WorldWideScience

Sample records for anaerobic ammonium-oxidizing anammox

  1. Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification

    DEFF Research Database (Denmark)

    Chamchoi, N.; Nitisoravut, S.; Schmidt, Jens Ejbye

    2008-01-01

    A concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification was investigated in a well known UASB reactor seeding with both ANAMMOX and anaerobic granular sludges. ANAMMOX activity was confirmed by hydroxylamine test and the hybridization of biomass using the gene probes......–nitrate concentrations in all reactors confirmed the undergone concurrent denitrification which thrives when sufficient organic matter is available. COD concentration over 300 mg l−1 was found to inactivate or eradicate ANAMMOX communities....

  2. Enrichment culture of marine anaerobic ammonium oxidation (anammox) bacteria

    Institute of Scientific and Technical Information of China (English)

    GUAN Yong-jie

    2016-01-01

    The present study investigates the enrichment of anaerobic ammonium oxidation (anammox) bacteria in the marine environment using sediment samples obtained from the East China Sea and discusses the nitrogen removal efficiency of marine anammox bioreactor. Enrichment of anammox bacteria with simultaneous removal of nitrite and ammonium ions was observed in the Anaerobic Sequencing Batch Reactor under a total nitrogen loading rate of 0.37kg-N m-3day-1. In this study, The nitrogen removal efficiency was up to 80% and the molar-reaction ratio of ammonium, nitrite and nitrate was 1.0:1.22:0.22 which was a little different from a previously reported ratio of 1.0:1.32:0.26 in a freshwater system.

  3. Evaluation on the microbial interactions of anaerobic ammonium oxidizers and heterotrophs in Anammox biofilm

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Ruscalleda, Mael; Smets, Barth F.

    2012-01-01

    Anaerobic ammonium oxidation (Anammox) is a cost-effective new process to treat high-strength nitrogenous wastewater. In this work, the microbial interactions of anaerobic ammonium oxidizers and heterotrophs through the exchange of soluble microbial products (SMP) in Anammox biofilm....... Experimental results showed the heterotrophs could grow both on SMP and decay released substrate from the metabolism of the Anammox bacteria. However, heterotrophic growth in Anammox biofilm (23%) was significantly lower than that of nitrifying biofilm (30–50%). The model predictions matched well...... with the experimental observations of the bacterial distribution, as well as the nitrogenous transformations in batch and continuous experiments. The modeling results showed that low nitrogen surface loading resulted in a lower availability of SMP leading to low heterotrophic growth in Anammox biofilm, but high...

  4. Stoichiometry and kinetics of the anaerobic ammonium oxidation (Anammox) with trace hydrazine addition.

    Science.gov (United States)

    Yao, Zongbao; Lu, Peili; Zhang, Daijun; Wan, Xinyu; Li, Yulian; Peng, Shuchan

    2015-12-01

    Purpose of this study is to investigate the stoichiometry and kinetics of anaerobic ammonium oxidation (Anammox) with trace hydrazine addition. The stoichiometry was established based on the electron balance of Anammox process with trace N2H4 addition. The stoichiometric coefficients were determined by the proton consumption and the changes in substrates and products. It was found that trace N2H4 addition can increase the yield of Anammox bacteria (AnAOB) and reduce NO3(-) yield, which enhances the Anammox. Subsequently, kinetic model of Anammox with trace N2H4 addition was developed, and the parameters of the anaerobic degradation model of N2H4 were obtained for the first time. The maximum specific substrate utilization rate, half-saturation constant and inhibition constant of N2H4 were 25.09mgN/g VSS/d, 10.42mgN/L and 1393.88mgN/L, respectively. These kinetic parameters might provide important information for the engineering applications of Anammox with trace N2H4 addition.

  5. Hydroxylamine-dependent Anaerobic Ammonium Oxidation (Anammox) by “ Candidatus Brocadia sinica”

    KAUST Repository

    Oshiki, Mamoru

    2016-04-26

    Although metabolic pathways and associated enzymes of anaerobic ammonium oxidation (anammox) of “Ca. Kuenenia stuttgartiensis” have been studied, those of other anammox bacteria are still poorly understood. NO2- reduction to NO is considered to be the first step in the anammox metabolism of “Ca. K. stuttgartiensis”, however, “Ca. Brocadia” lacks the genes that encode canonical NO-forming nitrite reductases (NirS or NirK) in its genome, which is different from “Ca. K. stuttgartiensis”. Here, we studied the anammox metabolism of “Ca. Brocadia sinica”. 15N-tracer experiments demonstrated that “Ca. B. sinica” cells could reduce NO2- to NH2OH, instead of NO, with as yet unidentified nitrite reductase(s). Furthermore, N2H4 synthesis, downstream reaction of NO2- reduction, was investigated using a purified “Ca. B. sinica” hydrazine synthase (Hzs) and intact cells. Both the “Ca. B. sinica” Hzs and cells utilized NH2OH and NH4+, but not NO and NH4+, for N2H4 synthesis and further oxidized N2H4 to N2 gas. Taken together, the metabolic pathway of “Ca. B. sinica” is NH2OH-dependent and different from the one of “Ca. K. stuttgartiensis”, indicating metabolic diversity of anammox bacteria. This article is protected by copyright. All rights reserved.

  6. Inhibition of anaerobic ammonium oxidizing (anammox) enrichment cultures by substrates, metabolites and common wastewater constituents.

    Science.gov (United States)

    Carvajal-Arroyo, José M; Sun, Wenjie; Sierra-Alvarez, Reyes; Field, Jim A

    2013-03-01

    Anaerobic ammonium oxidation (anammox) is an emerging technology for nitrogen removal that provides a more environmentally sustainable and cost effective alternative compared to conventional biological treatment methods. The objective of this study was to investigate the inhibitory impact of anammox substrates, metabolites and common wastewater constituents on the microbial activity of two different anammox enrichment cultures (suspended and granular), both dominated by bacteria from the genus Brocadia. Inhibition was evaluated in batch assays by comparing the N(2) production rates in the absence or presence of each compound supplied in a range of concentrations. The optimal pH was 7.5 and 7.3 for the suspended and granular enrichment cultures, respectively. Among the substrates or products, ammonium and nitrate caused low to moderate inhibition, whereas nitrite caused almost complete inhibition at concentrations higher than 15 mM. The intermediate, hydrazine, either stimulated or caused low inhibition of anammox activity up to 3mM. Of the common constituents in wastewater, hydrogen sulfide was the most severe inhibitor, with 50% inhibitory concentrations (IC(50)) as low as 0.03 mM undissociated H(2)S. Dissolved O(2) showed moderate inhibition (IC(50)=2.3-3.8 mg L(-1)). In contrast, phosphate and salinity (NaCl) posed very low inhibition. The suspended- and granular anammox enrichment cultures had similar patterns of response to the various inhibitory stresses with the exception of phosphate. The findings of this study provide comprehensive insights on the tolerance of the anammox process to a wide variety of potential inhibiting compounds.

  7. Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox Biofilms from Digestate in Microbial Fuel Cells

    Directory of Open Access Journals (Sweden)

    Enea Gino Di Domenico

    2015-01-01

    Full Text Available Microbial Fuel cells (MFCs have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m2. The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate.

  8. Anaerobic ammonium-oxidizing (anammox) bacteria and associated activity in fixed-film biofilters of a marine recirculating aquaculture system.

    Science.gov (United States)

    Tal, Yossi; Watts, Joy E M; Schreier, Harold J

    2006-04-01

    Microbial communities in the biological filter and waste sludge compartments of a marine recirculating aquaculture system were examined to determine the presence and activity of anaerobic ammonium-oxidizing (anammox) bacteria. Community DNA was extracted from aerobic and anaerobic fixed-film biofilters and the anaerobic sludge waste collection tank and was analyzed by amplifying 16S rRNA genes by PCR using anammox-selective and universal GC-clamped primers. Separation of amplified PCR products by denaturing gradient gel electrophoresis and sequencing of the different phylotypes revealed a diverse biofilter microbial community. While Planctomycetales were found in all three communities, the anaerobic denitrifying biofilters contained one clone that exhibited high levels of sequence similarity to known anammox bacteria. Fluorescence in situ hybridization studies using an anammox-specific probe confirmed the presence of anammox Planctomycetales in the microbial biofilm from the denitrifying biofilters, and anammox activity was observed in these biofilters, as detected by the ability to simultaneously consume ammonia and nitrite. To our knowledge, this is the first identification of anammox-related sequences in a marine recirculating aquaculture filtration system, and our findings provide a foundation for incorporating this important pathway for complete nitrogen removal in such systems.

  9. Bio-augmentation for mitigating the impact of transient oxytetracycline shock on anaerobic ammonium oxidation (ANAMMOX) performance.

    Science.gov (United States)

    Jin, Ren-Cun; Zhang, Qian-Qian; Zhang, Zheng-Zhe; Liu, Jia-Hong; Yang, Bi-E; Guo, Li-Xin; Wang, Hui-Zhong

    2014-07-01

    The feasibility of applying bio-augmentation tactics to remit the influence of transient oxytetracycline (OTC) shock on the anaerobic ammonium oxidation (ANAMMOX) process was evaluated. The bio-augmentation was applied together with shock test, with OTC shock concentration of 518 mg L(-1) and 1-h duration. 0.655-2.62 g volatile suspended solid (VSS) sludges were varied to optimize bio-augmentation dosage (BAD), and appropriate bio-augmentation time (BAT) was determined. The validity of the bio-augmentation was indicated by recovery performance and sludge characteristics. The restoring time of 38 h for bio-augmented reactor was shorter than that of non-bio-augmented reactor (45 h), and heme c content was increased respectively from 0.195 ± 0.001, 0.267 ± 0.047, 0.301 ± 0.049, to 0.340 ± 0.053 μmol g(-1) VSS with the BAD of 0.655, 1.31, 1.97, 2.62 g-VSS. The results suggest that bio-augmentation enhances the recovery of ANAMMOX performance following OTC shock and BAT and BAD are key operational factors.

  10. How to make a living from anaerobic ammonium oxidation

    NARCIS (Netherlands)

    Kartal, B.; De Almeida, N.M.; Maalcke, W.J.; Op den Camp, H.J.M.; Jetten, M.S.M.; Keltjens, J.T.

    2013-01-01

    Anaerobic ammonium-oxidizing (anammox) bacteria primarily grow by the oxidation of ammonium coupled to nitrite reduction, using CO2 as the sole carbon source. Although they were neglected for a long time, anammox bacteria are encountered in an enormous species (micro)diversity in virtually any anoxi

  11. Treating leachate mixture with anaerobic ammonium oxidation technology

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-guo; ZHOU Shao-qi

    2006-01-01

    Large amounts of ammonium and a low content of biodegradable chemical oxygen demand(COD) are contained in leachate from aged landfills, together with the effluent containing high concentration of nitric nitrogen after biochemical treatment.Treatment effect of anaerobic ammonium oxidation (anammox) process on the mixture of the leachate and its biochemical effluent was investigated. The results show that the average removal efficiencies of ammonium, nitric nitrogen and total nitrogen are 87.51%,74.95% and 79.59%, respectively, corresponding to the average ratio of removed nitric nitrogen to ammonium, i.e. 1.14 during the steady phase of anammox activity. The mean removal efficiency of COD is only 24.01% during the experimental period. The demand of total phosphorous for the anammox process is unobvious. Especially, the alkalinity and pH value of the effluent are close to those of the influent during the steady phase of anammox activity. In addition, it is demonstrated that the status of the anammox bioreactor can be indicated by the alkalinity and pH value during the course of the experiment. The anammox bioreactor has shown potential for nitrogen removal in the leachate mixture. However, COD and total phosphorous in the leachate mixture need further treatment for removal efficiencies of COD and total phosphorous are not good in the anammox bioreactor.

  12. Anaerobic ammonium oxidation in a bioreactor treating slaughterhouse wastewater

    Directory of Open Access Journals (Sweden)

    V. Reginatto

    2005-12-01

    Full Text Available Ammonium oxidation was thought to be an exclusively aerobic process; however, as recently described in the literature, it is also possible under anaerobic conditions and this process was named ANAMMOX. This work describes the operation of a system consisting of a denitrifying reactor coupled to a nitrifying reactor used for removal of nitrogen from slaughterhouse wastewater. During operation of the denitrifying reactor an average nitrogen ammonium removal rate of 50 mg/Ld was observed. This biomass was used to seed a second reactor, operated in repeated fed batch mode, fed with synthetic medium specific to the growth of bacteria responsible for the ANAMMOX process. The nitrogen loading rate varied between 33 and 67 mgN/Ld and average nitrogen removal was 95% and 40%, respectively. Results of fluorescence in situ hybridization (FISH confirmed the presence of anammox-like microorganisms in the enriched biomass.

  13. Nitrogen loss by anaerobic ammonium oxidation in unconfined aquifer soils

    Science.gov (United States)

    Wang, Shanyun; Radny, Dirk; Huang, Shuangbing; Zhuang, Linjie; Zhao, Siyan; Berg, Michael; Jetten, Mike S. M.; Zhu, Guibing

    2017-01-01

    Anaerobic ammonium oxidation (anammox) is recognized as an important process for nitrogen cycling, yet little is known about its role in the subsurface biosphere. In this study, we investigated the presence, abundance, and role of anammox bacteria in upland soil cores from Tianjin, China (20 m depth) and Basel, Switzerland (10 m depth), using isotope-tracing techniques, (q)PCR assays, and 16 S rRNA & hzsB gene clone libraries, along with nutrient profiles of soil core samples. Anammox in the phreatic (water-saturated) zone contributed to 37.5–67.6% of the N-loss (up to 0.675 gN m−2 d−1), with anammox activities of 0.005–0.74 nmolN g−1 soil h−1, which were even higher than the denitrification rates. By contrast, no significant anammox was measured in the vadose zone. Higher anammox bacterial cell densities were observed (0.75–1.4 × 107 copies g−1 soil) in the phreatic zone, where ammonia-oxidizing bacteria (AOB) maybe the major source of nitrite for anammox bacteria. The anammox bacterial cells in soils of the vadose zone were all <103 copies g−1 soil. We suggest that the subsurface provides a favorable niche for anammox bacteria whose contribution to N cycling and groundwater nitrate removal seems considerably larger than previously known. PMID:28071702

  14. Nitrogen loss by anaerobic ammonium oxidation in unconfined aquifer soils

    Science.gov (United States)

    Wang, Shanyun; Radny, Dirk; Huang, Shuangbing; Zhuang, Linjie; Zhao, Siyan; Berg, Michael; Jetten, Mike S. M.; Zhu, Guibing

    2017-01-01

    Anaerobic ammonium oxidation (anammox) is recognized as an important process for nitrogen cycling, yet little is known about its role in the subsurface biosphere. In this study, we investigated the presence, abundance, and role of anammox bacteria in upland soil cores from Tianjin, China (20 m depth) and Basel, Switzerland (10 m depth), using isotope-tracing techniques, (q)PCR assays, and 16 S rRNA & hzsB gene clone libraries, along with nutrient profiles of soil core samples. Anammox in the phreatic (water-saturated) zone contributed to 37.5–67.6% of the N-loss (up to 0.675 gN m‑2 d‑1), with anammox activities of 0.005–0.74 nmolN g‑1 soil h‑1, which were even higher than the denitrification rates. By contrast, no significant anammox was measured in the vadose zone. Higher anammox bacterial cell densities were observed (0.75–1.4 × 107 copies g‑1 soil) in the phreatic zone, where ammonia-oxidizing bacteria (AOB) maybe the major source of nitrite for anammox bacteria. The anammox bacterial cells in soils of the vadose zone were all <103 copies g‑1 soil. We suggest that the subsurface provides a favorable niche for anammox bacteria whose contribution to N cycling and groundwater nitrate removal seems considerably larger than previously known.

  15. Response of anaerobic ammonium oxidation to inorganic nitrogen fluctuations in temperate estuarine sediments

    Science.gov (United States)

    Teixeira, Catarina; Magalhães, Catarina; Joye, Samantha B.; Bordalo, Adriano A.

    2016-07-01

    The discovery of anaerobic ammonium oxidation (anammox) highlighted the importance of alternative metabolic pathways to inorganic nitrogen removal in natural environments, particularly in those subjected to increased nitrate inputs, such as estuaries. Laboratory enrichment experiments were used to test the effect of increasing loads of nitrate (NO3-), nitrite (NO2-), and ammonium (NH4+) on the anammox process. Three Atlantic temperate estuaries (NW Portugal) were investigated along a salinity gradient, and anammox activity was measured under different NO3-, NO2-, and NH4+ treatments, using the isotope pairing technique. Obtained results showed that NO3- stimulated denitrification but not anammox, whereas NO2- additions had a positive effect on anammox activity, confirming its role as a key environmental control. On the other hand, increasing NH4+ concentrations seemed to inhibit anammox for low salinity sites. Our findings suggested an important role of the natural availability of nitrogen compounds in regulating anammox and the magnitude of anammox versus denitrification in estuarine environments.

  16. Candidatus "Scalindua brodaea", spec. nov., Candidatus "Scalindua wagneri", spec. nov., two new species of anaerobic ammonium oxidizing bacteria

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schmid, M.; Walsh, K.; Webb, R.; Rijpstra, W.I.C.; Pas-Schoonen, K. van de; Verbruggen, M.J.; Hill, T.; Moffett, B.; Fuerst, J.; Schouten, S.; Harris, James; Shaw, P.; Jetten, M.S.M.; Strous, M.

    2003-01-01

    Anaerobic ammonium oxidation (anammox) is both a promising process in wastewater treatment and a long overlooked microbial physiology that can contribute significantly to biological nitrogen cycling in the world's oceans. Anammox is mediated by a monophyletic group of bacteria that branches deeply i

  17. Anaerobic ammonium oxidation for advanced municipal wastewater treatment: is it feasible?

    Institute of Scientific and Technical Information of China (English)

    LI Jie; XIONG Bi-yong; ZHANG Shu-de; YANG Hong; ZHANG Jie

    2005-01-01

    Anaerobic ammonium oxidation(ANAMMOX) is a recently developed process to treat ammonia-rich wastewater. There were numerous articles about the new technology with focus on the ammonium-rich wastewater treatment, but few on advanced municipal wastewater treatment. The paper studied the anaerobic ammonium oxidation(ANAMMOX) process with a down flow anoxic biofilter for nitrogen removal from secondary clarifier effluent of municipal wastewater with low COD/N ratio. The results showed that ANAMMOX process is applicable to advanced wastewater treatment with normal temperature as well as ammonia-rich high temperature wastewater treatment. The results indicated that ammonia removal rate was improved by raising the nitrite concentration, and the reaction rate reached a climax at 118.4 mgN/L of the nitrite nitrogen concentration. If the concentration exceeds 118.4 mgN/L, the ANAMMOX process was significantly inhibited although the ANAMMOX bacteria still showed a relatively high reactivity. The data also indicated that the ratio of NO2- -N:NH4 + -N = 1.3:1 in the influent was appropriate for excellent nitrogen removal. The pH increased gradually along the ANAMMOX biofilter reactor. When the ANAMMOX reaction was ended, the pH was tend to calm. The data suggested that the pH could be used as an indicator to describe the course of ANAMMOX reaction.

  18. Nitrogen removal by autotrophic ammonium oxidizing bacteria enrichment under anaerobic conditions

    Directory of Open Access Journals (Sweden)

    Pongsak (Lek Noophan

    2008-07-01

    Full Text Available Sludge from an anoxic tank at the centralized wastewater treatment plant, Nong Khaem, Bangkok, Thailand, was inoculatedin an anaerobic sequencing batch reactor (ASBR. The optimal compositions and operating conditions of the stock of autotrophic ammonium oxidizing bacteria medium were determined. The process of oxidizing ammonium with bacteria under anaerobic conditions is often referred to as the Anammox process (NO2- to N2 gas, using NH4+ as the electron donor and NO2- as the electron acceptor. The startup period for the anammox culture took more than three months. With ammoniumand nitrite concentration ratios of 1:1.38 and 1:1.6, the nitrogen conversion rate zero order. Fluorescent in situ hybridization(FISH was used to identify specific autotrophic ammonium oxidizing bacteria (Nitrosomonas spp., Candidatus Brocadia anammoxidans, and Candidatus Kuenenia stuttgartiensis. Results from this work demonstrated a shift in the species of ammonium oxidizing bacteria from Nitrosomonas spp. to Candidati Brocadia anammoxidans and Kuenenia stuttgartiensis, with increased ammonium concentrations from 3 mM to 15 mM. Under NH4+:NO2- ratios of 1:1.38 and 1:1.6 the ammoniumoxidizing bacteria were able to remove both ammonium and nitrite simultaneously. The specific nitrogen removal rate of theanammox bacteria (Candidati Brocadia anammoxidans and Kuenenia stuttgartiensis was significantly higher than that of anaerobic ammonium oxidizing bacteria (Nitrosomonas spp.. Anaerobic ammonium oxidizing bacteria (Candidati Brocadia anammoxidans and Kuenenia stuttgartiensis are strict anaerobes.

  19. Effect of inorganic carbon on anaerobic ammonium oxidation enriched in sequencing batch reactor

    Institute of Scientific and Technical Information of China (English)

    Liao Dexiang; Li Xiaoming; Yang Qi; Zeng Guangming; Guo Liang; Yue Xiu

    2008-01-01

    The present lab-scale research reveals the enrichment of anaerobic ammonium oxidation microorganism from methanogenic anaerobic granular sludge and the effect of inorganic carbon (sodium bicarbonate) on anaerobic ammonium oxidation. The enrichment of anammox bacteria was carried out in a 7.0-L SBR and the effect of bicarbonate on anammox was conducted in a 3.0-L SBR. Research results , especially the biomass, showed first signs of anammox activity after 54 d cultivation with synthetic wastewater, when the pH was controlled between 7.5 and 8.3, the temperature was 35℃. The anammox activity increased as the influent bicarbonate concentration increased from 1.0 to 1.5 g/L and then, was inhibited as the bicarbonate concentration approached 2.0 g/L. However, the activity could be restored by the reduction of bicarbonate concentration to 1.0 g/L, as shown by rapid conversion of ammonium, and nitrite and nitrate production with normal stoichiometry. The optimization of the bicarbonate concentration in the reactor could increase the anammox rate up to 66.4 mgN/(L·d).

  20. The contribution of anaerobic ammonium oxidation to nitrogen loss in two temperate eutrophic estuaries

    Science.gov (United States)

    Teixeira, Catarina; Magalhães, Catarina; Joye, Samantha B.; Bordalo, Adriano A.

    2014-04-01

    Studies of anaerobic ammonium oxidation (anammox) continue to show the significance of this metabolic pathway for the removal of nitrogen (N) in several natural environments, including estuaries. However, the seasonal dynamics of the anammox process and related environmental controls within estuarine systems remains poorly explored. We evaluated the seasonal anammox activity along a salinity gradient in two temperate Atlantic estuaries, the Ave and the Douro (NW Portugal). Anammox potential rates were measured in anaerobic sediment slurries using 15N-labeled NO3- and NH4+ amendments. Production of 29N2 and 30N2 in the slurries was quantified using membrane inlet mass spectrometry (MIMS). Environmental characteristics of the sediment and water column were also monitored. Anammox potentials in the Ave and Douro estuarine sediments varied between 0.8-8.4, and 0-2.9 nmol cm-3 wet sediment h-1, respectively, with high seasonal and spatial fluctuations. Inorganic nitrogen availability emerged as the primary environmental control of anammox activity, while water temperature appeared to modulate seasonal variations. The contribution of anammox to overall N2 production averaged over 20%, suggesting that the role of anammox in removing fixed N from these two systems cannot be neglected.

  1. Importance and controls of anaerobic ammonium oxidation influenced by riverbed geology

    Science.gov (United States)

    Lansdown, K.; McKew, B. A.; Whitby, C.; Heppell, C. M.; Dumbrell, A. J.; Binley, A.; Olde, L.; Trimmer, M.

    2016-05-01

    Rivers are an important global sink for excess bioavailable nitrogen: they convert approximately 40% of terrestrial N runoff per year (~47 Tg) to biologically unavailable N2 gas and return it to the atmosphere. At present, riverine N2 production is conceptualized and modelled as denitrification. Anaerobic ammonium oxidation, known as anammox, is an alternative pathway of N2 production important in marine environments, but its contribution to riverine N2 production is not well understood. Here we use in situ and laboratory measurements of anammox activity using 15N tracers and molecular analyses of microbial communities to evaluate anammox in clay-, sand- and chalk-dominated river beds in the Hampshire Avon catchment, UK during summer 2013. Abundance of the hzo gene, which encodes an enzyme central to anammox metabolism, varied across the contrasting geologies. Anammox rates were similar across geologies but contributed different proportions of N2 production because of variation in denitrification rates. In spite of requiring anoxic conditions, anammox, most likely coupled to partial nitrification, contributed up to 58% of in situ N2 production in oxic, permeable riverbeds. In contrast, denitrification dominated in low-permeability clay-bed rivers, where anammox contributes roughly 7% to the production of N2 gas. We conclude that anammox can represent an important nitrogen loss pathway in permeable river sediments.

  2. Evidence for anaerobic ammonium oxidation process in freshwater sediments of aquaculture ponds.

    Science.gov (United States)

    Shen, Li-dong; Wu, Hong-sheng; Gao, Zhi-qiu; Ruan, Yun-jie; Xu, Xiang-hua; Li, Ji; Ma, Shi-jie; Zheng, Pei-hui

    2016-01-01

    The anaerobic ammonium oxidation (anammox) process, which can simultaneously remove ammonium and nitrite, both toxic to aquatic animals, can be very important to the aquaculture industry. Here, the presence and activity of anammox bacteria in the sediments of four different freshwater aquaculture ponds were investigated by using Illumina-based 16S rRNA gene sequencing, quantitative PCR assays and (15)N stable isotope measurements. Different genera of anammox bacteria were detected in the examined pond sediments, including Candidatus Brocadia, Candidatus Kuenenia and Candidatus Anammoxoglobus, with Candidatus Brocadia being the dominant anammox genus. Quantitative PCR of hydrazine synthase genes showed that the abundance of anammox bacteria ranged from 5.6 × 10(4) to 2.1 × 10(5) copies g(-1) sediment in the examined ponds. The potential anammox rates ranged between 3.7 and 19.4 nmol N2 g(-1) sediment day(-1), and the potential denitrification rates varied from 107.1 to 300.3 nmol N2 g(-1) sediment day(-1). The anammox process contributed 1.2-15.3% to sediment dinitrogen gas production, while the remainder would be due to denitrification. It is estimated that a total loss of 2.1-10.9 g N m(-2) per year could be attributed to the anammox process in the examined ponds, suggesting that this process could contribute to nitrogen removal in freshwater aquaculture ponds.

  3. Nitrate removal by organotrophic anaerobic ammonium oxidizing bacteria with C2/C3 fatty acid in upflow anaerobic sludge blanket reactors.

    Science.gov (United States)

    Liang, Yuhai; Li, Dong; Zhang, Xiaojing; Zeng, Huiping; Yang, Yin; Zhang, Jie

    2015-10-01

    In anaerobic ammonium oxidation (Anammox) process, a harsh ratio of nitrite to ammonia in influent was demanded, and the max nitrogen removal efficiency could only achieve to 89%, both of which limited the development of Anammox. The aim of this work was to study the nitrate removal by organotrophic anaerobic ammonium oxidizing bacteria (AAOB) with C2/C3 fatty acid in upflow anaerobic sludge blanket (UASB) reactors. In this study, organotrophic AAOB was successfully enriched by adding acetate and propionate with the total organic carbon to nitrogen (TOC/N) ratio of 0.1. In the condition of low substrate, the TN removal efficiency reached 90%, with the effluent TN of around 11.8 mg L(-1). After the addition of acetate and propionate, the predominant species in Anammox granular sludge transformed to Candidatus Jettenia that belonging to organotrophic AAOB from the Candidatus Kuenenia relating to general AAOB.

  4. Quantification of anaerobic ammonium-oxidizing bacteria in enrichment cultures by quantitative competitive PCR

    Institute of Scientific and Technical Information of China (English)

    HAO Chun; WANG Huan; LIU Qinhua; LI Xudong

    2009-01-01

    The anaerobic ammonium-oxidizing (ANAMMOX) bacteria were enriched from a sequencing batch biofilm reactor (SBBR) biofilm.We successfully developed a quantitative competitive polymerase chain reaction (QC-PCR) system to detect and quantify ANAMMOX bacteria in environmental samples.For QC-PCR system,PCR primer sets targeting 16S ribosomal RNA genes of ANAMMOX bacteria were designed and used.The quantification range of this system was 4 orders of magnitude,from 10~3 to 10~6 copies per PCR,corresponding to the detection limit of 300 target copies per mL.A 312-bp internal standard (IS) was constructed,which showed very similar amplification efficiency with the target amxC fragment (349 bp) over 4 orders of magnitude (10~3-10~6).The linear regressions were obtained with a R~2 of 0.9824 for 10~3 copies,R~2 of 0.9882 for 10~4 copies,0.9857 for 10~5 copies and 0.9899 for 10~6 copies.Using this method,we quantified ANAMMOX bacteria in a shortcut nitrification/denitrification-anammox system which is set for piggery wastewater treatment.

  5. Shifts in the community structure and activity of anaerobic ammonium oxidation bacteria along an estuarine salinity gradient

    Science.gov (United States)

    Zheng, Yanling; Jiang, Xiaofen; Hou, Lijun; Liu, Min; Lin, Xianbiao; Gao, Juan; Li, Xiaofei; Yin, Guoyu; Yu, Chendi; Wang, Rong

    2016-06-01

    Anaerobic ammonium oxidation (anammox) is a major microbial pathway for nitrogen (N) removal in estuarine and coastal environments. However, understanding of anammox bacterial dynamics and associations with anammox activity remains scarce along estuarine salinity gradient. In this study, the diversity, abundance, and activity of anammox bacteria, and their potential contributions to total N2 production in the sediments along the salinity gradient (0.1-33.8) of the Yangtze estuarine and coastal zone, were studied using 16S rRNA gene clone library, quantitative polymerase chain reaction assay, and isotope-tracing technique. Phylogenetic analysis showed a significant change in anammox bacterial community structure along the salinity gradient (P important factor in controlling the relative role of anammox to total N2 production in the Yangtze estuarine and coastal zone. Overall, our data demonstrated a biogeographical distribution of anammox bacterial diversity, abundance, and activity along the estuarine salinity gradient and suggested that salinity is a major environmental control on anammox process in the estuarine and coastal ecosystems.

  6. Performance of sulfate-dependent anaerobic ammo-nium oxidation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; ZHENG Ping; HE YuHui; JIN RenCun

    2009-01-01

    The performance of sulfate-dependent anaerobic ammonium oxidation was studied. The results showed that both SO42- and NH4+ were chemically stable under anaerobic conditions. They did not react with each other in the absence of biological catalyst (sludge). The anaerobic digested sludge cultivated in an anaerobic reactor for three years took on the ability of oxidizing ammonium with sulfate anaero-bically. The average reduction of sulfate and ammonium was 71.67 mg.L-1 and 56.82 mg.L-1 at high concentrations.The reaction between SO42- and NH4+ was difficult, though feasible, due to its low standard Gibbs free energy change. The experiment demonstrated that high substrate concentrations and low oxidation-reduction potential (ORP) may be favourable for the biological reaction.

  7. Study of anaerobic ammonium oxidation bacterial community in the aged refuse bioreactor with 16S rRNA gene library technique.

    Science.gov (United States)

    Wang, Chao; Xie, Bing; Han, Lu; Xu, Xiaofan

    2013-10-01

    In order to investigate the anaerobic ammonium-oxidation (Anammox) nitrogen removal pathway of the aged refuse bioreactor treating landfill leachate, a lab-scale bioreactor was established and run for 35 weeks, the performance of the bioreactor and its bacterial community structure of Planctomycetes were analyzed. The results showed that the average TN removal rate of landfill leachate could be reached to 89%. 16S rRNA gene library of Planctomycetes revealed that Anammox sequences accounted for 28.3% of the total Planctomycetes sequences in the bioreactor, and previously recognized Anammox bacterium Candidatus Kuenenia stuttgartiensis was the only detected Anammox species in the reactor. It was also found that Anammox bacteria distributed at different sites of the bioreactor while mostly concentrated in the middle and low-middle part. Results above confirmed that Anammox process could happen in aged refuse bioreactor treating landfill leachate and provided an alternative nitrogen removal pathway in practical landfills.

  8. Performance of sulfate-dependent anaerobic ammonium oxidation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The performance of sulfate-dependent anaerobic ammonium oxidation was studied.The results showed that both SO42-and NH4+ were chemically stable under anaerobic conditions.They did not react with each other in the absence of biological catalyst(sludge).The anaerobic digested sludge cultivated in an anaerobic reactor for three years took on the ability of oxidizing ammonium with sulfate anaero-bically.The average reduction of sulfate and ammonium was 71.67 mg.L-1 and 56.82 mg.L-1 at high concentrations.The reaction between SO42-and NH4+ was difficult,though feasible,due to its low standard Gibbs free energy change.The experiment demonstrated that high substrate concentrations and low oxidation-reduction potential(ORP) may be favourable for the biological reaction.

  9. Impact of free ammonia on anammox rates (anoxic ammonium oxidation) in a moving bed biofilm reactor.

    Science.gov (United States)

    Jaroszynski, L W; Cicek, N; Sparling, R; Oleszkiewicz, J A

    2012-06-01

    Using a bench scale moving bed bioreactor (MBBR), the effect of free ammonia (FA, NH(3), the un-ionized form of ammonium NH(4)(+)) concentration on anoxic ammonium oxidation (anammox) was evaluated based on the volumetric nitrogen removal rate (NRR). Although, a detailed microbial analysis was not conducted, the major NRR observed was assumed to be by anammox, based on the nitrogen conversion ratios of nitrite to ammonium and nitrate to ammonium. Since the concentration of free ammonia as a proportion of the total ammonia concentration is pH-dependent, the impact of changing the operating pH from 6.9 to 8.2, was investigated under constant nitrogen loading conditions during continuous reactor operation. Furthermore, the effect of sudden nitrogen load changes was investigated under constant pH conditions. Batch tests were conducted to determine the immediate response of the anammox consortium to shifts in pH and FA concentrations. It was found that FA was inhibiting NRR at concentrations exceeding 2 mg N L(-1). In the pH range 7-8, the decrease in anammox activity was independent of pH and related only to the concentration of FA. Nitrite concentrations of up to 120 mg N L(-1) did not negatively affect NRR for up to 3.5 h. It was concluded that a stable NRR in a moving bed biofilm reactor depended on maintaining FA concentrations below 2 mg N L(-1) when the pH was maintained between 7 and 8.

  10. Ubiquitous anaerobic ammonium oxidation in inland waters of China: an overlooked nitrous oxide mitigation process.

    Science.gov (United States)

    Zhu, Guibing; Wang, Shanyun; Zhou, Leiliu; Wang, Yu; Zhao, Siyan; Xia, Chao; Wang, Weidong; Zhou, Rong; Wang, Chaoxu; Jetten, Mike S M; Hefting, Mariet M; Yin, Chengqing; Qu, Jiuhui

    2015-11-27

    Denitrification has long been regarded as the only pathway for terrestrial nitrogen (N) loss to the atmosphere. Here we demonstrate that large-scale anaerobic ammonium oxidation (anammox), an overlooked N loss process alternative to denitrification which bypasses nitrous oxide (N2O), is ubiquitous in inland waters of China and contributes significantly to N loss. Anammox rates in aquatic systems show different levels (1.0-975.9 μmol N m(-2) h(-1), n = 256) with hotspots occurring at oxic-anoxic interfaces and harboring distinct biogeochemical and biogeographical features. Extrapolation of these results to the China-national level shows that anammox could contribute about 2.0 Tg N yr(-1), which equals averagely 11.4% of the total N loss from China's inland waters. Our results indicate that a significant amount of the nitrogen lost from inland waters bypasses denitrification, which is important for constructing more accurate climate models and may significantly reduce potential N2O emission risk at a large scale.

  11. Anaerobic ammonium oxidation in traditional municipal wastewater treatment plants with low-strength ammonium loading: Widespread but overlooked.

    Science.gov (United States)

    Wang, Shanyun; Peng, Yongzhen; Ma, Bin; Wang, Shuying; Zhu, Guibing

    2015-11-01

    Occurrence of anaerobic ammonium oxidation (anammox) in marine and freshwater systems has greatly changed our understanding of global nitrogen (N) cycle and promoted the investigation of the role and ecological features of anammox in anthropogenic ecosystems. This study focused on the spatio-temporal abundance, activity, and biodiversity of anammox bacteria in full-scale municipal wastewater treatment plants (WWTPs) via traditional nitrification/denitrification route with low-strength ammonium loading. The anammox bacteria were detected in all the treatment units at the five WWTPs tested, even in aerobic zones (dissolved oxygen >2 mg L(-1)) with abundance of 10(5)-10(7) hydrazine synthase (hzs) gene copies g(-1). The (15)N-isotope tracing technology revealed that the anammox rates in WWTPs ranged from 0.08 to 0.36 μmol N g(-1) h(-1) in winter and 0.12-1.20 μmol N g(-1) h(-1) in summer with contributions of 2.05-6.86% and 1.71-7.26% to N2 production, respectively. The diversity of anammox bacteria in WWTPs was distributed over only two genera, Brocadia and Kuenenia. Additionally, the exploration of potential interspecies relationships indicated that ammonia oxidation bacteria (AOB) was the major nitrite-substrate producer for anammox during nitrification, while Nitrospira, a nitrite oxidation bacteria (NOB), was the potential major competitor for nitrite. These results suggested the contribution of N-removal by the widespread of anammox has been overlooked in traditional municipal WWTPs, and the ecological habitats of anammox bacteria in anthropogenic ecosystems are much more abundant than previously assumed.

  12. Sulfate-reducing anaerobic ammonium oxidation as a potential treatment method for high nitrogen-content wastewater.

    Science.gov (United States)

    Rikmann, Ergo; Zekker, Ivar; Tomingas, Martin; Tenno, Taavo; Menert, Anne; Loorits, Liis; Tenno, Toomas

    2012-07-01

    After sulfate-reducing ammonium oxidation (SRAO) was first assumed in 2001, several works have been published describing this process in laboratory-scale bioreactors or occurring in the nature. In this paper, the SRAO process was performed using reject water as a substrate for microorganisms and a source of NH(4) (+), with SO(4) (2-) being added as an electron acceptor. At a moderate temperature of 20°C in a moving bed biofilm reactor (MBBR) sulfate reduction along with ammonium oxidation were established. In an upflow anaerobic sludge blanket reactor (UASBR) the SRAO process took place at 36°C. Average volumetric TN removal rates of 0.03 kg-N/m³/day in the MBBR and 0.04 kg-N/m³/day in the UASBR were achieved, with long-term moderate average removal efficiencies, respectively. Uncultured bacteria clone P4 and uncultured planctomycete clone Amx-PAn30 were detected from the biofilm of the MBBR, from sludge of the UASBR uncultured Verrucomicrobiales bacterium clone De2102 and Uncultured bacterium clone ATB-KS-1929 were found also. The stoichiometrical ratio of NH(4) (+) removal was significantly higher than could be expected from the extent of SO(4) (2-) reduction. This phenomenon can primarily be attributed to complex interactions between nitrogen and sulfur compounds and organic matter present in the wastewater. The high NH(4) (+) removal ratio can be attributed to sulfur-utilizing denitrification/denitritation providing the evidence that SRAO is occurring independently and is not a result of sulfate reduction and anammox. HCO(3) (-) concentrations exceeding 1,000 mg/l were found to have an inhibiting effect on the SRAO process. Small amounts of hydrazine were naturally present in the reaction medium, indicating occurrence of the anammox process. Injections of anammox intermediates, hydrazine and hydroxylamine, had a positive effect on SRAO process performance, particularly in the case of the UASBR.

  13. The anammoxosome organelle is crucial for the energy metabolism of anaerobic ammonium oxidizing bacteria.

    Science.gov (United States)

    van Teeseling, Muriel C F; Neumann, Sarah; van Niftrik, Laura

    2013-01-01

    Anammox bacteria convert ammonium and nitrite to dinitrogen gas under anaerobic conditions to obtain their energy for growth. The anammox reaction was deemed impossible until its discovery in the early 1990s. Now, anammox bacteria are recognized as major players in the global nitrogen cycle and estimated to be responsible for up to 50% of the nitrogen in the air that we breathe. In addition, anammox bacteria are extremely valuable for wastewater treatment where they are applied for the removal of ammonium. Besides their importance in industry and the environment, anammox bacteria defy some basic biological concepts. Whereas most other bacteria have only one cell compartment, the cytoplasm, anammox bacteria have three independent cell compartments bounded by bilayer membranes, from out- to inside; the paryphoplasm, riboplasm and anammoxosome. The anammoxosome is the largest compartment of the anammox cell and is proposed to be dedicated to energy conservation. As such it would be analogous to the mitochondria of eukaryotes. This review will discuss the anammox cell plan in detail, with the main focus on the anammoxosome. The identity of the anammoxosome as a prokaryotic organelle and the importance of this organelle for anammox bacteria are discussed as well as challenges these bacteria face by having three independent cell compartments.

  14. Ecophysiology of the anammox bacteria

    NARCIS (Netherlands)

    Kartal, Mustafa Boran

    2008-01-01

    Anaerobic ammonium oxidizing (anammox) bacteria oxidize ammonium to dinitrogen gas with nitrite as the electron acceptor. These bacteria are the key players in the global nitrogen cycle, responsible for the most of nitrogen production in natural ecosystems. The anammox process is also a cost-effecti

  15. Identification of a denitrifying bacterium and verification of its anaerobic ammonium oxidation ability

    Institute of Scientific and Technical Information of China (English)

    HU; Baolan; ZHENG; Ping; LI; Jinye; XU; Xiangyang; JIN; Rencun

    2006-01-01

    A strain D3 of denitrifying bacterium was isolated from an anammox reactor, and identified as Pseudomonas mendocina based on the morphological and physiological assay, Vitek test,Biolog test, (G+C) mol% content, and 16S rDNA phylogenetic analysis. As a typical denitrifying bactration of 88.5 mg N/L. The optimal pH and growth temperature were 7.84 and 34.9℃, respectively.Strain D3 was able to oxidize ammonia under anaerobic condition. The maximum nitrate and ammoof ammonia to nitrate was 1:1.91. Electron microscopic observation revealed peculiar cell inclusions in strain D3. Because of its relation to anammox activity, strain D3 was presumed to be anammoxosome.The present investigation proved that denitrifying bacteria have the anammox ability, and the results have engorged the range of anammox populations.

  16. Present and past contribution of anaerobic ammonium oxidation to nitrogen cycling as revealed by ladderane lipids

    NARCIS (Netherlands)

    Jaeschke, A.

    2009-01-01

    Anammox, the anaerobic oxidation of ammonium to dinitrogen gas with nitrite as the electron acceptor, constitutes a novel route to convert biologically available (fixed) nitrogen to gaseous N2. This process is mediated by specific bacteria belonging to the Planctomycetes that were initially discover

  17. Present and past contribution of anaerobic ammonium oxidation to nitrogen cycling as revealed by ladderane lipids

    NARCIS (Netherlands)

    Jaeschke, Andrea

    2009-01-01

    Abstract Anammox, the anaerobic oxidation of ammonium to dinitrogen gas with nitrite as the electron acceptor, constitutes a novel route to convert biologically available (fixed) nitrogen to gaseous N2. This process is mediated by specific bacteria belonging to the Planctomycetes that were initially

  18. Research progress of Anammox-denitrification coupling start up and Influencing Factors

    Institute of Scientific and Technical Information of China (English)

    GUO Pi-jian

    2014-01-01

    Since anammox can simultaneously remove ammonia and nitrite nitrogen,And low cost,have been researched by many scholars,Its high ammonia wastewater treatment has great application value. However, high concentrations of organic carbon on anaerobic ammonium oxidation significantly inhibited. How to achieve anaerobic ammonium oxidation and denitrification coupling, is now a focus of research in the training process, anammox bacteria and denitrifying bacteria on pH, organic matter with different requirements, this paper summarizes the anammox and denitrification startup method and pH, organic matter on anaerobic ammonia oxidation and denitrification coupling and explore control strategies for anaerobic ammonium oxidation and denitrification coupling recommendations.

  19. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation RID B-8834-2011

    DEFF Research Database (Denmark)

    Kuypers, MMM; Lavik, G.; Woebken, D.;

    2005-01-01

    ) and is commonly attributed to denitrification (reduction of nitrate to N-2 by heterotrophic bacteria). Here, we show that instead, the anammox process (the anaerobic oxidation of ammonium by nitrite to yield N-2) is mainly responsible for nitrogen loss in the OMZ waters of one of the most productive regions...... that anammox bacteria are responsible for massive losses of fixed nitrogen. We have identified and directly linked anammox bacteria to the removal of fixed inorganic nitrogen in the OMZ waters of an open-ocean setting. We hypothesize that anammox could also be responsible for substantial nitrogen loss from...... other OMZ waters of the ocean....

  20. Rates of N2 production and diversity and abundance of functional genes associated with denitrification and anaerobic ammonium oxidation in the sediment of the Amundsen Sea Polynya, Antarctica

    Science.gov (United States)

    Choi, Ayeon; Cho, Hyeyoun; Kim, Sung-Han; Thamdrup, Bo; Lee, SangHoon; Hyun, Jung-Ho

    2016-01-01

    A combination of molecular microbiological analyses and metabolic rate measurements was conducted to elucidate the diversity and abundance of denitrifying and anaerobic ammonium oxidation (anammox) bacteria and the nitrogen gas (N2) production rates in sediment underlying the highly productive polynya (Stns. 10 and 17) and the sea-ice zone on the outer shelf (Stn. 83) of the Amundsen Sea, Antarctica. Despite the high water column productivity, the N2 production rates by denitrification (0.04-0.31 nmol N cm-3sed. h-1) and anammox (0.13-0.26 nmol N cm-3 sed. h-1) were lower than those measured in other polar regions. In contrast, gene copy number (106-107 copies cm-3 of nirS and nosZ genes targeting denitirifiers and 105-107 copies cm-3 of 16S rRNA genes related to anammox bacteria) of the two bacterial groups at Stn. 17 was similar compared to those of other organic-rich environments. The majority of the nirS sequences were affiliated with Gammaproteobacteria (54% and 61% of the total nirS gene at Stns. 17 and 83, respectively), which were closely related to Pseudomonas aeruginosa. Most nosZ sequences (92% and 72% of the total nosZ genes at Stns. 17 and 83, respectively) were related to the Alphaproteobacteria, which were closely related to Ruegeria pomeroyi and Roseobacter denitrificans. Most (98%) of the sequences related to anammox bacteria were affiliated with Candidatus Scalindua at Stn. 17. Consequently, despite the low metabolic activity, the abundance and composition of most denitrifying and anammox bacteria detected from the ASP were similar to those reported from a variety of marine environments. Our results further imply that increased labile organic matter production resulting from a shift of the phytoplankton community from Phaeocystis to diatoms in response to rapid melting of sea ice stimulates metabolic activities of the denitrifying and anammox bacteria, thereby enhancing the N removal process in the ASP.

  1. Activity, Microenvironments, and Community Structure of Aerobic and Anaerobic Ammonium Oxidizing Prokaryotes in Estuarine Sediment (Randers Fjord, DK)

    DEFF Research Database (Denmark)

    Schramm, Andreas; Revsbech, Niels Peter; Dalsgaard, Tage

    2006-01-01

    ACTIVITY, MICROENVIRONMENTS, AND COMMUNITY STRUCTURE OF AEROBIC AND ANAEROBIC AMMONIUM OXIDIZING PROKARYOTES IN ESTUARINE SEDIMENT (RANDERS FJORD, DK) A. Schramm 1, N.P. Revsbech 1, T. Dalsgaard 2, E. Piña-Ochoa 3, J. de la Torré 4, D.A. Stahl 4, N. Risgaard-Petersen 2 1 Department of Biological...

  2. Presence and diversity of anammox bacteria in cold hydrocarbon-rich seeps and hydrothermal vent sediments of the Guaymas Basin

    NARCIS (Netherlands)

    Russ, L.; Kartal, B.; Op den Camp, H.J.M.; Sollai, M.; Le Bruchec, J.; Caprais, J.-C.; Godfroy, A.; Sinninghe Damsté, J.S.; Jetten, M.S.M.

    2013-01-01

    Hydrothermally active sediments are highly productive, chemosynthetic areas which are characterized by the rapid turnover of particulate organic matter under extreme conditions in which ammonia is liberated. These systems might be suitable habitats for anaerobic ammonium oxidizing (anammox) bacteria

  3. Start-up of low-temperature anammox in UASB from mesophilic yeast factory anaerobic tank inoculum.

    Science.gov (United States)

    Zekker, Ivar; Rikmann, Ergo; Tenno, Toomas; Kroon, Kristel; Seiman, Andrus; Loorits, Liis; Fritze, Hannu; Tuomivirta, Tero; Vabamäe, Priit; Raudkivi, Markus; Mandel, Anni; Tenno, Taavo

    2015-01-01

    Robust start-up of the anaerobic ammonium oxidation (anammox) process from non-anammox-specific seeding material was achieved by using an inoculation with sludge-treating industrial [Formula: see text]-, organics- and N-rich yeast factory wastewater. N-rich reject water was treated at 20°C, which is significantly lower than optimum treatment temperature. Increasing the frequency of biomass fluidization (from 1-2 times per day to 4-5 times per day) through feeding the reactor with higher flow rate resulted in an improved total nitrogen removal rate (from 100 to 500 g m(-3)d(-1)) and increased anammox bacteria activity. As a result of polymerase chain reaction (PCR) tests, uncultured planctomycetes clone 07260064(4)-2-M13-_A01 (GenBank: JX852965) was identified from the biomass taken from the reactor. The presence of anammox bacteria after cultivation in the reactor was confirmed by quantitative PCR (qPCR); an increase in quantity up to ∼2×10(6) copies g VSS(-1) during operation could be seen in qPCR. Statistical modelling of chemical parameters revealed the roles of several optimized parameters needed for a stable process.

  4. Isolation and characterization of a prokaryotic cell organelle from the anammox bacterium

    NARCIS (Netherlands)

    Neumann, S.; Wessels, H.J.C.T.; Rijpstra, W.I.C.; Sinninghe Damsté, J.S.; Kartal, B.; Jetten, M.S.M.; van Niftrik, L.

    2014-01-01

    Anaerobic ammonium oxidizing (anammox) bacteria oxidize ammonium with nitrite to nitrogen gas in the absence of oxygen. These microorganisms form a significant sink for fixed nitrogen in the oceans and the anammox process is applied as a cost-effective and environment-friendly nitrogen removal syste

  5. Importance of the operating pH in maintaining the stability of anoxic ammonium oxidation (anammox) activity in moving bed biofilm reactors.

    Science.gov (United States)

    Jaroszynski, L W; Cicek, N; Sparling, R; Oleszkiewicz, J A

    2011-07-01

    Two bench-scale parallel moving bed biofilm reactors (MBBR) were operated to assess pH-associated anammox activity changes during long term treatment of anaerobically digested sludge centrate pre-treated in a suspended growth partial nitrification reactor. The pH was maintained at 6.5 in reactor R1, while it was allowed to vary naturally between 7.5 and 8.1 in reactor R2. At high nitrogen loads reactor R2 had a 61% lower volumetric specific nitrogen removal rate than reactor R1. The low pH and the associated low free ammonia (FA) concentrations were found to be critical to stable anammox activity in the MBBR. Nitrite enhanced the nitrogen removal rate in the conditions of low pH, all the way up to the investigated level of 50mg NO(2)-N/L. At low FA levels nitrite concentrations up to 250 mg NO(2)-N/L did not cause inactivation of anammox consortia over a 2-days exposure time.

  6. Faster autotrophic growth of anaerobic ammonium-oxidizing microorganisms in presence of nitrite, using inocula from Colombia

    Directory of Open Access Journals (Sweden)

    Jaime Sanchez

    2014-06-01

    Full Text Available Título en español: Crecimiento rápido autotrófico de microorganismos anaerobios oxidadores de amonio en presencia de nitrito, usando inóculos de ColombiaShort Title: Growth from Colombian inoculated anammoxSummary: Anammox is a nitrite dependent process, catalyzed by bacteria of the order Brocadiales. Anammox bacteria oxidize ammonia under anoxic conditions, with nitrite as electron acceptor producing dinitrogen gas. Here, we demonstrated the presence of anammox bacteria by enriched them in a SBR reactor, with anaerobic samples taken from de bottom of a pond used in primary wastewater treatment. The enrichment reached nitrogen (N removal rates of nearly 1.92kg N/m3/day. (The stoichiometry of the reaction matched previous anammox studies. The enriched bacterial communities were analyzed by Fluorescence In situ Hybridization (FISH, and showed nearly a 90% of enrichment at the end of the experiment (day 90. As far as we know, this is the first time that the anammox bacteria were enriched using Colombian inocula. The enrichment was achieved in relatively short time with high yields and has an excellent potential for application in wastewater treatment opening the opportunity to treat nitrogen-rich effluents by partial nitritation and anammox, thereby decreasing operational costs with respect to aeration (nitrification and addition of organic electron donor (heterotrophic denitrification. This more sustainable treatment is a good alternative to control nutrient pollution in water bodies in tropical countries.Key words: nitrogen cycle; advanced treatment; anammox;  nitritation; nitratation; denitrification.Resumen: La oxidación anaerobia del amonio (anammox, es un proceso nitrito dependiente, catalizado por bacterias del filo planctomicetes. Estas bacterias oxidan el amonio en ausencia de oxígeno, con nitrito como aceptor de electrones produciendo nitrógeno molecular. En Colombia, demostramos la presencia de estas bacterias mediante el

  7. Anaerobic ammonium oxidation, denitrification and dissimilatory nitrate reduction to ammonium in the East China Sea sediment

    Directory of Open Access Journals (Sweden)

    G. D. Song

    2013-03-01

    Full Text Available Benthic nitrogen transformation pathways were investigated in the sediment of the East China Sea in June of 2010 using the 15N isotope pairing technique. Slurry incubations indicated that denitrification, anammox and dissimilatory nitrate reduction to ammonium (DNRA as well as nitrate release by nitrate storing organisms occurred in the East China Sea sediments. These four processes did not exist independently, the nitrate release therefore diluted the 15N labeling fraction of NO3−, a part of the 15NH4+ derived from DNRA also formed 30N2 via anammox. Therefore current methods of rate calculations led to over and underestimations of anammox and denitrification respectively. Following the procedure outlined in Thampdrup and Dalsgaard (2002, denitrification rates were slightly underestimated by on average 6% without regard to the effect of nitrate release, while this underestimation could be counteracted by the presence of DNRA. On the contrary, anammox rates calculated from 15NO3− experiment were significantly overestimated by 42% without considering nitrate release. In our study this overestimation could only be compensated 14% by taking DNRA into consideration. In a parallel experiment amended with 15NH4+ + 14NO3−, anammox rates were not significantly influenced by DNRA due to the high background of 15NH4+ addition. Excluding measurements in which bioirrigation was present, integrated denitrification rates decreased from 10 to 4 mmol N m−2 d−1 with water depth, while integrated anammox rates increased from 1.5 to 4.0 mmol N m−2 d−1. Consequently, the relative contribution of anammox to the total N-loss increased from 13% at the shallowest site near the Changjiang estuary to 50% at the deepest site on the outer shelf. This study represents the first time in which anammox has been demonstrated to play a significant role in benthic nitrogen cycling in the East China Sea sediment, especially on the outer shelf. N

  8. Rapid start-up of anaerobic ammonium oxidation (anammox) process for nitrogen removal from wastewater

    OpenAIRE

    Ali, Muhammad

    2015-01-01

    The dissertation is associated with the field of biological wastewater treatment and more precisely focus on nitrogen removal from wastewater. The nutrients removal (mainly N and P) from wastewater is necessary in order to avoid the eutrophication of the surface waters. Nitrogen compounds (NH4+, NO2- and NO3-) removal is commonly performed by means of biological processes due to the lower cost as compared to chemical treatment. The conventional nitrogen removal process consists of two steps, ...

  9. Nitrogen removal pathway of anaerobic ammonium oxidation in on-site aged refuse bioreactor.

    Science.gov (United States)

    Wang, Chao; Zhao, Youcai; Xie, Bing; Peng, Qing; Hassan, Muhammad; Wang, Xiaoyuan

    2014-05-01

    The nitrogen removal pathways and nitrogen-related functional genes in on-site three-stage aged refuse bioreactor (ARB) treating landfill leachate were investigated. It was found that on average 90.0% of CODCr, 97.6% of BOD5, 99.3% of NH4(+)-N, and 81.0% of TN were removed with initial CODCr, BOD5, NH4(+)-N, and TN concentrations ranging from 2323 to 2754, 277 to 362, 1237 to 1506, and 1251 to 1580 mg/L, respectively. Meanwhile, the functional genes amoA, nirS and anammox 16S rRNA gene were found to coexist in every bioreactor, and their relative proportions in each bioreactor were closely related to the pollutant removal performance of the corresponding bioreactor, which indicated the coexistence of multiple nitrogen removal pathways in the ARB. Detection of anammox expression proved the presence of the anammox nitrogen removal pathway during the process of recirculating mature leachate to the on-site ARB, which provides important information for nitrogen management in landfills.

  10. Simultaneous enrichment of denitrifying anaerobic methane-oxidizing microorganisms and anammox bacteria in a hollow-fiber membrane biofilm reactor.

    Science.gov (United States)

    Ding, Zhao-Wei; Lu, Yong-Ze; Fu, Liang; Ding, Jing; Zeng, Raymond J

    2017-01-01

    In this study, the coculture system of denitrifying anaerobic methane oxidation (DAMO) microbes and anaerobic ammonium oxidation (anammox) bacteria was successfully enriched in a hollow-fiber membrane biofilm reactor (HfMBR) using freshwater sediment as the inoculum. The maximal removal rates of nitrate and ammonium were 78 mg N/L/day (131 mg N/m(2)/day) and 26 mg N/L/day (43 mg N/m(2)/day), respectively. Due to the high rate of methane mass transfer in HfMBR, the activity of DAMO archaea continued to increase during the enrichment period, indicating that HfMBR could be a powerful tool to enrich DAMO microorganisms. Effects of partial methane pressure, temperature, and pH on the cocultures were obvious. However, the microbial activity in HfMBR could be recovered quickly after the shock change of environmental factors. Furthermore, the result also found that DAMO bacteria likely had a stronger competitive advantage than anammox bacteria under the operating conditions in this study. High-throughput sequencing 16S rRNA genes illustrated that the dominant microbes were NC10, Euryarchaeota, Proteobacteria, Planctomycetes, and Chlorobi with relative abundance of 38.8, 26.2, 13.78, 6.2, and 3.6 %, respectively.

  11. Long-term performance and microbial ecology of a two-stage PN-ANAMMOX process treating mature landfill leachate.

    Science.gov (United States)

    Li, Huosheng; Zhou, Shaoqi; Ma, Weihao; Huang, Pengfei; Huang, Guotao; Qin, Yujie; Xu, Bin; Ouyang, Hai

    2014-05-01

    Long-term performance of a two-stage partial nitritation (PN)-anaerobic ammonium oxidation (ANAMMOX) process treating mature landfill leachate was investigated. Stable partial nitritation performance was achieved in a sequencing batch reactor (SBR) using endpoint pH control, providing an effluent with a ratio of NO2(-)-N/NH4(+)-N at 1.23 ± 0.23. High rate nitrogen removal over 4 kg N/m(3)/d was observed in the ANAMMOX reactor in the first three months. However, during long-term operation, the ANAMMOX reactor can only stably operate under nitrogen load of 1 kg N/m(3)/d, with 85 ± 1% of nitrogen removal. The ammonium oxidizing bacteria (AOB) in the PN-SBR were mainly affiliated to Nitrosomonas sp. IWT514, Nitrosomonas eutropha and Nitrosomonas eutropha, the anaerobic ammonium oxidizing bacteria (AnAOB) in the ANAMMOX reactor were mainly affiliated to Kuenenia stuttgartiensis.

  12. Implementation of the anammox process for improved nitrogen removal

    NARCIS (Netherlands)

    Guven, D.; Pas-Schoonen, K.T. van de; Schmid, M.C.; Strous, M.; Jetten, M.S.M.; Sozen, S.; Orhon, D.; Schmidt, I.

    2004-01-01

    Stringent standards for nitrogen discharge necessitate the implementation of new systems for the sustainable removal of ammonium from wastewater. One of such systems is based on the process of anaerobic ammonium oxidation (Anammox), which is a new powerful tool especially for strong nitrogenous wast

  13. Startup of the Anammox Process in a Membrane Bioreactor (AnMBR) from Conventional Activated Sludge.

    Science.gov (United States)

    Gutwiński, P; Cema, G; Ziembińska-Buczyńska, A; Surmacz-Górska, J; Osadnik, M

    2016-12-01

      In this study, a laboratory-scale anammox process in a membrane bioreactor (AnMBR) was used to startup the anaerobic ammonium oxidation (anammox) process from conventional activated sludge. Stable operation was achieved after 125 days. From that time, nitrogen load was gradually increased. After six months, the average nitrogen removal efficiency exceeded 80%. The highest obtained special anammox activity (SAA) achieved was 0.17 g (-N + -N) (g VSS × d)-1. Fluorescent in situ hybridization also proved the presence of the anammox bacteria, typically a genus of Brocadia anammoxidans and Kuenenia stuttgartiensis.

  14. Bacterial community distribution of anaerobic ammonium oxidation biofilter at low temperature%低温厌氧氨氧化生物滤池细菌群落沿层分布规律

    Institute of Scientific and Technical Information of China (English)

    曾涛涛; 李冬; 刘涛; 邱文新; 蔡言安; 许达; 张杰

    2013-01-01

    通过扫描电镜(SEM)、变性梯度凝胶电泳技术(DGGE)和克隆测序等方法,对低温(14.9~16.2℃)稳定运行的上流式厌氧氨氧化(ANAMMOX)生物滤池内上(140~190 cm)、中(60~140 m)、下(10~60 cm)3部分细菌群落分布进行研究.研究结果表明:大部分氨氮、亚氮在反应器中部呈比例地去除,总氮去除负荷达2.4 kg/(m3.d);类似ANAMMOX菌的球形细菌主要分布在反应器中部;生物滤柱上部细菌多样性最高,中部其次,下层细菌多样性最低,细菌群落结构沿层变化是适应生物滤柱沿层氮素变化的结果;生物滤柱不同滤层分布着同一种厌氧氨氧化菌(ANAMMOX)与好氧氨氧化菌(AOB),克隆测序鉴定ANAMMOX菌为Candidatus Kuenenia stuttgartiensis,AOB为Nitrosomonas sp.ENI-11:AOB的存在能够消耗进水中的微量溶解氧,为反应器创造厌氧环境,有利于生物滤柱中部富集较多的ANAMMOX菌.%Techniques of scanning electron microscopy (SEM), denaturing gradient gel electrophoresis (DGGE), cloning and sequencing were utilized together to study bacterial community distribution of upper (140-190 cm), middle (60-140 cm) and lower (10-60 cm) parts of an up-flow anaerobic ammonium oxidation (ANAMMOX) biofilter, which was run stably at low temperature (14.9-16.2 ℃). The results show that a large proportion of ammonia and nitrite proportional disappears in the middle part of biofilter and a high total nitrogen removal rate of 2.4 kg/(m3·d) is obtained. The spherical bacteria, which is similar to ANAMMOX bacteria, predominates in the middle part of biofilter. There is the highest bacterial diversity in the upper part of biofilter, followed by middle part and minimum bacterial diversity in lower part. Bacterial community structures varied in different parts of biofilter due to nitrogen distinction along biofilter layer. There is only one type of ANAMMOX bacterium and AOB presented in different parts of biofilter, which are identified as

  15. Anammox bacteria and the anaerobic oxidation of ammonium in the oxygen minimum zone off northern Chile

    Science.gov (United States)

    Galán, Alexander; Molina, Verónica; Thamdrup, Bo; Woebken, Dagmar; Lavik, Gaute; Kuypers, Marcel M. M.; Ulloa, Osvaldo

    2009-07-01

    Anammox is the anaerobic oxidation of ammonium by nitrite or nitrate to yield N 2. This process, along with conventional denitrification, contributes to nitrogen loss in oxygen-deficient systems. Anammox is performed by a special group of bacteria belonging to the Planctomycetes phylum. However, information about the distribution, activity, and controlling factors of these anammox bacteria is still limited. Herein, we examine the phylogenetic diversity, vertical distribution, and activity of anammox bacteria in the coastal upwelling region and oxygen minimum zone off northern Chile. The phylogeny of anammox bacteria was studied using primers designed to specifically target 16S rRNA genes from Planctomycetes in samples taken during a cruise in 2004. Anammox bacteria-like sequences affiliated with Candidatus "Scalindua spp." dominated the 16S rRNA gene clone library. However, 62% of the sequences subgrouped separately within this cluster and together with a single sequence retrieved from the suboxic zone of the freshwater Lake Tanganyika. The vertical distribution and activity of anammox bacteria were explored through CARD-FISH (fluorescence in situ hybridization with catalyzed reporter deposition) and 15N labeling incubations, respectively, at two different open-ocean stations during a second cruise in 2005. Anammox bacterial CARD-FISH counts (up to 3000 cells ml -1) and activity (up to 5.75 nmol N 2 L -1 d -1) were only detected at the station subjected directly to the upwelling influence. Anammox cell abundance and activity were highest at 50 m depth, which is the upper part of the OMZ. In this layer, a high abundance of cyanobacteria and a marked nitrogen deficit were also observed. Thus, our results show the presence of a new subcluster within the marine anammox phylogeny and indicate high vertical variability in the abundance and activity of anammox bacteria that could be related to an intensification of carbon and nitrogen cycling in the upper part of the OMZ.

  16. Combination of upflow anaerobic sludge blanket (UASB) reactor and partial nitritation/anammox moving bed biofilm reactor (MBBR) for municipal wastewater treatment.

    Science.gov (United States)

    Malovanyy, Andriy; Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta

    2015-03-01

    In this study the combination of an upflow anaerobic sludge blanket (UASB) reactor and a deammonification moving bed biofilm reactor (MBBR) for mainstream wastewater treatment was tested. The competition between aerobic ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) was studied during a 5months period of transition from reject water to mainstream wastewater followed by a 16months period of mainstream wastewater treatment. The decrease of influent ammonium concentration led to a wash-out of suspended biomass which had a major contribution to nitrite production. Influence of a dissolved oxygen concentration and a transient anoxia mechanism of NOB suppression were studied. It was shown that anoxic phase duration has no effect on NOB metabolism recovery and oxygen diffusion rather than affinities of AOB and NOB to oxygen determine the rate of nitrogen conversion in a biofilm system. Anammox activity remained on the level comparable to reject water treatment systems.

  17. Mimicking the oxygen minimum zones: stimulating interaction of aerobic archaeal and anaerobic bacterial ammonia oxidizers in a laboratory-scale model system

    NARCIS (Netherlands)

    Yan, J.; Haaijer, S.C.M.; Op den Camp, H.J.M.; van Niftrik, L.; Stahl, D.A.; Könneke, M.; Rush, D.; Sinninghe Damsté, J.S.; Hu, Y.Y.; Jetten, M.S.M.

    2012-01-01

    In marine oxygen minimum zones (OMZs), ammonia-oxidizing archaea (AOA) rather than marine ammonia-oxidizing bacteria (AOB) may provide nitrite to anaerobic ammonium-oxidizing (anammox) bacteria. Here we demonstrate the cooperation between marine anammox bacteria and nitrifiers in a laboratory-scale

  18. Macroscale and microscale analysis of Anammox in anaerobic rotating biological contactor

    Institute of Scientific and Technical Information of China (English)

    Yongtao Lv; Lei Wang; Xudong Wang; Yongzhe Yang; Zhiying Wang; Jie Li

    2011-01-01

    Inoculated with conventional anaerobic activated sludge,the Anammox process was successfully developed in an anaerobic rotating biological contactor (AnRBC) fed with a low ratio of C/N synthetic wastewater.Operated in a single point feed mode,the AnRBC removed 92.1% (n =126) of the influent N at the highest surface load of 12 g/(m2.day).The biomass increased by 25% and 17.1 g/(m2.day) of maximum N removal surface load was achieved by elevating flow rate with another feed point.Fluorescence in situ hybridization and polymerase chain reaction analysis indicated that the Anammox genus Candidatus Kuenenia stuttgartiensis dominated the community.Both Anammox and denitrifying activity were detected in biofilm by the application of microelectrodes.In the outer layer of the biofilm (0-2500 μm),nitrite and ammonium consumed simultaneously in a ratio of 1.12/1,revealing the occurrence of Anammox.In the inner layer (> 2500 μm),a decrease of nitrate was caused by denitrification in the absence of nitrite and ammonium.

  19. The relationship between anammox and denitrification in the sediment of an inland river

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Sheng, E-mail: zhous@outlook.com [Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, No. 1000 Jinqi Road, Shanghai 201403 (China); Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Borjigin, Sodbilig; Riya, Shohei; Terada, Akihiko; Hosomi, Masaaki [Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan)

    2014-08-15

    This study measured the microbial processes of anaerobic ammonium oxidation (anammox) and denitrification in sediment sampled from two sites in the estuary of an inland river (Koisegawa River, Ibaragi prefecture, Japan) using a nitrogen isotope pairing technique (IPT). The responses of anammox and denitrification activities to temperature and nitrate concentration were also evaluated. Further, to elucidate the correlation between anammox and denitrification processes, an inhibition experiment was conducted, using chlorate to inhibit the first step of denitrification. Denitrification activity was much higher than anammox activity, and it reached a maximum at the surface layer in February 2012. Denitrification activity decreased as sediment depth increased, and a similar phenomenon was observed for anammox activity in the sediment of site A, where aquatic plants were absent from the surroundings. The activities of both denitrification and anammox were temperature-dependent, but they responded differently to changes in incubation temperature. Compared to a linear increase in denitrification as temperature rose to 35 °C, the optimal temperature for anammox was 25 °C, after which the activity decreased sharply. At the same time, both anammox and denitrification activities increased with NO{sub 3}{sup −} concentration. The Michaelis–Menten kinetic constants (V{sub max} and K{sub m}) of denitrification were significantly higher than those of the anammox process. Furthermore, anammox activity decreased accordingly when the first step of denitrification was inhibited, which probably reduced the amount of the intermediate NO{sub 2}{sup −}. Our study provides the first direct exploration of the denitrification-dependent correlation of anammox activity in the sediment of inland river. - Highlights: • The activity of denitrification in river sediment was much higher than anammox. • Denitrification and anammox respond differently to changes in temperature.

  20. Influence of Chemical Oxygen Demand Concentrations on Anaerobi Ammonium Oxidation by Granular Sludge From EGSB Reactor

    Institute of Scientific and Technical Information of China (English)

    JING KANG; JIAN-LONG WANG

    2006-01-01

    Objective To investigate the effect of chemical oxygen demand (COD) concentrations on the anaerobic ammonium oxidation (ANAMMOX). Methods An Expanded Granular Sludge Bed (EGSB) reactor was used to cultivate the granular sludge and to perform the ANAMMOX reaction in the bench scale experiment. NH4+-N and NO2--N were measured by usingcolorimetric method. NO3--N was analyzed by using the UV spectrophotometric method. COD measurement was based on digestion with potassium dichromate in concentrated sulphuric acid. Results When the COD concentrations in the reactors were 0 mg/L, 200 mg/L, 350 mg/L, and 550 mg/L, respectively, the NH4+-N removal efficiency was 12.5%, 14.2%, 14.3%, and 23.7%; the removal amount of NO2--N was almost the same; the nitrate removal efficiency was 16.8%, 94.5%, 86.6%, and 84.2% and TN removal efficiency was 16.3%, 50.7%, 46.9%, and 50.4%, moreover, the COD removal efficiency concentrations have a significant influence on anaerobic ammonium oxidation by granular sludge.

  1. Shortcut Nitrification/Anaerobic Ammonium Oxidation/Complete Nitrification Process for Treatment of Coking Wastewater%短程硝化/厌氧氨氧化/全程硝化工艺处理焦化废水

    Institute of Scientific and Technical Information of China (English)

    薛占强; 李玉平; 李海波; 林琳; 曹宏斌

    2011-01-01

    通过对短程硝化和厌氧氨氧化工艺的研究,开发了短程硝化/厌氧氨氧化/全程硝化(O1/A/O2)生物脱氮新工艺并用于焦化废水的处理.控制温度为(35±1)℃、DO为2.0~3.0mg/L,第一级好氧连续流生物膜反应器在去除大部分有机污染物的同时还实现了短程硝化.考察了HRT、DO和容积负荷对反应器运行效果的影响.结果表明,当氨氮容积负荷为0.13~0.22gNH4+-N/(L·d)时,连续流反应器能实现短程硝化并有效去除氨氮.通过控制一级好氧反应器的工艺参数,为厌氧反应器实现厌氧氨氧化(ANAMMOX)创造条件.结果表明,在温度为34℃、pH值为7.5~8.5、HRT为33 h的条件下,经过115 d成功启动了厌氧氨氧化反应器.在进水氨氮、亚硝态氮浓度分别为80和90 mg/L左右、总氮负荷为160 mg/(L·d)时,对氨氮和亚硝态氮的去除率最高分别达86%和98%,对总氮的去除率为75%.最后在二级好氧反应器实现氨氮的全程硝化,进一步去除焦化废水中残留的氨氯、亚硝态氮和有机物.O1/A/O2工艺能有效去除焦化废水中的氨氮和有机物等污染物,正常运行条件下的出水氨氮<15 mg/L、亚硝态氮<1.0 mg/L,COD降至124~186 mg/L,出水水质优于A/O生物脱氮工艺的出水水质.%The combined process of shortcut nitrification, anaerobic ammonium oxidation and complete nitrification was developed for the treatment of coking wastewater. The organic pollutants are mainly removed, and shortcut nitrification is obtained in the first-stage aerobic continuous-flow biofilm reactor at temperature of (35 ± 1 ) ℃ and DO of 2.0 to 3.0 mg/L. The effects of HRT, DO and volume load on the operation efficiency of the reactor were investigated. The results show that the shortcut nitrification is obtained, and ammonia nitrogen is effectively removed in the reactor. The process parameters of the reactor are controlled to achieve anaerobic ammonium oxidation in the anaerobic reactor

  2. Short-and long-term effects of ammonia and nitrite on the anammox process

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, I.; Campos, J. L.; Mosquera-Corral, A.; Mendez, R.

    2009-07-01

    Auto trophic anaerobic ammonium oxidation (Anammox) process is a feasible alternative to treat industrial wastewater with high ammonia concentration but low content of organic matter. In this process ammonium and nitrite are used by Planctomycete-type bacteria under anoxic conditions to generate nitrogen gas. Both substrates can exert inhibitory effects on the process, causing the decrease of the specific activity of the biomass and the loss of the performance and stability of reactors. (Author)

  3. A robust and cost-effective integrated process for nitrogen and bio-refractory organics removal from landfill leachate via short-cut nitrification, anaerobic ammonium oxidation in tandem with electrochemical oxidation.

    Science.gov (United States)

    Wu, Li-Na; Liang, Da-Wei; Xu, Ying-Ying; Liu, Ting; Peng, Yong-Zhen; Zhang, Jie

    2016-07-01

    A cost-effective process, consisting of a denitrifying upflow anaerobic sludge blanket (UASB), an oxygen-limited anoxic/aerobic (A/O) process for short-cut nitrification, and an anaerobic reactor (ANR) for anaerobic ammonia oxidation (anammox), followed by an electrochemical oxidation process with a Ti-based SnO2-Sb2O5 anode, was developed to remove organics and nitrogen in a sewage diluted leachate. The final chemical oxygen demand (COD), ammonia nitrogen (NH4(+)-N) and total nitrogen (TN) of 70, 11.3 and 39 (all in mg/L), respectively, were obtained. TN removal in UASB, A/O and ANR were 24.6%, 49.6% and 16.1%, respectively. According to the water quality and molecular biology analysis, a high degree of anammox besides short-cut nitrification and denitrification occurred in A/O. Counting for 16.1% of TN removal in ANR, at least 43.2-49% of TN was removed via anammox. The anammox bacteria in A/O and ANR, were in respective titers of (2.5-5.9)×10(9) and 2.01×10(10)copy numbers/(gSS).

  4. Occurrence, activity and contribution of anammox in some freshwater extreme environments.

    Science.gov (United States)

    Zhu, Guibing; Xia, Chao; Shanyun, Wang; Zhou, Leiliu; Liu, Lu; Zhao, Siyan

    2015-12-01

    Anaerobic ammonium oxidation (anammox) widely occurs in marine ecosystems, and it plays an important role in the global nitrogen cycle. But in freshwater ecosystems its occurrence, distribution and contribution, especially in extreme environments, are still not well known. In this study, anammox process was investigated in some extreme environments of freshwater ecosystems, such as those with high (above 75°C) and low (below -35°C) temperature, high (pH > 8) and low (pH  300 mg kg(-1) ). The polymerase chain reaction (PCR) screening results showed that anammox bacteria were widespread in the examined sediments from freshwater extreme environments. Quantitative PCR showed that the abundance of anammox bacteria ranged from 6.94 × 10(4) to 8.05 × 10(6) hydrazine synthase (hzsB) gene copies g(-1) dry soil. (15) N-labelled incubation experiments indicated the occurrence of anammox in all examined sediments and the potential anammox rates ranged from 0.02 to 6.24 nmol N g(-1)  h(-1) , with a contribution of 3.45-58.74% of the total N2 production. In summary, these results demonstrate the occurrence of anammox in these extreme environments, inferring that anammox may harbour a wide ecological niche in the freshwater ecosystems.

  5. The first report of a microdiverse anammox bacteria community in waters of Colombian Pacific, a transition area between prominent oxygen minimum zones of the eastern tropical Pacific.

    Science.gov (United States)

    Castro-González, M; Molina, V; Rodríguez-Rubio, E; Ulloa, O

    2014-12-01

    Anaerobic ammonium oxidizers contribute to the removal of fixed nitrogen in oxygen-deficient marine ecosystems such as oxygen minimum zones (OMZ). Here we surveyed for the first time the occurrence and diversity of anammox bacteria in the Colombian Pacific, a transition area between the prominent South and North Pacific OMZs. Anammox bacteria were detected in the coastal and oceanic areas of the Colombian Pacific in low oxygen (Pacific, Arabian Sea and Black Sea. Anammox bacteria-like sequences from the Colombian Pacific were grouped together with sequences retrieved from the distinct OMZ's marine subclusters (Peru, Northern Chile and Arabian Sea) within Candidatus ‘Scalindua spp’. Moreover, some anammox bacteria OTUs shared a low similarity with environmental phylotypes (86–94%). Our results indicated that a microdiverse anammox community inhabits the Colombian Pacific, generating new questions about the ecological and biogeochemical differences influencing its community structure.

  6. Isolation and characterization of a prokaryotic cell organelle from the anammox bacterium Kuenenia stuttgartiensis.

    Science.gov (United States)

    Neumann, Sarah; Wessels, Hans J C T; Rijpstra, W Irene C; Sinninghe Damsté, Jaap S; Kartal, Boran; Jetten, Mike S M; van Niftrik, Laura

    2014-11-01

    Anaerobic ammonium oxidizing (anammox) bacteria oxidize ammonium with nitrite to nitrogen gas in the absence of oxygen. These microorganisms form a significant sink for fixed nitrogen in the oceans and the anammox process is applied as a cost-effective and environment-friendly nitrogen removal system from wastewater. Anammox bacteria have a compartmentalized cell plan that consists of three separate compartments. Here we report the fractionation of the anammox bacterium Kuenenia stuttgartiensis in order to isolate and analyze the innermost cell compartment called the anammoxosome. The subcellular fractions were microscopically characterized and all membranes in the anammox cell were shown to contain ladderane lipids which are unique for anammox bacteria. Proteome analyses and activity assays with the isolated anammoxosomes showed that these organelles harbor the energy metabolism in anammox cells. Together the experimental data provide the first thorough characterization of a respiratory cell organelle from a bacterium and demonstrate the essential role of the anammoxosome in the production of a major portion of the nitrogen gas in our atmosphere.

  7. Development of a fixed-bed anammox reactor with high treatment potential.

    Science.gov (United States)

    Okamoto, Hiroyuki; Kawamura, Kimito; Nishiyama, Takashi; Fujii, Takao; Furukawa, Kenji

    2013-02-01

    A plug-flow type anaerobic ammonium oxidation (anammox) reactor was developed using malt ceramics (MC) produced from carbonized spent grains as the biomass carriers for anammox sludge. Partial nitrified effluent of the filtrate from the sludge dehydrator of a brewery company was used as influent to a 20 L anammox reactor using MC. An average volumetric nitrogen removal rate (VNR) of 8.78 kg-N/m(3)/day was maintained stably for 76 days with 1 h of HRT. In a larger anammox reactor (400 L), an average VNR of 4.84 kg-N/m(3)/day could be maintained for 86 days during the treatment of low strength synthetic inorganic wastewater. As a result of bacterial community analysis for the 20 L anammox reactor, Asahi BRW1, probably originating from the wastewater collected at Asahi Breweries, was detected as the dominant anammox bacterium. These anammox reactors were characterized by a high NH(4)-N removal capacity for low strength wastewater with a short hydraulic retention time.

  8. Start-up and stabilization of an Anammox process from a non-acclimatized sludge in CSTR.

    Science.gov (United States)

    Bagchi, Samik; Biswas, Rima; Nandy, Tapas

    2010-09-01

    Development of an Anammox (anaerobic ammonium oxidation) process using non-acclimatized sludge requires a long start-up period owing to the very slow growth rate of Anammox bacteria. This article addresses the issue of achieving a shorter start-up period for Anammox activity in a well-mixed continuously stirred tank reactor (CSTR) using non-acclimatized anaerobic sludge. Proper selection of enrichment conditions and low stirring speed of 30 +/- 5 rpm resulted in a shorter start-up period (82 days). Activity tests revealed the microbial community structure of Anammox micro-granules. Ammonia-oxidizing bacteria (AOB) were found on the surface and on the outer most layers of granules while nitrite-oxidizing bacteria (NOB) and Anammox bacteria were present inside. Fine-tuning of influent NO2(-)/NH4+ ratio allowed Anammox activity to be maintained when mixed microbial populations were present. The maximum nitrogen removal rate achieved in the system was 0.216 kg N/(m(3) day) with a maximum specific nitrogen removal rate of 0.434 g N/(g VSS day). During the study period, Anammox activity was not inhibited by pH changes and free ammonia toxicity.

  9. Growth and metabolism of Anammox Bacteria

    NARCIS (Netherlands)

    Van der Star, W.R.L.

    2008-01-01

    The anoxic ammonium oxidation (anammox) process is the conversion of nitrite and ammonium under anoxic conditions- to form dinitrogen gas. The process is performed by deep-branching Planctomycetes. The startup of the first full-scale anammox reactor in the world is described in Chapter 2. The desc

  10. The diversity and distribution of anammox bacteria in the marine aquaculture zones.

    Science.gov (United States)

    Li, Meng; Gu, Ji-Dong

    2016-10-01

    The accumulation of toxic inorganic nitrogen is one of the major water quality problems in intensive aquaculture systems, thus the N removal in aquaculture systems is an important issue for the sustainable development of aquaculture. To understand one of the major microbial N removal processes, anaerobic ammonium oxidation (anammox), phylogenetic diversity, and distribution of anammox bacteria in sediments of four different marine aquaculture zones in Hong Kong (HK) were investigated. The 16S rRNA genes analysis indicated that sequences detected from Cheung Sha Wan (CSW) and Sok Kwu Wan (SKW) were closely related to several clusters within the Scalindua genus of anammox bacteria, including a new habitat-specific group, while only several sequences related to Scalindua and Kuenenia were detected in Sham Wan (SW) and Yim Tin Tsai East (YTTE). Most of the sequences obtained in SW and YTTE with the same PCR primers showed a low similarity to the known anammox bacteria, forming several novel groups within the Planctomycetes. However, results from the hydrazine oxidoreductase (HZO) encoding gene showed that only sequences from SW were related to the genus of Kuenenia, and sequences from other three sites were closely related to the genus of Scalindua. The community analysis showed that CSW and SKW share similar anammox bacterial community structures while SW and YTTE contain a unique anammox bacterial community. Furthermore, correlations reflect that organic matter is positively correlated with Kuenenia-like anammox bacteria, while the redox potential is significantly correlated with Scalindua-like anammox bacteria in marine aquaculture zones. Our results extend the knowledge of anammox bacteria in marine aquaculture systems and highlight the importance of environmental factors in shaping the community structures of anammox bacteria.

  11. Combined anaerobic ammonium and methane oxidation for nitrogen and methane removal.

    Science.gov (United States)

    Zhu, Baoli; Sánchez, Jaime; van Alen, Theo A; Sanabria, Janeth; Jetten, Mike S M; Ettwig, Katharina F; Kartal, Boran

    2011-12-01

    Anammox (anaerobic ammonium oxidation) is an environment-friendly and cost-efficient nitrogen-removal process currently applied to high-ammonium-loaded wastewaters such as anaerobic digester effluents. In these wastewaters, dissolved methane is also present and should be removed to prevent greenhouse gas emissions into the environment. Potentially, another recently discovered microbial pathway, n-damo (nitrite-dependent anaerobic methane oxidation) could be used for this purpose. In the present paper, we explore the feasibility of simultaneously removing methane and ammonium anaerobically, starting with granules from a full-scale anammox bioreactor. We describe the development of a co-culture of anammox and n-damo bacteria using a medium containing methane, ammonium and nitrite. The results are discussed in the context of other recent studies on the application of anaerobic methane- and ammonia-oxidizing bacteria for wastewater treatment.

  12. Three-dimensional stratification of bacterial biofilm populations in a moving bed biofilm reactor for nitritation-anammox.

    Science.gov (United States)

    Almstrand, Robert; Persson, Frank; Daims, Holger; Ekenberg, Maria; Christensson, Magnus; Wilén, Britt-Marie; Sörensson, Fred; Hermansson, Malte

    2014-01-29

    Moving bed biofilm reactors (MBBRs) are increasingly used for nitrogen removal with nitritation-anaerobic ammonium oxidation (anammox) processes in wastewater treatment. Carriers provide protected surfaces where ammonia oxidizing bacteria (AOB) and anammox bacteria form complex biofilms. However, the knowledge about the organization of microbial communities in MBBR biofilms is sparse. We used new cryosectioning and imaging methods for fluorescence in situ hybridization (FISH) to study the structure of biofilms retrieved from carriers in a nitritation-anammox MBBR. The dimensions of the carrier compartments and the biofilm cryosections after FISH showed good correlation, indicating little disturbance of biofilm samples by the treatment. FISH showed that Nitrosomonas europaea/eutropha-related cells dominated the AOB and Candidatus Brocadia fulgida-related cells dominated the anammox guild. New carriers were initially colonized by AOB, followed by anammox bacteria proliferating in the deeper biofilm layers, probably in anaerobic microhabitats created by AOB activity. Mature biofilms showed a pronounced three-dimensional stratification where AOB dominated closer to the biofilm-water interface, whereas anammox were dominant deeper into the carrier space and towards the walls. Our results suggest that current mathematical models may be oversimplifying these three-dimensional systems and unless the multidimensionality of these systems is considered, models may result in suboptimal design of MBBR carriers.

  13. Three-Dimensional Stratification of Bacterial Biofilm Populations in a Moving Bed Biofilm Reactor for Nitritation-Anammox

    Directory of Open Access Journals (Sweden)

    Robert Almstrand

    2014-01-01

    Full Text Available Moving bed biofilm reactors (MBBRs are increasingly used for nitrogen removal with nitritation-anaerobic ammonium oxidation (anammox processes in wastewater treatment. Carriers provide protected surfaces where ammonia oxidizing bacteria (AOB and anammox bacteria form complex biofilms. However, the knowledge about the organization of microbial communities in MBBR biofilms is sparse. We used new cryosectioning and imaging methods for fluorescence in situ hybridization (FISH to study the structure of biofilms retrieved from carriers in a nitritation-anammox MBBR. The dimensions of the carrier compartments and the biofilm cryosections after FISH showed good correlation, indicating little disturbance of biofilm samples by the treatment. FISH showed that Nitrosomonas europaea/eutropha-related cells dominated the AOB and Candidatus Brocadia fulgida-related cells dominated the anammox guild. New carriers were initially colonized by AOB, followed by anammox bacteria proliferating in the deeper biofilm layers, probably in anaerobic microhabitats created by AOB activity. Mature biofilms showed a pronounced three-dimensional stratification where AOB dominated closer to the biofilm-water interface, whereas anammox were dominant deeper into the carrier space and towards the walls. Our results suggest that current mathematical models may be oversimplifying these three-dimensional systems and unless the multidimensionality of these systems is considered, models may result in suboptimal design of MBBR carriers.

  14. Microbial Aggregate and Functional Community Distribution in a Sequencing Batch Reactor with Anammox Granules

    KAUST Repository

    Sun, Shan

    2013-05-01

    Anammox (anaerobic ammonium oxidation) process is a one-step conversion of ammonia into nitrogen gas with nitrite as an electron acceptor. It has been developed as a sustainable technology for ammonia removal from wastewater in the last decade. For wastewater treatment, anammox biomass was widely developed as microbial aggregate where the conditions for enrichment of anammox community must be delicately controlled and growth of other bacteria especially NOB should be suppressed to enhance nitrogen removal efficiency. Little is known about the distribution of microbial aggregates in anammox process. Thus the objective of our study was to assess whether segregation of biomass occurs in granular anammox system. In this study, a laboratory-scale sequential batch reactor (SBR) was successfully operated for a period of 80 days with granular anammox biomass. Temporal and spatial distribution of microbial aggregates was studied by particle characterization system and the distribution of functional microbial communities was studied with qPCR and 16s rRNA amplicon pyrosequencing. Our study revealed the spatial and temporal distribution of biomass aggregates based on their sizes and density. Granules (>200 μm) preferentially accumulated in the bottom of the reactor while floccules (30-200 μm) were relatively rich at the top layer. The average density of aggregate was higher at the bottom than the density of those at the top layer. Degranulation caused by lack of hydrodynamic shear force in the top layer was considered responsible for this phenomenon. NOB was relatively rich in the top layer while percentage of anammox population was higher at the bottom, and anammox bacteria population gradually increased over a period of time. NOB growth was supposed to be associated with the increase of floccules based on the concurrent occurrence. Thus, segregation of biomass can be utilized to develop an effective strategy to enrich anammox and wash out NOB by shortening the settling

  15. High nitrogen removal rate using ANAMMOX process at short hydraulic retention time.

    Science.gov (United States)

    Casagrande, C G; Kunz, A; De Prá, M C; Bressan, C R; Soares, H M

    2013-01-01

    The anaerobic ammonium oxidation (ANAMMOX) is a chemolithoautotrophic process, which converts NH(4)(+) to N(2) using nitrite (NO(2)(-)) as the electron acceptor. This process has very high nitrogen removal rates (NRRs) and is an alternative to classical nitrification/denitrification wastewater treatment. In the present work, a strategy for nitrogen removal using ANAMMOX process was tested evaluating their performance when submitted to high loading rates and very short hydraulic retention times (HRTs). An up-flow ANAMMOX column reactor was inoculated with 30% biomass (v v(-1)) fed from 100 to 200 mg L(-1) of total N (NO(2)(-)-N + NH(4)(+)-N) at 35 °C. After start-up and process stability the maximum NRR in the up-flow anaerobic sludge blanket (UASB) reactor was 18.3 g-N L(-1) d(-1) operated at 0.2 h of HRT. FISH (fluorescence in situ hybridization) analysis and process stoichiometry confirmed that ANAMMOX was the prevalent process for nitrogen removal during the experiments. The results point out that high NRRs can be obtained at very short HRTs using up-flow ANAMMOX column reactor configuration.

  16. Distribution and activity of anaerobic ammonium-oxidising bacteria in natural freshwater wetland soils.

    Science.gov (United States)

    Shen, Li-dong; Wu, Hong-sheng; Gao, Zhi-qiu; Cheng, Hai-xiang; Li, Ji; Liu, Xu; Ren, Qian-qi

    2016-04-01

    Anaerobic ammonium oxidation (anammox) process plays a significant role in the marine nitrogen cycle. However, the quantitative importance of this process in nitrogen removal in wetland systems, particularly in natural freshwater wetlands, is still not determined. In the present study, we provided the evidence of the distribution and activity of anammox bacteria in a natural freshwater wetland, located in southeastern China, by using (15)N stable isotope measurements, quantitative PCR assays and 16S rRNA gene clone library analysis. The potential anammox rates measured in this wetland system ranged between 2.5 and 25.5 nmol N2 g(-1) soil day(-1), and up to 20% soil dinitrogen gas production could be attributed to the anammox process. Phylogenetic analysis of 16S rRNA genes showed that anammox bacteria related to Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus and two novel anammox clusters coexisted in the collected soil cores, with Candidatus Brocadia and Candidatus Kuenenia being the dominant anammox genera. Quantitative PCR of hydrazine synthase genes showed that the abundance of anammox bacteria varied from 2.3 × 10(5) to 2.2 × 10(6) copies g(-1) soil in the examined soil cores. Correlation analyses suggested that the soil ammonium concentration had significant influence on the activity of anammox bacteria. On the basis of (15)N tracing technology, it is estimated that a total loss of 31.1 g N m(-2) per year could be linked the anammox process in the examined wetland.

  17. Rapid start-up of the anammox process: Effects of five different sludge extracellular polymeric substances on the activity of anammox bacteria.

    Science.gov (United States)

    Guo, Jianbo; Wang, Sihui; Lian, Jing; Ngo, Huu Hao; Guo, Wenshan; Liu, Yunman; Song, Yuanyuan

    2016-11-01

    This study investigated the rapid start-up of the anaerobic ammonium oxidation (anammox) strategy by inoculating different biomass ratios of denitrifying granular sludge and anammox bacteria. The results demonstrated that two reactors (R1 and R2) were rapidly and successfully started-up on days 25 and 28, respectively, with nitrogen removal rates (NRRs) of 0.70kg/(m(3)·d) and 0.72kg/(m(3)·d) at biomass ratios of 10:1 (R1) and 50:1 (R2). The explanation for rapid start-up was found by examining the effect of five different sludge extracellular polymeric substances (EPS) on the activity of anammox bacteria in the batch experiments. Batch experiments results first demonstrated that the denitrification sludge EPS (DS-EPS) enhanced the anammox bacteria activity the most, and NO2(-)-N, NH4(+)-N removal rates were 1.88- and 1.53-fold higher than the control with optimal DS-EPS volume of 10mL. The rapid start-up strategy makes possible the application of anammox to practical engineering.

  18. Applicability of one-stage partial nitritation and anammox in MBBR for anaerobically pre-treated municipal wastewater.

    Science.gov (United States)

    Kouba, Vojtech; Widiayuningrum, P; Chovancova, L; Jenicek, P; Bartacek, J

    2016-07-01

    Energy consumption of municipal wastewater treatment plants can be reduced by the anaerobic pre-treatment of the main wastewater stream. After this pre-treatment, nitrogen can potentially be removed by partial nitritation and anammox (PN/A). Currently, the application of PN/A is limited to nitrogen-rich streams (>500 mg L(-1)) and temperatures 25-35 °C. But, anaerobically pretreated municipal wastewater is characterized by much lower nitrogen concentrations (20-100 mg L(-1)) and lower temperatures (10-25 °C). We operated PN/A under similar conditions: total ammonium nitrogen concentration 50 mg L(-1) and lab temperature (22 °C). PN/A was operated for 342 days in a 4 L moving bed biofilm reactor (MBBR). At 0.4 mg O2 L(-1), nitrogen removal rate 33 g N m(-3) day(-1) and 80 % total nitrogen removal efficiency was achieved. The capacity of the reactor was limited by low AOB activity. We observed significant anammox activity (40 g N m(-3) day(-1)) even at 12 °C, improving the applicability of PN/A for municipal wastewater treatment.

  19. Evaluation of anaerobic digestion processes for short sludge-age waste activated sludge combined with anammox treatment of digestate liquor.

    Science.gov (United States)

    Ge, Huoqing; Batstone, Damien; Keller, Jurg

    2016-01-01

    The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity.

  20. Numerical modeling of nitrogen removal processes in biofilters with simultaneous nitritation and anammox.

    Science.gov (United States)

    Shi, Shun; Tao, Wendong

    2013-01-01

    This study developed a simple numerical model for nitrogen removal in biofilters, which was designed to enhance simultaneous nitritation and anaerobic ammonium oxidation (anammox). It is the first attempt to simulate anammox together with two-step nitrification in natural treatment systems, which may have different kinetic parameters and temperature effects from conventional bioreactors. Prediction accuracy was improved by adjusting kinetic coefficients over the startup period of the biofilters. The maximum rates of nitritation and nitrite oxidation increased linearly over time during the startup period. Simulations confirmed successful enhancement of simultaneous nitritation and anammox (SNA) in the biofilters, with anammox contributing 35% of ammonium removal. Effluent ammonium concentration was affected by influent ammonium concentration and the maximum nitritation rate, and was insensitive to the maximum nitrite oxidation rate and anammox substrate factor. Ammonium removal via SNA was likely limited by biomass of aerobic ammonia oxidizing bacteria in the biofilters. The developed model is a promising tool for studying the dynamics of nitrogen removal processes including SNA in natural treatment systems.

  1. Development of a super high-rate Anammox reactor and in situ analysis of biofilm structure and function.

    Science.gov (United States)

    Tsushima, Ikuo; Ogasawara, Yuji; Shimokawa, Masaki; Kindaichi, Tomonori; Okabe, Satoshi

    2007-01-01

    The anaerobic ammonium oxidation (Anammox) process is a new efficient and cost effective method of ammonium removal from wastewater. Under strictly anoxic condition, ammonium is directly oxidised with nitrite as electron acceptor to dinitrogen gas. However, it is extremely difficult to cultivate Anammox bacteria due to their low growth rate. This suggests that a rapid and efficient start-up of Anammox process is the key to practical applications. To screen appropriate seeding sludge with high Anammox potential, a real-time quantitative PCR assay with newly designed primers has been developed. Thereafter, the seeding sludge with high abundance of Anammox bacteria (1.7 x 10(8) copies/mg-dry weight) was selected and inoculated into an upflow anaerobic biofilters (UABs). The UABs were operated for more than 1 year and the highest nitrogen removal rate of 24.0 kg-N m-3 day(-1) was attained. In addition, the ecophysiology of Anammox bacteria (spatial distribution and in situ activity) in biofilms was analysed by combining a full-cycle 16S rRNA approach and microelectrodes. The microelectrode measurement clearly revealed that a successive vertical zonation of the partial nitrification (NH4+ to NO2-), Anammox reaction and denitrification was developed in the biofilm in the UAB. This result agreed with the spatial distribution of corresponding bacterial populations in the biofilm. We linked the micro-scale information (i.e. single cell and/or biofilm levels) with the macro-scale information (i.e. the reactor level) to understand the details of Anammox reaction occurring in the UABs.

  2. [Community Characteristics of ANAMMOX Bacteria in Subsurface Flow Constructed Wetland (SSFCW) for Processing of Aquaculture Waster Water].

    Science.gov (United States)

    Zeng, Xian-lei; Liu, Xing-guo; Wu, Zong-fan; Shi, Xu; Lu, Shi-min

    2016-02-15

    Anaerobic ammonium oxidation (ANAMMOX) is one of the important functions in waste water treatment by subsurface flow constructed wetland (SSFCW), however, there are few studies on ANAMMOX in SSFCW environment at present. The community characteristics of ANAMMOX in the SSFCW of processing aquaculture waste water were explored in this study. In order to analyze the structure, diversity and abundance of ANAMMOX bacteria, several 16S rRNA clone libraries were constructed and real-time PCR targeting specific 16S rRNA genes together with diversity analysis was adopted. The obtained results showed that the SSFCW identified a total of three unknown clusters and two known clusters including Candidatus brocadia and Candidatus kuenenia. The dominant cluster was Candidatus brocadia. The highest diversity levels of ANAMMOX bacteria occurred in autumn (H', 1.21), while the lowest in spring (H', 0.64). The abundance of ANAMMOX bacteria in SSFCW environment ranged from 8.0 x 10(4) to 9.4 x 10(6) copies x g(-1) of fresh weight and the copy number of total bacterial 16S rRNA genes ranged from 7.3 x 10(9) to 9.1 x 10(10) copies x g(-1) of fresh weight during culture cycle. There were significant differences in the ANAMMOX bacteria abundances of different stratum and seasons in SSFCW environment, but the differences in total bacterial abundances were not obvious. In addition, the differences in ANAMMOX bacteria abundances in different stratum and seasons in SSFCW environment were irregular in different culture cycle. According to the distribution characteristics of ANAMMOX bacteria in the wetland, the denitrification effect of SSFCW could be improved by changing the supplying manners of aquaculture wastewater and adjusting the structure of wetland. The research results will provide reference for further optimizing the SSFCW and improving the efficiency of purification.

  3. Achieving complete nitrogen removal by coupling nitritation-anammox and methane-dependent denitrification: A model-based study.

    Science.gov (United States)

    Chen, Xueming; Guo, Jianhua; Xie, Guo-Jun; Yuan, Zhiguo; Ni, Bing-Jie

    2016-05-01

    The discovery of denitrifying anaerobic methane oxidation (DAMO) processes enables the complete nitrogen removal from wastewater by utilizing the methane produced on site from anaerobic digesters. This model-based study investigated the mechanisms and operational window for efficient nitrogen removal by coupling nitritation-anaerobic ammonium oxidation (Anammox) and methane-dependent denitrification in membrane biofilm reactors (MBfRs). A mathematical model was applied to describe the microbial interactions among Anammox bacteria, DAMO archaea, and DAMO bacteria. The model sufficiently described the batch experimental data from an MBfR containing an Anammox-DAMO biofilm with different feeding nitrogen compositions, which confirmed the validity of the model. The effects of process parameters on the system performance and microbial community structure could therefore be reliably evaluated. The impacts of nitritation produced NO2(-)/NH4(+) ratio, methane supply, biofilm thickness and total nitrogen (TN) surface loading were comprehensively investigated with the model. Results showed that the optimum NO2(-)/NH4(+) ratio produced from nitritation for the Anammox-DAMO biofilm system was around 1.0 in order to achieve the maximum TN removal (over 99.0%), independent on TN surface loading. The corresponding optimal methane supply increased while the associated methane utilization efficiency decreased with the increase of TN surface loading. The cooperation between DAMO organisms and Anammox bacteria played the key role in the TN removal. Based on these results, the proof-of-concept feasibility of a single-stage MBfR coupling nitritation-Anammox-DAMO for complete nitrogen removal was also tested through integrating the model with ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) processes whilst controlling the dissolved oxygen (DO) concentration in the simulated system. The maximum TN removal was found to be achieved at the bulk DO concentration of

  4. Activity and growth of anammox biomass on aerobically pre-treated municipal wastewater.

    Science.gov (United States)

    Laureni, Michele; Weissbrodt, David G; Szivák, Ilona; Robin, Orlane; Nielsen, Jeppe Lund; Morgenroth, Eberhard; Joss, Adriano

    2015-09-01

    Direct treatment of municipal wastewater (MWW) based on anaerobic ammonium oxidizing (anammox) bacteria holds promise to turn the energy balance of wastewater treatment neutral or even positive. Currently, anammox processes are successfully implemented at full scale for the treatment of high-strength wastewaters, whereas the possibility of their mainstream application still needs to be confirmed. In this study, the growth of anammox organisms on aerobically pre-treated municipal wastewater (MWW(pre-treated)), amended with nitrite, was proven in three parallel reactors. The reactors were operated at total N concentrations in the range 5-20 mg(N)∙L(-1), as expected for MWW. Anammox activities up to 465 mg(N)∙L(-1)∙d(-1) were reached at 29 °C, with minimum doubling times of 18 d. Lowering the temperature to 12.5 °C resulted in a marked decrease in activity to 46 mg(N)∙L(-1)∙d(-1) (79 days doubling time), still in a reasonable range for autotrophic nitrogen removal from MWW. During the experiment, the biomass evolved from a suspended growth inoculum to a hybrid system with suspended flocs and wall-attached biofilm. At the same time, MWW(pre-treated) had a direct impact on process performance. Changing the influent from synthetic medium to MWW(pre-treated) resulted in a two-month delay in net anammox growth and a two to three-fold increase in the estimated doubling times of the anammox organisms. Interestingly, anammox remained the primary nitrogen consumption route, and high-throughput 16S rRNA gene-targeted amplicon sequencing analyses revealed that the shift in performance was not associated with a shift in dominant anammox bacteria ("Candidatus Brocadia fulgida"). Furthermore, only limited heterotrophic denitrification was observed in the presence of easily biodegradable organics (acetate, glucose). The observed delays in net anammox growth were thus ascribed to the acclimatization of the initial anammox population or/and the development of a side

  5. Start-up of the SHARON and ANAMMOX process in landfill bioreactors using aerobic and anaerobic ammonium oxidising biomass.

    Science.gov (United States)

    Shalini, S Sri; Joseph, Kurian

    2013-12-01

    The main aim of this study is to analyse the feasibility to use aerobic ammonium oxidising bacteria (AOB) and anammox/AnAOB biomass enriched from mined municipal solid waste for in situ SHARON and ANAMMOX processes in laboratory scale landfill bioreactors (LFBR) for ammonia nitrogen removal. For this purpose, three LFBRs were operated as Control (without biomass seed), SHARON (with AOB biomass seed) and ANAMMOX (with anammox biomass seed) for 315 days. Results showed nitrogen loading rate of 1.0 kg N/d was effectively removed in SHARON and ANAMMOX LFBR. In SHARON LFBR, partial nitritation efficiency reached up to 98.5% with AOB population of MPN of 5.1 × 10(6)/mL obtained. ANAMMOX LFBR gave evolution of 95% of nitrogen gas as the end product confirmed the ANAMMOX process. Nitrogen transformations, biomass development and hydrazine and hydroxylamine formation authenticated the enriched AOB and anammox biomass activity in landfill bioreactors.

  6. Structure and composition of biofilm communities in a moving bed biofilm reactor for nitritation-anammox at low temperatures.

    Science.gov (United States)

    Persson, Frank; Sultana, Razia; Suarez, Marco; Hermansson, Malte; Plaza, Elzbieta; Wilén, Britt-Marie

    2014-02-01

    It is a challenge to apply anaerobic ammonium oxidation (anammox) for nitrogen removal from wastewater at low temperatures. Maintenance of anammox- and aerobic ammonia oxidizing bacteria (AOB) and suppression of nitrite oxidizing bacteria (NOB) are key issues. In this work, a nitritation-anammox moving bed biofilm pilot reactor was operated at 19-10°C for 300 d. Nitrogen removal was decreasing, but stable, at 19-13°C. At 10°C removal became unstable. Quantitative PCR, fluorescence in situ hybridization and gene sequencing showed that no major microbial community changes were observed with decreased temperature. Anammox bacteria dominated the biofilm (0.9-1.2 × 10(14) 16S rRNA copies m(-2)). Most anammox bacteria were similar to Brocadia sp. 40, but another smaller Brocadia population was present near the biofilm-water interface, where also the AOB community (Nitrosomonas) was concentrated in thin layers (1.8-5.3 × 10(12) amoA copies m(-2)). NOB (Nitrobacter, Nitrospira) were always present at low concentrations (<1.3 × 10(11) 16S rRNA copies m(-2)).

  7. Effect of Different Carriers on Anaerobic Ammonium Oxidation Process%不同载体材料对厌氧氨氧化效果影响的研究

    Institute of Scientific and Technical Information of China (English)

    赵旭飞; 龚逸; 赖玮毅; 王一渌; 周伟丽

    2012-01-01

    文章分别采用水性聚氨酯(WPU)和活性炭2种材料作为生物载体,在2个不同的上流式厌氧污泥床(UASB)反应器中接种包埋污泥和生物活性炭,采用人工配水进行连续实验,观测厌氧氨氧化反应器启动过程中各种含氮化合物的变化,以考察不同载体材料对厌氧氨氧化过程的影响.文章在生物活性炭反应器中成功驯化了采自污水处理厂的普通厌氧污泥,证明了从环境中驯化培养厌氧氨氧化菌的可能性.通过2个阶段中脱氮效率的比较,发现以水性聚氨酯包埋材料作为未驯化细菌载体并无明显优势,反而成为传质的障碍;而采用生物活性炭则可以迅速达到提高局部生物量、聚集功能菌、屏蔽不利环境的干扰等作用,是理想的微生物载体.%To investigate the effect of different carriers on process of anaerobic ammonia oxidation, two types of materials including water-bone polyurethane (WPU) and activated carbon, were used for microbial immobilization in two different UASB reactors. The synthetic wastewater containing ammonia and nitrite was applied as raw water and variation of nitrogen compounds was analyzed. The study verified the possibility of domesticating anaerobic ammonium oxidation bacteria from the environment in biological nctivated carbon (BAC) system. The comparison of nitrogen removal efficiency in different running stages indicated that the immobilized sludge had no distinct advantage in reactor start-up as it might have become the obstacle of mass transfer, while the activated carbon proved to be an ideal microbial carrier due to synergistic effect of contaminant adsorption, bacterial aggregation and microbial degradation, combined with its protection of microorganisms from deleterious surroundings.

  8. The S-Layer Protein of the Anammox Bacterium Kuenenia stuttgartiensis Is Heavily O-Glycosylated.

    Science.gov (United States)

    van Teeseling, Muriel C F; Maresch, Daniel; Rath, Cornelia B; Figl, Rudolf; Altmann, Friedrich; Jetten, Mike S M; Messner, Paul; Schäffer, Christina; van Niftrik, Laura

    2016-01-01

    Anaerobic ammonium oxidation (anammox) bacteria are a distinct group of Planctomycetes that are characterized by their unique ability to perform anammox with nitrite to dinitrogen gas in a specialized organelle. The cell of anammox bacteria comprises three membrane-bound compartments and is surrounded by a two-dimensional crystalline S-layer representing the direct interaction zone of anammox bacteria with the environment. Previous results from studies with the model anammox organism Kuenenia stuttgartiensis suggested that the protein monomers building the S-layer lattice are glycosylated. In the present study, we focussed on the characterization of the S-layer protein glycosylation in order to increase our knowledge on the cell surface characteristics of anammox bacteria. Mass spectrometry (MS) analysis showed an O-glycan attached to 13 sites distributed over the entire 1591-amino acid S-layer protein. This glycan is composed of six monosaccharide residues, of which five are N-acetylhexosamine (HexNAc) residues. Four of these HexNAc residues have been identified as GalNAc. The sixth monosaccharide in the glycan is a putative dimethylated deoxyhexose. Two of the HexNAc residues were also found to contain a methyl group, thereby leading to an extensive degree of methylation of the glycan. This study presents the first characterization of a glycoprotein in a planctomycete and shows that the S-layer protein Kustd1514 of K. stuttgartiensis is heavily glycosylated with an O-linked oligosaccharide which is additionally modified by methylation. S-layer glycosylation clearly contributes to the diversification of the K. stuttgartiensis cell surface and can be expected to influence the interaction of the bacterium with other cells or abiotic surfaces.

  9. Anammox for nitrogen removal from anaerobically pre-treated municipal wastewater: Effect of COD/N ratios on process performance and bacterial community structure.

    Science.gov (United States)

    Leal, Cíntia Dutra; Pereira, Alyne Duarte; Nunes, Fernando Terra; Ferreira, Luísa Ornelas; Coelho, Aline Carolina Cirilo; Bicalho, Sarah Kinaip; Mac Conell, Erika F Abreu; Ribeiro, Thiago Bressani; de Lemos Chernicharo, Carlos Augusto; de Araújo, Juliana Calábria

    2016-07-01

    Long-term effects of COD/N ratios on the nitrogen removal performance and bacterial community of an anammox reactor were evaluated by adding a synthetic medium (with glucose) and real anaerobic effluent to a SBR. At a COD/N ratio of 2.8 (COD, 390mg·L(-1)) ammonium removal efficiency was 66%, while nitrite removal remained high (99%). However, at a COD/N ratio of 5.0 (COD, 300mg·L(-1)), ammonium and nitrite removal efficiencies were high (84% and 99%, respectively). High COD, nitrite, and ammonium removal efficiencies (80%, 90% and 95%, respectively) were obtained on adding anaerobically pre-treated municipal wastewater (with nitrite) to the reactor. DGGE revealed that the addition of anaerobic effluent changed the bacterial community structure and selected for DNA sequences related to Brocadia sinica and Chloroflexi. Adding glucose and anaerobic effluent increased denitrifiers concentration threefold. Thus, the possibility of using the anammox process to remove nitrogen from anaerobically pre-treated municipal wastewater was demonstrated.

  10. Effect of Different Filling Materials in Anammox Bacteria Enrichment

    Directory of Open Access Journals (Sweden)

    Dilek ÖZGÜN

    2012-12-01

    Full Text Available Purpose: Anaerobic ammonium oxidation (Anammox is a process that ammonium as electron donor is oxidized to nitrogen gas using nitrite as electron acceptor. Compared to conventional nitrification-denitrification processes, this process is used less oxygen and no organic material (methanol, glucose. However, the slow growth rate of Anammox bacteria (11-30 days is disadvantages. Therefore, batch reactors have been carried out in these bacteria enrichment. In this study continuously operated upflow anaerobic sludge reactor (UASB using different filling materials disposing of sensitive and slow-growing Anammox bacteria out of the system is purposed. Design and Methods: System is operated up-flow column reactor at 2 days hydraulic retention time (HRT in 45 days. In this study, ceramic stones and Linpor filling material are used. Using synthetic wastewater containing ammonium and nitrite, Ar/CO2 anaerobic conditions (95/5% supplied with gas. System is operated at a temperature 253 C in UASB. Temperature, pH, ammonia-nitrogen and nitrite nitrogen are measured. Results: Both filling material reactors are operated in 45 days. Ceramic stones filling reactor is observed quickly reaches 90% were used reactor ammonium removal. The ammonium nitrogen removal was slower in Linpor filling materials reactor. Nitrite removal is reached up to 90% in both the reactor. When compared to the stoichiometric equation in Linpor was composed of large amounts of nitrate. At the end of 25 days the results were similar to ceramic stone filling reactor with Linpor filling material reactors. Conclusions and Original Value: Anammox process as from nitrogen removal processes was discovered in 1995. Anammox bacteria that make up this process due to very low growth rates of microbial bacteria in the system must be kept in the system. Most of the studies in the literature, these bacteria enrichment stage is started instead of a continuous batch reactor system. In this study

  11. New Understanding on Metabolism of Anaerobic Ammonium Oxidation Bacteria Based on Metagenomics Technology%基于宏基因组技术获得的对厌氧氨氧化菌代谢的新理解

    Institute of Scientific and Technical Information of China (English)

    丁爽; 郑平; 陆慧锋; 唐崇俭

    2012-01-01

    厌氧氨氧化菌(Anaerobic ammonium oxidation bacteria,AAOB)是化能自养菌,由于其生理代谢的奇异性、细胞结构的特殊性以及对氮素循环的重要性,已成为环境工程、微生物以及海洋生物学等领域的研究热点.然而.AAOB未能实现纯培养的现状已成为AAOB代谢途径研究的巨大障碍近年来兴起的宏基因组技术(Metagenomics)为AAOB代谢途径的研究提供了新手段.采用宏基因组技术,可直接研究微生物群体中某特定微生物基因组的结构与功能,摆脱了传统微生物学研究对纯培养的依赖,使未培养微生物的认识和开发成为可能本文首先简述获取AAOB宏基因组信息的过程,然后通过比较由传统代谢研究方法和宏基因组技术获得的AAOB代谢途径的研究成果,论述基于宏基因组技术获得的对AAOB代谢的新理解,得出以下结果和结论:1)AAOB的碳素固定途径为乙酰辅酶A途径,碳素固定的还原力来自NADH或者QH2;2)AAOB氮素转化的重要中问产物是NO,而非NH2OH,并提出了以NO为核心的AAOB代谢的改进模型;3)AAOB的ATP合成途径为氧化磷酸化,推测的电子传递途径为N2H4-QH2-细胞色素bc1 复合体;细胞色素bc1复合体再将电子用于NO2还原和N2H4合成AAOB的宏基因组技术使AAOB代谢途径的研究更具方向性.随着分子生物学理论和技术的不断发展,宏基因组学的升级技术(如宏转录组学、宏蛋白质组学)将为AAOB代谢途径的研究提供新的方法与平台.%Anaerobic ammonium oxidation bacteria (AAOB) belong to chemolitho-autotrophs. AAOB have become one of the research hotspots in the field of environmental engineering, microbiology and oceanography because of their specificities in metabolism, cell structure and nitrogen cycle. However, AAOB can not been cultivated in pure culture, which has become a great obstacle to study their metabolic pathways in further. Nowadays, fast-developing metagenomics provides

  12. Denitrification and anammox in tropical aquaculture settlement ponds: an isotope tracer approach for evaluating N2 production.

    Directory of Open Access Journals (Sweden)

    Sarah A Castine

    Full Text Available Settlement ponds are used to treat aquaculture discharge water by removing nutrients through physical (settling and biological (microbial transformation processes. Nutrient removal through settling has been quantified, however, the occurrence of, and potential for microbial nitrogen (N removal is largely unknown in these systems. Therefore, isotope tracer techniques were used to measure potential rates of denitrification and anaerobic ammonium oxidation (anammox in the sediment of settlement ponds in tropical aquaculture systems. Dinitrogen gas (N(2 was produced in all ponds, although potential rates were low (0-7.07 nmol N cm(-3 h(-1 relative to other aquatic systems. Denitrification was the main driver of N(2 production, with anammox only detected in two of the four ponds. No correlations were detected between the measured sediment variables (total organic carbon, total nitrogen, iron, manganese, sulphur and phosphorous and denitrification or anammox. Furthermore, denitrification was not carbon limited as the addition of particulate organic matter (paired t-Test; P = 0.350, n = 3 or methanol (paired t-Test; P = 0.744, n = 3 did not stimulate production of N(2. A simple mass balance model showed that only 2.5% of added fixed N was removed in the studied settlement ponds through the denitrification and anammox processes. It is recommended that settlement ponds be used in conjunction with additional technologies (i.e. constructed wetlands or biological reactors to enhance N(2 production and N removal from aquaculture wastewater.

  13. Sustainable operation of submerged Anammox membrane bioreactor with recycling biogas sparging for alleviating membrane fouling.

    Science.gov (United States)

    Li, Ziyin; Xu, Xindi; Xu, Xiaochen; Yang, FengLin; Zhang, ShuShen

    2015-12-01

    A submerged anaerobic ammonium oxidizing (Anammox) membrane bioreactor with recycling biogas sparging for alleviating membrane fouling has been successfully operated for 100d. Based on the batch tests, a recycling biogas sparging rate at 0.2m(3)h(-1) was fixed as an ultimate value for the sustainable operation. The mixed liquor volatile suspended solid (VSS) of the inoculum for the long operation was around 3000mgL(-1). With recycling biogas sparging rate increasing stepwise from 0 to 0.2m(3)h(-1), the reactor reached an influent total nitrogen (TN) up to 1.7gL(-1), a stable TN removal efficiency of 83% and a maximum specific Anammox activity (SAA) of 0.56kg TNkg(-1) VSSd(-1). With recycling biogas sparging rate at 0.2 m(3) h(-1) (corresponding to an aeration intensity of 118m(3)m(-2)h(-1)), the membrane operation circle could prolong by around 20 times compared to that without gas sparging. Furthermore, mechanism of membrane fouling was proposed. And with recycling biogas sparging, the VSS and EPS content increasing rate in cake layer were far less than the ones without biogas sparging. The TN removal performance and sustainable membrane operation of this system showed the appealing potential of the submerged Anammox MBR with recycling biogas sparging in treating high-strength nitrogen-containing wastewaters.

  14. Advances in applications of Anammox process%厌氧氨氧化工艺的应用进展

    Institute of Scientific and Technical Information of China (English)

    张正哲; 金仁村; 程雅菲; 周煜璜; 布阿依·谢姆古丽

    2015-01-01

    厌氧氨氧化(anaerobic ammonium oxidation,Anammox)工艺因其高效低耗的优势,在废水生物脱氮领域具有广阔的应用前景。该工艺在实际废水处理中的应用已成为国内外的热点。本文结合厌氧氨氧化菌的生境和菌种多样性,以及厌氧氨氧化工艺形式的多样性,并对一体式和分体式工艺运行条件进行了比较,重点综述了厌氧氨氧化技术在处理各类废水中的实验室研究和工程应用情况,主要包括:污泥消化液和压滤液、垃圾渗滤液、养殖废水、味精废水、焦化废水、生活污水、粪便污水、含盐废水等废水的水质特点、研究进展和应用障碍。最后,总结厌氧氨氧化工艺在处理实际废水过程中的潜在问题,并提出今后的研究重点是深入研究厌氧氨氧化的水质障碍因子及其调控策略,并在此基础上大力开发和优化组合工艺。%Anaerobic ammonium oxidation(Anammox)has advantages of high efficiency and low consumption. This method has become a promising biological nitrogen elimination process. This paper compared the operation conditions of one- and two-stage Anammox processes,analyzed the habitat and species diversity of anaerobic ammonium oxidizing bacteria and process versatility of Anammox,and summarized the laboratory research and engineering applications of Anammox in the treatment of various types of ammonium-rich wastewater. The characteristics,research progress and application barriers of sludge digestate,reject water,landfill leachate,livestock wastewater, municipal sewage, saline wastewateretcwere introduced. Moreover,the potential problems of Anammox process in practical applications were discussed and further research focuses were suggested.

  15. Evidence for the cooccurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in a flooded paddy field.

    Science.gov (United States)

    Shen, Li-Dong; Liu, Shuai; Huang, Qian; Lian, Xu; He, Zhan-Fei; Geng, Sha; Jin, Ren-Cun; He, Yun-Feng; Lou, Li-Ping; Xu, Xiang-Yang; Zheng, Ping; Hu, Bao-Lan

    2014-12-01

    Anaerobic ammonium oxidation (anammox) and nitrite-dependent anaerobic methane oxidation (n-damo) are two of the most recent discoveries in the microbial nitrogen cycle. In the present study, we provide direct evidence for the cooccurrence of the anammox and n-damo processes in a flooded paddy field in southeastern China. Stable isotope experiments showed that the potential anammox rates ranged from 5.6 to 22.7 nmol N2 g(-1) (dry weight) day(-1) and the potential n-damo rates varied from 0.2 to 2.1 nmol CO2 g(-1) (dry weight) day(-1) in different layers of soil cores. Quantitative PCR showed that the abundance of anammox bacteria ranged from 1.0 × 10(5) to 2.0 × 10(6) copies g(-1) (dry weight) in different layers of soil cores and the abundance of n-damo bacteria varied from 3.8 × 10(5) to 6.1 × 10(6) copies g(-1) (dry weight). Phylogenetic analyses of the recovered 16S rRNA gene sequences showed that anammox bacteria affiliated with "Candidatus Brocadia" and "Candidatus Kuenenia" and n-damo bacteria related to "Candidatus Methylomirabilis oxyfera" were present in the soil cores. It is estimated that a total loss of 50.7 g N m(-2) per year could be linked to the anammox process, which is at intermediate levels for the nitrogen flux ranges of aerobic ammonium oxidation and denitrification reported in wetland soils. In addition, it is estimated that a total of 0.14 g CH4 m(-2) per year could be oxidized via the n-damo process, while this rate is at the lower end of the aerobic methane oxidation rates reported in wetland soils.

  16. Shotgun metagenomic data reveals signifcant abundance but low diversity of Candidatus Scalindua marine anammox bacteria in the Arabian Sea oxygen minimum zone

    Directory of Open Access Journals (Sweden)

    laura eVillanueva

    2014-02-01

    Full Text Available Anaerobic ammonium oxidizing (anammox bacteria are responsible for a significant portion of the loss of fixed nitrogen from the oceans, making them important players in the global nitrogen cycle. To date, marine anammox bacteria found in both water columns and sediments worldwide belong almost exclusively to Candidatus Scalindua species. Recently the genome assembly of a marine anammox enrichment culture dominated by Candidatus Scalindua profunda became available and can now be used as a template to study metagenome data obtained from various oxygen minimum zones. Here, we sequenced genomic DNA from suspended particulate matter recovered at the upper (170 m deep and center (600 m area of the oxygen minimum zone in the Arabian Sea by SOLiD and Ion Torrent technology. The genome of Candidatus Scalindua profunda served as a template to collect reads. Based on the mapped reads marine anammox Abundance was estimated to be at least 0.4% in the upper and 1.7% in the center area. Single nucleotide variation (SNV analysis was performed to assess diversity of the Candidatus Scalindua populations. Most highly covered were the two diagnostic anammox genes hydrazine synthase (scal_01318c, hzsA and hydrazine dehydrogenase (scal_03295, hdh, while other genes involved in anammox metabolism (narGH, nirS, amtB, focA and ACS had a lower coverage but could still be assembled and analyzed. The results show that Candidatus Scalindua is abundantly present in the Arabian Sea OMZ, but that the diversity within the ecosystem is relatively low.

  17. Deammonification process start-up after enrichment of anammox microorganisms from reject water in a moving-bed biofilm reactor.

    Science.gov (United States)

    Zekker, Ivar; Rikmann, Ergo; Tenno, Toomas; Kroon, Kristel; Vabamäe, Priit; Salo, Erik; Loorits, Liis; Rubin, Sergio S C dC; Vlaeminck, Siegfried E; Tenno, Taavo

    2013-01-01

    Deammonification via intermittent aeration in biofilm process for the treatment of sewage sludge digester supernatant (reject water) was started up using two opposite strategies. Two moving-bed biofilm reactors were operated for 2.5 years at 26 (+/- 0.5 degree C with spiked influent(and hence free ammonia (FA)) addition. In the first start-up strategy, an enrichment of anammox biomass was first established, followed by the development of nitrifying biomass in the system (R1). In contrast, the second strategy aimed at the enrichment of anammox organisms into a nitrifying biofilm (R2). The first strategy was most successful, reaching higher maximum total nitrogen (TN) removal rates over a shorter start-up period. For both reactors, increasing FA spiking frequency and increasing effluent concentrations of the anammox intermediate hydrazine correlated to decreasing aerobic nitrate production (nitritation). The bacterial consortium of aerobic and anaerobic ammonium oxidizing bacteria in the bioreactor was determined via denaturing gel gradient electrophoresis, polymerase chain reaction and pyrosequencing. In addition to a shorter start-up with a better TN removal rate, nitrite oxidizing bacteria (Nitrospira) were outcompeted by spiked ammonium feeding from R1.

  18. Co-occurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in subtropical acidic forest soils.

    Science.gov (United States)

    Meng, Han; Wang, Yong-Feng; Chan, Ho-Wang; Wu, Ruo-Nan; Gu, Ji-Dong

    2016-09-01

    Anaerobic ammonium oxidation (anammox) and nitrite-dependent anaerobic methane oxidation (n-damo) are two new processes of recent discoveries linking the microbial nitrogen and carbon cycles. In this study, 16S ribosomal RNA (rRNA) gene of anammox bacteria and pmoA gene of n-damo bacteria were used to investigate their distribution and diversity in natural acidic and re-vegetated forest soils. The 16S rRNA gene sequences retrieved featured at least three species in two genera known anammox bacteria, namely Candidatus Brocadia anammoxidans, Candidatus Brocadia fulgida, and Candidatus Kuenenia stuttgartiensis while the pmoA gene amplified was affiliated with two species of known n-damo bacteria Candidatus Methylomirabilis oxyfera and a newly established Candidatus Methylomirabilis sp. According to the results, the diversity of anammox bacteria in natural forests was lower than in re-vegetated forests, but no significant difference was observed in n-damo community between them. Quantitative real-time PCR showed that both anammox and n-damo bacteria were more abundant in the lower layer (10-20 cm) than the surface layer (0-5 cm). The abundance of anammox bacteria varied from 2.21 × 10(5) to 3.90 × 10(6) gene copies per gram dry soil, and n-damo bacteria quantities were between 1.69 × 10(5) and 5.07 × 10(6) gene copies per gram dry soil in the two different layers. Both anammox and n-damo bacteria are reported for the first time to co-occur in acidic forest soil in this study, providing a more comprehensive information on more defined microbial processes contributing to C and N cycles in the ecosystems.

  19. Behavior and fate of copper ions in an anammox granular sludge reactor and strategies for remediation.

    Science.gov (United States)

    Zhang, Zheng-Zhe; Deng, Rui; Cheng, Ya-Fei; Zhou, Yu-Huang; Buayi, Xiemuguli; Zhang, Xian; Wang, Hui-Zhong; Jin, Ren-Cun

    2015-12-30

    In this study, the behavior, distribution and form dynamics of overloaded Cu(II) in anaerobic ammonium oxidation (anammox) granular sludge reactors were investigated. The performance and physiological characteristics were tracked by continuous-flow monitoring to evaluate the long-term effects. High Cu loading (0.24 g L(-1)d(-1)) exceeded sludge bearing capacity, and precipitation dominated the removal pathway. The Cu distribution migrated from the extracellular polymeric substances-bound to the cell-associated Cu and the Cu forms shifted from the weakly bound to strongly bound fractions over time. Pearson correlation and fluorescence spectra analyses showed that the increase in protein concentrations in the EPS was a clear self-defense response to Cu(II) stress. Two remediation strategies, i.e., ethylenediamine tetraacetic acid (EDTA) washing and ultrasound-enhanced EDTA washing, weakened the equilibrium metal partition coefficient from 5.8 to 0.45 and 0.34 L mg(-1)SS, respectively, thereby accelerating the external diffusion of the Cu that had accumulated in the anammox granules.

  20. Model-Based Feasibility Assessment of Membrane Biofilm Reactor to Achieve Simultaneous Ammonium, Dissolved Methane, and Sulfide Removal from Anaerobic Digestion Liquor

    Science.gov (United States)

    Chen, Xueming; Liu, Yiwen; Peng, Lai; Yuan, Zhiguo; Ni, Bing-Jie

    2016-04-01

    In this study, the membrane biofilm reactor (MBfR) is proposed to achieve simultaneous removal of ammonium, dissolved methane, and sulfide from main-stream and side-stream anaerobic digestion liquors. To avoid dissolved methane stripping, oxygen is introduced through gas-permeable membranes, which also from the substratum for the growth of a biofilm likely comprising ammonium oxidizing bacteria (AOB), anaerobic ammonium oxidation (Anammox) bacteria, denitrifying anaerobic methane oxidation (DAMO) microorganisms, aerobic methane oxidizing bacteria (MOB), and sulfur oxidizing bacteria (SOB). A mathematical model is developed and applied to assess the feasibility of such a system and the associated microbial community structure under different operational conditions. The simulation studies demonstrate the feasibility of achieving high-level (>97.0%), simultaneous removal of ammonium, dissolved methane, and sulfide in the MBfRs from both main-stream and side-stream anaerobic digestion liquors through adjusting the influent surface loading (or hydraulic retention time (HRT)) and the oxygen surface loading. The optimal HRT was found to be inversely proportional to the corresponding oxygen surface loading. Under the optimal operational conditions, AOB, DAMO bacteria, MOB, and SOB dominate the biofilm of the main-stream MBfR, while AOB, Anammox bacteria, DAMO bacteria, and SOB coexist in the side-stream MBfR to remove ammonium, dissolved methane, and sulfide simultaneously.

  1. Start-up of the anammox process from the conventional activated sludge in a hybrid bioreactor

    Institute of Scientific and Technical Information of China (English)

    Xiumei Duan; Jiti Zhou; Sen Qiao; Xin Yin; Tian Tian; Fangdi Xu

    2012-01-01

    The anaerobic ammonium oxidation (anammox) process was successfully started up from conventional activated sludge using a hybrid bioreactor within 2 months.The average removal efficiencies of ammonia and nitrite were both over 80%,and the maximum total nitrogen removal rate of 1.85 kg1 N/(m3·day) was obtained on day 362 with the initial sludge concentration of 0.7 g mixed liquor suspended solids (MLSS)/L.Scanning electron microscope (SEM) observation of the granular sludge in the hybrid reactor clearly showed a high degree of compactness and cell sphericity,and the cell size was quite uniform.Transmission electron microscope photos showed that cells were round or oval,the cellular diameter was 0.6-1.0 μm,and the percentage of the anammoxosome compartment was 51%-85% of the whole cell volume.Fluorescence in situ hybridization analysis (FISH) indicated that anammox bacteria became the dominant population in the community (accounting for more than 51% of total bacteria on day 250).Seven planctomycete 16S rRNA gene sequences were present in the 16S rRNA gene clone library generated from the biomass and affiliated to Candidatus Kuenenia stuttgartiensis and Candidatus Brocadia sp.,a new anammox species.In addition,the average effluent suspended solid (MLSS) concentrations of outlets Ⅰ (above the non-woven carrier) and Ⅱ (below the non-woven carrier) were 0.0009 and 0.0035 g/L,respectively.This showed that the non-woven carrier could catch the biomass effectively,which increased biomass and improved the nitrogen removal rate in the reactor.

  2. Performance and mechanisms of salt-torrent ANAMMOX process

    Institute of Scientific and Technical Information of China (English)

    WU Guo-dong

    2016-01-01

    [Abstract]Wide application of seawater made the biological denitrification in the saline wastewater treatment become a difficult problem, expounds the salt effect on anaerobic ammonium oxidation,summarizes the salt resistance of anaerobic ammonia oxidation microorganism acclimation, points out that the two kinds of mechanism of salt stress on the denitrification microbes,and to make a optimization strategy on salt stress.

  3. Anammox enrichment from reject water on blank biofilm carriers and carriers containing nitrifying biomass: operation of two moving bed biofilm reactors (MBBR).

    Science.gov (United States)

    Zekker, Ivar; Rikmann, Ergo; Tenno, Toomas; Lemmiksoo, Vallo; Menert, Anne; Loorits, Liis; Vabamäe, Priit; Tomingas, Martin; Tenno, Taavo

    2012-07-01

    The anammox bacteria were enriched from reject water of anaerobic digestion of municipal wastewater sludge onto moving bed biofilm reactor (MBBR) system carriers-the ones initially containing no biomass (MBBR1) as well as the ones containing nitrifying biomass (MBBR2). Duration of start-up periods of the both reactors was similar (about 100 days), but stable total nitrogen (TN) removal efficiency occurred earlier in the system containing nitrifying biomass. Anammox TN removal efficiency of 70% was achieved by 180 days in both 20 l volume reactors at moderate temperature of 26.0°C. During the steady state phase of operation of MBBRs the average TN removal efficiencies and maximum TN removal rates in MBBR1 were 80% (1,000 g-N/m(3)/day, achieved by 308 days) and in MBBR2 85% (1,100 g-N/m(3)/day, achieved by 266 days). In both reactors mixed bacterial cultures were detected. Uncultured Planctomycetales bacterium clone P4, Candidatus Nitrospira defluvii and uncultured Nitrospira sp. clone 53 were identified by PCR-DGGE from the system initially containing blank biofilm carriers as well as from the nitrifying biofilm system; from the latter in addition to these also uncultured ammonium oxidizing bacterium clone W1 and Nitrospira sp. clone S1-62 were detected. FISH analysis revealed that anammox microorganisms were located in clusters in the biofilm. Using previously grown nitrifying biofilm matrix for anammox enrichment has some benefits over starting up the process from zero, such as less time for enrichment and protection against severe inhibitions in case of high substrate loading rates.

  4. Mainstream partial nitritation and anammox: long-term process stability and effluent quality at low temperatures.

    Science.gov (United States)

    Laureni, Michele; Falås, Per; Robin, Orlane; Wick, Arne; Weissbrodt, David G; Nielsen, Jeppe Lund; Ternes, Thomas A; Morgenroth, Eberhard; Joss, Adriano

    2016-09-15

    The implementation of autotrophic anaerobic ammonium oxidation processes for the removal of nitrogen from municipal wastewater (known as "mainstream anammox") bears the potential to bring wastewater treatment plants close to energy autarky. The aim of the present work was to assess the long-term stability of partial nitritation/anammox (PN/A) processes operating at low temperatures and their reliability in meeting nitrogen concentrations in the range of typical discharge limits below 2  [Formula: see text] and 10 mgNtot·L(-1). Two main 12-L sequencing batch reactors were operated in parallel for PN/A on aerobically pre-treated municipal wastewater (21 ± 5 [Formula: see text] and residual 69 ± 19 mgCODtot·L(-1)) for more than one year, including over 5 months at 15 °C. The two systems consisted of a moving bed biofilm reactor (MBBR) and a hybrid MBBR (H-MBBR) with flocculent biomass. Operation at limiting oxygen concentrations (0.15-0.18 [Formula: see text] ) allowed stable suppression of the activity of nitrite-oxidizing bacteria at 15 °C with a production of nitrate over ammonium consumed as low as 16% in the MBBR. Promising nitrogen removal rates of 20-40 mgN·L(-1)·d(-1) were maintained at hydraulic retention times of 14 h. Stable ammonium and total nitrogen removal efficiencies over 90% and 70% respectively were achieved. Both reactors reached average concentrations of total nitrogen below 10 mgN·L(-1) in their effluents, even down to 6 mgN·L(-1) for the MBBR, with an ammonium concentration of 2 mgN·L(-1) (set as operational threshold to stop aeration). Furthermore, the two PN/A systems performed almost identically with respect to the biological removal of organic micropollutants and, importantly, to a similar extent as conventional treatments. A sudden temperature drop to 11 °C resulted in significant suppression of anammox activity, although this was rapidly recovered after the temperature was increased back to 15 °C. Analyses of 16S

  5. Achieving nitritation and anammox enrichment in a single moving-bed biofilm reactor treating reject water.

    Science.gov (United States)

    Zekker, I; Rikmann, E; Tenno, T; Saluste, A; Tomingas, M; Menert, A; Loorits, L; Lemmiksoo, Vallo; Tenno, T

    2012-01-01

    A biofilm with high nitrifying efficiency was converted into a nitritating and thereafter a nitritating-anammox biofilm in a moving-bed biofilm reactor at 26.5 (+/- 0.5) degrees C by means of a combination of intermittent aeration, low dissolved oxygen concentration, low hydraulic retention time, free ammonia and furthermore, also by elevated HCO3- concentration. Nitrite-oxidizing bacteria (NOB) were more effectively suppressed by an enhanced HCO3- concentration range of 1200-2350 mg/L as opposed to free-ammonia-based process control where NOBs recovered from inhibition; the respective total-nitrogen removal rates were 0.3 kg N/(m3 x d) and 0.2 kg N/(m3 x d). The biofilm modification strategies resulted in a shift in bacterial community as the NOB Nitrobacter spp. were replaced with NOB belonging to the genus Nitrospira spp. and were closely related to Candidatus Nitrospira defluvii. A community of anaerobic ammonium-oxidizing microorganisms -uncultured Planctomycetales bacterium clone P4 (closely related to Candidatus Brocadia fulgida)--was developed.

  6. A review on regulation methods of nitrite oxidizing bacteria in one-stage anaerobic ammonia oxidation process%一段式厌氧氨氧化工艺亚硝酸盐氧化菌抑制方法研究进展

    Institute of Scientific and Technical Information of China (English)

    谢丽; 殷紫; 尹志轩; 王悦超; 周琪

    2016-01-01

    近年来,厌氧氨氧化工艺(anaerobic ammonium oxidation, Anammox)作为一种新型的脱氮技术,由于其耗能少、效率高而被应用于高氨氮废水的处理中。然而,实际运行的厌氧氨氧化工程中有时会出现亚硝酸盐氧化菌(nitrite oxidizing bacteria, NOB)大量繁殖的情况,导致硝酸盐积累,脱氮效率下降。在一段式 Anammox 反应器中,通过控制某些影响因素,如调节体系中的溶解氧,控制游离氨和游离亚硝酸的浓度,调控碳源浓度以及外加中间产物(N2H4、NO 和 NH2OH)等方式,能够在维持 Anammox 工艺脱氮效率的同时有效抑制 NOB。除了系统地综述一段式 Anammox 工艺中 NOB 抑制手段以外,将进一步讨论实际 Anammox 工程应用中抑制 NOB 大量繁殖行之有效的手段。%In recent years,anaerobic ammonium oxidation (Anammox), a new technology for nitrogen removal, has been used in the treatment of high-strength ammonia wastewater due to its low energy consumption and high treatment efficiency. Whereas, the accumulation of nitrite oxidizing bacteria (NOB) often occurs in full-scale Anammox process, leading to the accumulation of nitrate and deterioration of nitrogen removal effectiveness. In two-stage Anammox processes, NOB accumulation often occurs in partial nitritation stage, the inhibition of which has been discussed in details. While in one-stage Anammox process, NOB accumulation is more common and fatal due to the complexity brought by the coexistence of functional bacteria like ammonium oxidizing bacteria (AOB), NOB, anaerobic ammonia oxidizing bacteria (AnAOB) and denitrifiers. It has been reported that NOB could be effectively suppressed in the one-stage Anammox process by some methods, e.g. regulating dissolved oxygen, altering the free ammonia and free nitrous acid concentration, adjusting carbon source and adding externally intermediate products (N2H4, NO, NH2OH), etc. The regulation methods

  7. Occurrence and activity of anammox bacteria in surface sediments of the southern North Sea

    NARCIS (Netherlands)

    Bale, N.J.; Villanueva, L.; Fan, H.; Stal, L.J.; Hopmans, E.C.; Schouten, S.; Sinninghe Damsté, J.S.

    2014-01-01

    We investigated the occurrence and activity of anaerobic ammonia oxidation (anammox) bacteria in sandy and muddy sand sediments of the southern North Sea. The presence of anammox bacteria was established through the detection of specific phosphocholine-monoether ladderane lipids, 16S rRNA gene, and

  8. N2O emissions from a one stage partial nitrification/anammox process in moving bed biofilm reactors.

    Science.gov (United States)

    Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta; Tjus, Kåre

    2013-01-01

    Nitrous oxide (N2O) emissions from wastewater treatment are getting increased attention because their global warming potential is around 300 times that of carbon dioxide. The aim of the study was to measure nitrous oxide emissions from one stage partial nitrification/anammox (Anaerobic Ammonium Oxidation) reactors, where nitrogen is removed in a biological way. The first part of the experimental study was focused on the measurements of nitrous oxide emissions from two pilot scale reactors in the long term; one reactor with intermittent aeration at 25 °C and the other reactor with continuous aeration at 22-23 °C. The second part of the experiment was done to evaluate the influence of different nitrogen loads and aeration strategies, described by the ratio between the non-aerated and aerated phase and the dissolved oxygen concentrations, on nitrous oxide emissions from the process. The study showed that 0.4-2% of the nitrogen load was converted into nitrous oxide from two reactors. With higher nitrogen load, the amount of nitrous oxide emission was also higher. A larger fraction of nitrous oxide was emitted to the gas phase while less was emitted with the liquid effluent. It was also found that nitrous oxide emissions were similar under intermittent and continuous aeration.

  9. The role of inoculum and reactor configuration for microbial community composition and dynamics in mainstream partial nitritation anammox reactors.

    Science.gov (United States)

    Agrawal, Shelesh; Karst, Søren M; Gilbert, Eva M; Horn, Harald; Nielsen, Per H; Lackner, Susanne

    2017-03-10

    Implementation of partial nitritation anammox (PNA) in the mainstream (municipal wastewater treatment) is still under investigation. Microbial community structure and reactor type can influence the performance of PNA reactor; yet, little is known about the role of the community composition of the inoculum and the reactor configuration under mainstream conditions. Therefore, this study investigated the community structure of inocula of different origin and their consecutive community dynamics in four different lab-scale PNA reactors with 16S rRNA gene amplicon sequencing. These reactors were operated for almost 1 year and subjected to realistic seasonal temperature fluctuations as in moderate climate regions, that is, from 20°C in summer to 10°C in winter. The sequencing analysis revealed that the bacterial community in the reactors comprised: (1) a nitrifying community (consisting of anaerobic ammonium-oxidizing bacteria (AnAOB), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (NOB)); (2) different heterotrophic denitrifying bacteria and other putative heterotrophic bacteria (HB). The nitrifying community was the same in all four reactors at the genus level, although the biomasses were of different origin. Community dynamics revealed a stable community in the moving bed biofilm reactors (MBBR) in contrast to the sequencing batch reactors (SBR) at the genus level. Moreover, the reactor design seemed to influence the community dynamics, and reactor operation significantly influenced the overall community composition. The MBBR seems to be the reactor type of choice for mainstream wastewater treatment.

  10. Evaluation of the impact of organic material on the anaerobic methane and ammonium removal in a membrane aerated biofilm reactor (MABR) based on the multispecies biofilm modeling.

    Science.gov (United States)

    Wu, Jun; Zhang, Yue

    2017-01-01

    The simultaneous nitrogen and methane removal by the combined nitritation, anaerobic ammonium oxidation (anammox), and nitrite dependent anaerobic methane oxidation (n-damo) processes in the membrane aerated biofilm reactor (MABR) offers clear advantages in term of energy saving and greenhouse gas emission mitigation. The rejected water from sludge digestion usually contained high ammonium, COD, and dissolved methane. The impact of influent COD on the anaerobic methane and ammonium removal in an MABR was evaluated in the model based study. The results indicated that the influent COD did not reduce the methane and ammonium removal efficiency at C/N ratio (influent COD/NH4(+)-N) less than 0.1. At high C/N ratio, the oxygen transfer coefficient needed to be increased to achieve high methane and nitrogen removal. Substrate flux analysis indicated that heterotrophic denitrification in the outside layer of biofilm reduced the impact of influent COD. Heterotrophic growth needed to be limited at the outside layer by using NO3(-) as electron acceptor; otherwise, the heterotrophic bacteria would compete NO2(-) and space with anammox and n-damo bacteria in the inner layers and reduce the nitrogen and methane removal efficiency.

  11. Potential contribution of anammox to nitrogen loss from paddy soils in Southern China.

    Science.gov (United States)

    Yang, Xiao-Ru; Li, Hu; Nie, San-An; Su, Jian-Qiang; Weng, Bo-Sen; Zhu, Gui-Bing; Yao, Huai-Ying; Gilbert, Jack A; Zhu, Yong-Guan

    2015-02-01

    The anaerobic oxidation of ammonium (anammox) process has been observed in diverse terrestrial ecosystems, while the contribution of anammox to N2 production in paddy soils is not well documented. In this study, the anammox activity and the abundance and diversity of anammox bacteria were investigated to assess the anammox potential of 12 typical paddy soils collected in southern China. Anammox bacteria related to "Candidatus Brocadia" and "Candidatus Kuenenia" and two novel unidentified clusters were detected, with "Candidatus Brocadia" comprising 50% of the anammox population. The prevalence of the anammox was confirmed by the quantitative PCR results based on hydrazine synthase (hzsB) genes, which showed that the abundance ranged from 1.16 × 10(4) to 9.65 × 10(4) copies per gram of dry weight. The anammox rates measured by the isotope-pairing technique ranged from 0.27 to 5.25 nmol N per gram of soil per hour in these paddy soils, which contributed 0.6 to 15% to soil N2 production. It is estimated that a total loss of 2.50 × 10(6) Mg N per year is linked to anammox in the paddy fields in southern China, which implied that ca. 10% of the applied ammonia fertilizers is lost via the anammox process. Anammox activity was significantly correlated with the abundance of hzsB genes, soil nitrate concentration, and C/N ratio. Additionally, ammonia concentration and pH were found to be significantly correlated with the anammox bacterial structure.

  12. Step-wise temperature decreasing cultivates a biofilm with high nitrogen removal rates at 9°C in short-term anammox biofilm tests.

    Science.gov (United States)

    Zekker, Ivar; Rikmann, Ergo; Mandel, Anni; Kroon, Kristel; Seiman, Andrus; Mihkelson, Jana; Tenno, Taavo; Tenno, Toomas

    2016-08-01

    The anaerobic ammonium oxidation (anammox) and nitritation-anammox (deammonification) processes are widely used for N-rich wastewater treatment. When deammonification applications move towards low temperature applications (mainstream wastewater has low temperature), temperature effect has to be studied. In current research, in a deammonification moving bed biofilm reactor a maximum total nitrogen removal rate (TNRR) of 1.5 g N m(-2 )d(-1) (0.6 kg N m(-3 )d(-1)) was achieved. Temperature was gradually lowered by 0.5°C per week, and a similar TNRR was sustained at 15°C during biofilm cultivation. Statistical analysis confirmed that a temperature decrease from 20°C down to 15° did not cause instabilities. Instead, TNRR rose and treatment efficiency remained stable at lower temperatures as well. Quantitative polymerase chain reaction analyses showed an increase in Candidatus Brocadia quantities from 5 × 10(3) to 1 × 10(7) anammox gene copies g(-1) total suspended solids (TSS) despite temperature lowered to 15°C. Fluctuations in TNRR were rather related to changes in influent [Formula: see text] concentration. To study the short-term effect of temperature on the TNRR, a series of batch-scale experiments were performed which showed sufficient TNRRs even at 9-15°C (1.24-3.43 mg N g(-1 )TSS h(-1), respectively) with anammox temperature constants (Q10) ranging 1.3-1.6. Experiments showed that a biofilm adapted to 15°C can perform N-removal most sufficiently at temperatures down to 9°C as compared with biofilm adapted to higher temperature. After biomass was adapted to 15°C, the decrease in TNRR in batch tests at 9°C was lower (15-20%) than that for biomass adapted to 17-18°C.

  13. Nitrification and Anammox with urea as the energy source

    NARCIS (Netherlands)

    Sliekers, A.O.; Haaijer, S.C.M.; Schmid, M.C.; Harhangi, R.H.; Verwegen, K.; Kuenen, J.G.; Jetten, M.S.M.

    2004-01-01

    Urea is present in many ecosystems and can be used as an energy source by chemolithotrophic aerobic ammonia oxidizing bacteria (AOB). Thus the utilization of urea in comparison to ammonia, by AOB as well as anaerobic ammonia oxidizing (Anammox) bacteria was investigated, using enrichments cultures,

  14. Aggregate Size and Architecture Determine Microbial Activity Balance for One-Stage Partial Nitritation and Anammox

    DEFF Research Database (Denmark)

    Vlaeminck, S.E.; Terada, Akihiko; Smets, Barth F.

    2010-01-01

    Aerobic ammonium-oxidizing bacteria (AerAOB) and anoxic ammonium-oxidizing bacteria (AnAOB) cooperate in partial nitritation/anammox systems to remove ammonium from wastewater. In this process, large granular microbial aggregates enhance the performance, but little is known about granulation so far....... In this study, three suspended-growth oxygen-limited autotrophic nitrification-denitrification (OLAND) reactors with different inoculation and operation (mixing and aeration) conditions, designated reactors A, B, and C, were used. The test objectives were (i) to quantify the AerAOB and AnAOB abundance......AOB-rich aggregates (reactors B and C). The hypothesized granulation pathways include granule replication by division and budding and are driven by growth and/or decay based on species-specific physiology and by hydrodynamic shear and mixing....

  15. Research progress in anammox wastewater treatment system and its actual application%厌氧氨氧化污水处理工艺及其实际应用研究进展

    Institute of Scientific and Technical Information of China (English)

    陈重军; 王建芳; 张海芹; 沈耀良

    2014-01-01

    As a nocelltype of biological nitrogen removal technology, anaerobic ammonium oxidation (anammox) was a process which was driven by anammox organisms, oxidized ammonium to nitrogen gas using nitrite as the electron acceptor and utilize CO2 as carbon source under anoxic conditions. Compared with the traditional nitrification/denitrification process, anammox has great potential for the practical use in removing nitrogen from the wastewater containing high concentration ammonium and low carbon resources, with no requiration of organic carbon resource and lower sludge production. Nowadays, the anammox wastewater treatment system have been successfully applied in removing nitrogen for various wastewater, with remarkable economic and environmental results. Therefore, this paper reviewed the mechanisms, controlling conditions, advantages, functional microbial populations of Sharon-Anammox and Completely autotrophic ammonium removal over nitrite (CANON) process, respectively. Also, the application performance and controlling parameters in the actual wastewater treatment such as landfill leachate, anaerobic digester effluent and piggery wastewater were explained on both of anammox process. The process provided technical support for anammox engineering applications in sewage treatment. In addition, the field scale applications of anammox process were introduced in the later article. However, further researches are needed to understand prospects and problems of anammox process in actual wastewater treatment were discussed. The rapid enrichment of anammox bacteria, inhibitory effects of organic carbon sources and broad applicability of anammox bacteria would be the most popular topic and difficulty in the anammox engineering application. The article has important theoretical and practical significance for the application and promotion of anammox process.%厌氧氨氧化(Anammox)反应是指在厌氧或者缺氧条件下,厌氧氨氧化微生物以NO2--N

  16. A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones

    Digital Repository Service at National Institute of Oceanography (India)

    Woebken, D.; Lam, P.; Kuypers, M.M.M.; Naqvi, S.W.A; Kartal, B.; Strous, M.; Jetten, M.S.M.; Fuchs, B.M.; Amann, R.

    The anaerobic oxidation of ammonium (anammox) contributes significantly to the global loss of fixed nitrogen and is carried out by a deep branching monophyletic group of bacteria within the phylum Planctomycetes. Various studies have implicated...

  17. Ammonium-oxidizing bacteria facilitate aerobic degradation of sulfanilic acid in activated sludge.

    Science.gov (United States)

    Chen, Gang; Ginige, Maneesha P; Kaksonen, Anna H; Cheng, Ka Yu

    2014-01-01

    Sulfanilic acid (SA) is a toxic sulfonated aromatic amine commonly found in anaerobically treated azo dye contaminated effluents. Aerobic acclimatization of SA-degrading mixed microbial culture could lead to co-enrichment of ammonium-oxidizing bacteria (AOB) because of the concomitant release of ammonium from SA oxidation. To what extent the co-enriched AOB would affect SA oxidation at various ammonium concentrations was unclear. Here, a series of batch kinetic experiments were conducted to evaluate the effect of AOB on aerobic SA degradation in an acclimatized activated sludge culture capable of oxidizing SA and ammonium simultaneously. To account for the effect of AOB on SA degradation, allylthiourea was used to inhibit AOB activity in the culture. The results indicated that specific SA degradation rate of the mixed culture was negatively correlated with the initial ammonium concentration (0-93 mM, R²= 0.99). The presence of AOB accelerated SA degradation by reducing the inhibitory effect of ammonium (≥ 10 mM). The Haldane substrate inhibition model was used to correlate substrate concentration (SA and ammonium) and oxygen uptake rate. This study revealed, for the first time, that AOB could facilitate SA degradation at high concentration of ammonium (≥ 10 mM) in an enriched activated sludge culture.

  18. Production and mitigation of N2O in sequentially membrane-aerated redox-stratified nitritation/anammox biofilms

    DEFF Research Database (Denmark)

    Smets, Barth F.; Pellicer i Nàcher, Carles; Thamdrup, Bo;

    Combining partial nitritation with anaerobic ammonium oxidation maybe a cost- and energy-efficient alternative to remove reduced nitrogen from nitrogen rich waste streams. However, increased N2O emissions (upto several % of the incoming N flux) have been observed for reactors performing partial......) conditions. Although anaerobic ammonium oxidizing bacteria are not known to metabolize N2O, we speculate that the existence of oxygen free zone would permit complete expression ofa denitrification pathway by heterotrophic bacteria- and hence remove any N2O which is transiently produced in the inner (aerobic...

  19. The effect of SRT on nitrate formation during autotrophic nitrogen removal of anaerobically treated wastewater.

    Science.gov (United States)

    Lee, Po-Heng; Kwak, Wonji; Bae, Jeaho; McCarty, Perry L

    2013-01-01

    Autotrophic nitrogen removal, coupling nitritation (ammonium to nitrite) with anaerobic ammonium oxidation (anammox), offers a promising nitrogen-removal alternative, especially for post-treatment of anaerobically-treated wastewater. However, previous reports suggest that less than 90% total nitrogen removal should be expected with this process alone because over 10% of the ammonium removed will be converted to nitrate. This is caused because nitrite conversion to nitrate is required for reduction of carbon dioxide to cell carbon. However, recent research results suggest that more limited nitrate formation of only a few per cent sometimes occurs. It was hypothesized such lower nitrate yields may result from use of long solids retention times (SRT) where net biological yields are low, and providing that the ratio of oxygen added to influent ammonium concentrations is maintained at or below 0.75 mol/mol. Overall reaction equations were developed for each process and combined to evaluate the potential effect of SRT on process stoichiometry. The results support the use of a long SRT to reduce net cell yield, which in turn results in a small percentage conversion to nitrate during ammonium removal and high total nitrogen removals in the range of 90 to 94%.

  20. Integrating landfill bioreactors, partial nitritation and anammox process for methane recovery and nitrogen removal from leachate

    Science.gov (United States)

    Sun, Faqian; Su, Xiaomei; Kang, Tingting; Wu, Songwei; Yuan, Mengdong; Zhu, Jing; Zhang, Xiayun; Xu, Fang; Wu, Weixiang

    2016-06-01

    A new process consisting of a landfill bioreactor, partial-nitritation (PN) and the anammox process has been developed for landfill leachate treatment. In this study, the landfill bioreactor exhibited excellent performance in methane-rich biogas recovery, with a specific biogas yield of 0.47 L gas g-1 COD and methane percentages of 53-76%. PN was achieved in the aerobic reactor by high free ammonia (101 ± 83 mg NH3 L-1) inhibition for nitrite-oxidizing bacteria, and the desired PN effluent composition (effluent nitrite: ammonium ratio of 1.1 ± 0.3) was controlled by adjusting the alkalinity concentration per unit of ammonium oxidized to approximately 14.3 mg CaCO3 mg-1 N in the influent. The startup of anammox process was successfully achieved with a membrane bioreactor in 160 d, and a maximum nitrogen removal rate of 216 mg N L-1 d-1 was attained for real landfill leachate treatment. The quantitative polymerase chain reaction results confirmed that the cell-specific anammox activity was approximately 68-95 fmol N cell-1 d-1, which finally led to the stable operation of the system.

  1. NEW TRENDS IN AMMONIA NITROGEN REMOVAL FROM WASTEWATER: NITRITATION – ANAMMOX AT LOW TEMPERATURE

    Directory of Open Access Journals (Sweden)

    Mariusz Tomaszewski

    2017-04-01

    Full Text Available Partial nitrification (nitritation – anammox (anaerobic ammonia oxidation process is increasingly used to treat wastewater, characterized by a high nitrogen content and high temperature (25 - 40°C. It is connected with the optimal temperature of anammox bacteria, which is at the range between 30 and 40°C. Mainstream application of anammox for the municipal wastewater, characterized by lower temperature seems to be one of the most challenging, but profitable process. Thenceforth, the research performed in the field of the nitritation – anammox at low temperature (10 - 20°C become more and more intense. Compared with the conventional nitrification – denitrification system, nitritation – anammox reduces oxygen demand, eliminates the need for organic carbon source and produces less excess sludge. As a result, it allows to a significant cost reduction. This paper reviews the most important and recent information in the field of nitritation – anammox process at low temperature. Effective nitrogen removal from the municipal wastewater was demonstrated at 15°C in a pilot scale and at 12°C in a laboratory scale reactor. The best performance is achieved in sequencing batch reactors and moving bed reactors with biofilm or granular biomass, as well as combinations of these technologies. Molecular biology studies shows that anammox bacteria of the genus Candidatus Brocadia may have the biggest predispositions to adapt to low temperature. However, temperature about 10°C, time and method of biomass adaptation are still the main challenges for stable and common nitritation – anammox process.

  2. Performance of Anammox granular sludge bed reactor started up with nitrifying granular sludge

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ping; LIN Feng-mei; HU Bao-lan; CHEN Jian-song

    2004-01-01

    The anaerobic ammonia oxidation(Anammox) granular sludge bed reactor was started up successfully withnitrifying granular sludge. During the operation, the nitrifying granular sludge was gradually converted into Anammoxgranular sludge with good settling property and high conversion activity. The Anammox reactor worked well with theshortest HRT of 2.43 h. Under the condition that HRT was 6.39 h and influent concentration of ammonia and nitritewas 10 mmol/L, the removal of ammonia and nitrite was 97.17% and 100.00%, respectively. Corresponding

  3. Aggregate size and architecture determine biomass activity for one-stage partial nitritation and anammox

    DEFF Research Database (Denmark)

    Vlaeminck, S.; Terada, Akihiko; Smets, Barth F.

    2010-01-01

    In partial nitritation/anammox systems, aerobic and anoxic ammonium-oxidizing bacteria (AerAOB and AnAOB) remove ammonium from wastewater. In this process, large granular microbial aggregates enhance the performance, but little is known about this type of granulation so far. In this study......, aggregates of three reactors (A, B, C) with different inoculation and operation were studied. The test objectives were to quantify the AerAOB and AnAOB abundance and the activity balance for the different aggregate sizes, and to relate aggregate morphology, size distribution, and architecture putatively...... to the inoculation and operation of the reactors. Fluorescent in-situ hybridization (FISH) was applied on aggregate sections to quantify AerAOB and AnAOB, as well as to visualize the aggregate architecture. The activity balance of the aggregates was calculated as the nitrite accumulation rate ratio (NARR), i...

  4. Development of anammox process for removal of nitrogen from wastewater in a novel self-sustainable biofilm reactor.

    Science.gov (United States)

    Chatterjee, Pritha; Ghangrekar, M M; Rao, Surampalli

    2016-10-01

    Effluent of an upflow anaerobic sludge blanket reactor was treated in a downflow rope-bed-biofilm-reactor (RBBR) to remove residual organic matter and nitrogen. Nitrogen removal was observed in phase 1 and phase 2 with and without aeration, respectively for 320days each. Organic matter, ammonia and total nitrogen removal efficiencies of 78±2%, 95±1% and 79±11% were obtained in phase 1 and 78±2%, 93±9% and 87±6% in phase 2, respectively. In phase 2, anammox bacteria had a specific anammox activity of 3.35gNm(-2)day(-1). Heme c concentration, sludge characteristics and reaction ratios of dissolved oxygen, alkalinity and pH corroborated contribution of anammox process. Using experimental results kinetic coefficients required for design of RBBR were estimated. Anammox gave more stable performance under varying nitrogen loading and this option is more sustainable for solving problem of nitrogen removal from sewage.

  5. Effect of Iron Ions on Denitrification Performance in Anammox Reactor%亚铁离子对厌氧氨氧化反应器脱氮性能的影响

    Institute of Scientific and Technical Information of China (English)

    张黎; 胡筱敏; 姜彬慧; 黄永刚

    2015-01-01

    研究通过投加厌氧氨氧化污泥,待反应器稳定运行后考察不同浓度 Fe2+对厌氧氨氧化污泥活性的影响.实验结果表明:经过210 d 的连续培养,发现 Fe2+可以促进厌氧氨氧化菌的细胞合成并且增加其基质代谢,当溶液中 Fe2+浓度为0.085 mmol /L(4.76 mg /L)时,氨氮转化率维持在90%以上;添加 Fe2+可以增加厌氧氨氧化菌亚铁血红素含量.此时样品中亚铁血红素 C 含量达到0.143μmol /mg,是同期对照反应器的2.04倍.通过 SEM电镜发现当 Fe2+浓度为0.085 mmol /L 时,厌氧氨氧化菌群结构与形态趋于稳定.%The effect of different concentration of Fe2 + on the activity of anaerobic ammonium oxidation sludge was experimentally investigated by the addition of anammox sludge in stable operation at reactor.The experimental results show that:Fe2 + can promote cell synthesis of anaerobic ammonia oxidation bacteria and increase its matrix metabolism,through 210 days continuous operation. When the concentration of Fe2 + in the solution is 0.085 mmol /L (4.76 mg /L),the ammonia nitrogen conversion rate remains at more than 90%.The heme content of anaerobic ammonia oxidation bacteria is increased by the addition of Fe2 +.At this point,the heme C content reaches 0.143 μmol /mg in the sample.It is 2.04 times heme content of anaerobic ammonia oxidation bacteria in comparison reactor at the same period.It is found that using SEM when the concentration of Fe2 + is 0.085 mmol /L,the anaerobic ammonia oxidation bacteria form approaches to a steady state.

  6. Nitrogen polishing in a fully anoxic anammox MBBR treating mainstream nitritation-denitritation effluent.

    Science.gov (United States)

    Regmi, Pusker; Holgate, Becky; Miller, Mark W; Park, Hongkeun; Chandran, Kartik; Wett, Bernhard; Murthy, Sudhir; Bott, Charles B

    2016-03-01

    As nitrogen discharge limits are becoming more stringent, short-cut nitrogen systems and tertiary nitrogen polishing steps are gaining popularity. For partial nitritation or nitritation-denitritation systems, anaerobic ammonia oxidation (anammox) polishing may be feasible to remove residual ammonia and nitrite from the effluent. Nitrogen polishing of mainstream nitritation-denitritation system effluent via anammox was studied at 25°C in a fully anoxic moving bed bioreactor (MBBR) (V = 0.45 m(3) ) over 385 days. Unlike other anammox based processes, a very fast startup of anammox MBBR was demonstrated, despite nitrite limited feeding conditions (influent nitrite = 0.7 ± 0.59 mgN/L, ammonia = 6.13 ± 2.86 mgN/L, nitrate = 3.41 ± 1.92 mgN/L). The nitrogen removal performance was very stable within a wide range of nitrogen inputs. Anammox bacteria (AMX) activity up to 1 gN/m(2) /d was observed which is comparable to other biofilm-based systems. It is generally believed that nitrate production limits nitrogen removal through AMX metabolism. However, in this study, anammox MBBR demonstrated ammonia, nitrite, and nitrate removal at limited chemical oxygen demand (COD) availability. AMX and heterotrophs contributed to 0.68 ± 0.17 and 0.32 ± 0.17 of TIN removal, respectively. It was speculated that nitrogen removal might be aided by denitratation which could be due to heterotrophs or the recently discovered ability for AMX to use short-chain fatty acids to reduce nitrate to nitrite. This study demonstrates the feasibility of anammox nitrogen polishing in an MBBR is possible for nitritation-denitration systems.

  7. Natural attenuation potential of tricholoroethene in wetland plant roots: role of native ammonium-oxidizing microorganisms.

    Science.gov (United States)

    Qin, Ke; Struckhoff, Garrett C; Agrawal, Abinash; Shelley, Michael L; Dong, Hailiang

    2015-01-01

    Bench-scale microcosms with wetland plant roots were investigated to characterize the microbial contributions to contaminant degradation of trichloroethene (TCE) with ammonium. The batch system microcosms consisted of a known mass of wetland plant roots in aerobic growth media where the roots provided both an inoculum of root-associated ammonium-oxidizing microorganisms and a microbial habitat. Aqueous growth media, ammonium, and TCE were replaced weekly in batch microcosms while retaining roots and root-associated biomass. Molecular biology results indicated that ammonium-oxidizing bacteria (AOB) were enriched from wetland plant roots while analysis of contaminant and oxygen concentrations showed that those microorganisms can degrade TCE by aerobic cometabolism. Cometabolism of TCE, at 29 and 46 μg L(-1), was sustainable over the course of 9 weeks, with 20-30 mg L(-1) ammonium-N. However, at 69 μg L(-1) of TCE, ammonium oxidation and TCE cometabolism were completely deactivated in two weeks. This indicated that between 46 and 69 μg L(-1) TCE with 30 mg L(-1) ammonium-N there is a threshold [TCE] below which sustainable cometabolism can be maintained with ammonium as the primary substrate. However, cometabolism-induced microbial deactivation of ammonium oxidation and TCE degradation at 69 μg L(-1) TCE did not result in a lower abundance of the amoA gene in the microcosms, suggesting that the capacity to recover from TCE inhibition was still intact, given time and removal of stress. Our study indicates that microorganisms associated with wetland plant roots can assist in the natural attenuation of TCE in contaminated aquatic environments, such as urban or treatment wetlands, and wetlands impacted by industrial solvents.

  8. Effect of organic matter strength on anammox for modified greenhouse turtle breeding wastewater treatment.

    Science.gov (United States)

    Chen, Chongjun; Huang, Xiaoxiao; Lei, Chenxiao; Zhang, Tian C; Wu, Weixiang

    2013-11-01

    Anaerobic ammonium-N removal from modified greenhouse turtle breeding wastewater with different chemical oxygen demand (COD) strengths (194.0-577.8 mg L(-1)) at relatively fixed C/N ratios (≈ 2) was investigated using a lab-scale up-flow anaerobic sludge blanket (UASB) anammox reactor. During the entire experiment, the total nitrogen (TN) removal efficiency was about 85% or higher, while the average COD removal efficiency was around 56.5 ± 7.9%. Based on the nitrogen and carbon balance, the nitrogen removal contribution was 79.6 ± 4.2% for anammox, 12.7 ± 3.0% for denitrification+denitritation and 7.7 ± 4.9% for other mechanisms. Denaturing gradient gel electrophoresis (DGGE) analyses revealed that Planctomycete, Proteobacteria and Chloroflexi bacteria were coexisted in the reactor. Anammox was always dominant when the reactor was fed with different COD concentrations, which indicated the stability of the anammox process with the coexistence of the denitrification process in treating greenhouse turtle breeding wastewater.

  9. Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone

    NARCIS (Netherlands)

    Pitcher, A.; Villanueva, L.; Hopmans, E.C.; Schouten, S.; Reichart, G.J.; Sinninghe Damsté, J.S.

    2011-01-01

    Ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (anammox) bacteria have emerged as significant factors in the marine nitrogen cycle and are responsible for the oxidation of ammonium to nitrite and dinitrogen gas, respectively. Potential for an interaction between these groups exists;

  10. Simultaneous domestic wastewater and nitrate sewage treatment by DEnitrifying AMmonium OXidation (DEAMOX) in sequencing batch reactor.

    Science.gov (United States)

    Du, Rui; Cao, Shenbin; Li, Baikun; Wang, Shuying; Peng, Yongzhen

    2017-05-01

    A novel DEAMOX system was developed for nitrogen removal from domestic wastewater and nitrate (NO3(-)-N) sewage in sequencing batch reactor (SBR). High nitrite (NO2(-)-N) was produced from NO3(-)-N reduction in partial-denitrification process, which served as electron acceptor for anammox and was removed with ammonia (NH4(+)-N) in domestic wastewater simultaneously. A 500-days operation demonstrated that the efficient and stable nitrogen removal performance could be achieved by DEAMOX. The total nitrogen (TN) removal efficiency was as high as 95.8% with influent NH4(+)-N of 63.58 mg L(-1) and NO3(-)-N of 69.24 mg L(-1). The maximum NH4(+)-N removal efficiency reached up to 94.7%, corresponding to the NO3(-)-N removal efficiency of 97.8%. The biomass of partial-denitrification and anammox bacteria was observed to be wall-growth. The deteriorated nitrogen removal performance occurred due to excess denitrifying microbial growth in the outer layer of sludge consortium, which prevented the substrate transfer for anammox inside. However, an excellent nitrogen removal could be guaranteed by scrapping the superficial denitrifying biomass at regular intervals. Furthermore, the high-throughput sequencing analysis revealed that the Thauera genera (26.33%) was possibly responsible for the high NO2(-)-N accumulation in partial-denitrification and Candidatus Brocadia (1.7%) was the major anammox species.

  11. The contribution of anammox and denitrification to sediment N2 production in a surface flow constructed wetland.

    Science.gov (United States)

    Erler, Dirk V; Eyre, Bradley D; Davison, Leigh

    2008-12-15

    This study used anaerobic slurry assays and intact core incubations to quantify potential rates of anammox (anaerobic ammonia oxidation) in sediments along the flow path of a surface flow constructed wetland receiving secondary treated sewage effluent. Anammox occurred at two of the four sites assayed with a maximum rate of 199.4 +/- 18.7 micromol N x m(-2) x hr(-1) (24% of total N2 production) at the discharge end of the wetland. Denitrification was the major producer of N2, with a maximum rate of 965.3 +/- 122.8 micromol N x m(-2) x hr(-1) at site 2. Oxygen was probably the key regulator of anammox activity within the studied CW. In addition to anammox, we found evidence that nitrifier-denitrification was potentially responsible for the production of N2O. Total production of N2O was 15.1% of the total gaseous N produced. Limitations to the methodology for quantifying anammox in CW's are outlined. This study demonstrated that denitrification is not the only pathway for gaseous production in constructed wetlands and that wetlands may be significant sources of greenhouse gases such as N2O.

  12. Nitrogen removal from sludge dewatering effluent through anaerobic ammonia oxidation process

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shao-hui; ZHENG Ping; HUA Yu-mei

    2005-01-01

    Anaerobic ammonia oxidation(Anammox) process is a novel and promising wastewater nitrogen removal process. The feasibility of transition of Anammox from denitrification and the performance of lab-scale Anammox biofilm reactor were investigated with sludge dewatering effluent. The results showed that Anammox process could be successfully started up after cultivation of denitrification biofilm and using it as inoculum. The transition of Anammox from denitrification was accomplished within 85 d. Anammox process was found suitable to remove ammonia from sludge dewatering effluent. The effluent ammonia concentration was detected to be 23.11 mgN/L at HRT of 28 h when influent ammonia concentration was fed 245 mgN/L, which was less than that for the national discharge standard Ⅱ (25 mgN/L) of 243.25 mg NH4+ -N/L and 288.31 mg NO2- -N/L.

  13. Anaerobic ammonia oxidation in a fertilized paddy soil

    DEFF Research Database (Denmark)

    Zhu, Guibing; Wang, Shanyun; Wang, Yu;

    2011-01-01

    Evidence for anaerobic ammonium oxidation in a paddy field was obtained in Southern China using an isotope-pairing technique, quantitative PCR assays and 16S rRNA gene clone libraries, along with nutrient profiles of soil cores. A paddy field with a high load of slurry manure as fertilizer...

  14. SNAD生物膜厌氧氨氧化活性的氨氮抑制动力学研究%The kinetic coefficients of ammonium inhibition on the Anammox activity of SNAD biofilm

    Institute of Scientific and Technical Information of China (English)

    郑照明; 李军; 马静; 杜佳; 赵白航

    2016-01-01

    通过批试实验研究了氨氮浓度对SNAD生物膜厌氧氨氧化性能的影响. SNAD生物膜反应器以生活污水为进水.进水NH4+-N和COD浓度平均值分别为70mg/L和180mg/L,出水NH4+-N, NO2--N, NO3--N和COD浓度平均值分别为2mg/L,2mg/L,7mg/L和50mg/L. SNAD生物膜具有良好的厌氧氨氧化活性.初始NH4+-N和NO2--N浓度都为70mg/L时,厌氧氨氧化批试NH4+-N、NO2--N和TIN去除速率分别为0.121kg N/(kg VSS·d),0.180kg N/(kg VSS·d)和0.267kg N/(kg VSS·d).采用Haldane模型可以很好的拟合氨氮浓度对厌氧氨氧化活性的影响.在高FA和低FA工况下氨氮浓度对厌氧氨氧化活性的抑制动力学常数相差不大. M1(FA浓度为0.7~20.4mg/L)和M2(FA浓度为6.3~190.5mg/L)的最大NO2--N理论去除速率rmax分别为0.209kg N/(kg VSS·d)和0.221kg N/(kg VSS·d),氨氮半饱和常数Ks分别为9.5mg/L和6.1mg/L,氨氮自身抑制常数KI分别为422mg/L和597mg/L.氨氮(而不是游离氨)对SNAD生物膜的厌氧氨氧化活性起主要抑制作用.%The effect of ammonium concentrations on the anaerobic ammonium oxidation (Anammox) activity of simultaneous partial nitrification, anaerobic ammonium oxidization and denitrification (SNAD) biofilm was investigated in batch tests. The SNAD biofilm reactor performed stable nitrogen removal performance with the influent of domestic wastewater. The average influent NH4+-N and COD concentrations were 70mg/L and 180mg/L, respectively. As a result, the average effluent NH4+-N, NO2--N and NO3--N concentrations were 2mg/L, 2mg/L, 7mg/L and 50mg/L, respectively. The SNAD biofilm performed good Anammox activity. The NH4+-N, NO2--N and total inorganic nitrogen (TIN) removal rates were 0.121kg N/(kg VSS·d), 0.180kg N/(kg VSS·d) and 0.267kg N/(kg VSS·d) with the initial NH4+-N and NO2--N concentrations of both 70mg/L. Moreover, Haldane model was applied to investigate the ammonium inhibition on the Anammox process. There is no obvious difference in kinetic

  15. Oxygen sensitivity of anammox and coupled N-cycle processes in oxygen minimum zones.

    Directory of Open Access Journals (Sweden)

    Tim Kalvelage

    Full Text Available Nutrient measurements indicate that 30-50% of the total nitrogen (N loss in the ocean occurs in oxygen minimum zones (OMZs. This pelagic N-removal takes place within only ~0.1% of the ocean volume, hence moderate variations in the extent of OMZs due to global warming may have a large impact on the global N-cycle. We examined the effect of oxygen (O(2 on anammox, NH(3 oxidation and NO(3(- reduction in (15N-labeling experiments with varying O(2 concentrations (0-25 µmol L(-1 in the Namibian and Peruvian OMZs. Our results show that O(2 is a major controlling factor for anammox activity in OMZ waters. Based on our O(2 assays we estimate the upper limit for anammox to be ~20 µmol L(-1. In contrast, NH(3 oxidation to NO(2(- and NO(3(- reduction to NO(2(- as the main NH(4(+ and NO(2(- sources for anammox were only moderately affected by changing O(2 concentrations. Intriguingly, aerobic NH(3 oxidation was active at non-detectable concentrations of O(2, while anaerobic NO(3(- reduction was fully active up to at least 25 µmol L(-1 O(2. Hence, aerobic and anaerobic N-cycle pathways in OMZs can co-occur over a larger range of O(2 concentrations than previously assumed. The zone where N-loss can occur is primarily controlled by the O(2-sensitivity of anammox itself, and not by any effects of O(2 on the tightly coupled pathways of aerobic NH(3 oxidation and NO(3(- reduction. With anammox bacteria in the marine environment being active at O(2 levels ~20 times higher than those known to inhibit their cultured counterparts, the oceanic volume potentially acting as a N-sink increases tenfold. The predicted expansion of OMZs may enlarge this volume even further. Our study provides the first robust estimates of O(2 sensitivities for processes directly and indirectly connected with N-loss. These are essential to assess the effects of ocean de-oxygenation on oceanic N-cycling.

  16. 两种典型滤料厌氧氨氧化效果与工艺运行优化%Comparison of performance and optimizing process for two typical filter medias of ANAMMOX biofilters

    Institute of Scientific and Technical Information of China (English)

    杨庆; 谷鹏超; 刘秀红; 周瑶; 彭永臻

    2015-01-01

    为促进厌氧氨氧化在城市污水处理中的应用,针对陶粒和火山岩两种典型滤料滤池的厌氧氨氧化脱氮效果和关键性工艺参数进行了研究。试验结果表明,接种挂膜启动生物滤池,10 d可实现稳定的厌氧氨氧化生物膜,火山岩滤池生物膜量和EPS均高于陶粒。滤料和反冲洗对厌氧氨氧化滤池实现稳定脱氮具有重要影响,低滤速条件下火山岩和陶粒滤池厌氧氨氧化效果基本相同,火山岩滤池和陶粒滤池反冲洗周期均较长,宜采用单独水冲方式;但高滤速条件下火山岩滤池比陶粒滤池更易堵塞,滤层有效深度小,反冲洗方式宜采用气水联合反冲方式,并相应缩短反冲洗周期、延长反冲洗时间。火山岩和陶粒滤池滤速均不宜高于2 m·h−1,最高总氮负荷分别可达3.81 kg·m−3·d−1和3.56 kg·m−3·d−1。%To promote the engineering applications of anaerobic ammonium oxidation (ANAMMOX) for sewage treatment, nitrogen removal rate and key operational parameters were studied in two typical filters with ceramsite or volcanic rock as filter media were studied. The obtained results showed that the anammox biofim in both biofilters was successfully cultivated after 10 days of inoculation. Filter media and backwash both played important role in achieving stable anammox in biofilter. At low filtration velocity, in both biofilter, not only nitrogen removal rate was almost similar, but also water backwash and long backwash cycle were optimal. However, at high filtration velocity, volcanic rock biofilter was more easily blocked up than ceramsite biofilter. The effective depth of filter layer in volcanic rock biofilter was also thinner than that in ceramsite biofilter. Besides, air+water backwash style was optimal, backwash cycle should be shortened and backwash time should be prolonged. Filtration velocity in both biofilters should be controlled lower than 2 m·h−1. The highest

  17. Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone off Northern Chil

    DEFF Research Database (Denmark)

    Dalsgaard, Tage; Stewart, Frank J.; Thamdrup, Bo

    2014-01-01

    UNLABELLED: A major percentage (20 to 40%) of global marine fixed-nitrogen loss occurs in oxygen minimum zones (OMZs). Concentrations of O2 and the sensitivity of the anaerobic N2-producing processes of anammox and denitrification determine where this loss occurs. We studied experimentally how O2...

  18. The Short-term Effects of Temperature and Free Ammonia on Ammonium Oxidization in Granular and Floccular Nitrifying System

    Institute of Scientific and Technical Information of China (English)

    吴蕾; 彭永臻; 马勇; 刘旭; 李凌云; 王淑莹

    2012-01-01

    The short-term effects of temperature and free ammonia (FA) on ammonium oxidization were investigated in this study by operating several batch tests with two different partial nitrification aggregates, formed as either granules or flocs. The results showed that the rate of ammonium oxidation in both cultures increased significantly as temperature increased from 10 to 30 °C. The specific ammonium oxidation rate with the granules was 2-3 times higher than that with flocs at the same temperature. Nitrification at various FA concentrations and temperatures combination exhibited obvious inhibition in ammonium oxidation rate when FA was 90 mg·L 1 and tempera- ture dropped to 10 °C in the two systems. However, the increase in substrate oxidation rate of ammonia at 30 °C was observed. The results suggested that higher reaction temperature was helpful to reduce the toxicity of FA. Granules appeared to be more tolerant to FA attributed to the much fraction of ammonia oxidizing bacteria (AOB) and higher resistance to the transfer of ammonia into the bacterial aggregates, whereas in the floc system, the bacteria distributed throughout the entire aggregate. These results may contribute to the applicability of the nitrifying granules in wastewater treatment operated at high ammonium concentration.

  19. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones

    DEFF Research Database (Denmark)

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene Mark;

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrifica...

  20. Shotgun metagenomic data reveals significant abundance but low diversity of "

    NARCIS (Netherlands)

    Villanueva, L.; Speth, D.R.; van Alen, T.; Hoischen, A.; Jetten, M.S.M.

    2014-01-01

    Anaerobic ammonium oxidizing (anammox) bacteria are responsible for a significant portion of the loss of fixed nitrogen from the oceans, making them important players in the global nitrogen cycle. To date, marine anammox bacteria found in both water columns and sediments worldwide belong almost excl

  1. Aeration Strategies To Mitigate Nitrous Oxide Emissions from Single-Stage Nitritation/Anammox Reactors

    DEFF Research Database (Denmark)

    Domingo Felez, Carlos; Mutlu, A. Gizem; Jensen, Marlene Mark;

    2014-01-01

    -stage nitritation/anammox were operated under different aeration strategies, gradually adjusted over six months. At constant but limiting oxygen loading, synthetic reject water was fed (0.75g-N/L.d) and high nitrogen removal efficiencies (83 +/- 5 and 88 +/- 2%) obtained. Dynamics of liquid phase nitrous (N2O......) and nitric oxide (NO) concentrations were monitored and N2O emissions calculated. Significant decreases in N2O emissions were obtained when the frequency of aeration was increased while maintaining a constant air flow rate (from >6 to 1.7% Delta N2O/Delta TN). However, no significant effect on the emissions...... was noted when the duration of aeration was increased while decreasing air flow rate (10.9 +/- 3.2% Delta N2O/Delta TN). The extant ammonium oxidation activity (mgNH(4)(+)-N/gVSS.min) positively correlated with the specific N2O production rate (mgN(2)O-N/gVSS.min) of the systems. Operating under conditions...

  2. Nitrogen removal properties in a continuous marine anammox bacteria reactor under rapid and extensive salinity changes.

    Science.gov (United States)

    Wei, Qiaoyan; Kawagoshi, Yasunori; Huang, Xiaowu; Hong, Nian; Van Duc, Luong; Yamashita, Yuki; Hama, Takehide

    2016-04-01

    Salinity tolerance is one of the most important factors for the application of bioreactors to high-salinity wastewater. Although marine anammox bacteria (MAB) might be expected to tolerate higher salinities than freshwater anammox bacteria, there is little information on the effects of salinity on MAB activity. This study aimed to reveal the nitrogen removal properties in a continuous MAB reactor under conditions of rapid and extensive salinity changes. The reactor demonstrated stable nitrogen removal performance with a removal efficiency of over 85% under salinity conditions ranging from 0 to 50 g/L NaCl. The reactor performance was also well maintained, even though the salinity was rapidly changed from 30 to 50 g/L and from 30 to 0 g/L. Other evidence suggested that the seawater medium used contained components essential for effective MAB performance. Bacterial community analysis using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) showed that planctomycete UKU-1, the dominant MAB species in the inoculum, was the main contributor to anammox activity under all conditions. The PCR-DGGE using a universal bacterial primer set showed different DNA band patterns between the reactor biomass sample collected under conditions of 75 g/L NaCl and all other conditions (0, 30, 50 and freshwater-medium). All DNA sequences determined were very similar to those of bacterial species from marine environments, anaerobic environments, or wastewater-treatment facilities.

  3. Acute toxicity assessment of ANAMMOX substrates and antibiotics by luminescent bacteria test.

    Science.gov (United States)

    Ding, Shuang; Wu, Junwei; Zhang, Meng; Lu, Huifeng; Mahmood, Qaisar; Zheng, Ping

    2015-12-01

    Acute toxicities of anaerobic ammonia oxidation (ANAMMOX) substrates and four antibiotics from pharmaceutical wastewaters on ANAMMOX process were reported. Individual and joint acute toxicity assays were performed using 50% inhibitory concentration (IC50). Results showed that IC50 values and their 95% confidence interval of ammonium chloride (A), sodium nitrite (B), penicillin G-Na (C), polymyxin B sulfate (D), chloramphenicol (E) and kanamycin sulfate (F) were 2708.9 (2247.9-3169.9), 1475.4 (1269.9-1680.9), 5114.4 (4946.4-5282.4), 10.2 (1.8-18.6), 409.9 (333.7-486.1) and 5254.1 (3934.4-6573.8) mgL(-1) respectively, suggesting toxicities were in the order of D>E>B>A>C>F. Joint acute toxicities of bicomponent mixtures A and B, C and D, C and F, D and F were independent; D and E, E and F were additive while C and E were synergistic. Joint acute toxicities of multicomponent mixtures were synergistic or additive. Luminescent bacteria test is an easy and robust method for forecasting the feasibility of ANAMMOX process for pharmaceutical wastewater treatment.

  4. Evaluating primers for profiling anaerobic ammonia oxidizing bacteria within freshwater environments.

    Directory of Open Access Journals (Sweden)

    Puntipar Sonthiphand

    Full Text Available Anaerobic ammonia oxidizing (anammox bacteria play an important role in transforming ammonium to nitrogen gas and contribute to fixed nitrogen losses in freshwater environments. Understanding the diversity and abundance of anammox bacteria requires reliable molecular tools, and these are not yet well established for these important Planctomycetes. To help validate PCR primers for the detection of anammox bacteria within freshwater ecosystems, we analyzed representative positive controls and selected samples from Grand River and groundwater sites, both from Ontario, Canada. The objectives of this study were to identify a suitable anammox denaturing gradient gel electrophoresis (DGGE fingerprint method by using GC-clamp modifications to existing primers, and to verify the specificity of anammox-specific primers used for DGGE, cloning and qPCR methods. Six primer combinations were tested from four published primer sets (i.e. A438f/A684r, Amx368f/Amx820r, An7f/An1388r, and Pla46/1392r for both direct and nested PCR amplifications. All PCR products were run subsequently on DGGE gels to compare the resulting patterns. Two anammox-specific primer combinations were also used to generate clone libraries and quantify anammox bacterial 16S rRNA genes with qPCR. The primer set A438f/A684r was highly specific to anammox bacteria, provided reliable DGGE fingerprints and generated a high proportion of anammox-related clones. A second primer set (Amx368f/Amx820r was anammox specific, based on clone library analysis, but PCR products from different candidate species of anammox bacteria resolved poorly using DGGE analysis. Both DGGE and cloning results revealed that Ca. Brocadia and an uncharacterized anammox bacterial cluster represented the majority of anammox bacteria found in Grand River sediment and groundwater samples, respectively. Together, our results demonstrate that although Amx368f/Amx820r was useful for anammox-specific qPCR and clone library

  5. Evaluating primers for profiling anaerobic ammonia oxidizing bacteria within freshwater environments.

    Science.gov (United States)

    Sonthiphand, Puntipar; Neufeld, Josh D

    2013-01-01

    Anaerobic ammonia oxidizing (anammox) bacteria play an important role in transforming ammonium to nitrogen gas and contribute to fixed nitrogen losses in freshwater environments. Understanding the diversity and abundance of anammox bacteria requires reliable molecular tools, and these are not yet well established for these important Planctomycetes. To help validate PCR primers for the detection of anammox bacteria within freshwater ecosystems, we analyzed representative positive controls and selected samples from Grand River and groundwater sites, both from Ontario, Canada. The objectives of this study were to identify a suitable anammox denaturing gradient gel electrophoresis (DGGE) fingerprint method by using GC-clamp modifications to existing primers, and to verify the specificity of anammox-specific primers used for DGGE, cloning and qPCR methods. Six primer combinations were tested from four published primer sets (i.e. A438f/A684r, Amx368f/Amx820r, An7f/An1388r, and Pla46/1392r) for both direct and nested PCR amplifications. All PCR products were run subsequently on DGGE gels to compare the resulting patterns. Two anammox-specific primer combinations were also used to generate clone libraries and quantify anammox bacterial 16S rRNA genes with qPCR. The primer set A438f/A684r was highly specific to anammox bacteria, provided reliable DGGE fingerprints and generated a high proportion of anammox-related clones. A second primer set (Amx368f/Amx820r) was anammox specific, based on clone library analysis, but PCR products from different candidate species of anammox bacteria resolved poorly using DGGE analysis. Both DGGE and cloning results revealed that Ca. Brocadia and an uncharacterized anammox bacterial cluster represented the majority of anammox bacteria found in Grand River sediment and groundwater samples, respectively. Together, our results demonstrate that although Amx368f/Amx820r was useful for anammox-specific qPCR and clone library analysis, A438f/A684r

  6. Start-up of anaerobic ammonia oxidation bioreactor with nitrifying activated sludge

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ping; LIN Feng-mei; HU Bao-lan; CHEN Jian-song

    2004-01-01

    The anaerobic ammonia oxidation(Anammox) bioreactor was successfully started up with the nitrifying activated sludge. After anaerobically operated for 105 d, the bioreactor reached a good performance with removal percentage of both ammonia and nitrite higher high efficiency and stability because it held a large amount of biomass in the bioreactor.

  7. Rapid startup and high rate nitrogen removal from anaerobic sludge digester liquor using a SNAP process.

    Science.gov (United States)

    Qiao, Sen; Nishiyama, Takashi; Fujii, Tatsuo; Bhatti, Zafar; Furukawa, Kenji

    2012-02-01

    In this study, a single-stage autotrophic nitrogen removal reactor, packed with a novel acrylic fiber biomass carrier material (Biofix), was applied for nitrogen removal from sludge digester liquor. For rapid start-up, conventional activated sludge was added to the reactor soon after the attachment of anammox biomass on the Biofix carriers, which allowed conventional activated sludge to form a protective layer of biofilm around the anammox biomass. The Nitrogen removal efficiency reached 75% within 1 week at a nitrogen loading rate of 0.46 kg-N/m(3)/day for synthetic wastewater treatment. By the end of the synthetic wastewater treatment period, the maximum nitrogen removal rate had increased to 0.92 kg-N/m(3)/day at a nitrogen loading rate of 1.0 kg-N/m(3)/day. High nitrogen removal rate was also achieved during the actual raw digester liquor treatment with the highest nitrogen removal rate being 0.83 kg-N/m(3)/day at a nitrogen loading rate of 0.93 kg-N/m(3)/day. The thick biofilm on Biofix carriers allowed anammox bacteria to survive under high DO concentration of 5-6 mg/l resulting in stable and high nitrogen removal performance. FISH and CLSM analysis demonstrated that anammox bacteria coexisted and surrounded by ammonium oxidizing bacteria.

  8. [Effect of High Ammonium on Nitrogen Removal in an Partial Nitritation-ANAMMOX Process with Reflux System].

    Science.gov (United States)

    Li, Xiang; Cui, Jian-hong; Yuan, Yan; Huang, Yong; Yuan, Yi; Liu, Xin

    2015-10-01

    The effect of influent ammonia on nitrogen transformation characteristics and microbial communities in partial nitrification-anaerobic ammonia oxidation (PN-ANAMMOX) process was studied by using a series of partial nitrification and ANAMMOX process with air-lift reflux device. The results showed that when the influent ammonia concentration was increased to 700 mg x L(-1) and the nitrogen volume load was stabled at 2.8 kg x (m3 x d)(-1), the fluctuation of pH value was very small in aerobic and anaerobic zone. In the aerobic and anaerobic zone, FA concentrations were maintained at 5'mg x L(-1), 10 mg x L(-1), respectively, which did not inhibit the growth of microorganisms. Nitrite produce rate was stabled at 1.5 kg x (m3 x d)(-1) in the aerobic zone, and nitrogen removal rate was stabled at 31.49 kg x (m3 x d)(-1) in anaerobic zone, the total nitrogen removal rate was stabled at 1.67 kg x (m3 x d)(-1) in combined process. When the influent ammonia concentration was increased to 900 mg x L(-1), the FA and FNA concentration were increased in each areas, total nitrogen removal rate was decreased and stabled at 1.52 kg x- ( m3x- d( 1)'. The nitrite was accumulated in the anaerobic zone, and there was no significant inhibition of ANAMMOX bacteria. Our findings indicated that the reflux can effectively alleviate the fluctuation of pH in each area, and dilute FA concentration which is toxic to microorganisms.

  9. Temperature response of denitrification and anammox reveals the adaptation of microbial communities to in situ temperatures in permeable marine sediments that span 50° in latitude

    Directory of Open Access Journals (Sweden)

    A. Canion

    2013-09-01

    Full Text Available Despite decades of research on the physiology and biochemistry of nitrate/nitrite-respiring microorganisms, little is known regarding their metabolic response to temperature, especially under in situ conditions. The temperature regulation of microbial communities that mediate anammox and denitrification was investigated in near shore permeable sediments at polar, temperate, and subtropical sites with annual mean temperatures ranging from −5 to 23 °C. Total N2 production rates were determined using the isotope pairing technique in intact core incubations under diffusive and simulated advection conditions and ranged from 2 to 359 μmol N m−2 d−1. For the majority of sites studied, N2 removal was 2 to 7 times more rapid under advective flow conditions. Anammox comprised 6 to 14% of total N2 production at temperate and polar sites and was not detected at the subtropical site. Potential rates of denitrification and anammox were determined in anaerobic slurries in a temperature gradient block incubator across a temperature range of −1 to 42 °C. The highest optimum temperature (Topt for denitrification was 36 °C and was observed in subtropical sediments, while the lowest Topt of 21 °C was observed at the polar site. Seasonal variation in the Topt was observed at the temperate site with values of 26 and 34 °C in winter and summer, respectively. The Topt values for anammox were 9 and 26 °C at the polar and temperate sites, respectively. The results demonstrate adaptation of denitrifying communities to in situ temperatures in permeable marine sediments across a wide range of temperatures, whereas marine anammox bacteria may be predominately psychrophilic to psychrotolerant. To our knowledge, we provide the first rates of denitrification and anammox from permeable sediments of a polar permanently cold ecosystem. The adaptation of microbial communities to in situ temperatures suggests that the relationship between temperature and rates of N

  10. Isolation and identification of bacteria responsible for simultaneous anaerobic ammonium and sulfate removal

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Sulfate-dependent anaerobic ammonium oxidation is a novel biological reaction,in which ammonium is oxidized with sulfate as the electron acceptor under anoxic conditions.Ammonium and sulfate are cosmopolitan chemical species which are an integral part of the global nitrogen and sulfur cycles.A detailed exploration of sulfate-dependent anaerobic ammonium oxidation is quite practical.In this work,a bacterial strain named ASR has been isolated from an anaerobic ammonia and sulfate removing reactor working under steady-state.On the basis of electron microscopy,physiological tests and 16S rDNA phylogenetic sequence analysis,the strain ASR is found to be related to Bacillus benzoevorans.According to the biological carbon source utilization test,the strain ASR could use many carbon sources.Its optimum pH value and temperature were 8.5 and 30 °C,respectively.The test proves that the strain ASR is able to use sulfate to oxidize ammonia anaerobically.The maximum ammonia and sulfate removal rates were 44.4% and 40.0%,respectively.The present study provided biological evidence for the confirmation and development of sulfate-dependent anaerobic ammonium oxidation and brought new insights into the global nitrogen and sulfur cycles.

  11. Stratification of extracellular polymeric substances (EPS) for aggregated anammox microorganisms.

    Science.gov (United States)

    Jia, Fangxu; Yang, Qing; Liu, Xiuhong; Li, Xiyao; Li, Baikun; Zhang, Liang; Peng, Yongzhen

    2017-02-27

    Sludge aggregation and biofilm formation are the most effective approaches to solve the washout of anammox microorganisms. In this study, the structure and composition of EPS (extracellular polymeric substances) were investigated to elucidate the factors for the anammox aggregation property. Anammox sludge taken from 18 lab-scale and pilot-scale reactors treating different types of wastewater was analyzed using EEM-PARAFAC (excitation-emission matrix and parallel factor analysis), FTIR (fourier transform infrared spectroscopy) and real-time PCR combined with multivariate statistical analysis. The results showed that slime and TB-EPS (tightly bound EPS) were closely related with water quality and sludge morphology, and could be used as the indicators for anammox microbial survival ability and microbial aggregate morphology. Furthermore, slime secreted from anammox bacterial cells may be exhibited higher viscosity to the sludge surface and easily formed the gel network to aggregate. Large amounts of hydrophobic groups of protein in TB-EPS promoted the microbial aggregation. The mechanisms of anammox aggregation explored in this study enhanced the understanding of anammox stability in wastewater treatment processes.

  12. Effect of organics on Anammox process for treatment of landfill leachate%垃圾渗滤液中有机物对其厌氧氨氧化的影响

    Institute of Scientific and Technical Information of China (English)

    苗蕾; 王凯; 王淑莹; 李忠明; 朱如龙; 彭永臻

    2014-01-01

    In order to investigate the effect of organics in the mature landfill leachate on the Anam-mox process treating mature landfill leachate,a combined process consisting of nitritation sequencing batch reactor (SBR)and anaerobic ammonium oxidation sequencing batch reactor (ASBR)was de-veloped.The real mature landfill leachate with ammonia of (2000 ±100)mg/L and COD of (2200 ±200)mg/L was used in this study.After 100 days,the ratio of NO2 -/NOx -reached 95% or more in SBRni .ASBR was acclimated under the filling mode of increasing the mature landfill leachate gradually to supply the ammonia.The results show that the biodegradable COD is increased with the ratio of mature landfill leachate in the filling of ASBR.When the biodegradable COD in the filling increases to 150 mg/L,nitrogen loading rate (NLR)of ASBR decreases from 1 .20 kg/(m3 ·d)to 0.28 kg/(m3 ·d),and nitrogen removal rate (NRR)decreases from 1 .10 kg/(m3 ·d)to 0.19 kg/(m3 ·d).This indicates that the system tends to collapse.When the biodegradable COD decreases to 50 mg/L,the maximum NLR and NRR increases to 1 .55 kg/(m3 ·d)and 1 .20 kg/(m3 ·d),respectively,which indicates that the activity of Anammox is recovered.Besides,the quantitative PCR(polymerase chain reaction)shows that the proportion of Anammox in the bacteria increases to 1 .94% when activity of Anammox becteria is recovered.%为了考察垃圾渗滤液中有机物对其厌氧氨氧化反应的影响,保证晚期垃圾渗滤液的深度脱氮,采用短程硝化SBR联合厌氧氨氧化SBR(ASBR)两级系统处理氨氮为(2000±100)mg/L、COD为(2200±200)mg/L的实际晚期垃圾渗滤液进行试验研究.短程硝化SBR运行了100 d,亚硝酸盐积累率达到了95%以上.ASBR采用进水逐步加大渗滤液掺入比例的方式进行驯化.实验结果表明,随着掺入比例的增大,进水可降解COD增加到150 mg/L左右时,ASBR的氮负荷速率从1.20 kg/(m3·d)降到了0.28 kg/(m3

  13. Intact polar lipids of Thaumarchaeota and anammox bacteria as indicators of N-cycling in the Eastern Tropical North Pacific oxygen deficient zone

    Directory of Open Access Journals (Sweden)

    M. Sollai

    2015-03-01

    Full Text Available In the last decade our understanding of the marine nitrogen cycle has improved considerably thanks to the discovery of two novel groups of microorganisms: ammonia-oxidizing archaea (AOA and anaerobic ammonia-oxidizing (anammox bacteria. Both groups are important in oxygen deficient zones (ODZs, where they substantially affect the marine N-budget. These two groups of microbes are also well known for producing specific membrane lipids, which can be used as biomarkers to trace their presence in the environment. We investigated the occurrence and distribution of AOA and anammox bacteria in the water column of the Eastern Tropical North Pacific (ETNP ODZ, one of the most prominent ODZs worldwide. Suspended particulate matter (SPM was collected at different depths of the water column in high resolution, at both a coastal and an open ocean setting. The SPM was analyzed for AOA- and anammox bacteria-specific intact polar lipids (IPLs, i.e. hexose-phosphohexose (HPH-crenarchaeol and phosphatidylcholine (PC-monoether ladderane. Comparison with oxygen profiles reveals that both the microbial groups are able to thrive at low (<1 μM concentrations of oxygen. Our results indicate a clear niche segregation of AOA and anammox bacteria in the coastal waters of the ETNP, but a partial overlap of the two niches of these microbial species in the open water setting. The latter distribution suggests the potential for an interaction between the two microbial groups at the open ocean site, either as competition or cooperation.

  14. Nitrate reduction by organotrophic Anammox bacteria in a nitritation/anammox granular sludge and a moving bed biofilm reactor.

    Science.gov (United States)

    Winkler, Mari K H; Yang, Jingjing; Kleerebezem, Robbert; Plaza, Elzbieta; Trela, Jozef; Hultman, Bengt; van Loosdrecht, Mark C M

    2012-06-01

    The effects of volatile fatty acids (VFAs) on nitrogen removal and microbial community structure in nitritation/anammox process were compared within a granular sludge reactor and a moving bed biofilm reactor. Nitrate productions in both systems were lower by 40-68% in comparison with expected nitrate production. Expected sludge production on VFAs was estimated to be 67-77% higher if heterotrophs were the main acetate degraders suggesting that Anammox bacteria used its organotrophic capability and successfully competed with general heterotrophs for organic carbon, which led to a reduced sludge production. FISH measurements showed a population consisting of mainly Anammox and AOB in both reactors and oxygen uptake rate (OUR) tests also confirmed that flocculent biomass consisted of a minor proportion of heterotrophs with a large proportion of AOBs. The dominant Anammox bacterium was Candidatus "Brocadia fulgida" with a minor fraction of Candidatus "Anammoxoglobus propionicus", both known to be capable of oxidizing VFAs.

  15. Ammonium Oxidation Under Iron Reducing Conditions: Environmental Factors Characterization and Process Optimization

    Science.gov (United States)

    Huang, Shan; Ruiz, Melany; Jaffe, Peter

    2015-04-01

    Ammonium (NH4+) oxidation coupled to iron (Fe) reduction in the absence of oxygen and nitrate/nitrite (NO3-/NO2-) has been reported by several investigators and is referred to as Feammox. Feammox is a biological reaction, where Fe(III) is the electron acceptor, which is reduced to Fe(II), and NH4+ is the electron donor, which is oxidized to NO2-. An Acidimicrobiaceae bacterium named A6, a previously unreported species in the Acidimicrobiaceae family, has been identified as being responsible for the Feammox process(1, 2) Feammox process was noted in riparian wetland soils in New Jersey(1,3), in tropical rainforest soils in Puerto Rico (4) and in paddy soils in China (5). In addition to these published locations, Feammox process was also found in samples collected from a series of local wetland-, upland-, as well as storm-water detention pond-sediments in New Jersey, river sediments from South Carolina, and forested soils near an acid mine drainage (Dabaoshan, Guangdong province) in China. Using primers acm342f - 439r (2), Acidimicrobiaceae bacterium A6 was detected in samples where Feammox was observed, after strictly anaerobic incubations. According to a canonical correspondence analysis with environmental characteristics and soil microbial communities, the species-environment relationship indicated that pH and Fe oxides content were the primary factors controlling Feammox process. Anaerobic incubations of Feammox enrichment cultures adjusted to different pH, revealed that the optimal pH for Feammox is 4 ~ 5, and the reaction does not proceed when pH > 7. No correlation was found between the distributions of Feammox bacteria and other NH4+ oxidation bacteria. Pure Acidimicrobiaceae bacterium A6 strain was isolated in an autotrophic medium, from an active Feammox membrane reactor (A6 was enriched to 65.8% of the total bacteria). A 13C labeled CO2 amendment was conducted, and the 13C in cells of A6 increased from 1.80% to 10.3% after 14 days incubation. In a separate

  16. Source identification of nitrous oxide emission pathways from a single-stage nitritation-anammox granular reactor

    KAUST Repository

    Ali, Muhammad

    2016-06-16

    Nitrous oxide (N2O) production pathway in a signal-stage nitritation-anammox sequencing batch reactor (SBR) was investigated based on a multilateral approach including real-time N2O monitoring, N2O isotopic composition analysis, and in-situ analyses of spatial distribution of N2O production rate and microbial populations in granular biomass. N2O emission rate was high in the initial phase of the operation cycle and gradually decreased with decreasing NH4+ concentration. The average emission of N2O was 0.98 ± 0.42% and 1.35 ± 0.72% of the incoming nitrogen load and removed nitrogen, respectively. The N2O isotopic composition analysis revealed that N2O was produced via NH2OH oxidation and NO2− reduction pathways equally, although there is an unknown influence from N2O reduction and/or anammox N2O production. However, the N2O isotopomer analysis could not discriminate the relative contribution of nitrifier denitrification and heterotrophic denitrification in the NO2− reduction pathway. Various in-situ techniques (e.g. microsensor measurements and FISH (fluorescent in-situ hybridization) analysis) were therefore applied to further identify N2O producers. Microsensor measurements revealed that approximately 70% of N2O was produced in the oxic surface zone, where nitrifiers were predominantly localized. Thus, NH2OH oxidation and NO2 reduction by nitrifiers (nitrifier-denitrification) could be responsible for the N2O production in the oxic zone. The rest of N2O (ca. 30%) was produced in the anammox bacteria-dominated anoxic zone, probably suggesting that NO2− reduction by coexisting putative heterotrophic denitrifiers and some other unknown pathway(s) including the possibility of anammox process account for the anaerobic N2O production. Further study is required to identify the anaerobic N2O production pathways. Our multilateral approach can be useful to quantitatively examine the relative contributions of N2O production pathways. Good understanding of the key N2O

  17. Microbial Community Composition and Ultrastructure of Granules from a Full-Scale Anammox Reactor

    KAUST Repository

    Gonzalez-Gil, Graciela

    2014-12-11

    Granules in anammox reactors contain besides anammox bacteria other microbial communities whose identity and relationship with the anammox bacteria are not well understood. High calcium concentrations are often supplied to anammox reactors to obtain sufficient bacterial aggregation and biomass retention. The aim of this study was to provide the first characterization of bacterial and archaeal communities in anammox granules from a full-scale anammox reactor and to explore on the possible role of calcium in such aggregates. High magnification imaging using backscattered electrons revealed that anammox bacteria may be embedded in calcium phosphate precipitates. Pyrosequencing of 16S rRNA gene fragments showed, besides anammox bacteria (Brocadiacea, 32 %), substantial numbers of heterotrophic bacteria Ignavibacteriacea (18 %) and Anaerolinea (7 %) along with heterotrophic denitrifiers Rhodocyclacea (9 %), Comamonadacea (3 %), and Shewanellacea (3 %) in the granules. It is hypothesized that these bacteria may form a network in which heterotrophic denitrifiers cooperate to achieve a well-functioning denitrification system as they can utilize the nitrate intrinsically produced by the anammox reaction. This network may provide a niche for the proliferation of archaea. Hydrogenotrophic methananogens, which scavenge the key fermentation product H2, were the most abundant archaea detected. Cells resembling the polygon-shaped denitrifying methanotroph Candidatus Methylomirabilis oxyfera were observed by electron microscopy. It is hypothesized that the anammox process in a full-scale reactor triggers various reactions overall leading to efficient denitrification and a sink of carbon as biomass in anammox granules.

  18. Biological Behavior of Anammox Process for Municipal Wastewater Treatment: Effect of Ammonia Removal and Other Parameters

    Directory of Open Access Journals (Sweden)

    *R. Nabizadeh

    2012-09-01

    Full Text Available Historically, nitrogen compound due to major environmental and public health problems have been considered. Anaerobic ammonium oxidation processes were proposed by many advantages such as; novelty, promising method and cost-effective. In this work, we used of anommax process for a wastewater with high C:N ratios and the main parameter likes pH; temperature, NO2/NH4 ratio and behavior of COD, ammonium and nitrite during operation time of 55 days were evaluated. High efficiency in nitrite and ammonium removal is observed at pH values between 7.5 to 8 and operation times between 9 to 23 days. Furthermorethe variation of the nitrite/ammonium ratio done dependence to pH, and a higher ratio was associated with higher pH values. And lower values of NO2/NH4 ratio have occurred with decrease of pH at third phase of anommax process. The average elimination efficiency of COD was occurred about 89.22%, but the removal efficiency of COD in anommax reactor was obtained about 49.5%. Furthermorethe removal efficiency of ammonium and nitrite were provided about 50% for each.

  19. Anammox sludge immobilized in polyvinyl alcohol (PVA) cryogel carriers

    Science.gov (United States)

    This study evaluated the use of polyvinyl alcohol (PVA) cryogels to encapsulate slow-growing anammox bacteria for deammonification treatment of wastewater. The cryogel pellets were prepared by a freezing-thawing procedure at -8 oC. On average, pellets contained 11.8 mg TSS/g-pellet of enriched anamm...

  20. Apatite accumulation enhances the mechanical property of anammox granules

    NARCIS (Netherlands)

    Lin, Y. M.; Lotti, T.; Sharma, P. K.; van Loosdrecht, M. C. M.

    2013-01-01

    The strength of granular sludge is essential for the mechanical stability of the granules. Inorganic precipitants form a major factor influencing the strength of the granules. To check the possibility of apatite accumulation in anammox granules, and study its contribution to the mechanical strength

  1. Inhibition and recovery of continuous electric field application on the activity of anammox biomass.

    Science.gov (United States)

    Qiao, Sen; Yin, Xin; Zhou, Jiti; Furukawa, Kenji

    2014-07-01

    In this study, the effects of electric field on the activity of anammox biomass were investigated. In batch mode, experimental results demonstrated that the nitrogen removal rate enhanced by 25.6 % compared with the control experiment at the electric field of 2 V/cm with application time of 20 min. However, continuous application (24 h) of electric field impacted a mal-effect on anammox biomass during the intensity between 1 and 4 V/cm. After the electric field was removed, the activity of anammox biomass could recover within 2 weeks. This implied that the mal-effect of electric field on anammox biomass was reversible. The decrease of heme c contents and crude enzyme activity demonstrated to be the main reason for the depress of the anammox biomass activity. Transmission electron microscope observation also proved the morphological change of anammox biomass under electric field.

  2. Metatranscriptomics reveals the molecular mechanism of large granule formation in granular anammox reactor

    Science.gov (United States)

    Bagchi, Samik; Lamendella, Regina; Strutt, Steven; van Loosdrecht, Mark C. M.; Saikaly, Pascal E.

    2016-06-01

    Granules enriched with anammox bacteria are essential in enhancing the treatment of ammonia-rich wastewater, but little is known about how anammox bacteria grow and multiply inside granules. Here, we combined metatranscriptomics, quantitative PCR and 16S rRNA gene sequencing to study the changes in community composition, metabolic gene content and gene expression in a granular anammox reactor with the objective of understanding the molecular mechanism of anammox growth and multiplication that led to formation of large granules. Size distribution analysis revealed the spatial distribution of granules in which large granules having higher abundance of anammox bacteria (genus Brocadia) dominated the bottom biomass. Metatranscriptomics analysis detected all the essential transcripts for anammox metabolism. During the later stage of reactor operation, higher expression of ammonia and nitrite transport proteins and key metabolic enzymes mainly in the bottom large granules facilitated anammox bacteria activity. The high activity resulted in higher growth and multiplication of anammox bacteria and expanded the size of the granules. This conceptual model for large granule formation proposed here may assist in the future design of anammox processes for mainstream wastewater treatment.

  3. The Increasing Interest of ANAMMOX Research in China: Bacteria, Process Development, and Application

    Directory of Open Access Journals (Sweden)

    Mohammad Ali

    2013-01-01

    Full Text Available Nitrogen pollution created severe environmental problems and increasingly has become an important issue in China. Since the first discovery of ANAMMOX in the early 1990s, this related technology has become a promising as well as sustainable bioprocess for treating strong nitrogenous wastewater. Many Chinese research groups have concentrated their efforts on the ANAMMOX research including bacteria, process development, and application during the past 20 years. A series of new and outstanding outcomes including the discovery of new ANAMMOX bacterial species (Brocadia sinica, sulfate-dependent ANAMMOX bacteria (Anammoxoglobus sulfate and Bacillus benzoevorans, and the highest nitrogen removal performance (74.3–76.7 kg-N/m3/d in lab scale granule-based UASB reactors around the world were achieved. The characteristics, structure, packing pattern and floatation mechanism of the high-rate ANAMMOX granules in ANAMMOX reactors were also carefully illustrated by native researchers. Nowadays, some pilot and full-scale ANAMMOX reactors were constructed to treat different types of ammonium-rich wastewater including monosodium glutamate wastewater, pharmaceutical wastewater, and leachate. The prime objective of the present review is to elucidate the ongoing ANAMMOX research in China from lab scale to full scale applications, comparative analysis, and evaluation of significant findings and to set a design to usher ANAMMOX research in culmination.

  4. Metatranscriptomics reveals the molecular mechanism of large granule formation in granular anammox reactor

    KAUST Repository

    Bagchi, Samik

    2016-06-20

    Granules enriched with anammox bacteria are essential in enhancing the treatment of ammonia-rich wastewater, but little is known about how anammox bacteria grow and multiply inside granules. Here, we combined metatranscriptomics, quantitative PCR and 16S rRNA gene sequencing to study the changes in community composition, metabolic gene content and gene expression in a granular anammox reactor with the objective of understanding the molecular mechanism of anammox growth and multiplication that led to formation of large granules. Size distribution analysis revealed the spatial distribution of granules in which large granules having higher abundance of anammox bacteria (genus Brocadia) dominated the bottom biomass. Metatranscriptomics analysis detected all the essential transcripts for anammox metabolism. During the later stage of reactor operation, higher expression of ammonia and nitrite transport proteins and key metabolic enzymes mainly in the bottom large granules facilitated anammox bacteria activity. The high activity resulted in higher growth and multiplication of anammox bacteria and expanded the size of the granules. This conceptual model for large granule formation proposed here may assist in the future design of anammox processes for mainstream wastewater treatment.

  5. Anammox transited from denitrification in upflow biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shao-hui; ZHENG Ping; HUA Yu-mei

    2004-01-01

    Anammox was successfully transited from heterotrophic denitrification and autotrophic denitrification in two upflow biofilm reactors, respectively. The results showed that the volumetric loading rate and nitrogen removal efficiency in the reactor transited from heterotrophic denitrification were higher than that in its counterpart. When the hydraulic retention time was 12 h or so, the total nitrogen loading rate was about 0.609 kg N/(m3·d), and the effluent ammonia and nitrite concentrations were less than 8.5 mg/L and 2.5 mg/L, respectively. The upflow anammox biofilm reactor was capable of keeping and accumulating the slow-growing bacteria efficiently. During operation of the reactor, the biomass color was gradually turned from brownish to red, and the ratio of ammonia consumption, nitrite consumption and nitrate production approached the theoretical one. These changes could be used as an indicator for working state of the reactor.

  6. ANAMMOX-UASB 系统处理晚期垃圾渗滤液脱氮性能及其颗粒污泥特性%Characteristics of granular sludge and nitrogen removal performance in ANAMMOX-UASB system fed with mature landfill leachate

    Institute of Scientific and Technical Information of China (English)

    李芸; 张美雪; 熊向阳; 陈刚; 李军; 张彦灼; 宋薇; 王明超

    2016-01-01

    以晚期垃圾渗滤液为研究对象,考察ANAMMOX-UASB系统脱氮性能及ANAMMOX颗粒污泥表观特性和粒径分布变化.结果表明,采用ANAMMOX-UASB系统处理晚期垃圾渗滤液可实现高效脱氮.在稳定期,NH4+-N, NO2--N和TN的平均去除率分别为96%,95%和87%;系统中ANAMMOX颗粒污泥厌氧氨氧化活性良好,仍然是脱氮的主要途径;同时也有部分异养反硝化作用同步脱氮.此外,系统中还存在好氧氨氧化和亚硝氮氧化作用,其活性分别为0.031和0.010 g/( g· d).系统中颗粒污泥颜色由砖红色转变成红褐色,平均粒径由小变大;稳定运行期粒径大于1.5 mm的颗粒污泥为81%;颗粒污泥表层有球菌、杆菌和丝状菌附着.%Taking the mature landfill leachate as the research object, the nitrogen removal performance of the ANAMMOX-UASB (anaerobic ammonia oxidation up-flow anaerobic sludge blanket) system, the ANAMMOX granular sludge characteristics, and the changes of its size distributions were investi-gated.The results show that the ANAMMOX-UASB system can achieve efficient nitrogen removal in mature landfill leachate.At the stable stage, the average removal rates of NH4+-N, NO2--N and TN were 96%, 95%and 87%, respectively.The activity of ANAMMOX granular sludge was very well, and ANAMMOX still was the main way of nitrogen removal, but there was also nitrogen removal by heterotrophic denitrification simultaneously in the system.Moreover, aerobic ammonia oxidation and nitrite oxidation existed in the system, and their activity were 0.031 and 0.010 g/(g· d), respective-ly .The color of granular sludge changed from brick red to red-brown, and the average size of granular sludge changed from small to large.At the stable stage, the proportion of granular sludge size excee-ding 1.5 mm was 81%.There were spherical bacteria, rod-shaped bacteria and filamentous bacteria on the granular sludge surface.

  7. New PCR primers targeting hydrazine synthase and cytochrome c biogenesis proteins in anammox bacteria.

    Science.gov (United States)

    Zhou, Zhichao; Chen, Jing; Meng, Han; Dvornyk, Volodymyr; Gu, Ji-Dong

    2017-02-01

    PCR primers targeting genes encoding the two proteins of anammox bacteria, hydrazine synthase and cytochrome c biogenesis protein, were designed and tested in this study. Three different ecotypes of samples, namely ocean sediments, coastal wetland sediments, and wastewater treatment plant (WWTP) samples, were used to assess the primer efficiency and the community structures of anammox bacteria retrieved by 16S ribosomal RNA (rRNA) and the functional genes. Abundances of hzsB gene of anammox bacteria in South China Sea (SCS) samples were significantly correlated with 16S rRNA gene by qPCR method. And hzsB and hzsC gene primer pair hzsB364f-hzsB640r and hzsC745f-hzsC862r in combination with anammox bacterial 16S rRNA gene primers were recommended for quantifying anammox bacteria. Congruent with 16S rRNA gene-based community study, functional gene hzsB could also delineate the coastal-ocean distributing pattern, and seawater depth was positively associated with the diversity and abundance of anammox bacteria from shallow- to deep-sea. Both hzsC and ccsA genes could differentiate marine samples between deep and shallow groups of the Scalindua sp. clades. As for WWTP samples, non-Scalindua anammox bacteria reflected by hzsB, hzsC, ccsA, and ccsB gene-based libraries showed a similar distribution pattern with that by 16S rRNA gene. NH4(+) and NH4(+)/Σ(NO3(-) + NO2(-)) positively correlated with anammox bacteria gene diversity, but organic matter contents correlated negatively with anammox bacteria gene diversity in SCS. Salinity was positively associated with diversity indices of hzsC and ccsB gene-harboring anammox bacteria communities and could potentially differentiate the distribution patterns between shallow- and deep-sea sediment samples. SCS surface sediments harbored considerably diverse community of Scalindua. A new Mai Po clade representing coastal estuary wetland anammox bacteria group based on 16S rRNA gene phylogeny is proposed. Existence of anammox

  8. 废水厌氧处理反应器功能拓展研究进展%Multifunctional role of anaerobic reactors in wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    徐恒; 汪翠萍; 王凯军

    2014-01-01

    inorganic pollutants could be further enhanced by ex-situ/in-situ methods. Recent studies also showed that calcium removal for water softening and in-situ biogas upgrading could be achieved through anaerobic reactors. Nevertheless, the research work of the above-mentioned field has appeared to be relatively independent and scattered so far. First, in this paper, the state of the art of anaerobic wastewater treatment and the traditional role of anaerobic reactors are summarized. Then, the expanded roles of anaerobic reactors in desulfurization, denitrification, phosphorus removal, softening treatment, and in-situ biogas upgrading were elaborately reviewed in terms of their feasibility and process description. A major problem for the anaerobic treatment of sulfate-contaminated wastewater is the production of hydrogen sulfide (H2S), which greatly inhibits the methanogenesis process. The introduction of the biological sulfide oxidation step could not only reduce sulfide toxicity, but could also recover sulfur in the form of the insoluble elemental sulfur. As for denitrification, the integration of methanogenesis with the traditional denitrification process or even the novel anaerobic ammonium oxidation (ANAMMOX) process has been proven to be able to remove organic pollutants and ammonia simultaneously. Phosphorus removal by physico-chemical and/or biological methods was also demonstrated in the anaerobic reactors; however, the involved mechanism and phosphorus transformation pathway need to be further investigated. High-strength of calcium ions was shown to have adverse impacts on the capacity and stability of both anaerobic reactors and post-treatment facilities. The combination of the stripping or crystallization devices with anaerobic reactors was effective at inducing precipitation of calcium carbonate to alleviate the inhibition of calcium ions. Problems due to the precipitation and accumulation of calcium carbonate in the anaerobic granules (hereafter referred to as the

  9. Effect of Different Fertilizer Treatments on Quantity of Soil Microbes and Structure of Ammonium Oxidizing Bacterial Community in a Calcareous Purple Paddy Soil

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The quantity of soil microbes and the structure of ammonium oxidizing bacterial (AOB) community were analyzed using the dilution plate counting and most probable number method (MPN), and denaturing gradient gel electrophoresis (DGGE), respectively. Fertilizer application tended to increase the number of soil microbes and alter the AOB community compared to the control with no fertilizer application (CK). Among the eight fertilizer treatments, soil samples from the treatments of mineral fertilizers (e.g., N, P, K) in combination with farmyard manure (M) had greater numbers of soil microbes and more complex structure of AOB community than those receiving mineral fertilizers alone. The principal component analyses (PCA) for ammonium oxidizing bacterial community structure showed that the eight fertilizer treatments could be divided into two PCA groups (PCA1 and PCA2). For the soil sampled after rice harvest, PCA1 included NP, NM, NPM and NPKM fertilizer treatments, while PCA2 was consisted of CK, N, M and NPK fertilizer treatments. For soil samples collected after wheat harvest, PCA1 was consisted of M, NM, NPM and NPKM fertilizer treatments, while PCA2 was composed of CK, N, NP and NPK fertilizer treatments. For a given rotation, the richness of AOB community in PCA1 was greater than that in PCA2. In addition, AOB community structure was more complex in the soil after rice harvest than that after wheat harvest. The results indicated that different fertilizer treatments resulted in substantial changes of soil microbe number and AOB community. Furthermore, mineral fertilizers (N, NP, NPK) combined with farmyard manure were effective for increasing the quantity of soil microbes, enriching AOB community, and improving the soil biofertility.

  10. Modelling and control design for SHARON/Anammox reactor sequence

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work presents a complete model of the SHARON/Anammox reactor sequence. The dynamics of the reactor were explored pointing out the different scales of the rates in the system: slow microbial...... metabolism against fast chemical reaction and mass transfer. Likewise, the analysis of the dynamics contributed to establish qualitatively the requirements for control of the reactors, both for regulation and for optimal operation. Work in progress on quantitatively analysing different control structure...

  11. Laboratory study of nitrification, denitrification and anammox processes in membrane bioreactors considering periodic aeration.

    Science.gov (United States)

    Abbassi, Rouzbeh; Yadav, Asheesh Kumar; Huang, Shan; Jaffé, Peter R

    2014-09-01

    The possibility of using membrane bioreactors (MBRs) in simultaneous nitrification-anammox-denitrification (SNAD) by considering periodic aeration cycles was investigated. Two separate reactors were operated to investigate the effect of different anammox biomass in the presence of nitrifying and denitrifying biomass on the final nitrogen removal efficiency. The results illustrated that the reactor with higher anammox biomass was more robust to oxygen cycling. Around 98% Total Nitrogen (TN) and 83% Total Organic Carbon (TOC) removal efficiencies were observed by applying one hour aeration over a four-hour cycle. Decreasing the aeration time to 30, 15, and 2 min during a four-hour cycle affected the final TN removal efficiencies. However, the effect of decreasing aeration on the TN removal efficiencies in the reactor with higher anammox biomass was much lower compared to the regular reactor. The nitrous oxide (N2O) emission was a function of aeration as well, and was lower in the reactor with higher anammox biomass. The results of q-PCR analysis confirmed the simultaneous co-existence of nitrifiers, anammox, and denitrifiers in both of the reactors. To simulate the TN removal in these reactors as a function of the aeration time, a new model, based on first order reaction kinetics for both denitrification and anammox was developed and yielded a good agreement with the experimental observations.

  12. Anaerobic bacteria

    Science.gov (United States)

    Brook I, Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 297. Stedman's Online ...

  13. Abundance and Diversity of Denitrifying and Anammox Bacteria in Seasonally Hypoxic and Sulfidic Sediments of the Saline Lake Grevelingen

    NARCIS (Netherlands)

    Lipsewers, Y.A.; Hopmans, E.C.; Meysman, F.J.R.; Sinninghe Damsté, J.S.; Villanueva, L.

    2016-01-01

    Denitrifying and anammox bacteria are involved in the nitrogen cycling in marine sediments but the environmental factors that regulate the relative importance of these processes are not well constrained. Here, we evaluated the abundance, diversity, and potential activity of denitrifying, anammox, an

  14. Laboratory study on factors influencing nitrogen removal in marble chip biofilters incorporating nitritation and anammox.

    Science.gov (United States)

    Tao, Wendong; Wen, Jianfeng; Norton, Christopher

    2011-01-01

    It remains challenging to integrate nitritation and anammox in ecologically engineered treatment systems such as passive biofilters that are packed with natural materials and have low energy inputs. This study explored the factors influencing nitritation-anammox through parallel operation of two laboratory-scale biofilters packed with large and small marble chips respectively. Clean marble chips (mainly CaCO3) had an alkalinity dissolution rate of 130 mg CaCO3/kg marble d when water pH approached 6.5. Marble chips effectively increased water pH and provided sufficient alkalinity to support nitritation-anammox in the biofilters. Ammonium and total nitrogen removal decreased by 47 and 26%, respectively, when nutrients were not amended to influent. An influent nitrite concentration above 8.9 mg N/L could inhibit anammox in thin biofilms of biofilters. Nitritation-anammox was enhanced with a hydraulic retention time of 2 d relative to 7 d, likely due to enhanced air entrainment. Size of marble chips rarely made a significant difference in nitrogen removal, possibly due to sufficient surface area available for bacterial attachment and alkalinity dissolution.

  15. Partial nitritation ANAMMOX in submerged attached growth bioreactors with smart aeration at 20 °C.

    Science.gov (United States)

    Shannon, James M; Hauser, Lee W; Liu, Xikun; Parkin, Gene F; Mattes, Timothy E; Just, Craig L

    2015-01-01

    Submerged attached growth bioreactors (SAGBs) were operated at 20 °C for 30 weeks in smart-aerated, partial nitritation ANAMMOX mode and in a timer-controlled, cyclic aeration mode. The smart-aerated SAGBs removed 48-53% of total nitrogen (TN) compared to 45% for SAGBs with timed aeration. Low dissolved oxygen concentrations and cyclic pH patterns in the smart-aerated SAGBs suggested conditions favorable to partial nitritation ANAMMOX and stoichiometrically-derived and numerically modeled estimations attributed 63-68% and 14-44% of TN removal to partial nitritation ANAMMOX in these bioreactors, respectively. Ammonia removals of 36-67% in the smart-aerated SAGBs, with measured oxygen and organic carbon limitations, further suggest partial nitritation ANAMMOX. The smart-aerated SAGBs required substantially less aeration to achieve TN removals similar to SAGBs with timer-controlled aeration. Genomic DNA testing confirmed that the dominant ANAMMOX seed bacteria, received from a treatment plant utilizing the DEMON® sidestream deammonification process, was a Candidatus Brocadia sp. (of the Planctomycetales order). The DNA from these bacteria was also present in the SAGBs at the conclusion of the study providing evidence for attached growth and limited biomass washout.

  16. Denitrification as the dominant nitrogen loss process in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Ward, B.B.; Devol, A.H.; Rich, J.J.; Chang, B.X.; Bulow, S.E.; Naik, H.; Pratihary, A.K.; Jayakumar, A.

    oxidation.JProc Natl Acad Sci, USA 102, doi/10.11073/pnas.0502088102 (2005). Dalsgaard, T., Thamdrup, B. & Canfield, D. E. Anaerobic ammonium oxidation (anammox) in the marine environment.JResearch In Microbiology 156, 457-464 (2005). 10.   Castro-Gonzalez..., T., Canfield, D. E., Petersen, J., Thamdrup, B. & Acuna-Gonzalez, J. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica.JNature 422, 606-608 (2003). 16.   Ward, B. B. et al. Organic carbon, and not copper...

  17. Fast start-up of expanded granular sludge bed (EGSB) reactor using stored Anammox sludge.

    Science.gov (United States)

    Wenjie, Zhang; Yuanyuan, Zhang; Liang, Li; Xuehong, Zhang; Yue, Jin

    2014-01-01

    Stored Anammox sludge (SAS) was used in an expanded granular sludge bed (EGSB) reactor treating synthetic wastewater with the aim of evaluating its possible use as seed sludge. The SAS had been kept in a refrigerator (4 °C) without any feed. After 2 years, only 1-2% Anammox bacteria could survive in the SAS. However, it soon prevailed in the EGSB reactor after loading. Accordingly, the start-up of the EGSB reactor was successfully completed in 34 days. The biomass turned to round reddish granular sludge from irregular brown floc at the end of this study. The results indicate that SAS could serve well as seed sludge. The required time for start-up of the Anammox reactor using SAS was thus demonstrated to be shorter than that of uncultivated sludge under experimental conditions.

  18. Incremental design of control system of SHARON-Anammox process for autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Valverde Perez, Borja; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work explores the control design for a SHARON-Anammox reactor sequence. With this aim, a full model is developed, including the pH dependency, in order to simulate the reactor and determine...... the optimal operating conditions. Then, the screening of controlled variables and pairing is carried out by an assessment of the effect of the disturbances based on the closed loop disturbance gain plots. Three control structures are obtained and benchmarked by their capacity to reject the disturbances before...... the Anammox reactor....

  19. Research progress of high-loaded ANAMMOX reactors%高负荷厌氧氨氧化反应器的研究进展

    Institute of Scientific and Technical Information of China (English)

    姬玉欣; 诸美红; 陈辉; 倪伟敏; 金仁村

    2013-01-01

      剖析了常见的高负荷厌氧氨氧化反应器的构型特点,归纳了颗粒污泥反应器(上流式厌氧污泥床、膨胀颗粒污泥床和气提式反应器)、生物膜反应器和复合式反应器的优缺点。系统总结了高负荷厌氧氨氧化反应器的调控要点,包括操作条件(负荷、回流等)调控、环境条件(pH值、温度、溶解氧等)调控、营养物质(基质比、钙离子浓度、无机碳源等)调控、抑制剂调控和微生物(接种源、优势种、聚集体、生物量和活性等)调控。最后指出,实现高负荷厌氧氨氧化反应器全面应用的关键是突破复杂水质障碍和在低温条件下进行有效调控。%This study analyzed the configuration of some common high-loaded ANAMMOX reactors, and dissected merit and demerit of granular sludge bed reactors,including Granular sludge reactors (upflow anaerobic sludge bed,expanded granular sludge bed and gas-lift reactor),biofilm reactors and hybrid anammox reactors. This paper also summarized detailed process control regulations,including operating conditions (load,reflux),environmental factors(pH,temperature,dissolved oxygen and so on),nutrients (the ratio of substrate,the concentration of Ca2+,inorganic carbon) inhibitors and microorganism (the source of sludge,dominant species,aggregation,biomass and the activity). The key factor of extensive application of the high-loaded ANAMMOX reactors is overcoming the barrier of complex wastewater and regulating reaction conditions at low ambient temperature.

  20. Fast start-up, performance and microbial community in a pilot-scale anammox reactor seeded with exotic mature granules.

    Science.gov (United States)

    Ni, Shou-Qing; Gao, Bao-Yu; Wang, Chih-Cheng; Lin, Jih-Gaw; Sung, Shihwu

    2011-02-01

    The possibility to introduce the exotic anammox sludge to seed the pilot-scale anammox granular reactor and its fast start-up for treating high nitrogen concentration wastewater were evaluated in this study. The reactor was started up successfully in two weeks; in addition, high nitrogen removal was achieved for a long period. Stoichiometry molar ratios of nitrite conversion and nitrate production to ammonium conversion were calculated to be 1.26±0.02:1 and 0.26±0.01:1, respectively. The Stover-Kincannon model which was first applied in granular anammox process indicated that the granular anammox reactor possessed high nitrogen removal potential of 27.8 kg/m(3)/d. The anammox granules in the reactor were characterized via microscope observation and fluorescence in situ hybridization technique. Moreover, the microbial community of the granules was quantified to be composed of 91.4-92.4% anammox bacteria by real-time polymerase chain reaction. This pilot study can elucidate further information for industrial granular anammox application.

  1. Management of microbial community composition, architecture and performance in autotrophic nitrogen removing bioreactors through aeration regimes

    DEFF Research Database (Denmark)

    Mutlu, A. Gizem

    intensification in single-stage reactors. Single-stage reactors require biofilms or bioaggregates to provide the complementary redox niches for the aerobic and anaerobic bacteria that are required for nitritation and anaerobic ammonium oxidation (anammox), respectively. The nitritation/anammox process might...... evaluated as an approach to manipulate the microbial community structure, to reach efficient nitrogen removal performance, and to reduce nitrous oxide emissions from single-stage nitritation/anammox reactors. First, an iterative protocol was developed to diagnose reactor performance based on process...... stoichiometry and to propose actions to enhance performance based on discretized aeration parameters, restricted by an overall ratio of oxygen to ammonium loading. The protocol was successfully applied on two bioaggregate-based single-stage sequencing batch reactors during start-up; while recovering from major...

  2. Anaerobic biodegradability of macropollutants

    DEFF Research Database (Denmark)

    Angelidaki, Irini

    2002-01-01

    A variety of test procedures for determination of anaerobic biodegradability has been reported. This paper reviews the methods developed for determination of anaerobic biodegradability of macro-pollutants. Anaerobic biodegradability of micro-pollutants is not included. Furthermore, factors import...

  3. Anaerobic Thermophiles

    Directory of Open Access Journals (Sweden)

    Francesco Canganella

    2014-02-01

    Full Text Available The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong

  4. Coexistence of nitrifying, anammox and denitrifying bacteria in a sequencing batch reactor

    Directory of Open Access Journals (Sweden)

    Michela eLangone

    2014-02-01

    Full Text Available Elevated nitrogen removal efficiencies from ammonium-rich wastewaters have been demonstrated by several applications, that combine nitritation and anammox processes. Denitrification will occur simultaneously when organic carbon is also present. In this study, the activity of aerobic ammonia oxidizing, anammox and denitrifying bacteria in a full scale Sequencing Batch Reactor, treating digester supernatants, was studied by means of batch-assays. AOB and anammox activities were maximum at pH of 8.0 and 7.8-8.0, rispectively. Short term effect of nitrite on anammox activity was studied, showing nitrite up to 42 mg/L did not result in inhibition. Both denitrification via nitrate and nitrite were measured. To reduce nitrite-oxidizing activity, high of NH3 – N (1.9-10 mg N-NH3/L and low nitrite (3-8 mg TNN/L are required conditions during the whole SBR cycle.Molecular analysis showed the nitritation-anammox sludge harbored a high microbial diversity, where each microorganism has a specific role. Using ammonia monooxygenase α –subunit (amoA gene as a marker, our analyses suggested different macro- and micro-environments in the reactor strongly affect the AOB community, allowing the development of different AOB species, such as N. europaea/eutropha and N. oligotropha groups, which improve the stability of nitritation process. A specific PCR primer set, used to target the 16S rRNA gene of anammox bacteria, confirmed the presence of the Ca. Brocadia fulgida type, able to grow in precence of organic matter and to tolerate high nitrite concentrations. The diversity of denitrifiers was assessed by using dissimilatory nitrite reductase (nirS gene-based analyses, who showed denitifiers were related to different betaproteobacterial genera, such as Thauera, Pseudomonas, Dechloromonas and Aromatoleum, able to assist in forming microbial aggregates. Concerning possible secondary processes, no n-damo bacteria were found while NOB from the genus of Nitrobacter

  5. Towards environmentally sustainable aquaculture: Exploiting fermentation products from anaerobic sludge digestion for fueling nitrate removal in RAS

    DEFF Research Database (Denmark)

    Suhr, Karin Isabel; Pedersen, Per Bovbjerg

    2011-01-01

    being the final cleaning component of the MTF set-up. No specific denitrification filter has so far been implemented in Danish MTFs. An in-situ study was conducted at a commercial MTF (1000 ton/year) for evaluating the potential of using the fermentation products from anaerobic digestion in the sludge...... and low C/N ratio rendered a relatively lower nitrate-N removal rate but significantly higher ammonia-N reduction, which could indicate anaerobic ammonia oxidation (anammox) activity. A controlled laboratory anaerobic MTF sludge digestion experiment showed that app. 40% additional nitrate-N reduction...... is by production in recirculating aquaculture systems (RAS). In Denmark, more than 50 % of total fresh-water rainbow trout production is made in semi-intensive RAS, called ModelTroutFarms (MTF). MTF efficiently removes organic matter (93%), phosphorous (76%), and nitrogen (50%) (Svendsen et al., 2008). This makes...

  6. Seasonality and depth distribution of the abundance and activity of ammonia oxidizing microorganisms in marine coastal sediments (North Sea

    Directory of Open Access Journals (Sweden)

    Yvonne Antonia Lipsewers

    2014-09-01

    Full Text Available Microbial processes such as nitrification and anaerobic ammonium oxidation (anammox are important for nitrogen cycling in marine sediments. Seasonal variations of archaeal and bacterial ammonia oxidizers (AOA and AOB and anammox bacteria, as well as the environmental factors affecting these groups, are not well studied. We have examined the seasonal and depth distribution of the abundance and potential activity of these microbial groups in coastal marine sediments of the southern North Sea. This was achieved by quantifying specific intact polar lipids (IPLs as well as the abundance and gene expression of their 16S rRNA gene, the ammonia monooxygenase subunit A (amoA gene of AOA and AOB, and the hydrazine synthase (hzsA gene of anammox bacteria. AOA, AOB and anammox bacteria were detected and transcriptionally active down to 12 cm sediment depth. In all seasons, the abundance of AOA was higher compared to the AOB abundance suggesting that AOA play a more dominant role in aerobic ammonia oxidation in these sediments. Anammox bacteria were abundant and active even in oxygenated and bioturbated parts of the sediment. The abundance of AOA and AOB was relatively stable with depth and over the seasonal cycle, while anammox bacteria abundance and transcriptional activity were highest in August. North Sea sediments thus seem to provide a common, stable, ecological niche for AOA, AOB and anammox bacteria.

  7. Effects of cycle duration of an external electrostatic field on anammox biomass activity

    Science.gov (United States)

    Yin, Xin; Qiao, Sen; Zhou, Jiti

    2016-01-01

    In this study, the effects of different cycle durations of an external electrostatic field on an anammox biomass were investigated. The total application time per day was 12 h at 2 V/cm for different cycle durations (i.e., continuous application-resting time) of 3 h-3 h, 6 h-6 h, and 12 h-12 h. Compared with the control reactor, the nitrogen removal rates (NRRs) increased by 18.7%, 27.4% and 8.50% using an external electrostatic field application with a continuous application time of 3 h, 6 h and 12 h. Moreover, after the reactor was running smoothly for approximately 215 days under the optimal electrostatic field condition (mode 2, continuous application-rest time: 6 h-6 h), the total nitrogen (TN) removal rate reached a peak value of approximately 6468 g-N/m3/d, which was 44.7% higher than the control. The increase in 16S rRNA gene copy numbers, heme c content and enzyme activities were demonstrated to be the main reasons for enhancement of the NRR of the anammox process. Additionally, transmission electron microscope observations proved that a morphological change in the anammox biomass occurred under an electrostatic field application.

  8. High rate nitrogen removal by ANAMMOX internal circulation reactor (IC) for old landfill leachate treatment.

    Science.gov (United States)

    Phan, The Nhat; Van Truong, Thi Thanh; Ha, Nhu Biec; Nguyen, Phuoc Dan; Bui, Xuan Thanh; Dang, Bao Trong; Doan, Van Tuan; Park, Joonhong; Guo, Wenshan; Ngo, Huu Hao

    2017-06-01

    This study aimed to evaluate the performance of a high rate nitrogen removal lab-scale ANAMMOX reactor, namely Internal Circulation (IC) reactor, for old landfill leachate treatment. The reactor was operated with pre-treated leachate from a pilot Partial Nitritation Reactor (PNR) using a high nitrogen loading rate ranging from 2 to 10kgNm(-3)d(-1). High rate removal of nitrogen (9.52±1.11kgNm(-3)d(-1)) was observed at an influent nitrogen concentration of 1500mgNL(-1). The specific ANAMMOX activity was found to be 0.598±0.026gN2-NgVSS(-1)d(-1). Analysis of ANAMMOX granules suggested that 0.5-1.0mm size granular sludge was the dominant group. The results of DNA analysis revealed that Candidatus Kueneniastuttgartiensis was the dominant species (37.45%) in the IC reactor, whereas other species like uncultured Bacteroidetes bacterium only constituted 5.37% in the system, but they were still responsible for removing recalcitrant organic matter.

  9. The autofluorescence characteristics of bacterial intracellular and extracellular substances during the operation of anammox reactor

    Science.gov (United States)

    Hou, Xiaolin; Liu, Sitong; Feng, Ying

    2017-01-01

    Anammox is a cost-effective process to treat nitrogenous wastewater. In this work, excitation–emission matrix (EEM) fluorescence spectroscopy was used to characterize the intracellular and extracellular substances of anammox sludge during reactor operation of 276 days. Four main fluorophores were identified from the intracellular substances. Two main protein-like fluorophores were identified from the extracellular substances. Correlation analysis revealed that intracellular 420 peak and humic-like peak had strong correlation with nitrogen removal rate. The two intracellular protein-like peaks had high correlation with MLVSS and MLVSS growth rate. Correlation analysis between different fluorophores discovered that the two peaks in each of these three groups—two intracellular protein-like peaks, two humic acid-like peaks and the two extracellular protein-like peaks had strong intercorrelation, which gave evidence of their homology. A specific method for fluorescence monitoring of anammox reactor were put forward, which included typical fluorescence indexes and their possible values for different operation phases. PMID:28091530

  10. The kinetics of nitrogen removal and biogas production in an anammox non-woven membrane reactor.

    Science.gov (United States)

    Ni, Shou-Qing; Lee, Po-Heng; Sung, Shihwu

    2010-08-01

    The anammox non-woven membrane reactor (ANMR) is a novel reactor configuration to culture the slowly growing anammox bacteria. Different mathematical models were used to study the process kinetics of the nitrogen removal in the ANMR. The kinetics of nitrogen gas production of anammox process was first evaluated in this paper. For substrate removal kinetics, the modified Stover-Kincannon model and the Grau second-order model were more applicable to the ANMR than the first-order model and the Monod model. For nitrogen gas production kinetics, the Van der Meer and Heertjes model was more appropriate than the modified Stover-Kincannon model. Model evaluation was carried out by comparing experimental data with predicted values calculated from suitable models. Both model kinetics study and model testing showed that the Grau second-order model and the Van der Meer and Heertjes model seemed to be the best models to describe the nitrogen removal and nitrogen gas production in the ANMR, respectively.

  11. Model-based evaluation of the role of Anammox on nitric oxide and nitrous oxide productions in membrane aerated biofilm reactor

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Smets, Barth F.; Yuan, Zhiguo;

    2013-01-01

    A multispecies one-dimensional biofilm model considering nitric oxide (NO) and nitrous oxide (N2O) productions for membrane aerated biofilm reactor (MABR) that remove nitrogen autotrophically through aerobic ammonia oxidation followed by Anammox is used to study the role of Anammox activity on th...

  12. Differential effects of crude oil on denitrification and anammox, and the impact on N2O production.

    Science.gov (United States)

    Ribeiro, Hugo; Mucha, Ana P; Azevedo, Isabel; Salgado, Paula; Teixeira, Catarina; Almeida, C Marisa R; Joye, Samantha B; Magalhães, Catarina

    2016-09-01

    Denitrification and anammox are key processes for reducing the external nitrogen loads delivered to coastal ecosystems, and these processes can be affected by pollutants. In this study, we investigated the effect of crude oil on denitrification and anammox. Controlled laboratory experiments were performed using sediment slurries from the Lima Estuary (NW Portugal). Anammox and denitrification rates were measured using (15)N-labeled NO3(-), and the production of (29)N2 and (30)N2 quantified by membrane inlet mass spectrometry. Results revealed that while denitrification rates were stimulated between 10 and 25 000 times after crude oil amendment, anammox activity was partially (between 2 and 5 times) or completely inhibited by the addition of crude oil when comparing to rates in unamended controls. Similar results were observed across four estuarine sediment types, despite their different physical-chemical characteristics. Moreover, N2O production was reduced by 2-36 times following crude oil addition. Further work is required to fully understand the mechanism(s) of the observed reduction in N2O production. This study represents one of the first contributions to the understanding of the impact of crude oil pollution on denitrification and anammox, with profound implications for the management of aquatic ecosystems regarding eutrophication (N-removal).

  13. Anaerobic Digestion: Process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Batstone, Damien J.

    2011-01-01

    with very little dry matter may also be called a digest. The digest should not be termed compost unless it specifically has been composted in an aerated step. This chapter describes the basic processes of anaerobic digestion. Chapter 9.5 describes the anaerobic treatment technologies, and Chapter 9.......6 addresses the mass balances and environmental aspects of anaerobic digestion....

  14. Diversity of total and functional microbiome of anammox reactors fed with complex and synthetic nitrogen-rich wastewaters

    DEFF Research Database (Denmark)

    Gülay, Arda; Pellicer i Nàcher, Carles; Mutlu, Ayten Gizem

    There are few comparitive studies of microbial structure, composition and phylogenetic diversity of the anammox reactors as a function of substrate complexity exist, representing a large gap in the scientific literature. In this study, we applied 16S rRNA gene (rDNA) tag-based 454 pyrosequencing...... implementations treating complex nitrogen-rich wastewaters and 14 were lab-scale implementations treating synthetic wastewaters. We found that nitritation/anammox bioreactors treating complex nitrogen-rich wastewaters were more diverse in terms of total microbial diversity but less diverse at anammox functional...... diversity than the bioreactors treating synthetic wastewaters inferred from observed OTUs0.03, Chao1, Shannon index and Phylogenetic distance calculations. Differences in total microbial diversity agreed with the ecological theory concerning the positive correlation between substrate complexity...

  15. Biological nutrients removal from the supernatant originating from the anaerobic digestion of the organic fraction of municipal solid waste.

    Science.gov (United States)

    Malamis, S; Katsou, E; Di Fabio, S; Bolzonella, D; Fatone, F

    2014-09-01

    This study critically evaluates the biological processes and techniques applied to remove nitrogen and phosphorus from the anaerobic supernatant produced from the treatment of the organic fraction of municipal solid waste (OFMSW) and from its co-digestion with other biodegradable organic waste (BOW) streams. The wide application of anaerobic digestion for the treatment of several organic waste streams results in the production of high quantities of anaerobic effluents. Such effluents are characterized by high nutrient content, because organic and particulate nitrogen and phosphorus are hydrolyzed in the anaerobic digestion process. Consequently, adequate post-treatment is required in order to comply with the existing land application and discharge legislation in the European Union countries. This may include physicochemical and biological processes, with the latter being more advantageous due to their lower cost. Nitrogen removal is accomplished through the conventional nitrification/denitrification, nitritation/denitritation and the complete autotrophic nitrogen removal process; the latter is accomplished by nitritation coupled with the anoxic ammonium oxidation process. As anaerobic digestion effluents are characterized by low COD/TKN ratio, conventional denitrification/nitrification is not an attractive option; short-cut nitrogen removal processes are more promising. Both suspended and attached growth processes have been employed to treat the anaerobic supernatant. Specifically, the sequencing batch reactor, the membrane bioreactor, the conventional activated sludge and the moving bed biofilm reactor processes have been investigated. Physicochemical phosphorus removal via struvite precipitation has been extensively examined. Enhanced biological phosphorus removal from the anaerobic supernatant can take place through the sequencing anaerobic/aerobic process. More recently, denitrifying phosphorus removal via nitrite or nitrate has been explored. The removal of

  16. Effect of HCO3- concentration on anammox nitrogen removal rate in a moving bed biofilm reactor.

    Science.gov (United States)

    Zekker, Ivar; Rikmann, Ergo; Tenno, Toomas; Vabamäe, Priit; Kroon, Kristel; Loorits, Liis; Saluste, Alar; Tenno, Taavo

    2012-01-01

    Anammox biomass enriched in a moving bed biofilm reactor (MBBR) fed by actual sewage sludge reject water and synthetically added NO2- was used to study the total nitrogen (TN) removal rate of the anammox process depending on bicarbonate (HCO3-) concentration. MBBR performance resulted in the maximum TN removal rate of 1100 g N m(-3) d(-1) when the optimum HCO3- concentration (910 mg L(-1)) was used. The average reaction ratio of NO2- removal, NO3- production and NH4+ removal were 1.18/0.20/1. When the HCO3- concentration was increased to 1760mg L(-1) the TN removal rate diminished to 270 g N m(-3) d(-1). The process recovered from bicarbonate inhibition within 1 week. The batch tests performed with biomass taken from the MBBR showed that for the HCO3- concentration of 615 mg L(-1) the TN removal rate was 3.3 mg N L(-1) h(-1), whereas for both lower (120 mg L(-1)) and higher (5750 mg L(-1)) HCO3- concentrations the TN removal rates were 2.3 (+/- 0.15) and 1.6 (+/- 0.12) mg N L(-1) d(-1), respectively. PCR and DGGE analyses resulted in the detection of uncultured Planctomycetales bacterium clone P4 and, surprisingly, low-oxygen-tolerant aerobic ammonia oxidizers. The ability of anammox bacteria for mixotrophy was established by diminished amounts of nitrate produced when comparing the experiments with an organic carbon source and an inorganic carbon source.

  17. 基于厌氧氨氧化的城市污水处理厂能耗分析%Energy Consumption of the Municipal Wastewater Treatment Plant With Anammox Process

    Institute of Scientific and Technical Information of China (English)

    彭永臻; 邵和东; 杨延栋; 张树军; 甘一萍; 张亮

    2015-01-01

    Based on the experimental results of the lab-scale reactor and the operational data of the demonstration project, the wastewater treatment plant with one-stage anammox process was comprehensively evaluated and analyzed in this paper. Firstly, the mass balance of the COD and nitrogen was analyzed. The analysis showed that the effluent of wastewater treatment plant based on anammox process could meet one-class A permitted criteria and the recovery of organic matter doubled when comparing to the traditional A2 O wastewater treatment process. We further investigated the effect of anammox process on energy consumption of the wastewater treatment plant. Due to the reduction of aeration energy consumption and the improvement of methane production in anaerobic digestion process, the theory energy self-sufficiency efficiency of 90% could be achieved. The analysis of mass balance and energy consumption indicated that the separate removal of organic matter and nitrogen in the wastewater pollutants was the key to enhance energy self-sufficiency efficiency.%基于小试和示范工程的试验研究结果,对基于一体化厌氧氨氧化工艺的城市污水处理厂进行了综合分析和评价。首先针对主要污染物质进行物质平衡分析,结果表明:与传统A2 O城市污水处理工艺技术相比,基于厌氧氨氧化工艺的污水处理厂能在保证出水总氮达一级A排放标准的同时,有机物回收量增加1倍。进一步考察了厌氧氨氧化工艺对城市污水处理厂能耗的影响。曝气能耗的降低和厌氧消化工艺中甲烷产量的提高,使得城市污水处理厂的理论能量自给率达到90%。物质平衡分析和能耗分析表明:厌氧氨氧化工艺提高污水厂能量自给率的关键在于实现了污水中有机物和氮污染物去除的分离。

  18. Performance and kinetic process analysis of an Anammox reactor in view of application for landfill leachate treatment.

    Science.gov (United States)

    Gao, Junling; Chys, Michael; Audenaert, Wim; He, Yanling; Van Hulle, Stijn W H

    2014-01-01

    Anammox has shown its promise and low cost for removing nitrogen from high strength wastewater such as landfill leachate. A reactor was inoculated with nitrification-denitrification sludge originating from a landfill leachate treating waste water treatment plant. During the operation, the sludge gradually converted into red Anammox granular sludge with high and stable Anammox activity. At a maximal nitrogen loading rate of 0.6 g N l(-1) d(-1), the reactor presented ammonium and nitrite removal efficiencies of above 90%. In addition, a modified Stover-Kincannon model was applied to simulate and assess the performance of the Anammox reactor. The Stover-Kincannon model was appropriate for the description of the nitrogen removal in the reactor with the high regression coefficient values (R2 = 0.946) and low Theil's inequality coefficient (TIC) values (TIC < 0.3). The model results showed that the maximal N loading rate of the reactor should be 3.69 g N l(-1) d(-).

  19. Draft Genome Sequence of Anammox Bacterium "Candidatus Scalindua brodae," Obtained Using Differential Coverage Binning of Sequencing Data from Two Reactor Enrichments

    NARCIS (Netherlands)

    Speth, Daan R; Russ, Lina; Kartal, Boran; Op den Camp, Huub J M; Dutilh, Bas E; Jetten, Mike S M

    2015-01-01

    We present the draft genome of anammox bacterium "Candidatus Scalindua brodae," which at 282 contigs is a major improvement over the highly fragmented genome assembly of related species "Ca. Scalindua profunda" (1,580 contigs) which was previously published.

  20. Seasonal dynamics of anammox bacteria in estuarial sediment of the Mai Po Nature Reserve revealed by analyzing the 16S rRNA and hydrazine oxidoreductase (hzo) genes.

    Science.gov (United States)

    Li, Meng; Cao, Huiluo; Hong, Yi-Guo; Gu, Ji-Dong

    2011-01-01

    The community and population dynamics of anammox bacteria in summer (wet) and winter (dry) seasons in estuarial mudflat sediment of the Mai Po Nature Reserve were investigated by 16S rRNA and hydrazine oxidoreductase (hzo) genes. 16S rRNA phylogenetic diversity showed that sequences related to 'Kuenenia' anammox bacteria were presented in summer but not winter while 'Scalindua' anammox bacteria occurred in both seasons and could be divided into six different clusters. Compared to the 16S rRNA genes, the hzo genes revealed a relatively uniform seasonal diversity, with sequences relating to 'Scalindua', 'Anammoxoglobus', and planctomycete KSU-1 found in both seasons. The seasonal specific bacterial groups and diversity based on the 16S rRNA and hzo genes indicated strong seasonal community structures in estuary sediment of this site. Furthermore, the higher abundance of hzo genes in summer than winter indicates clear seasonal population dynamics. Combining the physicochemical characteristics of estuary sediment in the two seasons and their correlations with anammox bacteria community structure, we proposed the strong seasonal dynamics in estuary sediment of Mai Po to be due to the anthropogenic and terrestrial inputs, especially in summer, which brings in freshwater anammox bacteria, such as 'Kuenenia', interacting with the coastal marine anammox bacteria 'Scalindua'.

  1. Multiple metabolisms constrain the anaerobic nitrite budget in the Eastern Tropical South Pacific

    Science.gov (United States)

    Babbin, Andrew R.; Peters, Brian D.; Mordy, Calvin W.; Widner, Brittany; Casciotti, Karen L.; Ward, Bess B.

    2017-02-01

    The Eastern Tropical South Pacific is one of the three major oxygen deficient zones (ODZs) in the global ocean and is responsible for approximately one third of marine water column nitrogen loss. It is the best studied of the ODZs and, like the others, features a broad nitrite maximum across the low oxygen layer. How the microbial processes that produce and consume nitrite in anoxic waters interact to sustain this feature is unknown. Here we used 15N-tracer experiments to disentangle five of the biologically mediated processes that control the nitrite pool, including a high-resolution profile of nitrogen loss rates. Nitrate reduction to nitrite likely depended on organic matter fluxes, but the organic matter did not drive detectable rates of denitrification to N2. However, multiple lines of evidence show that denitrification is important in shaping the biogeochemistry of this ODZ. Significant rates of anaerobic nitrite oxidation at the ODZ boundaries were also measured. Iodate was a potential oxidant that could support part of this nitrite consumption pathway. We additionally observed N2 production from labeled cyanate and postulate that anammox bacteria have the ability to harness cyanate as another form of reduced nitrogen rather than relying solely on ammonification of complex organic matter. The balance of the five anaerobic rates measured—anammox, denitrification, nitrate reduction, nitrite oxidation, and dissimilatory nitrite reduction to ammonium—is sufficient to reproduce broadly the observed nitrite and nitrate profiles in a simple one-dimensional model but requires an additional source of reduced nitrogen to the deeper ODZ to avoid ammonium overconsumption.

  2. Biodegradation and chemical precipitation of dissolved nutrients in anaerobically digested sludge dewatering centrate.

    Science.gov (United States)

    Galvagno, G; Eskicioglu, C; Abel-Denee, M

    2016-06-01

    The objective of this research was to assess specific side-stream treatment processes for biodegradation and precipitation of dissolved nutrients in dewatering centrate. In this study, characterization was made of a conventional suspended growth deammonification treatment process for transforming dissolved polyphosphate (poly-P), dissolved organic phosphorus (DOP) and dissolved organic nitrogen (DON) in two types of dewatering centrate. The deammonification process was configured as a sequencing batch reactor (SBR), combining partial nitrification and anaerobic ammonia oxidation (anammox) in a single tank. The first centrate feed studied was from the full-scale Annacis Island wastewater treatment plant (AIWWTP) located in Metro Vancouver, Canada. The second centrate feed was from a lab-scale anaerobic digester (AD) fed waste sludge from the existing City of Kelowna Wastewater Treatment Facility (KWTF), located in the Okanagan Valley, Canada. In addition, poly aluminum chloride (PACL) dosing was assessed for final polishing of dissolved nutrients. The deammonification SBR (DeSBR) process showed similar treatment characteristics for both the KWTF and AIWWTP centrates with excellent DON removal and poor non-reactive dissolved phosphorus (NRDP) removal. A statistical comparison of the DOP and poly-P through the DeSBR process suggests that DOP has a higher biodegradation potential. Future research focused on understanding the variables associated with degradation of DOP could lead to better NRDP removal through deammonification processes. Utilization of a post-anammox PACL chemical dosing stage can achieve the objective of precipitating any residual DON and NRDP and producing an effluent that has lower dissolved nutrients than the pre-digestion KWTF dewatering centrate scenario.

  3. Systematic design of an optimal control system for the SHARON-Anammox process

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan

    2016-01-01

    ). The best candidates to CVs were paired with the manipulated variables using the relative gain array. The proposed control structure was further analyzed and verified for disturbance rejection using the CLDG plots. The optimal pairing of CVs with the actuators (kLa and acid/base addition) is found...... to be dissolved oxygen (DO) and pH in the SHARON reactor. Furthermore, to relate the controller actions to process operation objective, nitrogen removal efficiency, two cascade control systems are designed. The first cascade loop controls TNN/TAN ratio in the influent to the Anammox reactor by adjusting the set...... point for DO in the regulatory layer, while the second cascade loop controls the nitrogen removal efficiency (i.e. effluent TNN and TAN) by adjusting the TNN/TAN ratio at the effluent of the SHARON reactor. The control system is evaluated and benchmarked using a set of realistic dynamic scenario...

  4. Plant-wide (BSM2) evaluation of reject water treatment with a SHARON-Anammox process

    DEFF Research Database (Denmark)

    Volcke, Eveline; Gernaey, Krist; Vrecko, Darko;

    2006-01-01

    In wastewater treatment plants (WWTPs) equipped with sludge digestion and dewatering systems, the reject water originating from these facilities contributes significantly to the nitrogen load of the activated sludge tanks, to which it is typically recycled. In this paper, the impact of reject water...... streams on the performance of a WWTP is assessed in a simulation study, using the Benchmark Simulation Model no. 2 (BSM2), that includes the processes describing sludge treatment and in this way allows for plant-wide evaluation. Comparison of performance of a WWTP without reject water with a WWTP where...... treatment plant, reject water treatment with a combined SHARON-Anammox process seems a promising option. The simulation results indicate that significant improvements of the effluent quality of the main wastewater treatment plant can be realized. An economic evaluation of the different scenarios...

  5. Anaerobic Digestion and its Applications

    Science.gov (United States)

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  6. Methods for increasing the rate of anammox attachment in a sidestream deammonification MBBR.

    Science.gov (United States)

    Klaus, Stephanie; McLee, Patrick; Schuler, Andrew J; Bott, Charles

    2016-01-01

    Deammonification (partial nitritation-anammox) is a proven process for the treatment of high-nitrogen waste streams, but long startup time is a known drawback of this technology. In a deammonification moving bed biofilm reactor (MBBR), startup time could potentially be decreased by increasing the attachment rate of anammox bacteria (AMX) on virgin plastic media. Previous studies have shown that bacterial adhesion rates can be increased by surface modification or by the development of a preliminary biofilm. This is the first study on increasing AMX attachment rates in a deammonification MBBR using these methods. Experimental media consisted of three different wet-chemical surface treatments, and also media transferred from a full-scale mainstream fully nitrifying integrated fixed-film activated sludge (IFAS) reactor. Following startup of a full-scale deammonification reactor, the experimental media were placed in the full-scale reactor and removed for activity rate measurements and biomass testing after 1 and 2 months. The media transferred from the IFAS process exhibited a rapid increase in AMX activity rates (1.1 g/m(2)/day NH(4)(+) removal and 1.4 g/m(2)/day NO(2)(-) removal) as compared to the control (0.2 g/m(2)/day NH(4)(+) removal and 0.1 g/m(2)/day NO(2)(-) removal) after 1 month. Two out of three of the surface modifications resulted in significantly higher AMX activity than the control at 1 and 2 months. No nitrite oxidizing bacteria activity was detected in either the surface modified media or IFAS media batch tests. The results indicate that startup time of a deammonification MBBR could potentially be decreased through surface modification of the plastic media or through the transfer of media from a mature IFAS process.

  7. Anaerobic Digestion Foaming Causes

    OpenAIRE

    Ganidi, Nafsika

    2008-01-01

    Anaerobic digestion foaming has been encountered in several sewage treatment plants in the UK. Foaming has raised major concerns for the water utilities due to significant impacts on process efficiency and operational costs. Several foaming causes have been suggested over the past few years by researchers. However, the supporting experimental information is limited and in some cases site specific. The present report aimed to provide a better understanding of the anaerobic di...

  8. 454-Pyrosequencing Analysis of Bacterial Communities from Autotrophic Nitrogen Removal Bioreactors Utilizing Universal Primers: Effect of Annealing Temperature

    Directory of Open Access Journals (Sweden)

    Alejandro Gonzalez-Martinez

    2015-01-01

    Full Text Available Identification of anaerobic ammonium oxidizing (anammox bacteria by molecular tools aimed at the evaluation of bacterial diversity in autotrophic nitrogen removal systems is limited by the difficulty to design universal primers for the Bacteria domain able to amplify the anammox 16S rRNA genes. A metagenomic analysis (pyrosequencing of total bacterial diversity including anammox population in five autotrophic nitrogen removal technologies, two bench-scale models (MBR and Low Temperature CANON and three full-scale bioreactors (anammox, CANON, and DEMON, was successfully carried out by optimization of primer selection and PCR conditions (annealing temperature. The universal primer 530F was identified as the best candidate for total bacteria and anammox bacteria diversity coverage. Salt-adjusted optimum annealing temperature of primer 530F was calculated (47°C and hence a range of annealing temperatures of 44–49°C was tested. Pyrosequencing data showed that annealing temperature of 45°C yielded the best results in terms of species richness and diversity for all bioreactors analyzed.

  9. Anaerobic Biodegradation of Detergent Surfactants

    Directory of Open Access Journals (Sweden)

    Erich Jelen

    2009-03-01

    Full Text Available Detergent surfactantscan be found in wastewater in relevant concentrations. Most of them are known as ready degradable under aerobic conditions, as required by European legislation. Far fewer surfactants have been tested so far for biodegradability under anaerobic conditions. The natural environment is predominantly aerobic, but there are some environmental compartments such as river sediments, sub-surface soil layer and anaerobic sludge digesters of wastewater treatment plants which have strictly anaerobic conditions. This review gives an overview on anaerobic biodegradation processes, the methods for testing anaerobic biodegradability, and the anaerobic biodegradability of different detergent surfactant types (anionic, nonionic, cationic, amphoteric surfactants.

  10. Anaerobic bacteria in otitis media.

    Science.gov (United States)

    Fulghum, R S; Daniel, H J; Yarborough, J G

    1977-01-01

    Anaerobic bacteria, Peptostrepotococcus intermedius and Propionibacterium acnes, were found in mixed culture specimens from four to ten tested cases of chronic secretory otitis media. These anaerobic bacteria were in a mixed infection flora with aerobic bacteria most often Staphylococcus epidermidis and Cornybacterium sp. which do not fit any established species. The findings of anaerobic bacteria in otitis media is consistent with the sporadic report of the involvement of anaerobic bacteria in otitis media in the literature since 1898.

  11. Ammonium removal by partial nitritation and Anammox processes from wastewater with increased salinity.

    Science.gov (United States)

    Malovanyy, Andriy; Plaza, Elzbieta; Trela, Jozef; Malovanyy, Myroslav

    2015-01-01

    This work is dedicated to the biological treatment of wastewater with increased salinity using a combination of partial nitritation and Anammox processes. Two one-stage deammonification moving bed biofilm reactors were operated with the increase in NaCl concentration every two weeks by 5 and 2.5 g/L. The strategy with a step of 5 g/L of salinity increase led to complete inhibition of the process at the salinity level of 15 g/L. The strategy with a step of 2.5 g/L gave possibility to adapt bacteria to the elevated salinity. After reaching the salinity level of 10 g NaCl/L, the reactor was operated during 92 days with a nitrogen removal rate of 0.39±0.19 g N/(m2·day) (0.078±0.038 kg N/m3·day) and an average nitrogen removal efficiency of 59%. It was shown that conductivity cannot be used for monitoring the process when a reactor is treating wastewater with increased salinity, whereas pH can be correlated to effluent ammonium concentration regardless of wastewater salinity.

  12. [Effect of temperature on stability of nitrogen removal in the ANAMMOX reactor].

    Science.gov (United States)

    Li, Xiang; Huang, Yong; Zheng, Yu-Hui; Yuan, Yi; Li, Da-Peng; Pan, Yang; Zhang, Chun-Lei

    2012-04-01

    The effect of temperature on stability of nitrogen removal efficiency was investigated in an ANANMMOX reactor by measuring the nitrogen removal rate. The results showed that the nitrogen removal rate changed between 1.51 kg x (m3 x d)(-1) and 1.84 kg x (m3 x d)(-1) when the temperature was between 26 degrees C and 37 degrees C. Compared with gradually degrading temperature (nitrogen removal rate variation of amplitude 9.03%), the ladder degrading temperature was more advantageous on the stability of nitrogen removal efficiency. Nitrogen removal rate variation of amplitude was 4.35%. The nitrogen removal rate dropped quickly, when the temperature was below 20 degrees C. Moreover, a large number of NO2(-) -N accumulated in the ANAMMOX process, when temperature is below 15 degrees C in the reactor. A strong relationship between temperature and nitrogen removal rate was found, when the temperature was below 20 degrees C. Based on the effect of temperature on nitrogen removal rate, the strategy about temperature control was proposed to achieve the fast start-up and high efficiency of nitrogen removal under low temperature for the ANANMMOX reactors.

  13. Accelerating effect of hydroxylamine and hydrazine on nitrogen removal rate in moving bed biofilm reactor.

    Science.gov (United States)

    Zekker, Ivar; Kroon, Kristel; Rikmann, Ergo; Tenno, Toomas; Tomingas, Martin; Vabamäe, Priit; Vlaeminck, Siegfried E; Tenno, Taavo

    2012-09-01

    In biological nitrogen removal, application of the autotrophic anammox process is gaining ground worldwide. Although this field has been widely researched in last years, some aspects as the accelerating effect of putative intermediates (mainly N₂H₄ and NH₂OH) need more specific investigation. In the current study, experiments in a moving bed biofilm reactor (MBBR) and batch tests were performed to evaluate the optimum concentrations of anammox process intermediates that accelerate the autotrophic nitrogen removal and mitigate a decrease in the anammox bacteria activity using anammox (anaerobic ammonium oxidation) biomass enriched on ring-shaped biofilm carriers. Anammox biomass was previously grown on blank biofilm carriers for 450 days at moderate temperature 26.0 (±0.5) °C by using sludge reject water as seeding material. FISH analysis revealed that anammox microorganisms were located in clusters in the biofilm. With addition of 1.27 and 1.31 mg N L⁻¹ of each NH₂OH and N₂H₄, respectively, into the MBBR total nitrogen (TN) removal efficiency was rapidly restored after inhibitions by NO₂⁻. Various combinations of N₂H₄, NH₂OH, NH₄⁺, and NO₂⁻ were used as batch substrates. The highest total nitrogen (TN) removal rate with the optimum N₂H₄ concentration (4.38 mg N L⁻¹) present in these batches was 5.43 mg N g⁻¹ TSS h⁻¹, whereas equimolar concentrations of N₂H₄ and NH₂OH added together showed lower TN removal rates. Intermediates could be applied in practice to contribute to the recovery of inhibition-damaged wastewater treatment facilities using anammox technology.

  14. A network model shows the importance of coupled processes in the microbial N cycle in the Cape Fear River Estuary

    Science.gov (United States)

    Hines, David E.; Lisa, Jessica A.; Song, Bongkeun; Tobias, Craig R.; Borrett, Stuart R.

    2012-06-01

    Estuaries serve important ecological and economic functions including habitat provision and the removal of nutrients. Eutrophication can overwhelm the nutrient removal capacity of estuaries and poses a widely recognized threat to the health and function of these ecosystems. Denitrification and anaerobic ammonium oxidation (anammox) are microbial processes responsible for the removal of fixed nitrogen and diminish the effects of eutrophication. Both of these microbial removal processes can be influenced by direct inputs of dissolved inorganic nitrogen substrates or supported by microbial interactions with other nitrogen transforming pathways such as nitrification and dissimilatory nitrate reduction to ammonium (DNRA). The coupling of nitrogen removal pathways to other transformation pathways facilitates the removal of some forms of inorganic nitrogen; however, differentiating between direct and coupled nitrogen removal is difficult. Network modeling provides a tool to examine interactions among microbial nitrogen cycling processes and to determine the within-system history of nitrogen involved in denitrification and anammox. To examine the coupling of nitrogen cycling processes, we built a nitrogen budget mass balance network model in two adjacent 1 cm3 sections of bottom water and sediment in the oligohaline portion of the Cape Fear River Estuary, NC, USA. Pathway, flow, and environ ecological network analyses were conducted to characterize the organization of nitrogen flow in the estuary and to estimate the coupling of nitrification to denitrification and of nitrification and DNRA to anammox. Centrality analysis indicated NH4+ is the most important form of nitrogen involved in removal processes. The model analysis further suggested that direct denitrification and coupled nitrification-denitrification had similar contributions to nitrogen removal while direct anammox was dominant to coupled forms of anammox. Finally, results also indicated that partial

  15. The anaerobic digestion process

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States); Boone, D.R. [Oregon Graduate Inst., Portland, OR (United States)

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  16. Anaerobic digestion without biogas?

    NARCIS (Netherlands)

    Kleerebezem, R.; Joosse, B.; Rozendaal, R.; Van Loosdrecht, M.C.M.

    2015-01-01

    Anaerobic digestion for the production of methane containing biogas is the classic example of a resource recovery process that combines stabilization of particulate organic matter or wastewater treatment with the production of a valuable end-product. Attractive features of the process include the pr

  17. High rates of denitrification and nitrous oxide emission in arid biological soil crusts from the Sultanate of Oman

    DEFF Research Database (Denmark)

    Abed, Raeid M M; Lam, Phyllis; De Beer, Dirk;

    2013-01-01

    Using a combination of process rate determination, microsensor profiling and molecular techniques, we demonstrated that denitrification, and not anaerobic ammonium oxidation (anammox), is the major nitrogen loss process in biological soil crusts from Oman. Potential denitrification rates were 584...... that nitrogen loss via denitrification is a dominant process in crusts from Oman, which leads to N 2 O gas emission and potentially reduces desert soil fertility. © 2013 International Society for Microbial Ecology.......Using a combination of process rate determination, microsensor profiling and molecular techniques, we demonstrated that denitrification, and not anaerobic ammonium oxidation (anammox), is the major nitrogen loss process in biological soil crusts from Oman. Potential denitrification rates were 584....... Strikingly, N 2 O gas was emitted at very high potential rates of 387±143 and 31±6 μmol N m -2 h -1 from the cyanobacterial and lichen crust, respectively, with N 2 O accounting for 53-66% of the total emission of nitrogenous gases. Microsensor measurements revealed that N 2 O was produced in the anoxic...

  18. Hotspots of anaerobic ammonia oxidation in land - freshwater interfaces

    DEFF Research Database (Denmark)

    Zhu, Guibing; Wang, Shanyun; Wang, Weidong;

    2013-01-01

    For decades, the conversion of organic nitrogen to dinitrogen gas by heterotrophic bacteria, termed heterotrophic denitrification, was assumed to be the main pathway of nitrogen loss in natural ecosystems. Recently, however, autotrophic bacteria have been shown to oxidize ammonium in the absence...... of oxygen, yielding dinitrogen gas. This process, termed anammox, accounts for over 50% of nitrogen loss in marine ecosystems1–5. However, the significance of anammox in freshwater ecosystems has remained uncertain 6,7. Here, we use molecular and isotopic techniques to monitor anammox activity in sediments...

  19. Nitrogen removal and spatial distribution of denitrifier and anammox communities in a bioreactor for mine drainage treatment.

    Science.gov (United States)

    Herbert, Roger B; Winbjörk, Harry; Hellman, Maria; Hallin, Sara

    2014-12-01

    Mine drainage water may contain high levels of nitrate (NO3(-)) due to undetonated nitrogen-based explosives. The removal of NO3(-) and nitrite (NO2(-)) in cold climates through the microbial process of denitrification was evaluated using a pilot-scale fixed-bed bioreactor (27 m(3)). Surface water was diverted into the above-ground bioreactor filled with sawdust, crushed rock, and sewage sludge. At hydraulic residence times of ca.15 h and with the addition of acetate, NO3(-) and NO2(-) were removed to below detection levels at a NO3(-) removal rate of 5-10 g N m(-3) (bioreactor material) d(-1). The functional groups contributing to nitrogen removal in the bioreactor were studied by quantifying nirS and nirK present in denitrifying bacteria, nosZI and nosZII genes from the nitrous oxide - reducing community, and a taxa-specific part of the16S rRNA gene for the anammox community. The abundances of nirS and nirK were almost 2 orders of magnitude greater than the anammox specific 16S rRNA gene, indicating that denitrification was the main process involved in nitrogen removal. The spatial distribution of the quantified genes was heterogeneous in the bioreactor, with trends observed in gene abundance as a function of depth, distance from the bioreactor inlet, and along specific flowpaths. There was a significant relationship between the abundance of nirS, nirK, and nosZI genes and depth in the bioreactor, such that the abundance of organisms containing these genes may be controlled by oxygen diffusion and substrate supply in the partially or completely water-saturated material. Among the investigated microbial functional groups, nirS and anammox bacterial 16S rRNA genes exhibited a systematic trend of decreasing and increasing abundance, respectively, with distance from the inlet, which suggested that the functional groups respond differently to changing environmental conditions. The greater abundance of nirK along central flowpaths may indicate that the bioreactor

  20. New concepts of ammonia removal from digested swine effluents using anammox based deammonification process

    Science.gov (United States)

    Production of biogas from swine manure using anaerobic digesters (AD) is projected to be important in the future. However, surplus nitrogen (N) in AD effluents is difficult to remove using current technology (nitrification/denitrification) because low carbon availability after biogas production. W...

  1. The effects of oxygen on process rates and gene expression of anammox and denitrification in the Eastern South Pacific oxygen minimum zone

    DEFF Research Database (Denmark)

    Dalsgaard, Tage; Stewart, Frank; De Brabandere, Loreto

    Oxygen concentrations were consistently below our detection limit of 90 nM for a distance of > 2000 km in the oxygen minimum zone (OMZ) along the coasts of Chile and Peru. In most cases, anammox and denitrification were only detected when in situ oxygen concentrations were below detection, with d...

  2. Nitrogen removal from wastewater and external waste activated sludge reutilization/reduction by simultaneous sludge fermentation, denitrification and anammox (SFDA).

    Science.gov (United States)

    Wang, Bo; Peng, Yongzhen; Guo, Yuanyuan; Zhao, Mengyue; Wang, Shuying

    2016-08-01

    This work demonstrates the feasibility of simultaneous nitrogen removal and external waste activated sludge (WAS) reutilization/reduction by using the synergy of sludge fermentation, denitrification and anammox processes in up-flow reactors (SFDA). Pre-treated domestic wastewater and synthetic wastewater (containing nitrite ∼20mg/L, ammonium ∼10mg/L in both) were fed to 1# and 2# SFDA, respectively. Long-term operation of 1# SFDA was investigated with achieving the peak ammonium removal rate of 0.021 and nitrite removal rate of 0.081kgN/(m(3)d) as nitrogen loading rate elevated from 0.075 to 0.106kgN/(m(3)d). Negative effect of dissolved oxygen on anammox or fermentation in the 2# SFDA was demonstrated negligible due to rapid depletion by microorganisms. Furthermore, a "net" sludge reduction of 38.8% was obtained due to sludge decay and organics consumption by denitrification. The SFDA process was expected to potentially be used for nitrogen removal and WAS reutilization/reduction in full-scale application.

  3. Enhancing simultaneous nitritation and anammox in recirculating biofilters: effects of unsaturated zone depth and alkalinity dissolution of packing materials.

    Science.gov (United States)

    Wen, Jianfeng; Tao, Wendong; Wang, Ziyuan; Pei, Yuansheng

    2013-01-15

    This study investigated effects of unsaturated zone depth on nitrogen removal via simultaneous nitritation and anammox in three vertical flow recirculating biofilters. The biofilters had different depths (25, 40, and 60 cm) of an unsaturated zone and the same depth (35 cm) of a saturated zone. Unsaturated zone depth could be regulated to maintain suitable dissolved oxygen concentrations and enhance entrapment of carbon dioxide for co-occurrence of aerobic ammonia oxidation and anammox in the saturated zones. The biofilters with the larger unsaturated zones had higher ammonium and total inorganic nitrogen removal rates (16.2-33.5 g N/m(3)/d and 4.6-16.7 g N/m(3)/d, respectively) than the biofilter with the smallest unsaturated zone (11.9-18.1 g N/m(3)/d and 4.4-7.9 g N/m(3)/d, respectively). Electric arc furnace slag and marble chips were packed in the unsaturated and saturated zones, respectively, as low-cost materials to supplement alkalinity and buffer pH. Laboratory experiments showed that the maximum alkalinity dissolution efficiency was 513 mg CaCO(3)/kg marble chips and 761 mg CaCO(3)/kg electric arc furnace slag. Marble chips and electric arc furnace slag could increase dairy wastewater pH up to 7 and 9, respectively. The laboratory results are also useful for utilization of furnace slag and marble chips in constructed wetlands.

  4. Influence of seasonal temperature fluctuations on two different partial nitritation-anammox reactors treating mainstream municipal wastewater.

    Science.gov (United States)

    Lackner, Susanne; Welker, Samuel; Gilbert, Eva M; Horn, Harald

    2015-01-01

    Partial nitritation-anammox (PN-A) has gained increasing interest for municipal wastewater treatment in recent years due to its high energy-saving potential. Moving the PN-A technology from side- to mainstream exhibited a set of challenges. Conditions are quite different, with much lower ammonium concentrations and temperatures. Biomass retention becomes highly important due to the even lower growth rates. This study compared two laboratory-scale reactors, a sequencing batch reactor (SBR) and a moving bed biofilm reactor (MBBR), employing realistic seasonal temperature variations over a 1-year period. The results revealed that both systems had to face decreasing ammonium conversion rates and nitrite accumulation at temperatures lower than 12°C. The SBR did not recover from the loss in anammox activity even when the temperature increased again. The MBBR only showed a short nitrite peak and recovered its initial ammonium turnover when the temperature rose back to >15°C. The SBR had higher biomass specific rates, indicating that suspended sludge is less diffusion-limited but also more susceptible to biomass wash-out. However, the MBBR showed the more stable performance also at low temperatures and managed to recover. Ex situ batch activity tests supported reactor operation data by providing additional insight with respect to specific biomass activities.

  5. Removal of Nitrogen and Phosphorus From Reject Water Using Chlorella vulgaris Algae After Partial Nitrification/Anammox Process.

    Science.gov (United States)

    Gutwinski, Piotr; Cema, Grzegorz

    2016-01-01

    Wastewater containing nutrients like ammonia, nitrite, nitrate and phosphates have been identified as the main cause of eutrophication in natural waters. Therefore, a suitable treatment is needed. In classical biological processes, nitrogen and phosphorus removal is expensive, especially due to the lack of biodegradable carbon, thus new methods are investigated. In this paper, the new possibility of nitrogen and phosphorus removal in side stream after the partial nitrification/Anammox process is proposed. Research was carried out in a lab-scale vertical tubular photobioreactor (VTR) fed with real reject water, from dewatering of digested sludge, after partial nitrification/Anammox process from lab-scale sequencing batch reactor (SBR). Nitrogen and phosphorus concentrations were measured every three days. The average nitrogen and phosphorus loads were 0.0503 ± 0.036 g N g(vss)/d and 0.0389 ± 0.013 g P g(vss)/d accordingly. Results have shown that microalgae were able to efficiently remove nitrogen and phosphorus. The average nitrogen removal was 36.46% and phosphorus removal efficiency varied between 93 and 100%.

  6. High-rate nitrogen removal and microbial community of an up-flow anammox reactor with ceramics as biomass carrier.

    Science.gov (United States)

    Ren, Yuhui; Li, Dong; Li, Xiangkun; Yang, Liu; Ding, An; Zhang, Jie

    2014-10-01

    Nitrogen removal performance and responsible microbial community of anammox process at low temperatures, and long term effect of dissolved oxygen (DO) on the performance of anammox process were investigated in a biofilm reactor, which was operated at 33±1°C (159d) and 20±2°C (162d) with an influent DO concentration of 0.7-1.5mgL(-1). Nitrogen removal recovered to 70% after 2wk with the temperature drastically decreasing from 33±1°C to 20±2°C. At 20±2°C, the average effluent (NH4(+)-N+NO2(-)-N) concentration was 0.08±0.08mgL(-1) at a hydraulic retention time of 1.5h. A total nitrogen removal efficiency of the reactor of 1.0gNL(-1)d(-1) was obtained for up to one month while the nitrogen loading rate was 1.16gNL(-1)d(-1). Results of T-RFLP and 16S rRNA phylogenic analysis revealed that Candidatus Jettenia asiatica, as confirmed to adapt to low temperature, was considered to be responsible for the stable and high nitrogen removal performance.

  7. Thermal stability of ladderane lipids as determined by hydrous pyrolysis

    Science.gov (United States)

    Jaeschke, A.; Lewan, M.D.; Hopmans, E.C.; Schouten, S.; Sinninghe, Damste J.S.

    2008-01-01

    Anaerobic ammonium oxidation (anammox) has been recognized as a major process resulting in loss of fixed inorganic nitrogen in the marine environment. Ladderane lipids, membrane lipids unique to anammox bacteria, have been used as markers for the detection of anammox in marine settings. However, the fate of ladderane lipids after sediment burial and maturation is unknown. In this study, anammox bacterial cell material was artificially matured by hydrous pyrolysis at constant temperatures ranging from 120 to 365 ??C for 72 h to study the stability of ladderane lipids during progressive dia- and catagenesis. HPLC-MS/MS analysis revealed that structural alterations of ladderane lipids already occurred at 120 ??C. At temperatures >140 ??C, ladderane lipids were absent and only more thermally stable products could be detected, i.e., ladderane derivatives in which some of the cyclobutane rings were opened. These diagenetic products of ladderane lipids were still detectable up to temperatures of 260 ??C using GC-MS. Thus, ladderane lipids are unlikely to occur in ancient sediments and sedimentary rocks, but specific diagenetic products of ladderane lipids will likely be present in sediments and sedimentary rocks of relatively low maturity (i.e., C31 hopane 22S/(22S + 22R) ratio 0.5). ?? 2008 Elsevier Ltd.

  8. Nitrogen reduction pathways in estuarine sediments: Influences of organic carbon and sulfide

    Science.gov (United States)

    Plummer, Patrick; Tobias, Craig; Cady, David

    2015-10-01

    Potential rates of sediment denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) were mapped across the entire Niantic River Estuary, CT, USA, at 100-200 m scale resolution consisting of 60 stations. On the estuary scale, denitrification accounted for ~ 90% of the nitrogen reduction, followed by DNRA and anammox. However, the relative importance of these reactions to each other was not evenly distributed through the estuary. A Nitrogen Retention Index (NIRI) was calculated from the rate data (DNRA/(denitrification + anammox)) as a metric to assess the relative amounts of reactive nitrogen being recycled versus retained in the sediments following reduction. The distribution of rates and accompanying sediment geochemical analytes suggested variable controls on specific reactions, and on the NIRI, depending on position in the estuary and that these controls were linked to organic carbon abundance, organic carbon source, and pore water sulfide concentration. The relationship between NIRI and organic carbon abundance was dependent on organic carbon source. Sulfide proved the single best predictor of NIRI, accounting for 44% of its observed variance throughout the whole estuary. We suggest that as a single metric, sulfide may have utility as a proxy for gauging the distribution of denitrification, anammox, and DNRA.

  9. New perspectives in anaerobic digestion

    DEFF Research Database (Denmark)

    van Lier, J.B.; Tilche, A.; Ahring, Birgitte Kiær;

    2001-01-01

    The IWA specialised group on anaerobic digestion (AD) is one of the oldest working groups of the former IAWQ organisation. Despite the fact that anaerobic technology dates back more than 100 years, the technology is still under development, adapting novel treatment systems to the modern...... requirements. In fact, most advances were achieved during the last three decades, when high-rate reactor systems were developed and a profound insight was obtained in the microbiology of the anaerobic communities. This insight led to a better understanding of anaerobic treatment and, subsequently, to a broader...

  10. Anaerobic Digestion of Piggery Waste

    NARCIS (Netherlands)

    Velsen, van A.F.M.

    1981-01-01

    Anaerobic digestion is a biological process by which organic matter is converted to methane and carbon dioxide by microbes in the absence of air (oxygen). In nature, anaerobic conversions occur at all places where organic material accumulates and the supply of oxygen is deficient, e.g. in marshes an

  11. Economic viability of anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Wellinger, A. [INFOENERGIE, Ettenhausen (Switzerland)

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  12. Anaerobic digestion of solid material

    DEFF Research Database (Denmark)

    Vavilin, V.A.; Lokshina, L.Y.; Flotats, X.

    2007-01-01

    A new multidimensional (3 and 2D) anaerobic digestion model for cylindrical reactor with non-uniform influent concentration distributions was developed to study the way in which mixing intensity affects the efficiency of continuous-flow anaerobic digestion. Batch experiments reported and simulate...

  13. Dissimilatory nitrate reduction processes in sediments of urban river networks: Spatiotemporal variations and environmental implications.

    Science.gov (United States)

    Cheng, Lv; Li, Xiaofei; Lin, Xianbiao; Hou, Lijun; Liu, Min; Li, Ye; Liu, Sai; Hu, Xiaoting

    2016-12-01

    Urbanizations have increased the loadings of reactive nitrogen in urban riverine environments. However, limited information about dissimilatory nitrate reduction processes and associated contributions to nitrogen removal is available for urban riverine environments. In this study, sediment slurry experiments were conducted with nitrogen isotope-tracing technique to investigate the potential rates of denitrification, anaerobic ammonium oxidation (anammox) and dissimilatory nitrate reduction to ammonium (DNRA) and their contributions to nitrate reduction in sediments of urban river networks, Shanghai. The potential rates of denitrification, anammox and DNRA measured in the study area ranged from 0.193 to 98.7 nmol N g(-1) h(-1) dry weight (dw), 0.0387-23.7 nmol N g(-1) h(-1) dw and 0-10.3 nmol N g(-1) h(-1) dw, respectively. Denitrification and DNRA rates were higher in summer than in winter, while anammox rates were greater in winter than in summer for most sites. Dissolved oxygen, total organic carbon, nitrate, ammonium, sulfide, Fe(II) and Fe(III) were found to have significant influence on these nitrate reduction processes. Denitrification contributed 11.5-99.5%% to total nitrate reduction, as compared to 0.343-81.6% for anammox and 0-52.3% for DNRA. It is estimated that nitrogen loss of approximately 1.33 × 10(5) t N year(-1) was linked to both denitrification and anammox processes, which accounted for about 20.1% of total inorganic nitrogen transported annually into the urban river networks of Shanghai. Overall, these results show the potential importance of denitrification and anammox in nitrogen removal and provide new insight into the mechanisms of nitrogen cycles in urban riverine environments.

  14. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones.

    Science.gov (United States)

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A; Graco, Michelle I; Kuypers, Marcel M M

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein.

  15. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones.

    Directory of Open Access Journals (Sweden)

    Tim Kalvelage

    Full Text Available Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100% in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein.

  16. Isolation and Cultivation of Anaerobes

    DEFF Research Database (Denmark)

    Aragao Börner, Rosa

    2016-01-01

    Anaerobic microorganisms play important roles in different biotechnological processes. Their complex metabolism and special cultivation requirements have led to less isolated representatives in comparison to their aerobic counterparts.In view of that, the isolation and cultivation of anaerobic...... microorganisms is still a promising venture, and conventional methodologies as well as considerations and modifications are presented here. An insight into new methodologies and devices as well as a discussion on future perspectives for the cultivation of anaerobes may open the prospects of the exploitation...

  17. Anaerobic Biodegradation of Detergent Surfactants

    OpenAIRE

    Erich Jelen; Ute Merrettig-Bruns

    2009-01-01

    Detergent surfactantscan be found in wastewater in relevant concentrations. Most of them are known as ready degradable under aerobic conditions, as required by European legislation. Far fewer surfactants have been tested so far for biodegradability under anaerobic conditions. The natural environment is predominantly aerobic, but there are some environmental compartments such as river sediments, sub-surface soil layer and anaerobic sludge digesters of wastewater treatment plants which have str...

  18. Anammox moving bed biofilm reactor pilot at the 26th Ward wastewater treatment plants in Brooklyn, New York: start-up, biofilm population diversity and performance optimization.

    Science.gov (United States)

    Mehrdad, M; Park, H; Ramalingam, K; Fillos, J; Beckmann, K; Deur, A; Chandran, K

    2014-01-01

    New York City Environmental Protection in conjunction with City College of New York assessed the application of the anammox process in the reject water treatment using a moving bed biofilm reactor (MBBR) located at the 26th Ward wastewater treatment plant, in Brooklyn, NY. The single-stage nitritation/anammox MBBR was seeded with activated sludge and consequently was enriched with its own 'homegrown' anammox bacteria (AMX). Objectives of this study included collection of additional process kinetic and operating data and assessment of the effect of nitrogen loading rates on process performance. The initial target total inorganic nitrogen removal of 70% was limited by the low alkalinity concentration available in the influent reject water. Higher removals were achieved after supplementing the alkalinity by adding sodium hydroxide. Throughout startup and process optimization, quantitative real-time polymerase chain reaction (qPCR) analyses were used for monitoring the relevant species enriched in the biofilm and in the suspension. Maximum nitrogen removal rate was achieved by stimulating the growth of a thick biofilm on the carriers, and controlling the concentration of dissolved oxygen in the bulk flow and the nitrogen loading rates per surface area; all three appear to have contributed in suppressing nitrite-oxidizing bacteria activity while enriching AMX density within the biofilm.

  19. Mainstream partial nitritation and anammox in a 200,000 m3/day activated sludge process in Singapore: scale-down by using laboratory fed-batch reactor.

    Science.gov (United States)

    Yeshi, Cao; Hong, Kwok Bee; van Loosdrecht, Mark C M; Daigger, Glen T; Yi, Png Hui; Wah, Yuen Long; Chye, Chua Seng; Ghani, Yahya Abd

    2016-01-01

    A laboratory fed-batch reactor has been used to study under controlled conditions the performance of partial nitritation/anammox for the 200,000 m(3)/day step-feed activated sludge process at the Changi Water Reclamation Plant, Singapore. The similarity of the concentrations of NH(4), NO(2), NO(3), PO(4), suspended chemical oxygen demand (sCOD), pH, and alkalinity (ALK) between the on-site process and laboratory reactor illustrates that the laboratory fed-batch reactor can be used to simulate the site performance. The performance of the reactor fed by primary effluent illustrated the existence of anammox and heterotrophic denitrification and apparent excessive biological phosphorus removal as observed from the site. The performance of the reactor fed by final effluent proved the presence of anammox process on site. Both the laboratory reactor and on-site process showed that higher influent 5-day biochemical oxygen demand/total nitrogen (BOD(5)/TN) (COD/TN) ratio increases the nitrogen removal efficiency of the process.

  20. [Element Sulfur Autotrophic Denitrification Combined Anaerobic Ammonia Oxidation].

    Science.gov (United States)

    Zhou, Jian; Huang, Yong; Liu, Xin; Yuan, Yi; Li Xiang; Wangyan, De-qing; Ding, Liang; Shao, Jing-wei; Zhao, Rong

    2016-03-15

    A novel element sulfur autotrophic denitrification combined anaerobic ammonia oxidation process, reacted in CSTR, was used to investigate the sulfate production and alkalinity consumption during the whole process. The element sulfur dosage was 50 g · L⁻¹. The inoculation volume of ANAMMOX granular sludge was 100 g · L⁻¹. The agitation rate and environment reaction temperature of the CSTR were set to 120 r · min⁻¹ and 35°C ± 0.5°C, respectively. The pH of influent was maintained in range of 8. 0-8. 4. During the start-up stage of sulfur based autotrophic denitrification, the nitrogen removal loading rate could reach 0.56-0.71 kg · (m³ · d) ⁻¹ in the condition of 5.3 h hydrogen retention time and 200 mg · L⁻¹ nitrate nitrogen. After the addition of 60 mg · L⁻¹ ammonia nitrogen, Δn(SO₄²⁻):Δn(NO₃⁻) decreased from 1.21 ± 0.06 to 1.01 ± 0.10, Δ(IC): Δ(NO₃⁻-N) decreased from 0.72 ± 0.1 to 0.51 ± 0.11, and the effluent pH increased from 6.5 to 7.2. During the combined stage, the ammonia concentration of effluent was 10.1-19.2 mg · L⁻¹, and the nitrate-nitrogen removal loading rate could be maintained in range of 0.66-0.88 kg · (m³ · d)⁻¹. The Δn (NH₄⁺): Δn (NO₃⁻) ratio reached 0.43, and the NO₃⁻ removal rate was increased by 60% in the simultaneous ammonia and nitrate removal reaction under the condition of G(T) = 22-64 s⁻¹ and pH = 8.08, while improper conditions reduced the efficiency of simultaneous reaction.

  1. Potential for anaerobic conversion of xenobiotics

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Dolfing, J.; Haagensen, Frank;

    2003-01-01

    This review covers the latest research on the anaerobic biodegradation of aromatic xenobiotic compounds, with emphasis on surfactants, polycyclic aromatic hydrocarbons, phthalate esters, polychlorinated biphenyls, halogenated phenols, and pesticides. The versatility of anaerobic reactor systems...

  2. RISK FACTORS IN NEONATAL ANAEROBIC INFECTIONS

    Directory of Open Access Journals (Sweden)

    M. S. Tabib

    2008-06-01

    Full Text Available Anaerobic bacteria are well known causes of sepsis in adults but there are few studies regarding their role in neonatal sepsis. In an attempt to define the incidence of neonatal anaerobic infections a prospective study was performed during one year period. A total number of 400 neonates under sepsis study were entered this investigation. Anaerobic as well as aerobic cultures were sent. The patients were subjected to comparison in two groups: anaerobic culture positive and anaerobic culture negative and this comparison were analyzed statistically. There were 7 neonates with positive anaerobic culture and 35 neonates with positive aerobic culture. A significant statistical relationship was found between anaerobic infections and abdominal distention and pneumonia. It is recommended for those neonates with abdominal distention and pneumonia refractory to antibiotic treatment to be started on antibiotics with anaerobic coverage.

  3. Nitrogen removal and inhibition kinetics of ANAMMOX reactor fed with the mature landfill leachate%晚期垃圾渗滤液厌氧氨氧化脱氮及其抑制动力学

    Institute of Scientific and Technical Information of China (English)

    李芸; 李军; 蔡辉; 陈刚; 侯爱月; 胡啸; 卞伟; 国瑞峰; 刘一夫

    2016-01-01

    , Vmax(NH4+-N) was 0.1893mg/(mg·d), the half-saturation constant was 39.39mg/L, the inhibiting kinetic constant was 3482.27mg/L; when NO2--N was inhibitor, Vmax(NO2--N)was 0.246mg/(mg·d), the half-saturation constant was 43.19mg/L, the inhibiting kinetic constant was 701.15mg/L. Anaerobic ammonia oxidation is very susceptible especially by the landfill leachate, the activity of anammox was inhibited completely when the landfill leachate concentration was 1450.69mg/L (which calculated in COD).

  4. Partial nitritation of stored source-separated urine by granular activated sludge in a sequencing batch reactor.

    Science.gov (United States)

    Chen, Liping; Yang, Xiaoxiao; Tian, Xiujun; Yao, Song; Li, Jiuyi; Wang, Aimin; Yao, Qian; Peng, Dangcong

    2017-12-01

    The combination of partial nitritation (PN) and anaerobic ammonium oxidation (anammox) has been proposed as an ideal process for nitrogen removal from source-separated urine, while the high organic matters in urine cause instability of single-stage PN-anammox process. This study aims to remove the organic matters and partially nitrify the nitrogen in urine, producing an ammonium/nitrite solution suitable for anammox. The organic matters in stored urine were used as the electron donors to achieve 40% total nitrogen removal in nitritation-denitrification process in a sequencing batch reactor (SBR). Granular aggregates were observed and high mixed liquor suspended solids (9.5 g/L) were maintained in the SBR. Around 70-75% ammonium was oxidized to nitrite under the volumetric loading rates of 3.23 kg chemical oxygen demand (COD)/(m(3) d) and 1.86 kg N/(m(3) d), respectively. The SBR produced an ammonium/nitrite solution free of biodegradable organic matters, with a NO2(-)-N:NH4(+)-N of 1.24 ± 0.13. Fluorescence in situ hybridization images showed that Nitrosomonas-like ammonium-oxidizing bacteria, accounting for 7.2% of total bacteria, located in the outer layer (25 μm), while heterotrophs distributed homogeneously throughout the granular aggregates. High concentrations of free ammonia and nitrous acids in the reactor severely inhibited the growth of nitrite-oxidizing bacteria, resulting in their absence in the granular sludge. The microbial diversity analysis indicated Proteobacteria was the predominant phylum, in which Pseudomonas was the most abundant genus.

  5. Arsenic, Anaerobes, and Astrobiology

    Science.gov (United States)

    Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

    2013-12-01

    Arsenic is an element best known for its highly poisonous nature, so it is not something one would associate with being a well-spring for life. Yet discoveries made over the past two decades have delineated that not only are some microbes resistant to arsenic, but that this element's primary redox states can be exploited to conserve energy and support prokaryotic growth ('arsenotrophy') in the absence of oxygen. Hence, arsenite [As(III)] can serve as an electron donor for chemo- or photo-autotrophy while arsenate [As(V)] will serve as an electron acceptor for chemo-heterotrophs and chemo-autotrophs. The phylogenetic diversity of these microbes is broad, encompassing many individual species from diverse taxonomic groups in the Domain Bacteria, with fewer representatives in the Domain Archaea. Speculation with regard to the evolutionary origins of the key functional genes in anaerobic arsenic transformations (arrA and arxA) and aerobic oxidation (aioB) has led to a disputation as to which gene and function is the most ancient and whether arsenic metabolism extended back into the Archaean. Regardless of its origin, robust arsenic metabolism has been documented in extreme environments that are rich in their arsenic content, such as hot springs and especially hypersaline soda lakes associated with volcanic regions. Searles Lake, CA is an extreme, salt-saturated end member where vigorous arsenic metabolism occurs, but there is no detectable sulfate-reduction or methanogenesis. The latter processes are too weak bio-energetically to survive as compared with arsenotrophy, and are also highly sensitive to the abundance of borate ions present in these locales. These observations have implications with respect to the search for microbial life elsewhere in the Solar System where volcanic-like processes have been operative. Hence, because of the likelihood of encountering dense brines in the regolith of Mars (formed by evapo-concentration) or beneath the ice layers of Europa

  6. Hydrologic controls on nitrogen cycling processes and functional gene abundance in sediments of a groundwater flow-through lake

    Science.gov (United States)

    Stoliker, Deborah L.; Repert, Deborah A.; Smith, Richard L.; Song, Bongkeun; LeBlanc, Denis R.; McCobb, Timothy D.; Conaway, Christopher; Hyun, Sung Pil; Koh, Dong-Chan; Moon, Hee Sun; Kent, Douglas B.

    2016-01-01

    The fate and transport of inorganic nitrogen (N) is a critically important issue for human and aquatic ecosystem health because discharging N-contaminated groundwater can foul drinking water and cause algal blooms. Factors controlling N-processing were examined in sediments at three sites with contrasting hydrologic regimes at a lake on Cape Cod, MA. These factors included water chemistry, seepage rates and direction of groundwater flow, and the abundance and potential rates of activity of N-cycling microbial communities. Genes coding for denitrification, anaerobic ammonium oxidation (anammox), and nitrification were identified at all sites regardless of flow direction or groundwater dissolved oxygen concentrations. Flow direction was, however, a controlling factor in the potential for N-attenuation via denitrification in the sediments. Potential rates of denitrification varied from 6 to 4500 pmol N/g/h from the inflow to the outflow side of the lake, owing to fundamental differences in the supply of labile organic matter. The results of laboratory incubations suggested that when anoxia and limiting labile organic matter prevailed, the potential existed for concomitant anammox and denitrification. Where oxic lake water was downwelling, potential rates of nitrification at shallow depths were substantial (1640 pmol N/g/h). Rates of anammox, denitrification, and nitrification may be linked to rates of organic N-mineralization, serving to increase N-mobility and transport downgradient.

  7. 21 CFR 866.2120 - Anaerobic chamber.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber. (a) Identification. An anaerobic chamber is a device intended for medical purposes to maintain an anaerobic...

  8. The phenomenon of granulation of anaerobic sludge.

    NARCIS (Netherlands)

    Hulshoff Pol, L.W.

    1989-01-01

    Successful high-rate anaerobic wastewater treatment can only be accomplished when the slowgrowing anaerobic biomass is efficiently held back in the anaerobic treatment system. This biomass retention can be achieved in various ways including immobilization of the organisms on fixed materials and immo

  9. Mainstream wastewater treatment in integrated fixed film activated sludge (IFAS) reactor by partial nitritation/anammox process.

    Science.gov (United States)

    Malovanyy, Andriy; Trela, Jozef; Plaza, Elzbieta

    2015-12-01

    In this study the system based on the combination of biofilm and activated sludge (IFAS - integrated fixed film activated sludge) was tested and compared with a system that relies only on biofilm (MBBR - moving bed biofilm reactor) for nitrogen removal from municipal wastewater by deammonification process. By introduction of suspended biomass into MBBR the nitrogen removal efficiency increased from 36 ± 3% to 70 ± 4% with simultaneous 3-fold increase of nitrogen removal rate. Results of batch tests and continuous reactor operation showed that organotrophic nitrate reduction to nitrite, followed by anammox reaction contributed to this high removal efficiency. After sCOD/NH4-N ratio decreased from 1.8 ± 0.2 to 1.3 ± 0.1 removal efficiency decreased to 52 ± 4%, while still maintaining 150% higher removal rate, comparing to MBBR. Activity tests revealed that affinity of NOB to oxygen is higher than affinity of AOB with half-saturation constants of 0.05 and 0.41 mg/L, respectively.

  10. Perspectives of Anaerobic Soil Disinfestation

    NARCIS (Netherlands)

    Lamers, J.G.; Runia, W.T.; Molendijk, L.P.G.; Bleeker, P.O.

    2010-01-01

    Biological soil disinfestation is an environmentally friendly method to disinfest soil. From now on we refer to it as anaerobic soil disinfestation (ASD). With ASD a green manure crop (40 t/ha) is homogeneously incorporated into the topsoil (0-30 cm) after which the field is lightly compacted and ir

  11. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye

    2003-01-01

    by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change......-rate anaerobic treatment systems based on anaerobic granular sludge and biofilm are described in this chapter. Emphasis is given to a) the Up-flow Anaerobic Sludge Blanket (UASB) systems, b) the main characteristics of the anaerobic granular sludge, and c) the factors that control the granulation process...

  12. 匹配厌氧氨氧化的SHARON工艺启动研究%STUDY ON START-UP OF A SHARON REACTOR MATCHED WITH ANAMMOX PROCESS

    Institute of Scientific and Technical Information of China (English)

    钟琼; 方丽

    2012-01-01

    One of the most sustainable and successful technologies developed recently for high concentration ammonium wastewater treatment is well known as SHARON-ANAMMOX process, which partially oxidized ammonium to nitrite and subsequently anammox to nitrogen gas. One of the key points of this process is to accumulate nitrosomas in SHARON reactor and at the same time to control the conversion ratio of nitrite to ammonium around 50% , which meets the requirements for the following ANAMMOX process. At influent pH 7.6, and ammonium nitrogen 750 mg/L, the SHARON reactor was successfully started up, and an about 50% conversion ratio of nitrite to ammonium was also reached. Further investigation indicated that with increasing influant pH and ammonium concentration, the system kept running stable.%氧化部分氨氮到亚硝酸氮,然后进行完全自养厌氧氨氧化反应,即称SHARON-ANAMMOX工艺,该工艺是近年开发的针对高浓度氨氮废水生物处理较为经济合理的技术之一。其过程控制的关键是第一步亚硝化(SHARON)工艺积累亚硝酸菌,并使氨氮氧化到亚硝酸氮的转化率控制在50%左右,以最合理满足厌氧氨氧化对底物的需求。在进水pH=7.6,ρ(氨氮)=750 mg/L时顺利启动了SHARON反应器,氨氮的转化率达50%左右。研究结果表明,进一步提高氨氮浓度和进水pH,反应器可以维持稳定运行。

  13. Dissolved oxygen as a factor influencing nitrogen removal rates in a one-stage system with partial nitritation and Anammox process.

    Science.gov (United States)

    Cema, G; Płaza, E; Trela, J; Surmacz-Górska, J

    2011-01-01

    A biofilm system with Kaldnes biofilm carrier was used in these studies to cultivate bacteria responsible for both partial nitritation and Anammox processes. Due to co-existence of oxygen and oxygen-free zones within the biofilm depth, both processes can occur in a single reactor. Oxygen that inhibits the Anammox process is consumed in the outer layer of the biofilm and in this way Anammox bacteria are protected from oxygen. The impact of oxygen concentration on nitrogen removal rates was investigated in the pilot plant (2.1 m3), supplied with reject water from the Himmerfjärden Waste Water Treatment Plant. The results of batch tests showed that the highest nitrogen removal rates were obtained for a dissolved oxygen (DO) concentration around 3 g O2 m(-3) At a DO concentration of 4 g O2 m(-3), an increase of nitrite and nitrate nitrogen concentrations in the batch reactor were observed. The average nitrogen removal rate in the pilot plant during a whole operating period oscillated around 1.3 g N m(-2)d(-1) (0.3 +/- 0.1 kg N m(-3)d(-1)) at the average dissolved oxygen concentration of 2.3 g O2 m(-3). The maximum value of a nitrogen removal rate amounted to 1.9 g N m(-2)d(-1) (0.47 kg N m(-3)d(-1)) and was observed for a DO concentration equal to 2.5 g O2 m(-3). It was observed that increase of biofilm thickness during the operational period, had no influence on nitrogen removal rates in the pilot plant.

  14. Performance of a completely autotrophic nitrogen removal over nitrite process for treating wastewater with different substrates at ambient temperature

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan Chang; Dong Li; Yuhai Liang; Zhuo Yang; Shaoming Cui; Tao Liu; Huiping Zeng

    2013-01-01

    The stability and parameters of a bio-ceramic filter for completely autotrophic nitrogen removal were investigated.The completely autotrophic nitrogen removal over nitrite (CANON) reactor was fed with different concentrations of ammonia (400,300,and 200 mg N/L) but constant influent ammonia load.The results showed that the CANON system can achieve good treatment performance at ambient temperature (15-23℃).The average removal rate and removal loading of NH4 +-N and TN was 83.90%,1.26 kg N/(m3.day),and 70.14%,1.09 kg N/(m3.day),respectively.Among the influencing factors like pH,dissolved oxygen and alkalinity,it was indicated that the pH was the key parameter of the performance of the CANON system.Observing the variation of pH would contribute to better control of the CANON system in an intuitive and fast way.Denaturing gradient gel electrophoresis analysis of microorganisms further revealed that there were some significant changes in the community structure of ammonium oxidizing bacteria,which had low diversity in different stages,while the species of anaerobic ammonium oxidizing (anammox) bacteria were fewer and the community composition was relatively stable.These observations showed that anaerobic ammonia oxidation was more stable than the aerobic ammonia oxidation,which could explain that why the CANON system maintained a good removal efficiency under the changing substrate conditions.

  15. Alternative nitrate reduction pathways in experimentally fertilized New England salt marshes

    DEFF Research Database (Denmark)

    Uldahl, Anne; Banta, Gary Thomas; Boegh, Eva;

    Nitrate present or generated in any benthic ecosystem can be reduced by a number of microbial pathways, most notably denitrification, anaerobic ammonium oxidation (anammox) and dissimilatory nitrate reduction to ammonium (DNRA). The first two processes remove of biologically available N from...... the ecosystem in the form of gaseous N2, while the last process transforms of NO3- to another biologically available form, NH4+, and thus merely recycles N. Salt marshes are important ecosystems for the cycling, retention and removal of biologically available N transported from land to the oceans. We used...... ongoing ecosystem level nutrient additions experiments in two New England salt marshes, Plum Island Sound (NO3- additions since 2003) and Great Sippewissett Marsh (fertilizer additions since the 1970's) to examine the relative importance of these NO3- reduction pathways in salt marshes. Sediments from...

  16. Simple and convenient method for culturing anaerobic bacteria.

    OpenAIRE

    Behbehani, M J; Jordan, H. V.; Santoro, D L

    1982-01-01

    A simple and convenient method for culturing anaerobic bacteria is described. Cultures can be grown in commercially available flasks normally used for preparation of sterile external solutions. A special disposable rubber flask closure maintains anaerobic conditions in the flask after autoclaving. Growth of a variety of anaerobic oral bacteria was comparable to that obtained after anaerobic incubation of broth cultures in Brewer Anaerobic Jars.

  17. Start-up of single-stage partial nitrification-anammox process treating low-strength swage and its restoration from nitrate accumulation.

    Science.gov (United States)

    Miao, Yuanyuan; Zhang, Liang; Yang, Yandong; Peng, Yongzhen; Li, Baikun; Wang, Shuying; Zhang, Qian

    2016-10-01

    A single-stage partial nitrification-anammox (PN/A) reactor treating low-strength swage was operated for 288days to investigate the recovery of nitrogen removal from nitrate accumulation. The reactor was quickly started up by inoculating anammox sludge. However, nitrite oxidizing bacteria (NOB) abundance gradually increased on day 25, leading to high effluent nitrate concentration. Two strategies were executed to control the effluent nitrate. In strategy I, dissolved oxygen (DO) concentration was kept low (0.17±0.08mg/L), but nitrate production increased from 4.71 to 38.18mg-N/L. In strategy II, intermittent aeration operation mode (aeration 7min/anoxic 21min) was adopted, which significantly lowered the nitrate concentration to 1.3mg-N/L, indicating the NOB was inhibited. The high nitrogen removal rate of 73mg-N/(L·d) was achieved. The evolution of bacterial activity and abundance verified the changes of the nitrogen removal performance and proved the intermittent aeration strategy could successfully solve the problem of nitrate build-up in the PN/A process.

  18. High-throughput sequencing-based microbial characterization of size fractionated biomass in an anoxic anammox reactor for low-strength wastewater at low temperatures.

    Science.gov (United States)

    Liu, Wenru; Yang, Dianhai; Chen, Wenjing; Gu, Xiao

    2017-05-01

    The microbial characterization of three size-fractionated sludge obtained from a suspended-growth anoxic anammox reactor treating low-strength wastewater at low temperatures were investigated by using high-throughput sequencing. Particularly, the spatial variability in relative abundance of microorganisms involved in nitrogen metabolism were analyzed in detail. Results showed that population segregation did occur in the reactor. It was found, for the first time, that the genus Nitrotoga was enriched only in large granules (>400μm). Three anammox genus including Candidatus Jettenia, Brocadia and Kuenenia were detected. Among them, Candidatus Brocadia and Kuenenia preferred to grow in large-sized granules (>400μm), whereas Candidatus Jettenia dominated in small- and moderate-sized sludge (<400μm). The members of genus Candidatus Jettenia appeared to play the vital role in nitrogen removal, since sludge with diameters smaller than 400μm accounted for 81.55% of the total biomass. However, further studies are required to identify the activity of different-size sludge.

  19. Molecular ecology of anaerobic reactor systems

    DEFF Research Database (Denmark)

    Hofman-Bang, H. Jacob Peider; Zheng, D.; Westermann, Peter;

    2003-01-01

    Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible...... to the abundance of each microbe in anaerobic reactor systems by rRNA probing. This chapter focuses on various molecular techniques employed and problems encountered when elucidating the microbial ecology of anaerobic reactor systems. Methods such as quantitative dot blot/fluorescence in-situ probing using various...

  20. Evaluation of a prereduced anaerobically sterilized medium (PRAS II) system for identification anaerobic microorganisms.

    Science.gov (United States)

    Beaucage, C M; Onderdonk, A B

    1982-09-01

    A prereduced, anaerobically sterilized system of tubed media (PRAS II; Scott Laboratories, Fiskeville, R.I.) was evaluated for accuracy in the identification of anerobic microorganisms. PRAS II was found to be a rapid and accurate identification system for obligate anaerobes which does not require the use of gas cannula inoculation or incubation in a special anaerobic environment.

  1. Evaluation of a prereduced anaerobically sterilized medium (PRAS II) system for identification anaerobic microorganisms.

    OpenAIRE

    Beaucage, C M; Onderdonk, A B

    1982-01-01

    A prereduced, anaerobically sterilized system of tubed media (PRAS II; Scott Laboratories, Fiskeville, R.I.) was evaluated for accuracy in the identification of anerobic microorganisms. PRAS II was found to be a rapid and accurate identification system for obligate anaerobes which does not require the use of gas cannula inoculation or incubation in a special anaerobic environment.

  2. Carbon monoxide conversion by anaerobic bioreactor sludges

    NARCIS (Netherlands)

    Sipma, J.; Stams, A.J.M.; Lens, P.N.L.; Lettinga, G.

    2003-01-01

    Seven different anaerobic sludges from wastewater treatment reactors were screened for their ability to convert carbon monoxide (CO) at 30 and 55degreesC
    Seven different anaerobic sludges from wastewater treatment reactors were screened for their ability to convert carbon monoxide (CO) at 30 and

  3. Anaerobic critical velocity in four swimming techniques.

    Science.gov (United States)

    Neiva, H P; Fernandes, R J; Vilas-Boas, J P

    2011-03-01

    The aim of this study was to assess critical velocity in order to control and evaluate anaerobic swimming training. 51 highly trained male swimmers performed maximal 15, 25, 37.5 and 50 m in the 4 swimming techniques to determine critical velocity from the distance-time relationship. Anaerobic critical velocity was compared with 100 m swimming performance and corresponding partials. Complementarily, 9 swimmers performed a 6×50 m (4 min interval) training series at front crawl individual anaerobic critical velocity, capillary blood lactate concentrations being assessed after each repetition. The mean±SD values of anaerobic critical velocity and its relationship with the 100 m event were: 1.61±0.07 (r=0.60, p=0.037), 1.53±0.05 (r=0.81, p=0.015), 1.33±0.05 (r=0.83, p=0.002), and 1.75±0.05 (r=0.74, p=0.001), for butterfly, backstroke, breaststroke and front crawl, respectively. However, differences between anaerobic critical velocity and performance were observed (with exception of the second half of the 100 m swimming events in breaststroke and butterfly). Lactate concentration values at the end of the series were 14.52±1.06 mmol.l (-1), which suggests that it was indeed an anaerobic training set. In this sense, anaerobic critical velocity can be used to prescribe anaerobic training intensities.

  4. Integrated anaerobic and aerobic treatment of sewage.

    NARCIS (Netherlands)

    Kaijun Wang,

    1994-01-01

    This thesis describes results of investigations dealing with sequential concept of anaerobic-aerobic treatment of municipal wastewater. The main purposes of the study were 1) to develop a proper anaerobic hydrolytic pretreatment unit, consisting of a Hydrolysis Upflow Sludge Bed (HUSB-) reactor and

  5. Anaerobic degradation of linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Haagensen, Frank; Ahring, Birgitte Kiær

    2003-01-01

    increases during anaerobic stabilization due to transformation of easily degradable organic matter. Hence, LAS is regarded as resistant to biodegradation under anaerobic conditions. We present data from a lab-scale semi-continuously stirred tank reactor (CSTR) spiked with linear dodecylbenzene sulfonate (C...

  6. Prospects of Anaerobic Digestion Technology in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    As the world's largest developing country, China must face the problem of managing municipal solid waste, and the challenge of organic waste disposal is even more serious. Considering the characteristics of traditional waste disposal technologies and the subsequent secondary pollution, anaerobic digestion has various advantages such as reduction in the land needed for disposal and preservation of environmental quality. In light of the energy crisis, this paper focuses on the potential production of biogas from biowaste through anaerobic digestion processes, the problems incurred by the waste collection system, and the efficiency of the anaerobic digestion process. Use of biogas in a combined heat and power cogeneration system is also discussed. Finally, the advantages of anaerobic digestion technology for the Chinese market are summarized. The anaerobic digestion is suggested to be a promising treating technology for the organic wastes in China.

  7. Toxicants inhibiting anaerobic digestion: a review.

    Science.gov (United States)

    Chen, Jian Lin; Ortiz, Raphael; Steele, Terry W J; Stuckey, David C

    2014-12-01

    Anaerobic digestion is increasingly being used to treat wastes from many sources because of its manifold advantages over aerobic treatment, e.g. low sludge production and low energy requirements. However, anaerobic digestion is sensitive to toxicants, and a wide range of compounds can inhibit the process and cause upset or failure. Substantial research has been carried out over the years to identify specific inhibitors/toxicants, and their mechanism of toxicity in anaerobic digestion. In this review we present a detailed and critical summary of research on the inhibition of anaerobic processes by specific organic toxicants (e.g., chlorophenols, halogenated aliphatics and long chain fatty acids), inorganic toxicants (e.g., ammonia, sulfide and heavy metals) and in particular, nanomaterials, focusing on the mechanism of their inhibition/toxicity. A better understanding of the fundamental mechanisms behind inhibition/toxicity will enhance the wider application of anaerobic digestion.

  8. Systematic design of membership functions for fuzzy-logic control: A case study on one-stage partial nitritation/anammox treatment systems

    DEFF Research Database (Denmark)

    Boiocchi, Riccardo; Gernaey, Krist; Sin, Gürkan

    2016-01-01

    A methodology is developed to systematically design the membership functions of fuzzy-logic controllers for multivariable systems. The methodology consists of a systematic derivation of the critical points of the membership functions as a function of predefined control objectives. Several...... rules, determine the long term reachability of the control objectives by the fuzzy logic controller. The methodology is highlighted using a single-stage side-stream partial nitritation/Anammox reactor as a case study. As a result, a new fuzzy-logic controller for high and stable total nitrogen removal......, the controller was tested, and showed robustness, against measurement noise levels typical for wastewater sensors. A feedforward-feedback configuration using the present controller would give even better performance. In comparison, a previously developed fuzzy-logic controller using merely expert and intuitive...

  9. Investigating the role of co-substrate-substrate ratio and filter media on the performance of anammox hybrid reactor treating nitrogen rich wastewater.

    Science.gov (United States)

    Tomar, Swati; Gupta, Sunil Kumar

    2016-03-01

    This study explored the feasibility of using the anammox hybrid reactor (AHR), which combines suspended and attached growth media, for the biodegradation of ammonical nitrogen in wastewater. The study was performed in four laboratory-scale AHRs, inoculated with mixed seed culture (1:1). The anammox process was established by feeding the AHR with synthetic wastewater, containing NH(4)-N and NO(2)-N (1:1), at hydraulic retention time (HRT) of 1 day. The reactors were gradually acclimated to a higher ammonium concentration (1200 mg/l) until the pseudo-steady state was attained. Subsequently, the reactors were operated at various HRTs (0.25-3.0 days) to optimize the HRT and nitrogen loading rate (NLR). The study demonstrated that HRT of 1 day, corresponding to 95.1% of nitrogen removal was optimal. Pearson correlation analysis indicated the strong and positive correlation of HRT and sludge retention time (SRT), whereas the NLR and biomass yield correlated negatively with the nitrogen removal efficiency (NRE). The mass balance of nitrogen showed that a major fraction (79.1%) of the input nitrogen was converted into N2 gas, and 11.25% was utilized in synthesizing the biomass. The filter media in the AHR contributed to an additional 15.4% of ammonium removal and a reduction of 29% in the sludge washout rate. The nitrogen removal kinetics in the AHR followed the modified Stover-Kincannon model, whereas the Lawrence-McCarty model best described the bacterial growth kinetics. The study concludes that the hybrid configuration of the reactor demonstrated promising results and could be suitably applied for industrial applications.

  10. A new mathematical model for nitrogen gas production with special emphasis on the role of attached growth media in anammox hybrid reactor.

    Science.gov (United States)

    Tomar, Swati; Gupta, Sunil Kumar

    2015-11-01

    The present study emphasised on the development of new mathematical models based on mass balance and stoichiometry of nitrogen removal in anammox hybrid reactor (AHR). The performance of AHR at varying hydraulic retention times (HRTs) and nitrogen loading rates (NLRs) revealed that nitrogen removal efficiency (NRE) increases with increase in HRT and was found optimal (89 %) at HRT of 2 days. Mass balance of nitrogen revealed that major fraction (74.1 %) of input nitrogen is converted into N2 gas followed by 11.2 % utilised in biomass synthesis. Attached growth media (AGM) in AHR contributed to an additional 15.4 % ammonium removal and reduced the sludge washout rate by 29 %. This also enhanced the sludge retention capacity of AHR and thus minimised the formation of nitrate in the treated effluent, which is one of the bottlenecks of anammox process. Process kinetics was also studied using various mathematical models. The mass balance model derived from total nitrogen was found most precise and predicted N2 gas with least error (1.68 ± 4.44 %). Model validation for substrate removal kinetics dictated comparatively higher correlation for Grau second-order model (0.952) than modified Stover-Kincannon model (0.920). The study concluded that owing to features of high biomass retention, less nitrate formation and consistently higher nitrogen removal efficiency, this reactor configuration is techno-economically most efficient and viable. The study opens the door for researchers and scientists for pilot-scale testing of AHR leading to its wide industrial application.

  11. New concepts of microbial treatment processes for the nitrogen removal: effect of protein and amino acids degradation.

    Science.gov (United States)

    González-Martínez, Alejandro; Calderón, Kadiya; González-López, Jesús

    2016-05-01

    High concentrations of proteins and amino acids can be found in wastewater and wastewater stream produced in anaerobic digesters, having shown that amino acids could persist over different managements for nitrogen removal affecting the nitrogen removal processes. Nitrogen removal is completely necessary because of their implications and the significant adverse environmental impact of ammonium such as eutrophication and toxicity to aquatic life on the receiving bodies. In the last decade, the treatment of effluents with high ammonium concentration through anammox-based bioprocesses has been enhanced because these biotechnologies are cheaper and more environmentally friendly than conventional technologies. However, it has been shown that the presence of important amounts of proteins and amino acids in the effluents seriously affects the microbial autotrophic consortia leading to important losses in terms of ammonium oxidation efficiency. Particularly the presence of sulfur amino acids such as methionine and cysteine has been reported to drastically decrease the autotrophic denitrification processes as well as affect the microbial community structure promoting the decline of ammonium oxidizing bacteria in favor of other phylotypes. In this context we discuss that new biotechnological processes that improve the degradation of protein and amino acids must be considered as a priority to increase the performance of the autotrophic denitrification biotechnologies.

  12. Intraspecific variation in aerobic and anaerobic locomotion

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Tirsgård, Bjørn; Cordero, Gerardo A.;

    2015-01-01

    Intraspecific variation and trade-off in aerobic and anaerobic traits remain poorly understood in aquatic locomotion. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), both axial swimmers, this study tested four hypotheses: (1) gait transition from steady...... to unsteady (i.e., burst-assisted) swimming is associated with anaerobic metabolism evidenced as excess post exercise oxygen consumption (EPOC); (2) variation in swimming performance (critical swimming speed; U crit) correlates with metabolic scope (MS) or anaerobic capacity (i.e., maximum EPOC); (3...

  13. Energy from anaerobic methane production. [Sweden

    Energy Technology Data Exchange (ETDEWEB)

    1982-02-01

    Since 1970 Swedish researchers have been testing the ANAMET (anaerobic-aerobic-methane) process, which involves converting industrial wastewaters via an initial anaerobic microbiological step followed by an aerobic one. Recycling the biomass material in each step allows shorter hydraulic retention times without decreasing stability or solids reduction. Since the first ANAMET plants began operating at a Swedish sugar factory in 1972, 17 more plants have started up or are under construction. Moreover, the ANAMET process has engendered to offshoot BIOMET (biomass-methane) process, a thermophilic anaerobic scheme that can handle sugar-beet pulp as well as grass and other soft, fast-growing biomasses.

  14. Anaerobic degradation and toxicity of commercial cationic surfactants in anaerobic screening tests.

    Science.gov (United States)

    García, M T; Campos, E; Sánchez-Leal, J; Ribosa, I

    2000-09-01

    Anaerobic biodegradability and toxicity on anaerobic bacteria of di(hydrogenated tallow) dimethyl ammonium chloride (DHTDMAC) and two esterquats have been investigated. A batch test system containing municipal digester solids as a source of anaerobic bacteria, based on the method proposed by the ECETOC, has been applied. To evaluate the potential toxicity of such surfactants on anaerobic sludge, a co-substrate, an easily biodegradable compound in anaerobic conditions, has been added to the samples to test and the effects on biogas production have been determined. For the esterquats studied high biodegradation levels were obtained and no toxic effects on anaerobic bacteria were observed even at the highest concentrations tested, 100 and 200 mg C/l, respectively. On the contrary, DHTDMAC was not degradated at the same test conditions. However, no inhibitory effects on the biogas production were detected for this surfactant at concentrations <100 mg C/l.

  15. Control factors of partial nitritation for landfill leachate treatment

    Institute of Scientific and Technical Information of China (English)

    LIANG Zhu; LIU Jun-xin

    2007-01-01

    Anaerobic ammonium oxidation (ANAMMOX) technology has potential technical superiority and economical efficiency for the nitrogen removal from landfill leachate, which contains high-strength ammonium nitrogen (NH4+-N) and refractory organics. To complete the ANAMMOX process, a preceding partial nitritation step to produce the appropriate ratio of nitrite/ammonium is a key stage. The objective of this study was to determine the optimal conditions to acquire constant partial nitritation for landfill leachate treatment, and a bench scale fixed bed bio-film reactor was used in this study to investigate the effects of the running factors on the partial nitritation. The results showed that both the dissolved oxygen (DO) concentration and the ammonium volumetric loading rate (Nv) had effects on the partial nitritation. In the controlling conditions with a temperature of 30±1℃, Nv of 0.2-1.0 kg NH4+-N/(m3·d), and DO concentration of 0.8-2.3 mg/L, the steady partial nitritation was achieved as follows: more than 94% partial nitritation efficiency (nitrite as the main product), 60%-74% NH4+-N removal efficiency, and NO2--N/NH4+-N ratio (concentration ratio) of 1.0-1.4 in the effluent.The impact of temperature was related to Nv at certain DO concentration, and the temperature range of 25-30℃ was suitable for treating high strength ammonium leachate. Ammonium-oxidizing bacteria (AOB) could be acclimated to higher FA (free ammonium) in the range of 122-224 mg/L. According to the denaturing gradient gel electrophoresis analysis result of the bio-film in the reactor, there were 25 kinds of 16S rRNA gene fragments, which indicated that abundant microbial communities existed in the bio-film, although high concentrations of ammonium and FA may inhibit the growth of the nitrite-oxidizing bacteria (NOB) and other microorganisms in the reactor.

  16. Antimicrobial resistance and susceptibility testing of anaerobic bacteria.

    Science.gov (United States)

    Schuetz, Audrey N

    2014-09-01

    Infections due to anaerobic bacteria can be severe and life-threatening. Susceptibility testing of anaerobes is not frequently performed in laboratories, but such testing is important to direct appropriate therapy. Anaerobic resistance is increasing globally, and resistance trends vary by geographic region. An overview of a variety of susceptibility testing methods for anaerobes is provided, and the advantages and disadvantages of each method are reviewed. Specific clinical situations warranting anaerobic susceptibility testing are discussed.

  17. Anaerobe Tolerance to Oxygen and the Potentials of Anaerobic and Aerobic Cocultures for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M.T. Kato

    1997-12-01

    Full Text Available The anaerobic treatment processes are considered to be well-established methods for the elimination of easily biodegradable organic matter from wastewaters. Some difficulties concerning certain wastewaters are related to the possible presence of dissolved oxygen. The common belief is that anaerobes are oxygen intolerant. Therefore, the common practice is to use sequencing anaerobic and aerobic steps in separate tanks. Enhanced treatment by polishing off the residual biodegradable oxygen demand from effluents of anaerobic reactors, or the biodegradation of recalcitrant wastewater pollutants, usually requires sequenced anaerobic and aerobic bacteria activities. However, the combined activity of both bacteria can also be obtained in a single reactor. Previous experiments with either pure or mixed cultures showed that anaerobes can tolerate oxygen to a certain extent. The oxygen toxicity to methanogens in anaerobic sludges was quantified in batch experiments, as well as in anaerobic reactors. The results showed that methanogens have a high tolerance to oxygen. In practice, it was confirmed that dissolved oxygen does not constitute any detrimental effect on reactor treatment performance. This means that the coexistence of anaerobic and aerobic bacteria in one single reactor is feasible and increases the potentials of new applications in wastewater treatment

  18. Exocellular electron transfer in anaerobic microbial communities

    NARCIS (Netherlands)

    Stams, A.J.M.; Bok, de F.A.M.; Plugge, C.M.; Eekert, van M.H.A.; Dolfing, J.; Schraa, G.

    2006-01-01

    Exocellular electron transfer plays an important role in anaerobic microbial communities that degrade organic matter. Interspecies hydrogen transfer between microorganisms is the driving force for complete biodegradation in methanogenic environments. Many organic compounds are degraded by obligatory

  19. An anaerobic mitochondrion that produces hydrogen

    NARCIS (Netherlands)

    Boxma, Brigitte; Graaf, Rob M. de; Staay, Georg W.M. van der; Alen, Theo A. van; Ricard, Guenola; Gabaldón, Toni; Hoek, Angela H.A.M. van; Moon-van der Staay, Seung Yeo; Koopman, Werner J.H.; Hellemond, Jaap J. van; Tielens, Aloysius G.M.; Friedrich, Thorsten; Veenhuis, Marten; Huynen, Martijn A.; Hackstein, Johannes H.P.

    2005-01-01

    Hydrogenosomes are organelles that produce ATP and hydrogen, and are found in various unrelated eukaryotes, such as anaerobic flagellates, chytridiomycete fungi and ciliates. Although all of these organelles generate hydrogen, the hydrogenosomes from these organisms are structurally and metabolicall

  20. Anaerobic Toxicity of Cationic Silver Nanoparticles

    Data.gov (United States)

    U.S. Environmental Protection Agency — Toxicity data for the impact of nano-silver on anaerobic degradation. This dataset is associated with the following publication: Gitipour, A., S. Thiel, K. Scheckel,...

  1. Anaerobic membrane bioreactor under extreme conditions (poster)

    NARCIS (Netherlands)

    Munoz Sierra, J.D.; De Kreuk, M.K.; Spanjers, H.; Van Lier, J.B.

    2013-01-01

    Membrane bioreactors ensure biomass retention by the application of micro or ultrafiltration processes. This allows operation at high sludge concentrations. Previous studies have shown that anaerobic membrane bioreactors is an efficient way to retain specialist microorganisms for treating wastewater

  2. EFFECT OF MUSIC ON ANAEROBIC EXERCISE PERFORMANCE

    OpenAIRE

    Atan, T.

    2013-01-01

    For years, mostly the effects of music on cardiorespiratory exercise performance have been studied, but a few studies have examined the effect of music on anaerobic exercise. The purpose of this study was to assess the effect of listening to music and its rhythm on anaerobic exercise: on power output, heart rate and the concentration of blood lactate. 28 male subjects were required to visit the laboratory on 6 occasions, each separated by 48 hours. Firstly, each subject performed the Running-...

  3. Anaerobic digester for treatment of organic waste

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, V. K. [Indian Insitute of Technology, Delhi (India)]|[ENEA, Centro Ricerche Trisaia, Matera (Italy); Fortuna, F.; Canditelli, M.; Cornacchia, G. [ENEA, Centro Ricerche Trisaia, Matera (Italy). Dipt. Ambiente; Farina, R. [ENEA, centro Ricerche ``Ezio Clementel``, Bologna (Italy). Dipt. Ambiente

    1997-09-01

    The essential features of both new and more efficient reactor systems and their appropriate applications for various organic waste management situations, description of several working plants are discussed in the present communication. It is hoped that significant development reported here would be useful in opening a new vista to the application of anaerobic biotechnology for the waste treatment of both low/high organic strength and specialized treatment for toxic substances, using appropriate anaerobic methods.

  4. Anaerobic digestion foaming causes – A review

    OpenAIRE

    Ganidi, Nafsika; Tyrrel, Sean F.; Cartmell, Elise

    2009-01-01

    Anaerobic digestion foaming has been encountered in several sewage treatment plants in the UK. Foaming has raised major concerns for the water companies due to significant impacts on process efficiency and operational costs. Several foaming causes have been identified over the past few years by researchers. However, the supporting experimental information is limited and in some cases absent. The present report aims to provide a detailed review of the current anaerobic digestion foaming proble...

  5. SLEEP DEPRIVATION INDUCED ANXIETY AND ANAEROBIC PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Selma Arzu Vardar

    2007-12-01

    Full Text Available The aim of this study was to investigate the effects of sleep deprivation induced anxiety on anaerobic performance. Thirteen volunteer male physical education students completed the Turkish version of State Anxiety Inventory and performed Wingate anaerobic test for three times: (1 following a full-night of habitual sleep (baseline measurements, (2 following 30 hours of sleep deprivation, and (3 following partial-night sleep deprivation. Baseline measurements were performed the day before total sleep deprivation. Measurements following partial sleep deprivation were made 2 weeks later than total sleep deprivation measurements. State anxiety was measured prior to each Wingate test. The mean state anxiety following total sleep deprivation was higher than the baseline measurement (44.9 ± 12.9 vs. 27.6 ± 4.2, respectively, p = 0.02 whereas anaerobic performance parameters remained unchanged. Neither anaerobic parameters nor state anxiety levels were affected by one night partial sleep deprivation. Our results suggest that 30 hours continuous wakefulness may increase anxiety level without impairing anaerobic performance, whereas one night of partial sleep deprivation was ineffective on both state anxiety and anaerobic performance

  6. Anaerobic Nitrogen Fixers on Mars

    Science.gov (United States)

    Lewis, B. G.

    2000-07-01

    The conversion of atmospheric nitrogen gas to the protein of living systems is an amazing process of nature. The first step in the process is biological nitrogen fixation, the transformation of N2 to NH3. The phenomenon is crucial for feeding the billions of our species on Earth. On Mars, the same process may allow us to discover how life can adapt to a hostile environment, and render it habitable. Hostile environments also exist on Earth. For example, nothing grows in coal refuse piles due to the oxidation of pyrite and marcasite to sulfuric acid. Yet, when the acidity is neutralized, alfalfa and soybean plants develop root nodules typical of symbiotic nitrogen fixation with Rhizobium species possibly living in the pyritic material. When split open, these nodules exhibited the pinkish color of leghemoglobin, a protein in the nodule protecting the active nitrogen-fixing enzyme nitrogenase against the toxic effects of oxygen. Although we have not yet obtained direct evidence of nitrogenase activity in these nodules (reduction of acetylene to ethylene, for example), these findings suggested the possibility that nitrogen fixation was taking place in this hostile, non-soil material. This immediately raises the possibility that freeliving anaerobic bacteria which fix atmospheric nitrogen on Earth, could do the same on Mars.

  7. Mechanism studies on nitrogen removal when treating ammonium-rich leachate by sequencing batch biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    XU Zhengyong; YANG Zhaohui; ZENG Guangming; XIAO Yong; DENG Jiuhua

    2007-01-01

    The nitrogen removal mechanism was studied and analyzed when treating the ammonium-rich landfill leachate by a set of sequencing batch biofilm reactors(SBBRs),which was designed independently.At the liquid temperature of(32±0.4)℃,and after a 58-days domestication period and a 33-days stabilization period.the efficiency of ammonium removal in the SBBR went up to 95%.Highly frequent intermittent aeration suppressed the activity of nitratebacteria.and also eliminated the influence on the activity of anaerobic ammonium oxidation(ANAMMOX)bacteria and nitritebacteria.This influence was caused by the accumulation of nitrous acid and the undulation of pH.During the aeration stage,the concentration of dissolved oxygen was controlled at 1.2-1.4 mg/L.The nitritebacteria became dominant and nitrite accumulated gradually.During the anoxic stage,along with the concentration debasement of the dissolved oxygen,ANAMMOX bacteria became dominant;then,the nitrite that was accumulated in the aeration stage was wiped off with ammonium simultaneously.

  8. Presence of Ammonia-oxidizing Archaea and Their Influence on Nitrogen Cycling in Ilica Bay, Turkey

    Science.gov (United States)

    Gulecal, Y.; Temel, M.

    2011-12-01

    Recenlty, the processes of anaerobic ammonium oxidation (anammox), and ammonia oxidation within the domain Archaea, have been recognized as two new links in the global nitrogen cycle. The distribution and ubiquity of marine Archaea an important role in global carbon and nitrogen cycling (Ingalls et al., 2006; Leininger et al., 2006; Wuchter et al.,2006a). However, our knowledge on archaeal distribution in aquatic ecosystem was largely confined to the extreme environments for a long time until DeLong (1992, 1998) revealed the ubiquity of archaea in common marine environments. Despite the great progress, more efforts need to be given to the study of archaeal diversity in the vast oceans and of the variations in the ecological environment from coastal to oceanic waters (Massana et al.,2000). Our studying area which Ilica Bay in Izmir (Turkey) has a lot of thermal springs. The aim of study was to investigate the presence of ammonia-oxidizing Archaea and their roles of nitrogen cycling in marine enviroments.We have not only used the geochemical analyses but also genetic tools. This study will supply knowledge for marine nitrogen cycling to understanding very well, in addition how Archea genes players in the process of anammox in shallow coastal marine environments.

  9. Dissimilatory nitrate reduction to ammonium conserves nitrogen in anthropogenically affected subtropical mangrove sediments in Southeast China.

    Science.gov (United States)

    Cao, Wenzhi; Yang, Jingxin; Li, Ying; Liu, Baoli; Wang, Feifei; Chang, Changtang

    2016-09-15

    In this study, basic sediment properties, nutrient flux, and nitrogen cycle (including denitrification, anaerobic ammonium oxidation [anammox], nitrification, and dissimilatory nitrate reduction to ammonium [DNRA]) were investigated at two sampling sites with different tree ages in the mangrove region of the Jiulong River Estuary, China. The results show that sediments at mangrove flat area have relatively strong capability to reduce NO3(-), in which the DNRA rate is relatively high (204.53±48.32μmolNm(-2)h(-1)), which is approximately 75.7-85.9% of the total NO3(-) reduction, while the denitrification and anammox rates are relatively low - only approximately 5.6-9.5% and 8.5-14.8% of the total NO3(-) reduction, respectively. Thus, in the nitrogen-enriched subtropical mangrove system, DNRA is the main pathway to reduce NO3(-), and most of the input nitrogen is conserved as NH4(+) in the system, which assures high productivity of the mangrove system.

  10. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become m

  11. The effect of outside conditions on anaerobic ammonia oxidation reaction

    Institute of Scientific and Technical Information of China (English)

    YANG Min; WANG Shu-bo

    2016-01-01

    Organic carbon, inorganic carbon, temperature, pH and ORP are all to have a certain influence on the anaerobic ammonia oxidation reaction. We can draw some conclusions on the optimum conditions of anaerobic ammonia oxidation reaction. The optimum temperature of the anaerobic ammonia oxidation reaction is 30-35℃. And the optimum pH of the anaerobic ammonia reaction is 7.5-8.3. The presence of organic matters can affect the anaerobic ammonia reaction, and different organic matters have different influence on it. The concentration of the inorganic carbon also exist great influence on the reaction. High inorganic carbon concentration also can inhibit anaerobic ammonia oxidation reaction.

  12. Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria

    DEFF Research Database (Denmark)

    Stams, A.J.; Oude Elferink, S.J.; Westermann, Peter

    2003-01-01

    Most types of anaerobic respiration are able to outcompete methanogenic consortia for common substrates if the respective electron acceptors are present in sufficient amounts. Furthermore, several products or intermediate compounds formed by anaerobic respiring bacteria are toxic to methanogenic...... consortia. Despite the potentially adverse effects, only few inorganic electron acceptors potentially utilizable for anaerobic respiration have been investigated with respect to negative interactions in anaerobic digesters. In this chapter we review competitive and inhibitory interactions between anaerobic...... respiring populations and methanogenic consortia in bioreactors. Due to the few studies in anaerobic digesters, many of our discussions are based upon studies of defined cultures or natural ecosystems...

  13. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  14. Oxygen Effects in Anaerobic Digestion - II

    Directory of Open Access Journals (Sweden)

    Deshai Botheju

    2010-04-01

    Full Text Available Standard models describing bio-gasification using anaerobic digestion do not include necessary processes to describe digester dynamics under the conditions of oxygen presence. Limited oxygenation in anaerobic digestion can sometimes be beneficial. The oxygen effects included anaerobic digestion model, ADM 1-Ox, was simulated against experimental data obtained from laboratory scale anaerobic digesters operated under different oxygenation conditions. ADM 1-Ox predictions are generally in good agreement with the trends of the experimental data. ADM 1-Ox simulations suggest the existence of an optimum oxygenation level corresponding to a peak methane yield. The positive impact of oxygenation on methane yield is more pronounced at conditions characterized by low hydrolysis rate coefficients (slowly degradable feed and low biomass concentrations. The optimum oxygenation point moves towards zero when the hydrolysis rate coefficient and the biomass concentration increase. Accordingly, the impact of oxygenation on methane yield can either be positive or negative depending on the digestion system characteristics. The developed ADM 1-Ox model can therefore be a valuable tool for recognizing suitable operating conditions for achieving the maximum benefits from partial aeration in anaerobic digestion.

  15. Anaerobic lipid degradation through acidification and methanization.

    Science.gov (United States)

    Kim, Ijung; Kim, Sang-Hyoun; Shin, Hang-Sik; Jung, Jin-Young

    2010-01-01

    In biological wastewater treatment high lipid concentration is known to inhibit microorganisms and cause active biomass flotation. To reduce lipid inhibition, a two-phase anaerobic system, consisting of an anaerobic sequencing batch reactor (ASBR) and an upflow anaerobic sludge blanket (UASB) reactor, was applied to synthetic dairy wastewater. During 153 days of operation, the two-phase system showed stable performance in lipid degradation. In the ASBR, a 13% lipid removal efficiency and 10% double bond removal efficiency were maintained. In the UASB, the chemical oxygen demand (COD), lipid and volatile fatty acid (VFA) removal efficiencies were more than 80%, 70% and 95%, respectively, up to organic loading rate 6.5 g COD/L/day. There were no operational problems such as serious scum formation or sludge washout. Protein degradation occurred prior to degradation during acidogenesis.

  16. Biochemistry and physiology of anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-18

    We welcome you to The Power of Anaerobes. This conference serves two purposes. One is to celebrate the life of Harry D. Peck, Jr.,who was born May 18, 1927 and would have celebrated his 73rd birthday at this conference. He died November 20, 1998. The second is to gather investigators to exchange views within the realm of anaerobic microbiology, an area in which tremendous progress has been seen during recent years. It is sufficient to mention discoveries of a new form of life (the archaea), hyper or extreme thermophiles, thermophilic alkaliphiles and anaerobic fungi. With these discoveries has come a new realization about physiological and metabolic properties of microorganisms, and this in turn has demonstrated their importance for the development, maintenance and sustenance of life on Earth.

  17. Kinetics and modeling of anaerobic digestion process

    DEFF Research Database (Denmark)

    2003-01-01

    Anaerobic digestion modeling started in the early 1970s when the need for design and efficient operation of anaerobic systems became evident. At that time not only was the knowledge about the complex process of anaerobic digestion inadequate but also there were computational limitations. Thus......, the first models were very simple and consisted of a limited number of equations. During the past thirty years much research has been conducted on the peculiarities of the process and on the factors that influence it on the one hand while an enormous progress took place in computer science on the other....... The combination of both parameters resulted in the development of more and more concise and complex models. In this chapter the most important models found in the literature are described starting from the simplest and oldest to the more recent and complex ones....

  18. Multivariate monitoring of anaerobic co-digestion

    DEFF Research Database (Denmark)

    Madsen, Michael; Holm-Nielsen, Jens Bo

    Anaerobic digestion processes for production of renewable energy in the form of biogas, and in the future hydrogen, are becoming increasingly important worldwide. Sustainable solutions for renewable energy production systems are given high political priority, amongst other things due to global...... warming and environmental concerns. Anaerobic digestion applied in agriculture can simultaneously convert heterogeneous biomasses and wastes from the primary agricultural sector and from the bio processing industries, for instance food processing, pharma, and biofuel production, into valuable organic...... fertiliser and renewable energy. Meanwhile, in order for the biogas sector to become a significant player in the energy supply chain, the anaerobic digestion process has to be controlled to a greater extent than what is implemented as state-of-the-art today. Through application of the philosophy behind...

  19. The effect of tannic compounds on anaerobic wastewater treatment.

    NARCIS (Netherlands)

    Field, J.A.

    1989-01-01

    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the high sensi

  20. Succession of lignocellulolytic bacterial consortia bred anaerobically from lake sediment

    NARCIS (Netherlands)

    Korenblum, Elisa; Jiménez Avella, Diego; van Elsas, Jan

    2016-01-01

    Anaerobic bacteria degrade lignocellulose in various anoxic and organically rich environments, often in a syntrophic process. Anaerobic enrichments of bacterial communities on a recalcitrant lignocellulose source were studied combining polymerase chain reaction–denaturing gradient gel electrophoresi

  1. Study on Nitrification of Anaerobic digested Swine Wastewater at Normal temperatures%常温下猪场厌氧消化液的亚硝化研究

    Institute of Scientific and Technical Information of China (English)

    顾平; 万金保; 吴永明; 张文燕

    2011-01-01

    /L;under condition with controlling pH, the average removal rate of ammonia concentration was 93% and the ave rage cumulative rate of NO2 -N remained at 90%; the suitable range of pH was 7.0 -8.0,the appropriate range of FA was 3.02 - 12. 1 mg/L and the aeration amount was 200 mg/L. [ Conclusion] The study provided the foundation for further denitrification of subsequent anaerobic ammonium oxidation for the nitrosation of anaerobic digested swine wastewater.

  2. Robust regulation of anaerobic digestion processes.

    Science.gov (United States)

    Mailleret, L; Bernard, O; Steyer, J P

    2003-01-01

    This paper deals with the problem of controlling anaerobic digestion processes. A two-step (i.e. acidogenesis-methanization) mass balance model is considered for a 1 m3 fixed bed digester treating industrial wine distillery wastewater. The control law aims at regulating the organic pollution level while avoiding washout of biomass. To this end, a simple output feedback controller is considered which regulates a variable strongly related to the Chemical Oxygen Demand (COD). Numerical simulations assuming noisy measurements first illustrate the robustness of this control procedure. Then, the regulating procedure is implemented on the considered anaerobic digestion process in order to validate and demonstrate its efficiency in real life experiments.

  3. Anaerobic bacteria, the colon and colitis.

    Science.gov (United States)

    Roediger, W E

    1980-02-01

    Anaerobic bacteria constitute more than 90% of the bacteria in the colon. An anaerobic environment is needed to maintain their growth and the production of short-chain fatty acids by these bacteria from carbohydrates. Short-chain fatty acids are rapidly absorbed and essential for metabolic as well as functional welfare of the colonic mucosa. The importance of these acids in water absorption and in the patogenesis of colitis is discussed in relation to the concept of "energy deficiency diseases" of the colonic mucosa.

  4. The Pasteur effect in facultative anaerobic metazoa.

    Science.gov (United States)

    Schmidt, H; Kamp, G

    1996-05-15

    The existence and the regulatory mechanisms of the Pasteur effect in facultative anaerobic metazoa are discussed. There are three reasons for the controversy surrounding this phenomenon. 1) The different definitions of the Pasteur effect, 2) the antagonistic effect of metabolic depression and its species specific response to hypoxia, as well as 3) the laboratory-specific differences in the experimental procedures for analyzing the Pasteur effect and its regulation. This review aims to clarify the confusion about the existence of the Pasteur effect in facultative anaerobic metazoa and to offer possible molecular mechanisms.

  5. In-situ restoration of one-stage partial nitritation-anammox process deteriorated by nitrate build-up via elevated substrate levels

    Science.gov (United States)

    Wang, Xiaolong; Gao, Dawen

    2016-11-01

    The one-stage partial nitritation and anammox process (PN/A) has been a promising microbial process to remove ammonia from wastewater especially with low carbon/nitrogen ratio. The main breakdown was the deterioration caused by overgrowth of nitrite oxidizing bacteria (NOB) resulting effluent nitrate build-up in the PN/A process. This study presented an in-situ restoring strategy for suppressing NOB activity in a one-stage granular PN/A system deteriorated over 2 months, using elevated concentrations of substrates (ammonia and nitrite) under limited dissolved oxygen level. The results showed that the NOB activity was successfully suppressed after 56 days of restoration, and finally the ratio of produced nitrate/consumed ammonium was reduced from 36.8% to 7%. On day 66 the nitrogen removal rate obtained as 1.2 kg N/(m3·d). The high FA level (5–40 mg/L) and low dissolved oxygen (growth, and AOB stay stable, but Nitrospira increase and Nitrobacter declined. High amount of NOB was still persistent in the granules, which was not easy to wash-out and threaten the deammonification performance.

  6. Start-up and bacterial communities of single-stage nitrogen removal using anammox and partial nitritation (SNAP) for treatment of high strength ammonia wastewater.

    Science.gov (United States)

    Zhang, Jianbing; Zhou, Jian; Han, Yi; Zhang, Xiaoguang

    2014-10-01

    In this study, a lab-scale sequencing batch biofilm reactor (SBBR) was used to start up the single-stage nitrogen removal system using anammox and partial nitritation (SNAP) process seeding from surplus activated sludge. The volumetric nitrogen loading rate (vNLR) was firstly 0.075 kg N m(-3) d(-1) and then gradually increased to 0.60 kg N m(-3) d(-1). A maximal total nitrogen (TN) removal rate of 0.54 kg N m(-3) d(-1) was achieved by the SNAP process after 132 days operation with NH4(+)-N and TN removal efficiency of 99.4% and 90.5%, respectively. This reactor may have applications for the SNAP process treating high strength ammonia wastewater. And dewatered surplus activated sludge was recommended as the seed sludge for engineering applications. The dominant bacterial strains were Xanthomonas campestris, Nitrosomonas europaea and Ignavibacterium album, corresponding to the percentage of 24%, 22% and 20%, respectively, based on the 16S rDNA amplicon pyrosequencing of the SNAP sludge.

  7. The Influence of Hydration on Anaerobic Performance: A Review

    Science.gov (United States)

    Kraft, Justin A.; Green, James M.; Bishop, Phillip A.; Richardson, Mark T.; Neggers, Yasmin H.; Leeper, James D.

    2012-01-01

    This review examines the influence of dehydration on muscular strength and endurance and on single and repeated anaerobic sprint bouts. Describing hydration effects on anaerobic performance is difficult because various exercise modes are dominated by anaerobic energy pathways, but still contain inherent physiological differences. The critical…

  8. Stability of anaerobic reactors under micro-aeration conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Polanco, M.; Perez, S.; Diaz, I.; Fernandez-Polanco, F.

    2009-07-01

    Oxidation of sulphide in anaerobic bioreactors by introducing limited amounts of oxygen provides a relatively simple strategy for reducing the levels of sulphite in anaerobic digesters (biogas and effluent). The introduction of limited amounts of air is a general practice in agricultural anaerobic digesters, it is estimated that worldwide over 3.000 units are operated under such conditions. (Author)

  9. Anaerobic Digestion. Student Manual. Biological Treatment Process Control.

    Science.gov (United States)

    Carnegie, John W., Ed.

    This student manual contains the textual material for a four-lesson unit on anaerobic digestion control. Areas addressed include: (1) anaerobic sludge digestion (considering the nature of raw sludge, purposes of anaerobic digestion, the results of digestion, types of equipment, and other topics); (2) digester process control (considering feeding…

  10. Environmental impacts of anaerobic digestion and the use of anaerobic residues as soil amendment

    Energy Technology Data Exchange (ETDEWEB)

    Mosey, F.E. [VFA Services Ltd., Herts (United Kingdom)

    1996-01-01

    This paper defines the environmental role of anaerobic digestion within the overall objective of recovering energy from renewable biomass resources. Examples and opportunities for incorporating anaerobic digestion into biomass-to-energy schemes are discussed, together with environmental aspects of anaerobic digestion plants. These include visual, public amenity, pathogens and public health, odor control, and gaseous emissions. Digestate disposal and the benefits of restrictions on recycling organic wastes and biomass residues back to the land are discussed, particularly as they relate to American and European codes of practice and environmental legislation. The paper concludes that anaerobic digestion, if performed in purpose-designed reactors that efficiently recover and use biogas, is an environmentally benign process that can enhance energy recovery and aid the beneficial land use of plant residues in many biomass-to-energy schemes.

  11. A simple and sensitive quality control method of the anaerobic atmosphere for identification and antimicrobial susceptibility testing of anaerobic bacteria

    DEFF Research Database (Denmark)

    Justesen, Tage; Justesen, Ulrik Stenz

    2013-01-01

    The maintenance of a strict anaerobic atmosphere is essential for the culture of strict anaerobic bacteria. We describe a simple and sensitive quality control method of the anaerobic atmosphere, based on the measurement of the zone diameter around a 5-μg metronidazole disk when testing an aerotol...

  12. EFFECTS OF ECCENTRIC EXERCISE ON ANAEROBIC POWER, STARTING SPEED AND ANAEROBIC ENDURANCE

    OpenAIRE

    Maciejczyk, Marcin; Szymura, Jadwiga; Wiecek, Magdalena; Szygula, Zbigniew; Kepinska, Magdalena; Ochalek, Katarzyna; Pokrywka, Andrzej

    2015-01-01

    The aim of this study was to evaluate the effects of eccentric exercise on anaerobic power, starting speed and anaerobic endurance. The participants performed the maximum cycling sprint test (MCST) prior to eccentric exercise (ECC), 10 minutes after, as well as one hour, 24 hours, 48 hours, and one week after ECC. The peak and mean power, time to attain peak power, time of maintaining peak power and power decrease were measured in the MCST. Before and after ECC, the myoglobin concentration...

  13. Studies on upflow anaerobic filter

    Science.gov (United States)

    Varandani, Nanik Sobhraj

    The thesis presents a critical review of the available literature on the various studies carried out on various aspects of Upflow Anaerobic Filter (UAF) throughout the world. Young and McCarty (1969) did the pioneering work in developing UAF in 1969, since then several studies have been carried out by different researchers using different substrates under different operating conditions and variety of supporting media. However, the most significant modification of the original reactor developed by Young and McCarty (1968), has been the development and use of high porosity media. The use of high porosity media, in fact, has changed the character of the reactor, from basically a fixed film reactor to a fixed film reactor in which the contribution by the suspended bio-solids, entrapped in the numerous media pores, in the substrate removal is quite significant that is to say that the reactor no longer remains a biological reactor which can be modeled and designed on the basis of biofilm kinetics only. The thesis presents an attempt to validate the developed mathematical model(s) by using the laboratory scale reactor performance data and the calculated values of reaction kinetic and bio-kinetic constants. To simplify the verification process, computer programmes have been prepared using the "EXCELL" software and C language. The results of the "EXCELL" computer program runs are tabulated at table no. 7.1 to 7.5. The verification of various mathematical models indicate that the model III B, i.e. Non ideal plug flow model assumed to consist of Complete Mix Reactors in series based on reaction kinetics, gives results with least deviation from the real situation. An interesting observation being that the model offers least deviation or nearly satisfies the real situation for a particular COD removal efficiency, for a particular OLR, eg. the least deviations are obtained at COD removal efficiency of 89% for OLR 2, 81.5% for OLR 4, 78.5% for OLR 6 . However, the use of the

  14. Vertical modeling of the nitrogen cycle in the eastern tropical South Pacific oxygen deficient zone using high-resolution concentration and isotope measurements

    Science.gov (United States)

    Peters, Brian D.; Babbin, Andrew R.; Lettmann, Karsten A.; Mordy, Calvin W.; Ulloa, Osvaldo; Ward, Bess B.; Casciotti, Karen L.

    2016-11-01

    Marine oxygen deficient zones (ODZs) have long been identified as sites of fixed nitrogen (N) loss. However, the mechanisms and rates of N loss have been debated, and traditional methods for measuring these rates are labor-intensive and may miss hot spots in spatially and temporally variable environments. Here we estimate rates of heterotrophic nitrate reduction, heterotrophic nitrite reduction (denitrification), nitrite oxidation, and anaerobic ammonium oxidation (anammox) at a coastal site in the eastern tropical South Pacific (ETSP) ODZ based on high-resolution concentration and natural abundance stable isotope measurements of nitrate (NO3-) and nitrite (NO2-). These measurements were used to estimate process rates using a two-step inverse modeling approach. The modeled rates were sensitive to assumed isotope effects for NO3- reduction and NO2- oxidation. Nevertheless, we addressed two questions surrounding the fates of NO2- in the ODZ: (1) Is NO2- being primarily reduced to N2 or oxidized to NO3- in the ODZ? and (2) what are the contributions of anammox and denitrification to NO2- removal? Depth-integrated rates from the model suggest that 72-88% of the NO2- produced in the ODZ was oxidized back to NO3-, while 12-28% of NO2- was reduced to N2. Furthermore, our model suggested that 36-74% of NO2- loss was due to anammox, with the remainder due to denitrification. These model results generally agreed with previously measured rates, though with a large range of uncertainty, and they provide a long-term integrated view that compliments incubation experiments to obtain a broader picture of N cycling in ODZs.

  15. Nitrate removal in shallow, open-water treatment wetlands.

    Science.gov (United States)

    Jasper, Justin T; Jones, Zackary L; Sharp, Jonathan O; Sedlak, David L

    2014-10-07

    The diffuse biomat formed on the bottom of shallow, open-water unit process wetland cells contains suboxic zones that provide conditions conducive to NO3(-) removal via microbial denitrification, as well as anaerobic ammonium oxidation (anammox). To assess these processes, nitrogen cycling was evaluated over a 3-year period in a pilot-scale wetland cell receiving nitrified municipal wastewater effluent. NO3(-) removal varied seasonally, with approximately two-thirds of the NO3(-) entering the cell removed on an annual basis. Microcosm studies indicated that NO3(-) removal was mainly attributable to denitrification within the diffuse biomat (i.e., 80 ± 20%), with accretion of assimilated nitrogen accounting for less than 3% of the NO3(-) removed. The importance of denitrification to NO3(-) removal was supported by the presence of denitrifying genes (nirS and nirK) within the biomat. While modest when compared to the presence of denitrifying genes, a higher abundance of the anammox-specific gene hydrazine synthase (hzs) at the biomat bottom than at the biomat surface, the simultaneous presence of NH4(+) and NO3(-) within the biomat, and NH4(+) removal coupled to NO2(-) and NO3(-) removal in microcosm studies, suggested that anammox may have been responsible for some NO3(-) removal, following reduction of NO3(-) to NO2(-) within the biomat. The annual temperature-corrected areal first-order NO3(-) removal rate (k20 = 59.4 ± 6.2 m yr(-1)) was higher than values reported for more than 75% of vegetated wetlands that treated water in which NO3(-) was the primary nitrogen species (e.g., nitrified secondary wastewater effluent and agricultural runoff). The inclusion of open-water cells, originally designed for the removal of trace organic contaminants and pathogens, in unit-process wetlands may enhance NO3(-) removal as compared to existing vegetated wetland systems.

  16. Modelling nitrite dynamics and associated feedback processes in the Benguela oxygen minimum zone

    Science.gov (United States)

    Mashifane, T. B.; Vichi, M.; Waldron, H. N.; Machu, E.; Garçonc, V.

    2016-08-01

    Understanding nitrite dynamics in oxygen minimum zones (OMZs) is a challenge as it represents an intermediary nitrogen species with a short turnover time. Nitrite is also reduced to nitrogen in OMZs, preventing its accumulation. This creates difficulties in detecting nitrite with colorimetric methods as concentrations may occur below detection limits in some regions. Nitrite concentrations are key to understanding intermediate nitrogen processes and their implication for nitrogen loss in OMZs. A coupled physical-biogeochemical model is applied in the Benguela OMZ to study nitrite dynamics and its associated feedback processes. Simulated results show occurrence of primary and secondary nitrite maxima in the Benguela shelf waters. The primary nitrite maxima in the Benguela are attributed to nitrification and nitrate assimilation as they occur in association with the nitracline. Secondary nitrite maxima accumulate in the Angola-Benguela Front (ABF) OMZ and are attributed to denitrification. The secondary nitrite maxima are consumed by anaerobic ammonium oxidation (anammox) off Walvis Bay. Nitrite maxima are restricted to the shelf off Walvis Bay and advected offshore in the ABF region. Interchanges between the poleward South Atlantic Central Water (SACW) and the equatorward, well-aerated Eastern South Atlantic Central Water (ESACW) drive the seasonality of nitrogen processes in the Benguela. Subsequent nitrite reduction in the Benguela OMZ leads to nitrous oxide production, with high concentrations occurring in the ABF region as a result of nitrification and denitrification. Off Walvis Bay, nitrous oxide production is low since nitrite is consumed by anammox. Nitrous oxide production occurs in thermocline, intermediate and deeper water masses in the ABF region. High N fluxes in the Benguela are attributed to nitrification as compared to anammox and denitrification. Results from this study demonstrate the role of intermediate nitrogen species in nitrogen feedback

  17. Nitrogen Loss Processes and Nitrous Oxide Turnover in Oceanic Oxygen Minimum Zones

    Science.gov (United States)

    Ward, B. B.

    2014-12-01

    Nitrogen is an essential element for life and the maintenance of all ecosystems. For many ecosystems, both aquatic and terrestrial, nitrogen is the element most likely to limit the amount and rate of production. But just as ecosystems can suffer from too little nitrogen, they are also sensitive to too much nitrogen, which leads to eutrophication and structural changes in food webs. Thus the processes by which nitrogen is removed are as critical to our understanding of ecosystem function as are those by which it is added. Nitrogen loss processes in the open ocean have been the focus of research and discovery in recent years. Long thought to be dominated by the bacterial respiratory process of denitrification, N loss is now also known to occur by anaerobic ammonium oxidation (anammox). We now understand that the ratio of the two processes is controlled by the quality and quantity of organic matter supplied to the anoxic waters of the ocean's major oxygen deficient zones. Coastal environments are also major sites of N loss but excess N loading from land often ameliorates the direct dependence of anammox and denitrification on organic matter composition. The ratio is important partly because of side products: Denitrification is a significant source and sink for nitrous oxide (N2O), while anammox has no significant contribution to N2O biogeochemistry. With the anthropogenic flux of CFCs at least mostly under control, N2O emissions to the atmosphere are the greatest contribution to ozone destruction, and they also contribute to greenhouse warming. Both anthropogenic and natural sources contribute to N2O emissions, and natural sources are sensitive to anthropogenic forcing. Our direct measurements of N2O production and consumption in the ocean agree with modeling results that have implicated multiple microbial processes and complex physical and biological control of N2O fluxes in the ocean.

  18. Anaerobic digestion in sustainable biomass chains

    NARCIS (Netherlands)

    Pabon Pereira, C.P.

    2009-01-01

    This thesis evaluates the potential contribution of anaerobic digestion (AD) to the sustainability of biomass chains. Results provide insights in the technological potential to recover energy and valuable by-products from energy crops and residues, and evaluate biomass cascades involving AD technolo

  19. Anaerobic work capacity in elite wheelchair athletes

    NARCIS (Netherlands)

    van der Woude, L H; Bakker, W H; Elkhuizen, J W; Veeger, DirkJan (H. E. J.); Gwinn, T

    1997-01-01

    To study the anaerobic work capacity in wheelchair athletes, 67 elite wheelchair athletes (50 male) were studied in a 30-second sprint test on a computer-controlled wheelchair ergometer during the World Championships and Games for the Disabled in Assen (1990). The experimental set-up (ergometer, pro

  20. Biodegradability of leathers through anaerobic pathway.

    Science.gov (United States)

    Dhayalan, K; Fathima, N Nishad; Gnanamani, A; Rao, J Raghava; Nair, B Unni; Ramasami, T

    2007-01-01

    Leather processing generates huge amounts of both solid and liquid wastes. The management of solid wastes, especially tanned leather waste, is a challenging problem faced by tanners. Hence, studies on biodegradability of leather become imperative. In this present work, biodegradability of untanned, chrome tanned and vegetable tanned leather under anaerobic conditions has been addressed. Two different sources of anaerobes have been used for this purpose. The effect of detanning as a pretreatment method before subjecting the leather to biodegradation has also been studied. It has been found that vegetable tanned leather leads to more gas production than chrome tanned leather. Mixed anaerobic isolates when employed as an inoculum are able to degrade the soluble organics of vegetable tanned material and thus exhibit an increased level of gas production during the initial days, compared to the results of the treatments that received the anaerobic sludge. With chrome tanned materials, there was not much change in the volume of the gas produced from the two different sources. It has been found that detanning tends to improve the biodegradability of both types of leathers.

  1. Conversion of Methanogenic Substrates in Anaerobic Reactors

    NARCIS (Netherlands)

    Gonzalez-Gil, G.

    2000-01-01

    The EGSB systems represents an attractive option to extend further the use of anaerobic technology for wastewater treatment, particularly with respect to waste streams originating from chemical industries. Frequently chemical waste streams are unbalanced with respect to nutrients and/or micronutrien

  2. Anaerobic effluent disinfection using ozone: Byproducts formation

    NARCIS (Netherlands)

    Silva, G.H.R.; Daniel, L.A.; Bruning, H.; Rulkens, W.H.

    2010-01-01

    This research was aimed at studying oxidation processes, coliform inactivation effectiveness and disinfection byproducts (DBPs) associated with the disinfection of anaerobic sanitary wastewater effluent with ozone applied at doses of 5.0, 8.0 and 10.0mg O(3)L(-1) for contact times of 5, 10 and 15 mi

  3. Sulfate-reducing bacteria in anaerobic bioreactors.

    NARCIS (Netherlands)

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the occurrenc

  4. Essential metal depletion in an anaerobic reactor

    NARCIS (Netherlands)

    Osuna, M.B.; Iza, J.M.; Zandvoort, M.H.; Lens, P.N.L.

    2003-01-01

    The effect of the absence of trace elements on the conversion of a mixture of volatile fatty acids by a distillery anaerobic granular sludge was investigated. Two UASB reactors were operated under identical operational conditions except for the influent trace metal concentrations, during 140 days. E

  5. The fate of methanol in anaerobic bioreactors.

    NARCIS (Netherlands)

    Florencio, L.

    1994-01-01

    Methanol is an important component of certain industrial wastewaters. In anaerobic environments, methanol can be utilized by methanogens and acetogens. In wastewater treatment plants, the conversion of methanol into methane is preferred because this conversion is responsible for chemical oxygen dema

  6. An anaerobic mitochondrion that produces hydrogen

    NARCIS (Netherlands)

    Boxma, B.; Graaf, de R.M.; Staay, van der G.W.M.; Alen, T.A.; Richard, G.; Gabalon, T.; Hoek, van A.H.A.M.; Moon - van der Staay, S.Y.; Koopman, W.J.H.; Hellemond, van J.J.; Tielens, A.G.M.; Friedrich, T.; Veenhuis, M.; Huynen, M.A.; Hackstein, J.H.P.

    2005-01-01

    Hydrogenosomes are organelles that produce ATP and hydrogen(1), and are found in various unrelated eukaryotes, such as anaerobic flagellates, chytridiomycete fungi and ciliates(2). Although all of these organelles generate hydrogen, the hydrogenosomes from these organisms are structurally and metabo

  7. Essential metal depletion in an anaerobic reactor.

    NARCIS (Netherlands)

    Osuna, M.B.; Iza, J.M.; Zandvoort, M.H.; Lens, P.N.L.

    2003-01-01

    The effect of the absence of trace elements on the conversion of a mixture of volatile fatty acids by a distillery anaerobic granular sludge was investigated. Two UASB reactors were operated under identical operational conditions except for the influent trace metal concentrations, during 140 days. E

  8. Anaerobic microbial LCFA degradation in bioreactors

    NARCIS (Netherlands)

    Sousa, D.Z.; Pereira, M.A.; Alves, J.I.; Smidt, H.; Stams, A.J.M.; Alves, M.M.

    2008-01-01

    This paper reviews recent results obtained on long-chain fatty acids (LCFA) anaerobic degradation. Two LCFA were used as model substrates: oleate, a mono-unsaturated LCFA, and palmitate, a saturated LCFA, both abundant in LCFA-rich wastewaters. 16S rRNA gene analysis of sludge samples submitted to c

  9. Hemicellulases from anaerobic thermophiles. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Wiegel, J.

    1994-05-01

    The longterm goal of this research effort is to obtain an anaerobic thermophilic bacterium that efficiently converts various hemicellulose-containing biomass to ethanol over a broad pH range. The strategy is to modify the outfit and regulation of the rate-limiting xylanases, glycosidases and xylan esterases in the ethanologenic, anaerobic thermophile Thermoanaerobacter ethanolicus, which grows between pH 4.5 and 9.5. Although it utilizes xylans, the xylanase, acetyl(xylan) esterase and O-methylglucuronidase activities in T. ethanolicus are barely measurable and regarded as the rate limiting steps in its xylan utilization. Thus, and also due to the presently limited knowledge of hemicellulases in anaerobic thermophiles, we characterize the hemicellulolytic enzymes from this and other anaerobic thermophiles as enzyme donors. Beside the active xylosidase/arabinosidase from T. ethanolicus, exhibiting the two different activities, we characterized 2 xylosidases, two acetyl(xylan) esterases, and an O-methylglucuronidase from Thermoanaerobacterium spec. We will continue with the characterization of xylanases from novel isolated slightly acidophilic, neutrophilic and slightly alkalophilic thermophiles. We have cloned, subcloned and partially sequenced the 165,000 Da (2 x 85,000) xylosidase/arabinosidase from T. ethanolicus and started with the cloning of the esterases from Thermoanaerobacterium spec. Consequently, we will develop a shuttle vector and continue to apply electroporation of autoplasts as a method for cloning into T. ethanolicus.

  10. Anaerobic Toxicity of Cationic Silver Nanoparticles

    Science.gov (United States)

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged p...

  11. Anaerobic membrane bioreactors: Are membranes really necessary?

    NARCIS (Netherlands)

    Davila, M.; Kassab, G.; Klapwijk, A.; Lier, van J.B.

    2008-01-01

    Membranes themselves represent a significant cost for the full scale application of anaerobic membrane bioreactors (AnMBR). The possibility of operating an AnMBR with a self-forming dynamic membrane generated by the substances present in the reactor liquor would translate into an important saving. A

  12. Anaerobic Pre-treatment of Strong Sewage

    NARCIS (Netherlands)

    Halalsheh, M.M.

    2002-01-01

    The main objective of this research was to assess the feasibility of applying low cost anaerobic technology for the treatment of relatively high strength sewage of Jordan using two-stage and one-stage UASB reactors operated at ambient temperatures. The wastewater produced in Jordan is characterised

  13. Anaerobic hydrolysis during digestion of complex substrates

    NARCIS (Netherlands)

    Sanders, W.T.M.

    2001-01-01

    Complex waste(water) such as, raw sewage, dairy wastewater, slaughterhouse wastewater, fish processing wastewater, primary sludge and the organic fraction of municipal solid waste have been proven to be degradable under anaerobic conditions. However, during the digestion process the conversion of th

  14. Intraspecific variation in aerobic and anaerobic locomotion

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Tirsgård, Bjørn; Cordero, Gerardo A.;

    2015-01-01

    Intraspecific variation and trade-off in aerobic and anaerobic traits remain poorly understood in aquatic locomotion. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), both axial swimmers, this study tested four hypotheses: (1) gait transition from steady...

  15. Anaerobic Digestion in a Flooded Densified Leachbed

    Science.gov (United States)

    Chynoweth, David P.; Teixeira, Arthur A.; Owens, John M.; Haley, Patrick J.

    2009-01-01

    A document discusses the adaptation of a patented biomass-digesting process, denoted sequential batch anaerobic composting (SEBAC), to recycling of wastes aboard a spacecraft. In SEBAC, high-solids-content biomass wastes are converted into methane, carbon dioxide, and compost.

  16. Anaerobic degradation of linear alkylbenzene sulfonate.

    Science.gov (United States)

    Mogensen, Anders S; Haagensen, Frank; Ahring, Birgitte K

    2003-04-01

    Linear alkylbenzene sulfonate (LAS) found in wastewater is removed in the wastewater treatment facilities by sorption and aerobic biodegradation. The anaerobic digestion of sewage sludge has not been shown to contribute to the removal. The concentration of LAS based on dry matter typically increases during anaerobic stabilization due to transformation of easily degradable organic matter. Hence, LAS is regarded as resistant to biodegradation under anaerobic conditions. We present data from a lab-scale semi-continuously stirred tank reactor (CSTR) spiked with linear dodecylbenzene sulfonate (C12 LAS), which show that C12 LAS was biodegradable under methanogenic conditions. Sorption of C12 LAS on sewage sludge was described with a Freundlich isotherm. The C12 LAS sorption was determined with different concentrations of total solids (TS). In the semi-continuously stirred tank reactor, 18% of the added C12 LAS was bioavailable and 20% was biotransformed when spiking with 100 mg/L of C12 LAS and a TS concentration of 14.2 mg/L. Enhanced bioavailability of C12 LAS was obtained in an upflow anaerobic sludge blanket (UASB) reactor inoculated with granular sludge and sewage sludge. Biodegradation under thermophilic conditions was 37% with LAS as sole carbon source. Benzaldehyde was produced in the UASB reactor during LAS transformation.

  17. Anaerobic benzene oxidation by Geobacter species.

    Science.gov (United States)

    Zhang, Tian; Bain, Timothy S; Nevin, Kelly P; Barlett, Melissa A; Lovley, Derek R

    2012-12-01

    The abundance of Geobacter species in contaminated aquifers in which benzene is anaerobically degraded has led to the suggestion that some Geobacter species might be capable of anaerobic benzene degradation, but this has never been documented. A strain of Geobacter, designated strain Ben, was isolated from sediments from the Fe(III)-reducing zone of a petroleum-contaminated aquifer in which there was significant capacity for anaerobic benzene oxidation. Strain Ben grew in a medium with benzene as the sole electron donor and Fe(III) oxide as the sole electron acceptor. Furthermore, additional evaluation of Geobacter metallireducens demonstrated that it could also grow in benzene-Fe(III) medium. In both strain Ben and G. metallireducens the stoichiometry of benzene metabolism and Fe(III) reduction was consistent with the oxidation of benzene to carbon dioxide with Fe(III) serving as the sole electron acceptor. With benzene as the electron donor, and Fe(III) oxide (strain Ben) or Fe(III) citrate (G. metallireducens) as the electron acceptor, the cell yields of strain Ben and G. metallireducens were 3.2 × 10(9) and 8.4 × 10(9) cells/mmol of Fe(III) reduced, respectively. Strain Ben also oxidized benzene with anthraquinone-2,6-disulfonate (AQDS) as the sole electron acceptor with cell yields of 5.9 × 10(9) cells/mmol of AQDS reduced. Strain Ben serves as model organism for the study of anaerobic benzene metabolism in petroleum-contaminated aquifers, and G. metallireducens is the first anaerobic benzene-degrading organism that can be genetically manipulated.

  18. Winery and distillery wastewater treatment by anaerobic digestion.

    Science.gov (United States)

    Moletta, R

    2005-01-01

    Anaerobic digestion is widely used for wastewater treatment, especially in the food industries. Generally after the anaerobic treatment there is an aerobic post-treatment in order to return the treated water to nature. Several technologies are applied for winery wastewater treatment. They are using free cells or flocs (anaerobic contact digesters, anaerobic sequencing batch reactors and anaerobic lagoons), anaerobic granules (Upflow Anaerobic Sludge Blanket--UASB), or biofilms on fixed support (anaerobic filter) or on mobile support as with the fluidised bed. Some technologies include two strategies, e.g. a sludge bed with anaerobic filter as in the hybrid digester. With winery wastewaters (as for vinasses from distilleries) the removal yield for anaerobic digestion is very high, up to 90-95% COD removal. The organic loads are between 5 and 15 kgCOD/m3 of digester/day. The biogas production is between 400 and 600 L per kg COD removed with 60 to 70% methane content. For anaerobic and aerobic post-treatment of vinasses in the Cognac region, REVICO company has 99.7% COD removal and the cost is 0.52 Euro/m3 of vinasses.

  19. Anaerobic protozoa and their growth in biomethanation systems.

    Science.gov (United States)

    Priya, M; Haridas, Ajit; Manilal, V B

    2008-04-01

    This study was to investigate growth of protozoa and its influence on biodegradation in anaerobic treatment systems. It was done by specifically controlling and monitoring growth of protozoa versus degradation in continuous stirred anaerobic reactors and batch anaerobic reactors. Occurrence of a diverse protozoa population such as the ciliates, Prorodon, Vorticella, Cyclidium, Spathidium, Loxodes, Metopus were observed in stable anaerobic systems and the flagellates, Rhynchomonas, Naeglaria, Amoeboflagellates, Tetramitus, Trepomonas and Bodo during increased VFA concentration and affected periods of biomethanation. The abundance of ciliates in the anaerobic system had significant correlation with the reduction of MLSS, increased rate of COD removal and higher methane production. The results of this study thus tend to relate increased anaerobic degradation with the abundance of protozoa, mainly ciliates, which indicate their possible involvement in the process. Present study also reveals that performance of anaerobic process can be assessed by monitoring the protozoa population in the system.

  20. ISOLATION OF ANAEROBES IN DEEP SEATED PRESSURE ULCERS USING A NOVEL INNOVATIVE TECHNIQUE OF ANAEROBE ISOLATION

    Directory of Open Access Journals (Sweden)

    Lalbiaktluangi

    2015-12-01

    Full Text Available BACKGROUND Isolation of an anaerobe is usually neglected in hospitals with limited resources due to the expensive and complicated technique of anaerobic isolation methods, which is difficult to arrange in such resource poor settings. Conventionally adopted anaerobic culture methods such as Anaerobic jar, Gas-Pak, Anoxomat or Automated glove-box systems are extremely costly and cumbersome for single unit testing, but not suitable for small scale laboratories. However, anaerobic bacteria are not to be overlooked as they have made a comeback in clinical settings and are even showing resistance to Metronidazole, once thought to be the gold standard bullet against anaerobes. Deep seated pressure ulcers are usually the site where anaerobe causes an infection in synergy with aerobes. AIMS AND OBJECTIVES Isolation of anaerobes in deep seated pressure ulcers using a novel innovative technique and to study their antibiogram profile. MATERIALS AND METHODS Swabs taken from depth of deep seated pressure ulcers were immediately inoculated in Brucella blood agar at bedside and placed in polycarbonate airtight jar for anaerobic incubation using a novel innovative Modified Candle Jar technique. In this technique five grams of grease-free grade zero steel wool were dipped in 50ml freshly prepared acidified copper sulphate solution until the copper colour appeared. Excess solution was drained and the steel wool was moulded into a loose pad to fit on an open Petri plate placed on top of the inoculated Brucella blood agar plates. A white-wax candle was placed at the centre of this plate. A small test tube containing mixture of 0.5g sodium-bicarbonate and 0.5g magnesium carbonate was kept ready to be placed inside the jar, just after placing the inoculated plate and incubated for 48 hours. RESULTS Peptostreptococcus anaerobius and Bacteroides fragilis were successfully isolated from deep seated pressure ulcers by this method. Antibiogram studies were done using the

  1. Biological deammonification of livestock effluents after anaerobic digestion using specialized bacterial cultures

    Science.gov (United States)

    We investigated a deammonification process for the removal of ammonia from anaerobi digestion (AD) effluents. This process is autotrophic and removes N without carbon. Instant deammonification reaction was obtained by mixing a high performance nitrifying sludge (HPNS) (NRRL B-50298) with anammox slu...

  2. Deforestation for oil palm alters the fundamental balance of the soil N cycle

    Science.gov (United States)

    Hamilton, Liz; Trimmer, Mark; Bradley, Chris; Pinay, Gilles

    2016-04-01

    Expansion of commercial agriculture in equatorial regions has significant implications for regional nitrogen (N) budgets, particularly nitrous oxide (N2O) and nitric oxide (NO) emissions, produced largely by microbial nitrification and denitrification. However, current estimates of soil N turnover are poorly constrained in Southeast Asia for nitrogen gas (N2) production and lesser known N transformations such as nitrate ammonification (DNRA) and anaerobic ammonium oxidation (anammox). We investigated changes in N availability and turnover following replacement of tropical forest with oil palm plantations along a chronosequence of oil palm maturity (3-months to 15-year-old stands) and secondary to primary forest succession in Sabah, Malaysian Borneo. Samples were taken from ten sites during March and April 2012. Using 15N tracing techniques, we measured rates of gross ammonium (NH4+) and nitrate (NO3-) production (mineralisation and nitrification) and consumption (n= 8), potential denitrification, DNRA and anammox (n= 12) in soil cores and slurries respectively. Gross mineralisation rates (0.05 - 3.08 g N m-2 d-1) remained unchanged in oil palm relative to forests. However, a significant reduction in gross nitrification (0.04 - 2.31 g N m-2 d-1) and an increase in NH4+ immobilisation disrupt the pathway to N2 production substantially reducing (by > 90%) rates of denitrification and anammox in recently planted oil palm relative to primary forest. In forests, N2 produced via anammox was ˜30% of that from denitrification highlighting the potential for anammox to contribute significantly to N2 production. NH4+ production rates from DNRA were over two orders of magnitude less than N2 production rates indicating that denitrification is the primary dissimilatory nitrate consumption process in these soils. Potential N2O emissions were greater than potential N2 production, remaining unchanged across the chronosequence and indicating an increased N2O:N2 emission ratio when

  3. Systematic design of membership functions for fuzzy-logic control: A case study on one-stage partial nitritation/anammox treatment systems.

    Science.gov (United States)

    Boiocchi, Riccardo; Gernaey, Krist V; Sin, Gürkan

    2016-10-01

    A methodology is developed to systematically design the membership functions of fuzzy-logic controllers for multivariable systems. The methodology consists of a systematic derivation of the critical points of the membership functions as a function of predefined control objectives. Several constrained optimization problems corresponding to different qualitative operation states of the system are defined and solved to identify, in a consistent manner, the critical points of the membership functions for the input variables. The consistently identified critical points, together with the linguistic rules, determine the long term reachability of the control objectives by the fuzzy logic controller. The methodology is highlighted using a single-stage side-stream partial nitritation/Anammox reactor as a case study. As a result, a new fuzzy-logic controller for high and stable total nitrogen removal efficiency is designed. Rigorous simulations are carried out to evaluate and benchmark the performance of the controller. The results demonstrate that the novel control strategy is capable of rejecting the long-term influent disturbances, and can achieve a stable and high TN removal efficiency. Additionally, the controller was tested, and showed robustness, against measurement noise levels typical for wastewater sensors. A feedforward-feedback configuration using the present controller would give even better performance. In comparison, a previously developed fuzzy-logic controller using merely expert and intuitive knowledge performed worse. This proved the importance of using a systematic methodology for the derivation of the membership functions for multivariable systems. These results are promising for future applications of the controller in real full-scale plants. Furthermore, the methodology can be used as a tool to help systematically design fuzzy logic control applications for other biological processes.

  4. Comparing the performance and operation stability of an SBR and MBBR for single-stage nitritation-anammox treating wastewater with high organic load.

    Science.gov (United States)

    Lackner, Susanne; Horn, Harald

    2013-01-01

    Single stage nitritation-anammox reactors have gained increasing attention for their application in municipal and industrial wastewater treatment. The most commonly used system in municipal reject water treatment is at present the sequencing batch reactor (SBR), the moving-bed biofilm reactor (MBBR) is the second most common. However, little is known about their applicability to industrial wastewaters with high C/N ratios. This study presents a comparative approach to evaluate the performance of these two systems by changing the influent from reject water (C:N ratio 1:1) stepwise to an industrial wastewater (C:N ratio 3:1). An intentionally induced temperature drop that led to nitrite accumulation was also tested. The results showed that the MBBR (1.9 kg-N m(-3) d(-1)) was superior to the SBR (0.5 kg-N m(-3) d(-1)) with at maximum up to four times higher volumetric nitrogen removal rates. Both systems accumulated nitrite (> 100 mg-N L(-1)) during the temperature drop from 30 degrees C to as low as 18 degrees C (MBBR) and 20 degrees C (SBR), which subsequently resulted in almost complete loss in the removal capacities. However, the previous removal rates could be re-established in both systems within approximately 40 days. In comparison, the MBBR showed the more stable and higher performance even though higher nitrite concentrations (up to 500 mg-N L(-1)) were encountered. Overall, MBBR operation and handling was also easier and the system was more robust to disturbances compared to the SBR.

  5. In situ detection of anaerobic alkane metabolites in subsurface environments.

    Science.gov (United States)

    Agrawal, Akhil; Gieg, Lisa M

    2013-01-01

    Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contributing to modern-day detrimental effects such as oilfield souring, or may lead to more beneficial technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes) metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments.

  6. In situ detection of anaerobic alkane metabolites in subsurface environments

    Directory of Open Access Journals (Sweden)

    Lisa eGieg

    2013-06-01

    Full Text Available Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contibuting to modern-day detrimental effects such as oilfield souring, or may lead to more benefical technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments.

  7. Anaerobic treatment of wastewater containing methanol in upflow anaerobic sludge bed (UASB) reactor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The direct conversion of methanol into methane is the main process in anaerobic treatment of methanol containing wastewater.However,acetic acid can also be produced from methanol theoretically,which may probably result in an abrupt pH drop and deteriorate the anaerobic process.Therefore,it is interesting to know what would really happen in an anaerobic reactor treating methanol wastewater.In this study,an up-flow anaerobic sludge bed (UASB) reactor treating methanol wastewater was operated.The chemical oxygen demand (COD),acetic acid and pH of the effluent were monitored at different loadings and influent alkalinity.The results showed that the anaerobic reactor could be operated steadily at as low as 119 mg/L of influent alkalinity and high organic loading rate with no obvious pH drops.Volatile fatty acids accumulation was not observed even at strong shock loadings.The microorganisms in the sludge at the end of the test became homogeneous in morphology,which were mainly spherical or spheroidal in shape.

  8. Cultivation of anaerobic and facultatively anaerobic bacteria from spacecraft-associated clean rooms.

    Science.gov (United States)

    Stieglmeier, Michaela; Wirth, Reinhard; Kminek, Gerhard; Moissl-Eichinger, Christine

    2009-06-01

    In the course of this biodiversity study, the cultivable microbial community of European spacecraft-associated clean rooms and the Herschel Space Observatory located therein were analyzed during routine assembly operations. Here, we focused on microorganisms capable of growing without oxygen. Anaerobes play a significant role in planetary protection considerations since extraterrestrial environments like Mars probably do not provide enough oxygen for fully aerobic microbial growth. A broad assortment of anaerobic media was used in our cultivation strategies, which focused on microorganisms with special metabolic skills. The majority of the isolated strains grew on anaerobic, complex, nutrient-rich media. Autotrophic microorganisms or microbes capable of fixing nitrogen were also cultivated. A broad range of facultatively anaerobic bacteria was detected during this study and also, for the first time, some strictly anaerobic bacteria (Clostridium and Propionibacterium) were isolated from spacecraft-associated clean rooms. The multiassay cultivation approach was the basis for the detection of several bacteria that had not been cultivated from these special environments before and also led to the discovery of two novel microbial species of Pseudomonas and Paenibacillus.

  9. Enhancing post anaerobic digestion of full-scale anaerobically digested sludge using free nitrous acid treatment.

    Science.gov (United States)

    Zhang, Tingting; Wang, Qilin; Ye, Liu; Yuan, Zhiguo

    2016-05-01

    In some wastewater treatment plants (WWTPs), the ever increasing production of sludge with the expanding population overloaded the anaerobic digestion which compromises the sludge reduction efficiency. Post anaerobic digestion of anaerobically digested sludge (ADS) has been applied to enhance sludge reduction, however, to a very limited extent. This study verified the effectiveness of free nitrous acid (FNA i.e. HNO2) pre-treatment on enhancing full-scale ADS degradation in post anaerobic digestion. The ADS collected from a full-scale WWTP was subject to FNA treatment at concentrations of 0.77, 1.54, 2.31, 3.08, and 3.85 mg N/L for 24 h followed by biochemical methane potential tests. The FNA treatment at all concentrations resulted in an increase (from 1.5-3.1 % compared to the control) in sludge reduction with the highest improvement achieved at 0.77 mg HNO2-N/L. The FNA treatment at this concentration also resulted in the highest increase in methane production (40 %) compared to the control. The economic analysis indicates that FNA treatment is economically attractive for enhancing post anaerobic digestion of full-scale ADS.

  10. Conversion of Methanogenic Substrates in Anaerobic Reactors

    OpenAIRE

    Gonzalez-Gil, G.

    2000-01-01

    The EGSB systems represents an attractive option to extend further the use of anaerobic technology for wastewater treatment, particularly with respect to waste streams originating from chemical industries. Frequently chemical waste streams are unbalanced with respect to nutrients and/or micronutrients and furthermore these streams may contain toxic-biodegradable compounds. To reduce toxicity high recycle ratios may be applied as in the case of EGSB reactors however, this at the same time may ...

  11. Instrumentation and Control in Anaerobic Digestion

    DEFF Research Database (Denmark)

    has been lack of process control handles, instruments, and developed control algorithms. This has improved dramatically in the past 10 years, and all of these areas have now been addressed. The main gap in instrumentation technology has been a rapid intermediate sensor to detect overload conditions...... benchmark. There has therefore been, overall, a quantum advance in application and sophistication of instrumentation and control in anaerobic digestion, and it is an effective option for improved process loading rate and conversion efficiency....

  12. Anaerobic co-digestion of organic wastes

    OpenAIRE

    2009-01-01

    Tese de doutoramento em Engenharia Química e Biológica Anaerobic digestion is an already established process but the increasing need of bio‐waste recovery has determined the emergence of new substrates, revamping the research in this field. Contrary to some other European countries, in Portugal this technology is still scarcely in use. Nonetheless, the current legislation endorses this application as a waste management and as an energy recovery process. The rapid growth of the ...

  13. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær;

    2003-01-01

    control approaches that have been used are comprehensively described. These include simple and adaptive controllers, as well as more recent developments such as fuzzy controllers, knowledge-based controllers and controllers based on neural networks.......The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process...

  14. Microbial Aspects of Anaerobic BTEX Degradation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Combined with conventional methods, developments in both geochemical (delineation of redox processes) and molecular microbial methods (analysis of 16S rDNA genes and functional genes) have allowed us to study in details microorganisms and genes involved in the anaerobic degradation of benzene, toluene, ethylbenzene and xylene (BTEX) under specific redox conditions. This review summarizes recent research in this field. The potential for anaerobic BTEX degradation is widely spread. Specific groups of microorganisms appear to be involved in degradation under different redox conditions. Members of the Azoarcus/Thauera cluster perform BTEX degradation under denitrifying conditions, Geobacteraceae under Fe (III) reducing conditions and Desulfobacteriaceae under sulfate reducing conditions. The information so far obtained on biochemistry and molecular genetics of BTEX degradation indicates that each BTEX compound is funneled into the central benzyol-CoA pathway by a different peripheral pathway. The peripheral pathways of per BTEX compound show similarities among different physiological groups of microorganisms. We also describe how knowledge obtained on the microbial aspects of BTEX degradation can be used to enhance and monitor anaerobic BTEX degradation.

  15. Vinasses treatment in anaerobic fludized bed reactor.

    Directory of Open Access Journals (Sweden)

    Francisco J. C. Terán

    2009-03-01

    Full Text Available The agricultural use of vinasse produced by the sugar industry has gone through many changes over the years. Coupled with concern over the increased agronomic efficiency and optimizing the management of the use of such waste, you can highlight the major global ecological awareness, developed after 90s. This study aims at the construction and operation of a reactor anaerobic cracker (RALF on pilot scale to verify the burden of chemical demand of oxygen (DQO of vinasse, under mesophilic. The stillage used for feeding the reactor was from a sugar cane processing plant, located in the city of Regente Feijó, São Paulo State. The inoculum was anaerobic sludge from a reactor and upward flow anaerobic sludge blanket (UASB treating wastewater from a factory of soda. The concentrations of vinasse to be treated ranged 17,239 mg DQO L-1 up to 28,174 mg DQO L-1. The effluent pH was maintained between 6.4 and 8.6 during the research. The productivity of biogas in the reactor has not achieved the expected rates, reaching only 46 mL day-1. Maximum efficiency attained during operation was 51.1 %, corresponding to a 14-day operation time, vinasses organic loading of 19.5 kg DQO m-3 dia-1 and to an hydraulic detention time of one day.

  16. Alternating Current Influences Anaerobic Electroactive Biofilm Activity.

    Science.gov (United States)

    Wang, Xin; Zhou, Lean; Lu, Lu; Lobo, Fernanda Leite; Li, Nan; Wang, Heming; Park, Jaedo; Ren, Zhiyong Jason

    2016-09-06

    Alternating current (AC) is known to inactivate microbial growth in suspension, but how AC influences anaerobic biofilm activities has not been systematically investigated. Using a Geobacter dominated anaerobic biofilm growing on the electrodes of microbial electrochemical reactors, we found that high frequency AC ranging from 1 MHz to 1 kHz (amplitude of 5 V, 30 min) showed only temporary inhibition to the biofilm activity. However, lower frequency (100 Hz, 1.2 or 5 V) treatment led to 47 ± 19% permanent decrease in limiting current on the same biofilm, which is attributed to the action of electrohydrodynamic force that caused biofilm damage and loss of intercellular electron transfer network. Confocal microscopy images show such inactivation mainly occurred at the interface between the biofilm and the electrode. Reducing the frequency further to 1 Hz led to water electrolysis, which generated gas bubbles that flushed all attached cells out of the electrode. These findings provide new references on understanding and regulating biofilm growth, which has broader implications in biofouling control, anaerobic waste treatment, energy and product recovery, and general understanding of microbial ecology and physiology.

  17. The isotopic imprint of fixed nitrogen elimination in the redox transition zone of Lake Lugano, Switzerland

    Science.gov (United States)

    Wenk, Christine; Blees, Jan; Niemann, Helge; Zopfi, Jakob; Schubert, Carsten J.; Veronesi, Mauro; Simona, Marco; Koba, Keisuke; Lehmann, Moritz F.

    2010-05-01

    Nitrogen (N) loading in lakes from natural and anthropogenic sources is partially mitigated by microbially mediated processes that take place in redox transition zones (RTZ) in the water column and in sediments. However, the role of lakes as a terrestrial sink of fixed N is still poorly constrained. Furthermore, modes of suboxic N2 (and N2O) production other than canonical denitrification (e.g. anaerobic ammonium oxidation, or anammox) have barely been investigated in lakes, and the microbial communities involved in N transformations in lacustrine RTZ are mostly unknown. The isotopic composition of dissolved nitrogen species can serve as a reliable indicator of N-transformations in aquatic environments. However, the successful application of N (and O) isotope measurements in natural systems requires a solid understanding of the various N-transformation-specific isotope effects. The deep, south-alpine Lake Lugano, with a permanent chemocline in its North Basin, is an excellent model system for a biogeochemically dynamic lake, in which to study N isotope ratio variations associated with fixed N elimination and regeneration processes. We present the first comprehensive dataset of hydrochemical parameters (including N2/Ar and dissolved N2O concentrations), natural abundance stable isotope ratios of dissolved inorganic nitrogen (DIN) compounds (nitrate, nitrite, ammonium, dinitrogen, nitrous oxide), and the isotopomeric composition of water column N2O for the North Basin of Lake Lugano. Isotopic data will be integrated with molecular microbiological phylogenetic analyses and results from incubation experiments with 15N-labeled N-substrates. Strong gradients in DIN concentrations, as well as in the N and O isotope (and isotopomeric) compositions of nitrate and N2O towards the redox-transition zone indicate nitrate reduction, occurring with a high community N-fractionation. The site preference of N2O isotopomers above the chemocline indicates that the N2O is not only

  18. Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor.

    Science.gov (United States)

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Li, Xu-Dong

    2015-01-01

    Large volumes of untreated palm oil mill effluent (POME) pose threat to aquatic environment due to the presence of very high organic content. The present investigation involved two pilot-scale anaerobic expanded granular sludge bed (EGSB) reactors, continuously operated for 1 year to treat POME. Setting HRT at 9.8 d, the anaerobic EGSB reactors reduced COD from 71179 mg/L to 12341 mg/L and recycled half of sludge by a dissolved air flotation (DAF). The average effluent COD was 3587 mg/L with the consistent COD removal efficiency of 94.89%. Adding cationic polymer (PAM) dose of 30 mg/L to DAF unit and recycling its half of sludge caused granulation of anaerobic sludge. Bacilli and small coccid bacteria were the dominant microbial species of the reactor. The reactor produced 27.65 m(3) of biogas per m(3) of POME which was utilized for electricity generation.

  19. Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.)

    KAUST Repository

    Ngugi, David

    2011-11-28

    Soil-feeding termites play important roles in the dynamics of carbon and nitrogen in tropical soils. Through the mineralization of nitrogenous humus components, their intestinal tracts accumulate enormous amounts of ammonia, and nitrate and nitrite concentrations are several orders of magnitude above those in the ingested soil. Here, we studied the metabolism of nitrate in the different gut compartments of two Cubitermes and one Ophiotermes species using 15N isotope tracer analysis. Living termites emitted N 2 at rates ranging from 3.8 to 6.8nmolh -1 (g fresh wt.) -1. However, in homogenates of individual gut sections, denitrification was restricted to the posterior hindgut, whereas nitrate ammonification occurred in all gut compartments and was the prevailing process in the anterior gut. Potential rates of nitrate ammonification for the entire intestinal tract were tenfold higher than those of denitrification, implying that ammonification is the major sink for ingested nitrate in the intestinal tract of soil-feeding termites. Because nitrate is efficiently reduced already in the anterior gut, reductive processes in the posterior gut compartments must be fuelled by an endogenous source of oxidized nitrogen species. Quite unexpectedly, we observed an anaerobic oxidation of 15N-labelled ammonia to nitrite, especially in the P4 section, which is presumably driven by ferric iron; nitrification and anammox activities were not detected. Two of the termite species also emitted substantial amounts of N 2O, ranging from 0.4 to 3.9nmolh -1 (g fresh wt.) -1, providing direct evidence that soil-feeding termites are a hitherto unrecognized source of this greenhouse gas in tropical soils. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  20. METRONIDAZOLE RESISTANCE IN ANAEROBES ISOLATED FROM CHRONIC PERIODONTITIS CASES

    Directory of Open Access Journals (Sweden)

    Sushma Narayan

    2016-01-01

    Full Text Available Periodontitis is the most frequent oral health problem in the world. The infection is primarily caused by anaerobic microorganisms. Metronidazole is the most commonly used drug to treat the infection but recently the anaerobes have shown the resistance to this drug. Therefore, the present study was undertaken to isolate and identify the anaerobes associated with periodontitis and study their susceptibility pattern to the Metronidazole. Total 90 samples were collected from chronic periodontitis cases. Anaerobes were isolated in 71% of periodontitis cases. Gram positive organisms were more predominantly isolated than Gram negative organisms. The Gram negative anaerobes were found to be 100% sensitive to Metronidazole while Gram positive anaerobes showed 8% resistance to Metronidazole.

  1. Anaerobic filters for the treatment of coal gasification wastewater.

    Science.gov (United States)

    Suidan, M T; Siekerka, G L; Kao, S W; Pfeffer, J T

    1983-06-01

    A process train consisting of the following sequence of unit processes, a berl-saddle-packed anaerobic filter, an expanded bed, granular activated carbon anaerobic filter, and an activated sludge nitrification system was evaluated for the treatment of a synthetically prepared coal gasification wastewater. The first-stage anaerobic filter resulted in very little removal of organic matter and no methane production. Excellent reduction in organic matter occurred in the granular activated carbon anaerobic filter. The removal mechanism was initially adsorptive and near the end of the study, removal of organic matter was primarily through conversion to methane gas. It is felt that the success of the activated carbon anaerobic filter was due to the ability of the activated carbon to sequester some components of the wastewater that were toxic to the mixed culture of anaerobic microorganisms. The activated sludge nitrification system resulted in complete ammonia oxidation and was very efficient in final effluent polishing.

  2. Inhibition of the anaerobic digestion process by linear alkylbenzene sulfonates

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Ahring, Birgitte Kiær

    2002-01-01

    Linear Alkylbenzene Sulfonates (LAS) are the most widely used synthetic anionic surfactants. They are anthropogenic, toxic compounds and are found in the primary sludge generated in municipal wastewater treatment plants. Primary sludge is usually stabilized anaerobically and therefore...... of the anaerobic digestion process should be seriously taken into consideration when wastewater from a surfactant producing industry is to be treated biologically or enter a municipal wastewater treatment plant that employs anaerobic technology. The upper allowable biomass specific LAS concentration should be 14...

  3. A bio-electrochemical system for removing inhibitors of anaerobic digestion processes from anaerobic reactors

    DEFF Research Database (Denmark)

    2014-01-01

    Inhibition of anaerobic digestion process by high level of ammonia (NH4 +/I\\IH3) is the most serious problem existing in biogas plants. No viable/applicable method to overcome this problem has been found up to now. This invention proposes an innovative submersible bio-electrochemical membrane...... reactor to recover ammonia from anaerobic digestion reactor, and thereby alleviate or counteract ammonia inhibition and enhance the conversion of ammonia-rich wastes to biogas. The invention may further reduce overall cost, giving synergistic advantages for both ammonia recycling and biogas plants...

  4. BioReD: Biomarkers and Tools for Reductive Dechlorination Site Assessment, Monitoring and Management

    Science.gov (United States)

    2013-11-01

    ammonium oxidizing bacteria in biological wastewater treatment. Journal of Microbiological Methods 78:119-126. ER-1586: BioReD - Biomarkers for...for in situ detection of anaerobic ammonium oxidizing bacteria in biological wastewater treatment. Journal of Microbiological Methods 78:119-126

  5. Anaerobic Metabolism and Bioremediation of Explosives-Contaminated Soil

    Science.gov (United States)

    Boopathy, Raj

    Nitroaromatic compounds pollute soil, water, and food via use of pesticides, plastics, pharmaceuticals, landfill dumping of industrial wastes, and the military use of explosives. Biotransformation of trinitrotoluene and other nitroaromatics by aerobic bacteria in the laboratory has been frequently reported, but the anaerobic bacterial metabolism of nitroaromatics has not been studied as extensively perhaps due to the difficulty in working with anaerobic cultures and the slow growth of anaerobes. Sulfate-reducing and methanogenic bacteria can metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment.

  6. A comparative genomics study of genetic products potentially encoding ladderane lipid biosynthesis

    Directory of Open Access Journals (Sweden)

    Jetten Mike SM

    2009-02-01

    Full Text Available Abstract Background The fatty acids of anaerobic ammonium oxidizing (anammox bacteria contain linearly concatenated cyclobutane moieties, so far unique to biology. These moieties are under high ring strain and are synthesised by a presently unknown biosynthetic pathway. Results Gene clusters encoding enzymes of fatty acid biosynthesis in the anammox bacterium Kuenenia stuttgartiensis and 137 other organisms were analysed and compared in silico to gain further insight into the pathway of (ladderane fatty acid biosynthesis. In K. stuttgartiensis four large gene clusters encode fatty acid biosynthesis. Next to the regular enzyme complex needed for fatty acid biosynthesis (FASII, the presence of four putative S-adenosyl-methionine (SAM radical enzymes, two enzymes similar to phytoene desaturases and many divergent paralogues of β-ketoacyl-ACP synthase (fabF were unusual. Surprisingly, extensive synteny was observed with FASII gene clusters in the deltaproteobacterium Desulfotalea psychrophila. No ladderane lipids were detected in lipid extracts of this organism but we did find unusual polyunsaturated hydrocarbons (PUHC, not detected in K. stuttgartiensis. Conclusion We suggest that the unusual gene clusters of K. stuttgartiensis and D. psychrophila encode a novel pathway for anaerobic PUFA biosynthesis and that K. stuttgartiensis further processes PUFA into ladderane lipids, in similar fashion to the previously proposed route of ladderane lipid biosynthesis. However, the presence of divergent paralogues of fabF with radically different active site topologies may suggest an alternative pathway where ladderane moieties are synthesised externally and are recruited into the pathway of fatty acid biosynthesis. Reviewers This article was reviewed by Dr Michael Galperin (nominated by Prof E. Koonin, Dr Andrei Osterman and Dr Jeremy Selengut.

  7. Effect of aeration regime on N₂O emission from partial nitritation-anammox in a full-scale granular sludge reactor.

    Science.gov (United States)

    Castro-Barros, C M; Daelman, M R J; Mampaey, K E; van Loosdrecht, M C M; Volcke, E I P

    2015-01-01

    N₂O emission from wastewater treatment plants is high of concern due to the strong environmental impact of this greenhouse gas. Good understanding of the factors affecting the emission and formation of this gas is crucial to minimize its impact. This study addressed the investigation of the N₂O emission dynamics in a full-scale one-stage granular sludge reactor performing partial nitritation-anammox (PNA) operated at a N-loading of 1.75 kg NH₄⁺-N m⁻³ d⁻¹. A monitoring campaign was conducted, gathering on-line data of the N₂O concentration in the off-gas of the reactor as well as of the ammonium and nitrite concentrations in the liquid phase. The N₂O formation rate and the liquid N₂O concentration profile were calculated from the gas phase measurements. The mean (gaseous) N₂O-N emission obtained was 2.0% of the total incoming nitrogen during normal reactor operation. During normal operation of the reactor under variable aeration rate, intense aeration resulted in higher N₂O emission and formation than during low aeration periods (mean N₂O formation rate of 0.050 kg N m⁻³ d⁻¹ for high aeration and 0.029 kg N m⁻³ d⁻¹ for low aeration). Accumulation of N₂O in the liquid phase was detected during low aeration periods and was accompanied by a relatively lower ammonium conversion rate, while N₂O stripping was observed once the aeration was increased. During a dedicated experiment, gas recirculation without fresh air addition into the reactor led to the consumption of N₂O, while accumulation of N₂O was not detected. The transition from a prolonged period without fresh air addition and with little recirculation to enhanced aeration with fresh air addition resulted in the highest N₂O formation (0.064 kg N m⁻³ d⁻¹). The results indicate that adequate aeration control may be used to minimize N₂O emissions from PNA reactors.

  8. Oxygen tolerance capacity of upflow anaerobic solid-state (UASS) with anaerobic filter (AF) system.

    Science.gov (United States)

    Meng, Yao; Jost, Carsten; Mumme, Jan; Wang, Kaijun; Linke, Bernd

    2016-07-01

    In order to investigate the oxygen tolerance capacity of upflow anaerobic solid-state (UASS) with anaerobic filter (AF) system, the effect of microaeration on thermophilic anaerobic digestion of maize straw was investigated under batch conditions and in the UASS with AF system. Aeration intensities of 0-431mL O2/gvs were conducted as pretreatment under batch conditions. Aeration pretreatment obviously enhanced anaerobic digestion and an aeration intensity of 431mL O2/gvs increased the methane yield by 82.2%. Aeration intensities of 0-355mL O2/gvs were conducted in the process liquor circulation of the UASS with AF system. Dissolved oxygen (DO) of UASS and AF reactors kept around 1.39±0.27 and 0.99±0.38mg/L, respectively. pH was relatively stable around 7.11±0.04. Volatile fatty acids and soluble chemical oxygen demand concentration in UASS reactor were higher than those in AF reactor. Methane yield of the whole system was almost stable at 85±7mL/gvs as aeration intensity increased step by step. The UASS with AF system showed good oxygen tolerance capacity.

  9. Wingate Anaerobic Test Peak Power and Anaerobic Capacity Classification for Men and Women Intercollegiate Athletes

    Science.gov (United States)

    2009-12-01

    Ponorac et al. (1 7) Sbriccol i et al. Starling et al. (20) Watson and Sargeant (22) Weber et al. (23) Wiegman et al. (24) 2008 2001 2004 2002 2007 1 998... Wiegman , JE Burton, RR, and Forster, EM. The role of anaerobic power in human tolerance to simulated aerial combat maneuvers. Aotat Span Emimn Med 66

  10. Application of Anaerobic Digestion Model No. 1 for simulating anaerobic mesophilic sludge digestion

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Carlos, E-mail: carllosmendez@gmail.com; Esquerre, Karla, E-mail: karlaesquerre@ufba.br; Matos Queiroz, Luciano, E-mail: lmqueiroz@ufba.br

    2015-01-15

    Highlights: • The behavior of a anaerobic reactor was evaluated through modeling. • Parametric sensitivity analysis was used to select most sensitive of the ADM1. • The results indicate that the ADM1 was able to predict the experimental results. • Organic load rate above of 35 kg/m{sup 3} day affects the performance of the process. - Abstract: Improving anaerobic digestion of sewage sludge by monitoring common indicators such as volatile fatty acids (VFAs), gas composition and pH is a suitable solution for better sludge management. Modeling is an important tool to assess and to predict process performance. The present study focuses on the application of the Anaerobic Digestion Model No. 1 (ADM1) to simulate the dynamic behavior of a reactor fed with sewage sludge under mesophilic conditions. Parametric sensitivity analysis is used to select the most sensitive ADM1 parameters for estimation using a numerical procedure while other parameters are applied without any modification to the original values presented in the ADM1 report. The results indicate that the ADM1 model after parameter estimation was able to predict the experimental results of effluent acetate, propionate, composites and biogas flows and pH with reasonable accuracy. The simulation of the effect of organic shock loading clearly showed that an organic shock loading rate above of 35 kg/m{sup 3} day affects the performance of the reactor. The results demonstrate that simulations can be helpful to support decisions on predicting the anaerobic digestion process of sewage sludge.

  11. Horse manure as feedstock for anaerobic digestion.

    Science.gov (United States)

    Hadin, Sa; Eriksson, Ola

    2016-10-01

    Horse keeping is of great economic, social and environmental benefit for society, but causes environmental impacts throughout the whole chain from feed production to manure treatment. According to national statistics, the number of horses in Sweden is continually increasing and is currently approximately 360,000. This in turn leads to increasing amounts of horse manure that have to be managed and treated. Current practices could cause local and global environmental impacts due to poor performance or lack of proper management. Horse manure with its content of nutrients and organic material can however contribute to fertilisation of arable land and recovery of renewable energy following anaerobic digestion. At present anaerobic digestion of horse manure is not a common treatment. In this paper the potential for producing biogas and biofertiliser from horse manure is analysed based on a thorough literature review in combination with mathematical modelling and simulations. Anaerobic digestion was chosen as it has a high degree of resource conservation, both in terms of energy (biogas) and nutrients (digestate). Important factors regarding manure characteristics and operating factors in the biogas plant are identified. Two crucial factors are the type and amount of bedding material used, which has strong implications for feedstock characteristics, and the type of digestion method applied (dry or wet process). Straw and waste paper are identified as the best materials in an energy point of view. While the specific methane yield decreases with a high amount of bedding, the bedding material still makes a positive contribution to the energy balance. Thermophilic digestion increases the methane generation rate and yield, compared with mesophilic digestion, but the total effect is negligible.

  12. Improvement of anaerobic digestion of sludge

    Energy Technology Data Exchange (ETDEWEB)

    Dohanyos, Michael; Zabranska, Jana; Kutil, Josef; Jenicek, Pavel

    2003-07-01

    Anaerobic digestion improvement can be accomplished by different methods. Besides optimization of process conditions is frequently used pretreatment of input sludge and increase of process temperature. Thermophilic process brings a higher solids reduction and biogas production, the high resistance to foaming, no problems with odour, the higher effect of destroying pathogens and the improvement of the energy balance of the whole treatment plant. Disintegration of excess activated sludge in lysate centrifuge was proved in full-scale conditions causing increase of biogas production. The rapid thermal conditioning of digested sludge is acceptable method of particulate matter disintegration and solubilization. (author)

  13. Hybrid modelling of anaerobic wastewater treatment processes.

    Science.gov (United States)

    Karama, A; Bernard, O; Genovesi, A; Dochain, D; Benhammou, A; Steyer, J P

    2001-01-01

    This paper presents a hybrid approach for the modelling of an anaerobic digestion process. The hybrid model combines a feed-forward network, describing the bacterial kinetics, and the a priori knowledge based on the mass balances of the process components. We have considered an architecture which incorporates the neural network as a static model of unmeasured process parameters (kinetic growth rate) and an integrator for the dynamic representation of the process using a set of dynamic differential equations. The paper contains a description of the neural network component training procedure. The performance of this approach is illustrated with experimental data.

  14. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær;

    2003-01-01

    measurements are reviewed in detail. In the sequel, possible manipulated variables, such as the hydraulic retention time, the organic loading rate, the sludge retention time, temperature, pH and alkalinity are evaluated with respect to the two main reactor types: high-rate and low-rate. Finally, the different......The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process...

  15. Anaerobic xylose fermentation by Spathaspora passalidarum

    DEFF Research Database (Denmark)

    Hou, Xiaoru

    2012-01-01

    A cost-effective conversion of lignocellulosic biomass into bioethanol requires that the xylose released from the hemicellulose fraction (20–40% of biomass) can be fermented. Baker’s yeast, Saccharomyces cerevisiae, efficiently ferments glucose but it lacks the ability to ferment xylose. Xylose-fermenting...... yeast such as Pichia stipitis requires accurately controlled microaerophilic conditions during the xylose fermentation, rendering the process technically difficult and expensive. In this study, it is demonstrated that under anaerobic conditions Spathaspora passalidarum showed high ethanol production...

  16. Anaerobic wastewater treatment of concentrated sewage using a two-stage upflow anaerobic sludge blanket- anaerobic filter system.

    Science.gov (United States)

    Halalsheh, Maha M; Abu Rumman, Zainab M; Field, Jim A

    2010-01-01

    A two-stage pilot-scale upflow anaerobic sludge blanket - anaerobic filter (UASB-AF) reactors system treating concentrated domestic sewage was operated at 23 degrees C and at hydraulic retention times (HRT) of 15 and 4 h, respectively. Excess sludge from the downstream AF stage was returned to the upstream UASB reactor. The aim was to obtain higher sludge retention time (SRT) in the UASB reactor for better methanization of suspended COD. The UASB-AF system removed 55% and 65% of the total COD (COD(tot)) and suspended COD (COD(ss)), respectively. The calculated SRT in the UASB reactor ranged from 20-35 days. The AF reactor removed the washed out sludge from the first stage reactor with average COD(ss) removal efficiency of 55%. The volatile fatty acids concentration in the effluent of the AF was 39 mg COD/L compared with 78 mg COD/L measured for the influent. The slightly higher COD(tot) removal efficiency obtained in this study compared with a single stage UASB reactor was achieved at 17% reduction in the total volume.

  17. Balancing hygienization and anaerobic digestion of raw sewage sludge.

    Science.gov (United States)

    Astals, S; Venegas, C; Peces, M; Jofre, J; Lucena, F; Mata-Alvarez, J

    2012-12-01

    The anaerobic digestion of raw sewage sludge was evaluated in terms of process efficiency and sludge hygienization. Four different scenarios were analyzed, i.e. mesophilic anaerobic digestion, thermophilic anaerobic digestion and mesophilic anaerobic digestion followed by a 60 °C or by an 80 °C hygienization treatment. Digester performance (organic matter removal, process stability and biogas yield) and the hygienization efficiency (reduction of Escherichia coli, somatic coliphages and F-specific RNA phages) were the main examined factors. Moreover, a preliminary economical feasibility study of each option was carried out throughout an energy balance (heat and electricity). The obtained results showed that both thermophilic anaerobic digestion and mesophilic anaerobic digestion followed by a hygienization step were able to produce an effluent sludge that fulfills the American and the European legislation for land application. However, higher removal efficiencies of indicators were obtained when a hygienization post-treatment was present. Regarding the energy balance, it should be noted that all scenarios have a significant energy surplus. Particularly, positive heat balances will be obtained for the thermophilic anaerobic digestion and for the mesophilic anaerobic digestion followed by 60 °C hygienization post-treatment if an additional fresh-sludge/digested sludge heat exchanger is installed for energy recovery.

  18. Molecular AND logic gate based on bacterial anaerobic respiration.

    Science.gov (United States)

    Arugula, Mary Anitha; Shroff, Namita; Katz, Evgeny; He, Zhen

    2012-10-21

    Enzyme coding genes that integrate information for anaerobic respiration in Shewanella oneidensis MR-1 were used as input for constructing an AND logic gate. The absence of one or both genes inhibited electrochemically-controlled anaerobic respiration, while wild type bacteria were capable of accepting electrons from an electrode for DMSO reduction.

  19. TEST RESULTS FOR FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS

    Science.gov (United States)

    EPA, in conjunction with ONSI Corp., embarked on a project to define, design, test, and assess a fuel cell energy recovery system for application at anaerobic digester waste water (sewage) treatment plants. Anaerobic digester gas (ADG) is produced at these plants during the proce...

  20. Anaerobic infections in the head and neck region.

    Science.gov (United States)

    Tabaqchali, S

    1988-01-01

    Anaerobic bacteria form the predominant flora of the oral cavity, outnumbering facultative organisms by 10-1,000: 1. The type of anaerobic bacteria and their concentration depend on the anatomical site and the degree of anaerobiosis in the different sites in the mouth. Three groups of anaerobic bacteria inhabit the oral cavity; the strict anaerobes, the moderate anaerobes, and the microaerophilic group of organisms. The majority of anaerobic bacterial infections occurring in the region of the mouth, head and neck are caused by the commensal flora. These infections include dental and periodontal disease where the predominant organisms are Bacteroides species, Veillonella, Bifidobacteria, Peptococcus, Peptostreptococcus and Propionibacterium species. More recently, Bacteroides endontalis has been isolated from a periapical abscess of endodontal origin and B. gingivalis, B. intermedius, Haemophilus actinomycetemcomitans and Wollinella species in chronic periodontal disease. Treponema species and other strict anaerobes are seen in smears of severe periodontal disease and acute necrotising gingivitis, but have not yet been isolated in pure culture. Until such time, their role in disease remains uncertain. Fusobacterium nucleatum is specially associated with severe orofacial infections which may extend into the mediastinum. Other anaerobic infections include chronic otitis media, chronic sinusitis and mastoiditis, and brain abscess. Treatment of these conditions should include the use of beta-lactamase resistant antimicrobials, such as clindamycin or one of the nitroimidazoles with penicillin.

  1. Anaerobic catabolism of aromatic compounds: a genetic and genomic view.

    Science.gov (United States)

    Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F; Valderrama, J Andrés; Barragán, María J L; García, José Luis; Díaz, Eduardo

    2009-03-01

    Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach.

  2. A fuzzy logic approach to control anaerobic digestion

    NARCIS (Netherlands)

    Domnanovich, A.M.; Strik, D.P.B.T.B.; Pfeiffer, B.; Karlovits, M.; Zani, L.; Braun, R.; Holubar, P.

    2003-01-01

    One of the goals of the EU-Project AMONCO (Advanced Prediction, Monitoring and Controlling of Anaerobic Digestion Process Behaviour towards Biogas Usage in Fuel Cells) is to create a control tool for the anaerobic digestion process, which predicts the volumetric organic loading rate (Bv) for the nex

  3. Microbiology of anaerobic digestion; Microbiologia da digestao anaerobica

    Energy Technology Data Exchange (ETDEWEB)

    Novaes, Rosana Filomena Vazoller [CETESB, Sao Paulo, SP (Brazil)

    1988-12-31

    Considerations was made about the microorganisms involved in the anaerobic digestion of wastes. Are also presented, the main results on this subject obtained, until now, in the studies carried on the group of anaerobic microbiology researchers from the Sanitary Company of Sao Paulo State, Brazil. (author) 23 refs., 8 figs., 3 tabs.

  4. Occurrence of ethylene in anaerobic soil

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.A.; Restall, S.W.F.

    1971-01-01

    The production of ethylene and other hydrocarbon gases by soils under anaerobic conditions was measured by gas chromatography. Ethylene was the only hydrocarbon gas which occurred in physiologically significant concentrations; more than 20 ppm was found in several soils after 10 days at 20/sup 0/C. These concentrations were considerably higher than those which were known to cause severe reductions in the extension of root axes of some plant species. Experiments with sterilized and unsterilized soil indicated that ethylene was produced by enzyme activity and not by chemical action. The gas was found in soil when the oxygen concentration fell below 2%; total evolution was correlated with organic matter content, and was affected by drying and rewetting and by the growth of plant roots. The rate of production was increased by raising the temperature and by addition of glucose or peptone; high concentrations of nitrate depressed the rate, but sulfate and phosphate had little effect. It is concluded that ethylene may be a significant factor in causing injury to crop plants under waterlogged conditions and also in situations where anaerobic pockets occur within a mainly aerobic soil structure, provided that escape of the gas from the soil is impeded sufficiently to allow inhibitory concentrations to build up in the vicinity of plant roots. 31 references, 7 figures, 3 tables.

  5. Anaerobic digestion of pot-ale

    Energy Technology Data Exchange (ETDEWEB)

    Mosey, F.E.

    1990-12-01

    In the production of whisky, the fermented wash is distilled twice and each bushel of grain yields about 15.5 gallons of pot-ale, 6.0 gallons of spent lees and 2.7 gallons of proof spirit. Disposal of pot-ale, the strong residue from the first distillation, containing all the non-volatile and unfermented components of the wash, will always be difficult. Anaerobic digestion provides a possible option. By destroying most of the biodegradable solids and converting them to biogas, it provides an intermediate effluent which conventional treatment technology can purify to river discharge standards. Pilot-scale trials confirm that pot-ale can be treated by anaerobic digestion. The most severe problems are the high purification efficiencies required to achieve UK river discharge standards and the quality and settling properties of the biological sludges produced. To achieved these standards, the design and operation of the entire treatment chain is dominated by the need to capture and concentrate suspended solids (SS) produced by the biological fermentations. Overall performance targets are 99.95% removal of biological oxygen demand (BOD), 99% removal of ammonia and a surplus sludge production of less than 20% of the incoming flow. (author).

  6. Anaerobic performances of sedentary and trained subjects.

    Science.gov (United States)

    Serresse, O; Ama, P F; Simoneau, J A; Lortie, G; Bouchard, C; Boulay, M R

    1989-03-01

    The objective of this report was to compare the performance of sedentary individuals, physical education students, and athletes of various disciplines in 10 s and 90 s maximal cycle ergometer tests. The 10 s power was the highest power output in one second from the 10 s test, while capacities were defined as the total work output during the best 10 s trial and the 90 s test. ANOVA and Duncan multiple range test indicated that the mean values of the 10 S power and capacity and the 90 S capacity tests were significantly higher in sprinter than in sedentary groups. Sprinters performed significantly better than marathon runners only in the 10 s capacity and power. Bodybuilders and sedentary subjects had similar results in the 90 s capacity test. Mean performance values per kilogram of body weight in sedentary females reached about 60% of sedentary males while marathon runners, physical education students and sprinter females reached about 80% of the male performances for the three indicators. When expressed per kilogram of fat-free mass, females reached a higher proportion of the male values for all performances. These results indicate that: a) there are differences for the power and capacity measured in predominantly anaerobic tests between athletes from different disciplines and sedentary individuals, and b) gender differences exist for these anaerobic performance indicators, but they appear attenuated in trained subjects.

  7. Anaerobic microbial degradation of organochlorine insecticides Aldrin

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, T.C.; Yen, J.H.; Wang, Y.S. [National Taiwan Univ. (Taiwan)

    2004-09-15

    Aldrin (1,2,3,4,10,10-hexachloro-1,4,4a,5,8,8a-hexahydro-1,4-endo-exo-5,8-dimethanonnaphthalene), a cyclodiene organochlorine insecticide, was banned by nations and classified as B2 carcinogen by United States Environmental Protection Agency (EPA). Because of its chemical stability and lipophilicity, aldrin is regarded as a persistent and recalcitrant compound. Aldrin is easily adsorbed to soil and sediment after spreading to the environments, furthermore, it may be accumulated in animal's tissue or milk and then cause adverse effects by food-chain. The dissipation process of aldrin in environments has continuously been paid much attention by researchers. In general, the dissipation of aldrin has been thought as relating to three mechanisms: photo-degradation, chemical hydrolysis, and microbial degradation. And it has been well known that microbial degradation is the most important agent for breakdown of organochlorine pesticides. There has been shown that aldrin could be transformed to its metabolites, such as dieldrin or photo-dieldrin, by microorganisms under aerobic conditions, however, limited information has been shown under anaerobic conditions. For this reason, the degradation potential of aldrin by anaerobic microorganisms obtained from indigenous river sediment was evaluated, and the effect of environmental factors such as temperatures and nutrients on the aldrin degradation was also investigated in this study.

  8. Electrolysis-enhanced anaerobic digestion of wastewater.

    Science.gov (United States)

    Tartakovsky, B; Mehta, P; Bourque, J-S; Guiot, S R

    2011-05-01

    This study demonstrates enhanced methane production from wastewater in laboratory-scale anaerobic reactors equipped with electrodes for water electrolysis. The electrodes were installed in the reactor sludge bed and a voltage of 2.8-3.5 V was applied resulting in a continuous supply of oxygen and hydrogen. The oxygen created micro-aerobic conditions, which facilitated hydrolysis of synthetic wastewater and reduced the release of hydrogen sulfide to the biogas. A portion of the hydrogen produced electrolytically escaped to the biogas improving its combustion properties, while another part was converted to methane by hydrogenotrophic methanogens, increasing the net methane production. The presence of oxygen in the biogas was minimized by limiting the applied voltage. At a volumetric energy consumption of 0.2-0.3 Wh/L(R), successful treatment of both low and high strength synthetic wastewaters was demonstrated. Methane production was increased by 10-25% and reactor stability was improved in comparison to a conventional anaerobic reactor.

  9. Validity of the Pediatric Running-Based Anaerobic Sprint Test to Determine Anaerobic Performance in Healthy Children

    NARCIS (Netherlands)

    Bongers, Bart C.; Werkman, Maarten S.; Blokland, Donna; Eijsermans, Maria J. C.; van der Torre, Patrick; Bartels, Bart; Verschuren, Olaf; Takken, Tim

    2015-01-01

    Purpose: To determine criterion validity of the pediatric running-based anaerobic sprint test (RAST) as a nonsophisticated field test for evaluating anaerobic performance in healthy children and adolescents. Methods: Data from 65. healthy children (28 boys and 37 girls between 6 and 18 years of age,

  10. Anaerobic methanethiol degradation in upflow anaerobic sludge bed reactors at high salinity (> 0.5 M Na+)

    NARCIS (Netherlands)

    Leerdam, van R.C.; Bok, de F.A.M.; Lens, P.N.L.; Stams, A.J.M.; Janssen, A.J.H.

    2007-01-01

    The feasibility of anaerobic methanethiol (MT) degradation at elevated sodium concentrations was investigated in a mesophilic (30°C) lab-scale upflow anaerobic sludge bed (UASB) reactor, inoculated with estuarine sediment originating from the Wadden Sea (The Netherlands). MT was almost completely de

  11. Anaerobic toxicity of cationic silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gitipour, Alireza; Thiel, Stephen W. [Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, OH (United States); Scheckel, Kirk G. [USEPA, Office of Research and Development, Cincinnati, OH (United States); Tolaymat, Thabet, E-mail: tolaymat.thabet@epa.gov [USEPA, Office of Research and Development, Cincinnati, OH (United States)

    2016-07-01

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag{sup +} under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10–15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L{sup −1}, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L{sup −1} as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag{sup +}. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L{sup −1} as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. - Highlights: • At concentrations -1 the anaerobic decomposition process was not impacted. • An impact on the microbial community at concentrations -1 were observed. • At high concentrations (100 mg L{sup −1}), the cationic BPEI-AgNPs demonstrated toxicity. • Toxicity was demonstrated without the presence of oxidative dissolution of silver. • A one size fits all approach for the evaluation of NPs may not be accurate.

  12. Anaerobic Digestion Modeling: from One to Several Bacterial Populations

    Directory of Open Access Journals (Sweden)

    Iván D. Ramírez-Rivas

    2013-11-01

    Full Text Available Anaerobic digestion systems are complex processes that unfortunately often suffer from instability causing digester failure. In order to be able to design, optimizing and operate efficiently anaerobic digestion systems, appropriate control strategies need to be designed. Such strategies require, in general, the development of mathematical models. The anaerobic digestion process comprises a complex network of sequential and parallel reactions of biochemical and physicochemical nature. Usually, such reactions contain a particular step, the so called rate-limiting step which, being the slowest, limits the reaction rate of the overall process. The first attempts for modeling anaerobic digestion led to models describing only the limiting step. However, over a wide range of operating conditions, the limiting step is not always the same. It may depend on wastewater characteristics, hydraulic loading, temperature, etc. It is apparent that the "limiting step hypothesis" leads to simple and readily usable models. Such models, however, do not describe very well the digester behavior, especially under transient operating conditions. This work reviews the current state-of-the-art in anaerobic digestion modeling. We give a brief description of the key anaerobic digestion models that have been developed so far for describing biomass growth systems, including the International Water Association’s Anaerobic Digestion Model 1 (ADM1 and we identify the areas that require further research endeavors.

  13. Trace metal speciation and bioavailability in anaerobic digestion: A review.

    Science.gov (United States)

    Thanh, Pham Minh; Ketheesan, Balachandran; Yan, Zhou; Stuckey, David

    2016-01-01

    Trace metals are essential for the growth of anaerobic microorganisms, however, in practice they are often added to anaerobic digesters in excessive amounts, which can lead to inhibition. The concept of bioavailability of metals in anaerobic digestion has been poorly understood in the past, and a lack of deep understanding of the relationship between trace metal speciation and bioavailability can result in ineffective metal dosing strategies for anaerobic digesters. Sequential extraction schemes are useful for fractionating trace metals into their different forms, and metal sulfides can serve as a store and source for trace metals during anaerobic digestion, while natural/synthetic chelating agents (soluble microbial products-SMPs, extracellular polysaccharides-EPS, and EDTA/NTA) are capable of controlling trace metal bioavailability. Nevertheless, more work is needed to: investigate the speciation and bioavailability of Ca, Mg, Mn, W, and Se; compare the bioavailability of different forms of trace metals e.g. carbonates, sulfides, phosphates to different anaerobic trophic groups; determine what factors influence metal sulfide dissolution; investigate whether chelating agents can increase trace metal bioavailability; develop and adapt specialized analytical techniques, and; determine how trace metal dynamics change in an anaerobic membrane bioreactor (AnMBR).

  14. Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor

    Science.gov (United States)

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Li, Xu-Dong

    2015-01-01

    Large volumes of untreated palm oil mill effluent (POME) pose threat to aquatic environment due to the presence of very high organic content. The present investigation involved two pilot-scale anaerobic expanded granular sludge bed (EGSB) reactors, continuously operated for 1 year to treat POME. Setting HRT at 9.8 d, the anaerobic EGSB reactors reduced COD from 71179 mg/L to 12341 mg/L and recycled half of sludge by a dissolved air flotation (DAF). The average effluent COD was 3587 mg/L with the consistent COD removal efficiency of 94.89%. Adding cationic polymer (PAM) dose of 30 mg/L to DAF unit and recycling its half of sludge caused granulation of anaerobic sludge. Bacilli and small coccid bacteria were the dominant microbial species of the reactor. The reactor produced 27.65 m3 of biogas per m3 of POME which was utilized for electricity generation. PMID:26167485

  15. Anaerobic biodegradation of linear alkylbenzene sulfonate (LAS) in upflow anaerobic sludge blanket (UASB) reactors.

    Science.gov (United States)

    Sanz, José L; Culubret, Elayne; de Ferrer, Juan; Moreno, Alfonso; Berna, José L

    2003-01-01

    The anaerobic biodegradation of Linear Alkylbenzene Sulfonate (LAS) was studied in Upflow Anaerobic Sludge Blanket Reactors (UASB). One reactor was fed with easily degradable substrates and commercial LAS solution during a period of 3 months (Reactor 1), meanwhile a second reactor was fed with a commercial LAS solution without co-substrate (Reactor 2) during 4 months. Both reactors were operated with an organic loading rate of 4-5 mg-LAS/l x day and a hydraulic retention time of one day. The LAS biodegradation was determined by full mass balance. LAS was analysed by HPLC in the liquid phase (influent and effluent streams of the reactors) as well as in the solid phase (granular sludge used as biomass). The results indicate a high level of removal (primary biodegradation: 64-85%). Biodegradation was higher in the absence of external co-substrates than in the presence of additional sources of carbon. This indicates that the surfactant can be partially used as carbon and energy source by anaerobic bacteria. Under the operating conditions used, inhibition of the methanogenic activity or any other negative effects on the biomass due to the presence of LAS were not observed. The methanogenic activity remained high and stable throughout the experiment.

  16. Hydrogen production from glucose by anaerobes.

    Science.gov (United States)

    Ogino, Hiroyasu; Miura, Takashi; Ishimi, Kosaku; Seki, Minoru; Yoshida, Hiroyuki

    2005-01-01

    Various anaerobes were cultivated in media containing glucose. When 100 mL of thioglycollate medium containing 2.0% (w/v) glucose was used, Clostridium butyricum ATCC 859, NBRC 3315, and NBRC 13949 evolved 227-243 mL of biogas containing about 180 mL of hydrogen in 1 day. Although some strains had some resistance against oxygen, C. butyricum ATCC 859 and 860 did not have it. C. butyricum NBRC 3315 and Enterobacter aerogenes NBRC 13534 produced hydrogen in the presence of glucose or pyruvic acid, and E. aerogenes NBRC 13534 produced hydrogen by not only glucose and pyruvic acid but also dextrin, sucrose, maltose, galactose, fructose, mannose, and mannitol. When a medium containing 0.5% (w/v) yeast extract and 2.0% (w/v) glucose was used, E. aerogenes NBRC 13534 evolved more biogas and hydrogen than C. butyricum NBRC 3315 in the absence of reducing agent.

  17. Applications of the anaerobic digestion process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Ellegaard, L.; Ahring, Birgitte Kiær

    2003-01-01

    and incineration of organic waste has become less desirable, and legislation, both in Europe and elsewhere, tends to favor biological treatment as a way of recycling minerals and nutrients of organic wastes from society back to the food production and supply chain. Removing the relatively wet organic waste from......At the start of the new millennium waste management has become a political priority in many countries. One of the main problems today is to cope with an increasing amount of primary waste in an environmentally acceptable way. Biowastes, i.e., municipal, agricultural or industrial organic waste...... and resource/energy recovery have been developed. Treatment of biowastes by anaerobic digestion processes is in many cases the optimal way to convert organic waste into useful products such as energy (in the form of biogas) and a fertilizer product. Other waste management options, such as land filling...

  18. Photochemistry of hypocrellin derivatives under anaerobic conditions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To improve the red absorption and solubility of hypocrellin, we have synthesized a series of hypocrellin B derivatives. The photochemistry of these new compounds in anaerobic media has been investigated by using electronic paramagnetic resonance (EPR) and spectrophotometric methods. The semiquinone anion radicals can be produced by self-electron transfer on irradiation, with the formation efficiency and EPR hyperfine structures of the semiquinone anion radicals dependent on the structures of the derivatives. When an electron donor is present, the electron transfer from electron donor to hypocrellin B derivatives enhanced the production of the corresponding semiquinone anion radical; in addition, the semiquinone anion radical and hydroquinone can be detected spectrophotometrically. Structural modifications exert little effect on the absorption position of semiquinone anion radical and hydroquinone, but influence their formation efficiency significantly.

  19. [Antimicrobial susceptibility testing of anaerobic bacteria].

    Science.gov (United States)

    García-Sánchez, José E; García-Sánchez, Enrique; García-García, María Inmaculada

    2014-02-01

    The anaerobic bacteria resistance to antibiotics is increasing, and even has appeared against the most active of those, like metronidazol and carbapenems. This fact forces to make and periodical sensibility tests -at least in the most aggressive and virulent species, in cases that they are isolated from life locations and in the absence of therapeutic response- to check the local sensibility and to establish suitable empiric therapies, all based on multicentric studies carried out in order to this or well to check the activity of new antibiotics. For the laboratory routine, the easiest sensibility method is the E-test/MIC evaluator. Another alternative is microdilution, that's only normalized for Bacteroides. There are preliminary facts that allow the use of disc diffusion method in some species of Bacteroides and Clostridium. For the temporal and multicentric studies, the procedure is dilution in agar plate, the reference method.

  20. Invited review: anaerobic fermentation of dairy food wastewater.

    Science.gov (United States)

    Hassan, A N; Nelson, B K

    2012-11-01

    Dairy food wastewater disposal represents a major environmental problem. This review discusses microorganisms associated with anaerobic digestion of dairy food wastewater, biochemistry of the process, factors affecting anaerobic digestion, and efforts to develop defined cultures. Anaerobic digestion of dairy food wastewater offers many advantages over other treatments in that a high level of waste stabilization is achieved with much lower levels of sludge. In addition, the process produces readily usable methane with low nutrient requirements and no oxygen. Anaerobic digestion is a series of complex reactions that broadly involve 2 groups of anaerobic or facultative anaerobic microorganisms: acidogens and methanogens. The first group of microorganisms breaks down organic compounds into CO(2) and volatile fatty acids. Some of these organisms are acetogenic, which convert long-chain fatty acids to acetate, CO(2), and hydrogen. Methanogens convert the acidogens' products to methane. The imbalance among the different microbial groups can lead not only to less methane production, but also to process failure. This is due to accumulation of intermediate compounds, such as volatile fatty acids, that inhibit methanogens. The criteria used for evaluation of the anaerobic digestion include levels of hydrogen and volatile fatty acids, methane:carbon ratio, and the gas production rate. A steady state is achieved in an anaerobic digester when the pH, chemical oxygen demand of the effluent, the suspended solids of the effluent, and the daily gas production remain constant. Factors affecting efficiency and stability of the process are types of microorganisms, feed C:N ratio, hydraulic retention time, reactor design, temperature, pH control, hydrogen pressure, and additives such as manure and surfactants. As anaerobic digesters become increasingly used in dairy plants, more research should be directed toward selecting the best cultures that maximize methane production from dairy

  1. Anaerobic digestion for sustainable development: a natural approach

    Energy Technology Data Exchange (ETDEWEB)

    Gijzen, H.J.

    2002-07-01

    After the discovery of methane gas by Alessandro Volta in 1776, it took about 100 years before anaerobic processes for the treatment of wastewater and sludges were introduced. The development of high rate anaerobic digesters for the treatment of sewage and industrial wastewater took until the nineteen-seventies and for solid waste even till the nineteen-eighties. All digesters have in common that they apply natural anaerobic consortia of microorganisms for degradation and transformation processes. In view of this, it could be rewarding to evaluate the efficiency of natural ecosystems for their possible application. Examples of high rate anaerobic natural systems include the forestomach of ruminants and the hindgut of certain insects, such as termites and cockroaches. These ''natural reactors'' exhibit volumetric methane production rates as high as 35 l/l.d. The development of anaerobic reactors based on such natural anaerobic systems could produce eco-technologies for the effective management of a wide variety of solid wastes and industrial wastewater. Important limitations of anaerobic treatment of domestic sewage relate to the absence of nutrient and pathogen removal. A combination of anaerobic pre-treatment followed by photosynthetic post-treatment is proposed for the effective recovery of energy and nutrients from sewage. This eco-technology approach is based on the recognition that the main nutrient assimilating capacity is housed in photosynthetic plants. The proposed anaerobic-photosynthetic process is energy efficient, cost effective and applicable under a wide variety of rural and urban conditions. In conclusion: a natural systems approach towards waste management could generate affordable eco-technologies for effective treatment and resource recovery. (author)

  2. Autotrophic Nitrogen Removal in a Membrane-Aerated Biofilm Reactor Under Continuous Aeration: A Demonstration

    DEFF Research Database (Denmark)

    Gilmore, Kevin R.; Terada, Akihiko; Smets, Barth F.

    2013-01-01

    This work describes the successful coupling of partial nitrification (nitritation) and anaerobic ammonium oxidation in a membrane-aerated biofilm reactor (MABR) with continuous aeration. Controlling the relative surface loadings of oxygen versus ammonium prevented complete nitrite oxidation and a...

  3. Methane and hydrogen production by human intestinal anaerobic bacteria.

    Science.gov (United States)

    McKay, L F; Holbrook, W P; Eastwood, M A

    1982-06-01

    The gas above liquid cultures of a variety of human intestinal anaerobic bacteria was sampled and analysed by headspace gas chromatography. Hydrogen production was greatest with strains of the genus Clostridium, intermediate with anaerobic cocci and least with Bacteroides sp. Very few strains produced methane although small amounts were detected with one strain of B. thetaiotaomicron, C. perfringens and C. histolyticum. There may be a relationship between these anaerobic bacteria and several gastrointestinal disorders in which there is a build up of hydrogen or methane in the intestines.

  4. ANAEROBIC MEMBRANE BIOREACTORS FOR DOMESTIC WASTEWATER TREATMENT. PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    Luisa Vera

    2014-12-01

    Full Text Available The operation of submerged anaerobic membrane bioreactors (SAnMBRs for domestic wastewaters treatment was studied in laboratory scale, with the objective to define sustainable filtration conditions of the suspensions along the process. During continuous experiments, the organic matter degradation by anaerobic way showed an average DQOT removal of 85% and 93%. Indeed, the degradation generated biogas after 12 days of operation and its relative methane composition was of 60% after 25 days of operation. Additionally, the comparison between membrane bioreactors (MBRs performance in aerobic and anaerobic conditions in filterability terms, reported that both systems behave similarly once reached the stationary state.

  5. Electron beam/biological processing of anaerobic and aerobic sludge

    Science.gov (United States)

    Čuba, V.; Pospíšil, M.; Múčka, V.; Jeníček, P.; Dohányos, M.; Zábranská, J.

    2003-01-01

    Besides common chemical and biological methods, the radiation technology is a promising way of sludge treatment. The paper describes possibilities of combined accelerated electrons/biological processing of both anaerobic and aerobic sludge. Besides one-shot experiments, experimental reactors for the simulation of anaerobic processes have been used. Main effort has been aimed to decrease organic compounds concentration and overall volume of solids, to improve some physico-chemical parameters of sludge, to validate hygienisation effects of the ionising radiation, and in the case of anaerobic sludge, to increase the volume of the produced biogas. Positive effects of the electron beam processing have been observed on all previously named parameters.

  6. Decolorization of azo dyes under batch anaerobic and sequential anaerobic/aerobic conditions.

    Science.gov (United States)

    Işik, Mustafa; Sponza, Delia Teresa

    2004-01-01

    Batch anaerobic and sequential anaerobic upflow anaerobic sludge blanket (UASB)/aerobic continuous stirred tank reactor (CSTR) were used to determine the color and COD removals under anaerobic/aerobic conditions. Two azo dyes namely "Reactive Black 5 (RB 5)," "Congo Red (CR)," and glucose as a carbon source were used for synthetic wastewater. The course of the decolorization process approximates to first order and zero order kinetics with respect to dye concentration for RB 5 and Congo Red azo dyes, respectively, in batch conditions. The decolorization kinetic constant (K0) values increased from 3.6 to 11.8 mg(L h)(-1) as increases in dye concentrations from 200 to 3200 mg L(-1) for CR. Increases in dye concentrations from 0 to 3200 mg L(-1) reduce the decolorization rate constant (k1) values from 0.0141 to 0.0019 h(-1) in batch studies performed with RB 5. Decolorization was achieved effectively under test conditions but ultimate decolorization of azo dyes was not observed at all dye concentrations in batch assay conditions. Dye concentrations of 100 mg L(-1) and 3000 mg L(-1) of glucose-COD containing basal medium were used for continuous studies. The effect of organic loadings and HRT, on the color removal efficiencies and methane gas productions were monitored. 94.1-45.4% COD and 79-73% color removal efficiencies were obtained at an organic system during decolorization of Reactive Black 5. 92.3-77.0% COD and 95.3-92.2% decolorization efficiencies were achieved at a organic loading rate of 1.03-6.65 kg (m3 day)(-1) and a HRT of 3.54-0.49 for Congo Red treatment. The results of this study showed that, although decolorization continued, COD removal efficiencies and methane gas production were depressed at high organic loadings under anaerobic conditions. Furthermore, VFA accumulation, alkalinity consumption, and methane gas percentage were monitored at organic loading as high as 2.49-4.74 kg (m3 day)(-1) and 24.60-30.62 kg (m3 day)(-1), respectively, through the

  7. Sequential anaerobic-adsorption treatment of chemical industry wastewater.

    Science.gov (United States)

    Daga, Kailash; Pallavi, V; Patel, Dharmendra

    2011-10-01

    Treatment technologies needed to reduce the pollutant load of chemical industry effluent have been found to involve exorbitantly high costs. The present investigation aimed to treat the wastewater from chemical industry by cost effective sequential anaerobic-adsorption treatment. Wastewaters from chemical industry that are rich in biodegradable organics are tested for anaerobic treatability. The efficiency of anaerobic reactor is relatively lower 79.3%, and therefore post treatment of effluent was done by adsorption using Poly vinyl alcohol coated Datura stramonium (PVAC-DS) as an adsorbent. An overall COD removal of 93.8 % was achieved after sequential Anaerobic-Adsorption treatment, which lead to a better final effluent and a more economical treatment system.

  8. POLISHING THE EFFLUENT FROM AN ANAEROBIC BIOLOGICAL PERCHLORATE TREATMENT PROCESS

    Science.gov (United States)

    Anaerobic biological processes effectively reduce perchlorate to chloride. However, the effluent can be biologically unstable, high in particulates and high in disinfection by-product precursor compounds. Such an effluent would be unsuitable for transmission into a drinking water...

  9. Sequential anaerobic-aerobic treatment for domestic wastewater - A review

    NARCIS (Netherlands)

    Kassab, G.; Halalsheh, M.; Klapwijk, A.; Fayyad, M.; Lier, van J.B.

    2010-01-01

    Introduction, consolidation and even standardization of expensive conventional aerobic systems for domestic wastewater treatment imposed significant financial constraints on the expansion of sanitary services including treatment in developing countries. A viable alternative is the sequential anaerob

  10. Characteristics, Process Parameters, and Inner Components of Anaerobic Bioreactors

    Science.gov (United States)

    Abdelgadir, Awad; Chen, Xiaoguang; Liu, Jianshe; Xie, Xuehui; Zhang, Jian; Zhang, Kai; Wang, Heng; Liu, Na

    2014-01-01

    The anaerobic bioreactor applies the principles of biotechnology and microbiology, and nowadays it has been used widely in the wastewater treatment plants due to their high efficiency, low energy use, and green energy generation. Advantages and disadvantages of anaerobic process were shown, and three main characteristics of anaerobic bioreactor (AB), namely, inhomogeneous system, time instability, and space instability were also discussed in this work. For high efficiency of wastewater treatment, the process parameters of anaerobic digestion, such as temperature, pH, Hydraulic retention time (HRT), Organic Loading Rate (OLR), and sludge retention time (SRT) were introduced to take into account the optimum conditions for living, growth, and multiplication of bacteria. The inner components, which can improve SRT, and even enhance mass transfer, were also explained and have been divided into transverse inner components, longitudinal inner components, and biofilm-packing material. At last, the newly developed special inner components were discussed and found more efficient and productive. PMID:24672798

  11. Decolourisation of textile wastewater in a submerged anaerobic membrane bioreactor.

    Science.gov (United States)

    Spagni, Alessandro; Casu, Stefania; Grilli, Selene

    2012-08-01

    Azo dye decolourisation can be easily achieved by biological reduction under anaerobic conditions. The aim of this study was to evaluate the applicability of submerged anaerobic membrane bioreactors (SAMBRs) for the decolourisation of dyeing wastewater containing azo dyes. The reactive orange 16 was used as model of an azo dye. The results demonstrated that very high decolourisation (higher than 99%) can be achieved by SAMBRs. Although decolourisation was not significantly influenced by the azo dye concentrations up to 3.2 g L(-1), methane production was greatly inhibited (up to 80-85%). Since volatile fatty acids accumulated in the treatment system with the azo dye concentration increase, methanogenes seem to be the most sensitive microbial populations of the anaerobic ecological community. The results demonstrated that anaerobic process combined with membrane filtration can deal with highly concentrated wastewaters that result from stream separation of industrial discharges.

  12. Tar water digestion in an upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Skibsted Mogensen, A.; Angelidaki, I.; Schmidt, J.E.; Ahring, B.K. [Technical Univ., Dept. of Environmental Science and Engineering, Lyngby (Denmark)

    1998-08-01

    The water from the gasification and wet oxidised tar water has been digested anaerobically in UASB reactors and were digested in respectively 10 and 50% in batches. Though the tar water show inhibition at very low concentrations to aerobic microorganisms, the granular sludge used in UASB reactors degrades tar water in concentrations that reveal total inhibition of e.g. bacteria conducting the nitrification process. The value of waste waters are determined, showing that the tar water produces more biogas in the anaerobic digestion. A wide range of xenobiotics, especially phenolic compounds can be transformed in the anaerobic digestion process. Seven phenolic are followed in batch experiments and UASB reactor experiments, and their particular fate in the anaerobic systems embody large differences in the transformation pattern. (au) 24 refs.

  13. Cobalt toxicity in anaerobic granular sludge: influence of chemical speciation

    NARCIS (Netherlands)

    Bartacek, J.; Fermoso, F.G.; Baldo-Urrutia, A.M.; Hullebusch, van E.D.; Lens, P.N.L.

    2008-01-01

    The influence of cobalt speciation on the toxicity of cobalt to methylotrophic methanogenesis in anaerobic granular sludge was investigated. The cobalt speciation was studied with three different media that contained varying concentrations of complexing ligands [carbonates, phosphates and ethylenedi

  14. Anaerobic digestion as final step of a cellulosic ethanol biorefinery:

    DEFF Research Database (Denmark)

    Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2010-01-01

    In order to lower the costs for second generation bioethanol from lignocellulosic biomass anaerobic digestion of the effluent from ethanol fermentation was implemented using an upflow anaerobic sludge blanket (UASB) reactor system in a pilot-scale biorefinery plant. Both thermophilic (538C...... were, however, higher under mesophilic conditions compared to thermophilic conditions. The conversion of dissolved organic matter (VSdiss) was between 68% and 91%. The effluent from the ethanol fermentation showed no signs of toxicity to the anaerobic microorganisms. However, a high content...... of suspended matter reduced the degradation efficiency. The retention time of the anaerobic system could be reduced from 70 to 7 h by additional removal of suspended matter by clarification. Implementation of the biogas production from the fermentation effluent accounted for about 30% higher carbon utilization...

  15. Applications for the pressurized anaerobic bioconversion; Paineistetun anaerobisen biokonversion sovellusmahdollisuudet

    Energy Technology Data Exchange (ETDEWEB)

    Kantero, M. [Preseco Oy, Espoo (Finland)

    2004-07-01

    The aim of the project is to develop more practical applications for the hygienization and gasification of biowaste based on the pressurized anaerobic bioconversion. Previous studies on the subject will be used as a basis for the project. The main research objectives are the hygienization effect of the pressurized anaerobic bioconversion, the maximizing of the biogas production and the methane ratio, and the development of the automation programs related to the previous objects. (orig.)

  16. In situ detection of anaerobic alkane metabolites in subsurface environments

    OpenAIRE

    Lisa eGieg; Akhil eAgrawal

    2013-01-01

    Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic cond...

  17. In situ detection of anaerobic alkane metabolites in subsurface environments

    OpenAIRE

    Agrawal, Akhil; Gieg, Lisa M.

    2013-01-01

    Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditi...

  18. Microbiological Hydrogen Production by Anaerobic Fermentation and Photosynthetic Process

    Energy Technology Data Exchange (ETDEWEB)

    Asada, Y.; Ohsawa, M.; Nagai, Y.; Fukatsu, M.; Ishimi, K.; Ichi-ishi, S.

    2009-07-01

    Hydrogen gas is a clean and renewable energy carrier. Microbiological hydrogen production from glucose or starch by combination used of an anaerobic fermenter and a photosynthetic bacterium, Rhodobacter spheroides RV was studied. In 1984, the co-culture of Clostridium butyricum and RV strain to convert glucose to hydrogen was demonstrated by Miyake et al. Recently, we studied anaerobic fermentation of starch by a thermophilic archaea. (Author)

  19. MODELLING OF BACTERIAL SULPHATE REDUCTION IN ANAEROBIC PONDS : KINETIC INVESTIGATIONS

    OpenAIRE

    Harerimana, Casimir; Vasel, Jean-Luc; Jupsin, Hugues; Ouali, Amira

    2011-01-01

    The aim of the study was first to develop a simple and practical model of anaerobic digestion including sulphate-reduction in anaerobic ponds. The basic microbiology of our model consists of three steps, namely, acidogenesis, methanogenesis, and sulphate reduction. This model includes multiple reaction stoichiometry and substrate utilization kinetics. The second aim was to determine some kinetic parameters associated with this model. The values of these parameters for sulfidogenic bacteria ar...

  20. Contribution of anaerobic energy expenditure to whole body thermogenesis

    Directory of Open Access Journals (Sweden)

    Scott Christopher B

    2005-06-01

    Full Text Available Abstract Heat production serves as the standard measurement for the determination of energy expenditure and efficiency in animals. Estimations of metabolic heat production have traditionally focused on gas exchange (oxygen uptake and carbon dioxide production although direct heat measurements may include an anaerobic component particularly when carbohydrate is oxidized. Stoichiometric interpretations of the ratio of carbon dioxide production to oxygen uptake suggest that both anaerobic and aerobic heat production and, by inference, all energy expenditure – can be accounted for with a measurement of oxygen uptake as 21.1 kJ per liter of oxygen. This manuscript incorporates contemporary bioenergetic interpretations of anaerobic and aerobic ATP turnover to promote the independence of these disparate types of metabolic energy transfer: each has different reactants and products, uses dissimilar enzymes, involves different types of biochemical reactions, takes place in separate cellular compartments, exploits different types of gradients and ultimately each operates with distinct efficiency. The 21.1 kJ per liter of oxygen for carbohydrate oxidation includes a small anaerobic heat component as part of anaerobic energy transfer. Faster rates of ATP turnover that exceed mitochondrial respiration and that are supported by rapid glycolytic phosphorylation with lactate production result in heat production that is independent of oxygen uptake. Simultaneous direct and indirect calorimetry has revealed that this anaerobic heat does not disappear when lactate is later oxidized and so oxygen uptake does not adequately measure anaerobic efficiency or energy expenditure (as was suggested by the "oxygen debt" hypothesis. An estimate of anaerobic energy transfer supplements the measurement of oxygen uptake and may improve the interpretation of whole-body energy expenditure.

  1. Modeling flow inside an anaerobic digester by CFD techniques

    OpenAIRE

    2011-01-01

    Anaerobic processes are used to treat high strength organic wastewater as well as for the treatment of primary and secondary sludge from conventional wastewater treatment plants. In these processes, heterotrophic microorganisms convert biodegradable organic matter to methane and carbon dioxide in the absence of dissolved oxygen and nitrate. Some of the most important aspects of the design of anaerobic digesters are related to hydraulic considerations. In spite of its impor...

  2. Kinetics of propionate conversion in anaerobic continuously stirred tank reactors

    DEFF Research Database (Denmark)

    Bangsø Nielsen, Henrik; Mladenovska, Zuzana; Ahring, Birgitte Kiær

    2008-01-01

    The kinetic parameters of anaerobic propionate degradation by biomass from 7 continuously stirred tank reactors differing in temperature, hydraulic retention time and substrate composition were investigated. In substrate-depletion experiments (batch) the maximum propionate degradation rate, A......-m, was estimated. The results demonstrate that the rate of endogenous substrate (propionate) production should be taken into account when estimating kinetic parameters in biomass from manure-based anaerobic reactors....

  3. Anaerobic depuration of waste waters; Depuracion anaerobia de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Mejias Sanchez, G.; Vazquez Berger, E.; Magana Pietra, A.H. [Facultad de Ingenieria, Universidad Autonoma de yucatan, Merida (Mexico)

    1996-08-01

    Trials were carried out at a 500 l semi-experimental plant using there reactor models-anaerobic filter, fixed film and UASB type-for the anaerobic treatment of waste from different sources. The results after 24 and 48 hours were compared. The greatest efficiency was obtained after 48 hours the aerobic filter reactor (66% displacement), followed by the fixed film reactor (50%) and the UASB model (41%). (Author) 16 refs.

  4. Modeling for Anaerobic Fixed-Bed Biofilm Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B. Y. M.; Pfeffer, J. T.

    1989-06-01

    The specific objectives of this research were: 1. to develop an equilibrium model for chemical aspects of anaerobic reactors; 2. to modify the equilibrium model for non-equilibrium conditions; 3. to incorporate the existing biofilm models into the models above to study the biological and chemical behavior of the fixed-film anaerobic reactors; 4. to experimentally verify the validity of these models; 5. to investigate the biomass-holding ability of difference packing materials for establishing reactor design criteria.

  5. SISTEM PENGENDALIAN TEMPERATUR PADA DINDING BIOREAKTOR ANAEROB SECARA REAL TIME

    OpenAIRE

    Ika Nurina Rachmawati; Rony Dwi Noriyati; Totok Soehartanto

    2013-01-01

    Temperatur merupakan salah satu faktor yang mempengaruhi proses anaerob pada bioreaktor. Dimana pertumbuhan mikroorganisme dipengaruhi oleh perubahan suhu. Maka dari itu akan dilakukan pengendalian temperatur secara real-time pada dinding tabung bioreaktor anaerob. Pengendalian temperatur berguna untuk menjaga suhu permukaan bioreaktor saat terjadi perubahan cuaca dari luar. Sebab jika temperatur dinding dijaga pada suhu 35 0C maka temperatur dalam tabung bioreaktor akan berada pada range ope...

  6. Identification of a conserved protein involved in anaerobic unsaturated fatty acid synthesis in Neiserria gonorrhoeae: implications for facultative and obligate anaerobes that lack FabA

    OpenAIRE

    Isabella, Vincent M.; Clark, Virginia L.

    2011-01-01

    Transcriptome analysis of the facultative anaerobe, Neisseria gonorrhoeae, revealed that many genes of unknown function were induced under anaerobic conditions. Mutation of one such gene, NGO1024, encoding a protein belonging to the 2-nitropropane dioxygenase-like superfamiliy of proteins, was found to result in an inability of gonococci to grow anaerobically. Anaerobic growth of an NG1024 mutant was restored upon supplementation with unsaturated fatty acids (UFA), but not with the saturated ...

  7. Anaerobic benzene oxidation via phenol in Geobacter metallireducens.

    Science.gov (United States)

    Zhang, Tian; Tremblay, Pier-Luc; Chaurasia, Akhilesh Kumar; Smith, Jessica A; Bain, Timothy S; Lovley, Derek R

    2013-12-01

    Anaerobic activation of benzene is expected to represent a novel biochemistry of environmental significance. Therefore, benzene metabolism was investigated in Geobacter metallireducens, the only genetically tractable organism known to anaerobically degrade benzene. Trace amounts (Geobacter metallireducens anaerobically oxidizing benzene to carbon dioxide with the reduction of Fe(III). Phenol was not detected in cell-free controls or in Fe(II)- and benzene-containing cultures of Geobacter sulfurreducens, a Geobacter species that cannot metabolize benzene. The phenol produced in G. metallireducens cultures was labeled with (18)O during growth in H2(18)O, as expected for anaerobic conversion of benzene to phenol. Analysis of whole-genome gene expression patterns indicated that genes for phenol metabolism were upregulated during growth on benzene but that genes for benzoate or toluene metabolism were not, further suggesting that phenol was an intermediate in benzene metabolism. Deletion of the genes for PpsA or PpcB, subunits of two enzymes specifically required for the metabolism of phenol, removed the capacity for benzene metabolism. These results demonstrate that benzene hydroxylation to phenol is an alternative to carboxylation for anaerobic benzene activation and suggest that this may be an important metabolic route for benzene removal in petroleum-contaminated groundwaters, in which Geobacter species are considered to play an important role in anaerobic benzene degradation.

  8. Innovative wastewater treatment using reversing anaerobic upflow system (RAUS)

    Energy Technology Data Exchange (ETDEWEB)

    Basu, S.K. [Univ. of Manitoba, Winnipeg, Manitoba (Canada). Environmental Engineering Div.

    1996-11-01

    Anaerobic processes are widely popular in the treatment of a variety of industrial wastewaters since the development of such high rate treatment processes like upflow anaerobic sludge blanket (UASB), anaerobic filter, and the fluidized-bed process. In order to devise a low cost/high technology system so that it would provide an economical solution to environmentally sound pollution control, the Reversing Anaerobic Upflow System (RAUS) was developed. The system consists of two anaerobic reactors connected to each other. At the beginning, one reactor is fed upwards with wastewater while the other acts as a settling tank. After a set interval of time, the flow is reversed such that the second reactor is fed with wastewater and the first one acts as the settler. This particular feeding pattern had shown improved settling characteristics and granulation of methanogenic biomass from research carried out at the Hannover University with different wastewaters. The biological reaction vessels to which wastewater is introduced intermittently functions basically as a sludge blanket type reactor although the costly integrated settling devices present in a typical UASB system are avoided. The RAUS combines three principle reactor configurations: (1) conventional with sludge recycling; (2) fill and draw or sequential batch, inflow maintained constant during feeding; (3) upflow anaerobic sludge blanket. A pilot scale RAUS was operated for 400 days using distillery wastewater consisting of molasses slop and bottle washing water mixed in the ratio 1:1. This paper discusses the results of pilot scale experiments.

  9. Anaerobic bioventing of unsaturated zone contaminated with DDT and DNT.

    Science.gov (United States)

    Shah, J K; Sayles, G D; Suidan, M T; Mihopoulos, P; Kaskassian, S

    2001-01-01

    Initial degradation of highly chlorinated compounds and nitroaromatic compounds found in munition waste streams is accelerated under anaerobic conditions followed by aerobic treatment of the degradation products. The establishment of anaerobic environment in a vadose zone can be accomplished by feeding appropriate anaerobic gas mixture, i.e., "anaerobic bioventing". The gas mixture contains an electron donor for the reduction of these compounds. Lab scale study was conducted to evaluate potential of anaerobic bioventing for the treatment of an unsaturated zone contaminated with 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and 2,4-dinitrotoluene (DNT). Hydrogen was used as the electron donor. Using the soil columns innoculate with anaerobic microorganisms, it was observed that by feeding a gas mixture of 1% hydrogen, 1% carbon dioxide and nitrogen, methanogenic conditions were established and DDT was reductively dechlorinated. 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD) accumulated as the intermediate product. The half life of DDT was calculated to be 8.5 months. DNT completely disappeared after six months of operation and no intermediates could be detected.

  10. Diversity of anaerobic microbes in spacecraft assembly clean rooms.

    Science.gov (United States)

    Probst, Alexander; Vaishampayan, Parag; Osman, Shariff; Moissl-Eichinger, Christine; Andersen, Gary L; Venkateswaran, Kasthuri

    2010-05-01

    Although the cultivable and noncultivable microbial diversity of spacecraft assembly clean rooms has been previously documented using conventional and state-of-the-art molecular techniques, the occurrence of obligate anaerobes within these clean rooms is still uncertain. Therefore, anaerobic bacterial communities of three clean-room facilities were analyzed during assembly of the Mars Science Laboratory rover. Anaerobic bacteria were cultured on several media, and DNA was extracted from suitable anaerobic enrichments and examined with conventional 16S rRNA gene clone library, as well as high-density phylogenetic 16S rRNA gene microarray (PhyloChip) technologies. The culture-dependent analyses predominantly showed the presence of clostridial and propionibacterial strains. The 16S rRNA gene sequences retrieved from clone libraries revealed distinct microbial populations associated with each clean-room facility, clustered exclusively within gram-positive organisms. PhyloChip analysis detected a greater microbial diversity, spanning many phyla of bacteria, and provided a deeper insight into the microbial community structure of the clean-room facilities. This study presents an integrated approach for assessing the anaerobic microbial population within clean-room facilities, using both molecular and cultivation-based analyses. The results reveal that highly diverse anaerobic bacterial populations persist in the clean rooms even after the imposition of rigorous maintenance programs and will pose a challenge to planetary protection implementation activities.

  11. Using contaminated plants involved in phytoremediation for anaerobic digestion.

    Science.gov (United States)

    Cao, Zewei; Wang, Shengxiao; Wang, Ting; Chang, Zhizhou; Shen, Zhenguo; Chen, Yahua

    2015-01-01

    This study investigated the anaerobic digestion capability of five plants and the effects of copper (Cu) and S,S'-ethylenediaminedisuccinic acid (EDDS, a chelator widely used in chelant-assisted phytoremediation) on biogas production to determine a feasible disposal method for plants used in remediation. The results showed that in addition to Phytolacca americana L., plants such as Zea mays L., Brassica napus L., Elsholtzia splendens Nakai ex F. Maekawa, and Oenothera biennis L. performed well in biogas production. Among these, O. biennis required the shortest period to finish anaerobic digestion. Compared to normal plants with low Cu content, the plants used in remediation with increased Cu levels (100 mg kg(-1)) not only promoted anaerobic digestion and required a shorter anaerobic digestion time, but also increased the methane content in biogas. When the Cu content in plants increased to 500, 1000, and 5000 mg kg(-1), the cumulative biogas production decreased by 12.3%, 14.6%, and 41.2%, respectively. Studies also found that EDDS conspicuously restrained biogas production from anaerobic digestion. The results suggest that anaerobic digestion has great potential for the disposal of contaminated plants and may provide a solution for the resource utilization of plants used in remediation.

  12. [Anaerobic digestion of lignocellulosic biomass with animal digestion mechanisms].

    Science.gov (United States)

    Wu, Hao; Zhang, Pan-Yue; Guo, Jian-Bin; Wu, Yong-Jie

    2013-02-01

    Lignocellulosic material is the most abundant renewable resource in the earth. Herbivores and wood-eating insects are highly effective in the digestion of plant cellulose, while anaerobic digestion process simulating animal alimentary tract still remains inefficient. The digestion mechanisms of herbivores and wood-eating insects and the development of anaerobic digestion processes of lignocellulose were reviewed for better understanding of animal digestion mechanisms and their application in design and operation of the anaerobic digestion reactor. Highly effective digestion of lignocellulosic materials in animal digestive system results from the synergistic effect of various digestive enzymes and a series of physical and biochemical reactions. Microbial fermentation system is strongly supported by powerful pretreatment, such as rumination of ruminants, cellulase catalysis and alkali treatment in digestive tract of wood-eating insects. Oxygen concentration gradient along the digestive tract may stimulate the hydrolytic activity of some microorganisms. In addition, the excellent arrangement of solid retention time, digesta flow and end product discharge enhance the animal digestion of wood cellulose. Although anaerobic digestion processes inoculated with rumen microorganisms based rumen digestion mechanisms were developed to treat lignocellulose, the fermentation was more greatly limited by the environmental conditions in the anaerobic digestion reactors than that in rumen or hindgut. Therefore, the anaerobic digestion processes simulating animal digestion mechanisms can effectively enhance the degradation of wood cellulose and other organic solid wastes.

  13. Application of Anaerobic Digestion Model No. 1 for describing anaerobic digestion of grass, maize, green weed silage, and industrial glycerine.

    Science.gov (United States)

    Biernacki, Piotr; Steinigeweg, Sven; Borchert, Axel; Uhlenhut, Frank

    2013-01-01

    Anaerobic digestion of organic waste plays an important role for the development of sustainable energy supply based on renewable resources. For further process optimization of anaerobic digestion, biogas production with the commonly used substrates, grass, maize, and green weed silage, together with industrial glycerine, were analyzed by the Weender analysis/van Soest method, and a simulation study was performed, based on the International Water Association's (IWA) Anaerobic Digestion Model No. 1 (ADM1). The simplex algorithm was applied to optimize kinetic constants for disintegration and hydrolysis steps for all examined substrates. Consequently, new parameters were determined for each evaluated substrate, tested against experimental cumulative biogas production results, and assessed against ADM1 default values for disintegration and hydrolysis kinetic constants, where the ADM1 values for mesophilic high rate and ADM1 values for solids were used. Results of the optimization lead to a precise prediction of the kinetics of anaerobic degradation of complex substrates.

  14. Mesophilic and thermophilic anaerobic digestion of biologically pretreated abattoir wastewaters in an upflow anaerobic filter.

    Science.gov (United States)

    Gannoun, H; Bouallagui, H; Okbi, A; Sayadi, S; Hamdi, M

    2009-10-15

    The hydrolysis pretreatment of abattoir wastewaters (AW), rich in organic suspended solids (fats and protein) was studied in static and stirred batch reactors without aeration in the presence of natural microbial population acclimated in a storage tank of AW. Microbial analysis showed that the major populations which contribute to the pretreatment of AW belong to the genera Bacillus. Contrary to the static pretreatment, the stirred conditions favoured the hydrolysis and solubilization of 80% of suspended matter into soluble pollution. The pretreated AW, in continuous stirred tank reactor (CSTR) at a hydraulic retention time (HRT) of 2 days, was fed to an upflow anaerobic filter (UAF) at an HRT of 2 days. The performance of anaerobic digestion of biologically pretreated AW was examined under mesophilic (37 degrees C) and thermophilic (55 degrees C) conditions. The shifting from a mesophilic to a thermophilic environment in the UAF was carried out with a short start-up of thermophilic condition. The UAF ran at organic loading rates (OLRs) ranging from 0.9 to 6g COD/Ld in mesophilic conditions and at OLRs from 0.9 to 9 g COD/Ld in thermophilic conditions. COD removal efficiencies of 80-90% were achieved for OLRs up to 4.5 g COD/Ld in mesophilic conditions, while the highest OLRs i.e. 9 g COD/Ld led to efficiencies of 70-72% in thermophilic conditions. The biogas yield in thermophilic conditions was about 0.32-0.45 L biogas/g of COD removed for OLRs up to 4.5 g COD/Ld. For similar OLR, the UAF in mesophilic conditions showed lower percentage of methanization. Mesophilic anaerobic digestion has been shown to destroy pathogens partially, whereas the thermophilic process was more efficient in the removal of indicator microorganisms and pathogenic bacteria at different organic loading rates.

  15. Mesophilic and thermophilic anaerobic digestion of biologically pretreated abattoir wastewaters in an upflow anaerobic filter

    Energy Technology Data Exchange (ETDEWEB)

    Gannoun, H.; Bouallagui, H.; Okbi, A. [Laboratory of Microbial Ecology and Technology, Department of Biological and Chemical Engineering, National Institute of Applied Sciences and Technology, B.P. 676, 1080 Tunis (Tunisia); Sayadi, S. [Laboratory of bioprocesses, Centre of Biotechnology of Sfax, Sfax (Tunisia); Hamdi, M., E-mail: moktar.hamdi@insat.rnu.tn [Laboratory of Microbial Ecology and Technology, Department of Biological and Chemical Engineering, National Institute of Applied Sciences and Technology, B.P. 676, 1080 Tunis (Tunisia)

    2009-10-15

    The hydrolysis pretreatment of abattoir wastewaters (AW), rich in organic suspended solids (fats and protein) was studied in static and stirred batch reactors without aeration in the presence of natural microbial population acclimated in a storage tank of AW. Microbial analysis showed that the major populations which contribute to the pretreatment of AW belong to the genera Bacillus. Contrary to the static pretreatment, the stirred conditions favoured the hydrolysis and solubilization of 80% of suspended matter into soluble pollution. The pretreated AW, in continuous stirred tank reactor (CSTR) at a hydraulic retention time (HRT) of 2 days, was fed to an upflow anaerobic filter (UAF) at an HRT of 2 days. The performance of anaerobic digestion of biologically pretreated AW was examined under mesophilic (37 deg. C) and thermophilic (55 deg. C) conditions. The shifting from a mesophilic to a thermophilic environment in the UAF was carried out with a short start-up of thermophilic condition. The UAF ran at organic loading rates (OLRs) ranging from 0.9 to 6 g COD/L d in mesophilic conditions and at OLRs from 0.9 to 9 g COD/L d in thermophilic conditions. COD removal efficiencies of 80-90% were achieved for OLRs up to 4.5 g COD/L d in mesophilic conditions, while the highest OLRs i.e. 9 g COD/L d led to efficiencies of 70-72% in thermophilic conditions. The biogas yield in thermophilic conditions was about 0.32-0.45 L biogas/g of COD removed for OLRs up to 4.5 g COD/L d. For similar OLR, the UAF in mesophilic conditions showed lower percentage of methanization. Mesophilic anaerobic digestion has been shown to destroy pathogens partially, whereas the thermophilic process was more efficient in the removal of indicator microorganisms and pathogenic bacteria at different organic loading rates.

  16. Microbial Nitrogen Cycling Associated with the Early Diagenesis of Organic Matter in Subseafloor Sediments

    Science.gov (United States)

    Zhao, R.

    2015-12-01

    The early diagenesis of organic matter is the major energy source of marine sedimentary biosphere and thus controls its population size; however, the vertical distribution of any functional groups along with the diagenesis of organic matter is remained unclear, especially for those microbes involved in nitrogen transformation which serve as a major control on the nitrogen flux between reservoirs. Here we investigated the vertical distributions of various functional groups in five sediment cores retrieved from Arctic Mid-Ocean Ridge (AMOR), with emphasis on the nitrifiers, denitrifiers and anaerobic ammonium oxidizing bacteria (anammox). We observed the clear geochemical zonation associated with organic matter diagenesis in the sediments based on the pore water profiles of oxygen, nitrate, ammonium, manganese and sulfate, with distinct geochemical transition zones at the boundaries of geochemical zones, including oxic-anoxic transition zone (OATZ) and nitrate-manganese reduction zone (NMTZ). Nitrate was produced in surface oxygenated sediments and nitrate consumption mainly took place at the NMTZ, splitted between re-oxidation of ammonium and manganese (II). Abundances of ammonia oxidizers, nitrite oxidizers, and denitrifiers, estimated through quantitative PCR targeting their respective functional genes, generally decrease with depth, but constantly elevated around the OATZ, NMTZ, and manganese-reduction zone as well. Anammox bacteria were only detected around the NMTZ where both nitrate/nitrite and ammonium are available. These depth profiles of functional groups were also confirmed by the community structure profiling by prokaryotic 16S rRNA gene tag pyrosequencing. Cell-specific rates of nitrification and denitrification, calculated from the bulk net reaction rates divided by functional group abundances, were similar to those values from oligotrophic sediments like North Pond and thus suggested that nitrifiers and denitirifiers populations were in maintenance

  17. Genetic and biogeochemical investigation of sedimentary nitrogen cycling communities responding to tidal and seasonal dynamics in Cape Fear River Estuary

    Science.gov (United States)

    Lisa, Jessica A.; Song, Bongkeun; Tobias, Craig R.; Hines, David E.

    2015-12-01

    Tidal and seasonal fluctuations in the oligohaline reaches of estuaries may alter geochemical features that influence structure and function of microbial communities involved in sedimentary nitrogen (N) cycling. In order to evaluate sediment community responses to short-term (tidal) and long-term (seasonal) changes in different tidal regimes, nitrogen cycling rates and genes were quantified in three sites that span a range of tidal influence in the upper portion of the Cape Fear River Estuary. Environmental parameters were monitored during low and high tides in winter and spring. 15N tracer incubation experiments were conducted to measure nitrification, denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonia (DNRA). Abundances of functional genes including bacterial and archaeal ammonia monooxygenase (amoA), nitrite reductases (nirS and nrfA), nitrous oxide reductase (nosZ), and hydrazine oxidoreductase (hzo) were measured using quantitative PCR assays. Denitrification rates were highest among the measured N cycling processes while bacteria carrying nrfA genes were most abundant. A discernable pattern in the short-term variation of N cycling rates and gene abundance was not apparent under the different tidal regimes. Significant seasonal variation in nitrification, denitrification, and anammox rates as well as bacterial amoA, nirS and nosZ gene abundance was observed, largely explained by increases in substrate availability during winter, with sediment ammonium playing a central role. These results suggest that the coupling of nitrification to N removal pathways is primarily driven by organic carbon mineralization and independent of tidal or salinity changes. Finally, changes in denitrification and nitrification activities were strongly reflected by the abundance of the respective functional genes, supporting a linkage between the structure and function of microbial communities.

  18. Models of oxic respiration, denitrification and sulfate reduction in zones of coastal upwelling

    Science.gov (United States)

    Canfield, D. E.

    2006-12-01

    Coastal upwelling zones support some of the highest rates of primary production in the oceans. The settling and subsequent decomposition of this organic matter promotes oxygen depletion. In the Eastern tropical North and South Pacific and the Arabian Sea, large tracts of anoxic water develop, where intensive N 2 production through denitrification and anammox accounts for about 1/3 of the total loss of fixed nitrogen in the marine realm. It is curious that despite extensive denitrification in these waters, complete nitrate removal and the onset of sulfate reduction is extremely rare. A simple box model is constructed here to reproduce the dynamics of carbon, oxygen and nutrient cycling in coastal upwelling zones. The model is constructed with five boxes, where water is exchanged between the boxes by vertical and horizontal mixing and advection. These primary physical drivers control the dynamics of the system. The model demonstrates that in the absence of nitrogen fixation, the anoxic waters in a coastal upwelling system will not become nitrate free. This is because nitrate is the limiting nutrient controlling primary production, and if nitrate concentration becomes too low, primary production rate drops and this reduces rates of nitrate removal through N 2 production. With nitrogen fixation, however, complete nitrate depletion can occur and sulfate reduction will ensue. This situation is extremely rare in coastal upwelling zones, probably because nitrogen-fixing bacteria do not prosper in the high nutrient, turbid waters as typically in these areas. Finally, it is predicted here that the chemistry of the upwelling system will develop in a similar matter regardless whether N 2 production is dominated by anaerobic ammonium oxidation (anammox) or canonical heterotrophic denitrification.

  19. Anaerobic Biodegradation of Tetrachloroethylene with Acetic Acid as Cometabolism Substrate under Anaerobic Condition

    Institute of Scientific and Technical Information of China (English)

    LI Ye; LIU Fei; CHEN Honghan; SHI Jinhua; WANG Yufan

    2008-01-01

    A series of batch-type experiments with acetate acid as the primary substrate wereperformed using enrichment cultures developed from the anaerobic sludge to investigate the effect ofacetate acid on tetrachloroethylene (PCE) biodegradation. Experimental results indicated that acetateacid was an efficient electron donor in affecting the biotransformability of PCE. Trichloroethylene(TCE) was the primary dehalogenation product, and small amounts of dichloroethylenes (DCEs) werealso detected. No significant further DCEs degradation was detected. PCE degradation rate in theexperiment was 36.6 times faster than background rate in natural groundwater.

  20. Anaerobic biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a facultative anaerobe Pseudomonas sp. JP1.

    Science.gov (United States)

    Liang, Lei; Song, Xiaohui; Kong, Jing; Shen, Chenghui; Huang, Tongwang; Hu, Zhong

    2014-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are harmful persistent organic pollutants, while the high-molecular-weight (HMW) PAHs are even more detrimental to the environment and human health. However, microbial anaerobic degradation of HMW PAHs has rarely been reported. One facultative anaerobe Pseudomonas sp. JP1 was isolated from Shantou Bay, Shantou, China, which could degrade a variety of HMW PAHs. After 40 days cultivation with strain JP1, anaerobic biodegradation rate of benzo[a]pyrene (BaP), fluoranthene, and phenanthrene was 30, 47, and 5 %, respectively. Consumption of nitrate as the electron acceptor was confirmed by N-(1-naphthyl) ethylenediamine spectrophotometry. Supplementation of sodium sulfite, maltose, or glycine, and in a salinity of 0-20 ‰ significantly stimulated anaerobic degradation of BaP. Lastly, the anaerobic degradation metabolites of BaP by strain JP1 were investigated using GC/MS, and the degradation pathway was proposed. This study is helpful for further studies on the mechanism of anaerobic biodegradation of PAHs.

  1. Modified anaerobic digestion elutriated phased treatment for the anaerobic co-digestion of sewage sludge and food wastewater.

    Science.gov (United States)

    Mo, Kyung; Lee, Wonbae; Kim, Moonil

    2017-02-01

    A modified anaerobic digestion elutriated phased treatment (MADEPT) process was developed for investigating anaerobic co-digestion of sewage sludge and food wastewater. The anaerobic digestion elutriated phased treatment (ADEPT) process is similar to a two-phase system, however, in which the effluent from a methanogenic reactor recycles into an acidogenic reactor to elutriate mainly dissolved organics. Although ADEPT could reduce reactor volume significantly, the unsolubilized solids should be wasted from the system. The MADEPT process combines thermo-alkali solubilization with ADEPT to improve anaerobic performance and to minimize the sludge disposal. It was determined that the optimal volume mixing ratio of sewage sludge and food wastewater was 4 : 1 for the anaerobic co-digestion. The removal efficiencies of total chemical oxygen demand, volatile solids, and volatile suspended solids in the MADEPT process were 73%, 70%, and 64%, respectively. However, those in the ADEPT process were only 48%, 37%, and 40%, respectively, at the same hydraulic retention time (HRT) of 7 days. The gas production of MADEPT was two times higher than that of ADEPT. The thermo-alkali solubilization increased the concentration of dissolved organics so that they could be effectively degraded in a short HRT, implying that MADEPT could improve the performance of ADEPT in anaerobic co-digestion.

  2. 用生物膜缺氧修复受污染的城市河道水%Anoxic Bioremediation of Urban Polluted River Water with Biofilm

    Institute of Scientific and Technical Information of China (English)

    张永明; 胡一珍; 严荣; 刘芳

    2009-01-01

    Reactor like oxidation ditch was used for anaerobic bioremediation of urban river water, in which biafilm formed on ceramic honeycomb carrier was used instated of activated sludge. The dissolved oxygen in the wastewater was controlled under 0.5 mg/L for anoxic oxidation, and ammonia nitrogen was removed 40 to 60 percent, and total nitrogen removed 40 to 45 percent, that is ammonia nitrogen and total nitrogen were removed at the same time, also, nitrite was not any accumulated during the process. The biofilm was taken into flask to culture under anoxic oxidation condition in order to prove if anaerobic ammonium oxidation ( ANAMMOX) occurred in the process, and ammonia and nitrite nitrogen were also removed at the same time in the experiment, which suggested that nitrification-denitrification and ANAMMOX occurred in bioremediation of urban surface water with low ratio of carbon and nitrogen at the same time. The anammox bacteria were existed in the biofilm according to molecular biological analysis. The experiment will be significant for bioremediation of eutrophication water body.%采用一种类似氧化沟的反应器,其中利用蜂窝陶瓷为载体形成生物膜替代活性污泥,对城市受污染的河道水体进行缺氧生物修复.修复过程中控制溶解氧含量在0.5 mg/L以下,使生物反应在缺氧状态下运行.在此过程中,水中的氨氮去除率为40%~60%,总氮的去除率达到40%~45%,即氨氮和总氮得到同步去除,且没有亚硝酸盐积累.提取生物膜置于摇瓶内进行厌氧培养发现,氨氮和亚硝酸盐氮也得到同步去除,这表明在低碳氮比的微污染地表水的生物修复过程中同时有硝化-反硝化和厌氧氨氧化现象.通过分子生物学分析,证实在生物膜群落里存在具有厌氧氨氧化能力的微生物.这一结果有可能为富营养化水体的修复提供一种经济、实用的技术途径.

  3. Anaerobic sludge digestion with a biocatalytic additive

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S.; Henry, M.P.; Fedde, P.A.

    1982-01-01

    The objective of this research was to evaluate the effects of a lactobacillus additive an anaerobic sludge digestion under normal, variable, and overload operating conditions. The additive was a whey fermentation product of an acid-tolerant strain of Lactobacillus acidophilus fortified with CaCO/sub 3/, (NH/sub 4/)/sub 2/HPO/sub 4/, ferrous lactate, and lactic acid. The lactobacillus additive is multifunctional in nature and provides growth factors, metabolic intermediates, and enzymes needed for substrate degradation and cellular synthesis. The experimental work consisted of several pairs of parallel mesophilic (35/sup 0/C) digestion runs (control and test) conducted in five experimental phases. Baseline runs without the additive showed that the two experimental digesters had the same methane content, gas production rate (GPR), and ethane yield. The effect of the additive was to increase methane yield and GPR by about 5% (which was statistically significant) during digester operation at a loading rate (LR) of 3.2 kg VS/m/sup 3/-day and a hydraulic retention time (HRT) of 14 days. Data collected from the various experimental phases showed that the biochemical additive increased methane yield, gas production rate, and VS reduction, and decreased volatile acids accumulation. In addition, it enhanced digester buffer capacity and improved the fertilizer value and dewatering characteristics of the digested residue.

  4. Thermal pretreatment of algae for anaerobic digestion.

    Science.gov (United States)

    Marsolek, Michael D; Kendall, Elizabeth; Thompson, Phillip L; Shuman, Teodora Rutar

    2014-01-01

    The objective of this work was to determine the benefit of thermal pretreatment on biogas yield from microalgae-fed anaerobic digester mesocosms. Replicate Nanochloropsis oculata cultures were heated for 4h at 30, 60, and 90°C, as well as at a constant temperature of 90°C for 1, 3.5, and 12h. Net biogas production increased from 0.28L biogas/g volatile solids added (VSa) for the control to 0.39 L biogas/g VSa (p<0.01) when heated at 90°C, but there was no improvement at 30 or 60°C. Increased biogas production correlated with increased soluble chemical oxygen demand (COD). Net biogas production increased as a function of heating time, from 0.32 L biogas/g VSa for the control, to 0.41, 0.43, and 0.44 L biogas/g VSa (p<0.05 for all combinations vs. control) when preheated at 90°C for 1, 3.5, and 12h, respectively. However, despite enhanced biogas production the energy balance is negative for thermal pretreatment.

  5. Essential metal depletion in an anaerobic reactor.

    Science.gov (United States)

    Osuna, M B; Iza, J; Zandvoort, M; Lens, P N L

    2003-01-01

    The effect of the absence of trace elements on the conversion of a mixture of volatile fatty acids by a distillery anaerobic granular sludge was investigated. Two UASB reactors were operated under identical operational conditions except for the influent trace metal concentrations, during 140 days. Experiments were carried out in three periods, where different organic loading rates (OLR) were applied to the reactors. The total trace metal concentration steadily decreased at a rate of 48 microg metal/g TS.d in the deprived reactor (down to 35% of their initial value). In contrast, trace metals accumulated in granules present in the control reactor. At the end of the experiment, the COD removal efficiencies were 99% and 77% for the control and deprived reactors, respectively, due to the lack of propionate conversion. Cobalt sorption experiments were carried out in order to study its speciation, and its effects on the speciation of other metals as well. A paper mill wastewater treating granular sludge was also included in the study as a comparison. Results obtained showed that the principal metal forms normally associated with any sludge are a function of each soluble metal concentration in the system, and the characteristics of the particular sludge.

  6. Treatment of Distillery Wastewater by Anaerobic Methods

    Directory of Open Access Journals (Sweden)

    Vandana Patyal

    2015-12-01

    Full Text Available One of the major environmental problems faced by the world is management of wastes. Industrial processes create a wide range of wastewater pollutants; which are not only difficult but costly to treat. Characteristics of wastewater and level of pollutants vary significantly from industry to industry. To control this problem today emphasis is laid on waste minimization and revenue generation through by-product and energy recovery. Pollution prevention focuses on preventing the harmful effect of generated wastewater on the environment, while waste minimization refers to reducing the volume or toxicity of hazardous wastes by water recycling and reuse, process modifications and by by-product recovery. Production of ethyl alcohol in distilleries based on cane sugar molasses constitutes a major industry in Asia and South America. The world’s total production of alcohol from cane molasses is more than13 million m3 /annum. The aqueous distillery effluent stream known as spent wash is a dark brown highly organic effluent and is approximately 12-15 times by volume of the product alcohol. This highly aqueous, organic soluble containing residue is considered a troublesome and potentially polluting waste due to its extremely high BOD and COD values. Because of the high concentration of organic load, distillery spent wash is a potential source of renewable energy. The paper reviews the possibility of anaerobic treatment of the distillery wastewater.

  7. Linearizing control of continuous anaerobic fermentation processes

    Energy Technology Data Exchange (ETDEWEB)

    Babary, J.P. [Centre National d`Etudes Spatiales (CNES), 31 - Toulouse (France). Laboratoire d`Analyse et d`Architecture des Systemes; Simeonov, I. [Institute of Microbiology, Bulgarian Academy of Sciences (Bulgaria); Ljubenova, V. [Institute of Control and System Research, BAS (Country unknown/Code not available); Dochain, D. [Universite Catholique de Louvain (UCL), Louvain-la-Neuve (Belgium)

    1997-09-01

    Biotechnological processes (BTP) involve living organisms. In the anaerobic fermentation (biogas production process) the organic matter is mineralized by microorganisms into biogas (methane and carbon dioxide) in the absence of oxygen. The biogas is an additional energy source. Generally this process is carried out as a continuous BTP. It has been widely used in life process and has been confirmed as a promising method of solving some energy and ecological problems in the agriculture and industry. Because of the very restrictive on-line information the control of this process in continuous mode is often reduced to control of the biogas production rate or the concentration of the polluting organic matter (de-pollution control) at a desired value in the presence of some perturbations. Investigations show that classical linear controllers have good performances only in the linear zone of the strongly non-linear input-output characteristics. More sophisticated robust and with variable structure (VSC) controllers are studied. Due to the strongly non-linear dynamics of the process the performances of the closed loop system may be degrading in this case. The aim of this paper is to investigate different linearizing algorithms for control of a continuous non-linear methane fermentation process using the dilution rate as a control action and taking into account some practical implementation aspects. (authors) 8 refs.

  8. Anaerobic treatment of waste waters from soybean protein production. Anaerobe Aufbereitung von Abwaessern aus der Sojaproteinherstellung

    Energy Technology Data Exchange (ETDEWEB)

    Dunkel, H. (Institut fuer Biotechnologie, Potsdam (German Democratic Republic))

    1989-01-01

    The waste waters obtained from soybean protein are readily accessible by anaerobic methods of treatment, as they contain utilisable C compounds. Acidification of the substrate offers kinetic advantages and is followed by a two-step procedure as the obvious mehtod of biogas production. The process of acidogenesis, which takes place under defined conditions in the acidification reactor, leads to the formation of lactic acid and, to a lesser extent, of acetic acid. The ratios of lactic acid to acetic acid are determined by retention times. As the pH values are low during the preacidification phase (< 4.0), some adjustment is necessary prior to the methane phase. For the process of methanogenesis it is possible to use either packed-bed or fluidized-bed reactors. Quite a number of filling materials were tested. A retention time of 2.0 d allowed a biogas production rate of 6.5 l/lxd to be attained. The methane yield determined in the biogas from the two-stage procedure was on average 10-20% higher than that obtained by one-stage anaerobic treatment. Laboratory analyses permitted the most important constituents to be ascertained on a quantitative basis. (orig.).

  9. Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures

    Energy Technology Data Exchange (ETDEWEB)

    Hanqing Yu; Zhenhu Zhu [University of Science and Technology, Hefei, Anhui (China). School of Chemistry and Materials; Wenrong Hu [Shandong Univ., Jinan (China). School of Resources and Environmental Engineering; Haisheng Zhang [Jingzi Wine Distillery Company, Shandong (China)

    2002-12-01

    Continuous production of hydrogen from the anaerobic acidogenesis of a high-strength rice winery wastewater by a mixed bacterial flora was demonstrated. The experiment was conducted in a 3.0-l upflow reactor to investigate individual effects of hydraulic retention time (HRT) (2-24 h), chemical oxygen demand (COD) concentration in wastewater (14-36 g COD/l), pH (4.5-6.0) and temperature (20-55{sup o}C) on bio-hydrogen production from the wastewater. The biogas produced under all test conditions was composed of mostly hydrogen (53-61%) and carbon dioxide (37-45%), but contained no detectable methane. Specific hydrogen production rate increased with wastewater concentration and temperature, but with a decrease in HRT. An optimum hydrogen production rate of 9.33 lH{sub 2}/gVSSd was achieved at an HRT of 2 h, COD of 34 g/l, pH 5.5 and 55{sup o}C. The hydrogen yield was in the range of 1.37-2.14 mol/mol-hexose. In addition to acetate, propionate and butyrate, ethanol was also present in the effluent as an aqueous product. The distribution of these compounds in the effluent was more sensitive to wastewater concentration, pH and temperature, but was less sensitive to HRT. This upflow reactor was shown to be a promising biosystem for hydrogen production from high-strength wastewaters by mixed anaerobic cultures. (Author)

  10. Anaerobic treatment performance and microbial population of thermophilic upflow anaerobic filter reactor treating awamori distillery wastewater.

    Science.gov (United States)

    Tang, Yue-Qin; Fujimura, Yutaka; Shigematsu, Toru; Morimura, Shigeru; Kida, Kenji

    2007-10-01

    Distillery wastewater from awamori making was anaerobically treated for one year using thermophilic upflow anaerobic filter (UAF) reactors packed with pyridinium group-containing nonwoven fabric material. The microbial structure and spatial distribution of microorganisms on the support material were characterized using molecular biological methods. The reactor steadily achieved a high TOC loading rate of 18 g/l/d with approximately 80% TOC removal efficiency when non-diluted wastewater was fed. The maximum TOC loading rate increased to 36 g/l/d when treating thrice-diluted wastewater. However, the TOC removal efficiency and gas evolution rate decreased compared with that when non-diluted wastewater was used. Methanogens closely related to Methanosarcina thermophila and Methanoculleus bourgensis and bacteria in the phyla Firmicutes and Bacteroidetes were predominant methanogens and bacteria in the thermophilic UFA reactor, as indicated by 16S rRNA gene clone analysis. Fluorescence in situ hybridization (FISH) results showed that a large quantity of bacterial cells adhered throughout the whole support, and Methanosarcina-like methanogens existed mainly in the relative outside region while Methanoculleus cells were located in the relative inner part of the support. The support material used proved to be an excellent carrier for microorganisms, and a UAF reactor using this kind of support can be used for high-rate treatment of awamori/shochu distillery wastewater.

  11. Anaerobic mesophilic treatment of cattle manure in an upflow anaerobic sludge blanket reactor with prior pasteurization.

    Science.gov (United States)

    Marañón, Elena; Castrillón, Leonor; Fernández, Juan José; Fernández, Yolanda; Peláez, Ana Isabel; Sánchez, Jesús

    2006-02-01

    Different autonomous communities located in northern Spain have large populations of dairy cattle. In the case of Asturias, the greatest concentration of dairy farms is found in the areas near the coast, where the elimination of cattle manure by means of its use as a fertilizer may lead to environmental problems. The aim of the present research work was to study the anaerobic treatment of the liquid fraction of cattle manure at mesophilic temperature using an upflow anaerobic sludge blanket (UASB) reactor combined with a settler after a pasteurization process at 70 degrees C for 2 hr. The manure used in this study came from two different farms, with 40 and 200 cows, respectively. The manure from the smaller farm was pretreated in the laboratory by filtration through a 1-mm mesh, and the manure from the other farm was pretreated on the farm by filtration through a separator screw press (0.5-mm mesh). The pasteurization process removed the pathogenic microorganisms lacking spores, such as Enterococcus, Yersinia, Pseudomonas, and coliforms, but bacterial spores are only reduced by this treatment, not removed. The combination of a UASB reactor and a settler proved to be effective for the treatment of cattle manure. In spite of the variation in the organic loading rate and total solids in the influent during the experiment, the chemical oxygen demand (COD) of the effluent from the settler remained relatively constant, obtaining reductions in the COD of approximately 85%.

  12. Anaerobic fitness assessment in taekwondo athletes. A new perspective

    Directory of Open Access Journals (Sweden)

    Fernando Rocha

    2016-10-01

    Full Text Available We intended to determine the concurrent validity of a taekwondo specific anaerobic test (TSAT to assess anaerobic fitness in taekwondo athletes. Seventeen elite male subjects (17.59 ± 4.34 years of age; 1.72 m ± .07 m in height; 61.3 kg ± 8.7 kg in weight and 15.6% ± 8.5% in body fat performed a TSAT, which consisted of kicking a punching bag for 30 seconds. The standard test was the Wingate Anaerobic Test. Two trials were made for both tests and the agreement between both was tested. The variables analysed and compared were: peak power; relative peak power; mean anaerobic power; relative mean anaerobic power; fatigue index and anaerobic capacity. The number of kicks performed in the TSAT protocol and the maximum height of the counter movement jump (CMJ were also registered. Trial I and II had significant ICC results in all variables (P = .000 ranged between 0.56 and 0.97. Both protocols were significantly correlated (r = 0.55 to 0.88; P = .000 to .05. CMJ strongly correlated with the number of techniques (r=0.59; P = .013 and the mean power (r = 0.56; P = .019 of the TSAT. The variables between the two methods correlate and are consistent, except for the anaerobic capacity that although correlated, is not consistent with constant bias, P = 0.001; CI]-705.1;-370.2[. TSAT has a level of agreement with the Wingate, and assigns specificity in the evaluation of these variables.

  13. Redesigning Escherichia coli metabolism for anaerobic production of isobutanol.

    Science.gov (United States)

    Trinh, Cong T; Li, Johnny; Blanch, Harvey W; Clark, Douglas S

    2011-07-01

    Fermentation enables the production of reduced metabolites, such as the biofuels ethanol and butanol, from fermentable sugars. This work demonstrates a general approach for designing and constructing a production host that uses a heterologous pathway as an obligately fermentative pathway to produce reduced metabolites, specifically, the biofuel isobutanol. Elementary mode analysis was applied to design an Escherichia coli strain optimized for isobutanol production under strictly anaerobic conditions. The central metabolism of E. coli was decomposed into 38,219 functional, unique, and elementary modes (EMs). The model predictions revealed that during anaerobic growth E. coli cannot produce isobutanol as the sole fermentative product. By deleting 7 chromosomal genes, the total 38,219 EMs were constrained to 12 EMs, 6 of which can produce high yields of isobutanol in a range from 0.29 to 0.41 g isobutanol/g glucose under anaerobic conditions. The remaining 6 EMs rely primarily on the pyruvate dehydrogenase enzyme complex (PDHC) and are typically inhibited under anaerobic conditions. The redesigned E. coli strain was constrained to employ the anaerobic isobutanol pathways through deletion of 7 chromosomal genes, addition of 2 heterologous genes, and overexpression of 5 genes. Here we present the design, construction, and characterization of an isobutanol-producing E. coli strain to illustrate the approach. The model predictions are evaluated in relation to experimental data and strategies proposed to improve anaerobic isobutanol production. We also show that the endogenous alcohol/aldehyde dehydrogenase AdhE is the key enzyme responsible for the production of isobutanol and ethanol under anaerobic conditions. The glycolytic flux can be controlled to regulate the ratio of isobutanol to ethanol production.

  14. Bringing Planctomycetes into pure culture

    Directory of Open Access Journals (Sweden)

    Olga Maria Lage

    2012-12-01

    Full Text Available Planctomycetes have been known since the description of Planctomyces bekefii by Gimesi at the beginning of the twentieth century (1924, although the first axenic cultures were only obtained in the 1970s. Since then, eleven genera with fourteen species have been validly named and five candidatus genera belonging to the anaerobic ammonium oxidation, anammox bacteria have also been discovered. However, Planctomycetes diversity is much broader than these numbers indicate, as shown by environmental molecular studies. In recent years the authors have attempted to isolate and cultivate additional strains of Planctomycetes. This paper provides a summary of the isolation work that was carried out to obtain in pure culture Planctomycetes from several environmental sources. The following strains and planctomycetes have been successfully isolated: two freshwater strains from the sediments of an aquarium, which were described as a new genus and species, Aquisphaera giovannonii; several Rhodopirellula strains from the sediments of a water treatment recycling tank of a marine fish farm; and more than 140 planctomycetes from the biofilm community of macroalgae. This collection comprises several novel taxa that are being characterized and described. Improvements in the isolation methodology were made in order to optimize and enlarge the number of Planctomycetes isolated from the macroalgae. The existence of an intimate and an important relationship between planctomycetes and macroalgae reported before by molecular studies is therefore supported by culture dependent methods.

  15. Anaerobic bioleaching of metals from waste activated sludge

    KAUST Repository

    Meulepas, Roel J W

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342μgg-1 of copper, 487μgg-1 of lead, 793μgg-1 of zinc, 27μgg-1 of nickel and 2.3μgg-1 of cadmium. During the anaerobic acidification of 3gdry weightL-1 waste activated sludge, 80-85% of the copper, 66-69% of the lead, 87% of the zinc, 94-99% of the nickel and 73-83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead.

  16. BIOESTABILIZATION ANAEROBIC SOLID WASTE ORGANIC:QUANTITATIVE ASPECTS

    Directory of Open Access Journals (Sweden)

    Valderi Duarte Leite

    2015-01-01

    Full Text Available It is estimated that in Brazil, the municipal solid waste produced are constituted on average 55% of fermentable organic solid waste and that this quantity can be applied in aerobic or anaerobic stabilization process. Anaerobic digestion is an important alternative for the treatment of different types of potentially fermentable waste, considering providing an alternative source of energy that can be used to replace fossil fuels. To perform the experimental part of this work was constructed and monitored an experimental system consisting of an anaerobic batch reactor, shredding unit of fermentable organic wastes and additional devices. Fermentable organic wastes consisted of leftover fruits and vegetables and were listed in EMPASA (Paraibana Company of Food and Agricultural Services, located in the city of Campina Grande- PB. The residues were collected and transported to the Experimental Station Biological Sewage Treatment (EXTRABES where they were processed and used for substrate preparation. The substrate consisted of a mixture of fermentable organic waste, more anaerobic sewage sludge in the proportion of 80 and 20 % respectively. In the specific case of this study, it was found that 1m3 of substrate concentration of total COD equal to 169 g L-1, considering the reactor efficiency equal to 80 %, the production of CH4 would be approximately 47.25 Nm3 CH4. Therefore, fermentable organic waste, when subjected to anaerobic treatment process produces a quantity of methane gas in addition to the partially biostabilized compound may be applied as a soil conditioning agent.

  17. A review of anaerobic treatment of saline wastewater.

    Science.gov (United States)

    Xiao, Yeyuan; Roberts, Deborah J

    2010-01-01

    Large volumes of saline (> 2% w/v NaCl) wastewaters are discharged from many industries; e.g. seafood processing, textile dyeing, oil and gas production, tanneries and drinking water treatment processes. Although anaerobic treatment would be the most cost-effective and sustainable technology for the treatment of many of these saline wastewaters, the salinity is considered to be inhibitory to anaerobic biological treatment processes. The recent applications of salt-tolerant cultures for the treatment of wastewaters from seafood processing and ion-exchange processes suggest that biological systems can be used to treat salty wastewaters. Additionally, organisms capable of anaerobic degradation of contaminants in saline solutions have been observed in marine sediments and have been characterized during the last two decades. This manuscript provides a review of the recent research on anaerobic treatment of saline wastewater and bacterial consortia capable of the anaerobic degradation of pollutants in saline solutions, documenting that the biological treatment of saline wastewaters is promising.

  18. Biochemical reaction engineering and process development in anaerobic wastewater treatment.

    Science.gov (United States)

    Aivasidis, Alexander; Diamantis, Vasileios

    2005-01-01

    Developments in production technology have frequently resulted in the concentrated local accumulation of highly organic-laden wastewaters. Anaerobic wastewater treatment, in industrial applications, constitutes an advanced method of synthesis by which inexpensive substrates are converted into valuable disproportionate products. A critical discussion of certain fundamental principles of biochemical reaction engineering relevant to the anaerobic mode of operation is made here, with special emphasis on the roles of thermodynamics, kinetics, mass and heat transfer, reactor design, biomass retention and recycling. The applications of the anaerobic processes are discussed, introducing the principles of an upflow anaerobic sludge bed reactor and a fixed-bed loop reactor. The merits of staging reactor systems are presented using selected examples based on two decades of research in the field of anaerobic fermentation and wastewater treatment at the Forschungszentrum Julich (Julich Research Center, Germany). Wastewater treatment is an industrial process associated with one of the largest levels of mass throughput known, and for this reason it provides a major impetus to further developments in bioprocess technology in general.

  19. The effect of motivational music on wingate anaerobic test performance

    Directory of Open Access Journals (Sweden)

    Özkan Işık

    2015-09-01

    Full Text Available The aim of this study is to examine the effect of the motivational music on the Wingate Anaerobic Test (WAnT performance. 16 male students who studied at School of Physical Education and Sports, Kocatepe University participated in the study voluntarily. After demographic characteristics of the voluntaries [age, height, body weight (BW, body mass index (BMI] were measured without music (pre-test and with motivational music [>120 bpm (beats per minute] conditions (post-test. For the analyses of the data; Wilcoxon Rank Test was used in order to detect the difference among the variables. As a result of the measurements taken in with and without music conditions; it was found out that there was a statistically significant difference on behalf of condition with music in terms of maximum anaerobic power (MaxAP, maximum anaerobic capacity (MAC, relative anaerobic power (RAP, relative anaerobic capacity (RAC and fatigue index (FI values (p0,05. It was determined that the motivational music has positive effects on the WAnT performance. However; although it was seen that motivational music increased the WAnT performance, we were of the opinion that this effect emerged thanks to the increased psycho-physiological factors caused by music.

  20. Foaming phenomenon in bench-scale anaerobic digesters.

    Science.gov (United States)

    Siebels, Amanda M; Long, Sharon C

    2013-04-01

    The Madison Metropolitan Sewerage District (The District) in Madison, Wisconsin has been experiencing seasonal foaming in their anaerobic biosolids digesters, which has occurred from mid-November to late June for the past few years. The exact cause(s) of foaming is unknown. Previous research findings are unclear as to whether applications of advanced anaerobic digestion processes reduce the foaming potential of digesters. The object of this study was to investigate how configurations of thermophilic and acid phase-thermophilic anaerobic digestion would affect foaming at the bench-scale level compared to single stage mesophilic digestion for The District. Bench-scale anaerobic digesters were fed with a 4 to 4.5% by dry weight of solids content blend of waste activated sludge (WAS) and primary sludge from The District. Foaming potential was monitored using Alka-Seltzer and aeration foaming tests. The bench-scale acid phase-thermophilic digester had a higher foaming potential than the bench-scale mesophilic digester. These results indicate that higher temperatures increase the foaming potential of the bench-scale anaerobic digesters. The bench-scale acid phase-thermophilic digesters had a greater percent (approximately 5 to 10%) volatile solids destruction and a greater percent (approximately 5 to 10%) total solids destruction when compared to the bench-scale mesophilic digester. Overall, for the full-scale foaming experienced by The District, it appears that adding an acid phase or switching to thermophilic digestion would not alleviate The District's foaming issues.

  1. Anaerobic growth of a "strict aerobe" (Bacillus subtilis).

    Science.gov (United States)

    Nakano, M M; Zuber, P

    1998-01-01

    There was a long-held belief that the gram-positive soil bacterium Bacillus subtilis is a strict aerobe. But recent studies have shown that B. subtilis will grow anaerobically, either by using nitrate or nitrite as a terminal electron acceptor, or by fermentation. How B. subtilis alters its metabolic activity according to the availability of oxygen and alternative electron acceptors is but one focus of study. A two-component signal transduction system composed of a sensor kinase, ResE, and a response regulator, ResD, occupies an early stage in the regulatory pathway governing anaerobic respiration. One of the essential roles of ResD and ResE in anaerobic gene regulation is induction of fnr transcription upon oxygen limitation. FNR is a transcriptional activator for anaerobically induced genes, including those for respiratory nitrate reductase, narGHJI.B. subtilis has two distinct nitrate reductases, one for the assimilation of nitrate nitrogen and the other for nitrate respiration. In contrast, one nitrite reductase functions both in nitrite nitrogen assimilation and nitrite respiration. Unlike many anaerobes, which use pyruvate formate lyase, B. subtilis can carry out fermentation in the absence of external electron acceptors wherein pyruvate dehydrogenase is utilized to metabolize pyruvate.

  2. Anaerobic Co-Digestion of the Microalgae Scenedesmus Sp.

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Suarez, J. L.; Carreras, N.

    2011-06-07

    Microalgae biomass has been widely studied for biogas production over the last years and results show that anaerobic digestion is often limited by the low C/N ratio of this type of biomass. Therefore, codigestion with substrates of high C/N ratio is necessary. The objectives of this study are to set up an experimental method that ease reproducibility and control of anaerobic digestion processes in laboratory conditions and to determine the biodegradability and biogas production potential of the co-digestion process of microalgae Scenedesmus sp. and energy crop Opuntia ficus indica (L.) Miller. Results obtained showed that higher C/N ratios are preferred in order to maximize methane production. Highest methane yield obtained was 0.252m3CH4/Kg VS and degradability expressed as percentage COD reduced is around 30% for the ideal mixture found, made up of 75% O. ficus-indica and 25% Scenedesmus sp. in VS basis. A laboratory setup using MicroOxymax respirometer, after its adaptation to work under anaerobic conditions, can be used for the monitoring of anaerobic digestion processes. Scenedesmus sp. as sole substrate for anaerobic digestion does not give good results due to low C/N ratio. However, when codigesting it with O. ficus-indica methane production is satisfactory. Best mixture was made up of 75% O. ficus-indica and 25% Scenedesmus sp. in VS basis. (Author)

  3. Use of an anaerobic sequencing batch reactor for parameter estimation in modelling of anaerobic digestion.

    Science.gov (United States)

    Batstone, D J; Torrijos, M; Ruiz, C; Schmidt, J E

    2004-01-01

    The model structure in anaerobic digestion has been clarified following publication of the IWA Anaerobic Digestion Model No. 1 (ADM1). However, parameter values are not well known, and uncertainty and variability in the parameter values given is almost unknown. Additionally, platforms for identification of parameters, namely continuous-flow laboratory digesters, and batch tests suffer from disadvantages such as long run times, and difficulty in defining initial conditions, respectively. Anaerobic sequencing batch reactors (ASBRs) are sequenced into fill-react-settle-decant phases, and offer promising possibilities for estimation of parameters, as they are by nature, dynamic in behaviour, and allow repeatable behaviour to establish initial conditions, and evaluate parameters. In this study, we estimated parameters describing winery wastewater (most COD as ethanol) degradation using data from sequencing operation, and validated these parameters using unsequenced pulses of ethanol and acetate. The model used was the ADM1, with an extension for ethanol degradation. Parameter confidence spaces were found by non-linear, correlated analysis of the two main Monod parameters; maximum uptake rate (k(m)), and half saturation concentration (K(S)). These parameters could be estimated together using only the measured acetate concentration (20 points per cycle). From interpolating the single cycle acetate data to multiple cycles, we estimate that a practical "optimal" identifiability could be achieved after two cycles for the acetate parameters, and three cycles for the ethanol parameters. The parameters found performed well in the short term, and represented the pulses of acetate and ethanol (within 4 days of the winery-fed cycles) very well. The main discrepancy was poor prediction of pH dynamics, which could be due to an unidentified buffer with an overall influence the same as a weak base (possibly CaCO3). Based on this work, ASBR systems are effective for parameter

  4. University of Wisconsin Oshkosh Anaerobic Dry Digestion Facility

    Energy Technology Data Exchange (ETDEWEB)

    Koker, John [Univ. of Wisconsin, Oshkosh, WI (United States); Lizotte, Michael [Univ. of Wisconsin, Oshkosh, WI (United States)

    2017-02-08

    The University of Wisconsin Oshkosh Anaerobic Dry Digestion Facility is a demonstration project that supported the first commercial-scale use in the United States of high solids, static pile technology for anaerobic digestion of organic waste to generate biogas for use in generating electricity and heat. The research adds to the understanding of startup, operation and supply chain issues for anaerobic digester technology. Issues and performance were documented for equipment installation and modifications, feedstock availability and quality, weekly loading and unloading of digestion chambers, chemical composition of biogas produced, and energy production. This facility also demonstrated an urban industrial ecology approach to siting such facilities near sewage treatment plants (to capture and use excess biogas generated by the plants) and organic yard waste collection sites (a source of feedstock).

  5. Model selection, identification and validation in anaerobic digestion: a review.

    Science.gov (United States)

    Donoso-Bravo, Andres; Mailier, Johan; Martin, Cristina; Rodríguez, Jorge; Aceves-Lara, César Arturo; Vande Wouwer, Alain

    2011-11-01

    Anaerobic digestion enables waste (water) treatment and energy production in the form of biogas. The successful implementation of this process has lead to an increasing interest worldwide. However, anaerobic digestion is a complex biological process, where hundreds of microbial populations are involved, and whose start-up and operation are delicate issues. In order to better understand the process dynamics and to optimize the operating conditions, the availability of dynamic models is of paramount importance. Such models have to be inferred from prior knowledge and experimental data collected from real plants. Modeling and parameter identification are vast subjects, offering a realm of approaches and methods, which can be difficult to fully understand by scientists and engineers dedicated to the plant operation and improvements. This review article discusses existing modeling frameworks and methodologies for parameter estimation and model validation in the field of anaerobic digestion processes. The point of view is pragmatic, intentionally focusing on simple but efficient methods.

  6. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes

    Science.gov (United States)

    Megonigal, J. P.; Hines, M. E.; Visscher, P. T.

    2003-12-01

    Life evolved and flourished in the absence of molecular oxygen (O2). As the O2 content of the atmosphere rose to the present level of 21% beginning about two billion years ago, anaerobic metabolism was gradually supplanted by aerobic metabolism. Anaerobic environments have persisted on Earth despite the transformation to an oxidized state because of the combined influence of water and organic matter. Molecular oxygen diffuses about 104 times more slowly through water than air, and organic matter supports a large biotic O2 demand that consumes the supply faster than it is replaced by diffusion. Such conditions exist in wetlands, rivers, estuaries, coastal marine sediments, aquifers, anoxic water columns, sewage digesters, landfills, the intestinal tracts of animals, and the rumen of herbivores. Anaerobic microsites are also embedded in oxic environments such as upland soils and marine water columns. Appreciable rates of aerobic respiration are restricted to areas that are in direct contact with air or those inhabited by organisms that produce O2.Rising atmospheric O2 reduced the global area of anaerobic habitat, but enhanced the overall rate of anaerobic metabolism (at least on an area basis) by increasing the supply of electron donors and acceptors. Organic carbon production increased dramatically, as did oxidized forms of nitrogen, manganese, iron, sulfur, and many other elements. In contemporary anaerobic ecosystems, nearly all of the reducing power is derived from photosynthesis, and most of it eventually returns to O2, the most electronegative electron acceptor that is abundant. This photosynthetically driven redox gradient has been thoroughly exploited by aerobic and anaerobic microorganisms for metabolism. The same is true of hydrothermal vents (Tunnicliffe, 1992) and some deep subsurface environments ( Chapelle et al., 2002), where thermal energy is the ultimate source of the reducing power.Although anaerobic habitats are currently a small fraction of Earth

  7. My Lifelong Passion for Biochemistry and Anaerobic Microorganisms.

    Science.gov (United States)

    Thauer, Rudolf Kurt

    2015-01-01

    Early parental influence led me first to medical school, but after developing a passion for biochemistry and sensing the need for a deeper foundation, I changed to chemistry. During breaks between semesters, I worked in various biochemistry labs to acquire a feeling for the different areas of investigation. The scientific puzzle that fascinated me most was the metabolism of the anaerobic bacterium Clostridium kluyveri, which I took on in 1965 in Karl Decker's lab in Freiburg, Germany. I quickly realized that little was known about the biochemistry of strict anaerobes such as clostridia, methanogens, acetogens, and sulfate-reducing bacteria and that these were ideal model organisms to study fundamental questions of energy conservation, CO2 fixation, and the evolution of metabolic pathways. My passion for anaerobes was born then and is unabated even after 50 years of study.

  8. Modeling flow inside an anaerobic digester by CFD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Alexandra Martinez; Jimenez, P. Amparo Lopez [Departmento do Ingenieria Hidralica y Medio Ambiente, Universitat Politecnica de Valencia, Camino de Vera S/N 46022 (Spain); Martinez, Tatiana Montoya; Monanana, Vincente Fajardo [Grupo Aquas de Valencia. Avenida Marques del Turia 19 46005 Valencia (Spain)

    2011-07-01

    Anaerobic processes are used to treat high strength organic wastewater as well as for the treatment of primary and secondary sludge from conventional wastewater treatment plants. In these processes, heterotrophic microorganisms convert biodegradable organic matter to methane and carbon dioxide in the absence of dissolved oxygen and nitrate. Some of the most important aspects of the design of anaerobic digesters are related to hydraulic considerations. In spite of its important role in performance, hydraulics of flow inside digesters has not been quantified or adequately characterized. In this contribution a three-dimensional steady-state computational fluid dynamics (CFD) simulation has been performed for a particular anaerobic digester, in order to visualize the flow patterns. Flow and velocities profiles have been represented inside the digester to identify possible dead zones or stratifications. The geometry of a real digester installed in Valencia Waste Water Treatment Plant (located in Quart-Benager, Valencia, Spain) has been used in order to consider the proposed methodology.

  9. Anaerobic treatability of wastewater contaminated with propylene glycol.

    Science.gov (United States)

    Sezgin, Naim; Tonuk, Gulseven Ubay

    2013-09-01

    The purpose of this study was to investigate the biodegradability of propylene glycol in anaerobic conditions by using methanogenic culture. A master reactor was set up to develop a culture that would be acclimated to propylene glycol. After reaching steady-state, culture was transferred to serum bottles. Three reactors with same initial conditions were run for consistency. Propylene glycol was completely biodegradable under anaerobic methanogenic conditions. Semi-continuous reactors operated at a temperature of 35°C had consistently achieved a propylene glycol removal of higher than 95 % based on chemical oxygen demand (COD). It was found that in semi-continuous reactors, anaerobic treatment of propylene glycol at concentrations higher than 1,500 mg COD m(-3) day(-1) was not convenient due to instable effluent COD.

  10. Anaerobic biotransformation of organoarsenical pesticides monomethylarsonic acid and dimethylarsinic acid

    Science.gov (United States)

    Sierra-Alvarez, R.; Yenal, U.; Feld, J.A.; Kopplin, M.; Gandolfi, A.J.; Garbarino, J.R.

    2006-01-01

    Monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV) are extensively utilized as pesticides, introducing large quantities of arsenic into the environment. Once released into the environment, these organoarsenicals are subject to microbial reactions. Aerobic biodegradation of MMAV and DMAV has been evaluated, but little is known about their fate in anaerobic environments. The objective of this study was to evaluate the biotransformation of MMAV and DMAV in anaerobic sludge. Biologically mediated conversion occurred under methanogenic or sulfate-reducing conditions but not in the presence of nitrate. Monomethylarsonous acid (MMAIII) was consistently observed as an important metabolite of MMAV degradation, and it was recovered in molar yields ranging from 5 to 47%. The main biotransformation product identified from DMAV metabolism was MMAV, which was recovered in molar yields ranging from 8 to 65%. The metabolites indicate that reduction and demethylation are important steps in the anaerobic bioconversion of MMAV and DMAV, respectively. ?? 2006 American Chemical Society.

  11. Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens

    DEFF Research Database (Denmark)

    Zhang, Tian; Tremblay, Pier-Luc; Chaurasia, Akhilesh Kumar;

    2014-01-01

    Although the biochemical pathways for the anaerobic degradation of many of the hydrocarbon constituents in petroleum reservoirs have been elucidated, the mechanisms for anaerobic activation of benzene, a very stable molecule, are not known. Previous studies have demonstrated that Geobacter...

  12. Volatile organic sulfur compounds in anaerobic sludge and sediments: biodegradation and toxicity

    NARCIS (Netherlands)

    Leerdam, van R.C.; Bok, de F.A.M.; Lomans, B.P.; Stams, A.J.M.; Lens, P.N.L.; Janssen, A.J.H.

    2006-01-01

    A variety of environmental samples was screened for anaerobic degradation of methanethiol, ethanethiol, propanethiol, dimethylsulfide, and dimethyldisulfide. All sludge and sediment samples degraded methanethiol, dimethylsulfide, and dimethyldisulfide anaerobically. In contrast, ethanethiol and prop

  13. Environmental evidence for net methane production and oxidation in putative ANaerobic MEthanotrophic (ANME) archaea

    DEFF Research Database (Denmark)

    Lloyd, Karen; Teske, Andreas; Alperin, Marc J.

    2011-01-01

    Uncultured ANaerobic MEthanotrophic (ANME) archaea are often assumed to be obligate methanotrophs that are incapable of net methanogenesis, and are therefore used as proxies for anaerobic methane oxidation in many environments in spite of uncertainty regarding their metabolic capabilities. Anaero...

  14. Anaerobic treatment in decentralised and source-separation-based sanitation concepts

    NARCIS (Netherlands)

    Kujawa-Roeleveld, K.; Zeeman, G.

    2006-01-01

    Anaerobic digestion of wastewater should be a core technology employed in decentralised sanitation systems especially when their objective is also resource conservation and reuse. The most efficient system involves separate collection and anaerobic digestion of the most concentrated domestic wastewa

  15. Subsurface aeration of anaerobic groundwater : iron colloid formation and the nitrification process

    NARCIS (Netherlands)

    Wolthoorn, A.

    2003-01-01

    Keywords: Iron, anaerobic groundwater, groundwater purification, heterogeneous oxidation, iron colloid formation, electron microscopy, nitrification In anaerobic groundwater iron and ammonium can be found in relatively high concentrations. These substances need to be removed when groundwater is used

  16. Anaerobic membrane bio-reactors for severe industrial effluents and urban spill waters: The AMBROSIUS project

    NARCIS (Netherlands)

    Van Lier, J.B.; Ozgun, H.; Ersahin, M.E.; Dereli, R.K.

    2013-01-01

    With growing application experiences from aerobic membrane bioreactors, combination of membrane and anaerobic processes become more and more attractive and feasible. In anaerobic membrane bioreactors (AnMBRs), biomass and particulate organic matter are physically retained inside the reactor, providi

  17. Myocardial damage after continuous aerobic and anaerobic exercise in rats

    Directory of Open Access Journals (Sweden)

    Rostika Flora

    2013-12-01

    Full Text Available Background: Regular physical activity is highly recommended in preventive, curative, and rehabilitative programs in order to promote health, especially cardiovascular health. However, physical activity can also cause sudden death. In athletes, sudden death may occur during sport competitions, with myocardial infarction as the most common etiology. It is suspected that continuous training without any rest-day play a role in cardiac muscle damage and sudden death during competition. Our study was aimed to learn about cardiac muscle adaptation on continuous aerobic and anaerobic physical activity without any rest-day. Methods: The specimens in our study were cardiac muscle tissue obtained from rats that had performed aerobic and anaerobic physical activity on treadmill for 1, 3, 7, and 10 days without any rest-day. Blood gas analysis and hematological assessment were used as parameters of systemic adaptation to hypoxia during physical activity. Moreover, histopathology of cardiac muscle tissue was performed as parameter for cardiac muscle damage.Results: The results showed that aerobic and anaerobic physical activity caused a systemic hypoxic condition and triggered adaptation responses. Cardiac muscle damage occurred on the 10th day in both treatment groups, with more severe damage observed in the group with anaerobic physical activity. The tissue protein level in the anaerobic group increased progressively on the 10th day.Conclusion: Physical activity may result in hypoxia and systemic adaptation. Aerobic and anaerobic physical activities performed for 10 days without any rest-day may cause cardiac muscle damage. (Med J Indones. 2013;22:209-14. doi: 10.13181/mji.v22i4.601Keywords: Cardiac muscle, cardiac muscle damage, histopathology, physical activity

  18. Anaerobic bioleaching of metals from waste activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Meulepas, Roel J.W., E-mail: roel.meulepas@wetsus.nl [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Gonzalez-Gil, Graciela [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal 13955-69000 (Saudi Arabia); Teshager, Fitfety Melese; Witharana, Ayoma [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Saikaly, Pascal E. [King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal 13955-69000 (Saudi Arabia); Lens, Piet N.L. [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands)

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g{sup −1} of copper, 487 μg g{sup −1} of lead, 793 μg g{sup −1} of zinc, 27 μg g{sup −1} of nickel and 2.3 μg g{sup −1} of cadmium. During the anaerobic acidification of 3 g{sub dry} {sub weight} L{sup −1} waste activated sludge, 80–85% of the copper, 66–69% of the lead, 87% of the zinc, 94–99% of the nickel and 73–83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead. - Highlights: • Heavy metals were leached during anaerobic acidification of waste activated sludge. • The process does not require the addition of chelating or oxidizing agents. • The metal leaching efficiencies (66 to 99%) were comparable to chemical leaching. • The produced leachate may be used for metal recovery and biogas production. • The produced digested sludge may be used as soil conditioner.

  19. Anaerobic oxidation of methane in grassland soils used for cattle husbandry

    OpenAIRE

    2012-01-01

    While the importance of anaerobic methane oxidation has been reported for marine ecosystems, the role of this process in soils is still questionable. Grasslands used as pastures for cattle-overwintering show an increase in anaerobic soil micro-sites caused by animal treading and excrement deposition. Therefore anaerobic potential methane oxidation activity of severely impacted soil from a cattle winter pasture was investigated in an incubation experiment under anaerobic conditions using

  20. Anaerobic oxidation of methane in grassland soils used for cattle husbandry

    OpenAIRE

    2012-01-01

    While the importance of anaerobic methane oxidation has been reported for marine ecosystems, the role of this process in soils is still questionable. Grasslands used as pastures for cattle overwintering show an increase in anaerobic soil micro-sites caused by animal treading and excrement deposition. Therefore, anaerobic potential methane oxidation activity of severely impacted soil from a cattle winter pasture was investigated in an incubation experiment under anaerobic conditions using <...

  1. Degradation of toxaphene in water during anaerobic and aerobic conditions.

    Science.gov (United States)

    LacayoR, M; van Bavel, B; Mattiasson, B

    2004-08-01

    The degradation of technical toxaphene in water with two kinds of bioreactors operating in sequence was studied. One packed bed reactor was filled with Poraver (foam glass particles) running at anaerobic conditions and one suspended carrier biofilm reactor working aerobically. Chemical oxygen demand (COD), chloride, sulphate, pH, dissolved oxygen, total toxaphene and specific toxaphene isomers were measured. After 6 weeks approx. 87% of the total toxaphene was degraded reaching 98% by week 39. The majority of the conversion took place in the anaerobic reactor. The concentrations of toxaphene isomers with more chlorine substituents decreased more rapidly than for isomers with less chlorine substituents.

  2. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    Energy Technology Data Exchange (ETDEWEB)

    Rejean Samson; Anh LeDuy

    1982-08-01

    Spirulina maxima algal biomass could be used as the sole nutrient for the production of biogas by anaerobic digestion process. It is relatively simple to adapt the municipal sewage sludge to this new substrate. The adapted sludge is very stable. Under nonoptimal conditions, the methane yield and productivity obtained were 0.26 m/sup 3//(kg VS added day) and 0.26 m/sup 3//(kg VS added day), respectively, with the semicontinuous, daily fed, anaerobic digestion having loading rate of 0.97 kg VS/(m/sup 3/ day), retention time of 33 days and temperature of 30/sup 0/C.

  3. Analysis, anaerobic treatment and ozonation of wool scouring wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Monteverdi, A.; Rindone, B.; Sorlini, C. (Univ. di Milano (Italy)); Andreoni, V. (Univ. di Torino (Italy)); Rozzi, A. (Inst. di Ingegneria Sanitaria del Politechnico di Milano (Italy))

    1992-01-01

    Wool scouring effluents (WSE) were analyzed by high-resolution gas chromatography-mass spectrometry (HRGC-MS), and then exposed to anaerobic biological treatment using laboratory scale fixed-bed filters. This resulted in a nearly 50% reduction in chemical oxygen demand (COD). Ozonation of the effluent from the biological step led to an even further decrease in total organic carbon (TOC). The fatty acid content of the WSE was affected by both biological treatment and ozonation. Finally, steroids in the WSE underwent reduction reactions when exposed to the anaerobic biological treatment.

  4. Anaerobic digestion of lignocellulosic biomass: challenges and opportunities.

    Science.gov (United States)

    Sawatdeenarunat, Chayanon; Surendra, K C; Takara, Devin; Oechsner, Hans; Khanal, Samir Kumar

    2015-02-01

    Anaerobic digestion (AD) of lignocellulosic biomass provides an excellent opportunity to convert abundant bioresources into renewable energy. Rumen microorganisms, in contrast to conventional microorganisms, are an effective inoculum for digesting lignocellulosic biomass due to their intrinsic ability to degrade substrate rich in cellulosic fiber. However, there are still several challenges that must be overcome for the efficient digestion of lignocellulosic biomass. Anaerobic biorefinery is an emerging concept that not only generates bioenergy, but also high-value biochemical/products from the same feedstock. This review paper highlights the current status of lignocellulosic biomass digestion and discusses its challenges. The paper also discusses the future research needs of lignocellulosic biomass digestion.

  5. Anaerobic methanotrophy in tidal wetland: Effects of electron acceptors

    Science.gov (United States)

    Lin, Li-Hung; Yu, Zih-Huei; Wang, Pei-Ling

    2016-04-01

    Wetlands have been considered to represent the largest natural source of methane emission, contributing substantially to intensify greenhouse effect. Despite in situ methanogenesis fueled by organic degradation, methanotrophy also plays a vital role in controlling the exact quantity of methane release across the air-sediment interface. As wetlands constantly experience various disturbances of anthropogenic activities, biological burrowing, tidal inundation, and plant development, rapid elemental turnover would enable various electron acceptors available for anaerobic methanotrophy. The effects of electron acceptors on stimulating anaerobic methanotrophy and the population compositions involved in carbon transformation in wetland sediments are poorly explored. In this study, sediments recovered from tidally influenced, mangrove covered wetland in northern Taiwan were incubated under the static conditions to investigate whether anaerobic methanotrophy could be stimulated by the presence of individual electron acceptors. Our results demonstrated that anaerobic methanotrophy was clearly stimulated in incubations amended with no electron acceptor, sulfate, or Fe-oxyhydroxide. No apparent methane consumption was observed in incubations with nitrate, citrate, fumarate or Mn-oxides. Anaerobic methanotrophy in incubations with no exogenous electron acceptor appears to proceed at the greatest rates, being sequentially followed by incubations with sulfate and Fe-oxyhydroxide. The presence of basal salt solution stimulated methane oxidation by a factor of 2 to 3. In addition to the direct impact of electron acceptor and basal salts, incubations with sediments retrieved from low tide period yielded a lower rate of methane oxidation than from high tide period. Overall, this study demonstrates that anaerobic methanotrophy in wetland sediments could proceed under various treatments of electron acceptors. Low sulfate content is not a critical factor in inhibiting methane

  6. Anaerobic digestion: technology transfer, engineering performance and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cecchi, F.; Traverso, P.G.; Ganapini, W.

    1987-10-01

    The chemical, technological and process aspects of anaerobic digestion process are analysed on the basis of the Authors' experience and of scientific literature. Emphasis is put on the necessity of integrating the presentation of experimental data and some suggestions are common to those of the EEC to improve the knowledge of the process. An analysis of the types of full-scale digesters used in Europe and in the USA is supplied and suggestions are proposed on the future development of anaerobic technology with the aim of improving performance and efficiency.

  7. Prospective study of the clinical performance of three BACTEC media in a modern emergency department: Plus Aerobic/F, Plus Anaerobic/F, and Anaerobic Lytic/F.

    Science.gov (United States)

    Rocchetti, Andrea; Di Matteo, Luigi; Bottino, Paolo; Foret, Benjamin; Gamalero, Elisa; Calabresi, Alessandra; Guido, Gianluca; Casagranda, Ivo

    2016-11-01

    The performance of 3 blood culture bottles (BACTEC Plus Aerobic/F, Plus Anaerobic/F, and Anaerobic Lytic/F) were analyzed with clinical specimens collected from 688 Emergency Department patients. A total of 270 strains belonging to 33 species were identified, with E. coli and S. aureus as the most frequently detected. Overall recovery rate (RR) of bacteria and yeast was equivalent in the Plus Aerobic/F vials (208 of 270 isolates; 77.0%) and Anaerobic Lytic/F vials (206 isolates; 76.3%) and significantly better than in the Plus Anaerobic/F vials (189 isolates; 70.0%). Median time to detection (TTD) was earliest with the Anaerobic Lytic/F vials (12.0h) compared with the Plus Aerobic/F (14.6h) and Plus Anaerobic/F vials (15.4h). Positivity rate (PR) was similar for Anaerobic Lytic/F vials (76.9%) and Plus Aerobic/F vials (76.5%), but better if compared with Plus Anaerobic/F vials (69.4%). The PR and TTD for the combination of Plus Aerobic/F with Anaerobic Lytic/F (94.5% and 12.3h, respectively) was significantly better than with Plus Aerobic/F with Plus Anaerobic/F (87.8% and 14.1h).

  8. Observation and mathematical description of the acceleration phenomenon in batch respirograms associated with ammonium oxidation

    DEFF Research Database (Denmark)

    Guisasola, A.; Chandran, K.; Smets, Barth F.;

    2006-01-01

    Two-step nitrification models are generally calibrated using short-term respirometric batch experiments. Important discrepancies appear between model predictions and experimental observations just after the pulse addition since a fast transient in the OUR profile is experimentally observed. Accel...

  9. Potential rates of ammonium oxidation, nitrite oxidation, nitrate reduction and denitrification in the young barley rhizosphere

    DEFF Research Database (Denmark)

    Højberg, Ole; Binnerup, S. J.; Sørensen, Jan

    1996-01-01

    nitrification in the rhizosphere. On the other hand, potential denitrification only responded positively to the second, longer wetting of the soil. The potential activities were not affected by changes in the pools of inorganic N. As judged from the potential activities (enzyme contents), both groups...

  10. Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters

    NARCIS (Netherlands)

    Regueiro, L.; Veiga, P.; Figueroa, M.; Alonso-Gutierrez, J.; Stams, A.J.M.; Lema, J.M.; Carballa, M.

    2012-01-01

    High activity levels and balanced anaerobic microbial communities are necessary to attain proper anaerobic digestion performance. Therefore, this work was focused on the kinetic performance and the microbial community structure of six full-scale anaerobic digesters and one lab-scale co-digester. Hyd

  11. Wet and Dry Anaerobic Digestion of Biowaste and of Co-substrates

    OpenAIRE

    Li, Chaoran

    2015-01-01

    Treatment of municipal solid waste by anaerobic digestion can solve the environmental problems caused by this organic solid waste and also supply biogas as renewable energy for a sustainable development. In this study the improvement of wet anaerobic digestion by addition of co-substrates and the effect of moisture on dry anaerobic digestion were investigated.

  12. Comparison of digestate from solid anaerobic digesters and dewatered effluent from liquid anaerobic digesters as inocula for solid state anaerobic digestion of yard trimmings.

    Science.gov (United States)

    Xu, Fuqing; Wang, Feng; Lin, Long; Li, Yebo

    2016-01-01

    To select a proper inoculum for the solid state anaerobic digestion (SS-AD) of yard trimmings, digestate from solid anaerobic digesters and dewatered effluent from liquid anaerobic digesters were compared at substrate-to-inoculum (S/I) ratios from 0.2 to 2 (dry basis), and total solids (TS) contents from 20% to 35%. The highest methane yield of around 244L/kg VSfeed was obtained at an S/I ratio of 0.2 and TS content of 20% for both types of inoculum. The highest volumetric methane productivity was obtained with dewatered effluent at an S/I ratio of 0.6 and TS content of 24%. The two types of inoculum were found comparable regarding methane yields and volumetric methane productivities at each S/I ratio, while using dewatered effluent as inoculum reduced the startup time. An S/I ratio of 1 was determined to be a critical level and should be set as the upper limit for mesophilic SS-AD of yard trimmings.

  13. Anaerobic digestion of solid biomass and biowaste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Within the International Trade Fair for Biogas Plant Technology from 23rd to 24th February, 2012 in Berlin, the following lectures were held: (1) Presentation and results of the EU project 24biomass'' (Claudia Lutsyuk); (2) The Polish biogas market (Tomasz Surowiec); (3) Presence and future of the biogas sector in Poland - EBE project (Eugeniusz Jedrysik); (4) Modern biogas generation in Poland - Case studies of the company Poldanor (Jens Bo Holm-Nielsen); (5) Low space requirement - The challenge in the integration of biogas plants in existing composting facilities - examples from real life (Michael Oertig); (6) Integration of biogas plants in composting facilities by partial-flow fermentation (Bruno Mattheeuws); (7) The significance of an efficient removal of foreign matter from biomass before fermentation in a waste incinerator for municipal wastes (Stephan Schulte); (8) Sustainable enhancement of the anaerobic degradation and increase of the biogas production by means of ultrasonic treatment - examples from real life (Silvana Velten); (9) Cultivation of energy plants on sandy soils in the northeastern part of Germany (Gunter Ebel); (10) Topinambur, a new sustainable energy crop for biogas generation (Vito Pignatelli); (11) Potential of biogas generation from reed (Vilis Dubrovskis); (12) Biogas generation from maize straw - a new procedure of harvesting and processing (Thomas Amon); (13) Generation of biogas by cofermentation of pig manure and grass silage: a pilot study (Ximmin Zhan); (14) Thermophilic dry fermentation of poultry litter and energy crops for the generation of biogas, organic fertilizer and protection of water resources from environmental damages in the Mid-Atlantic region of the USA (John Intersoll); (15) Energetic utilisation of horse manure (Saskia Oldenburg); (16) Realization of the greatest and most modern Hungarian biogas plant in Szarvas (Ludwig Dinkloh); (16) Biogas in Russia - The investment program of the cooperation &apos

  14. The Impact of Temperature on Anaerobic Biological Perchlorate Treatment

    Science.gov (United States)

    A 20-month pilot-scale study was conducted to examine the impact of temperature on the performance of an anaerobic biological contactor used to treat perchlorate-contaminated water. The contactor was successfully acclimated with indigenous micro-organisms. Influent temperatures...

  15. Treatment of slaughterhouse wastewater in anaerobic sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Masse, D. I.; Masse, L. [Agriculture and Agri-Food Canada, Lennoxville, PQ (Canada)

    2000-09-01

    Slaughterhouse waste water was treated in anaerobic sequencing batch reactors operated at 30 degrees C. Two of the batch reactors were seeded with anaerobic granular sludge from a milk processing plant reactor; two others received anaerobic non-granulated sludge from a municipal waste water treatment plant. Influent total chemical oxygen demand was reduced by 90 to 96 per cent at organic loading rates ranging from 2.07 kg to 4.93 kg per cubic meter. Reactors seeded with municipal sludge performed slightly better than those containing sludge from the milk processing plant. The difference was particularly noticeable during start-up, but the differences between the two sludges were reduced with time. The reactors produced a biogas containing 75 per cent methane. About 90.5 per cent of the chemical oxygen demand removed was methanized; volatile suspended solids accumulation was determined at 0.068 kg per kg of chemical oxygen demand removed. The high degree of methanization suggests that most of the soluble and suspended organic material in slaughterhouse waste water was degraded during the treatment in the anaerobic sequencing batch reactors. 30 refs., 1 tab., 6 figs.

  16. Biological drinking water treatment of anaerobic groundwater in trickling filters

    NARCIS (Netherlands)

    De Vet, W.W.J.M.

    2011-01-01

    Drinking water production from anaerobic groundwater is usually achieved by so called conventional techniques such as aeration and sand filtration. The notion conventional implies a long history and general acceptation of the application, but doesn’t necessarily mean a thorough understanding of the

  17. Aerobic Capacity and Anaerobic Power Levels of the University Students

    Science.gov (United States)

    Taskin, Cengiz

    2016-01-01

    The aim of study was to analyze aerobic capacity and anaerobic power levels of the university students. Total forty university students who is department physical education and department business (age means; 21.15±1.46 years for male and age means; 20.55±1.79 years for female in department physical education), volunteered to participate in this…

  18. Modelling anaerobic codigestion of manure with olive oil mill effluent

    DEFF Research Database (Denmark)

    Angelidaki, I.; Ellegaard, L.; Ahring, B.K.

    1997-01-01

    anaerobic codigestion of cattle manure together with olive oil mill effluent (OME) and the simulations were compared with experimental data. Simulation data indicated that lack of ammonia, needed as nitrogen source for synthesis of bacterial biomass and as an important pH buffer, could be responsible...

  19. COMMERCIAL-SCALE AEROBIC-ANAEROBIC BIOREACTOR LANDFILL OPERATIONS

    Science.gov (United States)

    A sequential aerobic-anaerobic treatment system has been applied at a commercial scale (3,000 ton per day) municipal solid waste landfill in Kentucky, USA since 2001. In this system, the uppermost layer of landfilled waste is aerated and liquid waste including leachate, surface w...

  20. Degradation of formaldehyde in anaerobic sequencing batch biofilm reactor (ASBBR).

    Science.gov (United States)

    Pereira, N S; Zaiat, M

    2009-04-30

    The present study evaluated the degradation of formaldehyde in a bench-scale anaerobic sequencing batch reactor, which contained biomass immobilized in polyurethane foam matrices. The reactor was operated for 212 days at 35 degrees C with 8h sequential cycles, under different affluent formaldehyde concentrations ranging from 31.6 to 1104.4 mg/L (formaldehyde loading rates from 0.08 to 2.78 kg/m(3)day). The results indicate excellent reactor stability and over 99% efficiency in formaldehyde removal, with average effluent formaldehyde concentration of 3.6+/-1.7 mg/L. Formaldehyde degradation rates increased from 204.9 to 698.3mg/Lh as the initial concentration of formaldehyde was increased from around 100 to around 1100 mg/L. However, accumulation of organic matter was observed in the effluent (chemical oxygen demand (COD) values above 500 mg/L) due to the presence of non-degraded organic acids, especially acetic and propionic acids. This observation poses an important question regarding the anaerobic route of formaldehyde degradation, which might differ substantially from that reported in the literature. The anaerobic degradation pathway can be associated with the formation of long-chain oligomers from formaldehyde. Such long- or short-chain polymers are probably the precursors of organic acid formation by means of acidogenic anaerobic microorganisms.