion by anammox enrichment].

    Science.gov (United States)

    Hu, Anhui; Zheng, Ping; Lu, Huifeng; Ding, Shuang; Wang, Caihua

    2010-04-01

    Hydroxylamine is an important intermediate product of anammox. This study was focused on the characteristics of hydroxylamine and nitrite conversions by anammox enrichment. The changes of nitrogenous substrates and related products with time were measured using batch tests with anammox enrichment as inoculum. Since hydroxylamine didn't react with nitrite in uninoculated control culture, these two compounds were chemically stable. Both of them decreased with time in anammox enrichment inoculated cultures, in which ammonia as intermediate product would be produced and converted with the maximum concentration being 0.338 mg/L. The total nitrogen concentration decreased from 4.694 mmol/L to 0.812 mmol/L with conversion rate 82.7% in the end. When hydroxylamine and nitrite concentrations were about 2.5 mmol/L respectively, the maximum specific sludge conversion rates of hydroxylamine was 0.535 mmol/(gVSS.h), which was 1.81 times bigger than that of ammonia in ammonia reaction system; the maximum specific sludge rate of total nitrogen was slightly higher than that in ammonia reaction system. When hydroxylamine concentration increased to 5.0 mmol/L, the hydroxylamine and nitrite conversion rates promoted by 26.7% and 120.7% respectively; and the maximum ammonia accumulated was 1.810 mmol/L. When nitrite concentration increased to 5.0 mmol/L, the hydroxylamine and nitrite conversion rates promoted by 6.9% and 9.0% respectively; and the maximum ammonia accumulated was 0.795 mmol/L. Anammox enrichment was capable of converting hydroxylamine and nitrite simultaneously and had the higher conversion rate of hydroxylamine than ammonia conversion rate. Hydroxylamine and nitrite conversion rates were less affected by increase in nitrite concentration, but more significantly influenced by increase in hydroxylamine. The maximum ammonia concentration accumulated would rise as the result of increasing both hydroxylamine and nitrite. The result of experiment was consistent with pathway

  15. Production and mitigation of N2O in sequentially membrane-aerated redox-stratified nitritation/anammox biofilms

    DEFF Research Database (Denmark)

    Smets, Barth F.; Pellicer i Nàcher, Carles; Thamdrup, Bo

    batch incubations with biofilm samples revealed a significant N2O assimilatory activity. Anoxic incubations with N-15 enriched nitrite, nitrate, or ammonium, in presence or absence of acetate revealed the following: a very high conversion of original nitrite or nitrate N to N2O over N2, no stimulatory......Combining partial nitritation with anaerobic ammonium oxidation maybe a cost- and energy-efficient alternative to remove reduced nitrogen from nitrogen rich waste streams. However, increased N2O emissions (upto several % of the incoming N flux) have been observed for reactors performing partial...... nitritation, which is likely due to the stimulatory effect of combined elevated nitrite and ammonium concentrations and reduced oxygen concentrations on nitrous oxide formation by ammonium oxidizing bacteria. Because increased N2O emission may be inherent to partial nitrification systems, we have explored how...

  16. Startup and operating characteristics of an external air-lift reflux partial nitritation-ANAMMOX integrative reactor.

    Science.gov (United States)

    Li, Xiang; Huang, Yong; Yuan, Yi; Bi, Zhen; Liu, Xin

    2017-08-01

    The differences in the physiological characteristics between AOB and ANAMMOX bacteria lead to suboptimal performance when used in a single reactor. In this study, aerobic and anaerobic zones with different survival environments were constructed in a single reactor to realize partitioned culture of AOB and ANAMMOX bacteria. An external air-lift reflux system was formed which used the exhaust from the aeration zone as power to return the effluent to the aeration zone. The reflux system effectively alleviated the large pH fluctuations and promoted NO 2 - -N to rapidly use by ANAMMOX bacteria, effectively inhibiting the activity of NOB. After 95d of running, the nitrogen removal rate increased from the initial 0.21kg/(m 3 ·d) to 3.1kg/(m 3 ·d). FISH analyses further demonstrated that AOB and ANAMMOX bacteria acquired efficient enrichment in the corresponding zone. Thus, this type of integrative reactor may create the environments needed for the partial nitritation-ANAMMOX processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Biological nitrogen removal from sewage via anammox: Recent advances.

    Science.gov (United States)

    Ma, Bin; Wang, Shanyun; Cao, Shenbin; Miao, Yuanyuan; Jia, Fangxu; Du, Rui; Peng, Yongzhen

    2016-01-01

    Biological nitrogen removal from sewage via anammox is a promising and feasible technology to make sewage treatment energy-neutral or energy-positive. Good retention of anammox bacteria is the premise of achieving sewage treatment via anammox. Therefore the anammox metabolism and its factors were critically reviewed so as to form biofilm/granules for retaining anammox bacteria. A stable supply of nitrite for anammox bacteria is a real bottleneck for applying anammox in sewage treatment. Nitritation and partial-denitrification are two promising methods of offering nitrite. As such, the strategies for achieving nitritation in sewage treatment were summarized by reviewing the factors affecting nitrite oxidation bacteria growth. Meanwhile, the methods of achieving partial-denitrification have been developed through understanding the microorganisms related with nitrite accumulation and their factors. Furthermore, two cases of applying anammox in the mainstream sewage treatment plants were documented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. 454-Pyrosequencing analysis of bacterial communities from autotrophic nitrogen removal bioreactors utilizing universal primers : Effect of annealing temperature

    NARCIS (Netherlands)

    Gonzalez-Martinez, A.; Rodriguez-Sanchez, A.; Rodelas, B.; Abbas, B.A.; Martinez-Toledo, M.V.; Van Loosdrecht, M.C.M.; Osorio, F.; Gonzalez-Lopez, J.

    2015-01-01

    Identification of anaerobic ammonium oxidizing (anammox) bacteria by molecular tools aimed at the evaluation of bacterial diversity in autotrophic nitrogen removal systems is limited by the difficulty to design universal primers for the Bacteria domain able to amplify the anammox 16S

  19. Oxygen sensitivity of anammox and coupled N-cycle processes in oxygen minimum zones.

    Directory of Open Access Journals (Sweden)

    Tim Kalvelage

    Full Text Available Nutrient measurements indicate that 30-50% of the total nitrogen (N loss in the ocean occurs in oxygen minimum zones (OMZs. This pelagic N-removal takes place within only ~0.1% of the ocean volume, hence moderate variations in the extent of OMZs due to global warming may have a large impact on the global N-cycle. We examined the effect of oxygen (O(2 on anammox, NH(3 oxidation and NO(3(- reduction in (15N-labeling experiments with varying O(2 concentrations (0-25 µmol L(-1 in the Namibian and Peruvian OMZs. Our results show that O(2 is a major controlling factor for anammox activity in OMZ waters. Based on our O(2 assays we estimate the upper limit for anammox to be ~20 µmol L(-1. In contrast, NH(3 oxidation to NO(2(- and NO(3(- reduction to NO(2(- as the main NH(4(+ and NO(2(- sources for anammox were only moderately affected by changing O(2 concentrations. Intriguingly, aerobic NH(3 oxidation was active at non-detectable concentrations of O(2, while anaerobic NO(3(- reduction was fully active up to at least 25 µmol L(-1 O(2. Hence, aerobic and anaerobic N-cycle pathways in OMZs can co-occur over a larger range of O(2 concentrations than previously assumed. The zone where N-loss can occur is primarily controlled by the O(2-sensitivity of anammox itself, and not by any effects of O(2 on the tightly coupled pathways of aerobic NH(3 oxidation and NO(3(- reduction. With anammox bacteria in the marine environment being active at O(2 levels ~20 times higher than those known to inhibit their cultured counterparts, the oceanic volume potentially acting as a N-sink increases tenfold. The predicted expansion of OMZs may enlarge this volume even further. Our study provides the first robust estimates of O(2 sensitivities for processes directly and indirectly connected with N-loss. These are essential to assess the effects of ocean de-oxygenation on oceanic N-cycling.

  20. Establishment of anammox process in sludge samples collected from swine wastewater treatment system Estabelecimento do processo anammox a partir de lodo de sistema de tratamento de efluente da suinocultura

    Directory of Open Access Journals (Sweden)

    Caroline G Casagrande

    2011-12-01

    Full Text Available The high load of nitrogen present in swine wastewater is one of the biggest management challenges of the activity. The Anammox process emerges as a good alternative for biological removal of nitrogen. This study aims to acclimate sludge collected from swine effluent treatment systems to establish the Anammox process. Two sludge samples were collected at Embrapa Swine and Poultry, Concordia - SC, Brazil, one from the bottom of an inactive anaerobic pond (inoculum A and another from an aeration tank (inoculum B. Both were acclimated until the depletion of NO3-N, being subsequently inoculated in two reactors (Reactor A - Inoculum A and Reactor B - Inoculum B. The Reactor A showed activity after 110 days of operation, while the Reactor B needed 170 days. The difference in the start-up time could be explained by the different environmental conditions to which each sludge was submitted. FISH and PCR analyses confirmed the presence of microorganisms with Anammox activity, demonstrating that the sludge of swine wastewater treatment systems is a good source of inoculum for the development of the Anammox process.A elevada carga de nitrogênio presente em efluentes da suinocultura é um dos maiores desafios de manejo da atividade. O processo Anammox surge como boa alternativa para a remoção biológica desse nutriente. Este trabalho teve como objetivo aclimatar diferentes amostras de lodos de sistemas de tratamento de efluentes da suinocultura com vistas ao estabelecimento do processo Anammox. Dois inóculos foram coletados na Embrapa Suínos e Aves, Concórdia - SC, um dos quais no fundo de uma lagoa anaeróbia inativa (Inóculo A e o outro, em um tanque de aeração (Inóculo B. Ambos foram aclimatados até cessar o consumo de N-NO3- e, posteriormente, inoculados em dois reatores (Reator A - Inóculo A e Reator B - Inóculo B. O Reator A apresentou atividade, após aproximadamente 110 dias de operação, enquanto o Reator B precisou de aproximadamente

  1. Anammox revisited: thermodynamic considerations in early studies of the microbial nitrogen cycle.

    Science.gov (United States)

    Oren, Aharon

    2015-08-01

    This paper explores the early literature on the thermodynamics of processes in the microbial nitrogen cycle, evaluating parameters of transfer of energy which depends on the initial and final states of the system, the mechanism of the reactions involved and the rates of these reactions. Processes discussed include the anaerobic oxidation of ammonium (the anammox reaction), the use of inorganic nitrogen compounds as electron donors for anoxygenic photosynthesis, and the mechanism and bioenergetics of biological nitrogen fixation. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Endogenous influences on anammox and sulfocompound-oxidizing autotrophic denitrification coupling system (A/SAD) and dynamic operating strategy.

    Science.gov (United States)

    Sun, Xinbo; Du, Lingfeng; Hou, Yuqian; Cheng, Shaoju; Zhang, Xuxiang; Liu, Bo

    2018-02-21

    The anaerobic ammonia oxidation (anammox) and sulfocompound-oxidizing autotrophic denitrification coupling system (A/SAD) was initiated in an expanded granular sludge bed (EGSB) reactor for nitrogen removal from high-strength wastewater. Owing to cooperation between anammox and partial sulfocompound-oxidation autotrophic denitrification coupling system (PSAD), the highest nitrogen removal efficiency (NRE) of 98.1% ± 0.4% achieved at the optimal influent conditions of conversion efficiency of ammonium (CEA) of 55% and S 2 O 3 2- -S/NO 3 - -N (S/N) of 1.4 mol mol -1 . The activity of the short-cut sulfocompound-oxidizing autotrophic denitrification (SSAD) was also regulated to cope with dynamic CEA in the influent by changing the S/N, which was demonstrated to be effective in alleviating nitrite accumulation when the CEA was between 57% and 61%. Both the anammox and SAD bacteria enriched in the reactor after long-term incubation. Candidatus Brocadia and Candidatus Jettenia might be potentially contributing the most to anammox, while the Thiobacillus was the dominant taxa related to SAD. Copyright © 2018. Published by Elsevier Ltd.

  3. Rapid startup and high rate nitrogen removal from anaerobic sludge digester liquor using a SNAP process.

    Science.gov (United States)

    Qiao, Sen; Nishiyama, Takashi; Fujii, Tatsuo; Bhatti, Zafar; Furukawa, Kenji

    2012-02-01

    In this study, a single-stage autotrophic nitrogen removal reactor, packed with a novel acrylic fiber biomass carrier material (Biofix), was applied for nitrogen removal from sludge digester liquor. For rapid start-up, conventional activated sludge was added to the reactor soon after the attachment of anammox biomass on the Biofix carriers, which allowed conventional activated sludge to form a protective layer of biofilm around the anammox biomass. The Nitrogen removal efficiency reached 75% within 1 week at a nitrogen loading rate of 0.46 kg-N/m(3)/day for synthetic wastewater treatment. By the end of the synthetic wastewater treatment period, the maximum nitrogen removal rate had increased to 0.92 kg-N/m(3)/day at a nitrogen loading rate of 1.0 kg-N/m(3)/day. High nitrogen removal rate was also achieved during the actual raw digester liquor treatment with the highest nitrogen removal rate being 0.83 kg-N/m(3)/day at a nitrogen loading rate of 0.93 kg-N/m(3)/day. The thick biofilm on Biofix carriers allowed anammox bacteria to survive under high DO concentration of 5-6 mg/l resulting in stable and high nitrogen removal performance. FISH and CLSM analysis demonstrated that anammox bacteria coexisted and surrounded by ammonium oxidizing bacteria.

  4. Evaluating primers for profiling anaerobic ammonia oxidizing bacteria within freshwater environments.

    Directory of Open Access Journals (Sweden)

    Puntipar Sonthiphand

    Full Text Available Anaerobic ammonia oxidizing (anammox bacteria play an important role in transforming ammonium to nitrogen gas and contribute to fixed nitrogen losses in freshwater environments. Understanding the diversity and abundance of anammox bacteria requires reliable molecular tools, and these are not yet well established for these important Planctomycetes. To help validate PCR primers for the detection of anammox bacteria within freshwater ecosystems, we analyzed representative positive controls and selected samples from Grand River and groundwater sites, both from Ontario, Canada. The objectives of this study were to identify a suitable anammox denaturing gradient gel electrophoresis (DGGE fingerprint method by using GC-clamp modifications to existing primers, and to verify the specificity of anammox-specific primers used for DGGE, cloning and qPCR methods. Six primer combinations were tested from four published primer sets (i.e. A438f/A684r, Amx368f/Amx820r, An7f/An1388r, and Pla46/1392r for both direct and nested PCR amplifications. All PCR products were run subsequently on DGGE gels to compare the resulting patterns. Two anammox-specific primer combinations were also used to generate clone libraries and quantify anammox bacterial 16S rRNA genes with qPCR. The primer set A438f/A684r was highly specific to anammox bacteria, provided reliable DGGE fingerprints and generated a high proportion of anammox-related clones. A second primer set (Amx368f/Amx820r was anammox specific, based on clone library analysis, but PCR products from different candidate species of anammox bacteria resolved poorly using DGGE analysis. Both DGGE and cloning results revealed that Ca. Brocadia and an uncharacterized anammox bacterial cluster represented the majority of anammox bacteria found in Grand River sediment and groundwater samples, respectively. Together, our results demonstrate that although Amx368f/Amx820r was useful for anammox-specific qPCR and clone library

  5. Novel anammox bacteria and nitrogen loss from Lake Superior

    DEFF Research Database (Denmark)

    Crowe, Sean A.; Treusch, Alexander H.; Forth, Michael

    2017-01-01

    and diversity of anammox bacteria in the world's largest freshwater lake - Lake Superior. We found that anammox performed by previously undiscovered bacteria is an important contributor to sediment N2 production. We observed striking differences in the anammox bacterial populations found at different locations...... within Lake Superior and those described from other locations. Our data thus reveal that novel anammox bacteria underpin N-loss from Lake Superior, and if more broadly distributed across inland waters would play an important role in continental N-cycling and mitigation of fixed nitrogen transfer from...

  6. Oxygen sensitivity of anammox and coupled N-cycle processes in oxygen minimum zones

    DEFF Research Database (Denmark)

    Kalvelage, Tim; Jensen, Marlene Mark; Contreras, Sergio

    2011-01-01

    Nutrient measurements indicate that 30–50% of the total nitrogen (N) loss in the ocean occurs in oxygen minimum zones (OMZs). This pelagic N-removal takes place within only ,0.1% of the ocean volume, hence moderate variations in the extent of OMZs due to global warming may have a large impact...... at non-detectable concentrations of O2, while anaerobic NO3 2 reduction was fully active up to at least 25 mmol L21 O2. Hence, aerobic and anaerobic N-cycle pathways in OMZs can co-occur over a larger range of O2 concentrations than previously assumed. The zone where N-loss can occur is primarily...... controlled by the O2-sensitivity of anammox itself, and not by any effects of O2 on the tightly coupled pathways of aerobic NH3 oxidation and NO3 2 reduction. With anammox bacteria in the marine environment being active at O2 levels ,20 times higher than those known to inhibit their cultured counterparts...

  7. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system.

    Science.gov (United States)

    Speth, Daan R; In 't Zandt, Michiel H; Guerrero-Cruz, Simon; Dutilh, Bas E; Jetten, Mike S M

    2016-03-31

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is used to seed reactors in wastewater treatment plants around the world; however, the role of most of its microbial community in ammonium removal remains unknown. Our analysis yielded 23 near-complete draft genomes that together represent the majority of the microbial community. We assign these genomes to distinct anaerobic and aerobic microbial communities. In the aerobic community, nitrifying organisms and heterotrophs predominate. In the anaerobic community, widespread potential for partial denitrification suggests a nitrite loop increases treatment efficiency. Of our genomes, 19 have no previously cultivated or sequenced close relatives and six belong to bacterial phyla without any cultivated members, including the most complete Omnitrophica (formerly OP3) genome to date.

  8. Bacterial community evolutions driven by organic matter and powder activated carbon in simultaneous anammox and denitrification (SAD) process.

    Science.gov (United States)

    Ge, Cheng-Hao; Sun, Na; Kang, Qi; Ren, Long-Fei; Ahmad, Hafiz Adeel; Ni, Shou-Qing; Wang, Zhibin

    2018-03-01

    A distinct shift of bacterial community driven by organic matter (OM) and powder activated carbon (PAC) was discovered in the simultaneous anammox and denitrification (SAD) process which was operated in an anti-fouling submerged anaerobic membrane bio-reactor. Based on anammox performance, optimal OM dose (50 mg/L) was advised to start up SAD process successfully. The results of qPCR and high throughput sequencing analysis indicated that OM played a key role in microbial community evolutions, impelling denitrifiers to challenge anammox's dominance. The addition of PAC not only mitigated the membrane fouling, but also stimulated the enrichment of denitrifiers, accounting for the predominant phylum changing from Planctomycetes to Proteobacteria in SAD process. Functional genes forecasts based on KEGG database and COG database showed that the expressions of full denitrification functional genes were highly promoted in R C , which demonstrated the enhanced full denitrification pathway driven by OM and PAC under low COD/N value (0.11). Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Stoichiometric evaluation of partial nitritation, anammox and denitrification processes in a sequencing batch reactor and interpretation of online monitoring parameters.

    Science.gov (United States)

    Langone, Michela; Ferrentino, Roberta; Cadonna, Maria; Andreottola, Gianni

    2016-12-01

    A laboratory-scale sequencing batch reactor (SBR) performing partial nitritation - anammox and denitrification was used to treat anaerobic digester effluents. The SBR cycle consisted of a short mixing filling phase followed by oxic and anoxic reaction phases. Working at 25 °C, an ammonium conversion efficiency of 96.5%, a total nitrogen removal efficiency of 88.6%, and an organic carbon removal efficiency of 63.5% were obtained at a nitrogen loading rate of 0.15 kg N m -3 d -1 , and a biodegradable organic carbon to nitrogen ratio of 0.37. The potential contribution of each biological process was evaluated by using a stoichiometric model. The nitritation contribution decreased as the temperature decreased, while the contribution from anammox depended on the wastewater type and soluble carbon to nitrogen ratio. Denitrification improved the total nitrogen removal efficiency, and it was influenced by the biodegradable organic carbon to nitrogen ratio. The characteristic patterns of conductivity, oxidation-reduction potential (ORP) and pH in the SBR cycle were well related to biological processes. Conductivity profiles were found to be directly related to the decreasing profiles of ammonium. Positive ORP values at the end of the anoxic phases were detected for total nitrogen removal efficiency of lower than 85%, and the occurrence of bending points on the ORP curves during the anoxic phases was associated with nitrite depletion by the anammox process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Glocal assessment of integrated wastewater treatment and recovery concepts using partial nitritation/Anammox and microalgae for environmental impacts.

    Science.gov (United States)

    Khiewwijit, Rungnapha; Rijnaarts, Huub; Temmink, Hardy; Keesman, Karel J

    2018-07-01

    This study explored the feasibility and estimated the environmental impacts of two novel wastewater treatment configurations. Both include combined bioflocculation and anaerobic digestion but apply different nutrient removal technologies, i.e. partial nitritation/Anammox or microalgae treatment. The feasibility of such configurations was investigated for 16 locations worldwide with respect to environmental impacts, such as net energy yield, nutrient recovery and effluent quality, CO 2 emission, and area requirements. The results quantitatively support the applicability of partial nitritation/Anammox in tropical regions and some locations in temperate regions, whereas microalgae treatment is only applicable the whole year round in tropical regions that are close to the equator line. Microalgae treatment has an advantage over the configuration with partial nitritation/Anammox with respect to aeration energy and nutrient recovery, but not with area requirements. Differential sensitivity analysis points out the dominant influence of microalgal biomass yield and wastewater nutrient concentrations on area requirements and effluent quality. This study provides initial selection criteria for worldwide feasibility and corresponding environmental impacts of these novel municipal wastewater treatment plant configurations. Copyright © 2018. Published by Elsevier B.V.

  11. Ammonium Oxidation Under Iron Reducing Conditions: Environmental Factors Characterization and Process Optimization

    Science.gov (United States)

    Huang, Shan; Ruiz, Melany; Jaffe, Peter

    2015-04-01

    Ammonium (NH4+) oxidation coupled to iron (Fe) reduction in the absence of oxygen and nitrate/nitrite (NO3-/NO2-) has been reported by several investigators and is referred to as Feammox. Feammox is a biological reaction, where Fe(III) is the electron acceptor, which is reduced to Fe(II), and NH4+ is the electron donor, which is oxidized to NO2-. An Acidimicrobiaceae bacterium named A6, a previously unreported species in the Acidimicrobiaceae family, has been identified as being responsible for the Feammox process(1, 2) Feammox process was noted in riparian wetland soils in New Jersey(1,3), in tropical rainforest soils in Puerto Rico (4) and in paddy soils in China (5). In addition to these published locations, Feammox process was also found in samples collected from a series of local wetland-, upland-, as well as storm-water detention pond-sediments in New Jersey, river sediments from South Carolina, and forested soils near an acid mine drainage (Dabaoshan, Guangdong province) in China. Using primers acm342f - 439r (2), Acidimicrobiaceae bacterium A6 was detected in samples where Feammox was observed, after strictly anaerobic incubations. According to a canonical correspondence analysis with environmental characteristics and soil microbial communities, the species-environment relationship indicated that pH and Fe oxides content were the primary factors controlling Feammox process. Anaerobic incubations of Feammox enrichment cultures adjusted to different pH, revealed that the optimal pH for Feammox is 4 ~ 5, and the reaction does not proceed when pH > 7. No correlation was found between the distributions of Feammox bacteria and other NH4+ oxidation bacteria. Pure Acidimicrobiaceae bacterium A6 strain was isolated in an autotrophic medium, from an active Feammox membrane reactor (A6 was enriched to 65.8% of the total bacteria). A 13C labeled CO2 amendment was conducted, and the 13C in cells of A6 increased from 1.80% to 10.3% after 14 days incubation. In a separate

  12. Anammox biofilm in activated sludge swine wastewater treatment plants.

    Science.gov (United States)

    Suto, Ryu; Ishimoto, Chikako; Chikyu, Mikio; Aihara, Yoshito; Matsumoto, Toshimi; Uenishi, Hirohide; Yasuda, Tomoko; Fukumoto, Yasuyuki; Waki, Miyoko

    2017-01-01

    We investigated anammox with a focus on biofilm in 10 wastewater treatment plants (WWTPs) that use activated sludge treatment of swine wastewater. In three plants, we found red biofilms in aeration tanks or final sedimentation tanks. The biofilm had higher anammox 16S rRNA gene copy numbers (up to 1.35 × 10 12 copies/g-VSS) and higher anammox activity (up to 295 μmoL/g-ignition loss/h) than suspended solids in the same tank. Pyrosequencing analysis revealed that Planctomycetes accounted for up to 17.7% of total reads in the biofilm. Most of them were related to Candidatus Brocadia or Ca. Jettenia. The highest copy number and the highest proportion of Planctomycetes were comparable to those of enriched anammox sludge. Thus, swine WWTPs that use activated sludge treatment can fortuitously acquire anammox biofilm. Thus, concentrated anammox can be detected by focusing on red biofilm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Microbial resource management for the mitigation of nitrous oxide emissions from the Partial Nitritation- Anammox process

    DEFF Research Database (Denmark)

    Blum, Jan-Michael

    Urban wastewater treatment plants are designed to remove pathogens and pollutants from wastewater in order to provide sanitation and to protect receiving water bodies from eutrophication. Reactive nitrogen, mainly in the form of ammonium, is one of the components in wastewater that is converted...... to dinitrogen gas during treatment. The Partial Nitritation-Anammox process (PNA) uses the capacity of autotrophic aerobic and anaerobic ammonia oxidizing bacteria (AOB and AnAOB) to perform this task. The process is mainly applied to treat ammonium-rich wastewater streams with low concentrations of organic...... with the specific ammonia removal rate, while during non-aerated phases net N2O production rates were positively correlated with the nitrite concentration (NO2-). Operation of PNA at reduced specific ammonia removal rates is, therefore, a feasible strategy to mitigate N2O emissions. However, when high ammonium...

  14. Evaluating the potential for dissimilatory nitrate reduction by anammox bacteria for municipal wastewater treatment.

    Science.gov (United States)

    Castro-Barros, Celia M; Jia, Mingsheng; van Loosdrecht, Mark C M; Volcke, Eveline I P; Winkler, Mari K H

    2017-06-01

    Anammox bacteria can perform dissimilatory nitrate reduction to ammonium (DNRA) with nitrite as intermediate coupled to the oxidation of volatile fatty acids (VFA). Batch tests with enriched anammox and a co-culture of anammox and heterotrophic bacteria showed the capacity of Candidatus 'Brocadia fulgida' to perform the DNRA coupled to the anammox reaction (DNRA-anammox) at a high rate although the culture was not previously adapted to VFA. From thermodynamic calculations it could be stated that low COD/N influent ratios favour the DNRA-anammox transformation over heterotrophic conversions since more free energy is gained. A process scheme is proposed for an innovative nitrogen removal system in which the nitrate produced by nitrite oxidizing bacteria and/or anammox bacteria is converted during DNRA-anammox pathway, resulting in a sustainable nitrogen removal from municipal wastewater while circumventing the troublesome out-selection of nitrite oxidizing bacteria encountered in mainstream applications. Copyright © 2017. Published by Elsevier Ltd.

  15. Microbial Aggregate and Functional Community Distribution in a Sequencing Batch Reactor with Anammox Granules

    KAUST Repository

    Sun, Shan

    2013-01-01

    . For wastewater treatment, anammox biomass was widely developed as microbial aggregate where the conditions for enrichment of anammox community must be delicately controlled and growth of other bacteria especially NOB should be suppressed to enhance nitrogen

  16. Monitoring the nitrification and identifying the endpoint of ammonium oxidation by using a novel system of titrimetry.

    Science.gov (United States)

    Zhang, Xin; Zhang, Daijun; Lu, Peili; Bai, Cui; Xiao, Pengying

    2011-01-01

    Based on the structure of the hybrid respirometer previously developed in our group, a novel implementation for titrimetry was developed, in which two pH electrodes were installed at the inlet and outlet of the measuring cell. The software capable of digital filtering and titration time delay correction was developed in LabVIEW. The hardware and software of the titrimeter and the respirometer were integrated to construct a novel system of respirometry-titrimetry. The system was applied to monitor a batch nitrification process. The obtained profiles of oxygen uptake rate (OUR) and hydrogen ion production rate (HPR) are consistent with each other and agree with the principle of the biological nitrification reaction. According to the OUR and HPR measurements, the oxidized ammonium concentrations were estimated accurately. Furthermore, the endpoint of ammonium oxidation was identified with much higher sensitivity by the HPR measurement. The system could be potentially used for on-line monitoring of biochemical reactions occurring in any kind of bioreactors because its measuring cell is completely independent of the bioreactor.

  17. Integrating anammox with the autotrophic denitrification process via electrochemistry technology.

    Science.gov (United States)

    Qiao, Sen; Yin, Xin; Zhou, Jiti; Wei, Li'e; Zhong, Jiayou

    2018-03-01

    In this study, an autotrophic denitrification process was successfully coupled with anammox to remove the nitrate by-product via electrochemical technology. When the voltage applied to the combined electrode reactor was 1.5 V, the electrode reaction removed nitrate by using the autotrophic denitrification biomass without affecting the anammox biomass. The nitrogen removal efficiency of the combined electrode reactor reached 99.1% without detectable nitrate at an influent NO 2 - -N/NH 4 + -N ratio of 1.5. On day 223, using the model calculations based on reaction equations, 19.7% of total nitrogen was removed via the autotrophic denitrification process, while the majority of nitrogen removal (approximately 79.4%) was attributed to the anammox reaction. Small variations of the population numbers and community structure of artificial bacteria according to electron microscopy predicted that the anammox and autotrophic denitrifying biomasses could coexist in the electrode reactor. Then, 16S rRNA analysis determined that the anammox biomass group was always dominant in mixed flora during continuous cultivation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Thaumarchaeal ammonium oxidation and evidence for a nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps

    Directory of Open Access Journals (Sweden)

    Friedrich Wolfgang Gerbl

    2014-05-01

    Full Text Available Previous studies had suggested the presence of ammonium oxidizing Thaumarchaeota as well as nitrite oxidizing Bacteria in the subsurface spring called Franz Josef Quelle (FJQ, a slightly radioactive thermal mineral spring with a temperature of 43.6 - 47oC near the alpine village of Bad Gastein, Austria. The microbiological consortium of the FJQ was investigated for its utilization of nitrogen compounds and the putative presence of a subsurface nitrogen cycle. Microcosm experiments made with samples from the spring water, containing planktonic microorganisms, or from biofilms, were used in this study. Three slightly different media, enriched with vitamins and trace elements, and two incubation temperatures (30 and 40oC, respectively were employed. Under aerobic conditions, high rates of conversion of ammonium to nitrite, as well as nitrite to nitrate were measured. Under oxygen-limited conditions nitrate was converted to gaseous compounds. Stable isotope probing with 15NH4Cl or (15NH42SO4 as sole energy sources revealed incorporation of 15N into community DNA. Genomic DNA as well as RNA were extracted from all microcosms. The following genes or fragments of genes were successfully amplified, cloned and sequenced by standard PCR from DNA extracts: Ammonia monooxygenase subunit A (amoA, nitrite oxidoreductase subunits A and B (nxrA and nxrB, nitrate reductase (narG, nitrite reductase (nirS, nitric oxide reductases (cnorB and qnorB, nitrous oxide reductase (nosZ. Reverse transcription of extracted total RNA and real-time PCR suggested the expression of each of those genes. Nitrogen fixation (as probed with nifH and nifD was not detected. However, a geological origin of NH4+ in the water of the FJQ cannot be excluded, considering the silicate, granite and gneiss containing environment. The data suggested the operation of a nitrogen cycle in the subsurface environment of the FJQ.

  19. Thaumarchaeal ammonium oxidation and evidence for a nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps.

    Science.gov (United States)

    Gerbl, Friedrich W; Weidler, Gerhard W; Wanek, Wolfgang; Erhardt, Angelika; Stan-Lotter, Helga

    2014-01-01

    Previous studies had suggested the presence of ammonium oxidizing Thaumarchaeota as well as nitrite oxidizing Bacteria in the subsurface spring called Franz Josef Quelle (FJQ), a slightly radioactive thermal mineral spring with a temperature of 43.6-47°C near the alpine village of Bad Gastein, Austria. The microbiological consortium of the FJQ was investigated for its utilization of nitrogen compounds and the putative presence of a subsurface nitrogen cycle. Microcosm experiments made with samples from the spring water, containing planktonic microorganisms, or from biofilms, were used in this study. Three slightly different media, enriched with vitamins and trace elements, and two incubation temperatures (30 and 40°C, respectively) were employed. Under aerobic conditions, high rates of conversion of ammonium to nitrite, as well as nitrite to nitrate were measured. Under oxygen-limited conditions nitrate was converted to gaseous compounds. Stable isotope probing with (15)NH4Cl or ((15)NH4)2SO4as sole energy sources revealed incorporation of (15)N into community DNA. Genomic DNA as well as RNA were extracted from all microcosms. The following genes or fragments of genes were successfully amplified, cloned and sequenced by standard PCR from DNA extracts: Ammonia monooxygenase subunit A (amoA), nitrite oxidoreductase subunits A and B (nxrA and nxrB), nitrate reductase (narG), nitrite reductase (nirS), nitric oxide reductases (cnorB and qnorB), nitrous oxide reductase (nosZ). Reverse transcription of extracted total RNA and real-time PCR suggested the expression of each of those genes. Nitrogen fixation (as probed with nifH and nifD) was not detected. However, a geological origin of NH(+) 4 in the water of the FJQ cannot be excluded, considering the silicate, granite and gneiss containing environment. The data suggested the operation of a nitrogen cycle in the subsurface environment of the FJQ.

  20. Source identification of nitrous oxide emission pathways from a single-stage nitritation-anammox granular reactor

    KAUST Repository

    Ali, Muhammad; Rathnayake, Rathnayake M.L.D.; Zhang, Lei; Ishii, Satoshi; Kindaichi, Tomonori; Satoh, Hisashi; Toyoda, Sakae; Yoshida, Naohiro; Okabe, Satoshi

    2016-01-01

    Nitrous oxide (N2O) production pathway in a signal-stage nitritation-anammox sequencing batch reactor (SBR) was investigated based on a multilateral approach including real-time N2O monitoring, N2O isotopic composition analysis, and in-situ analyses of spatial distribution of N2O production rate and microbial populations in granular biomass. N2O emission rate was high in the initial phase of the operation cycle and gradually decreased with decreasing NH4+ concentration. The average emission of N2O was 0.98 ± 0.42% and 1.35 ± 0.72% of the incoming nitrogen load and removed nitrogen, respectively. The N2O isotopic composition analysis revealed that N2O was produced via NH2OH oxidation and NO2− reduction pathways equally, although there is an unknown influence from N2O reduction and/or anammox N2O production. However, the N2O isotopomer analysis could not discriminate the relative contribution of nitrifier denitrification and heterotrophic denitrification in the NO2− reduction pathway. Various in-situ techniques (e.g. microsensor measurements and FISH (fluorescent in-situ hybridization) analysis) were therefore applied to further identify N2O producers. Microsensor measurements revealed that approximately 70% of N2O was produced in the oxic surface zone, where nitrifiers were predominantly localized. Thus, NH2OH oxidation and NO2 reduction by nitrifiers (nitrifier-denitrification) could be responsible for the N2O production in the oxic zone. The rest of N2O (ca. 30%) was produced in the anammox bacteria-dominated anoxic zone, probably suggesting that NO2− reduction by coexisting putative heterotrophic denitrifiers and some other unknown pathway(s) including the possibility of anammox process account for the anaerobic N2O production. Further study is required to identify the anaerobic N2O production pathways. Our multilateral approach can be useful to quantitatively examine the relative contributions of N2O production pathways. Good understanding of the key N2O

  1. Source identification of nitrous oxide emission pathways from a single-stage nitritation-anammox granular reactor

    KAUST Repository

    Ali, Muhammad

    2016-06-16

    Nitrous oxide (N2O) production pathway in a signal-stage nitritation-anammox sequencing batch reactor (SBR) was investigated based on a multilateral approach including real-time N2O monitoring, N2O isotopic composition analysis, and in-situ analyses of spatial distribution of N2O production rate and microbial populations in granular biomass. N2O emission rate was high in the initial phase of the operation cycle and gradually decreased with decreasing NH4+ concentration. The average emission of N2O was 0.98 ± 0.42% and 1.35 ± 0.72% of the incoming nitrogen load and removed nitrogen, respectively. The N2O isotopic composition analysis revealed that N2O was produced via NH2OH oxidation and NO2− reduction pathways equally, although there is an unknown influence from N2O reduction and/or anammox N2O production. However, the N2O isotopomer analysis could not discriminate the relative contribution of nitrifier denitrification and heterotrophic denitrification in the NO2− reduction pathway. Various in-situ techniques (e.g. microsensor measurements and FISH (fluorescent in-situ hybridization) analysis) were therefore applied to further identify N2O producers. Microsensor measurements revealed that approximately 70% of N2O was produced in the oxic surface zone, where nitrifiers were predominantly localized. Thus, NH2OH oxidation and NO2 reduction by nitrifiers (nitrifier-denitrification) could be responsible for the N2O production in the oxic zone. The rest of N2O (ca. 30%) was produced in the anammox bacteria-dominated anoxic zone, probably suggesting that NO2− reduction by coexisting putative heterotrophic denitrifiers and some other unknown pathway(s) including the possibility of anammox process account for the anaerobic N2O production. Further study is required to identify the anaerobic N2O production pathways. Our multilateral approach can be useful to quantitatively examine the relative contributions of N2O production pathways. Good understanding of the key N2O

  2. Microbial Community Composition and Ultrastructure of Granules from a Full-Scale Anammox Reactor

    KAUST Repository

    Gonzalez-Gil, Graciela

    2014-12-11

    Granules in anammox reactors contain besides anammox bacteria other microbial communities whose identity and relationship with the anammox bacteria are not well understood. High calcium concentrations are often supplied to anammox reactors to obtain sufficient bacterial aggregation and biomass retention. The aim of this study was to provide the first characterization of bacterial and archaeal communities in anammox granules from a full-scale anammox reactor and to explore on the possible role of calcium in such aggregates. High magnification imaging using backscattered electrons revealed that anammox bacteria may be embedded in calcium phosphate precipitates. Pyrosequencing of 16S rRNA gene fragments showed, besides anammox bacteria (Brocadiacea, 32 %), substantial numbers of heterotrophic bacteria Ignavibacteriacea (18 %) and Anaerolinea (7 %) along with heterotrophic denitrifiers Rhodocyclacea (9 %), Comamonadacea (3 %), and Shewanellacea (3 %) in the granules. It is hypothesized that these bacteria may form a network in which heterotrophic denitrifiers cooperate to achieve a well-functioning denitrification system as they can utilize the nitrate intrinsically produced by the anammox reaction. This network may provide a niche for the proliferation of archaea. Hydrogenotrophic methananogens, which scavenge the key fermentation product H2, were the most abundant archaea detected. Cells resembling the polygon-shaped denitrifying methanotroph Candidatus Methylomirabilis oxyfera were observed by electron microscopy. It is hypothesized that the anammox process in a full-scale reactor triggers various reactions overall leading to efficient denitrification and a sink of carbon as biomass in anammox granules.

  3. Microbial community composition and ultrastructure of granules from a full-scale anammox reactor.

    Science.gov (United States)

    Gonzalez-Gil, Graciela; Sougrat, Rachid; Behzad, Ali R; Lens, Piet N L; Saikaly, Pascal E

    2015-07-01

    Granules in anammox reactors contain besides anammox bacteria other microbial communities whose identity and relationship with the anammox bacteria are not well understood. High calcium concentrations are often supplied to anammox reactors to obtain sufficient bacterial aggregation and biomass retention. The aim of this study was to provide the first characterization of bacterial and archaeal communities in anammox granules from a full-scale anammox reactor and to explore on the possible role of calcium in such aggregates. High magnification imaging using backscattered electrons revealed that anammox bacteria may be embedded in calcium phosphate precipitates. Pyrosequencing of 16S rRNA gene fragments showed, besides anammox bacteria (Brocadiacea, 32%), substantial numbers of heterotrophic bacteria Ignavibacteriacea (18%) and Anaerolinea (7%) along with heterotrophic denitrifiers Rhodocyclacea (9%), Comamonadacea (3%), and Shewanellacea (3%) in the granules. It is hypothesized that these bacteria may form a network in which heterotrophic denitrifiers cooperate to achieve a well-functioning denitrification system as they can utilize the nitrate intrinsically produced by the anammox reaction. This network may provide a niche for the proliferation of archaea. Hydrogenotrophic methananogens, which scavenge the key fermentation product H2, were the most abundant archaea detected. Cells resembling the polygon-shaped denitrifying methanotroph Candidatus Methylomirabilis oxyfera were observed by electron microscopy. It is hypothesized that the anammox process in a full-scale reactor triggers various reactions overall leading to efficient denitrification and a sink of carbon as biomass in anammox granules.

  4. Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone off northern Chile.

    Science.gov (United States)

    Dalsgaard, Tage; Stewart, Frank J; Thamdrup, Bo; De Brabandere, Loreto; Revsbech, Niels Peter; Ulloa, Osvaldo; Canfield, Don E; DeLong, Edward F

    2014-10-28

    A major percentage (20 to 40%) of global marine fixed-nitrogen loss occurs in oxygen minimum zones (OMZs). Concentrations of O2 and the sensitivity of the anaerobic N2-producing processes of anammox and denitrification determine where this loss occurs. We studied experimentally how O2 at nanomolar levels affects anammox and denitrification rates and the transcription of nitrogen cycle genes in the anoxic OMZ off Chile. Rates of anammox and denitrification were reversibly suppressed, most likely at the enzyme level. Fifty percent inhibition of N2 and N2O production by denitrification was achieved at 205 and 297 nM O2, respectively, whereas anammox was 50% inhibited at 886 nM O2. Coupled metatranscriptomic analysis revealed that transcripts encoding nitrous oxide reductase (nosZ), nitrite reductase (nirS), and nitric oxide reductase (norB) decreased in relative abundance above 200 nM O2. This O2 concentration did not suppress the transcription of other dissimilatory nitrogen cycle genes, including nitrate reductase (narG), hydrazine oxidoreductase (hzo), and nitrite reductase (nirK). However, taxonomic characterization of transcripts suggested inhibition of narG transcription in gammaproteobacteria, whereas the transcription of anammox narG, whose gene product is likely used to oxidatively replenish electrons for carbon fixation, was not inhibited. The taxonomic composition of transcripts differed among denitrification enzymes, suggesting that distinct groups of microorganisms mediate different steps of denitrification. Sulfide addition (1 µM) did not affect anammox or O2 inhibition kinetics but strongly stimulated N2O production by denitrification. These results identify new O2 thresholds for delimiting marine nitrogen loss and highlight the utility of integrating biogeochemical and metatranscriptomic analyses. The removal of fixed nitrogen via anammox and denitrification associated with low O2 concentrations in oceanic oxygen minimum zones (OMZ) is a major sink in

  5. Startup of a Partial Nitritation-Anammox MBBR and the Implementation of pH-Based Aeration Control.

    Science.gov (United States)

    Klaus, Stephanie; Baumler, Rick; Rutherford, Bob; Thesing, Glenn; Zhao, Hong; Bott, Charles

    2017-06-01

      The single-stage deammonification moving bed biofilm reactor (MBBR) is a process for treating high strength nitrogen waste streams. In this process, partial nitritation and anaerobic ammonia oxidation (anammox) occur simultaneously within a biofilm attached to plastic carriers. An existing tank at the James River Treatment Plant (76 ML/d) in Newport News, Virginia was modified to install a sidestream deammonification MBBR process. This was the second sidestream deammonification process in North America and the first MBBR type installation. After 4 months the process achieved greater than 85% ammonia removal at the design loading rate of 2.4 g /m2·d (256 kg /d) signaling the end of startup. Based on observations during startup and process optimization phases, a novel pH-based control system was developed that maximizes ammonium removal and results in stable aeration and effluent alkalinity.

  6. Metatranscriptomics reveals the molecular mechanism of large granule formation in granular anammox reactor

    KAUST Repository

    Bagchi, Samik

    2016-06-20

    Granules enriched with anammox bacteria are essential in enhancing the treatment of ammonia-rich wastewater, but little is known about how anammox bacteria grow and multiply inside granules. Here, we combined metatranscriptomics, quantitative PCR and 16S rRNA gene sequencing to study the changes in community composition, metabolic gene content and gene expression in a granular anammox reactor with the objective of understanding the molecular mechanism of anammox growth and multiplication that led to formation of large granules. Size distribution analysis revealed the spatial distribution of granules in which large granules having higher abundance of anammox bacteria (genus Brocadia) dominated the bottom biomass. Metatranscriptomics analysis detected all the essential transcripts for anammox metabolism. During the later stage of reactor operation, higher expression of ammonia and nitrite transport proteins and key metabolic enzymes mainly in the bottom large granules facilitated anammox bacteria activity. The high activity resulted in higher growth and multiplication of anammox bacteria and expanded the size of the granules. This conceptual model for large granule formation proposed here may assist in the future design of anammox processes for mainstream wastewater treatment.

  7. The Increasing Interest of ANAMMOX Research in China: Bacteria, Process Development, and Application

    Directory of Open Access Journals (Sweden)

    Mohammad Ali

    2013-01-01

    Full Text Available Nitrogen pollution created severe environmental problems and increasingly has become an important issue in China. Since the first discovery of ANAMMOX in the early 1990s, this related technology has become a promising as well as sustainable bioprocess for treating strong nitrogenous wastewater. Many Chinese research groups have concentrated their efforts on the ANAMMOX research including bacteria, process development, and application during the past 20 years. A series of new and outstanding outcomes including the discovery of new ANAMMOX bacterial species (Brocadia sinica, sulfate-dependent ANAMMOX bacteria (Anammoxoglobus sulfate and Bacillus benzoevorans, and the highest nitrogen removal performance (74.3–76.7 kg-N/m3/d in lab scale granule-based UASB reactors around the world were achieved. The characteristics, structure, packing pattern and floatation mechanism of the high-rate ANAMMOX granules in ANAMMOX reactors were also carefully illustrated by native researchers. Nowadays, some pilot and full-scale ANAMMOX reactors were constructed to treat different types of ammonium-rich wastewater including monosodium glutamate wastewater, pharmaceutical wastewater, and leachate. The prime objective of the present review is to elucidate the ongoing ANAMMOX research in China from lab scale to full scale applications, comparative analysis, and evaluation of significant findings and to set a design to usher ANAMMOX research in culmination.

  8. The Increasing Interest of ANAMMOX Research in China: Bacteria, Process Development, and Application

    Science.gov (United States)

    Chai, Li-Yuan; Tang, Chong-Jian; Zheng, Ping; Min, Xiao-Bo; Yang, Zhi-Hui; Song, Yu-Xia

    2013-01-01

    Nitrogen pollution created severe environmental problems and increasingly has become an important issue in China. Since the first discovery of ANAMMOX in the early 1990s, this related technology has become a promising as well as sustainable bioprocess for treating strong nitrogenous wastewater. Many Chinese research groups have concentrated their efforts on the ANAMMOX research including bacteria, process development, and application during the past 20 years. A series of new and outstanding outcomes including the discovery of new ANAMMOX bacterial species (Brocadia sinica), sulfate-dependent ANAMMOX bacteria (Anammoxoglobus sulfate and Bacillus benzoevorans), and the highest nitrogen removal performance (74.3–76.7 kg-N/m3/d) in lab scale granule-based UASB reactors around the world were achieved. The characteristics, structure, packing pattern and floatation mechanism of the high-rate ANAMMOX granules in ANAMMOX reactors were also carefully illustrated by native researchers. Nowadays, some pilot and full-scale ANAMMOX reactors were constructed to treat different types of ammonium-rich wastewater including monosodium glutamate wastewater, pharmaceutical wastewater, and leachate. The prime objective of the present review is to elucidate the ongoing ANAMMOX research in China from lab scale to full scale applications, comparative analysis, and evaluation of significant findings and to set a design to usher ANAMMOX research in culmination. PMID:24381935

  9. Anaerobic bacteria

    Science.gov (United States)

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Brook I. Diseases caused by non-spore-forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  10. Kinetic models for nitrogen inhibition in ANAMMOX and nitrification process on deammonification system at room temperature.

    Science.gov (United States)

    De Prá, Marina C; Kunz, Airton; Bortoli, Marcelo; Scussiato, Lucas A; Coldebella, Arlei; Vanotti, Matias; Soares, Hugo M

    2016-02-01

    In this study were fitted the best kinetic model for nitrogen removal inhibition by ammonium and/or nitrite in three different nitrogen removal systems operated at 25 °C: a nitrifying system (NF) containing only ammonia oxidizing bacteria (AOB), an ANAMMOX system (AMX) containing only ANAMMOX bacteria, and a deammonification system (DMX) containing both AOB and ANAMMOX bacteria. NF system showed inhibition by ammonium and was best described by Andrews model. The AMX system showed a strong inhibition by nitrite and Edwards model presented a best system representation. For DMX system, the increased substrate concentration (until 1060 mg NH3-N/L) tested was not limiting for the ammonia consumption rate and the Monod model was the best model to describe this process. The AOB and ANAMMOX sludges combined in the DMX system displayed a better activity, substrate affinity and excellent substrate tolerance than in nitrifying and ANAMMOX process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Comparison between MBR and SBR on Anammox start-up process from the conventional activated sludge.

    Science.gov (United States)

    Wang, Tao; Zhang, Hanmin; Gao, Dawen; Yang, Fenglin; Zhang, Guangyi

    2012-10-01

    Anammox start-up performances from the conventional activated sludge were compared between a MBR and SBR. Both the reactors successfully started up Anammox process. The start-up period in the MBR (59 days) was notably shorter than that in the SBR (101 days), and the max nitrogen (NH(4)(+)+NO(2)(-)) removal capacity of 345.2 mg N L(-1) d(-1) in the MBR was also higher than that of 292.0 mg N L(-1) d(-1) in the SBR. FISH analysis showed that Anammox bacteria predominated in both reactors. Phylogenetic analysis further disclosed that the MBR had the better biodiversity of Anammox bacteria and gained a higher ecological stability. Generally, the results showed that MBR exhibited a more excellent performance for Anammox start-up. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  12. Microbial competition among anammox bacteria in nitrite-limited bioreactors

    KAUST Repository

    Zhang, Lei; Narita, Yuko; Gao, Lin; Ali, Muhammad; Oshiki, Mamoru; Ishii, Satoshi; Okabe, Satoshi

    2017-01-01

    Phylogenetically diverse anammox bacteria have been detected in most of anoxic natural and engineered ecosystems and thus regarded as key players in the global nitrogen cycle. However, ecological niche differentiation of anammox bacteria remains unresolved despite its ecological and practical importance. In this study, the microbial competitions for a common substrate (nitrite) among three anammox species (i.e. “Candidatus Brocadia sinica”, “Candidatus Jettenia caeni” and “Candidatus Kuenenia stuttgartiensis”) were systematically investigated in nitrite-limited gel-immobilized column reactors (GICR) and membrane bioreactors (MBRs) under different nitrogen loading rates (NLRs). 16 S rRNA gene-based population dynamics revealed that “Ca. J. caeni” could proliferate only at low NLRs, whereas “Ca. B. sinica” outcompeted other two species at higher NLRs in both types of reactors. Furthermore, FISH analysis revealed that “Ca. J. caeni” was mainly present as spherical microclusters at the inner part (low NO2− environment), whereas “Ca. B. sinica” was present throughout the gel beads and granules. This spatial distribution supports the outcomes of the competition experiments. However, the successful competition of “Ca. J. caeni” at low NLR could not be explained with the Monod model probably due to inaccuracy of kinetic parameters such as half saturation constant (Ks) for nitrite and a difference in the maintenance rate (m). In addition, the growth of “Ca. K. stuttgartiensis” could not be observed in any experimental conditions, suggesting possible unknown factor(s) is missing. Taken together, NLR was one of factors determining ecological niche differentiation of “Ca. B. sinica” and “Ca. J. caeni”.

  13. Microbial competition among anammox bacteria in nitrite-limited bioreactors

    KAUST Repository

    Zhang, Lei

    2017-08-26

    Phylogenetically diverse anammox bacteria have been detected in most of anoxic natural and engineered ecosystems and thus regarded as key players in the global nitrogen cycle. However, ecological niche differentiation of anammox bacteria remains unresolved despite its ecological and practical importance. In this study, the microbial competitions for a common substrate (nitrite) among three anammox species (i.e. “Candidatus Brocadia sinica”, “Candidatus Jettenia caeni” and “Candidatus Kuenenia stuttgartiensis”) were systematically investigated in nitrite-limited gel-immobilized column reactors (GICR) and membrane bioreactors (MBRs) under different nitrogen loading rates (NLRs). 16 S rRNA gene-based population dynamics revealed that “Ca. J. caeni” could proliferate only at low NLRs, whereas “Ca. B. sinica” outcompeted other two species at higher NLRs in both types of reactors. Furthermore, FISH analysis revealed that “Ca. J. caeni” was mainly present as spherical microclusters at the inner part (low NO2− environment), whereas “Ca. B. sinica” was present throughout the gel beads and granules. This spatial distribution supports the outcomes of the competition experiments. However, the successful competition of “Ca. J. caeni” at low NLR could not be explained with the Monod model probably due to inaccuracy of kinetic parameters such as half saturation constant (Ks) for nitrite and a difference in the maintenance rate (m). In addition, the growth of “Ca. K. stuttgartiensis” could not be observed in any experimental conditions, suggesting possible unknown factor(s) is missing. Taken together, NLR was one of factors determining ecological niche differentiation of “Ca. B. sinica” and “Ca. J. caeni”.

  14. Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy field.

    Science.gov (United States)

    Ding, Jing; Fu, Liang; Ding, Zhao-Wei; Lu, Yong-Ze; Cheng, Shuk H; Zeng, Raymond J

    2016-01-01

    The nitrate-dependent denitrifying anaerobic methane oxidation (DAMO) process, which is metabolized together by anaerobic methanotrophic archaea and NC10 phylum bacteria, is expected to be important for the global carbon and nitrogen cycles. However, there are little studies about the existence of this process and the functional microbes in environments. Therefore, the coexistence of DAMO archaea and bacteria in a paddy field was evaluated in this study. Next-generation sequencing showed that the two orders, Methanosarcinales and Nitrospirales, to which DAMO archaea and DAMO bacteria belong, were detected in the four soil samples. Then the in vitro experiments demonstrated both of nitrite- and nitrate-dependent DAMO activities, which confirmed the coexistence of DAMO archaea and DAMO bacteria. It was the first report about the coexistence of DAMO archaea and bacteria in a paddy field. Furthermore, anammox bacteria were detected in two of the four samples. The in vitro experiments did not show anammox activity in the initial period but showed low anammox activity after 20 days' enrichment. These results implicated that anammox bacteria may coexist with DAMO microorganisms in this field, but at a very low percentage.

  15. Modelling and control design for SHARON/Anammox reactor sequence

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan

    2012-01-01

    metabolism against fast chemical reaction and mass transfer. Likewise, the analysis of the dynamics contributed to establish qualitatively the requirements for control of the reactors, both for regulation and for optimal operation. Work in progress on quantitatively analysing different control structure......With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work presents a complete model of the SHARON/Anammox reactor sequence. The dynamics of the reactor were explored pointing out the different scales of the rates in the system: slow microbial...

  16. Differentiation in the microbial ecology and activity of suspended and attached bacteria in a nitritation-anammox process.

    Science.gov (United States)

    Park, Hongkeun; Sundar, Suneethi; Ma, Yiwei; Chandran, Kartik

    2015-02-01

    A directed differentiation between the biofilm and suspension was observed in the molecular microbial ecology and gene expression of different bacteria in a biofilm nitritation-anammox process operated at varying hydraulic residence times (HRT) and nitrogen loading rates (NLR). The highest degree of enrichment observed in the biofilm was of anaerobic ammonia-oxidizing bacteria (AMX) followed by that of Nitrospira spp. related nitrite-oxidizing bacteria (NOB). For AMX, a major shift from Candidatus "Brocadia fulgida" to Candidatus "Kuenenia stuttgartiensis" in both suspension and biofilm was observed with progressively shorter HRT, using discriminatory biomarkers targeting the hydrazine synthase (hzsA) gene. In parallel, expression of the hydrazine oxidoreductase gene (hzo), a functional biomarker for AMX energy metabolism, became progressively prominent in the biofilm. A marginal but statistically significant enrichment in the biofilm was observed for Nitrosomonas europaea related ammonia-oxidizing bacteria (AOB). In direct contrast to AMX, the gene expression of ammonia monooxygenase subunit A (amoA), a functional biomarker for AOB energy metabolism, progressively increased in suspension. Using gene expression and biomass concentration measures in conjunction, it was determined that signatures of AOB metabolism were primarily present in the biofilm throughout the study. On the other hand, AMX metabolism gradually shifted from being uniformly distributed in both the biofilm and suspension to primarily the biofilm at shorter HRTs and higher NLRs. These results therefore highlight the complexity and key differences in the microbial ecology, gene expression and activity between the biofilm and suspension of a nitritation-anammox process and the biokinetic and metabolic drivers for such niche segregation. © 2014 Wiley Periodicals, Inc.

  17. Community Composition and Abundance of Anammox Bacteria in Cattail Rhizosphere Sediments at Three Phenological Stages.

    Science.gov (United States)

    Zhou, Xiaohong; Zhang, Jinping; Wen, Chunzi

    2017-11-01

    The distribution of anammox bacteria in rhizosphere sediments of cattail (Typha orientalis) at different phenological stages was investigated. Results showed that the number of 16S rRNA gene copies of the anammox bacteria was considerably higher in the rhizosphere sediment than in the nonrhizosphere sediment and control sediment. The abundances of the anammox bacteria exhibited striking temporal variations in the three different cattail phenological stages. In addition, the Chao1 and Shannon H indexes of the anammox bacteria in cattail rhizosphere sediments had evident spatial and temporal variations at different phenological stages. Four anammox genera (Brocadia, Kuenenia, Jettenia, and a new cluster) were detected and had proportions of 34.18, 45.57, 0.63, and 19.62%, respectively. The CCA analysis results indicated that Cu, TN, Pb, and Zn were pivotal factors that affect anammox bacteria composition. The PCoA analysis results indicated that the community structure at the rhizosphere and nonrhizosphere sediments collected on July was relatively specific and was different from sediments collected on other months, suggesting that cattail can influence the community structures of the anammox bacteria at the maturity stage.

  18. Mathematical modeling of high-rate Anammox UASB reactor based on granular packing patterns

    International Nuclear Information System (INIS)

    Tang, Chong-Jian; He, Rui; Zheng, Ping; Chai, Li-Yuan; Min, Xiao-Bo

    2013-01-01

    Highlights: ► A novel model was conducted to estimate volumetric nitrogen conversion rates. ► The packing patterns of the granules in Anammox reactor are investigated. ► The simple cubic packing pattern was simulated in high-rate Anammox UASB reactor. ► Operational strategies concerning sludge concentration were proposed by the modeling. -- Abstract: A novel mathematical model was developed to estimate the volumetric nitrogen conversion rates of a high-rate Anammox UASB reactor based on the packing patterns of granular sludge. A series of relationships among granular packing density, sludge concentration, hydraulic retention time and volumetric conversion rate were constructed to correlate Anammox reactor performance with granular packing patterns. It was suggested that the Anammox granules packed as the equivalent simple cubic pattern in high-rate UASB reactor with packing density of 50–55%, which not only accommodated a high concentration of sludge inside the reactor, but also provided large pore volume, thus prolonging the actual substrate conversion time. Results also indicated that it was necessary to improve Anammox reactor performance by enhancing substrate loading when sludge concentration was higher than 37.8 gVSS/L. The established model was carefully calibrated and verified, and it well simulated the performance of granule-based high-rate Anammox UASB reactor

  19. Mathematical modeling of high-rate Anammox UASB reactor based on granular packing patterns

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chong-Jian, E-mail: chjtangzju@yahoo.com.cn [Department of Environmental Engineering, School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083 (China); He, Rui; Zheng, Ping [Department of Environmental Engineering, Zhejiang University, Zijingang Campus, Hangzhou 310058 (China); Chai, Li-Yuan; Min, Xiao-Bo [Department of Environmental Engineering, School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083 (China)

    2013-04-15

    Highlights: ► A novel model was conducted to estimate volumetric nitrogen conversion rates. ► The packing patterns of the granules in Anammox reactor are investigated. ► The simple cubic packing pattern was simulated in high-rate Anammox UASB reactor. ► Operational strategies concerning sludge concentration were proposed by the modeling. -- Abstract: A novel mathematical model was developed to estimate the volumetric nitrogen conversion rates of a high-rate Anammox UASB reactor based on the packing patterns of granular sludge. A series of relationships among granular packing density, sludge concentration, hydraulic retention time and volumetric conversion rate were constructed to correlate Anammox reactor performance with granular packing patterns. It was suggested that the Anammox granules packed as the equivalent simple cubic pattern in high-rate UASB reactor with packing density of 50–55%, which not only accommodated a high concentration of sludge inside the reactor, but also provided large pore volume, thus prolonging the actual substrate conversion time. Results also indicated that it was necessary to improve Anammox reactor performance by enhancing substrate loading when sludge concentration was higher than 37.8 gVSS/L. The established model was carefully calibrated and verified, and it well simulated the performance of granule-based high-rate Anammox UASB reactor.

  20. Treatment of anaerobic sludge digester effluents by the CANON process in an air pulsing SBR

    International Nuclear Information System (INIS)

    Vazquez-Padin, J.R.; Pozo, M.J.; Jarpa, M.; Figueroa, M.; Franco, A.; Mosquera-Corral, A.; Campos, J.L.; Mendez, R.

    2009-01-01

    The CANON (Completely Autotrophic Nitrogen removal Over Nitrite) process was successfully developed in an air pulsing reactor type SBR fed with the supernatant from an anaerobic sludge digester and operated at moderately low temperatures (18-24 o C). The SBR was started up as a nitrifying reactor, lowering progressively the dissolved oxygen concentration until reaching partial nitrification. Afterwards, an inoculation with sludge containing Anammox biomass was carried out. Nitrogen volumetric removal rates of 0.25 g N L -1 d -1 due to Anammox activity were measured 35 d after inoculation even though the inoculum constituted only 8% (w/w) of the biomass present in the reactor and it was poorly enriched in Anammox bacteria. The maximal nitrogen removal rate was of 0.45 g N L -1 d -1 . By working at a dissolved oxygen concentration of 0.5 mg L -1 in the bulk liquid, nitrogen removal percentages up to 85% were achieved. The reactor presented good biomass retention capacity allowing the accumulation of 4.5 g VSS L -1 . The biomass was composed by ammonia oxidizing bacteria (AOB) forming fluffy structures and granules with an average diameter of 1.6 mm. These granules were composed by Anammox bacteria located in internal anoxic layers surrounded by an external aerobic layer where AOB were placed.

  1. Quaternary ammonium oxidative demethylation: X-ray crystallographic, resonance Raman, and UV-visible spectroscopic analysis of a Rieske-type demethylase.

    Science.gov (United States)

    Daughtry, Kelly D; Xiao, Youli; Stoner-Ma, Deborah; Cho, Eunsun; Orville, Allen M; Liu, Pinghua; Allen, Karen N

    2012-02-08

    Herein, the structure resulting from in situ turnover in a chemically challenging quaternary ammonium oxidative demethylation reaction was captured via crystallographic analysis and analyzed via single-crystal spectroscopy. Crystal structures were determined for the Rieske-type monooxygenase, stachydrine demethylase, in the unliganded state (at 1.6 Å resolution) and in the product complex (at 2.2 Å resolution). The ligand complex was obtained from enzyme aerobically cocrystallized with the substrate stachydrine (N,N-dimethylproline). The ligand electron density in the complex was interpreted as proline, generated within the active site at 100 K by the absorption of X-ray photon energy and two consecutive demethylation cycles. The oxidation state of the Rieske iron-sulfur cluster was characterized by UV-visible spectroscopy throughout X-ray data collection in conjunction with resonance Raman spectra collected before and after diffraction data. Shifts in the absorption band wavelength and intensity as a function of absorbed X-ray dose demonstrated that the Rieske center was reduced by solvated electrons generated by X-ray photons; the kinetics of the reduction process differed dramatically for the liganded complex compared to unliganded demethylase, which may correspond to the observed turnover in the crystal.

  2. Metatranscriptomics reveals the molecular mechanism of large granule formation in granular anammox reactor

    KAUST Repository

    Bagchi, Samik; Lamendella, Regina; Strutt, Steven; Van Loosdrecht, Mark C. M.; Saikaly, Pascal

    2016-01-01

    to formation of large granules. Size distribution analysis revealed the spatial distribution of granules in which large granules having higher abundance of anammox bacteria (genus Brocadia) dominated the bottom biomass. Metatranscriptomics analysis detected all

  3. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones

    DEFF Research Database (Denmark)

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene Mark

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrifica......Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic...... denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off...... Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically...

  4. High rates of denitrification and nitrous oxide emission in arid biological soil crusts from the Sultanate of Oman

    DEFF Research Database (Denmark)

    Abed, Raeid M M; Lam, Phyllis; De Beer, Dirk

    2013-01-01

    Using a combination of process rate determination, microsensor profiling and molecular techniques, we demonstrated that denitrification, and not anaerobic ammonium oxidation (anammox), is the major nitrogen loss process in biological soil crusts from Oman. Potential denitrification rates were 584...... that nitrogen loss via denitrification is a dominant process in crusts from Oman, which leads to N 2 O gas emission and potentially reduces desert soil fertility....

  5. Bringing Planctomycetes into pure culture

    OpenAIRE

    Lage, Olga M.; Bondoso, Joana

    2012-01-01

    Planctomycetes have been known since the description of Planctomyces bekefii by Gimesi at the beginning of the twentieth century (1924), although the first axenic cultures were only obtained in the 1970s. Since then, 11 genera with 14 species have been validly named and five candidatus genera belonging to the anaerobic ammonium oxidation, anammox bacteria have also been discovered. However, Planctomycetes diversity is much broader than these numbers indicate, as shown by environmental molecul...

  6. Bringing Planctomycetes into pure culture

    OpenAIRE

    Olga Maria Lage; Olga Maria Lage; Joana eBondoso; Joana eBondoso

    2012-01-01

    Planctomycetes have been known since the description of Planctomyces bekefii by Gimesi at the beginning of the twentieth century (1924), although the first axenic cultures were only obtained in the 1970s. Since then, eleven genera with fourteen species have been validly named and five candidatus genera belonging to the anaerobic ammonium oxidation, anammox bacteria have also been discovered. However, Planctomycetes diversity is much broader than these numbers indicate, as shown by environment...

  7. Environmental and Microbial Features Affecting Denitrification and Anammox Hotspots in an Estuarine Ecosystem

    Science.gov (United States)

    Lisa, J.; Song, B.; Lefcheck, J. S.; Tobias, C. R.

    2016-02-01

    Biogeochemical hotspots are characterized as a few sites that exhibit extremely high reaction rates relative to surrounding area, and often account for a high percentage of the overall reaction rates in an ecosystem. Criteria for quantitatively identifying these sites have not been well established. Further, the underlying mechanisms of hotspots have been described in terms of environmental conditions, with little attention paid to the microbial community. The objectives of this study were to establish quantitative criteria to identify denitrification and anammox hotspots, and determine the underlying microbial and environmental factors responsible for elevated N2 production. We used 15N isotope pairing incubation experiments to measure denitrification and anammox rates in the New River Estuary, NC. Quantitative PCR assays of nitrous oxide reductase (nosZ Clades I and II) and hydrazine oxidoreductase (hzo) genes were conducted to estimate denitrifier and anammox abundance. Structural Equation Modeling (SEM) was used to elucidate complex causal relationships between environmental and biological variables. Denitrification hotspots, quantitatively defined as statistical outliers, accounted for 35.6% total denitrification while comprising only 7.3% of the sites. Anammox hotspots,10.6% of the sites, accounted for 60.9% of total anammox. SEM revealed increased sediment organics at lower salinities supported higher functional gene abundance, which in turn resulted in higher N2 production. Surprisingly, denitrification rates were significantly and positively correlated with nosZ Clade II gene abundance, after accounting for the non-significant contributions of the naturally more abundant nosZ Clade I, and other environmental covariates. This is the first time that a quantitative definition of biogeochemical hotspots was put forth and used to determine the importance of anammox and denitrification hotspots in estuarine nitrogen removal capacity. Despite the low area

  8. Increased hydrazine during partial nitritation process in upflow air-lift reactor fed with supernatant of anaerobic digester effluent

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeongdong [University of Alberta, Alberta (Canada); Jung, Sokhee [Samsung SDS, Seoul (Korea, Republic of); Ahn, Young-Ho [Yeungnam University, Gyungsan (Korea, Republic of)

    2013-06-15

    The optimal balance of ammonium and nitrite is essential for successful operation of the subsequent anammox process. We conducted a partial nitritation experiment using an upflow air-lift reactor to provide operational parameters for achieving the optimal ratio of ammonium to nitrite, by feeding supernatant of anaerobic digester effluent, high-nitrogen containing rejection water. Semi-continuous operation results show that HRT should be set between 15 and 17 hours to achieve the optimum ration of 1.3 of NO{sub 2}-N/NH{sub 4}-N. In the UAR, nitritation was the dominant reaction due to high concentration of ammonia and low biodegradable organics. The influent contained low concentrations of hydroxylamine and hydrazine. However, hydrazine increased during partial nitritation by ⁓60-130% although there was no potential anammox activity in the reactor. The partial nitritation process successfully provided the ratio of nitrogen species for the anammox reaction, and relived the nitrite restraint on the anammox activity by increasing hydrazine concentration.

  9. Abundance and Diversity of Denitrifying and Anammox Bacteria in Seasonally Hypoxic and Sulfidic Sediments of the Saline Lake Grevelingen

    NARCIS (Netherlands)

    Lipsewers, Y.A.; Hopmans, E.C.; Meysman, F.J.R.; Sinninghe Damsté, J.S.; Villanueva, L.

    2016-01-01

    Denitrifying and anammox bacteria are involved in the nitrogen cycling in marine sediments but the environmental factors that regulate the relative importance of these processes are not well constrained. Here, we evaluated the abundance, diversity, and potential activity of denitrifying, anammox,

  10. Abundance and diversity of denitrifying and anammox bacteria in seasonally hypoxic and sulfidic sediments of the saline lake grevelingen

    NARCIS (Netherlands)

    Lipsewers, Yvonne A.; Hopmans, Ellen C.; Meysman, Filip J.R.; Sinninghe Damsté, Jaap S.|info:eu-repo/dai/nl/07401370X; Villanueva, Laura

    2016-01-01

    Denitrifying and anammox bacteria are involved in the nitrogen cycling in marine sediments but the environmental factors that regulate the relative importance of these processes are not well constrained. Here, we evaluated the abundance, diversity, and potential activity of denitrifying, anammox,

  11. Aerobic ammonium oxidation in the oxycline and oxygen minimum zone of the eastern tropical South Pacific off northern Chile (˜20°S)

    Science.gov (United States)

    Molina, Verónica; Farías, Laura

    2009-07-01

    Aerobic NH 4+ oxidation rates were measured along the strong oxygen gradient associated with the oxygen minimum zone (OMZ) of the eastern tropical South Pacific off northern Chile (˜20°S) during 2000, 2003, and 2004. This process was examined by comparing NH 4+ rates of change during dark incubations, with and without the addition of allylthiourea, a classical inhibitor of the ammonia monooxygenase enzyme of ammonium-oxidizing bacteria. The contribution of aerobic NH 4+ oxidation in dark carbon fixation and NO 2- rates of change were also explored. Thirteen samples were retrieved from the oxycline (252 to ⩽5 μM O 2; 15 to ˜65 m depth) and three from the oxygen minimum core (⩽5 μM O 2; 100-200 m depth). Aerobic NH 4+ oxidation rates were mainly detected in the upper part (15-30 m depth) of the oxycline, with rates ranging from 0.16 to 0.79 μM d -1, but not towards the oxycline base (40-65 m depth). In the oxygen minimum core, aerobic NH 4+ oxidation was in the upper range and higher than in the upper part of the oxycline (0.70 and 1.0 μM d -1). Carbon fixation rates through aerobic NH 4+ oxidation ranged from 0.18 to 0.43 μg C L -1 d -1 and contributed between 33% and 57% of the total dark carbon fixation, mainly towards the oxycline base and, in a single experiment, in the upper part of the oxycline. NO 2- consumption was high (up to 10 μM d -1) towards the oxycline base and OMZ core, but was significantly reduced in experiments amended with allylthiourea, indicating that aerobic NH 4+ oxidation could contribute between 8% and 76% of NO 2- production, which in turn could be available for denitrifiers. Overall, these results support the important role of aerobic NH 4+ oxidizers in the nitrogen and carbon cycling in the OMZ and at its upper boundary.

  12. Rapid adaptation of activated sludge bacteria into a glycogen accumulating biofilm enabling anaerobic BOD uptake.

    Science.gov (United States)

    Hossain, Md Iqbal; Paparini, Andrea; Cord-Ruwisch, Ralf

    2017-03-01

    Glycogen accumulating organisms (GAO) are known to allow anaerobic uptake of biological oxygen demand (BOD) in activated sludge wastewater treatment systems. In this study, we report a rapid transition of suspended activated sludge biomass to a GAO dominated biofilm by selective enrichment using sequences of anaerobic loading followed by aerobic exposure of the biofilm to air. The study showed that within eight weeks, a fully operational, GAO dominated biofilm had developed, enabling complete anaerobic BOD uptake at a rate of 256mg/L/h. The oxygen uptake by the biofilm directly from the atmosphere had been calculated to provide significant energy savings. This study suggests that wastewater treatment plant operators can convert activated sludge systems readily into a "passive aeration" biofilm that avoids costly oxygen transfer to bulk wastewater solution. The described energy efficient BOD removal system provides an opportunity to be coupled with novel nitrogen removal processes such as anammox. Copyright © 2016. Published by Elsevier Ltd.

  13. Upgrading of the symbiosis of Nitrosomanas and anammox bacteria in a novel single-stage partial nitritation-anammox system: Nitrogen removal potential and Microbial characterization.

    Science.gov (United States)

    Liu, Yuan; Niu, Qigui; Wang, Shaopo; Ji, Jiayuan; Zhang, Yu; Yang, Min; Hojo, Toshimasa; Li, Yu-You

    2017-11-01

    A novel single-stage partial nitritation-anammox process equipped with porous functional suspended carriers was developed at 25°C in a CSTR by controlling dissolved oxygen <0.3mg/L. The nitrogen removal performance was almost unchanged over a nitrogen loading rate ranging from 0.5 to 2.5kgNH 4 + -N/m 3 /d with a high nitrogen removal efficiency of 81.1%. The specific activity of AOB and anammox bacteria was of 3.00g-N/g-MLVSS/d (the suspended sludge), 3.56g-N/g-MLVSS/d (the biofilm sludge), respectively. The results of pyrosequencing revealed that Nitrosomonas (5.66%) and Candidatus_Kuenenia (4.95%) were symbiotic in carriers while Nitrosomonas (40.70%) was predominant in the suspended flocs. Besides, two specific types of heterotrophic filamentous bacteria in the suspended flocs (Haliscomenobacter) and the functional carrier biofilm (Longilinea) were shown to confer structural integrity to the aggregates. The novel single-stage partial nitritation-anammox process equipped with functional suspended carriers was shown to have good potential for the nitrogen-rich wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Denitrification exceeds anammox as a nitrogen loss pathway in the Arabian Sea oxygen minimum zone

    Digital Repository Service at National Institute of Oceanography (India)

    Bulow, S.E.; Rich, J.J.; Naik, H.; Pratihary, A.K.; Ward, B.B.

    of anammox production (4.23 plus or minus 0.35 nmoll sup(-1) d sup(-1)) occurred near the upper boundary of the OMZ at one station. Overall, denitrification dominated N sub(2) production at this time in the Arabian Sea OMZ...

  15. Incremental design of control system of SHARON-Anammox process for autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Valverde Perez, Borja; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work explores the control design for a SHARON-Anammox reactor sequence. With this aim, a full model is developed, including the pH dependency, in order to simulate the reactor and determine...

  16. Substrate inhibition and concentration control in an UASB-Anammox process.

    Science.gov (United States)

    Ma, Haiyuan; Niu, Qigui; Zhang, Yanlong; He, Shilong; Li, Yu-You

    2017-08-01

    An UASB-Anammox reactor was operated for more than one year to study the process performance variations respond to the nitrogen loading rate (NLR) and substrate concentration. The IC 10 (451.1mg/L) , IC 50 (725.3mg/L) and the prospected threshold of influent total nitrogen (TN) concentration were simulated. A stable TN removal efficiency was obtained when the TN influent was controlled. The disequilibrium distribution of the substrate following the plug flow with the height of the reactor resulted in significant variations in specific Anammox activity from the bottom to the top of the reactor (348→3mgN/gVSS/d). With long term acclimation, the nitrogen removal capacity of Anammox sludge varied significantly, with the most activated sludge obtained in the bottom part a 100 times capacity greater than that of the top. A stable performance with high removal efficiency in the constructed UASB-Anammox reactor was obtained when the influent TN concentration was below 451.1mg/L. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Systematic design of an optimal control system for the SHARON-Anammox process

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan

    2016-01-01

    A systematic design of an optimal control structure for the SHARON-Anammox nitrogen removal process is studied. The methodology incorporates two novel features to assess the controllability of the design variables candidate for the regulatory control layer: (i) H- control method, which formulates...

  18. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system

    NARCIS (Netherlands)

    Speth, D.R.; Zandt, M.H. in 't; Guerrero Cruz, S.; Dutilh, B.E.; Jetten, M.S.M.

    2016-01-01

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is

  19. Anaerobic biodegradability of macropollutants

    DEFF Research Database (Denmark)

    Angelidaki, Irini

    2002-01-01

    A variety of test procedures for determination of anaerobic biodegradability has been reported. This paper reviews the methods developed for determination of anaerobic biodegradability of macro-pollutants. Anaerobic biodegradability of micro-pollutants is not included. Furthermore, factors...

  20. Anaerobic Thermophiles

    Directory of Open Access Journals (Sweden)

    Francesco Canganella

    2014-02-01

    Full Text Available The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong

  1. Coexistence of nitrifying, anammox and denitrifying bacteria in a sequencing batch reactor

    Directory of Open Access Journals (Sweden)

    Michela eLangone

    2014-02-01

    Full Text Available Elevated nitrogen removal efficiencies from ammonium-rich wastewaters have been demonstrated by several applications, that combine nitritation and anammox processes. Denitrification will occur simultaneously when organic carbon is also present. In this study, the activity of aerobic ammonia oxidizing, anammox and denitrifying bacteria in a full scale Sequencing Batch Reactor, treating digester supernatants, was studied by means of batch-assays. AOB and anammox activities were maximum at pH of 8.0 and 7.8-8.0, rispectively. Short term effect of nitrite on anammox activity was studied, showing nitrite up to 42 mg/L did not result in inhibition. Both denitrification via nitrate and nitrite were measured. To reduce nitrite-oxidizing activity, high of NH3 – N (1.9-10 mg N-NH3/L and low nitrite (3-8 mg TNN/L are required conditions during the whole SBR cycle.Molecular analysis showed the nitritation-anammox sludge harbored a high microbial diversity, where each microorganism has a specific role. Using ammonia monooxygenase α –subunit (amoA gene as a marker, our analyses suggested different macro- and micro-environments in the reactor strongly affect the AOB community, allowing the development of different AOB species, such as N. europaea/eutropha and N. oligotropha groups, which improve the stability of nitritation process. A specific PCR primer set, used to target the 16S rRNA gene of anammox bacteria, confirmed the presence of the Ca. Brocadia fulgida type, able to grow in precence of organic matter and to tolerate high nitrite concentrations. The diversity of denitrifiers was assessed by using dissimilatory nitrite reductase (nirS gene-based analyses, who showed denitifiers were related to different betaproteobacterial genera, such as Thauera, Pseudomonas, Dechloromonas and Aromatoleum, able to assist in forming microbial aggregates. Concerning possible secondary processes, no n-damo bacteria were found while NOB from the genus of Nitrobacter

  2. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system

    OpenAIRE

    Speth, D.R.; Zandt, M.H. in 't; Guerrero Cruz, S.; Dutilh, B.E.; Jetten, M.S.M.

    2016-01-01

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is used to seed reactors in wastewater treatment plants around the world; however, the role of most of its microbial community in ammonium removal remains unknown. Our analysis yielded 23 near-complete d...

  3. Abundance and Diversity of Denitrifying and Anammox Bacteria in Seasonally Hypoxic and Sulfidic Sediments of the Saline Lake Grevelingen

    Science.gov (United States)

    Lipsewers, Yvonne A.; Hopmans, Ellen C.; Meysman, Filip J. R.; Sinninghe Damsté, Jaap S.; Villanueva, Laura

    2016-01-01

    Denitrifying and anammox bacteria are involved in the nitrogen cycling in marine sediments but the environmental factors that regulate the relative importance of these processes are not well constrained. Here, we evaluated the abundance, diversity, and potential activity of denitrifying, anammox, and sulfide-dependent denitrifying bacteria in the sediments of the seasonally hypoxic saline Lake Grevelingen, known to harbor an active microbial community involved in sulfur oxidation pathways. Depth distributions of 16S rRNA gene, nirS gene of denitrifying and anammox bacteria, aprA gene of sulfur-oxidizing and sulfate-reducing bacteria, and ladderane lipids of anammox bacteria were studied in sediments impacted by seasonally hypoxic bottom waters. Samples were collected down to 5 cm depth (1 cm resolution) at three different locations before (March) and during summer hypoxia (August). The abundance of denitrifying bacteria did not vary despite of differences in oxygen and sulfide availability in the sediments, whereas anammox bacteria were more abundant in the summer hypoxia but in those sediments with lower sulfide concentrations. The potential activity of denitrifying and anammox bacteria as well as of sulfur-oxidizing, including sulfide-dependent denitrifiers and sulfate-reducing bacteria, was potentially inhibited by the competition for nitrate and nitrite with cable and/or Beggiatoa-like bacteria in March and by the accumulation of sulfide in the summer hypoxia. The simultaneous presence and activity of organoheterotrophic denitrifying bacteria, sulfide-dependent denitrifiers, and anammox bacteria suggests a tight network of bacteria coupling carbon-, nitrogen-, and sulfur cycling in Lake Grevelingen sediments. PMID:27812355

  4. Abundance and diversity of denitrifying and anammox bacteria in seasonally hypoxic and sulfidic sediments of the saline Lake Grevelingen

    Directory of Open Access Journals (Sweden)

    Yvonne A. Lipsewers

    2016-10-01

    Full Text Available Denitrifying and anammox bacteria are involved in the nitrogen cycling in marine sediments but the environmental factors that regulate the relative importance of these processes are not well constrained. Here, we evaluated the abundance, diversity and potential activity of denitrifying, anammox, and sulfide-dependent denitrifying bacteria in the sediments of the seasonally hypoxic saline Lake Grevelingen, known to harbor an active microbial community involved in sulfur oxidation pathways. Depth distributions of 16S rRNA gene, nirS gene of denitrifying and anammox bacteria, aprA gene of sulfur-oxidizing and sulfate-reducing bacteria, and ladderane lipids of anammox bacteria were studied in sediments impacted by seasonally hypoxic bottom waters. Samples were collected down to 5 cm depth (1 cm resolution at three different locations before (March and during summer hypoxia (August. The abundance of denitrifying bacteria did not vary despite of differences in oxygen and sulfide availability in the sediments, whereas anammox bacteria were more abundant in the summer hypoxia but in those sediments with lower sulfide concentrations. The potential activity of denitrifying and anammox bacteria as well as of sulfur-oxidizing, including sulfide-dependent denitrifiers and sulfate-reducing bacteria, was potentially inhibited by the competition for nitrate and nitrite with cable and/or Beggiatoa-like bacteria in March and by the accumulation of sulfide in the summer hypoxia. The simultaneous presence and activity of organoheterotrophic denitrifying bacteria, sulfide-dependent denitrifiers and anammox bacteria suggests a tight network of bacteria coupling carbon-, nitrogen- and sulfur cycling in Lake Grevelingen sediments.

  5. Microbial nitrogen transformation potential in surface run-off leachate from a tropical landfill

    International Nuclear Information System (INIS)

    Mangimbulude, Jubhar C.; Straalen, Nico M. van; Röling, Wilfred F.M.

    2012-01-01

    Highlights: ► Microbial nitrogen transformations can alleviate toxic ammonium discharge. ► Aerobic ammonium oxidation was rate-limiting in Indonesian landfill leachate. ►Organic nitrogen ammonification was most dominant. ► Anaerobic nitrate reduction and ammonium oxidation potential were also high. ► A two-stage aerobic-anaerobic nitrogen removal system needs to be implemented. - Abstract: Ammonium is one of the major toxic compounds and a critical long-term pollutant in landfill leachate. Leachate from the Jatibarang landfill in Semarang, Indonesia, contains ammonium in concentrations ranging from 376 to 929 mg N L −1 . The objective of this study was to determine seasonal variation in the potential for organic nitrogen ammonification, aerobic nitrification, anaerobic nitrate reduction and anaerobic ammonium oxidation (anammox) at this landfilling site. Seasonal samples from leachate collection treatment ponds were used as an inoculum to feed synthetic media to determine potential rates of nitrogen transformations. Aerobic ammonium oxidation potential ( −1 h −1 ) was more than a hundred times lower than the anaerobic nitrogen transformation processes and organic nitrogen ammonification, which were of the same order of magnitude. Anaerobic nitrate oxidation did not proceed beyond nitrite; isolates grown with nitrate as electron acceptor did not degrade nitrite further. Effects of season were only observed for aerobic nitrification and anammox, and were relatively minor: rates were up to three times higher in the dry season. To completely remove the excess ammonium from the leachate, we propose a two-stage treatment system to be implemented. Aeration in the first leachate pond would strongly contribute to aerobic ammonium oxidation to nitrate by providing the currently missing oxygen in the anaerobic leachate and allowing for the growth of ammonium oxidisers. In the second pond the remaining ammonium and produced nitrate can be converted by a

  6. Heterotrophic denitrification vs. autotrophic anammox – quantifying collateral effects on the oceanic carbon cycle

    Directory of Open Access Journals (Sweden)

    W. Koeve

    2010-08-01

    Full Text Available The conversion of fixed nitrogen to N2 in suboxic waters is estimated to contribute roughly a third to total oceanic losses of fixed nitrogen and is hence understood to be of major importance to global oceanic production and, therefore, to the role of the ocean as a sink of atmospheric CO2. At present heterotrophic denitrification and autotrophic anammox are considered the dominant sinks of fixed nitrogen. Recently, it has been suggested that the trophic nature of pelagic N2-production may have additional, "collateral" effects on the carbon cycle, where heterotrophic denitrification provides a shallow source of CO2 and autotrophic anammox a shallow sink. Here, we analyse the stoichiometries of nitrogen and associated carbon conversions in marine oxygen minimum zones (OMZ focusing on heterotrophic denitrification, autotrophic anammox, and dissimilatory nitrate reduction to nitrite and ammonium in order to test this hypothesis quantitatively. For open ocean OMZs the combined effects of these processes turn out to be clearly heterotrophic, even with high shares of the autotrophic anammox reaction in total N2-production and including various combinations of dissimilatory processes which provide the substrates to anammox. In such systems, the degree of heterotrophy (ΔCO2:ΔN2, varying between 1.7 and 6.5, is a function of the efficiency of nitrogen conversion. On the contrary, in systems like the Black Sea, where suboxic N-conversions are supported by diffusive fluxes of NH4+ originating from neighbouring waters with sulphate reduction, much lower values of ΔCO2:ΔN2 can be found. However, accounting for concomitant diffusive fluxes of CO2, the ratio approaches higher values similar to those computed for open ocean OMZs. Based on this analysis, we question the significance of collateral effects concerning the trophic

  7. Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone off Northern Chil

    DEFF Research Database (Denmark)

    Dalsgaard, Tage; Stewart, Frank J.; Thamdrup, Bo

    2014-01-01

    at nanomolar levels affects anammox and denitrification rates and the transcription of nitrogen cycle genes in the anoxic OMZ off Chile. Rates of anammox and denitrification were reversibly suppressed, most likely at the enzyme level. Fiftypercent inhibition of N2 and N2O production by denitrification...

  8. Anaerobic ammonia removal in presence of organic matter: A novel route

    International Nuclear Information System (INIS)

    Sabumon, P.C.

    2007-01-01

    This study describes the feasibility of anaerobic ammonia removal process in presence of organic matter. Different sources of biomass collected from diverse eco-systems containing ammonia and organic matter (OM) were screened for potential anaerobic ammonia removal. Sequential batch studies confirmed the possibility of anaerobic ammonia removal in presence of OM, but ammonia was oxidized anoxically to nitrate (at oxidation reduction potential; ORP -248 ± 25 mV) by an unknown mechanism unlike in the reported anammox process. The oxygen required for oxidation of ammonia might have been generated through catalase enzymatic activity of facultative anaerobes in mixed culture. The oxygen generation possibility by catalase enzyme route was demonstrated. Among the inorganic electron acceptors (NO 2 - , NO 3 - and SO 4 2- ) studied, NO 2 - was found to be most effective in total nitrogen removal. Denitrification by the developed culture was much effective and faster compared to ammonia oxidation. The results of this study show that anaerobic ammonia removal is feasible in presence of OM. The novel nitrogen removal route is hypothesized as enzymatic anoxic oxidation of NH 4 + to NO 3 - , followed by denitrification via autotrophic and/or heterotrophic routes. The results of batch study were confirmed in continuous reactor operation

  9. Biological nutrients removal from the supernatant originating from the anaerobic digestion of the organic fraction of municipal solid waste.

    Science.gov (United States)

    Malamis, S; Katsou, E; Di Fabio, S; Bolzonella, D; Fatone, F

    2014-09-01

    This study critically evaluates the biological processes and techniques applied to remove nitrogen and phosphorus from the anaerobic supernatant produced from the treatment of the organic fraction of municipal solid waste (OFMSW) and from its co-digestion with other biodegradable organic waste (BOW) streams. The wide application of anaerobic digestion for the treatment of several organic waste streams results in the production of high quantities of anaerobic effluents. Such effluents are characterized by high nutrient content, because organic and particulate nitrogen and phosphorus are hydrolyzed in the anaerobic digestion process. Consequently, adequate post-treatment is required in order to comply with the existing land application and discharge legislation in the European Union countries. This may include physicochemical and biological processes, with the latter being more advantageous due to their lower cost. Nitrogen removal is accomplished through the conventional nitrification/denitrification, nitritation/denitritation and the complete autotrophic nitrogen removal process; the latter is accomplished by nitritation coupled with the anoxic ammonium oxidation process. As anaerobic digestion effluents are characterized by low COD/TKN ratio, conventional denitrification/nitrification is not an attractive option; short-cut nitrogen removal processes are more promising. Both suspended and attached growth processes have been employed to treat the anaerobic supernatant. Specifically, the sequencing batch reactor, the membrane bioreactor, the conventional activated sludge and the moving bed biofilm reactor processes have been investigated. Physicochemical phosphorus removal via struvite precipitation has been extensively examined. Enhanced biological phosphorus removal from the anaerobic supernatant can take place through the sequencing anaerobic/aerobic process. More recently, denitrifying phosphorus removal via nitrite or nitrate has been explored. The removal of

  10. Livestock Anaerobic Digester Database

    Science.gov (United States)

    The Anaerobic Digester Database provides basic information about anaerobic digesters on livestock farms in the United States, organized in Excel spreadsheets. It includes projects that are under construction, operating, or shut down.

  11. Anaerobes in pleuropulmonary infections

    Directory of Open Access Journals (Sweden)

    De A

    2002-01-01

    Full Text Available A total of 76 anaerobes and 122 aerobes were isolated from 100 patients with pleuropulmonary infections, e.g. empyema (64, pleural effusion (19 and lung abscess (13. In 14% of the patients, only anaerobes were recovered, while a mixture of aerobes and anaerobes was encountered in 58%. From all cases of lung abscess, anaerobic bacteria were isolated, alone (04 or along with aerobic bacteria (13. From empyema and pleural effusion cases, 65.6% and 68.4% anaerobes were recovered respectively. Amongst anaerobes, gram negative anaerobic bacilli predominated (Prevotella melaninogenicus 16, Fusobacterium spp. 10, Bacteroides spp. 9, followed by gram positive anaerobic cocci (Peptostreptococcus spp. 31. Coliform bacteria (45 and Pseudomonas aeruginosa (42 were the predominant aerobic isolates.

  12. Temporal variability and phylogenetic characterization of planktonic anammox bacteria in the coastal upwelling ecosystem off central Chile

    Science.gov (United States)

    Galán, Alexander; Molina, Verónica; Belmar, Lucy; Ulloa, Osvaldo

    2012-01-01

    The phylogenetic affiliation and temporal variability in the abundance of planktonic anammox bacteria were studied at a time-series station above the continental shelf off central Chile (∼36°S; bottom depth 93 m), a wind-driven, seasonal upwelling area, between August 2006 and April 2008. The study was carried out by cloning and sequencing the 16S rRNA gene and by using catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). Our results showed the presence of a single anammox bacteria-like ribotype during both upwelling and non-upwelling seasons, which was phylogenetically associated with a recently described oxygen-minimum-zone subcluster within the Candidatus Scalindua clade. Moreover, clear differences were observed in the temporal and vertical distribution of anammox cells. During the upwelling season (austral spring-summer), relatively high abundances (∼5500 cells mL -1) and large cells (0.8 μm 3-75.7 fg C cell -1) were found below 20 m depth. In contrast, during the non-upwelling season (austral fall-winter), lower abundances (∼600 cells mL -1) and smaller cells (0.1 μm 3-22.8 fg C cell -1) were found, predominantly associated with the bottom layer. Overall, our results indicate that the abundance and vertical distribution of anammox planktonic assemblages are related to the occurrence of seasonal, wind-driven, coastal upwelling, which in turn appears to offer favorable conditions for the development of these microorganisms. The dominance of a unique anammox bacteria-like ribotype could be related to the high environmental variability observed in the system, which prevents the establishment of other anammox lineages.

  13. Anaerobic Digestion: Process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Batstone, Damien J.

    2011-01-01

    Organic waste may degrade anaerobically in nature as well as in engineered systems. The latter is called anaerobic digestion or biogasification. Anaerobic digestion produces two main outputs: An energy-rich gas called biogas and an effluent. The effluent, which may be a solid as well as liquid...... with very little dry matter may also be called a digest. The digest should not be termed compost unless it specifically has been composted in an aerated step. This chapter describes the basic processes of anaerobic digestion. Chapter 9.5 describes the anaerobic treatment technologies, and Chapter 9...

  14. Isotopic evidence for nitrous oxide production pathways in a partial nitritation-anammox reactor.

    Science.gov (United States)

    Harris, Eliza; Joss, Adriano; Emmenegger, Lukas; Kipf, Marco; Wolf, Benjamin; Mohn, Joachim; Wunderlin, Pascal

    2015-10-15

    Nitrous oxide (N2O) production pathways in a single stage, continuously fed partial nitritation-anammox reactor were investigated using online isotopic analysis of offgas N2O with quantum cascade laser absorption spectroscopy (QCLAS). N2O emissions increased when reactor operating conditions were not optimal, for example, high dissolved oxygen concentration. SP measurements indicated that the increase in N2O was due to enhanced nitrifier denitrification, generally related to nitrite build-up in the reactor. The results of this study confirm that process control via online N2O monitoring is an ideal method to detect imbalances in reactor operation and regulate aeration, to ensure optimal reactor conditions and minimise N2O emissions. Under normal operating conditions, the N2O isotopic site preference (SP) was much higher than expected - up to 40‰ - which could not be explained within the current understanding of N2O production pathways. Various targeted experiments were conducted to investigate the characteristics of N2O formation in the reactor. The high SP measurements during both normal operating and experimental conditions could potentially be explained by a number of hypotheses: i) unexpectedly strong heterotrophic N2O reduction, ii) unknown inorganic or anammox-associated N2O production pathway, iii) previous underestimation of SP fractionation during N2O production from NH2OH, or strong variations in SP from this pathway depending on reactor conditions. The second hypothesis - an unknown or incompletely characterised production pathway - was most consistent with results, however the other possibilities cannot be discounted. Further experiments are needed to distinguish between these hypotheses and fully resolve N2O production pathways in PN-anammox systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Bacterial community involved in the nitrogen cycle in a down-flow sponge-based trickling filter treating UASB effluent.

    Science.gov (United States)

    Mac Conell, E F A; Almeida, P G S; Martins, K E L; Araújo, J C; Chernicharo, C A L

    2015-01-01

    The bacterial community composition of a down-flow sponge-based trickling filter treating upflow anaerobic sludge blanket (UASB) effluent was investigated by pyrosequencing. Bacterial community composition considerably changed along the reactor and over the operational period. The dominant phyla detected were Proteobacteria, Verrucomicrobia, and Planctomycetes. The abundance of denitrifiers decreased from the top to the bottom and it was consistent with the organic matter concentration gradients. At lower loadings (organic and nitrogen loading rates), the abundance of anammox bacteria was higher than that of the ammonium-oxidizing bacteria in the upper portion of the reactor, suggesting that aerobic and anaerobic ammonium oxidation occurred. Nitrification occurred in all the compartments, while anammox bacteria prominently appeared even in the presence of high organic carbon to ammonia ratios (around 1.0-2.0 gCOD gN(-1)). The results suggest that denitrifiers, nitrifiers, and anammox bacteria coexisted in the reactor; thus, different metabolic pathways were involved in ammonium removal in the post-UASB reactor sponge-based.

  16. Plant-wide (BSM2) evaluation of reject water treatment with a SHARON-Anammox process

    DEFF Research Database (Denmark)

    Volcke, Eveline; Gernaey, Krist; Vrecko, Darko

    2006-01-01

    treatment plant, reject water treatment with a combined SHARON-Anammox process seems a promising option. The simulation results indicate that significant improvements of the effluent quality of the main wastewater treatment plant can be realized. An economic evaluation of the different scenarios......In wastewater treatment plants (WWTPs) equipped with sludge digestion and dewatering systems, the reject water originating from these facilities contributes significantly to the nitrogen load of the activated sludge tanks, to which it is typically recycled. In this paper, the impact of reject water...

  17. Denitrification, anammox and fixed nitrogen removal in the water column of a tropical great lake

    Science.gov (United States)

    Darchambeau, François; Roland, Fleur; Crowe, Sean A.; De Brabandere, Loreto; Llirós, Marc; Garcia-Armisen, Tamara; Inceoglu, Ozgul; Michiels, Céline; Servais, Pierre; Morana, Cédric D. T.; Bouillon, Steven; Meysman, Filip; Veuger, Bart; Masilya, Pascal M.; Descy, Jean-Pierre; Borges, Alberto V.

    2013-04-01

    If rates of microbial denitrification in aquatic systems are poorly constrained, it is much more the case for tropical water bodies. Lake Kivu [2.50° S 1.59° S, 29.37° E 28.83° E] is one of the great lakes of the East African Rift. It is an oligotrophic lake characterized by anoxic deep waters rich in dissolved gases (methane and carbon dioxide) and nutrients, and by well oxygenated and nutrient-depleted surface waters. During the seasonally stratified rainy season (October to May), a nitrogenous zone characterized by the accumulation of nitrite (NO2-) and nitrate (NO3-) is often observed in the lower layer of the mixolimnion. It results from nitrification of ammonium released by decaying organic matter. With the seasonal uplift of the oxygen minimum zone, the nitrogenous zone becomes anoxic and might be the most preferential area for fixed nitrogen (N) removal in Lake Kivu. Our work aimed at identifying and quantifying the processes of N losses by denitrification and/or anammox in the nitrogenous zone of the Lake Kivu water column. During 5 sampling campaigns (March 2010, October 2010, June 2011, February 2012 and September 2012), isotopic labelling experiments were used to quantify denitrification and anammox rates along vertical profiles at two pelagic stations of the main lake. Moreover, N2:Ar ratios were estimated during the September 2012 campaign, and 16S rDNA pyrosequencing was used to describe bacterial community composition during the last 2 campaigns. No bacteria related to organisms performing anammox was observed and labelling experiments failed to detect anammox at any locations and any depths. In Lake Kivu, denitrifying bacteria were mainly related to Denitratisoma and Thiobacillus genus. Significant denitrification rates were observed at several occasions, especially under the oxic-anoxic interface in the bottom of the nitracline. The annual average denitrification rate was estimated at ~150 μmoles N m-2 d-1. Denitrification was not the only

  18. Using low frequency and intensity ultrasound to enhance start-up and operation performance of Anammox process inoculated with the conventional sludge.

    Science.gov (United States)

    Wang, Tao; Zhang, Diandian; Sun, Yating; Zhou, Shanshan; Li, Lin; Shao, Jingjing

    2018-04-01

    A lab-scale ultrasound enhancing Anammox reactor (R1) was established and irradiated once a week by ultrasound with the optimal parameter (frequency of 25 kHz, intensity of 0.2 W cm -2 and exposure time of 3 min) obtained by batch experiments. R1 and the controlled Anammox reactor (R2) without exposure to the ultrasound were operated in parallel. The start-up period of Anammox process (53 days) in R1 was shorter than that (61 days) in R2. The nitrogen loading-enhancing period (day 53-day 135) in R1 was also shorter than that (day 61-day 151) in R2. At the end of the nitrogen loading-enhancing period, NLR (0.76 kg N m -3  d -1 ) and NRR (0.68 kg N m -3  d -1 ) of R1 were both higher than NLR (0.66 kg N m -3  d -1 ) and NRR (0.56 kg N m -3  d -1 ) of R2. Moreover, The stability of Anammox process in R1 was better than that in R2. The results demonstrated that the periodical irradiation of ultrasound enhanced the start-up and operational performance of Anammox reactor. Microbial community analysis indicated that the ultrasound accelerated the microbial succession from some other bacteria to Anammox bacteria so that shorten the start-up period of Anammox process from the conventional activated sludge. It also indicated that the ultrasound strengthened the competitive advantage of Candidatus Kuenenia stuttgartiensis in Anammox bacteria of the mature sludge so as to enhance the nitrogen removal performance of the Anammox reactor under the operation condition of high nitrogen loading. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Mathematical modeling of nitrous oxide production in an anaerobic/oxic/anoxic process.

    Science.gov (United States)

    Ding, Xiaoqian; Zhao, Jianqiang; Hu, Bo; Chen, Ying; Ge, Guanghuan; Li, Xiaoling; Wang, Sha; Gao, Kun; Tian, Xiaolei

    2016-12-01

    This study incorporates three currently known nitrous oxide (N 2 O) production pathways: ammonium-oxidizing bacteria (AOB) denitrification, incomplete hydroxylamine (NH 2 OH) oxidation, and heterotrophic denitrification on intracellular polymers, into a mathematical model to describe N 2 O production in an anaerobic/oxic/anoxic (AOA) process for the first time. The developed model was calibrated and validated by four experimental cases, then evaluated by two independent anaerobic/aerobic (AO) studies from literature. The modeling results displayed good agreement with the measured data. N 2 O was primarily generated in the aerobic stage by AOB denitrification (67.84-81.64%) in the AOA system. Smaller amounts of N 2 O were produced via incomplete NH 2 OH oxidation (15.61-32.17%) and heterotrophic denitrification on intracellular polymers (0-12.47%). The high nitrite inhibition on N 2 O reductase led to the increased N 2 O accumulation in heterotrophic denitrification on intracellular polymers. The new model was capable of modeling nitrification-denitrification dynamics and heterotrophic denitrification on intracellular polymers in the AOA system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Selection of controlled variables in bioprocesses. Application to a SHARON-Anammox process for autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Valverde Perez, Borja; Sin, Gürkan

    Selecting the right controlled variables in a bioprocess is challenging since the objectives of the process (yields, product or substrate concentration) are difficult to relate with a given actuator. We apply here process control tools that can be used to assist in the selection of controlled var...... variables to the case of the SHARON-Anammox process for autotrophic nitrogen removal....

  1. Impact of partial nitritation degree and C/N ratio on simultaneous Sludge Fermentation, Denitrification and Anammox process.

    Science.gov (United States)

    Wang, Bo; Peng, Yongzhen; Guo, Yuanyuan; Yuan, Yue; Zhao, Mengyue; Wang, Shuying

    2016-11-01

    This study presents a novel process (i.e. PN/SFDA) to remove nitrogen from low C/N domestic wastewater. The process mainly involves two reactors, a pre-Sequencing Batch Reactor for partial nitritation (termed as PN-SBR) and an anoxic reactor for integrated Denitrification and Anammox with carbon sources produced from Sludge Fermentation (termed as SFDA). During long-term Runs, NO2(-)/NH4(+) ratio (i.e. NO2(-)-N/NH4(+)-N calculated by mole) in the PN-SBR effluent was gradually increased from 0.2 to 37 by extending aerobic duration, meaning that partial nitritation turning to full nitritation could be achieved. Impact of partial nitritation degree on SFDA process was investigated and the result showed that, NO2(-)/NH4(+) ratios between 2 and 10 were appropriate for the co-existence of denitrification and anammox together in the SFDA reactor, and denitrification instead of anammox contributed greater for nitrogen removal. Further batch tests indicated that anammox collaborated well with denitrification at low C/N (1.0 in this study). Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Anaerobic treatment techniques

    International Nuclear Information System (INIS)

    Boehnke, B.; Bischofsberger, W.; Seyfried, C.F.

    1993-01-01

    This practical and theoretical guide presents the current state of knowledge in anaerobic treatment of industrial effluents with a high organic pollutant load and sewage sludges resulting from the treatment of municipal and industrial waste water. Starting from the microbiological bases of anaerobic degradation processes including a description and critical evaluation of executed plants, the book evolves the process-technical bases of anaerobic treatment techniques, derives relative applications, and discusses these with reference to excuted examples. (orig./UWA). 232 figs [de

  3. Model-based evaluation of the role of Anammox on nitric oxide and nitrous oxide productions in membrane aerated biofilm reactor

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Smets, Barth F.; Yuan, Zhiguo

    2013-01-01

    A multispecies one-dimensional biofilm model considering nitric oxide (NO) and nitrous oxide (N2O) productions for membrane aerated biofilm reactor (MABR) that remove nitrogen autotrophically through aerobic ammonia oxidation followed by Anammox is used to study the role of Anammox activity...... on the total nitrogen (TN) removal and the productions of NO and N2O. The model is applied to evaluate how periodic aeration as a control parameter reduces NO and N2O production but maintains high TN removal in MABR. The simulation results show over 3.5% of the removed TN could be attributed to NO and N2O...... production in MABR under the operational conditions optimal for TN removal (72%). An analysis of factors governing the Anammox activity in MABR shows that enhancing Anammox activity not only helps to achieve a high level of nitrogen removal but also reduces NO and N2O productions. Comparison of aeration...

  4. pH variation and influence in an autotrophic nitrogen removing biofilm system using an efficient numerical solution strategy

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Valverde Perez, Borja

    2013-01-01

    A pH simulator consisting of an efficient numerical solver of a system of nine nonlinear equations was constructed and implemented in the modeling software MATLAB. The pH simulator was integrated in a granular biofilm model and used to simulate the pH profiles within granules performing...... the nitritation-anammox process for a range of operating points. The simulation results showed that pH profiles were consistently increasing with increasing depth into the granule, since the proton producing aerobic ammonium oxidizers (AOB) were located close to the granule surface.Despite this pH profile, more...... NH3 was available for AOB than for anaerobic ammonium oxidizers (AnAOB), located in the center of the granules. However, operating at a higher oxygen loading resulted in steeper changes in pH over the depth of the granule and caused the NH3 concentration profile to increase from the granule surface...

  5. Dissolved methane oxidation and competition for oxygen in down-flow hanging sponge reactor for post-treatment of anaerobic wastewater treatment.

    Science.gov (United States)

    Hatamoto, Masashi; Miyauchi, Tomo; Kindaichi, Tomonori; Ozaki, Noriatsu; Ohashi, Akiyoshi

    2011-11-01

    Post-treatment of anaerobic wastewater was undertaken to biologically oxidize dissolved methane, with the aim of preventing methane emission. The performance of dissolved methane oxidation and competition for oxygen among methane, ammonium, organic matter, and sulfide oxidizing bacteria were investigated using a lab-scale closed-type down-flow hanging sponge (DHS) reactor. Under the oxygen abundant condition of a hydraulic retention time of 2h and volumetric air supply rate of 12.95m(3)-airm(-3)day(-1), greater than 90% oxidation of dissolved methane, ammonium, sulfide, and organic matter was achieved. With reduction in the air supply rate, ammonium oxidation first ceased, after which methane oxidation deteriorated. Sulfide oxidation was disrupted in the final step, indicating that COD and sulfide oxidation occurred prior to methane oxidation. A microbial community analysis revealed that peculiar methanotrophic communities dominating the Methylocaldum species were formed in the DHS reactor operation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Success of mainstream partial nitritation/anammox demands integration of engineering, microbiome and modeling insights.

    Science.gov (United States)

    Agrawal, Shelesh; Seuntjens, Dries; Cocker, Pieter De; Lackner, Susanne; Vlaeminck, Siegfried E

    2018-04-01

    Twenty years ago, mainstream partial nitritation/anammox (PN/A) was conceptually proposed as pivotal for a more sustainable treatment of municipal wastewater. Its economic potential spurred research, yet practice awaits a comprehensive recipe for microbial resource management. Implementing mainstream PN/A requires transferable and operable ways to steer microbial competition as to meet discharge requirements on a year-round basis at satisfactory conversion rates. In essence, the competition for nitrogen, organic carbon and oxygen is grouped into 'ON/OFF' (suppression/promotion) and 'IN/OUT' (wash-out/retention and seeding) strategies, selecting for desirable conversions and microbes. Some insights need mechanistic understanding, while empirical observations suffice elsewhere. The provided methodological R&D framework integrates insights in engineering, microbiome and modeling. Such synergism should catalyze the implementation of energy-positive sewage treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Anammox for ammonia removal from pig manure effluents: Effect of organic matter content on process performance

    DEFF Research Database (Denmark)

    Salces, Beatriz Molinuevo; García, M. C.; Karakashev, Dimitar Borisov

    2009-01-01

    oxidation) diluted with synthetic wastewater. High ammonium removal was achieved, up to 92.1 +/- 4.9% for diluted UASB-post-digested effluent (95 mg COD L-1) and up to 98.5 +/- 0.8% for diluted partially oxidized effluent (121 mg COD L-1). Mass balance clearly showed that an increase in organic loading......The anammox process, under different organic loading rates (COD), was evaluated using a semi-continous UASB reactor at 37 degrees C. Three different substrates were used: initially, synthetic wastewater, and later, two different pig manure effluents (after UASB-post-digestion and after partial...... improved ammonium removal at high organic matter concentration. Up to threshold organic load concentration of 142 mg COD L-1 of UASB-post-digested effluent and 242 mg COD L-1 of partially oxidized effluent, no effect of organic loading on ammonia removal was registered (ammonium removal was above 80...

  8. Anaerobic Digestion and its Applications

    Science.gov (United States)

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  9. 454-Pyrosequencing Analysis of Bacterial Communities from Autotrophic Nitrogen Removal Bioreactors Utilizing Universal Primers: Effect of Annealing Temperature.

    Science.gov (United States)

    Gonzalez-Martinez, Alejandro; Rodriguez-Sanchez, Alejandro; Rodelas, Belén; Abbas, Ben A; Martinez-Toledo, Maria Victoria; van Loosdrecht, Mark C M; Osorio, F; Gonzalez-Lopez, Jesus

    2015-01-01

    Identification of anaerobic ammonium oxidizing (anammox) bacteria by molecular tools aimed at the evaluation of bacterial diversity in autotrophic nitrogen removal systems is limited by the difficulty to design universal primers for the Bacteria domain able to amplify the anammox 16S rRNA genes. A metagenomic analysis (pyrosequencing) of total bacterial diversity including anammox population in five autotrophic nitrogen removal technologies, two bench-scale models (MBR and Low Temperature CANON) and three full-scale bioreactors (anammox, CANON, and DEMON), was successfully carried out by optimization of primer selection and PCR conditions (annealing temperature). The universal primer 530F was identified as the best candidate for total bacteria and anammox bacteria diversity coverage. Salt-adjusted optimum annealing temperature of primer 530F was calculated (47°C) and hence a range of annealing temperatures of 44-49°C was tested. Pyrosequencing data showed that annealing temperature of 45°C yielded the best results in terms of species richness and diversity for all bioreactors analyzed.

  10. 454-Pyrosequencing Analysis of Bacterial Communities from Autotrophic Nitrogen Removal Bioreactors Utilizing Universal Primers: Effect of Annealing Temperature

    Directory of Open Access Journals (Sweden)

    Alejandro Gonzalez-Martinez

    2015-01-01

    Full Text Available Identification of anaerobic ammonium oxidizing (anammox bacteria by molecular tools aimed at the evaluation of bacterial diversity in autotrophic nitrogen removal systems is limited by the difficulty to design universal primers for the Bacteria domain able to amplify the anammox 16S rRNA genes. A metagenomic analysis (pyrosequencing of total bacterial diversity including anammox population in five autotrophic nitrogen removal technologies, two bench-scale models (MBR and Low Temperature CANON and three full-scale bioreactors (anammox, CANON, and DEMON, was successfully carried out by optimization of primer selection and PCR conditions (annealing temperature. The universal primer 530F was identified as the best candidate for total bacteria and anammox bacteria diversity coverage. Salt-adjusted optimum annealing temperature of primer 530F was calculated (47°C and hence a range of annealing temperatures of 44–49°C was tested. Pyrosequencing data showed that annealing temperature of 45°C yielded the best results in terms of species richness and diversity for all bioreactors analyzed.

  11. Anaerobic Digestion Foaming Causes

    OpenAIRE

    Ganidi, Nafsika

    2008-01-01

    Anaerobic digestion foaming has been encountered in several sewage treatment plants in the UK. Foaming has raised major concerns for the water utilities due to significant impacts on process efficiency and operational costs. Several foaming causes have been suggested over the past few years by researchers. However, the supporting experimental information is limited and in some cases site specific. The present report aimed to provide a better understanding of the anaerobic di...

  12. Anaerobic prosthetic joint infection.

    Science.gov (United States)

    Shah, Neel B; Tande, Aaron J; Patel, Robin; Berbari, Elie F

    2015-12-01

    In an effort to improve mobility and alleviate pain from degenerative and connective tissue joint disease, an increasing number of individuals are undergoing prosthetic joint replacement in the United States. Joint replacement is a highly effective intervention, resulting in improved quality of life and increased independence [1]. By 2030, it is predicted that approximately 4 million total hip and knee arthroplasties will be performed yearly in the United States [2]. One of the major complications associated with this procedure is prosthetic joint infection (PJI), occurring at a rate of 1-2% [3-7]. In 2011, the Musculoskeletal Infectious Society created a unifying definition for prosthetic joint infection [8]. The following year, the Infectious Disease Society of America published practice guidelines that focused on the diagnosis and management of PJI. These guidelines focused on the management of commonly encountered organisms associated with PJI, including staphylococci, streptococci and select aerobic Gram-negative bacteria. However, with the exception of Propionibacterium acnes, management of other anaerobic organisms was not addressed in these guidelines [1]. Although making up approximately 3-6% of PJI [9,10], anaerobic microorganisms cause devastating complications, and similar to the more common organisms associated with PJI, these bacteria also result in significant morbidity, poor outcomes and increased health-care costs. Data on diagnosis and management of anaerobic PJI is mostly derived from case reports, along with a few cohort studies [3]. There is a paucity of published data outlining factors associated with risks, diagnosis and management of anaerobic PJI. We therefore reviewed available literature on anaerobic PJI by systematically searching the PubMed database, and collected data from secondary searches to determine information on pathogenesis, demographic data, clinical features, diagnosis and management. We focused our search on five commonly

  13. Modeling of Nitrous Oxide Production from Nitritation Reactors Treating Real Anaerobic Digestion Liquor.

    Science.gov (United States)

    Wang, Qilin; Ni, Bing-Jie; Lemaire, Romain; Hao, Xiaodi; Yuan, Zhiguo

    2016-04-29

    In this work, a mathematical model including both ammonium oxidizing bacteria (AOB) and heterotrophic bacteria (HB) is constructed to predict N2O production from the nitritation systems receiving the real anaerobic digestion liquor. This is for the first time that N2O production from such systems was modeled considering both AOB and HB. The model was calibrated and validated using experimental data from both lab- and pilot-scale nitritation reactors. The model predictions matched the dynamic N2O, ammonium, nitrite and chemical oxygen demand data well, supporting the capability of the model. Modeling results indicated that HB are the dominant contributor to N2O production in the above systems with the dissolved oxygen (DO) concentration of 0.5-1.0 mg O2/L, accounting for approximately 75% of N2O production. The modeling results also suggested that the contribution of HB to N2O production decreased with the increasing DO concentrations, from 75% at DO = 0.5 mg O2/L to 25% at DO = 7.0 mg O2/L, with a corresponding increase of the AOB contribution (from 25% to 75%). Similar to HB, the total N2O production rate also decreased dramatically from 0.65 to 0.25 mg N/L/h when DO concentration increased from 0.5 to 7.0 mg O2/L.

  14. Isolation and Cultivation of Anaerobes

    DEFF Research Database (Denmark)

    Aragao Börner, Rosa

    2016-01-01

    Anaerobic microorganisms play important roles in different biotechnological processes. Their complex metabolism and special cultivation requirements have led to less isolated representatives in comparison to their aerobic counterparts.In view of that, the isolation and cultivation of anaerobic...

  15. Anaerobes in bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Aggarwal A

    2003-01-01

    Full Text Available Four hundred high vaginal swabs were taken from patients attending gynaecology and obstetrics department of Govt. medical college, Amritsar. The patients were divided into four groups i.e. women in pregnancy (Group I, in labour/post partum (Group II, with abnormal vaginal discharge or bacterial vaginosis (Group III and asymptomatic women as control (Group IV. Anaerobic culture of vaginal swabs revealed that out of 400 cases, 212(53% were culture positive. Maximum isolation of anaerobes was in group III (84% followed by group II (56%, group I (36% and control group (15%. Gram positive anaerobes (69.2% out numbered gram negatives (30.8%. Among various isolates Peptostreptococcus spp. and Bacteroides spp. were predominant.

  16. Preservation and reactivation of Candidatus Jettenia asiatica and Anammoxoglobus propionicus using different preservative agents.

    Science.gov (United States)

    Viancelli, A; Pra, M C; Scussiato, L A; Cantão, M; Ibelli, A M G; Kunz, A

    2017-11-01

    Anaerobic ammonium oxidation (anammox) bacteria have peculiar characteristics that make them difficult to cultivate. The conservation of these microorganisms in culture collections or laboratories requires successful preservation and reactivation techniques. Furthermore, studies have shown that successful reactivation may be preservative dependent. Considering this, the present study aimed to evaluate the preservation and reactivation of anammox consortia enriched from swine manure treatment lagoons, by using different preservative agents at different temperatures: KNO 3 (at 4 °C), glycerol (-20 °C, -80 °C), and skimmed cow milk (-20 °C, -80 °C, -200 °C). After 4 months, the biomass was thawed (except for KNO 3 ), and the reestablishment of anammox activity was evaluated by stoichiometric coefficients. Microbial community transformation during the reactivation process was also studied by 16S rDNA sequence analysis. The results showed that the anammox biomass preserved with glycerol or skimmed cow milk at -80 °C recovered activity, while the biomass preserved with other methodologies did not reestablish activity during the studied time (90 days). The bacterial community from the biomass with anammox activity was characterized and showed the presence of Candidatus Brocadia anammoxidans, Candidatus Jettenia asiatica, and Candidatus Anammoxoglobus propionicus. Preservation with skimmed cow milk at -80 °C favored the selection of Candidatus Anammoxoglobus propionicus, while preservation with glycerol at -80 °C was successful for Candidatus Jettenia asiatica. The present study was effective on anammox sludge preservation and reactivation using low-cost processes for anammox cultures preservation, which is important for biomass transport and deammonification reactor start up. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A network model shows the importance of coupled processes in the microbial N cycle in the Cape Fear River Estuary

    Science.gov (United States)

    Hines, David E.; Lisa, Jessica A.; Song, Bongkeun; Tobias, Craig R.; Borrett, Stuart R.

    2012-06-01

    Estuaries serve important ecological and economic functions including habitat provision and the removal of nutrients. Eutrophication can overwhelm the nutrient removal capacity of estuaries and poses a widely recognized threat to the health and function of these ecosystems. Denitrification and anaerobic ammonium oxidation (anammox) are microbial processes responsible for the removal of fixed nitrogen and diminish the effects of eutrophication. Both of these microbial removal processes can be influenced by direct inputs of dissolved inorganic nitrogen substrates or supported by microbial interactions with other nitrogen transforming pathways such as nitrification and dissimilatory nitrate reduction to ammonium (DNRA). The coupling of nitrogen removal pathways to other transformation pathways facilitates the removal of some forms of inorganic nitrogen; however, differentiating between direct and coupled nitrogen removal is difficult. Network modeling provides a tool to examine interactions among microbial nitrogen cycling processes and to determine the within-system history of nitrogen involved in denitrification and anammox. To examine the coupling of nitrogen cycling processes, we built a nitrogen budget mass balance network model in two adjacent 1 cm3 sections of bottom water and sediment in the oligohaline portion of the Cape Fear River Estuary, NC, USA. Pathway, flow, and environ ecological network analyses were conducted to characterize the organization of nitrogen flow in the estuary and to estimate the coupling of nitrification to denitrification and of nitrification and DNRA to anammox. Centrality analysis indicated NH4+ is the most important form of nitrogen involved in removal processes. The model analysis further suggested that direct denitrification and coupled nitrification-denitrification had similar contributions to nitrogen removal while direct anammox was dominant to coupled forms of anammox. Finally, results also indicated that partial

  18. Perspectives for anaerobic digestion

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    2003-01-01

    The modern society generates large amounts of waste that represent a tremendous threat to the environment and human and animal health. To prevent and control this, a range of different waste treatment and disposal methods are used. The choice of method must always be based on maximum safety...... to the soil. Anaerobic digestion (AD) is one way of achieving this goal and it will furthermore, reduce energy consumption or may even be net energy producing. This chapter aims at provide a basic understanding of the world in which anaerobic digestion is operating today. The newest process developments...

  19. Roles of EDTA washing and Ca{sup 2+} regulation on the restoration of anammox granules inhibited by copper(II)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zheng-Zhe; Cheng, Ya-Fei; Zhou, Yu-Huang; Buayi, Xiemuguli [Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou 310036 (China); Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036 (China); Jin, Ren-Cun, E-mail: jrczju@aliyun.com [Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou 310036 (China); Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036 (China)

    2016-01-15

    Highlights: • 80.5% of the Cu in anammox granules was introduced via adsorption. • Cu(II) internalized on/into AnAOB cells plays a crucial role in toxicity. • EDTA washing contributes to the detoxification of anammox granules. • Ca{sup 2+} can stimulate the re-growth of damaged anammox consortium. - Abstract: We investigated the feasibility of using ethylene diamine tetraacetic acid (EDTA) washing followed by Ca{sup 2+} enhancement for the recovery of anammox reactors inhibited by Cu(II). Kinetic experiments and batch activity assays were employed to determine the optimal concentration of EDTA and washing time; and the performance and physiological dynamics were tracked by continuous-flow monitoring to evaluate the long-term effects. The two-step desorption process revealed that the Cu in anammox granules was primarily introduced via adsorption (approximately, 80.5%), and the portion of Cu in the dispersible layer was predominant (accounting for 71.1%). Afterwards, the Cu internalized in the cells (approximately, 14.7%) could diffuse out of the cells and be gradually washed out of the reactor over the next 20 days. The Ca{sup 2+} addition that followed led to an accelerated nitrogen removal rate recovery slope (0.1491 kgN m{sup −3} d{sup −2}) and a normal biomass growth rate (0.054 d{sup −1}). The nitrogen removal rate returned to normal levels within 90 days and gradual improvements in granular characteristics were also achieved. Therefore, this study provides a new insight that externally removing the adsorbed heavy metals followed by internally repairing the metabolic system may represent an optimal restoration strategy for anammox consortium damaged by heavy metals.

  20. Fixed-nitrogen loss associated with sinking zooplankton carcasses in a coastal oxygen minimum zone (Golfo Dulce, Costa Rica)

    DEFF Research Database (Denmark)

    Stief, Peter; Lundgaard, Ann Sofie Birch; Morales Ramirez, Alvaro

    2017-01-01

    Oxygen minimum zones (OMZs) in the ocean are of key importance for pelagic fixed-nitrogen loss (N-loss) through microbial denitrification and anaerobic ammonium oxidation (anammox). Recent studies document that zooplankton is surprisingly abundant in and around OMZs and that the microbial community...... associated with carcasses of a large copepod species mediates denitrification. Here, we investigate the complex N-cycling associated with sinking zooplankton carcasses exposed to the steep O2 gradient in a coastal OMZ (Golfo Dulce, Costa Rica). 15N-stable-isotope enrichment experiments revealed...... that the carcasses of abundant copepods and ostracods provide anoxic microbial hotspots in the pelagic zone by hosting intense anaerobic N-cycle activities even in the presence of ambient O2. Carcass-associated anaerobic N-cycling was clearly dominated by dissimilatory nitrate reduction to ammonium (DNRA) at up...

  1. Bio digester : anaerobic methanogenesis

    NARCIS (Netherlands)

    Bullema, Marten; Hulzen, Hans; Keizer, Melvin; Pruisscher, Gerlof; Smint, Martin; Vincent, Helene

    2014-01-01

    As part of the theme 13 and 14, our group have to realize a project in the field of the renewable energy. This project consist of the design of a bio-digester for the canteen of Zernikeplein. Gert Hofstede is our client. To produce energy, a bio-digester uses the anaerobic digestion, which is made

  2. Anaerobic biotransformation of estrogens

    International Nuclear Information System (INIS)

    Czajka, Cynthia P.; Londry, Kathleen L.

    2006-01-01

    Estrogens are important environmental contaminants that disrupt endocrine systems and feminize male fish. We investigated the potential for anaerobic biodegradation of the estrogens 17-α-ethynylestradiol (EE2) and 17-β-estradiol (E2) in order to understand their fate in aquatic and terrestrial environments. Cultures were established using lake water and sediment under methanogenic, sulfate-, iron-, and nitrate-reducing conditions. Anaerobic degradation of EE2 (added at 5 mg/L) was not observed in multiple trials over long incubation periods (over three years). E2 (added at 5 mg/L) was transformed to estrone (E1) under all four anaerobic conditions (99-176 μg L -1 day -1 ), but the extent of conversion was different for each electron acceptor. The oxidation of E2 to E1 was not inhibited by E1. Under some conditions, reversible inter-conversion of E2 and E1 was observed, and the final steady state concentration of E2 depended on the electron-accepting condition but was independent of the total amount of estrogens added. In addition, racemization occurred and E1 was also transformed to 17-α-estradiol under all but nitrate-reducing conditions. Although E2 could be readily transformed to E1 and in many cases 17-α-estradiol under anaerobic conditions, the complete degradation of estrogens under these conditions was minimal, suggesting that they would accumulate in anoxic environments

  3. The anaerobic digestion process

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States); Boone, D.R. [Oregon Graduate Inst., Portland, OR (United States)

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  4. Anaerobic treatment in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Del Borghi, M; Solisio, C; Ferrailo, G

    1984-02-01

    In Italy, environmental protection and energy conservation have become very important since the increase in oil prices. The law requires that all waste waters have a B.O.D. of 40 mg/l by 1986 so there has been an expansion of purification plants since 1976, using anaerobic digestion. The report deals with the current state of anaerobic treatment in Italy with particular reference to (1) animal wastes. In intensive holdings, anaerobic digestion leads to a decrease in pollution and an increase in biogas generation which can be used to cover the energy demand of the process. The factors which influence the builders of digestors for farms are considered. (2) Non toxic industrial wastes. These are the waste waters emanating from the meat packing, brewing, pharmaceutical and chemical industries. Particular reference is made to the distillery plants using anaerobic treatment prior to aerobic digestion. (3) Urban wastes. The advantages and the disadvantages are considered and further research and development is recommended. 20 references.

  5. Anaerobic biological treatment

    International Nuclear Information System (INIS)

    Speece, R.E.

    1990-01-01

    The Enso-Fenox process has been very successfully used to remove chlorinated phenolic compounds from pulp bleaching effluents. It is a two-stage anaerobic/aerobic process consisting of a nonmethanogenic anaerobic fluidized bed followed by a trickling filter. Studies have been conducted on reductive dechlorination of chlorinated aromatic compounds under anaerobic conditions with chlorinated phenols as the sole carbon and energy source. Approximately 40% of the added chlorophenols was converted to CH 4 and CO 2 . Substrate loading rates were 20 mg/L/d at hydraulic detention times of 2-4 days with 90% substrate conversion efficiency. Reductive dechlorination of mono, di-, tri-, and pentachlorophenols has been demonstrated in anaerobic sewage sludge. The following constituents were tested in the laboratory at their approximate concentrations in coal conversion wastewater (CCWW) and were anaerobically degraded in serum bottles: 1,000 mg/L phenol; 500 mg/L resorcinol; 1,000 mg/L benzoic acid; 500 mg/L p-cresol; 200 mg/L pyridine; 2,000 mg/L benzoic acid; 250 mg/L 40 methylcatechol; 500 mg/L 4-ethylpyridine; and 2,000 mg/L hexanoic acid. A petrochemical may initially exhibit toxicity to an unacclimated population of methane-fermenting bacteria, but with acclimation the toxicity may be greatly reduced or disappear. In addition, the microorganisms may develop the capacity to actually degrade compounds which showed initial toxicity. Since biomass digestion requires a complete consortium of bacteria, it is relevant to study the effect of a given process as well as to individual steps within the process. A toxicant can inhibit the rate-limiting step and/or change the step that is rate-limiting. Both manifestations of toxicity can severely affect the overall process

  6. Pathways and Controls of N2O Production in Nitritation-Anammox Biomass

    DEFF Research Database (Denmark)

    Ma, Chun; Jensen, Marlene Mark; Smets, Barth F.

    2017-01-01

    to investigate pathways and controls of N2O production by biomass taken from a full-scale nitritation-anammox reactor. The experiments showed that heterotrophic denitrification was a negligible source of N2O under oxic conditions (≥0.2 mg O2 L-1). Both hydroxylamine oxidation and nitrifier denitrification...... of N2O production from hydroxylamine oxidation at low O2 was unexpected and suggests that more than one enzymatic pathway may be involved in this process. N2O production by hydroxylamine oxidation was further stimulated by NH4+, whereas nitrifier denitrification at low O2 levels was stimulated by NO2...

  7. Nitrogen reduction pathways in estuarine sediments: Influences of organic carbon and sulfide

    Science.gov (United States)

    Plummer, Patrick; Tobias, Craig; Cady, David

    2015-10-01

    Potential rates of sediment denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) were mapped across the entire Niantic River Estuary, CT, USA, at 100-200 m scale resolution consisting of 60 stations. On the estuary scale, denitrification accounted for ~ 90% of the nitrogen reduction, followed by DNRA and anammox. However, the relative importance of these reactions to each other was not evenly distributed through the estuary. A Nitrogen Retention Index (NIRI) was calculated from the rate data (DNRA/(denitrification + anammox)) as a metric to assess the relative amounts of reactive nitrogen being recycled versus retained in the sediments following reduction. The distribution of rates and accompanying sediment geochemical analytes suggested variable controls on specific reactions, and on the NIRI, depending on position in the estuary and that these controls were linked to organic carbon abundance, organic carbon source, and pore water sulfide concentration. The relationship between NIRI and organic carbon abundance was dependent on organic carbon source. Sulfide proved the single best predictor of NIRI, accounting for 44% of its observed variance throughout the whole estuary. We suggest that as a single metric, sulfide may have utility as a proxy for gauging the distribution of denitrification, anammox, and DNRA.

  8. Early anaerobic metabolisms

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene; Rosing, Minik T; Bjerrum, Christian

    2006-01-01

    probably driven by the cycling of H2 and Fe2+ through primary production conducted by anoxygenic phototrophs. Interesting and dynamic ecosystems would have also been driven by the microbial cycling of sulphur and nitrogen species, but their activity levels were probably not so great. Despite the diversity......Before the advent of oxygenic photosynthesis, the biosphere was driven by anaerobic metabolisms. We catalogue and quantify the source strengths of the most probable electron donors and electron acceptors that would have been available to fuel early-Earth ecosystems. The most active ecosystems were...... of potential early ecosystems, rates of primary production in the early-Earth anaerobic biosphere were probably well below those rates observed in the marine environment. We shift our attention to the Earth environment at 3.8Gyr ago, where the earliest marine sediments are preserved. We calculate, consistent...

  9. Anaerobic azo dye reduction

    OpenAIRE

    Zee, van der, F.P.

    2002-01-01

    Azo dyes, aromatic moieties linked together by azo (-N=N-) chromophores, represent the largest class of dyes used in textile-processing and other industries. The release of these compounds into the environment is undesirable, not only because of their colour, but also because many azo dyes and their breakdown products are toxic and/or mutagenic to life. To remove azo dyes from wastewater, a biological treatment strategy based on anaerobic reduction of the azo dye...

  10. Nitrous oxide production in intermittently aerated Partial Nitritation-Anammox reactor: oxic N2O production dominates and relates with ammonia removal rate

    DEFF Research Database (Denmark)

    Blum, Jan-Michael; Jensen, Marlene Mark; Smets, Barth F.

    2018-01-01

    Emissions of the greenhouse gas nitrous oxide from the Partial Nitritation-Anammox process are of concern and can determine the carbon footprint of the process. In order to reduce nitrous oxide emissions intermittent aeration regimes have been shown to be a promising mode of operation, possibly due...

  11. Changes in the ammonia-oxidizing bacteria community in response to operational parameters during the treatment of anaerobic sludge digester supernatant.

    Science.gov (United States)

    Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena; Bernat, Katarzyna; Kulikowska, Dorota; Wojnowska-Baryła, Irena

    2012-07-01

    The understanding of the relationship between ammoniaoxidizing bacteria (AOB) communities in activated sludge and the operational treatment parameters supports the control of the treatment of ammonia-rich wastewater. The modifications of treatment parameters by alteration of the number and length of aerobic and anaerobic stages in the sequencing batch reactor (SBR) working cycle may influence the efficiency of ammonium oxidation and induce changes in the AOB community. Therefore, in the research, the impact of an SBR cycle mode with alternating aeration/ mixing conditions (7 h/1 h vs. 4 h/5.5 h) and volumetric exchange rate (n) on AOB abundance and diversity in activated sludge during the treatment of anaerobic sludge digester supernatant at limited oxygen concentration in the aeration stage (0.7 mg O2/l) was assessed. AOB diversity expressed by the Shannon-Wiener index (H') was determined by the cycle mode. At aeration/mixing stage lengths of 7 h/1 h, H' averaged 2.48 +/- 0.17, while at 4 h/ 5.5 h it was 2.35 +/- 0.16. At the given mode, AOB diversity decreased with increasing n. The cycle mode did not affect AOB abundance; however, a higher AOB abundance in activated sludge was promoted by decreasing the volumetric exchange rate. The sequences clustering with Nitrosospira sp. NpAV revealed the uniqueness of the AOB community and the simultaneously lower ability of adaptation of Nitrosospira sp. to the operational parameters applied in comparison with Nitrosomonas sp.

  12. New perspectives in anaerobic digestion

    DEFF Research Database (Denmark)

    van Lier, J.B.; Tilche, A.; Ahring, Birgitte Kiær

    2001-01-01

    The IWA specialised group on anaerobic digestion (AD) is one of the oldest working groups of the former IAWQ organisation. Despite the fact that anaerobic technology dates back more than 100 years, the technology is still under development, adapting novel treatment systems to the modern...... requirements. In fact, most advances were achieved during the last three decades, when high-rate reactor systems were developed and a profound insight was obtained in the microbiology of the anaerobic communities. This insight led to a better understanding of anaerobic treatment and, subsequently, to a broader...

  13. [Anaerobic bacteria isolated from patients with suspected anaerobic infections].

    Science.gov (United States)

    Ercis, Serpil; Tunçkanat, Ferda; Hasçelik, Gülşen

    2005-10-01

    The study involved 394 clinical samples sent to the Clinical Microbiology Laboratory of Hacettepe University Adult Hospital between January 1997 and May 2004 for anaerobic cultivation. Since multiple cultures from the same clinical samples of the same patient were excluded, the study was carried on 367 samples. The anaerobic cultures were performed in anaerobic jar using AnaeroGen kits (Oxoid, Basingstoke, U.K.) or GENbox (bioMérieux, Lyon, France). The isolates were identified by both classical methods and "BBL Crystal System" (Becton Dickinson, U.S.A.). While no growth was detected in 120 (32.7%) of the clinical samples studied, in 144 samples (39.2%) only aerobes, in 28 (7.6%) only anaerobes and in 75 (20.5%) of the samples both aerobes and anaerobes were isolated. The number of the anaerobic isolates was 217 from 103 samples with anaerobic growth. Of these 103 samples 15 showed single bacterial growth whereas in 88 samples multiple bacterial isolates were detected. Anaerobic isolates consisted of 92 Gram negative bacilli (Bacteroides spp. 50, Prevotella spp. 14, Porphyromonas spp. 10, Fusobacterium spp. 7, Tisierella spp. 2, unidentified 9), 57 Gram positive bacilli (Clostridium spp.17, Propionibacterium spp. 16, Lactobacillus spp. 8, Actinomyces spp. 5, Eubacterium spp. 2, Bifidobacterium adolescentis 1, Mobiluncus mulieris 1, unidentified nonspore forming rods 7), 61 Gram positive cocci (anaerobic cocci 44, microaerophilic cocci 17), and 7 Gram negative cocci (Veillonella spp.). In conclusion, in the samples studied with prediagnosis of anaerobic infection, Bacteroides spp. (23%) were the most common bacteria followed by anaerobic Gram positive cocci (20.3%) and Clostridium spp (7.8%).

  14. Biological oxidation of dissolved methane in effluents from anaerobic reactors using a down-flow hanging sponge reactor.

    Science.gov (United States)

    Hatamoto, Masashi; Yamamoto, Hiroki; Kindaichi, Tomonori; Ozaki, Noriatsu; Ohashi, Akiyoshi

    2010-03-01

    Anaerobic wastewater treatment plants discharge dissolved methane, which is usually not recovered. To prevent emission of methane, which is a greenhouse gas, we utilized an encapsulated down-flow hanging sponge reactor as a post-treatment to biologically oxidize dissolved methane. Within 3 weeks after reactor start-up, methane removal efficiency of up to 95% was achieved with a methane removal rate of 0.8 kg COD m(-3) day(-1) at an HRT of 2 h. After increasing the methane-loading rate, the maximum methane removal rate reached 2.2 kg COD m(-3) day(-1) at an HRT of 0.5 h. On the other hand, only about 10% of influent ammonium was oxidized to nitrate during the first period, but as airflow was increased to 2.5 L day(-1), nitrification efficiency increased to approximately 70%. However, the ammonia oxidation rate then decreased with an increase in the methane-loading rate. These results indicate that methane oxidation occurred preferentially over ammonium oxidation in the reactor. Cloning of the 16S rRNA and pmoA genes as well as phylogenetic and T-RFLP analyses revealed that type I methanotrophs were the dominant methane oxidizers, whereas type II methanotrophs were detected only in minor portion of the reactor. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Nitrogen Losses in Sediments of the East China Sea: Spatiotemporal Variations, Controlling Factors, and Environmental Implications

    Science.gov (United States)

    Lin, Xianbiao; Liu, Min; Hou, Lijun; Gao, Dengzhou; Li, Xiaofei; Lu, Kaijun; Gao, Juan

    2017-10-01

    Global reactive nitrogen (N) has increased dramatically in coastal marine ecosystems over the past decades and caused numerous eco-environmental problems. Coastal marine sediment plays a critical role in N losses via denitrification and anaerobic ammonium oxidation (anammox) and release of nitrous oxide (N2O). However, both the magnitude and contributions of denitrification, anammox, and N2O production in sediments still remain unclear, causing uncertainty in defining the N budget for coastal marine ecosystems. Here potential rates of N losses, and their contributions and controlling factors, were investigated in surface sediments during six cruises from 429 sites of the East China Sea. The potential rates of denitrification, anammox, and N2O production varied both spatially and seasonally, but the contribution of anammmox to total N2 production (%anammox) and N2O:N2 ratio only varied spatially. Both organic carbon and nitrate (NO3-) were important factors controlling N losses, N2O:N2 ratio, and %anammox. Our results also showed that marine organic carbon induced by eutrophication plays an important role in stimulating reactive N removal and increasing N2O production in warm seasons. The sediment N loss caused by denitrification, anammox, and N2O production in the study area were estimated at 2.2 × 106 t N yr-1, 4.6 × 105 t N yr-1, and 8 × 103 t N yr-1, respectively. Although sediments remove large quantities of reactive N, they act as an important source of N2O in this region influenced by NO3--laden rivers.

  16. New perspectives in anaerobic digestion.

    NARCIS (Netherlands)

    Lier, van J.B.; Tilche, A.; Ahring, B.K.; Macarie, H.; Moletta, R.; Dohanyos, M.; Hulshoff Pol, L.W.; Lens, P.N.L.; Verstraete, W.

    2001-01-01

    The IWA specialised group on anaerobic digestion (AD) is one of the oldest working groups of the former IAWQ organisation. Despite the fact that anaerobic technology dates back more than 100 years, the technology is still under development, adapting novel treatment systems to the modern

  17. Economic viability of anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Wellinger, A. [INFOENERGIE, Ettenhausen (Switzerland)

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  18. Anaerobic digestion of piggery waste

    NARCIS (Netherlands)

    Velsen, van A.F.M.

    1981-01-01

    Anaerobic digestion is a biological process by which organic matter is converted to methane and carbon dioxide by microbes in the absence of air (oxygen). In nature, anaerobic conversions occur at all places where organic material accumulates and the supply of oxygen is deficient, e.g. in marshes

  19. Influence of biomass acclimation on the performance of a partial nitritation-anammox reactor treating industrial saline effluents.

    Science.gov (United States)

    Giustinianovich, Elisa A; Campos, José-Luis; Roeckel, Marlene D; Estrada, Alejandro J; Mosquera-Corral, Anuska; Val Del Río, Ángeles

    2018-03-01

    The performance of the partial nitritation/anammox processes was evaluated for the treatment of fish canning effluents. A sequencing batch reactor (SBR) was fed with industrial wastewater, with variable salt and total ammonium nitrogen (TAN) concentrations in the range of 1.75-18.00 g-NaCl L -1 and 112 - 267 mg-TAN L -1 . The SBR operation was divided into two experiments: (A) progressive increase of salt concentrations from 1.75 to 18.33 g-NaCl L -1 ; (B) direct application of high salt concentration (18 g-NaCl L -1 ). The progressive increase of NaCl concentration provoked the inhibition of the anammox biomass by up to 94% when 18 g-NaCl L -1 were added. The stable operation of the processes was achieved after 154 days when the nitrogen removal rate was 0.021 ± 0.007 g N/L·d (corresponding to 30% of removal efficiency). To avoid the development of NOB activity at low salt concentrations and to stabilize the performance of the processes dissolved oxygen was supplied by intermittent aeration. A greater removal rate of 0.029 ± 0.017 g-N L -1 d -1 was obtained with direct exposure of the inoculum to 18 g-NaCl L -1 in less than 40 days. Also, higher specific activities than those from the inoculum were achieved for salt concentrations of 15 and 20 g-NaCl L -1 after 39 days of operation. This first study of the performance of the partial nitritation/anammox processes, to treat saline wastewaters, indicates that the acclimation period can be avoided to shorten the start-up period for industrial application purposes. Nevertheless, further experiments are needed in order to improve the efficiency of the processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Selected Topics in Anaerobic Bacteriology.

    Science.gov (United States)

    Church, Deirdre L

    2016-08-01

    Alteration in the host microbiome at skin and mucosal surfaces plays a role in the function of the immune system, and may predispose immunocompromised patients to infection. Because obligate anaerobes are the predominant type of bacteria present in humans at skin and mucosal surfaces, immunocompromised patients are at increased risk for serious invasive infection due to anaerobes. Laboratory approaches to the diagnosis of anaerobe infections that occur due to pyogenic, polymicrobial, or toxin-producing organisms are described. The clinical interpretation and limitations of anaerobe recovery from specimens, anaerobe-identification procedures, and antibiotic-susceptibility testing are outlined. Bacteriotherapy following analysis of disruption of the host microbiome has been effective for treatment of refractory or recurrent Clostridium difficile infection, and may become feasible for other conditions in the future.

  1. Anaerobic fungal populations

    International Nuclear Information System (INIS)

    Brookman, J.L.; Nicholson, M.J.

    2005-01-01

    The development of molecular techniques has greatly broadened our view of microbial diversity and enabled a more complete detection and description of microbial communities. The application of these techniques provides a simple means of following community changes, for example, Ishii et al. described transient and more stable inhabitants in another dynamic microbial system, compost. Our present knowledge of anaerobic gut fungal population diversity within the gastrointestinal tract is based upon isolation, cultivation and observations in vivo. It is likely that there are many species yet to be described, some of which may be non-culturable. We have observed a distinct difference in the ease of cultivation between the different genera, for example, Caecomyes isolates are especially difficult to isolate and maintain in vitro, a feature that is likely to result in the under representation of this genera in culture-based enumerations. The anaerobic gut fungi are the only known obligately anaerobic fungi. For the majority of their life cycles, they are found tightly associated with solid digesta in the rumen and/or hindgut. They produce potent fibrolytic enzymes and grow invasively on and into the plant material they are digesting making them important contributors to fibre digestion. This close association with intestinal digesta has made it difficult to accurately determine the amount of fungal biomass present in the rumen, with Orpin suggesting 8% contribution to the total microbial biomass, whereas Rezaeian et al. more recently gave a value of approximately 20%. It is clear that the rumen microbial complement is affected by dietary changes, and that the fungi are more important in digestion in the rumens of animals fed with high-fibre diets. It seems likely that the gut fungi play an important role within the rumen as primary colonizers of plant fibre, and so we are particularly interested in being able to measure the appearance and diversity of fungi on the plant

  2. Arsenic, Anaerobes, and Autotrophy.

    Science.gov (United States)

    Oremland, R. S.

    2008-12-01

    That microbes have resistance to the toxic arsenic oxyanions arsenite [As(III)] and arsenate [As(V)] has been recognized for some time. More recently it was shown that certain prokaryotes can demonstrate As- dependent growth by conserving the energy gained from the aerobic oxidation of As(III) to As(V), or from the reduction of As(V) to As(III) under anaerobic conditions. During the course of our field studies of two alkaline, hypersaline soda lakes (Mono Lake and Searles Lake, CA) we have discovered several new anaerobic chemo- and photo-autotrophic bacteria that can center their energy gain around the redox reactions between As(III) and As(V). Alkalilimnicola ehrlichii, isolated from the water column of Mono Lake is a nitrate-respiring, As(III)-oxidizing chemoautotroph of the gamma-proteobacteria that has a highly flexible metabolism. It can function either as a facultative anaerobe or as a chemo-autotroph, or as a heterotroph (Hoeft et al., 2007). In contrast, strain MLMS-1 of the delta-proteobacteria was also isolated from Mono Lake, but to date is the first example of an obligate As(V)-respirer that is also an obligate chemo-autotroph, gaining its energy via the oxidation of sulfide to sulfate (Hoeft et al., 2004). Strain SLAS-1, isolated from salt-saturated Searles Lake is a member of the Halananerobiales, and can either grow as a heterotroph (lactate e-donor) or chemo- autotroph (sulfide e-donor) while respiring As(V). The fact that it can achieve this feat at salt-saturation (~ 340 g/L) makes it a true extremophile (Oremland et. al., 2005). Finally, strain PHS-1 isolated from a hot spring on Paoha island in Mono Lake is the first example of a photosynthetic bacterium of the gamma- proteobacteria able to link its growth to As(III)-dependent anoxygenic photosynthesis (Kulp et al., 2008). These novel microbes give us new insights into the evolution of arsenic-based metabolism and their role in the biogeochemical cycling of this toxic element. Hoeft, S.E., et

  3. Implementing Livestock Anaerobic Digestion Projects

    Science.gov (United States)

    Page provides information to help make an informed decision about installing an anaerobic digester. Is it a good match for a farm’s organic waste, project financing, development guidelines and permit requirements?

  4. Anaerobic bacteria that dechlorinate perchloroethene.

    Science.gov (United States)

    Fathepure, B Z; Nengu, J P; Boyd, S A

    1987-01-01

    In this study, we identified specific cultures of anaerobic bacteria that dechlorinate perchlorethene (PCE). The bacteria that significantly dechlorinated PCE were strain DCB-1, an obligate anaerobe previously shown to dechlorinate chlorobenzoate, and two strains of Methanosarcina. The rate of PCE dechlorination by DCB-1 compared favorably with reported rates of trichloroethene bio-oxidation by methanotrophs. Even higher PCE dechlorination rates were achieved when DCB-1 was grown in a methanogenic consortium. PMID:3426224

  5. Long-term operation of oxygen-limiting membrane bioreactor (MBR) for the development of simultaneous partial nitrification, anammox and denitrification (SNAD) process.

    Science.gov (United States)

    Zhao, Chuanqi; Wang, Gang; Xu, Xiaochen; Yang, Yuesuo; Yang, Fenglin

    2017-07-18

    In this study, an oxygen-limiting membrane bioreactor (MBR) with recirculation of biogas for relieving membrane fouling was successfully operated to realize the simultaneous partial nitrification, anammox and denitrification (SNAD) process. The MBR operation was considered effective in the long-term test with total nitrogen (TN) and chemical oxygen demand (COD) removal efficiencies of 94.86% and 98.91%, respectively. Membrane fouling was significantly alleviated due to the recirculation of biogas and the membrane had been cleaned four times with a normal filtration period of 52 days. The co-existence of ammonia-oxidizing bacteria (AOB), anammox and denitrifying bacteria in MBR was confirmed by scanning electron microscopy (SEM) and fluorescence in situ hybridizations (FISH) analysis. Furthermore, AOB were found close to the granule surface, while denitrifying bacteria and anammox were in the deeper layer of granules. Potential in excellent TN and COD removal, operational stability and sustainability, as well as in alleviating membrane fouling is expected by using this oxygen-limiting MBR.

  6. PENGOLAHAN LIMBAH CAIR INDUSTRI FARMASI FORMULASI DENGAN METODE ANAEROB-AEROB DAN ANAEROB-KOAGULASI

    OpenAIRE

    Farida Crisnaningtyas; Hanny Vistanty

    2016-01-01

    Studi ini membahas mengenai pengolahan limbah cair industri farmasi dalam skala laboratorium dengan menggunakan konsep anaerob-kimia-fisika dan anaerob-aerob. Proses anaerob dilakukan dengan menggunakan reaktor Upflow Anaerobic Sludge Bed reactor (UASBr) pada kisaran OLR (Organic Loading Rate) 0,5 – 2 kg COD/m3hari, yang didahului dengan proses aklimatisasi menggunakan substrat gula. Proses anaerob mampu memberikan efisiensi penurunan COD hingga 74%. Keluaran dari proses anaerob diolah lebih ...

  7. Prokaryotic community composition involved production of nitrogen in sediments of Mejillones Bay

    International Nuclear Information System (INIS)

    Moraga, Ruben; Galan, Alexander; Rosello-Mora, Ramon; Araya, Ruben; Valdes, Jorge

    2014-01-01

    Conventional denitrification and anaerobic ammonium oxidation (anammox) contributes to nitrogen loss in oxygen-deficient systems, thereby influencing many aspects of ecosystem function and global biogeochemistry. Mejillones Bay, northern Chile, presents ideal conditions to study nitrogen removal processes, because it is inserted in a coastal upwelling system, its sediments have anoxia and hypoxia conditions and under the influence of the Oxygen Minimum Zone (OMZ), unknown processes that occur there and what are the microbial communities responsible for their removal. Microbial communities associated with coastal sediments of Mejillones Bay were studied by denaturing gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH), by incubation experiments with 15 N isotope tracers were studied nitrogen loss processes operating in these sediments. DGGE analysis showed high bacterial diversity, certain redundant phylotypes and differences in community structure given by the depth; this reflects the microbial community adaptations to environmental conditions. A large fraction (up to 70%) of DAPI-stained cells hybridized with the bacterial probes. Nearly 52-90% of the cell could be further identified to know phyla. Members of the Cytophaga-Flavobacterium cluster were most abundant in the sediments (13-26%), followed by Proteobacteria. Isotopic tracer experiments for the sediments studied indicated that nitrogen loss processes that predominated were performed by denitrifying communities (43.31-111.20 μMd -1 ) was not possible to detect anammox in the area and not anammox bacteria were detected

  8. Hydrologic controls on nitrogen cycling processes and functional gene abundance in sediments of a groundwater flow-through lake

    Science.gov (United States)

    Stoliker, Deborah L.; Repert, Deborah A.; Smith, Richard L.; Song, Bongkeun; LeBlanc, Denis R.; McCobb, Timothy D.; Conaway, Christopher; Hyun, Sung Pil; Koh, Dong-Chan; Moon, Hee Sun; Kent, Douglas B.

    2016-01-01

    The fate and transport of inorganic nitrogen (N) is a critically important issue for human and aquatic ecosystem health because discharging N-contaminated groundwater can foul drinking water and cause algal blooms. Factors controlling N-processing were examined in sediments at three sites with contrasting hydrologic regimes at a lake on Cape Cod, MA. These factors included water chemistry, seepage rates and direction of groundwater flow, and the abundance and potential rates of activity of N-cycling microbial communities. Genes coding for denitrification, anaerobic ammonium oxidation (anammox), and nitrification were identified at all sites regardless of flow direction or groundwater dissolved oxygen concentrations. Flow direction was, however, a controlling factor in the potential for N-attenuation via denitrification in the sediments. Potential rates of denitrification varied from 6 to 4500 pmol N/g/h from the inflow to the outflow side of the lake, owing to fundamental differences in the supply of labile organic matter. The results of laboratory incubations suggested that when anoxia and limiting labile organic matter prevailed, the potential existed for concomitant anammox and denitrification. Where oxic lake water was downwelling, potential rates of nitrification at shallow depths were substantial (1640 pmol N/g/h). Rates of anammox, denitrification, and nitrification may be linked to rates of organic N-mineralization, serving to increase N-mobility and transport downgradient.

  9. Effect of Tidal Cycling Rate on the Distribution and Abundance of Nitrogen-Oxidizing Bacteria in a Bench-Scale Fill-and-Drain Bioreactor

    Directory of Open Access Journals (Sweden)

    Joseph M. Battistelli

    2018-04-01

    Full Text Available Most domestic wastewater can be effectively treated for secondary uses by engineered biological systems. These systems rely on microbial activity to reduce nitrogen (N content of the reclaimed water. Such systems often employ a tidal-flow process to minimize space requirements for the coupling of aerobic and anaerobic metabolic processes. In this study, laboratory-scale tidal-flow treatment systems were studied to determine how the frequency and duration of tidal cycling may impact reactor performance. Fluorescent in situ hybridization and epifluorescence microscopy were used to enumerate the key functional groups of bacteria responsible for nitrification and anaerobic ammonium oxidation (anammox, and N-removal efficiency was calculated via a mass-balance approach. When water was cycled (i.e., reactors were filled and drained at high frequencies (16–24 cycles day−1, nitrate accumulated in the columns—presumably due to inadequate periods of anoxia that limited denitrification. At lower frequencies, such as 4 cycles day−1, nearly complete N removal was achieved (80–90%. These fill-and-drain systems enriched heavily for nitrifiers, with relatively few anammox-capable organisms. The microbial community produced was robust, surviving well through short (up to 3 h anaerobic periods and frequent system-wide perturbation.

  10. Instrumentation in anaerobic treatment - research and practice

    NARCIS (Netherlands)

    Spanjers, H.; Lier, van J.B.

    2006-01-01

    High rate anaerobic treatment reactors are able to uncouple solids and liquid retention time, resulting in high biomass concentrations. Principal advantages of anaerobic treatment include: energy efficiency, low biomass yield, low nutrient requirement and high volumetric organic loadings. In order

  11. RISK FACTORS IN NEONATAL ANAEROBIC INFECTIONS

    Directory of Open Access Journals (Sweden)

    M. S. Tabib

    2008-06-01

    Full Text Available Anaerobic bacteria are well known causes of sepsis in adults but there are few studies regarding their role in neonatal sepsis. In an attempt to define the incidence of neonatal anaerobic infections a prospective study was performed during one year period. A total number of 400 neonates under sepsis study were entered this investigation. Anaerobic as well as aerobic cultures were sent. The patients were subjected to comparison in two groups: anaerobic culture positive and anaerobic culture negative and this comparison were analyzed statistically. There were 7 neonates with positive anaerobic culture and 35 neonates with positive aerobic culture. A significant statistical relationship was found between anaerobic infections and abdominal distention and pneumonia. It is recommended for those neonates with abdominal distention and pneumonia refractory to antibiotic treatment to be started on antibiotics with anaerobic coverage.

  12. Molecular genetic studies on obligate anaerobic bacteria

    International Nuclear Information System (INIS)

    Woods, D.R.

    1982-01-01

    Molecular genetic studies on obligate anaerobic bacteria have lagged behind similar studies in aerobes. However, the current interest in biotechnology, the involvement of anaerobes in disease and the emergence of antibioticresistant strains have focused attention on the genetics of anaerobes. This article reviews molecular genetic studies in Bacteroides spp., Clostridium spp. and methanogens. Certain genetic systems in some anaerobes differ from those in aerobes and illustrate the genetic diversity among bacteria

  13. Arsenic, Anaerobes, and Astrobiology

    Science.gov (United States)

    Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

    2013-12-01

    Arsenic is an element best known for its highly poisonous nature, so it is not something one would associate with being a well-spring for life. Yet discoveries made over the past two decades have delineated that not only are some microbes resistant to arsenic, but that this element's primary redox states can be exploited to conserve energy and support prokaryotic growth ('arsenotrophy') in the absence of oxygen. Hence, arsenite [As(III)] can serve as an electron donor for chemo- or photo-autotrophy while arsenate [As(V)] will serve as an electron acceptor for chemo-heterotrophs and chemo-autotrophs. The phylogenetic diversity of these microbes is broad, encompassing many individual species from diverse taxonomic groups in the Domain Bacteria, with fewer representatives in the Domain Archaea. Speculation with regard to the evolutionary origins of the key functional genes in anaerobic arsenic transformations (arrA and arxA) and aerobic oxidation (aioB) has led to a disputation as to which gene and function is the most ancient and whether arsenic metabolism extended back into the Archaean. Regardless of its origin, robust arsenic metabolism has been documented in extreme environments that are rich in their arsenic content, such as hot springs and especially hypersaline soda lakes associated with volcanic regions. Searles Lake, CA is an extreme, salt-saturated end member where vigorous arsenic metabolism occurs, but there is no detectable sulfate-reduction or methanogenesis. The latter processes are too weak bio-energetically to survive as compared with arsenotrophy, and are also highly sensitive to the abundance of borate ions present in these locales. These observations have implications with respect to the search for microbial life elsewhere in the Solar System where volcanic-like processes have been operative. Hence, because of the likelihood of encountering dense brines in the regolith of Mars (formed by evapo-concentration) or beneath the ice layers of Europa

  14. Kinetics and modeling of anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    Anaerobic digestion modeling started in the early 1970s when the need for design and efficient operation of anaerobic systems became evident. At that time not only was the knowledge about the complex process of anaerobic digestion inadequate but also there were computational limitations. Thus...

  15. 21 CFR 866.2120 - Anaerobic chamber.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber. (a) Identification. An anaerobic chamber is a device intended for medical purposes to maintain an anaerobic (oxygen...

  16. Viscosity evolution of anaerobic granular sludge

    NARCIS (Netherlands)

    Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Lens, P.N.L.; Baudu, M.

    2006-01-01

    The evolution of the apparent viscosity at steady shear rate of sieved anaerobic granular sludge (20¿315 ¿m diameter) sampled from different full-scale anaerobic reactors was recorded using rotation tests. The ¿limit viscosity¿ of sieved anaerobic granular sludge was determined from the apparent

  17. The phenomenon of granulation of anaerobic sludge

    NARCIS (Netherlands)

    Hulshoff Pol, L.

    1989-01-01

    Successful high-rate anaerobic wastewater treatment can only be accomplished when the slowgrowing anaerobic biomass is efficiently held back in the anaerobic treatment system. This biomass retention can be achieved in various ways including immobilization of the organisms on fixed materials

  18. Oxygen Effects in Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Deshai Botheju

    2009-10-01

    Full Text Available Interaction of free oxygen in bio-gasification is a sparsely studied area, apart from the common argument of oxygen being toxic and inhibitory for anaerobic micro-cultures. Some studies have, however, revealed increased solubilisation of organic matter in the presence of some free oxygen in anaerobic digestion. This article analyses these counterbalancing phenomena with a mathematical modelling approach using the widely accepted biochemical model ADM 1. Aerobic oxidation of soluble carbon and inhibition of obligatory anaerobic organisms are modelled using standard saturation type kinetics. Biomass dependent first order hydrolysis kinetics is used to relate the increased hydrolysis rate with oxygen induced increase in biomass growth. The amended model, ADM 1-Ox (oxygen, has 25 state variables and 22 biochemical processes, presented in matrix form. The computer aided simulation tool AQUASIM 2.1 is used to simulate the developed model. Simulation predictions are evaluated against experimental data obtained using a laboratory batch test array comprising miniature anaerobic bio-reactors of 100 ml total volume each, operated under different initial air headspaces giving rise to the different oxygen loading conditions. The reactors were initially fed with a glucose solution and incubated at 35 Celsius, for 563 hours. Under the oxygen load conditions of 22, 44 and 88 mg/L, the ADM1-Ox model simulations predicted the experimental methane potentials quite adequately. Both the experimental data and the simulations suggest a linear reduction of methane potential with respect to the increase in oxygen load within this range.

  19. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye

    2003-01-01

    by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change......-rate anaerobic treatment systems based on anaerobic granular sludge and biofilm are described in this chapter. Emphasis is given to a) the Up-flow Anaerobic Sludge Blanket (UASB) systems, b) the main characteristics of the anaerobic granular sludge, and c) the factors that control the granulation process...

  20. Inhibition of Anaerobic Biological Treatment: A Review

    Science.gov (United States)

    Hou, Li; Ji, Dandan; Zang, Lihua

    2018-01-01

    Anaerobic digestion is a method for treating living and industrial wastewater by anaerobic degradation of organic compounds, which can produce biogas (carbon dioxide and methane mixture) and microbial biomass. And biogas as a renewable resource, can replace the use of ore fuel. In the process of anaerobic digestion, the problems of low methane yield and unstable reaction process are often encountered, which limits the widespread use of this technology. Various inhibitors are the main limiting factors for anaerobic digestion. In this paper, the main factors limiting anaerobic digestion are reviewed, and the latest research progress is introduced.

  1. Anaerobic bacteria as producers of antibiotics.

    Science.gov (United States)

    Behnken, Swantje; Hertweck, Christian

    2012-10-01

    Anaerobic bacteria are the oldest terrestrial creatures. They occur ubiquitously in soil and in the intestine of higher organisms and play a major role in human health, ecology, and industry. However, until lately no antibiotic or any other secondary metabolite has been known from anaerobes. Mining the genome sequences of Clostridium spp. has revealed a high prevalence of putative biosynthesis genes (PKS and NRPS), and only recently the first antibiotic from the anaerobic world, closthioamide, has been isolated from the cellulose degrading bacterium Clostridium cellulolyticum. The successful genetic induction of antibiotic biosynthesis in an anaerobe encourages further investigations of obligate anaerobes to tap their hidden biosynthetic potential.

  2. Investigation of the effects of hydrogenotrophic denitrification and anammox on the improvement of the quality of the drinking water supply system.

    Science.gov (United States)

    Khanitchaidecha, W; Koshy, P; Kamei, T; Shakya, M; Kazama, F

    2013-01-01

    A drinking water supply system operates at Chyasal (in the Kathmandu Valley, Nepal) for purifying the groundwater that has high levels of ammonium nitrogen (NH4-N). However, high NO3-N concentrations were seen in the water after treatment. To further improve the quality of the drinking water, two types of attached growth reactors were developed for the purification system: (i) a hydrogenotrophic denitrification (HD reactor) and (ii) a concurrent reactor with anammox and hydrogenotrophic denitrification (AnHD reactor). For the HD reactor fed by water containing NO3-N, the denitrification efficiency was high (95-98%) for all NO3-N feed rates (20-40 mg/L). The nitrite-nitrogen (NO2-N) and nitrate-nitrogen (NO3-N) concentrations in the effluent were ∼0.5 mg/L. On the other hand, the AnHD reactor fed with water containing NH4-N and NO2-N was operated under varying flow rates of H2(30-70 mL/min) and intermittent supply periods (1-2 h). The efficiency of the anammox process was found to increase with decreasing H2flow rates or with increasing intermittency of the H2supply, while the efficiency of denitrification decreased under these conditions. For the optimal condition of 1.5 h intermittent H2supply, the anammox and denitrification efficiencies of the AnHD reactor reached 80% and 42%, respectively, while the concentrations of both NH4-N and NO2-N in the effluent were water purification system.

  3. [Current clinical significance of anaerobic bacteremia].

    Science.gov (United States)

    Jirsa, Roman; Marešová, Veronika; Brož, Zdeněk

    2010-10-01

    to estimate tje current clinical significance of anaerobic bacteremia in a group of Czech hospitals. this retrospective analysis comprised 8 444 anaerobic blood cultures in patients admitted to four Czech hospitals between 2004 and 2007. in 16 patients, blood cultures yielded significant anaerobic bacteria. Thus, anaerobic bacteremia accounted for less than 2 % of clinically significant bacteremia. Four patients (18 %) died but none of the deaths could be clearly attributable to anaerobic bacteria in the bloodstream. The most common comorbidities predisposing to anaerobic bacteremia and the most frequent sources of infection were similar to those reported by other authors. The majority of anaerobic bacteremia cases were due to gram-negative bacteria, followed by Clostridium perfringens and, surprisingly, Eubacterium spp. (particularly Eubacterium lentum). anaerobic bacteremia remains rare. The comparison of our data with those by other authors suggests that (despite the reported high mortality) the actual clinical significance of anaerobic bacteremia is rather controversial and that the anaerobic bacteremia might not correspond to more serious pathogenic role of the anaerobic bacteria as the source of infection.

  4. The effects of oxygen on process rates and gene expression of anammox and denitrification in the Eastern South Pacific oxygen minimum zone

    DEFF Research Database (Denmark)

    Dalsgaard, Tage; Stewart, Frank; De Brabandere, Loreto

    Oxygen concentrations were consistently below our detection limit of 90 nM for a distance of > 2000 km in the oxygen minimum zone (OMZ) along the coasts of Chile and Peru. In most cases, anammox and denitrification were only detected when in situ oxygen concentrations were below detection...... differently to oxygen. When normalized to a housekeeping gene (rpoB), the expression of 4 out of 9 N-cycle-genes changed with increasing oxygen concentration: The expression of ammonium monooxygenase (amoC) was stimulated, whereas expression of nitrite reductase (nirS), nitric oxide reductase (nor...

  5. The utility of anaerobic blood culture in detecting facultative anaerobic bacteremia in children.

    Science.gov (United States)

    Shoji, Kensuke; Komuro, Hisako; Watanabe, Yasushi; Miyairi, Isao

    2013-08-01

    Routine anaerobic blood culture is not recommended in children because obligate anaerobic bacteremia is rare in the pediatric population. However, a number of facultative anaerobic bacteria can cause community and hospital acquired infections in children and the utility of anaerobic blood culture for detection of these organisms is still unclear. We conducted a retrospective analysis of all blood culture samples (n = 24,356) at a children's hospital in Japan from October 2009 to June 2012. Among the samples that had paired aerobic and anaerobic blood cultures, 717 samples were considered clinically significant with 418 (58%) organisms detected from both aerobic and anaerobic cultures, 167 (23%) detected only from aerobic culture and 132 (18%) detected only from anaerobic culture. While most facultative anaerobes were detectable by aerobic culture, over 25% of Enterobacteriaceae and 15% of Staphylococcus sp. were detected from anaerobic cultures bottles only, suggesting its potential role in selected settings. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Population diversity of ammonium oxidizers investigated by specific PCR amplification

    Science.gov (United States)

    Ward, B.B.; Voytek, M.A.; Witzel, K.-P.

    1997-01-01

    The species composition of ammonia-oxidizing bacteria in aquatic environments was investigated using PCR primers for 16S rRNA genes to amplify specific subsets of the total ammonia-oxidizer population. The specificity of the amplification reactions was determined using total genomic DNA from known nitrifying strains and non-nitrifying strains identified as having similar rDNA sequences. Specificity of amplification was determined both for direct amplification, using the nitrifier specific primers, and with nested amplification, in which the nitrifier primers were used to reamplify a fragment obtained from direct amplification with Eubacterial universal primers. The present level of specificity allows the distinction between Nitrosomonas europaea, Nitrosomonas sp. (marine) and the other known ammonia-oxidizers in the beta subclass of the Proteobacteria. Using total DNA extracted from natural samples, we used direct amplification to determine presence/absence of different species groups. Species composition was found to differ among depths in vertical profiles of lake samples and among samples and enrichments from various other aquatic environments. Nested PCR yielded several more positive reactions, which implies that nitrifier DNA was present in most samples, but often at very low levels.

  7. Clinical features of anaerobic orthopaedic infections.

    Science.gov (United States)

    Lebowitz, Dan; Kressmann, Benjamin; Gjoni, Shpresa; Zenelaj, Besa; Grosgurin, Olivier; Marti, Christophe; Zingg, Matthieu; Uçkay, Ilker

    2017-02-01

    Some patient populations and types of orthopaedic surgery could be at particular risk for anaerobic infections. In this retrospective cohort study of operated adult patients with infections from 2004 to 2014, we assessed obligate anaerobes and considered first clinical infection episodes. Anaerobes, isolated from intra-operative samples, were identified in 2.4% of 2740 surgical procedures, of which half (33/65; 51%) were anaerobic monomicrobial infections. Propionibacterium acnes, a penicillin and vancomycin susceptible pathogen, was the predominantly isolated anaerobe. By multivariate analysis, the presence of fracture fixation plates was the variable most strongly associated with anaerobic infection (odds ratio: 2.1, 95% CI: 1.3-3.5). Anaerobes were also associated with spondylodesis and polymicrobial infections. In contrast, it revealed less likely in native bone or prosthetic joint infections and was not related to prior antibiotic use. In conclusion, obligate anaerobes in our case series of orthopaedic infections were rare, and mostly encountered in infections related to trauma with open-fracture fixation devices rather than clean surgical site infection. Anaerobes were often co-pathogens, and cultures most frequently recovered P. acnes. These observations thus do not support changes in current practices such as broader anaerobe coverage for perioperative prophylaxis.

  8. Anaerobic digestion of solid material

    DEFF Research Database (Denmark)

    Vavilin, V.A.; Lokshina, L.Y.; Flotats, X.

    2007-01-01

    A new multidimensional (3 and 2D) anaerobic digestion model for cylindrical reactor with non-uniform influent concentration distributions was developed to study the way in which mixing intensity affects the efficiency of continuous-flow anaerobic digestion. Batch experiments reported and simulated...... earlier by Vavilin and Angelidaki (2005) were used to modernize a kinetic scheme and to obtain the corresponding kinetic coefficients. In the new models, hydrolytic microorganisms were included using Contois kinetics for the hydrolysis/acidogenesis degradation of municipal solid waste (MSW). Monod...... kinetics was applied for description of methanogenesis. Both hydrolytic and methanogenic microorganisms were assumed to be inhibited by high volatile fatty acids (VFA) concentration. According to the new distributed models, the mixing level reduction expressed by increasing dimensionless Peclet number may...

  9. [Distribution and Diversity of Ammonium-oxidizing Archaea and Ammonium-oxidizing Bacteria in Surface Sediments of Oujiang River].

    Science.gov (United States)

    Li, Hu; Huang, Fu-yi; Su, Jian-qiang; Hong, You-wei; Yu, Shen

    2015-12-01

    Ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) play important roles in the biogeochemical nitrogen cycle. Rivers are important ecosystems containing a large number of functional microbes in nitrogen cycle. In this study, denaturing gradient gel electrophoresis (DGGE ) and real-time quantitative PCR (qPCR) technology were used to analyze the distribution and diversity of AOA and AOB in sediments from Oujiang. The results showed that the AOA community structure was similar among various sites, while the AOB community structure was significantly different, in which all detected AOB sequences were classified into Nitrosospira and Nitrosomonas, and 90% affiliated to Nitrosospira. The community composition of AOA was influenced by NH₄⁺ and TS, in addition, the AOB composition was affected by NH₄⁺, EC, pH, NO₃⁻, TC and TN. Total sulfur (TS) and electrical conductivity (EC) were the major factors influencing the diversity of AOA and AOB, respectively. AOA abundance was significantly higher than that of AOB. EC, NH₄⁺-N and NO₃⁻-N were the main environmental factors affecting the abundance of AOA and AOB. This study indicated that the community composition and diversity of AOA and AOB were significantly influenced by environmental factors, and AOA might be dominant drivers in the ammonia oxidation process in Oujiang surface sediment.

  10. Anaerobic thermophilic culture-system

    Energy Technology Data Exchange (ETDEWEB)

    Ljungdahl, L G; Wiegel, J K.W.

    1981-04-14

    A mixed culture system of Thermoanaerobacter ethanolicus and Clostridium thermocellum is employed for anaerobic, thermophilic ethanol fermentation of cellulose. By cellulase action, monosaccharides are formed which inhibit the growth of C. thermocellum, but are fermented by T. ethanolicus. Thus, at a regulated pH-value of 7.5, this mixed culture system of micro organisms results in a cellulose fermentation with a considerably higher ethanol yield.

  11. Endocarditis caused by anaerobic bacteria.

    Science.gov (United States)

    Kestler, M; Muñoz, P; Marín, M; Goenaga, M A; Idígoras Viedma, P; de Alarcón, A; Lepe, J A; Sousa Regueiro, D; Bravo-Ferrer, J M; Pajarón, M; Costas, C; García-López, M V; Hidalgo-Tenorio, C; Moreno, M; Bouza, E

    2017-10-01

    Infective endocarditis (IE) caused by anaerobic bacteria is a rare and poorly characterized disease. Most data reported in the literature are from case reports [1-3]. Therefore, we assessed the situation of anaerobic IE (AIE) in Spain using the database of the Spanish Collaboration on Endocarditis (GAMES). We performed a prospective study from 2008 to 2016 in 26 Spanish centers. We included 2491 consecutive cases of definite IE (Duke criteria). Anaerobic bacteria caused 22 cases (0.9%) of definite IE. Median age was 66 years (IQR, 56-73), and 19 (86.4%) patients were men. Most patients (14 [63.6%]) had prosthetic valve IE and all episodes were left-sided: aortic valves, 12 (54.5%); and mitral valves, 8 (36.4%). The most common pathogens were Propionibacterium acnes (14 [63.6%]), Lactobacillus spp (3 [13.63%]), and Clostridium spp. (2 [9.0%]), and the infection was mainly odontogenic. Fifteen of the 22 patients (68.2%) underwent cardiac surgery. Mortality was 18.2% during admission and 5.5% after 1 year of follow-up. When patients with AIE were compared with the rest of the cohort, we found that although those with AIE had a similar age and Charlson comorbidity index, they were more likely to have community-acquired IE (86.4% vs. 60.9%, p = 0.01), have undergone cardiac surgery (68.2% vs 48.7% p = 0.06), and have had lower mortality rates during admission (18.2% vs. 27.3%). IE due to anaerobic bacteria is an uncommon disease that affects mainly prosthetic valves and frequently requires surgery. Otherwise, there are no major differences between AIE and IE caused by other microorganisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Simple and convenient method for culturing anaerobic bacteria.

    OpenAIRE

    Behbehani, M J; Jordan, H V; Santoro, D L

    1982-01-01

    A simple and convenient method for culturing anaerobic bacteria is described. Cultures can be grown in commercially available flasks normally used for preparation of sterile external solutions. A special disposable rubber flask closure maintains anaerobic conditions in the flask after autoclaving. Growth of a variety of anaerobic oral bacteria was comparable to that obtained after anaerobic incubation of broth cultures in Brewer Anaerobic Jars.

  13. Process stability and the recovery control associated with inhibition factors in a UASB-anammox reactor with a long-term operation.

    Science.gov (United States)

    Niu, Qigui; He, Shilong; Zhang, Yanlong; Ma, Haiyuan; Liu, Yuan; Li, Yu-You

    2016-03-01

    A UASB-anammox reactor was operated for 900 days to study its process stability. The negative effects of free ammonia (FA) and free nitrous acid (FNA) were investigated over three separate inhibitions and recoveries. The IC10, IC50 and IC90 (inhibitory concentration/a 10%, 50% and 90% activity loss) of FNA and FA responding to the NH4(+)-N, NO2(-)-N and TN removal efficiency were evaluated. In the 1st inhibition, the average FNA-IC10 observed was 0.67 μg L(-1) and the FA-IC10 for TN removal was 4.85 mg L(-1). In the 2nd inhibition, an FNA-IC10 of 0.44μ g L(-1) and an FA-IC10 of 3.56 were found. In the 3rd inhibition, however, both the FNA-IC10 and FA-IC10 were found to have increased, with values of 0.50 μg L(-1) and 4.42 mg L(-1), respectively. A clear control region was established for multiple inhibitions and the recoveries, which followed (pH 7.5-8.5, FA below 10mg/100mg NH4(+)-N and an FNA below 0.005 mg/100 mg NO2(-)-N) for the purpose of optimizing the operation conditions of the UASB-anammox reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Illumina MiSeq sequencing reveals the key microorganisms involved in partial nitritation followed by simultaneous sludge fermentation, denitrification and anammox process.

    Science.gov (United States)

    Wang, Bo; Peng, Yongzhen; Guo, Yuanyuan; Zhao, Mengyue; Wang, Shuying

    2016-05-01

    A combined process including a partial nitritation SBR (PN-SBR) followed by a simultaneous sludge fermentation, denitrification and anammox reactor (SFDA) was established to treat low C/N domestic wastewater in this study. An average nitrite accumulation rate of 97.8% and total nitrogen of 9.4mg/L in the effluent was achieved during 140days' operation. The underlying mechanisms were investigated by using Illumina MiSeq sequencing to analyze the microbial community structures in the PN-SBR and SFDA. Results showed that the predominant bacterial phylum was Proteobacteria in the external waste activated sludge (WAS, added to the SFDA) and SFDA while Bacteroidetes in the PN-SBR. Further study indicated that in the PN-SBR, the dominant nitrobacteria, Nitrosomonas genus, facilitated nitritation and little nitrate was generated in the PN-SBR effluent. In the SFDA, the co-existence of functional microorganisms Thauera, Candidatus Anammoximicrobium and Pseudomonas were found to contribute to simultaneous sludge fermentation, denitrification and anammox. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become

  16. Molecular ecology of anaerobic reactor systems

    DEFF Research Database (Denmark)

    Hofman-Bang, H. Jacob Peider; Zheng, D.; Westermann, Peter

    2003-01-01

    Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible for these ......Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible...... to the abundance of each microbe in anaerobic reactor systems by rRNA probing. This chapter focuses on various molecular techniques employed and problems encountered when elucidating the microbial ecology of anaerobic reactor systems. Methods such as quantitative dot blot/fluorescence in-situ probing using various...

  17. Potential for anaerobic conversion of xenobiotics

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Dolfing, J.; Haagensen, Frank

    2003-01-01

    This review covers the latest research on the anaerobic biodegradation of aromatic xenobiotic compounds, with emphasis on surfactants, polycyclic aromatic hydrocarbons, phthalate esters, polychlorinated biphenyls, halogenated phenols, and pesticides. The versatility of anaerobic reactor systems...... regarding the treatment of xenobiotics is shown with the focus on the UASB reactor, but the applicability of other reactor designs for treatment of hazardous waste is also included. Bioaugmentation has proved to be a viable technique to enhance a specific activity in anaerobic reactors and recent research...

  18. Quantifying the sources and sinks of nitrite in the oxygen minimum zone of the Eastern Tropical South Pacific

    Science.gov (United States)

    Ji, Qixing; Widner, Brittany; Jayakumar, Amal; Ward, Bess; Mulholland, Margaret

    2017-04-01

    In coastal upwelling regions, high surface productivity leads to high export and intense remineralization consuming oxygen. This, in combination with slow ventilation, creates oxygen minimum zones (OMZ) in eastern boundary regions of the ocean, such as the one off the Peruvian coast in the Eastern Tropical South Pacific. The OMZ is characterized by a layer of high nitrite concentration coinciding with water column anoxia. Sharp oxygen gradients are located above and below the anoxic layer (upper and lower oxyclines). Thus, the OMZ harbors diverse microbial metabolisms, several of which involve the production and consumption of nitrite. The sources of nitrite are ammonium oxidation and nitrate reduction. The sinks of nitrite include anaerobic ammonium oxidation (anammox), canonical denitrification and nitrite oxidation to nitrate. To quantify the sources and sinks of nitrite in the Peruvian OMZ, incubation experiments with 15N-labeled substrates (ammonium, nitrite and nitrate) were conducted on a research cruise in January 2015. The direct measurements of instantaneous nitrite production and consumption rates were compared with ambient nitrite concentrations to evaluate the turnover rate of nitrite in the OMZ. The distribution of nitrite in the water column showed a two-peak structure. A primary nitrite maximum (up to 0.5 μM) was located in the upper oxycline. A secondary nitrite maximum (up to 10 μM) was found in the anoxic layer. A nitrite concentration minimum occurred at the oxic-anoxic interface just below the upper oxycline. For the sources of nitrite, highest rates of ammonium oxidation and nitrate reduction were detected in the upper oxycline, where both nitrite and oxygen concentrations were low. Lower rates of nitrite production were detected within the layer of secondary nitrite maximum. For the sinks of nitrite, the rates of anammox, denitrification and nitrite oxidation were the highest just below the oxic-anoxic interface. Low nitrite consumption

  19. Physiologically anaerobic microorganisms of the deep subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, S.E. Jr.; Chung, K.T.

    1991-06-01

    This study seeks to determine numbers, diversity, and morphology of anaerobic microorganisms in 15 samples of subsurface material from the Idaho National Engineering Laboratory, in 18 samples from the Hanford Reservation and in 1 rock sample from the Nevada Test Site; set up long term experiments on the chemical activities of anaerobic microorganisms based on these same samples; work to improve methods for the micro-scale determination of in situ anaerobic microbial activity;and to begin to isolate anaerobes from these samples into axenic culture with identification of the axenic isolates.

  20. ANAEROBIC BIODEGRADATION OF A BIODEGRADABLE MATERIAL UNDER ANAEROBIC - THERMOPHILIC DIGESTION

    Directory of Open Access Journals (Sweden)

    RICARDO CAMACHO-MUÑOZ

    2014-12-01

    Full Text Available This paper dertermined the anaerobic biodegradation of a polymer obtained by extrusion process of native cassava starch, polylactic acid and polycaprolactone. Initially a thermophilic - methanogenic inoculum was prepared from urban solid waste. The gas final methane concentration and medium’s pH reached values of 59,6% and 7,89 respectively. The assay assembly was carried out according ASTM D5511 standard. The biodegradation percent of used materials after 15 day of digestion were: 77,49%, 61,27%, 0,31% for cellulose, sample and polyethylene respectively. Due cellulose showed biodegradation levels higher than 70% it’s deduced that the inoculum conditions were appropriate. A biodegradation level of 61,27%, 59,35% of methane concentration in sample’s evolved gas and a medium’s finale pH of 7,71 in sample’s vessels, reveal the extruded polymer´s capacity to be anaerobically degraded under thermophilic- high solid concentration conditions.

  1. Method for anaerobic fermentation and biogas production

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a method for biomass processing, anaerobic fermentation of the processed biomass, and the production biogas. In particular, the invention relates to a system and method for generating biogas from anaerobic fermentation of processed organic material that comprises...

  2. Integrated anaerobic and aerobic treatment of sewage

    NARCIS (Netherlands)

    Wang, K.

    1994-01-01

    This thesis describes results of investigations dealing with sequential concept of anaerobic-aerobic treatment of municipal wastewater. The main purposes of the study were 1) to develop a proper anaerobic hydrolytic pretreatment unit, consisting of a Hydrolysis Upflow Sludge Bed (HUSB-)

  3. Anaerobic exercise - Induced changes in serum mineral ...

    African Journals Online (AJOL)

    Anaerobic exercise, a non 02 – dependent energy metabolism leads to transient metabolic changes, which are corrected gradually by homestatic mechanism. We investigated in eight male subjects, the effects of anaerobic exercise after a day sedentary activity on serum mineral concentration. There was significant ...

  4. New concepts of microbial treatment processes for the nitrogen removal: effect of protein and amino acids degradation.

    Science.gov (United States)

    González-Martínez, Alejandro; Calderón, Kadiya; González-López, Jesús

    2016-05-01

    High concentrations of proteins and amino acids can be found in wastewater and wastewater stream produced in anaerobic digesters, having shown that amino acids could persist over different managements for nitrogen removal affecting the nitrogen removal processes. Nitrogen removal is completely necessary because of their implications and the significant adverse environmental impact of ammonium such as eutrophication and toxicity to aquatic life on the receiving bodies. In the last decade, the treatment of effluents with high ammonium concentration through anammox-based bioprocesses has been enhanced because these biotechnologies are cheaper and more environmentally friendly than conventional technologies. However, it has been shown that the presence of important amounts of proteins and amino acids in the effluents seriously affects the microbial autotrophic consortia leading to important losses in terms of ammonium oxidation efficiency. Particularly the presence of sulfur amino acids such as methionine and cysteine has been reported to drastically decrease the autotrophic denitrification processes as well as affect the microbial community structure promoting the decline of ammonium oxidizing bacteria in favor of other phylotypes. In this context we discuss that new biotechnological processes that improve the degradation of protein and amino acids must be considered as a priority to increase the performance of the autotrophic denitrification biotechnologies.

  5. pH variation and influence in an autotrophic nitrogen removing biofilm system using an efficient numerical solution strategy.

    Science.gov (United States)

    Vangsgaard, Anna Katrine; Mauricio-Iglesias, Miguel; Valverde-Pérez, Borja; Gernaey, Krist V; Sin, Gürkan

    2013-01-01

    A pH simulator consisting of an efficient numerical solver of a system of nine nonlinear equations was constructed and implemented in the modeling software MATLAB. The pH simulator was integrated in a granular biofilm model and used to simulate the pH profiles within granules performing the nitritation-anammox process for a range of operating points. The simulation results showed that pH profiles were consistently increasing with increasing depth into the granule, since the proton-producing aerobic ammonium-oxidizing bacteria (AOB) were located close to the granule surface. Despite this pH profile, more NH3 was available for AOB than for anaerobic ammonium oxidizers, located in the center of the granules. However, operating at a higher oxygen loading resulted in steeper changes in pH over the depth of the granule and caused the NH3 concentration profile to increase from the granule surface towards the center. The initial value of the background charge and influent bicarbonate concentration were found to greatly influence the simulation result and should be accurately measured. Since the change in pH over the depth of the biofilm was relatively small, the activity potential of the microbial groups affected by the pH did not change more than 5% over the depth of the granules.

  6. Prospects of Anaerobic Digestion Technology in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    As the world's largest developing country, China must face the problem of managing municipal solid waste, and the challenge of organic waste disposal is even more serious. Considering the characteristics of traditional waste disposal technologies and the subsequent secondary pollution, anaerobic digestion has various advantages such as reduction in the land needed for disposal and preservation of environmental quality. In light of the energy crisis, this paper focuses on the potential production of biogas from biowaste through anaerobic digestion processes, the problems incurred by the waste collection system, and the efficiency of the anaerobic digestion process. Use of biogas in a combined heat and power cogeneration system is also discussed. Finally, the advantages of anaerobic digestion technology for the Chinese market are summarized. The anaerobic digestion is suggested to be a promising treating technology for the organic wastes in China.

  7. Start-up strategies of membrane-aerated biofilm reactor (MABR) for completely autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Sun, Sheng-Peng; Pellicer i Nàcher, Carles; Terada, Akihiko

    2009-01-01

    Completely autotrophic nitrogen removal, coupling aerobic and anaerobic ammonium oxidation, can be achieved via redox stratified biofilms growing on gas-permeable membranes. These sequential reactions are mediated by aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB). The major...

  8. A new mathematical model for nitrogen gas production with special emphasis on the role of attached growth media in anammox hybrid reactor.

    Science.gov (United States)

    Tomar, Swati; Gupta, Sunil Kumar

    2015-11-01

    The present study emphasised on the development of new mathematical models based on mass balance and stoichiometry of nitrogen removal in anammox hybrid reactor (AHR). The performance of AHR at varying hydraulic retention times (HRTs) and nitrogen loading rates (NLRs) revealed that nitrogen removal efficiency (NRE) increases with increase in HRT and was found optimal (89 %) at HRT of 2 days. Mass balance of nitrogen revealed that major fraction (74.1 %) of input nitrogen is converted into N2 gas followed by 11.2 % utilised in biomass synthesis. Attached growth media (AGM) in AHR contributed to an additional 15.4 % ammonium removal and reduced the sludge washout rate by 29 %. This also enhanced the sludge retention capacity of AHR and thus minimised the formation of nitrate in the treated effluent, which is one of the bottlenecks of anammox process. Process kinetics was also studied using various mathematical models. The mass balance model derived from total nitrogen was found most precise and predicted N2 gas with least error (1.68 ± 4.44 %). Model validation for substrate removal kinetics dictated comparatively higher correlation for Grau second-order model (0.952) than modified Stover-Kincannon model (0.920). The study concluded that owing to features of high biomass retention, less nitrate formation and consistently higher nitrogen removal efficiency, this reactor configuration is techno-economically most efficient and viable. The study opens the door for researchers and scientists for pilot-scale testing of AHR leading to its wide industrial application.

  9. EFFECT OF MUSIC ON ANAEROBIC EXERCISE PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Tülin Atan

    2013-01-01

    Full Text Available For years, mostly the effects of music on cardiorespiratory exercise performance have been studied, but a few studies have examined the effect of music on anaerobic exercise. The purpose of this study was to assess the effect of listening to music and its rhythm on anaerobic exercise: on power output, heart rate and the concentration of blood lactate. 28 male subjects were required to visit the laboratory on 6 occasions, each separated by 48 hours. Firstly, each subject performed the Running-based Anaerobic Sprint Test (RAST under 3 conditions on separate days: while listening to “slow rhythm music”, “fast rhythm music” or “no music”. 48 hours after the subjects completed RAST under 3 conditions, Wingate Anaerobic Power (WAN tests were performed under 3 music conditions. The order of the 3 conditions (slow music, fast music and no music was selected randomly to prevent an order effect. Results showed no significant differences between 3 conditions in anaerobic power assessments, heart rate or blood lactate (p>0.05. On the basis of these results it can be said that music cannot improve anaerobic performance. The type of music had no impact on power outputs during RAST and WAN exercise. As a conclusion, listening to music and its rhythm cannot enhance anaerobic performance and cannot change the physiological response to supramaximal exercise.

  10. A simple anaerobic system for onsite treatment of domestic wastewater

    African Journals Online (AJOL)

    Among several anaerobic treatment processes, high rate anaerobic digesters receive great attention due to its high loading capacity and chemical oxygen demand removal rate. Up-flow anaerobic sludge blanket reactor (UASB) is getting wide acceptance among several anaerobic processes. However, its application is still ...

  11. Isolation of anaerobes from bubo associated with chancroid.

    Science.gov (United States)

    Kumar, B; Sharma, V K; Bakaya, V; Ayyagiri, A

    1991-01-01

    Ten men with bubo associated with chancroid were studied for bacterial flora especially anaerobes. Anaerobes were isolated from all 10 buboes and eight out of 10 ulcers of chancroid. Anaerobic cocci, B melaninogenicus and B fragilis were the most common isolates. anaerobes probably play a role in the pathogenesis of bubo in chancroid. PMID:1680792

  12. Anaerobic digestion of hog wastes

    Energy Technology Data Exchange (ETDEWEB)

    Taiganides, E P; Baumann, E R; Johnson, H P; Hazen, T E

    1963-01-01

    A short history, a list of advantages and limitations, and a short introduction to the principles of the process of anaerobic digestion are given. Six five gallon bottle digesters were daily fed hog manure, maintained at 35/sup 0/C, and constantly agitated. Satisfactory operation was assured at 3.2 g VS/l/day with a detention time of 10 days, yielding 490-643 ml gas/g VS/day with a CH/sub 4/ content of 59% (2.1 x 10/sup 7/ joules/m/sup 3/). A figure and discussion portray the interrelationships of loading rate, solids concentration and detention time. They estimate that a marginal profit might be obtained by the operation of a heated digester handling the wastes of 10,000 hogs.

  13. Anaerobic degradation of linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Haagensen, Frank; Ahring, Birgitte Kiær

    2003-01-01

    Linear alkylbenzene sulfonate (LAS) found in wastewater is removed in the wastewater treatment facilities by sorption and aerobic biodegradation. The anaerobic digestion of sewage sludge has not been shown to contribute to the removal. The concentration of LAS based on dry matter typically...... increases during anaerobic stabilization due to transformation of easily degradable organic matter. Hence, LAS is regarded as resistant to biodegradation under anaerobic conditions. We present data from a lab-scale semi-continuously stirred tank reactor (CSTR) spiked with linear dodecylbenzene sulfonate (C...

  14. Intraspecific variation in aerobic and anaerobic locomotion

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Tirsgård, Bjørn; Cordero, Gerardo A.

    2015-01-01

    to unsteady (i.e., burst-assisted) swimming is associated with anaerobic metabolism evidenced as excess post exercise oxygen consumption (EPOC); (2) variation in swimming performance (critical swimming speed; U crit) correlates with metabolic scope (MS) or anaerobic capacity (i.e., maximum EPOC); (3...... respirometry and video analysis. Results showed that anaerobic swimming costs (i.e., EPOC) increase linearly with the number of bursts in S. aurata, with each burst corresponding to 0.53 mg O2 kg(-1). Data are consistent with a previous study on striped surfperch (Embiotoca lateralis), a labriform swimmer...

  15. Accelerated anaerobic hydrolysis rates under a combination of intermittent aeration and anaerobic conditions

    DEFF Research Database (Denmark)

    Jensen, T. R.; Lastra Milone, T.; Petersen, G.

    2017-01-01

    Anaerobic hydrolysis in activated return sludge was investigated in laboratory scale experiments to find if intermittent aeration would accelerate anaerobic hydrolysis rates compared to anaerobic hydrolysis rates under strict anaerobic conditions. The intermittent reactors were set up in a 240 h...... for calculating hydrolysis rates based on soluble COD were compared. Two-way ANOVA with the Bonferroni post-test was performed in order to register any significant difference between reactors with intermittent aeration and strictly anaerobic conditions respectively. The experiment demonstrated a statistically...... significant difference in favor of the reactors with intermittent aeration showing a tendency towards accelerated anaerobic hydrolysis rates due to application of intermittent aeration. The conclusion of the work is thus that intermittent aeration applied in the activated return sludge process (ARP) can...

  16. A simple and sensitive quality control method of the anaerobic atmosphere for identification and antimicrobial susceptibility testing of anaerobic bacteria

    DEFF Research Database (Denmark)

    Justesen, Tage; Justesen, Ulrik Stenz

    2013-01-01

    The maintenance of a strict anaerobic atmosphere is essential for the culture of strict anaerobic bacteria. We describe a simple and sensitive quality control method of the anaerobic atmosphere, based on the measurement of the zone diameter around a 5-μg metronidazole disk when testing...... an aerotolerant Clostridium perfringens strain. A zone diameter above 27 mm was indicative of acceptable anaerobic conditions....

  17. Anaerobe Tolerance to Oxygen and the Potentials of Anaerobic and Aerobic Cocultures for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M.T. Kato

    1997-12-01

    Full Text Available The anaerobic treatment processes are considered to be well-established methods for the elimination of easily biodegradable organic matter from wastewaters. Some difficulties concerning certain wastewaters are related to the possible presence of dissolved oxygen. The common belief is that anaerobes are oxygen intolerant. Therefore, the common practice is to use sequencing anaerobic and aerobic steps in separate tanks. Enhanced treatment by polishing off the residual biodegradable oxygen demand from effluents of anaerobic reactors, or the biodegradation of recalcitrant wastewater pollutants, usually requires sequenced anaerobic and aerobic bacteria activities. However, the combined activity of both bacteria can also be obtained in a single reactor. Previous experiments with either pure or mixed cultures showed that anaerobes can tolerate oxygen to a certain extent. The oxygen toxicity to methanogens in anaerobic sludges was quantified in batch experiments, as well as in anaerobic reactors. The results showed that methanogens have a high tolerance to oxygen. In practice, it was confirmed that dissolved oxygen does not constitute any detrimental effect on reactor treatment performance. This means that the coexistence of anaerobic and aerobic bacteria in one single reactor is feasible and increases the potentials of new applications in wastewater treatment

  18. PENGOLAHAN LIMBAH CAIR INDUSTRI FARMASI FORMULASI DENGAN METODE ANAEROB-AEROB DAN ANAEROB-KOAGULASI

    Directory of Open Access Journals (Sweden)

    Farida Crisnaningtyas

    2016-05-01

    Full Text Available Studi ini membahas mengenai pengolahan limbah cair industri farmasi dalam skala laboratorium dengan menggunakan konsep anaerob-kimia-fisika dan anaerob-aerob. Proses anaerob dilakukan dengan menggunakan reaktor Upflow Anaerobic Sludge Bed reactor (UASBr pada kisaran OLR (Organic Loading Rate 0,5 – 2 kg COD/m3hari, yang didahului dengan proses aklimatisasi menggunakan substrat gula. Proses anaerob mampu memberikan efisiensi penurunan COD hingga 74%. Keluaran dari proses anaerob diolah lebih lanjut dengan menggunakan dua opsi proses: (1 fisika-kimia, dan (2 aerob. Koagulan alumunium sulfat dan flokulan kationik memberikan efisiensi penurunan COD tertinggi (73% pada kecepatan putaran masing-masing 100 rpm dan 40 rpm. Uji coba aerob dilakukan pada kisaran MLSS antara 4000-5000 mg/L dan mampu memberikan efisiensi penurunan COD hingga 97%. Hasil uji coba menunjukkan bahwa efisiensi penurunan COD total yang dapat dicapai dengan menggunakan teknologi anaerob-aerob adalah 97%, sedangkan kombinasi anaerob-koagulasi-flokulasi hanya mampu menurunkan COD total sebesar 72,53%. Berdasarkan hasil tersebut, kombinasi proses anaerob-aerob merupakan teknologi yang potensial untuk diaplikasikan dalam sistem pengolahan limbah cair industri farmasi. 

  19. Simulation of the anaerobic digestion process

    Energy Technology Data Exchange (ETDEWEB)

    Maia, C A.M.

    1981-01-01

    The dynamic model of anaerobic fermentation includes an inhibition function to relate volatile acid concentration to a specific growth rate for the methane bacteria and also includes the interactions between the liquid, gaseous, and biology phases of the digester.

  20. Anaerobic Toxicity of Cationic Silver Nanoparticles

    Data.gov (United States)

    U.S. Environmental Protection Agency — Toxicity data for the impact of nano-silver on anaerobic degradation. This dataset is associated with the following publication: Gitipour, A., S. Thiel, K. Scheckel,...

  1. Solar pond for heating anaerobic digesters

    International Nuclear Information System (INIS)

    Song Kehui; Li Shensheng

    1991-10-01

    A theoretical analysis and numerical results calculated for solar pond heating anaerobic digesters in Beijing area in China are presented. The effect of temperature rise is evident and rather steady. 3 refs, 1 fig., 1 tab

  2. Exocellular electron transfer in anaerobic microbial communities

    NARCIS (Netherlands)

    Stams, A.J.M.; Bok, de F.A.M.; Plugge, C.M.; Eekert, van M.H.A.; Dolfing, J.; Schraa, G.

    2006-01-01

    Exocellular electron transfer plays an important role in anaerobic microbial communities that degrade organic matter. Interspecies hydrogen transfer between microorganisms is the driving force for complete biodegradation in methanogenic environments. Many organic compounds are degraded by obligatory

  3. An anaerobic mitochondrion that produces hydrogen

    NARCIS (Netherlands)

    Boxma, Brigitte; Graaf, Rob M. de; Staay, Georg W.M. van der; Alen, Theo A. van; Ricard, Guenola; Gabaldón, Toni; Hoek, Angela H.A.M. van; Moon-van der Staay, Seung Yeo; Koopman, Werner J.H.; Hellemond, Jaap J. van; Tielens, Aloysius G.M.; Friedrich, Thorsten; Veenhuis, Marten; Huynen, Martijn A.; Hackstein, Johannes H.P.

    2005-01-01

    Hydrogenosomes are organelles that produce ATP and hydrogen, and are found in various unrelated eukaryotes, such as anaerobic flagellates, chytridiomycete fungi and ciliates. Although all of these organelles generate hydrogen, the hydrogenosomes from these organisms are structurally and

  4. Anaerobic membrane bioreactor under extreme conditions (poster)

    NARCIS (Netherlands)

    Munoz Sierra, J.D.; De Kreuk, M.K.; Spanjers, H.; Van Lier, J.B.

    2013-01-01

    Membrane bioreactors ensure biomass retention by the application of micro or ultrafiltration processes. This allows operation at high sludge concentrations. Previous studies have shown that anaerobic membrane bioreactors is an efficient way to retain specialist microorganisms for treating

  5. Application of Methanobrevibacter acididurans in anaerobic digestion.

    Science.gov (United States)

    Savant, D V; Ranade, D R

    2004-01-01

    To operate anaerobic digesters successfully under acidic conditions, hydrogen utilizing methanogens which can grow efficiently at low pH and tolerate high volatile fatty acids (VFA) are desirable. An acid tolerant hydrogenotrophic methanogen viz. Methanobrevibacter acididurans isolated from slurry of an anaerobic digester running on alcohol distillery wastewater has been described earlier by this lab. This organism could grow optimally at pH 6.0. In the experiments reported herein, M. acididurans showed better methanogenesis under acidic conditions with high VFA, particularly acetate, than Methanobacterium bryantii, a common hydrogenotrophic inhabitant of anaerobic digesters. Addition of M. acididurans culture to digesting slurry of acidogenic as well as methanogenic digesters running on distillery wastewater showed increase in methane production and decrease in accumulation of volatile fatty acids. The results proved the feasibility of application of M. acididurans in anaerobic digesters.

  6. Anaerobes in Industrial- and Environmental Biotechnology.

    Science.gov (United States)

    Hatti-Kaul, Rajni; Mattiasson, Bo

    Anaerobic microorganisms present in diverse ecological niches employ alternative strategies for energy conservation in the absence of oxygen which enables them to play a key role in maintaining the global cycles of carbon, nitrogen, and sulfur, and the breakdown of persistent compounds. Thereby they become useful tools in industrial and environmental biotechnology. Although anaerobes have been relatively neglected in comparison to their aerobic counterparts, with increasing knowledge about their diversity and metabolic potential and the development of genetic tools and process technologies to utilize them, we now see a rapid expansion of their applications in the society. This chapter summarizes some of the developments in the use of anaerobes as tools for biomass valorization, in production of energy carriers and chemicals, wastewater treatment, and the strong potential in soil remediation. The ability of several autotrophic anaerobes to reduce carbon dioxide is attracting growing attention as a means for developing a platform for conversion of waste gases to chemicals, materials, and biofuels.

  7. Efficient simultaneous partial nitrification, anammox and denitrification (SNAD) system equipped with a real-time dissolved oxygen (DO) intelligent control system and microbial community shifts of different substrate concentrations.

    Science.gov (United States)

    Wen, Xin; Gong, Benzhou; Zhou, Jian; He, Qiang; Qing, Xiaoxia

    2017-08-01

    Simultaneous partial nitrification, anammox and denitrification (SNAD) process was studied in a sequencing batch biofilm reactor (SBBR) fed with synthetic wastewater in a range of 2200 mgN/L ∼ 50 mgN/L. Important was an external real-time precision dissolved oxygen (DO) intelligent control system that consisted of feed forward control system and feedback control system. This DO control system permitted close control of oxygen supply according to influent concentration, effluent quality and other environmental factors in the reactor. In this study the operation was divided into six phases according to influent nitrogen applied. SNAD system was successfully set up after adding COD into a CANON system. And the presence of COD enabled the survival of denitrifiers, and made Thauera and Pseudomonas predominant as functional denitrifiers in this system. Denaturing gradient gel electrophoresis (DGGE), fluorescence in situ hybridization (FISH) and 16S rRNA amplicon pyrosequencing were used to analyze the microbial variations of different substrate concentrations. Results indicated that the relative population of ammonia oxidizing bacteria (AOB) members decreased when influent ammonia concentration decreased from 2200 mg/L to 50 mg/L, while no dramatic drop of the percent of anammox bacteria was seen. And Nitrosomonas europaea was the predominant AOB in SNAD system treating sewage, while Candidatus Brocadia was the dominant anammox bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Implications of a More Comprehensive Nitrogen Cycle in a Global Biogeochemical Ocean Model

    Science.gov (United States)

    Six, K. D.; Ilyina, T.

    2016-02-01

    Nitrogen plays a crucial role for nearly all living organisms in the Earth system. Changes in the marine nitrogen cycle not only alter the marine biota, but will also have an impact on the marine carbon cycle and, in turn, on climate due to the close coupling of the carbon-nitrogen cycle. The understanding of processes and controls of the marine nitrogen cycle is therefore a prerequisite to reduce uncertainties in the prediction of future climate. Nevertheless, most ocean biogeochemical components of modern Earth system models have a rather simplistic representation of marine N-cycle mainly focusing on nitrate. Here we present results of the HAMburg Ocean Carbon Cycle model (HAMOCC) as part of the MPI-ESM which was extended by a prognostic representation of ammonium and nitrite to resolve important processes of the marine N-cycle such as nitrification and anaerobic ammonium oxidation (anammox). Additionally, we updated the production of nitrous oxide, an important greenhouse gas, allowing for two sources from oxidation of ammonium (nitrification) and from reduction of nitrite (nitrifier-denitrification) at low oxygen concentrations. Besides an extended model data comparison we discuss the following aspects of the N-cycle by model means: (1) contribution of anammox to the loss of fixed nitrogen, and (2) production and emission of marine nitrous oxide.

  9. Metagenomic potential for and diversity of N-cycle driving microorganisms in the Bothnian Sea sediment.

    Science.gov (United States)

    Rasigraf, Olivia; Schmitt, Julia; Jetten, Mike S M; Lüke, Claudia

    2017-08-01

    The biological nitrogen cycle is driven by a plethora of reactions transforming nitrogen compounds between various redox states. Here, we investigated the metagenomic potential for nitrogen cycle of the in situ microbial community in an oligotrophic, brackish environment of the Bothnian Sea sediment. Total DNA from three sediment depths was isolated and sequenced. The characterization of the total community was performed based on 16S rRNA gene inventory using SILVA database as reference. The diversity of diagnostic functional genes coding for nitrate reductases (napA;narG), nitrite:nitrate oxidoreductase (nxrA), nitrite reductases (nirK;nirS;nrfA), nitric oxide reductase (nor), nitrous oxide reductase (nosZ), hydrazine synthase (hzsA), ammonia monooxygenase (amoA), hydroxylamine oxidoreductase (hao), and nitrogenase (nifH) was analyzed by blastx against curated reference databases. In addition, Polymerase chain reaction (PCR)-based amplification was performed on the hzsA gene of anammox bacteria. Our results reveal high genomic potential for full denitrification to N 2 , but minor importance of anaerobic ammonium oxidation and dissimilatory nitrite reduction to ammonium. Genomic potential for aerobic ammonia oxidation was dominated by Thaumarchaeota. A higher diversity of anammox bacteria was detected in metagenomes than with PCR-based technique. The results reveal the importance of various N-cycle driving processes and highlight the advantage of metagenomics in detection of novel microbial key players. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  10. Anaerobic bacteraemia revisited: species and susceptibilities.

    Science.gov (United States)

    Ng, Lily S Y; Kwang, Lee Ling; Rao, Suma; Tan, Thean Yen

    2015-01-01

    This retrospective study was performed to evaluate the frequency of anaerobic bacteraemia over a 10-year period, and to provide updated antibiotic susceptibilities for the more clinically relevant anaerobes causing blood stream infection. Data were retrieved from the laboratory information system for the period 2003 to 2012. During this time, blood cultures were inoculated in Bactec™ Plus vials (BD, USA) and continuously monitored in the Bactec™ 9000 blood culture system (BD, USA). Anaerobic organisms were identified using commercial identification kits, predominantly API 20 A (bioMérieux, France) supplemented with Vitek ANC cards (bioMérieux, France) and AN-Ident discs (Oxoid, United Kingdom). A representative subset of isolates were retrieved from 2009 to 2011 and antimicrobial susceptibilities to penicillin, amoxicillin-clavulanate, clindamycin, imipenem, moxifloxacin, piperacillin-tazobactam and metronidazole were determined using the Etest method. Anaerobes comprised 4.1% of all positive blood culture with 727 obligate anaerobes recovered over the 10-year period, representing a positivity rate of 0.35%. The only significant change in anaerobe positivity rates occurred between 2003 and 2004, with an increase of 0.2%. The Bacteroides fragilis group (45%) were the predominant anaerobic pathogens, followed by Clostridium species (12%), Propioniobacterium species (11%) and Fusobacterium species (6%). The most active in vitro antibiotics were imipenem, piperacillin-tazobactam, amoxicillin-clavulanate and metronidazole, with susceptibilities of 95.0%, 93.3%, 90.8% and 90.8% respectively. Resistance was high to penicillin, clindamycin and moxifl oxacin. However, there were apparent differences for antibiotic susceptibilities between species. This study indicates that the anaerobes comprise a small but constant proportion of bloodstream isolates. Antibiotic resistance was high to some antibiotics, but metronidazole, the beta-lactam/beta-lactamase inhibitors and

  11. Anaerobic digester for treatment of organic waste

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, V. K. [Indian Insitute of Technology, Delhi (India)]|[ENEA, Centro Ricerche Trisaia, Matera (Italy); Fortuna, F.; Canditelli, M.; Cornacchia, G. [ENEA, Centro Ricerche Trisaia, Matera (Italy). Dipt. Ambiente; Farina, R. [ENEA, centro Ricerche ``Ezio Clementel``, Bologna (Italy). Dipt. Ambiente

    1997-09-01

    The essential features of both new and more efficient reactor systems and their appropriate applications for various organic waste management situations, description of several working plants are discussed in the present communication. It is hoped that significant development reported here would be useful in opening a new vista to the application of anaerobic biotechnology for the waste treatment of both low/high organic strength and specialized treatment for toxic substances, using appropriate anaerobic methods.

  12. Covering Materials for Anaerobic Digesters Producing Biogas

    International Nuclear Information System (INIS)

    Itodo, I. N.; Philips, T. K.

    2002-01-01

    The suitability of foam, concrete and clay soil as covering material on anaerobic digesters producing biogas was investigated using four batch-type digesters of 20 litres volume. The methane yield from the digesters was of the order: foam >control> concrete > clay soil. The digester covered with foam had the highest methane yield, best temperature control and most favourable pH conditions. It is most suitable as cover material on anaerobic digesters

  13. Anaerobic Digestion Assessment for Contingency Base Waste

    Science.gov (United States)

    2014-05-01

    heating. The use of anaerobic digestion for high solids organic waste (15 to 50 percent solids; i.e., mixed organic solids, such as food waste, manure ...but the team was not able to identify any for anaerobic digestion . One potentially widespread source is manure from ruminant organisms, such as...plug-flow digesters treating swine manure and used cooking grease. Bioresource Technology 101:4362-4370. ERDC TR-14-3 63 Lansing, S., and A.R

  14. Mechanism of quinolone resistance in anaerobic bacteria.

    Science.gov (United States)

    Oh, H; Edlund, C

    2003-06-01

    Several recently developed quinolones have excellent activity against a broad range of aerobic and anaerobic bacteria and are thus potential drugs for the treatment of serious anaerobic and mixed infections. Resistance to quinolones is increasing worldwide, but is still relatively infrequent among anaerobes. Two main mechanisms, alteration of target enzymes (gyrase and topoisomerase IV) caused by chromosomal mutations in encoding genes, or reduced intracellular accumulation due to increased efflux of the drug, are associated with quinolone resistance. These mechanisms have also been found in anaerobic species. High-level resistance to the newer broad-spectrum quinolones often requires stepwise mutations in target genes. The increasing emergence of resistance among anaerobes may be a consequence of previous widespread use of quinolones, which may have enriched first-step mutants in the intestinal tract. Quinolone resistance in the Bacteroides fragilis group strains is strongly correlated with amino acid substitutions at positions 82 and 86 in GyrA (equivalent to positions 83 and 87 of Escherichia coli). Several studies have indicated that B. fragilis group strains possess efflux pump systems that actively expel quinolones, leading to resistance. DNA gyrase seems also to be the primary target for quinolones in Clostridium difficile, since amino acid substitutions in GyrA and GyrB have been detected in resistant strains. To what extent other mechanisms, such as mutational events in other target genes or alterations in outer-membrane proteins, contribute to resistance among anaerobes needs to be further investigated.

  15. Anaerobic Nitrogen Fixers on Mars

    Science.gov (United States)

    Lewis, B. G.

    2000-07-01

    The conversion of atmospheric nitrogen gas to the protein of living systems is an amazing process of nature. The first step in the process is biological nitrogen fixation, the transformation of N2 to NH3. The phenomenon is crucial for feeding the billions of our species on Earth. On Mars, the same process may allow us to discover how life can adapt to a hostile environment, and render it habitable. Hostile environments also exist on Earth. For example, nothing grows in coal refuse piles due to the oxidation of pyrite and marcasite to sulfuric acid. Yet, when the acidity is neutralized, alfalfa and soybean plants develop root nodules typical of symbiotic nitrogen fixation with Rhizobium species possibly living in the pyritic material. When split open, these nodules exhibited the pinkish color of leghemoglobin, a protein in the nodule protecting the active nitrogen-fixing enzyme nitrogenase against the toxic effects of oxygen. Although we have not yet obtained direct evidence of nitrogenase activity in these nodules (reduction of acetylene to ethylene, for example), these findings suggested the possibility that nitrogen fixation was taking place in this hostile, non-soil material. This immediately raises the possibility that freeliving anaerobic bacteria which fix atmospheric nitrogen on Earth, could do the same on Mars.

  16. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Lee, D.D.; Donaldson, T.L.

    1985-01-01

    Anaerobic digestion is a potentially attractive technology for volume reduction of low-level radioactive cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work has been completed using a 75-L digester to verify rates and conversions obtained at the bench scale. Start-up and operating procedures have been developed, and effluent was generated for characterization and disposal studies. Three runs using batch and fed-batch conditions were made lasting 36, 90, and 423 d. Solids solubilization rates and gas production rates averaged approximately 1.8 g cellulose per L of reactor per d and 1.2 L of off-gas per L reactor per d. Greater than 80% destruction of the volatile suspended solids was obtained. A simple dynamic process model was constructed to aid in process design and for use in process monitoring and control of a large-scale digester

  17. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Donaldson, T.L.; Lee, D.D.

    1984-01-01

    Anaerobic digestion is a potentially attractive technology for volume reduction of cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work is underway using a 75-L digester to verify rates and conversions obtained at the bench scale, to develop start-up and operating procedures, and to generate effluent for characterization and disposal studies. Three runs using batch and batch-fed conditions have been made lasting 36, 90, and over 200 days. Solids solubilization and gas production rates and total solids destruction have met or exceeded the target values of 0.6 g cellulose per L of reactor per day, 0.5 L off-gas per L of reactor per day, and 80% destruction of solids, respectively. Successful start-up procedures have been developed, and preliminary effluent characterization and disposal studies have been done. A simple dynamic process model has been constructed to aid in further process development and for use in process monitoring and control of a large-scale digester. 7 references, 5 figures, 1 table

  18. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes.

    Science.gov (United States)

    Atteia, Ariane; van Lis, Robert; Tielens, Aloysius G M; Martin, William F

    2013-02-01

    Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria

    DEFF Research Database (Denmark)

    Stams, A.J.; Oude Elferink, S.J.; Westermann, Peter

    2003-01-01

    Most types of anaerobic respiration are able to outcompete methanogenic consortia for common substrates if the respective electron acceptors are present in sufficient amounts. Furthermore, several products or intermediate compounds formed by anaerobic respiring bacteria are toxic to methanogenic...... consortia. Despite the potentially adverse effects, only few inorganic electron acceptors potentially utilizable for anaerobic respiration have been investigated with respect to negative interactions in anaerobic digesters. In this chapter we review competitive and inhibitory interactions between anaerobic...... respiring populations and methanogenic consortia in bioreactors. Due to the few studies in anaerobic digesters, many of our discussions are based upon studies of defined cultures or natural ecosystems...

  20. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER; TOPICAL

    International Nuclear Information System (INIS)

    John R. Gallagher

    2001-01-01

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  1. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  2. Is anaerobic blood culture necessary? If so, who needs it?

    Science.gov (United States)

    Iwata, Kentaro; Takahashi, Miwa

    2008-07-01

    The role of anaerobic blood cultures is not validated, although they are drawn routinely. We performed a retrospective chart review at a private hospital in Japan for patients admitted between July 1, 2004 to June 30, 2005 to determine patient characteristics resulting in anaerobic blood culture. During the study period, 17,775 blood culture bottles were sent for the analysis, and 2132 bottles (12.0%) were positive for microbial growth. Bacteria were grown from 958 anaerobic bottles (44.7%), and 719 (33.7%) of those were judged to represent real infections, which accounted for 410 cases of bacteremia. Only 47 cases (11.5%) were detected by anaerobic cultures alone. Among those 47, obligate anaerobes represented 12 cases. Clinical evaluation could have predicted 7 of 12 cases of obligate anaerobic bacteremia. In the remaining 5 cases, the source of bacteremia was unclear. There were 2.7 cases of anaerobic bacteremia per 1000 blood cultures. The mortality attributable to anaerobic bacteremia was 50%. Among bacteremic cases not caused by obligate anaerobes yet diagnosed solely by anaerobic bottles, either the standard 2 sets of blood were not taken or their clinical outcomes were favorable. Anaerobic blood culture can be avoided in most cases. Anaerobic blood culture may be most helpful when (1) bacteremia because of obligate anaerobes is clinically suspected, (2) patients are severely immunocompromised, and (3) source of bacteremia is not identified by clinical evaluation.

  3. Thermophillic Sidestream Anaerobic Membrane Bioreactors: The Shear Rate Dilemma

    NARCIS (Netherlands)

    Jeison, D.A.; Telkamp, P.; Lier, van J.B.

    2009-01-01

    Anaerobic biomass retention under thermophilic conditions has proven difficult. Membrane filtration can be used as alternative way to achieve high sludge concentrations. This research studied the feasibility of anaerobic membrane bioreactors (AnMBRs) under thermophilic conditions. A sidestream MBR

  4. The effect of tannic compounds on anaerobic wastewater treatment

    NARCIS (Netherlands)

    Field, J.A.

    1989-01-01

    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the

  5. Characterization and Optimization of Dual Anaerobic/Aerobic Biofilm Process

    National Research Council Canada - National Science Library

    Togna, A

    1997-01-01

    The purpose of this Phase I STTR effort was to develop and characterize a dual anaerobic/aerobic biofilm process that promotes anaerobic reductive dehalogenation and aerobic cometabolic biodegradation...

  6. Physiologically anaerobic microorganisms of the deep subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, S.E. Jr.; Chung, K.T.

    1992-06-01

    A variety of different media were used to isolate facultatively (FAB) and obligately anaerobic bacteria (OAB). These bacteria were isolated from core subsamples obtained from boreholes at the Idaho National Engineering Lab. (INEL) or at the Hanford Lab. (Yakima). Core material was sampled at various depths to 600 feet below the surface. All core samples with culturable bacteria contained at least FAB making thisthe most common physiological type of anaerobic bacteria present in the deep subsurface at these two sites. INEL core samples are characterized by isolates of both FAB and OAB. No isolates of acetogenic, methanogenic, or sulfate reducing bacteria were obtained. Yakima core samples are characterized by a marked predominance of FAB in comparison to OAB. In addition, isolates of acetogenic, methanogenic, and sulfate reducing bacteria were obtained. The Yakima site has the potential for complete anaerobic mineralization of organic compounds whereas this potential appears to be lacking at INEL.

  7. Biochemistry and physiology of anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-18

    We welcome you to The Power of Anaerobes. This conference serves two purposes. One is to celebrate the life of Harry D. Peck, Jr.,who was born May 18, 1927 and would have celebrated his 73rd birthday at this conference. He died November 20, 1998. The second is to gather investigators to exchange views within the realm of anaerobic microbiology, an area in which tremendous progress has been seen during recent years. It is sufficient to mention discoveries of a new form of life (the archaea), hyper or extreme thermophiles, thermophilic alkaliphiles and anaerobic fungi. With these discoveries has come a new realization about physiological and metabolic properties of microorganisms, and this in turn has demonstrated their importance for the development, maintenance and sustenance of life on Earth.

  8. Detoxification of carbaryl by anaerobic gastrointestinal organisms

    International Nuclear Information System (INIS)

    Laszewski, S.J.; Harkin, J.M.

    1990-01-01

    Bacteria originating from the human gastrointestinal tract (GIT) were tested in vitro for their ability to hydrolyze carbaryl, the most widely used carbamate insecticide. Carbaryl hydrolysis prevents acetylcholinesterase inhibition. Degradation of [1- 14 C]naphthyl N-methylcarbamate was assessed through the use of carbon-and nitrogen-free enrichment cultures as well as a cometabolic enrichment culture. The carbon-free enrichment culture showed the greatest ability to hydrolyze carbaryl. Two facultative anaerobes, identified as DF-3 and Citrobacter freundii were isolated. Cell-free extracts from these bacteria were able to hydrolyze p-nitrophenyl acetate, 1-naphthyl acetate and carbaryl. This investigation suggests carbaryl degradation could occur prior to gastrointestinal absorption. Human GIT organisms are also widespread in anaerobic environments. Microbial hydrolysis of a xenobiotic can be an important reaction in the anaerobic environments of man or nature

  9. Achieve efficient nitrogen removal from real sewage in a plug-flow integrated fixed-film activated sludge (IFAS) reactor via partial nitritation/anammox pathway.

    Science.gov (United States)

    Yang, Yandong; Zhang, Liang; Cheng, Jun; Zhang, Shujun; Li, Baikun; Peng, Yongzhen

    2017-09-01

    This study tested the feasibility of plug-flow integrated fixed-film activated sludge (IFAS) reactor in applying sewage partial nitritation/anammox (PN/A) process. The IFAS reactor was fed with real pre-treated sewage (C/N ratio=1.3) and operated for 200days. High nitrogen removal efficiency of 82% was achieved with nitrogen removal rates of 0.097±0.019kgN/(m 3 ·d). Therefore, plug-flow IFAS reactor could be an alternative to applying sewage PN/A process. Besides, it was found that the stability of sewage PN/A process was significantly affected by residual ammonium. Nitrate accumulated in effluent and PN/A performance deteriorated when residual ammonium was below 1mg/L. On the contrary, long-term stable PN/A operation was achieved when residual ammonium was over 3mg/L. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. [Activity of doripenem against anaerobic bacteria].

    Science.gov (United States)

    Dubreuil, L; Neut, C; Mahieux, S; Muller-Serieys, C; Jean-Pierre, H; Marchandin, H; Soussy, C J; Miara, A

    2011-04-01

    This study examines the activity of doripenem, a new carbapenem compound compared with amoxicillin-clavulanic acid, piperacillin+tazobactam, imipenem, clindamycin and metronidazole against 316 anaerobes. Inoculum preparation and agar dilution method were performed according to the CLSI method for anaerobes (M11A7). At a concentration of 4μg/ml doripenem and imipenem (IMP) inhibited 122 (96 %) and 126 (99 %) strains of the Bacteroides fragilis group, respectively. In contrast, doripenem appeared more potent than IMP against Gram-positive anaerobes inhibiting at the same concentration of 4μg/ml 145/145 strains (100 %) versus 115/145 for IMP (79.3 %). Against 316 anaerobic strains, the carbapenem doripenem had an MIC(50) of 0.25μg/ml and an MIC(90) of 2μg/ml. Results were similar to those for imipenem (MIC(50) of 0.125μg/ml and MIC(90) of 4μg/ml). If we consider the resistant breakpoints of the two carbapenems as defined by EUCAST, the resistance rate for doripenem (MIC>4μg/ml) 1.6 % is similar to that of imipenem (MIC>8μg/ml) 1.3 %. Thus independently of the PK/PD parameters the two carbapenems demonstrated very close activity; doripenem was more potent on Gram-positive anaerobes and slightly less potent against Gram-negative anaerobes mainly the B. fragilis group. Further clinical studies are needed to assess its usefulness in patients. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  11. In vitro activity of mecillinam against anaerobic bacteria.

    OpenAIRE

    Steinkraus, G E; McCarthy, L R

    1980-01-01

    A microtiter broth dilution method was employed to determine the in vitro activity of mecillinam against 201 recent clinical isolates of anaerobic bacteria. Both the anerobic gram-positive and anaerobic gram-negative bacilli displayed a wide range of minimal inhibitory concentrations of mecillinam; most strains were resistant to the antibiotic. The anaerobic cocci exhibited a narrower range of minimal inhibitory concentrations than were observed with other anaerobes, but also exhibited mecill...

  12. The Financial Feasibility of Anaerobic Digestion for Ontario's Livestock Industries

    OpenAIRE

    Weersink, Alfons; Mallon, Shawn

    2007-01-01

    This report is an investigation of the financial feasibility of farm based anaerobic digestion investments under Ontario's Standard Offer Contract electricity prices. Using Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) Agricultural Anaerobic Digestion Calculation Spreadsheet (AADCS) anaerobic digestion inputs, outputs, cost and revenues were estimated and used to conduct a financial analysis on the feasibility of four sized farm base anaerobic digestion investments. The res...

  13. Anaerobic Digestion: Mass Balances and Products

    DEFF Research Database (Denmark)

    Møller, Jacob; Christensen, Thomas Højlund; Jansen, Jes la Cour

    2011-01-01

    While the basic processes involved in anaerobic digestion of waste are described in Chapter 9.4 and the main digestion technologies are presented in Chapter 9.5, this chapter focuses on mass balances, gas production and energy aspects, environmental emissions and unit process inventories. Underst......While the basic processes involved in anaerobic digestion of waste are described in Chapter 9.4 and the main digestion technologies are presented in Chapter 9.5, this chapter focuses on mass balances, gas production and energy aspects, environmental emissions and unit process inventories...

  14. Anaerobic digestion of cider apple residues

    Energy Technology Data Exchange (ETDEWEB)

    Contreras Lopez, A. (E.T.S.I.I., U.N.E.D., Madrid (Spain). Dept. Quimica Applicada a la Ingenieria); Lopez Bobo, R. (E.T.S. Ingeneiros Industriales, Asturias (Spain). Dept. de Energia)

    1992-12-01

    Apple residue from the cider industry is used here for anaerobic fermentation. The effect of retention time and volatile solids concentration on the production of biogas and methane was investigated by using continuously mixed anaerobic fermentors with a working volume of 1 1. The maximum proportions of biogas and methane obtained were 430 1 biogas/kg per day (12 days' retention time and 3% of volatile solids) and 281 1 of methane per day (a retention time of 30 days and 2% of volatile solids), respectively. (author)

  15. Renewable methane from anaerobic digestion of biomass

    International Nuclear Information System (INIS)

    Chynoweth, D.P.; Owens, J.M.

    2001-01-01

    Production of methane via anaerobic digestion of energy crops and organic wastes would benefit society by providing a clean fuel from renewable feedstocks. This would replace fossil fuel-derived energy and reduce environmental impacts including global warming and acid rain. Although biomass energy is more costly than fossil fuel-derived energy, trends to limit carbon dioxide and other emissions through emission regulations, carbon taxes, and subsidies of biomass energy would make it cost competitive. Methane derived from anaerobic digestion is competitive in efficiencies and costs to other biomass energy forms including heat, synthesis gases, and ethanol. (author)

  16. Anaerobic digestion of industrial activated aerobic sludge

    International Nuclear Information System (INIS)

    Goodloe, J.G.; Roberts, R.S.

    1990-04-01

    The Tennessee Eastman Company manufactures a variety of organic chemicals, plastics and fibers at their Kingsport Tennessee Facility. The wastewater generated during the manufacture of these compounds is currently treated using an activated sludge process. The objective of the project is to evaluate the economic potential of an anaerobic digestion process to convert industrial sludge at the Tennessee Eastman Company into biogas. The evaluation will require collection and analysis of experimental data on the anaerobic digestion of industrial sludge obtained from Kingsport. Although the experiments will be conducted using Tennessee Eastman sludge, these results should be also generally applicable to similar industrial sludge

  17. Pu sorption to activated conglomerate anaerobic bacteria

    International Nuclear Information System (INIS)

    Sasaki, Takayuki; Kudo, Akira

    2001-01-01

    The sorption of Pu to the anaerobic bacteria activated under specific conditions of temperature, pH and depleted nutrients after long dormant period was investigated. After 4 h at neutral pH, the distribution coefficient (K d ) between bacteria and aqueous phase at 308 and 278 K had around 10 3 to 10 4 . After over 5 days, however, the K d at only 308 K had increased to over 10 5 . Sterilized (dead) and dormant anaerobic bacteria adsorbed Pu to the same extent. (author)

  18. Modelling nitrite dynamics and associated feedback processes in the Benguela oxygen minimum zone

    Science.gov (United States)

    Mashifane, T. B.; Vichi, M.; Waldron, H. N.; Machu, E.; Garçonc, V.

    2016-08-01

    Understanding nitrite dynamics in oxygen minimum zones (OMZs) is a challenge as it represents an intermediary nitrogen species with a short turnover time. Nitrite is also reduced to nitrogen in OMZs, preventing its accumulation. This creates difficulties in detecting nitrite with colorimetric methods as concentrations may occur below detection limits in some regions. Nitrite concentrations are key to understanding intermediate nitrogen processes and their implication for nitrogen loss in OMZs. A coupled physical-biogeochemical model is applied in the Benguela OMZ to study nitrite dynamics and its associated feedback processes. Simulated results show occurrence of primary and secondary nitrite maxima in the Benguela shelf waters. The primary nitrite maxima in the Benguela are attributed to nitrification and nitrate assimilation as they occur in association with the nitracline. Secondary nitrite maxima accumulate in the Angola-Benguela Front (ABF) OMZ and are attributed to denitrification. The secondary nitrite maxima are consumed by anaerobic ammonium oxidation (anammox) off Walvis Bay. Nitrite maxima are restricted to the shelf off Walvis Bay and advected offshore in the ABF region. Interchanges between the poleward South Atlantic Central Water (SACW) and the equatorward, well-aerated Eastern South Atlantic Central Water (ESACW) drive the seasonality of nitrogen processes in the Benguela. Subsequent nitrite reduction in the Benguela OMZ leads to nitrous oxide production, with high concentrations occurring in the ABF region as a result of nitrification and denitrification. Off Walvis Bay, nitrous oxide production is low since nitrite is consumed by anammox. Nitrous oxide production occurs in thermocline, intermediate and deeper water masses in the ABF region. High N fluxes in the Benguela are attributed to nitrification as compared to anammox and denitrification. Results from this study demonstrate the role of intermediate nitrogen species in nitrogen feedback

  19. Synergic Adsorption–Biodegradation by an Advanced Carrier for Enhanced Removal of High-Strength Nitrogen and Refractory Organics

    KAUST Repository

    Ahmad, Muhammad

    2017-03-29

    Coking wastewater contains not only high-strength nitrogen but also toxic biorefractory organics. This study presents simultaneous removal of high-strength quinoline, carbon, and ammonium in coking wastewater by immobilized bacterial communities composed of a heterotrophic strain Pseudomonas sp. QG6 (hereafter referred as QG6), ammonia-oxidizing bacteria (AOB), and anaerobic ammonium oxidation bacteria (anammox). The bacterial immobilization was implemented with the help of a self-designed porous cubic carrier that created structured microenvironments including an inner layer adapted for anaerobic bacteria, a middle layer suitable for coaggregation of certain aerobic and anaerobic bacteria, and an outer layer for heterotrophic bacteria. By coating functional polyurethane foam (FPUF) with iron oxide nanoparticles (IONPs), the biocarrier (IONPs-FPUF) could provide a good outer-layer barrier for absorption and selective treatment of aromatic compounds by QG6, offer a conducive environment for anammox in the inner layer, and provide a mutualistic environment for AOB in the middle layer. Consequently, simultaneous nitrification and denitrification were reached with the significant removal of up to 322 mg L (98%) NH, 311 mg L (99%) NO, and 633 mg L (97%) total nitrogen (8 mg L averaged NO concentration was recorded in the effluent), accompanied by an efficient removal of chemical oxygen demand by 3286 mg L (98%) and 350 mg L (100%) quinoline. This study provides an alternative way to promote synergic adsorption and biodegradation with the help of a modified biocarrier that has great potential for treatment of wastewater containing high-strength carbon, toxic organic pollutants, and nitrogen.

  20. Synergic Adsorption-Biodegradation by an Advanced Carrier for Enhanced Removal of High-Strength Nitrogen and Refractory Organics.

    Science.gov (United States)

    Ahmad, Muhammad; Liu, Sitong; Mahmood, Nasir; Mahmood, Asif; Ali, Muhammad; Zheng, Maosheng; Ni, Jinren

    2017-04-19

    Coking wastewater contains not only high-strength nitrogen but also toxic biorefractory organics. This study presents simultaneous removal of high-strength quinoline, carbon, and ammonium in coking wastewater by immobilized bacterial communities composed of a heterotrophic strain Pseudomonas sp. QG6 (hereafter referred as QG6), ammonia-oxidizing bacteria (AOB), and anaerobic ammonium oxidation bacteria (anammox). The bacterial immobilization was implemented with the help of a self-designed porous cubic carrier that created structured microenvironments including an inner layer adapted for anaerobic bacteria, a middle layer suitable for coaggregation of certain aerobic and anaerobic bacteria, and an outer layer for heterotrophic bacteria. By coating functional polyurethane foam (FPUF) with iron oxide nanoparticles (IONPs), the biocarrier (IONPs-FPUF) could provide a good outer-layer barrier for absorption and selective treatment of aromatic compounds by QG6, offer a conducive environment for anammox in the inner layer, and provide a mutualistic environment for AOB in the middle layer. Consequently, simultaneous nitrification and denitrification were reached with the significant removal of up to 322 mg L -1 (98%) NH 4 , 311 mg L -1 (99%) NO 2 , and 633 mg L -1 (97%) total nitrogen (8 mg L -1 averaged NO 3 concentration was recorded in the effluent), accompanied by an efficient removal of chemical oxygen demand by 3286 mg L -1 (98%) and 350 mg L -1 (100%) quinoline. This study provides an alternative way to promote synergic adsorption and biodegradation with the help of a modified biocarrier that has great potential for treatment of wastewater containing high-strength carbon, toxic organic pollutants, and nitrogen.

  1. The IWA Anaerobic Digestion Model No 1 (ADM1)

    NARCIS (Netherlands)

    Batstone, D.J.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.V.; Pavalostathis, S.G.; Rozzi, A.; Sanders, W.T.M.; Siegrist, H.; Vavilin, V.A.

    2002-01-01

    The IWA Anaerobic Digestion Modelling Task Group was established in 1997 at the 8th World Congress on Anaerobic Digestion (Sendai, Japan) with the goal of developing a generalised anaerobic digestion model. The structured model includes multiple steps describing biochemical as well as

  2. The IWA Anaerobic digestion model no 1. (ADM1)

    DEFF Research Database (Denmark)

    Batstone, Damien J.; Keller, J.; Angelidaki, Irini

    2002-01-01

    The IWA Anaerobic Digestion Modelling Task Group was established in 1997 at the 8th World Congress on Anaerobic Digestion (Sendai, Japan) with the goal of developing a generalised anaerobic digestion model. The structured model includes multiple steps describing biochemical as well...

  3. Anaerobic Digestion. Student Manual. Biological Treatment Process Control.

    Science.gov (United States)

    Carnegie, John W., Ed.

    This student manual contains the textual material for a four-lesson unit on anaerobic digestion control. Areas addressed include: (1) anaerobic sludge digestion (considering the nature of raw sludge, purposes of anaerobic digestion, the results of digestion, types of equipment, and other topics); (2) digester process control (considering feeding…

  4. Hotspots of anaerobic ammonia oxidation in land - freshwater interfaces

    DEFF Research Database (Denmark)

    Zhu, Guibing; Wang, Shanyun; Wang, Weidong

    2013-01-01

    sampled fromlake riparian zones in North China. Laboratory incubations in the presence of ammonium or nitrate—at concentrations equivalent to no more than 10% of those detected in situ—yielded some of the highest potential anammox activities reported for natural environments to date. Potential rates......For decades, the conversion of organic nitrogen to dinitrogen gas by heterotrophic bacteria, termed heterotrophic denitrification, was assumed to be the main pathway of nitrogen loss in natural ecosystems. Recently, however, autotrophic bacteria have been shown to oxidize ammonium in the absence...

  5. Proceedings of the 10. world congress on anaerobic digestion 2004 : anaerobic bioconversion, answer for sustainability

    International Nuclear Information System (INIS)

    2004-01-01

    This conference reviewed the broad scope of anaerobic process-related activities taking place globally and confirmed the possibilities of using anaerobic processes to add value to industrial wastewaters, municipal solid wastes and organic wastes while minimizing pollution and greenhouse gases. It focused on biomolecular tools, instrumentation of anaerobic digestion processes, anaerobic bioremediation of chlorinated organics, and thermophilic and mesophilic digestion. Several papers focused on the feasibility of using waste products to produce hydrogen and methane for electricity generation. The sessions of the conference were entitled acidogenesis; microbial ecology; process control; sulfur content; technical development; domestic wastewater; agricultural waste; organic municipal solid wastes; instrumentation; molecular biology; sludges; agricultural feedstock; bioremediation; industrial wastewater; hydrogen production; pretreatments; sustainability; and integrated systems. The conference featured 387 posters and 192 oral presentations, of which 111 have been indexed separately for inclusion in this database. refs., tabs., figs

  6. Environmental impacts of anaerobic digestion and the use of anaerobic residues as soil amendment

    Energy Technology Data Exchange (ETDEWEB)

    Mosey, F.E. [VFA Services Ltd., Herts (United Kingdom)

    1996-01-01

    This paper defines the environmental role of anaerobic digestion within the overall objective of recovering energy from renewable biomass resources. Examples and opportunities for incorporating anaerobic digestion into biomass-to-energy schemes are discussed, together with environmental aspects of anaerobic digestion plants. These include visual, public amenity, pathogens and public health, odor control, and gaseous emissions. Digestate disposal and the benefits of restrictions on recycling organic wastes and biomass residues back to the land are discussed, particularly as they relate to American and European codes of practice and environmental legislation. The paper concludes that anaerobic digestion, if performed in purpose-designed reactors that efficiently recover and use biogas, is an environmentally benign process that can enhance energy recovery and aid the beneficial land use of plant residues in many biomass-to-energy schemes.

  7. Exocellular electron transfer in anaerobic microbial communities.

    Science.gov (United States)

    Stams, Alfons J M; de Bok, Frank A M; Plugge, Caroline M; van Eekert, Miriam H A; Dolfing, Jan; Schraa, Gosse

    2006-03-01

    Exocellular electron transfer plays an important role in anaerobic microbial communities that degrade organic matter. Interspecies hydrogen transfer between microorganisms is the driving force for complete biodegradation in methanogenic environments. Many organic compounds are degraded by obligatory syntrophic consortia of proton-reducing acetogenic bacteria and hydrogen-consuming methanogenic archaea. Anaerobic microorganisms that use insoluble electron acceptors for growth, such as iron- and manganese-oxide as well as inert graphite electrodes in microbial fuel cells, also transfer electrons exocellularly. Soluble compounds, like humic substances, quinones, phenazines and riboflavin, can function as exocellular electron mediators enhancing this type of anaerobic respiration. However, direct electron transfer by cell-cell contact is important as well. This review addresses the mechanisms of exocellular electron transfer in anaerobic microbial communities. There are fundamental differences but also similarities between electron transfer to another microorganism or to an insoluble electron acceptor. The physical separation of the electron donor and electron acceptor metabolism allows energy conservation in compounds as methane and hydrogen or as electricity. Furthermore, this separation is essential in the donation or acceptance of electrons in some environmental technological processes, e.g. soil remediation, wastewater purification and corrosion.

  8. Anaerobic Digestion in a Flooded Densified Leachbed

    Science.gov (United States)

    Chynoweth, David P.; Teixeira, Arthur A.; Owens, John M.; Haley, Patrick J.

    2009-01-01

    A document discusses the adaptation of a patented biomass-digesting process, denoted sequential batch anaerobic composting (SEBAC), to recycling of wastes aboard a spacecraft. In SEBAC, high-solids-content biomass wastes are converted into methane, carbon dioxide, and compost.

  9. Anaerobic hydrolysis during digestion of complex substrates

    NARCIS (Netherlands)

    Sanders, W.T.M.

    2001-01-01

    Complex waste(water) such as, raw sewage, dairy wastewater, slaughterhouse wastewater, fish processing wastewater, primary sludge and the organic fraction of municipal solid waste have been proven to be degradable under anaerobic conditions. However, during the digestion process the conversion of

  10. Anaerobic hydrolysis during digestion of complex substrates

    NARCIS (Netherlands)

    Sanders, W.T.M.

    2001-01-01

    Complex waste(water) such as, raw sewage, dairy wastewater, slaughterhouse wastewater, fish processing wastewater, primary sludge and the organic fraction of municipal solid waste have been proven to be degradable under anaerobic conditions. However, during the digestion process the

  11. Anaerobic effluent disinfection using ozone: Byproducts formation

    NARCIS (Netherlands)

    Silva, G.H.R.; Daniel, L.A.; Bruning, H.; Rulkens, W.H.

    2010-01-01

    This research was aimed at studying oxidation processes, coliform inactivation effectiveness and disinfection byproducts (DBPs) associated with the disinfection of anaerobic sanitary wastewater effluent with ozone applied at doses of 5.0, 8.0 and 10.0mg O(3)L(-1) for contact times of 5, 10 and 15

  12. Anaerobic Toxicity of Cationic Silver Nanoparticles

    Science.gov (United States)

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged p...

  13. Anaerobic digestion of dairy farm slurry

    Energy Technology Data Exchange (ETDEWEB)

    Bell, C

    1973-04-01

    Bell described the intermittent operation of a pilot-scale anaerobic digester receiving dilute dairy farm slurry. A 65 to 75 percent reduction of the ''permanganate (COD) value'' could be obtained at 35/sup 0/ and a 60 day detention time. Methane content of the gases ranged between 40 and 70 percent.

  14. Multivariate monitoring of anaerobic co-digestion

    DEFF Research Database (Denmark)

    Madsen, Michael; Holm-Nielsen, Jens Bo

    Anaerobic digestion processes for production of renewable energy in the form of biogas, and in the future hydrogen, are becoming increasingly important worldwide. Sustainable solutions for renewable energy production systems are given high political priority, amongst other things due to global...

  15. Electrochemical monitoring of ammonia during anaerobic digestion

    DEFF Research Database (Denmark)

    Zhao, Nannan; Angelidaki, Irini; Zhang, Yifeng

    Ammonia is known as key inhibitor to methanogens in anaerobic digestion (AD) process. It’s of importance to develop efficient tool for ammonia monitoring. In this study, an electrolysis cell (EC) coupled with a complete nitrification reactor was developed as sensor for real time and online monito...

  16. Sulfate-reducing bacteria in anaerobic bioreactors

    NARCIS (Netherlands)

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the

  17. Anaerobic oxidation of methane and ammonium.

    NARCIS (Netherlands)

    Strous, M.; Jetten, M.S.M.

    2004-01-01

    Anaerobic oxidation of methane and ammonium are two different processes catalyzed by completely unrelated microorganisms. Still, the two processes do have many interesting aspects in common. First, both of them were once deemed biochemically impossible and nonexistent in nature, but have now been

  18. Comparative effects of undigested and anaerobically digested ...

    African Journals Online (AJOL)

    African Journal of Environmental Science and Technology ... The pot experiment consisted of sixty (60) nursery bags, set out in the greenhouse. ... (NPK 20:10:10) applied at the 120 kgN/ha; air-dried undigested and anaerobically digested ...

  19. Anaerobic prefermentation and primary sedimentation of wastewater ...

    African Journals Online (AJOL)

    This research was carried out with the aim of evaluating the solubilisation and acidification capacity of fermenting organisms in suspension in a sequencing batch reactor (SBR), which had a volume of 1 800 ℓ. Using 8 h cycles with 340 min of anaerobic reaction time, the wastewater fed to the SBR presented an average of ...

  20. The anaerobic treatment of sulfate containing wastewater

    NARCIS (Netherlands)

    Visser, A.

    1995-01-01


    In the anaerobic treatment of sulfate containing wastewater sulfate reducing bacteria (SRB) will compete with methanogenic- (MB) and acetogenic bacteria (AB) for the available substrates such as hydrogen, acetate, propionate and butyrate. The outcome of this competition will

  1. Early Microbial Evolution: The Age of Anaerobes.

    Science.gov (United States)

    Martin, William F; Sousa, Filipa L

    2015-12-18

    In this article, the term "early microbial evolution" refers to the phase of biological history from the emergence of life to the diversification of the first microbial lineages. In the modern era (since we knew about archaea), three debates have emerged on the subject that deserve discussion: (1) thermophilic origins versus mesophilic origins, (2) autotrophic origins versus heterotrophic origins, and (3) how do eukaryotes figure into early evolution. Here, we revisit those debates from the standpoint of newer data. We also consider the perhaps more pressing issue that molecular phylogenies need to recover anaerobic lineages at the base of prokaryotic trees, because O2 is a product of biological evolution; hence, the first microbes had to be anaerobes. If molecular phylogenies do not recover anaerobes basal, something is wrong. Among the anaerobes, hydrogen-dependent autotrophs--acetogens and methanogens--look like good candidates for the ancestral state of physiology in the bacteria and archaea, respectively. New trees tend to indicate that eukaryote cytosolic ribosomes branch within their archaeal homologs, not as sisters to them and, furthermore tend to root archaea within the methanogens. These are major changes in the tree of life, and open up new avenues of thought. Geochemical methane synthesis occurs as a spontaneous, abiotic exergonic reaction at hydrothermal vents. The overall similarity between that reaction and biological methanogenesis fits well with the concept of a methanogenic root for archaea and an autotrophic origin of microbial physiology. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  2. Anaerobic work capacity in elite wheelchair athletes

    NARCIS (Netherlands)

    van der Woude, L H; Bakker, W H; Elkhuizen, J W; Veeger, DirkJan (H. E. J.); Gwinn, T

    1997-01-01

    To study the anaerobic work capacity in wheelchair athletes, 67 elite wheelchair athletes (50 male) were studied in a 30-second sprint test on a computer-controlled wheelchair ergometer during the World Championships and Games for the Disabled in Assen (1990). The experimental set-up (ergometer,

  3. The fate of methanol in anaerobic bioreactors

    NARCIS (Netherlands)

    Florencio, L.

    1994-01-01

    Methanol is an important component of certain industrial wastewaters. In anaerobic environments, methanol can be utilized by methanogens and acetogens. In wastewater treatment plants, the conversion of methanol into methane is preferred because this conversion is responsible for chemical

  4. Applications of the anaerobic digestion process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Ellegaard, L.; Ahring, Birgitte Kiær

    2003-01-01

    and resource/energy recovery have been developed. Treatment of biowastes by anaerobic digestion processes is in many cases the optimal way to convert organic waste into useful products such as energy (in the form of biogas) and a fertilizer product. Other waste management options, such as land filling...

  5. Teleosts in hypoxia : Aspects of anaerobic metabolism

    NARCIS (Netherlands)

    Van den Thillart, G.; van Waarde, Aren

    1985-01-01

    Moderate hypoxia can be tolerated by many fish species, while only some species survive severe hypoxia or anoxia. Hypoxia usually activates anaerobic glycolysis, which may be temporary when the animals are able to improve their oxygen extraction capacity. Switching over to aerobic metabolism allows

  6. Antimicrobial resistance and susceptibility testing of anaerobic bacteria.

    Science.gov (United States)

    Schuetz, Audrey N

    2014-09-01

    Infections due to anaerobic bacteria can be severe and life-threatening. Susceptibility testing of anaerobes is not frequently performed in laboratories, but such testing is important to direct appropriate therapy. Anaerobic resistance is increasing globally, and resistance trends vary by geographic region. An overview of a variety of susceptibility testing methods for anaerobes is provided, and the advantages and disadvantages of each method are reviewed. Specific clinical situations warranting anaerobic susceptibility testing are discussed. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Anaerobic bacteria in wastewater treatment plant.

    Science.gov (United States)

    Cyprowski, Marcin; Stobnicka-Kupiec, Agata; Ławniczek-Wałczyk, Anna; Bakal-Kijek, Aleksandra; Gołofit-Szymczak, Małgorzata; Górny, Rafał L

    2018-03-28

    The objective of this study was to assess exposure to anaerobic bacteria released into air from sewage and sludge at workplaces from a wastewater treatment plant (WWTP). Samples of both sewage and sludge were collected at six sampling points and bioaerosol samples were additionally collected (with the use of a 6-stage Andersen impactor) at ten workplaces covering different stages of the technological process. Qualitative identification of all isolated strains was performed using the biochemical API 20A test. Additionally, the determination of Clostridium pathogens was carried out using 16S rRNA gene sequence analysis. The average concentration of anaerobic bacteria in the sewage samples was 5.49 × 10 4 CFU/mL (GSD = 85.4) and in sludge-1.42 × 10 6 CFU/g (GSD = 5.1). In turn, the average airborne bacterial concentration was at the level of 50 CFU/m 3 (GSD = 5.83) and the highest bacterial contamination (4.06 × 10 3  CFU/m 3 ) was found in winter at the bar screens. In total, 16 bacterial species were determined, from which the predominant strains belonged to Actinomyces, Bifidobacterium, Clostridium, Propionibacterium and Peptostreptococcus genera. The analysis revealed that mechanical treatment processes were responsible for a substantial emission of anaerobic bacteria into the air. In both the sewage and air samples, Clostridium perfringens pathogen was identified. Anaerobic bacteria were widely present both in the sewage and in the air at workplaces from the WWTP, especially when the technological process was performed in closed spaces. Anaerobic bacteria formed small aggregates with both wastewater droplets and dust particles of sewage sludge origin and as such may be responsible for adverse health outcomes in exposed workers.

  8. Deforestation for oil palm alters the fundamental balance of the soil N cycle

    Science.gov (United States)

    Hamilton, Liz; Trimmer, Mark; Bradley, Chris; Pinay, Gilles

    2016-04-01

    Expansion of commercial agriculture in equatorial regions has significant implications for regional nitrogen (N) budgets, particularly nitrous oxide (N2O) and nitric oxide (NO) emissions, produced largely by microbial nitrification and denitrification. However, current estimates of soil N turnover are poorly constrained in Southeast Asia for nitrogen gas (N2) production and lesser known N transformations such as nitrate ammonification (DNRA) and anaerobic ammonium oxidation (anammox). We investigated changes in N availability and turnover following replacement of tropical forest with oil palm plantations along a chronosequence of oil palm maturity (3-months to 15-year-old stands) and secondary to primary forest succession in Sabah, Malaysian Borneo. Samples were taken from ten sites during March and April 2012. Using 15N tracing techniques, we measured rates of gross ammonium (NH4+) and nitrate (NO3-) production (mineralisation and nitrification) and consumption (n= 8), potential denitrification, DNRA and anammox (n= 12) in soil cores and slurries respectively. Gross mineralisation rates (0.05 - 3.08 g N m-2 d-1) remained unchanged in oil palm relative to forests. However, a significant reduction in gross nitrification (0.04 - 2.31 g N m-2 d-1) and an increase in NH4+ immobilisation disrupt the pathway to N2 production substantially reducing (by > 90%) rates of denitrification and anammox in recently planted oil palm relative to primary forest. In forests, N2 produced via anammox was ˜30% of that from denitrification highlighting the potential for anammox to contribute significantly to N2 production. NH4+ production rates from DNRA were over two orders of magnitude less than N2 production rates indicating that denitrification is the primary dissimilatory nitrate consumption process in these soils. Potential N2O emissions were greater than potential N2 production, remaining unchanged across the chronosequence and indicating an increased N2O:N2 emission ratio when

  9. Analysis of anaerobic blood cultures in burned patients.

    Science.gov (United States)

    Regules, Jason A; Carlson, Misty D; Wolf, Steven E; Murray, Clinton K

    2007-08-01

    The utility of anaerobic blood culturing is often debated in the general population, but there is limited data on the modern incidence, microbiology, and utility of obtaining routine anaerobic blood cultures for burned patients. We performed a retrospective review of the burned patients electronic medical records database for all blood cultures drawn between January 1997 and September 2005. We assessed blood cultures for positivity, organisms identified, and growth in aerobic or anaerobic media. 85,103 blood culture sets were drawn, with 4059 sets from burned patients. Three hundred and forty-five single species events (619 total blood culture isolates) were noted in 240 burned patients. For burned patients, four isolates were obligate anaerobic bacteria (all Propionibacterium acnes). Anaerobic versus aerobic culture growth was recorded in 310 of 619 (50.1%) burned patient blood culture sets. 46 (13.5%) of the identified organisms, most of which were not obligate anaerobic bacteria, were identified from solely anaerobic media. The results of our study suggest that the detection of significant anaerobic bacteremia in burned patients is very rare and that anaerobic bottles are not needed in this population for that indication. However anaerobic blood cultures systems are also able to detect facultative and obligate aerobic bacteria; therefore, the deletion of the anaerobic culture medium may have deleterious clinical impact.

  10. Techniques for controlling variability in gram staining of obligate anaerobes.

    Science.gov (United States)

    Johnson, M J; Thatcher, E; Cox, M E

    1995-01-01

    Identification of anaerobes recovered from clinical samples is complicated by the fact that certain gram-positive anaerobes routinely stain gram negative; Peptostreptococcus asaccharolyticus, Eubacterium plautii, Clostridium ramosum, Clostridium symbiosum, and Clostridium clostridiiforme are among the nonconformists with regard to conventional Gram-staining procedures. Accurate Gram staining of American Type Culture Collection strains of these anaerobic bacteria is possible by implementing fixing and staining techniques within a gloveless anaerobic chamber. Under anaerobic conditions, gram-positive staining occurred in all test organisms with "quick" fixing techniques with both absolute methanol and formalin. The results support the hypothesis that, when anaerobic bacteria are exposed to oxygen, a breakdown of the physical integrity of the cell wall occurs, introducing Gram stain variability in gram-positive anaerobes. PMID:7538512

  11. Problematic effects of antibiotics on anaerobic treatment of swine wastewater.

    Science.gov (United States)

    Cheng, D L; Ngo, H H; Guo, W S; Chang, S W; Nguyen, D D; Kumar, S Mathava; Du, B; Wei, Q; Wei, D

    2018-05-04

    Swine wastewaters with high levels of organic pollutants and antibiotics have become serious environmental concerns. Anaerobic technology is a feasible option for swine wastewater treatment due to its advantage in low costs and bioenergy production. However, antibiotics in swine wastewater have problematic effects on micro-organisms, and the stability and performance of anaerobic processes. Thus, this paper critically reviews impacts of antibiotics on pH, COD removal efficiencies, biogas and methane productions as well as the accumulation of volatile fatty acids (VFAs) in the anaerobic processes. Meanwhile, impacts on the structure of bacteria and methanogens in anaerobic processes are also discussed comprehensively. Furthermore, to better understand the effect of antibiotics on anaerobic processes, detailed information about antimicrobial mechanisms of antibiotics and microbial functions in anaerobic processes is also summarized. Future research on deeper knowledge of the effect of antibiotics on anaerobic processes are suggested to reduce their adverse environmental impacts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Biological deammonification of livestock effluents after anaerobic digestion using specialized bacterial cultures

    Science.gov (United States)

    We investigated a deammonification process for the removal of ammonia from anaerobi digestion (AD) effluents. This process is autotrophic and removes N without carbon. Instant deammonification reaction was obtained by mixing a high performance nitrifying sludge (HPNS) (NRRL B-50298) with anammox slu...

  13. Systematic design of membership functions for fuzzy-logic control: A case study on one-stage partial nitritation/anammox treatment systems.

    Science.gov (United States)

    Boiocchi, Riccardo; Gernaey, Krist V; Sin, Gürkan

    2016-10-01

    A methodology is developed to systematically design the membership functions of fuzzy-logic controllers for multivariable systems. The methodology consists of a systematic derivation of the critical points of the membership functions as a function of predefined control objectives. Several constrained optimization problems corresponding to different qualitative operation states of the system are defined and solved to identify, in a consistent manner, the critical points of the membership functions for the input variables. The consistently identified critical points, together with the linguistic rules, determine the long term reachability of the control objectives by the fuzzy logic controller. The methodology is highlighted using a single-stage side-stream partial nitritation/Anammox reactor as a case study. As a result, a new fuzzy-logic controller for high and stable total nitrogen removal efficiency is designed. Rigorous simulations are carried out to evaluate and benchmark the performance of the controller. The results demonstrate that the novel control strategy is capable of rejecting the long-term influent disturbances, and can achieve a stable and high TN removal efficiency. Additionally, the controller was tested, and showed robustness, against measurement noise levels typical for wastewater sensors. A feedforward-feedback configuration using the present controller would give even better performance. In comparison, a previously developed fuzzy-logic controller using merely expert and intuitive knowledge performed worse. This proved the importance of using a systematic methodology for the derivation of the membership functions for multivariable systems. These results are promising for future applications of the controller in real full-scale plants. Furthermore, the methodology can be used as a tool to help systematically design fuzzy logic control applications for other biological processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Antimicrobial Susceptibility of Enteric Gram Negative Facultative Anaerobe Bacilli in Aerobic versus Anaerobic Conditions

    Science.gov (United States)

    Amachawadi, Raghavendra G.; Renter, David G.; Volkova, Victoriya V.

    2016-01-01

    Antimicrobial treatments result in the host’s enteric bacteria being exposed to the antimicrobials. Pharmacodynamic models can describe how this exposure affects the enteric bacteria and their antimicrobial resistance. The models utilize measurements of bacterial antimicrobial susceptibility traditionally obtained in vitro in aerobic conditions. However, in vivo enteric bacteria are exposed to antimicrobials in anaerobic conditions of the lower intestine. Some of enteric bacteria of food animals are potential foodborne pathogens, e.g., Gram-negative bacilli Escherichia coli and Salmonella enterica. These are facultative anaerobes; their physiology and growth rates change in anaerobic conditions. We hypothesized that their antimicrobial susceptibility also changes, and evaluated differences in the susceptibility in aerobic vs. anaerobic conditions of generic E. coli and Salmonella enterica of diverse serovars isolated from cattle feces. Susceptibility of an isolate was evaluated as its minimum inhibitory concentration (MIC) measured by E-Test® following 24 hours of adaptation to the conditions on Mueller-Hinton agar, and on a more complex tryptic soy agar with 5% sheep blood (BAP) media. We considered all major antimicrobial drug classes used in the U.S. to treat cattle: β-lactams (specifically, ampicillin and ceftriaxone E-Test®), aminoglycosides (gentamicin and kanamycin), fluoroquinolones (enrofloxacin), classical macrolides (erythromycin), azalides (azithromycin), sulfanomides (sulfamethoxazole/trimethoprim), and tetracyclines (tetracycline). Statistical analyses were conducted for the isolates (n≥30) interpreted as susceptible to the antimicrobials based on the clinical breakpoint interpretation for human infection. Bacterial susceptibility to every antimicrobial tested was statistically significantly different in anaerobic vs. aerobic conditions on both media, except for no difference in susceptibility to ceftriaxone on BAP agar. A satellite experiment

  15. In situ detection of anaerobic alkane metabolites in subsurface environments

    Directory of Open Access Journals (Sweden)

    Lisa eGieg

    2013-06-01

    Full Text Available Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contibuting to modern-day detrimental effects such as oilfield souring, or may lead to more benefical technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments.

  16. Anaerobic biodegradability and treatment of grey water in upflow anaerobic sludge blanket (UASB) reactor.

    Science.gov (United States)

    Elmitwalli, Tarek A; Otterpohl, Ralf

    2007-03-01

    Feasibility of grey water treatment in an upflow anaerobic sludge blanket (UASB) reactor operated at different hydraulic retention time (HRT) of 16, 10 and 6h and controlled temperature of 30 degrees C was investigated. Moreover, the maximum anaerobic biodegradability without inoculum addition and maximum removal of chemical oxygen demand (COD) fractions in grey water were determined in batch experiments. High values of maximum anaerobic biodegradability (76%) and maximum COD removal in the UASB reactor (84%) were achieved. The results showed that the colloidal COD had the highest maximum anaerobic biodegradability (86%) and the suspended and dissolved COD had similar maximum anaerobic biodegradability of 70%. Furthermore, the results of the UASB reactor demonstrated that a total COD removal of 52-64% was obtained at HRT between 6 and 16 h. The UASB reactor removed 22-30% and 15-21% of total nitrogen and total phosphorous in the grey water, respectively, mainly due to the removal of particulate nutrients. The characteristics of the sludge in the UASB reactor confirmed that the reactor had a stable performance. The minimum sludge residence time and the maximum specific methanogenic activity of the sludge ranged between 27 and 93 days and 0.18 and 0.28 kg COD/(kg VS d).

  17. Instrumentation and Control in Anaerobic Digestion

    DEFF Research Database (Denmark)

    Anaerobic digestion is a multistep process, and is most applied to solids destruction and wastewater treatment for energy production. Despite wide application, and long-term industrial proof of application, some industries are still reluctant to apply this technology. One of the classical reasons...... benchmark. There has therefore been, overall, a quantum advance in application and sophistication of instrumentation and control in anaerobic digestion, and it is an effective option for improved process loading rate and conversion efficiency....... are still a limitation, but this is being partly addressed by the increased complexity of digestion processes. Methods for control benchmarking have also been improved, as there is now an industry standard model (the IWA ADM1), and this is being applied in an improved whole wastewater treatment plant...

  18. Modeling of anaerobic digestion of complex substrates

    International Nuclear Information System (INIS)

    Keshtkar, A. R.; Abolhamd, G.; Meyssami, B.; Ghaforian, H.

    2003-01-01

    A structured mathematical model of anaerobic conversion of complex organic materials in non-ideally cyclic-batch reactors for biogas production has been developed. The model is based on multiple-reaction stoichiometry (enzymatic hydrolysis, acidogenesis, aceto genesis and methano genesis), microbial growth kinetics, conventional material balances in the liquid and gas phases for a cyclic-batch reactor, liquid-gas interactions, liquid-phase equilibrium reactions and a simple mixing model which considers the reactor volume in two separate sections: the flow-through and the retention regions. The dynamic model describes the effects of reactant's distribution resulting from the mixing conditions, time interval of feeding, hydraulic retention time and mixing parameters on the process performance. The model is applied in the simulation of anaerobic digestion of cattle manure under different operating conditions. The model is compared with experimental data and good correlations are obtained

  19. Anaerobic Digestion Alters Copper and Zinc Speciation.

    Science.gov (United States)

    Legros, Samuel; Levard, Clément; Marcato-Romain, Claire-Emmanuelle; Guiresse, Maritxu; Doelsch, Emmanuel

    2017-09-19

    Anaerobic digestion is a widely used organic waste treatment process. However, little is known on how it could alter the speciation of contaminants in organic waste. This study was focused on determining the influence of anaerobic digestion on the speciation of copper and zinc, two metals that generally occur at high concentration in organic waste. Copper and zinc speciation was investigated by X-ray absorption spectroscopy in four different raw organic wastes (predigestion) and their digested counterparts (postdigestion, i.e., digestates). The results highlighted an increase in the digestates of the proportion of amorphous or nanostructured copper sulfides as well as amorphous or nanostructured zinc sulfides and zinc phosphate as compared to raw waste. We therefore suggest that the environmental fate of these elements would be different when spreading either digestates or raw waste on cropland.

  20. Some effects of aeration on anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Bhywapathanapun, S

    1972-01-01

    The anaerobic digestion of meat works waste water is made possible by separating the sludge solids, after which necessary amounts of the concentrated sludge are returned to the digester. Sludge recirculation prolongs solid retention time in the digester. However, sludge separation by gravitational sedimentation is almost impossible because the sludge tends to rise with the continuous gassing. Therefore treatment of the sludge suspension prior to sedimentation is necessary for effective solid separation. The present study examined aeration degasification as a method for sludge suspension pretreatment and found that the rates of aeration of 0.75 to 1.0 VVM (0.12 to 0.16 cubic foot of air per gallon of mixed liquor per minute) were optimal for aeration degasification. The toxic effects on the anaerobic bacteria were small, daily gas production being reduced by only 5%.

  1. Note: Small anaerobic chamber for optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chauvet, Adrien A. P., E-mail: adrien.chauvet@gmail.com; Chergui, Majed [Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Spectroscopie Ultrarapide, ISIC, Faculté des Sciences de Base, Station 6, 1015 Lausanne (Switzerland); Agarwal, Rachna; Cramer, William A. [Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 (United States)

    2015-10-15

    The study of oxygen-sensitive biological samples requires an effective control of the atmosphere in which they are housed. In this aim however, no commercial anaerobic chamber is adequate to solely enclose the sample and small enough to fit in a compact spectroscopic system with which analysis can be performed. Furthermore, spectroscopic analysis requires the probe beam to pass through the whole chamber, introducing a requirement for adequate windows. In response to these challenges, we present a 1 l anaerobic chamber that is suitable for broad-band spectroscopic analysis. This chamber has the advantage of (1) providing access, via a septum, to the sample and (2) allows the sample position to be adjusted while keeping the chamber fixed and hermetic during the experiment.

  2. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process...... control approaches that have been used are comprehensively described. These include simple and adaptive controllers, as well as more recent developments such as fuzzy controllers, knowledge-based controllers and controllers based on neural networks....

  3. Anaerobic co-digestion of organic wastes

    OpenAIRE

    Neves, L.

    2009-01-01

    Tese de doutoramento em Engenharia Química e Biológica Anaerobic digestion is an already established process but the increasing need of bio‐waste recovery has determined the emergence of new substrates, revamping the research in this field. Contrary to some other European countries, in Portugal this technology is still scarcely in use. Nonetheless, the current legislation endorses this application as a waste management and as an energy recovery process. The rapid growth of the ...

  4. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process mea...... control approaches that have been used are comprehensively described. These include simple and adaptive controllers, as well as more recent developments such as fuzzy controllers, knowledge-based controllers and controllers based on neural networks....

  5. The fate of methanol in anaerobic bioreactors

    OpenAIRE

    Florencio, L.

    1994-01-01

    Methanol is an important component of certain industrial wastewaters. In anaerobic environments, methanol can be utilized by methanogens and acetogens. In wastewater treatment plants, the conversion of methanol into methane is preferred because this conversion is responsible for chemical oxygen demand (COD) removal, whereas with the formation of volatile fatty acids (VFA) little COD removal is achieved. Moreover, the accumulation of VFA can lead to reactor instability due to pH drops...

  6. Some unique features of alkaliphilic anaerobes

    Science.gov (United States)

    Roof, Erin; Pikuta, Elena; Otto, Christopher; Williams, George; Hoover, Richard

    2013-09-01

    This article explores two topics involving the examination of four strains of alkaliphilic anaerobes. The first topic was dedicated to detection of the ability of microorganisms to metabolize alternative chirality substrates. Two saccharolytic anaerobic bacteria were chosen for the first experiment: Anaerovirgula multivorans strain SCAT, which is gram positive and spore-forming; and Spirochaeta dissipatitropha, strain ASpC2T, which is gram negative. It was found that both checked sugarlytics were able to use L-ribose and L-arabinose, as growth substrates. The second part was concerned of study a chemolithotrophy in two halo-alkaliphilic sulfate reducing bacteria: Desulfonatornum thiodismutans strain MLF1T and Desulfonatronum lacustre strain Z-7951T. The experiments with lithotrophs had demonstrated that strain MLF1T was capable to grow without any organic source of carbon, while strain Z-7951T had required at least 2 mM sodium acetate for growth. Anaerobic technique was used for preparation of the growth media and maintenance of these bacterial cultures. Standard methods for Gram, spore, and flagella staining were applied for characterization of cytomorphology. In this article, the results of the experiments performed on cytological, physiological, and biochemical levels are presented and discussed.

  7. Anaerobic Capacity of Sailors with Disabilities

    Directory of Open Access Journals (Sweden)

    Prokopowicz Grzegorz

    2017-03-01

    Full Text Available Introduction. A review of Polish and international literature does not give a clear indication of the level of anaerobic capacity that sailors with disabilities demonstrate with regard to their functional capacities. This study sought to determine differences in functional capacity levels between sailors from three medical and functional groups. Material and methods. The research was carried out during a sports camp at the National Sailing Centre in Górki Zachodnie in 2014. Eighteen males with locomotor disabilities were included in the study. The athletes were members of the National Team of Sailors with Disabilities of the Polish Yachting Association. The sportsmen competed in the Skud 18 and 2.4mR Paralympic classes. A 30-second Wingate test for upper limbs was employed in the study. Results. Significant differences in mean power (MP values were noted between the groups under investigation. The group of wheelchair sailors with improper core stability (A and the group of wheelchair sailors with proper core stability (B had significantly lower scores than the group of study participants who were able to move freely, that is to walk (C. Conclusions. The study revealed that a 30-second anaerobic capacity test performed on an arm ergometer differentiated disabled sailors from selected groups in terms of mean power. Research on anaerobic capacity may be used to verify the current classification in Paralympic sailing and will make it possible to differentiate present competition categories.

  8. Biogeochemistry of anaerobic crude oil biodegradation

    Science.gov (United States)

    Head, Ian; Gray, Neil; Aitken, Caroline; Sherry, Angela; Jones, Martin; Larter, Stephen

    2010-05-01

    Anaerobic degradation of crude oil and petroleum hydrocarbons is widely recognized as a globally significant process both in the formation of the world's vast heavy oil deposits and for the dissipation of hydrocarbon pollution in anoxic contaminated environments. Comparative analysis of crude oil biodegradation under methanogenic and sulfate-reducing conditions has revealed differences not only in the patterns of compound class removal but also in the microbial communities responsible. Under methanogenic conditions syntrophic associations dominated by bacteria from the Syntropheaceae are prevalent and these are likely key players in the initial anaerobic degradation of crude oil alkanes to intermediates such as hydrogen and acetate. Syntrophic acetate oxidation plays an important role in these systems and often results in methanogenesis dominated by CO2 reduction by members of the Methanomicrobiales. By contrast the bacterial communities from sulfate-reducing crude oil-degrading systems were more diverse and no single taxon dominated the oil-degrading sulfate-reducing systems. All five proteobacterial subdivisions were represented with Delta- and Gammaproteobacteria being detected most consistently. In sediments which were pasteurized hydrocarbon degradation continued at a relatively low rate. Nevertheless, alkylsuccinates characteristic of anaerobic hydrocarbon degradation accumulated to high concentrations. This suggested that the sediments harbour heat resistant, possibly spore-forming alkane degrading sulfate-reducers. This is particularly interesting since it has been proposed recently, that spore-forming sulfate-reducing bacteria found in cold arctic sediments may have originated from seepage of geofluids from deep subsurface hydrocarbon reservoirs.

  9. Anaerobic treatment of textile dyeing wastewater.

    Science.gov (United States)

    Stern, S R; Szpyrkowicz, L; Rodighiero, I

    2003-01-01

    Aerobic treatment commonly applied to textile wastewater results in good or even excellent removal of organic load. This is not, however, accompanied by an equally good removal of colour. Traditional or advanced chemical methods of decolourisation are costly and not always reliable in justifying an interest in microbial decolourisation. Among several processes anaerobic methods seem most promising. In this paper, the results of a study conducted in two pilot-scale plants comprising anaerobic fixed bed biofilters of 15 L and 5 m3 operating as continuous reactors are presented, along with evaluation of the microbial kinetics. As is shown the process proved efficient in a long-term study with no stability problems of the biofilters. The six-month performance of the pilot plant confirmed also that the pre-treated wastewater could be applied in the operation of dyeing. For the majority of the colours applied in the factory no problems were encountered when the dyeing baths were prepared by substituting 90% of fresh water to the effluent treated by a sequence of activated sludge processes: anaerobic-aerobic.

  10. Physiologically anaerobic microorganisms of the deep subsurface

    International Nuclear Information System (INIS)

    Stevens, S.E. Jr.; Chung, K.T.

    1993-10-01

    Anaerobic bacteria were isolated from deep subsurface sediment samples taken at study sites in Idaho (INEL) and Washington (HR) by culturing on dilute and concentrated medium. Morphologically distinct colonies were purified, and their responses to 21 selected physiological tests were determined. Although the number of isolates was small (18 INEL, 27 HR) some general patterns could be determined. Most strains could utilize all the carbon sources, however the glycerol and melizitose utilization was positive for 50% or less of the HR isolates. Catalase activity (27.78% at INEL, 74.07% at HR) and tryptophan metabolism (11.12% at INEL, 40.74% at HR) were significantly different between the two study sites. MPN and viable counts indicate that sediments near the water table yield the greatest numbers of anaerobes. Deeper sediments also appear to be more selective with the greatest number of viable counts on low-nutrient mediums. Likewise, only strictly obligate anaerobes were found in the deepest sediment samples. Selective media indicated the presence of methanogens, acetogens, and sulfate reducers at only the HR site

  11. Design and Fabrication of an Anaerobic Digester

    Directory of Open Access Journals (Sweden)

    M. S. Abubakar

    2017-02-01

    Full Text Available Anaerobic digester is a physical structure that provides a conducive environment for the multiplication of micro-organisms that degrades organic matter to generate biogas energy. Energy is required in agriculture for crop production, processing and storage, poultry production and electricity for farmstead and farm settlements. It is energy that propels agricultural mechanization, which minimizes the use of human and animal muscles and its inherent drudgery in agriculture. The energy demand required to meet up with the agricultural growth in Nigeria is high and growing every year. In this study the design and fabrication of an anaerobic digester was reported which is an attempt to boost energy requirement for small and medium dryland farmers in Nigeria. The design of the digester includes the following concept; the basic principles of anaerobic digestion processes, socio-economic status of the dryland farmers, amount of biogas to be produced. Finally, the digester was fabricated using locally available raw materials within the dryland area of Nigeria. At the end, preliminary flammability test was conducted and the biogas produced was found to be flammable.

  12. Controls of Sediment Nitrogen Dynamics in Tropical Coastal Lagoons

    Science.gov (United States)

    Enrich-Prast, Alex; Figueiredo, Viviane; Esteves, Francisco de Assis; Nielsen, Lars Peter

    2016-01-01

    Sediment denitrification rates seem to be lower in tropical environments than in temperate environments. Using the isotope pairing technique, we measured actual denitrification rates in the sediment of tropical coastal lagoons. To explain the low denitrification rates observed at all study sites (<5 μmol N2 m-2 h-1), we also evaluated potential oxygen (O2) consumption, potential nitrification, potential denitrification, potential anammox, and estimated dissimilatory nitrate (NO3-) reduction to ammonium (NH4+; DNRA) in the sediment. 15NO3- and 15NH4+ conversion was measured in oxic and anoxic slurries from the sediment surface. Sediment potential O2 consumption was used as a proxy for overall mineralization activity. Actual denitrification rates and different potential nitrogen (N) oxidation and reduction processes were significantly correlated with potential O2 consumption. The contribution of potential nitrification to total O2 consumption decreased from contributing 9% at sites with the lowest sediment mineralization rates to less than 0.1% at sites with the highest rates. NO3- reduction switched completely from potential denitrification to estimated DNRA. Ammonium oxidation and nitrite (NO2-) reduction by potential anammox contributed up to 3% in sediments with the lowest sediment mineralization rates. The majority of these patterns could be explained by variations in the microbial environments from stable and largely oxic conditions at low sediment mineralization sites to more variable conditions and the prevalences of anaerobic microorganisms at high sediment mineralization sites. Furthermore, the presence of algal and microbial mats on the sediment had a significant effect on all studied processes. We propose a theoretical model based on low and high sediment mineralization rates to explain the growth, activity, and distribution of microorganisms carrying out denitrification and DNRA in sediments that can explain the dominance or coexistence of DNRA and

  13. Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.)

    KAUST Repository

    Ngugi, David

    2011-11-28

    Soil-feeding termites play important roles in the dynamics of carbon and nitrogen in tropical soils. Through the mineralization of nitrogenous humus components, their intestinal tracts accumulate enormous amounts of ammonia, and nitrate and nitrite concentrations are several orders of magnitude above those in the ingested soil. Here, we studied the metabolism of nitrate in the different gut compartments of two Cubitermes and one Ophiotermes species using 15N isotope tracer analysis. Living termites emitted N 2 at rates ranging from 3.8 to 6.8nmolh -1 (g fresh wt.) -1. However, in homogenates of individual gut sections, denitrification was restricted to the posterior hindgut, whereas nitrate ammonification occurred in all gut compartments and was the prevailing process in the anterior gut. Potential rates of nitrate ammonification for the entire intestinal tract were tenfold higher than those of denitrification, implying that ammonification is the major sink for ingested nitrate in the intestinal tract of soil-feeding termites. Because nitrate is efficiently reduced already in the anterior gut, reductive processes in the posterior gut compartments must be fuelled by an endogenous source of oxidized nitrogen species. Quite unexpectedly, we observed an anaerobic oxidation of 15N-labelled ammonia to nitrite, especially in the P4 section, which is presumably driven by ferric iron; nitrification and anammox activities were not detected. Two of the termite species also emitted substantial amounts of N 2O, ranging from 0.4 to 3.9nmolh -1 (g fresh wt.) -1, providing direct evidence that soil-feeding termites are a hitherto unrecognized source of this greenhouse gas in tropical soils. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Anaerobic digestion of cheese whey using up-flow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yan, J.Q.; Lo, K.V.; Liao, P.H.

    1989-01-01

    Anaerobic treatment of cheese whey using a 17.5-litre up-flow anaerobic sludge blanket reactor was investigated in the laboratory. The reactor was studied over a range of influent concentration from 4.5 to 38.1 g chemical oxygen demand per litre at a constant hydraulic retention time of 5 days. The reactor start-up and the sludge acclimatization were discussed. The reactor performance in terms of methane production, volatile fatty acids conversion, sludge net growth and chemical oxygen demand reduction were also presented in this paper. Over 97% chemical oxygen demand reduction was achieved in this experiment. At the influent concentration of 38.1 g chemical oxygen demand per litre, an instability of the reactor was observed. The results indicated that the up-flow anaerobic sludge blanket reactor process could treat cheese whey effectively.

  15. Energy production by anaerobic treatment of cheese whey

    Energy Technology Data Exchange (ETDEWEB)

    Peano, L.; Ciciarelli, R.; Comino, E.; Gard, P. A.

    2009-07-01

    Anaerobic treatment and methane generation potential of cheese whey, diluted with mud, were determined in the digester of an existing wastewater treatment plant in Switzerland. Lactose, main sugar in cheese whey, can be a useful indicator to evaluate serum anaerobic treatment. Conventional parameters of anaerobic digestion (Volatile Matter, Dry Matter, Fatty Volatile Acids, total Alkali metric Title) were measured after the introduction of different whey/sludge ratio demonstrating that, despite an overcharge of whey digester, its stability is never compromised. (Author)

  16. The anaerobic corrosion of carbon steel in concrete

    International Nuclear Information System (INIS)

    Naish, C.C.; Balkwill, P.H.; O'Brien, T.M.; Taylor, K.J.; Marsh, G.P.

    1991-01-01

    This is the final report of a 2 year programme aimed at (1) determining the rate of anaerobic corrosion of steel in concrete, (2) investigating the nature of the corrosion products formed on carbon steel embedded in cementitious material under anaerobic conditions and (3) evaluating the effect of hydrogen over-pressures on the rate of anaerobic corrosion. All experiments have been carried out at temperatures in the range 20-30 0 C, ie ambient conditions. 4 refs.; 19 figs.; 6 tabs

  17. Peritoneal dialysis peritonitis by anaerobic pathogens: a retrospective case series

    OpenAIRE

    Chao, Chia-Ter; Lee, Szu-Ying; Yang, Wei-Shun; Chen, Huei-Wen; Fang, Cheng-Chung; Yen, Chung-Jen; Chiang, Chih-Kang; Hung, Kuan-Yu; Huang, Jenq-Wen

    2013-01-01

    Background Bacterial infections account for most peritoneal dialysis (PD)-associated peritonitis episodes. However, anaerobic PD peritonitis is extremely rare and intuitively associated with intra-abdominal lesions. In this study, we examined the clinical characteristics of PD patients who developed anaerobic peritonitis. Methods We retrospectively identified all anaerobic PD peritonitis episodes from a prospectively collected PD registry at a single center between 1990 and 2010. Only patient...

  18. Analysis of anaerobic product properties in fluid and aggressive environments

    OpenAIRE

    Goncharov, A.; Tulinov, A.

    2008-01-01

    The article presents the results of experiments involved in investigation of properties of some domestic and foreign-made anaerobic materials in components and units operating in fluid and aggressive environments. These experiments determined the strength and swell values of anaerobic products in the sea water, fuel and oil, and confirmed their anticorrosion properties. The experiments demonstrated high resistance of anaerobic products to various fluids and aggressive environments, which make...

  19. Energy production by anaerobic treatment of cheese whey

    International Nuclear Information System (INIS)

    Peano, L.; Ciciarelli, R.; Comino, E.; Gard, P. A.

    2009-01-01

    Anaerobic treatment and methane generation potential of cheese whey, diluted with mud, were determined in the digester of an existing wastewater treatment plant in Switzerland. Lactose, main sugar in cheese whey, can be a useful indicator to evaluate serum anaerobic treatment. Conventional parameters of anaerobic digestion (Volatile Matter, Dry Matter, Fatty Volatile Acids, total Alkali metric Title) were measured after the introduction of different whey/sludge ratio demonstrating that, despite an overcharge of whey digester, its stability is never compromised. (Author)

  20. [Application of anaerobic bacteria detection in oral and maxillofacial infection].

    Science.gov (United States)

    Bao, Zhen-ying; Lin, Qin; Meng, Yan-hong; He, Chun; Su, Jia-zeng; Peng, Xin

    2016-02-18

    To investigate the distribution and drug resistance of anaerobic bacteria in the patients with oral and maxillofacial infection. Aerobic and anaerobic bacteria cultures from 61 specimens of pus from the patients with oral and maxillofacial infection in the Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology were identified. The culture type was evaluated by API 20A kit and drug resistance test was performed by Etest method. The clinical data and antibacterial agents for the treatment of the 61 cases were collected, and the final outcomes were recorded. The bacteria cultures were isolated from all the specimens, with aerobic bacteria only in 6 cases (9.8%), anaerobic bacteria only in 7 cases (11.5%), and both aerobic and anaerobic bacteria in 48 cases (78.7%). There were 55 infected cases (90.2%) with anaerobic bacteria, and 81 anaerobic bacteria stains were isolated. The highest bacteria isolation rate of Gram positive anaerobic bacteria could be found in Peptostreptococcus, Bifidobacterium and Pemphigus propionibacterium. No cefoxitin, amoxicillin/carat acid resistant strain was detected in the above three Gram positive anaerobic bacteria. The highest bacteria isolation rate of Gram negative anaerobic bacteria could be detected in Porphyromonas and Prevotella. No metronidazole, cefoxitin, amoxicillin/carat acid resistant strain was found in the two Gram negative anaerobic bacteria. In the study, 48 patients with oral and maxillofacial infection were treated according to the results of drug resistance testing, and the clinical cure rate was 81.3%. Mixed aerobic and anaerobic bacteria cultures are very common in most oral and maxillofacial infection patients. Anaerobic bacteria culture and drug resistance testing play an important role in clinical treatment.

  1. Dechlorination of Aromatic Xenobiotic Compounds by Anaerobic Microorganisms

    Science.gov (United States)

    1988-07-01

    dechlorination of 3 6C1- 2,3,7,8-TCDD have been initiated but are incomplete at this time. The sources of anaerobic dechlorinating bacteria were the...SETHUNATHAN, 1983). Active anaerobic habitatsa DDT Soil, rumen fluid, sewage sludge, sediments, microbial cultures Lindane Soil, sediments, microbial... anaerobic bacteria (Reference 24). Sediments containing relatively high levels of PCBs (> 50 ppm) all showed losses of up to one-third of the chlorine

  2. A bio-electrochemical system for removing inhibitors of anaerobic digestion processes from anaerobic reactors

    DEFF Research Database (Denmark)

    2014-01-01

    Inhibition of anaerobic digestion process by high level of ammonia (NH4 +/I\\IH3) is the most serious problem existing in biogas plants. No viable/applicable method to overcome this problem has been found up to now. This invention proposes an innovative submersible bio-electrochemical membrane...... reactor to recover ammonia from anaerobic digestion reactor, and thereby alleviate or counteract ammonia inhibition and enhance the conversion of ammonia-rich wastes to biogas. The invention may further reduce overall cost, giving synergistic advantages for both ammonia recycling and biogas plants...... by recovering acid (e.g., H2SO4, HCI), that can be used to treat the recovered ammonia....

  3. Anaerobic exercise testing in rehabilitation : A systematic review of available tests and protocols

    NARCIS (Netherlands)

    Krops, Leonie A.; Albada, Trijntje; van der Woude, Lucas H. V.; Hijmans, Juha M.; Dekker, Rienk

    Objective: Anaerobic capacity assessment in rehabilitation has received increasing scientific attention in recent years. However, anaerobic capacity is not tested consistently in clinical rehabilitation practice. This study reviews tests and protocols for anaerobic capacity in adults with various

  4. A wastewater game-changer

    International Nuclear Information System (INIS)

    Collins, Richard

    2014-01-01

    Full text: Anaerobic ammonium oxidation is a biotechnology that could slash energy use, chemical inputs and greenhouse emissions in wastewater treatment. The Australian water sector is slowly tuning in to one of the world's most promising wastewater and trade waste treatment technologies, anammox. SA Water, Queensland United Utilities and Veolia Water are each at different stages of trials of ''anaerobic ammonium oxidation'' to replace activated sludge in removing nitrogen. It relies on special anammox bacteria, which were first identified in 1999 and have been heavily researched ever since. The bacteria short circuit the normal nitrification/denitrification process and oxidise ammonia (NH_3) to nitrogen (N_2) under anaerobic conditions, promising deep cuts in energy demand, chemical use, fugitive greenhouse emissions and waterway impacts. Most local utilities have taken a look at it, but WME is aware of only three that have proceeded to trial stage. Veolia Water is keeping the trial it is supporting with its ANITA Mox technology under wraps for now, but municipal client manager Voon Chin said the technology has been proven for numerous applications overseas, including sludge dewatering effluent (SDE). QUU is in now stepping up from bench-scale tests to a full pilot at its Luggage Point sewage treatment plant (STP). It is currently enriching anammox cultures in 200-litre drums onsite to speed up the painstaking conditioning process when the plant gets up and running shortly in a 40-foot shipping container. But the most advanced are SA Water and Degremont through their Allwater joint venture, which runs Adelaide's water and sewerage network. It has wrapped up Australia's first pilot project, a 4m"3 plant treating SDE at the Bolivar STP. An Allwater spokesperson told WME in a statement that the pilot was a success and they are now assessing full- scale options. A paper to Enviro 2012anticipated a full-scale plant at Bolivar would create operational savings of $650

  5. The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion.

    Science.gov (United States)

    Fagbohungbe, Michael O; Herbert, Ben M J; Hurst, Lois; Ibeto, Cynthia N; Li, Hong; Usmani, Shams Q; Semple, Kirk T

    2017-03-01

    Biochar, like most other adsorbents, is a carbonaceous material, which is formed from the combustion of plant materials, in low-zero oxygen conditions and results in a material, which has the capacity to sorb chemicals onto its surfaces. Currently, research is being carried out to investigate the relevance of biochar in improving the soil ecosystem, digestate quality and most recently the anaerobic digestion process. Anaerobic digestion (AD) of organic substrates provides both a sustainable source of energy and a digestate with the potential to enhance plant growth and soil health. In order to ensure that these benefits are realised, the anaerobic digestion system must be optimized for process stability and high nutrient retention capacity in the digestate produced. Substrate-induced inhibition is a major issue, which can disrupt the stable functioning of the AD system reducing microbial breakdown of the organic waste and formation of methane, which in turn reduces energy output. Likewise, the spreading of digestate on land can often result in nutrient loss, surface runoff and leaching. This review will examine substrate inhibition and their impact on anaerobic digestion, nutrient leaching and their environmental implications, the properties and functionality of biochar material in counteracting these challenges. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Application of Anaerobic Digestion Model No. 1 for simulating anaerobic mesophilic sludge digestion

    International Nuclear Information System (INIS)

    Mendes, Carlos; Esquerre, Karla; Matos Queiroz, Luciano

    2015-01-01

    Highlights: • The behavior of a anaerobic reactor was evaluated through modeling. • Parametric sensitivity analysis was used to select most sensitive of the ADM1. • The results indicate that the ADM1 was able to predict the experimental results. • Organic load rate above of 35 kg/m 3 day affects the performance of the process. - Abstract: Improving anaerobic digestion of sewage sludge by monitoring common indicators such as volatile fatty acids (VFAs), gas composition and pH is a suitable solution for better sludge management. Modeling is an important tool to assess and to predict process performance. The present study focuses on the application of the Anaerobic Digestion Model No. 1 (ADM1) to simulate the dynamic behavior of a reactor fed with sewage sludge under mesophilic conditions. Parametric sensitivity analysis is used to select the most sensitive ADM1 parameters for estimation using a numerical procedure while other parameters are applied without any modification to the original values presented in the ADM1 report. The results indicate that the ADM1 model after parameter estimation was able to predict the experimental results of effluent acetate, propionate, composites and biogas flows and pH with reasonable accuracy. The simulation of the effect of organic shock loading clearly showed that an organic shock loading rate above of 35 kg/m 3 day affects the performance of the reactor. The results demonstrate that simulations can be helpful to support decisions on predicting the anaerobic digestion process of sewage sludge

  7. Application of Anaerobic Digestion Model No. 1 for simulating anaerobic mesophilic sludge digestion

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Carlos, E-mail: carllosmendez@gmail.com; Esquerre, Karla, E-mail: karlaesquerre@ufba.br; Matos Queiroz, Luciano, E-mail: lmqueiroz@ufba.br

    2015-01-15

    Highlights: • The behavior of a anaerobic reactor was evaluated through modeling. • Parametric sensitivity analysis was used to select most sensitive of the ADM1. • The results indicate that the ADM1 was able to predict the experimental results. • Organic load rate above of 35 kg/m{sup 3} day affects the performance of the process. - Abstract: Improving anaerobic digestion of sewage sludge by monitoring common indicators such as volatile fatty acids (VFAs), gas composition and pH is a suitable solution for better sludge management. Modeling is an important tool to assess and to predict process performance. The present study focuses on the application of the Anaerobic Digestion Model No. 1 (ADM1) to simulate the dynamic behavior of a reactor fed with sewage sludge under mesophilic conditions. Parametric sensitivity analysis is used to select the most sensitive ADM1 parameters for estimation using a numerical procedure while other parameters are applied without any modification to the original values presented in the ADM1 report. The results indicate that the ADM1 model after parameter estimation was able to predict the experimental results of effluent acetate, propionate, composites and biogas flows and pH with reasonable accuracy. The simulation of the effect of organic shock loading clearly showed that an organic shock loading rate above of 35 kg/m{sup 3} day affects the performance of the reactor. The results demonstrate that simulations can be helpful to support decisions on predicting the anaerobic digestion process of sewage sludge.

  8. Growth media in anaerobic fermentative processes : The underestimated potential of thermophilic fermentation and anaerobic digestion

    NARCIS (Netherlands)

    Hendriks, A.T.W.M.; van Lier, J.B.; de Kreuk, M.K.

    2018-01-01

    Fermentation and anaerobic digestion of organic waste and wastewater is broadly studied and applied. Despite widely available results and data for these processes, comparison of the generated results in literature is difficult. Not only due to the used variety of process conditions, but also

  9. [Distribution and removal of anaerobic antibiotic resistant bacteria during mesophilic anaerobic digestion of sewage sludge].

    Science.gov (United States)

    Tong, Juan; Wang, Yuan-Yue; Wei Yuan, Song

    2014-10-01

    Sewage sludge is one of the major sources that releasing antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARG) into the environment since it contains large amount of ARB, but there is little information about the fate of the anaerobic ARB in the anaerobic digestion of sewage sludge. Therefore, the distribution, removal and seasonal changes of tetracycline and β-lactam antibiotics resistant bacteria in the mesophilic egg-shaped digesters of a municipal wastewater treatment plant were investigated for one year in this study. Results showed that there were higher amounts of ARB and higher resistance rate of β-lactam antibiotics than that of tetracycline antibiotics in the sewage sludge. All ARB could be significantly reduced during the mesophilic anaerobic digestion process by 1.48-1.64 log unit (P anaerobic digestion by 12.0% and 14.3%, respectively (P bacteria, there were more ARB in the sewage sludge in cold season than in warm season (P < 0.05).

  10. Horse manure as feedstock for anaerobic digestion.

    Science.gov (United States)

    Hadin, Sa; Eriksson, Ola

    2016-10-01

    Horse keeping is of great economic, social and environmental benefit for society, but causes environmental impacts throughout the whole chain from feed production to manure treatment. According to national statistics, the number of horses in Sweden is continually increasing and is currently approximately 360,000. This in turn leads to increasing amounts of horse manure that have to be managed and treated. Current practices could cause local and global environmental impacts due to poor performance or lack of proper management. Horse manure with its content of nutrients and organic material can however contribute to fertilisation of arable land and recovery of renewable energy following anaerobic digestion. At present anaerobic digestion of horse manure is not a common treatment. In this paper the potential for producing biogas and biofertiliser from horse manure is analysed based on a thorough literature review in combination with mathematical modelling and simulations. Anaerobic digestion was chosen as it has a high degree of resource conservation, both in terms of energy (biogas) and nutrients (digestate). Important factors regarding manure characteristics and operating factors in the biogas plant are identified. Two crucial factors are the type and amount of bedding material used, which has strong implications for feedstock characteristics, and the type of digestion method applied (dry or wet process). Straw and waste paper are identified as the best materials in an energy point of view. While the specific methane yield decreases with a high amount of bedding, the bedding material still makes a positive contribution to the energy balance. Thermophilic digestion increases the methane generation rate and yield, compared with mesophilic digestion, but the total effect is negligible. Copyright © 2016. Published by Elsevier Ltd.

  11. Anaerobic toxicity of cationic silver nanoparticles

    International Nuclear Information System (INIS)

    Gitipour, Alireza; Thiel, Stephen W.; Scheckel, Kirk G.; Tolaymat, Thabet

    2016-01-01

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag"+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10–15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L"−"1, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L"−"1 as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag"+. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L"−"1 as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. - Highlights: • At concentrations -1 the anaerobic decomposition process was not impacted. • An impact on the microbial community at concentrations -1 were observed. • At high concentrations (100 mg L"−"1), the cationic BPEI-AgNPs demonstrated toxicity. • Toxicity was demonstrated without the presence of oxidative dissolution of silver. • A one size fits all approach for the evaluation of NPs may not be accurate.

  12. Anaerobic xylose fermentation by Spathaspora passalidarum

    DEFF Research Database (Denmark)

    Hou, Xiaoru

    2012-01-01

    A cost-effective conversion of lignocellulosic biomass into bioethanol requires that the xylose released from the hemicellulose fraction (20–40% of biomass) can be fermented. Baker’s yeast, Saccharomyces cerevisiae, efficiently ferments glucose but it lacks the ability to ferment xylose. Xylose-fermenting...... yeast such as Pichia stipitis requires accurately controlled microaerophilic conditions during the xylose fermentation, rendering the process technically difficult and expensive. In this study, it is demonstrated that under anaerobic conditions Spathaspora passalidarum showed high ethanol production...

  13. Geochemical indicators of anaerobic biodegradation of BTEX

    International Nuclear Information System (INIS)

    Wilson, J.T.; Kampbell, D.; Hutchins, S.; Wilson, B.; Kennedy, L.G.

    1992-01-01

    In the late 1970s, a leaking underground pipeline released petroleum hydrocarbons to a shallow, water-table aquifer in Kansas. Approximately six acres surrounding the release contain hydrocarbons at residual saturation. Parts of the release have acclimated and are carrying out anaerobic biodegradation of benzene, toluene, and the xylenes, Analysis of ground water from monitoring wells in areas that have acclimated reveal high concentrations of methane, less than -.1/liter oxygen, millimolar concentrations of acetate, and strongly reducing redox potentials. There is also a marked shift in the radio of the concentration of individual compounds to the total concentration of petroleum hydrocarbons

  14. Improvement of anaerobic digestion of sludge

    Energy Technology Data Exchange (ETDEWEB)

    Dohanyos, Michael; Zabranska, Jana; Kutil, Josef; Jenicek, Pavel

    2003-07-01

    Anaerobic digestion improvement can be accomplished by different methods. Besides optimization of process conditions is frequently used pretreatment of input sludge and increase of process temperature. Thermophilic process brings a higher solids reduction and biogas production, the high resistance to foaming, no problems with odour, the higher effect of destroying pathogens and the improvement of the energy balance of the whole treatment plant. Disintegration of excess activated sludge in lysate centrifuge was proved in full-scale conditions causing increase of biogas production. The rapid thermal conditioning of digested sludge is acceptable method of particulate matter disintegration and solubilization. (author)

  15. New thermophilic anaerobes that decompose crystalline cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Taya, M; Hinoki, H; Suzuki, Y; Yagi, T; Yap, M G.S.; Kobayashi, T

    1985-01-01

    Two strains (designated as 25A and 3B) of cellulolytic, thermophilic, anaerobic, spore-forming bacteria were newly isolated from an alkaline hot spring through enrichment cultures at 60/sup 0/C. Though strain 25A was nearly identical to Clostridium thermocellum ATCC 27405 as a reference strain, strain 3B had some characteristics different from the reference; no flagellation, alkalophilic growth property (optimum pH of 7.5-8) and orange-colored pigmentation of the cell mass. Strain 3B effectively decomposed micro-crystalline cellulose (Avicel) and raw cellulosics (rice straw, newspaper, and bagasse) without physical or chemical pretreatments. 20 references, 2 figures, 2 tables.

  16. Performance of an innovative multi-stage anaerobic reactor during ...

    African Journals Online (AJOL)

    Start-up of an anaerobic reactor is a relatively delicate process and depends on various factors such as wastewater composition, available inoculum, operating conditions and reactor configuration. Accordingly, systematized operational procedures are important, mainly during the start-up of an anaerobic reactor.

  17. Modelling non-redox enzymes: Anaerobic and aerobic acetylene ...

    Indian Academy of Sciences (India)

    Administrator

    Modelling non-redox enzymes: Anaerobic and aerobic acetylene hydratase. SABYASACHI SARKAR. Department of Chemistry, Indian Institute of Technology, Kanpur 208 016,. India. Acetaldehyde is the first metabolite produced during acetylene degradation by bacteria either aerobically or anaerobically. Conversion of ...

  18. Schematic Method for Effective Identification of Anaerobes from ...

    African Journals Online (AJOL)

    They were inoculated into two compounded media; Neomycin Blood Agar (NBA) and Neomycin Plasma Agar (NPA) incubated anaerobically at 37oC for (24-48) hours. Isolated anaerobes were gram-stained and tested using discs impregnated with antibiotics, bile salts and dyes, carbohydrate fermentation and other ...

  19. Anaerobic microbial processes for energy conservation and biotransformation of pollutants

    NARCIS (Netherlands)

    Luz Ferreira Martins Paulo, da Lara

    2017-01-01

    Anaerobic microbial processes are commonly applied in the treatment of domestic and industrial wastewaters. Anaerobic digestion (AD) of wastewater has received a great deal of attention, but many aspects related to the complex interactions between microorganism, and how that is affected by the

  20. Rumen derived anaerobic digestion of water hyacinth (Eicchornia ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-01

    Sep 1, 2009 ... The agar plates were then incubated anaerobically at 37°C for 24 h. The digesters were seeded with rumen bacteria and immersed into water bath operated at 37°C. During the anaerobic digestion, volume of biogas produced was recorded accordingly. This paper, therefore, suggests ways by which water.

  1. Microbiology of anaerobic digestion; Microbiologia da digestao anaerobica

    Energy Technology Data Exchange (ETDEWEB)

    Novaes, Rosana Filomena Vazoller [CETESB, Sao Paulo, SP (Brazil)

    1988-12-31

    Considerations was made about the microorganisms involved in the anaerobic digestion of wastes. Are also presented, the main results on this subject obtained, until now, in the studies carried on the group of anaerobic microbiology researchers from the Sanitary Company of Sao Paulo State, Brazil. (author) 23 refs., 8 figs., 3 tabs.

  2. Enhanced biogas yield from energy crops with rumen anaerobic fungi

    Czech Academy of Sciences Publication Activity Database

    Procházka, J.; Mrázek, Jakub; Štrosová, Lenka; Fliegerová, Kateřina; Zábranská, J.; Dohányos, M.

    2012-01-01

    Roč. 12, č. 3 (2012), s. 343-351 ISSN 1618-0240 R&D Projects: GA ČR GPP503/10/P394; GA MZe QI92A286 Institutional support: RVO:67985904 Keywords : Anaerobic digestion * Anaerobic fungi * Biogas yield Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.633, year: 2012

  3. Rumen derived anaerobic digestion of water hyacinth (Eicchornia ...

    African Journals Online (AJOL)

    The agar plates were then incubated anaerobically at 37°C for 24 h. The digesters were seeded with rumen bacteria and immersed into water bath operated at 37°C. During the anaerobic digestion, volume of biogas produced was recorded accordingly. This paper, therefore, suggests ways by which water hyacinth can be ...

  4. Methane fermentation process as anaerobic digestion of biomass ...

    African Journals Online (AJOL)

    Anaerobic decomposition of organic compounds is conducted in close cooperation of specialized bacteria of different types, including mostly hydrolyzing, digestive, acetogenic, homoacetogenic, sulfate-reducing (VI) and methanogenic bacteria. A great interest in the anaerobic digestion process results mainly from its ...

  5. Optimisation Study on the Production of Anaerobic Digestate ...

    African Journals Online (AJOL)

    Organic fraction of municipal solid waste (OFMSW) is a rich substrate for biogas and compost production. Anaerobic Digestate compost (ADC) is an organic fertilizer produced from stabilized residuals of anaerobic digestion of OFMSW. This paper reports the result of studies carried out to optimise the production of ADC from ...

  6. Influence of temperature on the anaerobic stabilization of organic ...

    African Journals Online (AJOL)

    This study was aimed at determining the effect of temperature on the stabilization of organic solid waste conjugated with sewage sludge in anaerobic batch ... It is concluded that anaerobic digestion at ambient temperature represents an economical and environmentally viable strategy for the disposal of municipal solid ...

  7. Anaerobic Treatment Of Percolate From Faecal Sludge Drying Beds ...

    African Journals Online (AJOL)

    Composite percolate samples, from sludge drying beds of a pilot co-composting plant in Kumasi, Ghana, were characterised and subjected to laboratory scale anaerobic treatment. Two categories of percolate samples were investigated; samples seeded with anaerobic sludge and samples without seeding. The average ...

  8. Moroccan rock phosphate solubilization during a thermo-anaerobic ...

    African Journals Online (AJOL)

    In order to investigate the presence of thermo-tolerant rock phosphate (RP) solubilizing anaerobic microbes during the fermentation process, we used grassland as sole organic substrate to evaluate the RP solubilization process under anaerobic thermophilic conditions. The result shows a significant decrease of pH from ...

  9. Anaerobic Treatment of Cane Sugar Effluent from Muhoroni Sugar ...

    African Journals Online (AJOL)

    It was therefore concluded that anaerobic treatment, particularly with pH control and seeding shows potential in first stage management of sugar mill wastewater. Keywords: cane sugar mill effluent, anaerobic treatment, batch reactor, waste stabilization ponds. Journal of Civil Engineering Research and Practice Vol.

  10. Gender differences in anaerobic power in Nigerian students | Musa ...

    African Journals Online (AJOL)

    This study was undertaken in order to determine gender differences in anaerobic power of undergraduate physical education students. An attempt was also made to assess the relationship between selected anthropometric variables and indices of anaerobic power: peak power (PP), Mean power (MP), and fatigue index (FI) ...

  11. Susceptibility of anaerobic bacteria in Auckland: 1991-1996.

    Science.gov (United States)

    Shore, K P; Pottumarthy, S; Morris, A J

    1999-11-12

    To determine the antimicrobial susceptibility of local anaerobic bacteria. The antimicrobial susceptibility of 357 obligate anaerobes collected between 1991 and 1997 was determined by a standard agar dilution method. Isolates tested included Bacteroides spp. 131, Fusobacterium spp. 12, Prevotella spp. 13, Veillonella spp. 5, Clostridium perfringens 27, other Clostridium spp. 29, Propionibacterium spp. 57, Actinomyces spp. 7, other non-sporing gram-positive bacilli 28 and Peptostreptococcus spp. 48. Ten antimicrobials were tested: penicillin, amoxycillin/ clavulanic acid, pipercillin/tazobactam, ceftriaxone, cefoxitin, cefotetan, imipenem, meropenem, clindamycin and metronidazole. Imipenem, pipercillin/tazobactam, meropenem and amoxycillin/clavulanic acid were active against virtually all anaerobes tested. Metronidazole was active against all anaerobic gram-negative bacteria and Clostridium spp., but had variable activity against other anaerobes. Cefoxitin was the most active cephalosporin against Bacteroides spp., with 76%, 64% and 15% of Bacteroides spp. being susceptible to cefoxitin, cefotetan and ceftriaxone, respectively. Penicillin had poor activity against anaerobic gram negative bacilli. Actinomyces and Propionibacterium spp. were susceptible to all antimicrobials tested except metronidazole. Variable results were obtained with other antimicrobial-organism combinations. Comparison of results with data from a previously published survey showed little change in susceptibility except for increased resistance of Bacteroides fragilis to ceftriaxone and Clostridium species (not C perfringens) to clindamycin. Our results update the local susceptibility profile of anaerobic bacteria and may be considered when choosing an antimicrobial agent for prophylaxis or treatment of anaerobic infections.

  12. Anaerobic catabolism of aromatic compounds: a genetic and genomic view.

    Science.gov (United States)

    Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F; Valderrama, J Andrés; Barragán, María J L; García, José Luis; Díaz, Eduardo

    2009-03-01

    Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach.

  13. [Long-term storage of obligate anaerobic microorganisms in glycerol].

    Science.gov (United States)

    Briukhanov, A I; Netrusov, A I

    2006-01-01

    We evaluated the possibility of storing the cultures of obligate anaerobic microorganisms (clostridia. acetogenic and sulfate-reducing bacteria, and methanogenic archaea) in 25% glycerol at -70 degrees C for a long time (up to 3 years). This method of storage is adequate to preserve cell viability in most obligate anaerobes.

  14. The role of anaerobic bacteria in the cystic fibrosis airway.

    Science.gov (United States)

    Sherrard, Laura J; Bell, Scott C; Tunney, Michael M

    2016-11-01

    Anaerobic bacteria are not only normal commensals, but are also considered opportunistic pathogens and have been identified as persistent members of the lower airway community in people with cystic fibrosis of all ages and stages of disease. Currently, the role of anaerobic bacteria in cystic fibrosis lower airway disease is not well understood. Therefore, this review describes the recent studies relating to the potential pathophysiological role(s) of anaerobes within the cystic fibrosis lungs. The most frequently identified anaerobic bacteria in the lower airways are common to both cystic fibrosis and healthy lungs. Studies have shown that in cystic fibrosis, the relative abundance of anaerobes fluctuates in the lower airways with reduced lung function and increased inflammation associated with a decreased anaerobic load. However, anaerobes found within the lower airways also produce virulence factors, may cause a host inflammatory response and interact synergistically with recognized pathogens. Anaerobic bacteria are potentially members of the airway microbiota in health but could also contribute to the pathogenesis of lower airway disease in cystic fibrosis via both direct and indirect mechanisms. A personalized treatment strategy that maintains a normal microbial community may be possible in the future.

  15. Optimization of up-flow anaerobic sludge blanket reactor for ...

    African Journals Online (AJOL)

    aghomotsegin

    2013-06-05

    Jun 5, 2013 ... sludge instead of imported commercial anaerobic granulated sludge. Over the ... biogas, granulated anaerobic sludge, industrial wastewater. ... production of methane by methanogenic bacteria. Compared with other treatment processes, USAB ... effluent collector; 8, gas outlet; 9, gas collector; 10, side-arm ...

  16. Control of calcium carbonate precipitation in anaerobic reactors

    NARCIS (Netherlands)

    Langerak, van E.P.A.

    1998-01-01

    Anaerobic treatment of waste waters with a high calcium content may lead to excessive precipitation of calcium carbonate. So far, no proper methods were available to predict or reduce the extent of precipitation in an anaerobic treatment system. Moreover, it also was not clear to what

  17. Autotrophic Nitrogen Removal in a Membrane-Aerated Biofilm Reactor Under Continuous Aeration: A Demonstration

    DEFF Research Database (Denmark)

    Gilmore, Kevin R.; Terada, Akihiko; Smets, Barth F.

    2013-01-01

    This work describes the successful coupling of partial nitrification (nitritation) and anaerobic ammonium oxidation in a membrane-aerated biofilm reactor (MABR) with continuous aeration. Controlling the relative surface loadings of oxygen versus ammonium prevented complete nitrite oxidation and a...

  18. Impact analysis of palm oil mill effluent on the aerobic bacterial ...

    African Journals Online (AJOL)

    AJB SERVER

    2007-01-18

    Jan 18, 2007 ... Key words: Palm oil mill effluent, total aerobic bacteria, ammonium oxidizers. INTRODUCTION ... bacteria help in the degradation of macromolecules from plant and animal .... Anaerobic digestion of palm oil mill effluent.

  19. Sequential batch anaerobic composting (SEBAC sup TM ) of solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Chynoweth, D.P.; O' Keefe, D.M.; Barkdoll, A.W.; Owens, J.M. (Department of Agricultural Engineering, University of Florida, Gainesville, Florida (US)); Legrand, R. (Radian Corporation, Austin, Texas (US))

    1992-01-01

    Anaerobic high-solids digestion (anaerobic composting) is an attractive option for treatment of organic wastes. The main advantages of anaerobic composting are the lack of aeration requirements and production of methane. An anaerobic composting design, sequential batch anaerobic composting (SEBAC{sup TM}), has been developed and demonstrated at the pilot scale which has proven to be stable and effective for treatment of the non-yeard waste and yard waste organic fractions of municipal solid waste (MSW). The design employs leachate recycle for wetting, inoculation, and removal of volatile organic acids during startup. Performance is similar to that of other designs requiring heavy solids inoculation and mixing and which do not have a mechanism for volatile organic acid removal during imbalance. (au) (12 refs.).

  20. Anaerobic biodegradation of hexazinone in four sediments

    International Nuclear Information System (INIS)

    Wang Huili; Xu Shuxia; Tan Chengxia; Wang Xuedong

    2009-01-01

    Anaerobic biodegradation of hexazinone was investigated in four sediments (L1, L2, Y1 and Y2). Results showed that the L2 sediment had the highest biodegradation potential among four sediments. However, the Y1 and Y2 sediments had no capacity to biodegrade hexazinone. Sediments with rich total organic carbon, long-term contamination history by hexazinone and neutral pH may have a high biodegradation potential because the former two factors can induce the growth of microorganisms responsible for biodegradation and the third factor can offer suitable conditions for biodegradation. The addition of sulfate or nitrate as electron acceptors enhanced hexazinone degradation. As expected, the addition of electron donors (lactate, acetate or pyruvate) substantially inhibited the degradation. In natural environmental conditions, the effect of intermediate A [3-(4-hydroxycyclohexyl)-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4(1H, 3H)dione] on anaerobic hexazinone degradation was negligible because of its low level.

  1. Comparative economic analysis: Anaerobic digester case study

    International Nuclear Information System (INIS)

    Lusk, P.D.

    1991-01-01

    An economic guide is developed to assess the value of anaerobic digesters used on dairy farms. Two varieties of anaerobic digesters, a conventional mixed-tank mesophilic and an innovative earthen psychrophilic, are comparatively evaluated using a cost-effectiveness index. The two case study examples are also evaluated using three other investment merit statistics: simple payback period, net present value, and internal rate of return. Life-cycle savings are estimated for both varieties, with sensitivities considered for investment risk. The conclusion is that an earthen psychrophilic digester can have a significant economic advantage over a mixed-tank mesophilic digester because of lower capital cost and reduced operation and maintenance expenses. Because of this economic advantage, additional projects are being conducted in North Carolina to increase the rate of biogas utilization. The initial step includes using biogas for milk cooling at the dairy farm where the existing psychrophilic digester is located. Further, a new project is being initiated for electricity production with thermal reclaim at a swine operation

  2. Anaerobic columnar denitrification of high nitrate wastewater

    International Nuclear Information System (INIS)

    Francis, C.W.; Malone, C.D.

    1975-01-01

    Anaerobic columns were used to test the effectiveness of biological denitrification of nitrate solutions ranging in concentration from 1 to 10 kg NO 3 /m 3 . Several sources of nitrate (Ca(CNO 3 ) 2 , NaNO 3 , NH 4 NO 3 , and actual nitrate wastes from a UO 2 fuel fabrication plant) were evaluated as well as two packing media. The packing media were anthracite coal particles, whose effective diameter size ranged between 2 and 3 mm, and polypropylene Raschig rings 1.6 x 1.6 diameter. The anthracite coal proved to be the better packing media as excessive hydraulic short circuiting occurred in a 120 x 15 cm diameter glass column packed with the polypropylene rings after 40 days operation. With anthracite coal, floatation of the bed occurred at flow rates greater than 0.80 cm 3 /s. Tapered columns packed with anthracite coal eliminated the floatation problem, even at flow rates as high as 5 cm 3 /s. Under optimum operating conditions the anthracite coal behaved as a fluidized bed. Maximum denitrification rates were 1.0--1.4 g NO 3 /m 3 /s based on initial bed volume. Denitrification kinetics indicated that rates of denitrification became substrate inhibited at nitrate concentrations greater than 6.5 kg NO 3 /m 3 Anaerobic columns packed with anthracite coal appear to be an effective method of nitrate disposal for nitrate rich wastewater generated at UO 2 fuel fabrication plants and fuel reprocessing facilities. (U.S.)

  3. Anaerobic and aerobic transformation of TNT

    Energy Technology Data Exchange (ETDEWEB)

    Kulpa, C.F. [Univ. of Notre Dame, IN (United States). Dept. of Biological Sciences; Boopathy, R.; Manning, J. [Argonne National Lab., IL (United States). Environmental Research Div.

    1996-12-31

    Most studies on the microbial metabolism of nitroaromatic compounds have used pure cultures of aerobic microorganisms. In many cases, attempts to degrade nitroaromatics under aerobic conditions by pure cultures result in no mineralization and only superficial modifications of the structure. However, mixed culture systems properly operated result in the transformation of 2,4,6-trinitrotoluene (TNT) and in some cases mineralization of TNT occurs. In this paper, the mixed culture system is described with emphasis on intermediates and the characteristics of the aerobic microbial process including the necessity for a co-substrate. The possibility of removing TNT under aerobic/anoxic conditions is described in detail. Another option for the biodegradation of TNT and nitroaromatics is under anaerobic, sulfate reducing conditions. In this instance, the nitroaromatic compounds undergo a series of reductions with the formation of amino compounds. TNT under sulfate reducing conditions is reduced to triaminotoluene presumably by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of nitro groups from TNT is achieved by a series of reductive reactions with the formation of ammonia and toluene by Desulfovibrio sp. (B strain). These metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. The data supporting the anaerobic transformation of TNT under different growth condition are reviewed in this report.

  4. Tolerance of anaerobic bacteria to chlorinated solvents.

    Science.gov (United States)

    Koenig, Joanna C; Groissmeier, Kathrin D; Manefield, Mike J

    2014-01-01

    The aim of this research was to evaluate the effects of four chlorinated aliphatic hydrocarbons (CAHs), perchloroethene (PCE), carbon tetrachloride (CT), chloroform (CF) and 1,2-dichloroethane (1,2-DCA), on the growth of eight anaerobic bacteria: four fermentative species (Escherichia coli, Klebsiella sp., Clostridium sp. and Paenibacillus sp.) and four respiring species (Pseudomonas aeruginosa, Geobacter sulfurreducens, Shewanella oneidensis and Desulfovibrio vulgaris). Effective concentrations of solvents which inhibited growth rates by 50% (EC50) were determined. The octanol-water partition coefficient or log Po/w of a CAH proved a generally satisfactory measure of its toxicity. Most species tolerated approximately 3-fold and 10-fold higher concentrations of the two relatively more polar CAHs CF and 1,2-DCA, respectively, than the two relatively less polar compounds PCE and CT. EC50 values correlated well with growth rates observed in solvent-free cultures, with fast-growing organisms displaying higher tolerance levels. Overall, fermentative bacteria were more tolerant to CAHs than respiring species, with iron- and sulfate-reducing bacteria in particular appearing highly sensitive to CAHs. These data extend the current understanding of the impact of CAHs on a range of anaerobic bacteria, which will benefit the field of bioremediation.

  5. Thermophilic anaerobic fermentation of olive pulp for hydrogen and methane production: modelling of the anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Skiadas, Ioannis V.; Ahring, Birgitte Kiær

    2006-01-01

    the olive pulp; c) subsequent anaerobic treatment of the hydrogen-effluent with the simultaneous production of methane; and d) development of a mathematical model able to describe the anaerobic digestion of the olive pulp and the effluent of hydrogen producing process. Both continuous and batch experiments...

  6. Validity of the Pediatric Running-Based Anaerobic Sprint Test to Determine Anaerobic Performance in Healthy Children

    NARCIS (Netherlands)

    Bongers, Bart C.; Werkman, Maarten S.; Blokland, Donna; Eijsermans, Maria J. C.; van der Torre, Patrick; Bartels, Bart; Verschuren, Olaf; Takken, Tim

    Purpose: To determine criterion validity of the pediatric running-based anaerobic sprint test (RAST) as a nonsophisticated field test for evaluating anaerobic performance in healthy children and adolescents. Methods: Data from 65. healthy children (28 boys and 37 girls between 6 and 18 years of age,

  7. Technical Note: Simultaneous measurement of sedimentary N2 and N2O production and a modified 15N isotope pairing technique

    Science.gov (United States)

    Hsu, T.-C.; Kao, S.-J.

    2013-12-01

    Dinitrogen (N2) and/or nitrous oxide (N2O) are produced through denitrification, anaerobic ammonium oxidation (anammox) or nitrification in sediments, of which entangled processes complicate the absolute rate estimations of gaseous nitrogen production from individual pathways. The classical isotope pairing technique (IPT), the most common 15N nitrate enrichment method to quantify denitrification, has recently been modified by different researchers to (1) discriminate between the N2 produced by denitrification and anammox or to (2) provide a more accurate denitrification rate under considering production of both N2O and N2. In case 1, the revised IPT focused on N2 production being suitable for the environments of a low N2O-to-N2 production ratio, while in case 2, anammox was neglected. This paper develops a modified method to refine previous versions of IPT. Cryogenic traps were installed to separately preconcentrate N2 and N2O, thus allowing for subsequent measurement of the two gases generated in one sample vial. The precision is better than 2% for N2 (m/z 28, m/z 29 and m/z 30), and 1.5% for N2O (m/z 44, m/z 45 and m/z 46). Based on the six m/z peaks of the two gases, the 15N nitrate traceable processes including N2 and N2O from denitrification and N2 from anammox were estimated. Meanwhile, N2O produced by nitrification was estimated via the production rate of unlabeled 44N2O. To validate the applicability of our modified method, incubation experiments were conducted using sediment cores taken from the Danshuei Estuary in Taiwan. Rates of the aforementioned nitrogen removal processes were successfully determined. Moreover, N2O yield was as high as 66%, which would significantly bias previous IPT approaches if N2O was not considered. Our modified method not only complements previous versions of IPT but also provides more comprehensive information to advance our understanding of nitrogen dynamics of the water-sediment interface.

  8. Arsenic volatilization in model anaerobic biogas digesters

    International Nuclear Information System (INIS)

    Mestrot, Adrien; Xie, Wan-Ying; Xue, Ximei; Zhu, Yong-Guan

    2013-01-01

    Highlights: • Arsenic is volatilized form all model anaerobic digesters, including the non-treated ones. • Volatile As species can be identified and quantified in all digesters. • Non-arsenic treated digesters volatilization rates are higher than Roxarsone treated ones. - Abstract: Arsenic is a class 1 non-threshold carcinogen which is highly ubiquitous. Arsenic undergoes many different transformations (biotic or abiotic) between and within environmental compartments, leading to a number of different chemical species possessing different properties and toxicities. One specific transformation is As biotic volatilization which is coupled with As biomethylation and has been scarcely studied due to inherent sampling issues. Arsenic methylation/volatilization is also linked with methanogenesis and occurs in anaerobic environments. In China, rice straw and animal manure are very often used to produce biogas and both can contain high amounts of As, especially if the rice is grown in areas with heavy mining or smelting industries and if Roxarsone is fed to the animals. Roxarsone is an As-containing drug which is widely used in China to control coccidian intestinal parasites, to improve feed efficiency and to promote rapid growth. Previous work has shown that this compound degrades to inorganic As under anaerobic conditions. In this study the focus is on biotic transformations of As in small microcosms designed as biogas digester models (BDMs) using recently validated As traps, thus, enabling direct quantification and identification of volatile As species. It is shown that although there was a loss of soluble As in the BDMs, their conditions favored biomethylation. All reactors produced volatile As, especially the monomethylarsonic acid spiked ones with 413 ± 148 ng As (mean ± SD, n = 3) which suggest that the first methylation step, from inorganic As, is a limiting factor. The most abundant species was trimethylarsine, but the toxic arsine was present in the

  9. Anaerobic toxicity of cationic silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gitipour, Alireza; Thiel, Stephen W. [Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, OH (United States); Scheckel, Kirk G. [USEPA, Office of Research and Development, Cincinnati, OH (United States); Tolaymat, Thabet, E-mail: tolaymat.thabet@epa.gov [USEPA, Office of Research and Development, Cincinnati, OH (United States)

    2016-07-01

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag{sup +} under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10–15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L{sup −1}, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L{sup −1} as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag{sup +}. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L{sup −1} as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. - Highlights: • At concentrations -1 the anaerobic decomposition process was not impacted. • An impact on the microbial community at concentrations -1 were observed. • At high concentrations (100 mg L{sup −1}), the cationic BPEI-AgNPs demonstrated toxicity. • Toxicity was demonstrated without the presence of oxidative dissolution of silver. • A one size fits all approach for the evaluation of NPs may not be accurate.

  10. An anaerobic bioreactor system for biobutanol production

    Energy Technology Data Exchange (ETDEWEB)

    Paekkilae, J.; Hillukkala, T.; Myllykoski, L.; Keiski, R.L. (Univ. of Oulu, Dept. of Process and Environmental Engineering (Finland)). email: johanna.pakkila@oulu.fi

    2009-07-01

    Concerns about the greenhouse effect, as well as legislation to reduce CO{sub 2} emissions and to increase the use of renewable energy have been the main reasons for the increased production and use of biofuels. In addition to bioethanol and biodiesel production, the research on biobutanol production has also increased during the past years. Butanol can be produced by chemical or biochemical routes. Fuel properties of butanol are considered to be superior to ethanol because of higher energy content, and better air-to-fuel ratio. Butanol is also less volatile and explosive than ethanol, has higher flash point and lower vapour pressure which makes it safer to handle. Biobutanol production is an anaerobic two-stage fermentation process where acetic and butyric acids, carbon dioxide and hydrogen are first produced in the acidogenic phase. Then the culture undergoes metabolic shift to solventogenic phase and acids are converted into acetone, ethanol and butanol. At the end of the fermentation, products are recovered from the cell mass, other suspended solids, and by-products. Several species of Clostridium bacteria are capable to metabolize different sugars, amino and organic acids, polyalcohols and other organic compounds to butanol and other solvents. Feedstock materials for biobutanol are diverse, including different kind of by-products, wastes and residues of agriculture and industry. Optimal fermentation conditions (pH, temperature, nutrients), products and their ratio vary with strains and substrates used. Biobutanol production has still some limitations including butanol toxicity to culture leading to low butanol yields. The product inhibition hinders the yield of butanol and acids, making integrated product separation process highly favorable. Butanol recovery from fermentation broth is expensive because of the low butanol concentration and high boiling point (118 degC). Several different recovery methods are available. Membrane-based methods such as membrane

  11. Anaerobic Digestion Modeling: from One to Several Bacterial Populations

    Directory of Open Access Journals (Sweden)

    Iván D. Ramírez-Rivas

    2013-11-01

    Full Text Available Anaerobic digestion systems are complex processes that unfortunately often suffer from instability causing digester failure. In order to be able to design, optimizing and operate efficiently anaerobic digestion systems, appropriate control strategies need to be designed. Such strategies require, in general, the development of mathematical models. The anaerobic digestion process comprises a complex network of sequential and parallel reactions of biochemical and physicochemical nature. Usually, such reactions contain a particular step, the so called rate-limiting step which, being the slowest, limits the reaction rate of the overall process. The first attempts for modeling anaerobic digestion led to models describing only the limiting step. However, over a wide range of operating conditions, the limiting step is not always the same. It may depend on wastewater characteristics, hydraulic loading, temperature, etc. It is apparent that the "limiting step hypothesis" leads to simple and readily usable models. Such models, however, do not describe very well the digester behavior, especially under transient operating conditions. This work reviews the current state-of-the-art in anaerobic digestion modeling. We give a brief description of the key anaerobic digestion models that have been developed so far for describing biomass growth systems, including the International Water Association’s Anaerobic Digestion Model 1 (ADM1 and we identify the areas that require further research endeavors.

  12. Gardnerella vaginalis and anaerobic bacteria in genital disease.

    Science.gov (United States)

    Tabaqchali, S; Wilks, M; Thin, R N

    1983-01-01

    In a study of Gardnerella vaginalis and anaerobic bacteria in non-specific vaginitis (NSV) and other genital disease 89 patients attending a genital medicine clinic had vaginal samples examined for conventional pathogens and for quantitative analysis of G vaginalis and aerobic and anaerobic bacterial flora. The overall incidence of G vaginalis was 20%; G vaginalis (mean concentration 7.0 log10/g of secretion) occurred predominantly in patients with NSV (57%) but also in sexual contacts of non-specific urethritis (NSU) (37.5%) and in patients with other conditions (11.8%). G vaginalis is therefore a relatively common isolate in patients with vaginal discharge. The concentration of aerobic and anaerobic bacteria ranged from 4.9-11.0 log10/g of secretion with an anaerobe-to-aerobe ratio of 10:1. Anaerobic bacteria, particularly anaerobic Gram-positive cocci (mean concentrations 7.7 log10/g), were present in patients with NSV and in association with G vaginalis, but they also occurred in other clinical groups and with other pathogens, particularly Trichomonas vaginalis. Anaerobic bacteria may therefore play an important role in the pathogenesis of vaginal infections. PMID:6600955

  13. Anaerobic biodegradability and toxicity of complex or toxicant wastewater

    International Nuclear Information System (INIS)

    Wills Betancur, B.A.

    1995-01-01

    As a first approximation to wastewater classification in susceptibility terms to treatment by anaerobic biological system, anaerobic biodegradability trials are accomplished to leached of sanitary landfill, to wastewater of coffee grain wet treatment plant and to wastewater of fumaric acid recuperation plant. In the last Plant, anaerobic toxicity trials and lethal toxicity on the Daphnia pulex micro-crustacean are made too. Anaerobic biological trials are made continuing the Wageningen University (Holland) Methodology (1.987). Lethal toxicity biological trials are made following the Standard Methods for the Examination of Water and Wastewater(18th edition, 1992). In development of this investigation project is found that fumaric acid recuperation plant leached it has a low anaerobic biodegradability, a high anaerobic toxicity and a high lethal toxicity over Daphnia pulex, for such reasons this leached is cataloged as complex and toxic wastewater. The other hand, wastewater of coffee grain wet treatment plant and wastewater of sanitary landfill they are both highly biodegradability and not-toxic, for such reasons these wastewaters are cataloged as susceptible to treatment by anaerobic biological system

  14. Growth media in anaerobic fermentative processes: The underestimated potential of thermophilic fermentation and anaerobic digestion.

    Science.gov (United States)

    Hendriks, A T W M; van Lier, J B; de Kreuk, M K

    Fermentation and anaerobic digestion of organic waste and wastewater is broadly studied and applied. Despite widely available results and data for these processes, comparison of the generated results in literature is difficult. Not only due to the used variety of process conditions, but also because of the many different growth media that are used. Composition of growth media can influence biogas production (rates) and lead to process instability during anaerobic digestion. To be able to compare results of the different studies reported, and to ensure nutrient limitation is not influencing observations ascribed to process dynamics and/or reaction kinetics, a standard protocol for creating a defined growth medium for anaerobic digestion and mixed culture fermentation is proposed. This paper explains the role(s) of the different macro- and micronutrients, as well as the choices for a growth medium formulation strategy. In addition, the differences in nutrient requirements between mesophilic and thermophilic systems are discussed as well as the importance of specific trace metals regarding specific conversion routes and the possible supplementary requirement of vitamins. The paper will also give some insight into the bio-availability and toxicity of trace metals. A remarkable finding is that mesophilic and thermophilic enzymes are quite comparable at their optimum temperatures. This has consequences for the trace metal requirements of thermophiles under certain conditions. Under non-limiting conditions, the trace metal requirement of thermophilic systems is about 3 times higher than for mesophilic systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Applicability and trends of anaerobic granular sludge treatment processes

    International Nuclear Information System (INIS)

    Lim, Seung Joo; Kim, Tak-Hyun

    2014-01-01

    Anaerobic granular sludge treatment processes have been continuously developed, although the anaerobic sludge granulation process was not clearly understood. In this review, an upflow anaerobic sludge blanket (UASB), an expanded granule sludge blanket (EGSB), and a static granular bed reactor (SGBR) were introduced as components of a representative anaerobic granular sludge treatment processes. The characteristics and application trends of each reactor were presented. The UASB reactor was developed in the late 1970s and its use has been rapidly widespread due to the excellent performance. With the active granules, this reactor is able to treat various high-strength wastewaters as well as municipal wastewater. Most soluble industrial wastewaters can be efficiently applied using a UASB. The EGSB reactor was developed owing to give more chance to contact between wastewater and the granules. Dispersed sludge is separated from mature granules using the rapid upward velocity in this reactor. The EGSB reactor shows the excellent performance in treating low-strength and/or high-strength wastewater, especially under low temperatures. The SGBR, developed at Iowa State University, is one of anaerobic granular sludge treatment processes. Although the configuration of the SGBR is very simple, the performance of this system is similar to that of the UASB or EGSB reactor. The anaerobic sludge granulation processes showed excellent performance for various wastewaters at a broad range of organic loading rate in lab-, pilot-scale tests. This leads to erect thousands of full-scale granular processes, which has been widely operated around the world. -- Highlights: • Anaerobic sludge granulation is a key parameter for maintaining granular processes. • Anaerobic granular digestion processes are applicable for various wastewaters. • The UASB is an economic high-rate anaerobic granular process. • The EGSB can treat high-strength wastewater using expanding granules. • The SGBR is

  16. Anaerobic digestion for sustainable development: a natural approach.

    Science.gov (United States)

    Gljzen, H J

    2002-01-01

    After the discovery of methane gas by Alessandro Volta in 1776, it took about 100 years before anaerobic processes for the treatment of wastewater and sludges were introduced. The development of high rate anaerobic digesters for the treatment of sewage and industrial wastewater took until the nineteen-seventies and for solid waste even till the nineteen-eighties. All digesters have in common that they apply natural anaerobic consortia of microorganisms for degradation and transformation processes. In view of this, it could be rewarding to evaluate the efficiency of natural ecosystems for their possible application. Examples of high rate anaerobic natural systems include the forestomach of ruminants and the hindgut of certain insects, such as termites and cockroaches. These 'natural reactors' exhibit volumetric methane production rates as high as 35 l/l.d. The development of anaerobic reactors based on such natural anaerobic systems could produce eco-technologies for the effective management of a wide variety of solid wastes and industrial wastewater. Important limitations of anaerobic treatment of domestic sewage relate to the absence of nutrient and pathogen removal. A combination of anaerobic pre-treatment followed by photosynthetic posttreatment is proposed for the effective recovery of energy and nutrients from sewage. This eco-technology approach is based on the recognition that the main nutrient assimilating capacity is housed in photosynthetic plants. The proposed anaerobic-photosynthetic process is energy efficient, cost effective and applicable under a wide variety of rural and urban conditions. a natural systems approach towards waste management could generate affordable eco-technologies for effective treatment and resource recovery.

  17. Anaerobic digestion for sustainable development: a natural approach

    Energy Technology Data Exchange (ETDEWEB)

    Gijzen, H.J.

    2002-07-01

    After the discovery of methane gas by Alessandro Volta in 1776, it took about 100 years before anaerobic processes for the treatment of wastewater and sludges were introduced. The development of high rate anaerobic digesters for the treatment of sewage and industrial wastewater took until the nineteen-seventies and for solid waste even till the nineteen-eighties. All digesters have in common that they apply natural anaerobic consortia of microorganisms for degradation and transformation processes. In view of this, it could be rewarding to evaluate the efficiency of natural ecosystems for their possible application. Examples of high rate anaerobic natural systems include the forestomach of ruminants and the hindgut of certain insects, such as termites and cockroaches. These ''natural reactors'' exhibit volumetric methane production rates as high as 35 l/l.d. The development of anaerobic reactors based on such natural anaerobic systems could produce eco-technologies for the effective management of a wide variety of solid wastes and industrial wastewater. Important limitations of anaerobic treatment of domestic sewage relate to the absence of nutrient and pathogen removal. A combination of anaerobic pre-treatment followed by photosynthetic post-treatment is proposed for the effective recovery of energy and nutrients from sewage. This eco-technology approach is based on the recognition that the main nutrient assimilating capacity is housed in photosynthetic plants. The proposed anaerobic-photosynthetic process is energy efficient, cost effective and applicable under a wide variety of rural and urban conditions. In conclusion: a natural systems approach towards waste management could generate affordable eco-technologies for effective treatment and resource recovery. (author)

  18. Characterization of Spartina alterniflora as feedstock for anaerobic digestion

    International Nuclear Information System (INIS)

    Yang, Shiguan; Zheng, Zheng; Meng, Zhuo; Li, Jihong

    2009-01-01

    Smooth cordgrass (Spartina alterniflora), a saltmarsh plant with high production, was characterized for its potential for use as feedstock for anaerobic digestion processes. The anaerobic digestibility and biogas yield of S. alterniflora were evaluated by anaerobic batch digestion experiments performed at 35 ± 1 C at initial volatile solids (VS) of 6%. The nutrient content analysis indicated that S. alterniflora contained the required nutrition for anaerobic microorganisms, but its high C/N of 58.8, high K and Na contents of 8.1, 22.7 g kg -1 , respectively, may be disadvantageous to its anaerobic digestion. The cumulative biogas yield was determined to be 358 L kg -1 VS and the biodegradation efficiency was 45% after 60 days of digestion. The methane content of biogas increased from 53% on day 3 to around 62% after 13 days of digestion. The changes of volatile fatty acids (VFAs) indicated that the acidification of S. alterniflora was propionate-type fermentation with proportion of acetate and propionate ranging from 54.8% to 98.4%, and the hydrolysis of lignocellulose was the rate-limiting step for its anaerobic digestion. The analysis of cations suggested that K + and Mg 2+ , with the maximum concentration of 1.35 and 0.43 g L -1 in fermentation liquor, respectively, could be inhibitory to the anaerobic digestion of S. alterniflora. It is concluded that S. alterniflora can be transformed into clean energy by anaerobic digestion and the high contents of K, Na, Ca and Mg may be the inhibitory factors when S. alterniflora is digested by continuous or semi-continuous anaerobic process. (author)

  19. Peritoneal dialysis peritonitis by anaerobic pathogens: a retrospective case series

    Science.gov (United States)

    2013-01-01

    Background Bacterial infections account for most peritoneal dialysis (PD)-associated peritonitis episodes. However, anaerobic PD peritonitis is extremely rare and intuitively associated with intra-abdominal lesions. In this study, we examined the clinical characteristics of PD patients who developed anaerobic peritonitis. Methods We retrospectively identified all anaerobic PD peritonitis episodes from a prospectively collected PD registry at a single center between 1990 and 2010. Only patients receiving more than 3 months of PD were enrolled. We analyzed clinical features as well as outcomes of anaerobic PD peritonitis patients. Results Among 6 patients, 10 episodes of PD-associated peritonitis were caused by anaerobic pathogens (1.59% of all peritonitis episodes during study the period), in which the cultures from 5 episodes had mixed growth. Bacteroides fragilis was the most common species identified (4 isolates). Only 3 episodes were associated with gastrointestinal lesions, and 4 episodes were related to a break in sterility during exchange procedures. All anaerobic pathogens were susceptible to clindamycin and metronidazole, but penicillin resistance was noted in 4 isolates. Ampicillin/sulbactam resistance was found in 2 isolates. In 5 episodes, a primary response was achieved using the first-generation cephalosporin and ceftazidime or aminoglycoside. In 3 episodes, the first-generation cephalosporin was replaced with aminoglycosides. Tenckhoff catheter removal was necessary in 2 episodes. Only one episode ended with mortality (due to a perforated bowel). Conclusion Anaerobic PD-associated peritonitis might be predominantly caused by contamination, rather than intra-abdominal events. Half of anaerobic PD-associated peritonitis episodes had polymicrobial growth. The overall outcome of anaerobic peritonitis is fair, with a high catheter survival rate. PMID:23705895

  20. Anaerobic biodegradation of cyanide under methanogenic conditions.

    Science.gov (United States)

    Fallon, R D; Cooper, D A; Speece, R; Henson, M

    1991-01-01

    Upflow, anaerobic, fixed-bed, activated charcoal biotreatment columns capable of operating at free cyanide concentrations of greater than 100 mg liter-1 with a hydraulic retention time of less than 48 h were developed. Methanogenesis was maintained under a variety of feed medium conditions which included ethanol, phenol, or methanol as the primary reduced carbon source. Under optimal conditions, greater than 70% of the inflow free cyanide was removed in the first 30% of the column height. Strongly complexed cyanides were resistant to removal. Ammonia was the nitrogen end product of cyanide transformation. In cell material removed from the charcoal columns, [14C]bicarbonate was the major carbon end product of [14C]cyanide transformation. PMID:1872600

  1. Anaerobic digestion of slaughterhouse by-products

    DEFF Research Database (Denmark)

    Hejnfelt, Anette; Angelidaki, Irini

    2009-01-01

    Anaerobic digestion of animal by-products was investigated in batch and semi-continuously fed, reactor experiments at 55 degrees C and for some experiments also at 37 degrees C. Separate or mixed by-products from pigs were tested. The methane potential measured by batch assays for meat- and bone...... flour, fat, blood, hair, meat, ribs, raw waste were: 225, 497,487, 561, 582, 575, 359, 619 dm(3) kg(-1) respectively, corresponding to 50-100% of the calculated theoretical methane potential. Dilution of the by-products had a positive effect on the specific methane yield with the highest dilutions...... giving the best results. High concentrations of long-chain fatty acids and ammonia in the by-products were found to inhibit the biogas process at concentrations higher than 5 g lipids dm(-3) and 7 gN dm(-3) respectively. Pretreatment (pasteurization: 70 degrees C, sterilization: 133 degrees C, and alkali...

  2. [Antimicrobial susceptibility testing of anaerobic bacteria].

    Science.gov (United States)

    García-Sánchez, José E; García-Sánchez, Enrique; García-García, María Inmaculada

    2014-02-01

    The anaerobic bacteria resistance to antibiotics is increasing, and even has appeared against the most active of those, like metronidazol and carbapenems. This fact forces to make and periodical sensibility tests -at least in the most aggressive and virulent species, in cases that they are isolated from life locations and in the absence of therapeutic response- to check the local sensibility and to establish suitable empiric therapies, all based on multicentric studies carried out in order to this or well to check the activity of new antibiotics. For the laboratory routine, the easiest sensibility method is the E-test/MIC evaluator. Another alternative is microdilution, that's only normalized for Bacteroides. There are preliminary facts that allow the use of disc diffusion method in some species of Bacteroides and Clostridium. For the temporal and multicentric studies, the procedure is dilution in agar plate, the reference method. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  3. Applications of the anaerobic digestion process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Ellegaard, L.; Ahring, Birgitte Kiær

    2003-01-01

    and resource/energy recovery have been developed. Treatment of biowastes by anaerobic digestion processes is in many cases the optimal way to convert organic waste into useful products such as energy (in the form of biogas) and a fertilizer product. Other waste management options, such as land filling......At the start of the new millennium waste management has become a political priority in many countries. One of the main problems today is to cope with an increasing amount of primary waste in an environmentally acceptable way. Biowastes, i.e., municipal, agricultural or industrial organic waste...... and incineration of organic waste has become less desirable, and legislation, both in Europe and elsewhere, tends to favor biological treatment as a way of recycling minerals and nutrients of organic wastes from society back to the food production and supply chain. Removing the relatively wet organic waste from...

  4. [Anaerobic hydrolysis of terramycin crystallizing mother solution].

    Science.gov (United States)

    Ma, W; Wang, J; Liang, C; Qi, R; Yang, M

    2001-09-01

    The terramycin crystallizing mother solution contained high organics and high nitrogen. There were many kinds of bioinhibition in it but not enough electronic donor. Anaerobic hydrolysis of terramycin crystallizing mother solution was completed with up anarobic sludge bed in order to improve the biodegradability of wastewater and electronic donor in it. The variations of pH, COD, NH4+, and SO4(2-) were monitored. The COD removal was in a narrow range between 10% and 16.4% even when the HRT of the reactor was changed from 1.5 h to 6 h. pH increased because of formation of NH3 and reduction of SO4(2-). Most of SO4(2-) was reduced to S2- when the HRT was longer than 2 h. Batch experiments on hydrolyzed wastewater demonstrated that reaction rates of nitrification and denitrification increased by 90.9% and 45.2%, respectively.

  5. PCB dechlorination in anaerobic soil slurry reactors

    International Nuclear Information System (INIS)

    Klasson, K.T.; Evans, B.S.

    1993-01-01

    Many industrial locations, including the US Department of Energy's, have identified needs for treatment of polychlorinated biphenyl (PCB) wastes and remediation of PCB-contaminated sites. Biodegradation of PCBs is a potentially effective technology for the treatment of PCB-contaminated soils and sludges, including mixed wastes; however, a practical remediation technology has not yet been demonstrated. In laboratory experiments, soil slurry bioreactors inoculated with microorganisms extracted from PCB-contaminated sediments from the Hudson River have been used to obtain anaerobic dechlorination of PCBS. The onset of dechlorination activity can be accelerated by addition of nutritional amendments and inducers. After 15 weeks of incubation with PCB-contaminated soil and nutrient solution, dechlorination has been observed under several working conditions. The best results show that the average chlorine content steadily dropped from 4.3 to 3.5 chlorines per biphenyl over a 15-week period

  6. Anaerobic treatment of solid and liquid residues. Papers

    International Nuclear Information System (INIS)

    Maerkl, H.; Stegmann, R.

    1994-01-01

    Anaerobic processes are getting increasing attention in the disposal of liquid waste of the food industry and chemical industry and solid organic residues of the municipal sector. The main advantages of anaerobic processes are the favourable energy balance and the comparatively small volume of new biomass produced. There are new satisfactory technical solutions for nearly all problems encountered in practice. A conference on ''Anaerobic treatment of solid and liquid residues'' was held on 2-4 November 1994. The state of the art and new developments were presented in lectures by experts from research and practice. (orig.) [de

  7. Trends in the development of equipment for anaerobic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Holcak, B; Lutcha, J

    1982-01-01

    The successful application of anaerobic fermentation to the utilization of diluted wastes for the production of energy stimulated in recent years the development of new types of anaerobic reactors. Although the point of view of a chemical engineer does not encompass the complexity of this microbial process, he still disposes of means that enable him to estimate to what extent is it possible to affect the efficiency of the process by the concept of reactor arrangement. Simulation of behaviour by means of mathematical models enables us to compare quantitatively, for the types of anaerobic reactor under consideration, the apparatuses, and to predict the expected trends in their development.

  8. ANAEROBIC MEMBRANE BIOREACTORS FOR DOMESTIC WASTEWATER TREATMENT. PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    Luisa Vera

    2014-12-01

    Full Text Available The operation of submerged anaerobic membrane bioreactors (SAnMBRs for domestic wastewaters treatment was studied in laboratory scale, with the objective to define sustainable filtration conditions of the suspensions along the process. During continuous experiments, the organic matter degradation by anaerobic way showed an average DQOT removal of 85% and 93%. Indeed, the degradation generated biogas after 12 days of operation and its relative methane composition was of 60% after 25 days of operation. Additionally, the comparison between membrane bioreactors (MBRs performance in aerobic and anaerobic conditions in filterability terms, reported that both systems behave similarly once reached the stationary state.

  9. Starch-degrading enzymes from anaerobic non-clostridial bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Weber, H; Schepers, H J; Troesch, W [Fraunhofer-Institut fuer Grenzflaechen- und Bioverfahrenstechnik (IGB), Stuttgart (Germany, F.R.)

    1990-08-01

    A number of meso- and thermophilic anaerobic starch-degrading non-spore-forming bacteria have been isolated. All the isolates belonging to different genera are strictly anaerobic, as indicated by a catalase-negative reaction, and produce soluble starch-degrading enzymes. Compared to enzymes of aerobic bacteria, those of anaerobic origin mainly show low molecular mass of about 25 000 daltons. Some of the enzymes may have useful applications in the starch industry because of their unusual product pattern, yielding maltotetraose as the main hydrolysis product. (orig.).

  10. Anaerobic bacterial quantitation of Yucca Mountain, Nevada DOE site samples

    International Nuclear Information System (INIS)

    Clarkson, W.W.; Krumholz, L.R.; Suflita, J.M.

    1996-01-01

    Anaerobic bacteria were studied from samples of excavated rock material as one phase of the overall Yucca Mountain site characterization effort. An indication of the abundance of important groups of anaerobic bacteria would enable inferences to be made regarding the natural history of the site and allow for more complete risk evaluation of the site as a nuclear repository. Six bacterial groups were investigated including anaerobic heterotrophs, acetogens, methanogens, sulfate-, nitrate-, and iron-reducing bacteria. The purpose of this portion of the study was to detect and quantify the aforementioned bacterial groups

  11. Diversity Profile of Microbes Associated with Anaerobic Sulfur Oxidation in an Upflow Anaerobic Sludge Blanket Reactor Treating Municipal Sewage

    Science.gov (United States)

    Aida, Azrina A.; Kuroda, Kyohei; Yamamoto, Masamitsu; Nakamura, Akinobu; Hatamoto, Masashi; Yamaguchi, Takashi

    2015-01-01

    We herein analyzed the diversity of microbes involved in anaerobic sulfur oxidation in an upflow anaerobic sludge blanket (UASB) reactor used for treating municipal sewage under low-temperature conditions. Anaerobic sulfur oxidation occurred in the absence of oxygen, with nitrite and nitrate as electron acceptors; however, reactor performance parameters demonstrated that anaerobic conditions were maintained. In order to gain insights into the underlying basis of anaerobic sulfur oxidation, the microbial diversity that exists in the UASB sludge was analyzed comprehensively to determine their identities and contribution to sulfur oxidation. Sludge samples were collected from the UASB reactor over a period of 2 years and used for bacterial 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) and next-generation sequencing analyses. T-RFLP and sequencing results both showed that microbial community patterns changed markedly from day 537 onwards. Bacteria belonging to the genus Desulforhabdus within the phylum Proteobacteria and uncultured bacteria within the phylum Fusobacteria were the main groups observed during the period of anaerobic sulfur oxidation. Their abundance correlated with temperature, suggesting that these bacterial groups played roles in anaerobic sulfur oxidation in UASB reactors. PMID:25817585

  12. Atmospheric vs. anaerobic processing of metabolome samples for the metabolite profiling of a strict anaerobic bacterium, Clostridium acetobutylicum.

    Science.gov (United States)

    Lee, Sang-Hyun; Kim, Sooah; Kwon, Min-A; Jung, Young Hoon; Shin, Yong-An; Kim, Kyoung Heon

    2014-12-01

    Well-established metabolome sample preparation is a prerequisite for reliable metabolomic data. For metabolome sampling of a Gram-positive strict anaerobe, Clostridium acetobutylicum, fast filtration and metabolite extraction with acetonitrile/methanol/water (2:2:1, v/v) at -20°C under anaerobic conditions has been commonly used. This anaerobic metabolite processing method is laborious and time-consuming since it is conducted in an anaerobic chamber. Also, there have not been any systematic method evaluation and development of metabolome sample preparation for strict anaerobes and Gram-positive bacteria. In this study, metabolome sampling and extraction methods were rigorously evaluated and optimized for C. acetobutylicum by using gas chromatography/time-of-flight mass spectrometry-based metabolomics, in which a total of 116 metabolites were identified. When comparing the atmospheric (i.e., in air) and anaerobic (i.e., in an anaerobic chamber) processing of metabolome sample preparation, there was no significant difference in the quality and quantity of the metabolomic data. For metabolite extraction, pure methanol at -20°C was a better solvent than acetonitrile/methanol/water (2:2:1, v/v/v) at -20°C that is frequently used for C. acetobutylicum, and metabolite profiles were significantly different depending on extraction solvents. This is the first evaluation of metabolite sample preparation under aerobic processing conditions for an anaerobe. This method could be applied conveniently, efficiently, and reliably to metabolome analysis for strict anaerobes in air. © 2014 Wiley Periodicals, Inc.

  13. Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion

    International Nuclear Information System (INIS)

    Zhen, Guangyin; Lu, Xueqin; Li, Yu-You; Zhao, Youcai

    2014-01-01

    Highlights: • Combined electrical-alkali pretreatment for improving sludge anaerobic digestion was proposed. • Combined process enhanced the cell lysis, biopolymers releases, and thus sludge disintegration. • Increased solubilization of sludge increased the anaerobic hydrolysis rate. • Increased solubilization does not always induce an improved anaerobic digestion efficiency. - Abstract: Pretreatment can be used prior to anaerobic digestion to improve the efficiency of waste activated sludge (WAS) digestion. In this study, electrolysis and a commonly used pretreatment method of alkaline (NaOH) solubilization were integrated as a pretreatment method for promoting WAS anaerobic digestion. Pretreatment effectiveness of combined process were investigated in terms of disintegration degree (DD SCOD ), suspended solids (TSS and VSS) removals, the releases of protein (PN) and polysaccharide (PS), and subsequent anaerobic digestion as well as dewaterability after digestion. Electrolysis was able to crack the microbial cells trapped in sludge gels and release the biopolymers (PN and PS) due to the cooperation of alkaline solubilization, enhancing the sludge floc disintegration/solubilization, which was confirmed by scanning electron microscopy (SEM) analysis. Biochemical methane potential (BMP) assays showed the highest methane yield was achieved with 5 V plus pH 9.2 pretreatment with up to 20.3% improvement over the non-pretreated sludge after 42 days of mesophilic operation. In contrast, no discernible improvements on anaerobic degradability were observed for the rest of pretreated sludges, probably due to the overmuch leakage of refractory soluble organics, partial chemical mineralization of solubilized compounds and sodium inhibition. The statistical analysis further indicated that increased solubilization induced by electrical-alkali pretreatment increased the first-order anaerobic hydrolysis rate (k hyd ), but had no, or very slight enhancement on WAS ultimate

  14. Bacterial ecology of abattoir wastewater treated by an anaerobic digestor

    Directory of Open Access Journals (Sweden)

    Linda Jabari

    2016-03-01

    Full Text Available Abstract Wastewater from an anaerobic treatment plant at a slaughterhouse was analysed to determine the bacterial biodiversity present. Molecular analysis of the anaerobic sludge obtained from the treatment plant showed significant diversity, as 27 different phyla were identified. Firmicutes, Proteobacteria, Bacteroidetes, Thermotogae, Euryarchaeota (methanogens, and msbl6 (candidate division were the dominant phyla of the anaerobic treatment plant and represented 21.7%, 18.5%, 11.5%, 9.4%, 8.9%, and 8.8% of the total bacteria identified, respectively. The dominant bacteria isolated were Clostridium, Bacteroides, Desulfobulbus, Desulfomicrobium, Desulfovibrio and Desulfotomaculum. Our results revealed the presence of new species, genera and families of microorganisms. The most interesting strains were characterised. Three new bacteria involved in anaerobic digestion of abattoir wastewater were published.

  15. Bacterial ecology of abattoir wastewater treated by an anaerobic digestor.

    Science.gov (United States)

    Jabari, Linda; Gannoun, Hana; Khelifi, Eltaief; Cayol, Jean-Luc; Godon, Jean-Jacques; Hamdi, Moktar; Fardeau, Marie-Laure

    2016-01-01

    Wastewater from an anaerobic treatment plant at a slaughterhouse was analysed to determine the bacterial biodiversity present. Molecular analysis of the anaerobic sludge obtained from the treatment plant showed significant diversity, as 27 different phyla were identified. Firmicutes, Proteobacteria, Bacteroidetes, Thermotogae, Euryarchaeota (methanogens), and msbl6 (candidate division) were the dominant phyla of the anaerobic treatment plant and represented 21.7%, 18.5%, 11.5%, 9.4%, 8.9%, and 8.8% of the total bacteria identified, respectively. The dominant bacteria isolated were Clostridium, Bacteroides, Desulfobulbus, Desulfomicrobium, Desulfovibrio and Desulfotomaculum. Our results revealed the presence of new species, genera and families of microorganisms. The most interesting strains were characterised. Three new bacteria involved in anaerobic digestion of abattoir wastewater were published. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  16. Optimization of up-flow anaerobic sludge blanket reactor for ...

    African Journals Online (AJOL)

    Optimization of up-flow anaerobic sludge blanket reactor for treatment of composite ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search ... Granules grown in the bottom part of UASB reactor were more compact and tense ...

  17. Inhibition of the anaerobic digestion process by linear alkylbenzene sulfonates

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Ahring, Birgitte Kiær

    2002-01-01

    Linear Alkylbenzene Sulfonates (LAS) are the most widely used synthetic anionic surfactants. They are anthropogenic, toxic compounds and are found in the primary sludge generated in municipal wastewater treatment plants. Primary sludge is usually stabilized anaerobically and therefore it is impor......Linear Alkylbenzene Sulfonates (LAS) are the most widely used synthetic anionic surfactants. They are anthropogenic, toxic compounds and are found in the primary sludge generated in municipal wastewater treatment plants. Primary sludge is usually stabilized anaerobically and therefore...... it is important to investigate the effect of these xenobiotic compounds on an anaerobic environment. The inhibitory effect of Linear Alkylbenzene Sulfonates (LAS) on the acetogenic and methanogenic step of the anaerobic digestion process was studied. LAS inhibit both acetogenesis from propionate...

  18. Microbiological and technical aspects of anaerobic waste water purification

    International Nuclear Information System (INIS)

    Aivasidis, A.

    1994-01-01

    Anaerobic waste water purification is likely to be another example of how innovations can result from the joint use of biological and technical concepts. No matter how far the optimization of oxygen input with aerobic waste water purification advances it will still be the less a real competitor for anaerobic techniques the more polluted the waste water is. The principle of carrier fixation to avoid their washing out, too, has often been observed in nature with sessile microorganisms. With highly polluted water, anaerobic purification does not only work at no expenditure of energy but it can also make excess energy available for use in other processes. Another important argument for anaerobic methods of waste water purification is probably the clearly reduced production of excess sludge. (orig.) [de

  19. Methods of ammonia removal in anaerobic digestion: a review.

    Science.gov (United States)

    Krakat, Niclas; Demirel, Burak; Anjum, Reshma; Dietz, Donna

    2017-10-01

    The anaerobic digestion of substrates with high ammonia content has always been a bottleneck in the methanisation process of biomasses. Since microbial communities in anaerobic digesters are sensitive to free ammonia at certain conditions, the digestion of nitrogen-rich substrates such as livestock wastes may result in inhibition/toxicity eventually leading to process failures, unless appropriate engineering precautions are taken. There are many different options reported in literature to remove ammonia from anaerobic digesters to achieve a safe and stable process so that along with high methane yields, a good quality of effluents can also be obtained. Conventional techniques to remove ammonia include physical/chemical methods, immobilization and adaptation of microorganisms, while novel methods include ultrasonication, microwave, hollow fiber membranes and microbial fuel cell applications. This paper discusses conventional and novel methods of ammonia removal from anaerobic digesters using nitrogen-rich substrates, with particular focus on recent literature available about this topic.

  20. HIGH-RATE ANAEROBIC TREATMENT OF ALCOHOLIC WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Florencio L.

    1997-01-01

    Full Text Available Modern high-rate anaerobic wastewater treatment processes are rapidly becoming popular for industrial wastewater treatment. However, until recently stable process conditions could not be guaranteed for alcoholic wastewaters containing higher concentrations of methanol. Although methanol can be directly converted into methane by methanogens, under specific conditions it can also be converted into acetate and butyrate by acetogens. The accumulation of volatile fatty acids can lead to reactor instability in a weakly buffered reactor. Since this process was insufficiently understood, the application of high-rate anaerobic reactors was highly questionable. This research investigated the environmental factors that are of importance in the predominance of methylotrophic methanogens over acetogens in a natural mixed culture during anaerobic wastewater treatment in upflow anaerobic sludge bed reactors. Technological and microbiological aspects were investigated. Additionally, the route by which methanol is converted into methane is also presented